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Abstract

In recent years, energy-minimization finite-element methods have been proposed for

the computational modelling of equilibrium states of several types of liquid crystals

(LCs) [4, 34, 110]. This thesis is particularly interested in the models of smectic A

liquid crystals, based on the free-energy functionals proposed by Pevnyi, Selinger,

and Sluckin [112], and by Xia et al. [138]. The Euler-Lagrange equations for these

models include fourth-order terms acting on the smectic order parameter (or density

variation of the LC) and second-order terms acting on the Q-tensor or director field.

Thus, we first focus extensively on finite-element methods for fourth-order problems.

These methods include (i) C1-continuous elements with a nonsymmetric Nitsche-type

penalty method to weakly impose the essential boundary conditions, (ii) a nonsym-

metric version of the C0 interior penalty method, where the nonsymmetric forms are

used to guarantee optimal convergence rates in terms of h ≤ 1 and q ≈ 40, where

h and q are the refinement level and the smectic wavenumber that prescribes a pre-

ferred wavelength for the solution of 2π/q respectively, and (iii) mixed finite-element

methods based on introducing the gradient of the solution as an explicit variable and

constraining its value using a Lagrange multiplier, that are symmetric and allow us

to strongly impose the essential boundary conditions. Preliminary experiments show

that the mixed formulations may be advantageous over the other methods, in the sense

that we can construct efficient preconditioners for these discretizations. Therefore, we

consider a four-field formulation for models of smectic A liquid crystals, approxi-

mating the smectic order parameter, its gradient, the Lagrange multiplier, and the

Q-tensor. Then, we focus on the construction of solvers for the nonlinear systems

that result from the discretization of these models. We consider a Newton-Krylov-

Multigrid approach, using Newton’s method to linearize the systems, and developing

monolithic geometric multigrid preconditioners for the resulting saddle-point systems

with vertex-based patch relaxation schemes.
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Lay summary

Many physical systems in the world around us can be presented in terms of differen-

tial equations. Solving these equations can help us understand physical and natural

phenomena, which can save people’s lives, efforts, and money. Such systems include,

but are not limited to, weather forecasting, earthquake prediction, and the behaviour

of liquid crystalline materials.

Because of the special properties of liquid crystalline materials, and their widespread

use in TVs, laptop screens, and navigation systems, mathematical modelling of liquid

crystals has been extensively studied in the last few decades. These models primarily

take the form of complicated (nonlinear) energy functions, and analytically finding

their extremizers is expensive and inefficient (and often not feasible), especially when

we need to change the parameters that describe the liquid crystal under consideration.

Thus, numerical simulations are used to study the behavior of these complex systems.

We investigate simulating one of the most recent models that describe smectic-

A liquid crystals, presented by Xia et al. [138], where the optimality conditions for

the energy function lead to a nonlinear coupled “multi-physics” system of partial

differential equations, including a difficult fourth-order term on the density variation

of the smectic crystal. We modify the energy from [138], by introducing additional

variables that result in larger linear systems to be solved in the minimization process,

but these systems are more amenable to efficient, parallel numerical methods. As a

result, we can simulate at much higher resolutions than was possible in [138]. The

main contributions of the thesis are analysis of this transformation in comparison with

classical discretization techniques and the development of efficient numerical methods

for solution of these systems of equations.
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Chapter 1

Introduction

For many reasons, many scientific and engineering questions that are related to our

real life cannot be answered by classical theory or experimentation. For example,

some phenomenon are either very complicated or contain numerous variables that

characterize the system being studied. Other experiments are too expensive to do

in the physical laboratories, including those related to studying liquid crystals. It is

even sometimes infeasible or unethical to do some biological experiments that, for ex-

ample, predict drug side effects. These have led to the development of computational

modelling as a research discipline within Mathematics and Computer Science.

Computational modelling of physical phenomena can be presented in three steps

[111]. The first is to define an idealization of the problem of interest in terms of

the quantities in which we are interested. The second step is to obtain a mathe-

matical model that represents the idealization of the physical phenomena. Equations

representing the model are usually called the governing equations of the problem.

For example, fluid motion can be accurately represented using the Navier-Stokes

equation [2], and the deformation of a solid due to applied external forces can be

represented using the equations of elasticity [56]. It is preferred that the governing

equations be well-posed, which means that the mathematical problem has a unique

solution. However, it is possible to get a problem that has many solutions, which is

usually the case of governing equations obtained from modelling liquid crystals, or

has no solution in complex environments, such as when modeling nuclear reactors

where obtaining measurements is difficult. Some well-posed governing equations are
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very complicated to solve either analytically or computationally. Therefore, simpli-

fying assumptions to reduce the complexity of the model are given with the hope of

discovering methods to solve the original model. Boundary or initial conditions are

necessary to be given at this stage. The final step of computational modelling is to

analytically or computationally solve the governing equations. These appear to be

high-order partial differential equations (PDEs) in a wide range of applications in

science, finance, economics, and fluid dynamics [126]. Some of these models, such as

for thin films, beams, and liquid crystalline materials, contain fourth-order PDEs. In

these cases, applying analytical means like Fourier and Laplace transforms or series

solutions becomes inefficient or even impossible. As a result, numerical solutions for

these models are developed. The most common and well-known numerical schemes

are finite-difference methods, finite-volume methods, and finite-element methods.

1.1 Liquid crystals

Liquid crystals were first discovered by the Austrian chemist Reinitzer in 1888 [116].

They are substances with intermediate properties between liquids and solid crystals.

For example, a liquid crystal can flow like liquid while its molecules are oriented

in a crystal-like manner. There are a lot of examples of liquid crystals around us,

such as in soap, detergents, even in the human body, like some proteins and cell

membranes. As temperature and electric fields can affect the orientational order of

liquid crystals, they have been widely used in technological materials, such as electric

display devices. These applications have naturally led to an increased interest in

studying and modelling liquid crystals. For an overview of liquid crystal physics, we

refer to [49,54,85].

Liquid crystals are commonly characterized by their phases, classified as nematic,

smectic, and cholesteric liquid crystals [49,125]. Molecules in the nematic phase have

locally similar orientations (that can be described by a bulk parameter, known as the

director field), but generally exhibit no layered behaviour and, therefore, the molecules

can either rotate or slide past one another [133]. Smectic liquid crystal phases, which

usually exist at temperatures lower than those of nematic phases, have well-formed

layers with crystals pointing in the same direction [71]. The type of the smectic liquid

crystal is determined by the molecular arrangement within each layer. While there
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are many such types, the most common smectic liquid crystals are smectic-A, where

the molecules are oriented along the normal direction in each layer, and smectic-C for

which the molecules have a tilted angle between the layer normal and the director.

Finally, cholesteric molecules have a helical structure with layers rotated through

different angles. As the temperature of a given material increases, it can exhibit

phase changes from a solid, to cholesteric, smectic, nematic, and liquid phases.

Figure 1.1: Liquid crystal phases: (a) Nematic, (b) Smectic-A, (c) Smectic-C, and (d)
Cholesteric phases [139].

1.1.1 Modeling smectic-A liquid crystals

de Gennes model

In this theory, the free energy of smectic A liquid crystals can be modeled as follows

[55]

J(ν, ψ) =

∫
Ω

E1(~ν) + E2(~ν, ψ),

where Ω ⊂ Rd, d ∈ {2, 3} is the domain that the liquid crystals occupy, ψ is a complex-

valued order parameter for which |ψ| describes the magnitude and ∇ψ describes the

phase of the liquid crystals. The real vector field ~ν is known as the director, and

satisfies the pointwise contraint ~ν · ~ν − 1 = 0. The energy E1(~ν) is the Frank-Oseen

energy that is usually used to model nematic liquid crystals,

E1(~ν) =
1

2

(
K1 (∇ · ~ν)2 +K2 (~ν · ∇ × ~ν)2 +K3 (~ν ×∇×~ν)

)
+

1

2
(K2 +K4)

((
tr(∇~ν)2

)
− (∇ · ~ν)2) . (1.1)
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Here, the constants {Ki}4
i=1 are positive constants called the Frank constants, with

K1, K2, and K3 identified as the splay, twist, and bend constants, respectively, see

Figure (1.2). In addition, E2(~ν, ψ) is the smectic energy density, given by

E2(~ν, ψ) = |∇ψ − iq~νψ|2 + r|ψ|2 +
g

2
|ψ|4

where i is the imaginary unit, q and g are positive constants, while r is a negative

constant.

Figure 1.2: The effect of splaying, twisting, and bending liquid crystals [89].

1.1.2 The Pevnyi, Selinger and Sluckin model (PSS)

Using a complex order parameter in the de Gennes model has some disadvantages.

First, Im(ψ) does not have a physical interpretation. Secondly, this model is formed

on a coarse-grained basis, which means that the model does not represent the local

free energy density on the length scale of the smectic layers themselves. Therefore, it

is suitable for macroscopic calculations, but not for nanoscale calculations of the po-

sitions of defects with respect to smectic layers, or the positions of smectic layers with

respect to boundaries. To overcome these difficulties, Pevnyi, Selinger and Sluckin

presented the following model with director ~ν : Ω→ Rd (still satisfying the constraint
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~ν · ~ν = 1) and the real-valued density variation u : Ω→ R [112],

J(u, ~ν) =

∫
Ω

a

2
u2 +

b

3
u3 +

c

4
u4 +B

(
∇∇u+ q2~ν ⊗ ~νu

)2
+
K

2
|∇~ν|2, (1.2)

where a, b, c, B, q, and K are constants determined by the liquid crystal under

consideration. We are mostly interested in c > 0 to keep a
2
u2 + b

3
u3 + c

4
u4 bounded

from below. Additionally, we choose a < 0 to avoid the trivial solution for u. While

the PSS model resolves the main issues related to the use of complex order parameters,

it still has some difficulties. Note that the PSS model uses the one-constant (simplest)

approximation of the Frank-Oseen energy K
2
|∇~ν|, but it can be generalized to different

Frank constants such as E1(~ν) defined in Equation (1.1). A key limitation is that it

fails to reproduce so-called “half charge” defects, due to the presence of director

discontinuities in these defects where the director field rotates by 180 degrees (1/2 of

a full rotation) around a point in the domain [112, Figure 1]. To overcome this, Pevnyi

et al. only approximate ~ν through the tensor field N = ~ν ⊗ ~ν, which allows them to

represent half-charge defects. However, numerical difficulties arise when enforcing N

to be of the form ~ν ⊗ ~ν numerically, for some unit vector ~ν [33].

1.1.3 The Xia et al. model

Ball and Bedford [22] modified the PSS model, replacing N by Q/s+ Id/d. Here, Q

is a tensor-valued order parameter, s is a scalar order parameter, and Id is the identity

matrix. While existence of minimizers is proved theoretically in [22], practical use of

this model leads to numerical difficulties when s is near zero. Xia et al. [138] proposed

the alternative model

E(u,Q) =

∫
Ω

a

2
u2+

b

3
u3+

c

4
u4+B

∣∣∣∣∇∇u+ q2

(
Q +

Id
d

)
u

∣∣∣∣2+
K

2
|∇Q|2+fn(Q), (1.3)

where fn(Q) = −l tr(Q2) + l
(
tr(Q2)

)2
for d = 2 and fn(Q) = −l tr(Q2)− l

3
tr(Q3) +

l
2

(
tr(Q2)

)2
in three dimensions. Here, the functions fn(Q) are chosen so that the

minimizers of
∫

Ω
fn(Q) are of the form Q = ~ν ⊗ ~ν − Id

d
(see [101, Proposition 15]),

and are included in the energy to weakly enforce the rank-one condition implied by

Pevnyi et al.’s model, without the potential singularity when including a scalar order

parameter, as in [22]. This model still has some difficulties related to existence of the
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Hessian, which requires u ∈ H2(Ω). Addressing these difficulties is one of the focuses

of this thesis.

1.2 Discretization Methods

1.2.1 Finite-difference methods [111]

Finite-difference methods (FDMs) are one of the oldest and simplest numerical schemes,

based on applying a local Taylor expansion to approximate the PDE. Continuous

domains are discretized and the PDE is converted into a system of algebraic equa-

tions. FDMs are stable, and generally converge rapidly for 1D problems on simple

domains. However, FDMs start to have difficulties when one is interested in solv-

ing multidimensional PDEs with variable coefficients, and domains with complicated

geometry. These difficulties can be overcome using staggered meshes and meshfree

finite-difference ideas [121], but these introduce their own complications, with many

open research questions for complex systems of equations. A good option to avoid

these complications is the use of integral (variational) forms of the PDEs, which leads

to the development of finite-volume and finite-element methods.

1.2.2 Finite-volume methods [64]

Finite-volume methods (FVMs) overcome some of the difficulties with FDMs, as they

are readily applicable to problems on complex geometries and to PDEs with variable

or discontinuous coerfficients. They are based on writing the differential equation in

conservative form, i.e
∫
K
∇ · F =

∫
K
G for some functions F and G, and volume K,

then converting the volume integral of F into a surface integral using the divergence

theorem. These terms are then approximated using approximate fluxes at each surface

of the finite volume. These methods are conservative as the flux entering a given

volume is constrained to be identical to that leaving the adjacent volume through their

common face. One common use of FVMs is for time-dependent problems, because of

their natural conservative properties. However, finite-element methods can be more

accurate when using high-order basis functions and the solution is smooth enough,

particularly for time-steady problems and coupled systems of PDEs.
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1.2.3 Finite-element methods [35]

Finite-element methods (FEMs) are based on a variational form that is derived from

the continuum PDE and used for its discrete approximation (known as conforming

methods). The variational formulation is obtained by multiplying the PDE by a test

function and then integrating by parts, giving what is called the weak form. At

the discrete level, the unknown is approximated using a linear combination of basis

functions. Different types of basis functions can be used, depending on the differential

operator(s) in the equation (gradients, divergences, and curls), and the order of the

PDE. While FEMs overcome some of the given difficulties for FDMs and FVMs, they

still have their own difficulties. Deriving stable discretizations for coupled systems

is challenging, as many natural discretizations lead to ill-posed discrete problems.

Finite-element discretizations are used in this thesis and discussed in more detail in

Section (2.2).

1.3 Preconditioners [29]

Applying any of the numerical schemes in the previous subsection leads to the need

for solving large ill-conditioned linear and/or nonlinear systems of algebraic equa-

tions. Solving the underlying linear systems using direct methods (LU factorization)

typically requires significant computational time and memory. On the other hand,

iterative methods (for example, Krylov subspace methods) can be very slow to con-

verge due to the high condition numbers of these systems (or their linearizations).

Preconditioning means transforming the linear system A~u = ~b into another system

with better properties, i.e. the preconditioned matrix, AP−1 or P−1A, has a (signfi-

cantly) smaller condition number, and/or eigenvalues clustered around 1. One might

also be interested in the situation where the minimum polynomial of the precondi-

tioned matrix is of small degree, also leading to a situation where the iteration counts

that are required to converge within a given tolerance are small. Clever choices of the

preconditioner matrix, P , can lead to the development of iterative methods that dra-

matically outperform direct methods, especially for 3D problems. For linear systems

that arise from discretizing complicated PDEs, it is common to use Krylov subspace

methods (see Section 2.3), with multigrid preconditioners (see Section 2.4).
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1.4 Literature review

This thesis develops finite-element methods for the model in (1.3), along with some

simplifications. In this section, we give a brief summary of what has been done in the

field of finite-element methods for H2 elliptic problems, preconditioners for saddle-

point systems, and finite-element discretizations (and associated linear and nonlinear

solvers) for liquid crystals.

1.4.1 Finite element methods for H2 elliptic problems

The Euler-Lagrange equations for (1.3) lead to a coupled system of PDEs, with a

fourth-order operator applied to u, and a second-order operator acting on Q. Finite-

element discretizations for fourth-order H2-elliptic problems have been studied widely.

These include conforming methods, such as the use of Argyris elements, nonconform-

ing methods [41, 52, 131], C0 interior penalty methods (C0IP) [18, 40, 42, 127], and

mixed-finite element methods, including two-field [51,52,102], three-field [24,66], and

four-field discretizations [27, 50, 97], and mixed-nonconforming methods (the HHJ

mixed formulation) [50, 82, 95, 113]. Here, we focus on developing three field finite-

element formulations for H2-elliptic problems. The goal is to avoid the difficulties

encountered when using conforming and C0IP methods. At the same time, we try to

avoid using “too many” variables, which makes the arising linear systems very large

and more difficult to solve. A key point here is that, to our knowledge, there are no

existing methods that offer provably good discretization for (1.3) for which we also

have fast solution algorithms. The C0IP methods used in [138] restricted the simula-

tions in that paper to unreasonably low resolutions, particularly for 3D systems, due

to the lack of scalable solvers. This motivates the work of this thesis.

1.4.2 Preconditioners for saddle-point systems

Systems arising from the three-field discretizations we develop are of saddle-point type

with condition numbers that usually grow like h−p for p > 0, resulting in increasingly

ill-conditioned systems as the mesh size, h, goes to zero. Therefore, Krylov subspace

methods [76] alone for these systems are not efficient. As a result, we have to apply

preconditioned Krylov subspace methods. Two common families of preconditioners
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are block factorization [59, 69, 105] and monolithic multigrid preconditioners [4, 6, 7,

130]. A key part of this work is to propose effective monolithic multigrid solvers for

the arising saddle-point systems [6, 7, 68].

1.4.3 Modeling liquid crystals

Recent years have seen significant and successful effort in developing numerical models

of various liquid crystalline materials [4, 5, 9, 23, 34, 53, 100, 110, 112, 114]. In these

models, equilibrium states of liquid crystals usually correspond to minimizers of a

given energy functional, which can be directly discretized using finite-element (or

other) variational techniques. We are interested in smectic-A liquid crystals, which

are characterized by their natural propensity to form layers with periodic variation in

the density of the liquid crystal along lines orthogonal to the orientation of the crystals.

While some models make use of a complex order parameter as a model of the energy

of liquid crystals [55], several recent papers have proposed models based directly

on the (real-valued) density variation [22, 112, 138]. In this work, we apply mixed

finite-element formulations that we have developed to the fourth-order operators that

appear in such models of smectic-A liquid crystals, and then solve the corresponding

nonlinear systems. For this, we linearize using Newton’s method, and solve the arising

linear systems using preconditioned Krylov suspace methods.

1.5 Thesis overview

A mathematical model for smectic A liquid crystals based on the free-energy was

presented in [138]. Using finite-element methods (or any other discretization method)

for finding extremizers of this model is challenging as the optimality conditions lead

to a nonlinear coupled multiphysics system with fourth-order operator on the smectic

density variable and a second-order operator on the tensor orientation variable. In

this thesis, we propose a mathematical modification to the smectic A model that was

presented in [138] and prove that the extremizers of both models are equivalent. This

modification has been made to allow discretizing the new energy using mixed finite-

element methods that offer some advantages. The main goal of these discretizations

is the ability to develop efficient preconditioners and, thus, solve the arising nonlinear
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systems faster (with cheaper computational cost) than direct methods. This gives us

the ability to perform higher resolution simulations, especially in three dimensions,

where solving the arising nonlinear systems using direct methods becomes very expen-

sive even for low-resolution simulations. We do this in steps; we focus on developing

stable mixed finite-element methods for a range of linear fourth-order problems that

are related to the nonlinear fourth-order equation that is a part of the full smectic A

model, and provide efficient preconditioners for the arising linear systems in Chapters

3 and (4). Then, we employ these techniques for the ultimate smectic A model in

Chapter 5. This thesis is a manuscript-based thesis and contains six chapters organ-

ised as follows.

In Chapter 2, we review the mathematical tools and concepts that will be used in

the following chapters. We first review general results on Sobolev and finite-element

spaces. Then, finite-element methods and the associated well-posedness theory, in-

cluding conforming, nonconforming, interior penalty, and mixed methods are pre-

sented. Finally, we present a brief discussion of iterative solvers.

In Chapter 3, a three-field mixed finite-element method is presented for d-dimensional

H2-elliptic problems with essential boundary enforced weakly using Nitsche-type penalty

methods where required. Efficient monolithic-multigrid preconditioners are developed

for the resulting saddle-point systems.

While a particular family of fourth-order operator (the biharmonic, ∆2 form) is

considered in Chapter 3, the smectic model of interest includes the Hessian-squared

operator, with a wrong-sign shift, making it somehow closer to the Helmholtz op-

erator than the elliptic case. In Chapter 4, we consider the fourth-order PDE in

Equation (4.4), with a focus on developing finite-element methods that generate opti-

mal convergence rates in both q ≈ 40 and h < 1. We have developed a nonsymmetric

version of conforming and C0IP methods, as well as a mixed finite-element method

similar to the one proposed in Chapter 3 which allows the construction of similar

preconditioners.

In Chapter 5, we discretize the smectic model of interest, using the mixed formula-

tions proposed in Chapter 4. In addition, a Nested Iteration-Newton-Krylov-Multigrid

solver for the arising nonlinear systems is presented.

Finally, in Chapter 6, we present conclusions and some directions for future work.



Chapter 2

Background

2.1 Continuous and discrete function spaces

2.1.1 Sobolev spaces

Let Ω ⊂ Rd, d ∈ {2, 3} be an open, connected set with Lipschitz boundary, and

Γ ⊂ ∂Ω. We use the following standard Sobolev spaces [32, 63]. The space of square

integrable functions is denoted

L2(Ω) :=

{
u

∣∣∣∣ ∫
Ω

|u|2 = ||u||20,Ω <∞
}
.

For integer m ≥ 0, the Sobolev space Hm(Ω) is defined as

Hm(Ω) :=
{
u
∣∣ Dαu ∈ L2(Ω),∀|α| ≤ m

}
,

where the weak derivative Dαu = v is defined by
∫

Ω
u Dαφ = (−1)|α|

∫
Ω
vφ, for

all test functions φ ∈ C∞c (Ω), with |α| = α1 + α2 + ... + αd for the multi-index

α = (α1, α2, ..., αd) with non-negative integer entries. In this space, the Hk(Ω)

seminorm is defined as

|u|2k,Ω :=
∑
|α|=k

‖Dαu‖2
0,Ω, k = 0, 1, ...,m,
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and the Hm(Ω) norm is given by

||u||2m,Ω :=
∑
k≤m

|u|2k,Ω.

Since the domain, Ω, is generally fixed in what we consider, we typically drop it from

the norm subscript. For m = 1, we introduce the trace operator H1(Ω)→ H1/2(∂Ω),

which is surjective and the norm of H1/2(∂Ω) is defined by

‖u‖1/2,∂Ω = inf
w∈H1(Ω), w=u on ∂Ω

‖w‖1.

For m > 1 and 0 ≤ i ≤ m− 1, similar trace operators can be defined, but with com-

patibility conditions if the Lipschitz domain Ω has corners. For better understanding

of the compatibility conditions, see for example [74, Remark 1.1], where the case when

m = 2 is discussed.

The subspace Hm
Γ (Ω) is defined as

Hm
Γ (Ω) :=

{
u

∣∣∣∣ u ∈ Hm(Ω) s.t
∂iu

∂ni
= 0 on Γ,∀i = 0, 1, 2, ...,m− 1

}
.

Given that Γ = ∂Ω, then Hm
∂Ω(Ω) is the closure of C∞0 (Ω) in Hm(Ω), where C∞0 (Ω)

denotes the space of infinitely differentiable functions of compact support in Ω. In

addition, if σ ∈ (0, 1), we define the space Hm+σ(Ω) as follows [77]

Hm+σ(Ω) = {u ∈ Hm(Ω)| ‖u‖m+σ,Ω <∞} ,

where

‖u‖2
m+σ,Ω = ‖u‖2

m,Ω +
∑
|α|=m

∫
Ω

∫
Ω

(Dαu(x)−Dαu(y))2

|x− y|d+2σ
,

The vector-valued function space H(div; Ω) is defined as

H(div; Ω) :=
{
~v
∣∣ ~v ∈ [L2(Ω)]d,∇ · ~v ∈ L2(Ω)

}
,
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with the norm

||~v||2div,Ω := ||~v||20,Ω + ||∇ · ~v||20,Ω.

The normal component ~v ·~n ∈ H−1/2(∂Ω), the dual space of H1/2(∂Ω), with the norm

‖~v · ~n‖−1/2,∂Ω = sup
u6=0∈H1/2(∂Ω)

< u~v · ~n >
‖u‖1/2,∂Ω

.

The subspace HΓ
0 (div; Ω) is given by

HΓ
0 (div; Ω) := {~v | ~v ∈ H(div; Ω), ~v · ~n = 0 on Γ}.

The vector-valued function space H(curl; Ω) is defined as

H(curl; Ω) :=
{
~v
∣∣∣ ~v ∈ [L2(Ω)

]d
,∇× ~v ∈ L2(Ω)

}
,

where in 2D, ∇× ~v = v2x − v1y, and its norm is given by

||~v||2curl,Ω := ||~v||20,Ω + ||∇ × ~v||20,Ω.

The tangential component ~v×~n ∈ [H−1/2(∂Ω)]3, for {d = 3}, and one can use the trace

results for H(div; Ω) to obtain results for H(curl; Ω) in the 2D case. The subspace

HΓ
0 (curl; Ω) has the form

HΓ
0 (curl; Ω) := {~v | ~v ∈ H(curl; Ω), ~v × ~n = 0 on Γ}.

Remark 2.1.1. If Γ = ∂Ω, it is common to write Hm
0 (Ω), H0(div; Ω), H0(curl; Ω)

instead of Hm
∂Ω(Ω), H∂Ω

0 (div; Ω), H∂Ω
0 (curl; Ω).

2.1.2 Finite-element spaces

Let Ω ⊂ Rd be a bounded, Lipschitz, and connected domain, and let {τh} be a

quasiuniform family of triangular meshes of Ω, with 0 < h < 1. For T ∈ τh, Pk(T ) is

the space of multivariate polynomials of degree at most k on T . Then, the space of

continuous Lagrange elements CGk(Ω, τh) ⊂ H1(Ω), k ≥ 1 is defined as

CGk(Ω, τh) =
{
u ∈ H1(Ω), u|T ∈ Pk(T ), ∀T ∈ τh

}
.
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Note that functions in this space are continuous across each edge of the triangulation.

The space of discontinuous Lagrange elements DGk(Ω, τh) ⊂ L2(Ω), k ≥ 0 is defined

as

DGk(Ω, τh) =
{
u ∈ L2(Ω), u|T ∈ Pk(T ), ∀T ∈ τh

}
.

Unlike the continuous Lagrange elements, the degrees of freedom of discontinuous

Lagrange elements are considered to be internal. That is, functions in DGk(Ω, τh) do

not necessarily possess C0 continuity across each edge in τh. We also consider the

space of Crouzeix-Raviart elements of first order,

CR1 =
{
u ∈ L2(Ω), u|T ∈ P1(T ), u is continuous at the midpoints of each edge ε ∈ εh

}
.

Note that CG1(Ω, τh) ⊂ CR1(Ω, τh) ⊂ DG1(Ω, τh). We also consider the Raviart-

Thomas family, RTk(Ω, τh) ⊂ H(div; Ω), k ≥ 1, that is defined by

RTk(Ω, τh) =
{
~v ∈ H(div; Ω), ~vT ∈ [Pk−1]d + Pk−1(T )~x,∀T ∈ τh

}
.

The H(div)-conformity of Raviart-Thomas elements requires that normal components

of functions in RTk(Ω, τh) are continuous across element faces. We point out that,

while the lowest-order Raviart-Thomas element is sometimes denoted RT0(Ω, τh), we

follow the alternate notation (cf. [92]), where the lowest-order element is denoted

RT1(Ω, τh), with the property that RTk(Ω, τh) ⊂ [DGk(Ω, τh)]
d. Finally, we consider

subspaces that impose Dirichlet boundary conditions on Γ ⊂ ∂Ω,

CGΓ
k (Ω, τh) = CGk(Ω, τh) ∩H1

Γ(Ω), RT Γ
k = RTk(Ω, τh) ∩HΓ

0 (div; Ω)

and CRΓ
1 (Ω, τh) = {uh ∈ CR1(Ω, τh), uh = 0 on Γ} .

2.2 Variational Formulation of Elliptic Boundary

Value Problems

Definition 2.2.1. [35,41] Let V be a Hilbert space. The bilinear form a : V ×V → R
is said to be continuous if there exists a constant 0 < c1 <∞ such that

|a(u, v)| ≤ c1||u||V ||v||V , ∀u, v ∈ V, (2.1)



15

and coercive on V if there exists 0 < c2 <∞ such that

a(u, u) ≥ c2||u||2V , ∀u ∈ V. (2.2)

Theorem 1. [35,41] Assume that (H, (·,·)) is a Hilbert space, V is a closed suspace

of H, and a(·,·) is a continuous bilinear form. If a(·,·) is coercive on V, then the

problem

a(u, v) = L(v), ∀v ∈ V, (2.3)

has a unique solution for any continuous linear operator, L : V → R.

2.2.1 Conforming finite-elements methods

Definition 2.2.2. [41] Let Vh ⊂ V be a finite-dimensional space. Consider (2.3)

restricted to Vh, that is finding uh ∈ Vh such that

a(uh, v) = L(v), ∀v ∈ Vh, (2.4)

The solution uh is called the Ritz-Galerkin Approximation.

Theorem 2. [41] Under the same conditions as Theorem 1, Problem (2.4) has a

unique solution.

Remark 2.2.1. [32, 41] When a(·, ·) is symmetric, the solution uh of Problem (2.4)

is a minimizer of the quadratic functional J(v) = 1
2
a(v, v)− L(v) over v ∈ Vh.

Example 1. Given f ∈ L2(Ω), consider the minimization problem

inf
v∈H1

0 (Ω)

(
1

2

∫
Ω

∇v · ∇v −
∫

Ω

fv

)
. (2.5)

The solution of this minimization problem can be characterized by: u ∈ H1
0 (Ω) such

that ∫
Ω

∇u · ∇v =

∫
Ω

fv, ∀v ∈ H1
0 (Ω). (2.6)

u is the solution of the Poisson equation, −∆u = f , with u = 0 on ∂Ω, in the weak

sense.
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Example 2. Given f ∈ L2(Ω), consider the solution characterized by: uh ∈ CG∂Ω
k (Ω, τh)

such that ∫
Ω

∇uh · ∇vh =

∫
Ω

fvh, ∀vh ∈ CG∂Ω
k (Ω, τh), (2.7)

This defines uh as the Ritz-Galerkin approximation of the solution u in Example (1).

Lemma 1 (Céa’s Lemma [41]). Under assumptions of Theorem 1, if u and uh are

the solutions of (2.3) and (2.4) respectively, then the following estimate holds,

‖u− uh‖V ≤
c1

c2

min
v∈Vh
‖u− v‖V , (2.8)

where c1 is the continuity constant and c2 is the coercivity constant of a.

Corollary 1. If u and uh are the solutions of (2.6) and (2.7) respectively, and u ∈
Hk+1(Ω), then, ∃c > 0 such that

‖u− uh‖1 ≤ chk|u|k+1. (2.9)

The benefit of applying conforming methods is, in general, that convergence is

guaranteed by straight-forward arguments. However, for higher-order PDEs, compli-

cated finite-element spaces are needed to ensure conformity. For example, to solve

fourth-order problems, the finite-element space should be a subspace of the Sobolev

space H2(Ω). This requires the use of C1-continuous elements, which can only be

realized on simplices with a high number of degrees of freedom per element, requiring

multivariate polynomials of degree 2d + 1 for d-dimensional problems [52, 141]. Con-

forming methods become even more complicated for PDEs with orders higher than

four, because of the complexity needed in the resulting finite element-spaces. Further-

more, strongly implementing essential boundary conditions becomes difficult using

such elements and, therefore, weakly imposing boundary conditions using penalty or

Nitsche-type methods becomes necessary.

2.2.2 Nonconforming finite-elements methods [13,123,126]

In nonconforming methods, the finite-dimensional space Vh used to define the Ritz-

Galerkin Approximation in Definition 2.2.2 is not required to be a subspace of V .
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Recall the variational form of the Laplace equation in Example 1, to find u ∈ H1
0 (Ω)

such that

a(u, v) = L(v), ∀v ∈ H1
0 (Ω),

where a(u, v) =
∫

Ω
∇u · ∇v, and L(v) =

∫
Ω
fv. Let Vh = CR∂Ω

1 (Ω, τh) 6⊆ H1
0 (Ω).

Multiplying the differential equation by a test function, vh ∈ CR∂Ω
1 , and integrating

by parts over each triangle T gives∫
Ω

fvh =
∑
T∈τh

∫
T

∇u · ∇vh −
∑
T∈τh

∫
∂T

vh∇u · ~nT .

This gives us the weak form ah(u, vh) =
∫

Ω
fvh + Eh(u, vh), where

ah(u, vh) =
∑
T∈τh

∫
T

∇u · ∇vh, Eh(u, vh) =
∑
T∈τh

∫
∂T

vh∇u · ~nT ,

where Eh(u, vh) quantifies how the exact solution fails to satisfy the finite-element

equations, defining a kind of consistency error. The nonconforming finite-element

method is to find uh ∈ CR∂Ω
1 (Ω, τh) such that

ah(uh, vh) =

∫
Ω

fvh,

where the term Eh(uh, vh) is omitted from the weak form because it is O(h) as can

be seen in Inequality (2.10). Define the norm on CR1(Ω, τh)

‖uh‖2
1,h =

∑
T∈τh

∫
T

∇uh · ∇uh, ∀uh ∈ CR1(Ω, τh).

Note that if ‖uh‖1,h = 0, then uh is a piecewise constant. Since it is continuous at the

midpoint of each edge, it is globally constant, and since it vanishes at the midpoint of

each boundary edge, it vanishes altogether, showing that ‖uh‖1,h is, indeed, a norm on

CR1(Ω, τh). The bilinear form ah(·, ·) is continuous and coercive in the ||.||1,h norm,

and given u ∈ H2(Ω) ∩H1
0 (Ω), ∃k > 0 such that the consistency error satisfies

|E(u, vh)| ≤ kh||u||2||vh||1,h, ∀vh ∈ CR∂Ω
1 (Ω, τh). (2.10)

Let u ∈ H2(Ω) ∩H1
0 (Ω). For two adjacent elements, Ti and Tj, with e = Ti ∩ Tj, we

have ∇u ·~ni = −∇u ·~nj, where ~ni and ~nj are the outward normal vectors to Ti∩e and
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Tj ∩ e. Since a general function vh ∈ CR∂Ω
1 (Ω, τh) is only continuous at the midpoint

of e, E(u, vh) does not vanish. In contrast, if vh is continuous at e, then∫
e

vh∇u · ~ni +

∫
e

vh∇u · ~nj = 0.

In particular, E(u, vh) = 0 if vh ∈ H1(Ω). With the above observations, we can prove

the following result.

Theorem 3. [123] Let u ∈ H2(Ω) solve Poisson’s equation and uh ∈ CR∂Ω
1 (Ω, τh)

be the nonconforming finite-element approximation. Then, there exists positive con-

stants, c1, and c2, such that,

||u− uh||1,h ≤ c1h||u||2, ||u− uh||0 ≤ c2h
2||u||2.

While nonconforming elements often have simpler definitions than conforming

ones, many examples are low-order elements that, therefore, fail to give good ap-

proximations to sufficiently smooth solutions. Despite their simplicity, these elements

can be complex to implement, and their analysis requires analysis of the consistency

error, which sometimes implies suboptimal convergence when the consistency error

is larger than the interpolation error of the element. Well-known non-conforming

finite elements for second and fourth-order PDEs are Crouziex-Raviart and Morley

elements, respectively. We also point out that essential boundary conditions of second-

order problems can be strongly imposed by Crouziex-Raviart elements, but no known

method exists for implementing essential boundary conditions strongly using Morley

elements. Thus, Nitsche-type (or other) penalty methods are required.

2.2.3 Interior penalty methods [117]

Another family of methods that can be classified as nonconforming are the discon-

tinuous Galerkin (interior penalty) methods. Recalling the Laplace equation from

Example 1. At the discrete level, the discontinuous Galkerin weak form is to find

uh ∈ DGk(Ω, τh) such that

aλ(uh, vh) = L(vh), ∀vh ∈ DGk(Ω, τh), (2.11)
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where

aλ(u, vh) =
∑
T∈τh

∫
T

∇uh · ∇vh −
∑

e∈εh\∂Ω

∫
e

{{∇uh · ~n}} [[vh]] + λ
∑

e∈εh\∂Ω

∫
e

{{∇vh · ~n}} [[uh]]

+
ρ

hβ

∑
e∈εh\∂Ω

∫
e

[[uh]] [[vh]] +
ρ

hβ

∫
∂Ω

uhvh,

L(vh) =

∫
Ω

fvh,

where β is a positive number that depends on the problem dimension, d, and λ ∈
{−1, 0, 1}. Note that aλ is symmetric for λ = −1 and nonsymmetric otherwise.

For two adjacent elements Ti and Tj with a common side, there are two traces of a

function in DGk(Ω, τh) along e = Ti ∩Tj. We add/subtract these traces to obtain the

average/jump for a test function vh, defining

{{vh}} =
1

2
(vh|T ei ) +

1

2
(vh|T ej ), [[vh]] = (vh|T ei )− (vh|T ej )

When evaluating such terms for a normal flux, we assume that the normal vector ~ne

is oriented outward from Ti to Tj for i < j when evaluting ∇uh · ~ne|T ei .

Theorem 4. Let k ≥ 1, u ∈ Hk+1(Ω) be the solution of Example (1) and uh ∈
DGk(Ω, τh) be the solution of (2.11) with λ = −1. For large enough ρ and β(d−1) ≥ 1,

we have the estimate

‖u− uh‖IP ≤ Chk‖u‖k+1,

where

‖uh‖2
IP =

∑
T∈τh

∫
T

∇uh · ∇uh +
ρ

hβ

∑
e∈εh\∂Ω

[[uh]]
2 +

ρ

hβ

∫
∂Ω

u2
h.

While interior penalty methods are attractive, especially when generalized for high-

order PDEs, the penalty terms worsen the condition number of the linear systems

arising from these discretizations, which makes providing efficient preconditioners for

such systems more challenging.
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2.2.4 Saddle-point problems

Saddle-point problems arise in many areas of computational science and engineering.

Most importantly to us, they naturally arise in the context of mixed finite element

approximations of elliptic PDEs [29]. Let V and Q be Hilbert spaces, and given f ∈ V ′

and g ∈ Q′, where V ′ and Q′ are the dual spaces of V and Q respectively, we consider

the saddle-point problem of finding (u, p) ∈ V ×Q such that

a(u, v) + b(v, p) = (f, v)V×V ′ , ∀v ∈ V

b(u, q) = (g, q)Q×Q′ , ∀q ∈ Q. (2.12)

Which also can be written as

Au+BTp = f, in V ′, (2.13)

Bu = g, in Q′, (2.14)

where the linear operators A : V → V ′, AT : V → V ′, B : V → Q′ and BT : Q→ V ′

satisfy the following

(Au, v)V ′×V = (u,ATv)V×V ′ = a(u, v), and (Bv, q)Q′×Q = (v,BT q)V×V ′ = b(u, q).

For symmetric bilinear form a, Problem (2.12) finds a minimizer for energy of a

physical system subject to a set of constraints. In this case, the variable p plays the

role of a Lagrange multiplier, and its computation is of interest especially in the mixed

finite-element context. Laplace problem, −∆u = f with u = 0 on ∂Ω and f ∈ L2(Ω),

can be seen as a system of first-order problems, writing

~v −∇u = 0, and ∇ · ~v = f,

Multiplying be the relevant test functions and integrating by parts, the mixed Poisson

problem finds (u,~v) ∈ L2(Ω)×H(div; Ω) such that∫
Ω

~v · ~ψ + u∇ · ~ψ = 0, ∀~ψ ∈ H(div; Ω) (2.15)∫
Ω

φ∇ · ~v =

∫
Ω

fφ, ∀φ ∈ L2(Ω), (2.16)
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the Lagrange multiplier u is very important, as it is the solution of Poisson’s equation.

More general forms of Saddle-point problems can be found in [29].

Theorem 5. [32] Let bilinear forms a : V ×V → R and b : V ×Q→ R be continuous

forms. Assume also that the range of the operator B associated with b is closed in Q′.

If a(·, ·) is coercive on Ker(B) and there exists a positive constant γ such that

sup
v∈V

b(v, q)

||v||V
≥ γ||q||Q, ∀q ∈ Q (2.17)

then the pair (u, p) is a unique solution of Problem (2.12).

For approximation purposes, we choose Vh ⊂ V, Qh ⊂ Q to be finite-dimensional

subspaces of V and Q respectively. Let the bilinear forms a and b be restricted to

Vh × Vh and Vh ×Qh, then the pair (uh, ph) that solves

a(uh, vh) + b(vh, ph) = (f, vh), ∀vh ∈ Vh, (2.18)

b(uh, qh) = (g, ph), ∀qh ∈ Qh. (2.19)

is an approximation of problem (2.12).

Theorem 6. [45] Let (u, p) and (uh, ph) be the solutions of (2.12) and (2.19) re-

spectively. If the assumptions of Theorem 5 are satisfied at the discrete level, then the

following error estimate holds,

||u− uh||V ≤ ĉ inf
vh∈Vh

||u− vh||V + c̃ inf
qh∈Qh

||p− qh||Q, (2.20)

where ĉ ≤ (1+||a||
k1

)(1+||b||
k2

) and ĉ ≤ ||b||
k1

. In addition,

||p− ph||Q ≤
(

1 +
||b||
k2

)
inf

qh∈Qh
||p− qh||Q +

||a||
k2

inf
vh∈Vh

||u− vh||V . (2.21)

A better estimate is satisfied if Ker(Bh) ⊂ Ker(B), with

||u− uh||V ≤ ĉ inf
vh∈Vh

||u− vh||V . (2.22)

When solving a mixed finite-element approximation of an elliptic PDE, the pos-

itive definite linear systems that arise from conforming and nonconforming methods
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are replaced by saddle-point systems. Developing discrete spaces that inherit the

continuum inf-sup condition for each problem is difficult, and smart choices for the

spaces at the discrete level have to be made. In particular, if Vh is not rich enough,

the inf-sup condition (2.17) at the discrete level might not be satisfied, leading to

an unstable discretization. However, enriching Vh more than we should can lead to

suboptimal convergence rates because of the unbalanced approximation properties be-

tween the discrete spaces Vh and Qh. The appropriate choice of such spaces in mixed

finite-element discretizations is a major theme in the remainder of this thesis.

2.3 Krylov subspace methods

This section is based on notes from [3, 76, 119]. Discretizing linear PDEs leads to

linear systems of the form Ax = b, and requires solutions of these systems to obtain

the finite-element approximation to the solution of the PDE. Gaussian elimination

(a direct method) is readily applicable for small matrices, but it is inefficient for

the huge matrices that arise from many PDE discretizations, because of its expensive

computational cost, O(n3), where n is the matrix dimension. This cost can be reduced

for symmetric positive-definite or banded matrices, but is still very expensive for the

discretization matrices that arise from d-dimensional PDEs, for d ∈ {2, 3}. Therefore,

iterative methods are extensively used to solve linear systems of algebraic equations.

This section focuses on general Krylov subspace methods that will be used in the

following chapters.

Given an initial guess, x0, to x = A−1b, consider the general polynomial method,

defining xk = xk−1 + ωk(b− Axk−1), for scalar weights ωk. The vector xk can also be

expressed as

xk = x0 +
k−1∑
i=0

ciA
i(b− Ax0),

where ci, i = 0, 1, ..., k − 1, are constants determined by {ωt}kt=1.

Definition 2.3.1 (Krylov subspace). Given a vector r0 and a matrix A, the Krylov

subspace of dimension m is

Km(A, r0) = span
{
r0, Ar0, A

2r0, ..., A
m−1r0

}
.



23

Note that xk − x0 ∈ Kk(A, b − Ax0). We note that Km(A, r0) may not be m-

dimensional, for example if r0 is an eigenvector of A or a linear combination of a

few eigenvectors. Since we consider the general case where r0 is assumed to be a

linear combination of many more than m � n eigenvectors, we still refer to this as

the Krylov space of dimension m.

There are several Krylov subspace methods that generate different approxima-

tions, xk, and one can choose the appropriate method depending on the properties

of the discretization matrix. For example, the General Minimum Residual (GMRES)

method is appropriate for general singular/nonsingular matrices, while the conjugate

gradient method can be used only for symmetric and positive-definite matrices. In the

next chapters, we will focus on GMRES with variable preconditioning (FGMRES). In

the next subsection, we present GMRES preliminaries.

2.3.1 General minimum residual (GMRES)

Within GMRES, we choose xk to minimize ‖b − Axk‖0, over xk ∈ x0 + Kk(A, r0),

where r0 = b − Ax0. Defining the matrix Pk = [r0, Ar0, A
2r0, ..., A

k−1r0], the vector

xk can be written as

xk = x0 + Pkyk, yk ∈ Rk. (2.23)

Then, we can define xk by solving the least-square problem for yk,

min
xk−x0∈Kk(A,r0)

‖b− Axk‖0 = min
yk
‖r0 − APkyk‖0. (2.24)

The solution yk, of Problem (2.24) solves the normal equations

P T
k A

TAPkyk = P T
k A

T r0, (2.25)

Computational difficulties arise when solving (2.25) for yk, due to ill-conditioning of

P T
k A

TAPk. Instead, the Arnoldi algorithm is usually used to construct an orthonormal

basis {q1, q2, · · · , qm} of Km(A, r0) [119, Algorithm 6.1] and one can prove that

span{q1, Aq1, A
2q1, ..., A

m−1q1} = span{q1, q2, q3, ..., qm}, (2.26)
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for any m ≥ 1. Define Qm = [q1, q2, ..., qm], and the upper Hessenberg matrix H̄m,

(
H̄m

)
ij

=


qTi Aqj 1 ≤ j ≤ m, 1 ≤ i ≤ min(j,m),∥∥∥Aqj −∑j

i=1

(
H̄m

)
ij
qi

∥∥∥ 1 ≤ j ≤ m, i = j + 1

0 otherwise.

These definitions lead to the relation Aqj =
∑j+1

i=1 hijqi, for 1 ≤ j ≤ m, which can be

rewritten as AQm = ĤmQm+1. Thus, with q1 = 1
‖r0‖r0, GMRES uses the basis Qk for

Kk instead of Pk, i.e. we write xm = x0 +Qkyk, and solve the problem

min
yk
‖r0 − AQkyk‖0 = min

yk
‖r0 −Qk+1H̄kyk‖0 = min

yk
‖QT

k+1r0 − H̄kyk‖0. (2.27)

As the first column of Qk+1 is q1 = 1
‖r0‖r0, QT

k+1r0 = βek+1
1 , where ek+1

1 is the first

column of the identity matrix of size k + 1. Thus

min
xk−x0∈Kk(A,r0)

‖b− Axk‖0 = min
yk
‖βek+1

1 − H̄kyk‖0. (2.28)

We solve this problem using the QR factorization of H̄k, rather than the matrix itself,

writing H̄k = UkRk for (k+ 1)× (k+ 1) orthogonal matrix, Uk, and (k+ 1)× k upper

triangular matrix, Rk, giving

min
xk−x0∈Kk(A,r0)

‖b− Axk‖0 = min
yk
‖βUT

k e
k+1
1 −Rkyk‖0. (2.29)

Note that the last component of Rkyk must be zero, since Rk is upper triangular.

Thus, we pick yk so that the first k components of Rkyk match βUT
k e

k+1
1 . In this case,

minyk ‖βUT
k e

k+1
1 −Rkyk‖0 = |ηk+1|, where ηk+1 is the last component of βUT

k e
k+1
1 . The

GMRES algorithm iterates until |ηk+1| is small enough to satisfy some given stopping

criteria. To reduce the cost of the QR factorization of H̄k, which is O(k3), we take

advantage of the fact that H̄k has a nearly upper-triangular form. For example, the
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matrix H̄5 has the following structure

H̄5 =



h11 h12 h13 h14 h15

h21 h22 h23 h24 h25

0 h32 h33 h34 h35

0 0 h43 h44 h45

0 0 0 h54 h55

0 0 0 0 h65


.

In order to generate Rk from H̄k, we multiply by a sequence of rotations, where

F k
k F

k
k−1F

k
k−2 · · · F k

1 H̄k = Ri

Fi =


I1

ci si

−si ci

I2

 ,
where I1 and I2 are the identity matrices of size i − 1 and k − 1 − (i − 1), si =

hi+1,i/
√

(h∗ii)
2 + h2

i+1,i, and ci = h∗ii/
√

(h∗ii)
2 + h2

i+1,i. Here, h∗ii and hi+1,i are the

(i, i)th and (i + 1, i)th components of F k
i−1F

k
i−2 · · · F k

1 H̄k. At the ith step, hi+1,i is the

same in H̄k and F k
i−1F

k
i−2 · · ·F k

1 H̄k as it is not updated yet. An important observation

to reduce the cost is that Rk+1 can be generated by augmenting F k
i , i = {1, 2, ..., k}.

That is, if

F k
k F

k
k−1 · · · F k

1 = Rk, (2.30)

then F k+1
j can be constructed by augmenting F k

j , for j = {1, 2, · · ·, k} by the (k+ 1)th

row and column of the identity matrix, applying these transformations to the (k+1)th

column of H̄k+1 to generate the first k entries of the (k+1)th column of Rk+1. Finally,

we can compute F k+1
k+1 , giving

F k+1
k+1F

k+1
k · · · F k

1 = Rk+1. (2.31)

The cost of this is simply O(k+1), to apply the k known rotations to the last column

of H̄k+1, plus O(1) to compute and apply F k+1
k+1 to a vector. Since we have already

computed

βUT
k e

k+1
1 = βF k

k F
k
k−1 · · · F 1

k e
k+1
1 , (2.32)
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we only need to extend this by zero to apply F k+1
k+1 at an O(1) cost, giving

βUT
k+1e

k+2
1 = βF k+1

k+1F
k+1
k · · · F 1

k+1e
k+2
1 . (2.33)

Thus, the total cost of m steps of GMRES is(
m∑
k=1

c1nk + c2k + c3

)
+ c4m

2 + c5nm,

Note that the total cost isO(m2n). In the next chapters, we mainly use preconditioned

Krylov subspace methods with multigrid preconditioners to efficiently approximate

the solutions arising from our finite-element discretizations. As we use monolithic-

multigrid preconditioners for the saddle-point systems arising from our discretizations,

we present an introduction to multigrid methods in the following section.

2.4 Multigrid methods

Consider two discretizations of the same problem, on a given “coarse” grid, and a

“fine” grid that is a uniform refinement of the coarse grid. Let h and H be the fine

and coarse grid discretization parameters, respectively, with H = 2h, and let IhH and

IHh be the restriction and prolongation operators, between finite-element spaces on

these grids, respectively. To distinguish between discretizations on these two grids,

rewrite the fine-grid system Ax = b as Ahxh = bh, with corresponding coarse-grid

system AHxH = bH . The two-grid correction scheme [29,46] is as follows:

1. Relax υ1 times on Ahxh = bh (pre-relaxation),

2. Compute the fine-grid residual rh = bh − Axh,

3. Restrict the fine-grid residual rH = IhHrh,

4. Solve the system AHeH = rH using a direct method.

5. Correct the current approximation xh = xh + IHh eH ,

6. Relax υ2 times on Ahxh = bh (post-relaxation).
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Here, the choice of the relaxation scheme is critical to achieving an efficient method,

with simple schemes (such as weighted Jacobi) being sufficient for simple problems,

but more complicated relaxation schemes needed for more difficult problems.

A multigrid V-cycle is obtained by recursively applying the above procedure for

the solution of AHeH = rH in Step 4. In the context of finite-element discretiza-

tions, we usually choose the restriction and the prolongation operators to be the the

natural finite-element operators, but other choices are possible. Similarly, there are

two common ways to get the coarse-grid matrix, AH , either by directly discretiz-

ing on the coarse grid (known as rediscretization or the discretization coarse grid

approximation, DCGA), or the Galerkin coarse grid approximation (GCGA) where

AH = IhHAhI
H
h . Note that GCGA is sometimes advantageous, as AH can be computed

without knowledge of the underlying discretization (as is done in algebraic multigrid

(AMG) [46, 119, 129]), but also that both are equivalent in some applications (as

they often will be in this thesis. The choice of pre/post-relaxation algorithms usu-

ally depends on the matrix Ah (or, equivalently, on the underlying PDE), and should

be chosen carefully as using the wrong relaxation can destroy the efficiency of the

algorithm. We point out that local Fourier analysis (LFA) can help choose proper

components of multigrid methods, and refer to [67,80] for details.

For symmetric and positive-definite matrices, simple relaxation schemes such as

the (weighted) Jacobi, Gauss-Seidel, and Richardson iterations can be used. For

the two-dimensional problem in Example 2, an efficient solution scheme is to use

the preconditioned conjugate gradient method with a multigrid preconditioner and

Jacobi relaxation. Rather than use of Jacobi relaxation, we use two steps of Chebyshev

iterations in the multigrid cycle on each level. Table 2.1 shows the number of iterations

required for convergence, defined as reducing the Euclidean norm of the residual by a

relative factor of 10−8 or until its value is below 10−8. Dirichlet boundary conditions

are enforced and a right-hand side function is chosen so that the exact solution is given

by uex = sin(2πx) cos(3πy), enabling us to also check that the final approximation

is suitably accurate. We note that the number iterations to convergence recorded

in Table 2.1 shows no degradation with either decreasing mesh size, h, or increasing

polynomial order, k.

Simple relaxation schemes such as those applied in Table 2.1 do not work for

saddle-point problems, such as those described in Equation (2.18), simply because
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Table 2.1: Number of iterations to converge with preconditioned conjugate gradient and
multigrid preconditioner with Jacobi relaxation scheme for Poisson problem in Example 2
for u ∈ CGk(Ω, τh)

PPPPPPPPPOrder
h−1

26 27 28 29

k = 1 7 7 7 7
k = 2 7 7 7 7
k = 3 8 8 8 8

the main diagonal of the discretization matrix has zero entries and, therefore, when

considering matrix splittings of A = D−L−U , where D is a diagonal matrix, L is a

strict lower-triangular matrix, and U is a strict upper-triangular matrix, the matrices

D and D − L are singular. Since this will be the case for many of the linear systems

in the chapters to follow, we now discuss how to choose relaxation for saddle-point

systems.

2.5 Monolithic-multigrid with Vanka relaxation

Block preconditioners have been extensively studied to approximate the solution of

saddle-point problems [29, 59]. Here, however, we are interested in monolithic multi-

grid preconditioners; in contrast to block preconditioners, which define solvers for

approximations to the diagonal blocks of a linear system and/or appropriate Schur

complements, monolithic multigrid methods are directly applied to the coupled sys-

tems. As mentioned above, standard point-wise relaxation schemes, such as Jacobi

and Gauss-Seidel cannot be applied to such systems. Thus, several alternative re-

laxation schemes have been developed, including Braess-Sarazin schemes [36], Uzawa

relaxation [99], distributed relaxation methods [37], and Vanka relaxation which will

be of interest here. Vanka relaxation was first proposed by Vanka [130] as a relaxation

scheme for nonlinear multigrid for the marker-and-cell finite-difference discretization

of the Navier Stokes problem. The key to Vanka relaxation is the use of a “patch-

based” relaxation, or overlapping Schwarz iteration, where the problem degrees of

freedom are separated into a set of patches, and relaxation is performed by restricting

the problem residual to each patch, computing a correction over that patch, then

accumulating these corrections globally.



29

Figure 2.1: Vanka-exclusive patch for the Taylor-Hood ([CG2]2 × CG1) discretization of
the Stokes equations. A green disc represents a velocity vector (2 degrees of freedom), while
the black disc represents a single pressure degree of freedom.

MacLachlan and Oosterlee [98] observed that Vanka relaxation is naturally gen-

eralized to other saddle-point problems, arising from other discretizations and other

PDEs. In that framework, the key observation for saddle-point systems is that each

patch should contain all degrees of freedom in the linear system that are connected

to a single Lagrange multiplier degree of freedom. A standard example of this is for

the Taylor-Hood discretization of the Stokes problem [67, 98], where the velocity, ~u

is discretized using vector CG2(Ω, τh) elements and the pressure is discretized using

CG1(Ω, τh) elements. In this case, the degrees of freedom for pressure are located at

the vertices of the mesh; Figure 2.1 shows the subdomain construction around vertices

for this discretization.

Table 2.2 shows the efficiency of flexible GMRES with a monolithic-multigrid

preconditioner using Vanka relaxation for the Stokes problem. As choosing relax-

ation parameters is more complicated in the saddle-point setting, we use two GM-

RES iterations preconditioned by the Vanka iteration as the pre- and post-relaxation

scheme on each level. In later chapters, we primarily use the “vertex star” relaxation

scheme [12,68], which is similar to Vanka, but with patches constructed around each

vertex, i, taking all degrees of freedom at vertex i itself, and on edges, faces, and

elements directly adjacent to vertex i. In the notation of [68], Vanka relaxation is

realized as the (partial) closure of these sets, relative to the grid topology.
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Table 2.2: Number of iterations of FGMRES, preconditioned by monolithic multigrid with
Vanka relaxation, for convergence of the Stokes problem, with (~vh, ph) ∈ [CG2(Ω, τh)]2 ×
CG1(Ω, τh).

PPPPPPPPPOrder
h−1

26 27 28 29

[CG2]2 × CG1 12 12 13 13



Chapter 3

Mixed Finite-element methods for

H2 elliptic problems

Abstract1

Fourth-order differential equations play an important role in many applications in

science and engineering. In this paper, we present a three-field mixed finite-element

formulation for fourth-order problems, with a focus on the effective treatment of the

different boundary conditions that arise naturally in a variational formulation. Our

formulation is based on introducing the gradient of the solution as an explicit vari-

able, constrained using a Lagrange multiplier. The essential boundary conditions are

enforced weakly, using Nitsche’s method where required. As a result, the problem is

rewritten as a saddle-point system, requiring analysis of the resulting finite-element

discretization and the construction of optimal linear solvers. Here, we discuss the

analysis of the well-posedness and accuracy of the finite-element formulation. More-

over, we develop monolithic multigrid solvers for the resulting linear systems. Two

and three-dimensional numerical results are presented to demonstrate the accuracy of

the discretization and efficiency of the multigrid solvers proposed.

1This work is under revision as “Mixed finite-element methods for H2 elliptic problems”, by
Patrick E. Farrell, Abdalaziz Hamdan, and Scott P. MacLachlan, for Computers & Mathematics
with Applications, 2022.
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3.1 Introduction

Fourth-order differential operators often appear in mathematical models of thin films

and plates [62, 104, 112], and pose significant challenges in numerical simulation in

comparison to equations governed by more familiar second-order operators. A moti-

vating example arises from modeling equilibrium states of smectic A liquid crystals

(LCs), which correspond to minimizers of a given energy functional. For example, the

Pevnyi, Selinger, and Sluckin energy functional for smectic A liquid crystals is given

by [112]:

E(u, ~ν) =

∫
Ω

a

2
u2 +

b

3
u3 +

c

4
u4 +B

[
∇∇u+ q2~ν ⊗ ~ν

]2
+
K

2
|∇~ν|2, (3.1)

where Ω ⊂ Rd, d ∈ {2, 3} is a bounded Lipschitz domain, a, b, q, B, and K are positive

real-valued constants determined by the experiment and material under consideration,

~ν : Ω → Rd is a unit vector field called the director, and u : Ω → R is the smectic

order parameter representing the density variation of the LC. This energy is to be

minimized subject to the constraint that ~ν ·~ν = 1 pointwise almost everywhere. When

enforcing this constraint with a Lagrange multiplier, the Euler–Lagrange equations

for (3.1) lead to a coupled system of PDEs, with a fourth-order operator applied to

u, a second-order operator acting on ~ν, and an algebraic constraint.

Motivated by such examples, several families of finite-element methods have been

developed to approximate solutions of PDEs with fourth-order terms. In this work,

we consider the minimization of a simplified form of the energy (3.1) with suitable

boundary conditions, given in variational form as

min
v∈H2(Ω)

1

2

∫
Ω

(∆v)2 + c0∇v · ∇v + c1v
2 −

∫
Ω

fv, (3.2)

with nonnegative constants c0 and c1. While the variational formulation in (3.1) is

written in terms of the Hessian operator, here we consider the classical fourth-order

biharmonic (Laplacian squared) and will consider the Hessian problem (with appropri-

ate boundary conditions) in the following Chapters. Sufficiently smooth extremizers of

(3.2) must satisfy its Euler–Lagrange equations, which yield a fourth-order problem,

∆2u− c0∆u+ c1u = f. (3.3)
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We consider three-field mixed formulations for this fourth-order problem, with a par-

ticular focus on the treatment of the boundary conditions that arise naturally from

the transition from the variational to strong forms. These formulations introduce the

gradient of the solution as an explicit variable constrained using a Lagrange multi-

plier. Our approach is general in the sense that we are able to use elements of order

k, k+ 1, and k+ 1 for the solution, its gradient, and the Lagrange multiplier respec-

tively, where k can be as large as the smoothness of the solution allows. The existence

and uniqueness proofs are not complicated. A drawback here is that our formulation

provides suboptimal convergence for some boundary conditions, as discussed below.

If c0 = c1 = 0, then (3.2) represents the classical biharmonic equation. Many

different types of finite-element methods have been considered in this context. Con-

forming methods, in which the finite-dimensional space is a subspace of the Sobolev

space H2(Ω), rely on the use of complicated basis functions. These require a high

number of degrees of freedom per element, especially in three dimensions. Moreover,

the elements are typically not affine equivalent; i.e. the basis functions cannot be

mapped to each element using a reference element in the standard way, and more

complicated approaches are needed [52, 90, 92]. In order to avoid the use of such C1

elements, other types of finite elements can be used, leading to nonconforming meth-

ods in which the finite-element space is not a subspace of H2(Ω), such as Morley and

cubic Hermite elements [41, 52, 131]. These elements are also complex to implement

and require analysis of the consistency error, which sometimes implies suboptimal

convergence when the consistency error is larger than the interpolation error of the

element [132].

C0 interior penalty (C0IP) methods can also be used for fourth-order problems,

where the continuity of the function derivatives are weakly enforced using stabilization

terms on interior edges [18,40,42]. Brenner, Sung, and Zhang [42] solved the problem

∆2u−∇ · (β(x)∇u) = f , where β(x) is a nonnegative C1 function. Their approach is

to find u ∈ CGk(Ω, τh), k ≥ 2, that satisfies the system

ah(u, φ) + bh(u, φ) + γch(u, φ) = 〈f, φ〉, ∀φ ∈ CGk(Ω, τh), (3.4)

where γ > 0 is a penalty parameter, CGk(Ω, τh) is the space of continuous Lagrange
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elements of degree k on a triangulation τh of the domain Ω, and

ah(u, φ) =
∑
T∈τh

∫
T

(∇∇u : ∇∇φ+ β(x)∇u · ∇φ) , (3.5)

bh(u, φ) =
∑
e∈εh

∫
e

{
∂2u

∂2n

}[
∂φ

∂n

]
+
∑
e∈εh

∫
e

{
∂2φ

∂2n

}[
∂u

∂n

]
, (3.6)

ch(u, φ) =
∑
e∈εh

1

|e|

∫
e

[
∂u

∂n

] [
∂φ

∂n

]
, (3.7)

where
{
∂u
∂n

}
and

[
∂φ
∂n

]
denote the standard average and jump on each edge. Here, τh

is the set of cells in a mesh and εh is the set of edges. While C0IP methods have

advantages, such as enabling the use of simple Lagrange elements and the ability to

use arbitrarily high-order elements [42], they also have some disadvantages. The weak

forms are more complicated than those used for classical conforming and nonconform-

ing methods. Moreover, the need for the penalty parameter is also a drawback, as it

is sometimes not trivial to decide how large this parameter must be to achieve sta-

bility, especially as parameters in the PDE are varied [108]. Similarly, discontinuous

Galerkin approaches can also be applied to this problem [19], augmenting the forms

in (3.4) to account for basis functions that do not enforce C0 continuity across ele-

ments. These share the disadvantages of C0IP methods, while requiring more degrees

of freedom than C0 approaches.

Another attractive option to avoid using H2-conforming methods is mixed finite-

element methods, in which the gradient or the Laplacian of the solution are approxi-

mated in addition to the solution itself [24,25,27,51,52,97,102]. A natural classification

of such mixed finite-element methods is based on how many functions (fields) are di-

rectly approximated. Given clamped boundary conditions, where both u and ∇u are

prescribed on the boundary, two functions are approximated in [51, 52, 102], both u

and either its gradient or its Laplacian. In [52], the biharmonic problem is rewritten

as a coupled system of Poisson equations, in which the unknown and its Laplacian are

both directly approximated. In [102], the 2D biharmonic problem is approximated by

minimizing

J(u,~v) =
1

2
‖∇~v‖2

0 +
1

2ε
‖ρ0(~v −∇u)‖2

0 − 〈f, u〉, for 0 < ε ≤ ch2,

where ρ0 is the orthogonal projection from [L2(Ω)]2 to the space of piecewise constant
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functions, and the functions u and ~v are approximated using bilinear elements on a

rectangular mesh. An error analysis of this method requires the solution to be at least

in H4.73(Ω) [87]. A similar approach solves the d-dimensional biharmonic problem,

replacing the L2 projection onto piecewise constant functions with that onto the space

of multilinear vector-valued functions whose ith component is independent of xi [51].

This approach requires less regularity on the solution, u ∈ H4(Ω), than was required

in [102]. These approaches only treat clamped boundary conditions.

A second class of mixed finite-element methods is that of four-field formulations,

in which u, ∇u, ∇2u, and ∇ · (∇2u) are directly approximated. In [97], a mixed for-

mulation approximating these fields and its stability in H1
0 (Ω)× [H1

0 (Ω)]2×L2
sym(Ω)×

H−1(div,Ω) is discussed for Ω ⊂ R2, where L2
sym(Ω) is the space of 2 × 2 symmetric

tensors with components in L2(Ω), and H−1(div; Ω) is the dual space of H0(rot,Ω) =

{~ψ ∈ [L2(Ω)]2 | rot ~ψ ∈ L2(Ω), ~ψ ·~t = 0 on ∂Ω}, where ~t is the unit tangent vector to

∂Ω. A similar approach with different function spaces is given in [27]. This approach,

focused on the discrete level, finds (uh, ~qh, z̄h, ~σh) ∈ DGk(Ω, τh) × [DGk(Ω, τh)]
2 ×

RT k+1(Ω, τh) × RTk+1(Ω, τh) ⊂ L2(Ω) × [L2(Ω)]2 × H(div,Ω) × H(div; Ω), where

uh, ~qh, z̄h, and ~σh are approximations of u, ∇u, ∇2u, and ∇ · (∇2u) respectively,

and ȳ ∈ H(div; Ω)) means that each row of the tensor ȳ belongs to H(div; Ω). Here

DGk(Ω, τh) and RTk(Ω, τh) denote the discontinuous Lagrange and Raviart–Thomas

approximation spaces of order k on mesh τh, respectively, with RT k(Ω, τh) denot-

ing tensor-valued functions with rows in RTk(Ω, τh). However, these four-field for-

mulations lead to discretizations with large numbers of degrees of freedom, posing

difficulties in the development of efficient linear solvers.

The third class of mixed finite-element methods is that of three-field formula-

tions [24]. The unknowns here are the function, its gradient, and a Lagrange mul-

tiplier. Assuming again homogeneous clamped boundary conditions, these lead to

finding the saddle-point (u,~v, ~α) ∈ H1
0 (Ω)×H0(div; Ω)×M of the Lagrangian func-

tional

L
(
(u,~v), ~α

)
=

1

2
‖∇ · ~v‖2

0 +

∫
Ω

~α · (~v −∇u)−
∫

Ω

fu (3.8)

where M = {~α ∈ H0(div; Ω) | ∇ · ~α ∈ H−1(Ω)}. Here, H0(div; Ω) := {~v ∈
H(div; Ω) | ~v·~n = 0 on ∂Ω}. At the discrete level, the method in [24] finds (uh, ~vh, ~α2h) ∈
CG1(Ω, τh) × RT1(Ω, τh) × DG0(Ω, τ2h), where the Lagrange multiplier ~α2h is con-

structed in τ2h to guarantee well-posedness at the discrete level and to achieve an
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optimal error estimate. Again, this approach only treats clamped boundary condi-

tions, and requires the use of different meshes in the discretization. Moreover, it is

not mentioned if the discretization can be generalized to higher orders. Here, we pro-

pose a similar three-field formulation, but treating the generalized problem in (3.3)

with more general boundary conditions, and using different discretization spaces of

arbitrarily high degree. Unlike conforming methods, our approach works effectively

in both two and three dimensions. Finally, we point out that some methods merge

mixed and nonconforming methods [50, 82, 95, 113] using the HHJ elements. These,

however, are restricted to 2D problems.

Strongly imposing essential boundary conditions with some finite-element basis

functions is difficult [90]. In addition, it can, sometimes, negatively affect properties of

the finite-element method, such as its stability and accuracy [86,88]. Weakly imposing

the boundary conditions via a penalty method [16,17] may help. An attractive family

of penalty methods are the Nitsche-type methods [109] for which optimal convergence

can be achieved. Applications of Nitsche’s method to second-order PDEs can be

found in [70, 86, 88]. Moreover, Nitsche-type penalty methods have been used to

impose essential boundary conditions for some discretizations of the biharmonic and

other fourth-order problems [28, 60, 90]. While we are able to impose a variety of

boundary conditions directly in our variational formulation, we utilize Nitsche-type

penalty methods for a particular case where strong enforcement of the boundary

conditions leads to problems establishing inf-sup stability of the discretization.

At the discrete level, the resulting linear system of our three-field formulation is a

saddle point system [29], of the form[
A BT

B 0

][
U

α

]
=

[
f

g

]

where U represents discrete degrees of freedom associated with both u and ~v = ∇u,

while α represents discrete degrees of freedom associated with ~α, leading to matrices

A ∈ Rn×n, B ∈ Rm×n and the zero matrix 0 ∈ Rm×m. In our formulation, A will be

symmetric and positive semi-definite. This kind of problem appears in many areas

of computational science and engineering [29]. For discretized PDEs, the condition

number of such systems usually grows like h−k for k > 0, resulting in increasingly

ill-conditioned systems as the mesh size, h, goes to zero. This growth of the condition
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number leads to slow convergence of unpreconditioned Krylov methods. Therefore,

we employ preconditioning in order to develop a mesh-independent algorithm to solve

these systems. Two common families of preconditioners are block factorization [59,69,

105] and monolithic multigrid preconditioners [4, 6, 7, 130]. In this work, we propose

an effective monolithic multigrid solver for the arising saddle-point systems [6, 7, 68].

This chapter is organized as follows. In Section 3.2, a brief summary is given

of the Sobolev and finite-element spaces employed. The weak forms, uniqueness of

solutions at the continuum and discrete levels, and an error analysis are presented in

Sections 3.3 and 3.4. The monolithic multigrid preconditioner and the details of the

linear solver are presented in Section 3.5. Finally, numerical experiments showing the

accuracy of the finite-element method and the effectiveness of the linear solver are

given in Section 3.6.

3.2 Background

Throughout this paper, we consider Ω ⊂ Rd, d ∈ {2, 3} to be a bounded, Lips-

chitz, and connected domain. On a simplex T ∈ τh, all degrees of freedom of

the discontinuous Lagrange DGk(Ω, τh) element are considered to be internal; i.e.,

no continuity is imposed by these elements [92]. In contrast, the continuous La-

grange CGk(Ω, τh) elements possess full C0 continuity across element edges. Here,

we primarily make use of DGk(Ω, τh) approximations of functions in L2(Ω). We

also consider the Raviart-Thomas RTk(Ω, τh) element, which is H(div)-conforming,

where the normal component is continuous across element faces, and RT Γ
k+1(Ω, τh) =

{~v ∈ RTk+1(Ω, τh)|~v · ~n = 0 on Γ ⊂ ∂Ω}. A standard approximation result for these

elements is stated next.

Theorem 7. [32, 35, 92] Let Ikh : Hk+1(Ω) → DGk(Ω, τh), Πk
h : [Hk+1(Ω)]d →

RTk(Ω, τh), and Lkh : [Hk+1(Ω)]d → [CGk(Ω, τh)]
d be the finite-element interpolation

operators. Then there exist constants c̃, c, and ĉ, such that for any u ∈ Hk+1(Ω) and

~v ∈
[
Hk+1(Ω)

]d
,

‖u− Ikhu‖0 ≤ c̃hk+1|u|k+1, ∀k ≥ 0, (3.9)

‖~v −Πk
h~v‖div ≤ chk (|~v|k + |~v|k+1) , ∀k > 0, (3.10)

‖~v − Lkh~v‖1 ≤ ĉhk|~v|k+1, ∀k > 0. (3.11)
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An important property of our discretization is that it benefits from the usual

mimetic relationships between RTk+1(Ω, τh) and DGk(Ω, τh), summarized in the fol-

lowing results.

Lemma 2. [12,15] Assume Ω is simply-connected, and is convex if d = 3. Then the

Helmholtz decomposition of RTk+1(Ω, τh) is

RTk+1(Ω, τh) =

(
∇× Vh

)
⊕
(

gradhDGk(Ω, τh)

)
, (3.12)

where gradh : DGk(Ω, τh)→ RTk+1(Ω, τh) is the discrete gradient operator, defined by∫
Ω

gradh u · ~v = −
∫

Ω

u∇ · ~v, ∀~v ∈ RTk+1(Ω, τh).

For d = 2, ∇× =

[
− ∂
∂y
∂
∂x

]
and Vh = CGk+1(Ω, τh), while Vh = N1

k+1(Ω, τh) for d = 3,

where N1
k+1(Ω, τh) is the Nédélec element of the first kind of order k + 1.

Remark 3.2.1. The main idea of relating the spaces in Lemma 2 is that the following

sequences are exact in 2D and 3D respectively.

0 −→ CGk+1(Ω, τh)
∇×−−→ RTk+1(Ω, τh)

∇·−→ DGk(Ω, τh) −→ 0,

and

0 −→ CGk+1(Ω, τh)
∇−→ N1

k+1(Ω, τh)
∇×−−→ RTk+1(Ω, τh)

∇·−→ DGk(Ω, τh) −→ 0.

Remark 3.2.2. [32, 92] ∀~v ∈ RTk+1(Ω, τh), we have ∇ · ~v ∈ DGk(Ω, τh).

While we largely make use of the standard Sobolev norms, we will also use the

“strengthened” norm,

‖~v‖2
div,Γ = ‖~v‖2

div + h‖∇ · ~v‖2
0,Γ +

1

h
‖~v · ~n‖2

0,Γ (3.13)

where Γ ⊂ ∂Ω (to be specified later), and

‖~v · ~n‖2
0,Γ =

∫
Γ

|~v · ~n|2, ‖∇ · ~v‖2
0,Γ =

∫
Γ

|∇ · ~v|2.
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For these norms, the inverse trace inequality below is a useful result.

Theorem 8. [117, 134] Let T ∈ τh be a d-simplex of Ω ⊂ Rd, d ∈ {2, 3}. Then, for

all u ∈ DGk(T ),

‖u‖2
0,∂T ≤

(k + 1)(k + d) Vol(∂T )

d Vol(T )
‖u‖2

0,T , (3.14)

where ‖u‖2
0,∂T is defined as ‖u‖2

0,∂T =
∫
∂T
u2, and Vol(·) is the Lebesgue measure.

Corollary 2. Consider a triangulation τh of the domain Ω ⊂ Rd, and let ∂τh :=

{T ∈ τh | ∂T ∩ ∂Ω 6= ∅}. Then,

∀uh ∈ DGk(Ω, τh), ‖uh‖2
0,∂Ω ≤ γ1(k, τh)‖uh‖2

0

∀~vh ∈ RTk+1(Ω, τh), ‖~vh · ~n‖2
0,∂Ω ≤ γ1(k + 1, τh)‖~vh‖2

0,

where

γ1(k, τh) = max
T∈∂τh

(k + 1)(k + d) Vol(∂T )

d Vol(T )
. (3.15)

While the ratio between Vol(∂T ) and Vol(T ) can be arbitrarily large, γ1(k, τh)

is readily bounded when we consider quasiuniform families of meshes [41, Definition

4.4.13], where Vol(∂T ) of each d-simplex T is bounded above by O(hd−1) and Vol(T )

is bounded below by O(hd). This naturally leads to an approximation property for

the trace norm. These results will be useful in the analysis of the Nitsche boundary

integrals. We note that Lemma 4 adds an important restriction, that Ω be polygonal

or polyhedral, in order for the error estimate given there to hold. This is required

only in Theorem 11 below; for the remainder of the analysis in Section 3.4, we only

require that Ω is a bounded, Lipschitz, and connected domain.

Corollary 3. Let {τh}, 0 < h ≤ 1 be a family of quasiuniform meshes of the domain

Ω ⊂ Rd, d ∈ {2, 3}. Then, there exists CΩ > 0 such that for any τh in the family,

∀uh ∈ DGk(Ω, τh), ‖uh‖2
0,∂Ω ≤

γ1(k)

h
‖uh‖2

0,

∀~vh ∈ RTk+1(Ω, τh), ‖~vh · ~n‖2
0,∂Ω ≤

γ1(k + 1)

h
‖~vh‖2

0,

where

γ1(k) = CΩ(k + 1)(k + d) ≥ h max
T∈∂τh

(k + 1)(k + d) Vol(∂T )

d Vol(T )
, (3.16)
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for all τh. The constant CΩ is determined by the dimension, d, and the quasiuniformity

parameter for the family.

Lemma 3. Let {τh}, 0 < h ≤ 1 be a family of quasiuniform meshes of the domain

Ω ⊂ Rd, d ∈ {2, 3}, and ~v ∈
[
Hk+2(Ω)

]d
. Then, there exists a constant, m1, such that

∥∥(~v − Πk+1
h ~v

)
· ~n
∥∥

0,∂Ω
≤ m1h

k+1/2|~v|k+2,

where Πk+1
h is the natural Raviart-Thomas interpolation operator.

Proof. Applying the triangle inequality yields

∥∥(~v − Πk+1
h ~v

)
· ~n
∥∥

0,∂Ω
≤ ‖

(
~v − Lk+1

h ~v
)
· ~n‖0,∂Ω + ‖

(
Lk+1
h ~v − Πk+1

h ~v
)
· ~n‖0,∂Ω,

where Lk+1
h is the CGk(Ω, τh) interpolation operator. Note that the vector-valued

function ~v−Lk+1
h ~v ∈ [H1(Ω)]d, and therefore, we use the trace theorem [77, Theorem

1.5.1.10],

‖
(
~v − Lk+1

h ~v
)
· ~n‖0,∂Ω ≤ K‖~v − Lk+1

h ~v‖1,

where K is a positive constant independent of h. Also, Lk+1
h ~v−Πk+1

h ~v ∈ RTk+2(τh,Ω).

Applying Theorem 7 and Corollary 3,

∥∥(~v − Πk+1
h ~v

)
· ~n
∥∥

0,∂Ω
≤K‖~v − Lk+1

h ~v‖1 + ‖Lk+1
h ~v − Πk+1

h ~v‖0,∂Ω

≤Kĉhk+1|~v|k+2 +

√
γ1(k + 2)

h
‖Lk+1

h ~v − Πk+1
h ~v‖0

≤Kĉhk+1|~v|k+2 +

√
γ1(k + 2)

h

(
‖Lk+1

h ~v − ~v‖0 + ‖~v − Πk+1
h ~v‖0

)
≤Kĉhk+1|~v|k+2 +

√
γ1(k + 2)

h
(c+ ĉ)hk+1|~v|k+2

where the constants γ1, c, and ĉ are defined in Theorem 7 and Corollary 3. The choice

m1 = Kĉ+ (c+ ĉ)
√
γ1(k + 2) completes the proof.

Lemma 4. Let Ω ⊂ Rd, d ∈ {2, 3} be a bounded polygonal or polyhedral domain with

Lipschitz boundary, {τh}, 0 < h ≤ 1 be a family of quasiuniform meshes of Ω, and

~v ∈ [Hk+2(Ω)]d, with 1 ≤ k ≤ 2d. Then, there exists a positive constant, m2, such

that

‖∇ · (~v − Πk+1
h ~v)‖∂Ω ≤ m2h

k|~v|k+2.



41

where Πk+1
h is the Raviart-Thomas interpolation operator defined in Theorem 7.

Proof. Define the finite-element spaces [ARG2d+1(Ω, τh)]
d ⊂ [H2(Ω)]d, where

ARG5(Ω, τh) is the well-known Argyris elements for d = 2 [52], and ARG9(Ω, τh)

is the finite-element space with continuously differentiable functions of three variables

defined in [141]. Standard interpolation results give an operator, πh : [Hk+2(Ω)]d →
[ARG2d+1(Ω, τh)]

d such that

‖~v − πh~v‖1 ≤ m3h
k+1|~v|k+2, ‖~v − πh~v‖2 ≤ m4h

k|~v|k+2. (3.17)

Using the triangle inequality yields

‖∇ · (~v − Πk+1
h ~v)‖∂Ω ≤ ‖∇ · (~v − πh~v)‖∂Ω + ‖∇ · (πh~v − Πk+1

h ~v)‖∂Ω.

As ∇ · (~v − πh~v) ∈ H1(Ω), we apply [77, Theorem 1.5.1.10]. That is,

‖∇ · (~v − πh~v)‖∂Ω ≤ m5‖∇ · (~v − πh~v) ‖1 ≤ m5‖~v − πh~v‖2 ≤ m6h
k|~v|k+2. (3.18)

On the other hand,∇·(πh~v−Πk+1
h ~v) ∈ DG2d(Ω, τh), and we therefore apply Corollary 3

to yield

‖∇ · (πh~v − Πk+1
h ~v)‖∂Ω ≤

√
γ1(2d)√
h
‖∇ · (πh~v − Πk+1

h ~v)‖0

≤
√
γ1(2d)√
h

(
‖∇ · (πh~v − ~v)‖0 + ‖∇ · (~v − Πk+1

h ~v)‖0

)
≤
m7

√
γ1(2d)√
h

hk+1|v|k+2. (3.19)

Finally, combining (3.17)–(3.19) leads to the desired estimate.

Remark 3.2.3. Lemma 4 can be generalized for any k ≥ 1 by using higher-order

continuously differentiable elements as intermediate elements. We refer to [92, 122]

for higher-order Argyis-like elements in 2D, and [141] for the 3D case.
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3.3 Continuum Analysis

Consider the fourth-order problem (3.3) with suitable boundary conditions (discussed

below),

∆2u− c0∆u+ c1u = f in Ω, (3.20)

where Ω ⊂ Rd, d ∈ {2, 3} is a bounded, Lipschitz, and connected domain with

outward pointing normal ~n, and c0 and c1 are nonnegative constants. Define V =

{v ∈ H1(Ω) | ∆v ∈ L2(Ω)} with dual space V ∗, and assume that f ∈ V ∗. Multiplying

by a test function, v ∈ V , integration by parts yields∫
Ω

∆u∆v+c0∇u ·∇v+c1uv+

∫
∂Ω

v(∇∆u−c0∇u) ·~n−
∫
∂Ω

∆u∇v ·~n =

∫
Ω

fv. (3.21)

Since (3.20) is a fourth-order problem, we require two boundary conditions on

any segment of ∂Ω. Here, we focus on the boundary conditions that arise from the

integration by parts (3.21):

u = 0, ∆u = 0, on Γ0, (3.22)

u = 0,
∂u

∂n
= 0, on Γ1, (3.23)

∂(∆u− c0u)

∂n
= 0, ∆u = 0, on Γ2, (3.24)

∂(∆u− c0u)

∂n
= 0,

∂u

∂n
= 0, on Γ3. (3.25)

Note that we consider homogeneous boundary conditions here, but the results hold

true for nonhomogeneous boundary conditions if the traces of these quantities are

smooth enough on ∂Ω, using standard techniques (cf. [74]) to transform the inho-

mogeneous boundary conditions (3.22)-(3.25) into homogeneous ones. We note that

the commonly-considered case of clamped boundary conditions corresponds to Γ1 in

this classification. In contrast, Γ0 differs from the classical ”simply supported” plate

boundary conditions, although is equivalent since the tangential derivative of u along

Γ0 is equal to zero [41, Section 5.9]. Furthermore, writing ∂Ω = Φ ∪ (∪iΓi), where

each Γi is open, and Φ = ∪i 6=j
(
Γ̄i ∩ Γ̄j

)
, we assume that Φ provides a piecewise C1

dissection of ∂Ω [75, Definition 2.2]. Roughly speaking, this requires that Φ is the

union of closed curves that are piecewise C1 [81]. Under suitable assumptions on
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c0 and c1, we can prove a variety of results on the well-posedness of the resulting

variational problems in the standard Hilbert space setting.

Lemma 5. Equip V with the inner product

(u, v)V =

∫
Ω

uv +∇u · ∇v + ∆u∆v.

The normed space (V, ‖.‖V ) is a Hilbert space.

Defining V0 = {v ∈ V | v = 0 on Γ0 ∪Γ1 and ∂v
∂n

= 0 on Γ1 ∪Γ3}, we first consider

the H2-conforming weak form of (3.20), requiring u ∈ V0 such that

a(u, v) =

∫
Ω

fv, ∀v ∈ V0, (3.26)

where the bilinear form a is defined as

a(u, v) =

∫
Ω

∆u∆v + c0∇u · ∇v + c1uv. (3.27)

Using standard tools, it is straightforward to show that the weak form in (3.26)

is well-posed (i.e., that a(u, v) is coercive and continuous on V0) when c0, c1 > 0,

for any choice of boundary conditions. This can be extended to cover the case of

c0 = 0 if Γ2 = ∅, using the remaining boundary conditions to show that there is a

constant, C, such that ‖∇u‖2
0 ≤ C (‖u‖2

0 + ‖∆u‖2
0). If c1 = 0 for c0 > 0, then well-

posedness requires that Γ0∪Γ1 6= ∅, in order to be able to apply the standard Poincaré

inequality. If both c0 = c1 = 0, then both Γ0 ∪ Γ1 6= ∅ and Γ2 = ∅ are required to

show well-posedness.

Remark 3.3.1. Assume that Γ0 ∪ Γ1 6= ∅ and Γ2 is empty. While the constants

c0 and c1 in (3.20) are assumed to be nonnegative throughout this manuscript, we

point out that well-posedness of (3.26) can be proved for negative values of c0 and c1,

with |c0| + |c1| sufficiently small and depending on the Poincaré inequality constant

ρ, where ‖u‖2
1 ≤ ρ‖∇u‖2

0.

Remark 3.3.2. When ∂Ω = Γ2 (the analogous case to full Neumann boundary

conditions), if c0 = 0, then a(u, v) is not coercive on V0 = V . We illustrate this by

considering the harmonic function v = e−kx cos(ky), for which a(v, v) = c1‖v‖2
0 =

O(k−2). On the other hand, ‖v‖2
V = O(k−2) + O(1). Thus, as k gets larger, the
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implied bound on the coercivity constant goes to zero. Thus, in what follows, c0 is

restricted to be positive if Γ2 ⊆ ∂Ω.

We now turn our attention to the mixed formulation at the continuum level. Let-

ting ~v = ∇u and ~α = ∇∇ · ~v − c0~v, (3.20) is equivalent to the following system of

first- and second-order PDEs.

∇ · ~α + c1u = f, (3.28)

~α−∇∇ · ~v + c0~v = 0, (3.29)

~v −∇u = 0. (3.30)

Considering the relevant spaces and applying the boundary conditions given in (3.22)-

(3.25), the weak form of (3.28)-(3.30) is to find the triple

(u,~v, ~α) ∈ L2(Ω)×HΓ1∪Γ3
0 (div; Ω)×HΓ2∪Γ3

0 (div; Ω) such that

∫
Ω

∇ · ~αφ+ c1uφ =

∫
Ω

fφ, (3.31)∫
Ω

~α · ~ψ +∇ · ~v∇ · ~ψ + c0

∫
Ω

~v · ~ψ = 0, (3.32)∫
Ω

~β · ~v +

∫
Ω

u∇ · ~β = 0, (3.33)

∀(φ, ~ψ, ~β) ∈ L2(Ω)×HΓ1∪Γ3
0 (div; Ω)×HΓ2∪Γ3

0 (div; Ω), where, for Γ ⊂ ∂Ω,

HΓ
0 (div; Ω) = {~v ∈ H(div; Ω) | ~v · ~n = 0 on Γ} .

We note that this formulation strongly imposes Dirichlet boundary conditions on ~v

and α, but weakly imposes those on u and ∆u.

This weak form is equivalent to the saddle-point problem of finding (u,~v, ~α) ∈
L2(Ω)×HΓ1∪Γ3

0 (div; Ω)×HΓ2∪Γ3
0 (div; Ω) such that

a
(
(u,~v), (φ, ~ψ)

)
+ b
(
(φ, ~ψ), ~α

)
= F (φ), (3.34)

b((u,~v), ~β) = 0, (3.35)

∀(φ, ~ψ, ~β) ∈ L2(Ω) × HΓ1∪Γ3
0 (div; Ω) × HΓ2∪Γ3

0 (div; Ω), where the linear and bilinear
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forms a, b, and F are given by

a
(
(u,~v), (φ, ~ψ)

)
= c0

∫
Ω

~v · ~ψ +

∫
Ω

∇ · ~v∇ · ~ψ + c1

∫
Ω

uφ, (3.36)

b
(
(u,~v), ~β

)
=

∫
Ω

~β · ~v + u∇ · ~β, (3.37)

F (φ) =

∫
Ω

fφ. (3.38)

As noted above, the boundary conditions imposed can have significant effects on the

well-posedness of the problem. In particular, we now show that the mixed-formulation

is well-posed under combinations of assumptions on c0, c1, and the boundary condi-

tions.

Theorem 9. Let ∂Ω = Γ0 ∪Γ3. The saddle-point problem (3.34)-(3.35) has a unique

solution for any c0 ≥ 0 and c1 > 0, and for c1 ≥ 0 if Γ0 is nonempty.

Proof. We verify the standard Brezzi conditions for well-posedness [32]. Continuity of

a, b, and F in the product norm on L2(Ω)×H(div; Ω)×H(div; Ω) is straightforward.

We next show that the bilinear form a
(
(u,~v), (φ, ~ψ)

)
is coercive on the set

η = {(u,~v) ∈ L2(Ω)×HΓ3
0 (div; Ω) | b

(
(u,~v), ~α

)
= 0, ∀~α ∈ HΓ3

0 (div; Ω)}.

Since the boundary conditions for ~v and ~α are identical on Γ0∪Γ3, the kernel condition

implies that b
(
(u,~v), ~v

)
= 0 for any (u,~v) in η, which implies that ‖~v‖2

0 = −
∫

Ω
u∇·~v ≤

1
2

(‖u‖2
0 + ‖∇ · ~v‖2

0). Then

a
(
(u,~v), (u,~v)

)
= c0‖~v‖2

0 +
1

3

(
‖∇ · ~v‖2

0 + c1‖u‖2
0

)
+

2

3

(
‖∇ · ~v‖2

0 + c1‖u‖2
0

)
≥ c0‖~v‖2

0 +
2 min {1, c1}

3
‖~v‖2

0 +
2 min {1, c1}

3

(
‖∇ · ~v‖2

0 + ‖u‖2
0

)
≥ 2 min{1, c1}

3

(
‖~v‖2

div + ‖u‖2
0

)
,

where ‖~v‖2
div = ‖~v‖2

0 + ‖∇ · ~v‖2
0.

If Γ0 is nonempty and c1 = 0, then for a given (u,~v), we choose ~α = µ~v + ~αm,

where µ is a positive constant to be specified below, and ~αm is the solution of the
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standard mixed Poisson problem,∫
Ω

δ∇ · ~αm =

∫
Ω

uδ, ∀δ ∈ L2(Ω), (3.39)∫
Ω

~αm · ~β + φ∇ · ~β = 0, ∀~β ∈ HΓ3
0 (Ω; div), (3.40)

which is well-posed with ‖~αm‖2
div + ‖φ‖2

0 ≤ Λ‖u‖2
0, where Λ is a positive constant that

depends on the coercivity and continuity constants and the inf-sup conditions for the

mixed Poisson problem [32, 106]. Moreover, the choice of δ = u in Equation (3.39)

implies that ‖u‖2
0 =

∫
Ω
u∇ · ~αm. Thus, for every (u,~v) ∈ η, we have

b((u,~v), ~α) = µ‖~v‖2
0 + ‖u‖2

0 +

∫
Ω

~αm · ~v + µ

∫
Ω

u∇ · ~v = 0.

Rearranging terms and using the Cauchy-Schwarz and Young’s inequalities, we get

µ

2

(
2µ

k1

‖u‖2
0 +

k1

2µ
‖∇ · ~v‖2

0

)
+

1

2

(
2

k2

‖u‖2
0 +

k2Λ

2
‖~v‖2

0

)
≥ µ‖~v‖2

0 + ‖u‖2
0

for arbitrary k1 > 0, k2 > 0, which can be further rearranged to yield

k1

4
‖∇ · ~v‖2

0 ≥
(
µ− k2Λ

4

)
‖~v‖2

0 +

(
1− µ2

k1

− 1

k2

)
‖u‖2

0.

Choosing sufficiently large constants k1 and µ and sufficiently small k2 results in the

coercivity condition that a ((u,~v), (u,~v)) = ‖∇ · ~v‖2
0 ≥ K (‖~v‖2

div + ‖u‖2
0), for some

constant K > 0.

Finally, we establish the necessary inf-sup condition, that

sup
(u,~v)∈L2(Ω)×HΓ3

0 (div;Ω)

b
(
(u,~v), ~α

)√
‖u‖2

0 + ‖~v‖2
div

≥ 1√
2
‖~α‖div, ∀~α ∈ HΓ3

0 (div; Ω)

The choice u = ∇ · ~α, ~v = ~α completes the proof, noting this is compatible with

∂Ω = Γ0 ∪ Γ3, since u ∈ L2(Ω), without an essential boundary condition strongly

imposed on it.

Corollary 4. Let ∂Ω = Γ0 ∪ Γ2 ∪ Γ3. The saddle-point problem (3.34)-(3.35) has a

unique solution for any c0 > 0 and c1 > 0.
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Proof. Under these assumptions, the bilinear form a is coercive for (u,~v) ∈ L2(Ω) ×
HΓ3

0 (div; Ω) since

a ((u,~v), (u,~v)) = c0‖~v‖2
0 + ‖∇ · ~v‖2

0 + c1‖u‖2
0 ≥ min {1, c0, c1}

(
‖~v‖2

div + ‖u‖2
0

)
.

Moreover, the inf-sup condition,

sup
(u,~v)∈L2(Ω)×HΓ3

0 (div;Ω)

b
(
(u,~v), ~α

)√
‖u‖2

0 + ‖~v‖2
div

≥ 1√
2
‖~α‖div, ∀~α ∈ HΓ2∪Γ3

0 (div; Ω),

is readily shown by choosing u = ∇ · ~α, ~v = ~α, noting that this is allowable because

~α ∈ HΓ2∪Γ3
0 (div; Ω) ⊂ HΓ3

0 (div; Ω), and ∇ · ~α ∈ L2(Ω).

Solving (3.34)–(3.35) when essential boundary conditions on ~v are strongly im-

posed while ~α is free on the boundary, i.e. ∂Ω = Γ1, leads to difficulties in proving

the inf-sup condition. This difficulty can easily be understood from the proof of the

inf-sup condition in Theorem 9, in which we take ~v = ~α to provide a concrete bound

on the supremum. In this setting, we are able to prove uniqueness of the solution to

the continuum mixed form of the problem under suitable regularity assumptions.

Corollary 5. Let ∂Ω = Γ0 ∪ Γ1 ∪ Γ3 and ū solve (3.26). The pair (u,~v) that solves

the saddle-point problem (3.34)-(3.35) is unique for any c0 ≥ 0 and c1 ≥ 0 with

(u,~v) = (ū,∇ū). Moreover, ~α is unique if ū ∈ H t(Ω), t ≥ 4.

Proof. As in the proof of Theorem 9, the bilinear form a is coercive on the set

η = {(u,~v) ∈ L2(Ω)×HΓ1∪Γ3
0 (div; Ω) | b

(
(u,~v), ~α

)
= 0, ∀~α ∈ HΓ3

0 (div; Ω)}.

Therefore, the pair (u,~v) is uniquely determined [45, Remark 1.1]. As (ū,∇u) solves

(3.35) for every ~β, uniqueness of (u,~v) implies that (u,~v) = (ū,∇ū). If, additionally,

u = ū ∈ H t(Ω), t ≥ 4, then we choose (φ, ~ψ) = (0, Q (~α−∇∆u+ c0∇u)) in (3.34),

for any Q ∈ Ct−3(Ω) ∩ H1
0 (Ω) that is positive in Ω. Note that ~ψ ∈ HΓ1∪Γ3

0 (div; Ω)

since u ∈ H t(Ω) for t ≥ 4. Integration by parts on (3.34) then yields∫
Ω

Q (~α−∇∆u+ c0∇u) · (~α−∇∆u+ c0∇u) = 0.

As Q (~α−∇∆u+ c0∇u) · (~α−∇∆u+ c0∇u) is non-negative in Ω, this implies that
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~α = ∇∆u− c0∇u.

Remark 3.3.3. In the case d = 2, we can write ∂Ω =
{
∪M1
i=1Γi

}
∪
{
∪M2
i=1Γ̃i

}
, where

Γi = (x, aix+ bi) for x0
i < x < x1

i , and Γ̃i = (ciy+ di, y) for y0
i < y < y1

i , with M1 and

M2 positive integers. The function Q in Corollary (5) can be chosen as

Q = ΠM1
i=1 (y − aix− bi)2 ΠM2

i=1 (x− ciy − di)2 ,

with Q ∈ Ct−3(Ω) ∩ H1
0 (Ω) and Q positive in the interior of Ω. Similarly, Q can

be constructed when d = 3 by writing the boundary faces of Ω in sets that can be

parametrized as planes in each pair of two Cartesian coordinates.

3.4 Discrete Analysis

For what follows, we consider a conforming discretization of the mixed form, with

(uh, ~vh, ~αh) ∈ DGk(Ω, τh)×RT Γ3
k+1(Ω, τh)×RT Γ2∪Γ3

k+1 (Ω, τh),

for k ≥ 0, where RT Γ
k+1(Ω, τh) = {~vh ∈ RTk+1(Ω, τh) | ~vh · ~n = 0 on Γ}, noting that

DGk(Ω, τh) ⊂ L2(Ω) and RT Γ
k+1(Ω, τh) ⊂ HΓ

0 (div; Ω). We examine the problem of

finding (u,~v, ~α) ∈ DGk(Ω, τh)×RT Γ3
k+1(Ω, τh)×RT Γ2∪Γ3

k+1 (Ω, τh) such that

a
(
(uh, ~vh), (φh, ~ψh)

)
+ b
(
(φh, ~ψh), ~αh

)
= F

(
φh), (3.41)

b
(
(uh, ~vh), ~βh

)
= 0, (3.42)

∀(φh, ~ψh, ~βh) ∈ DGk(Ω, τh) × RT Γ3
k+1(Ω, τh) × RT Γ2∪Γ3

k+1 (Ω, τh), where a, b and F are

defined in (3.36)-(3.38). Boundary conditions on Γ1 will be enforced with Nitsche’s

method. As in the continuum case, taking ∂Ω = Γ0∪Γ3 is the easiest case to consider.

Corollary 6. Let ∂Ω = Γ0 ∪ Γ3, c0 ≥ 0, c1 > 0, and c1 ≥ 0 if Γ0 is nonempty. Let

{τh}, 0 < h ≤ 1 be a quasiuniform family of triangular meshes of Ω. Then problem

(3.41)-(3.42) has a unique solution for any τh in the family.

Proof. Coercivity of the bilinear form a
(
(uh, ~vh), (φ, ~ψh)

)
on the set

{(uh, ~vh) ∈ DGk(Ω, τh)×RT Γ3
k+1(Ω, τh) | b

(
(uh, ~vh), ~αh

)
= 0, ∀~α ∈ RT Γ3

k+1(Ω, τh)},
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and the inf-sup condition of the form

sup
(uh,~vh)∈DGk(Ω,τh)×RTΓ3

k+1(Ω,τh)

b
(
(uh, ~vh), ~αh

)√
‖uh‖2

0 + ‖~vh‖2
div

≥ 1√
2
‖~αh‖div, ∀~αh ∈ RT Γ3

k+1(Ω, τh),

can be proven exactly as in the continuum. Note that this is compatible with the

finite-element spaces. For example, when c1 > 0, we can choose ~αh = ~vh ∈ RT Γ3
k+1(τh)

in the kernel condition within the coercivity proof, and ~vh = ~αh ∈ RT Γ3
k+1(τh) and

uh = ∇ · ~αh in the proof of the inf-sup condition. Such a uh is in DGk(Ω, τh) by

Remark 3.2.2.

Corollary 7. Let the assumptions of Corollary 6 hold, and let

(u,~v, ~α) ∈ Hk+1(Ω)× [Hk+2(Ω)]d × [Hk+2(Ω)]d

be the solution of (3.34)-(3.35). Let

(uh, ~vh, ~αh) ∈ DGk(Ω, τh)×RT Γ3
k+1(Ω, τh)×RT Γ3

k+1(Ω, τh)

be the solution of (3.41)-(3.42). Then, there exist constants m1 and m2 such that

‖(u,~v)− (uh, ~vh)‖0,div ≤ m1h
k+1

(
|u|2k+1 + |~v|2k+1 + |~v|2k+2 + |~α|2k+1 + |~α|2k+2

)1/2

,

(3.43)

‖~α− ~αh‖div ≤ m2h
k+1

(
|u|2k+1 + |~v|2k+1 + |~v|2k+2 + |~α|2k+1 + |~α|2k+2

)1/2

.

(3.44)

Proof. Because this is a conforming discretization, standard approximation theory for

mixed finite elements (e.g. [32]) yields optimal approximation results in the product

norm, ‖ (uh, ~vh) ‖2
0,div = ‖uh‖2

0 + ‖~vh‖2
div.

Corollary 8. Problem (3.41)-(3.42), with ∂Ω = Γ0 ∪ Γ2 ∪ Γ3, has a unique solution

for c0, c1 > 0. If, further,

(u,~v, ~α) ∈ Hk+1(Ω)× [Hk+2(Ω)]d × [Hk+2(Ω)]d
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is the solution of (3.34)-(3.35) and

(uh, ~vh, ~αh) ∈ DGk(Ω, τh)×RT Γ3
k+1(Ω, τh)×RT Γ3

k+1(Ω, τh)

is the solution of (3.41)-(3.42), then the error bounds in (3.43)–(3.44) also hold for

this case.

Proof. The proof follows exactly as those of Corollaries 4 and 7. The bilinear form

a is coercive for every pair (uh, ~vh) ∈ DGk(Ω, τh) × RT Γ3
k+1(Ω, τh). The finite-element

approximation spaces allow the choice uh = ∇ · ~αh and ~vh = ~αh for the inf-sup

condition. As this is a conforming discretization, standard theory yields optimal

approximation results.

As in the continuum case, solving (3.41)–(3.42) when essential boundary conditions

on ~v are strongly imposed while ~α is free on the boundary leads to difficulties in proving

the inf-sup condition. When ∂Ω = Γ1, we cannot follow the proof technique used in

Theorem 9 and Corollary 4, since ~v must satisfy the prescribed BC while ~α is free on

the boundary. In this case, the inf-sup condition has the form of finding c̃ > 0 such

that

I = sup
(uh,~vh)∈DGk(Ω,τh)×RTΓ1

k+1(Ω,τh)

∫
Ω
~αh · ~vh +

∫
Ω
u∇ · ~αh√

‖uh‖2
0 + ‖~vh‖2

div

> c̃‖~αh‖div, ∀~αh ∈ RTk+1(Ω, τh).

To understand the challenge, we consider a simply-connected domain Ω. Then the

two-dimensional discrete Helmholtz decomposition from Lemma 2,

RTk+1(Ω, τh) =

(
∇× CGk+1(Ω, τh)

)
⊕
(

gradhDGk(Ω, τh)

)
.

For any ~αh = gradh z where z ∈ DGk(Ω, τh), then the choice ~vh = 0 and uh = ∇·~αh−z
satisfies the inf-sup condition, as

I ≥ sup
uh 6=0∈DGk(Ω,τh)

∫
Ω
uh∇ · ~αh
‖uh‖0

≥
‖∇ · ~αh‖2

0 −
∫

Ω
z∇ · (gradh z)

‖∇ · ~αh‖0 + ‖z‖0

≥ ‖∇ · ~αh‖
2
0 + ‖ gradh z‖2

0

‖∇ · ~αh‖0 + c‖ gradh z‖0

≥ c̃ (‖∇ · ~αh‖0 + ‖~αh‖0) ,
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where the discrete Poincaré inequality [14], ‖z‖0 ≤ c‖ gradh z‖0, is used here. In

contrast, for ~αh ∈ ∇×CGk+1(Ω, τh), we cannot establish a uniform inf-sup condition.

As a simple example, take Ω = (0, 1)2, with ∂Ω = Γ1, and consider k = 0, so

~αh ∈ RT1(Ω, τh). Consider a mesh such that one triangle has vertices (0, 0), (h, 0),

and (0, h). Take ~αh to be nonzero only in this triangle, with value

~αh = ∇×
(

1− x+ y

h

)
=

1

h

[
−1

1

]
. (3.45)

Clearly, ∇ · ~αh = 0. Moreover, for any choice of ~vh ∈ RT1(Ω, τh) with ~vh · ~n = 0 on

∂Ω and uh ∈ DG0(Ω, τh), we have
∫

Ω
~αh · ~vh +

∫
Ω
u∇ · ~αh = 0, which results in a zero

inf-sup constant. Numerical experiments (not reported here) suggest that restricting

the mesh so that no element has 3 vertices on the boundary yields an O(h) inf-sup

constant.

We next show that weakly implementing the essential boundary condition on ~v

yields a discretization with O(1) continuity and coercivity constants and O(h) inf-

sup constant, without any mesh restrictions but in a modified norm. This is slightly

disadvantageous, because the error estimate loses some convergence due to both the

sub-optimal inf-sup constant and the error analysis in the modified norm; however,

we view the lack of restrictions on the mesh construction to be preferable to possible

further results in the direction considered above. To weakly impose the boundary

condition, we will make use of a Nitsche-type penalty method. These approaches

are based on adding three terms to the weak form, which are commonly denoted as

the consistency, stability, and symmetry terms [86, 109]. Consider the case where

∂Ω = Γ0 ∪ Γ1 ∪ Γ3, and modify the bilinear form a
(
(u,~v), (φ, ~ψ)

)
from (3.36), to be

â
(
(uh, ~vh), (φh, ~ψh)

)
+ b
(
(φh, ~ψh), ~αh

)
= F (φh), (3.46)

b
(
(uh, ~vh), ~βh

)
= 0, (3.47)

∀(φh, ~ψh, ~βh) ∈ DGk(Ω, τh)×RT Γ3
k+1(Ω, τh)×RT Γ3

k+1(Ω, τh), where,

â
(
(uh, ~vh), (φh, ~ψh)

)
=a
(
(uh, ~vh), (φh, ~ψh)

)
−
∫

Γ1

∇ · ~vh ~ψh · ~n

−
∫

Γ1

∇ · ~ψh ~vh · ~n+
λ

h

∫
Γ1

~vh · ~n ~ψh · ~n. (3.48)
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Here, we impose the condition that ~vh ·~n = 0 on Γ1 directly by adding λ
h

∫
Γ1
~vh ·~n ~ψh ·~n

to a as defined in (3.36) for penalty parameter λ > 0. Consistent with the boundary

condition, we add −
∫

Γ1
∇ · ~ψh ~vh · ~n to the bilinear form. For symmetry, we add the

term −
∫

Γ1
∇ · ~vh ~ψh · ~n to the bilinear form. With these Nitsche terms, we now prove

well-posedness of the weak form, but using a modified norm for ~vh, defined in (3.13),

which we recall here:

‖~vh‖2
div,Γ1

= ‖~vh‖2
div + h‖∇ · ~vh‖2

0,Γ1
+

1

h
‖~vh · ~n‖2

0,Γ1
.

Theorem 10. Let Ω ⊂ Rd, d ∈ {2, 3}, with ∂Ω = Γ0 ∪ Γ1 ∪ Γ3. Let {τh}, 0 < h ≤ 1,

be a quasiuniform family of meshes of Ω, and let λ > 0 be given. For sufficiently large

λ, the weak form in (3.46)–(3.47) has a unique solution for c0 ≥ 0, c1 > 0, and for

c1 = 0 if Γ0 ∪ Γ1 is nonempty.

Proof. As above, the existence and uniqueness of solutions follows from standard

theory. We first show that the bilinear form â
(
(uh, ~vh), (φh, ~ψh)

)
is coercive for any

pair (uh, ~vh) ∈ ηh, where

ηh ={(uh, ~vh) ∈ DGk(Ω, τh)×RT Γ3
k+1(Ω, τh)|

b
(
(uh, ~vh), ~αh

)
= 0, ∀~αh ∈ RT Γ3

k+1(Ω, τh)}.

Since the strongly imposed boundary conditions for ~v and ~α are identical, the kernel

condition implies that b
(
(uh, ~vh), ~vh

)
= 0 for any pair (uh, ~vh) ∈ ηh. Thus, any pair

(uh, ~vh) ∈ ηh should satisfy ‖~vh‖2
0 = −

∫
Ω
uh∇ · ~vh ≤ 1

2
(‖uh‖2

0 + ‖~vh‖2
0). Employing

the Cauchy-Schwarz inequality and letting γ = γ1(k) from Corollary 3, we then have

â
(
(uh, ~vh), (uh, ~vh)

)
=c0‖~vh‖2

0 + ‖∇ · ~vh‖2
0 + c1‖uh‖2

0 − 2

∫
Γ1

∇ · ~vh ~vh · ~n+
λ

h
‖~vh · ~n‖2

0,Γ1

≥‖∇ · ~vh‖2
0 + c1‖uh‖2

0 −
h

3γ
‖∇ · ~vh‖2

0,Γ1
+
λ− 3γ

h
‖~v · ~n‖2

0,Γ1

≥1

3
‖∇ · ~vh‖2

0 + c1‖uh‖2
0 +

h

3γ
‖∇ · ~vh‖2

0,Γ1
+
λ− 3γ

h
‖~v · ~n‖2

0,Γ1

≥2 min{1/3, c1}
3

‖~vh‖2
0 +

2 min{1/3, c1}
3

(
‖∇ · ~vh‖2

0 + ‖u‖2
0

)
+

h

3γ
‖∇ · ~vh‖2

0,Γ1
+
λ− 3γ

h
‖~vh · ~n‖2

0,Γ1
. (3.49)
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Clearly, any choice of λ > 3γ completes the proof. When Γ0 ∪ Γ1 is nonempty and

c0 = 0, the coercivity proof is similar to the one in Theorem 9.

Continuity of â, b, and F , can be established using Cauchy-Schwarz inequality.

The resulting inequalities are that

â
(

(uh, ~vh) ,
(
φh, ~ψh

))
≤ ‖â‖‖(uh, ~vh)‖0,div,Γ1‖(φh, ~ψh)‖0,div,Γ1 ,

and

b ((uh, ~vh) , ~αh) ≤ ‖ (uh, ~vh) ‖0,div,Γ1‖~αh‖div,

where ‖â‖ = 3 + c0 + c1 + λ, and ‖ (uh, ~vh) ‖2
0,div,Γ1

= ‖uh‖2
0 + ‖~vh‖2

div,Γ1
. Thus, the

continuity constant of the bilinear form â is O(1).

Finally, we consider the inf-sup condition, that ∃θ > 0 such that

I = sup
(uh,~vh)∈DGk(Ω,τh)×RTΓ3

k+1(Ω,τh)

∫
Ω
~αh · ~vh +

∫
Ω
uh∇ · ~αh√

‖~vh‖2
div,Γ1

+ ‖uh‖2
0

≥ θ‖~αh‖div, ∀~αh ∈ RT Γ3
k+1(Ω, τh).

The choice ~vh = ~αh and uh = ∇ · ~αh and the inverse trace inequality from Corollary 3

implies that

I ≥ ‖~αh‖2
div√

‖~αh‖2
div + h‖∇ · ~αh‖2

0,Γ1
+ 1

h
‖~αh · ~n‖2

0,Γ1
+ ‖∇ · ~αh‖2

0

≥ ‖~αh‖2
div√(

1 + γ1(k+1)
h2

)
‖~αh‖2

0 + (2 + γ1(k)) ‖∇ · ~αh‖2
0

≥ 1√
1 + γ1(k+1)

h2

‖~αh‖div =
h√

h2 + γ1(k + 1)
‖~αh‖div ≥

h√
1 + γ1(k + 1)

‖~αh‖div.

While the above result establishes the existence and uniqueness of discrete solu-

tions, we note that the inf-sup constant is O(h), owing to the contribution from the

boundary terms in the formulation.

Theorem 11. Assume Ω ⊂ Rd, d ∈ {2, 3} is a bounded polygonal or polyhedral
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domain with Lipschitz boundary. Let the assumptions of Theorem 10 be satisfied, and

assume that (u,~v, ~α) ∈ Hk+5(Ω)× [Hk+4(Ω)]d × [Hk+2(Ω)]d is the solution of (3.34)–

(3.35). Let (uh, ~vh, ~αh) be the unique solution of Problem (3.46)-(3.47). Then, there

exists positive constants M1 and M2 such that

‖(u,~v)− (uh, ~vh)‖0,div,Γ1 ≤M1h
k

(
|u|2k+1 + |~v|2k+1 + |~v|2k+2 + |~α|2k+1 + |~α|2k+2

)1/2

,

‖~α− ~αh‖div ≤M2h
k−1

(
|u|2k+1 + |~v|2k+1 + |~v|2k+2 + |~α|2k+1 + |~α|2k+2

)1/2

.

Proof. To prove the error estimates, we proceed in a similar way to [45, Section II.2.1],

with modifications to account for the use of Nitsche-type penalty methods to weakly

impose the boundary conditions on ~vh.

Coercivity of â over ηh, where ηh is the set defined in the proof of Theorem 10,

leads to the fact that for all (φh, ~ψh) ∈ ηh, we have

C‖(φh, ~ψh)− (uh, ~vh)‖2
0,div,Γ1

≤ â
(
(φh − uh, ~ψh − ~vh), (φh − uh, ~ψh − ~vh)

)
= â
(
(φh − u, ~ψh − ~v), (φh − uh, ~ψh − ~vh)

)
+ â
(
(u− uh, ~v − ~vh), (φh − uh, ~ψh − ~vh)

)
.

Here, C is the coercivity constant, which is O(1). Note, first, that â
(
(φh − u, ~ψh −

~v), (φh − uh, ~ψh − ~vh)
)

is continuous in its arguments, with O(1) continuity constant,

so the first term is readily bounded. We next establish that we have enough regularity

on the solution (u,~v, ~α) of the continuum problem to show that

â
(
(u− uh, ~v − ~vh), (φh − uh, ~ψh − ~vh)

)
= b

(
(φh − uh, ~ψh − ~vh), ~αh − ~α

)
, (3.50)

where we note that the regularity is required to both integrate by parts and enforce

relationships between the components of the continuum solution below. To establish
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(3.50), note first (from the definition of â) that

â
(
(u,~v), (φh − uh, ~ψh − ~vh)

)
=

∫
Ω

∇ · ~v∇ · (~ψh − ~vh) + c0

∫
Ω

~v · (~ψh − ~vh)

+ c1

∫
Ω

u(φh − uh)−
∫

Γ1

∇ · ~v (~ψh − ~vh) · ~n

=−
∫

Ω

(∇∇ · ~v − c0~v) · (~ψh − ~vh) + c1

∫
Ω

u(φh − uh)

=−
∫

Ω

~α · (~ψh − ~vh) + c1

∫
Ω

u(φh − uh),

where we invoke Corollary 5 to ensure that ~v = ∇u, ~α = ∇∇·~v−c0~v, and the boundary

conditions on Γ0 and Γ3 ensure the other boundary integrals from integration by parts

vanish. Next, note that (u,~v) satisfies (3.34); taking ~ψ = ~0 and φ = φh − uh ∈ L2(Ω)

in (3.34) gives

c1

∫
Ω

u(φh − uh) +

∫
Ω

(φh − uh)∇ · ~α = F (φh − uh).

Combining these, we have that

â
(
(u,~v), (φh − uh, ~ψh − ~vh)

)
= −

∫
Ω

~α · (~ψh − ~vh) + F (φh − uh)−
∫

Ω

(φh − uh)∇ · ~α

= F (φh − uh)− b
(

(φh − uh, ~ψh − ~vh), ~α
)
.

On the other hand, we have, from (3.46), â
(
(uh, ~vh), (φh − uh, ~ψh − ~vh)

)
= F (φh −

uh)− b
(

(φh − uh, ~ψh − ~vh), ~αh
)

. Taking these together establishes (3.50).

Now, for any ~βh ∈ RT Γ3
k+1(Ω, τh),

b
(

(φh − uh, ~ψh − ~vh), ~α− ~αh
)

= b
(

(φh − uh, ~ψh − ~vh), ~α− ~βh

)
≤ ‖(φh − uh, ~vh − ~ψh)‖0,div,Γ1‖~α− ~βh‖div

since (uh − φh, ~vh − ~ψh) ∈ ηh and by the continuity of b. Thus,

C‖(φh, ~ψh)− (uh, ~vh)‖0,div,Γ1 ≤‖â‖‖(φh, ~ψh)− (u,~v)‖0,div,Γ1 + ‖~α− ~βh‖div.

We choose (φh, ~ψh) ∈ ηh to be the solution of the mixed Poisson problem posed on

DGk(Ω, τh)×RT Γ3
k+1(Ω, τh) with source term −∆u. Stability of this mixed formulation
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leads to the estimate

inf
(φh, ~ψh)∈ηh

‖(u,~v)− (φh, ~ψh)‖0,div ≤ inf
(φh, ~ψh)∈DGk(Ω,τh)×RTΓ3

k+1

‖(u,~v)− (φh, ~ψh)‖0,div

≤ ‖(u,~v)− (Ikhu,Π
k
h~v)‖0,div

≤ r1h
k+1
(
|u|2k+1 + |~v|2k+1 + |~v|2k+2

) 1
2 ,

for constant r1. Note, however, that our analysis is posed in the stronger norm,

‖(·, ·)‖0,div,Γ1 . To analyse the error in this norm, we have

inf
(φh, ~ψh)∈ηh

‖(u,~v)− (φh, ~ψh)‖0,div,Γ1 ≤ ‖(u,~v)− (Ikhu,Π
k
h~v)‖0,div

+
√
h‖∇ · (~v − Πk

h~v)‖0,Γ1 +
1√
h
‖~v − Πk

h~v‖0,Γ1

≤ r2

(
hk+1 + hk+1/2 + hk

)(
|u|2k+1 + |~v|2k + |~v|2k+2

)1/2

, (3.51)

where r2 is a positive constant independent of h, and the terms above are bounded

using Theorem 7 and Lemmas 3 and 4, resulting in degraded convergence rates. Fi-

nally, using the triangle inequality, (3.51), and Theorem 7 leads to the O(hk) estimate

on (u,~v). To find the error estimate for ~α, we first use the triangle inequality, writing

‖~α− ~αh‖div ≤ ‖~α− ~βh‖div + ‖~βh − ~αh‖div. (3.52)

Choosing ~βh to be the interpolant of ~α gives an error bound for the first term that is

O(hk+1), as in Theorem 7. We then use the discrete inf-sup condition to bound the
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second term, writing γ =
√
h2 (1 + γ1(k + 1)) + γ1(k + 1),

‖~βh − ~αh‖div ≤
γ

h
sup

(φh, ~ψh)∈DGk(Ω,τh)×RTΓ3
k+1(Ω,τh)

b
(

(φh, ~ψh), ~βh − ~αh
)

‖(φh, ~ψh)‖0,div,Γ1

=
γ

h
sup

(φh, ~ψh)∈DGk(Ω,τh)×RTΓ3
k+1(Ω,τh)

b
(

(φh, ~ψh), ~α− ~αh
)

+ b
(

(φh, ~ψh), ~βh − ~α
)

‖(φh, ~ψh)‖0,div,Γ1

=
γ

h
sup

(φh, ~ψh)∈DGk(Ω,τh)×RTΓ3
k+1(Ω,τh)

â
(

(u− uh, ~v − ~vh), (φh, ~ψh)
)

+ b
(

(φh, ~ψh), ~α− ~βh

)
‖(φh, ~ψh)‖0,div,Γ1

≤ γ‖â‖
h
‖(u,~v)− (uh, ~vh)‖0,div,Γ1 +

γ

h
‖~α− ~βh‖div,

where we use the continuity of â and b in the final inequality. The error estimate for

(u,~v) above implies that the convergence rate of ~α is O(hk−1).

3.5 Monolithic multigrid preconditioner

We now consider the development of effective linear solvers for the resulting discretized

systems. We first consider the case where ∂Ω = Γ0 ∪ Γ2 ∪ Γ3 with constants c0, c1 >

0; however, the same arguments allow the case where c0 = 0 if Γ2 is empty. The

discretizations above lead to block-structured linear systems that can be written asA11 0 BT
1

0 A22 BT
2

B1 B2 0


u~v
~α

 =

f1

f2

g

 , (3.53)

where [u,~v, ~α]T now refers to the vector of coefficients of the finite element basis

functions. For the weak form in (3.34)-(3.35), A11 is a mass matrix representing the

discrete version of the L2(Ω) inner product on DGk(Ω, τh) weighted by c1, A22 is the

discrete version of the H(div; Ω) inner product on RTk+1(Ω, τh) with weight c0 on the

L2(Ω) term, B1 is the weak gradient operator, and B2 is the L2(Ω) inner product on

RTk+1(Ω, τh).

In order to efficiently solve such linear systems, we consider preconditioned Krylov

subspace methods. Two families of preconditioners are popular for such block-structured
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problems. Block factorization methods [59,69] approximate Gaussian elimination ap-

plied to the blocks of the discretization matrix, writing

A =

[
A BT

B −C

]
=

[
I 0

BA−1 I

][
A 0

0 S

][
I A−1BT

0 I

]
,

where S = −(C +BA−1BT ) is the Schur complement of A, assuming A is invertible.

Natural block preconditioners are of block diagonal, Pd, and block triangular, Pt

form, given as

Pd =

[
A 0

0 Ŝ

]
, Pt =

[
A BT

0 −Ŝ

]
,

where Ŝ is some approximation of S. The quality of these preconditioners naturally

depends on the approximation Ŝ ≈ S, and their efficiency depends on the availabil-

ity of effective fast solvers for the linear systems involving A and Ŝ. Preliminary

experiments in this direction revealed some difficulties approximating the Schur com-

plement in the presence of the Nitsche terms that would require further investigation.

Therefore, we focus on the development of efficient monolithic multigrid precondition-

ers [7, 105] in this setting.

We use standard multigrid V -cycles with a direct solve on the coarsest level (taken

in the examples to be the mesh with h = 1/4 for problems on unit-length domains),

and factor-2 coarsening between all grids. These cycles are employed as precondition-

ers for FGMRES [118]. We use standard interpolation operators, partitioned based

on the discretized fields, of the form

P =

I
k
h

Πk+1
h

Πk+1
h

 ,
where the blocks Ikh and Πk+1

h are the natural finite-element interpolation operators

for the DGk(Ω, τh) and RTk+1(Ω, τh) spaces, respectively. Coarse-grid operators are

formed by rediscretization, which is equivalent to a Galerkin coarse-grid operator for

constant c0, c1 ∈ R.

The main challenge with monolithic multigrid methods is to develop an effective

relaxation method. In this work, as relaxation we make use of an additive overlap-

ping Schwarz relaxation, which can be considered as a variant of the family of Vanka
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relaxation schemes originally proposed in [130] to solve the saddle-point systems that

arise from the marker-and-cell (MAC) finite-difference discretization of the Navier-

Stokes equations. Vanka relaxation methods encompass a variety of overlapping mul-

tiplicative or additive Schwarz methods applied to saddle-point problems, in which the

subdomains are chosen so that the corresponding subsystems are also saddle-point sys-

tems. Vanka-type relaxation has been used extensively for finite-element discretiza-

tions, such as the discretizations arising from the Stokes equations [98], magnetohy-

drodynamics [6], and liquid crystals [4]. Recently, a general-purpose implementation

of patch-based relaxation schemes, including Vanka relaxation, was provided in [68],

which we employ via the finite-element discretization package Firedrake [93,115].

Like other Schwarz methods, Vanka relaxation can be understood algebraically.

Denoting the set of all degrees of freedom in the problem by Q, we partition Q into s

overlapping subdomains or patches, Q = ∪si=1Qi, and consider the stationary additive

iteration with updates given by

x← x+
s∑
i=1

RT
i A−1

ii Ri(b−Ax),

where Ax = b represents the linear system to be solved, Ri is the injection operator

from a global vector, x, to a local vector, xi, on Qi (with Rix = xi), and Aii = RiART
i

is the restriction of the global system A to the degrees of freedom in Qi. While inexact

solution of the subdomain problems is relevant when the cardinality of Qi is large, we

consider small subdomain sizes, where direct solution remains practical. We construct

the patches, {Qi}, topologically, as the so-called star patch around each vertex [68]

in the mesh, taking all degrees of freedom on vertex i, on edges adjacent to vertex

i, and on all cells adjacent to vertex i to form Qi. Figure 3.1 shows the subdomain

construction around a typical vertex for the cases of discretization using DG0 and

RT1 elements (left) and using DG1 and RT2 elements (right), noting that the RTk

degrees of freedom for both ~v and ~α are included in the patch (and are collocated on

the mesh).

There is no guarantee that an unweighted stationary relaxation iteration with

the additive Vanka relaxation method would lead to a convergent iteration scheme;

however, determining optimal relaxation parameters is difficult. Thus, rather than

use the stationary iteration given above, we use two steps of GMRES preconditioned

by the Schwarz method as the (pre- and post-) relaxation in the multigrid cycle on
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Figure 3.1: Star patches for DG0−RT1(left) and DG1−RT2(right) discretizations. Filled
discs denote DG degrees of freedom, while arrows and filled squares denote edge and interior
RT degrees of freedom, respectively.

each level. As noted in Section 3.6, GMRES performs well in giving the relaxation

property that we need despite of the lack of analysis that confirms it. We point out

that LFA could be used to compute damping parameters to ensure both convergence

of the (damped) stationary iteration and some sort of smoothing property, and it can

outperform GMRES if the parameters are well-chosen. We, however, leave LFA for

future work as it is complicated for this class of problems.

For the case where ∂Ω = Γ0∪Γ1 with c0 = c1 = 0, a modification of the above solver

framework is needed. Note that, in this case, while the linear system is well-posed by

Theorem 10, the modified weak form in (3.46)-(3.47) has the same structure as (3.53)

except that A11 becomes the zero matrix and Nitsche boundary terms appear in A22.

The approach above performs poorly in this case, as might be expected, particularly

with the zero block for A11. To overcome this, we adopt the idea of preconditioning

the resulting discretization matrix using an auxiliary operator that corresponds to

the discretization of another PDE, related to the inner products in which the PDE is

analyzed [91, 103]. Here, since the biharmonic operator is equivalent to the norm in

Lemma 5, we add a scaling factor times the L2(Ω) inner product in the (1,1) block of

the auxiliary operator. That is, the PDE that corresponds to the auxiliary operator

is ∆2u+χu, where χ is a positive constant. Preliminary experiments (reported below

in Table 3.4) indicate that choosing the scaling factor χ to be O (h−1) gives better

performance than O(1) values.
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3.6 Numerical experiments

In this section, we present numerical experiments to measure finite-element conver-

gence rates and demonstrate the performance of the proposed monolithic multigrid

method, stopping when either the residual norm or its relative reduction is less than

10−8. These numerical results were calculated using the finite-element discretiza-

tion package Firedrake [115], which offers close integration with PETSc for the linear

solvers [20, 93]. The relaxation scheme is implemented using the PCPATCH frame-

work [68]. All numerical experiments were run on a workstation with dual 8-core

Intel Xeon 1.7 GHz CPUs and 384 GB of RAM. For reproducibility, the codes used

to generate the numerical results, as well as the major Firedrake components needed,

have been archived on Zenodo [140]. To measure solution quality, we make use of the

method of manufactured solutions, prescribing forcing terms and boundary data to

exactly match those of a known solution, uex. Taking uniform meshes, as described

below, with representative mesh size h, we define uh to be the finite-element solution

on the mesh, and define the approximation error eh = uex − uh. With this, we can

define the relative error in the L2(Ω) norm on mesh h as Re(h) = ‖eh‖0
‖uex‖0 . As needed,

we extend these definitions to other quantities, such as the L2(Ω) error in ~v and ~α,

the error in ~v and ~α in the H(div) (semi-)norm, and the error in any boundary terms

included in the norms used above.

3.6.1 2D Experiments

In 2D, we consider experiments on the unit square using uniform “right” triangular

meshes (Figure 3.2, left) and on the L-shaped domain with vertices

(0, 0), (0, 1),

(
1

2
, 1

)
,

(
1

2
,

1

2

)
,

(
1,

1

2

)
, and (1, 0)

using uniform “crossed” triangular meshes (Figure 3.2, right). We consider the smooth

exact solution u1ex = sin(2πx) cos(3πy) and an exact solution that is in H4(Ω), but

not Hp(Ω) for any integer p > 4, given by u2ex =
(

sin(2πx) + x
9
2

)(
cos(3πy) + y

17
4

)
.

The discretizations proposed here have larger numbers of degrees of freedom and

nonzeros in their matrices than are typically encountered with Lagrange elements for

second-order problems. We therefore record the matrix dimensions, N , and number
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Figure 3.2: Left: unit square domain with uniform right triangular mesh (h = 1
8). Right:

L-shaped domain with uniform crossed triangular mesh (h = 1
8).

Table 3.1: Dimension, N , and the number of nonzeros, nnz, in the system matrix for
u ∈ DGk(Ω, τh), ~v ∈ RTk+1(Ω, τh), ~α ∈ RTk+1(Ω, τh) on uniform meshes of the unit square
domain in 2D.

k = 0 k = 1 k = 2

1/h N nnz N nnz N nnz
26 33,024 352,768 107,008 2,762,752 221,952 10,179,072
27 131,584 1,410,048 427,008 11,046,912 886,272 40,707,072
28 525,312 5,638,144 1,705,984 44,179,456 3,542,016 162,809,856
29 2,099,200 22,548,480 6,819,840 176,701,440 14,161,920 651,202,560

of nonzeros, nnz, in Table 3.1 for the discretizations on the unit square, for several

levels of refinement, h, and orders of the discretization, k. In all figures, we use blue,

red, and green lines to present results for k = 0, 1, 2, respectively, with filled discs

denoting the measured (u, v) error in the L2 × H(div) norm, and squares denoting

the error in α measured in the H(div) norm. The values of m approximate slopes of

the lines and, therefore, the convergence rates.

We present two-dimensional numerical experiments in two parts. First, in Sub-

section 3.6.1, we investigate the finite-element convergence and provide a comparison

between direct solvers and the multigrid-preconditioned FGMRES algorithm for H2

elliptic problems with c0 ≥ 0 and c1 > 0. Then, in Subsection 3.6.1, we focus on the

classical biharmonic problem, i.e., c0 = c1 = 0, where we investigate discretization er-

rors in one case that requires the use of the Nitsche penalty method and a second case
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Figure 3.3: Relative approximation errors and rate of convergence for the unit square
domain with c0 = 0, c1 = 1, ∂Ω = Γ0 ∪ Γ3 and (u,~v, ~α) ∈ DGk(Ω, τh) × RTk+1(Ω, τh) ×
RTk+1(Ω, τh), k = 0, 1, 2. Blue, red, and green lines present results for k = 0, 1, 2, respec-
tively. Left: smooth solution uex = u1ex. Right: rough solution uex = u2ex.

that does not. Finally, we present multigrid-preconditioned FGMRES iteration counts

for the biharmonic problem with clamped boundary conditions, which is challenging

due to the inclusion of the Nitsche boundary terms.

2D experiments with positive c1

We consider the unit square domain and plot log(Re(·, h)) against log2(1/h), so that

the slopes of the lines represent the experimentally measured convergence rates for

(u,~v, ~α) ∈ DGk(Ω, τh) × RTk+1(Ω, τh) × RTk+1(Ω, τh), for k = {0, 1, 2}. Let ∂Ω =

ΓN ∪ ΓS ∪ ΓE ∪ ΓW , meaning the North, South, East, and West faces of the square.

Figure 3.3 presents results for the problem with c0 = 0 and c1 = 1 with boundary

∂Ω = Γ0 ∪ Γ3, where Γ0 = ΓE ∪ ΓW , and Γ3 = ΓN ∪ ΓS. Figure 3.4 presents results

when c0 = 2, c1 = 4, and ∂Ω = Γ0 ∪ Γ2 ∪ Γ3 with Γ0 = ΓE ∪ ΓW , Γ2 = ΓS, and

Γ3 = ΓN . Since we omit Γ1 from these examples, there is no need to use the Nitsche

boundary terms considered in that case. We note that we see optimal convergence for

all k with (u,~v) in the L2 ×H(div) norm and ~α in the H(div) norm for the smooth

exact solution, u1ex, on the left of these figures. Considering the H4(Ω) solution, u2ex,

on the right, we see optimal convergence for small k, but degraded performance for

k = 2, where the lack of smoothness in α is reflected in the numerical results. These

results are consistent with the analysis in Corollaries 7 and 8, although we note that

the H4(Ω) case outperforms the expected convergence from the analysis.
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Figure 3.4: Relative approximation errors and rates of convergence for the unit square
domain with c0 = 2, c1 = 4, ∂Ω = Γ0∪Γ2∪Γ3 and (u,~v, ~α) ∈ DGk(Ω, τh)×RTk+1(Ω, τh)×
RTk+1(Ω, τh), k = 0, 1, 2. Blue, red, and green lines present results for k = 0, 1, 2, respec-
tively. Left: smooth solution uex = u1ex. Right: rough solution uex = u2ex.

To demonstrate the effectiveness of the monolithic multigrid preconditioner, Ta-

ble 3.2 presents iteration counts and CPU times to solution for both the multigrid-

preconditioned FGMRES iterations and the use of a direct solver (MUMPS [11],

via the PETSc interface) for the unit square domain with (u,~v, ~α) ∈ DG2(Ω, τh) ×
RT3(Ω, τh) × RT3(Ω, τh) and ∂Ω = Γ0 ∪ Γ3. We note that the iteration counts for

monolithic multigrid-preconditioned FGMRES are consistent through all runs and

mesh sizes, and that the scaling of wall-clock time for this approach is O(N) or

better throughout. While the direct solver is slightly faster for small mesh sizes,

we see worse than O(N) scaling for the wall-clock time with MUMPS at larger

mesh sizes, showing the expected behaviour. Moreover, as we vary the number of

processors over which we parallelize the computation, we see that, for sufficiently

large problems, we have good strong parallel scalability with the monolithic multi-

grid solver, although MUMPS is always faster than our multigrid implementation for

this two-dimensional problem. Table 3.3 presents the case of ∂Ω = Γ0 ∪ Γ2 ∪ Γ3,

(u,~v, ~α) ∈ DG1(Ω, τh) × RT2(Ω, τh) × RT2(Ω, τh). As we increase number of proces-

sors from 4 to 16, we see better performance with the multigrid solver than the direct

solver. Again, we have good strong parallel scalability with the monolithic multigrid

solver, showing 3.98x speedup for the 10242 mesh, while the direct solver (MUMPS)

shows only 1.54x speedup.
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Table 3.2: Wall-clock time (in seconds) and iterations to convergence with varying numbers
of processors, p, for monolithic multigrid and a direct solver (MUMPS) for the unit square
domain with c0 = 0, c1 = 1, ∂Ω = Γ0 ∪ Γ3 and (u,~v, ~α) ∈ DG2(Ω, τh) × RT3(Ω, τh) ×
RT3(Ω, τh).

h−1 Monolithic MUMPS

Iterations Time (p = 1) Time (p = 4) Time (p = 1) Time (p = 4)

26 5 27.99 11.63 5.44 2.82
27 5 102.18 35.35 21.45 11.40
28 5 405.00 127.43 93.27 46.84
29 5 1621.38 569.88 438.91 218.88

Table 3.3: Wall-clock time (in seconds) and iterations to convergence with varying numbers
of processors, p, for monolithic multigrid and a direct solver (MUMPS) for the unit square
domain with c0 = 2, c1 = 4, ∂Ω = Γ0 ∪ Γ2 ∪ Γ3 and (u,~v, ~α) ∈ DG1(Ω, τh) × RT2(Ω, τh) ×
RT2(Ω, τh).

h−1 Monolithic MUMPS

Iterations Time (p = 4) Time (p = 16) Time (p = 4) Time (p = 16)

27 5 13.91 7.15 4.97 3.29
28 5 44.31 16.08 20.72 13.30
29 5 171.90 50.39 93.93 62.33
210 5 843.30 211.65 446.23 289.33
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Figure 3.5: Relative approximation errors and rate of convergence for the biharmonic
problem in the unit square domain and ∂Ω = Γ0 ∪ Γ1 ∪ Γ3 (left), and the L-shaped domain
with ∂Ω = Γ0 (right). Blue, red, and green lines present results for k = 0, 1, 2, respectively.

The 2D biharmonic

We next consider the classical biharmonic problem with the exact solution u1ex. Figure

3.5 (left) shows results for the case where ∂Ω = Γ0 ∪ Γ1 ∪ Γ2, and we take (u,~v, ~α) ∈
DG2(Ω, τh)×RT3(Ω, τh)×RT3(Ω, τh). For this choice (k = 2), Corollary 11 gives an

expected convergence rate of O(h2) for (u,~v) and of O(h) for ~α. In contrast with that

result, we observe almost O(h5/2) for (u,~v) in the modified L2 × H(div) norm and

O(h3/2) convergence for ~α. Figure 3.5 (right) considers the L-shaped domain with

∂Ω = Γ0 and k = 0, 1, 2. Here, we observe optimal convergence rates. We note that

this is a test using a manufactured solution and not a generic smooth forcing function,

so the lack of full regularity from the domain is not expected to degrade the expected

convergence rates.

Remark 3.6.1. For the right-triangular meshes given in Figure 3.2 (Left), γ1(2) ≈ 41

and γ1(3) ≈ 62. Therefore, we choose λ = 125, and 210 respectively for the numerical

results given in Figure 3.5(Left) and Table 3.4. Note that, for both cases, λ > 3γ1,

which is necessary to satisfy the coercivity condition (3.49) for the bilinear form â.

Finally, we consider the classical biharmonic operator with clamped boundary

conditions, i.e., c0 = c1 = 0 and ∂Ω = Γ1 and (u,~v, ~α) ∈ DG3(Ω, τh) × RT4(Ω, τh) ×
RT4(Ω, τh). Table 3.4 shows the effectiveness of the monolithic multigrid solver with

an O(h−1) weight on the auxiliary operator. Dashes in the table mean that more than

100 iterations were required to converge when the residual norm or its relative reduc-

tion is less than 10−14. We note that, due to a technical limitation in PCPATCH
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Table 3.4: Number of iterations to converge with different weights on the auxiliary opera-
tor. Here (u,~v, ~α) ∈ DG3(Ω, τh)×RT4(Ω, τh)×RT4(Ω, τh). A dash means that convergence
was not achieved in 100 iterations.

PPPPPPPPPh−1

weight
1 10 20 40 80 h−1

26 25 13 13 12 12 12
27 - 18 14 12 12 12
28 - 43 24 15 13 11
29 - - - - 90 11

(where Nitsche boundary terms cannot be treated), these results use an alternate

implementation of the star relaxation scheme that is less efficient than PCPATCH.

Consequently, we do not report timings for these experiments, as they are not com-

parable to the timings reported elsewhere in this paper.

3.6.2 3D experiments

Here, we consider a test case on the unit cube, with right-hand side and bound-

ary conditions chosen so that the exact solution is uex = sin(2πx) cos(3πy) sinh(πz).

Finite-element convergence is demonstrated in Figure 3.6 for k ∈ {0, 1, 2} with ∂Ω =

Γ0 ∪ Γ2 ∪ Γ3, with Γ0 corresponding to z = 0 and z = 1, Γ2 corresponding to y = 0

and y = 1, and Γ3 corresponding to x = 0 and x = 1, showing convergence consistent

with the analysis of Corollary 8. Table 3.5 details the performance of the mono-

lithic multigrid-preconditioned FGMRES solver for k = 0, compared with a standard

direct solver (MUMPS). We see excellent performance of the monolithic multigrid

method, with iteration counts that are independent of problem size and CPU time

scaling linearly with problem size, and decreasing with parallelization for sufficiently

large problems. In contrast, we see the expected rapid growth of required CPU times

for MUMPS, and suboptimal parallel scaling, showing the utility and power of the

monolithic multigrid approach.



68

2 3 4 5 6

10−3

10−2

10−1

log2(1/h)

lo
g

(R
e
(·,
h

))

m = −1
m = −2
m = −3

Figure 3.6: Relative approximation errors and rates of convergence for the unit cube
domain ∂Ω = Γ0 ∪ Γ2 ∪ Γ3, c0 = 4 and c1 = 2. Blue, red, and green lines present results for
k = 0, 1, 2, respectively.

Table 3.5: Wall-clock time (in seconds) and iterations to convergence with varying numbers
of processors, p, for monolithic multigrid and a direct solver (MUMPS) for the unit cube
domain with c0 = 4, c1 = 2, ∂Ω = Γ0 ∪ Γ2 ∪ Γ3 and (u,~v, ~α) ∈ DG0(Ω, τh) × RT1(Ω, τh) ×
RT1(Ω, τh).

h−1 Monolithic MUMPS

Iterations Time (p = 1) Time (p = 8) Time (p = 1) Time (p = 8)

23 9 5.55 2.80 1.51 0.69
24 9 31.10 7.30 11.05 3.75
25 9 229.65 38.31 154.33 44.07
26 9 1847.65 280.42 5173.58 1167.10
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3.7 Conclusion

We consider the mixed finite-element approximation of solutions to H2-elliptic fourth-

order problems, achieved by the transformation of the fourth-order equation into a

system of PDEs. We find that under natural assumptions on the coefficients of the

problem, three combinations of boundary conditions lead to optimal finite-element

convergence. For the fourth case of boundary conditions (“clamped” boundary con-

ditions, on the solution and its normal derivative), suboptimal rates of convergence

are expected and observed when implemented using Nitsche’s method. While the ap-

proach is applicable in both two and three dimensions, we note that it is particularly

attractive in 3D, where the cost of conforming methods is prohibitive. It remains an

open question whether or not it is possible to employ alternative approaches (such

as adapting the Nitsche boundary conditions, or the use of alternative penalty ap-

proaches) to regain optimal finite-element convergence for the boundary conditions

where suboptimal convergence is proven and observed here. We additionally propose

a monolithic multigrid algorithm with optimal scaling for the resulting discrete lin-

ear systems. For three-dimensional problems, this approach yields a preconditioned

FGMRES iteration that dramatically outperforms state-of-the-art direct solvers.



Chapter 4

Finite-element discretization of the

smectic density equation

Abstract1

The density variation of smectic A liquid crystals is modelled by a fourth-order PDE,

which exhibits two complications over the biharmonic or other typical H2-elliptic

fourth-order problems. First, the equation involves a “Hessian-squared” (div-div-

grad-grad) operator, rather than a biharmonic (div-grad-div-grad) operator. Sec-

ondly, while positive-definite, the equation has a “wrong-sign” shift, making it some-

what more akin to a Helmholtz operator, with lowest-energy modes arising from

certain plane waves, than an elliptic one. In this paper, we analyze and compare

three finite-element formulations for such PDEs, based on H2-conforming elements,

the C0 interior penalty method, and a mixed finite-element formulation that explicitly

introduces approximations to the gradient of the solution and a Lagrange multiplier.

The conforming method is simple but is impractical to apply in three dimensions;

the interior-penalty method works well in two and three dimensions but has lower-

order convergence and (in preliminary experiments) seems difficult to precondition;

the mixed method uses more degrees of freedom, but is amenable to monolithic multi-

grid preconditioning. Numerical results verify the finite-element convergence for all

discretizations, and illustrate the trade-offs between the three schemes.

1This work is to be submitted as “Finite-element discretization of the smectic density equation”
by Patrick E. Farrell, Abdalaziz Hamdan, and Scott P. MacLachlan.
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4.1 Introduction

Recent years have seen significant and successful effort in developing numerical models

of various liquid crystalline materials [4, 5, 9, 23, 53, 100, 112, 114]. In these models,

equilibrium states of liquid crystals usually correspond to minimizers of a given energy

functional, which can be directly discretized using finite-element (or other) variational

techniques. Smectic A liquid crystals are characterized by their natural propensity to

form layers with periodic variation in the density of the liquid crystal aligned with

the orientation of the molecules. While some models make use of a complex order

parameter as a model of the energy of liquid crystals [55], several recent papers have

proposed models based on a real-valued density variation [22,112,138]. For example,

Pevnyi et al. [112] propose a model

E(u, ~ν) =

∫
Ω

a

2
u2 +

b

3
u3 +

c

4
u4 +B

∣∣∇∇u+ q2~ν ⊗ ~νu
∣∣2 +

K

2
|∇~ν|2, (4.1)

where Ω ⊂ Rd, for d ∈ {2, 3}, u : Ω → R represents the variation in the density of

the liquid crystal from its average density, ~ν is the unit-length director of the liquid

crystal (the local axis of average molecular alignment), and a, b, c, q,K, and B are

real-valued constants determined by the liquid crystal under consideration. Of these,

the smectic wavenumber, q, is notable because it prescribes a preferred wavelength

for the solution of 2π/q. Here, and in what follows, we use |T |2 = T : T to denote the

Frobenius norm squared of a tensor T (of any rank), defined as the sum of squares of

the entries in T at a given point in Ω.

It is well-known that representing the orientation of the liquid crystal with a vector-

valued director cannot represent certain defects of the liquid crystal [21]. In [138], Xia

et al. adapted (4.1) to make use of a tensor-valued order parameter in place of the

director field, proposing

E(u,Q) =

∫
Ω

a

2
u2+

b

3
u3+

c

4
u4+B

∣∣∣∣∇∇u+ q2

(
Q +

Id
d

)
u

∣∣∣∣2+
K

2
|∇Q|2+fn(Q), (4.2)

where Q is the tensor-valued order parameter, Id is the d × d identity matrix, and

fn(Q) = −l tr(Q2) + l
(
tr(Q2)

)2
for d = 2 and fn(Q) = −l tr(Q2) − l

3
tr(Q3) +

l
2

(
tr(Q2)

)2
in three dimensions. Here, the penalty parameter, l, and the functions

fn(Q) are chosen so that the minimizer of
∫

Ω
fn(Q) is of the form Q = ~ν⊗~ν− Id

d
, and
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are included in the energy to weakly enforce the rank-one condition implied by (4.1).

A related model was proposed by Ball & Bedford [22]. While there remain many open

questions about the physical values of the constants a, b, c, q,K, and B, an important

feature of these models is the energetic competition between the term encouraging

alignment of the orientation and density variation, scaled by B, and the deformation

of the director field, scaled by K. The Euler–Lagrange equations for either of these

functionals naturally lead to a coupled system of PDEs, with a fourth-order operator

acting on u and a second-order operator acting on ~ν or Q. While the discretization of

the vector or tensor Laplacian is relatively standard, the fourth-order PDE involving

u, which we refer to as the “smectic density equation,” is of a type not previously

studied in the literature.

Motivated by such examples, we consider minimization of a simplification of Equa-

tion (4.2) with suitable boundary conditions, given in variational form as

min
v∈H2(Ω)

B

2

∫
Ω

∣∣∇∇v + q2T v
∣∣2 +

m

2

∫
Ω

v2 −
∫

Ω

fv, (4.3)

where, motivated by the above, T is a given bounded d × d tensor, with |T |2 =

T : T ≤ µ1 for O(1) constant µ1, while m and q are O(1) positive constants, and

0 < B ≤ 1. We assume Ω ⊂ Rd, d ∈ {2, 3}, to be a bounded simply connected

polytopal domain with Lipschitz boundary. Note that if b = c = 0, and Q is fixed

in (4.2), then Energies (4.2) and (4.3) are the same, but the source f is enforced in

(4.3). Sufficiently smooth extremizers of this energy must satisfy its Euler–Lagrange

equations, which yield the fourth-order smectic density equation,

B∇ · ∇ ·
(
∇∇u+ q2Tu

)
+Bq2T : ∇∇u+ (Bq4T : T +m)u = f. (4.4)

We consider finite-element formulations for this fourth-order problem, with a par-

ticular focus on the treatment of the boundary conditions that arise naturally from

the transition from the variational to strong forms. Two formulations are based on

discretizing (4.3), using either H2-conforming or C0 interior penalty (C0IP) methods.

The third formulation is based on mixed finite-element principles, introducing the

gradient of the solution as an explicit variable constrained using a Lagrange multi-

plier, and leverages standard discretizations for the Stokes problem in order to achieve

inf-sup stability. Both the C0IP and mixed approaches are quite general, in the sense
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that we achieve high-order convergence when using high-order elements if the solution

is sufficiently smooth. However, these formulations provide slightly suboptimal con-

vergence, as shown later. Complications to achieving optimal convergence come from

the use of Nitsche’s method to weakly enforce essential boundary conditions, weakly

imposing C1 continuity in the C0IP approach, and the spaces chosen to achieve inf-sup

stability in the mixed approach.

Finite-element methods for fourth-order H2-elliptic problems have been exten-

sively studied. These include conforming methods, such as the use of Argyris elements,

nonconforming methods [41, 52, 131], C0 interior penalty methods (C0IP, which are

also nonconforming) [18,40,42,127], and mixed-finite element methods, including two-

field [51, 52, 102], three-field [24, 66], and four-field discretizations [27, 50, 97]. While

conforming methods are attractive in two dimensions, the natural extension of Ar-

gyris elements to R3 requires the use of ninth-order polynomials on each element [141],

which is prohibitively expensive in comparison to low-order methods. While a C0IP

method was used in [138] and is analyzed herein, preliminary experiments showed that

it is difficult to develop effective preconditioners for this discretization, motivating the

consideration of alternate approaches. Thus, we also propose a mixed finite-element

discretization of (4.3) that does not require growth in polynomial order in three di-

mensions, and which we expect to be more amenable to the development of effective

preconditioners, similar to those in [66].

An additional challenge in considering the models of smectic LCs in [22, 112, 138]

is that of proper treatment of the boundary conditions. In particular, these models

typically include only natural BCs on the density variation, u, and do not strongly im-

pose Dirichlet boundary conditions, such as the “clamped” boundary conditions that

are commonly considered for the biharmonic problem. Indeed, the case of clamped

boundary conditions, where the Hessian and Laplacian weak forms of a fourth-order

operator are equivalent, has been extensively studied [27,42,50,51,97,102]. A central

question in this work is how to treat the more general forms of boundary conditions

that arise when moving from the variational form in (4.3) to the strong form in (4.4),

summarized in (4.13)-(4.16) below. To our knowledge, existing results in the literature

treat the cases of clamped boundary conditions, Cahn-Hilliard boundary conditions

(a special case of those in (4.16) when q = 0) [40], and simply supported boundary

conditions (a special case of those in (4.13)) [39], but not the case of full Neumann

boundary conditions. Given the simply supported boundary conditions, existence of
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minimizers of (4.2) when q ≥ 0 as well as error estimates for its discretization us-

ing C0 interior penalty methods when q = 0 were obtained in [137]. Here, we prove

well-posedness of (4.3) and provide error estimates for its discretization using Argyris

elements, C0IP, and a mixed finite-element method.

This paper is organized as follows. A brief summary of the tools needed for the

finite-element analysis is presented in Section 4.2. The continuum analysis, including

the weak forms and uniqueness theory, is presented in Section 4.3. In Section 4.4, we

present the conforming, C0IP, and mixed finite-element methods, and analysis of both

well-posedness and error estimates for these methods. Finally, numerical experiments

to compare the different finite-element methods are presented in Section 4.5.

4.2 Preliminaries

We recall the standard Sobolev spaces

H1
Γ(Ω) =

{
u ∈ H1(Ω)

∣∣ u = 0 on Γ
}
,

HΓ(div; Ω) = {~v ∈ H(div; Ω)| ~v · ~n = 0 on Γ} ,

where Γ ⊂ ∂Ω and ~n is the outward unit normal to Γ. Let {τh} be a quasiuniform

family of triangulations of Ω, and let CGk(Ω, τh), DGk(Ω, τh), and RTk(Ω, τh) be the

standard continuous Lagrange, discontinuous Lagrange, and Raviart-Thomas approx-

imation spaces of degree k, respectively, on mesh τh. We also define CGΓ
k (Ω, τh) =

CGk(Ω, τh) ∩H1
Γ(Ω) and RT Γ

k (Ω, τh) = RT k(Ω, τh) ∩HΓ(div; Ω).

Remark 4.2.1. In what follows, we use C to represent a generic positive constant

that can depend on the domain, shape regularity of the triangulation, τh, and the

polynomial degree k of the finite-element space, but not on the mesh parameter, h,

nor the smectic wavenumber, q, and may be different in different instances. Where

needed, we will use
{
Ci
}

to denote different arbitrary constants in the same expression.

To prove well-posedness of the original continuum problem, we make use of a

standard estimate of ‖u‖2
0,∂Ω =

∫
∂Ω
u2ds.
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Theorem 12. [77, Theorem 1.5.1.10] There exists a constant C > 0, such that

‖u‖2
0,∂Ω ≤ C

[
ε

1
2‖∇u‖2

0 +
1

ε
1
2

‖u‖2
0

]
, (4.5)

for all u ∈ H1(Ω) and ε ∈ (0, 1).

As is typical in the analysis of finite-element methods, our well-posedness results

will rely on a Poincaré inequality. In order to treat a more general set of boundary

conditions, we state a more general form of the standard inequality.

Lemma 6. (Poincaré Inequality [38, 44, 107, 135]) If u ∈ Hj(Ω), j ∈ {1, 2}, then

‖u‖2
j−1 ≤ C

(
|u|2j + ξ2(u)

)
,

where ξ is any seminorm on Hj(Ω) with the properties that

• There exists a constant C > 0 such that, for all u ∈ Hj(Ω), we have

ξ(u) ≤ C‖u‖j.

• If a is a polynomial of degree less than j (i.e., a constant function if j = 1 or

linear function if j = 2), ξ(a) = 0 if and only if a = 0.

In particular, for j = 1 and any functions ψ1 and ψ2 that are square integrable on

Ω and ∂Ω, respectively, with
∫

Ω
ψ1 6= 0, and

∫
∂Ω
ψ2 6= 0, then the Poincaré inequality

above holds for either seminorm ξ1(u) or ξ2(u) [38], defined as

ξ1(u) =

∣∣∣∣∫
Ω

ψ1u

∣∣∣∣ , ξ2(u) =

∣∣∣∣∫
∂Ω

ψ2u

∣∣∣∣ .
Note that the choices of ψ1 = 1 on Ω, and ψ2 = 1 on ∂Ω lead to the classical Poincaré

inequalities that are most commonly used. For j = 2, we will use ξ(u) = ‖u‖0, which

satisfies the conditions above.

A useful function in our analysis is the solution of −∆S = 1 with homogeneous

Dirichlet boundary conditions. We next recall some properties of this function and

its discrete approximation.
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Lemma 7. The weak solution of −∆S = 1, with homogeneous Dirichlet boundary

conditions, has positive mean and bounded H1 norm. In addition, the discrete solu-

tion, Sh ∈ CG∂Ω
1 (Ω, τh), of 〈∇Sh,∇v〉 = 〈1, v〉 for all v ∈ CG∂Ω

1 (Ω, τh) has the same

properties.

Proof. The solutions, S and Sh , satisfy ‖∇S‖2
0 =

∫
Ω
S and ‖∇Sh‖2

0 =
∫

Ω
Sh. There-

fore, S and Sh have positive means. In addition, the H1-regularity results that

‖S‖1 ≤ C‖1‖0 = C
√

Area(Ω) and ‖Sh‖1 ≤ C
√

Area(Ω) also hold [32].

Our well-posedness proofs also rely on the standard Helmholtz decomposition in

2D, which we first state for the continuum case. We use the standard definition of

the curl of a scalar function in 2D, as ∇× p =

[
py

−px

]
.

Lemma 8. (2D continuous Helmholtz decomposition [14, 74, 120]) Let ∂Ω = Γa ∪
Γb, where Γa and Γb are disjoint. For ~α ∈ HΓa(div; Ω), the following Helmholtz

decomposition holds

~α = ∇φ+∇× p, (4.6)

where p ∈ H1
Γa

(Ω), and φ ∈ H1
Γb

(Ω) is the solution of
∫

Ω
∇φ ·∇χ = −

∫
Ω
∇· ~αχ, ∀χ ∈

H1
Γb

(Ω). Furthermore, p is a zero-mean function if Γa = ∅, and φ is a zero-mean

function if Γb = ∅. This decomposition is orthogonal in the L2 and H(div) norms.

Remark 4.2.2. Assuming, in addition to the assumptions of Lemma 8 that ~α ∈
[H t+2(Ω)]

2∩HΓa(div; Ω), ∇· ~α ∈ H t+1
0 (Ω), for t ≥ 0, φ ∈ H1

Γb
(Ω) is the solution of the

mixed boundary value problem of the form
∫

Ω
∇φ · ∇χ = −

∫
Ω
∇ · ~αχ, ∀χ ∈ H1

Γb
(Ω),

and the partition into Γa and Γb satisfies the conditions in [77, Theorem 5.1.1.5] for

there to be no admissible ”singular solutions” to the variational problem. Then, φ ∈
H t+3(Ω)∩H1

Γb
(Ω), and p is at least in % = {p ∈ H t+2(Ω)∩H1

Γa
| ∇× p ∈ [H t+2(Ω)]2}.

To see that this regularity can be achieved, we next state a regularity result for

solution of the Poisson problem with mixed boundary conditions on the unit square.

Lemma 9. Let u be the solution of

−∆u = f, in Ω,

u = 0, on D ,
∂u

∂~n
= 0, on N ,
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where f ∈ H t
0(Ω), t > 0, and Ω = (0, 1)2, ∂Ω = ΓN ∪ ΓS ∪ ΓE ∪ ΓW , where

ΓN , ΓS, ΓE, and ΓW are the North, South, East, and West faces of the square, respec-

tively, and D , N are the faces on which we impose Dirichlet and Neumann boundary

conditions, respectively. Then, if any of the following conditions hold, u ∈ H t+2(Ω),

• D = ∂Ω or N = ∂Ω , and t is even,

• D = ΓE ∪ ΓW and N = ΓN ∪ ΓS, and t is odd, or

• D = ΓN ∪ ΓS and N = ΓE ∪ ΓW , and t is odd.

Proof. This result is a direct consequence of [77, Theorem 5.1.1.5]. Note that, in the

notation of [77], we have Φj = 0 if edge Γj ∈ N , and Φj = π
2

if edge Γj ∈ D . Then, if

j and j + 1 denote adjacent edges, we require that
Φj−Φj+1+(t+1)π

2

π
is not an integer to

achieve the stated regularity result, which is guaranteed for the cases given above. In

addition, for each pair of adjacent edges, 2
Φj−Φj+1+mπ

π
is an integer for any integer m,

which precludes any singular solutions. These conditions are sufficient to guarantee

that u ∈ H t+2(Ω).

We also make use of the discrete analogue of Lemma 8, stated next.

Lemma 10. [14, 15] Under the same assumptions as Lemma 8, the Helmholtz de-

composition of RT Γa
k+1(Ω, τh) is

RTk+1(Ω, τh) =

(
∇Γa
h DGk(Ω, τh)

)
⊕
(
∇× CGΓa

k+1(Ω, τh)

)
, (4.7)

where ∇Γa
h is the discrete gradient operator, ∇Γa

h : DGk(Ω, τh) → RT Γa
k+1(Ω, τh), such

that ∫
Ω

∇Γa
h u · ~v = −

∫
Ω

u∇ · ~v, ∀~v ∈ RT Γa
k+1(Ω, τh). (4.8)

This decomposition is orthogonal in the L2 and H(div) norms.

Finally, we note that the Helmholtz decomposition allows us to define an alterna-

tive norm on H(div; Ω), which will be useful in the later analysis.

Remark 4.2.3. Let ~α1 and ~α2 ∈ H(div; Ω) with ~α1 = ∇φ1 + ∇ × p1 and ~α2 =

∇φ2 +∇× p2, computed as in Lemma 8. The following defines an inner product on
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H(div; Ω):

(~α1, ~α2)Div = q−4

(∫
Ω

p1p2 +

∫
Ω

∇φ1 · ∇φ2 +

∫
Ω

∇ · ~α1∇ · ~α2

)
, (4.9)

where q is a positive constant (which will be taken as the q in (4.3)).

4.3 Continuum Analysis

Consider the fourth-order problem,

B∇ · ∇ ·
(
∇∇u+ q2Tu

)
+Bq2∇∇u : T + (Bq4T : T +m)u = f, (4.10)

where T is a d × d tensor with |T |2 = T : T ≤ µ1 for some constant µ1 almost

everywhere in Ω̄, m and q are O(1) positive constants, and 0 < B ≤ 1. Let u ∈ H2(Ω)

satisfy (4.10); given φ ∈ H2(Ω), a test function, integration by parts gives∫
Ω

fφ = a(u, φ) +B

∫
∂Ω

φ∇· (∇∇u+ q2Tu) ·~n−B
∫
∂Ω

∇φ · (∇∇u+ q2Tu) ·~n (4.11)

where the bilinear form, a, is given by

a(u, φ) = B

∫
Ω

∇∇u : ∇∇φ+Bq2

∫
Ω

Tu : ∇∇φ+Bq2

∫
Ω

∇∇u : Tφ

+

∫
Ω

(Bq4T : T +m)uφ. (4.12)

From (4.11), we identify that two boundary conditions are required on any segment

of ∂Ω, and that certain boundary conditions on u arise naturally from the variational

formulation. Consequently, we write ∂Ω = Γ0∪Γ1∪Γ2∪Γ3 with Γi∩Γj = ∅ for i 6= j,

and specify

u = 0, (∇∇u+ q2Tu) · ~n = ~0, on Γ0, (4.13)

u = 0, ∇u = ~0, on Γ1, (4.14)

∇ · (∇∇u+ q2Tu) · ~n = 0, (∇∇u+ q2Tu) · ~n = ~0, on Γ2, (4.15)

∇ · (∇∇u+ q2Tu) · ~n = 0, ∇u = ~0, on Γ3. (4.16)
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As typical, we consider homogeneous boundary conditions here, so that the bound-

ary integrals in (4.11) vanish, but the results hold true for inhomogeneous boundary

conditions if the traces of these quantities are smooth enough on ∂Ω. Consequently,

we define

V =
{
u ∈ H2(Ω) : u = 0 on Γ0 ∪ Γ1 and ∇u = ~0 on Γ1 ∪ Γ3

}
.

Because of the dependence on q in the bilinear form, we analyze the problem in a

q-dependent norm on V , given by

‖u‖2
2,q = q−4‖∇∇u‖2

0 + q−4‖∇u‖2
0 + ‖u‖2

0. (4.17)

Assumptions. In all results that follow, we assume q ≥ 1 and that there exists an

O(1) constant, s, such that sq−4 ≤ B ≤ 1, as this is the case of interest.

Theorem 13. Given f ∈ L2(Ω), the variational problem to find u ∈ V such that

a(u, φ) =

∫
Ω

fφ for all φ ∈ V (4.18)

is well-posed.

Proof. By the Lax–Milgram Theorem, this variational problem has a unique solution

if the bilinear form a is coercive and continuous on V in the ‖ · ‖2,q norm, and the

associated linear form is continuous. The assumption that f ∈ L2(Ω) is sufficient to

guarantee that the linear form is continuous.

To prove continuity of a, we have

a(u, φ) = B

∫
Ω

∇∇u : ∇∇φ+Bq2

∫
Ω

∇∇u : Tφ+Bq2

∫
Ω

∇∇φ : Tu

+

∫
Ω

(Bq4T : T +m)uφ

≤ B‖∇∇u‖0‖∇∇φ‖0 +Bq2 (‖∇∇u‖0‖Tφ‖0) +Bq2 (‖∇∇φ‖0‖Tu‖0)

+ (Bq4µ1 +m)‖u‖0‖φ‖0

≤ Bq4‖u‖2,q‖φ‖2,q + 2B
√
µ1q

4‖u‖2,q‖φ‖2,q + (Bq4µ1 +m)‖u‖2,q‖φ‖2,q,

where we have used the fact that ‖∇∇u‖0 ≤ q2‖u‖2,q. This gives a q-dependent

continuity bound, with a(u, φ) ≤ CBq4‖u‖2,q‖φ‖2,q, where C = 1 + 2
√
µ1 +µ1 +m/s.
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To prove coercivity, we first observe that, for any 0 < C1 < 1,

a(u, u) = B‖∇∇u‖2
0 + 2Bq2

∫
Ω

∇∇u : Tu+

∫
Ω

(Bq4T : T +m)u2

≥ B(1− C1)‖∇∇u‖2
0 +Bq4

(
1− 1

C1

)
‖Tu‖2

0 +m‖u‖2
0

≥ B (1− C1) ‖∇∇u‖2
0 +

(
m+Bq4µ1

(
1− 1

C1

))
‖u‖2

0. (4.19)

Note that since 0 < C1 < 1, 1 − 1
C1

< 0, so we get a lower bound for the expression

on the second line by using the upper bound ‖Tu‖2
0 ≤ µ1‖u‖2

0. Let C1 = Bµ1q4

Bµ1q4+C2
for

any constant 0 < C2 < m. Then, 1− C1 = C2

Bq4µ1+C2
, and 1− 1

C1
= − C2

Bq4µ1
, giving

a(u, v) ≥ B

(
C2

Bµ1q4 + C2

)
‖∇∇u‖2

0 + (m− C2) ‖u‖2
0. (4.20)

Now, since sq−4 ≤ B ≤ 1, B
(

C2

Bµ1q4+C2

)
=

(
C2

µ1q4+
C2
B

)
is an O(q−4) constant. That

is, there exists a constant C3 such that

a(u, u) ≥ C3

(
q−4‖∇∇u‖2

0 + ‖u‖2
0

)
. (4.21)

We then use Lemma 6, with j = 2, and Φ(u) = ‖u‖0. That is, there exists a constant

C4 such that ‖∇u‖2
0 ≤ C4 (‖∇∇u‖2

0 + ‖u‖2
0), giving

a(u, u) ≥ C3q
−4
(
‖∇∇u‖2

0 + q4‖u‖2
0

)
≥ C3q

−4

2

(
‖∇∇u‖2

0 + ‖u‖2
0

)
+
C3

2

(
q−4‖∇∇u‖2

0 + ‖u‖2
0

)
≥

(
C3

2C4

q−4‖∇u‖2
0 +

C3

2

(
q−4‖∇∇u‖2

0 + ‖u‖2
0

))
,

As a result, a(u, u) ≥
(

min{ C3

2C4
, C3

2
}
)
‖u‖2

2,q, giving an O(1) coercivity constant.

The mixed finite-element formulation presented below relies on a reformulation of

(4.10) to a lower-order system. We introduce ~v = ∇u and ~α = B∇ · (∇v + q2Tu).
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Then, Equation (4.10) is equivalent to the system of equations

∇ · ~α +Bq2∇~v : T + (Bq4T : T +m)u = f, (4.22)

~α−B∆~v −Bq2∇ · (Tu) = 0, (4.23)

(~v −∇u) = 0. (4.24)

To convert this system to weak form, we multiply (4.22), (4.23), and (4.24) by the

test functions φ, ~ψ, and ~β, respectively, and integrate by parts. This yields the weak

form of finding (u,~v, ~α) ∈ L2(Ω)× V ×HΓ2∪Γ3(div; Ω) such that∫
Ω

∇ · ~αφ+Bq2∇~v : Tφ+ (Bq4T : T +m)uφ =

∫
Ω

fφ, ∀φ ∈ L2(Ω), (4.25)∫
Ω

~α · ~ψ +
(
B∇~v +Bq2Tu

)
: ∇~ψ = 0, ∀~ψ ∈ V, (4.26)∫

Ω

~β · ~v +

∫
Ω

u∇ · ~β = 0, ∀~β ∈ HΓ2∪Γ3(div; Ω), (4.27)

where V =
{
~v ∈ [H1

Γ1∪Γ3
(Ω)]d, ~v × ~n = 0 on Γ0

}
. Note that since u = 0 on Γ0, we are

free to require the boundary condition ~v × ~n = 0 on Γ0, which will be needed below.

Equivalently, the system (4.25)-(4.27) can be written as a saddle-point system, to find

(u,~v, ~α) ∈ L2(Ω)× V ×HΓ2∪Γ3(div; Ω) such that

A
(

(u,~v), (φ, ~ψ)
)

+ b
(
~α, (φ, ~ψ)

)
= F (φ), ∀(φ, ~ψ) ∈ L2(Ω)× V (4.28)

b
(
~β, (u,~v)

)
= 0, ∀~β ∈ HΓ2∪Γ3(div; Ω) (4.29)

where

A
(

(u,~v), (φ, ~ψ)
)

= B

∫
Ω

∇~v : ∇~ψ +Bq2

∫
Ω

∇~v : Tφ+Bq2

∫
Ω

∇~ψ : Tu

+

∫
Ω

(Bq4T : T +m)uφ, (4.30)

b (~α, (u,~v)) =

∫
Ω

~α · ~v +

∫
Ω

u∇ · ~α, (4.31)

F (φ) =

∫
Ω

fφ. (4.32)

Here, we see that while α is defined in terms of u above, it serves as a Lagrange

multiplier in the saddle-point form, weakly enforcing that ~v = ∇u.
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In the next theorem, we prove well-posedness of (4.28)-(4.29) in the two-dimensional

case. Here, we make use of a similarly weighted product norm for (u,~v), defined as

‖(u,~v)‖2
0,q,1 = ‖u‖2

0 + q−4‖~v‖2
1. (4.33)

Theorem 14. Assume that ∂Ω 6= Γ3. Given f ∈ L2(Ω), (4.28)-(4.29) is well-posed

using the product norm defined in (4.33) for (u,~v) and the HDiv norm induced by (4.9)

for the Helmholtz decomposition, ~α = ∇φ+∇× p, given in Lemma 8.

Proof. By Brezzi’s theory, proving well-posedness requires establishing the coercivity

and continuity of A, an inf-sup condition on b, and the continuity of b. As above,

F (φ) is clearly continuous.

We first consider the two continuity bounds. The continuity bound for A gives an

O(Bq4) continuity constant, established similarly to the proof in Theorem 13. The

Helmholtz decomposition in Lemma 8 and integration by parts are needed to show

continuity of b. Let ~α ∈ HΓ2∪Γ3(div; Ω), writing ~α = ∇φ+∇×p, where φ ∈ H1
Γ0∪Γ1

(Ω)

and p ∈ H1
Γ2∪Γ3

(Ω). Then,

b (~α, (u,~v)) =

∫
Ω

~α · ~v +

∫
Ω

u∇ · ~α =

∫
Ω

(∇φ+∇× p) · ~v +

∫
Ω

u∇ · ~α

=

∫
Ω

∇φ · ~v +

∫
Ω

p∇× ~v +

∫
Ω

u∇ · ~α

≤ q4
(
q−2‖∇φ‖0

) (
q−2‖~v‖0

)
+ q4

(
q−2‖p‖0

) (
q−2‖∇ × ~v‖0

)
+ q2‖u‖0

(
q−2‖∇ · ~α‖0

)
≤ q4

(
1 +
√

2 + q−2
)
‖(u,~v)‖0,q,1‖~α‖Div,

where we have used the fact that ‖∇ × ~v‖0 ≤
√

2‖∇~v‖0. We note that the “extra”

boundary condition imposed on ~v ∈ V is needed here to ensure the boundary integral

from integration-by-parts is identically zero.

We now show that the bilinear form, A, is coercive on

Λ = {(u, v) ∈ L2(Ω)×H1
Γ1∪Γ3

(Ω) : b (~α, (u,~v)) = 0, ∀~α ∈ HΓ2∪Γ3(div; Ω)}.
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Similarly to the proof of Inequality (4.21), there exists C1 > 0 such that

A
(
(u,~v), (u,~v)

)
≥ C1

(
q−4‖∇~v‖2

0 + ‖u‖2
0

)
∀ (u,~v) ∈ Λ. (4.34)

If (u,~v) ∈ Λ, then b(βi, (u,~v)) = 0 for the particular choices β1 = [S, 0]> and β2 =

[0, S]>, where S is the function defined in Lemma 7. In other words,
∫

Ω
~βi ·~v+

∫
Ω
u∇·

~βi = 0 for i = 1, 2, which gives∣∣∣∣∫
Ω

Sv1

∣∣∣∣ =

∣∣∣∣∫
Ω

Sxu

∣∣∣∣ ≤ ‖Sx‖0‖u‖0 ≤ C2‖u‖0, and

∣∣∣∣∫
Ω

Sv2

∣∣∣∣ =

∣∣∣∣∫
Ω

Syu

∣∣∣∣ ≤ ‖Sy‖0‖u‖0 ≤ C2‖u‖0.

As S has a positive mean, we can apply the Poincaré inequality in the form given in

Lemma 6, which leads to the fact

‖~v‖2
0 ≤ C3

(
‖u‖2

0 + ‖∇~v‖2
0

)
. (4.35)

Combining this with Inequality (4.34) then gives

A ((u,~v), (u,~v)) ≥ C4‖(u,~v)‖0,q,1.

That is, coercivity of A holds with an O(1) constant.

Next, we prove the required inf-sup condition, of the form

I = sup
(u,~v)∈L2×V

∫
Ω
~α · ~v +

∫
Ω
u∇ · ~α√

‖u‖2
0 + q−4‖~v‖2

1

≥ Cq2‖~α‖Div, ∀~α ∈ HΓ2∪Γ3(div; Ω).

In our mixed formulation, the boundary condition on u is weakly enforced. Therefore,

given ~α = ∇η + ∇ × p, where p ∈ H1
Γ2∪Γ3

(Ω) and η ∈ H1
Γ0∪Γ1

, we may choose

u = C1 (∇ · ~α− η), for a positive constant, C1, to be specified later. This choice of u

might not be zero on Γ0 ∪ Γ1. Note that

‖u‖0 = C1‖∇·~α−η‖0 ≤ C1 (‖∇ · ~α‖0 + ‖η‖0) , and

∫
Ω

u∇·~α = C1

(
‖∇ · ~α‖2

0 + ‖∇η‖2
0

)
.

If Γ3 is a proper subset of ∂Ω, then the inf-sup condition of [30, Lemma 2.7] establishes
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that for all p ∈ H1
Γ2∪Γ3

(Ω), there exists ~ψ ∈ [H1
Γ1∪Γ2

(Ω)]2 such that
∫

Ω
p∇ · ~ψ ≥ ‖p‖2

0,

and ‖~ψ‖2
1 ≤ C2‖~p‖2

0. Note that

• If ∂Ω = Γ0 ∪ Γ1, then p is a zero-mean function, and such a ~ψ exists by the

standard inf-sup condition for the Stokes problem with Dirichlet boundary con-

ditions.

• Otherwise (so long as ∂Ω 6= Γ3), such a ~ψ ∈ V exists with ~ψ = ~0 on Γ0∪Γ1∪Γ3

and ~ψ × ~n = 0 on Γ2, following [30, Lemma 2.7].

To establish the inf-sup condition needed here, we then choose ~v = [ψ2,−ψ1]T which,

by construction, belongs to V , giving ∇ · ~ψ = ∇× ~v and ‖~ψ‖2
1 = ‖~v‖2

1. With this,

I ≥ sup
(u,~v)∈L2×V

∫
Ω
∇η · ~v +

∫
Ω
p∇× ~v +

∫
Ω
u∇ · ~α√

‖u‖2
0 + q−4‖~v‖2

1

≥ sup
(u,~v)∈L2×V

∫
Ω
∇η · ~v +

∫
Ω
p∇× ~v +

∫
Ω
u∇ · ~α√

‖u‖2
0 + ‖~v‖2

1

≥
‖p‖2

0 + C1‖∇ · ~α‖2
0 + C1‖∇η‖2

0 − C3

2
‖∇η‖2

0 − 1
2C3
‖~v‖2

0√
C2‖p‖2

0 + 2C2
1‖η‖2

0 + 2C2
1‖∇ · ~α‖2

0

≥

(
1− C2

2C3

)
‖p‖2

0 + C1‖∇ · ~α‖2
0 +

(
C1 − C3

2

)
‖∇η‖2

0√
C2‖p‖2

0 + 2C2
1‖η‖2

0 + 2C2
1‖∇ · ~α‖2

0

,

where we use the facts that
∫

Ω
p∇ × ~v ≥ ‖p‖2

0, ‖~v‖2
1 ≤ C2‖p‖2

0, and
∣∣∫

Ω
∇η · ~v

∣∣ ≤
C3

2
‖∇η‖2

0 + 1
2C3
‖~v‖2

0. Choose C1 >
C3

2
> C2

4
. Note that ‖η‖2

0 ≤ C4‖∇η‖2
0 for some

positive C4 by the Poincaré inequality. Thus,

I ≥

(
1− C2

2C3

)
‖p‖2

0 + C1‖∇ · ~α‖2
0 +

(
C1 − C3

2

)
‖∇η‖2

0√
C2‖p‖2

0 + 2C2
1C4‖∇η‖2

0 + 2C2
1‖∇ · ~α‖2

0

≥ C (‖p‖0 + ‖∇η‖0 + ‖∇ · ~α‖0) ≥ Cq2‖~α‖Div.

As a result, the inf-sup condition holds true and the three-field formulation is well-

posed.

Remark 4.3.1. The dependence on q of the continuity, coercivity, and inf-sup con-

stants in the proofs above can lead to pessimistic error bounds for the finite-element

methods developed below. While it is tempting to try and prove convergence using
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other weighted H2 norms or L2 × H1 product norms, we are unaware of a simple

weighting of the terms in such a norm that leads to O(1) continuity and coercivity

constants in the weighted norms. We note that a common use case of these results

will be when Bq4 is an O(1) constant, in which case it is only the inf-sup constant

and continuity bounds for b that are suboptimal.

Corollary 9. Suppose Ω ⊂ R2 has ∂Ω =
{
∪N1
i=1Γi

}
∪
{
∪N2
i=1Γ̄i

}
, for Γi = (x, aix+ bi),

and Γ̄i = (ciy+di, y) where N1 and N2 are positive integers. Let u and (ū, ~v, ~α) be the

solutions of Problems (4.18) and (4.28)-(4.29), respectively. Further, assume u and

ū are in H t(Ω), t ≥ 4, and T ∈ Ct−2(Ω), where Cm(Ω) is the space of 2× 2 tensors

with each component in Cm(Ω). Then u and (ū, ~v, ~α) are equivalent in the sense that

u = ū, ~v = ∇u, and ~α = ∇ · (∇∇u+ q2Tu).

Proof. First, let u ∈ H t(Ω), t ≥ 4, be the solution of Problem (4.18). By direct calcu-

lation, (u,~v, ~α) is a solution to Problem (4.28)-(4.29), which is unique by Theorem 14.

Note that u ∈ H t(Ω) is sufficient to guarantee that ~v ∈ (H1(Ω))
2

and ~α ∈ H(div; Ω).

Conversely, let (ū, ~v, ~α) be the solution of (4.28)-(4.29) with ū ∈ H t(Ω). Let D =

ΠN1
i=1 (y − aix− bi)2 ΠN2

i=1 (x− ciy − di)2; D ∈ C∞(Ω)∩H1
0 (Ω) is positive in the interior

of Ω. Choosing (φ, ~ψ) = (0, DB∇ · (∇∇ū+ q2T ū)) and ~β = D (~v −∇ū) in (4.28)–

(4.29) and integrating by parts imply that ~v = ∇ū and ~α = B∇ · (∇∇ū+ q2T ū):∫
Ω

~β · (~v −∇ū) =

∫
Ω

D (~v −∇ū) · (~v −∇ū) = 0.

Note that D is sufficiently smooth so that

~β = D (~v −∇ū) ∈ H0(div; Ω) ⊂ HΓ2∪Γ3(div; Ω).

As D (~v −∇u) · (~v −∇u) is non-negative over Ω, this implies that ~v = ∇ū. Similarly,

one can prove that the value of ~α = ∇ · (∇∇ū+ q2T ū). As above, the regularity

of ū is necessary to ensure that ~v and ~α (as well as ~ψ and ~β defined above) have

the regularity to satisfy these equations. With this value for ~α, taking ~ψ = ~0 and

φ ∈ V ⊂ L2(Ω) in (4.28) leads to the fact that ū is a solution of Problem (4.18).

Thus, ū = u by the uniqueness of the solution of Problem (4.18).
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4.4 Discrete Analysis

We now consider three different discretizations of the smectic density equation. First,

in Section 4.4.1, we consider an H2-conforming discretization based on Argyris ele-

ments for Ω ⊂ R2. The method offers optimal convergence bounds, but its analogue

for Ω ⊂ R3 is very difficult to implement. Thus, in Section 4.4.2, we consider a C0-

interior-penalty method, which allows for the use of continuous Lagrange elements

of any order k ≥ 2, in both two and three dimensions. Finally, in Section 4.4.3, we

develop a mixed finite-element formulation similar to that proposed in [66], that also

offers some advantages, especially in the construction of preconditioners.

4.4.1 Conforming Methods

We first consider the case of Ω ⊂ R2 with full Neumann boundary conditions, where

∂Ω = Γ2. While several choices of conforming elements are possible, we focus on

Argyris elements, ARG5(Ω, τh), which arise from choosing a basis for the 21 degrees

of freedom for a fifth-order polynomial space, CG5(Ω, T ), on each triangle, T , in such

a way as to ensure that the resulting space is H2-conforming [92]. The weak form is

to find uh ∈ ARG5(Ω, τh) such that [52]

a(uh, φh) = F (φh), ∀φh ∈ ARG5(Ω, τh), (4.36)

where a is defined in (4.12) and F (φh) is defined in (4.32).

Corollary 10. Let f ∈ L2(Ω), and let {τh} be a family of quasiuniform meshes of Ω.

Problem (4.36) is well-posed for ∂Ω = Γ2. Moreover, if hq ≤ 1 and u ∈ H t(Ω) for

3 ≤ t ≤ 6 is the solution of Problem (4.12), then

‖u− uh‖2,q ≤ CBq2ht−2|u|t. (4.37)

Proof. For ∂Ω = Γ2, the bilinear form a(uh, φh) is symmetric, continuous and coercive

and the linear form F is continuous, as shown above. Since uh, φh ∈ ARG5(Ω, τh) ⊂
H2(Ω), this is a conforming discretization and is well-posed following Theorem 13 and

the Lax–Milgram theorem. Finally, Céa’s lemma and standard bounds on the Argyris
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interpolation operator [35] lead to the estimate in (4.37), as

‖u− uh‖2,q ≤ CBq4 inf
vh∈ARG5(Ω,τh)

(
q−2‖∇∇(u− vh)‖0 + q−2‖∇(u− vh)‖0 + ‖u− vh‖0

)
≤ CBq4

(
q−2ht−2 + q−2ht−1 + ht

)
|u|t ≤ CBq2ht−2|u|t.

Remark 4.4.1. We are naturally interested in how the error estimate above depends

on q. From the coercivity and continuity constants of Theorem 13, which scale as

O(1) and O(Bq4), respectively, we see that the quasioptimality constant scales like

O(Bq4). When Bq4 = O(1), as can be the case (see, e.g., [112]), this gives an error

bound that ‖u − uh‖2,q ≤ (q−2ht−2)|u|t, which is optimal in h. For larger values of

B, we retain optimality in h, but see some degradation in q, as might be expected.

Moreover, for the case of expected solutions to (4.1) that behave like eiq~ν·~x (showing

similar behaviour to the observed solutions of the generalized models in [112, 138]),

we have |u|t ∼ O(qt). Considering the case of a strong solution with u ∈ H6(Ω),

this gives an error estimate that scales like O(Bq8), but with an L2 error estimate

of h4. Again, the value of B strongly influences the impact of this scaling: when

Bq4 = O(1), then this necessitates choosing a mesh, τh, such that hq < 1, which

is not an unreasonable requirement when q is, itself, an O(1) constant. If, however,

B = O(1), the requirement on τh is stricter, needing h4q8 < 1 in order to guarantee

convergence in the large q limit. While we are not interested in prohibitively large

values of q (as in [112, 138], we consider q ∼ 40), this recalls standard results in the

literature on numerical approximation of solutions to the Helmholtz equation and the

pollution effect that leads to similar restrictions [26, 84].

Remark 4.4.2. The above result naturally extends to domains Ω ⊂ R3 with three-

dimensional H2(Ω) conforming elements [141].

Strongly enforcing essential boundary conditions using Argyris elements is well-

known to be difficult [90], although extensions of Corollary 10 would hold if we could

do so. Instead, if Γ0∪Γ1∪Γ3 6= ∅, we enforce the essential boundary conditions weakly

using Nitsche-type penalty methods. Then, the weak form is to find uh ∈ ARG5(Ω, τh)

such that

Ah(uh, φh) = F (φh), ∀φh ∈ ARG5(Ω, τh), (4.38)
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where

Ah(uh, φh) =a(uh, φh) +B

∫
Γ0∪Γ1

φh∇ · (∇∇uh + q2Tuh) · ~n

−B
∫

Γ0∪Γ1

uh∇ · (∇∇φh + q2Tφh) · ~n+
1

qh3

∫
Γ0∪Γ1

uhφh

+
1

q3h

∫
Γ1∪Γ3

∇uh · ∇φh −B
∫

Γ1∪Γ3

∇φh · (∇∇uh + q2Tuh) · ~n

+B

∫
Γ1∪Γ3

∇uh · (∇∇φh + q2Tφh) · ~n

We prove coercivity and continuity of the bilinear form, Ah, in the strengthened

H2(Ω) norm, ||| · |||2,q,h, defined as

|||uh|||22,q,h = ‖uh‖2
2,q +

1

qh3
‖uh‖2

0,Γ0∪Γ1
+
h3

q7
‖∇ ·

(
∇∇uh + q2Tuh

)
· ~n‖2

0,Γ0∪Γ1

+
1

q3h
‖∇uh‖2

0,Γ1∪Γ3
+
h

q5
‖
(
∇∇uh + q2Tuh

)
· ~n‖2

0,Γ1∪Γ3
. (4.39)

As shown below, the weights in the norm ||| · |||2,q,h allow us to prove optimal-in-q

error estimates for solutions in the space H t(Ω), t ≥ 4. Note that the choice of the

Nitsche formulation in (4.38) results in non-symmetric linear systems to be solved;

while we do not focus on effective linear solvers here, this nonsymmetry may be seen

as a downside of this approach. However, we note that using a symmetric Nitsche

formulation led to suboptimal error bounds in the analogous results to those that

follow.

Theorem 15. Let f ∈ L2(Ω), and let {τh} be a family of quasiuniform meshes of Ω.

Let T be given s.t. |T |2 = T : T ≤ µ1 and |∇T |2 = (∇T ) : (∇T ) ≤ µ2 pointwise on

Ω̄. Then, there exist constants C1 and C2 such that for any uh, φh ∈ ARG5(Ω, τh),

|Ah(uh, φh)| ≤ C1Bq
4|||uh|||2,q,h|||φh|||2,q,h,

Ah(uh, uh) ≥ C2|||uh|||22,q,h.

Moreover, Problem (4.38) is well-posed over ARG5(Ω, τh).

Proof. The continuity of Ah(uh, φh) and F (φh) for uh, φh ∈ ARG5(Ω, τh) follow di-

rectly from the Cauchy–Schwarz inequality applied termwise, making use of the lee-

way offered by the suboptimal continuity of a(u, φ) with respect to the ‖ · ‖2,q norm.
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For example, we use the bound

B

∫
Γ0∪Γ1

φh∇ · (∇∇uh + q2Tuh) · ~n

≤ B

((
q3

h3

)1/2

‖φh‖0,Γ0∪Γ1

)((
h3

q3

)1/2

‖∇ · (∇∇uh + q2Tuh) · ~n‖0,Γ0∪Γ1

)

= Bq4

((
1

qh3

)1/2

‖φh‖0,Γ0∪Γ1

)((
h3

q7

)1/2

‖∇ · (∇∇uh + q2Tuh) · ~n‖0,Γ0∪Γ1

)
≤ Bq4|||φh|||2,q,h|||uh|||2,q,h,

with similar bounds for the other terms in Ah(uh, φh) (recalling that 1 ≤ 1
s
Bq4 for

O(1) constant, s). Therefore, we focus on the proof of coercivity.

Trace theorems [117, Section 2.1.3], standard inverse estimates [41, Theorem 4.5.11],

and Theorem 12 can be used to prove the following inequalities that are needed to

show coercivity of Ah. For φh ∈ ARG5(Ω, τh), we have

‖∇ · ∇∇φh · ~n‖2
0,Γ0∪Γ3

≤ C

h
‖∇ · ∇∇φh‖2

0, (4.40)

‖∇ · ∇∇φh‖2
0 ≤ C‖∇∇∇φh‖2

0 ≤
C

h2
‖∇∇φh‖2

0, (4.41)

‖∇ · (∇∇φh + q2Tφh) · ~n‖2
0,Γ0∪Γ1

≤ C

(
1

h3
‖∇∇φh‖2

0 + q4
(µ2

h
‖φh‖2

0 +
µ1

h
‖∇φh‖2

0

))
≤ C

(
1

h3
‖∇∇φh‖2

0 + q4
(µ2

h
‖φh‖2

0 +
µ1

h3
‖φh‖2

0

))
≤ C3q

4

h3
‖φh‖2

2,q. (4.42)

In addition,

‖(∇∇φh+q2Tφh) ·~n‖2
0,Γ1∪Γ3

≤ C

(
1

h
‖∇∇φh‖2

0 +
q4µ1

h
‖φh‖2

0

)
≤ C4q

4

h
‖φh‖2

2,q, (4.43)

where the constants, C3 and C4, will be used below. From Theorem 13, we have that
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a(uh, uh) ≥ C5‖uh‖2
2,q, for C5 > 0. Using this, we have

Ah(uh, uh) ≥ C5‖uh‖2
2,q +

1

qh3
‖uh‖2

0,Γ0∪Γ1
+

1

q3h
‖∇uh‖2

Γ1∪Γ3

≥ C5

3

(
‖uh‖2

2,q +
h3

C3q4
‖∇ · (∇∇uh + q2Tuh) · ~n‖2

0,Γ0∪Γ1

)
+
C5

3

(
h

C4q4
‖(∇∇uh + q2Tuh) · ~n‖2

0,Γ1∪Γ3

)
+

1

qh3
‖uh‖2

0,Γ0∪Γ1

+
1

q3h
‖∇uh‖2

Γ1∪Γ3

≥ C5

3
‖uh‖2

2,q +
C5h

3

3C3q7
‖∇ · (∇∇uh + q2Tuh) · ~n‖2

0,Γ0∪Γ1

+
C5h

3C4q5
‖(∇∇uh + q2Tuh) · ~n‖2

0,Γ1∪Γ3
+

1

qh3
‖uh‖2

0,Γ0∪Γ1

+
1

q3h
‖∇uh‖2

Γ1∪Γ3
.

That is, there exists a constant C2 = min{C5

3
, C5

3C3
, C5

3C4
, 1} such that Ah(uh, uh) ≥

C2|||uh|||22,q,h.

Remark 4.4.3 (Galerkin orthogonality). Let u ∈ Hs(Ω), s ≥ 4 be the solution

of (4.10). If uh ∈ ARG5(Ω, τh) is the solution of (4.38), then Ah(u − uh, φh) = 0,

∀φh ∈ ARG5(Ω, τh).

We carry out standard error analysis using the Galerkin orthogonality property,

following the same approach as used for Poisson’s equation in [128].

Lemma 11. Let the assumptions of Theorems 12 and 15 hold. Given functions v ∈
H t(Ω), t ≥ 4 and vh ∈ ARG5(Ω, τh), there exists a positive constant, C, such that

|||v − vh|||2,q,h ≤
C

h2

(
‖v − vh‖0 +

h

q
‖v − vh‖1 +

h2

q2
‖v − vh‖2 +

h3

q3

∑
τ∈τh

‖v − vh‖3,τ

)

+
C

h2

(
h4

q4

∑
τ∈τh

‖v − vh‖4,τ

)
. (4.44)

Proof. Define r = v − vh, and note that r ∈ H4(τ),∀τ ∈ τh. Apply Theorem 12 to
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the boundary integrals in (4.39), with ε
1
2 = h

q
∈ (0, 1), yields

h3

q7
‖∇ · (∇∇r + q2T r) · ~n‖2

0,∂τ∩(Γ0∪Γ1) ≤ C
h3

q7
‖∇∇∇r‖2

0,∂τ∩(Γ0∪Γ1)

+ µ1
h3

q3
‖∇r‖2

0,∂τ∩(Γ0∪Γ1) + µ2
h3

q3
‖r‖2

0,∂τ∩(Γ0∪Γ1)

≤ C
h3

q7

(
h

q
‖∇∇∇∇r‖2

0,τ +
q

h
‖∇∇∇r‖2

0,τ

)
+ C

h3

q3

(
h

q
‖∇∇r‖2

0,τ +
q

h
‖∇r‖2

0,τ +
q

h
‖r‖2

0,τ

)
≤ C

(
h4

q8
‖∇∇∇∇r‖2

0,τ +
h2

q6
‖∇∇∇r‖2

0,τ

)
+ C

(
h4

q4
‖∇∇r‖2

0,τ +
h2

q2
‖∇r‖2

0,τ +
h2

q2
‖r‖2

0,τ

)
(4.45)

h

q5
‖(∇∇r + q2T r) · ~n‖2

0,∂τ∩(Γ1∪Γ3) ≤ C
h

q5
‖∇∇r‖2

0,∂τ∩(Γ1∪Γ3) + Cµ1
h

q
‖r‖2

0,∂τ∩(Γ1∪Γ3)

≤ C

(
h2

q6
‖∇∇∇r‖2

0,τ +
1

q4
‖∇∇r‖2

0,τ

)
+ C

(
h2

q2
‖∇r‖2

0,τ + ‖r‖2
0,τ

)
, (4.46)

1

q3h
‖∇r‖2

0,∂τ∩(Γ1∪Γ3) ≤ C

(
1

q4
‖∇∇r‖2

0,τ +
1

q2h2
‖∇r‖2

0,τ

)
, (4.47)

(4.48)

and

1

qh3
‖r‖2

0,∂τ∩(Γ0∪Γ1) ≤ C

(
1

q2h2
‖∇r‖2

0,τ +
1

h4
‖r‖2

0,τ

)
. (4.49)

Summing inequalities (4.45)-(4.49) over τ ∈ τh and then combining these with the
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fact that r ∈ H2(Ω) leads to

|||v − vh|||22,q,h ≤
C

h4

(
‖v − vh‖2

0 +
h2

q2
‖v − vh‖2

1 +
h4

q4
‖v − vh‖2

2 +
h6

q6

∑
τ∈τh

‖v‖2
3,τ

)

+
C

h4

(
h8

q8

∑
τ∈τh

‖v − vh‖2
4,τ

)
(4.50)

Taking the square root of both sides and using the fact that√∑4
i=1 x

2
i ≤

∑4
i=1 xi, ∀xi > 0 completes the proof.

Theorem 16. Let the assumptions of Lemma 11 hold, let uh ∈ ARG5(Ω, τh) be the

solution of (4.38), and let u ∈ H t(Ω), 4 ≤ t ≤ 6 be the solution of (4.10). Then,

|||u− uh|||2,q,h ≤ CBq4ht−2|u|t. (4.51)

Proof. For any vh ∈ ARG5(Ω, τh), we have by the triangle inequality

|||u− uh|||2,q,h ≤ |||u− vh|||2,q,h + |||uh − vh|||2,q,h, (4.52)

By the coercivity and continuity of Ah, and Remark 4.4.3,

|||uh − vh|||22,q,h ≤ CAh(uh − vh, uh − vh) = CA(u− vh, uh − vh) (4.53)

≤ CBq4|||u− vh|||2,q,h|||uh − vh|||2,q,h (4.54)

Therefore, |||uh − vh|||2,q,h ≤ CBq4|||u− vh|||2,q,h and

|||u− uh|||2,q,h ≤ CBq4

(
inf

vh∈ARG5(Ω,τh)
|||u− vh|||2,q,h

)
. (4.55)

Applying Lemma 11 and existing bounds on the Argyris interpolation operator [35]

leads to the bound

|||u− uh|||2,q,h ≤
CBq4

h2
inf

vh∈ARG5(Ω,τh)

(
‖u− vh‖0 +

h

q
|u− vh|1 +

h2

q2
|u− vh|2

+
h3

q3

∑
τ∈τh

|u− vh|3,τ +
h4

q4

∑
τ∈τh

|u− vh|4,τ

)
≤CBq4ht−2|u|t, for 4 ≤ t ≤ 6.
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Remark 4.4.4. Comparing this with the bound in Corollary 10, we see a slight

degradation in the power of q, but no degradation in h. Thus, if u ∈ H6(Ω) and

behaves like eiq~n·~x, we now seek a mesh with h4q6 < 1 when Bq4 = O(1), which

is still reasonable when we expect q ≈ 40 at its largest. Numerical results show,

however, that even this estimate is pessimistic, and that a reasonable error tolerance

can generally be achieved when h = O(1), i.e., independent of q.

Remark 4.4.5. The discrete solution, uh, may fail to exactly satisfy the essential

boundary conditions, with uh 6= 0 on Γ0∪Γ1 and/or ∇uh 6= 0 on Γ1∪Γ3. Nevertheless,

the error in these terms on the boundary also converges to zero, since we have the

bounds

‖uh‖0,Γ0∪Γ1 = ‖u− uh‖0,Γ0∪Γ1 ≤ (qh3)1/2|||u− uh|||2,q,h ≤ CBq9/2ht−1/2|u|t,(4.56)

‖∇uh‖0,Γ1∪Γ3 = ‖∇(u− uh)‖0,Γ0∪Γ3 ≤ (q3h)1/2|||u− uh|||2,q,h ≤ CBq11/2ht−3/2|u|t.(4.57)

Remark 4.4.6. Preliminary results, not reported here, showed that the symmetric

version of Nitsche’s method resulted in the same dependence on h as above, but with

worse dependence on q. In particular, we can also recover optimal-in-h convergence

for the error in u measured in the L2-norm in that setting, but with a dramatic

increase in the power of q in the approximation results. Here, we can prove a slight

improvement in the L2-error estimate for u using arguments similar to [48, Proposition

5.3], but such estimates have little value, since they again trade worse dependence on

q for better dependence on h. Whether such results can be improved (e.g., using a

nonsymmetric penalty-free version of Nitsche’s method, as in [48]) is left for future

work.

4.4.2 C0IP methods

We next apply a C0IP method for the primal formulation (4.10), aiming to approx-

imate the solution with a H1(Ω)-conforming function and to weakly enforce H2(Ω)-

conformity. Such an interior penalty method for the biharmonic operator, with either

homogeneous clamped boundary conditions or Cahn–Hilliard type boundary condi-

tions with a vanishing corner DoF (to guarantee uniqueness of the solution), was
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presented in [39]. As in that approach, we use Nitsche-type penalty methods to im-

plement essential boundary conditions on the gradient, but strongly impose essential

boundary conditions on the solution. The Nitsche term is, consequently, added to

Γ1 ∪ Γ3. In this case, the weak form is to find uh ∈ CGΓ0∪Γ1
k (Ω, τh), k ≥ 2, such that

ãh(uh, φh) =

∫
Ω

fφh, ∀φh ∈ CGΓ0∪Γ1
k (Ω, τh), (4.58)

where

ã(uh, φh) = â(uh, φh)−B
∑

e∈εh\Γ0∪Γ2

∫
e

{{
~n ·
(
∇∇uh + q2Tuh

)
· ~n
}}[[

∂φh
∂n

]]

+B
∑

e∈εh\Γ0∪Γ2

∫
e

{{
~n ·
(
∇∇φh + q2Tφh

)
· ~n
}}[[

∂uh
∂n

]]

+
1

q3h

∑
e∈εh\Γ0∪Γ2

∫
e

[[
∂uh
∂n

]] [[
∂φh
∂n

]]
,

and

â(uh, φh) = B
∑
τ∈τh

(∫
τ

∇∇uh : ∇∇φh +Bq2

∫
τ

∇∇uh : Tφh +Bq2

∫
τ

∇∇φh : Tuh

)
+

∫
Ω

Bq4(T : T +m)uhφh.

Here, [[·]] , {{·}} denote the standard jump and average functions defined in [18,39,42,43],

and τh and εh are the sets of cells and edges (including the boundary) in the mesh,

respectively. We define the following norm on CGΓ0∪Γ1
k (Ω, τh),

|||uh|||2h = q−4

(∑
τ∈τh

|uh|22,τ + ‖∇uh‖2
0

)
+ ‖uh‖2

0

+
h

q5

∑
e∈εh\Γ0∪Γ2

∫
e

{{
~n ·
(
∇∇uh + q2Tuh

)
· ~n
}}2

+
1

q3h

∑
e∈εh\Γ0∪Γ2

∫
e

[[
∂uh
∂n

]]2

(4.59)

The following inequalities are useful in proving the well-posedness of (4.58).

Lemma 12. Let {τh} be a family of quasiuniform meshes of Ω and T : T ≤ µ1
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pointwise on Ω̄.

• The H2-discrete Poincaré inequality is that there exists C1 > 0 such that

‖∇uh‖2
0 ≤ C1

(
‖uh‖2

0 +
∑
τ∈τh

|uh|22,τ +
1

h

∑
e∈εh\∂Ω

∫
e

[[
∂uh
∂n

]]2)
, ∀φh ∈ CGk(Ω, τh).

(4.60)

• There exists C2 > 0 such that

∑
e∈εh

∫
e

{{
~n ·
(
∇∇φh + q2Tφh

)
· ~n
}}2

≤ C2

h

((∑
τ∈τh

|φh|22,τ
)

+ q4‖φh‖2
0

)
.(4.61)

Proof. From [44, Example 5.4], we have

‖uh‖2
1 ≤ C

∑
τ∈τh

|uh|22,τ +
1

h

∑
e∈εh\∂Ω

∫
e

[[
∂uh
∂n

]]2

+ [Φ(uh)]
2

 , (4.62)

where Φ is a seminorm that satisfies Equations (1.2), (1.3), (2.15), and (3.3) in [44]. As

Φ(u) = ‖u‖0 satisfies these properties, Inequality (4.60) holds. While (1.2) and (1.3)

can be trivially proved, (2.15) is shown in [44, Corollary 2.2], and (3.3) follows directly

from [44, Inequality 3.2]. To prove Inequality (4.61), we first use [39, Inequality 3.20]

to bound the term containing ~n · (∇∇φh) ·~n. To bound the remaining term, we apply

standard inverse trace inequalities to get

∑
e∈εh

∫
e

{{
~n ·
(
q2Tφh

)
· ~n
}}2

≤ Cq4

h
‖φh‖2

0. (4.63)

Adding this to the right-hand side of [39, Inequality 3.20] completes the proof.

These inequalities are enough to establish coercivity (and, thus, well-posedness)

of the discrete problem in (4.58).

Theorem 17. Let {τh} be a family of quasiuniform meshes of Ω, f ∈ L2(Ω), and

T : T ≤ µ1 pointwise on Ω̄. Then, Problem (4.58) is well-posed.

Proof. The bilinear form ã defined in (4.58) is continuous and coercive in the norm

defined in (4.59). Proving continuity is straightforward using the Cauchy–Schwarz
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inequality, yielding a continuity constant that is O(Bq4), as in the conforming case.

Coercivity of ã can be proven by combining the inequalities of Lemma 12 and Cauchy–

Schwarz inequality. By direct substitution, we have

ã(uh, uh) = B
∑
τ∈τh

(∫
τ

|uh|22,τ + 2q2

∫
τ

∇∇uh : Tuh

)
+

∫
Ω

(Bq4T : T +m)u2
h

+
1

q3h

∑
e∈εh\Γ0∪Γ2

∫
e

[[
∂uh
∂n

]]2

.

Similar to the proof of Theorem 13, we can show that there exists C3 > 0 such that

B
∑
τ∈τh

(∫
τ

|uh|22,τ + 2q2

∫
τ

∇∇uh : Tuh

)
+

∫
Ω

(Bq4T : T +m)u2
h

≥ C3

(
q−4

∑
τ∈τh

|uh|22,τ + ‖uh‖2
0

)
.

With this, we have

ã(uh, uh) ≥ C3

(
q−4

∑
τ∈τh

|uh|22,τ + ‖uh‖2
0

)
+

1

q3h

∑
e∈εh\Γ0∪Γ2

∫
e

[[
∂uh
∂n

]]2

≥ C3

3

(
q−4

∑
τ∈τh

|uh|22,τ + ‖uh‖2
0

)
+

2

3q3h

∑
e∈εh\Γ0∪Γ2

∫
e

[[
∂uh
∂n

]]2

+
C3h

3C2q4

∑
e∈εh\Γ0∪Γ2

∫
e

{{
~n ·
(
∇∇φh + q2Tφh

)
· ~n
}}2

+
min{C3, 1}

3

q−4
∑
τ∈τh

|uh|22,τ + ‖uh‖2
0 +

1

q3h

∑
e∈εh\Γ0∪Γ2

∫
e

[[
∂uh
∂n

]]2


≥ min{C3, 1}
3

(
q−4

∑
τ∈τh

|uh|22,τ +
q−4

C1

‖∇uh‖2
0 + ‖uh‖2

0

)

+
C3h

3C2q5

∑
e∈εh\Γ0∪Γ2

∫
e

{{
~n ·
(
∇∇φh + q2Tφh

)
· ~n
}}2

+
2

3q3h

∑
e∈εh\Γ0∪Γ2

∫
e

[[
∂uh
∂n

]]2

,

where C1 and C2 are defined in Lemma 12. Thus, the coercivity constant is O(1).
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Remark 4.4.7. Note that the bilinear form ã is also continuous with respect to the

mesh-dependent norm for functions in H t(Ω) ∩ H1
Γ0∪Γ1

(Ω), t ≥ 4, where the jump

terms vanish over interior edges. That is, there exists a positive constant, C, such

that

ã(u, φ) ≤ CBq4|||u|||h|||φ|||h, ∀u, φ ∈ H t(Ω) ∩H1
Γ0∪Γ1

(Ω). (4.64)

Lemma 13. Let {τh} be a family of quasiuniform meshes of Ω, v ∈ H t(Ω)∩H1
Γ0∪Γ1

(Ω),

s ≥ 4, T : T ≤ µ1 pointwise on Ω̄, and vh ∈ CGΓ0∪Γ1
k (Ω, τh). Then,

|||v − vh|||2h ≤
C

h4

(
‖v − vh‖2

0 +
h2

q2
|v − vh|21 +

h4

q4

∑
τ∈τh

|v − vh|2,τ +
h6

q6

∑
τ∈τh

|v − vh|23,τ

)

+
C

h4

(
h8

q8

∑
τ∈τh

|v − vh|24,τ

)
(4.65)

Proof. First note that
[[
∂v
∂n

]]
= 0 on the interior edges of τh. For v ∈ H t(Ω) ∩

H1
Γ0∪Γ1

(Ω), t ≥ 4, we have that r = v − vh ∈ H4(τ), ∀τ ∈ τh. We apply Theo-

rem 12 to the boundary integrals in (4.59) with ε
1
2 = h

q
∈ (0, 1), yielding

1

q3h

∑
e∈εh\Γ0∪Γ2

∫
e

[[
∂r

∂n

]]2

≤ C
∑
τ∈τh

(
1

q2h2
‖∇r‖2

0,τ +
1

q4
|r|22,τ

)
(4.66)

and

h

q5

∑
e∈εh\Γ0∪Γ2

∫
e

{{
~n ·
(
∇∇r + q2T r

)
· ~n
}}2

≤ C
∑
τ∈τh

(
1

q4
|r|22,τ +

h2

q6
|r|3,τ

)

+ C

(
‖r‖2

0 +
h2

q2
|∇r|21

)
. (4.67)

As a result, Inequality (4.65) holds.

Remark 4.4.8 (Galerkin orthogonality). Let u ∈ H t(Ω), t ≥ 4 be the solution of

(4.10). If uh ∈ CGΓ0∪Γ1
k (Ω, τh) is the solution of (4.38), then Ah(u − uh, φh) = 0,

∀φh ∈ CGΓ0∪Γ1
k (Ω, τh).

Theorem 18. Assume that the solution of (4.10) satisfies u ∈ H t(Ω), for t ≥ 4. If

uh ∈ CGΓ0∪Γ1
k (Ω, τh) is the solution of (4.58), then

|||u− uh|||h ≤ CBq4hmin{t,k+1}−2|u|t.
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Proof. We use the orthogonality property to prove the error estimates as in Theorem

16. Given u ∈ H t(Ω), t ≥ 4, then we have the standard quasi-optimality result,

|||u− uh|||h ≤ CBq4 inf
vh∈CG

Γ0∪Γ1
k (Ω,τh)

|||u− vh|||h. (4.68)

Now, we use Lemma 13 and the standard Lagrange interpolation error estimates

[41,52] to yield

|||u− uh|||h ≤
CBq4

h2

(
‖u− vh‖0 +

h

q
‖∇(u− vh)‖0 +

h2

q2

∑
τ∈τh

|u− vh|2,τ

)

+
CBq4

h2

(
h3

q3

∑
τ∈τh

|u− vh|3,τ +
h4

q4

∑
τ∈τh

|u− vh|4,τ

)

≤ CBq4

h2
hmin{t,k+1}|u|t = CBq4hmin{t,k+1}−2|u|t.

4.4.3 Mixed finite elements

We now consider a mixed finite-element discretization of the systems reformula-

tion given in (4.28)-(4.29). We consider a conforming discretization, with uh ∈
DGk(Ω, τh) ⊂ L2(Ω) and ~αh ∈ RT Γ2∪Γ3

k+1 (Ω, τh) ⊂ HΓ2∪Γ3(div; Ω). In order to prove

the required inf-sup condition on b(~αh, (uh, ~vh)), the choice of space for ~vh is based on

generalized Taylor–Hood elements, writing ~vh ∈ Vh, where

Vh =
{
~ψh

∣∣∣ ~ψh ∈ [CGk+2(Ω, τh)]
2 ∩ V

}
,

with (as before) V =
{
~v ∈ [H1

Γ1∪Γ3
(Ω)]2

∣∣ ~v × ~n = 0 on Γ0

}
.

Theorem 19. Let the assumptions of Theorem 14 be satisfied, and let τh be a quasi-

uniform family of triangular meshes of Ω. Let the bilinear forms A and b and linear

form F be defined as in (4.30)-(4.32). For sufficiently small h, the discrete saddle-

point problem of finding (uh, ~vh, ~αh) ∈ DGk(Ω, τh)× Vh ×RT Γ2∪Γ3
k+1 (Ω, τh) such that

A
(
(uh, ~vh), (φh, ~ψh)) + b(~αh, (φh, ~ψh)) = F (φh), ∀(φh, ~ψh) ∈ DGk(Ω, τh)× Vh

b
(
~βh, (uh, ~vh)

)
= 0, ∀~β ∈ RT Γ2∪Γ3

k+1 (Ω, τh) (4.69)
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is well-posed for k ≥ 1.

Proof. We follow the standard theory (see, e.g., [32]), requiring continuity of A and

b, coercivity of A, and an inf-sup condition on b. Because we consider a conforming

discretization, continuity of both A and b follow directly as in Theorem 14, with

the same constants in the norms used there, where we use the discrete Helmholtz

decomposition of ~αh = ∇×ph+∇Γ2∪Γ3
h φh defined in Lemma 10 to prove continuity of

b. Similarly, we consider coercivity of the bilinear form A
(

(uh, ~vh), (φh, ~ψh)
)

on the

set

Λh =
{

(uh, ~vh) ∈ DGk(Ω, τh)× Vh
∣∣ b (~αh, (uh, ~vh)) = 0, ∀~αh ∈ RT Γ2∪Γ3

k+1 (Ω, τh)
}
.

This follows again as in the continuum case, using ~β1 =

[
Sh

0

]
and ~β2 =

[
0

Sh

]
, with

Sh ∈ CG∂Ω
1 (Ω, τh) as defined in Lemma 7 in place of the continuum analogues in

Theorem 14.

Finally, we establish the discrete inf-sup condition, that

I = sup
(uh,~vh)∈DGk(Ω,τh)×Vh

∫
Ω
~αh · ~vh +

∫
Ω
uh∇ · ~αh

‖(uh, ~vh)‖0,q,1

≥ Cq2‖~αh‖Div, (4.70)

for some constant, C. By Lemma 10, for any ~αh ∈ RT Γ2∪Γ3
k+1 (Ω, τh), there exists

ph ∈ CGΓ2∪Γ3
k+1 (Ω, τh) and ηh ∈ DGk(Ω, τh) such that

~αh = ∇× ph +∇Γ2∪Γ3
h ηh. (4.71)

This gives the equivalent form to (4.70) of

I = sup
(uh,~vh)∈DGk×Vh

∫
Ω

(
∇Γ2∪Γ3
h ηh +∇× ph

)
· ~vh +

∫
Ω
uh∇ · ~αh√

‖uh‖2
0 + q−4‖~vh‖2

1

≥ Cq2‖~αh‖Div,

∀~αh ∈ RT Γ2∪Γ3
k+1 (Ω, τh). We show this by choosing uh = C1 (∇ · ~αh − ηh). Let h be

sufficiently small so that the inf-sup condition of [30, Lemma 3.5] holds. Then, for

all ph ∈ CGΓ2∪Γ3
k+1 (Ω, τh), there exists a vector ~ψh ∈ Vh such that

∫
Ω
ph∇ · ~ψh ≥ ‖ph‖2

0,

and ‖~ψh‖2
1 ≤ C2‖~ph‖2

0. To establish the inf-sup condition needed here, we choose

~vh = [ψ2,h,−ψ1,h]
T which also belongs to Vh, giving∇· ~ψh = ∇×~vh and ‖~ψh‖2

1 = ‖~vh‖2
1.

The remainder of the proof follows identically as in the continuum case.
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To measure the error estimates that arise from our three-field mixed formulation,

we define the approximation errors,

E(u,~v) := inf
(φh, ~ψh)∈DGk(Ω,τh)×V

‖(u,~v)− (φh, ~ψh)‖0,q,1, (4.72)

E~α := inf
~βh∈RTk+1(Ω,τh)

‖~α− ~βh‖Div. (4.73)

Corollary 11. Let the assumptions of Theorem 19 be satisfied. Assume that u ∈ Hk+5

and T ∈ Ck+2(Ω), for k ≥ 1, (u,~v, ~α) is the unique solution of Problem (4.28)-(4.29),

and (uh, ~vh, ~αh) is the solution of Problem (4.69). Then,

‖(u,~v)− (uh, ~vh)‖0,q,1 ≤ C1

((
Bq4 +B1/2q4

)
E(u,~v) + q4E~α

)
, (4.74)

‖~α− ~αh‖Div ≤ C2

((
B3/2q4 +Bq4

)
E(u,~v) +B1/2q4E~α

)
, (4.75)

where C1, C2 are positive constants independent of h, B and q.

Proof. The standard error estimate, for example in [32, Theorem 5.2.2], leads to (4.74)

and (4.75). Note that A and b in (4.28)-(4.29) are continuous with O(Bq4) and O(q4)

continuity constants, respectively, the coercivity constant is O(1), and the inf-sup

constant is O(q2).

In the next corollary, we bound the approximation errors E(u,~v) and E~α when

u ∈ Hk+5(Ω) and T ∈ Ck+2(Ω). Note that, in this case, ~v = ∇u ∈
[
Hk+4(Ω)

]2
and

~α = ∇ · (∇∇u+ q2Tu) ∈
[
Hk+2(Ω)

]2
by Corollary 9.

Corollary 12. Let the assumptions of Corollary 11 be satisfied and write ~α = ∇φ+

∇× p. If, furthermore, φ ∈ Hk+3(Ω) and p ∈ Φ (as defined in Remark 4.2.2), then

E(u,~v) ≤ Chk+1

(
|u|2k+1 +

1

q4
|~v|2k+3

)1/2

, (4.76)

E~α ≤
C

q2
hk+1

(
|∇φ|2k+1 + |∆φ|2k+1 + |p|2k+2

)1/2
. (4.77)

Proof. Inequality (4.76) holds using the classical continuous/discontinuous Lagrange

interpolants [32]. To prove Inequality (4.77), we use the fact that ~α ∈ [Hk+2(Ω)]2 ∩
HΓ2∪Γ3(div; Ω) and, therefore, the functions p and φ are in Hk+2(Ω) ∩H1

Γ0∪Γ1
(Ω) and

Hk+3(Ω) ∩H1
Γ2∪Γ3

(Ω) respectively if the conditions of Remark 4.2.2 are satisfied. We
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bound ‖~α− ~βh‖Div by writing ~βh = ∇Γ2∪Γ3
h φh +∇× ph and noting that

‖~α− ~βh‖2
Div = q−4

(
‖p− ph‖2

0 + ‖∇φ−∇Γ2∪Γ3
h φh‖2

div

)
.

We choose
(
φh, ~ζh

)
∈ DGk(Ω, τh) × RT Γ2∪Γ3

k+1 (Ω, τh) to be the solution of the mixed

Poisson problem, ∫
Ω

γh∇ · ~ζh =

∫
Ω

∆φγh, ∀γh ∈ DGk(Ω, τh),∫
Ω

~ζh · ~Υh + φh∇ · ~Υh = 0, ∀~Υh ∈ RT Γa
k+1(Ω, τh).

The standard error estimate for ~ζh is that

‖~ζh −∇φ‖div ≤ Chk+1 (|∇φ|k+1 + |∆φ|k+1) ;

however, ~ζh = ∇Γ2∪Γ3
h φh, giving

‖∇φ−∇Γ2∪Γ3
h φh‖div ≤ Chk+1 (|∇φ|k+1 + |∆φ|k+1) . (4.78)

Choosing ph to be the interpolant of p in CGΓ0∪Γ1
k+1 (Ω, τh) gives

‖p− ph‖0 ≤ Chk+2|p|k+2. (4.79)

Adding Inequalities (4.78) and (4.79) leads to (4.77).

While we can always compute the discrete Helmholtz decomposition of ~αh, it is not

always possible to compute the corresponding continuum Helmholtz decomposition

of ~α, which would be needed to verify the above results by computing ‖~α − ~αh‖Div.

Therefore, we use the H(div) norm in practice. We next show that the approximation

error of ~α in the H(div) norm can be bounded by that in the strengthened norm.

Corollary 13. Let the assumptions of Corollary 12 be satisfied. Then,

q−2‖~α− ~αh‖0 ≤ C

(
hk+1|p|k+2 +

1

h
‖~α− ~αh‖Div

)
, (4.80)

where C is a positive constant independent of h.
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Proof. Write ~αh = ∇Γ3
h φh +∇× ph. Then we have

‖~α− ~αh‖0 ≤ C
(
‖∇φ−∇Γ3

h φh‖0 + ‖∇ × p−∇× ph‖0

)
≤ C (‖~α− ~αh‖Div + ‖∇ × p−∇× ph‖0) . (4.81)

Thus, we only need to bound ‖∇ × p−∇× ph‖0. To do this, we note that

‖∇ × p−∇× ph‖0 ≤ ‖∇× p−∇× zh‖0 + ‖∇ × zh −∇× ph‖,

where zh is the interpolant of p in CGk+1(Ω, τh), for which ‖∇ × p − ∇ × zh‖0 ≤
Chk+1|p|k+2. Also, using standard arguments, we have that ‖∇ × zh − ∇ × ph‖0 ≤
C
h
‖zh − ph‖0. Thus,

‖∇ × p−∇× ph‖0 ≤ C

(
hk+1|p|k+2 +

1

h
‖zh − ph‖0

)
≤ C

(
hk+1|p|k+2 +

1

h
‖zh − p‖0 +

1

h
‖p− ph‖0

)
≤ C

(
hk+1|p|k+2 +

1

h
‖p− ph‖0

)
≤ C

(
hk+1|p|k+2 +

1

h
‖~α− ~αh‖Div

)
. (4.82)

Combining Inequalities (4.81) and (4.82) leads to (4.80).

Remark 4.4.9. Let the assumptions of Corollary 12 be satisfied, and let W =(
Bq2 +B1/2q2

)
, Z1 =

(
|u|2k+1+ 1

q4 |~v|2k+3

)1/2

, and Z2 =
(
|∇φ|2k+1 + |∆φ|2k+1 + |p|2k+2

)1/2
.

Then,

‖(u,~v)− (uh, ~vh)‖0,q,1 ≤C1q
2hk+1 (WZ1 + Z2) ,

1

q2
‖~α− ~αh‖0 ≤

C

h
E~α ≤C2B

1/2q2hk (WZ1 + Z2) ,

1

q2
‖∇ · ~α−∇ · ~αh‖0 ≤ E~α ≤C3B

1/2q2hk+1 (WZ1 + Z2) .
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4.5 Numerical experiments

To verify the analyses of the three finite-element discretizations, we next present nu-

merical experiments to measure convergence rates. The experiments were done using

the finite-element package Firedrake [115], which offers close integration with PETSc

for the linear solvers [20, 93]. All numerical experiments were run on a workstation

with dual 8-core Intel Xeon 1.7 GHz CPUs and 384 GB of RAM. While development

of efficient linear solvers for these discretizations is an important task, we consider

only solution using the sparse direct solver, PaStiX [83], in all cases.

We use the method of manufactured solutions to estimate convergence rates, where

we fix forcing terms and boundary data for the PDE to exactly match those for a

known solution, u. In all experiments, we consider uniform triangular meshes of the

unit square in two dimensions, generated by uniformly meshing the unit square into

square elements with edge length h = 1/N , and then cutting each square into two

triangles, from bottom left to top right. For the tests below, we write the boundary of

the unit square as ∂Ω = ΓN∪ΓS∪ΓE∪ΓW , denoting the North, South, East, and West

edges of the square, and fix Γ0 = ΓS,Γ1 = ΓN ,Γ2 = ΓE, and Γ3 = ΓW . For mesh size

h, we define uh to be the finite-element solution on the mesh and the approximation

error to be Eh = u − uh. We can measure Eh in several ways, such as the absolute

L2(Ω)-error, which we denote by Abse(uh, h) = ‖Eh‖0. Similar definitions are used,

as needed, for other quantities, such as the weighted H2(Ω)-error in uh as given in

Section 4.4.1, the weighted L2(Ω)×H1(Ω)-error in (uh, ~vh) as given in Equation (4.33),

and the weighted L2(Ω)-error and H(div)-seminorm errors in ~αh.

We first consider an exact solution given by u = sin (q~ν · [x, y]), with q = 40,

T = ~ν ⊗ ~ν, ~ν =
[

3
5
, 4

5

]
, m = 10, and either B = 1 or q−4. We plot log(Abse(·))

against log2(1/h), so that slopes of the data plotted correspond to the experimental

convergence rates. We approximate the slope, S, of each line using the last two points.

In Figure 4.1, we show results for both the conforming method, with uh ∈ ARG5(Ω, τh)

(in green), and the C0IP method with uh ∈ CGk(Ω, τh), k = 2, 3, 4, (in blue, red, and

orange, respectively). Triangles denote the absolute error in the L2-norm and filled

discs denote the weighted H2-norm defined in (4.39) for Argyris elements and the

norm defined in (4.59) for the C0IP method. We see that these results agree with the

theoretical analysis in Sections 4.4.1 and 4.4.2. For B = 1 (shown at left), we note

that the absolute errors in both the L2-norm and the weighted H2-norm are slightly
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Figure 4.1: Absolute approximation errors and rate of convergence with u ∈ ARG5(Ω, τh)
(Green), and u ∈ CGk(Ω, τh), k = 2, 3, 4 with the C0IP formulation, where blue, red, and
orange lines present results for k = 2, 3, 4, respectively. Triangles denote errors in the L2

norm, while filled discs denote errors in the appropriately weighted H2 norm. Left: B = 1.
Right: B = q−4.

larger than for the case B = q−4 (shown at right), which is expected as the error

estimates depend on Bq4. Moreover, for the C0IP method with u ∈ CG2(Ω, τh), we

see poor convergence that agrees with the fact that Bq4h is quite large for values of

q and h considered here. Finally, we see that, with Argyris elements, the convergence

rate in the L2-norm tends to be optimal for B = q−4, but suboptimal when B =

1. The degraded convergence rates in the L2-norm for both conforming and C0IP

methods result from the use of nonsymmetric versions of Nitsche’s method and C0IP,

as expected.

Figure 4.2 presents results for the 3-field mixed finite-element discretization with

(uh, ~vh, ~αh) ∈ DGk(Ω, τh) × Vk+2 × RTk+1(Ω, τh). Here, blue, red, and green lines

present results for k = 1, 2, 3, while filled discs and squares denote the L2(Ω) and

weighted H1(Ω) errors for uh and ~vh, respectively, while triangles and diamonds de-

note the weighted L2(Ω) and H(div; Ω)-seminorm errors for ~αh. We see optimal

convergence rates for u, degraded H1 convergence for ~v, which is expected because of

the mismatch between the orders of DGk+1 and Vk+2, and optimal convergence rates

for ~α. These results are consistent with Corollary 13. While the analysis of our mixed

formulations in Remark 4.4.9 show that the convergence rates depend on B, we see

that the error estimates for both B = 1 and B = q−4 are almost the same for u and

~v. The absolute errors in ~α with B = q−4 are equal to those with B = 1 multiplied

by q−4. The fact that the experimental error estimates of the mixed formulation are

independent of B is a substantial advantage over the conforming and C0IP methods.
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Figure 4.2: Absolute approximation errors and rates of convergence for the mixed formu-
lation analyzed in Section 4.4.3, with (u,~v, ~α) ∈ DGk(Ω, τh) × Vk+2(Ω, τh) × RTk+1(Ω, τh),
with blue, red, and green lines presenting results for k = 1, 2, 3, respectively. Filled discs
and squares denote the L2(Ω) and weighted H1(Ω) errors for uh and ~vh, respectively, while
triangles and diamonds denote the weighted L2(Ω) and H(div; Ω)-seminorm errors for ~αh.
Left: B = 1. Right: B = q−4.

Note that for k = 3 and h = 1/512, we have so many DoFs that the direct solver fails,

motivating future work on deriving efficient iterative solution algorithms.

An important question is whether the dependence on q in the theoretical results

above is due to inefficient proof techniques, or is an actual dependence that is seen in

the finite-element results. Figure 4.3 presents results for the same boundary conditions

as above, considering two test solutions, u = sin(q(3x
5

+ 4y
5

)) from above (left) and

u1 = 100 sin(2πx + 3πy) (xy(1− x)(1− y))3(right), with h = 2−7. When B = 1

(solid lines), we see that the errors grow more slowly with q than predicted by the

theoretical results. We note that these results are consistent with O(1) coercivity and

continuity constants, scaling instead like the relevant semi-norms of u in the error

bounds. To validate this hypothesis, we consider the case where u is independent of

q, with u = 100 sin(2πx + 3πy) (xy(1− x)(1− y))3 (dashed lines). Here, we see no

dependence on q in the error bounds for the Argyris or C0IP discretizations, and a

moderate dependence on q in the H2 norm error for the mixed method. This suggests

that a finer analysis may improve the dependence of the error bounds on q.

4.6 Conclusions

We consider different finite-element techniques to discretize a fourth-order PDE de-

scribing the density variation of a smectic A liquid crystal. These models have two
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Figure 4.3: The L2 (filled discs) and weighted H2 (squares) absolute approximation errors
at 1/h = 27 and different values of q, for the conforming method, with u ∈ ARG5(Ω, τh)
(blue), the C0IP method with u ∈ CG3(Ω, τh) (green), and the mixed method with (u,~v) ∈
DG2(Ω, τh) × V4(Ω, τh) (red) for B = 1(solid lines) and B = q−4(dashed lines). Left:

u = sin(q
(

3x
5 + 4y

5

)
). Right: u = 100 sin (2πx+ 3πy) (xy(1− x)(1− y))3.

complications in comparison to classical biharmonic operators, as they are more akin

to Helmholtz operators than elliptic ones, and involve Hessian-squared (div-div-grad-

grad) operators rather than the classical biharmonic operator (div-grad-div-grad),

with boundary conditions that preclude this potential simplification. We analyzed

H2-conforming, C0IP, and mixed finite-element methods.

In the H2-conforming case, we use C1 Argyris/Zhang elements. In practice, these

elements can be expensive to work with, due to their high order (fifth-order piecewise

polynomials in 2D and ninth-order in 3D), but they offer high-order approximation

of smooth solutions as well. In this case, we implement essential boundary condi-

tions using non-symmetric Nitsche-type penalty methods, which somewhat degrades

the error estimates from the case where essential BCs are imposed strongly. C0IP

methods have the advantage over H2-conforming elements that there is greater flex-

ibility in choosing the order of approximation, at the cost of more complicated weak

forms, where C1-conformity is weakly enforced by penalizing inter-element jumps in

the first derivative. Our error estimates in this case match the dependence on q from

the conforming case, but with an h-dependence in line with the lower polynomial or-

der. Finally, we consider a three-field mixed finite-element formulation that explicitly

introduces the gradient as an independent variable constrained using a Lagrange mul-

tiplier. The mixed formulation offers better robustness in B than the other schemes.

Numerical results confirm the theoretical expectations.
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The mixed formulation proposed here was motivated by the observation that de-

sign of optimal linear solvers for the C0IP formulation is not straightforward (with

direct solvers used in [138]), coupled with the observed success of monolithic multi-

grid methods for a similar mixed discretization for the H2-elliptic case of fourth-order

operators in [66]. A natural step for future work is in extending these linear solvers

to the mixed formulation proposed herein, in parallel to investigating effective linear

solver strategies for the other discretizations. As this work is motivated by consider-

ing the more complex models in [138], coupling the smectic density to a director field

or tensor-valued order parameter, the other natural direction for future research is to

extend the analysis proposed herein to mixed formulations of the energy minimization

problem associated with Equation (4.2).



Chapter 5

Efficient numerical simulation of

smectic liquid crystals

Abstract1

Liquid crystalline materials are abundant in both the natural world (e.g., cholesterol

and other molecules) and science and engineering practice (e.g., in liquid crystal dis-

plays). Because they possess properties that are intermediate between those of liquids

and solid crystals, as well being electromagnetically active, there are a wide range of

potential scientific and industrial uses for liquid crystals. However, their use in many

contexts is held back by poor theoretical understanding of their mechanical proper-

ties. One approach to gaining such understanding is through the use of computer

simulation and, in recent years, several families of finite-element methods have been

proposed and developed to model various equilibrium states of different types of liq-

uid crystals. Among common liquid crystal phases, smectic phases are distinguished

by their “soap-like” properties, forming distinct layers at equilibrium. Until recently,

there had been little success in developing finite-element simulation tools for smectic

liquid crystals, primarily due to the complex nature of their governing free-energy

functionals. In this paper, we discuss the challenges in developing such models, and

build on recent work by Pevnyi, Selinger, and Sluckin [112] and by Xia et al. [138]

to propose a new mixed finite-element formulation for one model of smectic A liquid

1This work to be submitted as “Efficient numerical simulation of smectic liquid crystals”, by
Patrick E. Farrell, Abdalaziz Hamdan, and Scott P. MacLachlan.
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crystals. In particular, we demonstrate effective nonlinear and linear solvers for this

formulation, combining nested iteration (grid continuation) and monolithic multigrid

principles.

5.1 Introduction

The unusual properties of liquid crystals were first observed by the Austrian chemist

Reinitzer in 1888 [116]. These substances display physical properties that are some-

how “between” those expected of liquids and those seen in solid crystals, including

the ability to maintain crystal-like molecular orientation while flowing like a liquid.

Many of the interesting properties of liquid crystals can be tied to the development

of symmetry-breaking structures and/or defects in the crystal structure [94], where

non-smooth configurations are energetically preferable, particularly when constrained

by a “mismatch” between the geometry of the domain and the inherent properties of

the crystal under consideration (known as geometric frustration). Different materials

achieve these properties in different ways, with some liquid crystals changing their

behaviour with temperature (thermotropic liquid crystals) and some with chemical

concentration (lyotropic liquid crystals). Among these types, there are further phases

of the liquid crystals; in particular, thermotropic liquid crystals at high temperature

behave as an isotropic liquid, then display a nematic phase as the temperature drops,

then a smectic phase at lower temperatures, before acting as a convential crystal at

sufficiently low temperatures.

The governing free-energy model for nematic liquid crystals behaves as a nonlinear

and anisotropic second-order div-curl system, making it amenable to finite-element

simulation with standard H1 conforming spaces on convex domains [4,5,9,23,100,114].

Smectic liquid crystals, in contrast, exhibit much more complicated behaviour, includ-

ing coupling between the liquid-crystal director field and a scalar order parameter

related to the density variation of the liquid crystal, leading to free-energy functionals

involving higher-order derivatives of the order parameter [1, 78, 112, 138]. The main

focus of this paper is on the numerical modeling of equilibrium states of Smectic-A

liquid crystals, which are characterized by their natural propensity to form layers

with periodic variation in the density of the liquid crystal along lines orthogonal to
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the orientation of the crystals. While some models make use of a complex order pa-

rameter as a model of the energy of liquid crystals [1, 55], several recent papers have

proposed models based directly on the (real-valued) density variation [22, 112, 138].

For example, Pevnyi et al. [112] propose the energy functional

E (u, ~ν) =

∫
Ω

a1

2
u2 +

a2

3
u3 +

a3

4
u4 +B

∣∣∇∇u+ q2~ν ⊗ ~νu
∣∣2 +

K

2
|∇~ν|2, (5.1)

where Ω ⊂ Rd, d ∈ {2, 3}, u : Ω → R represents the variation in the density of

the liquid crystal from its average density, ~ν is the unit-length director of the liquid

crystal (the local axis of average molecular alignment), and a1, a2, a3, q,K, and B are

real valued constants determined by the liquid crystal under consideration. Of these,

the smectic wavenumber, q, is notable because it prescribes a preferred wavelength for

the solution of 2π/q. Here, and in what follows, we use |Q|2 = Q : Q to denote the

Frobenius norm squared of tensor Q (of any rank), defined as the sum of squares of the

entries in Q at a given point in Ω. While numerical experiments in [112] demonstrate

that this model is capable of reproducing both the expected behaviour of Smectic-A

liquid crystals and simulated results with complex-valued order parameters, the use

of a vector-valued director degree of freedom limits the range of defects that can be

represented, since ~ν should be directionless (with no distinction between ±~ν in the

pointwise energy functional), but some natural structures cannot be represented with

a continuous vector field, ~ν.

To overcome this limitation, Ball and Bedford [22] propose replacing the vector

degrees of freedom for ~ν with a tensor related to ~ν ⊗ ~ν. In [138], Xia et al. adapted

the Ball-and-Bedford model to achieve a more robust simulation framework, writing

J1(u,Q) =

∫
Ω

a1

2
u2 +

a2

3
u3 +

a3

4
u4 +B

∣∣∣∣∇∇u+ q2

(
Q +

Id
d

)
u

∣∣∣∣2 +
K

2
|∇Q|2 +fn(Q),

(5.2)

where Q is a traceless tensor-valued order parameter, Id is the identity matrix, and

fn(Q) = −l tr(Q2) + l (tr(Q2))
2

for d = 2 and fn(Q) = − l
2

tr(Q2) − l
3

tr(Q3) +
l
2

(
tr(Q2)

)2
in three dimensions. Here, the functions fn(Q) and the penalty param-

eter, l, are chosen so that the minimizer of
∫

Ω
fn(Q) is of the form Q = ~ν ⊗ ~ν − Id

d
,

and are included in the energy to weakly enforce the rank-one condition implied by

Pevnyi et al.’s model, without the potential singularity when including a scalar order

parameter, as in [22] or the difficulty in representing certain expected defect structures
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when directly discretizing (5.1). While there remain many open questions about the

physical values of the constants a1, a2, a3, q,K, and B, an important feature of the

model is the energetic competition between the Hessian term, scaled by B, and the

deformation of the director field, represented by either ~ν or Q. Compared to what

has been done in Chapter 4, both u and the tensor Q are variables and, therefore,

the Euler-Lagrange equations for either of these functionals naturally lead to a cou-

pled system of PDEs, with a fourth-order operator acting on u and a second-order

operator acting on ~ν or Q. We point out that the case of natural boundary condi-

tions on the fourth-order operator and essential (Dirichlet) boundary condition on the

second-order operator is the one of interest, precluding the possibility of making use

of some discretization techniques for fourth-order problems that rely on clamped or

simply supported boundary conditions. Several mixed finite-element techniques can

be used to discretize (5.2), including conforming methods that require the use of H2-

conforming elements for u, and H1-conforming elements for Q. While this is possible

using, for example, fifth-order Argyris elements on triangles in 2D, it is problem-

atic in 3D, where the lowest-order conforming space on triangles is ninth-order [141].

This motivated the use of a C0 interior-penalty (C0IP) approach in [138], where C1-

continuity is weakly enforced by penalizing inter-element jumps in the gradient of u,

modifying the energy model (5.2) into

Ĵ1(u,Q) = J1(u,Q) +
1

h3
e

∑
e∈εh

∫
e

[[
∂u

∂n

]]2

, (5.3)

where [[·]] denotes the standard jump on each edge, and εh is the set of (interior) edges

in the mesh. This technique enables the use of simple continuous (H1-conforming)

Lagrange elements, with only simple modification to the weak form required [42].

However, it is sometimes difficult to decide how large the penalty parameter on this

term must be to achieve stability without harming convergence. Furthermore, de-

veloping fast solvers for the resulting systems is often difficult, and numerical ex-

periments in [138] were limited to relatively coarse meshes, due to their reliance on

direct solvers. Analysis of C0IP and conforming methods for (5.2) have been studied

in [79, 137] with some simplifications. For the case of a fixed tensor, Q, and with

a2 = a3 = 0, Argyris elements with a nonsymmetric version of Nitsche’s method to

impose Dirichlet BCs on u, as well as a nonsymmetric version of C0IP methods were

discussed in [79]. The main motivation for using the nonsymmetric forms of these
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discretizations is to get optimal-in-q convergence estimates, that yield optimal-in-h

convergence rates in a weighted H2(Ω) norm, but degraded h-convergence rates in

the L2(Ω) norm. A different simplification of (5.2) was considered in [137], assuming

that q = 0 and only implementing the simply supported boundary conditions on u.

A standard C0IP method was analysed with O(1/h3) weights on the inter-element

jumps in the first derivative of u. In addition, the weakly-over penalised symmetric

interior penalty (WOPSIP) method, where the facet integrals arising from integra-

tion by parts are not included in the discrete forms, but higher weights appear on

the inter-element jump of the first derivative, is shown numerically to be efficient.

Numerical experments are also given in [137] for the coupled case(q 6= 0).

An alternative approach to either conforming or C0IP discretizations for u is to

introduce additional variables and use a mixed finite-element formulation for an aug-

mented system [24, 25, 27, 51, 66, 79, 96, 97, 104]. In this paper, we adapt the mixed

formulation from [79], which considered the minimization of J1(u,Q∗) for fixed Q∗,

by introducing an additional variable, ~v, to represent ∇u, along with a Lagrange

multiplier, ~α, to weakly enforce ~v = ∇u. The resulting modified smectic A energy

functional is

J2(u,~v, ~α,Q) =

∫
Ω

a1

2
u2 +

a2

3
u3 +

a3

4
u4 +B

∣∣∣∣∇~v + q2

(
Q +

Id
d

)
u

∣∣∣∣2
+
K

2
|∇Q|2 + fn(Q) +

∫
Ω

~α · ~v + u∇ · ~α. (5.4)

In what follows, we show the expected relationship between minimizers of J1(u,Q)

and saddle points of J2(u,~v, ~α,Q), as well as establishing that, under suitable “small

data” assumptions, the Newton linearizations of J2(u,~v, ~α,Q) are well-posed both

in the continuum and when discretized appropriately. We also demonstrate that the

resulting nonlinear systems are amenable to efficient solution using a Nested Itera-

tion (NI) solver [10, 124] with Newton’s method used to linearize on each grid, and

monolithic multigrid used to solve the resulting linearizations.

The remainder of this paper is organized as follows. Section 5.2 presents back-

ground results on finite-element approximation needed for the later sections, as well

as a review of existing theory for the smectic energy functional from [138]. The exis-

tence of minimizers of J1 and their equivalence to saddle points of J2 is presented
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in Section 5.3. The linearization of J2 is considered in Section 5.4, establishing well-

posedness (under typical assumptions) for both the continuum Hessian system and

a particular mixed finite-element discretization. The details of the Nested Iteration-

Newton-Krylov-Multigrid solver are presented in Section 5.5, followed by numerical

results in Section 5.6. Concluding remarks and directions for future work are discussed

in Section 5.7.

5.2 Background

5.2.1 Finite-element preliminaries

Throughtout this paper, we consider Ω ⊂ Rd, d = {2, 3} to be an open, bounded and

convex domain. For d = 3, we make the stricter assumption that Ω is a polyhedron.

We take {τh}, 0 < h < 1, to be a quasiuniform family of triangulations of Ω. On a

simplex, T ∈ τh, we take Pk(T ) to be the space of multivariate polynomials of degree at

most k. With this, the space of discontinuous Lagrange elements DGk(Ω, τh) ⊂ L2(Ω),

k ≥ 0 is defined as DG(Ω, τh) = {uh ∈ L2(Ω), uh ∈ Pk(T ) ∀T ∈ τh} . All degrees of

freedom in this space are internal; i.e. functions belong to this space are piecewise

continuous. In contrast, the continuous Lagrange elements, CGk(Ω, τh) ⊂ H1(Ω),

k ≥ 1, possess C0 continuity across each element edges. The H(div)-conforming

elements, RTk(Ω, τh), k ≥ 1, where the normal components are continuous across

element faces. In particular, for any ~vh ∈ RTk(Ω, τh), ~vh|T ∈ [Pk−1(T )]d + Pk−1(T )~x,

∀T ∈ τh. We also consider Nédélec elements of the first kind, Nk(Ω, τh), k ≥ 1 which

areH(curl)-conforming elements, where the tangential component is continuous across

element faces, and for any ~vh ∈ Nk(Ω, τh),~vh|T ∈ [Pk−1(T )]2 + Sk(T ), where Sk(T ) ={
~s ∈ [Pk(T )]d, ~s(~x) · ~x = 0, ∀~x ∈ T

}
. Finally, we define the spaces CGΓ

k (Ω, τh) and

RT Γ
k (Ω, τh) to be subspaces of CGΓ

k (Ω, τh) and RT Γ
k (Ω, τh), respectively, where

CGΓ
k (Ω, τh) = {uh ∈ CGk(Ω, τh)| uh = 0 on Γ ⊂ ∂Ω} ,

RT Γ
k (Ω, τh) = {~vh ∈ RTk(Ω, τh)| ~vh · ~n = 0 on Γ ⊂ ∂Ω} ,

NΓ
k (Ω, τh) = {~vh ∈ Nk(Ω, τh)| ~vh × ~n = 0 on Γ ⊂ ∂Ω} ,

where ~n is the outward unit normal to Γ. We recall standard approximation results

for these spaces.
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Theorem 20. [32, 35, 92] Let Ik1,h : Hk+1(Ω) → DGk(Ω, τh), Ik2,h : Hk+1(Ω) →
CGk(Ω, τh), Ik3,h : [Hk+1(Ω)]d → RTk(Ω, τh), and Ik4,h : [Hk+1(Ω)]d → Nk(Ω, τh) be the

finite-element interpolation operators. Then there exist a constant C, such that for

any u ∈ Hk+1(Ω) and ~v ∈
[
Hk+1(Ω)

]d
,

‖u− Ik1,hu‖0 ≤ Chk+1|u|k+1, ∀k ≥ 0,

‖u− Ik2,hu‖1 ≤ Chk|~v|k+1, ∀k > 0,

‖~v − Ik3,h~v‖div ≤ Chk (|~v|k + |~v|k+1) , ∀k > 0,

‖~v − Ik4,h~v‖curl ≤ Chk (|~v|k + |~v|k+1) , ∀k > 0,

Remark 5.2.1. In what follows, we use C to represent a generic positive constant

that can depend on the domain, shape regularity of the triangulation, τh, and the

polynomial degree of the finite-element space, but not on the mesh parameter, h, nor

the smectic wavenumber, q, and may be different in different instances. Where needed,

we will use
{
Ci
}

to denote different arbitrary constants in the same expression.

Following [79], we make use of a stronger norm on H0(div,Ω) induced by the

Helmholtz decomposition. We shall use the spaces

H1
0 (Ω) =

{
u ∈ H1(Ω), u = 0 on ∂Ω

}
,

H0(div; Ω) = {~v ∈ H(div; Ω), ~v · ~n = 0, on ∂Ω} ,

H(div0; Ω) = {~v ∈ H(div; Ω), ∇ · ~v = 0} ,

H0(curl; Ω) =
{
~v ∈ H(curl; Ω), ~v × ~n = 0̊, on ∂Ω

}
,

where 0̊ = 0 in 2d and 0̊ is the zero vector in 3d.

Lemma 14. (The Helmholtz decomposition [32,74]) For ~α ∈ H0(div; Ω), the following

Helmholtz decomposition holds

~α = ∇φ+∇× p̊, (5.5)

where φ ∈ H1(Ω,R) is a zero-mean function, and p̊ = p ∈ H1
0 (Ω,R) for d = 2, and

p̊ = ~p ∈ H0(curl; Ω)∩H(div0; Ω) for d = 3. Furthermore, given ~α1 and ~α2 in H(div; Ω)

with ~α1 = ∇φ1 + ∇ × p̊1, and ~α2 = ∇φ2 + ∇ × p̊2. The following defines an inner
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product on H(div; Ω).

(~α1, ~α2)Div = q−4

(∫
Ω

p̊1p̊2 +

∫
Ω

∇φ1 · ∇φ2 +

∫
Ω

∇ · ~α1∇ · ~α2

)
, (5.6)

where q is a O(1) positive constant.

We will also make use of this decomposition and norm for functions inRT ∂Ω
k+1(Ω, τh).

Lemma 15. [14, 15] The Helmholtz decomposition of RT ∂Ω
k+1(Ω, τh) is

RTk+1(Ω, τh) =

(
∇∂Ω
h DGk(Ω, τh)

)
⊕
(
∇× Vh

)
, (5.7)

where ∇Γa
h is the discrete gradient operator, ∇Γa

h : DGk(Ω, τh) → RT Γa
k+1(Ω, τh), such

that ∫
Ω

∇Γa
h u · ~v = −

∫
Ω

u∇ · ~v, ∀~v ∈ RT Γa
k+1(Ω, τh). (5.8)

In two dimensions, we take Vh = CG∂Ω
k+1(Ω, τh), while Vh = N∂Ω

k+1(Ω, τh) in three

dimensions. This decomposition is orthogonal in the L2 and H(div) norms.

5.2.2 Existing results

As proving well-posedness of the nonlinear systems arising from discretizing Prob-

lem (5.2) is either very complicated or requires strict restrictions on the constants

a1, a2, a3, q, l, and B, different types of simplifications have been considered in the

literature. In this section, we summarize existing results from [79, 137]. In [137], Xia

and Farrell simplified (5.2) by assuming that q = a2 = 0 and applying the simply-

supported boundary conditions on u. In this case, minimizers of (5.2) should solve

the two independent problems, with u determined by

2B

∫
Ω

∇∇u : ∇∇φ+ a1uφ+ a3u
3φ = 0, ∀φ ∈ H2(Ω) ∩H1

0 (Ω). (5.9)

A C0IP discretization on quadrilateral meshes in R2 and hexahedral meshes in R3 was

proposed, with weak form to find u ∈ CG∂Ω
k (Ω, τ̂h) such that

Ah(uh, φh) + a1

∫
Ω

uhφh + a3

∫
Ω

u3
hφh = 0, ∀φh ∈ CG∂Ω

k (Ω, τ̂h), (5.10)
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where

Ah(uh, φh) =2B
∑
τ∈τ̂h

∇∇uh : ∇∇φh − 2B
∑

e∈εh\∂Ω

∫
e

{{
~n ·
(
∇∇uh

)
· ~n
}}[[

∂φh
∂n

]]

− 2B
∑

e∈εh\∂Ω

∫
e

{{
~n ·
(
∇∇φh

)
· ~n
}}[[

∂uh
∂n

]]

+
2Bκ

h3

∑
e∈εh\∂Ω

∫
e

[[
∂uh
∂n

]] [[
∂φh
∂n

]]
,

where κ is a penalty parameter.

Theorem 21. Let u be a regular isolated solution of Problem (5.9), meaning there

exists an r > 0 such that there is only one solution within

{
v ∈ H2(Ω) ∩H1

0 (Ω), |u− v|2 ≤ r
}
,

then for sufficiently large κ, a1, and a3, there exists a unique solution uh ∈ CG∂Ω
k (Ω, τ̂h)

of the discrete problem (5.10) within the ball

{
vh ∈ CGk(Ω, τ̂h), |||Ik2,hu− vh|||h ≤ R(h)

}
.

Moreover, if u ∈ Hp(Ω), p ≥ 4 then ∃C > 0 such that

‖u− uh‖h ≤ Chmin{k−1,p−2}, (5.11)

where Ik2,h is the continuous Lagrange interpolation operator defined in Theorem (20),

and

‖φh‖h =
∑
τ∈τ̂h

|φh|22,τ +
1

h3

∑
e∈εh\∂Ω

∫
e

[[
∂φh
∂n

]]2

. (5.12)

Remark 5.2.2. Xia et al. in [137] experimentally validated a second discretization

for (5.9) where

Ah(uh, φh) = 2B
∑
τ∈τ̂h

∇∇uh : ∇∇φh +
2Bκ

h3

∑
e∈εh\∂Ω

∫
e

[[
∂uh
∂n

]] [[
∂φh
∂n

]]
.

In this case, Ah is missing the interior facet integrals arising from the integration by

parts and its symmetrization. This discretization is inconsistent, as the solution u
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of (5.9) fails to satisfy the discrete form. Numerical experiments in [137] show that

optimal convergence rates can, nonetheless, be achieved if the derivative-jump term is

suitable over-penalized. This is similar to the inconsistent discretization in (5.3) used

to discretize (5.2) in [138].

When q = 0, the tensor-valued order parameter, Q, is determined by

K

∫
Ω

∇Q : ∇T + 2l
(
2|Q|2 − 1

)
Q : T = 0, ∀T ∈ H1(Ω), for d = 2,

K

∫
Ω

∇Q : ∇T + l
(
−Q− |Q|2 + |Q|2Q

)
: T = 0, ∀T ∈ H1(Ω), for d = 3.

[137, Theorem 3.24] proves well-posedness and convergence results for the discretiza-

tion of this problem using H1(Ω)-conforming continuous Lagrange elements.

In [79], a different type of simplification of (5.2) is applied. Here, Q is taken to

be a given bounded tensor, a2 = a3 = 0, a forcing term f , and a mix of the boundary

conditions (5.14)-(5.17) are applied. In this setting, it was shown that the minimizer

is unique and should solve the problem

a(u, φ) =

∫
Ω

fφ, (5.13)

for all φ ∈ H2
0 (Ω) = {u ∈ H2(Ω), u = 0 on Γ0 ∪ Γ1 and ∇u = 0 on Γ1 ∪ Γ3}, and

a(u, φ) = B

∫
Ω

∇∇u : ∇∇φ+Bq2

∫
Ω

∇∇u : Qφ+Bq2

∫
Ω

∇∇φ : Qu

+

∫
Ω

(Bq4Q : Q + a1)uφ.

In this setting, ∂Ω is decomposed as ∂Ω = Γ0∪Γ1∪Γ2∪Γ3 with Γi∩Γj = ∅ for i 6= j,

and the problem is posed with boundary conditions

u = 0, (∇∇u+ q2Qu) · ~n = ~0, on Γ0, (5.14)

u = 0, ∇u = ~0, on Γ1, (5.15)

∇ · (∇∇u+ q2Qu) · ~n = 0, (∇∇u+ q2Qu) · ~n = ~0, on Γ2, (5.16)

∇ · (∇∇u+ q2Qu) · ~n = ~0, ∇u = ~0, on Γ3. (5.17)
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A conforming finite-element discretization of (5.13) was shown to off optimal con-

vergence; however, conforming discretizations of H2(Ω) problems in three dimensions

are prohibitively expensive, requiring ninth-order polynomials on tetrahedra. Two

alternative formulations were provided in [79], a mixed formulation similar to that

discussed below and a nonsymmetric C0IP method. The weak form in that case is to

find uh ∈ CGΓ0∪Γ1
k (Ω, τh), k ≥ 2, such that

ãh(uh, φh) =

∫
Ω

fφh, ∀φh ∈ CGΓ0∪Γ1
k (Ω, τh), (5.18)

where

ã(uh, φh) =â(uh, φh)−B
∑

e∈εh\Γ0∪Γ2

∫
e

{{
~n ·
(
∇∇uh + q2Quh

)
· ~n
}}[[

∂φh
∂n

]]

+B
∑

e∈εh\Γ0∪Γ2

∫
e

{{
~n ·
(
∇∇φh + q2Qφh

)
· ~n
}}[[

∂uh
∂n

]]

+
1

q3h

∑
e∈εh\Γ0∪Γ2

∫
e

[[
∂uh
∂n

]] [[
∂φh
∂n

]]
,

and

â(uh, φh) =B
∑
τ∈τh

(∫
τ

∇∇uh : ∇∇φh +Bq2

∫
τ

∇∇uh : Qφh +Bq2

∫
τ

∇∇φh : Quh

)
+

∫
Ω

Bq4(Q : Q + a1)uhφh.

This problem is well-posed, and offers an optimal approximation in a similar weighted

norm to that in (5.12).

Theorem 22. Let f ∈ L2(Ω) and Q : Q be bounded pointwise on Ω̄. Then, Prob-

lem (5.18) is well-posed in the norm

|||uh|||2h = q−4

(∑
τ∈τh

|uh|22,τ + ‖∇uh‖2
0

)
+ ‖uh‖2

0 +
1

q3h

∑
e∈εh\Γ0∪Γ2

∫
e

[[
∂uh
∂n

]]2

+
h

q5

∑
e∈εh\Γ0∪Γ2

∫
e

{{
~n ·
(
∇∇uh + q2Tuh

)
· ~n
}}2

.
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Moreover, if u ∈ Hp(Ω), p ≥ 4, is the unique solution of (5.13), then

|||u− uh|||h ≤ CBq4hmin{p,k+1}−2|u|p.

5.3 Equilibria of Energy Functionals

While the introduction of auxiliary variables to J1(u,Q) in (5.2) to get J2(u,~v, ~α,Q)

in (5.4) is straightforward, it is natural to question what relation exists between min-

imizers of J1 and saddle points of J2. We consider this question in this section, but

first state a slight generalization of [137, Theorem 2.1] where existence of a minimizer

for J1 was proved over the space {(u,Q) ∈ (H2(Ω,R) ∩H1
0 (Ω,R))×H1

0 (Ω, S)}.

Corollary 14. Given that the parameters a3, B,K, l, and q are positive. The energy

functional J1 has a minimizer over the admissible space

A1 =
{

(u,Q) ∈ H2(Ω,R)×H1
0 (Ω, S)

}
, (5.19)

where H1
0 (Ω, S) is the space of d × d symmetric and traceless matrices with each

component in H1
0 (Ω,R), giving d(d+1)

2
− 1 degrees of freedom that can be represented

as

Q =

[
q1 q2

q2 −q1

]
, in 2d, and Q =

q1 q3 q4

q3 q2 q5

q4 q5 −(q1 + q2)

 , in 3d.

Proof. The proof is identical to [137, Theorem 2.1]. J1 is bounded from below as a3

and l. fn(Q) is coercive in H1(Ω, S) [137]. In addition, making use of the standard

Poincaré inequality on H2(Ω) [44], we have ‖∇u‖2
0 ≤ C (‖u‖2

0 + ‖∇∇u‖2
0) , ∀u ∈

H2(Ω).

Remark 5.3.1. The Euler-Lagrange equations for minimizers of J1 over the space
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A1 are

0 = a1u+ a2u
2 + a3u

3 + 2B∇ · ∇ ·
[
∇∇u+ q2

(
Q +

Id
d

)
u

]
+ 2B

[
∇∇u+ q2

(
Q +

Id
d

)
u

]
:

[
q2

(
Q +

Id
d

)]
,

0 = 2B

[
∇∇u+ q2

(
Q +

Id
2

)
u

]
(q2u) +K∆Q + F1,

where

F1 =

{
−2lQ + 4l |Q|2 Q for d = 2,

−lQ− lQ2 + 2l |Q|2 Q for d = 3,

and 0 ∈ H1
0 (Ω, S) is the d-dimensional zero tensor. In addition to the Dirichlet BCs

on the tensor Q, we consider the following natural BCs on u,

∇ ·
[
∇∇u+ q2

(
Q +

Id
d

)
u

]
· ~n = 0, and

[
∇∇u+ q2

(
Q +

Id
d

)
u

]
· ~n = ~0.

Now, we turn our attention to saddle points of J2 over the space

A2 =
{

(u,~v,Q, ~α) ∈ L2(Ω,R)×H1(Ω,Rd)×H1
0 (Ω, S)×H0(div; Ω)

}
.

The quadruple (u,~v,Q, ~α) is a saddle point of J2 if it satisfies the first-order opti-

mality conditions

J2,u[φ] =
∂

∂u
J2(u,~v, ~α,Q)[φ] = 0, ∀φ ∈ L2(Ω,R), (5.20)

J2,~v[~ψ] =
∂

∂~v
J2(u,~v, ~α,Q)[~ψ] = 0, ∀~ψ ∈ H1(Ω,Rd), (5.21)

J2,Q[T ] =
∂

∂Q
J2(u,~v, ~α,Q)[T ] = 0, ∀T ∈ H1

0 (Ω, S). (5.22)

J2,~α[~β] =
∂

∂~α
J2(u,~v, ~α,Q)[~β] = 0, ∀~β ∈ H0(div; Ω), (5.23)
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The following variational system arises from these derivatives,

a
(

(u,~v,Q) ; (u,~v,Q) ,
(
φ, ~ψ,T

))
+ b
(
~α,
(
φ, ~ψ,T

))
= 0,∀

(
φ, ~ψ,T

)
∈ V

(5.24)

b
(
~β, (u,~v,Q)

)
= 0, ∀~β ∈ H0(div; Ω)

, (5.25)

where V = L2(Ω,R)×H1(Ω,Rd)×H1
0 (Ω, S),

a
(

(u,~v,Q) ; (u,~v,Q) ,
(
φ, ~ψ,T

))
=

∫
Ω

φ
(
a1u+ a2u

2 + a3u
3
)

+ 2q2B

∫
Ω

[
∇~v + q2

(
Q +

Id
d

)
u

]
:

[(
Q +

Id
d

)
φ

]
+ 2B

∫
Ω

[
∇~v + q2

(
Q +

Id
d

)
u

]
: ∇~ψ

+ 2q2B

∫
Ω

(
∇~v + q2

(
Q +

Id
d

)
u

)
: Tu

+K

∫
Ω

∇Q : ∇T +

∫
Ω

F1 : T ,

b
(

(u,~v,Q) , ~β
)

=

∫
Ω

~β · ~v + u∇ · ~β.

In the next theorems, we show that minimizers of J1 and saddle points of J2 are

equivalent.

Theorem 23. Let (u,~v,Q, ~α) ∈ A2 be a saddle point of J2. Then, the pair (u,Q)

is also in A1 and is a minimizer of J1.

Proof. Let (u,~v,Q, ~α) ∈ A2 be a saddle point of J2, so that∫
Ω

~β · ~v + u∇ · ~β = 0, ∀~β ∈ H0(div; Ω).

Let g ∈ C∞0 (Ω) be an arbitrary function and define ~e(i) to be the d-dimensional

canonical unit vector whose ith entry is 1. Choosing ~β = g~e(i) implies that ~v = ∇u by

the definition of the weak derivative [63]. Then, since u ∈ L2(Ω) and ∇u ∈ H1(Ω,Rd),

it must be the case that u ∈ H2(Ω). Moreover, since weak derivatives are unique, it
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must be the case that

Ker(b) =
{(
φ, ~ψ,T

)
∈ V

∣∣∣ b(~β,(φ, ~ψ,T)) = 0,∀~β ∈ H1
0 (div; Ω)

}
=
{

(φ,∇φ,T ) ∈ H2(Ω,R)×H1(Ω,Rd)×H1
0 (Ω, S)

}
,

where V = L2(Ω,R)×H1(Ω,Rd)×H1
0 (Ω, S). Equation (5.24) implies that

a ((u,∇u,Q) ; (u,∇u,Q) , (φ,∇φ,0)) = 0, ∀φ ∈ H2(Ω,R) (5.26)

a ((u,∇u,Q) ; (u,∇u,Q) , (0, 0,T )) = 0, ∀T ∈ H1
0 (Ω, S), (5.27)

which are the first-order optimality conditions of J1 over A1.Therefore, the pair

(u,Q) is a minimizer of J1.

Theorem 24. Let (u,Q) ∈ H2(Ω,R) × H1
0 (Ω, S) be a minimizer of J1. Then,

(u,∇u,Q, ~α) is a saddle point of J2 for some ~α ∈ H0(div; Ω).

Proof. Let (u,Q) ∈ H2(Ω,R)×H1
0 (Ω, S) be a minimizer of J1. Then, the first-order

optimality conditions for J1 imply that

a ((u,∇u,Q) ; (u,∇u,Q) , (φ,∇φ,T )) = 0, ∀(φ,∇φ,T ) ∈ Ker(b)

Defining ‖ (u,~v) ‖2
0,q,1 = ‖u‖2

0 + q−4‖~v‖2
1, by [74, Theorem 1.4], if the inf-sup condition

I = sup
(u,~v,Q)∈L2(Ω,R)×H1(Ω,Rd)×H1

0 (Ω,S)

∫
Ω
~α · ~v +

∫
Ω
u∇ · ~α√

‖ (u,~v) ‖0,q,1 + ‖Q‖2
1

≥ Cq2‖~α‖Div, (5.28)

is satisfied, then for every (u,∇u,Q) that is a solution of (5.24) over Ker(b) there

exists a unique ~α such that (u,∇u,Q, ~α) is a solution of (5.24)-(5.25). The choice

Q = 0 implies that the proof of the inf-sup condition for d = 2 is identical to the

proof of the three-field formulation in [79].

We next prove the inf-sup condition (5.28) for d = 3. Given ~α ∈ H0(div; Ω),

write ~α = ∇ × ~p + ∇φ, where φ ∈ H1(Ω,R) is a zero-mean function, and ~p ∈
H0(curl; Ω) ∩ H(div0; Ω). Choose Q = 0, and u = c1 (∇ · ~α− φ), for a positive

constant, c1, to be chosen later. Note that

‖u‖0 = c1‖∇·~α−φ‖0 ≤ c1 (‖∇ · ~α‖0 + ‖φ‖0) , and

∫
Ω

u∇·~α = c1

(
‖∇ · ~α‖2

0 + ‖∇φ‖2
0

)
,
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with ‖φ‖2
0 ≤ c2‖∇φ‖2

0 by the Poincaré inequality. By [73, Theorem 2.1], there exists
~ψ ∈ H1(Ω,R3) such that ~p = ∇× ~ψ, ∇ · ~ψ = 0, and ~ψ · ~n = 0 on ∂Ω. Furthermore,

the following inequality holds [73, Theorem 2.3]

‖~ψ‖1 ≤ c3‖∇ × ~ψ‖2
0 ≤ c3‖~p‖2

0.

Taking ~v = ~ψ, we have

I ≥

∫
Ω

(
∇×∇× ~ψ +∇φ

)
· ~ψ + c1‖∇φ‖2

0 + c1‖∇ · ~α‖2
0√

c3q−4‖~p‖2
0 + c2

1‖∇ · ~α‖2
0 + c2

1c2‖∇φ‖2
0

≥
‖p‖2

0 +
∫

Ω
∇φ · ~ψ + c1‖∇φ‖2

0 + c1‖∇ · ~α‖2
0√

c3q−4‖~p‖2
0 + c2

1‖∇ · ~α‖2
0 + c2

1c2‖∇φ‖2
0

,

where we use [32, Theorem 2.1.1] to establish∫
Ω

∇×∇× ~ψ · ~ψ = ‖∇ × ~ψ‖2
0 +

∫
∂Ω

~n×
(
~ψ × ~n

)
·
(
∇× ~ψ

)
× ~n = ‖∇ × ~ψ‖2

0 = ‖~p‖2
0,

as
(
∇× ~ψ

)
× ~n = ~p× ~n = 0. We next bound

∫
Ω
∇φ · ~ψ,

∫
Ω

∇φ · ~ψ ≤ c4

2
‖∇φ‖2

0 +
1

2c4

‖~v‖2
0 ≤

c4

2
‖∇φ‖2

0 +
c3

2c4

‖p‖2
0.

Thus,

I ≥

(
1− c3

2c4

)
‖p‖2

0 +
(
c1 − c4

2

)
‖∇φ‖2

0 + c1‖∇ · ~α‖2
0√

c3q−4‖~p‖2
0 + c2

1‖∇ · ~α‖2
0 + c2

1c2‖∇φ‖2
0

.

If we choose c4 > c3
2

and c1 > c4
2

. Then, there exits a constant c such that I ≥
cq2‖~α‖Div, where the H(Div) norm of ~α is defined in (5.6).

Corollary 15. If, in addition to the assumptions of Theorem 24, (u,Q) ∈ H4(Ω,R)×
(H2(Ω, S) ∩H1

0 (Ω, S)) is a minimizer of J1 with uQ ∈ H2(Ω, S). Then, (u,~v,Q, ~α)

is a saddle point of J2 for

~v = ∇u, (5.29)

~α = 2B∇ ·
(
∇∇u+ q2

(
Q +

Id
d

)
u

)
. (5.30)
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Proof. Multiplying Equations (5.29) and (5.30) by ~ψ ∈ H1(Ω,Rd) and ~β ∈ H0(div; Ω)

respectively and integrating by parts leads to the fact that Equations (5.21) and (5.23)

are satisfied. In addition, integrating Equations (5.26) and (5.27) by parts implies that

a1u+ a2u
2 + a3u

3 + 2q2B

(
∇~v + q2

(
Q +

Id
d

)
u

)
:

(
Q +

Id
d

)
+∇ · ~α = 0 (5.31)

2q2Bu

(
∇~v + q2

(
Q +

Id
d

)
u

)
−K∆Q + F1 = 0. (5.32)

Finally, multiplying Equations (5.31) and (5.32) by φ ∈ L2(Ω,R) and T ∈ H1
0 (Ω, S)

respectively, and integrating by parts implies that Equations (5.20) and (5.22) hold.

5.4 Linearization

As the Euler-Lagrange equations for J2 are nonlinear, we use Newton’s method to

construct a sequence of approximations to equilibria points, where ∇J2 = ~0. Let

U = (u,~v,Q, ~α) be such an equilibrium point, and let Uk = (uk, ~vk,Qk, ~αk) be an

approximation to U that is, in some sense, close to U . Then, the first order Taylor

expansion of ∇J2(U) is

∇J2(U) ≈ ∇J2(Uk) +H (J2(Uk)) (U − Uk),

where H(J2) is the Hessian of J2. Rewriting this, we have

H (J2(Uk)) (U − Uk) ≈ −∇J2(Uk), (5.33)

Now, define δu = uk+1 − uk, δ~v = ~vk+1 − ~vk, δQ = Qk+1 − Qk, δ~α = ~αk+1 − ~αk

and δU = Uk+1 − Uk = (δu, δ~v, δ~α, δQ). Then, Newton’s method finds a sequence of

approximations to U by starting from some initial guess U0 and successively solving
J2,uu J2,u~v J2,uQ J2,u~α

J2,~vu J2,~v~v J2,~vQ J2,~v~α

J2,Qu J2,Q~v J2,QQ J2,Q~α

J2,~α~u J2,~α~v J2,~αQ J2,~α~α



δu

δ~v

δQ

δ~α

 = −∇J2 (Uk) . (5.34)
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At each step, the Hessian is computed at Uk = (uk, ~vk,Qk, ~αk). Here, the right-

hand side is understood to be the variational terms given in (5.20) through (5.23),

for every φ, ~ψ, T , ~β, also evaluated at Uk, while the matrix-vector multiplication on

the left denotes the directions in which the derivatives in the Hessian are taken [4].

For instance, J2,u~v[φ] · δ~v = ∂
∂~v

(J2,u(uk, ~vk,Qk, ~αk)[φ]) [δ~v]. Using this formula,

Components of the Hessian are given by

J2,uu[φ] · δu =

∫
Ω

(
a1 + 2a2uk + 3a3u

2
k + 2q4B

∣∣∣∣Qk +
Id
d

∣∣∣∣2
)
φδu,

J2,u~v[φ] · δ~v = 2q2B

∫
Ω

∇δ~v :

(
Qk +

Id
d

)
φ,

J2,uQ[φ] · δQ = 2q2B

∫
Ω

(
∇~vk + 2q2

(
Qk +

Id
d

)
uk

)
φδQ,

J2,u~α[φ] · δ~α =

∫
Ω

φ · ∇δ~α,

J2,~v~v[~ψ] · δ~v = 2B

∫
Ω

∇δ~v : ∇~ψ, J2,~vQ[~ψ] · δQ = 2q2B

∫
Ω

ukδQ : ∇~ψ,

J2,QQ[T ] · δQ = 2q2B

∫
Ω

q2u2
kδQ : T +K∇δQ : ∇T +

∫
Ω

F2 : T ,

J2,~v~α[~ψ] · δ~α =

∫
Ω

δ~α · ~ψ,

with J2,Q~α = 0 and J2,~α~α = 0. Here, we have

F2 =

{
−2lδQ + 8l (Qk : δQ)Qk + 4l |Qk|

2 δQ for d = 2,

−lδQ− 2lQkδQ + 4l (Qk : δQ)Qk + 2l |Qk|
2 δQ for d = 3.

As J2,~α~α = 0 and the Hessian matrix is symmetric, the system (5.34) can be

rewritten in saddle-point form [29] to find (δu, δ~v, δQ, δ~α) ∈ L2(Ω,R)×H1(Ω,Rd)×
H1

0 (Ω, S)×H0(div; Ω) such that,

A
(

(δu, δ~v, δQ) , (φ, ~ψ,T )
)

+ b
(
δ~α, (φ, ~ψ,T )

)
=F

(
(φ, ~ψ,T )

)
∀(φ, ~ψ,T ) ∈ V,

(5.35)

b
(
~β, (δu, δ~v, δQ)

)
=G

(
~β
)
∀~β ∈ H0(div; Ω), (5.36)
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where V = L2(Ω,R)×H1(Ω,Rd)×H1
0 (Ω, S),

A
(

(δu, δ~v, δQ) , (φ, ~ψ,T )
)

=

∫
Ω

(
a1 + 2a2uk + 3a3u

2
k + 2q4B

∣∣∣∣Qk +
Id
d

∣∣∣∣2
)
φδu

+ 2q2B

∫
Ω

∇δ~v :

(
Qk +

Id
d

)
φ

+ 2q2B

∫
Ω

(
∇~vk + 2q2

(
Qk +

Id
d

)
uk

)
φδQ

+ 2q2B

∫
Ω

∇~ψ :

(
Qk +

Id
d

)
δu+ 2B

∫
Ω

∇δ~v : ∇~ψ

+ 2q2B

∫
Ω

ukδQ : ∇~ψ

+ 2q2B

∫
Ω

(
∇~vk + 2q2

(
Qk +

Id
d

)
uk

)
: T δu

+ 2q2B

∫
Ω

ukT : ∇δ~v

+ 2Bq4

∫
Ω

u2
kδQ : T +K

∫
Ω

∇δQ : ∇T

+

∫
Ω

F2 : T ,

b
(
~β, (δu, δ~v, δQ)

)
=

∫
Ω

~β · δ~v + δu∇ · ~β,

F ((φ, ~ψ,T )) =− a
(

(uk, ~vk,Qk) ; (uk, ~vk,Qk) ,
(
φ, ~ψ,T

))
− b
(
~αk,
(
φ, ~ψ,T

))
,

G(~β) = −b
(
~β, (uk, ~vk,Qk)

)
.

Once the components (δu, δ~v, δQ, δ~α) are computed from solving (5.35)-(5.36), the

current approximations (uk, ~vk,Qk, ~αk) are updated, possibly with a step-length lim-

ited by a line-search or trust-region methodology.

Well-posedness of (5.35)-(5.36) can be proven following similar arguments to those

used for just the density terms in [79], under assumptions on the problem parameters

and that we linearize suitably close to a solution. We note, however, that the most

natural assumption on problem parameters is to assume that pointwise values of

a1 + 2a2uk + 3a3u
2
k are suitably large and positive throughout the domain, and that

this may not hold for “physical” values of the parameters a1, a2, a3. Whether or not
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the Newton linearizations are well-posed in a neighbourhood of a solution under more

reasonable assumptions is a difficult question to answer, as the bilinear form A is

expected to only be semi-definite, and not coercive; we leave investigation of this

question for future work.

In the continuum, the necessary inf-sup condition was proven in [79] in two di-

mensions, while the proof in three-dimensions is given as the main part of the argu-

ment in the proof of Theorem 24. In two spatial dimensions, [79] also establishes a

discrete inf-sup condition when taking uh ∈ DGk(Ω, τh), ~vh ∈ (CGk+2(Ω, τh))
2 and

αh ∈ RT ∂Ω
k+1(Ω, τh). In three spatial dimensions, this space for ~vh does not appear to

be rich enough to establish the inf-sup condition. Thus, we instead consider taking

uh ∈ DGk(Ω, τh), ~vh ∈ (CGk+2(Ω, τh) +Bk+4(Ω, τh))
3 and αh ∈ RT ∂Ω

k+1(Ω, τh), where

Bk+4(Ω, τh) is the standard “bubble” space of degree k + 4 (including functions in

Pk+4(T ) on each triangle T ∈ τh, but having zero trace on ∂T ). While we do not

prove here that the inf-sup condition holds over this space, numerical results indicate

no issues with stability. For notational simplicity, we write

Vk(Ω, τh) =

(CGk+2(Ω, τh))
2 d = 2

(CGk+2(Ω, τh) +Bk+4(Ω, τh))
3 d = 3

.

5.5 Nonlinear and linear solvers

At the core of our solver methodology is the use of Newton-Krylov-Multigrid meth-

ods. We use a standard Newton’s method to solve our nonlinear systems, augmented

with a secant line search using the `2-norm of the discretized nonlinear functional,

∇J2; see [47], for example. In some instances, we damp the iteration by enforcing a

maximum stepsize constraint that is less than 1, or using an initial step of less than 1

to compute the secant step. We typically use a stopping criterian also based on the `2

norm of the discretized nonlinear functional, requiring that either its absolute value

be reduced below 10−8 or that it be reduced by the same factor times the initial value

of nonlinear functional in the current nonlinear solver.

Even when using direct solvers, we find that many iterations of Newton’s method

can be needed for convergence, particularly when solving from poor initial guesses on

fine computational grids. For this reason, we augment the Newton-Krylov-Multigrid
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solution methodology with Nested Iteration (NI) [10, 124] (also known as grid con-

tinuation), where we first solve the nonlinear system to convergence on a coarse grid

with a fixed initial guess, then interpolate this solution to use as the initial guess on a

uniformly refined mesh, and repeat the procedure until we reach the desired finest-grid

mesh for the simulation. While we could make use of variable solver tolerances on

coarsest grids in our simulations, we find that the dominant time in our simulations

is always the finest-grid solves (even when the coarsest-grid solves are notably inef-

ficient), so do not pursue this here. In the numerical experiments in Section 5.6, we

demonstrate that this NI-Newton-Krylov-Multigrid methodology vastly outperforms

its finest-grid counterpart when not using the Nested Iteration methodology.

On the coarsest grids of our hierarchy, we use the sparse direct solver, MUMPS [11],

as a direct solver for the Hessian system in (5.34) for each linearization. On finer-grids,

however, we use preconditioned FGMRES [118,119], with the `2 norm of the residual

is below 10−8 in Tables 5.1 and 5.2 and the Eisenstat-Walker criteria in all other tables

for determining linear solver stopping criteria [57] as a function of the convergence

criteria and performance of the outer Newton iteration. We note that we use flexible

GMRES for two reasons. First of all, as described below, we find we achieve the

most robust performance when we use non-stationary relaxation schemes within our

multigrid preconditioner. Secondly, even when using a stationary preconditioner, we

find that the memory cost of extra vector storage needed for FGMRES is preferable

to the computational cost of an extra application of the preconditioner needed for

classical right-preconditioned GMRES for our problem.

The numerical results below are implemented using Firedrake [115] for the finite-

element discretization and PETSc [20] for the nonlinear and linear solvers. This

pairing is chosen because of the close integration between solvers and discretization

in the two packages [93], particularly for the relaxation scheme used in the monolithic

multigrid preconditioner described below, which is implemented using PCPatch [68].

5.5.1 Monolithic multigrid preconditioner

We now consider the development of effective linear solvers for the resulting discretized

systems at each Newton step, for the Hessian system given in (5.34). Preliminary

numerical results showed that directly applying a monolithic multigrid methodology

to the linearizations given in (5.34) was somewhat unreliable, and that building a
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preconditioner based on adding a multiple of the mass matrix for u, Muu, to the (1, 1)

block of the system is much more effective. We adopt this approach here, adding

100Muu to the (1, 1) block and constructing a preconditioner based on this perturbed

Hessian system.

We build the monolithic multigrid preconditioner using the same mesh hierarchy

that we adopt for the nested iteration solver. That is, we have a fixed coarsest grid

(on which we use MUMPS [11] as a direct solver), and each grid in the hiearchy is a

uniform factor-two refinement of the next coarser grid. We use standard multigrid V-

and W-cycles that, for nonlinear solves on any mesh in the nested iteration hierarchy

iterate from that grid to the coarsest grid and back. We use standard finite-element

interpolation operators on this hierarchy, partitioned based on the discretized fields,

with matrix form

P =


Ik1,h

Ik+1
2,h

Ik+1
3,h

Ik+1
4,h

 ,
where the blocks Ik1,h, I

k
2,h, I

k
3,h, and Ik4,h are the natural finite-element interpolation

operators for the DGk(Ω, τh), Vk(Ω, τh), CGk+1(Ω, τh), and RTk+1(Ω, τh) spaces, re-

spectively. Coarse-grid operators are formed by rediscretization.

As relaxation scheme, we make use of an additive overlapping Schwarz relax-

ation, which can be considered as a variant of the family of Vanka relaxation schemes

originally proposed in [130] to solve the saddle-point systems that arise from the

marker-and-cell (MAC) finite-difference discretization of the Navier-Stokes equations.

Vanka relaxation methods encompass a variety of overlapping multiplicative or addi-

tive Schwarz methods applied to saddle-point problems, in which the subdomains are

chosen so that the corresponding subsystems are also saddle-point systems. Vanka-

type relaxation has been used extensively for finite-element discretizations [4, 6, 98].

Recently, a general-purpose implementation of patch-based relaxation schemes, in-

cluding Vanka relaxation, was provided in [68], which we employ here.

Like other Schwarz methods, the relaxation used here can be understood alge-

braically. Denoting the set of all degrees of freedom in the problem by L , we par-

tition L into s overlapping subdomains or patches, L = ∪si=1Li, and consider the
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Figure 5.1: Star patches for DG1 − [CG3]2 − CG2 − RT2 discretizations. Red, green,
black, and blue degrees of freedom denote DG1, [CG3]2, CG2 and RT2 degrees of freedom
respectively.

stationary additive iteration with updates given by

x← x+
s∑
i=1

RT
i A−1

ii Ri(b−Ax),

where Ax = b represents the Hessian linear system to be solved, Ri is the injection

operator from a global vector, x, to a local vector, xi, on Li (with Rix = xi), and

Aii = RiART
i is the restriction of the global system A to the degrees of freedom in Li.

While inexact solution of the subdomain problems is relevant when the cardinality of

Li is large, we consider small subdomain sizes, where direct solution remains practical.

We construct the patches, {Li}, topologically, as the so-called star patch around each

vertex in the mesh (see [68]), taking all degrees of freedom at vertex i, on edges and

faces adjacent to vertex i, and on all cells adjacent to vertex i to form Li. Figure

5.1 shows the subdomain construction around a typical vertex for d = 2 for the

cases of discretization using DG1 × [CG3]2 × CG2 × RT2 elements, where the red,

green, black, and blue degrees of freedom denote DG1, CG3, CG2 and RT2 degrees

of freedom respectively, and each green/black circle represents 2 degrees of freedom

(a vector). Rather than use the stationary iteration given above, we use three steps

of GMRES preconditioned by the Schwarz method as the (pre- and post-) relaxation

in the multigrid cycle on each level.
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5.6 Numerical Results

In this section, we present numerical experiments to validate the mixed finite-element

discretization that is used to discretize the energy in (5.4), and numerically demon-

strate the efficiency of the NI solver with Newton’s method to linearize on each grid,

and monolithic multigrid to solve the resulting linearizations.

As a first example, we apply the NI-Newton-Krylov-multigrid scheme on the do-

main Ω = [0, 1]2 with parameters a1 = −5, a2 = 0, a3 = 5, B = 10−5, K =

0.3, q = 40, and l = 30. Dirichlet boundary conditions are imposed to match

Q =

[
x2

x2+y2+ε
− 1

2
0

0 y2

x2+y2+ε
− 1

2

]
, where ε is a very small positive real number to

avoid the singularity at (0, 0). We take the coarsest grid in the mesh hierarchy to

be with h = 1/32, forming a uniform square mesh of size 32 × 32, then subdividing

each square into two triangles by cutting from the top-left corner to the bottom-

right corner. The initial guesses on the coarsest grid (h = 1/32) are taken to be

u = 1, ~v = ~0, ~α = ~0 and Q =

[
0 1

2
1
2

0

]
. For this experiment, we do not augment

the linearizations by adding 100Muu to the (1,1) block, showing that the solver can

be effective without this augmentation (although we note that later results in this

section are heavily dependent on this augmentation).

Table 5.1 presents Newton iteration counts, monolithic multigrid iteration counts

(averaged over Newton iterations) using W(3,3) cycles, and wall-clock time to solution

on each mesh (in minutes) for both the Newton-MG and Newton-LU solvers with

varying numbers of processors, p, for a discretization with (δu,~v, δ~α, δQ) ∈ DG2 ×
[CG4]2 × RT3 × CG3. In these results, we see that the Newton-Krylov-MG solvers

outperform Newton-LU when the mesh is fine enough for p = 16. In particular,

when going from 4 to 16 processors, the parallel speedup for the Newton-Krylov-

multigrid solver is 3.70x for the 5122 mesh, while the speedup for Newton-LU is

only 2.34x. Table 5.2 presents a comparison between Newton’s method with nested

iteration (using either MG or LU as the linear solver) and straight Newton-LU solvers

on each mesh.

Preliminary results showed that the solver tested above was not efficient when

changing the problem parameters and domain; therefore, for the remainder of this
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Table 5.1: Newton iteration counts, averaged monolithic multigrid iteration counts us-
ing W(3,3) cycles, and wall-clock time on each mesh (in minutes) to convergence for NI-
Newton-Krylov-MG and NI-Newton-LU solvers with varying numbers of processors, p, for
(δu, δ~v, δ~α, δQ) ∈ DG2 × [CG4]2 ×RT3 ×CG3.

h−1 NI-Newton-Krylov-MG NI-Newton-LU

Newton iter MG iter Time (p = 4, 16) Newton iter Time (p = 4, 16)

25 57 - 0.40, 0.28, 57 0.40, 0.28
26 2 8 0.52, 0.20 2 0.33, 0.13
27 2 5.5 2.01,0.66 2 1.62, 0.59
28 2 5 10.80, 2.79 2 8.55, 3.27
29 2 5 59.44, 16.06 2 49.12, 20.94

Table 5.2: Newton iteration counts, and total wall-clock time (in minutes) to convergence
for Newton-LU solvers on each grid (with no nested iteration) using 16 processors, compared
with the accumulated times for NI-Newton-LU and NI-Newton-Krylov-MG solvers, with
(δu, δ~v, δQ, δ~α) ∈ DG2 × [CG4]2 ×CG3 ×RT3.

h−1 Standard Newton-LU NI-Newton-LU NI-Newton-Krylov-MG[W(3,3)]

Newton iter Time Time Time

25 57 0.28 0.28 0.28
26 71 2.64 0.53 0.60
27 70 12.99 1.12 1.26
28 36 43.35 4.39 4.05
29 38 369.03 25.33 20.11
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Table 5.3: Newton iteration counts, averaged monolithic multigrid V(3,3) iteration counts,
and wall-clock time to convergence on each mesh (in minutes) for the NI-Newton-Krylov-MG
and NI-Newton-LU solvers with varying numbers of processors, p, with the approximations
(δu, δ~v, δQ, δ~α) ∈ DG1 × [CG3]×CG2 ×RT2. Results marked with a dash indicate where
the solver was unsuccessful, due to memory requirements.

h−1 NI-Newton-Krylov-MG NI-Newton-LU

Newton iter MG iter Time (p = 4, 16) Newton iter Time (p = 4, 16)

25 50 - 1.81, 0.71 50 1.81, .71
26 4 3.00 1.11, 0.38 8 1.37, 0.54
27 4 3.50 4.79, 1.38 2 2.15, 0.94
28 4 2.75 18.47, 4.84 2 13.48, 5.19
29 4 3.5 98.67, 23.75 - -

section, we use the solver described in Section 5.5, including the mass matrix augmen-

tation to the (1,1) block. In the next example, we consider the so-called “oily streaks”

scenario from [138], posed on the square domain, Ω = [−1, 1]× [0, 2]. Following [138],

we use parameters a1 = −10, a2 = 0, a3 = 10, B = 10−5, K = 0.3, q = 30, l = 1,

with Dirichlet boundary conditions implemented on Q such that Q =

[
1
2

0

0 −1
2

]
on

y = 0, and Q =

[
−1

2
0

0 1
2

]
on y = 2, x = −1, and x = 1. The coarsest grid here is with

h = 1/32, using a uniform 64× 64 mesh, again with each square element cut into two

triangles. As an initial guess on the coarsest grid, we take u = sin( q
2
y), ~v = ∇u, ~α = 0,

and Q =

[
−1

2
0

0 1
2

]
. Table 5.3 shows Newton iteration counts, averaged monolithic

multigrid iteration counts using V(3,3) cycles, and wall-clock time on each mesh (in

minutes) to convergence for the NI-Newton-MG and NI-Newton-LU solvers with vary-

ing numbers of processors, p. Here, the updates (u,~v,Q, ~α) are approximated using

DG1× [CG3]2×CG2×RT2. We note that here, and in later cases, the NI-Newton-LU

algorithm fails on the finest grid, as the LU factorization requires more memory than

is available on the workstation used in these tests.

For comparison, Table 5.4 shows the performance of the Newton-Krylov-multigrid

method if the coarsest level is taken to be h = 1/16, with a 32× 32 mesh, again using

p = 16 processors. While it is common practice for elliptic problems to take a very

coarse mesh, we see here that the indefinite shifts in (5.4) have an effect similar to
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Table 5.4: Newton iteration counts, averaged V(3,3) monolithic multigrid iteration counts,
and wall-clock time to convergence on each mesh (in minutes) for NI-Newton-MG solvers
with p = 16 and coarsest level with h = 1/16, taking (δu, δ~v, δQ, δ~α) ∈ DG1 × [CG3] ×
CG2 ×RT2.

HH
HHHHh−1 Newton iter MG iter Time(p=16)

24 37 - 0.17

25 86 7.05 2.77

26 4 5.30 0.50

27 4 8.50 2.57

28 4 5.75 7.63

29 4 7.75 43.20

that observed for the Helmholtz equation [58], where taking a coarsest grid that fails

to minimally resolve the natural wave behaviour in the system is counterproductive.

In particular, what we notice in Table 5.4 is that we require many more Newton

iterations to solve the problem with h = 1/32 when using the two-grid preconditioner

than we did with the direct solver in Table 5.3, and that while the number of Newton

steps is stable for finer grids, we require more multigrid iterations per Newton solve

on the finer grids, leading to a substantially higher total time to solution. Thus,

we emphasize that the grid resolution on the coarsest level of the hierarchy must be

carefully chosen to optimize overall performance of the solvers. We note that, in these

examples, we have used an approximation with u ∈ DG1, in contrast to the use of

u ∈ DG2 in the first example (and in the example that follows) and, correspondingly,

find that we can effectively use a coarser grid when we use a higher-order finite-element

space for our solution.

In the third example, we again consider Ω = [−1, 1] × [0, 2], now with a1 =

−5, a2 = 0, a3 = 5, B = 10−5, k = 0.3, q = 40, and l = 30. Dirichlet boundary

on Q are imposed so that Q =

 x2

x2+y2+ε
− 1

2
xy√

x2+y2+ε

xy
x2+y2+ε

y2

x2+y2+ε
− 1

2

 on all four edges of the

square. For this example, we return to approximating the solution in DG2× [CG4]2×
CG3 × RT3, allowing a coarsest grid with h = 1/16 to be effectively used. As an

initial guess on the coarsest grid, we take u = sin(5y), ~v = ∇u, ~α = 0, and Q =
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Table 5.5: Newton iteration counts, averaged V(3,3) monolithic multigrid counts, and
wall-clock time to convergence on each mesh (in minutes) for NI-Newton-Krylov-MG and
NI-Newton-LU solvers with varying numbers of processors, p, taking (δu, δ~v, δQ, δ~α) ∈
DG2 × [CG4]2 × CG3 × RT3. Results marked with a dash indicate where the solver was
unsuccessful, due to memory requirements.

h−1 NI-Newton-Krylov-MG NI-Newton-LU

Newton iter MG iter Time (p = 4, 16) Newton iter Time (p = 4, 16)

24 52 - 1.13, 0.50 52 1.13, 0.50
25 5 4.40 0.93, 0.32 22 1.98, 0.73
26 4 4.25 3.70, 1.17 3 1.67, 0.60
27 4 3.50 15.83, 4.42 2 5.56, 2.13
28 4 3.00 80.43, 23.01 - -

[
x2

x2+y2+ε
− 1

2
xy

x2+y2+ε
xy

x2+y2+ε
y2

x2+y2+ε
− 1

2

]
. Table 5.5 compares the NI-Newton-LU and NI-Newton-

Krylov-multigrid elapsed times and numbers of iterations to convergence using higher-

order elements in comparison to Tables 5.3 and 5.4.

In the last example, we consider a three-dimensional problem on a unit cube

domain, Ω = [0, 1]3, with parameters a1 = −10, a2 = 0, a3 = 10, B = 10−3, K =

0.03, q = 30, and l = 1. Dirichlet boundary conditions on Q are imposed, requiring

Q =


x2

x2+y2+ε
xy

x2+y2+ε
0

xy
x2+y2+ε

y2

x2+y2+ε
0

0 0 −1
3

 on the face z = 0, and Q =

−
1
3

0 0

0 −1
3

0

0 0 2
3

 on the face

z = 1 with homogeneous Neumann boundary conditions on the other faces of the

cube. We discretize the updates using the lowest-order elements suggested in Section

5.4, with (δu, δ~v, δQ, δ~α) ∈ DG1 × [CG3 +B5]3 ×CG2 ×RT1, and take the coarsest

level in the hierarchy to be at h = 1/8 (generated by taking a uniform 8 × 8 × 8

hexahedral mesh of the unit cube, then cutting each hexahedron into 6 tetrahedra).

The initial guess is taken to be u = sin(5z), and Q =


x2

x2+y2+ε
xy

x2+y2+ε
0

xy
x2+y2+ε

y2

x2+y2+ε
0

0 0 −1
3

. A

comparison between NI-Newton-Krylov-multigrid performance (using both V- and

W-cycles) and NI-Newton-LU using p = 16 processors is presented in Table 5.6. We

note that there is no difference between V- and W-cycles for a two-grid method, so

only report differences in iterations and timings for the finest grid of this three-grid

hierarchy.
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Table 5.6: Newton iteration counts, averaged V(3,3) and W(3,3) monolithic multigrid
counts, and wall-clock time to solution on each mesh (in minutes) for NI-Newton-Krylov-
MG and NI-Newton-LU solvers with p = 16 processors. Here, the domain is Ω = [0, 1]3,
and we take (δu, δ~v, δQ, δ~α) ∈ DG1 × [CG3 + B5]3 ×CG2 × RT2. Results marked with a
dash indicate where the solver was unsuccessful, due to memory requirements.

h−1 NI-Newton-Krylov-MG[V,W(3,3)] NI-Newton-LU

Newton iter MG iter(V, W) Time (V, W) Newton iter Time (p = 16)

23 60 - 9.47 60 9.47
24 7 4.86 28.51 5 26.30
25 4 4.75, 3.50 133.76, 118.11 - -

To give an indication of the solutions found, Figure 5.2 shows solutions for the

three two-dimensional examples, visualizing only u. As expected, we see oscillatory

solutions, whose structure is strongly determined by the behaviour of Q, reflected

particularly in the imposed boundary conditions.

5.7 Conclusions

Numerical simulation of liquid crystalline materials has been a focus of significant re-

search in recent years, including recent advances in the simulation of smectic-A liquid

crystals [22, 112, 138]. In this work, we build on the mathematical model introduced

in [138], by introducing a mixed formulation using the gradient of the smectic order

parameter explicitly and constraining its value using a Lagrange multiplier. We prove

that, under some restrictions, equilibria of the two energies are equivalent, and we

develop mixed finite-element methods to discretize our new formulation. Finally, we

provide efficient nonlinear and linear solvers for the resulting nonlinear systems, using

nested iteration to improve the efficiency of the nonlinear solution process, along with

a Newton-Krylov-Multigrid solution strategy for each nonlinear problem. Numerical

results demonstrate the efficiency of this approach.

In important step in future work is to combine the discretization and solver pro-

posed here with deflation techniques [8,61,65], both for computing multiple solutions

for fixed choices of the liquid crystal problem parameters and for computing bifurca-

tion diagrams as the problem parameters and domain are varied, as was done in [138].

We also believe that the discretization and solver proposed herein could be extended
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Figure 5.2: The variation in the density, u of the smectic A liquid crystals for the three
two-dimensional examples (in order from top left) at h = 1/128.
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for similar models of smectic-C liquid crystals, where only a single nonlinear term

needs to be added to the energy in (5.2), as discussed in [136].



Chapter 6

Conclusions and future work

In this thesis, we develop, analyse, and apply finite-element methods for fourth-order

PDEs similar to those that appear in the energy models of smectic-A liquid crys-

tals. These include conforming methods, using Argyris elements with Nitsche-type

penalty methods for essential boundary conditions, which are very expensive for three-

dimensional problems because of the need to use very high-order elements. There-

fore, we considered a nonsymmetric version of the C0IP method, to get an optimal

convergence rate in terms of the physical problem parameter, q, and the mesh param-

eter, h. Preliminary computations showed that developing efficient preconditioners

for the resulting systems is difficult. We address this by developing two new mixed

finite-element formulations, based on introducing the gradient as an explicit variable

constrained using a Lagrange multiplier. We prove error bounds for these methods

and verify the analysis experimentally. Despite the fact that mixed finite-element

formulations are sometimes not preferred because of the harder analysis of the result-

ing saddle-point problems compared to the conforming and C0IP methods and their

high number of degrees of freedom, we find that they provide very nice properties,

including the ability to easily implement all boundary conditions strongly, avoiding

penalty terms that can worsen the condition numbers of the resulting systems. In ad-

dition, our mixed formulations offer the advantage of being able to construct efficient

monolithic-multigrid preconditioners such as the ones given in Chapters 3 and 5. As

shown in Chapter 5, we successfully use the mixed finite-element discretization and

monolithic-multigrid preconditioner in an effective and efficient simulation tool for
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smectic-A liquid crystals, building a nested iteration-Newton-Krylov-multigrid frame-

work to efficiently solve the arising nonlinear systems.

There are several important directions for potential future research:

1. Testing the mixed finite-element formulations for less regular problems. Cur-

rently, we assume that the exact solution u ∈ Hk+5(Ω), where k ≥ 0. However,

there are cases where the solution to the biharmonic (and related equations) is

only guaranteed to be in H2+γ(Ω) for 0 < γ < 1/3 (for L-shaped domains) [40].

Note that, for such a solution, we cannot interpret the Lagrange multiplier, ~α,

as an approximation of the third derivative of u. It is not clear from the analysis

in Chapter 3 whether the proposed method yields useful approximations with

such minimal regularity of the solution to the continuum problem.

2. Generalizing the mixed finite-element formulations for general polyharmonic

problems [72, Section 3.2]. Preliminary computational work showed that it is

possible to generalize our mixed formulations to the sixth-order PDEs presented

in [31], when the solution is sufficiently smooth. It is not clear how to extend

them for less regular solutions.

3. Developing and analyzing alternative mixed finite-element discretizations for the

full smectic-A model, including adapting our current Newton-Krylov-MG solvers

for these discretizations. One such approach is to approximate the gradient,

~v = ∇u, using Raviart-Thomas or Brezzi-Douglas-Marini elements that are

conforming for H(div) but not H1. As the full Hessian, ∇~v = ∇∇u appears in

the smectic-A model, we then must use element-wise gradients of ~v in our weak

form and penalize inter-element jumps in the tangential derivatives (noting that

the normal derivatives of any H(div) function must be continuous, and that the

RT and BDM elements are H(div)-conforming).

4. The methods proposed here should be able to be adapted to simulate the

smectic-C models, where the continuum energy is similar to the one given in

(1.3). One can distinguish the smectic-A and smectic-C phases by adding the

term
e

2

∫
Ω

|Q~v × ~v|2,

where ~v = ∇u and e is a constant, to the smectic-A energy model [136]. In a
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similar direction, it would be interesting to investigate adapting these models to

consider phase change, such as the transition from smectic to nematic phases.
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