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Abstract 

Aided navigation systems are constantly evolving and lending themselves to a growing number of 

applications. With a range of benefits from improved safety to reduced costs, they are an important 

concept within the shipping industry. This work aims to improve safety at sea in northern regions 

through demonstrating the potential for a ship autopilot specifically designed for transit in ice.  

Autopilots on ships are not a new concept – PID (proportional-integral-derivative) controller-based 

autopilots are already implemented onboard vessels. PID controllers, however, do not perform 

well when dealing with ice floes. This is because they are designed to maintain a process – such 

as ship speed and heading – without proper information regarding the ice around the vessel. 

Instead, this work aims to implement an adaptive autopilot that adjusts based on ice information 

ahead of the ship.  

The autopilot is a reinforcement learning based model that is trained using proximal policy 

optimization. Within a simulated setting, the ship autopilot is shown to be able to safely navigate 

through ice under controlled conditions. Both the ability to travel through ice at reasonable speeds 

as well as avoid individual ice floes is demonstrated. Due to the limited generalizability of the 

current method, further development is necessary before being applied in real world scenarios. 

 

Key terms: machine learning, reinforcement learning, ship autopilot, safety at sea, marine 

simulation, ice loads 
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1 Introduction 

1.1 Relevance of Work 

Safety at sea is a constantly evolving area of study with many different factors to consider 

and avenues for improvement. Aided navigation is one form of potential development in this field. 

Aided navigation can range from providing the crew with additional information or methods that 

improve their ability to carry out tasks. More extreme versions of aided navigation can involve 

controlling aspects of the vessel’s function – such as automatic adjustments of thrust and rudder 

angle. This can lead to crew having additional knowledge of their situation or even alleviate them 

of some of the tasks that need to be performed. This work looks at ship autopilot in ice as a means 

for accomplishing this outcome. The goal is to work towards an improved understanding of 

desirable behavior for a ship travelling through ice in order to provide usable information to the 

crew, or even provide a functioning autopilot for the most common scenarios. In addition to the 

improved safety of the crew, a pilot assist can improve fuel efficiency and generally reduce the 

cost of transit. 

1.2 Forms of Ship Autopilots 

PID (proportional-integral-derivative) controllers have been used for a basic form of ship 

autopilot for a long time. This form of autopilot allows the ship to maintain course and speed by 

continuously analyzing recent and current data in order to determine what adjustments need to be 

made to thrust and rudder angle. There are a few key limitations to this style of autopilot given the 

nature of their functionality. Basic forms of PID controller-based autopilots do not take into 

account any information regarding what is ahead of the vessel. This makes it impossible for such 

controllers to avoid specific obstacles or deal with rapidly changing conditions. 
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Some more recent forms of autopilots have been developed with more complex tasks in 

mind; including obstacle avoidance [1, 2]. A key difference between this style of task and 

maintaining course is that with obstacle avoidance, information about future events is required. 

That is, the autopilot must be capable of considering objects that it has not yet interacted with. One 

method for accomplishing this is to program a model with the desired behavior that takes into 

account the required information. For certain problems, this is not practical due to a non-perfect 

understanding of the desired behavior. The complexity of hull-ice interactions makes ship transit 

in ice one such scenario where it is hard to define the exact desired behavior.  

Using machine learning, a model can be trained to interpret information about objects 

ahead of the vessel along with what to do with it. One method for doing this is to apply supervised 

learning with a dataset of pre-compiled cases where ships have encountered these objects. 

Convolutional neural networks can be trained to recognize obstacles from image – or other – data. 

Rules can then be applied to tell the model what to do in the different situations. For example, if 

an object is found to be ahead of the vessel on the port side, then the vessel should turn to starboard. 

A comprehensive set of rules would allow for the model to have a complex set of behavior 

appropriate for any situation. One downside with this form of autopilot is the challenge with 

developing a comprehensive set of rules for any situation. Conversely, machine learning can be 

applied to train a model without the need of expert knowledge. This style of learning has the 

downside of requiring more data but benefits from not needing to be able to succinctly define the 

behavioral criteria while also avoiding being biased by a defined set of rules. It is this general style 

of aided ship navigation that is applied in this work. 
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1.3 Levels of Autonomy 

Levels of autonomy have been classified in many different ways depending on the 

application. Autonomous shipping is still in its infancy, but other industries – such as the 

automotive industry – have been increasingly implementing higher levels of autonomy in vehicles.  

Five levels of autonomy (six counting level zero) for cars have been well laid out [3, 4]. 

Level zero represents no automation meaning that a human is responsible for all aspects of control. 

Level one is “driver assistance”, where the driver is the primary controller but some assisting 

features – such as cruise control or lane assist – are incorporated into the system. Level 2 starts 

having more functions that are controlled autonomously, but the driver still plays an active role in 

control of the vehicle. At the third level, all aspects of control are autonomously controlled; 

however, the driver must be capable of taking control of the system at any time. At level 4, the 

vehicle can be controlled entirely without the driver under certain conditions, with the driver often 

provided with the option to take over control if desired or if encountering conditions that the system 

cannot handle. Finally, the fifth level of automation in cars is full automation where the human is 

no longer required, or even capable, of having any level of involvement in the control of the 

vehicle. While these levels of autonomy are laid out for cars, the same levels can apply to 

autonomous shipping. It is valuable to consider the level of autonomy that is being created in order 

to understand the scope of the work.  

Autonomy levels for ships can be described in a similar fashion. The Norwegian Forum 

for Autonomous Ships (NFAS) [5] specifies four levels of operational autonomy. The lowest level 

of autonomy defined is “decision support” in which the crew controls the ship with the aid of 

advanced technology systems. The second level is “automatic” where certain operations can be 

completed without human interaction, but the general operation of the vessel still relies on the 
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actions of the crew. “Constrained autonomous”, the third level, involves the ship being fully 

autonomous in most situations but still requires a crew being present in order to step in as required 

by the autonomous system. Finally, the fourth level of autonomy discussed by NFAS is “fully 

autonomous”. In this level, there is no crew at all; the ship is capable of safely completing all 

required tasks without direct human control or observation.  

There are a lot of similarities between the levels defined for cars and the levels defined by 

NFAS for ships; however, there are some nuances as to some of the ways they are viewed. In the 

automotive industry, there is a major consideration of the risk of injury to those not in the 

automated vehicle. This is because cars are used primarily on roads with plenty of other people. 

While this is true for ships in some situations – such as when docking – there are many situations 

at sea where no other vessels are present. For these situations, the focus is on the capabilities of 

the ship to completing its objective without needing to consider the risk to individuals outside of 

the vessel being considered. Additionally, these situations are much more controllable as it is just 

the environment that need be examined rather than also needing to factor in the decisions of other 

people or crews. This means that there are not as many factors. This work specifically deals with 

situations where no other vessels are present primarily for this reason, since – as the levels of 

autonomy suggest – it is possible to have only some tasks handled by the autonomous systems.  

There are some valuable takeaways from the levels of automation in relation to this work. 

First of all, there are benefits from viewing it from a technical standpoint in terms of the purpose 

of the model. Conversely, the levels can also be considered from a more human-oriented 

standpoint. Here, the levels can be used both to consider what level of autonomy would be most 

beneficial for those involved. Both aspects are important to consider during the development of an 

autopilot as they govern design decisions regarding the way that the model will be developed and 
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applied. The capability side of things relates to what the model will be trained to do and how it 

will accomplish the objectives that are laid out. This can affect the information being passed to the 

model, the information being produced by the model, and the overall purpose of the model. The 

second part – the human-oriented view – can also greatly affect the development of the model. The 

levels are laid out in a way that deal with the roles that the crew will play on board the vessel. 

When considering this, the process revolves around making sure that the end product is something 

that is actually desired. It is all too easy to develop a new technology that has impressive 

capabilities but lacks practical use. This work is an early stage look into what is possible. As such, 

the human factors side is considered merely in terms of presenting some of the ways in which the 

model could be used. Determining the way that it could be implemented or applied is considered 

future work for expansion on this work. This is deemed acceptable since the work performed is 

not restrictive in how it is applied. This means that the work can be adapted in order to be applied 

at various levels of autonomy. Additionally, as this work is a proof of concept, the idea is to 

demonstrate the capabilities of the model so that real-world applications can be considered with a 

better understanding of what is accomplishable. 

1.4 Approach 

Navigation in ice has several challenges that need to be addressed. Here, mitigation of ice 

loads on the hull is considered. This is broken down into two main domains using two different 

simulated environments. The first involves navigation of a ship through constant level ice while 

the second deals with sparse ice floes – scattered sheets of floating ice – that are intended to be 

avoided completely on the way to the destination. Machine learning methods are used to create a 

model capable of controlling a ship’s speed and heading to reach a specified destination. Criteria 

are pre-set to measure the successfulness of the approaches. This includes ensuring that a 
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reasonable route is taken as well as minimizing the number of damage instances between the ship 

and the ice. In the case of level ice, the vessel speeds need to be kept below a set threshold, while 

the second area of work requires avoidance of ice floes altogether. Certain leniencies are taken 

with the strictness of the criteria since this work is a proof of concept. This equates to a low number 

of allowable errors on the part of the model while still being considered successful. The intent is 

to keep the number of errors low enough to ensure that they are outliers to the overall approach. 

Further tuning of the methods could filter out these outliers so long as the governing characteristics 

of the trained models are sound.   

1.5 Research Objectives 

The intent of this work is to create an automated method of controlling a ship in ice. 

Specifically, this work involves the creation and validation of models developed using 

reinforcement learning – where the model is trained through repeated interaction with the 

environment – to navigate through ice in a reasonable fashion. This means that the ship must reach 

the destination in a reasonable amount of time while not incurring any excessive hull loads that 

would cause damage. While this work is merely a proof of concept, a fully developed model using 

the same methods could be used in the development of various forms of aided navigation. The 

information could be used to provide route planning suggestions to the crew. Alternatively, simple 

autopilot capabilities for typical ice conditions could function in a similar fashion to conventional 

aircraft autopilots; the standard cases that make up the bulk of transit scenarios are handled by the 

autopilot, while the crew take over for unusual cases as well as more complex maneuvers. In the 

long term, a full autopilot is even possible, allowing for reduced operational costs and improved 

safety for those operating such vessels.   
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2 Literature Review 

There are many ways to approach the development of an aided navigation system for ships. 

The most appropriate form of aided navigation depends on the problem. This literature review 

starts by looking at some of the forms of aided navigation which have been studied. Choosing the 

most appropriate method requires consideration of several factors as discussed in section 2.1. In 

this case, a reinforcement learning based model is chosen. Section 2.2 of this review looks at why 

this model is appropriate as well as various ways that reinforcement learning can be applied. 

Finally, there are a number of restrictions that limit the effectiveness of a reinforcement learning 

based model to application in the real world. In section 2.3, a review of these restrictions is 

performed with an intent to determine whether or not such a model is transferable to applications 

on board actual ships. 

2.1 Types of Aided Navigation in Ships 

PID controllers are a conventional control method for ships that allows for automated 

maintenance of speed and heading. Most initial forms of ship autopilots used this type of controller, 

though they were not reliable in a number of scenarios such as high sea states [6]. There are a 

variety of methods that can boost the capabilities of PID controllers to make them more robust in 

ship control applications. One such method is to include a wave filter to improve control reliability 

in waves [7]. A sliding mode controller can be added for better roll stabilization [8]. Kalman filters 

improve effectiveness when dealing with high frequency noisy measurements [9, 10]. 

Implementing neural networks with Kalman filters can further improve the controllability and 

trajectory tracking capability of the autopilot [6]. A fuzzy controller can be implemented with the 

PID controller for better performance in sea currents [11]. These methods each aim to improve 

upon a specific aspect of ship autopilot where standard PID controllers are inadequate. 
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Most of these styles of controllers are designed to improve ship autopilot for travelling in 

open water. PID controllers and similar forms of autopilot are not capable of any kind of obstacle 

avoidance due to using purely historic data with no knowledge of obstacles ahead of the ship. This 

requires a different style of controller that is aimed at preventing or mitigating collisions. Making 

adjustments based on the frequency of recent interactions is not enough for transit in ice; while ice 

can remain fairly constant at times, the size, thickness, and frequency of ice interaction is non-

constant and generally less predictable than even that of wind and waves. Additionally, the penalty 

for improper control in these situations – hitting ice too quickly – can be much more severe. At 

the very least, the above controllers would need to be modified to incorporate additional 

information for the objects that need to be avoided. 

There are a number of aided navigation methods that can take provided ice information 

into account. This can involve modification of previously mentioned methods or a completely new 

style of controller. For instance, if an ice load prediction model can be created, an algorithm for 

adjusting speed and heading based on the predicted loads can be developed. Part of the issue with 

this is that accurately predicting ice loads is complicated due to the inconsistencies in the ice [12] 

[13]; however, many studies have worked towards this goal [13, 14, 15]. Alternatively, machine 

learning could be applied to develop an autopilot using pre-existing data of ship-ice interactions. 

The primary issue with this is that the amount of data needed for such training does not currently 

exist. This is largely true because of the need for both safe and unsafe ice interaction data. It is the 

lack of sufficient amounts of hull-damaging data that makes machine learning challenging to apply 

properly. Without having data for the unsafe interactions, machine learning models would be 

incapable of learning what variables lead to unsafe conditions. However, given a simulation 

environment, reinforcement learning can be used to develop a controller capable of navigating 
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through ice. This method has the benefit of being able to create its own training data, thereby 

removing the limitation of needing previously collected data. Additionally, simulation-based 

learning methods can learn from catastrophic behavior that are impractical to examined in real-life 

settings – such as hitting very thick ice at high speeds. This makes reinforcement learning a good 

choice for learning about complex problems for which simulators can be developed. 

2.2 Reinforcement Learning 

Reinforcement learning is a form of machine learning in which a model is trained to map 

states to actions through repeated interaction with the environment [16]. The interactions are 

displayed in Figure 1 with S representing the state space, R representing the reward, A representing 

the chosen action, and t being the timestep.  

 

Figure 1: Reinforcement Learning Environment Interaction [17] 

The learner is provided with a state space representation and selects an action to take, from 

an available action space, based on the current state. This action is passed as a command to the 

environment which carries out the appropriate task and returns a value – referred to as a reward – 

that denotes how good the result of the chosen action was. The function which determines the 

value to be passed back to the model is called the reward function. It is a critical aspect of 

reinforcement learning that dictates good and bad behavior and, therefore, determines the trends 

learned by the model. This trial-and-error approach to learning is similar to how any naive 
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individual would go about learning a task from scratch. The process of interacting with the 

environment through taking actions over and over again is the basis of reinforcement learning. The 

rewards can be presented to the learner in various ways depending on the environment and the 

type of reinforcement learning algorithm being applied. For simple problems, a basic reward 

function can be applied effectively. The reward function gets increasingly complex with more 

complex environments and objectives. The selected algorithm also affects the method for updating 

the decision-making model used for selecting actions.  

Large or continuous state or action spaces make many learning algorithms impractical, or 

even impossible, to apply [18]. Algorithms such as Q-Learning, in their base form, only function 

in discrete state and action spaces [19]. These methods can often still be applied by modifying 

them to use function approximation [20]. Deep Q-learning (DQN), for example, utilizes neural 

networks as function approximators in order to apply Q-learning to large or non-discrete state 

spaces [21] [22]. Alternatively, the state space can be reduced from a continuous state space to 

something much more manageable using discretization methods such as Tile Coding [23]. Finally, 

there are a variety of algorithms designed to function for large or continuous state and action 

spaces. Among others, this includes gradient-based temporal-difference learning, policy-gradient 

algorithms, and continuous forms of actor-critic methods [24, 25]. Proximal Policy Optimization 

(PPO) – one of the primary algorithms applied in this work – is a policy gradient reinforcement 

learning method aimed at being scalable, data efficient, and robust when dealing with continuous 

state spaces using neural networks as function approximators [26].  

2.2.1 State Space 

The state space is the representation of the environment that is passed to the model. It is 

not necessarily a comprehensive description of the environment. Rather, the state space is merely 
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a representation of the current situation that allows the model to make a choice as to the action that 

should be taken. Creating a practical state space representation can be challenging. It is important 

to provide enough information that the model will be able to learn the required trends, but this 

should be done as simply as possible to facilitate learning. 

2.2.2 Action Space 

The action space defines the way in which the model can affect the environment. For 

discrete action spaces, there is a list of actions that can be taken at any given timestep. Similarly, 

for continuous action paces, there is a range of acceptable values for one or more parameters that, 

as with discrete environments, can be selected for a given timestep.  

An action is selected at the start of each timestep by the model. The selected action 

determines the interaction with the environment. For example, in a grid-world environment – that 

is, a checkerboard style environment where each square is a separate state – the action could 

determine an orthogonal direction of travel for that timestep. Comparatively, for a ship navigation 

problem, the action space can be set up to specify the adjustments made to both the ship thrust and 

the rudder angle. In general, the action space is defined based on the control options that are desired 

for the environment. 

2.2.3 Reward Function 

In reinforcement learning, a model is trained to perform actions that result in the maximum 

overall reward over the course of a trial. The reward is a numeric value that denotes the desirability 

of an outcome. A reward function is the equation that is used to determine the reward for any 

actions taken. The model’s behavior is adjusted directly based on the reward received.  
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Reward functions can be extremely simple or very complicated depending on the 

complexity of the goal that is desired. For example, the reward function can be as simple as 𝑅 =

−1. This singular value reward function states that any action taken is equally bad regardless of 

the state or any other factors. As a result, the only influence on the overall reward for the trial is 

the duration of the run; the longer the trial lasts, the more negative the reward. Due to this, a 

correctly trained model would learn to ensure the trial lasts for as few timesteps as possible. This 

would be a functional reward function for a simple grid-world problem where the objective is to 

reach the destination in as few steps as possible. As the problems get more complex, or the 

objectives themselves are less one-dimensional, the reward function tend to get more complex as 

well. In the case of a ship travelling through ice, there are multiple factors at play that each need 

to be appropriately factored into the reward function. 

2.2.4 Exploration vs Exploitation 

A key concept in reinforcement learning is the idea of exploration versus exploitation. 

Exploration involves taking actions that are not well understood in order to gain better knowledge 

of the possibilities. Alternatively, exploitation uses the knowledge that has previously been 

acquired to determine the next action. An algorithm that focuses too much on exploration will fail 

to fully analyze the more optimal choices to develop more complex ideal behavior whereas 

algorithms that too heavily favor exploitation will fail to discover certain good behaviors that may 

be less likely to occur randomly. A common method is to focus more on exploration during the 

early phases of training the model followed by focusing on exploitation during the later phases. 

This allows the model to find the trends that tend to give better results and then refine them to 

reach the local or global optima. 
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An example of an exploitation-based algorithm would be a simple greedy algorithm. 

Greedy algorithms always go with the action that the model predicts to provide the largest overall 

reward. One method for improving the exploration of the state space for greedy methods is to add 

a randomness variable, epsilon [27]. This leads to a form of algorithm referred to as an epsilon-

greedy algorithm. With epsilon-greedy, a random action is taken at a specified percentage of 

frequency (based on the epsilon variable), while the rest of the time the option that the model 

predicts will provide the greatest reward is taken. This encourages exploration by preventing the 

model from settling on a local optimum too quickly. Over the course of training, the frequency of 

random actions being taken can be decreased by reducing the value of epsilon. In doing so, the 

model starts to have an easier time converging once as the training gets closer to completion. The 

net outcome is that the model learns to explore early on – so that the state space is better explored 

– and then learns to improve upon what was deemed to be the best general course of action to 

optimize the solution. In other words, the training process starts focused on exploration and slowly 

becomes increasingly exploitation driven over the course of the training.  

It is also possible to learn the optimal value of one policy while using a separate policy for 

selecting actions. This allows for the policy used for selecting actions to be more focused on 

exploration than the policy being updated for optimal behavior. For example, action selection can 

be performed using an algorithm such as random walk (completely random actions) or epsilon-

greedy for exploration purposes, while a pure greedy algorithm is applied for the policy being 

learned. This style of learning is referred to as off-policy learning. 

2.2.5 Tiered Learning 

For many complex problems, multiple phases of learning have been observed [28, 29]. 

During the early stages of training, the model learns to accomplish the simple behaviors that lead 
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to decent results. As training continues, the model will learn to optimize these simple rules. Due 

to exploration, the model will occasionally happen upon a new idea or concept that it had not yet 

attempted or deemed acceptable. This can lead to jumps in the overall effectiveness of the model. 

In general, this corelates to local and global optima. Models can get stuck in local optima and never 

figure out alternate strategies that would lead to even better results, ultimately the global optima. 

Proper exploration can help to discover these alternative strategies. New strategies frequently 

create a jump in model capability. The development of the model with successive strategies being 

found creates a sort of tiered learning. A great demonstration of this is with a multi-agent hide-

and-seek reinforcement learning problem developed by OpenAI [28]. Here, one group of agents is 

tasked with catching a second group of agents that themselves are attempting to avoid being 

caught. Over the course of the training, distinct strategies get developed that result in the other side 

needing to look for new methods of accomplishing the goal.  

2.2.6 Types of Reinforcement Learning 

Learning algorithms can be policy-based, value-based, or Actor-Critic which is a 

combination of the two. Algorithms can also be either model-based or model-free. Policy-based 

algorithms map states to actions based on probabilities of different actions being taken from a 

given state. These can be either deterministic or stochastic based on the type of problem being 

solved. By comparison, value-based algorithms map states to values for each of the potential 

actions that can be taken from a given state. Policy-based algorithms tend to be more sample 

efficient than value-based algorithms but typically provide more stable learning [30].  
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Figure 2: Types of Reinforcement Learning [31] 

A policy is a function that maps states to actions. Policy-based algorithms update the 

model’s policy directly using methods such as gradient ascent. With gradient ascent, the policy is 

updated using the gradient of the difference between the old policy and the new policy based on 

the reward. [32] With value-based learning, state-action pairs are assigned values that are updated 

over the course of the training process. A policy uses these values to select actions, but it is the 

values, not the policy, that gets updated.  

2.2.7 Reinforcement Learning Algorithms 

There are a large variety of learning algorithms that have been developed for solving 

myriad problems. Some examples of algorithms include temporal-difference (TD) learning, TD(λ), 

Proximal Policy Optimization (PPO), and TD(λ) with Tile Coding [20, 17]. 

2.2.7.1 Temporal Difference Learning 

Temporal-difference (TD) learning is a key concept in reinforcement learning upon which 

many other algorithms are based. The premise of the algorithm is to update the model based on 

the difference between the outcome – in terms of reward – that is achieved compared to that which 
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was expected by the model. At each timestep, the model selects the action to be taken based on the 

expected reward for each possible action given the current state. After taking the action, the model 

is provided with the actual reward received. The difference between the expected and actual 

rewards creates an error, referred to as the TD error. TD(λ) is an extension of TD learning that 

introduces a lambda decay parameter. This parameter is used to create a weighted average of the 

rewards that makes short term rewards more relevant than long term rewards. The addition of the 

lambda parameter also allows the learning to be performed on-line rather than off-line, meaning 

that the model can be updated continuously rather than needing to wait for the end of a given trial. 

2.2.7.2 Proximal Policy Optimization 

Proximal policy optimization (PPO) is a policy-based algorithm developed by OpenAI 

Five – an AI research company. The method is a form of model-free deep reinforcement learning 

and is explained in depth in section 3.3.5.2. 

2.3 Simulated Environments for Reinforcement Learning 

Simulators can play an important role in the safe development and validation of ship 

navigation models [33]. For reinforcement learning, a simulated setting is necessary in order to 

train a model for most applications. This is due to the massive amount of data needed that makes 

it impractical to train a model in real time. Additionally, for ship navigation in ice, part of the 

negative behavior that the model needs to learn comes from simulated hull damage from 

unacceptable ice loads – further making it impractical to learn through real world training.  

In some applications, the simulation environment can be the intended environment of the 

final product. In other instances, such as this work, the environment is merely a medium for 

creating a model that is intended to solve a problem. The transition between simulation and real-
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world environments creates a source of error referred to as the simulation-reality gap [34]. Any 

discrepancies between the physics or control parameters creates a source of error that can lead to 

issues with the reliability of the trained model. Because of this, it is critical that the environment 

representation be as realistic as possible. For ship transit in ice, this largely comes down to 

development of an accurate physics engine for simulating vessel control, ice-floe movement, and 

ship-ice interactions. From the reinforcement learning side, it is important to use a state space 

representation that is comparable to that which could be achieved in the associated real-world 

scenario. It is also important that the control be representative of proper vessel control. 

Obtaining ice data ahead of a ship in real time is a non-trivial task, however, there are a 

number of methods that can be applied to obtain basic ice data. Multiple studies have used sonar 

to obtain ice thickness data using statically located sonars above or below the ice being measured 

[35, 36, 37]. These conditions are not transferable to application on board a ship. LiDAR is another 

type of sensor that can be applied to obtain ice data. One study used a downward facing LiDAR 

sensor in order to get ice thickness [38], while another study looked into the potential use of LiDAR 

for measuring sea ice surface roughness [39]. Finally, pure image data could be analyzed to 

determine details about the ice floes near the vessel. Yan, Tan, and Su [40] used a convolutional 

neural network to classify aerial images of ice scenes into one of six different categories that 

defined the type of scene in the image. Hall, Hughes, and Wadhams [41] also analyzed ice images, 

though they used images taken from onboard a ship to determine the ice concentration ahead of 

the vessel based on the locations and sizes of ice floes in the scenes.  

Due to the nature of this work, the exact method for collecting ice data is not discussed in 

depth. The state space, however, is applied in a manner that takes into account the type and 

accuracy of data that could practically be collected if desired.  
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2.4 Conclusions 

A wide range of styles of aided navigation exist with different goals and drawbacks. Many 

of these are of little use when it comes to navigation through ice where hulls loads are a critical 

factor. Reinforcement learning can be applied to develop a model capable of solving this problem. 

In order to accomplish this, a simulator is needed for training; however, applying the learned model 

to the real world is limited by the simulation-reality gap. This issue is mitigated by ensuring the 

physics and state representation are as realistic as possible. This allows for a powerful style of 

machine learning that can result in a much stronger model than would otherwise be achievable.   
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3 Methodology 

3.1 Introduction 

Two separate simulation environments are used for this work. Each of the environmental 

setups are intended to address different challenges of ship navigation in ice. The two environments 

are treated independently with unique models being for each of the environments. The first 

environment, referred to as the “simple environment”, is a simplistic level-ice environment. This 

environment is designed to test the ability of a model to adjust course to reach a specified 

destination while maintaining speeds that will avoid harmful hull loads. The second environment, 

referred to as the “GEM environment”, uses a simulation environment called “GEM” to test the 

ability of a model to avoid sparse ice floes while travelling to the destination.  

3.2 Experiment #1: Simple Environment 

3.2.1 Introduction 

A simplified test environment is used prior to implementing in GEM in order to work out 

some of the hurdles in an environment with fewer variables. In this version, only level ice is 

considered, with a requirement that the ship stay below a specific speed dictated by the ice 

thickness. The ice thickness is chosen at the start of each simulation and kept constant throughout 

the simulation. Although this does not account for an ice field with varying ice thickness, it suffices 

for this simulation and is representative of the best information that is typically available on-ship. 

3.2.2 Objective 

This work aims to demonstrate the capability of solving the same problems involved with 

a ship navigating through level ice. Specifically, this includes the ability of adjusting thrust and 

rudder angle over a significant number of time-steps to control the vessel and maneuver towards 
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the destination. Additionally, it is important to maintain a speed below that which would cause 

damage. Another goal of this section of the work is to ensure that the selected algorithms can solve 

a simplified version of the problem before implementing in GEM. Furthermore, many aspects of 

the state and action spaces applied in this environment can be carried forward into the more 

complex one. Determining the aspects of the state and action spaces that work best is easier in the 

simpler environment where there are fewer variables involved. Given the inherent complexities of 

determining the optimal state and action space representations, the ability to develop the initial 

machine learning framework up front is particularly beneficial. 

3.2.3 Physical Representation 

In order to properly represent the problem being considered, the method for controlling the 

vessel – adjusting thrust and rudder angle – needs to be maintained, along with the general way 

that adjustments will affect the vessel’s location. The exact representation, however, is not critical 

since relevant conclusions can be drawn without perfect physics. As such, this simplified 

environment uses an abstraction of the real-world physics to capture the problem. 

Specifically, all values are unitless and the ice representation is set as discrete intervals of 

0.5 that define the minimum speed that results in damage as per  

 vdamage = 7 – (Ice Thickness)2. ( 3.1 ) 

This equation is set up to require the ship to move substantially slower as the ice thickness is 

increased. The intent here is to ensure that the model functions for a range of restrictions on the 

vessel’s speed. Furthermore,  

 v1 = [v0 + ct (At – 1)] – (cr v0
2) ( 3.2 ) 
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is used to define the vessel speed where v0 and v1 are the old and new speeds respectively, ct = 0.6 

is the thrust coefficient, cr = 0.01 resistance coefficient, and At is the acceleration that is directly 

controlled by the selected thrust action at each timestep.  

3.2.4 Action Space 

The action space is designed to provide the model rudder and thrust control for the vessel. 

In order for the control to be more realistic, the actions only make minor shifts to the thrust and 

rudder angle such that it takes several actions in a row to make large adjustments to thrust or 

rudder. This makes the problem more realistic by preventing sudden jolts in control parameters 

that would not be achievable in a real-world setting. 

Action selection determines the adjustment made to both the thrust and rudder at each 

timestep. A total of five rudder values (zero to four) and four thrust values (zero to three) make up 

the action space. At any given timestep, both a rudder value and a thrust value are selected making 

for a total of twenty different actions that can be selected. At the extremes, the rudder action can 

cause a shift in rudder angle of up to 18-degrees in either direction. A value of zero equates to an 

18-degree adjustment to starboard for the rudder while a value of four equates to an adjustment of 

18-degrees to port. A value of two indicates that the rudder angle does not change for that timestep. 

The thrust actions are applied in a similar fashion. A thrust action of zero indicates a negative 

thrust while a thrust action of three is the largest thrust option resulting in the greatest acceleration 

for that timestep. 

3.2.5 State Space 

The state space representation for this environment is made up of three parameters: relative 

bearing, vessel speed, and ice thickness. With these three values, the model can make a sufficiently 
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informed decision as to the best set of actions to take. Relative bearing refers to the angle between 

the vessel heading and the direction of the destination. This is a useful parameter as it indicates 

whether adjustments to the heading – through modifications to the rudder angle – are required. 

Vessel speed is necessary for informed action selection for the thrust action; high thrust is desired 

at low speeds in order to bring the vessel up to speed, while low, or negative, thrust is desired at 

higher speeds as to ensure that the vessel does not reach speeds great enough as to cause damage 

to the hull. The ice thickness state parameter is a discrete value ranging from zero to two. The 

possible options are 0.0, 0.5, 1.0, 1.5, and 2.0 – equating to maximum allowable speeds of 9.75 

(max achievable speed), 6.75, 6.00, 4.75, and 3.00, respectively. This value is selected randomly 

at the beginning of a scenario and then kept constant throughout the run.  

3.2.6 Environment Representation 

3.2.6.1 Gym 

Gym is a reinforcement learning toolkit that provides a template for development of 

reinforcement learning environments. One advantage with formatting the environment using gym 

is that it allows for easy application of existing algorithms. Additionally, gym provides support for 

defining the state and action spaces to fit the problem. The primary methods for the environments 

are the step and reset methods. The step method, for the ship navigation model, takes the action 

value as a parameter and is used to inform the environment how to proceed. The reset method does 

not require any parameters and is called prior to taking the first action of any trial. Upon reaching 

a termination state, the reset method is called again to reinitialize the environment before starting 

a new trial.  
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3.2.6.2 Environment Initialization 

For the ship navigation environment, the aim is to have the model be able to reach the 

destination regardless of the initial start or end point. Therefore, the reset method randomizes the 

location of the destination in terms of distance from the vessel as well as the relative bearing 

between the ship and the destination at the start of the run, with the vessel always being placed at 

the origin, (0, 0). Since the state space representation is relative to the ship, randomizing either of 

the ship or destination suffices for a fully random scenario.  Both ship speed and rudder angle are 

initialized to zero. This is partially to ensure that the model learns how to bring the ship up to an 

appropriate speed from rest, as well as to make sure that the model does not have to deal with 

initial circumstances that make it impossible to avoid unacceptable ice collisions (e.g., a vessel 

speed above the allowable speed threshold). Finally, as discussed in Section 3.2.5, the ice thickness 

is set as a random value ranging between 0.0 and 2.0. The state parameters are then calculated and 

passed back to the model as the starting state for the run. 

3.2.7 Model Training and Validation 

The method for training and validation of the reinforcement learning model is outlined 

below. Temporal-difference learning with tile coding is applied because the method functions well 

when applied in a relatively simple continuous state space. An off-policy method is applied with 

epsilon-greedy being used for training the model and a pure greedy model being used during 

testing. Epsilon-greedy is applied during training for better exploration of the state space. 

3.2.7.1 Temporal-Difference Learning with Tile Coding 

As described in section 2.2.7.1, TD(λ) is a fundamental concept in reinforcement learning. 

Basic TD learning involves updating the model as per  
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 Q(st, at) ← Q(st, at)+α [Rt+1 + maxa Q(st+1, a) – Q(st, at)]. ( 3.3 ) 

Here, Q(st, at) represents the value for a state-action pair at a given timestep prior to an 

action being performed, α is the learning rate, Rt+1 is the reward received based on the selected 

action, and maxa Q(st+1, a) is the current greedy prediction for the new state. The greedy prediction 

is used as a metric of how good the new state is since it corresponds to the best possible outcome 

that the model currently believes is possible from that state. This method can be modified to 

implement alternative methods of gauging the value of the state space such as stochastic 

representations. In this case, a pure greedy evaluation is used since the model has full control over 

action selection and there is no randomization affecting the optimal actions. TD(λ) modifies the 

update by adding an eligibility trace parameter, e, based on the trace decay parameter, λ. The 

eligibility trace causes shorter term rewards to have a greater impact on a value’s update than 

longer term rewards by decaying the importance of each consecutive reward after the action 

associated with the value being updated. 

3.2.7.2 Hyperparameter Tuning 

The hyperparameters for this environment are the learning rate, α, decay parameter, λ, and 

probability of random exploration, ϵ. The learning rate, α, is initially set to 1 and then decreased 

during training based on the number of times the respective state action pair has occurred. This 

creates a jump to the first value that is achieved for a given state-action pair but allows for 

increasingly minor shifts as the model becomes better informed. Decreasing the learning rate over 

time helps to properly converge on a solution. The lambda decay parameter is set to 0.8 and 

remains constant throughout training. Finally, the exploration parameter, ϵ, is set to 0.3 for the 

entirety of the training process, indicating a static 30 percent chance of a random action being 

selected. 
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3.2.7.3 Tile coding 

Tile coding is a form of state aggregation for dealing with large or continuous state spaces. 

It transforms the state space into a discrete learning environment, thereby allowing for TD-learning 

to be applied. It is used here to allow a standard TD(λ) algorithm to be applied since both relative 

bearing and vessel speed are continuous state space parameters.  

Provided below in Figure 3 is an example of 2D tile coding with four tilings. In this 

example, each tiling consists of a four-by-four grid of tiles. Each of these tiles represent a single 

aggregation of the continuous state space. Here, each of the tilings are offset at equal distances 

from each other in both dimensions; in practice, this is not ideal. Instead, a displacement vector is 

used to determine the amount of offset that should be used. Sutton and Barto [23] suggest that a 

good method for determining this vector is to use 1 for the first dimension, and then increase by 2 

for every consecutive dimension. While tile coding can be applied without varying the offsets, 

applying this method leads to a more consistent state representation for more efficient learning. 

 

Figure 3: Visualization of 2-Dimensional Tile Coding [23, 42] 

The number of tilings is determine based on equations: 

 n = 2p ( 3.4 ) 
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 n ≥ 4k ( 3.5 ) 

where n is the number of tilings, k is the number of dimensions in the state space, and p is any 

positive integer. Both of these equations must be satisfied for tile coding to be applied as per the 

prescribed method. 

3.2.8 Reward Function 

In order to capture the desired multi-objective behavior, the reward function is made up of 

several parts. First of all, a reward (𝑅) is achieved at every timestep based on the progress that the 

vessel makes towards the destination, 

 R = (-1 + d0  – d1) (10 – vdamage), ( 3.6 ) 

where 𝑑0 and 𝑑1 are the distances between the ship and the destination at the start and end of the 

timestep, respectively, and 𝑣𝑑𝑎𝑚𝑎𝑔𝑒 is the minimum speed that will cause hull damage for the 

current ice condition. A scale factor of 10 − 𝑣𝑑𝑎𝑚𝑎𝑔𝑒  is applied purely as a means for the reward 

to scale appropriately over all ice conditions. Without the scale factor, a very much smaller reward 

is achieved for good behavior in thicker ice than it is in thinner ice conditions. The most important 

aspect of the reward is 𝑑0 − 𝑑1. This portion of the reward makes it so that the more progress is 

made towards the destination in a given timestep, the greater the reward. By itself, this does not 

ensure that the greatest reward is achieved for reaching the destination as soon as possible – which 

is the desired outcome (setting aside ice collisions for the time being). In order to provide an 

incentive for the destination to be reached in as few timesteps as possible, a value of −1 is added 

to this reward. As a result, for this part of the reward, the net reward for any trial where the 

destination is reached is  

 Rtotal = (-ntimesteps + dtotal)(10 – vdamage ) ( 3.7 ) 
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where ntimesteps is the duration of the trial in timesteps and dtotal is the total distance between the 

vessel and the destination at the beginning of the trial. 

In addition to reaching the destination, it is also critical that this is achieved without causing 

damage to the hull of the vessel. This is accomplished by providing a penalty (negative reward) 

for any timestep that corresponds with hull damage. This negative reward is set to be very large as 

to ensure that there are no situations where incurring hull damage to reach the destination faster 

receives a greater overall reward. Large penalties can lead to overly conservative models in some 

problems, however, since hull damage is strictly unacceptable, it is better to be conservative here 

than it is to incur occasional instances of damage. The modification to the previous reward, 

received for any timestep in which the ship is travelling too quickly for the ice condition, is defined 

by 

 R ← R – 1000 (|v| – vdamage). ( 3.8 ) 

3.2.9 Validation Criteria 

Validation criteria – determined prior to creating the model – are used for the purpose of 

determining the efficacy of the model. These criteria aim to encapsulate the acceptable level of the 

desired behavior within a reasonable margin. It is worth noting that this is not designed to reach 

the optimal behavior. Instead, the validation criteria consider reasonable levels of risk and define 

suitable requirements accordingly.  

Four validation criteria are tested as per Table 1. It is required that the destination is reached 

a minimum of 95% of the time. A small allowance is provided here to account for outliers and 

instances where generally good behavior is displayed, but the vessel does not quite reach the 

destination. The maximum number of allowable damage instances is set to 10 over the course of 
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the entire validation phase for each of the five scenario types. As this is the net sum rather than an 

average, this is fairly low with only allowing an average of one collision every 10 runs. This is set 

low intentionally as it is an important metric for the proof of concept. Finally, while harmful 

collisions are intended to be avoided entirely, reaching the destination in a timely manner is also 

important. The final two validation criteria relate to the minimum speed of the model. This is set 

to ensure that the vessel proceeds at reasonable speeds rather than simply travelling at extremely 

slow speeds towards the destination in order to avoid harmful ice collisions. A minimum overall 

average speed is set as 50% of maximum allowable speed for each scenario, with the average of 

the maximum speeds of each trial being set as a minimum of 70% of the maximum allowable 

speed.  

Table 1: Validation Criteria 

Validation Criteria 
Ice Condition 

0.0 0.5 1.0 1.5 2.0 

Percent Successful Completions >95% >95% >95% >95% >95% 

Total Damage Instances ≤10 ≤10 ≤10 ≤10 ≤10 

Overall Average Speed >4.88 >3.38 >3.00 >2.38 >1.50 

Average of Maximum Speeds >6.83 >4.73 >4.20 >3.33 >2.10 

 

Once the model is trained, it is tested by running through each of the five separate ice 

thicknesses 100 times each with random start and end points. The data collected during these trials 

is compared against these criteria. 

3.3 Experiment #2: GEM Environment 

3.3.1 GEM 

GEM is a program designed for simulated ship transit in ice. The program is capable of 

calculating the hull load on a vessel from interactions with ice. It also allows for easy set up of test 

environments with the ability to randomly generate scenarios. Also relevant to this work is the 
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control parameters for navigation of the vessel. In GEM, at any given time-step, the rudder angle 

and propeller thrust can be set. The simulation can be moved forward one step at a time with 

measurable values being studied for each step individually. This is used to provide state 

information to the learning algorithm [43]. Current and wind can also be implemented using GEM, 

however, these are considered out of scope for this project for simplicity purposes..  

 

Figure 4: GEM GUI 

3.3.1.1 Gym Wrapper 

Within Python, the reinforcement learning model is trained through interaction with the 

gym environment. The gym environment is essentially a wrapper on the simulator so that the 

algorithm can easily interact with the simulator as expected. The actual simulator – GEM – is 

implemented with Qt (using C++). Python passes information to GEM as JSON messages using a 
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socket. Qt contains the server socket that receives the incoming connections and specifies the 

appropriate actions to be performed in the simulator.  

3.3.2 Objective 

This section of work aims to demonstrate the ability of a model trained using reinforcement 

learning to navigate around ice in sparse ice floe conditions in order to reach a destination in a 

reasonable manner. Here, any collision with an ice floe is considered unacceptable. 

3.3.2.1 Scenarios 

Multiple types of scenarios are used for training the model to ensure that final model is 

able to generalize to different situations. The scenarios are intended to reflect situations that could 

be encountered by a ship travelling through ice. This is not meant to be a comprehensive set of 

training scenarios but, rather, a set of scenarios designed to represent a narrow range of potential 

situations.  

The overall area containing ice is a 4000m by 4000m square. This is considered to be the 

bounds of the environment and the model is penalized if the ship travels outside of this region. Ice 

thickness remains constant at 1m across all scenarios. Ice breaking is not considered within this 

work as it is not fully implemented in GEM. Similarly, sheet ice is not included at this point.  

The first of four scenario types is a sparse ice condition with only 2 percent ice coverage 

using large floes. The size of the floes range from 140m to 170m in diameter and are irregularly 

shaped with anywhere from four to seven sides. Here it is reasonably easy for the model to 

maneuver around the large ice floes and it provides an example of scenarios where all ice can be 

reasonably avoided. The second type of scenario is the same as the first except with 5 percent ice 

coverage instead. For the third scenario type, the ice coverage is increased 10 percent while the 
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floe size is reduced to a range of 100m to 120m in diameter. This creates scenes with much more 

densely packed ice making it much harder to avoid collisions. Finally, the fourth scenario keeps 

the ice coverage at 10 percent, but reduces the size of the floes to a diameter range of only 40m to 

60m. For the more densely packed scenarios, the intent is to check to see if the model is able to 

navigate through the field with minimal collisions, if any. The full scenario details are displayed 

below in  

Table 2: GEM Environment Scenario Details 

 

Once the model is trained, it is tested by running through 100 scenarios for each of the 

conditions being considered. The full details for the scenes used during testing are shown in 

Appendix A. These scenarios are set up such that there are no issues involving initial collisions 

between the vessel and the ice. For this, each of the starting locations for the vessels are determined 

at random and then slightly adjusted as necessary. The same process is followed for the destination 

location to ensure that there is no overlap between the destination and an existing ice flow.  

3.3.3 Action Space 

The action space for this environment is similar to that of the simple environment (detailed 

in section 3.2.4). Here, the action space is continuous with the rudder and propulsion action values 

being selected independently as float values between negative one and positive one. A continuous 

Ice Thickness Ice Coverage
Floe Size 

(min)

Floe Size 

(max)

Shape 

(min sides)

Shape 

(max sides)

Floe Gap 

(min)

[m] [%] [-] [-] [-] [-] [m]

2% Coverage 1 2 140 170 4 7 0.1

5% Coverage 1 5 100 120 4 7 0.1

10% Coverage

(large floes)
1 10 100 120 4 7 0.1

10% Coverage

(small floes)
1 10 40 60 4 7 0.1

Scene Type
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action space is applied due to the additional control that it provides to the model. Furthermore, 

there are no problems with using a continuous action space here given that the PPO algorithm is 

the only algorithm being applied at this stage and it is capable of selecting actions from among 

those presented by continuous action spaces. 

3.3.4 State Space 

The state space is made up of nine parameters; four of which are for providing ice thickness 

information for the ice within the designated field of view – discussed in depth in section 3.3.4.1. 

The non-ice related parameters are relative bearing to the destination, distance to the destination, 

ship speed, propeller speed, and rudder angle. 

All of the simulations use Cartesian coordinates for locations of ice floes and the ship. For 

the state space, polar coordinates are used for the distance and direction to the destination instead. 

This is due to it being a better representation of the state space from a simplicity of learning 

perspective. By using a combination of distance and relative bearing to destination, the model gets 

a good representation of what needs to be done in order to reach the destination with only two 

values. Relative bearing is enough for the model to know if the ship is heading in the correct 

direction or, alternatively, the degree to which the ship is off course. Combining this information 

with the range to the destination allows the model to make decisions pertaining to how fast 

adjustments need to be made. While this does not fully inform the model of the exact state space, 

the unknown information is not relevant to decision making. For example, the model would 

consider the two different state spaces in Figure 5 to be the same. 
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Figure 5: Similar State Space Representation Comparison 

In the left instance the ship is at (200, 150) with a heading of 90 degrees and the destination 

is at (200, -300). In the right image, the ship is at (-100, -350) with a heading of 270 degrees and 

the destination is at (-100, 100). Even though these two states are different, the state space 

representation for both will be the same with a relative bearing of 90 degrees to the destination at 

a distance of 450. While instinctually this might seem problematic, it is actually desirable. This is 

because the actions that provide the optimal result are identical in these two cases. In both 

situations the ship needs to turn the exact same amount to starboard and travel an identical distance 

to reach the destination. 

3.3.4.1 Ice Information Representation 

Ice information could be represented in the state space in countless different ways. For 

example, the state representation could have the distance, size, and thickness of every single ice 

floe in the simulation. There are a few reasons why this would be a poor choice of representation. 

First of all, this would result in an extremely large state space making proper learning much more 

complicated. Secondly, this would have a non-constant size state space since the number of ice 

floes is not always the same. This too would complicate the learning process. Finally, as previously 
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discussed in section 2.3, the state information should be representative of information that could 

be obtained for its intended use. While it is possible to get limited ice information surrounding a 

vessel, detailed information of ice far away from the vessel is unrealistic. Due to this, even if the 

model successfully learns using the complicated state space, the resulting model would have 

limited practical applications. 

A simpler and more realistic representation of the ice is needed. This is achieved through 

a form of discretization of the observation space. One method for accomplishing this is to split the 

4000m square of relevant space into a 10-by-10 grid and pass ice values for each grid section – 

such as maximum thickness for each section. Doing this would provide a constant size state space 

with a more reasonable number of parameters. This can be further simplified by only looking at 

the ice nearby the ship, and defining the relevant sections, or zones, relative to the ship’s location. 

Below are three example zone layouts. At every time-step, ice information is collected for 

each zone and included in the state space. Specifically, the model is informed as to whether or not 

an ice flow is present in each zone. This is intentionally very simple information to make it both 

easier to learn and more real-world applicable at the same time. The total number of state 

parameters needed to represent the ice is equal to the number of zones, so only having a single 

value per zone greatly reduces the number of state space parameters. In the future, this could be 

expanded to include information such as maximum ice thickness, average ice thickness, ice 

concentration, and so on.  

Figure 6 shows one potential zone layout that uses overlapping squares of increasing size. 

All six squares start near the bow of the ship on the centerline and provide information on either 

the port or starboard side of the vessel. This is beneficial as the ship can use this information to 
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decide whether or not it can maneuver to one side or the other in order to avoid larger ice floes. 

The smaller squares provide information for the very near future while the larger squares provide 

a broader idea of whether or not the ice flows are generally more hazardous to port or starboard 

ahead of the vessel. This provides an acceptable level of information, but there are more 

appropriate ways to relay such information. 

 

Figure 6: First iteration of zones 

In Figure 7, the zones are rearranged into a radial-style pattern. This informs the model as 

to whether there is more ice to port or starboard in a way that is better suited to facilitate informed 

decisions for rudder control. One downside with this layout, as well as the previous layout, is that 

it provides very little information directly port, starboard, or aft of the ship. This isn’t problematic 

when the vessel is heading directly towards the destination, but it can be a bigger problem if the 

ship needs to make a sharp turn at any point during its travel. This could be mitigated by either 
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adding additional zones or widening existing zones, however, this layout also has the downside of 

using a total of eight zones for a total of 13 state parameters.  

 

Figure 7: Second iteration of zones 

In Figure 8, only four zones are used. This simplifies the trends that need to be learned by 

the model. Another benefit of this layout is that it discretizes the data more than the above 

examples. That is, there are no small zone areas in which the vessel is being provided fairly precise 

information. While this has the disadvantage of providing less information for decision making, it 

makes the model less susceptible to imprecise data collection. This is because the decisions made 

by the model would be based on the general state of ice within the various zones rather than the 

precise size and location of ice floes. As discussed in section 2.3, having a state representation that 

could be obtained in the intended setting, rather than just in the simulator, is crucial when it comes 

to applying the trained model to the real world. The section also discusses the limitations regarding 
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active data collection of ice on board a vessel. While these issues still need to be overcome for this 

zone configuration, the imprecise nature of the larger zones lends itself to being transferrable with 

less precise data collection.  

 

Figure 8: Selected application of zones 

Ultimately, there are infinite possible layouts that could be considered; these three designs 

demonstrate some of the considerations of layout selection. In this work, layout 3 (shown in Figure 

8) is applied for the learning model. The downsides relating to less precise information for the 

learning algorithm are considered worthwhile given the probable much faster and easier learning 

process in addition to facilitating more realistic application in the real-world equivalent. 
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3.3.5 Model Training 

There are a multitude of different reinforcement learning algorithms that can be used to 

train a model. This work does not intend to further develop any existing algorithms. Furthermore, 

since it is a proof of concept, determining the perfect algorithm is also not a key concern. Here, 

the focus is simply on selecting an appropriate algorithm for the problem that can demonstrate the 

ability to find an acceptable solution to the problem within a reasonable timeframe. As such, only 

two learning algorithms are discussed due to the benefits they provide when being applied in a 

continuous state space: TD learning with tile coding and proximal policy optimization (PPO).  

3.3.5.1 TD(λ) with Tile-Coding 

Temporal-difference learning with tile coding (described in depth in section 3.2.7) is 

initially applied here but deemed sub-optimal due to its poor training time requirement in 

comparison to PPO. While TD learning is shown to be effective in the simpler learning 

environment (see section 3.2), the updates become computationally expensive when applying it to 

a larger state space with higher dimensionality. As such, it is excluded in favor of PPO for this 

section of work. 

3.3.5.2 Proximal Policy Optimization (PPO) 

Proximal policy optimization is a policy gradient method that uses an advantage function. 

The advantage is a value that denotes whether a performed action is better or worse than expected 

along with the size of the difference. It is calculated by taking the difference between the weighted 

sum of the rewards and a baseline estimate. The baseline estimate is the model’s prediction of the 

sum of the rewards that will be acquired over the remainder of the trial. This can alternatively be 

viewed as the estimate of how good it is to be in the current state. Multiplying this advantage 

function, as a gradient, by the current policy – or the log of the policy in the case of PPO – gives 
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an update to the policy towards a better policy based on the achieved results. This direct update of 

the policy is why PPO is considered to be a policy gradient method [26]. A key feature of PPO is 

the surrogate objective function. This is a function applied to the policy updates to maintain regular 

updates by keeping the updates within a close region of the current policy using data from the 

previous iteration of the policy [44]. This concept is not unique to PPO; in fact, PPO is an 

expansion of Trust Region Policy Optimization (TRPO) algorithms that also apply this concept 

[45, 46]. PPO is applied in this work since it performs well with complex state spaces with delayed 

rewards and is easy to implement [26, 47].  

3.3.5.2.1 Hyperparameter Tuning 

Reinforcement learning algorithms use parameters that can be adjusted when initializing 

the model. These parameters affect the updates made by the model for adjusting to new 

information. The values assigned to the hyperparameters can affect the model’s ability to properly 

converge to a solution as well as the amount of training required for that convergence to occur. 

For PPO, the most relevant hyperparameters that are tuned for this work are gamma, lambda, 

entropy coefficient (ent_coef), number of steps (n_steps), and learning rate (learning_rate). The 

size of the neural network is another parameter that can be adjusted. The suggested default values 

are initially applied and adjusted as necessary to improve the training process. 

3.3.6 Reward Function 

The reward function reflects the combination of factors that affect whether or not a 

behavior is considered good or bad. This problem has a similar overall objective to that of the 

simple environment: reaching the destination quickly. For the simplified environment, this is 

complicated by the addition of constant thickness ice for each scenario. In the GEM environment, 

sparse ice is used instead with the intent being to avoid the ice completely. One of the challenges 
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involved with developing a reward function for this model is that the penalty for hitting ice needs 

to be large enough that the model knows to avoid ice at all costs. On the other hand, if the penalty 

is made too large, then the model will have a hard time learning to reach the destination at all since 

the chance of hitting ice is not worth the penalty incurred.  

One way to encourage the model to reach the destination despite the possibility of collision 

is to improve the exploratory properties of the model. This can be done through either random 

exploration, or by more methodically rewarding behaviors that have not been tried before. One 

concern in this case is that the model would still struggle to take the correct path enough times to 

learn the required complex trends. Instead, a tiered learning approach is applied in order to ensure 

the model’s ability to deal with the conflicting rewards. As discussed in section 2.2.5, phased 

learning takes place in many environments. Here, this concept is used in order to specifically train 

the model one phase at a time. The problem is broken down into the primary tasks that need to be 

accomplished and then trained cumulatively. The model is trained to reach the destination using 

one reward function before modifying the reward function to include ice avoidance and training 

the model further. It is important to consider the problem before attempting such a method as the 

method can greatly affect the way that the model learns, and, therefore, the final outcome of the 

training. Here, it is considered critical that the model reaches the destination with it being 

impossible to have a successful run without reaching the destination. On top of that, the vessel is 

supposed to avoid ice entirely, presented to the model by a large penalty any time a collision 

occurs. Attempting to train both of these objectives at once makes it easy for a local optimum to 

be reached where the vessel never reaches the destination. This is particularly true here due to how 

difficult it is for a naïve model to reach the destination while it is very easy to have multiple 

collisions with ice floes. 
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The first training uses a reward function that ignores the presence of ice entirely – though 

it is still present in the state space – and focuses entirely on progress made towards the destination 

as per the following 

 R = (-10 + d0 – d1)/10. ( 3.9 ) 

This reward structure is similar to the one used for the simplified environment with the 

reward being based on the distance between the vessel and the destination before and after the 

results of the action. A value of -10 is applied since the maximum progress that can be made in 

any given timestep is a little less than 10 and the overall reward is intended to remain negative so 

that it is better to reach the destination as quickly as possible. A significant additional reward,  

 R ← R + 100, ( 3.10 ) 

is provided if the destination is reached to ensure that the model makes reaching the 

destination a priority. The second set of training uses the same reward structure as the first set but 

adds a substantial negative reward of  

 R ← R – 10 ( 3.11 ) 

to any timestep that involves a hull load from collision with an ice floe so that the model 

learns to avoid ice floes on the way to the destination. 

3.3.7 Time Tradeoffs 

Certain tradeoffs are implemented such that the model is able to learn within a reasonable 

amount of time. At every step, calculations are performed based on the number of ice floes. Due 

to this, overall ice field is kept as a 4000m square for each scenario with an overall ice 
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concentration never being more than 2 percent during training. Additionally, individual ice floes 

are never less than 140m2 and the ice floes do not break apart due to impact. 

3.3.8 Model Validation 

Similar to the validation criteria outlined in section 3.2.9, a set of criteria are used to gauge 

the success of the model. These criteria aim to encapsulate the requirements mentioned in section 

3.3.2. The number one priority is that the vessel reaches the destination. This is a critical 

requirement so it is deemed that the destination must be reached 100% of the time. While there 

could be instances of decent behaviors where the destination is not reached, enough time has been 

allotted that it is perfectly reasonable for the destination to be consistently reached and, therefore, 

any occurrences of failure for this criterion are indicative of an issue with the model. For the GEM 

environment, the ice conditions are more complex than they are for the simple environment that 

used constant ice thicknesses. Therefore, success criteria that deal with the ice are also more 

complex. Here, the aim is to have the vessel avoid the ice entirely on its path to reach the 

destination. Given some of the types of test scenes, occasional collisions are deemed acceptable. 

This is, in part, because the intent is for the vessel to make minor adjustments to the heading in 

order to navigate around the floes. In many instances, multiple floes generate a barrier that cannot 

be avoided with minor course adjustments alone. These instances are not currently a priority as 

these situations are typically navigable without serious hull loads by passing between the floes and 

only incurring glancing blows to the hull. Another consideration for setting the validation criteria 

for ice collisions is that a greater number of ice collisions are permissible over longer distances. In 

other words, the number of allowable collisions should be proportional to the distance between the 

starting location of the vessel and the destination. A similar proportionality is considered for the 

ice density as the density directly corresponds to areas that need to be avoided. As such, the 
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criterion for this is set as the ice density percentage times the distance to destination of kilometers 

(rounded down) plus one. 

Number of collisions ≤ floor(Ice Density [%]*|Distance to destination [km]| + 1). ( 3.12 ) 

A more subtle criteria checked during validation is that the vessel should take a fairly direct 

route to reach the destination with only minor adjustments made to avoid ice. This is a visual check 

that ensures that the model has not learned strange behavior such as taking unnecessarily wide arcs 

to reach the destination or weaving back and forth. These or similar behaviors could potentially 

perform relatively well while being unacceptable from a practical standpoint. In addition to this 

being checked visually, with a minimum average speed of 2.2 m/s and an average of maximum 

speeds of at least 2.5 m/s. This can only be reasonably be met by taking a reasonably direct route 

at moderate speeds.   
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4 Results 

4.1 Experiment #1: Simple Environment 

As can be seen in Figure 9, the vessel took a logical route to the destination. The path is 

not completely direct as some curvature exists over most of the path (i.e. the path is not perfectly 

straight). However, the model does manage to adjust the vessel heading towards the destination 

and then proceed to follow a fairly direct path. The curvature is also minor enough that it has 

minimal effect on the overall time taken to reach the destination. 

 

Figure 9: Example vessel path (0.5 ice condition)  

This trial is in the 0.5 ice condition for which the maximum allowable speed is 6.75 (Table 

3). The model manages to keep the ship’s speed below that threshold throughout the entire trial. 

This behavior provides an initial indication that the model is functioning effectively. 

Table 3: Example trial data (0.5 ice condition) 

 

 

  

  

Max Allowable Speed 6.75 

Average Speed 5.15 

Maximum Speed 6.52 

Number of Damage Instances 0 

Ice Thickness 0.5 
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Table 4, Table 5, Table 6, Table 7, and Table 8 show the results of the trials for each of the different 

ice conditions. As a whole, it can be seen that the criteria are successfully met with a single notable 

exception in the 1.5 ice condition – discussed in detail below. Across all of the conditions, the 

destination is reached 100% of the time. In the 0.0 ice condition (see Table 4), the ship quickly 

accelerates and proceeds to the destination at speeds above those that are required by the criteria. 

There are obviously no damage instances during these trials as it is impossible to incur damage 

without ice. The 0.5 condition shows similar results with no damage instances and speeds cleanly 

above the minimum requirements for both the overall average speed and average of maximum 

speeds across the 100 trials. Here, there are also no damage instances as the model manages to 

keep the ship travelling below speeds that would incur damage throughout the entire trial for all 

100 runs. 

Table 6 shows the results for the trials in the 1.0 ice condition. Here, all of the criteria are 

passed, though not quite as cleanly as in the 0.5 ice condition as four damage instances occur 

throughout the runs. This is still well within the acceptable criteria for the proof of concept, but it 

is worth keeping in mind as it indicates room for improvement. The 1.5 ice condition, shown in 

Table 7, once again passes all of the criteria with speeds above the minimum threshold and no 

damage instances across all trials. Finally, the 2.0 ice condition is the only ice condition where one 

of the criteria is not met. As can be seen in Table 8, the ship reaches the destination while travelling 

at appropriate speeds for most of the trials. However, there are a total of 77 timesteps where the 

ship is travelling too quickly and, therefore, obtains hull damage. This remains a small portion of 

the overall timesteps, with many of the damage instances occurring in quick succession as the ship 

remains above the acceptable speed for consecutive timesteps. That said, it is well above the 
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acceptable number of allowable damage instances for this criterion, indicating that the model is 

not fully capable of controlling the speed of the vessel within the appropriate range.  

Table 4: Summary data for 100 trials (0.0 condition) 

Objective Requirement Actual Pass (Y/N) 

Percent Successful Completions >95% 100% Y 

Total Damage Instances ≤10 0 Y 

Overall Average Speed >4.88 6.65 Y 

Average of Maximum Speeds >6.83 7.67 Y 

 

Table 5: Summary data for 100 trials (0.5 condition) 

Objective Requirement Actual Pass (Y/N) 

Percent Successful Completions >95% 100% Y 

Total Damage Instances ≤10 0 Y 

Overall Average Speed >3.38 5.18 Y 

Average of Maximum Speeds >4.73 5.97 Y 

 

Table 6: Summary data for 100 trials (1.0 condition) 

Objective Requirement Actual Pass (Y/N) 

Percent Successful Completions >95% 100% Y 

Total Damage Instances ≤10 4 Y 

Overall Average Speed >3.00 4.21 Y 

Average of Maximum Speeds >4.20 5.1 Y 

 

Table 7: Summary data for 100 trials (1.5 ice condition) 

Objective Requirement Actual Pass (Y/N) 

Percent Successful Completions >95% 100% Y 

Total Damage Instances ≤10 0 Y 

Overall Average Speed >2.38 3.08 Y 

Average of Maximum Speeds >3.33 4.24 Y 

 

Table 8: Summary data for 100 trials (2.0 ice condition) 

Objective Requirement Actual Pass (Y/N) 

Percent Successful Completions >95% 100% Y 

Total Damage Instances ≤10 77 N 

Overall Average Speed >1.50 1.82 Y 

Average of Maximum Speeds >2.10 2.81 Y 
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4.2 Experiment #2: GEM Environment 

The results demonstrate that the model is able to control the vessel to consistently reach 

the destination through a fairly direct route. At the start of the scenario, a sharp turn is taken to 

adjust the relative bearing to be roughly zero – in other words, if the vessel is not initially pointing 

towards the destination, an adjustment is made over the first series of steps to bring the vessel 

around such that it is heading in the correct direction. After that, the thrust is increased to reach 

the destination quickly with minor adjustments being made to allow the vessel to narrowly avoid 

hitting the ice floes.  

Figure 10, Figure 11, Figure 12, and Figure 13 show sample paths taken by the vessel for 

each type of scenario. A total of five example routes for each type of scenario are presented in 

Appendix I. While the routes may not be perfect, they are close to direct routes that avoid crashing 

into ice. In some cases, a very small gap between the vessel and the ice flows is present – with the 

vessel incurring minor collisions in some instances. This is largely due to the coarseness of the 

state parameters – specifically the ice zones. Since the model knows which zones ice is in rather 

than the exact locations of the ice floes, it is incapable of perfect avoidance.  
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Figure 10: Example Ship Path – 2% Coverage (Trial 1) 

 

Figure 11: Example Ship Path – 5% Coverage (Trial 6) 
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Figure 12: Example Ship Path – 10% Coverage with large floes (Trial 11) 

 

Figure 13: Example Ship Path – 10% coverage with small floes (Trial 16) 
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In many instances, the vessel narrowly misses an ice floe, or even barely glances off a floe 

in a fashion that does not trigger GEM to treat the impact as a collision. Similar collisions occurred 

during the training phases as well. Since these did not incur a force on the hull, they are not 

considered problematic for the reinforcement learning algorithm. That said, a ship glancing off of 

an ice flow at high speeds is, obviously, a concern. This can be fixed by adjusting the calculation 

in GEM to ensure that such instances result in a hull load being generated. For this work, a load 

not being generated is not directly problematic for the validation of the method. Any time such a 

glancing blow occurs, the model would not receive a penalty and no collision is recorded. As long 

as the results also do not treat this as a collision, then the environment remains consistent with the 

way that it is being applied. The intent is for the model to learn that traveling very near ice is 

dangerous and, therefore, allowing for a bit of space between the vessel and the ice is a good idea 

in order to consistently obtain a good overall reward. Having it so that the ice is only usually a 

negative factor makes this more complex. However, the general trend remains the same, and the 

vessel should still be steered away from ice to avoid collision. The ideal behavior remains almost 

unchanged – especially given the imprecise state space representation for the ice floes – and, as a 

result, the validation of the method through application within GEM is still valid. 

The model fully passed the validation criteria of reaching the destination 100 percent of 

the time with no failures in reaching the destination in the 100 test runs for any of the four test 

scenario types (Table 9). While this does not demonstrate the ability of the model to navigate ice, 

it does illustrate a reasonable level of consistent control of the vessel that is necessary for 

navigation. The destination is also reached adequately fast in all cases once again passing the 

criteria.  
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Table 9: Non-Collision Based Result Summary 

 

The collision results are not as simple. It is required that the number of collisions are kept 

to a minimum based on the overall distance between the start and end point for each trial. For the 

2% scenario, the average distance travelled per trial is 1.997km. This equates to an average of four 

allowable collisions per trial. As shown in Table 10, the average number of collisions per trial are 

well below this value at only 1.09; however, eight individual trials still exceeded the allowable 

threshold for that particular trial. This is primarily due to individual collisions with ice floes 

resulting in collisions being triggered across several consecutive time steps. This could be further 

refined by adjusting the way that ice collisions are recorded or by penalizing the model differently 

to further discourage such collisions. As the ice density is increased, the number of collisions also 

grow. This is expected since there are an increased number of floes to avoid on the way to the 

destination. Specifically, the overall average number of allowable collisions per trial are 11, 21, 

and 22 for the 5%, 10% (large floes), and 10% (small floes) scenarios respectively. These average 

values are cleanly met for each scenario type. Similar to the 2% trial, however, there are a number 

of individual trials that surpass the criteria. The 10% (large floes) scenario is particularly 

problematic in this area with a total of 19 trials – almost 5 percent of the total number of trials – 

failing to meet this criterion.  

Scene Type
Destination 

Reached

Average Trial 

Distance

Average of 

Max Speed

Average of 

Average Speeds

[-] [-] [km] [m/s] [m/s]

2% 100 1.997 2.89 2.70

5% 100 2.123 2.89 2.67

10% (large floes) 100 2.072 2.89 2.60

10% (small floes) 100 2.113 2.89 2.62
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Table 10: Collision Based Result Summary 

 

  

Scene Type
Total Number of 

Collisions

Average Number of 

Collision Per Trial

Average Number of 

Collisions per km

Number of trials with 

Excessive Collisions

[-] [-] [-] [collisions/km] [-]

2% 109 1.09 0.55 8

5% 380 3.8 1.79 9

10% (large floes) 1176 11.76 5.68 19

10% (small floes) 751 7.51 3.55 3
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5 Discussion 

5.1 Experiment #1: Simple Environment 

Ideally, the model would be capable of passing all criteria for every ice condition being 

considered; however, the level of success presented above acceptably demonstrates the efficacy of 

the model for the proof of concept of the solution. As described in section 3.2.2, this setup intends 

to demonstrate the ability of a reinforcement based model to overcome a few of the major hurdles 

with navigation in level ice. The results show that the model was able to effectively reach the 

destination consistently without incurring loads that are considered harmful for the vast majority 

of the trials. There is a single failed criteria that occurs for the 2.0 ice condition. It is understandable 

that the issue occurred for the thickest ice condition since it provided the most sensitive thrust 

action decisions. The water resistance on the vessel is relative to the speed of the vessel. As such, 

minor changes in the thrust have a greater impact on the ship’s speed when travelling at slower 

speeds. Furthermore, there are only a total of four thrust actions to choose from and only two of 

these are forward thrust actions. Combining these factors together results in a fairly precise thrust-

action requirement when travelling at slower speeds – a necessity when dealing with thicker ice. 

If the model selects only the slower of the two thrust actions as the only thrust action, the vessel 

will still reach a speed of 7.15. This is over double the maximum allowable speed for the 2.0 ice 

condition. This could be dealt with by redesigning the action space with more thrust actions, 

thereby providing better control of the ships speed; however, A larger number of possible actions 

would make the problem more complex for which more training would be required. 
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5.2 Experiment #2: GEM Environment 

For this environment, the tests are performed with the intent of avoiding ice on the way to 

the destination in sparse ice conditions. This is demonstrated to be an achievable goal with the 

vessel consistently reaching the destination through fairly direct means with minimal or no 

collisions. As discussed in section 4.2, there are occasional instances of collisions between the ship 

and the ice. While this indicates that the model is imperfect, the overall intended trends are, 

nonetheless, achieved. The destination is reached consistently and efficiently across all of the 

tested scenarios. Ice collisions demonstrate room for improvement, but the intention of the criteria 

is met with minimal or no collisions taking place during the majority of the trials. The primary 

criteria of concern is the number of trials that exceed the allowable number of collisions. Even 

though the overall average number of collisions was substantially lower than the overall averaged 

criteria – by roughly a factor of three – a notable number of scenarios still failed individually. This 

is due to a large gap in collision count between the scenarios that passed the criteria and the ones 

that failed. This gap is a result of consecutive collisions with ice in many of the trials. There are a 

number of trials where the ship incurred glancing collisions with ice resulting in only one, or at 

least very few, collisions being recorded. By contrast, more direct collisions between the vessel 

and ice resulted in a very large number of consecutive collisions being recorded. While this means 

that the trials that had a large number of collisions only truly collided with one or two floes on the 

way to the destination, it also indicates that these collisions are major collisions that are considered 

to be significant failures on the part of the model.  
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6 Conclusion 

The problem of automated ship navigation in ice involves a range of hurdles that need to 

be overcome. Ship navigation in general is relatively complex given that it takes several seconds 

after taking an action before the effect of the action is truly seen. This form of delayed response 

creates a complex controls problem. In addition to the basic navigation problem, interactions with 

ice further complicates the scenarios. The scope for this works is limited to two separate scenarios: 

transit through constant ice and avoidance of ice flows in sparse ice conditions. For both 

environments the desired outcome is the same; reach a specified destination without incurring hull 

damage. The applied reinforcement learning based solutions demonstrate the ability to learn from 

simulated environments well enough to come to a reasonable solution.  

This work is intended to act as a proof of concept of the ability for reinforcement learning 

algorithms to be applied to the ship navigation in ice problem. As such, the models derived here 

are not intended to be the final product. Specific requirements for each environment are specified 

as to validate that the trained models are sufficiently capable as to consider the method validated. 

For both the simple environment and the GEM environment, the intent is to reach the destination 

as quickly as possible without having any incidents of hull damage; however, the exact purpose of 

the two environments varies. The simple environment is used to demonstrate the ability of a 

reinforcement learning based model to control a ship by adjusting thrust and rudder angle to get 

from a start point to an end point. This is performed with the added restriction of maintaining a 

speed below a threshold that represents damage to the hull. For the GEM environment, sparse ice 

floes are used instead of constant thickness ice with the purpose of developing a model capable of 

avoiding ice collisions entirely. While neither problem is perfectly solved, the trained models 

perform sufficiently well as to consider this work to be a successful proof of concept. 
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6.1 Future Work 

There are numerous directions that are viable for progression of this work. A logical first 

step is to combine the two types of models developed within this work. One of the models is 

developments to manage speeds for sheet ice conditions while the other is aimed at avoiding ice 

floes. A follow up to this would be to train a model capable of navigating through ice floes where 

avoidance is possible, but not always necessary. This would be a combination of the concepts 

discussed in this work using sparse ice floes of varying ice thickness such that the vessel’s speed 

dictates safe collisions based on ice thickness. 

Another method for development of this work would be to expand upon the types of 

scenarios being considered. Expanding the range of scenarios to include varying ice thicknesses 

would demonstrate wider capability. This work deals with consistent ice thicknesses throughout 

the individual runs. As such, the model can safely assume that the ice encountered in the future 

will be comparable to whatever is present in any given state. Having a range of ice thicknesses 

within the scenarios would result in a more generalizable model capable of adapting to more 

situations – a must for proper application. Similar expansions could be made in areas such as the 

range of ice thicknesses considered or the range of ice densities for the sparse ice conditions. 

Additionally, more complicated zone layout would allow for more detailed information to 

be passed to the learning algorithm for more informed decisions; however, as discussed in section 

3.3.4.1, the zone layout should be representative of the information that can be achieved. At this 

stage, feasibility of real-time state space representation in the real world is considered, but not 

studied in extensive depth. Delving deeper into the exact sensor capabilities – potentially including 

a real-world study – would help to determine the most appropriate zone representation. 
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Finally, an alternative area where improvements could be made is in the capabilities of the 

simulator. There are limitations with the methods applied in this work due to the restrictions of the 

programs being used, such as icebreaking not being possible. As discussed, the realism of the 

simulator governs the applicability of the trained model to real world settings. Improving the 

realism of the simulators increases the useability of the research and models involved. 
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Appendix A – 100 Run Scenario Information (2% coverage) 

 

 

Ice 

Thickness
Ice coverage

Floe Size 

(min)

Floe Size 

(max)

Shape (min 

sides)

Shape (max 

sides)

Floe Gap 

(min)

Innitial 

x-location

Innitial 

y-location

Innitial 

Heading

Destination 

x-location

Destination 

y-location

[m] [%] [-] [-] [-] [-] [m] [m] [m] [deg] [m] [m]

1 1 2 140 170 4 7 0.1 1400 3200 130 1850 1750

2 1 2 140 170 4 7 0.1 3700 3000 20 850 2350

3 1 2 140 170 4 7 0.1 700 3400 150 2200 3500

4 1 2 140 170 4 7 0.1 1500 3750 80 3600 2500

5 1 2 140 170 4 7 0.1 800 600 20 600 1950

6 1 2 140 170 4 7 0.1 3000 2800 10 2800 3750

7 1 2 140 170 4 7 0.1 2300 1750 220 800 3100

8 1 2 140 170 4 7 0.1 700 3800 130 3150 1250

9 1 2 140 170 4 7 0.1 650 2300 270 2200 2600

10 1 2 140 170 4 7 0.1 300 3000 40 1350 1800

11 1 2 140 170 4 7 0.1 750 200 330 3350 2250

12 1 2 140 170 4 7 0.1 3700 3450 10 1600 550

13 1 2 140 170 4 7 0.1 2050 3300 230 2250 2300

14 1 2 140 170 4 7 0.1 3700 3450 310 2350 1200

15 1 2 140 170 4 7 0.1 2300 2450 120 850 350

16 1 2 140 170 4 7 0.1 700 250 310 2000 950

17 1 2 140 170 4 7 0.1 2250 2950 180 2800 3250

18 1 2 140 170 4 7 0.1 3150 3200 330 2400 2950

19 1 2 140 170 4 7 0.1 1650 2350 90 3650 2750

20 1 2 140 170 4 7 0.1 1450 2350 120 1050 1000

21 1 2 140 170 4 7 0.1 1300 2850 130 2250 400

22 1 2 140 170 4 7 0.1 350 750 180 650 2200

23 1 2 140 170 4 7 0.1 1200 200 40 800 2200

24 1 2 140 170 4 7 0.1 3400 2800 10 2450 2850

25 1 2 140 170 4 7 0.1 1700 3500 340 2700 3750

26 1 2 140 170 4 7 0.1 350 1150 320 3550 2250

27 1 2 140 170 4 7 0.1 2350 3650 300 1200 1550

28 1 2 140 170 4 7 0.1 300 3350 190 2150 1400

29 1 2 140 170 4 7 0.1 1800 650 220 850 2750

30 1 2 140 170 4 7 0.1 3100 3800 340 3750 1250

31 1 2 140 170 4 7 0.1 450 3700 90 2150 500

32 1 2 140 170 4 7 0.1 3350 2400 160 3550 1250

33 1 2 140 170 4 7 0.1 950 3000 90 3800 500

34 1 2 140 170 4 7 0.1 1400 1000 150 3650 1950

35 1 2 140 170 4 7 0.1 2300 1800 90 2500 1300

36 1 2 140 170 4 7 0.1 3400 1950 200 1250 1100

37 1 2 140 170 4 7 0.1 550 3700 150 2800 1700

38 1 2 140 170 4 7 0.1 400 3150 350 1300 2800

39 1 2 140 170 4 7 0.1 550 1900 150 1300 3750

40 1 2 140 170 4 7 0.1 1100 2000 150 300 1100

41 1 2 140 170 4 7 0.1 1350 3800 0 1950 3250

42 1 2 140 170 4 7 0.1 900 1450 40 300 1850

43 1 2 140 170 4 7 0.1 3650 1250 150 600 400

44 1 2 140 170 4 7 0.1 1100 300 270 3250 1200

45 1 2 140 170 4 7 0.1 2150 2300 130 1350 1850

46 1 2 140 170 4 7 0.1 1100 3450 30 2700 1000

47 1 2 140 170 4 7 0.1 1500 1850 250 1650 700

48 1 2 140 170 4 7 0.1 2000 2300 40 800 2200

49 1 2 140 170 4 7 0.1 3700 3400 50 1500 3300

50 1 2 140 170 4 7 0.1 2200 3550 260 600 3600
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51 1 2 140 170 4 7 0.1 1350 1100 310 300 2050

52 1 2 140 170 4 7 0.1 1750 2000 260 400 2050

53 1 2 140 170 4 7 0.1 2350 3450 20 2450 2700

54 1 2 140 170 4 7 0.1 1700 950 80 650 1200

55 1 2 140 170 4 7 0.1 3450 1800 230 2800 3250

56 1 2 140 170 4 7 0.1 2750 1450 30 2200 1250

57 1 2 140 170 4 7 0.1 2450 3500 20 3650 3150

58 1 2 140 170 4 7 0.1 2400 550 220 2950 3300

59 1 2 140 170 4 7 0.1 1500 700 230 1900 1000

60 1 2 140 170 4 7 0.1 700 850 100 2050 3100

61 1 2 140 170 4 7 0.1 800 1100 160 1700 2850

62 1 2 140 170 4 7 0.1 500 2850 70 750 450

63 1 2 140 170 4 7 0.1 3200 2400 170 1100 2400

64 1 2 140 170 4 7 0.1 1600 3450 210 950 2300

65 1 2 140 170 4 7 0.1 1550 3200 240 3550 2550

66 1 2 140 170 4 7 0.1 1800 300 120 1700 2950

67 1 2 140 170 4 7 0.1 1350 2650 60 3500 1150

68 1 2 140 170 4 7 0.1 300 600 190 3700 950

69 1 2 140 170 4 7 0.1 450 2100 310 3650 2050

70 1 2 140 170 4 7 0.1 950 1400 230 600 3500

71 1 2 140 170 4 7 0.1 400 3200 80 3450 1700

72 1 2 140 170 4 7 0.1 3600 1150 10 1950 2750

73 1 2 140 170 4 7 0.1 550 1350 160 3600 2900

74 1 2 140 170 4 7 0.1 3200 350 110 400 3600

75 1 2 140 170 4 7 0.1 3350 3600 10 250 850

76 1 2 140 170 4 7 0.1 2200 350 20 2050 3100

77 1 2 140 170 4 7 0.1 2650 1650 170 3050 2050

78 1 2 140 170 4 7 0.1 2150 3500 180 1500 2500

79 1 2 140 170 4 7 0.1 600 2300 120 450 800

80 1 2 140 170 4 7 0.1 2850 1450 320 3200 2000

81 1 2 140 170 4 7 0.1 2350 2950 310 550 2500

82 1 2 140 170 4 7 0.1 2250 1750 350 1500 1650

83 1 2 140 170 4 7 0.1 1050 3500 340 1800 3250

84 1 2 140 170 4 7 0.1 2250 850 180 2600 3400

85 1 2 140 170 4 7 0.1 1150 3650 140 850 1800

86 1 2 140 170 4 7 0.1 3600 3800 240 400 650

87 1 2 140 170 4 7 0.1 2250 2400 100 900 2800

88 1 2 140 170 4 7 0.1 800 3350 140 2950 3400

89 1 2 140 170 4 7 0.1 1650 1950 180 2950 2400

90 1 2 140 170 4 7 0.1 250 2100 0 1450 400

91 1 2 140 170 4 7 0.1 3150 3500 170 3300 1600

92 1 2 140 170 4 7 0.1 2600 1850 200 1250 950

93 1 2 140 170 4 7 0.1 250 2500 340 450 1300

94 1 2 140 170 4 7 0.1 2750 3100 290 350 1600

95 1 2 140 170 4 7 0.1 1450 1750 10 2100 1500

96 1 2 140 170 4 7 0.1 2350 500 220 2150 2750

97 1 2 140 170 4 7 0.1 3600 1000 200 2600 3500

98 1 2 140 170 4 7 0.1 1250 3000 0 2200 700

99 1 2 140 170 4 7 0.1 3700 500 340 1050 1400

100 1 2 140 170 4 7 0.1 2500 2950 350 2550 1750
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Appendix B – 100 Run Scenario Information (5% coverage) 

 

Ice 

Thickness
Ice coverage

Floe Size 

(min)

Floe Size 

(max)

Shape 

(min sides)

Shape 

(max sides)

Floe Gap 

(min)

Innitial 

x-location

Innitial 

y-location

Innitial 

Heading

Destination 

x-location

Destination 

y-location

[m] [%] [-] [-] [-] [-] [m] [m] [m] [deg] [m] [m]

1 1 2 140 170 4 7 0.1 3100 2800 20 1300 2000

2 1 2 140 170 4 7 0.1 3550 3350 0 1650 2550

3 1 2 140 170 4 7 0.1 2150 3500 310 1900 900

4 1 2 140 170 4 7 0.1 650 2950 210 3300 3700

5 1 2 140 170 4 7 0.1 3000 900 250 450 2550

6 1 2 140 170 4 7 0.1 1650 1450 160 1000 250

7 1 2 140 170 4 7 0.1 1400 850 290 3650 1650

8 1 2 140 170 4 7 0.1 3700 3450 0 650 250

9 1 2 140 170 4 7 0.1 1400 1150 250 2000 750

10 1 2 140 170 4 7 0.1 550 3200 200 2600 500

11 1 2 140 170 4 7 0.1 2500 3650 220 2150 2800

12 1 2 140 170 4 7 0.1 600 1150 340 3700 2900

13 1 2 140 170 4 7 0.1 700 850 240 2300 1400

14 1 2 140 170 4 7 0.1 2650 1850 180 3250 2000

15 1 2 140 170 4 7 0.1 3200 350 50 3550 3150

16 1 2 140 170 4 7 0.1 750 2150 220 2050 700

17 1 2 140 170 4 7 0.1 2050 1250 70 2350 2300

18 1 2 140 170 4 7 0.1 3450 2050 120 450 2850

19 1 2 140 170 4 7 0.1 1750 2550 260 2000 3300

20 1 2 140 170 4 7 0.1 1500 2300 0 1900 700

21 1 2 140 170 4 7 0.1 2650 300 130 3300 450

22 1 2 140 170 4 7 0.1 1500 2950 70 3750 1200

23 1 2 140 170 4 7 0.1 1250 3300 120 3100 650

24 1 2 140 170 4 7 0.1 3700 2400 70 1700 600

25 1 2 140 170 4 7 0.1 3800 1800 0 2150 2500

26 1 2 140 170 4 7 0.1 3700 2100 330 3350 550

27 1 2 140 170 4 7 0.1 750 300 170 2800 3050

28 1 2 140 170 4 7 0.1 500 1950 140 1950 1700

29 1 2 140 170 4 7 0.1 950 3250 90 2750 400

30 1 2 140 170 4 7 0.1 900 700 210 1300 2400

31 1 2 140 170 4 7 0.1 1050 1000 170 3450 1950

32 1 2 140 170 4 7 0.1 1300 1700 10 300 3300

33 1 2 140 170 4 7 0.1 2150 2700 340 850 2100

34 1 2 140 170 4 7 0.1 1750 3800 330 450 850

35 1 2 140 170 4 7 0.1 1400 3750 230 350 2700

36 1 2 140 170 4 7 0.1 2450 950 40 750 1100

37 1 2 140 170 4 7 0.1 3600 2450 250 2700 1350

38 1 2 140 170 4 7 0.1 2150 1300 260 600 3250

39 1 2 140 170 4 7 0.1 3150 1950 210 1300 3800

40 1 2 140 170 4 7 0.1 2050 2050 130 600 1450

41 1 2 140 170 4 7 0.1 1600 3800 40 3800 3350

42 1 2 140 170 4 7 0.1 1600 3050 280 1850 950

43 1 2 140 170 4 7 0.1 950 2050 190 2000 3450

44 1 2 140 170 4 7 0.1 800 1800 40 1300 3100

45 1 2 140 170 4 7 0.1 2300 1500 210 400 1600

46 1 2 140 170 4 7 0.1 250 3800 300 650 1550

47 1 2 140 170 4 7 0.1 1000 3200 340 1800 1700

48 1 2 140 170 4 7 0.1 2700 1550 170 2050 1150

49 1 2 140 170 4 7 0.1 3000 3100 70 3200 400

50 1 2 140 170 4 7 0.1 2300 2800 30 2900 3450

Scene #
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51 1 2 140 170 4 7 0.1 2000 2450 190 2900 2400

52 1 2 140 170 4 7 0.1 3750 350 80 3250 3500

53 1 2 140 170 4 7 0.1 800 2700 170 2100 1900

54 1 2 140 170 4 7 0.1 2450 1350 150 1000 1350

55 1 2 140 170 4 7 0.1 2800 200 40 1100 600

56 1 2 140 170 4 7 0.1 600 1350 140 2950 1250

57 1 2 140 170 4 7 0.1 2550 2800 250 2550 1850

58 1 2 140 170 4 7 0.1 3050 2750 100 3350 700

59 1 2 140 170 4 7 0.1 2100 2000 190 950 2200

60 1 2 140 170 4 7 0.1 1000 750 50 3750 2900

61 1 2 140 170 4 7 0.1 2000 900 60 3200 2750

62 1 2 140 170 4 7 0.1 200 2300 0 3550 3500

63 1 2 140 170 4 7 0.1 600 800 130 3200 1450

64 1 2 140 170 4 7 0.1 3600 3500 210 3800 750

65 1 2 140 170 4 7 0.1 3450 3550 70 300 300

66 1 2 140 170 4 7 0.1 1550 1500 270 3400 800

67 1 2 140 170 4 7 0.1 1900 2300 240 1950 1800

68 1 2 140 170 4 7 0.1 2500 650 10 1850 650

69 1 2 140 170 4 7 0.1 1200 2250 140 2500 3300

70 1 2 140 170 4 7 0.1 3800 600 330 750 1050

71 1 2 140 170 4 7 0.1 1700 300 210 250 900

72 1 2 140 170 4 7 0.1 600 1100 20 1800 3150

73 1 2 140 170 4 7 0.1 1100 3450 240 1300 2800

74 1 2 140 170 4 7 0.1 3000 600 140 650 2950

75 1 2 140 170 4 7 0.1 2450 2750 300 3800 350

76 1 2 140 170 4 7 0.1 2900 3600 320 200 900

77 1 2 140 170 4 7 0.1 1750 2550 170 3300 2250

78 1 2 140 170 4 7 0.1 2250 1650 250 2900 3200

79 1 2 140 170 4 7 0.1 2850 1050 200 350 1100

80 1 2 140 170 4 7 0.1 2800 900 140 1100 3250

81 1 2 140 170 4 7 0.1 950 3450 230 3400 2400

82 1 2 140 170 4 7 0.1 1800 3150 50 300 1700

83 1 2 140 170 4 7 0.1 750 750 150 3800 1450

84 1 2 140 170 4 7 0.1 1300 3000 90 3300 2300

85 1 2 140 170 4 7 0.1 3350 3600 110 700 3350

86 1 2 140 170 4 7 0.1 3750 2500 60 3050 3750

87 1 2 140 170 4 7 0.1 200 2400 110 3000 1250

88 1 2 140 170 4 7 0.1 3800 3400 40 2450 3650

89 1 2 140 170 4 7 0.1 1950 500 270 2450 3400

90 1 2 140 170 4 7 0.1 750 1550 60 2800 1200

91 1 2 140 170 4 7 0.1 2750 1000 40 3550 3350

92 1 2 140 170 4 7 0.1 1950 2700 220 1050 800

93 1 2 140 170 4 7 0.1 350 3000 60 1200 2500

94 1 2 140 170 4 7 0.1 1550 3250 300 2950 350

95 1 2 140 170 4 7 0.1 2700 550 0 3750 3450

96 1 2 140 170 4 7 0.1 450 1500 190 1400 2750

97 1 2 140 170 4 7 0.1 2900 2150 50 2200 250

98 1 2 140 170 4 7 0.1 2050 2600 100 700 2800

99 1 2 140 170 4 7 0.1 1250 400 80 2650 650

100 1 2 140 170 4 7 0.1 1900 1100 280 900 1100
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Appendix C – 100 Run Scenario Information (10% coverage, large floes) 

 

Ice 

Thickness
Ice coverage

Floe Size 

(min)

Floe Size 

(max)

Shape 

(min sides)

Shape 

(max sides)

Floe Gap 

(min)

Innitial 

x-location

Innitial 

y-location

Innitial 

Heading

Destination 

x-location

Destination 

y-location

[m] [%] [-] [-] [-] [-] [m] [m] [m] [deg] [m] [m]

1 1 10 100 120 4 7 0.1 1350 2850 60 1400 300

2 1 10 100 120 4 7 0.1 600 850 80 2700 300

3 1 10 100 120 4 7 0.1 500 3050 320 2900 2100

4 1 10 100 120 4 7 0.1 1450 1350 130 3000 1300

5 1 10 100 120 4 7 0.1 3400 1550 120 3450 3350

6 1 10 100 120 4 7 0.1 3150 2800 90 1750 2900

7 1 10 100 120 4 7 0.1 1700 2200 120 400 1650

8 1 10 100 120 4 7 0.1 2800 3450 60 3350 2550

9 1 10 100 120 4 7 0.1 2600 700 60 1100 950

10 1 10 100 120 4 7 0.1 2450 1950 80 2000 1700

11 1 10 100 120 4 7 0.1 3000 900 180 3700 500

12 1 10 100 120 4 7 0.1 550 1200 100 650 2150

13 1 10 100 120 4 7 0.1 1500 300 310 2850 300

14 1 10 100 120 4 7 0.1 2000 1450 210 2500 1550

15 1 10 100 120 4 7 0.1 2600 3150 50 2500 650

16 1 10 100 120 4 7 0.1 2800 2400 130 2000 2550

17 1 10 100 120 4 7 0.1 3600 2800 320 3750 200

18 1 10 100 120 4 7 0.1 2100 1000 270 1050 3100

19 1 10 100 120 4 7 0.1 2100 3550 320 2800 1200

20 1 10 100 120 4 7 0.1 700 1800 180 950 3200

21 1 10 100 120 4 7 0.1 2350 2950 320 3550 3650

22 1 10 100 120 4 7 0.1 300 2100 280 1900 2200

23 1 10 100 120 4 7 0.1 1950 1750 40 900 1500

24 1 10 100 120 4 7 0.1 3150 2200 250 850 250

25 1 10 100 120 4 7 0.1 2500 2400 340 3300 3500

26 1 10 100 120 4 7 0.1 2050 3500 260 2150 1000

27 1 10 100 120 4 7 0.1 2350 800 100 1850 1100

28 1 10 100 120 4 7 0.1 2050 2100 220 1850 2900

29 1 10 100 120 4 7 0.1 3000 2100 110 1750 2700

30 1 10 100 120 4 7 0.1 3450 2550 40 1700 850

31 1 10 100 120 4 7 0.1 1150 1400 150 3800 2450

32 1 10 100 120 4 7 0.1 900 550 110 3000 3700

33 1 10 100 120 4 7 0.1 3200 1900 350 1100 2900

34 1 10 100 120 4 7 0.1 3750 2600 300 450 1600

35 1 10 100 120 4 7 0.1 2050 1750 140 2700 400

36 1 10 100 120 4 7 0.1 3500 550 100 2850 3750

37 1 10 100 120 4 7 0.1 1350 2450 50 3650 1550

38 1 10 100 120 4 7 0.1 2500 650 70 3500 1850

39 1 10 100 120 4 7 0.1 750 2250 210 2150 3750

40 1 10 100 120 4 7 0.1 400 2150 300 1500 2250

41 1 10 100 120 4 7 0.1 600 3300 30 1300 950

42 1 10 100 120 4 7 0.1 3650 1600 20 1800 800

43 1 10 100 120 4 7 0.1 1200 350 140 400 3450

44 1 10 100 120 4 7 0.1 3550 3150 330 1400 200

45 1 10 100 120 4 7 0.1 1100 550 210 2100 300

46 1 10 100 120 4 7 0.1 1950 2500 80 700 1300

47 1 10 100 120 4 7 0.1 700 1800 100 3350 500

48 1 10 100 120 4 7 0.1 3450 300 10 1550 2850

49 1 10 100 120 4 7 0.1 1150 2600 150 1500 1300

50 1 10 100 120 4 7 0.1 2900 1950 100 1100 2000

Scene #



70 

 

 

  

51 1 10 100 120 4 7 0.1 750 3100 40 3750 2950

52 1 10 100 120 4 7 0.1 350 2250 160 1550 2400

53 1 10 100 120 4 7 0.1 850 2750 0 850 1100

54 1 10 100 120 4 7 0.1 850 3000 80 2550 3350

55 1 10 100 120 4 7 0.1 1100 3200 190 1900 1200

56 1 10 100 120 4 7 0.1 250 1900 240 1950 2400

57 1 10 100 120 4 7 0.1 700 2900 290 3400 250

58 1 10 100 120 4 7 0.1 3450 1950 330 650 3250

59 1 10 100 120 4 7 0.1 2300 900 50 2550 3200

60 1 10 100 120 4 7 0.1 1850 3650 310 2900 350

61 1 10 100 120 4 7 0.1 1250 3500 120 2500 550

62 1 10 100 120 4 7 0.1 2800 1500 140 2950 3250

63 1 10 100 120 4 7 0.1 1550 2600 340 2600 3800

64 1 10 100 120 4 7 0.1 3100 200 300 450 1700

65 1 10 100 120 4 7 0.1 3450 2100 20 700 2950

66 1 10 100 120 4 7 0.1 3050 1150 290 500 3150

67 1 10 100 120 4 7 0.1 2400 1250 80 2000 650

68 1 10 100 120 4 7 0.1 650 3000 350 3750 1300

69 1 10 100 120 4 7 0.1 3000 1050 320 1450 500

70 1 10 100 120 4 7 0.1 850 650 190 2100 2550

71 1 10 100 120 4 7 0.1 3150 400 10 1350 1950

72 1 10 100 120 4 7 0.1 2800 2750 140 600 3500

73 1 10 100 120 4 7 0.1 1750 1400 120 1000 2100

74 1 10 100 120 4 7 0.1 2350 450 310 1950 3500

75 1 10 100 120 4 7 0.1 750 2500 320 2850 300

76 1 10 100 120 4 7 0.1 950 200 300 850 2650

77 1 10 100 120 4 7 0.1 1500 200 50 1100 1000

78 1 10 100 120 4 7 0.1 450 1900 170 2950 1250

79 1 10 100 120 4 7 0.1 3550 3550 190 1150 2450

80 1 10 100 120 4 7 0.1 3100 2100 80 450 350

81 1 10 100 120 4 7 0.1 1100 2100 190 1650 1100

82 1 10 100 120 4 7 0.1 2000 2900 10 1200 2800

83 1 10 100 120 4 7 0.1 1100 700 10 3450 1250

84 1 10 100 120 4 7 0.1 1950 1100 120 2850 2200

85 1 10 100 120 4 7 0.1 200 3000 130 3100 1250

86 1 10 100 120 4 7 0.1 3100 3200 50 1050 700

87 1 10 100 120 4 7 0.1 3750 3450 320 2050 1500

88 1 10 100 120 4 7 0.1 2400 3750 190 200 1050

89 1 10 100 120 4 7 0.1 300 1150 160 500 3100

90 1 10 100 120 4 7 0.1 500 3450 350 2400 3500

91 1 10 100 120 4 7 0.1 300 550 110 1550 2350

92 1 10 100 120 4 7 0.1 2050 1100 320 1200 1700

93 1 10 100 120 4 7 0.1 950 450 240 2550 2050

94 1 10 100 120 4 7 0.1 3350 950 260 3200 200

95 1 10 100 120 4 7 0.1 1650 1200 270 3000 650

96 1 10 100 120 4 7 0.1 1000 2300 190 1000 1000

97 1 10 100 120 4 7 0.1 1550 400 20 1950 3500

98 1 10 100 120 4 7 0.1 3050 3400 170 3750 3800

99 1 10 100 120 4 7 0.1 1200 2300 340 3150 2500

100 1 10 100 120 4 7 0.1 2600 1300 320 1450 3050
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Appendix D – 100 Run Scenario Information (10% coverage, small floes) 

 

Ice 

Thickness
Ice coverage

Floe Size 

(min)

Floe Size 

(max)

Shape 

(min sides)

Shape 

(max sides)

Floe Gap 

(min)

Innitial 

x-location

Innitial 

y-location

Innitial 

Heading

Destination 

x-location

Destination 

y-location

[m] [%] [-] [-] [-] [-] [m] [m] [m] [deg] [m] [m]

1 1 10 40 60 4 7 0.1 3700 600 160 3700 3700

2 1 10 40 60 4 7 0.1 2100 900 290 2200 2900

3 1 10 40 60 4 7 0.1 1200 1700 80 3100 1000

4 1 10 40 60 4 7 0.1 3700 3100 180 1300 700

5 1 10 40 60 4 7 0.1 2200 1200 170 3550 3000

6 1 10 40 60 4 7 0.1 900 1000 10 1300 1650

7 1 10 40 60 4 7 0.1 1500 2550 210 2950 3000

8 1 10 40 60 4 7 0.1 800 2500 100 2900 800

9 1 10 40 60 4 7 0.1 1600 1350 340 2400 1500

10 1 10 40 60 4 7 0.1 2850 3650 260 2450 200

11 1 10 40 60 4 7 0.1 2950 3150 240 400 800

12 1 10 40 60 4 7 0.1 2150 3400 290 550 3150

13 1 10 40 60 4 7 0.1 3550 3700 30 3350 1550

14 1 10 40 60 4 7 0.1 2800 1800 290 3550 2050

15 1 10 40 60 4 7 0.1 1100 1550 200 3000 1100

16 1 10 40 60 4 7 0.1 3300 250 170 1850 2200

17 1 10 40 60 4 7 0.1 3550 1450 230 550 600

18 1 10 40 60 4 7 0.1 2400 3400 240 3000 500

19 1 10 40 60 4 7 0.1 950 3400 280 1600 700

20 1 10 40 60 4 7 0.1 3200 2250 130 1900 2650

21 1 10 40 60 4 7 0.1 450 300 200 2400 2200

22 1 10 40 60 4 7 0.1 1300 1100 100 2200 3200

23 1 10 40 60 4 7 0.1 3500 2550 0 2350 1800

24 1 10 40 60 4 7 0.1 1900 3250 340 2600 950

25 1 10 40 60 4 7 0.1 2250 2600 120 300 1850

26 1 10 40 60 4 7 0.1 1150 700 130 400 1550

27 1 10 40 60 4 7 0.1 2450 350 210 3750 1050

28 1 10 40 60 4 7 0.1 900 1900 350 1450 250

29 1 10 40 60 4 7 0.1 1450 3200 180 1600 400

30 1 10 40 60 4 7 0.1 3000 3000 110 300 1500

31 1 10 40 60 4 7 0.1 2900 3000 10 3800 2500

32 1 10 40 60 4 7 0.1 2950 2150 260 3650 550

33 1 10 40 60 4 7 0.1 3050 1350 220 2500 3650

34 1 10 40 60 4 7 0.1 3250 1200 50 1850 3050

35 1 10 40 60 4 7 0.1 1200 650 200 1900 900

36 1 10 40 60 4 7 0.1 500 2450 350 3450 2400

37 1 10 40 60 4 7 0.1 2850 1250 220 2600 1950

38 1 10 40 60 4 7 0.1 500 600 80 1550 3400

39 1 10 40 60 4 7 0.1 1650 2300 290 2550 350

40 1 10 40 60 4 7 0.1 1200 600 100 3350 3750

41 1 10 40 60 4 7 0.1 3550 350 280 750 2550

42 1 10 40 60 4 7 0.1 400 1800 110 1500 2300

43 1 10 40 60 4 7 0.1 800 1500 150 2550 2500

44 1 10 40 60 4 7 0.1 300 2000 90 2250 2400

45 1 10 40 60 4 7 0.1 3000 300 350 2900 1550

46 1 10 40 60 4 7 0.1 2200 3300 70 350 1550

47 1 10 40 60 4 7 0.1 2650 800 240 2100 750

48 1 10 40 60 4 7 0.1 1900 2050 240 3550 2050

49 1 10 40 60 4 7 0.1 2050 800 330 2750 3250

50 1 10 40 60 4 7 0.1 2050 1250 0 3200 3500

Scene #
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51 1 10 40 60 4 7 0.1 2400 2700 250 2500 400

52 1 10 40 60 4 7 0.1 1800 3350 30 3450 1900

53 1 10 40 60 4 7 0.1 2700 2500 130 1200 3600

54 1 10 40 60 4 7 0.1 3350 1300 60 1450 1300

55 1 10 40 60 4 7 0.1 2900 200 90 250 2550

56 1 10 40 60 4 7 0.1 2750 2500 120 1950 1000

57 1 10 40 60 4 7 0.1 650 1700 90 3150 900

58 1 10 40 60 4 7 0.1 1400 1750 250 400 2550

59 1 10 40 60 4 7 0.1 2600 1650 60 1800 1050

60 1 10 40 60 4 7 0.1 350 250 100 3000 2250

61 1 10 40 60 4 7 0.1 3600 1250 170 1500 3000

62 1 10 40 60 4 7 0.1 3100 2800 30 200 3650

63 1 10 40 60 4 7 0.1 1850 2550 40 3200 250

64 1 10 40 60 4 7 0.1 3100 3550 40 2300 1950

65 1 10 40 60 4 7 0.1 1550 2500 340 3700 300

66 1 10 40 60 4 7 0.1 2400 3000 110 3800 1500

67 1 10 40 60 4 7 0.1 2150 1200 170 700 3300

68 1 10 40 60 4 7 0.1 2350 2500 110 2200 3300

69 1 10 40 60 4 7 0.1 1900 1200 160 3050 700

70 1 10 40 60 4 7 0.1 1600 1600 110 3200 2350

71 1 10 40 60 4 7 0.1 3200 3700 60 1800 3050

72 1 10 40 60 4 7 0.1 600 1000 100 2300 2000

73 1 10 40 60 4 7 0.1 3350 1100 120 1000 1300

74 1 10 40 60 4 7 0.1 1100 3550 20 2200 3650

75 1 10 40 60 4 7 0.1 3300 3050 330 2100 1500

76 1 10 40 60 4 7 0.1 1100 3400 180 2000 2700

77 1 10 40 60 4 7 0.1 400 3750 80 2800 3150

78 1 10 40 60 4 7 0.1 500 350 350 3150 600

79 1 10 40 60 4 7 0.1 3600 2600 240 1300 3650

80 1 10 40 60 4 7 0.1 1750 1700 290 950 1050

81 1 10 40 60 4 7 0.1 1450 1750 20 3250 1450

82 1 10 40 60 4 7 0.1 3050 1250 290 750 450

83 1 10 40 60 4 7 0.1 1650 2850 140 2800 2950

84 1 10 40 60 4 7 0.1 2600 1000 310 1450 3550

85 1 10 40 60 4 7 0.1 3600 2750 280 250 1550

86 1 10 40 60 4 7 0.1 600 2100 30 2900 1550

87 1 10 40 60 4 7 0.1 550 1200 220 2000 1850

88 1 10 40 60 4 7 0.1 300 3650 80 2600 1550

89 1 10 40 60 4 7 0.1 2600 1600 130 200 200

90 1 10 40 60 4 7 0.1 350 2250 140 2550 1250

91 1 10 40 60 4 7 0.1 3550 900 10 2650 1200

92 1 10 40 60 4 7 0.1 400 1000 200 3650 3450

93 1 10 40 60 4 7 0.1 850 1750 140 3200 2150

94 1 10 40 60 4 7 0.1 750 2550 350 3450 3100

95 1 10 40 60 4 7 0.1 2600 2000 230 2150 1800

96 1 10 40 60 4 7 0.1 2850 3750 220 1250 3150

97 1 10 40 60 4 7 0.1 3700 3300 300 2000 3300

98 1 10 40 60 4 7 0.1 1000 1850 30 3350 1450

99 1 10 40 60 4 7 0.1 1300 2500 190 1200 1600

100 1 10 40 60 4 7 0.1 3100 1800 300 2500 800
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Appendix E – 100 Run Ship Transit Data (2% coverage) 

 

Scene #
Trial 

Distance

Destination 

Reached

Total Step 

Count

Collision 

Count

Min 

Speed

Max 

Speed

Average 

Speed

1 1518 Yes 310 0 0 2.898 2.670

2 2923 Yes 570 1 0 2.896 2.745

3 1503 Yes 301 0 0 2.896 2.693

4 2444 Yes 452 0 0 2.895 2.762

5 1365 Yes 249 0 0 2.893 2.689

6 971 Yes 184 0 0 2.893 2.625

7 2018 Yes 363 0 0 2.895 2.766

8 3536 Yes 679 0 0 2.896 2.779

9 1579 Yes 299 0 0 2.897 2.712

10 1595 Yes 293 0 0 2.892 2.722

11 3311 Yes 611 0 0 2.895 2.718

12 3581 Yes 660 0 0 2.898 2.793

13 1020 Yes 180 0 0 2.885 2.665

14 2624 Yes 470 7 0 2.897 2.785

15 2552 Yes 453 0 0 2.891 2.786

16 1476 Yes 268 0 0 2.891 2.701

17 626 Yes 155 0 0 2.880 2.486

18 791 Yes 175 0 0 2.892 2.576

19 2040 Yes 367 0 0 2.896 2.761

20 1408 Yes 279 0 0 2.893 2.667

21 2628 Yes 508 0 0 2.896 2.741

22 1481 Yes 280 0 0 2.894 2.682

23 2040 Yes 367 3 0 2.897 2.734

24 951 Yes 224 8 0 2.883 2.533

25 1031 Yes 187 0 0 2.892 2.565

26 3384 Yes 598 0 0 2.896 2.809

27 2394 Yes 421 0 0 2.895 2.789

28 2688 Yes 501 0 0 2.896 2.760

29 2305 Yes 422 0 0 2.896 2.765

30 2632 Yes 462 0 0 2.897 2.799

31 3624 Yes 697 18 0 2.897 2.766

32 1167 Yes 234 0 0 2.897 2.648

33 3791 Yes 698 0 0 2.895 2.802

34 2442 Yes 459 0 0 2.895 2.765

35 539 Yes 142 0 0 2.886 2.445

36 2312 Yes 412 1 0 2.894 2.752

37 3010 Yes 578 0 0 2.899 2.755

38 966 Yes 162 0 0 2.895 2.705

39 1996 Yes 360 0 0 2.896 2.760

40 1204 Yes 220 0 0 2.894 2.673

41 814 Yes 163 10 0 2.890 2.462

42 721 Yes 148 0 0 2.894 2.515

43 3166 Yes 559 0 0 2.897 2.801

44 2331 Yes 433 0 0 2.898 2.753

45 918 Yes 169 0 0 2.896 2.621
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46 2926 Yes 525 0 0 2.895 2.799

47 1160 Yes 198 0 0 2.895 2.724

48 1204 Yes 259 1 0 2.896 2.569

49 2202 Yes 421 0 0 2.895 2.732

50 1601 Yes 292 1 0 2.898 2.697

51 1416 Yes 303 0 0 2.892 2.665

52 1351 Yes 245 0 0 2.894 2.709

53 757 Yes 152 0 0 2.897 2.527

54 1079 Yes 201 0 0 2.897 2.653

55 1589 Yes 300 0 0 2.896 2.712

56 585 Yes 156 0 0 2.892 2.445

57 1250 Yes 218 0 0 2.891 2.726

58 2804 Yes 533 4 0 2.896 2.766

59 500 Yes 153 1 0 2.883 2.275

60 2624 Yes 459 13 0 2.897 2.797

61 1968 Yes 359 0 0 2.896 2.753

62 2413 Yes 506 1 0 2.897 2.551

63 2100 Yes 362 0 0 2.895 2.788

64 1321 Yes 244 0 0 2.895 2.634

65 2103 Yes 390 0 0 2.894 2.748

66 2652 Yes 471 0 0 2.894 2.769

67 2622 Yes 479 0 0 2.896 2.761

68 3418 Yes 658 7 0 2.896 2.758

69 3200 Yes 567 0 0 2.896 2.805

70 2129 Yes 407 0 0 2.894 2.726

71 3399 Yes 617 0 0 2.895 2.797

72 2298 Yes 435 0 0 2.895 2.751

73 3421 Yes 666 2 0 2.896 2.684

74 4290 Yes 783 0 0 2.896 2.777

75 4144 Yes 774 6 0 2.896 2.790

76 2754 Yes 489 0 0 2.895 2.786

77 566 Yes 137 0 0 2.879 2.462

78 1193 Yes 211 0 0 2.892 2.696

79 1507 Yes 299 1 0 2.894 2.658

80 652 Yes 133 0 0 2.883 2.500

81 1855 Yes 347 0 0 2.892 2.733

82 757 Yes 187 0 0 2.892 2.534

83 791 Yes 144 0 0 2.892 2.470

84 2574 Yes 489 0 0 2.893 2.704

85 1874 Yes 354 0 0 2.895 2.726

86 4490 Yes 805 7 0 2.897 2.805

87 1408 Yes 255 3 0 2.894 2.680

88 2151 Yes 420 4 0 2.897 2.712

89 1376 Yes 289 0 0 2.893 2.668

90 2081 Yes 365 0 0 2.895 2.781

91 1906 Yes 355 0 0 2.889 2.729

92 1622 Yes 277 0 0 2.898 2.774

93 1217 Yes 219 0 0 2.897 2.690

94 2830 Yes 504 0 0 2.895 2.791

95 696 Yes 117 0 0 2.890 2.617

96 2259 Yes 424 0 0 2.894 2.753

97 2693 Yes 498 1 0 2.895 2.721

98 2488 Yes 459 1 0 2.897 2.719

99 2799 Yes 554 8 0 2.896 2.759

100 1201 Yes 220 0 0 2.895 2.703
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Appendix F – 100 Run Ship Transit Data (5% coverage) 

 

Scene #
Trial 

Distance

Destination 

Reached

Total Step 

Count

Collision 

Count

Min 

Speed

Max 

Speed

Average 

Speed

1 1970 Yes 376 11 0 2.896 2.738

2 2062 Yes 438 1 0 2.896 2.551

3 2612 Yes 464 2 0 2.897 2.770

4 2754 Yes 580 5 0 2.897 2.544

5 3037 Yes 620 47 0 2.892 2.530

6 1365 Yes 267 1 0 2.893 2.548

7 2388 Yes 461 0 0 2.897 2.618

8 4421 Yes 861 11 0 2.895 2.685

9 721 Yes 135 0 0 2.893 2.563

10 3390 Yes 649 0 0 2.894 2.658

11 919 Yes 162 1 0 2.886 2.640

12 3560 Yes 641 3 0 2.898 2.779

13 1692 Yes 349 7 0 2.897 2.699

14 618 Yes 174 1 0 2.894 2.311

15 2822 Yes 511 1 0 2.896 2.625

16 1947 Yes 372 1 0 2.895 2.640

17 1092 Yes 198 2 0 2.892 2.616

18 3105 Yes 546 0 0 2.897 2.804

19 791 Yes 194 0 0 2.886 2.526

20 1649 Yes 318 3 0 2.895 2.630

21 667 Yes 144 0 0 2.896 2.502

22 2850 Yes 521 1 0 2.898 2.689

23 3232 Yes 662 9 0 2.897 2.678

24 2691 Yes 475 0 0 2.896 2.774

25 1792 Yes 377 1 0 2.895 2.604

26 1589 Yes 297 17 0 2.894 2.640

27 3430 Yes 662 11 0 2.896 2.688

28 1471 Yes 299 1 0 2.891 2.625

29 3371 Yes 679 3 0 2.897 2.654

30 1746 Yes 342 1 0 2.896 2.698

31 2581 Yes 497 0 0 2.891 2.750

32 1887 Yes 364 5 0 2.896 2.682

33 1432 Yes 308 2 0 2.894 2.528

34 3224 Yes 585 2 0 2.893 2.780

35 1485 Yes 320 0 0 2.893 2.482

36 1707 Yes 336 0 0 2.896 2.708

37 1421 Yes 242 0 0 2.897 2.763

38 2491 Yes 539 31 0 2.895 2.431

39 2616 Yes 487 22 0 2.897 2.701

40 1569 Yes 282 0 0 2.891 2.721

41 2246 Yes 393 0 0 2.896 2.792

42 2115 Yes 378 1 0 2.894 2.724

43 1750 Yes 359 8 0 2.890 2.641

44 1393 Yes 241 1 0 2.897 2.728

45 1903 Yes 337 0 0 2.895 2.732
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46 2285 Yes 409 0 0 2.898 2.746

47 1700 Yes 298 0 0 2.891 2.758

48 763 Yes 134 0 0 2.885 2.605

49 2707 Yes 521 0 0 2.898 2.761

50 885 Yes 182 14 0 2.894 2.591

51 901 Yes 208 0 0 2.895 2.552

52 3189 Yes 579 1 0 2.894 2.754

53 1526 Yes 338 7 0 2.886 2.508

54 1450 Yes 251 0 0 2.894 2.745

55 1746 Yes 336 0 0 2.894 2.713

56 2352 Yes 464 21 0 2.896 2.690

57 950 Yes 161 0 0 2.891 2.692

58 2072 Yes 426 2 0 2.895 2.638

59 1167 Yes 200 0 0 2.894 2.729

60 3491 Yes 613 3 0 2.896 2.812

61 2205 Yes 399 5 0 2.892 2.721

62 3558 Yes 619 1 0 2.898 2.826

63 2680 Yes 494 1 0 2.897 2.750

64 2757 Yes 503 1 0 2.896 2.719

65 4526 Yes 904 15 0 2.897 2.656

66 1978 Yes 382 1 0 2.894 2.620

67 502 Yes 98 1 0 2.887 2.216

68 650 Yes 175 0 0 2.883 2.512

69 1671 Yes 311 1 0 2.896 2.708

70 3083 Yes 636 14 0 2.897 2.634

71 1569 Yes 306 1 0 2.893 2.532

72 2375 Yes 407 0 0 2.895 2.785

73 680 Yes 126 1 0 2.886 2.521

74 3323 Yes 593 1 0 2.898 2.751

75 2754 Yes 477 0 0 2.895 2.811

76 3818 Yes 705 15 0 2.897 2.767

77 1579 Yes 353 7 0 2.895 2.603

78 1681 Yes 349 0 0 2.895 2.671

79 2500 Yes 441 2 0 2.897 2.772

80 2900 Yes 508 0 0 2.896 2.802

81 2666 Yes 454 0 0 2.897 2.764

82 2086 Yes 432 2 0 2.895 2.630

83 3129 Yes 593 0 0 2.896 2.744

84 2119 Yes 423 0 0 2.896 2.559

85 2662 Yes 480 8 0 2.897 2.754

86 1433 Yes 245 1 0 2.897 2.726

87 3027 Yes 575 7 0 2.897 2.747

88 1373 Yes 273 0 0 2.895 2.666

89 2943 Yes 600 5 0 2.897 2.677

90 2080 Yes 377 1 0 2.897 2.715

91 2482 Yes 434 0 0 2.896 2.798

92 2102 Yes 377 0 0 2.894 2.708

93 986 Yes 190 1 0 2.890 2.592

94 3220 Yes 601 1 0 2.894 2.744

95 3084 Yes 594 17 0 2.894 2.663

96 1570 Yes 309 0 0 2.894 2.696

97 2025 Yes 400 0 0 2.896 2.728

98 1365 Yes 256 9 0 2.894 2.646

99 1422 Yes 252 0 0 2.896 2.736

100 1000 Yes 158 0 0 2.886 2.569
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Appendix G – 100 Run Ship Transit Data (10% coverage, large floes) 

 

Scene #
Trial 

Distance

Destination 

Reached

Total Step 

Count

Collision 

Count

Min 

Speed

Max 

Speed

Average 

Speed

1 2550 Yes 533 4 0 2.896 2.552

2 2171 Yes 444 68 0 2.898 2.552

3 2581 Yes 497 22 0 2.892 2.599

4 1551 Yes 313 18 0 2.897 2.638

5 1801 Yes 327 2 0 2.893 2.675

6 1404 Yes 287 63 0 2.890 2.503

7 1412 Yes 271 2 0 2.887 2.606

8 1055 Yes 244 24 0 2.891 2.322

9 1521 Yes 295 2 0 2.895 2.651

10 515 Yes 128 2 0 2.873 2.351

11 806 Yes 202 26 0 2.894 2.352

12 955 Yes 163 0 0 2.893 2.689

13 1350 Yes 247 15 0 2.893 2.660

14 510 Yes 155 1 0 2.878 2.211

15 2502 Yes 507 20 0 2.897 2.607

16 814 Yes 144 0 0 2.892 2.602

17 2604 Yes 518 58 0 2.895 2.551

18 2348 Yes 476 8 0 2.896 2.633

19 2452 Yes 447 3 0 2.897 2.704

20 1422 Yes 293 15 0 2.894 2.457

21 1389 Yes 323 2 0 2.882 2.239

22 1603 Yes 319 1 0 2.894 2.560

23 1079 Yes 249 0 0 2.896 2.415

24 3015 Yes 535 2 0 2.895 2.799

25 1360 Yes 256 1 0 2.897 2.608

26 2502 Yes 440 1 0 2.897 2.769

27 583 Yes 105 3 0 2.866 2.516

28 825 Yes 179 1 0 2.895 2.467

29 1387 Yes 246 1 0 2.895 2.690

30 2440 Yes 485 7 0 2.896 2.706

31 2850 Yes 628 6 0 2.894 2.413

32 3786 Yes 726 23 0 2.896 2.688

33 2326 Yes 498 3 0 2.896 2.538

34 3448 Yes 661 21 0 2.897 2.696

35 1498 Yes 315 1 0 2.896 2.620

36 3265 Yes 625 30 0 2.895 2.615

37 2470 Yes 447 6 0 2.894 2.753

38 1562 Yes 289 0 0 2.888 2.653

39 2052 Yes 423 6 0 2.894 2.682

40 1105 Yes 235 29 0 2.888 2.316

41 2452 Yes 479 29 0 2.893 2.647

42 2016 Yes 431 6 0 2.895 2.609

43 3202 Yes 614 4 0 2.895 2.638

44 3650 Yes 690 4 0 2.893 2.688

45 1031 Yes 220 1 0 2.889 2.588
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46 1733 Yes 348 13 0 2.894 2.661

47 2952 Yes 642 6 0 2.894 2.445

48 3180 Yes 623 14 0 2.897 2.652

49 1346 Yes 270 26 0 2.893 2.608

50 1801 Yes 331 3 0 2.894 2.692

51 3004 Yes 556 9 0 2.893 2.715

52 1209 Yes 278 15 0 2.896 2.438

53 1650 Yes 322 11 0 2.896 2.576

54 1736 Yes 327 1 0 2.890 2.680

55 2154 Yes 400 1 0 2.895 2.729

56 1772 Yes 357 5 0 2.892 2.651

57 3783 Yes 732 19 0 2.896 2.622

58 3087 Yes 627 3 0 2.895 2.645

59 2314 Yes 444 12 0 2.896 2.626

60 3463 Yes 653 18 0 2.895 2.674

61 3204 Yes 667 3 0 2.893 2.586

62 1756 Yes 325 1 0 2.897 2.665

63 1595 Yes 295 1 0 2.891 2.688

64 3045 Yes 611 28 0 2.895 2.659

65 2878 Yes 571 18 0 2.897 2.667

66 3241 Yes 685 24 0 2.896 2.556

67 721 Yes 214 46 0 2.885 2.198

68 3536 Yes 696 41 0 2.896 2.526

69 1645 Yes 354 19 0 2.893 2.468

70 2274 Yes 437 5 0 2.896 2.710

71 2375 Yes 463 10 0 2.894 2.685

72 2324 Yes 422 4 0 2.892 2.719

73 1026 Yes 182 2 0 2.888 2.632

74 3076 Yes 641 3 0 2.897 2.545

75 3041 Yes 568 1 0 2.895 2.661

76 2452 Yes 527 50 0 2.894 2.614

77 894 Yes 161 9 0 2.887 2.614

78 2583 Yes 560 16 0 2.896 2.508

79 2640 Yes 487 4 0 2.894 2.701

80 3176 Yes 616 4 0 2.893 2.674

81 1141 Yes 229 2 0 2.893 2.570

82 806 Yes 200 0 0 2.894 2.516

83 2414 Yes 440 12 0 2.893 2.690

84 1421 Yes 262 12 0 2.895 2.676

85 3387 Yes 674 16 0 2.896 2.688

86 3233 Yes 662 14 0 2.896 2.664

87 2587 Yes 503 2 0 2.895 2.592

88 3483 Yes 717 69 0 2.893 2.466

89 1960 Yes 365 8 0 2.895 2.703

90 1901 Yes 355 3 0 2.893 2.642

91 2191 Yes 398 15 0 2.891 2.720

92 1040 Yes 244 4 0 2.893 2.562

93 2263 Yes 493 2 0 2.889 2.512

94 765 Yes 127 7 0 2.895 2.648

95 1458 Yes 292 16 0 2.891 2.425

96 1300 Yes 243 1 0 2.892 2.656

97 3126 Yes 581 3 0 2.894 2.706

98 806 Yes 184 0 0 2.889 2.546

99 1960 Yes 348 3 0 2.892 2.747

100 2094 Yes 447 1 0 2.896 2.610
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Appendix H – 100 Run Ship Transit Data (10% coverage, small floes) 

 

Scene #
Trial 

Distance

Destination 

Reached

Total Step 

Count

Collision 

Count

Min 

Speed

Max 

Speed

Average 

Speed

1 3100 Yes 571 17 0 2.894 2.713

2 2002 Yes 401 2 0 2.894 2.688

3 2025 Yes 402 17 0 2.889 2.570

4 3394 Yes 647 11 0 2.897 2.626

5 2250 Yes 440 8 0 2.894 2.625

6 763 Yes 152 3 0 2.885 2.319

7 1518 Yes 327 6 0 2.897 2.577

8 2702 Yes 531 14 0 2.895 2.681

9 814 Yes 145 2 0 2.895 2.532

10 3473 Yes 662 9 0 2.893 2.612

11 3468 Yes 639 11 0 2.893 2.702

12 1619 Yes 315 10 0 2.892 2.633

13 2159 Yes 425 7 0 2.895 2.649

14 791 Yes 167 1 0 2.887 2.325

15 1953 Yes 397 15 0 2.892 2.638

16 2430 Yes 451 13 0 2.894 2.661

17 3118 Yes 575 5 0 2.896 2.693

18 2961 Yes 563 3 0 2.899 2.627

19 2777 Yes 491 3 0 2.896 2.747

20 1360 Yes 241 3 0 2.889 2.683

21 2723 Yes 570 18 0 2.894 2.586

22 2285 Yes 412 4 0 2.891 2.713

23 1373 Yes 281 1 0 2.895 2.654

24 2404 Yes 435 8 0 2.896 2.717

25 2089 Yes 388 2 0 2.897 2.681

26 1134 Yes 206 2 0 2.897 2.568

27 1476 Yes 333 7 0 2.895 2.580

28 1739 Yes 329 5 0 2.891 2.587

29 2804 Yes 540 4 0 2.895 2.629

30 3089 Yes 608 15 0 2.894 2.580

31 1030 Yes 189 2 0 2.891 2.532

32 1746 Yes 320 9 0 2.896 2.627

33 2365 Yes 487 24 0 2.891 2.523

34 2320 Yes 439 15 0 2.887 2.653

35 743 Yes 200 3 0 2.881 2.343

36 2950 Yes 531 10 0 2.896 2.720

37 743 Yes 156 2 0 2.893 2.495

38 2990 Yes 560 8 0 2.895 2.649

39 2148 Yes 405 12 0 2.895 2.626

40 3814 Yes 684 3 0 2.896 2.775

41 3561 Yes 699 12 0 2.896 2.683

42 1208 Yes 227 1 0 2.890 2.631

43 2016 Yes 392 1 0 2.893 2.673

44 1991 Yes 377 11 0 2.892 2.625

45 1254 Yes 255 19 0 2.886 2.557
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46 2547 Yes 500 4 0 2.896 2.708

47 552 Yes 104 2 0 2.895 2.376

48 1650 Yes 338 5 0 2.893 2.566

49 2548 Yes 508 7 0 2.897 2.560

50 2527 Yes 468 5 0 2.896 2.681

51 2302 Yes 426 11 0 2.893 2.640

52 2197 Yes 426 6 0 2.895 2.563

53 1860 Yes 322 0 0 2.895 2.768

54 1900 Yes 374 6 0 2.895 2.661

55 3542 Yes 666 19 0 2.897 2.655

56 1700 Yes 350 4 0 2.892 2.555

57 2625 Yes 506 9 0 2.893 2.636

58 1281 Yes 265 6 0 2.889 2.538

59 1000 Yes 221 1 0 2.893 2.576

60 3320 Yes 611 10 0 2.897 2.724

61 2734 Yes 514 10 0 2.894 2.644

62 3022 Yes 584 6 0 2.895 2.673

63 2667 Yes 518 14 0 2.896 2.600

64 1789 Yes 375 8 0 2.898 2.613

65 3076 Yes 557 4 0 2.896 2.728

66 2052 Yes 430 15 0 2.894 2.597

67 2552 Yes 469 7 0 2.893 2.682

68 814 Yes 146 12 0 2.893 2.516

69 1254 Yes 279 2 0 2.894 2.578

70 1767 Yes 325 4 0 2.896 2.695

71 1544 Yes 325 4 0 2.897 2.568

72 1972 Yes 365 3 0 2.888 2.693

73 2358 Yes 434 2 0 2.897 2.684

74 1105 Yes 186 1 0 2.895 2.729

75 1960 Yes 376 3 0 2.895 2.681

76 1140 Yes 257 4 0 2.894 2.461

77 2474 Yes 460 10 0 2.896 2.622

78 2662 Yes 504 11 0 2.896 2.714

79 2528 Yes 476 7 0 2.892 2.672

80 1031 Yes 201 1 0 2.885 2.460

81 1825 Yes 332 8 0 2.893 2.644

82 2435 Yes 467 7 0 2.893 2.628

83 1154 Yes 241 3 0 2.892 2.578

84 2797 Yes 562 2 0 2.894 2.646

85 3558 Yes 685 21 0 2.894 2.614

86 2365 Yes 474 14 0 2.894 2.470

87 1589 Yes 338 18 0 2.893 2.574

88 3114 Yes 594 9 0 2.897 2.726

89 2778 Yes 529 17 0 2.895 2.659

90 2417 Yes 522 8 0 2.893 2.509

91 949 Yes 227 3 0 2.873 2.415

92 4070 Yes 802 16 0 2.895 2.705

93 2384 Yes 462 12 0 2.894 2.704

94 2755 Yes 494 4 0 2.891 2.735

95 492 Yes 89 3 0 2.880 2.334

96 1709 Yes 303 2 0 2.895 2.711

97 1700 Yes 332 12 0 2.895 2.669

98 2384 Yes 426 5 0 2.893 2.736

99 906 Yes 178 4 0 2.893 2.458

100 1166 Yes 223 2 0 2.896 2.495
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Appendix I – Ship Trajectory Graphs 
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