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“...doing more with less”
-R. Buckminster Fuller-



Abstract

In recent years, many disciplines have been challenged with trying to extract valuable information from

large datasets efficiently. Technological advances have improved data storage capabilities and how data can

be obtained (e.g., real-time data). Manually interpreting data that are exponentially growing in volume has

obvious management and analysis challenges. Machine learning algorithms recognize patterns in data and

assign repetitive patterns to similar categories. This process automates pattern recognition in data and allows

meaningful information to be extracted in an efficient manner.

For many machine learning problems, there are sufficient labeled data to train a wide range of algorithms.

Some applications, such as image classification and speech recognition, have large labeled datasets readily

available. However, in several geoscience-related problems, labeled data are generally obtained by sampling

the Earth in some manner (e.g., drilling wells, field sampling, etc.), which is not trivial due to cost and

logistical factors. As such, many earth science-related machine learning problems have limited labeled

data. Supervised machine learning algorithms are prone to overfitting when labeled data are scarce, but

semisupervised approaches are designed for these problems because unlabeled data are also used to inform

the learning process.

Three geoscience applications inherently challenged with limited training data are well-log classifica-

tion, seismic classification, and bedrock-lithology mapping. I apply various semisupervised algorithms to

these three geoscience problems and determine if semisupervised algorithms can perform better than super-

vised methods and under what conditions. The semisupervised methods that I consider are self-training,

label propagation, and semisupervised Gaussian mixture models. I consider several supervised methods in

my work, but the most prevalent are the gradient boosting decision tree methods. The results demonstrate

that semisupervised methods can outperform their supervised counterparts for each of the geoscience ap-

plications, but not in all situations. Nonetheless, semisupervised methods are rarely considered for many

geoscience disciplines, which is demonstrated by the lack of published examples in the literature. The out-

comes of this work are raising the awareness of semisupervised methods by showing their applicability to

different geoscience problems and making recommendations on how and when to use these tools.
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General Summary

The objective of many earth science disciplines is to better understand how geologic information is dis-

tributed beneath the ground or across the surface of the Earth. Earth scientists can gain insights into this

geologic information by collecting data (e.g., geophysics, geochemistry, geologic observations, etc.) and us-

ing these data to generate models. Traditional modeling techniques use physical relationships, or governing

rules (e.g., Maxwell’s equations, Newton’s laws, etc.) to generate models from our observed data. Perform-

ing traditional modeling is not trivial if the physical relationships are complex, and in some situations, it

may not even be possible because the explicit physical relationships are unknown. In these scenarios where

the governing rules are unknown, we may still have constraints on what the model should be in certain lo-

cations due to observations made by a geoscientist (e.g., information gathered from drilled wells, geologic

field sampling, etc.). Machine learning techniques, namely supervised learning (SL) methods, can make

use of these constraints by learning an implicit relationship between the data and the model; this learned

relationship can then be used to make model predictions where there are no constraints. However, if the

number of constraints is minimal, then the relationship learned by SL methods may be unstable. Another

type of machine learning, semisupervised learning (SSL), is specifically designed for problems with limited

constraints and is shown to be more robust than SL in these situations.

Many geoscience applications have no explicitly known relationships to leverage traditional modeling

techniques and are inherently challenged with limited constraints. These situations are those that SSL algo-

rithms are specifically designed for, but SSL remains largely unexplored for many geoscience applications.

In this thesis, I apply SSL techniques to three different geoscience problems (well-log classification, seismic

classification, and bedrock-lithology mapping) and determine if SSL is more effective than SL. The results

indicate that SSL generally produces better earth models than SL as hypothesized, but there are exceptions.

The impact of this work is showing the usefulness of SSL methods across different problems and providing

recommendations on how and when to use these tools.
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Chapter 1

Introduction

1.1 Motivation

In recent years, many disciplines have been challenged with trying to efficiently extract meaning, or value,

out of large datasets. Technological advances have improved data storage capabilities as well as how data can

be obtained (e.g., real-time data). Manually interpreting data that are exponentially growing in volume has

obvious management and analysis challenges. Another challenge facing many scientists is derived from a

shortcoming in standard modeling techniques. In many scientific problems, we try to explain the phenomena

we observe in our data using a model. The simplistic representation of the forward modeling problem is

expressed as d = Gm where d is the observed dataset (a vector of length n), m is the model (a vector

of length r), and G is the forward operator that contains the explicit physical relationships or mathematics

needed to relate the observed data to the model (a matrix of size n × r). Here, the model can be described

by taking the inverse of the forward operator, m = G−1d. Performing this operation is not trivial if G is

complicated, or non-linear; this operation may not even be possible if G is unknown for the problem of

interest.

Machine learning (ML) is a solution to both of these challenges. First, machine learning algorithms

1



CHAPTER 1. INTRODUCTION 2

recognize patterns in data and assign data with similar patterns to the same category. This process automates

pattern recognition within datasets and allows meaningful information to be extracted in an efficient manner.

Secondly, machine learning algorithms learn an implicit mapping to go from d to m without the need for

explicit relationships to be programmed.

Unsupervised learning (UL) focuses on learning a particular representation of the data, such as dimen-

sionality reduction and clustering techniques. Clustering is concerned with segregating the data into clusters

where the data in each cluster are considered similar. A benefit of clustering methods is that the predicted

clusters are thought to be unbiased (i.e., the clusters are determined directly from the data), and valuable

information can be extracted from the data without a priori constraints. However, suppose some data have

apparent targets, or labels, which can exist through interpretations or other means (e.g., assigning a collection

of pixels to a ‘cat’ label). In this case, it is possible to leverage this information through a different machine

learning approach. The labels can be thought of as the model (m) in the inversion analogy above, and su-

pervised learning (SL) methods are designed to learn a mapping to go from the data to the known labels.

This mapping is performed using what is called the training dataset, a set of data points with known corre-

sponding classes or labels. Ultimately this mapping is used to infer the labels for data points without labels.

However, the training dataset needs to be large enough to ensure a robust mapping for supervised meth-

ods. Some applications, such as image classification and speech recognition, have large training datasets

readily available. However, in several geoscience-related problems, labeled data are generally obtained by

sampling the Earth in some manner (e.g., drilling wells, field sampling, etc.), which is not trivial due to cost

and logistical factors. As such, many earth science-related machine learning problems have limited training

data.

In these situations with limited training data, SL methods are prone to a phenomenon called overfitting.

Overfitting occurs when a machine learning algorithm learns the detail and noise in the training dataset,

which negatively impacts the performance of the model on unseen data; this leads to the algorithm perform-
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ing suspiciously well on the training data, but generalizing poorly in making predictions for the testing data

(Bishop, 2006). An analogous situation occurs in inverse problems. When there are more model parameters

than data in an inverse problem, the system is underdetermined, and the predicted data tend to overfit the

observed data; this leads to erroneous model parameter predictions. One way to mitigate the issues posed

by an underdetermined inverse problem is to stabilize the objective function by adding an additional term

that involves the model parameters, otherwise known as regularization (Aster et al., 2005). Regularization

smooths the objective function, which helps prevent the model from overfitting the observed data. This

same concept of regularization can be applied to machine learning to mitigate overfitting. Perhaps the most

straightforward form of regularization is merely trying to include more data. Generating more training data

is trivial for applications such as image classification, where data augmentation strategies (e.g., flipping,

rotating, distorting images, etc.) are used to artificially enlarge the training dataset (Krizhevsky et al., 2012).

However, collecting additional training data for geoscience applications is not always as simple as a click

of a button. Generally, obtaining additional training data requires more sampling of the Earth, which costs

money and time.

An alternative form of data augmentation is to instead incorporate the readily available unlabeled data

into the training process using a different type of machine learning, semisupervised learning (SSL). SSL

is essentially a hybrid of UL and SL, where the SSL algorithms train using both the labeled and unlabeled

data. As such, SSL can also be thought of as SL where a regularization term, including the unlabeled data,

is added to the objective function (Zhu & Goldberg, 2009). In the context of limited training data sets, it

has been shown that SSL can make improved predictions for the unlabeled data compared to SL methods

when the labeled data are scarce (Chapelle et al., 2006; Zhu & Goldberg, 2009; van Engelen & Hoos, 2020).

Many machine learning applications are challenged with scarce training data that have utilized SSL methods,

such as hyperspectral image classification (Camps-Valls et al., 2007; Gomez-Chova et al., 2008a; Tuia &

Camps-Valls, 2009; Liu et al., 2013; Meng et al., 2017), protein classification (Weston et al., 2005; Kireeva
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et al., 2012; Sigdel et al., 2014), and medical imaging (Livieris et al., 2018). However, in many geoscience

problems, semisupervised methods have been relatively unexplored.

1.2 Thesis outline

Three geoscience applications inherently challenged with limited training data are well-log classification,

seismic classification, and bedrock-lithology mapping. Throughout this thesis, I apply various semisu-

pervised algorithms to these three geoscience problems and determine if semisupervised algorithms can

perform better than supervised methods and under what conditions. One of the challenges associated with

implementing semisupervised algorithms is the determination of their hyper-parameters. The literature lacks

consensus on rules of thumb, or systematic approaches for determining semisupervised hyper-parameters.

As such, throughout the body chapters in this thesis, there are additional treatments for figuring out how to

best determine the hyper-parameters for the SSL algorithms that I consider. One culmination of this work is

recommendations in the Conclusion on how to approach hyper-parameter estimation for the SSL methods

considered in this thesis.

Chapters 3-7 in this thesis represent work that is already published, or is under review. Chapters 3, 4,

and 5 are based on manuscripts that are already peer-reviewed and published in the journals Geophysics,

Computers and Geosciences, and Geophysical Journal International, respectively (Dunham et al., 2020a,b,

2021). Chapter 6 is an exception as it is based on a published conference proceeding (Dunham, 2021).

Chapter 7 is work from a manuscript that is under review. However, each of these body chapters has

redundancies because similar methods or the same data are used (see below). As such, the introduction and

methods sections of each chapter are consolidated to reduce repetition in the thesis. It is important to note

that doing this consolidation means that these chapters and their published versions are not identical.

The outline of the thesis is as follows. The literature review is not provided here in Chapter 1, but

focused literature reviews for the three geoscience applications are instead discussed within their pertinent
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chapters. The introductory sections in Chapters 3, 5, and 7 contain the literature review of machine learning

applications to well-log classification, seismic classification, and bedrock-lithology mapping, respectively.

Chapters 4 and 6 do not contain proper literature reviews because these chapters are continuations of pre-

vious chapters, and literature reviews would be redundant (see below). Chapter 2 introduces the machine

learning methods, supervised and semisupervised, and the concept of hyper-parameter tuning. The methods

discussed in Chapter 2 are those that are repeatedly used in the subsequent body chapters. However, each of

the body chapters still contains its own methods section specific to that chapter (i.e., some methods are only

used in one chapter). Chapter 3 applies label propagation and self-training SSL techniques to a well-log

dataset made publicly available by the Kansas Geological Survey, and compares the SSL performance to SL

methods. Chapter 4 is a continuation of Chapter 3 using the same well-log dataset, with the main distinction

being that semisupervised Gaussian mixture models are used as the SSL method. Both of these chapters

spend some time exploring the hyper-parameter space of the SSL methods and determining if default val-

ues or cross-validation strategies are preferred for hyper-parameter selection. The SSL results presented in

Chapters 3 and 4 are the first SSL applications to well-log classification, to my knowledge, providing con-

vincing alternatives to the mainstream utilization of supervised methods for that application. Chapter 5 takes

the same label propagation and self-training SSL techniques from Chapter 3 and applies them to a synthetic

seismic classification problem derived from a model published by the Society of Exploration Geophysicists

(SEG). Chapter 6 is a continuation of Chapter 5 using the same datasets, but Chapter 6 approaches the prob-

lem from a supervised deep learning perspective and provides results to compare with the Chapter 5 SSL

results. Other semisupervised approaches to seismic classification do exist in the literature, but the methods

I provide are arguably more conceptually straightforward with a shallower learning curve. In Chapter 7, I

use a data suite from a region in New South Wales, Australia, to simulate bedrock-lithology classification

problems with different training data scenarios reflective of mineral exploration situations. What is unique

about this chapter is that I use all three types of machine learning (UL, SL, and SSL) and determine which



CHAPTER 1. INTRODUCTION 6

methods are preferred under which conditions. This work is also the first, to my knowledge, that uses SSL

in a bedrock-lithology classification context. Chapter 8 concludes this thesis with summarizing remarks and

recommendations for future work.



Chapter 2

Methodology

2.1 Supervised learning

The goal of supervised learning (SL) algorithms is to learn a mapping, otherwise known as a classifying

function (f ), to go from input samples (xi) to their corresponding targets, or labels (yi). This mapping

function (f ) is determined using all the available sample-label pairs, or what is also called the training data

set,

L = (x1, y1), ..., (xl, yl), (2.1)

where l is the number of labeled data. This mapping is learned and corrected through the differences between

the predicted and true labels of the training data. What distinguishes different SL algorithms from each other

are the assumptions on f and how it can be learned. Ultimately, the mapping learned from this process is

used to make predictions for data where the labels are unknown, i.e. the unlabeled data

U = {xl+1, ..., xl+u} (2.2)

7
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where the actual predictions are given by,

H = {yl+1, ..., yl+u} (2.3)

and u represents the number of unlabeled data. This mapping (f ) from supervised learning is analogous

to the inverse of the forward operator (G−1) from inversion, m = G−1d. However, with inversion, this

mapping is known and the labels (m) are unknown, whereas the labels (yi) are known with supervised

learning and the mapping is unknown.

The purpose of using SL in this thesis is for SL methods to serve as a baseline to compare against the

SSL methods. All of the SL methods used in this thesis, with the exception of Chapter 6, are discussed

below. However, given that SL methods are not the focus of this thesis, they are discussed from a conceptual

rather than mathematical perspective. What is essential in the context of this work is understanding what

each algorithms’ hyper-parameters represent and how they can impact performance, not the mathematical

intricacies.

2.1.1 Gaussian Naı̈ve Bayes (GNB)

Perhaps the simplest supervised method considered is the Gaussian Naı̈ve Bayes (GNB) classifier. GNB

is an example of what is called a parametric machine learning algorithm. Parametric methods simplify the

learning process by assuming that f has a certain form over the whole input space (Chapter 4, Alpaydin,

2010). Similarly, the number of parameters that control f is fixed regardless of how much training data

exists. GNB assumes that each class can be represented as a multivariate normal distribution N (µk,Σk),

where µk and Σk represent the Gaussian mean vectors and covariance matrices, respectively, for a partic-

ular class k. Training a parametric ML algorithm amounts to learning the coefficients, or parameters, that

describe the form assumed for f , which are the mean vectors and covariance matrices for each class in the

case of GNB (Chapter 7.4, Theodoridis, 2015). Assigning a class label to a new data point amounts to deter-
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Figure 2.1: A binary classification problem showing the behavior of a GNB classifier. P is the probability
associated with N (µk,Σk) and X1 and X2 represent the input space in R2. If the covariance matrices are
equal, then the decision boundary is linear (left). If the covariance matrices are not equal, then the decision
boundary is quadratic (right). Modified from Figures 2.10 and 2.14 from Duda et al. (2001).

mining which class has the highest posterior probability. Figure 2.1 shows a binary classification problem

using GNB where the covariance matrices are equal versus distinct (left and right, respectively).

A benefit of GNB is that it has no hyper-parameters. Hyper-parameters are external variables that the

user adjusts before training and are often tuned to obtain machine learning models with optimal perfor-

mance. However, a distinction needs to be made between hyper-parameters and parameters. Parameters

are variables internal to the algorithm and can only be learned through training (i.e., these variables cannot

be set by the user). For instance, the parameters for GNB are the mean vectors and covariance matrices

describing each class, which are learned by training the algorithm. A potential disadvantage of GNB is

indeed its assumption that a multivariate Gaussian distribution can characterize each class. The data may

not be Gaussian distributed, in which case, this particular SL method may not perform well. An analogous

situation occurs in linear regression. One can assume that the trends in their data are linear (i.e., making

a model assumption), but fitting a line to data that are actually quadratic will not describe the data well.

Nonetheless, GNB can still be appropriate for some problems, and it is implemented using the GaussianNB
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class in scikit-learn.

2.1.2 Support Vector Machines (SVMs)

An algorithm with more flexibility is support vector machines (SVMs). The SVM tries to find the opti-

mal hyperplane (i.e., decision boundary) that maximizes the margin between two linearly separable classes

(Chapter 7.1, Bishop, 2006) as illustrated in Figures 2.2(a) and 2.2(b). SVMs do not make any distribu-

tion assumptions like GNB, but SVMs do assume that the classes are linearly separable in some multi-

dimensional feature space. However, it is common for classes in the training data to overlap in the input

space, which quickly violates this linearly separable assumption. An alternate formulation for SVM al-

lows points to be on the wrong side of the margin, i.e., a soft margin, but with a penalty that increases

with distance away from the boundary (Bishop, 2006). These penalties are called slack variables, ξn ≥ 0

for n = 1, .., l, with one slack variable for every training point (Cortes & Vapnik, 1995). Training points

on the correct side of the boundary have ξn = 0, but points on the wrong side have ξn > 1 (see Figure

2.2c). A hyper-parameter C is applied to the sum of all the slack variables, and the goal is to minimize the

contribution of the soft margin in the overall optimization of the algorithm.

Even with the soft margin, SVMs are still limited to linear decision boundaries in the input space.

However, SVMs use what is called a kernel, which implicitly transforms the data into vector spaces with

higher dimensions (through inner products) where we can assume that the classes are linearly separable

(Cortes & Vapnik, 1995; Hastie et al., 2009). In this higher-dimensional space, the hyperplane can be

learned, and projecting this hyperplane back into the original input space can define a non-linear decision

boundary (see Figure 2.3 for an example). There are several kernel choices, such as polynomial or sigmoid,

but arguably the most popular is the radial basis function (RBF) kernel, where the kernel width (σ) is a

hyper-parameter that requires setting (Chapter 12.3, Hastie et al., 2009). Assigning a class label to a new

data point amounts to determining which side of the hyperplane the data point is situated. It is worth noting
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Figure 2.2: Concepts of the support vector machine (SVM) classifier. (a) There is an infinite number of
hyperplanes that can separate two linearly-separable classes, but (b) SVMs determine the optimal hyperplane
that maximizes the margin between two classes. (c) The soft margin allows some points to be misclassified
within the margin. Slack variables (ξ) are penalty parameters assigned to each data point that are 0 if
correctly classified and > 1 if misclassified. The optimal decision boundary balances maximizing the
margin and minimizing the number of misclassified training points. (a,b) Modified from Figure 1 from
Wang et al. (2013) and (c) modified from Figure 7.3 from Bishop (2006).

that an SVM classifier is inherently binary, i.e., it can only distinguish two classes from each other. However,

SVMs can be extended to multiclass by decomposing the multiclass problem into a series of one-versus-all

or one-versus-one binary problems.

I implement SVM using the SVC class in scikit-learn, and I choose to use the RBF kernel. As such,

the two hyper-parameters that must be set are C and σ. If the slack variables are to be minimized, then

larger values for C will discourage any positive ξn values, which can lead to complex decision boundaries

and possibly overfitting. Smaller values for C can allow positive ξn values to exist without much penalty,

which causes the decision boundaries to be much smoother. The hyper-parameter C is analogous to a

regularization coefficient because it can control the tradeoff between minimizing training error and model

complexity (Chapter 7.1, Bishop, 2006). The σ hyper-parameter of the RBF kernel determines the reach

of a single training instance. Smaller values of σ mean every training instance will have a far reach, which

results in a decision boundary that is influenced by training points further away from it. This often results

in smoother, less complex decision boundaries. In comparison, larger values of σ mean training points will
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Figure 2.3: The kernel transformation concept for SVM. (a) The data are not linearly separable in the original
input space. The kernel function takes the inputs in the original lower dimensional space and returns the
transformed data in the higher dimensional space. (b) The optimal separating hyperplane is determined in
the higher dimensional space, which appears as a non-linear decision boundary in the original input space.
Modified from Figure 2 from Vocaturo et al. (2019).

have a close reach, which causes the decision boundary to be more dependent on the training points closest

to it. This tends to make the decision boundaries more complex. It is important to recognize how these

hyper-parameters can impact the parameters of the SVM (i.e., the hyperplane) because adjusting these two

hyper-parameters can mitigate under or overfitting if either is observed.

2.1.3 Gradient boosting decision trees (GBDTs)

The most frequently used SL methods in this thesis are gradient boosting decision tree (GBDT) methods.

These methods are complex, but they can be distilled down to three main components as indicated in their

name: decision trees, boosting, and gradient optimization. Decision trees are hierarchical methods that use

binary decision rules to segment the input space into regions based on the training data (see Figure 2.4).

As shown in Figure 2.4(a), a decision tree is composed of decision nodes, branches, and terminal leaves

(Chapter 9, Alpaydin, 2010). Each decision node contains a binary condition operating on one of the input

dimensions, with both outcomes labeling the branches. A decision tree is grown until splitting is no longer

needed, which is when leaf nodes are created and given a label. Classifying a new data point is done by
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Figure 2.4: Two decision tree examples. Each region is assigned a label according to a majority vote of the
training data assigned to it. Therefore, the label assigned to a new point will be the label of the region it
falls within. (a) Modified from Figure 9.2 from Hastie et al. (2009) and (b) modified from Figure 9.1 from
Alpaydin (2010).

simply following the decisions through the tree until a terminal leaf node is reached, at which point the

value assigned to the leaf is given as the predicted output. An aspect of decision trees that makes them

favorable is their interpretability; a tree can be conceptualized as a set of IF-THEN flowchart rules that

are understandable to the user (Chapter 9, Alpaydin, 2010). A decision tree is also an example of a non-

parametric method because no class distributions are assumed, and the model parameters are not fixed (the

number of decision tree nodes and leaves can change depending on the nature of the data).

One challenge with decision trees is that a single tree can be unstable. Theoretically, one tree could be

grown large enough to partition the input space to perfectly classify all training points (i.e., no training error).

However, this would surely overfit the training data and generalize poorly to new data. The established

techniques in the literature for mitigating the overfitting of decision trees are to use an ensemble of decision

trees (Dietterich, 2000). One such method is called bootstrap aggregation (i.e., bagging, Breiman, 1996). A

bootstrap sample is a resampling of the original training dataset with replacement. Then, a decision tree is

trained on B bootstrap datasets (where B is an integer), and a new point is classified as the majority vote

from the B classifiers. Combining an ensemble of individual classifiers introduces variability not present

in a single classifier and improves the overall predictability by averaging out any instability (Dietterich,

2000). However, improvement using bootstrapped datasets will reach a threshold because each dataset is



CHAPTER 2. METHODOLOGY 14

still highly correlated. Random forests address this problem by constructing decision trees in such a way as

to reduce correlation (Chapter 15, Hastie et al., 2009). This algorithm works by building a decision tree for

each bootstrap dataset, but when splitting a given node, only a random subset of the input data dimensions

is used (Breiman, 2001). The type of ensemble learning most relevant for SL methods used in this thesis

is boosting, which sequentially applies weak classifiers (i.e., shallow decision trees) to the training data

and their combination forms a powerful voting committee (Freund & Schapire, 1996). Boosting does not

resample the training data and instead assigns weights to each training point; these weights are modified

at each iteration based on whether they were correctly or incorrectly classified (Chapter 10, Hastie et al.,

2009). The weak classifiers from each iteration are combined using a weighted majority vote to produce the

ensemble classifier (see Figure 2.5 for an example).

The final building block of GBDTs is incorporating gradient descent. The original boosting algorithms,

such as AdaBoost (Freund & Schapire, 1996), have a statistical formulation, but Friedman (2001) recasts

the boosting framework as a numerical optimization problem. In other machine learning algorithms, such as

neural networks, gradient descent is used to minimize the loss, and that gradient is used to update the neural

network parameters (i.e., the weights and biases). The idea here is much the same, except the parameters

being updated by the gradient are those pertaining to a decision tree, and each boosting iteration is interpreted

as a step in the direction of the steepest descent. The learning rate constrains how far each boosting iteration

steps in the direction of steepest descent, which is a hyper-parameter for these algorithms (see below).

XGBoost

The GBDT algorithm used in all three geoscience applications in this thesis is eXtreme Gradient Boosting

(XGBoost, Chen & Guestrin, 2016). XGBoost is chosen as the primary SL method in this thesis because it

is shown to be robust across disciplines (Tamayo et al., 2016; Torlay et al., 2017; Zhang et al., 2018a; Kumar

et al., 2022), and is a popular method in data science competitions. As such, XGBoost is perhaps one of the
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Figure 2.5: A binary classification example illustrating the boosting procedure using decision stumps (a
decision tree with only one decision, i.e., depth = 1) as the classifier, f(x). The points belonging to the
positive and negative classes have blue ‘+’ symbols and red ‘-’ symbols, respectively. Each training data
point is given a weight, and all the weights are initially set to 1/N . The weight of each point is denoted
by the size of the ‘+’ or ‘-’ symbols (notice how the sizes of all the symbols in Round 1 are equal). At a
given boosting step m, the observations that were misclassified by classifier fm−1(x) have their weights
increased, whereas the weights are decreased for those that were classified correctly. For example, the
decision stump misclassifies three positive training points in Round 1 (these are the circled points); in
Round 2, these three misclassified positive points from Round 1 have their weights increased (denoted by
the larger ‘+’ symbols), and the seven points that were classified correctly in Round 1 have their weights
decreased (denoted by smaller symbols). This process encourages each successive classifier to concentrate
on correcting the previous classifiers’ mistakes. The weighted error (εm) is the sum of all the misclassified
weights and is used to calculate the weight update, αm. The final classifier is a weighted vote of each of the
individual m classifiers, as indicated at the bottom of the figure. Modified from Paisley (2017).
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best SL methods to compare against the SSL methods. XGBoost has several hyper-parameters, but those

that I choose to focus on setting values for are listed below:

• Number of estimators (default = 100)

• Max depth (default = 6)

• Minimum child weight (default = 1)

• Learning rate (default = 0.30)

• Lambda (L2 regularization, default = 1)

The number of estimators is the number of trees (i.e., boosting iterations) in the ensemble. Boosting is

commonly a process that operates on weak learners, so the max depth (i.e., how many levels a decision tree

can have) tends to be a small integer. The decision stumps used to illustrate boosting in Figure 2.5 have a

depth of 2. Another hyper-parameter that limits how the trees can grow is the minimum child weight. If at

a given decision node, a partition results in a leaf node with a weight that is less than the defined value, the

tree-building process gives up further partitioning on that decision node. The learning rate, as mentioned

above, is a parameter introduced from using gradient descent, which controls how fast (or slow) the boosting

algorithm learns. Larger values for the learning rate may allow the algorithm to converge more quickly, but

it may be too quick to learn and risk overfitting the training data. Smaller values can prevent overfitting, but

it may take larger to converge (i.e., a higher computational cost). Lastly, the lambda hyper-parameter is a

regularization term that can make the model more conservative. Generally, higher values for minimum child

weight and lambda can help reduce overfitting, but lower values are needed for the max depth and learning

rate to achieve reduced overfitting (Chapter 5.3.6 gives an example of the ranges of values considered for

these hyper-parameters).



CHAPTER 2. METHODOLOGY 17

LightGBM

Another GBDT method that I use later in this thesis (Chapter 7) is called Light Gradient Boosting Machine

(LightGBM, Ke et al., 2017). Like XGBoost, LightGBM has been robust across disciplines such as medical,

biological, and financial fields (Wang et al., 2017; Chen et al., 2019; Sun et al., 2020). As LightGBM and

XGBoost are both GBDT methods, they are quite similar, but one fundamental difference between the two

algorithms is how the decision trees are grown. XGBoost grows its trees level-wise, whereas LightGBM

grows trees leaf-wise (see Figure 2.6). Ke et al. (2017) show that leaf-wise growth can reduce computation

times significantly and improve accuracy compared to XGBoost. Leaf-wise trees can grow deeper much

more quickly than level-wise trees, which can result in overfitting of the training data; however, this can

be addressed with the max depth hyper-parameter. LightGBM has several of the same hyper-parameters as

XGBoost (e.g., learning rate, number of estimators, max depth, and lambda), but two hyper-parameters are

more specific to LightGBM:

• Number of leaves (default = 31)

• Minimum data per leaf (default = 20)

The minimum data per leaf is analogous in its function to the minimum child weight from XGBoost. The

number of leaves is the main parameter to control the complexity of the trees in LightGBM. Generally, the

number of leaves is set to be less than 2max depth to avoid overfitting (Ke et al., 2017). A functionality that

XGBoost and LightGBM both possess that has not yet been discussed is the capability of randomly selecting

only a fraction of the features to construct each tree (similar to Random Forests). However, both algorithms

have this fraction set to 1 as their default (i.e., all input features are used to construct each tree), and I do not

explore changing this hyper-parameter.
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Figure 2.6: The differences between (a) level-wise decision tree growth and (b) leaf-wise decision tree
growth. LightGBM uses leaf-wise growth that is shown to require less computation time and achieve higher
accuracy compared to XGBoost (Ke et al., 2017).

2.2 Semisupervised methods

SSL algorithms are similar to SL algorithms in that their ultimate goal is to make predictions for the unla-

beled data (U ). However, the distinction with SSL methods is that the unlabeled data (U ) are incorporated

into the training process. As a result, SSL algorithms train with

D = {(x1, y1), ..., (xl, yl), xl+1, ..., xl+u} = L ∪ U (2.4)

where D is the union of L (Eq. 2.1) and U (Eq. 2.2), l and u are the amounts of labeled and unlabeled data,

respectively, and the objective is to still make predictions (H) for the unlabeled data. From a theoretical

perspective, including the unlabeled data in the training process can help SSL algorithms achieve better

generalized predictions for U than SL algorithms in the context of low training data (Chapelle et al., 2006;

Zhu & Goldberg, 2009; van Engelen & Hoos, 2020).

The problems that SSL algorithms are designed for are those with far more unlabeled than labeled

data (u >> l) and many geoscience problems reflect these scenarios. Figure 2.7 illustrates why and how

SSL is useful using a toy dataset that is popular for SSL testing, the “two moons” dataset. Figure 2.7(a)

shows the binary dataset with four labeled data points per class. Training a supervised classifier, such as a
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Figure 2.7: (a) The “two moons” dataset representing a binary classification problem where both classes
have 91 unlabeled and 4 labeled points respectively (dataset provided by Gieseke et al., 2014). (b) The
support vector machine (SVM) classification and decision boundary (black line). The accuracy is 90.66%
with 17 misclassified points. (c) The semisupervised classification and decision boundary (black line) using
label propagation. The accuracy is 98.35% with only 3 misclassified points. This demonstrates the benefit
of including the unlabeled data (semisupervised learning) in the training process.

support vector machine (SVM), on these data gives the decision boundary indicated by the solid black line

in Figure 2.7(b). Unfortunately, the SVM classifier misclassifies seventeen unlabeled data points. However,

if the unlabeled data are included in the training process using an SSL algorithm, such as label propagation,

then the new semisupervised decision boundary (solid black line in Figure 2.7c) achieves an improved

classification of the unlabeled data (only three misclassifications). The following sub-sections introduce the

SSL methods used in this work in more detail.

2.2.1 Label propagation (LP)

One well-established semisupervised technique is label propagation (LP), otherwise known as graph-based

learning. From a conceptual perspective, LP is designed to let the data points iteratively spread their label

information to their unlabeled neighbors until a global stable state is reached. The algorithm that I use

for LP is publicly available (LabelSpreading class from scikit-learn in Python) and is based on the

methodology from Zhou et al. (2004). The algorithm is summarized here, but see Zhou et al. (2004) and

Chapter 5 from Zhu & Goldberg (2009) for more details.

An essential component of the LP algorithm is constructing the adjacency matrix, edge-weight matrix,
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or graph, which measures a pairwise similarity between each data point. There are two common methods

for constructing this matrix. The first option uses a radial basis function (RBF) kernel to generate the graph,

Wij = exp(−σ||xi − xj ||2), (2.5)

where i, j = 1, ..., l + u = n (i.e., the indices for both the labeled and unlabeled data), ||xi − xj ||2 is the

L2 distance between two data points, and σ controls the kernel width (similar to the σ hyper-parameter for

SVM). For a fixed L2 distance, a larger sigma results in a smaller weight Wij between points xi and xj (i.e.,

the reach of each data point is smaller). Conversely, a smaller sigma results in a larger weight Wij between

points xi and xj (i.e., the reach of each data point is farther). In essence, if Wij is large, then the points xi

and xj likely share the same label (yi = yj). This adjacency matrix produces a dense matrix (n× n), which

becomes problematic with larger datasets. The alternative option is to build the adjacency matrix using a

nearest-neighbors (NNs) approach,

Wij =


1 if xj ∈ NNp(xi)

0 otherwise

(2.6)

where p is the number of nearest neighbors. So, if xj is one of the p neighbors of xi (i.e., Wij = 1) then

xi and xj likely share the same label. Technically, Eq. 2.6 is still an n× n matrix, but the benefit here is it

can be saved in the computer as an (n × p) sparse matrix by ignoring the zeros. This sparse representation

makes Eq. 2.6 more manageable for larger datasets compared to Eq. 2.5.

The next step of LP is calculating the spreading function, which utilizes the graph (W) established

previously. The graph (W) is first used to calculate what is called a normalized graph Laplacian matrix,

L = I − A−1/2WA−1/2, (2.7)
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where I is the identity matrix, and A is a diagonal matrix with its (i, i) elements equal to the sum of the ith

row of W. This matrix (L) is then used to define the spreading function,

F(t+ 1) = αLF(t) + (1− α)Y, (2.8)

where Y is an n × K matrix containing the initial labels (Yik = 1 if xi is labeled as yi = k, and Yik = 0

for all unlabeled data points), K is the number of classes, F is initialized by F(t = 0) = Y, and α is a

hyper-parameter defined on the interval [0,1].

The spreading function F is solved for iteratively, and at each iteration, each point receives information

from neighboring points (first term in Eq. 2.8) and the initial labels (second term in Eq. 2.8), where α

controls the weight between these two terms in Eq. 2.8. The α hyper-parameter can also be interpreted

as a clamping factor where α defines the proportion of initial labels that are allowed to change their labels

(e.g., setting α = 0.20 means that the algorithm will maintain 80% of the initial label distribution, but it

has the flexibility to change its confidence in 20% of the label distribution). Once F converges, each row is

normalized to provide a soft classification on all n data points (i.e. each row of F sums to 1). Therefore, one

can assign labels to the unlabeled data (U ) by,

ypredi = argmax
k

Fik for i = l + 1, ..., l + u. (2.9)

Figure 2.8 shows an example of using LP on a toy example, which is also helpful for understanding how the

LP classification in Figure 2.7(c) is produced.

The two assumptions of the LP method are the smoothness (i.e. two points that are close to each other

in a high-density region will likely share the same label) and manifold assumptions (i.e. two points on the

same global structure are likely to have the same label). Conceptually, it is intuitive that LP implements the

smoothness assumption because of the way that the algorithm spreads its label information to neighboring
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Figure 2.8: Label propagation demonstrated using a small example. (a) The two colored nodes are initial
labeled data points (Classes 1 and 2), while the gray nodes represent unlabeled data. The thickness of the
lines between nodes represents the strength of similarity between points. (b) Each unlabeled data point
is assigned the class which receives the most information during the label propagation process (Eq. 2.8).
Inspired by Fig. 2 from Camps-Valls et al. (2007).

points. The manifold assumption is harder to conceptualize, but if you imagine that each moon in Figure

2.7 belongs on its own manifold, then all this assumption is stating is that points in one moon should share

the same label. Implementing this algorithm requires setting two hyper-parameters: one pertaining to the

adjacency matrix (σ or p) and α. Since these two parameters are the only two factors controlling the behavior

of the LP algorithm, choosing optimal settings for them is the only method for ensuring that the smoothness

and manifold assumptions are met. Similarly, incorrect values for these two hyper-parameters could violate

one or both of these assumptions, and this could lead to incorrect classifications (see Chapters 3.4 and 3.5

for examples of assumption violations). However, the data themselves can also violate these assumptions,

and an example is shown in Chapter 5.4.1.

Label propagation is also considered to be a transductive algorithm. Transductive algorithms only have

the ability to learn an internal mapping of the existing labeled and unlabeled data points in order to label the

unlabeled data. A significant disadvantage of these algorithms is that they are not classifiers and they cannot

make ‘out-of-box’ predictions. This is because the adjacency matrix is fixed for the set of data (D) used

to train the algorithm; if labels are sought for additional unlabeled data, then the edge-weight matrix and
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subsequent internal mapping must be recomputed and this may not be computationally feasible. This is not

the case for inductive methods, or classifiers, because they are designed to make predictions for new data

without needing to retrain the entire algorithm. Therefore, large datasets can be problematic for transductive

methods. For instance, if there are 10 million unlabeled points and 1 million labeled points, computing

the adjacency matrix (using RBF or nearest neighbors) for all 11 million points could be computationally

limiting. Semi-supervised inductive algorithms have the advantage of training a classifier on the 1 million

labeled and perhaps 5 million unlabeled points, and then that classifier could be used to predict the labels

for the remaining unlabeled 5 million points.

Nonetheless, there are some advantages specific to label propagation and to transductive learning in gen-

eral. The α parameter in Equation 2.8 can help the LP method overcome noisy points or outliers. Outliers

may be more characteristic of other classes and they could be mistakes in the labeling process, but if their

classes are fixed (i.e. α = 0), then this could cause instabilities. However, setting α > 0, for instance

0.4, implies that 60% of the original label distribution will be retained, but the algorithm has the flexibility

to change its confidence in 40% of the label distribution. This could allow misclassified outliers to take

on the information from their surroundings rather than propagating their false label information. A similar

argument can be made for datasets with poor class separability where allowing labeled points to have some

flexibility in overlapping zones may be beneficial. New data are problematic for transductive algorithms,

but in many cases, datasets are finite and transductive learning is still appropriate in these situations. Fur-

thermore, since the mapping for transductive learning is only defined on the existing data, these algorithms

tend to be simpler than inductive algorithms (Zhu & Goldberg, 2009).

2.2.2 Self-training

One of the earliest forms of semisupervised learning is self-training (Yarowsky, 1995), which is the second

SSL method that I consider. This algorithm operates just as it sounds; a supervised (or semisupervised)
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method uses its own predictions to teach itself. A benefit of self-training is that it has the flexibility to wrap

around any algorithm that makes predictions for unlabeled data. However, I find that self-training seems to

work the best with the LP method, which is the combination that I use in Chapters 3 and 5. While there

are a few different flavors of self-training (Rosenberg et al., 2005; Liu et al., 2013; Asghar et al., 2020),

the approach that I take is slightly different. This implementation of self-training is an iterative process

described below.

• Step 1: Assign values for the two hyper-parameters, S and T . The subset size (S) controls how

many points will be removed from U and added to L at each iteration (this can be an integer, or it

can be defined as a percentage value multiplied by the initial amount of unlabeled points, u). The

stopping threshold (T ) is a decimal value on [0, 1] that controls how much of the unlabeled data is to

be removed before the algorithm stops.

• Step 2: Train a predictor f on L for SL, or L + U for SSL. Any predictor f can be used for self-

training (supervised or semisupervised) as long as f has a measure of confidence in its predictions for

the unlabeled instances, U .

• Step 3: Apply f to the unlabeled instances, U .

• Step 4: Calculate the class probability (πk, see Eq. 2.11 below), and then compute Sk = Sπk. Here,

Sk constrains precisely how many points per class to remove from U and add to L. If Sk is already

defined from a previous iteration, skip to Step 5.

• Step 5: Remove the subset of points (defined by Sk) from U and add them to L; this does assume

that the predicted classes of the points being added to L are correct. As an example, if Sk = Sπk =

20[0.25, 0.65, 0.10] = [5, 13, 2], then the 5 points with the highest confidence of belonging to Class 1

would be removed from U and added to L (similarly 13 and 2 points, respectively, for Classes 2 and
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3). This defines one self-training iteration, and the new sizes of L and U are (l + Si) and (u − Si),

respectively, where i is the number of self-training iterations.

• Step 6: Repeat steps 2-5 until the defined threshold is exceeded (i.e., size(L)/n ≥ T ). For example,

if T = 0.50, the self-training process will continue to grow the labeled dataset (L) until it exceeds

50% of the total data.

The selection criteria of any self-training technique define how the method selects which points to re-

move from U and add to L. The two parameters in Step 1 define the selection criteria specific for my

implementation. The class probability (πk) and subset (S) are critical because together (Sk) they constrain

how much of each class is to be removed from U at each iteration. If different classes have different numbers

of points associated with them, then we want to extract an appropriate relative number of points from each

class in U at each iteration; this is the information that should be encoded in πk. One way to determine πk

is by computing the class prior probability directly from the initial labeled set L via,

πk =
1

l

l∑
i=1

1(yi = k) (2.10)

where 1 is an indicator function that returns 1 if yi = k and 0 otherwise. However, a problem with this

approach arises if the distribution of classes in L is not representative of the class distributions in U . Imagine

a binary classification scenario where L has 20 data points, 15 belonging to Class A and 5 belonging to Class

B, and U has 80 data points, 20 belonging to Class A and 60 belonging to Class B. Therefore, the class

prior probability via Equation 2.10 is πk = [0.75, 0.25] and the unlabeled data has a class distribution of

π = [0.25, 0.75]. In this case, if the subset size S = 12, then the amount of points removed from each class

in U at each iteration is Sk = [9, 3]. After two iterations, 18 points from Class A and 6 points from Class

B are removed from U . At the third iteration, 9 points with Class A would be removed from U , but only 2

points with Class A remain in U . Therefore, the remaining 7 points that the algorithm assumes belong to
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Class A actually belong to Class B; for all subsequent iterations, Class B points in U will be misclassified as

Class A. In summary, if an incorrect πk is used, then self-training could force an incorrect class distribution

on U and this would violate the assumption mentioned in Step 5. It is common for the training data class

distribution to not necessarily match the testing data class distribution, so perhaps the self-training selection

criteria can be modified to accommodate this.

Perhaps a more robust approach is to derive the class probability from U instead of L. A realistic

approach that I use to calculate πk is from an algorithm’s predicted class membership probabilities on U ,

such as F from LP (Equation 2.8),

πk =
1

u

l+u∑
i=l+1

Fik (2.11)

where k is the class index, and I refer to this as the predicted class probability. This approach helps alleviate

the problem of potentially different class probabilities between L and U . However, in the context of applying

self-training to LP, obtaining an accurate πk from U using Equation 2.11 may be reliant on the LP method’s

ability to properly validate the smoothness and manifold assumptions. Nonetheless, once the predicted class

probability is established, the only hyper-parameters that must be set are the subset size (S) and stopping

threshold (T ). Figure 2.9 uses a simple example to help conceptualize this self-training process.

What distinguishes different self-training techniques are the selection criteria, i.e., deciding which points

to remove from U and add to L. The selection criteria for my implementation are constrained by Sk and

this is to accommodate class imbalanced datasets. Other approaches use a probability threshold τ as their

selection criteria (Liu et al., 2013; Livieris et al., 2018; Asghar et al., 2020) where all points with a confidence

higher than τ (e.g., τ > 0.90) are removed from U and added to L at each iteration. A potential issue that

I see with these approaches relates to when classes in U are unbalanced. The points in U associated with

the most-populous class(es) may have the highest prediction confidence. So, the threshold-based criteria

may always choose points to remove from U that are associated with the most-frequent class(es), thereby

ignoring any classes with fewer points. As such, the self-training selection criteria based on probability
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Figure 2.9: A demonstrative binary classification example showing how the self-training process works. (a)
A particular machine learning method, LP in this case, is trained on the labeled and unlabeled data (D). The
class membership probabilities on the unlabeled data are used to determine πk. With S = 2, this constrains
the selection criteria to removing one point from each class for each iteration, Sk = [1, 1]. (b) The first self-
training iteration. One unlabeled point from each class with the highest probability is selected and added
to the labeled dataset. With the two points removed from U and added to L, the threshold of 0.75 is not
surpassed, so the self-training process continues. The algorithm is retrained to update the class membership
probabilities. (c) The second self-training iteration. After this iteration, the threshold is surpassed, so self-
training stops. The algorithm is re-trained one final time and predictions for the remaining unlabeled data
are obtained as normal using thresholds on the class membership probabilities.
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thresholds may only be appropriate for balanced datasets. The way that I constrain the selection criteria

forces the algorithm to remove from U what I approximate to be the appropriate amounts of data from each

class at each iteration, thereby better accommodating class imbalance.

While I design the selection criteria to accommodate class imbalance, self-training, in general, has the

potential to still be rather unstable. If the base algorithm is performing poorly (LP in this context), then

errors could be perpetuated with each self-training iteration. What could cause this instability is if the

underlying adjacency matrix (W) is poorly defined, and Chapter 5.5.1 describes an example where this

occurs. Nonetheless, self-training is a simple technique to help improve the performance of classification

problems when training data are limited, and this approach is easy to implement with only two hyper-

parameters (S, T ).

2.2.3 Semisupervised Gaussian mixture models (ssGMM)

Many semisupervised techniques are simply extensions of existing unsupervised or supervised methods to

include additional information. For instance, semisupervised Gaussian mixture models (ssGMM) use an

algorithm that essentially combines a Naı̈ve Bayes classifier (supervised) and Gaussian mixture models

(unsupervised). A few different implementations of ssGMM do exist (Nigam et al., 2000; Zhu & Goldberg,

2009; Xing et al., 2013), but I have chosen to follow the approach outlined in Yan et al. (2017). However,

none of these implementations provide open-source code for their methods (including Yan et al., 2017), but

I have elected to do so (see Computer Code Availability below). The algorithm is summarized below.

In this semisupervised framework, the training data consist of both labeled and unlabeled data (D) and

the goal for ssGMM is to employ a probabilistic approach that seeks the labels that maximize the conditional

probability p(D|θ). Training amounts to finding good model parameters (θ), and the maximum likelihood
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estimate (MLE),

θ̂ = argmax
θ

[p(D|θ)] = argmax
θ

[log p(D|θ)] (2.12)

gives the parameters under which the data likelihood is the largest. The log-likelihood yields the same

maxima as the straight likelihood because log() is monotonic, and using a log-likelihood simplifies the next

step considerably. Simplifying log-products into sum-logs and substituting Bayes rule into Equation 2.12

gives,

log p(D|θ) = log

(
l∏

i=1

p(xi, yi|θ)β
l+u∏

i=l+1

p(xi|θ)1−β

)

= β
l∑

i=1

log [p(yi|θ)p(xi|yi, θ)] + (1− β)
l+u∑

i=l+1

log p(xi|θ) (2.13)

where the first term is the supervised likelihood, the second term is the marginal (unsupervised) likelihood,

and β establishes a weight between these two terms. Equation 2.13 is the objective function in general,

but if the model parameters are those that describe a multivariate Gaussian distribution for each class, then

Equation 2.13 becomes,

log p(D|θ) = β

l∑
i=1

log [πyiN (xi;µyi ,Σyi)] + (1− β)

l+u∑
i=l+1

log

(
K∑
k=1

N (xi;µk,Σk)

)
(2.14)

where π, µ, and Σ represent the Gaussian priors, means, and covariances, respectively, and N represents

a multivariate normal distribution. The standard implementations of ssGMM (Nigam et al., 2000; Zhu &

Goldberg, 2009, Chapter 3) do not include β, but this hyper-parameter is introduced by Yan et al. (2017) to

give a relative weighting (0 < β < 1) between the labeled and unlabeled portions of the log-likelihood.

To find the MLE, Equation 2.14 needs to be optimized. Unfortunately, the unobserved labels (H) make

the log-likelihood non-concave and hard to optimize. The standard remedy is to use the Expectation-
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Maximization (EM) algorithm (Dempster et al., 1977), which provides an iterative solution to obtaining

the MLE in the context of hidden data. For this implementation of ssGMM, the EM algorithm contains

several steps:

• Step 1: Set the iteration step to t = 0 and initialize the model parameters for each class (there are K

classes) for a multivariate Gaussian distribution. I achieve this by training a Gaussian Naı̈ve Bayes

classifier (Chapter 2.1.1) on the labeled data and obtaining,

θ(0) = {π(0)
k , µ

(0)
k ,Σ

(0)
k }∀k. (2.15)

• Step 2: The E-step. Create a matrix γ that is size n×K where n = l+ u. For labeled instances (i =

1, ..., l), define γik = 1 if yi = k, and 0 otherwise. For the unlabeled instances (i = l + 1, ..., l + u),

calculate γik via,

γik =
π
(t)
k N (xi;µ

(t)
k ,Σ

(t)
k )∑

j π
(t)
j N (xi;µ

(t)
j ,Σ

(t)
j )

. (2.16)

• Step 3: The M-step. Determine θ(t+1) using the current γik. For k = 1, ...,K compute:

NLk =
l∑

i=1

γik NUk =
l+u∑

i=l+1

γik C = βNLk + (1− β)NUk

π
(t+1)
k =

C

βl + (1− β)u

µ
(t+1)
k =

β
∑l

i=1 γikxi
C

+
(1− β)

∑l+u
i=l+1 γikxi

C

Σ
(t+1)
k =

β
∑l

i=1 γikxi(xi − µ
(t+1)
k )(xi − µ

(t+1)
k )T

C
+

(1− β)
∑l+u

i=l+1 γikxi(xi − µ
(t+1)
k )(xi − µ

(t+1)
k )T

C
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• Step 4: Increment the iteration step, t = t+ 1

• Step 5: Repeat Steps 2-4 until Equation 2.14 converges to a tolerance defined as the percent change

in the log-likelihood (e.g., tolerance = 0.1 is one-tenth of a percent)

The matrix γ represents the soft labels, or class membership probabilities, for the unlabeled data. Once the

algorithm converges, a threshold can be applied to assign a hard classification to the unlabeled data points

via,

yi = argmax
k

γik for i = l + 1, ..., l + u. (2.17)

Implementing this algorithm requires setting the hyper-parameters a priori, which are the tolerance and β.

Yan et al. (2017) considers β as the only hyper-parameter, but I find that ssGMM is quite sensitive to the

tolerance and choose to optimize it rather than set it to a fixed value.

In ssGMM, there is a critical assumption that the labeled data have been generated by multivariate

Gaussian distributions and the unlabeled data use the same parametric model for classification. This clus-

ter assumption states that if two points are in the same cluster, then they likely belong to the same class.

However, it does not imply that each class forms an isolated cluster, but rather that we should not observe

data of two distinct classes in the same cluster (Chapelle et al., 2006, Chapter 1). For my implementation,

this assumption also implies that each class can only be described by one Gaussian cluster (i.e. it cannot be

multinomial). If this cluster assumption is violated in any way (e.g., multinomial, non-Gaussian distribu-

tions), then semisupervised learning could actually degrade performance (see Figures 3.2 and 3.3 in Zhu &

Goldberg, 2009). Therefore, it is important to ensure that the data features for each class can be described

by Gaussian distributions a priori.
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Computer Code Availability

• Name of code: ssGMM

• Developer: Michael W. Dunham

• Contact: Department of Earth Sciences, Memorial University of Newfoundland, St. John’s NL A1B

3X5, Canada; mwdunham@mun.ca

• First release: 2019

• Hardware required: tests were performed on a standard workstation with the following specifications:

Intel i5-4750 (4 CPUs) 3.20 GHz processor + 32 GB RAM

• Software required: core Python 3 modules: scikit-learn, joblib, numpy, pandas, matplotlib.

• Programming language: the code is written in Python 3

• How to access the source code: the source file for the ssGMM program, data files, and accompanying

Jupyter notebooks that reproduce results from Chapter 4 are provided here:

https://github.com/mwdunham/ssGMM

2.3 Hyper-parameter tuning

Many of the supervised and semisupervised algorithms discussed in Chapters 2.1 and 2.2 have hyper-

parameters that need their values set. Trial-and-error is possible, but manually tuning many parameters

(e.g., those for XGBoost) can be cumbersome and inefficient. There are various established techniques in

the literature for supervised methods to use what information is available to automate the determination of

hyper-parameters, and one popular approach is called grid search cross-validation. The first step is consid-

ering a range of values for each hyper-parameter; this requires some intuition about the hyper-parameter
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Figure 2.10: The standard k-fold cross-validation method to determine hyper-parameter settings for super-
vised methods.

and whether or not the goal is to make the algorithm more conservative. The information that is used to

determine the hyper-parameters is the training dataset (L) because we know what the labels are for these

data. To use the training dataset (L) for cross-validation, we split it into two pieces: a larger training set

and a smaller validation set. For each hyper-parameter setting, the algorithm is trained on the training set

and then evaluated on the validation set using classification metrics such as accuracy, precision, recall, or

F1 (Lever et al., 2016). However, if only one validation set is used, the hyper-parameter setting with the

best score may only be optimized for that portion of data, i.e., it may not be a setting that helps the machine

learning model generalize well to other data. One remedy is to break the training data into k pieces, or folds,

and train the machine learning algorithm with a given hyper-parameter setting on k − 1 folds, evaluate the

performance on the kth fold, and then repeat this process for each fold; this is k-fold cross-validation (CV).

For five-fold CV, each hyper-parameter setting has a classification score on each of the five validation sets

(Figure 2.10 illustrates this concept). Conventionally, all of the classification scores are averaged and the

standard hyper-parameter selection tactic is to select the hyper-parameter combination with the largest mean

CV score (Bishop, 2006, Chapter 1.3; Hastie et al., 2009, Chapter 7.10; Krstajic et al., 2014).
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Hyper-parameter tuning for semisupervised methods is more challenging. As stated in Chapter 1.2,

there is a lack of consensus on systematic approaches for determining hyper-parameters for SSL algorithms

because most of the SSL literature that I have encountered neglects to address this subject. This is in stark

contrast to SL, where it is common to use k-fold cross-validation. Nonetheless, I pursue three different

strategies in this thesis. The first is simply a trial-and-error, heuristic-based approach to trying different

hyper-parameter settings and seeing which works best. The second strategy is to simply use the cross-

validation approach designed for supervised methods (i.e., using the labeled data only). For semisupervised

methods, the validation fold in cross-validation can be treated as unlabeled data to include during training,

and the goal is to still predict labels for the validation fold and evaluate the performance. There are some

examples of using this approach in the literature (e.g., Gieseke et al., 2014). What is potentially problematic

with this approach is that some SSL hyper-parameters relate to the density of the data as a whole (e.g.,

the number of nearest-neighbors for LP) or give a relative weight between the labeled and unlabeled data

(e.g., β for ssGMM and α for LP), and using only the labeled data to determine these hyper-parameters may

suggest inappropriate values.

In Chapters 3 and 4, I explore using k-fold cross-validation on L to determine hyper-parameters for

LP and ssGMM, respectively, and the results are indeed mixed. In Chapter 5, I find that the heuristic

approach and default parameter settings work well, but I explore using a new approach in Chapter 7. Zhang

& Lee (2006) use a different hyper-parameter learning technique for a graph-based SSL algorithm similar

to the LP method used in this thesis. They use a leave-one-out (LOO) cross-validation approach, which

assumes that there are as many folds as labeled data (i.e., l folds). What they do differently is, for each

held out training sample (i.e., validation fold containing a single data point), they predict its label using

the remaining l − 1 labeled data and the unlabeled data. The predictions for the unlabeled data cannot be

used to evaluate the performance of any hyper-parameter setting because the true labels for these data are

assumed to be unknown. However, this does not preclude the inclusion of the unlabeled data. The benefit of



CHAPTER 2. METHODOLOGY 35

Figure 2.11: The standard cross-validation technique for supervised methods (Figure 2.10) can be modified
for semisupervised methods by augmenting the validation fold with the unlabeled data. When predictions
are made on the augmented unlabeled data set, only those corresponding to the validation fold can actually be
evaluated, but including the unlabeled data can still help inform the learning for semisupervised algorithms.

including the unlabeled data is that they can help better inform the determination of some hyper-parameters.

The disadvantage of this LOO approach is that the SSL algorithm must be trained l times for each hyper-

parameter setting. This is a significant computational demand. So, rather than pursue the LOO approach,

I develop a new technique that builds on this idea, and this is the third approach that I use toward the end

of this thesis. I use the same k-fold cross-validation approach used for supervised methods (Figure 2.10),

but I augment the validation fold with all (or a fraction) of the unlabeled data from the problem (see Figure

2.11). When predictions are made on this augmented unlabeled data set, only those corresponding to the

validation fold can actually be evaluated, but including the unlabeled data can still help inform the learning

for semisupervised algorithms. I have labeled this as semisupervised k-fold cross-validation, and the benefit

of this approach over the LOO approach is that the SLL algorithm only has to be trained k-times compared

to l-times for each hyper-parameter setting.



Chapter 3

Improved well-log classification using

semisupervised label propagation and

self-training, with comparisons to popular

supervised algorithms1

3.1 Introduction

Lithofacies classification, which assigns a rock-type or class to specific rock samples on the basis of mea-

sured properties, is fundamental in geologic investigations (Dubois et al., 2007). The best source of litho-

facies information is core samples acquired from drilled wells; however, cores are not always recovered

because of high costs. Due to the limited availability of core samples, a method for indirectly estimating

lithofacies in wells without core is necessary (Dubois et al., 2007). Wire-line log measurements (i.e. gamma
1Dunham, M.W., Malcolm, A. and Welford, J.K., 2020. Improved well-log classification using semisupervised label propagation

and self-training, with comparisons to popular supervised algorithms, Geophysics, 85(1), O1–O15.

36
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ray, density, neutron porosity, sonic, resistivity, etc.) have long been recognized as being indirectly related

to lithofacies. However, manually assigning lithofacies, using wire-line log measurements, at each depth

sample in every well would be impractical; a more practical and automated approach is needed (Dubois

et al., 2007).

Over the past few decades, this problem has been widely addressed using both supervised learning (SL)

and unsupervised learning (UL). Neural networks were the first supervised machine learning algorithms

applied to well-log classification (Baldwin et al., 1990; McCormack, 1991; Rogers et al., 1992), and they

continued to be popular for the next two decades (Benaouda et al., 1999; Saggaf & Nebrija, 2000; Maiti

et al., 2007; Al-Bulushi et al., 2009; Malvić et al., 2010; Al-Bulushi et al., 2012). Other supervised imple-

mentations have included k-nearest neighbors (Dubois et al., 2007), support vector machines (Wang et al.,

2013; Hall, 2016) and ensemble methods (Bestagini et al., 2017; Keynejad et al., 2019). Bayesian-based

techniques have also been popular for facies classification problems, and these methods encompass both

supervised and unsupervised learning. A common supervised Bayesian technique is a Naı̈ve Bayes classi-

fier (Li & Anderson-Sprecher, 2006; Dubois et al., 2007; Grana et al., 2017), and Gaussian mixture models

(GMMs) are popular for unsupervised implementations (Gallop, 2006; Grana et al., 2017; Hardisty & Wal-

let, 2017; Wallet & Hardisty, 2019). More recently, unsupervised GMMs have been extended to include

transition probabilities from hidden Markov models (Lindberg & Grana, 2015; Feng et al., 2018a,b).

A challenge with well-log classification is the availability of ground truth, labeled data for supervised

learning. It is relatively cheap to collect unlabeled data (wireline data), but obtaining ground truth labels

for the unlabeled data can be difficult because extracting, preserving, and storing core samples is costly.

Therefore, these classification problems commonly have a paucity of labeled data. For instance, Dubois

et al. (2006) train a neural network using 14 wells with core and they use that mapping to predict the

lithofacies for 1364 wells without core samples. In this situation, the supervised classifier is trained using

roughly 1% of the data and this assumes that the classifier can generalize in classifying the remaining 99%.
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This may be a poor assumption, in general, because it is known that training a supervised classifier on a

small training set can lead to overfitting.

One solution to this overfitting problem is to use semisupervised learning (SSL) techniques because they

utilize both the labeled and unlabeled data in the training process, which is predicted to achieve more accu-

rate labels for the unlabeled data than SL techniques in the context of limited training data (Chapelle et al.,

2006; Zhu & Goldberg, 2009). The semisupervised methods utilized in this paper are (1) label propagation

and (2) self-training. Both methods share a few benefits: they are well-established, conceptually simple, and

easy to implement. Here I present a case study that applies these two semisupervised methods to lithology

classification of wire-line data from well logs made publicly available through an SEG competition held

in 2016 (Hall, 2016; Hall & Hall, 2017). However, I also use three supervised algorithms for comparison

purposes. My research question of interest is if SSL techniques achieve better predictions for the unlabeled

data (in the context of minimal training/labeled data) compared to SL techniques. By comparing the perfor-

mance of SL and SSL algorithms, I are able to test this hypothesis. The particular geoscience application

that I are applying these SSL methods to has already been explored for two decades (i.e. lithofacies classi-

fication of well-log data). However, the merit of this work is that it is the first, to my knowledge, that uses

semisupervised methods for this application, and to determine their efficacy, I compare their performance to

commonly-used supervised techniques. Furthermore, I constrain my self-training technique differently than

existing implementations through the use of improved selection criteria.

The outline of this chapter is as follows. First, I discuss SSL and introduce the mathematical concepts

behind the two semisupervised methods considered. Second, I give an overview of the well-log dataset used

for this study and how I pose it as a semisupervised problem. Next, I provide the results of this study, divided

into two parts. The first results section provides the results on the well-log dataset as is (i.e. the global data)

for each of the algorithms considered. For the second section, I split the dataset into two separate pieces (i.e.

the split data) and investigate how this impacts the performance of all of the algorithms. Lastly, I discuss
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the implications of these results and conclude with the outcomes.

3.2 Machine learning methods

Performing the machine learning analysis for this problem requires semisupervised and supervised methods

in order to assess which type of technique can achieve better performance, in the context of a small set of

training data (L). The semisupervised methods used are label propagation (Chapter 2.2.1) and self-training

(Chapter 2.2.2). Recall that LP has a choice between using either the k-NN or RBF kernel. Preliminary tests

indicated that performing cross-validation on the training data using the RBF kernel recovered parameters

that caused the LP method to perform much better on the testing data compared to the k-NN kernel. The

dense edge-weight matrix using the RBF kernel is problematic for larger datasets, but this is not an issue for

this study as the dataset is relatively small. Therefore, I proceeded with using the RBF kernel. Self-training

also has flexibility for the choice of algorithm it wraps around, but for this study, I perform self-training on

LP.

For supervised methods, I choose three different types of algorithms to serve as the basis for comparison:

Gaussian Naı̈ve Bayes (GNB), support vector machines (SVMs), and XGBoost. Naı̈ve Bayes (Chapter

2.1.1) is quite simple to implement because it contains no hyper-parameters, but it does assume that the data

can be represented with multivariate Gaussian distributions. For SVM (Chapter 2.1.2), I utilize the RBF

kernel to allow the algorithm to define non-linear decision boundaries (I found this was necessary given the

nature of the data). Consequently, the two hyper-parameters that must be set for SVM are the kernel width,

σ, and the regularization constant, C. XGBoost (Chapter 2.1.3) was the algorithm of choice for the winners

of the 2016 SEG competition (Hall & Hall, 2017); it is noteworthy that this algorithm outperformed SVMs

and even deep neural networks on this dataset. Not surprisingly, this algorithm is slightly more complicated

to implement as it has multiple hyper-parameters that must be set, but it appears to be very robust. Since

I am using the same dataset for this study as the SEG competition, I thought XGBoost would be the best
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Table 3.1: The nine lithofacies for the well-log dataset and their corresponding descriptions. The Label
column serves as a key for the colors associated with each facies in Figures 3.1, 3.2, and 3.11. The classes
listed in the Adjacent facies column are used to compute the adjacent accuracy metric given by Hall (2016).

Facies Description Label
Adjacent

facies
Non-marine classes

1 Sandstone SS 2
2 Coarse siltstone CSiS 1,3
3 Fine siltstone FSiS 2

Marine classes
4 Siltstone and shale SiSh 5
5 Mudstone MS 4,6
6 Wackestone WS 5,7,8
7 Dolomite D 6,8
8 Packstone-grainstone PS 6,7,9
9 Bafflestone BS 7,8

comparison for the two SSL methods considered.

3.3 The well-log dataset

The well-log data for this study, and from the SEG competition, are from ten wells drilled in the Hugoton

and Panoma fields of southwest Kansas and northwest Oklahoma which were made public by the Kansas

Geological Survey. These fields lie on the west side of the Anadarko Basin, an asymmetric foreland basin

associated with the early Pennsylvanian Ouchita-Marathon Orogeny, and they constitute one of the largest

gas-producing areas in North America (Dubois et al., 2006). Fourth-order marine-continental sedimen-

tary cycles reflecting rapid glacioeustatic sea-level fluctuations are responsible for the laterally continuous

reservoir (carbonates and dolomites) and seal (marine and non-marine silts/muds) lithofacies of the Council

Grove Group. For more details on the geology of the region, see Dubois et al. (2006).

Each of the ten wells in this dataset is complete with wire-line log data and core samples, each recorded

at half-foot (0.15 m) increments for a total of 4137 data points. The sedimentary rocks in the core are

subdivided into nine lithofacies (or classes) on the basis of rock type and texture, and their descriptions are
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given in Table 3.1. The first three classes (1-3) are non-marine facies and the six remaining classes (4-9)

are marine facies. The data for each well consist of five wire-line logs (gamma ray, resistivity, photoelectric

effect, neutron-density porosity difference, and average neutron-density porosity) and two geologic variables

(non-marine/marine (NM M) indicator and relative formation position). The wire-line logs obviously come

from digital measurements of the subsurface, but the two geologic variables are derived from interpretations

of these data. Formation tops were determined from the wire-line data that separate the successions into

alternating NM and M half-cycles and an NM M indicator was assigned to intervals based on the depth to

the top and base of these formations. The NM M indicator generally separates the non-marine from the

marine facies, and conceptually I interpret the marine and non-marine facies to each exist on a separate

manifold. Similarly, imagine that the non-marine and marine facies each belong on a separate ‘moon’ in the

context of Figure 2.7 (this is important for the subsequent results section). The relative position variable is

assigned to each sample within a formation and varies from 1 (the top) to 0 (the base). These two geologic

feature variables were added to the dataset because the facies in the Council Grove continental-marine cycles

have predictable vertical stacking patterns (Dubois et al., 2006).

These data involve fuzziness at many levels and this is evident from the cross-plot in Figure 3.1. The

NM M indicator is effective at separating the non-marine (1-3) from the marine (4-9) facies, but notice that

there is still considerable overlap within the marine and non-marine facies. This overlap can be attributed to

the fact that the facies are not discrete (i.e. they gradually blend from one to another, e.g., non-marine coarse

and fine siltstone) and it is well-known that the physical properties of different lithologies are not always

unique (Avseth et al., 2005). Since the data are quite fuzzy, one could argue that if a predicted facies is close

to the truth, then that could still be considered correct. The facies that are deemed close to the truth are

indicated in the adjacent facies column in Table 3.1. This is used to compute the adjacent accuracy metric

presented in the results. The absolute accuracy of any classifier is expected to be poor due to the fuzzy

nature of this dataset, but the adjacent facies accuracy can be interpreted as an ‘in-the-ballpark’ accuracy.
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Figure 3.1: A cross-plot matrix showing the behavior for all seven data variables with respect to each other
for the entire well-log dataset. The variable abbreviations represent the following: GR = gamma ray, ILD
(log10) = resistivity, DeltaPHI = neutron-density porosity difference, PHIND = average neutron-density
porosity, PE = photoelectric effect, NM M = non-marine/marine indicator, and RELPOS = relative position.
The first five features are log variables and the last two features are user interpreted geologic variables. For
the classes pertaining to each color, see Table 3.1. The distributions of each class for each variable are given
by the diagonal elements in the matrix, and these distributions indicate that the classes have a high degree
of overlap.
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Figure 3.2: The facies distributions for the (a) single labeled well and the (b) nine unlabeled wells. Overall,
the single well (a) appears to be representative of the nine unlabeled wells (b), but there are some notable
differences for some facies.

The original exercise associated with this dataset was to train a classifier using the data from the ten

wells (L) to predict the facies for two unknown wells (U ) whose true labels were only known by the compe-

tition organizers (this study only has access to the ten wells). In order to simulate a semisupervised scenario

for the context of this study, only one well is considered as the labeled data (L) and the goal is to predict

the facies for the remaining nine wells (U ), which are assumed to be unknown. The challenge then be-

comes which well to use as L because not all of the wells contain data for each facies. A given classifier

cannot make predictions for classes not seen in the training data and this is a limitation that is not unique to

semisupervised, but applies to supervised algorithms as well.

Only two of the ten wells contain data for each of the nine facies and I have chosen KIMZEY as the

well to represent L. The probability distributions for the labeled well (KIMZEY) and the nine remaining

unlabeled wells are shown in Figure 3.2. Notice that the facies distribution for KIMZEY (Figure 3.2a) is

relatively similar to the facies distribution of the other nine wells (Figure 3.2b), but there are some noticeable

differences. These facies distributions also relate to the class probabilities from self-training; Figure 3.2(a)

represents the class prior from Equation 2.10 and Figure 3.2(b) represents what I hope Equation 2.11 will

find. The scenario that I am simulating here where only one (l = 439 points) out of the total ten wells (l+ u

= 4137) has core samples (approximately 10% of the entire dataset) could indeed reflect a realistic situation.

Prior to classifying the unlabeled data, the entire dataset must be scaled and normalized in order for
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certain algorithms to perform properly (e.g., SVM). The data in Figure 3.1 suggest that there are outliers

and the traditional approach of standardizing the data based on the mean could improperly scale the data.

Instead, I consider an alternative method (using the RobustScaler class from scikit-learn) that removes

the median and scales the data according to the interquartile range (IQR). The IQR measures the statistical

dispersion of the data by taking the difference of the 75th and 25th percentiles (Navidi, 2010, Chapter 1).

The next section shows the results of the three supervised and two semisupervised algorithms on the scaled

dataset when only the KIMZEY well is used for training.

3.4 Results I - Global data

The three SL and two SSL algorithms all have hyper-parameters that require setting prior to classifying U ,

and realistically obtaining values for these parameters can only be achieved with the known information (L).

As is standard in such problems, cross-validation (CV) is used on L to determine these hyper-parameters

(see Figure 2.10). I consistently use 3-fold CV for all algorithms because testing showed that using higher

folds gave diminished performance (higher folds made the validation sets too small). CV is not needed for

GNB, but SVM has two hyper-parameters (C, σ) and I chose to optimize them over a 20 × 20 logarithmic

grid. There are many hyper-parameters for XGB, but I set the grid choices similar to those from Bestagini

et al. (2017) - one of the winners of the SEG competition - and modify them slightly to achieve better

performance for this scenario. The challenge for these methods is determining parameter settings that can

lead to good predictions for U when the amount of information to learn from in L is limited.

SSL methods still face the same challenge as SL methods of determining optimal settings for hyper-

parameters. It is not uncommon to tune SSL algorithm hyper-parameters via CV on L alone (e.g., Gieseke

et al., 2014) and I do consider this approach using a 41 × 41 grid for α and σ. However, using CV on L to

determine SSL hyper-parameters may suggest inappropriate values. The α hyper-parameter gives a relative

weight between the labeled and unlabeled data (Eq. 2.8), and σ controls the reach of each data point to each
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Table 3.2: Results for the supervised and semisupervised algorithms on the global well-log dataset. For the
self-training results, the subset size and threshold are fixed to default values of S = 10% and T = 50%.
However, an additional self-training setting is used (S = 15% and T = 50%) which is marked by the
asterisk (*). For the elapsed time, all computations are conducted on a desktop machine (3.2 GHz Intel Core
i5 processor) with 16GB RAM and all cross-validations are performed in parallel on four cores. The colored
cells correspond to discrete points in Figures 3.4 and 3.5.

GNB SVM
with CV

XGBoost
with CV

LP
(default)

Self-train
LP (default)

LP
(with CV)

Self-train
LP (with CV)

Self-train*
LP (with CV)

Total accuracy (%) 40.64 41.62 44.19 43.54 43.19 45.00 49.54 48.76
F1 score (%) 35.91 39.43 42.50 34.19 39.29 38.70 47.30 46.58
Total adjacent accuracy (%) 82.59 82.04 83.53 78.66 81.50 83.02 87.43 86.78
Number of CV fits 0 400 × 3 1728 × 3 0 0 1681 × 3 1681 × 3 1681 × 3
Elapsed time 0.02 s 6.65 s 567.3 s 0.78 s 5.56 s 9.22 s 14.45 s 12.43 s

other (Eq. 2.5); both of these hyper-parameters have some relation to the unlabeled data, and so determining

their values from only the labeled dataset may cause LP to be unstable and/or violate its assumptions. For

instance, CV on a sparse L may suggest a σ with small reach (i.e., overestimating a value for σ). Therefore,

I also test the performance of LP by simply using the default parameter settings (α = 0.5, σ = 1.0). To

simplify the problem, I also only consider default parameter values for self-training (S = 10%, and T =

50%) and do not use CV as this would add an additional level of complexity.

The results of the supervised and semisupervised algorithms are summarized in Table 3.2. XGBoost

performs the best for the SL methods, but surprisingly not by a large margin. For LP, clearly choosing

default parameters is not optimal and the confusion matrix (Figure 3.3a) shows that some marine facies

are being classified as non-marine. The NM M indicator variable should easily split these two groups of

classes from each other, but the LP model with default parameters must be causing the non-marine and

marine classes to bleed into one another, thus violating the manifold assumption. Performing self-training

on the default LP model shows little-to-no improvement and the confusion matrix (Figure 3.3b) indicates

that self-training is unable to fix the issues of the underlying default LP model.

Using CV to determine the hyper-parameters for LP (α = 0.68, σ = 3.16) achieves a better accuracy

than using the default LP parameters. Figure 3.4(a) shows a grid search over the LP hyper-parameter grid

and we see the red dot (LP default) moving to the blue dot (LP with CV) which is closer to the maximum
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Figure 3.3: The normalized confusion matrices for the (a) LP default, (b) self-trained LP default, (c) LP
with CV, and (d) self-trained LP with CV models. The predictions shown by these matrices are for the nine
unlabeled wells. Diagonal cells = correct classification, off-diagonal cells = misclassification. The models
in (a) and (b) violate the manifold assumption by classifying marine facies as non-marine (indicated by the
red ellipses). Performing CV to determine parameter choices for LP helps correct this issue.

Figure 3.4: A grid search over the LP hyper-parameter grid used for CV. Self-training is performed on the
entire LP parameter grid in panel (a) where the self-training parameters are fixed to (b) S = 10%, T = 50%
and (c) S = 15%, T = 50%. The color bar is shared between all panels and the colored circles correspond
to the colored entries in Table 3.2.
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Figure 3.5: (a) A self-training grid search where the LP parameters are fixed to those determined via CV (α
= 0.68, σ = 3.16) and the self-training parameters are varied. The color bar is set to show dark colors for all
accuracies below 45.0%, the accuracy of LP with CV prior to self-training (cyan-colored cell in Table 3.2).
(b) The total accuracy of self-training at a given iteration (black line) is a weighted average of the accuracy
on the points added to WL (green line) and the accuracy of predictions on the remaining unlabeled points
(blue line). The horizontal black line in (a) corresponds to the solid black line in (b).

achievable accuracy on the unlabeled data for this method. Figure 3.3(c) shows that the parameters de-

termined via CV no longer cause the LP model to violate the manifold assumption. However, this model

is arguably not outperforming XGBoost and this is likely because the model is biased by training classes

with the most points, as seen in Figure 3.3(c) where most of the predictions fall within Classes 2, 3, and

8. Performing self-training on the LP (with CV) model gives a noticeable improvement in accuracy and

outperforms XGBoost by a notable margin (i.e. 49.54% vs. 44.19% accuracy). Figure 3.4(b) shows self-

training (S = 10%, and T = 50%) applied to the entire LP parameter grid, and note the 6% difference in

accuracy between the purple (LP default) and green dots (LP with CV). The improved performance of using

self-training on the LP (with CV) model is marked by the predictions clustering closer to the diagonal in

Figure 3.3(d).

The self-training parameters thus far have been fixed to default values (S = 10%, and T = 50%) for sim-

plicity. I now investigate how the LP performance can change if the self-training parameters are modified.

First, I just consider changing the subset size S to 15% instead of 10%. Applying this new self-training

setting to the LP (with CV) model (last column in Table 3.2) achieves a comparable accuracy to using the
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default self-training settings on the LP (with CV) model. Similar to Figure 3.4(b), I perform self training

with this new set of parameters (S = 15%, and T = 50%) to the entire LP parameter grid and this is shown

in Figure 3.4(c). We see overall that there is not much of a difference in accuracy between using these

two different self-training parameter settings. Next, I fix the LP parameters to be those obtained via CV

(α = 0.68, σ = 3.16) and wI vary the self-training parameters and the result is shown in Figure 3.5(a).

I extract the accuracy along S = 10% in Figure 3.5(a) and decompose this total accuracy into its two con-

stituents in Figure 3.5(b) to help illustrate how the performance of self-training varies with threshold. It

appears from both panels in Figure 3.5 that the subset size (S) is not as critical as the threshold (T ); it seems

if self-training runs too long or not long enough that the performance may not improve. Nonetheless, we

see that self-training improves the base LP (with CV) model for most of the parameter choices indicating

that self-training is relatively robust for this model.

3.5 Results II - Split data

The results discussed in the previous section showed an interesting phenomenon regarding LP violating the

manifold assumption when default parameters are used (σ = 1.0, α = 0.5). However, this issue of marine

facies being classified as non-marine also occurred for the supervised methods, albeit to a lesser degree (the

confusion matrices showing this phenomenon for the SL methods are not shown for brevity). It appears that

these algorithms are not able to properly train with the NM M indicator variable to fully separate the marine

and non-marine facies. My remedy to this problem is to decompose the well-log data into two separate

datasets based on the NM M indicator. The first dataset consists of 1997 data points associated with NM M

= 1, which correlate to non-marine facies 98.45% of the time, and the second data set consists of 2140

data points associated with NM M = 2, which correlate to marine facies 98.97% of the time (there is not a

100% correlation due to human error). Essentially, this breaks the dataset into non-marine (NM M = 1) and

marine (NM M = 2) facies datasets that correspond to classes 1-3 and 4-9, respectively (see Table 3.1). The
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Table 3.3: Results for the supervised and semisupervised algorithms when the well-log dataset is split
into non-marine and marine datasets. The total accuracy is a weighted average of the NM and M facies
accuracies. For the self-training results, the subset size and threshold are fixed to default values of S = 10%
and T = 50%. However, an additional self-training setting is used (S = 15% and T = 50%) which is
marked by the asterisk (*). The colored cells correspond to discrete points in Figures 3.7 and 3.8.

GNB SVM
with CV

XGBoost
with CV

LP
(default)

Self-train
LP (default)

LP
(with CV)

Self-train
LP (with CV)

Self-train*
LP (with CV)

NM facies accuracy (%) 49.21 50.41 54.40 51.07 59.81 54.78 61.07 62.33
M facies accuracy (%) 32.26 36.60 34.67 34.46 42.22 32.64 35.04 39.17
Total accuracy (%) 40.64 43.43 44.43 42.67 50.92 43.59 47.92 50.62
F1 score (%) 35.91 39.50 42.33 35.56 49.35 37.99 46.49 49.50

Total adjacent accuracy (%) 82.59 84.13 83.88 82.34 88.67 83.23 86.94 88.02
Number of CV fits 0 400 × 3 × 2 1728 × 3 × 2 0 0 1681 × 3 × 2 1681 × 3 × 2 1681 × 3 × 2
Elapsed time 0.02 s 13.29 s 583.5 s 0.36 s 2.77 s 7.56 s 10.32 s 9.59 s

dimension (i.e., number of input features) of the data prior to splitting is seven, but splitting the data based

on the NM M indicator essentially removes this variable and both the data subsets now have six dimensions.

Each dataset is treated independently with a separate median scaler and the training data for the non-marine

(lM = 168) and marine (lNM = 271) sets are still coming from the single well, KIMZEY.

It is worth noting that I am only able to decompose this dataset into two pieces because of the infor-

mation provided, i.e. the NM M indicators. Not all well-log datasets will likely have this information, and

so performing a similar decomposition on other well-log datasets is perhaps unlikely. However, the poten-

tial benefits of splitting this classification problem into two pieces are twofold. One, I predict that it will

remove the possibility for LP to violate its manifold assumption and perhaps improve the accuracy for all

algorithms. Secondly, I can get a better sense of how sensitive the hyper-parameters are for both the SSL

and SL algorithms using two related, yet different datasets. If I show that an algorithm works by applying it

to only one dataset, this does not necessarily imply that the algorithm is robust. However, if I can show that

an algorithm can perform on two datasets, this makes a better case that the algorithm is robust.

The same parameter grids for each algorithm and the same procedures used in the previous section

are repeated here, and a summary of the results are given in Table 3.3. Overall, we see higher accuracies

obtained for the non-marine facies than the marine facies. The fact that both facies groups have significant

overlap within them (see Figure 3.1) leads me to conclude that the higher accuracy for the non-marine facies
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Figure 3.6: The normalized confusion matrices for the (a) LP default, (b) self-trained LP default, (c) LP with
CV, and (d) self-trained* LP with CV models when the well-log dataset is split into non-marine and marine
sets. The predictions shown by these matrices are for the nine unlabeled wells. The asterisk marks the
self-training settings of S = 15% and T = 50%. The default LP model (a) and its self-trained counterpart
(b) no longer violate the manifold assumption. The LP (with CV) model (c) and self-training* LP (with CV)
model (d) give comparable matrices and performance to the default models (panels a and b).

comes from having a smaller number of classes compared to the marine facies. For the SL methods, splitting

the data into two sets appears to benefit SVM the most while GNB and XGBoost perform similarly. The

LP model with default parameters improves slightly after splitting the data into two sets. The confusion

matrix in Figure 3.6(a) also shows that the manifold assumption is no longer being violated (compare to

Figure 3.3a). However, this model is still performing poorly compared to the supervised baselines due to

the predictions being biased by the training classes with the most points. Performing self-training on the

default LP model gives a drastic improvement in performance (over 6% higher in total accuracy than XGB)

which is also marked by the predictions clustering closer to the diagonal in Figure 3.6(b). Here we see the

self-trained LP (default) model performing much better when the data are split compared to not, and this

must be attributed to decomposing the data into two pieces as that is the only factor that has changed.

Performing CV to determine the LP hyper-parameters for the non-marine and marine datasets gives

mixed results. The LP parameter grid plot in Figure 3.7(a) indicates that CV chooses an optimal parameter

combination for the non-marine dataset (α = 0.90, σ = 3.55), but Figure 3.7(d) indicates that this is perhaps

not true for the marine dataset (α = 0.10, σ = 2.00). Figure 3.7(d) shows that the CV parameters for the

marine dataset lie outside the high-accuracy region. Ideally for an α = 0.10, the σ clearly needs to be smaller
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Figure 3.7: Grid searches over the LP hyper-parameter grids for the (a) non-marine and (d) marine datasets.
Self-training (S = 10%, T = 50%) performed on the entire (b) non-marine and (e) marine LP parameter
grids. Self-training* (S = 15%, T = 50%) performed on the entire (c) non-marine and (f) marine LP
parameter grids. Note that the colorbar is shared for all non-marine panels (a-c) and marine panels (d-f).
The colored circles correspond to the colored entries in Table 3.3.

(i.e., the reach of each data point needs to be larger). Here, we are seeing an example of what was mentioned

in the previous section where there is a risk of performing CV on a sparse L because it can overestimate

the value for σ; I interpret this as violating the smoothness assumption. Similar to before, the LP (with

CV) model is still not outperforming XGBoost and the predictions are biased by the training classes with

the most points (Figure 3.6c). The performance of the LP models (with CV) for both the non-marine and

marine datasets translates to the performance of the subsequent self-training for each of these models. Self-

training the LP (with CV) model on the non-marine data gives excellent performance (see Figure 3.7b), but

self-training the LP (with CV) model on the marine data only results in minimal improvement (see Figure

3.7e). However, when combined, this model still manages to outperform the XGBoost model by 3-4% in all

metrics, but does not perform as well as the self-trained LP (default) model.
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Once again, I vary the self-training parameters and explore how the performance of self-training can

change if the parameters themselves change. Similarly to what was done before on the global dataset, I

consider changing the default subset size S from 10% to 15%. Applying this new self-training setting to the

LP (with CV) model improves both the non-marine and marine accuracies slightly as indicated by Table 3.3

and the grid plots in Figures 3.7(c) and 3.7(f). The corresponding confusion matrix for this model is given

in Figure 3.6(d) and it shows a clear improvement over the base model with no self-training (Figure 3.6c).

I also fix the LP parameters to their default settings and to those determined via CV and I vary the

self-training parameters for each case. In Figures 3.8(a) and 3.8(b) I show the self-training variations for

the default LP parameters (σ = 1.0, α = 0.5). Figure 3.8(b) clearly shows that self-training the marine

data is very robust, but Figure 3.8(a) shows that self-training the non-marine data requires the subset size to

be above 10%. In a sense, the opposite phenomenon is observed for the self-training variations in Figures

3.8(c) and 3.8(d) when the LP parameters are fixed to those determined via CV (non-marine: α = 0.90,

σ = 3.55, marine: α = 0.10, σ = 2.00). We observe in Figure 3.8(c) that self-training the non-marine

data is fairly robust, but we see in Figure 3.8(d) that self-training the marine data is more sensitive to the

hyper-parameter choices. I hypothesize that the self-training variations shown in Figures 3.8(a) and 3.8(d)

are not robust because the underlying LP models are not optimal. However, the underlying LP models for

Figures 3.8(b) and 3.8(c) are much closer to optimal and the subsequent self-training variations are much

more robust (for the underlying LP models refer to Figures 3.7a and 3.7d)

Recall the original purpose for decomposing this dataset into two pieces was to remove the possibility

for LP to violate the manifold assumption and to perhaps observe an improvement in performance. The

confusion matrices in Figure 3.6 clearly show that splitting the data into marine and non-marine subsets

prevents the manifold assumption from being violated. However, using CV to determine the LP parameters

on the marine dataset appears to have overestimated σ, thus violating the smoothness assumption. Despite

these difficulties, splitting the data does provide a marginal increase in accuracy for both the SL and SSL
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Figure 3.8: Fixing the LP parameters to default values (α = 0.50, σ = 1.00) for the (a) non-marine and (b)
marine data and varying the self-training parameters. (c) Fixing the LP parameters to those determined via
CV (α = 0.90, σ = 3.55) for the non-marine data and varying the self-training parameters. (d) Fixing the LP
parameters to those determined via CV (α = 0.10, σ = 2.00) for the marine data and varying the self-training
parameters. Note that the color bar is different for each panel and dark colors in each color bar correspond
to the accuracy of the underlying LP model prior to self-training (or worse). The colored circles correspond
to the colored entries in Table 3.3.
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algorithms. When comparing Tables 3.2 and 3.3, the highest accuracies for self-training are a few per-

cent higher in Table 3.3 for all metrics. Consequently, the benefits shown here provide a justification for

decomposing a classification problem into smaller subsets if possible.

3.6 Discussion

3.6.1 Label propagation and self-training implications

The results presented here have three outcomes that I wish to elaborate on, and the first focuses on implica-

tions of the label propagation and self-training techniques. It appears that the supervised methods are always

able to match or outperform the label propagation technique (without self-training). The confusion matrices

for LP (e.g., Figures 3.3a, 3.3c, 3.6a, and 3.6c) all show that the predictions are being biased by the training

classes with the largest number of points (see Figure 3.2a). However, my new self-training technique helps

distribute the predictions to their appropriate classes as shown in Figures 3.3(d), 3.6(b), and 3.6(d).

At this stage, I now have supporting evidence that suggests why my self-training technique would per-

form better than those proposed by others. Recall from Chapter 2.2.2 that the problem with other self-

training approaches (Rosenberg et al., 2005; Liu et al., 2013) is that they always select the points in U with

the highest probability to add to L and these may always be points associated with the most-frequent classes.

These forms of self-training would accentuate the unbalanced predictions of LP (e.g., Classes 2, 3, and 8 for

this dataset) and ignore classes with fewer points. In other words, these methods only care about the class

with the maximum probability for each data point and ignore the probabilities from the other classes. Figure

3.9 shows the soft classification matrix F for the LP (with CV) model (when trained on the global data) for

one of the wells included in U . While I did not generate results using the other self-training approaches, it is

easy to imagine that their predictions would be dominated by Classes 2, 3, and 8 and the resulting confusion

matrices would likely look very similar to those of the base LP models (e.g. Figure 3.6a). However, my
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Figure 3.9: The soft classification matrix (F) for the LP (with CV) model (when trained on the global
data) for one of the nine unlabeled wells (ALEXANDER). The highest probabilities are most prominent for
Classes 2, 3, and 8 which not surprisingly also have the most points (see Figure 3.2). The predicted class
probability derived from the entire matrix F on all nine wells is πk = [4, 22, 23, 7, 10, 9, 6, 17, 2]%.

self-training method takes into account all the probabilities for each data point. Figure 3.9 shows that most

data points do have a measurable, yet smaller, probability of belonging to other classes even though there is

a clear class with the highest probability for those points. The predicted class probability (Equation 2.11)

captures this information by summing all the probabilities for each class (e.g. columns in Figure 3.9) and di-

viding by the total number of points. These results clearly show that my self-training approach improves the

classification accuracy, which is confirmed by the predictions moving closer to the diagonal in the confusion

matrices (e.g. Figure 3.6b).

However, these results suggest that there are certain situations when my self-training method performs

poorly (assumption violations shown in Chapters 3.4 and 3.5). I suggested previously that the performance

of this self-training method can diminish if the underlying LP model is not optimal. Although, it is possible

that the self-training process could also be causing problems. Here, I investigate these claims with further

analysis. Figures 3.9 and 3.10 show two soft classification matrices (F), one for the LP (with CV) and
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Figure 3.10: The soft classification matrix (F) for the LP (default) model (when trained on the global data)
for one of the nine unlabeled wells (ALEXANDER). The probabilities bleeding between marine and non-
marine classes is a clear indication that the manifold assumption is being violated. The predicted class
probability derived from the entire matrix F on all nine wells is πk = [4, 24, 21, 9, 9, 9, 6, 16, 2]%.

another for the LP (default) models on the global data. It is evident that these matrices are different and

it is obvious why the F shown in Figure 3.10 violates the manifold assumption because of the probabili-

ties bleeding between marine and non-marine classes; the bleeding is signified by the profusion of lower

probabilities (yellow colors) that is present in Figure 3.10, but not in Figure 3.9. Recall that the predicted

class probability (πk) is derived from the matrix F, and even though these two matrices look vastly different,

they surprisingly give very similar probabilities. If the predicted class probabilities for these two models are

nearly the same, then the self-training selection criteria for these two models must also be the same. This

implies that the difference in performance between these two models must be coming from the underlying

LP model (where the poor model, default LP, is allocating the highest probabilities to the wrong classes),

and not the self-training process. Intuitively, this seems reasonable because if parameters are chosen for the

underlying LP model that do not satisfy the smoothness and manifold assumptions, then we cannot expect

self-training to improve the classification (i.e. garbage in, garbage out). The grid search plots in Figures



CHAPTER 3. SEMISUPERVISED WELL-LOG CLASSIFICATION 57

3.4 and 3.7 suggest that this is not always the case because some choices of α and σ that give poor LP

performance actually give improved performance upon subsequent self-training. However, if self-training

does improve a poor LP model (which is not always the case), the improvement is generally minor. The

highest achievable accuracies with self-training occur in hyper-parameter regions close to where the base

LP model is performing the best (all the results shown in Figures 3.4 and 3.7 support this claim). Luckily, in

some instances, I am able to realistically recover these optimum LP parameters via CV which perform very

well with subsequent self-training.

3.6.2 Results interpretation

In both results sections, the performance of the supervised and semisupervised methods is presented on the

unlabeled data as a whole, but how the algorithms perform on each of the nine unlabeled wells is also worth

considering. Table 3.4 shows the performance of the XGBoost and self-train LP (with CV) models trained

on the global data for each of the unlabeled wells. For seven of the nine wells, the self-train LP model is

outperforming the XGBoost model by a notable margin. For two of the wells, the XGBoost model does

outperform the self-train LP model, but only marginally so. The same conclusions can be drawn from the

split data (table not shown). In summary, even on a per-well basis, the coupled LP and self-training method

is achieving better accuracies overall than XGB.

Up until this point, the performance of the semisupervised methods has been evaluated through numer-

ical comparisons with supervised methods, but additional comparisons can be made visually. Figure 3.11

shows a predicted facies comparison between the self-trained LP (with CV) and XGBoost models on the

global data for one of the nine unlabeled wells. I choose to show SHANKLE (first row in Table 3.4) because

the performance of the two methods on this well is characteristic of their average performance on all the

unlabeled wells (additional wells are not shown for brevity). The XGBoost prediction is visibly noisy and

chaotic in appearance and there is a reasonable explanation as to why. An argument is made in Chapter 1.1
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Table 3.4: The global data prediction accuracies for the XGBoost and self-train LP models decomposed
into individual accuracies for each unlabeled well. The RECRUIT F9 well is a synthetic well created by
the competition organizers that only contains Class 9 with its purpose being to help better constrain this
class (Hall, 2016). The training data have very few points for Class 9 (Figure 3.2a) and so the classification
accuracies for this synthetic well are quite poor. The total accuracies correspond to those in Table 3.2 and
are computed by taking the weighted averages for all nine wells.

Unlabeled
well name # points XGBoost

accuracy (%)
Self-train LP
accuracy (%)

SHANKLE 449 46.33 51.45
CROSS H CATTLE 501 29.94 32.53
NEWBY 463 40.60 45.36
LUKE 461 60.52 58.57
CHURCHMAN BIBLE 404 45.79 44.80
ALEXANDER 466 49.14 59.44
SHRIMPLIN 471 45.86 54.99
NOLAN 415 41.69 54.70
RECRUIT F9 68 8.82 20.59

Total 3698 44.19 49.54

that claims supervised methods are prone to over-training when the amount of training data is small, and

this is analogous to over-fitting in an under-determined inverse problem; this is what is being observed here

with the XGBoost prediction. However, a common solution to stabilize under-determined inverse problems

is to add an additional term to the objective function involving the model parameters, otherwise known as

regularization (Aster et al., 2005). Regularization typically smooths the objective function and prevents the

predicted data from fitting noise. Similarly, one can think of semisupervised learning as supervised learning

where a regularization term is added that includes the unlabeled data (Zhu & Goldberg, 2009). This explains

why the self-training facies prediction in Figure 3.11 is much less chaotic and visibly matches the true facies

better than the XGBoost prediction.

While the focus of this paper is not on computational efficiency, some interesting observations can be

made regarding the elapsed time of both the SSL and SL methods (see Tables 3.2 and 3.3). GNB does not

perform the best for the SL methods, but it is extremely fast to run because there are no hyper-parameters

to optimize via CV. To achieve a quick classification of the data, perhaps this method still has merit. While

XGBoost performed the best for the SL algorithms, it is computationally demanding due to the number
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Figure 3.11: A comparison of the self-trained LP (2nd to last column of Table 3.2) and XGBoost facies
predictions to the true facies for one of the nine unlabeled wells (SHANKLE). Three of the five logs shown
for reference (ILD = resistivity, PHIND = average neutron-density porosity, PE = photoelectric effect). The
facies predictions using the LP model visibly match the true facies better (e.g., less chaotic and oscillatory)
compared to the XGBoost prediction. The associated labels for the facies colors are indicated in Table 3.1.
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of parameters that must be optimized via CV. Comparatively, using CV on LP requires far less time than

XGBoost for the same number of CV fits, and the self-training process appears to be computationally cheap.

Therefore, not only is self-training LP outperforming XGBoost in terms of classification accuracy, it is also

doing so in terms of computational requirements.

3.6.3 Overall classification performance

The final subject I wish to discuss is the overall performance of the machine learning algorithms on this

dataset. In my scenario, the overall accuracies and F1-scores for all the algorithms are quite low (e.g. the

best F1-score that I recover for XGBoost is 42.5%) and I think that this can be attributed to low training data

and poor class separation. The winners of the SEG machine learning competition attempted to address these

issues by using higher numbers of training data (all ten wells) and employing a feature expansion scheme,

and they also apply a post-classification median filter on the predictions. Feature expansion is a process

of generating new features from existing features that can sometimes help separate classes from each other

when there is considerable overlap between classes in the original data. The larger training dataset combined

with the median filtering improved the F1-score for their XGBoost implementation to roughly 55% on two

withheld wells, and then incorporating feature expansion improved the F1-score to 62% (Bestagini et al.,

2017; Hall & Hall, 2017). Despite the improvement that could be gained by using these schemes, I do not

apply them to my study for obvious reasons. Using more training data would undermine the theme of this

paper and feature expansion is not considered for simplicity reasons. Furthermore, I do not want to filter

the classification outputs because I feel that the performance of an algorithm is best represented by its raw

outputs.

Nonetheless, even after all these changes by the competition participants, the classification accuracy is

still only roughly 60%, which is still quite poor. Different datasets with a similar number of classes are

able to achieve much higher accuracies. Take the digit recognition dataset MNIST for instance that contains
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ten classes, 60,000 training images, and 10,000 testing images (LeCun et al., 1998). The classes for this

dataset are relatively separable and a simple linear classifier can achieve an accuracy of 92.4% (LeCun

et al., 1998). Class separation is likely what distinguishes the performance of the MNIST and well-log

datasets because geological facies are not as discrete as numbers in the feature space. Therefore, it appears

that the underlying issue for the well-log dataset is still poor class separation, despite the feature expansion

efforts of the competition participants. In order to improve the accuracy of well-log classification problems,

perhaps more discriminatory logs are needed because it is from these logs that the expanded features are

made, but including even more training data could also be beneficial for those classes with fewer points (e.g.

Classes 1 and 9).

3.7 Conclusion

The purpose of this research is to investigate if label propagation and my version of self-training could

outperform supervised algorithms in the context of scarce labeled data. To test these algorithms, I simulate

a semisupervised scenario with a well-log dataset where only one out of the ten wells is assumed to have

labels (i.e. core samples) and the task is to predict the labels for the remaining nine wells. I generate

results from the global data and also from the dataset when it is decomposed into two subsets, and the

latter shows marginal improvements in accuracy. However, similar phenomena are observed in both results

sections and so the take-away messages from both sections are complementary. Label propagation by itself

appears to be biased by classes with more data points in this unbalanced dataset. However, coupling label

propagation with my self-training method appears to be quite powerful and outperforms the supervised

algorithms. Other self-training approaches are likely to be biased by unbalanced datasets, but my self-

training method incorporates a predicted class probability to alleviate this issue. The results also indicate that

my self-training method is relatively robust and it only performs poorly (occasionally) when the underlying

label propagation model is not optimal. Cross-validation is generally able to find optimum hyper-parameter
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choices for label propagation, but not always.

In summary, my self-training method, when applied to label propagation, is able to outperform the

supervised methods if the assumptions (smoothness and manifold) for the underlying label propagation

model are met. These findings support the hypothesis that, in the context of low amounts of labeled data,

incorporating the unlabeled data into the training process (i.e. semisupervised learning) can give better

predictions than standard supervised methods. Based on these results, and those from other disciplines, I

propose semisupervised methods should be considered for geophysical applications where labeled data are

scarce.



Chapter 4

Improved well-log classification using

semisupervised Gaussian mixture models

and a new hyper-parameter selection

strategy1

4.1 Introduction

In the previous chapter, I show that the self-training process of incrementally adding unlabeled points with

the highest label propagation (LP) confidence to the labeled dataset can be effective, but a disadvantage of

LP is that it is a transductive method. Transductive algorithms operate by learning an internal mapping of the

existing labeled and unlabeled instances to classify the unlabeled data. As a result, transductive algorithms

must be retrained using any additional unlabeled data that labels are sought for (i.e., it is not a classifier). This
1Dunham, M.W., Malcolm, A. and Welford, J.K., 2020. Improved well-log classification using semisupervised Gaussian mix-

ture models and a new hyperparameter selection strategy, Computers and Geosciences, 140, 1–12.
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chapter is a continuation of Chapter 3 using the same well-log dataset, but here, I utilize a different technique

called semisupervised Gaussian mixture models (ssGMM, Chapter 2.2.3). This method has similar benefits

to the self-training LP technique from Chapter 3 of being well established and easy to implement, but the

unique benefit of ssGMM is that it is an inductive algorithm. Inductive algorithms are designed to make

predictions for new unlabeled data without needing to retrain the algorithm. In larger problems, the amount

of unlabeled data could number in the millions, and including all of the unlabeled data in training, which

would be required of transductive algorithms, may be computationally demanding. Inductive algorithms are

advantageous in these situations because they can instead use a subset of the unlabeled data during training

and then the learned model can be used to classify the remaining unlabeled data. While a few different

implementations of ssGMM do exist in the literature (Nigam et al., 2000; Zhu & Goldberg, 2009; Xing

et al., 2013; Yan et al., 2017), none of which provide open-source code. One source of merit for this work is

that my ssGMM code is open to the public (see Chapter 2.2.3), which is the first open-source ssGMM code

to my knowledge.

I also try to improve the machine learning algorithm predictions through the use of a new hyper-

parameter selection strategy. The conventional hyper-parameter selection approach utilizes a cross-validation

scheme on the training data and the hyper-parameter combination with the largest mean cross-validation

score is used to train the machine learning model (Bishop et al., 1998; Hastie et al., 2009; Krstajic et al.,

2014). However, the cross-validation process also produces standard deviations that, to the best of my

knowledge, have yet to be directly utilized in standard hyper-parameter selection schemes. The strategy

that I introduce here selects a hyper-parameter combination based on simultaneously using the mean and

standard deviation scores coming from cross-validation, rather than the default procedure that only relies on

the mean cross-validation scores.

These ideas are applied to the same lithofacies classification problem from Chapter 3 using the same

setup to facilitate comparisons. The first goal of this work is to determine if ssGMM can outperform a
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robust supervised algorithm, XGBoost, in the context of this well-log classification problem with limited

training data. The results from ssGMM are also compared to the self-training LP results from Chapter

3 to see how the two semisupervised algorithms compare. The second goal is to evaluate the efficacy of

this new hyper-parameter selection strategy by showing how algorithm performance (both SL and SSL

methods) varies using the new selection strategy versus the conventional approach. I also hope this new

hyper-parameter selection strategy will perhaps convince readers to re-evaluate how hyper-parameters are

conventionally chosen during training and recognize the applicability of this strategy to other classification

problems.

4.2 Methods

4.2.1 Machine learning methods

To assess if the ssGMM method (Chapter 2.2.3) can outperform supervised methods in the context of small

training sets on my well-log classification scenario, I need supervised methods to serve as a basis of com-

parison. The first supervised method I consider is a Gaussian Naı̈ve Bayes (GNB) classifier because it

represents the fully-supervised version of ssGMM and the output of GNB is the starting condition for ss-

GMM (see Equation 2.15). Comparing the performance of ssGMM to GNB will also indicate if including

the unlabeled data into the training process is beneficial. Implementing GNB is trivial because this algorithm

contains no hyper-parameters and no cross-validation is required. For the second supervised method, I use

XGBoost, similarly to Chapter 3. XGBoost is a natural choice given that it was the winning algorithm for

the 2016 Society of Exploration Geophysicists (SEG) machine learning competition (Hall & Hall, 2017).

Since I use the exact same dataset as the competition for this study, XGBoost is likely the best supervised

method to compare against ssGMM in terms of performance.
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4.2.2 Hyper-parameter selection strategies

Supervised and semisupervised algorithms commonly have hyper-parameters that need to be tuned, and the

process of choosing a set of hyper-parameters is called hyper-parameter selection. The selection process

first consists of splitting the training data (L) into training and validation sets and then each hyper-parameter

setting is evaluated on the validation data using classification metrics such as accuracy, precision, recall, F1,

or the area under the curve (AUC) for ROC (receiver operating characteristic) curves (Lever et al., 2016).

If only one validation set is used, it is well-known that there is a larger risk of overfitting the training data,

which leads to poor prediction accuracies. One remedy is to break the training data into k pieces, or folds,

and train the machine learning algorithm with a given hyper-parameter setting on k − 1 folds, evaluate the

performance on the kth fold, and then repeat this process for each fold; this is grid search k-fold cross-

validation (CV). This concept is discussed in Chapter 2.3. If the training data are shuffled and this process is

repeated 5 times (i.e. 5-repeated 5-fold CV), then there are 25 classification scores for each hyper-parameter

(Krstajic et al., 2014). Conventionally, all of the classification scores are averaged and the standard hyper-

parameter selection tactic is to select the hyper-parameter combination with the largest mean CV score

(Bishop, 2006, Chapter 1.3; Hastie et al., 2009, Chapter 7.10; Krstajic et al., 2014), and the same can be

said for averaging AUC values in multi-class situations (Hand & Till, 2001; Fawcett, 2006). This hyper-

parameter combination is then used for training a machine learning model. The hyper-parameter selection

functions in scikit-learn in Python use the same selection approach, and when there is a conflict (i.e.

multiple hyper-parameter combinations with the same mean CV score), the least-complicated combination

is selected.

The standard hyper-parameter selection strategy only uses the mean CV scores, but there are also ac-

companying standard deviation CV scores that, to the best of my knowledge, have yet to have been directly

leveraged in any selection process. What I propose here is a new selection strategy that simultaneously uses

the mean and standard deviation CV scores to select a hyper-parameter combination, i.e. a simultaneous
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mean and standard deviation (SMSD) score,

SMSDj = α

(
x̄jx̄jx̄j − x̄CVmin

x̄CVmax − x̄CVmin

)
+ (1− α)

(
σCVmax − σjσjσj

σCVmax − σCVmin

)
(4.1)

where x̄jx̄jx̄j andσjσjσj are the mean and standard CV scores for the jth hyper-parameter combination, x̄CVmin and

x̄CVmax are the minimum and maximum mean CV scores on the hyper-parameter grid, σCVmin and σCVmax

are the minimum and maximum standard deviation CV scores on the hyper-parameter grid, and α gives a

relative weight between the mean and standard deviation CV scores. Generally, α can vary on the interval

[0, 1], but allowing it to change adds a level of complexity. For the context of this paper, I fix α = 0.5 to let

the mean and standard deviation scores equally contribute to the decision. The hyper-parameter selection

scheme using SMSD is simply choosing the hyper-parameter combination with the highest SMSD score,

and if there is a conflict, then the least-complicated combination is chosen. For XGBoost (XGB), the least-

complicated hyper-parameters are those with smaller values, and for ssGMM, this is the hyper-parameter

combination with the smallest complexity value as defined in Figure 4.1. This scheme is analogous to

regularized inverse problems where we not only care about data misfit, but we also care about some measure

of the model norm, and we weight the contribution of both these factors in the objective function.

What I am trying to address with the SMSD method is that hyper-parameter combinations with the

highest mean CV score may not always be optimal. For instance, if a given hyper-parameter combination

has the highest mean CV score, but also has the highest standard deviation CV score, is this the optimal

choice? Arguably, the optimal choice is one that is both accurate (i.e. high mean) and precise (i.e. low

standard deviation) and my SMSD method will select a hyper-parameter combination that has a balance

between the mean and standard deviation scores. It is worth mentioning that if the highest mean CV score

and the lowest standard deviation CV score align, then the SMSD hyper-parameter choice is equivalent to

the default method’s choice. Where the hyper-parameter choices from the SMSD and the traditional methods
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Figure 4.1: The assigned hyper-parameter complexity values for the ssGMM method. If a given hyper-
parameter selection technique has a conflict, the hyper-parameter combination with the lowest complexity
value is chosen. This choice of complexity for ssGMM is made to penalize extreme values for β and
the tolerance, and favor those that are closer to what I deem to be default values: (β, tolerance) =
(0.5, log10[−1.5]).

will differ is when the highest mean and the lowest standard deviation CV scores do not align, and what I

try to investigate in this paper is if the hyper-parameter combination chosen using the SMSD method trains

models that perform better on testing data in these situations.

4.3 Well log dataset

The well-log dataset used for this study is the same dataset that was used for an SEG machine learning

competition held in 2016 (Hall, 2016; Hall & Hall, 2017), but the data were ultimately made public by the

Kansas Geological Survey. The data consist of ten wells (nine are real, and one is synthetic) drilled in the

Hugoton and Panoma fields of southwest Kansas and northwest Oklahoma, and I refer the interested reader

to Dubois et al. (2006) for a discussion of the geology of this region. All ten wells contain wire-line log data

(i.e. the instances xi) and core samples (i.e. the associated labels yi) recorded at half-foot increments for

4137 total data points. Dubois et al. (2006) determine that there are nine lithofacies, or classes, in this dataset
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and the first three (1-3) are non-marine and the remaining six classes (4-9) are marine lithofacies (see Table

3.1). The features, or dimensions, for each instance consist of five wire-line logs and two geologic variables

interpreted by users. Figure 3.1 shows a cross-plot of each of the seven features plotted against each other

for the entire dataset. Notice that the NM M indicator is effective at distinguishing the non-marine from

the marine classes, but the classes within the non-marine and marine categories are not linearly separable

with considerable overlap. It is well-understood that rock units are not always discrete and their physical

properties are not unique, and this can lead to poor class separability (Avseth et al., 2005). Misclassifications

of this dataset are expected to occur as a result of this, but one could argue that if a predicted lithofacies is

close to the true facies, then this could still be classified as correct. For the machine learning competition

associated with this dataset, Hall (2016) introduces an adjacent accuracy metric that deems lithofacies that

occur close to each other depositionally (i.e. via Walther’s Law) are also considered correct. These adjacent

facies are indicated in Table 3.1 and I also include this metric.

The machine learning competition using this dataset was structured for the competitors to train a clas-

sifier using all ten wells (L) and the competition organizers would test the competitors’ classifiers on two

additional withheld wells (U ), but these extra two wells are not available to the public. As in Chapter 3, to

properly simulate a semisupervised situation with this dataset, I restructure the classification problem so that

only one well is used as the labeled data (L) and the objective is to predict the lithofacies for the remaining

nine wells (U ). However, this one well for training has to be chosen carefully because not all the wells

contain every class (i.e. if a class is not present in the training data, then predictions cannot be made for it).

For continuity purposes, I choose the same labeled well done in Chapter 3, KIMZEY, and for the original

justification of this choice, see Chapter 3.3. Figure 3.2 depicts the distribution of points for both the labeled

and unlabeled data in this situation. The distributions between the labeled and unlabeled data are similar

with minor differences, but what is noteworthy in Figure 3.2(a) is that some classes have very few points;

the consequences of this are discussed in Chapter 4.5.2 below. Prior to any classification, these data are
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scaled and normalized using the RobustScaler class from scikit-learn.

4.4 Results

4.4.1 Initial ssGMM test

I begin with a testing stage to investigate how ssGMM behaves when applied to this dataset. No cross-

validation procedures are used and I simply train the algorithm on the one labeled well (KIMZEY) using

default hyper-parameter values (β = 0.50, tolerance = log10[−1.5]). This initial test shows that the

objective function for ssGMM does not converge (dashed black line in Figure 4.2). Recall from Chapter

2.2.3 that the inherent cluster assumption of ssGMM is subject to violation if the data cannot be represented

by multivariate Gaussians. Notice in Figure 3.1 that most of the variables exhibit Gaussian-like distributions,

but the exception is the NM M indicator which is a binary, bimodal variable. Algorithmically, this makes

the covariance matrices for each class poorly defined and taking the inverse of these matrices (required to

compute N in Equation 2.16) causes an instability.

My remedy for this problem, as is done in Chapter 3, is to remove the NM M indicator variable by

decomposing the well-log data into two separate datasets based on the NM M indicator. This decomposes

the original dataset into non-marine (NM M = 1) and marine (NM M = 2) facies datasets 2 that correspond to

classes 1-3 and 4-9, respectively (see Table 3.1). The ssGMM algorithm is trained again (using default hyper-

parameters) on the non-marine and marine subsets of KIMZEY, and Figure 4.2 shows that the objective

function easily converges for both. This is evidence that the NM M variable is the underlying cause for the

ssGMM algorithm not converging on the global data. Moving forward, I apply all algorithms to the separate

non-marine and marine datasets.
2It is noteworthy that the NM M indicator is a variable that is created from interpretations of the wireline log variables for the

purpose of this dataset (Dubois et al., 2006). Therefore, performing this data splitting procedure on other datasets is unlikely, but it
is advantageous for ensuring the cluster assumption of ssGMM is not violated in the context of this dataset.
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Figure 4.2: The behavior of the ssGMM objective function (Equation 2.14) with respect to the num-
ber of iterations when trained on the single labeled well using default hyper-parameter settings (β =
0.50, tolerance = log10[−1.5]). The ssGMM method does not converge (dashed black line) because the
NM M indicator variable is not Gaussian distributed, but splitting the data into two pieces (non-marine and
marine) allows the algorithm to converge.
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4.4.2 Comparison to Chapter 3

Based on my necessity to decompose the well-log data into non-marine and marine datasets for ssGMM, I

can make direct comparisons here to the previous self-training LP results from Chapter 3. In this previous

work, I considered 3-fold CV with total accuracy as the classification metric to train LP, and I use the same

scheme here for ssGMM to make a direct comparison. I mirror the choice of the XGB hyper-parameter grid

from Bestagini et al. (2017), but I modify it slightly to achieve better performance for this situation. The

hyper-parameter grid that I consider for ssGMM is indicated in Figure 4.1 with 31 logarithmically spaced

values for the tolerance and 17 linearly spaced values for β. I first evaluate the total accuracy of each

hyper-parameter choice on the testing data for both non-marine and marine datasets; this will indicate how

close future ssGMM hyper-parameter selections are to the maximum achievable accuracies (see Figure 4.3).

A summary of the results is given in Table 4.1 where the last row is the self-training label propagation

result taken from Table 3.3 in Chapter 3.5. The mean and standard deviation 3-fold CV scores for ssGMM

are given in Figure 4.4, and the different hyper-parameter selections are indicated by circles. Using the

SMSD score (Equation 4.1) as the hyper-parameter selection strategy is not the focus of this particular

section, but Figures 4.4(c) and 4.4(f) indicate that using the SMSD score gives the same hyper-parameter

combinations as the default approach shown in Figures 4.4(a) and 4.4(d). In Table 4.1, we see that ssGMM

and self-training label propagation are performing better than GNB and XGB. However, the rows indicating

the best possible performance for XGB and ssGMM on the unlabeled data suggest that there is room for

improvement for both of these methods.

4.4.3 Improving XGB and ssGMM performance through hyper-parameter selection

Only 3-fold CV is considered in Chapter 3, but I consider a higher fold here to see if improvement can be

gained for XGB and ssGMM. I choose to have at minimum one data point from each class in each fold,

so the highest fold I can test is 7-fold because Class 9 only has seven points (see Figure 3.2). However,
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Table 4.1: Testing data performance for the supervised methods (GNB, XGB) and the semisupervised meth-
ods (ssGMM, self-training label propagation) where 3-fold CV with total accuracy as the classification met-
ric is used to train all algorithms. The F1 and adjacent accuracy metrics are not used for hyper-parameter
selection, but are merely presented for comparison. The self-train LP row is taken directly from Table 3.3.
All computations are conducted on a desktop machine (3.2 GHz Intel Core i5 processor) with 16GB RAM
and all cross-validations are performed in parallel on four cores. The XGB (best) and ssGMM (best) rows
give the highest achievable total accuracy on the non-marine and marine testing data (indicated by the black
bulls-eyes in Figure 4.3). The models representing the salmon colored cells correspond to the same-colored
circles in Figures 4.3 and 4.4.

Machine learning
algorithm

Non-marine
accuracy (%)

Marine
accuracy (%)

Total
accuracy (%)

F1
score (%)

Total adjacent
accuracy (%)

Total # of
CV fits

Elapsed
time

GNB 49.21 32.26 40.64 35.91 82.59 0 0.023 s
XGB 54.40 34.67 44.43 42.33 83.88 700 × 3 × 2 269.3 s
XGB (best) 56.92 38.15 47.43 44.27 84.23 N/A N/A
ssGMM 55.17 38.09 46.54 43.07 88.37 527 × 3 × 2 136.9 s
ssGMM (best) 58.39 39.59 48.89 45.24 89.21 N/A N/A
Self-train LP 62.33 39.17 50.62 49.50 88.02 1681 × 3 × 2 9.59 s

Figure 4.3: The total accuracy of each ssGMM hyper-parameter choice on the testing data for the (a) non-
marine and (b) marine datasets. This does assume that H (Equation 2.3) is known, which is unrealistic,
but these panels help indicate how close the ssGMM models are to the highest accuracy zones. The black
bulls-eyes indicate hyper-parameter choices that give the maximum achievable accuracy. The colored circles
represent various ssGMM models, and their detailed numerical performances on the nine unlabeled wells
are indicated in Tables 4.1 and 4.2.
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Figure 4.4: The mean, standard deviation, and SMSD 3-fold cross-validation scores using ssGMM for the
non-marine (a, b, c) and marine (d, e, f) training datasets, respectively. Total accuracy is used as the clas-
sification metric. The standard hyper-parameter selection approach selects hyper-parameter combinations
indicated by the circles in panels (a) and (d). The SMSD hyper-parameter selection approach selects the
hyper-parameter combinations indicated by the circles in panels (c) and (f). For this situation, the chosen
hyper-parameter combinations for each approach are identical. See Figure 4.3 and Table 4.1 for the testing
performance of the models indicated by circles.
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Table 4.2: Testing data performance for XGB and ssGMM using 5-fold and 5-repeated 5-fold cross-
validation with total accuracy as the classification metric. Hyper-parameter selection for both algorithms
in both situations is achieved using the standard and SMSD (Equation 4.1) approaches. GNB is not included
because it contains no hyper-parameters and its performance is the same as shown in Table 4.1. The models
representing the colored cells correspond to the same-colored circles in Figures 4.3, 4.5, and 4.6. The best
performing XGB and ssGMM models are denoted by the *.

Machine learning
algorithm

Non-marine
accuracy (%)

Marine
accuracy (%)

Total
accuracy (%)

F1
score (%)

Total adjacent
accuracy (%)

Total # of
CV fits

Elapsed
time

5-fold cross-validation
ssGMM 54.84 39.11 46.89 43.09 89.21 527 × 5 × 2 151.46 s
ssGMM (SMSD) 55.27 39.38 47.24 43.39 89.40 527 × 5 × 2 152.31 s
XGB 50.30 34.56 42.34 40.06 82.86 700 × 5 × 2 460.10 s
XGB (SMSD) 50.30 36.33 43.24 40.41 82.88 700 × 5 × 2 458.66 s

5-repeated 5-fold cross-validation
ssGMM 55.99 33.87 44.81 38.35 84.86 527 × 5 × 5 × 2 520.19 s
ssGMM (SMSD)* 58.28 38.20 48.13 44.53 89.29 527 × 5 × 5 × 2 550.41 s
XGB* 55.27 34.78 44.92 42.63 83.64 700 × 5 × 5 × 2 2188.6 s
XGB (SMSD) 53.75 34.72 44.13 42.35 83.69 700 × 5 × 5 × 2 2190.2 s

5-fold CV is standard and that is what I test here. Table 4.2 (top) summarizes the results, and Figure 4.5

gives the mean, standard deviation, and SMSD 5-fold CV scores for ssGMM. We see a minor performance

improvement for ssGMM using 5-fold rather than 3-fold CV (compare to Table 4.1), and using the SMSD

score gives a marginal improvement over the default hyper-parameter selection for 5-fold CV. Using 5-fold

CV for XGB deteriorates the performance slightly compared to using 3-fold CV (see Table 4.1), but using

the SMSD score selects hyper-parameters for XGB that perform slightly better in the 5-fold CV case.

Using 5-fold CV produces five classification metric scores for each hyper-parameter combination to

compute the mean and standard deviation CV scores from. However, five values are arguably not enough

for the computed mean and standard deviation scores to be statistically significant. A solution to this problem

is N -repeated k-fold CV (discussed in Chapter 4.2.2) and I consider 5-repeated 5-fold CV so there are 25

classification scores for each hyper-parameter combination. Table 4.2 (bottom) summarizes these results,

and Figure 4.6 gives the mean, standard deviation, and SMSD 5-repeated 5-fold CV scores for ssGMM.

While the default hyper-parameter selection for ssGMM on the non-marine data performs well, the default

for the marine data is quite poor and hinders the overall performance. However, the hyper-parameter choices

obtained using the SMSD score improve the performance on both datasets. The default hyper-parameter
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Figure 4.5: The mean, standard deviation, and SMSD 5-fold cross-validation scores using ssGMM for
the non-marine (a, b, c) and marine (d, e, f) training datasets, respectively. Total accuracy is used as the
classification metric. The standard hyper-parameter choices are indicated by the purple circles in panels (a)
and (d), and the SMSD hyper-parameter choices are indicated by the cyan circles in panels (c) and (f). For
this situation, the SMSD hyper-parameters give a slightly better performance on the testing data (see Figure
4.3 and Table 4.2).
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Figure 4.6: The mean, standard deviation, and SMSD 5-repeated 5-fold cross-validation scores using ss-
GMM for the non-marine (a, b, c) and marine (d, e, f) training datasets, respectively. Total accuracy is
used as the classification metric. The standard hyper-parameter choices are indicated by the green circles in
panels (a) and (d), and the SMSD hyper-parameter choices are indicated by the yellow circles in panels (c)
and (f). For this situation, the standard hyper-parameter choice for the non-marine data (a) performs well
on the testing data, but the standard hyper-parameter choice for the marine data (d) does not. However, the
SMSD score chooses standard hyper-parameters that significantly improve the testing performance of both
the non-marine and marine datasets. See Figure 4.3 and Table 4.2 for the testing performance of the models
indicated by circles.

choices for XGB perform well, but the choices obtained using the SMSD score diminish the performance

slightly.

4.5 Discussion

4.5.1 Overall performance comparison

One objective of this study is to assess if ssGMM can outperform the considered supervised methods (GNB

and XGB) in the context of minimal training data. Recall from Chapter 4.2.1 that I consider GNB because

it represents the fully-supervised version of ssGMM. Tables 4.1 and 4.2 show that ssGMM outperforms

GNB in every circumstance and this indicates, for this algorithm, that including the unlabeled data into the
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training process substantially improves its performance. The results also demonstrate that ssGMM is able

to outperform XGB in terms of accuracy (1-5% for all classification metrics) and computation time (2-4×

faster) in this context. However, the comparison to my previous self-training label propagation method in

Chapter 4.4.2 indicates that even if I am able to recover the best-possible ssGMM hyper-parameters, this

would still not outperform the self-training LP result in either performance or computation time (compare

the ssGMM (best) and Self-train LP rows in Table 4.1). The number of data for this study is quite small,

so the benefit of ssGMM being an inductive algorithm is not properly demonstrated here. However, in

problems where the number of data are much greater, the inductive capabilities of ssGMM may prove to be

more computationally feasible than transductive approaches, such as label propagation.

The second objective of this study is to determine if simultaneously using the mean and standard devi-

ation CV scores (i.e. the SMSD score) to select hyper-parameters is preferred in comparison to the default

approach of only using the mean CV scores. For the ssGMM method, Tables 4.1 and 4.2 indicate that the

SMSD score selects hyper-parameters that perform the same or better than the default selections, and the fact

that ssGMM only has two hyper-parameters made the visualization of this quite clear (i.e. Figures 4.3-4.6).

Using the SMSD score to select hyper-parameters for XGB gives mixed results. It seems that when the stan-

dard hyper-parameter selection for XGB performs poorly, then the SMSD score can select hyper-parameters

that perform better (Table 4.2 for 5-fold CV). However, if the standard hyper-parameter selection for XGB

is already performing well, then using the SMSD score appears to make a poorer selection (Table 4.2 for

5-repeated 5-fold CV). XGB has many hyper-parameters, and so it is difficult to ascertain the cause of this

phenomenon without being able to visualize its performance in the way I do for ssGMM.

4.5.2 Interpretation

There are a few methods for interpreting these classification results, and the first is inspecting the perfor-

mance on a per-well basis rather than globally. Table 4.3 shows the accuracy scores on each of the nine unla-
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Table 4.3: The prediction accuracies for the best XGB and ssGMM models decomposed into individual
accuracies for each of the unlabeled wells. Table 4.2 denotes that the best models for XGB and ssGMM
come from 5-repeated 5-fold CV. The total accuracies provided in the last row correspond to those given in
Table 4.2 and are calculated by taking the weighted average of the individual accuracies for each well.

Unlabeled well name # points XGB
accuracy (%)

ssGMM
accuracy (%)

SHANKLE 449 44.77 52.78
CROSS H CATTLE 501 28.94 32.34
NEWBY 463 41.04 44.28
LUKE 461 60.52 64.43
CHURCHMAN BIBLE 404 42.08 40.84
ALEXANDER 466 52.36 53.65
SHIMPLIN 471 51.59 54.99
NOLAN 415 44.34 49.40
RECRUIT F9 68 7.35 0.00
Total 3698 44.92 48.13

beled wells for the best recovered XGB and ssGMM models. The ssGMM model is able to outperform XGB

on seven of the nine unlabeled wells by a notable margin. We can also interpret the classification results by

physically observing the facies predictions. The performance of XGB and ssGMM on the SHANKLE and

NOLAN wells is characteristic of their overall performance, and so I choose to show the facies predictions

for these two wells in Figures 4.7 and 4.8. Notice how in both wells, the XGB prediction is visibly chaotic,

which is evidence of overfitting. However, the ssGMM predictions are less chaotic and fit the true facies

better, which supports the claim in Chapter 1.1 that including unlabeled data in the training process is akin to

regularizing underdetermined inverse problems to help prevent overfitting. The maximum probabilities used

to classify the unlabeled data for ssGMM (Equation 2.17) are given as the probability logs in Figures 4.7

and 4.8. These probabilities are a benefit to ssGMM and they can be useful for interpretation. For instance,

the probability tends to drop at predicted lithofacies interfaces, which supports the well-understood notion

that rock unit boundaries are not always discrete.

Another technique for visualizing and interpreting the classification performance is through confusion

matrices. Figure 4.9 shows the confusion matrices for the best recovered XGB and ssGMM models. Notice

how the predictions cluster closer to the diagonal for ssGMM compared to XGB; this is reflected by the

higher accuracy and adjacent accuracy as indicated in Table 4.2. The classification ability of XGB for
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Figure 4.7: A comparison of the XGB and ssGMM facies predictions to the true facies for the unlabeled
well, SHANKLE. For the performance of these models on SHANKLE, see Table 4.3. The five log variables
are shown for reference. The final column gives the probabilities for the ssGMM predicted facies. See Table
3.1 for the facies colors key.

Figure 4.8: A comparison of the XGB and ssGMM facies predictions to the true facies for the unlabeled
well, NOLAN. For the performance of these models on NOLAN, see Table 4.3. The five log variables are
shown for reference. The final column gives the probabilities for the ssGMM predicted facies. See Table
3.1 for the facies colors key..
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Figure 4.9: The normalized confusion matrices for the (a) default XGB 5-repeated 5-fold CV model and the
(b) ssGMM 5-repeated 5-fold CV model selected using the SMSD score (i.e. the best models for XGB and
ssGMM indicated by the * in Table 4.2). The predictions shown by these matrices are for the nine unlabeled
wells. Diagonal cells represent correct classification, off-diagonal cells represent misclassification.

Classes 1 and 9 is poor (<10%), but ssGMM is unable to predict for these two classes at all. Classes 1 and

9 only have nine and seven points, respectively, in the training data (Figure 3.2a) and the initial covariance

matrices describing each class, which are 6-dimensional, are poorly constrained and ill-conditioned because

of this. In Table 4.3, the RECRUIT F9 well is a synthetic well that only contains Class 9 and this is why

ssGMM has an accuracy of 0% on that well. Table 4.3 also shows that the prediction performance for

the CROSS H CATTLE well is quite poor, and this is because CROSS H CATTLE has many data points

associated with Class 1. While the training data for other classes are sufficient to define their corresponding

covariance matrices, more data are certainly needed to constrain the covariance matrices for Classes 1 and

9.

4.5.3 Comparison to machine learning competition

Upon inspecting the performance of all the algorithms in Chapter 4.4, it is apparent that the prediction

accuracies on the unlabeled data are quite low (< 50%). My explanation for the absolute accuracies being

so low is because the classes are poorly separated (see Figure 3.1), and I come to this conclusion in my

previous work (Chapter 3.6.3). In comparison, however, all the winners of the SEG machine learning
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competition were able to achieve F1-scores of 62-64% on the two withheld wells using XGB (Hall &

Hall, 2017), whereas my implementation of XGB only roughly achieves an F1-score of 42% on the nine

unlabeled wells. This discrepancy can be attributed to three factors: the amount of training data, filtered

outputs, and feature expansion. For my semisupervised scenario, I am only training with roughly one-tenth

of the data that was used for the competition. The competition winners also apply a median filter to their

XGB predictions (Bestagini et al., 2017); I do not do this because I feel that an algorithm’s prediction is

best represented by its raw output. Lastly, all the winners use feature expansion, a process of artificially

generating more features to help improve class separability, to improve their results. For the competition

problem, feature expansion was quite effective and improved F1-scores by 5-6% (Bestagini et al., 2017).

However, feature expansion does not work for this semisupervised scenario because some classes are poorly

constrained (e.g., seven and nine points, respectively, for Classes 1 and 9) and representing these classes in

higher dimensions makes them even less constrained; this is a consequence of the curse of dimensionality.

I do not show these results for brevity, but the performance for both ssGMM and XGB diminishes when

I use similar feature expansion techniques as those from the competition. Together, these three factors are

responsible for the disparity between my results and those from the competition.

4.6 Conclusion

The two objectives of this paper are to investigate (1) if semisupervised Gaussian mixture models (ssGMM)

can outperform a widely-used supervised algorithm, XGBoost (XGB), in the context of a well-log clas-

sification example with limited training data, and (2) if my new hyper-parameter selection strategy that

simultaneously uses the mean and standard deviation (SMSD) cross-validation scores can make better se-

lections than the default approach. The results first show that one of the well-log data features violates the

Gaussian assumption, which causes ssGMM to not converge. The remedy for this situation is decompos-

ing the dataset into two pieces to remove this feature. This demonstrates how important it is to perform
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tests prior to classification to ensure that the data are not violating any underlying assumptions. Once this

procedure is performed, the results demonstrate that the ssGMM method is able to outperform XGB, but

not by a significant margin. However, a benefit of ssGMM is that it is a simple semisupervised algorithm

(i.e. only two hyper-parameters) that can still achieve a better performance than a complex supervised algo-

rithm, XGB. Using my new proposed SMSD score for hyper-parameter selection gives promising results for

ssGMM, but mixed results for XGB. However, I only compare the performance of the default and SMSD

hyper-parameter selection strategies using one dataset and two algorithms, and so future tests using different

algorithms and/or datasets would help determine the true efficacy of the SMSD hyper-parameter selection

strategy. Nonetheless, a visualization of the lithofacies predictions supports the well-known claim that su-

pervised methods are prone to overfitting when the training data are minimal, but including the unlabeled

data into the training process (i.e. semisupervised learning) mitigates this phenomenon.



Chapter 5

A seismic petrophysical classification study

of the 2-D SEAM model using

semisupervised techniques and detrended

attributes1

5.1 Introduction

In recent years, many disciplines have been challenged with trying to efficiently extract meaning, or value,

out of large datasets. Manually identifying patterns from data has become increasingly difficult due to

improvements in data storage and data acquisition capabilities exponentially growing our data volumes.

This is a challenge for many disciplines, and is certainly the case for hydrocarbon exploration in the domain

of geophysics. Relating seismic data to geologic targets has always been a pattern recognition task. In
1Dunham, M.W., Malcolm, A. and Welford, J.K., 2021. A seismic petrophysical classification study of the 2-D SEAM model

using semisupervised techniques and detrended attributes, Geophysical Journal International, 227(2), 1123–1142.

84
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the early days of seismic attributes, it was recognized that instantaneous attributes exhibited anomalous

behavior in certain hydrocarbon-bearing geologic units (Taner & Sheriff, 1977; Taner et al., 1979). Relating

these certain properties, or attributes, of the seismic data to facies is a form of pattern recognition, but until

more recently, these connections were performed manually by geoscientists. Technological advancements

have provided us with tools such as machine learning to extract meaningful information from large datasets

efficiently. The purpose of seismic pattern recognition using machine learning, otherwise known as seismic

classification, is to map seismic data to desired classes (e.g., seismic facies, lithofacies, or petrofacies), and

this has been achieved using many approaches in the literature.

One approach is unsupervised learning that essentially maps the seismic data into unlabeled clusters, and

the user must assign meaning, or class labels, to these clusters. Some of the earliest unsupervised learning

applications to seismic classification use self-organizing maps (SOMs, Berge et al., 2002; West et al., 2002;

Strecker & Uden, 2002; Coléou et al., 2003; de Matos et al., 2007; Roy et al., 2013; Roden et al., 2015; Zhao

et al., 2015). Bayesian-based techniques have also been popular, such as generative topographic mapping

(GTM, Wallet et al., 2009; Roy et al., 2014; Zhao et al., 2015; Wang & Wu, 2017) and Gaussian mixture

models (GMMs, Hardisty & Wallet, 2017; Wallet & Hardisty, 2019). In recent years, GMMs have been

improved to include transition probabilities from hidden Markov models (Feng et al., 2018a,b).

Another approach is supervised learning, which aims to learn a direct mapping from the seismic data

to the known classes. Various techniques have been employed in the context of seismic classification, such

as neural networks (Saggaf et al., 2003; Raeesi et al., 2012; Aleardi & Ciabarri, 2017; Ross & Cole, 2017),

and support vector machines (Li & Castagna, 2004; Bagheri & Riahi, 2015; Zhao et al., 2015). However,

the trend in recent years is deep learning, particularly convolutional neural networks (CNNs). CNNs treat

the seismic data as an image, and the trained CNNs extract the necessary features/textures from the seismic

images through filters. The use of CNNs has led to the successful classification of faults (Araya-Polo et al.,

2017; Huang et al., 2017; Xiong et al., 2018; Cunha et al., 2020), salt bodies (Waldeland et al., 2018; Shi
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et al., 2019), and the delineation of seismic facies (Zhang et al., 2018b; Zhao, 2018; Liu et al., 2019; Souza

et al., 2019). Another form of deep learning is a recurrent neural network (RNN), which is designed to

capture the long-term temporal dependencies of sequential data. RNNs have been widely successful for

processing audio signals (e.g., speech recognition & translation), and some have extended the application of

RNNs to seismic classification (Grana et al., 2020).

The particular problem of interest for this work is seismic petrophysical classification, where the data

are seismic attributes and the labels for the training dataset are derived from well data. Wells are char-

acteristically sparse, so these problems are inherently challenged with low amounts of training data. In

these situations, supervised methods, especially deep learning methods, are prone to overfitting (Good-

fellow et al., 2016). These overfitting complications can be alleviated by regularization, which has many

forms. Several supervised machine learning algorithms include a hyper-parameter that directly or indi-

rectly imposes a penalty on the model complexity, e.g., the C hyper-parameter for support vector machines

(Cortes & Vapnik, 1995) or dropout regularization for deep learning (Goodfellow et al., 2016). However,

if the amount of training data is drastically limited, this form of regularization still may not be sufficient.

One way to address this problem for seismic petrophysical classification is to use geostatistical techniques

to simulate additional 1D Earth models from known wells to enlarge the training dataset (Das et al., 2019).

Another method to overcome the paucity of labeled data is to generate additional data by performing Monte

Carlo simulation from a petro-elastic model (Choi et al., 2017; Lee et al., 2018). While these geostatistical

augmentation techniques certainly have merit, they require domain knowledge and their utilization may be

limited to experts.

An alternative form of data augmentation is to incorporate the readily available unlabeled data into the

learning process. This is semisupervised learning (SSL), where the labeled and unlabeled data are both

utilized to build a machine learning model (see Chapelle et al., 2006; Zhu & Goldberg, 2009; van Engelen

& Hoos, 2020). SSL methods have been relatively unexplored in exploration geophysics applications, and
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it has not been until recently that they have begun to gain traction. Some seismic-related examples include

combining RNNs and CNNs for a semisupervised approach to seismic impedance inversion (Alfarraj &

AlRegib, 2019) and using a transductive regression technique to estimate porosity from impedance volumes

(Lima et al., 2017; Görnitz et al., 2018). With specific regard to seismic classification problems, there are

a few noteworthy applications. Some researchers have manipulated the traditional unsupervised GTM into

a semisupervised probability classifier using the Bhattacharyya distance (Roy et al., 2014; Qi et al., 2016).

Another application performs a petrophysical classification of seismic data by incrementally labeling the

unlabeled data in a spatial manner using the most confident predictions from a deep neural network (Asghar

et al., 2020). Other researchers have extended a generative adversarial network (GAN), another type of deep

learning, to operate in a semisupervised context for seismic facies classification (Li et al., 2019a; Liu et al.,

2020).

Two semisupervised methods, label propagation and self-training, improve the classification results of

well-log data in a previous study (Chapter 3). In this paper, I extend these same semisupervised techniques

to the petrophysical classification of seismic data. My self-training approach is similar in concept to the

pseudo-labeling strategy from Asghar et al. (2020), but when coupled with label propagation, my approach

incorporates the unlabeled data in training where their supervised deep neural network does not. While

a semisupervised GAN approach looks promising (Li et al., 2019a; Liu et al., 2020), these deep learning

methods have a significant learning curve, can be difficult to conceptualize for non-experts, and they contain

many hyper-parameters that require tuning. my goal is to provide a simple solution for classification prob-

lems challenged with insufficient training data; the semisupervised techniques that I consider are designed

for this task by being well established, easy to implement with very few hyper-parameters, and conceptually

straightforward.

To investigate if these semisupervised techniques can achieve better performance than supervised meth-

ods in a low training data context, I formulate a seismic petrophysical classification scenario using a subset
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of the Phase 1 2D SEAM model (Fehler & Keliher, 2011). The advantages of this study being a synthetic

classification problem are that I have full control and can make quantitative comparisons. To perform a

petrophysical classification of this SEAM model, I consider rock properties-based attributes as the inputs

(e.g., acoustic impedance, shear impedance, density, etc.). While there are many other types of attributes

that I could also consider (e.g., instantaneous, texture, etc.), it is established that rock properties-based at-

tributes are well suited for discriminating lithology and fluid variations of rocks (Avseth et al., 2005), and

many studies have used these types of attributes for seismic lithological/petrophysical classification (Muk-

erji et al., 2001; Roy et al., 2014; Aleardi & Ciabarri, 2017; Grana et al., 2017; Kim et al., 2018; Asghar

et al., 2020). What is unique, and perhaps unfortunate, about these attributes is that they are depth-dependent

(due to compaction, cementation, etc.). If one focuses on a narrow interval, such as in a production setting,

these depth variations may be negligible. However, if the focus is on a much larger interval, e.g., in an ex-

ploration context, these depth dependencies can become problematic. Keynejad et al. (2019) try to address

this problem in a well-log classification scenario by including depth as an attribute, but I have found this to

not be as effective in this seismic classification context. What I explore in this paper is directly removing the

depth trend from the attributes via filtering. Filtering seismic attributes to improve seismic class definition

is not a new concept, e.g., Qi et al. (2016) use Kuwahara filters on seismic texture attributes to remove noise

and preserve boundaries. However, to my knowledge I am the first to demonstrate the benefit, and necessity,

of filtering rock properties-related attributes for seismic classification.

The contents of this paper are as follows. First, I introduce label propagation, self-training, and the

supervised method that I use for comparison. Then, I formulate a seismic petrophysical classification situ-

ation from the 2D SEAM model. This process requires synthesizing seismic data from the model using an

elastic solver, performing prestack time migration, and conducting simultaneous prestack seismic inversion

to recover the attributes necessary for this machine learning problem. I simulate a low-training data scenario

for the classification task by assuming that there is only one well location. In an attempt to improve perfor-
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mance, I consider feature expansion, including the two-way traveltime as an input attribute, and de-trending

the rock-properties related attributes. I also consider a different location for the training well to investigate

the robustness of the machine learning methods to changes in the training data. The results indicate that

de-trending the seismic attributes is necessary for all algorithms (supervised and semisupervised) to per-

form well; when the attributes are de-trended, the semisupervised techniques still perform better than the

supervised baseline.

5.2 Methods

5.2.1 Machine learning methods

As mentioned above, the semisupervised methods used for this study are label propagation and self-training.

While I assess the results of label propagation independently here, the same self-training label propagation

approach from Chapter 3 is also considered. Recall that LP has two choices for the kernel of the edge-

weight matrix, k-NN or RBF. The approach in Chapter 3 uses the RBF kernel (a dense matrix), which is

not problematic given that the well-log dataset in that problem is relatively small. However, the size of the

dataset for this problem is over 100× larger, and using the RBF approach for LP would be computationally

intractable (e.g., requiring > 1000 GB of RAM). As such, the k-NN kernel is used to compute the edge-

weight matrix for LP.

The self-training method is the same technique presented in Chapter 2.2.2 with selection criteria to better

accommodate class imbalance. Although, it is worth re-iterating that self-training has the potential to be

rather unstable. If the base algorithm performs poorly (LP in this context), then errors could be perpetuated

with each self-training iteration; an example of such a situation is provided in Chapter 5.5.1. Nonetheless,

self-training is a simple technique to help improve the performance of classification problems when training

data are limited, and this approach is easy to implement with only two hyper-parameters (S, T ).
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To assess if LP and self-training LP can perform better than supervised methods in a limited training data

scenario for seismic petrofacies classification, I must compare against a supervised method. I have chosen

the extreme gradient boosting (XGBoost) algorithm (Chapter 2.1.3). XGBoost was the winning algorithm

for the 2016 SEG machine learning competition, and it even outperformed deep learning methods (Hall &

Hall, 2017). This competition was designed so that the entire dataset (≈ 4000 data points) could be used for

training the participants’ algorithms, but even so, this relatively small dataset made it especially difficult to

train deep learning methods according to the organizer (Hall & Hall, 2017). Given that the amount of training

data used in this study is comparatively far less (≈ 1000 data points), this convinced me that XGBoost might

be more appropriate in this circumstance compared to deep learning methods. Therefore, XGBoost seems

like a natural choice to challenge the performance of the semisupervised techniques. Unlike LP and self-

training, XGBoost does have many hyper-parameters that require setting. Most of the hyper-parameters

are concerned with aspects of the decision trees, however, I have found that leaving many of the hyper-

parameters assigned to their defaults is sufficient. The hyper-parameters that I do choose to optimize are

the learning rate, max depth, min child weight, number of estimators (trees), and lambda (L2 regularization

term). The ranges of values considered for each of these hyper-parameters is discussed in Chapter 5.3.6

below.

5.2.2 De-trending attributes

As stated in the Chapter 5.1, I use rock properties-based seismic attributes as the features for my machine

learning problem (I discuss this in more detail in Chapter 5.3.4 below). However, a challenge with these

attributes is that they are depth-dependent due to compaction, cementation, etc. This depth dependency can

have a detrimental impact on the classification performance for many algorithms because the rock properties

for a given lithology are not unique. I demonstrate this with an example in Figure 5.1(a). Here, I denote

a shale unit at 3.2 km depth, and at a slightly deeper depth (4.5 km), we have sand units with the same
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measured density value (2.20 g/cc). If these density data are used to train a machine learning algorithm, this

results in two different classes with the same input value (i.e., the two classes are overlapping in the input, or

density, space). With these data, it is unclear whether the machine learning algorithm should predict sand or

shale for a new data point with a density of 2.20 g/cc. Consequently, this phenomenon introduces ambiguity

into the machine learning process that can misclassify unseen data.

I address this problem by trying to remove the depth trends from these types of seismic attributes.

The concept that I use here is analogous to regional-residual separation of potential field data where a

filter, or function, is used to determine the background field, which is then subtracted from the measured

signal to recover a residual signal (Gupta & Ramani, 1980). Here, I use a simple median filter to extract

the background trend from the seismic attributes (e.g., Figure 5.1b); in this example case, the filter is 1D

because the trace is 1D. Then, similar to regional-residual separation, I subtract this background trend from

the measured attribute to obtain the de-trended attribute. After de-trending the density trace, Figure 5.1(c)

shows that the shale and sand units discussed above no longer have the same density value; the shale has

a value of 0.0 g/cc, and the sand has a value of -0.1 g/cc. Transforming the rock properties-based seismic

attributes in this way improves the separation of the classes in the input space, which can help improve

classification performance.

5.3 Machine learning preparation

5.3.1 2D SEAM model

The model that forms the basis for this study is the Phase 1 2D SEAM model made publicly available by

the Society of Exploration Geophysicists (Fehler & Keliher, 2011). This model intends to address subsalt

imaging challenges in Tertiary basins, emphasizing deepwater environments in the Gulf of Mexico (see

Figure 5.2a). I want to use this model to provide the basis for a seismic petrophysical classification problem,
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Figure 5.1: The de-trending process illustrated with an example density trace. (a) The measured density. A
red line is marked at 2.2 g/cc to depict its intersection with two units, a shale and a sand interval, denoted
by red circles. (b) A median filter is applied to the measured density to recover the background trend (bold).
The measured density is also shown for reference (dashed). (c) The de-trended density. The same shale and
sand units circled in (a) are circled again here to indicate that they have different de-trended density values.
All densities shown are in g/cc.
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Figure 5.2: (a) The density attribute of the publicly available Phase 1 2D SEAM model. (b) The 2D SEAM
model subset that I consider for this study, indicated by the red box in panel (a). The numbered annotations
highlight regions of interest in this model: (1) leaf turbidites, (2, 3) channel valley fills, and (4) an uncon-
formity. The two well locations used for training (individually) are also denoted in panel (b).

but subsalt imaging is not the focus of this study and the inclusion of salt may overcomplicate the problem.

Therefore, I consider an 11.5× 7.0 km subset of the entire 2D SEAM model that only contains sedimentary

sequences (Figure 5.2b). Some features of interest in this model are leaf turbidites from 2.5-3.0 km depth,

channel valley fills at 4.5 and 6.0 km depth, and an unconformity at 5.5 km depth (see annotations on Figure

5.2b). To explore the challenges of limited training data, I assume that there is only one well location

(this well will serve as the training data once it is assigned labels, see below). However, I do consider two

different locations for this well to investigate the robustness of the machine learning methods to changes in

the training data. The first well is located at X = 3.5 km and intersects all three reservoir zones (Well #1

in Figure 5.2b), and the second well is located at X = 6.5 km and only intersects one of the reservoir zones

(Well #2 in Figure 5.2b).

5.3.2 Clustering

A benefit of this model is that many properties are provided that I can leverage, such as elastic properties (Vp,

Vs, and density), shale volume (Vshale), porosity, and resistivity. However, this dataset does not provide any

class labels (e.g., sand, shale, etc.), and I must determine these from the data themselves. In these situations

where labels are unknown, a common procedure is to use a data-driven, unsupervised learning approach
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to obtain clusters, and then assign meaning to the clusters to define classes. I adopt this approach here by

applying it to the model properties (depth, Vp, Vs, density, porosity, Vshale, and resistivity) at the Well #1

location (see Figure 5.2b). I only apply the clustering to the data at Well #1 because in a realistic setting,

only the well data would contain these properties (e.g., Vshale, porosity, resistivity, etc.). The method I

choose to perform the unsupervised analysis is the SpectralClustering class from scikit-learn. This

clustering method is built using a normalized graph Laplacian, the same as label propagation. At its core,

spectral clustering applies k-means clustering to the eigenvectors of the Laplacian matrix which can improve

clustering when the structure of the individual clusters is complex. See Ng et al. (2002) and von Luxburg

(2007) for more details.

A challenge with any unsupervised method is determining the optimal number of clusters to use. I use

two factors to assess each cluster setting. Most importantly, I qualitatively assess the clusters for their geo-

logic feasibility (examples below). I also use the silhouette score (Rousseeuw, 1987), which is a metric for

measuring the tightness of a cluster and its separation from others. Once clusters are determined, a silhouette

score can be computed for each data point where the values range from +1 to -1; data points associated with

a tight and well-separated cluster achieve the best value of +1, values near 0 indicate overlapping clusters,

and negative values suggest the data point may be assigned to the wrong cluster. The silhouette scores can

then be averaged for all data points to quantify how well the clustering is performing for the whole dataset.

Figure 5.3 shows my analysis for determining the optimal number of clusters. I consider the number of

clusters (n clusters) to range from 2 to 6 and I perform a silhouette analysis on each setting (five total). The

left-hand panels show the silhouette values for each data point color coded to each cluster and the dashed red

line indicates the average silhouette score for all the data. The right-hand panels show the clusters themselves

in Vshale-resistivity space. Recall that I am ultimately trying to perform petrophysical classifications with

these data, so the clusters need to distinguish fluid saturations in sand units from shale. For n clusters =

2, we observe one large cluster that spans all Vshale values for low resistivity values. I deem this setting
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geologically infeasible because this cluster is essentially combining brine sands and shales into one cluster.

The same argument can be made for the n clusters = 3 setting because the only change is separating what

appear to be the hydrocarbon-bearing units into two clusters. At n clusters = 4, we see the large cluster

defined in n clusters = 2 and 3 being split into two clusters. This setting has the poorest average silhouette

coefficient, and I therefore discard it. The n clusters = 5 setting is one that looks promising. There are two

different clusters representing shales at different depths (red and green), one cluster representing brine sands

(orange), and two clusters representing hydrocarbon-bearing sands. The n clusters = 6 setting is nearly

identical to the n clusters = 5 with the difference of breaking the brine sand cluster into two. Ultimately,

I determine n clusters = 5 to be the optimal setting because its clusters align with geologic understanding,

and it has a higher silhouette coefficient compared to using 6 clusters.

5.3.3 Determining ground truth model

I further visualize the n clusters = 5 result in Figure 5.4 which shows a cross-plot and a well-view of the

clustering results. From the well view (Figure 5.4b), it becomes clear that there is a depth dependency

with the clusters, with the exception of Cluster 3. The reason for this may be because many of the input

properties are indeed themselves depth-dependent, e.g., Vp, Vs, density, and resistivity all increase (and

porosity decreases) with depth due to compaction and other processes. The depth itself is also included as a

feature, but this phenomenon still occurs even if depth is removed as an input feature. However, it does not

seem reasonable to me to define multiple clusters for a given geologic facies if the only difference is that

one is slightly more compacted than the other. So,Ie decide to combine clusters. It is clear that Clusters 1

and 5 are both representing shale, and so I combine these clusters. Clusters 3 and 4 appear to distinguish the

hydrocarbon-bearing sand at 6 km depth (Feature 3 in Figure 5.2b) from the shallower hydrocarbon-bearing

units (Features 1 and 2 in Figure 5.2b), but they are all hydrocarbon units and I decide to combine these

two clusters as well. The result is three clusters, with one cluster each representing shale, brine sand, and
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Figure 5.3: Silhouette analysis of various cluster settings, where the Well #1 physical property data are used
as inputs. The average silhouette scores for n clusters = 2, 3, 4, 5, 6 are 0.553, 0.489, 0.406, 0.452, 0.439,
respectively (indicated by the dashed red lines on the left-hand panels).
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hydrocarbon sand units (see Figure 5.5). Interestingly, nearly the same cluster definition can be achieved by

applying the following thresholds to the Vshale and resistivity properties:

• Shale: Vshale >= 0.55,

• Wet sand: Vshale < 0.55, Resistivity < 100 Ωm,

• Hydrocarbon sand: Vshale < 0.55, Resistivity >= 100 Ωm.

Figure 5.6 shows the distribution of these three classes determined via thresholds, and notice the stark

similarities with the clusters in Figure 5.5. It is a common industry practice to apply thresholds to Vshale

and resistivity data to distinguish fluid saturations in sand from shales, and what is interesting here is that

thresholding these data roughly aligns with the natural cluster structure. Moving forward, I decide to use

the class definitions defined by these thresholds above because this approach helps correct some of the

inconsistencies in the clusters (e.g., shales being defined down to Vshale = 0.30, see Cluster 1 in Figure 5.5)

and it is much quicker to apply these thresholds to the entire model compared to a clustering algorithm.

The result of this analysis is a three-class petrophysical model, as shown in Figure 5.7(a). The resistivity

property clearly illuminates the presence of the three zones containing hydrocarbon-bearing sands (Figure

5.7b), and the Vshale property is effective at distinguishing sand from shale (Figure 5.7c). This facies

model is significant to this study for two reasons. First, I can sample this model at the well locations shown

in Figure 5.7(a) to provide the labels for the training data. Second, since the class labels for the entire model

are also known, this allows me to also evaluate the performance of the machine learning predictions on the

unlabeled, or testing data. The next stage concerns generating the seismic attributes (i.e., the features) for

the machine learning problem.
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Figure 5.4: Clustering analysis using the depth, Vp, Vs, density, porosity, resistivity, and Vshale data at
Well #1 as inputs. The analysis from Figure 5.3 suggests that five clusters are optimal for these data. (a) A
cross-plot of the clusters using five of the inputs (depth and Vs not shown). (b) A well-view of the clusters
with four logs shown for reference. I combine clusters 5 and 1, and 3 and 4 to define three units: shale, wet
sand, and hydrocarbon sand. The units for Vp and resistivity are km/s and logeΩm, respectively.
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Figure 5.5: The same clustering results shown in Figure 5.4, except I combine clusters 5 and 1, and 3 and 4
to define three units: shale, wet sand, and hydrocarbon sand. (a) A cross-plot of the clusters using five of the
inputs (depth and Vs not shown). (b) A well-view of the clusters with four logs shown for reference. The
units for Vp and resistivity are km/s and logeΩm, respectively.
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Figure 5.6: Defining the shale, brine sand, and hydrocarbon-bearing sand classes using thresholds on the
Vshale and resistivity properties. (a) A cross-plot of the classes using five of the inputs (depth and Vs not
shown). (b) A well-view of the classes with four logs shown for reference. These three classes determined
via thresholds align strongly with the three clusters shown in Figure 5.5. The units for Vp and resistivity are
km/s and logeΩm, respectively.
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Figure 5.7: (a) The three-class facies model determined using thresholds on the (b) resistivity and (c) Vshale
properties. These thresholds honor the natural cluster structure of the data. The two well locations used for
training (individually) are also indicated.
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5.3.4 Seismic attribute generation

To perform seismic classification on this model, I need to synthesize seismic data before computing the

seismic attributes. I use an elastic solver from an open-source software called Devito (Louboutin et al.,

2019) to generate the shot records. In an effort to reflect realistic source-receiver geometries, I establish

20 m spacing for the receivers and 100 m spacing for the shots. The peak frequency of the Ricker source

wavelet is also set to 17.5 Hz, which is a practical choice given the size of the model. The next stage

is performing prestack time migration on the shot records, which is accomplished using GLOBEClaritas.

Upon analyzing the migrated angle gathers, I determine the critical angle to be roughly 40-45◦, so I mute

the data at 40◦. I then stack the data into six angle stacks to provide a good balance of signal to noise (0-6◦,

6-12◦, 12-18◦, 18-24◦, 24-30◦, 30-36◦). Figure 5.8(a) shows one of the angle stacks (6-12◦), and many of

the features are recovered quite well. However, the channel valley fills at 4.8 and 5.8 s must be sub-seismic

resolution because the reflections are not well defined.

The seismic attributes that I consider for this study are recovered through simultaneous inversion of the

angle stack data. Specifically, I invert for acoustic impedance (AI), shear impedance (SI), and density (Smith

& Gidlow, 1987; Fatti et al., 1994) using the inversion tools in RokDoc. Figure 5.8(b) shows the inverted

density (Rho) attribute on the same color scale as Figure 5.2(b), and the loss of resolution inherent in these

steps is apparent.

5.3.5 Problem setup

At this stage, all the necessary information is in place to set up the machine learning problem for a seismic

petrophysical classification of the SEAM model subset. I choose to perform the classification in the time-

domain (the original domain of the seismic attributes), however, the labels for the training data (y1, ..., yl)

are still in the depth domain. I convert the labels to two-way traveltime (TWT) using the known P-wave

velocities at the well locations. The alternative approach is to perform the classification in the depth domain,
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Figure 5.8: (a) Near angle stack (6-12◦) generated from the model depicted in Figure 5.2(b). (b) Density at-
tribute recovered through prestack seismic inversion. The labels for the two training wells are superimposed
on both panels (gray = shale, blue = wet sand, black = hydrocarbon sand).

but realistically doing so requires a velocity model derived from the seismic data. There is generally more

confidence in the TWT-depth relationship at well locations due to direct velocity measurements (i.e., sonic

logs) compared to the TWT-depth relationship derived from seismic-based velocity models. As a result, I

feel that the more practical approach with less uncertainty is to perform the classification in TWT and only

convert the labels, or well data.

To form the training dataset, I must link the seismic attribute samples (xi) to their corresponding labels

(yi). Linking the seismic data to well samples generally requires downscaling the well data to a similar

frequency content as the seismic data (usually via a Backus average), but that is not needed in this situation.

In this synthetic problem, I have the rare case where the well data sampling is much coarser than in a

realistic setting, thereby inherently having lower frequency content (the depth sampling for the model is 10

m, where standard log sampling is ≈ 0.15 m). When the well data are converted to TWT, the sampling

ranges from 5-12 ms (the sampling is non-uniform because of the depth-TWT conversion). The seismic

inversion attributes have a default uniform sampling of 2 ms, but I determined that I could decimate the

sampling to 4 ms without sacrificing any resolution. Forming the training dataset is relatively trivial here

where roughly 1-3 attribute points map to one class point. This results in 1013 and 1002 labeled data points

for Well #1 and #2, respectively, for a dataset of 584,644 total unlabeled data points (< 0.2% training data

for either case).
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5.3.6 Hyper-parameter estimation

Hyper-parameter estimation is the first stage of training machine learning algorithms, and for XGBoost, I

use a standard 5-fold cross-validation (CV, Figure 2.10) on the training data with a macro-F1 scoring metric

(the reason for choosing this metric is discussed below in Chapter 5.3.7). The ranges of values used for the

various XGBoost hyper-parameters are provided in the following search grid:

• Learning rate: [0.10, 0.15, 0.20, 0.25, 0.30], default = 0.30

• Max depth: [2, 3, 4, 5, 6] default = 6

• Min. child weight: [1, 3, 5, 7, 9] default = 1

• Num. of estimators: [50, 75, 100, 125, 150] default = 100

• Lamda (reg): [1, 5, 10, 50, 100] default = 1

The ranges of these hyper-parameters are chosen to help make the XGBoost algorithm more conservative,

i.e., to help prevent overfitting.

Determining hyper-parameter values for semisupervised techniques is more challenging, as discussed

in Chapter 2.3. Setting the hyper-parameters for LP proves to be especially difficult for the number of

nearest neighbors (p, see Eq. 2.6). The labeled data are only a small fraction of the entire dataset, and

using CV on L suggests a p that is severely underestimated to adequately capture the graph structure of the

data. More specifically, a p that is too small causes the Laplacian matrix (Eq. 2.7) to become so sparse

that some unlabeled data never receive label information from their neighbors. This results in some rows

in F corresponding to unlabeled data remaining as zero vectors (recall from Chapter 2.2.1 that the rows in

F related to the unlabeled data are initialized to zeros). Upon convergence, each row in F is normalized to

provide soft classifications for the unlabeled data, but this causes Python RuntimeWarnings if any rows

are still zero vectors (i.e. divisions by zero). I am unaware of any literature at this time that provides
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a systematic approach for determining p for LP, so I resort to a trial-and-error approach. In essence, I

gradually increase p until I no longer receive RuntimeWarnings. For my problem, this is p = 500− 1000,

but I double it to p = 2000 to ensure that more than the absolute minimum information is used to construct

the Laplacian matrix. This is my recommendation for setting p on other datasets: start low, increase it until

RuntimeWarnings are no longer obtained, and then consider increasing p a bit more from this critically

necessary value for added stability if the computational resources allow for it.

For setting the remaining semisupervised hyper-parameters, there is some intuition and prior work that

can be leveraged. Recall that the remaining LP hyper-parameter, α, controls how much the initial label

distribution is allowed to change, and setting its value can be informed by our confidence in the initial labels.

Labeled data are sometimes mislabeled, and in many cases this is difficult to avoid (e.g., improper labels

at the boundaries between units). Mislabeled data may be outliers, but if their classes are fixed (α = 0),

then these labeled data could propagate their false label information to nearby unlabeled data. However, if

α > 0, then this can allow a proportion of the initial labeled data, such as misclassified outliers, to take

on the label information from their surroundings rather than propagate their false label information. Since

I am confident in the ground truth facies model, I am comfortable setting α to a low value. A range of α

values gives similar results, but I fix α = 0.10. Self-training also poses similar challenges in determining

values for its two hyper-parameters. However, Chapter 3 shows that default values for the self-training

hyper-parameters work well (S = 0.10, T = 0.50), which continues to hold true in this study as well.

5.3.7 Evaluating performance

A benefit of this study is that I can measure the performance of the algorithms’ predictions on the unlabeled

data because I have a ground-truth model (Figure 5.7a). However, this requires a few steps because the

machine learning predictions are in TWT, and the ground-truth model is in depth (these steps are depicted

in Figure 5.9). First, I have the P-wave velocity associated with the model, so it is straightforward to convert
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Figure 5.9: The steps needed to calculate the performance of the machine learning predictions. The (a)
initial predictions in two-way traveltime are (b) converted to depth. There are migration artifacts, so a (c)
mask is applied to the (d) machine learning prediction and the (e) facies model. The misclassifications
computed between the prediction (d) and the model (e) are quantified by an evaluation metric.

the predictions from TWT to depth. When the predictions are converted to depth, there are some migration

artifacts near the model edges (Figure 5.9b). I design a mask (Figure 5.9c) for the predictions so that these

artifacts do not bias the performance evaluation (Figure 5.9d). The mask is also applied to the ground-truth

model (Figure 5.9e) to facilitate the computation of evaluation metrics.

The misclassifications are commonly reported through a single value, or classification metric. Some of

the most common metrics are precision, recall, and F1, which depend on elements of a confusion matrix

(see Figure 5.10). Recall is a measure of how many of the known positives are predicted correctly, whereas

precision measures how many of the predicted positives are actually correct. In other words, recall tries to

minimize false negatives (FNs), and precision is trying to minimize false positives (FPs). For a review of

classification metrics, I refer the reader to Lever et al. (2016). From a hydrocarbon exploration context, both

precision and recall have practical value. One can interpret FNs as predicting shale when it is actually sand;

optimizing recall will minimize the amount of reservoir volumes that are not recovered, thereby preventing

the underestimation of reservoir volumes. FPs can be thought of as predicting sand when it is actually

shale; optimizing precision minimizes the prediction of reservoirs that do not exist, thereby preventing
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Figure 5.10: A sand-shale (two class) confusion matrix illustrating how the recall, precision, and F1 classifi-
cation metrics are computed. False negatives (FNs) and false positives (FPs) are deemed misclassifications,
and the type of misclassification in the denominator for a given metric specifies which type(s) of misclassi-
fication that metric is trying to minimize (i.e., FNs for recall, FPs for precision, and FNs and FPs for F1).

the overestimation of reservoir volumes. Precision may be more appropriate for deepwater exploration

settings to reduce the cost/risk of drilling a dry hole (i.e., a FP). However, recall may be more appropriate

in production settings where missed opportunities (i.e., FNs) and underestimated volumes also come with

a cost. If both metrics are important, then optimizing one of these metrics individually (e.g., recall) comes

at the expense of the other (precision), and vice-versa because there is this trade off between under and

overestimation.

An alternative metric is the popular F1-score that takes the harmonic mean of recall and precision, which

has the benefit of capturing more information at once from the confusion matrix, compared to precision or

recall individually (see Figure 5.10). Given that the setup in this problem is one with limited well data, it is

reasonable that this aligns with an exploration-oriented scenario where the information gained (i.e. machine

learning predictions) from a limited number of wells would be used to help delineate other potential targets.

Therefore, precision may be an appropriate metric here, but in the absence of an economic motive, I choose

to use the balanced F1-score as the training metric (for XGBoost) and primary evaluation metric for all

algorithms. That being said, I do use precision as a secondary metric which I incorporate into the discussion

in Chapter 5.5.4. With regards to computing F1 (or precision) in a multi-class scenario, a separate F1 score is

computed for each class, and then all the scores are combined into one value. The standard way to combine

scores is to weight each F1 by the number of true instances for each class. The model (Figure 5.9e) contains
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82% shale, 16% brine sand, and 2% hydrocarbon sand; so, the weighted-F1 score would give a majority

of the weight to the shale, arguably the least important class. The metric I use is the macro-F1 score that

gives equal weight to each of the classes in this problem (i.e., 33% for each class). The characterization

of reservoir facies is undoubtedly the priority for seismic classification problems, so this metric assigns a

necessary weight to the classes of interest.

5.4 Results

5.4.1 Training well #1

The first situation that I explore uses Well #1 as the labels for the training data, and the features that I use are

those that come directly from the seismic inversion (i.e., AI, SI, and density). I also consider including the

TWT as a feature to test if it can capture the depth dependency inherent in the base attributes. However, prior

to any classification, I standardize the data using the RobustScaler class from scikit-learn. The results

(with and without TWT) are shown in the first two rows of Table 5.1, and the predictions are depicted in

Figure 5.11. In this instance, the self-training process appears to degrade the performance of LP. However,

the performance metrics for LP appear to be higher than XGBoost, but there are significant artifacts in the

predictions for all three methods, and including the TWT appears to accentuate these artifacts (see Figure

5.11).

In Chapter 5.2.2, I discuss how the inherent depth dependency of rock physics-based attributes may

negatively impact classification performance because the rock properties for a given class are not unique.

I suspect that the artifacts I observe in Figure 5.11 are a consequence of this. As such, I explore the ef-

fectiveness of removing the depth trends from the AI, SI, and density attributes. I demonstrate in Chapter

5.2.2 how to de-trend attributes using a 1D median filter on a single trace, but here I use a 2D median filter

because the data are 2D. Figure 5.12 illustrates this process on the density attribute. The de-trending pro-
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Figure 5.11: The machine learning predictions using the raw seismic attributes (AI, SI, density) as inputs
and Well #1 as the training data. Panels (a, c, e) and panels (b, d, f) correspond to the results depicted in the
first and second rows of Table 5.1, respectively. The red circles highlight some of the most-obvious artifacts
associated with the depth dependency of the input attributes. (g, h) The ground truth model is provided at
the bottom of each column for visual comparison.
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Table 5.1: The unlabeled, testing data performance of each algorithm using Well #1 as the training data.
The first and last two rows correspond to the results using the raw and de-trended attributes, respectively. In
the evaluation of each algorithm for a given set of attributes, six metrics are reported. While the Macro-F1 is
the primary evaluation metric (in bold), I do provide other metrics for reference. In each cell, the metrics in
the top row are the macro averages for precision, recall, and F1, respectively. The metrics in the bottom row
are the individual per-class F1 scores (shale, wet sand, hydrocarbon sand) used to calculate the macro-F1
score. See the KEY for reference.

Input attributes De-trending? XGBoost LP Self-training LP

AI, SI, Rho No
64.43, 60.26, 62.01
90.59, 47.69, 47.73

69.59, 61.04, 64.54
90.34, 49.05, 54.22

58.00, 62.78, 59.91
86.63, 46.12, 46.97

AI, SI, Rho, TWT No
62.15, 52.87, 56.26
91.29, 48.21, 29.29

74.16, 61.42, 66.29
91.54, 51.41, 55.93

67.22, 64.73, 65.68
89.19, 51.46, 56.38

AI, SI, Rho Yes
63.91, 63.07, 62.36
90.45, 38.79, 57.84

72.44, 64.21, 67.28
91.11, 43.55, 67.18

74.49, 64.19, 68.22
90.38, 49.72, 64.55

AI, SI, Rho, TWT Yes
67.31, 67.52, 66.67
91.35, 49.74, 58.92

74.36, 64.99, 68.47
91.62, 46.62, 67.16

75.20, 66.29, 69.88
90.90, 53.39, 65.37

KEY
Macro averages for: Precision, Recall, F1

Individual F1 for: Shale, Wet sand, HC sand

cess produces a rather drastic transformation of the attributes that can also be observed in cross-plots (i.e.

plotting each attribute against each other, which produces a 3× 3 grid for this example). A cross-plot of the

raw attributes shows that they essentially have the appearance of measured logs and contain multi-modal

distributions (Figure 5.13a). After de-trending the input attributes, one observation is that the shale class

distribution is quite sharp; this is because the shale class is our background, and that is essentially what is

being removed (Figure 5.13b). The hydrocarbon-bearing sand is now separated quite well from the other

two classes, but it is worth noting that the degree of separability between the shale and wet sand classes

is still minimal. Therefore, we can expect misclassifications to occur between the brine sand and shale

classes. Another observation is that this de-trending process collapses each class to a Gaussian distribu-

tion. While this technically provides no additional benefit for LP or XGBoost because these methods do

not make a Gaussian distribution assumption, it could be helpful for Bayesian-based techniques, such as a

Bayes classifier. However, what potentially makes this de-trending process helpful for any method is that it

improves the class separation (observed in Figure 5.13) and reduces the correlation between each attribute
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by transforming the inputs.

The only potential challenge to this de-trending approach is choosing the kernel width size for the 2D

median filter. However, the choice of kernel width can be quality controlled by observing the cross-plot

of the training data (e.g., Figure 5.13b). If the kernel is too small, the signal from the sand classes ends up

being subtracted out (this begins collapsing all classes to the same distribution). My approach is to gradually

increase the kernel width until changes in the de-trended attributes are no longer observed.

The results using the de-trended input attributes (AI, SI, and density) are provided in the last two rows

of Table 5.1, and Figure 5.14. These results indicate that de-trending the input attributes has a positive

impact on both supervised and semisupervised methods. Given that the artifacts present in Figure 5.11 are

no longer present in Figure 5.14, this suggests that the depth trends are indeed causing the artifacts in Figure

5.11. Furthermore, a comparison of the macro-F1 metrics in Table 5.1 indicates a quantitative improvement

overall using de-trended rather than raw seismic attributes.

5.4.2 Training well #2

As mentioned in Chapter 5.3.1, I consider two different locations for the training well. The previous section

explores using Well #1 as the training data location, and here I examine using Well #2 (see Figure 5.7a).

Recall that the purpose here is to investigate the robustness of the machine learning methods to training data

changes. Similar to the Well #1 scenario, I start by using the raw attribute inputs. The results are provided

in the first two rows of Table 5.2, and they are relatively poor overall compared to the first two rows in Table

5.1. I show one of these results in Figure 5.15, where LP is misclassifying many areas of the section (while

not shown, the other methods have identical issues). The next stage is to consider de-trending the seismic

attributes. These results are provided in the last two rows of Table 5.2, and the predictions are shown in

Figure 5.16. Upon comparing the results in Table 5.2, it is evident that de-trending the seismic attributes

drastically improves the performance for all three algorithms.
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Figure 5.12: A depiction of the de-trending process for seismic attributes. A 2D median filter is applied
to the (a) raw seismic attribute to extract the (b) smooth background trend. The background trend is then
subtracted from the raw attribute to obtain the (c) de-trended attribute. The example shown here is for the
density seismic attribute.
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Figure 5.13: A cross-plot of the Well #1 training data using the (a) raw seismic attributes and (b) de-trended
seismic attributes. The cross-plots shown have the attributes standardized in both instances. The elements
on the diagonal provide the distribution of each class for each attribute. Removing the depth trend from the
seismic attributes collapses each class to a Gaussian distribution.

Table 5.2: The unlabeled, testing data performance using Well #2 as the training data. The first and last
two rows correspond to the results using the raw and de-trended attributes, respectively. In the evaluation
of each algorithm for a given set of attributes, six metrics are reported. While the Macro-F1 is the primary
evaluation metric (in bold), I do provide other metrics for reference. In each cell, the metrics in the top
row are the macro averages for precision, recall, and F1, respectively. The metrics in the bottom row are
the individual per-class F1 scores (shale, wet sand, hydrocarbon sand) used to calculate the macro-F1 score.
See the KEY for reference.

Input attributes De-trending? XGBoost LP Self-training LP

AI, SI, Rho No
53.38, 52.22, 52.40
90.02, 45.63, 21.54

53.22, 51.50, 51.71
89.70, 46.28, 19.16

48.58, 55.87, 50.40
85.94, 46.84, 18.41

AI, SI, Rho, TWT No
46.18, 51.58, 47.91
83.34, 41.79, 18.60

54.97, 53.40, 53.86
87.08, 45.08, 29.41

48.29, 57.65, 50.92
84.19, 46.37, 22.21

AI, SI, Rho Yes
67.47, 56.84, 60.90
88.46, 37.50, 56.73

68.91, 56.41, 60.90
89.12, 40.44, 53.14

71.64, 67.27, 68.73
88.66, 50.22, 67.31

AI, SI, Rho, TWT Yes
50.29, 50.02, 49.42
88.41, 42.17, 17.68

74.82, 58.10, 63.75
90.84, 46.86, 53.57

73.00, 69.45, 70.56
89.60, 54.55, 67.52

KEY
Macro averages for: Precision, Recall, F1

Individual F1 for: Shale, Wet sand, HC sand
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Figure 5.14: The machine learning predictions using the de-trended seismic attributes as inputs and Well
#1 as the training data. Panels (a, c, e) and panels (b, d, f) correspond to the results depicted in the third
and fourth rows of Table 5.1, respectively. These predictions, using de-trended inputs, indicate that many
of the artifacts in Figure 5.11 are removed. However, including the TWT as input still produces an artifact
for XGBoost (red circle). (g, h) The ground truth model is provided at the bottom of each column for visual
comparison.
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Figure 5.15: The label propagation prediction using the raw seismic attributes as inputs and Well #2 as the
training data. This prediction corresponds to the LP entry in the first row of Table 5.2. The red circles
highlight artifacts attributed to using the different training data, and the depth dependency of the attributes.

5.5 Discussion

Overall, these findings suggest that my coupled semisupervised method (self-training LP) can outperform a

popular supervised algorithm (XGBoost) by a reasonable margin. Supervised learning methods are prone

to overfitting in these minimal training data scenarios, but one potential remedy is to regularize the machine

learning model to improve its generalization ability. I optimize the L2 regularization term for XGBoost, but

this appears to be insufficient under these extreme circumstances. Another form of regularization is simply

including more data. Including the unlabeled data into the objective function for a machine learning model

(i.e., semisupervised learning) can be interpreted as a form of regularization. If the smoothness assumption

of LP is satisfied (Chapter 5.5.1 below), then self-training coupled with LP can perform well. These results

support the notion that semisupervised methods are better suited for problems facing scarce training data

compared to supervised methods. Chapter 3 comes to the same conclusions using the same coupled self-

training LP approach for well-log classification. Given that this coupled self-training LP approach is shown

to be effective on two different datasets, this supports the robustness of the technique and its potential to be

applied to other problems.
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Figure 5.16: The machine learning predictions using the de-trended seismic attributes as inputs and Well #2
as the training data. Panels (a, c, e) and panels (b, d, f) correspond to the results depicted in the third and
fourth rows of Table 5.2, respectively. Many of the artifacts present in Figure 5.15 are no longer present in
panel (c). However, including the TWT as an input produces an artifact for XGBoost again (red circle). (g,
h) The ground truth model is provided at the bottom of each column for visual comparison.
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The simplicity of LP and self-training also provide a sense of transparency, which cannot be said for

more complicated algorithms. Deep learning methods have many layers and hyper-parameters, making it

more challenging to pinpoint what exactly is causing a problem if they are performing poorly. There are

only a few sources to analyze for troubleshooting any issues with LP or self-training: the data themselves,

and two hyper-parameters (for both LP and self-training). I begin my analysis below by discussing how the

data themselves can negatively impact the machine learning performance and my solution for this problem.

5.5.1 Effectiveness of de-trending

The results that I present here explore many facets of a seismic petrophysical classification problem, and

I begin by discussing the impact of de-trending the seismic attributes. When using the raw attributes as

inputs, we see an overall poor performance for all algorithms (refer to the first two rows of Tables 5.1

and 5.2). However, upon de-trending the input attributes, we see a noticeable improvement (refer to the

last two rows of Tables 5.1 and 5.2). With specific regard to the semisupervised methods, the changes in

performance that we observe must relate directly to the changes in the inputs (i.e., de-trending) because the

hyper-parameters for LP and self-training are kept consistent for both scenarios. I show in Figure 5.13 that

de-trending the inputs is fundamentally a transformation that improves the class separation and reduces the

inter-attribute correlation; it is these two phenomena that are responsible for the improvements we observe

when the input attributes are de-trended.

I attribute the poor performance of LP when using the raw seismic attributes to the violation of a key

assumption. LP has an inherent smoothness assumption, which states that nearby points in a concentrated

region of the input space should share the same label; alternatively, if nearby points are separated by a low-

density region, their labels need not be shared (Zhou et al., 2004; Chapelle et al., 2006). The depth trends in

the raw attributes can cause points belonging to different classes to reside in the same regions of the attribute

space (e.g., compaction trends causing a shallower shale and a slightly deeper sand to have the same density,
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see Figure 5.1). The smoothness assumption is violated here because data points with the same properties

do not always share the same label. This is an issue because it complicates the process of spreading labels

from training data points to their unlabeled neighbors when the labels are conflicting in similar regions of

the input space. What is happening in these conflicting label situations is the class with the most points is

passing on its label to its neighbors, in some cases overwriting some of the other initial labels (this is allowed

to happen 10% of the time because the hyper-parameter α = 0.10). We can observe these phenomena in

the LP prediction given in Figure 5.11(c); LP is overpredicting the presence of brine sand in areas more

dominated by brine sand (e.g., 6 km depth), and the finer brine sand detail is being replaced by shale in

regions dominated by shale (1-2.5 km depth). These complications with the LP result are perpetuated with

self-training (see Figure 5.11e). This is also demonstrated in the well-log classification example in Chapter

3 where any issues with the underlying LP model can be perpetuated with self-training, and we observe a

similar phenomenon here as well.

However, de-trending the seismic attributes helps points belonging to the same class to also reside within

the same region of the input space (see Figure 5.13). This helps prevent the LP smoothness assumption from

being violated, and this is noted by the improvement observed in Figure 5.14(c) compared to Figure 5.11(c).

Furthermore, upon de-trending the inputs, my self-training process improves the performance of LP in ev-

ery instance, which suggests that self-training can improve LP if the underlying graph is not violating the

smoothness assumption. Overall, the de-trending process provides a quantitative benefit for all methods. In

the Well #1 scenario, we observe up to a 10% improvement in the macro-F1 scores, with the most improve-

ment seen with XGBoost when TWT is included (see rows 2 and 4 in Table 5.1). A similar observation is

made in the Well #2 scenario, where self-training LP has improvements up to 20% in the macro-F1 scores

(see Table 5.2).

Visually, the results also show that de-trending the inputs can alleviate many artifacts that occur on a

broad scale. However, this process does appear to have introduced some minor artifacts in certain locations,
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specifically the channel valley fills at 4.5 km depth. Notice in Figure 5.11 that these hydrocarbon-filled

channel sands (denoted in black) are actually classified quite well for each method. A direct comparison of

Figure 5.11 to Figure 5.14 shows that removing the background trend from the input attributes has introduced

the presence of brine sands (denoted in blue) in this area at 4.5 km depth, which are misclassifications

according to the ground-truth model (Figures 5.14g, 5.14h). Since these misclassifications occur for all

three methods, this suggests that the de-trended attributes, not the algorithms, are the underlying issue. Not

surprisingly, self-training appears to accentuate these artifacts. My technique of using a median filter to

extract the background trend is a rather simplistic approach, so it is possible that a more sophisticated filter

could achieve a better result here. However, despite these fine-scale artifacts, this de-trending process is

still effective on a broad scale. It is worth noting that if the intent is to only classify a narrow interval, then

de-trending the inputs is likely unnecessary.

5.5.2 Feature expansion

Another component of these results is that I explore feature expansion and selection. One way that I expand

the input features is to simply include the TWT. The motivation behind including the TWT as a feature is

to determine if it alone can capture the depth-dependency of the input attributes. The results (e.g., Figure

5.11) suggest that including the TWT cannot help the machine learning algorithms recognize the inherent

depth trends of the seismic attributes. Although, upon de-trending the attributes, including the TWT always

improves the performance for LP and self-training LP by 1-3% (see last two rows of Tables 5.1 and 5.2). On

the contrary, including the TWT for XGBoost provides mixed results. To understand this phenomenon, it

is important to know that decision tree-based methods can be conceptualized in this context as representing

each class by a multi-attribute hypercube. In the true model, there are two leaf turbidites between 2 and 3 km

depth towards the left of the section (see Figure 5.7a). An issue arises for XGBoost in the Well #1 case (using

the raw attributes) because the training well only penetrates the deeper of these two leaf turbidites. When
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including the TWT as a feature, the hypercube learned from XGBoost only thinks that the hydrocarbon

sand class can occur at certain times based on the training data; this leads to a clear cutoff artifact at 2.9

km depth (see the red-circled region in Figure 5.11b). De-trending the inputs helps fix this problem for the

Well #1 case, but an artifact of this nature is still observed for a brine sand at (x, z) = (10, 6) km in Figure

5.14(b). These problems are exacerbated in the Well #2 case because this well only samples the channel

valley fills at 4.5 km depth (i.e. the hydrocarbon class only occurs within a narrow time window). All three

methods require de-trended inputs to perform well in this case, but including the TWT limits the XGBoost

classification of hydrocarbon sands to the only interval where they occur in the training data (Figure 5.16b).

As such, these results suggest that one should be cautious when including TWT/depth as an attribute for

decision tree methods.

Including the TWT expands the number of features by one, but I also consider additional features that

can be generated from the base attributes. While these results are not provided here for brevity, they do

suggest that including additional rock properties-based attributes (e.g., Lambda Rho, Vp, Vs, Bulk modulus,

and Vp/Vs) provides little to no benefit for this problem. It seems that including the TWT with the base

attributes provides more benefit than including additional seismic attributes. However, the density attribute

does appear to be an essential distinguishing attribute because the performance drops in most situations

when the density is not included. These results perhaps demonstrate a quantitative benefit of the efforts to

acquire quality far-offset seismic data to recover the density attribute from prestack seismic inversion.

5.5.3 Robustness to training data

I also consider two different locations for the training well to investigate the robustness of the machine

learning methods to changes in the training data. Well #1 intersects most of the hydrocarbon-bearing units,

whereas Well #2 only intersects one of the zones. A few observations can be made if we focus primarily on

the de-trended results (last two rows of Tables 5.1 and 5.2). We observe a decrease in performance for both
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XGBoost and LP when the training data change from Well #1 to Well #2. However, what is interesting is

that the self-training LP approach achieves a comparable performance in both training data situations. These

observations suggest that the self-training LP method is more robust to changes in training data.

5.5.4 Overall performance

The primary motivation for this work is to determine if the tested semisupervised techniques can achieve

a better performance than supervised methods in a scarce training data scenario for seismic classification.

The results using de-trended inputs (last two rows of Tables 5.1 and 5.2) offer some interesting observations

on this theme. In the Well #1 case, LP outperforms XGBoost by a small margin (2-5% in macro-F1), but

XGBoost and LP perform similarly in the Well #2 case if TWT is omitted. However, we see self-training

LP achieving higher macro-F1 scores than XGBoost in each instance, with 3-6% improvement observed in

the Well #1 case and 8% improvement (even larger if TWT is used) in the Well #2 case.

While I focus my primary analysis (above) on using the macro-F1 score as the evaluation metric on

the testing data predictions, this metric lacks interpretability compared to using the individual precision

or recall metrics. For instance, does a higher macro-F1 score indicate improvements in both precision

and recall, or just one of those metrics? As mentioned in Chapter 5.3.7, precision is also an appropriate

metric to consider for this problem, and I consider it here as a secondary metric. I also include recall

for completeness (following the argument made in Chapter 5.3.7, I do still use the macro averages for these

secondary metrics). It is worth noting that even though the cross-validation scoring metric used for XGBoost

is macro-F1, using other scoring metrics (e.g., macro-precision) still selects XGBoost models that perform

similarly to the macro-F1 chosen models. The macro precision and recall values are provided in Tables 5.1

and 5.2 (purple and red values, respectively). For brevity, I restrict the analysis here to the results of the

Well #1 case using the de-trended inputs (refer to bottom two rows of Table 5.1). We generally observe

that the macro-recall for XGBoost, LP, and self-training LP are relatively consistent, but self-training LP
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performs 7-11% better in macro-precision (this implies that the 3-6% improvement in macro-F1 mentioned

above is primarily due to significant improvements in macro-precision). These results indicate that all three

algorithms have roughly the same number of false negatives in their predictions, but the semisupervised

methods have much fewer false positives. The predictions in Figure 5.14 support this. The hydrocarbon

class predictions for XGBoost have obvious false positives (e.g., black units predicted at 4 km depth in Figs.

5.14a and 5.14b), and this is related to XGBoost overfitting the training data. These false positives are not

present in either of the LP or self-training LP predictions, which explains why these two methods have a

much higher macro-precision.

The utilization of macro-averaged metrics (e.g., macro-F1 and macro-precision) for evaluating predic-

tions leads to the observations and ultimate conclusions of this work that semisupervised methods (namely

self-training LP) are outperforming XGBoost under the context of minimal training data. However, one

could perhaps arrive at a different, arguably misleading, conclusion if different metrics are used, such as

accuracy or weighted-F1 scores. These metrics are biased by classes with more data points, and any im-

provements in the least populated classes may not be adequately captured. This is critically important given

that the model has class imbalance (82% shale, 16% brine sand, and 2% hydrocarbon sand). For instance,

in the Well #1 case (referring to the fourth row of Table 5.1), XGBoost has a weighted-F1 = 84.16% and

accuracy = 85.02%, and self-training LP has a weighted-F1 = 84.48% and accuracy = 84.64% (note: these

values are not shown in Table 5.1, I am simply providing them here). The performance of both methods

in this scenario using both of these metrics is nearly identical, but the associated predictions for XGBoost

(Figure 5.14b) and self-training LP (Figure 5.14f) are still quite different. Here, it is clear that self-training

LP recovers more accurate sand detail than XGBoost, quantified by self-training LP achieving over a 6%

better hydrocarbon class F1 than XGBoost. For self-training LP, this 6% improvement in the hydrocarbon

class is negligible in any weighted score because only 2% of the data are hydrocarbon sand. XGBoost per-

forms marginally better than self-training LP using a weighted metric, such as accuracy, because XGBoost
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Table 5.3: Elapsed computation time of each machine learning method associated with the de-trended at-
tribute scenarios of Table 5.1. All computations are performed on ComputeCanada resources using a single
node (2 × Intel E5-2683 v4 Broadwell @ 2.1GHz, 32 cores).

Input attributes XGBoost LP Self-training LP
AI, SI, Rho 0m 56s 16m 38s 1h 24m 54s
AI, SI, Rho, TWT 1m 00s 20m 01s 2h 05m 59s

performs < 1% better on the most populous class, shale. Unfortunately, this is misleading given what we ob-

serve in the predictions themselves. If the most populous class is deemed the most important, then weighted

metrics would be appropriate. However, this is not the case for this scenario because the least-populated

classes have more interest. In summary, it is essential to consider which metric(s) are best suited for a given

problem, otherwise, an inappropriate metric can provide misleading results, as I show here.

5.5.5 Pitfalls

While the semisupervised method, self-training LP, can outperform XGBoost from a classification stand-

point, other aspects need to be considered, such as computational resources. Table 5.3 shows the com-

putation time requirements for the de-trended attribute scenarios given in Table 5.1. XGBoost runs rather

quickly, and this is because it only trains on ≈ 1000 data points. The LP method requires more computation

time, which comes as no surprise because LP must learn an internal mapping on all 580k data points. If it

takes on average 18 minutes for LP to run and 1 minute for XGBoost to run, then XGBoost is 18x faster

here, but LP is utilizing 580x more data than XGBoost. However, what is expensive is the self-training pro-

cess because each iteration of the self-training process requires me to solve for the LP spreading function,

and I use five self-training iterations. For the size of this problem, the computation time requirements are

still quite manageable (max. 2 hours), and these could easily be reduced if GPU nodes, or more CPU cores,

are utilized (these results have been executed on one CPU node with 32 cores).

What is perhaps the most limiting factor for LP is the memory storage of the adjacency matrix. For this

problem that contains 580k data points (and using 2000 nearest neighbors), LP requires ≈ 50 GB of RAM,
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which is relatively easy to accommodate. However, if I do not reduce the seismic sampling from 2 to 4

ms, then the problem contains 1.16M data points, and I must double the nearest neighbors to 4000 to get

comparable results; this situation requires over 200 GB of RAM. For 3D problems with several million data

points, this implementation of LP in scikit-learn may be infeasible. The results suggest that applying

self-training to LP can recover better classifications than a robust supervised approach (XGBoost), but one

must consider if the accuracy improvements are worth the extra computational resources based on the size

of their own problem and the available resources.

5.5.6 Recommendations

Any interested readers who seek to apply the label propagation (LP) or self-training methods to their own

problem or dataset should consider a few factors such as the number of labeled data, complexity of the prob-

lem, size of the dataset, whether the machine learning problem is static or dynamic, model assumptions,

and model interpretability. If a dataset has limited training data, then semisupervised methods, in general,

may be the most appropriate. However, if the machine learning problem is straightforward (e.g., linearly

separable classes), then semisupervised techniques may provide no improvement over supervised methods

because the unlabeled data will provide no additional value (i.e., a supervised linear classifier is sufficient).

However, as discussed in the previous section, the size of the dataset can be problematic for transductive

methods like LP because all unlabeled data that are to be classified must be included in the generation of the

adjacency matrix; this can be computationally impractical if the unlabeled data are on the order of millions,

or larger. However, Liu et al. (2012) do summarize some techniques used to address the scalability issue

with LP, some of which include using anchor points (Liu et al., 2010) or using a low-rank approximation of

the adjacency matrix (Zhang et al., 2009). An alternative in these big data situations is to consider induc-

tive semisupervised methods, such as semisupervised Gaussian mixture models (Chapter 2.2.3). Inductive

semisupervised methods allow one to train the algorithm using a realistic subset of the unlabeled data, and
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then that model can be used to predict class labels for the remaining unlabeled data not used in training.

Another essential factor is whether the machine learning problem is static or dynamic, i.e., if the dataset

is fixed or if the dataset is consistently augmented with new, real-time data. In a dynamic case, LP would

have to be retrained for each situation when new data need to be classified, which would be inefficient.

Inductive methods would not need to be retrained in these situations where the new data have the same

dimensionality as the initial training data. However, there are situations where the new data in a dynamic

problem may be including additional features (e.g., an additional survey measuring a different property),

and any algorithm would have to be retrained in this scenario. Nonetheless, transductive methods are best

suited for static machine learning problems.

Some additional factors that are also important to consider are the machine learning model assumptions

and interpretability. A benefit of the LP method that I make in this paper is that it is simple to interpret

and implement, which cannot be said for more complicated semisupervised algorithms. The self-training

method has similar advantages, and it has the flexibility to wrap around any algorithm that makes predictions

for unlabeled data. In this paper, I exclusively apply self-training to LP, but self-training techniques can also

be applied to supervised methods to improve their performance. Furthermore, how the data are distributed

in feature space will be different for different datasets, so choosing a machine learning method with the

appropriate model assumptions is necessary. Similar to neural networks and other non-parametric methods

(e.g., SVM, decision trees), a benefit of LP is that it makes no distribution assumptions. However, as I

discuss in Chapter 5.5.1, LP does have a smoothness assumption. While I am not aware of any quantitative

measures to test the smoothness assumption prior to classification, a qualitative assessment of the training

data can be diagnostic (e.g., Figure 5.13). In summary, I find that LP is best suited for machine learning

problems with these traits: minimal training data, complex, relatively small data size, and static.
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5.6 Conclusion

In this study, I propose the use of simple, straightforward semisupervised techniques for solving a synthetic

seismic petrophysical classification problem with minimal training data. Supervised learning algorithms are

susceptible to overfitting if the training data are minimal, and semisupervised techniques can be a potential

remedy in these situations. Many semisupervised algorithms do exist, but label propagation and self-training

have the advantage of having only two hyper-parameters each and they are both conceptually simple. The

simplicity of label propagation and self-training allows me to easily determine any underlying causes of poor

performance; the same cannot be said for more complicated techniques, such as deep learning methods. I

apply these two semisupervised techniques and a supervised method, XGBoost, to a seismic petrophysical

classification scenario built using the 2D SEAM model. To simulate a scarce training data scenario, I as-

sume that there is only one well, but I vary the location of this well to determine how robust each algorithm

is to training data changes. I find that the seismic attributes must have their background trends removed for

any of the machine learning algorithms to perform well. Upon de-trending the inputs, label propagation and

XGBoost perform similarly, but label propagation with self-training applied does outperform XGBoost. The

coupled self-training label propagation approach is also shown to be quite robust to training data changes as

well. These findings extend the premise to an exploration geophysics problem, namely seismic petrophys-

ical classification, that semisupervised algorithms can provide more robust, generalized predictions than

supervised methods in the presence of scarce training data.



Chapter 6

Are seismic attributes still helpful for deep

learning?1

This short chapter is based on an SEG Expanded Abstract from 2021, which has a focus that is a minor

detour from the main theme of the thesis, but additional results (that are not originally in the abstract) are

included here in order for this chapter to tie into the previous work. Supervised deep learning methods

have not been considered thus far to compare the semisupervised methods against because of an assumption

that they would perform poorly in the minimum training data theme of this thesis. However, it is more

convincing to support this notion with tangible results. As such, this chapter is a continuation of the seismic

classification problem from Chapter 5, using the same dataset, but from the perspective of deep learning.

The only supervised algorithm used in Chapter 5 is XGBoost, so the results presented here provide another

source of comparison. A benefit of deep learning techniques is that classification can be performed directly

on the seismic data. A secondary aspect of this work that I explore is determining if deep learning methods

can still benefit if they are trained on seismic data and seismic attributes. Using the angle stacks and

the seismic inversion attributes from Chapter 5, I can explore this hypothesis. I also consider using the
1Dunham, M.W., 2021. Are seismic attributes still helpful for deep learning?, in SEG Technical Program Expanded Abstracts

2021, pp. 1561-1565, Society of Exploration Geophysicists.
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original seismic inversion attributes and the de-trended versions to determine the impact of de-trending.

Four different training situations are explored, but the latter two situations use the same Well #1 and Well

#2 training well locations in Chapter 5 (see Figure 5.7a) to facilitate comparisons to that work.

6.1 Introduction

The goal of machine learning in seismic facies classification is to map seismic data to classes of interest (e.g.,

seismic facies, lithofacies, or petrofacies). The two main approaches in the literature to carry out this task

are unsupervised and supervised learning schemes. Unsupervised methods have included self-organizing

maps (SOMs, Strecker & Uden, 2002; de Matos et al., 2007; Roden et al., 2015), generative topographic

mapping (GTM, Roy et al., 2014; Qi et al., 2016), and Gaussian mixture models (GMMs, Feng et al., 2018a;

Wallet & Hardisty, 2019). For supervised methods, some popular algorithms have included shallow neural

networks (Saggaf et al., 2003; Ross & Cole, 2017) and support vector machines (SVM, Li & Castagna,

2004; Zhao et al., 2015). The aforementioned traditional supervised techniques are limited in their ability

to train directly on the seismic data; they rely exclusively on feature engineering and feature selection as a

critical part of their methodology (e.g., requiring the careful selection of seismic attributes that best relate to

the classes of interest).

Deep learning techniques, however, are able to classify and learn the features themselves from the raw

inputs (LeCun et al., 2015). In essence, deep learning techniques can be directly applied to seismic data

without the need to compute attributes. Many have exploited this benefit of deep learning in recent years

in the context of seismic classification. Convolutional neural networks (CNNs) treat the seismic data as

an image and can extract the necessary features through filters to classify and delineate faults (Araya-Polo

et al., 2017; Cunha et al., 2020), salt bodies (Waldeland et al., 2018), and seismic facies (Souza et al., 2019).

Recurrent neural networks (RNNs) are another form of deep learning that are designed for sequential (time-

dependent) data. While originally intended for machine translation (Graves et al., 2013; Sutskever et al.,
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2014), RNNs can be extended to seismic classification by treating seismic traces as sequences (Grana et al.,

2020).

It is undoubtedly an advantage over traditional techniques that deep learning methods do not require fea-

ture engineering. Recent publications show that deep learning methods trained directly on the seismic data

can perform better than traditional methods that must train on seismic attributes (e.g., Souza et al., 2019).

However, if the seismic attributes are also included in the training for deep learning methods, could their

performance improve even more? Or does including seismic attributes provide no benefit to deep learning

methods, thereby rendering seismic attributes obsolete? To the best of my knowledge, these questions have

yet to be addressed in the literature. To investigate these ideas, I formulate a seismic classification problem

using a subset of the Phase 1 2D SEAM model from Chapter 5. An advantage of this being a synthetic

problem is that the ground truth facies model (Chapter 5.3.3) can be used to quantify the predictions of the

testing data. The input data for the machine learning problem are the six angle stacks generated from the

model (Chapter 5.3.4), and the prestack seismic inversion attributes. I train and evaluate the performance of

an RNN when using the (1) angle stacks, (2) angle stacks + seismic inversion attributes, and (3) angle stacks

+ de-trended seismic inversion attributes as inputs in four different scenarios. Scenario 1 does a generic

80%-20% train-test split of all the input traces. Scenario 2 is a more realistic scenario where only ten wells

(or ten traces) are used for training. The final two scenarios push RNNs to their limit by training on only a

single well (one trace), which are the Well #1 and Well #2 scenarios from Chapter 5.

6.2 Data preparation

The model utilized for this study is the same subset of the Phase 1 2D SEAM model that is used in the

previous chapter (see Figure 5.2). As discussed in Chapter 5.3.4, seismic data are simulated from this elastic

model using Devito (Louboutin et al., 2019), the shot records are migrated using prestack time migration,

and then the data are ultimately stacked into six angle stacks. Figure 6.1(a) shows one of the angle stacks.
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These six angle stacks provide the base inputs for the RNN (discussed below), but one of the aspects of this

work is to determine the benefit (if any) of including seismic attributes as additional inputs to the RNN. As

such, the prestack seismic inversion attributes (acoustic impedance - AI, shear impedance - SI, and density -

Rho) computed in Chapter 5.3.4 are also used here. The inherent depth trends of these attributes negatively

impact classification performance in the previous work (Chapter 5.5.1); so for continuity, I also explore if

this factor has any impact on RNN performance. Figure 6.1(b) shows the de-trended version of AI.

The seismic stacks and the inversion attributes serve as the inputs for the RNN, but I also need to

establish the class labels. Recall from Chapter 5.3.3 that thresholds are applied to the shale volume (Vshale)

and resistivity model properties to define a three-class model with shale, wet sand, and hydrocarbon sand

classes. I use the same model in this study, however, this ground truth model is in depth and the seismic

data are in two-way traveltime (TWT). So, I decide to convert the facies model to TWT and resample it so

that each seismic sample from each trace has a corresponding class label (Figure 6.1c). The previous study

converts the machine learning predictions from TWT to depth (see Figure 5.9), but here, I elect to leave the

predictions in TWT and convert the model to TWT to measure performance.

6.3 Methodology

Traditional machine learning methods treat each data point independently, but seismic traces are inherently

time-dependent due to the nature of the convolutional model (trace = wavelet ∗ reflectivity). A single

change in reflectivity generates a response across multiple samples in a trace due to the band-limited nature

of the wavelet; so, independently mapping each seismic sample to a class may be an over-simplification. An

alternative approach to this problem is to consider methods designed for sequential data, such as recurrent

neural networks (RNNs). We can treat each seismic trace as a sequence, and RNNs learn by processing

these sequences one sample at a time where the RNN hidden units contain information about the history

of the previous samples in a sequence (LeCun et al., 2015). Theoretically, RNNs have the capability of
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Figure 6.1: (a) Near angle stack (6-12◦) generated from the model subset denoted by the red box in Figure
5.2. (b) Acoustic impedance attribute recovered through prestack seismic inversion with de-trending applied.
(c) Ground truth facies model denoting three classes. The locations of Well #1 and Well #2 are indicated for
reference.
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processing long sequences, but they are limited to learning a history of only a few previous samples because

the backpropagated gradients tend to either explode or vanish over many time steps (Pascanu et al., 2013).

This limitation is overcome by improvements to the RNN unit structure, such as the long short-term memory

(LSTM) unit (Hochreiter & Schmidhuber, 1997; Sak et al., 2014).

The RNN model that I use (Figure 6.2) consists of an input layer, an LSTM layer, a dropout layer, and a

time-distributed layer connected to a softmax layer. The optimizer for this model is Adam (Kingma & Ba,

2014), and the loss function is sparse categorical cross-entropy. This model is inspired by the RNN model

from Grana et al. (2020), which is also used for a seismic classification problem. The data for the input layer

are structured as a 3D array with size = (ns, nt, nd), where ns is the number of sequences (or seismic traces),

nt is the number of samples/timesteps in each sequence, and nd is the number of features (i.e., how many

stacks or attributes are used). The corresponding output is structured as a 2D array of size = (ns, nt). Since

each (multi-dimensional) seismic sample has a corresponding label, this is referred to as a Many-to-Many

sequence problem; the purpose of the time-distributed layer is to allow the softmax operation to be applied to

every sample of an input sequence (i.e., predict an output for every input sample). The distinction between

this RNN model (Figure 6.2) and the one from Grana et al. (2020), is the inclusion of the dropout layer.

Dropout is a form of regularization for neural networks that helps prevent overfitting by randomly removing

a proportion of units (defined by the user) from a given layer at each iteration (Srivastava et al., 2014). I use

default settings for many of the hyper-parameters, but two still require optimization: the number of units for

the LSTM layer and the dropout value. This model is implemented using Keras with a Tensorflow backend

(v. 2.3.0), and the next section summarizes the results using this model.
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Figure 6.2: A schematic of the ‘Many-to-Many’ RNN model used to classify seismic data for this study.
The traces shown for the input layer (6-12◦ Near, 18-24◦ Mid, and 30-36◦ Far angle stacks) are the output
labels are extracted from the Well #1 location (see Figure 6.1c). For details regarding the RNN, refer to the
text.

6.4 Results

6.4.1 Scenario 1

The first scenario that I explore is randomly splitting the total number of sequences (ns = 576) into 80%

and 20% for training and testing, respectively. As mentioned previously, I consider three input situations

for each scenario: (a) six angle stacks (nd = 6), (b) six angle stacks + seismic attributes (nd = 9), and

(c) six angle stacks + de-trended seismic attributes (nd = 9). I tune the hyper-parameter settings using the

RandomSearch class from Keras Tuner on 20% of the training data put aside for validation. For all three

situations, the RNN model converges after about 50 epochs (see Scenario 1 curves in Figure 6.3a).

The training, validation, and testing scores for Scenario 1 are indicated in the top portion of Table 6.1.

The accuracy metric can be misleading for imbalanced datasets, which is valid for this example (83% shale,

15% wet sand, 2% hydrocarbon sand). The macro scores provide a better representation of performance
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Table 6.1: Results of the RNN performance for Scenarios 1 and 2. Each scenario has three different input
data situations as stated in the text and these are denoted with (a), (b), and (c). The final column provides
performance metrics of the RNN model when applied to all sequences (i.e., training and testing combined);
see the key at the bottom for what each value represents. *Denotes de-trended versions of the seismic
inversion attributes. **Denotes an input situation in Scenario 2 where sample weights are not used; the next
three rows are situations where sample weights are used.

Input data RNN
hyperparameters

Training
accuracy

Validation
accuracy

Testing
accuracy

Global
performance metrics

Scenario 1: Train (64%), validate (16%), test (20%)

(1a) Angle stacks
RNN units = 128

Dropout = 0.1
95.49 94.95 95.02

90.41, 88.45, 89.41
97.32, 86.41, 84.48

(1b)
Angle stacks,
AI, SI, Rho

RNN units = 128
Dropout = 0.1

95.43 95.07 95.14
90.52, 89.10, 89.80
97.37, 86.57, 85.45

(1c)
Angle stacks,
*AI, *SI, *Rho

RNN units = 128
Dropout = 0.1

96.33 95.76 95.67
91.57, 91.08, 91.31
97.74, 88.81, 87.38

Scenario 2: Train (1.4%), validate (0.4%), test (98.2%) – 10 training wells

(2a) Angle stacks**
RNN units = 64
Dropout = 0.5

84.44 86.47 84.19
65.11, 47.46, 51.38
91.25, 26.89, 36.00

(2a) Angle stacks
RNN units = 64
Dropout = 0.5

85.92 84.93 85.01
64.57, 72.72, 67.35
91.24, 53.11, 57.69

(2b)
Angle stacks,
AI, SI, Rho

RNN units = 80
Dropout = 0.4

87.03 87.01 86.26
65.86, 74.18, 68.50
92.01, 57.88, 55.62

(2c)
Angle stacks,
*AI, *SI, *Rho

RNN units = 80
Dropout = 0.4

90.04 90.15 88.36
73.04, 78.64, 75.39
93.15, 64.28, 68.73

KEY
Macro averages for: Precision, Recall, F1

Individual F1 for: Shale, Wet sand, HC sand

on imbalanced datasets (as discussed in Chapter 5.3.7). However, these metrics have been removed from

the Keras (v.2) core because they can introduce complications when training is performed in batches. Con-

sequently, this does restrict the RNN to train using accuracy as its metric (see Scenario 1 curves in Figure

6.3b), but this does not prevent me from using other metrics to evaluate the predictions. I use the trained

RNN in each input situation to make predictions on all sequences (i.e., training and testing combined), and

then I compute the macro precision, recall, and F1 scores, as well as the individual F1 scores for each class

(last column in Table 6.1). This provides an understanding of how the algorithm performance is doing as a

whole, and on a per-class basis. Despite the model being dominated by shale, the individual F1 scores for

wet sand and hydrocarbon sand are still quite good in this scenario (> 85%).
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Figure 6.3: The (a) categorical cross-entropy loss and (b) accuracy curves for Scenarios 1 and 2. The
performance of both of these scenarios is depicted in Table 6.1. All training curves are solid and all validation
curves are dashed.

6.4.2 Scenario 2

Scenario 1 is not particularly realistic, with 80% of the model labels known a priori. Scenario 2 is more

feasible where I assume that there are only ten wells (or ten sequences) available for training, and the

remaining sequences are used for testing (I randomly select two of the training wells for validation and

hyper-parameter tuning). The initial predictions (for all input situations) for this scenario drastically over-

predict the presence of shale (i.e., there is very little sensitivity to the brine and HC sands, see the first row

for Scenario 2 in Table 6.1). This phenomenon does not occur in Scenario 1, which is likely because more

training data are used, and more complicated RNN models (i.e., more units) can be used without overfitting.

The loss, or penalty, of misclassifying a point belonging to any particular class is the same. So what is

happening here is that the model can still achieve an 83% accuracy even if it predicts everything as shale

because there is no added penalty for classifying the sand classes incorrectly. To mitigate this issue in this

scenario, I have to incorporate sample weights. These weights are inversely proportional to the number of

training points per class, which give higher penalties for misclassifying the less frequent sand classes. I

calibrate these weights by adjusting the values and qualitatively assessing how the predictions match the

true labels for the training data. The weights that I determine for shale, wet sand, and HC sand are 0.75,
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1.50, and 4.00, respectively. Using these weights significantly improves the performance of the sand classes,

as seen by the second row for Scenario 2 in Table 6.1.

The sample weights are used for each of the three input scenarios, and the numerical results are provided

in the bottom three rows of Table 6.1. Since far fewer data are used to train the RNN models in Scenario

2, they end up requiring more epochs to converge compared to Scenario 1 (see Scenario 2 curves in Figure

6.3a). Obvious overfitting occurs if these models run for too many epochs, so I stop training when I start to

observe the training accuracy surpassing the validation accuracy.

6.4.3 Scenarios 3 and 4

The final two scenarios test the limits of the RNN model by training on only a single well (one sequence)

in each case. The single wells used are Well #1 and Well #2 for Scenarios 3 and 4, respectively (see

Figure 6.1c for the location of these two wells). One of the difficulties with Scenarios 3 and 4 is that they

have only one sequence available for training, i.e., there are no validation sequences. This means that the

RandomSearch class from Keras Tuner cannot be used to determine hyper-parameter settings because this

requires more than one sequence. Another obvious consequence is that there are no validation curves, only

training curves. Therefore, training the RNNs and choosing appropriate values for the hyper-parameters

requires caution. The best way that I find to train the RNNs in these two instances is a trial-and-error-based

approach, where I select values for hyper-parameter settings (e.g., RNN units, dropout value, epochs) and

compare the single sequence predictions to the true labels in a well-view. Similar to Scenario 2, the sample

weights are essential in these two scenarios (the weight values are the same as those from Scenario 2); if

the sample weights are not included here, the over-prediction of shale is even more pronounced than what

is seen in Scenario 2. I determine that 36 RNN-LSTM units, 0.5 for the dropout rate, and 80 epochs work

well for both scenarios and all input data conditions. Table 6.2 provides the results, and while they were not

particularly useful for Scenarios 3 and 4, the loss and accuracy curves are provided in Figure 6.4.
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Table 6.2: Results of the RNN performance for Scenarios 3 and 4. Each scenario has three different input
data situations as stated in the text and these are denoted with (a), (b), and (c). Since both of these scenarios
only have one sequence available for training, there are no validation metrics. The final column provides
performance metrics of the RNN model when applied to all sequences (i.e., training and testing combined);
see the key at the bottom for what each value represents. *Denotes de-trended versions of the seismic
inversion attributes.

Input data RNN
hyperparameters

Training
accuracy

Validation
accuracy

Testing
accuracy

Global
performance metrics

Scenario 3: Train (0.2%) Well #1, validate (N/A), test (99.8%) – 1 training well

(3a) Angle stacks
RNN units = 36
Dropout = 0.5

83.92 - 83.66
59.93, 55.41, 55.95
90.81, 35.34, 41.70

(3b)
Angle stacks,
AI, SI, Rho

RNN units = 36
Dropout = 0.5

82.96 - 82.75
57.52, 61.56, 55.64
90.31, 34.19, 42.42

(3c)
Angle stacks,
*AI, *SI, *Rho

RNN units = 36
Dropout = 0.5

87.54 - 84.12
62.30, 69.13, 64.20
90.92, 46.50, 55.19

Scenario 4: Train (0.2%) Well #2, validate (N/A), test (99.8%) – 1 training well

(4a) Angle stacks
RNN units = 36
Dropout = 0.5

88.71 - 82.62
57.00, 49.96, 52.06
90.31, 29.70, 36.16

(4b)
Angle stacks,
AI, SI, Rho

RNN units = 36
Dropout = 0.5

89.35 - 82.38
56.93, 55.08, 55.07
90.06, 33.70, 41.45

(4c)
Angle stacks,
*AI, *SI, *Rho

RNN units = 36
Dropout = 0.5

88.07 - 82.79
61.62, 63.88, 62.56
89.91, 45.24, 52.53

KEY
Macro averages for: Precision, Recall, F1

Individual F1 for: Shale, Wet sand, HC sand

Figure 6.4: The (a) categorical cross-entropy loss and (b) accuracy curves for Scenarios 3 and 4. The
performance of both of these scenarios is depicted in Table 6.2.
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6.5 Discussion

6.5.1 Impact of seismic attributes on performance

The results presented here have a few noteworthy takeaways. Not surprisingly, Scenario 1 can use a more

complicated model (LSTM units = 128) with less regularization (dropout = 0.1) because more training data

are used. Scenarios 2-4 have much less training data, so these models require fewer LSTM units and more

regularization to help prevent overfitting. In the Scenario 1 case, the performance is quite good overall

without any notable differences between the predictions from each input situation (see Scenario 1 panels

in Figure 6.5). Including the three seismic attributes (row 1b in Table 6.1) only gives a benefit of < 1% in

macro precision, recall, and F1, and the benefit is only 1-2% in the de-trended seismic attribute case (row 1c

in Table 6.1). In this circumstance, the effort required to produce the prestack seismic inversion attributes

may outweigh the potential benefits.

However, different conclusions can be drawn from the more realistic training data scenarios. In Scenario

2, there is still only a minor improvement using the seismic attributes compared to just using the angle stacks

(compare rows 2a and 2b in Table 6.1), but an 8% improvement in macro F1 is seen when the inputs include

the de-trended attributes (row 2c in Table 6.1). The predictions in Figure 6.5 demonstrate this as well because

including the de-trended seismic attributes (Figure 6.5g) has far fewer HC sand false positives compared to

the other two input data scenarios. Similar observations are also seen in Scenarios 3 and 4. Including the

seismic attributes continues only to provide marginal improvements in the performance, but the impact of

the de-trended attributes is rather substantial. The results in Table 6.2 indicate a 9-10% improvement in

macro-F1 and 10-15% performance in the individual F1 scores for the wet and HC sands when including

the de-trended attributes as inputs. These improvements in the wet and HC sands are easily seen in Figure

6.6; the predictions including the de-trended seismic attributes capture far more detail than using just the

angle stacks or angle stacks + seismic attributes.
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These results indicate that seismic attributes can improve RNN performance when training data are lim-

ited. Overall, the seismic inversion attributes provide marginal improvements, but the de-trended versions

of these attributes improve the performance quite significantly. In limited training data situations, it has

also been shown that data augmentation can improve deep learning performance (Krizhevsky et al., 2012;

Shi et al., 2019). Data augmentation is a trivial task for CNN-based applications (e.g., rotating, flipping,

and distorting training images), but the same cannot be said for applications where the labels are derived,

for instance, from well data. These results indicate that including engineered features may have a similar

performance-boosting effect to data augmentation, and engineered features can be an alternative when data

augmentation proves challenging.

6.5.2 Comparison of Scenarios 3 and 4 to Chapter 5 results

The purpose of training RNN models with Well #1 and Well #2 (see Figure 6.1c) is to allow a comparison of

these results with those from Chapter 5. For the Well #1 case, compare the final two rows of Table 5.1 and

row 3c of Table 6.2. Here, the self-training LP macro F1 score is still over 4-5% higher than the macro F1

score for the RNN model. Interestingly, the XGBoost performance is comparable to the RNN performance

in this case. For the Well #2 case, compare the final two rows of Table 5.2 and row 4c of Table 6.2. The

self-training LP macro F1 score is 6-8% higher than the macro F1 score for the RNN model. The difference

in this case is that the RNN model performs slightly better than XGBoost. While the comparisons between

Chapter 5 and this work are not necessarily apples-to-apples because the six angle stacks are used as inputs

here when they are not in Chapter 5, these comparisons still provide valuable insights. The results indicate

that a deep learning technique can still perform well in limited training data scenarios, but the performance

is not any better or worse compared to non-deep learning algorithms, such as XGBoost. Furthermore, the

semisupervised approach still achieves better performance for this seismic classification example than a

supervised deep learning algorithm, such as recurrent neural networks.
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Figure 6.5: The (a, b, c) Scenario 1 and (e, f, g) Scenario 2 global predictions for each of the three input
scenarios. (e) The red triangles denote the locations of the ten wells used for training. Panels (d, h) provide
the ground truth model as a reference to facilitate comparisons to the predictions.
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Figure 6.6: The (a, b, c) Scenario 3 and (e, f, g) Scenario 4 global predictions for each of the three input
scenarios. The red triangles denote the locations of Well #1 and Well #2 used for training Scenarios 3 and
4, respectively. Panels (d, h) provide the ground truth model as a reference to facilitate comparisons to the
predictions.
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6.6 Conclusions

Recurrent neural networks (RNNs) have the advantage of being able to operate directly on the seismic data,

but I explore if the inclusion of engineered features (i.e., seismic attributes) can improve the performance

even further using a synthetic seismic classification problem. The results suggest that including seismic at-

tributes (with background trends removed) can still improve the RNN performance, but the most significant

impact is observed when the training data are limited. Many researchers have spent decades developing seis-

mic attributes to help extract or illuminate certain features of seismic data, and perhaps there will continue

to be a space for attributes in the realm of deep learning.



Chapter 7

Predictive lithology mapping using

semisupervised learning: practical insights

using a case study from New South Wales,

Australia1

7.1 Introduction

The ability to produce a geologic map is an essential component of the early stages of mineral exploration.

Geologic maps can inform decisions for targeting mineral deposits, such as prioritizing specific areas for

more detailed mapping and sampling. Lithologic mapping generally consists of identifying outcrops, then

determining the rock lithology present at these outcrop locations, and finally inferring the distribution and

spatial relationships of these lithological units in regions where the bedrock is unknown or situated below

cover (e.g., vegetated regions, etc.). Outcrop locations may be limited due to cost or logistical reasons,
1This manuscript is currently under review in the journal Geophysics.
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so extrapolating or interpolating lithologic units to the unknown regions can be challenging. A source of

information that can assist with the inference of lithologic units is remote sensing data, such as geophysics

or satellite imagery. However, this manual construction of lithologic maps contains significant bias, as

different interpreters can produce different maps from the same data. It is also difficult to manually reconcile

the relationships between several remote sensing layers. This challenge has been addressed in recent years

as geologic mapping has evolved from a purely qualitative discipline to a more hybrid approach involving

quantitative, data-driven techniques such as machine learning. Machine learning-assisted lithologic mapping

utilizes the same information as the traditional, manual approach, but machine learning can mitigate the

source of bias discussed above and accelerate the time required to produce a product.

There are primarily two types of machine learning applied in the context of bedrock-lithology mapping.

The first is unsupervised learning, which clusters the input remote sensing data without including any lithol-

ogy information. One of the earliest applications involves k-means clustering of radiometric data (Pirkle

et al., 1984). Other unsupervised algorithms used for geologic mapping are ISOCLUSTER (Anderson-

Mayes, 2002), which is an extension of k-means, agglomerative clustering (Martelet et al., 2006), and fuzzy

c-means clustering (Paasche & Eberle, 2009; Eberle & Paasche, 2012). One of the more popular algo-

rithms is self-organizing maps (SOMs, Carneiro et al., 2012; Cracknell et al., 2014; Kuhn et al., 2019;

Carter-McAuslan & Farquharson, 2021; Wu et al., 2021), and a recent study uses Gaussian mixture models

(Weihermann et al., 2021). Unsupervised methods are useful approaches for extracting valuable information

from remote sensing data in the absence of lithology calibration. However, when we have measurements of

lithology (e.g., observations made from outcrops, grab samples, or core from drill holes), we can use this

information directly to calibrate the machine learning process through a different approach.

Supervised learning methods learn a relationship between the co-located remote sensing observations

and training targets (e.g., determined lithologies from outcrops) in order to make predictions for where the

lithology is unknown. Some of the earlier applications utilize neural networks (Gong, 1996; Leverington,
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2010), maximum likelihood classifiers (Kettles et al., 2000), minimum distance classifiers (Chen et al.,

2007), and support vector machines (Waske et al., 2009; Yu et al., 2012; Cracknell & Reading, 2013, 2014).

However, the types of methods that have become the de-facto standard in the last decade are ensemble-

based techniques. Harris et al. (2012) and Behnia et al. (2012) combine bootstrap aggregation (bagging;

Breiman, 1996) with a maximum likelihood classifier, and many researchers use random forests (Cracknell

et al., 2014; Harris & Grunsky, 2015; Radford et al., 2018; Kuhn et al., 2018, 2019; Costa et al., 2019; Hood

et al., 2019; Kuhn et al., 2020). The broader trend across machine learning applications as a whole is deep

learning. While deep learning approaches have not yet become commonplace in bedrock-lithology mapping

applications, some researchers are beginning to show that they can be effective (e.g., Wang et al., 2021).

One of the challenges to supervised learning for bedrock-lithology mapping is securing enough labeled

data to train the algorithms. Other disciplines have a plethora of labeled data that can be used for ma-

chine learning problems, such as computer vision, but the same cannot be said for some geoscience-related

problems. Labeled data for our applications are generally obtained by sampling the Earth in some manner,

which is not trivial for cost or logistical reasons. In this context of predictive bedrock-lithology mapping,

we need measurements of lithology from the ground, i.e., the bedrock. Regions with mineral exploration

interest may be isolated and remote, limiting fieldwork or making fieldwork more expensive. Lithologic

measurements can be determined through other means, such as geochemical analysis of grab samples or

examination of core samples from drilling; however, these options are also quite costly. As a result, these

problems generally contain limited amounts of labeled data. Consequently, supervised machine learning

methods may be prone to a phenomenon called overfitting. This behavior occurs when a machine learning

model learns from the fine detail and the noise in the training data rather than the general trends; this leads

to the model performing suspiciously high on the training data, and likely performing poorly on data that

the model has not seen (e.g., the testing data). Many supervised machine learning models can mitigate this

overfitting phenomenon by including hyper-parameters that impose a penalty on model complexity, such as
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the C hyper-parameter for support vector machines (Cortes & Vapnik, 1995). However, these measures may

still be insufficient if the labeled data are severely limited.

A different approach for these limited training data situations is to use semisupervised machine learning

techniques, which are a hybrid of unsupervised and supervised learning. Semisupervised algorithms train

using both the labeled (e.g., co-located remote sensing and lithology data) and unlabeled (e.g., remote sens-

ing data with unknown lithology) data, which can improve the predictions for the unlabeled data compared

to supervised methods when the labeled data are scarce (Chapelle et al., 2006; Zhu & Goldberg, 2009; van

Engelen & Hoos, 2020). Some geoscience-based machine learning applications have demonstrated the ben-

efits of semisupervised learning, such as land cover classification of satellite remote sensing data (Vatsavai

et al., 2005; Camps-Valls et al., 2007; Gomez-Chova et al., 2008b; Liu et al., 2013; Cui et al., 2018). Land

cover and bedrock-lithology classification problems are quite similar in that they both utilize forms of re-

mote sensing data, with the main distinction being the labels (i.e., rock types versus land cover). Given these

similarities, it is natural to think that if semisupervised methods are effective for land cover classification, the

same could be true for bedrock-lithology classification. However, there are no semisupervised applications

to bedrock-lithology mapping in the literature to the best of my knowledge, so these ideas remain largely

unexplored.

I investigate the effectiveness of semisupervised methods for bedrock-lithology mapping, specifically

label propagation, using a suite of data from a region in New South Wales, Australia. Airborne radiomet-

ric and magnetic data are the input data available for this problem, and I use established feature expansion

methods to generate additional inputs. A well-curated and reliable geologic map from the area provides

the lithology labels for this study, allowing me to evaluate the predictions quantitatively. With these data,

I subsample the geologic map in three different ways to simulate realistic training data scenarios for ML-

assisted bedrock mapping. The primary motivation of this study is to determine if semisupervised methods

can outperform supervised methods under typical limited training data situations. To achieve this, for each
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Figure 7.1: The study area (red box) relative to the continent of Australia, the state of New South Wales
(NSW, orange), and the Southern New England Orogen (SNEO, gray).

of the three scenarios, I compare the label propagation (LP) performance to LightGBM and XGBoost. Fur-

thermore, I perform unsupervised clustering of the input features using a SOM-based approach to produce

a cluster map. The cluster map is used to assess whether unsupervised learning can offer additional insights

when training data are still available.

7.2 Study area

My general area of focus for a bedrock-lithology classification study is in Australia due to the high-quality

datasets that are publicly available. Specifically, the Geological Survey of New South Wales (GSNSW)

has published a seamless GIS compilation of the best available geology data for NSW, and these data are

organized into a series of layers representing each of the major lithotectonic units (Colquhoun et al., 2021).

The specific region of interest that I have chosen to concentrate on is a 56×70 km area in the Southern New

England Orogen (SNEO, see Figure 7.1). This area is selected because the bedrock is exposed at the surface
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with little Cenozoic sedimentary cover, and there is good airborne geophysical data coverage (Chapter 7.3

below).

In this region, the geologic map contains 58 lithologic units. However, upon inspection of this map,

many units share nearly identical descriptions, but are still designated as distinct units. This phenomenon

is not uncommon in field mapping where different geologists in adjacent areas may describe a unit slightly

differently, such that a single unit ends up being decomposed into multiple units (e.g., one individual calls

it Unit A and another calls it Unit B, when both should be Unit A). I carefully examine the descriptions,

spatial locations, and geologic age of all 58 lithologies and merge several units to limit redundancies and

help simplify the map. The need for simplifying geologic maps for machine learning purposes is recognized

in the literature (Brown et al., 2000; Porwal et al., 2003; Pereira Leite & de Souza Filho, 2009; Leverington,

2010; Yu et al., 2012; Harris et al., 2014; Kuhn et al., 2020).

The final map (Figure 7.2) has 21 lithologic units, and their associated descriptions are provided in

Table 7.1. The lithologic units comprising this region of interest of the SNEO were deposited during four

geologic periods. The oldest rocks in this region are the meta-sedimentary units which accumulated in an

accretionary wedge of a forearc basin setting during the Late Silurian to Carboniferous. After this cycle,

there was widespread felsic magmatism from the Early Permian to the Early Triassic. The Permian-aged

felsic intrusives, except the Wandsworth Volcanic Group (Unit 12), are part of the Bundarra Supersuite in

the west-northwest portion of the map. The Triassic-aged intrusives, except for the Fox Tor Quartz Diorite

(Unit 11), are part of two different supergroups: the Moobi Supersuite to the south-southwest and the Uralla

Supersuite to the east-northeast. Lastly, the youngest rocks in this region are Cenozoic-aged extrusive

volcanics (basalt). For a more in-depth discussion of the geology of this region and the SNEO, I refer the

interested reader to other literature (Leitch, 1974; Roberts & Engel, 1987; Ford et al., 2019; Jessop et al.,

2019).
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Table 7.1: Detailed descriptions of each of the geologic units present on the map in Figure 7.2 (descriptions
taken from Colquhoun et al. 2021).

ID Unit name Description

1 Maybole Volcanics Alkali olivine basalts with minor volcaniclastic and epiclastic units. Rare plugs, dykes
and sills. Some interbedded non-volcanogenic sediments.

2 Gwydir River Monzogranite Medium- to coarse-grained, porphyritic to equigranular biotite-hornblende monzogranite
to granodiorite. Minor leucomonzogranite to leucosyenogranite.

3 Yarrowyck Granodiorite Weakly zoned, from medium-grained, biotite-hornblende granodiorite to fine-grained,
leucomonzogranite and leucosyenogranite

4 Uralla Granodiorite Grey, coarse-grained, approximately equigranular, biotite-hornblende-(pyroxene) gran-
odiorite to tonalite, with minor monzogranite; finer-grained, porphyritic marginal variant.

5 Terrible Vale Microgranodiorite Texturally heterogeneous sequence with medium-grained equigranular quartz-poor gran-
odiorite to quartz monzodiorite, with two-pyroxene dacite-tuffasite

6 Shalimar Granodiorite Grey, fine to medium-grained, porphyritic, hornblende-biotite-quartz monzodiorite to
quartz-poor granodiorite, with minor monzogranite.

7 Campbells Hill Monzogranite Light grey, medium-grained, texturally heterogeneous, felsic biotite plagioclase-rich
monzogranite to granodiorite, characterised by sparse K-feldspar megacrysts

8 Walcha Road Monzogranite Zoned, variably porphyritic, hornblende-biotite monzogranite, and minor granodiorite.

9 Limbri Monzogranite Medium-grained, inequigranular to equigranular, leucocratic, biotite monzogranite.

10 Moonbi Monzogranite Weakly zoned, medium- to coarse-grained, coarsely porphyritic, hornblende-biotite mon-
zogranite to granodiorite, minor leucomonzogranite

11 Fox Tor Quartz Diorite Grey, medium- to coarse-grained, equigranular to slightly porphyritic, pyroxene-
hornblende-biotite quartz diorite

12 Wandsworth Volcanic Group Undifferentiated felsic volcanic rocks, minor sedimentary rocks and granite. Dominantly
ignimbritic rhyolite, rhyodacite and dark crystal-lithic tuff

13 Balala Granodiorite Texturally heterogeneous, fine- to medium-grained, equigranular, hornblende-biotite gra-
nodiorite, with minor monzogranite.

14 Rocky Glen Monzogranite Coarse-grained biotite monzogranite; possibly minor syenogranite.

15 Namoi Tops Monzogranite Medium-coarse grained biotite monzogranite, minor leucosyenogranite and leucomonzo-
granite

16 Glenclair Syenogranite Medium-coarse-grained, porphyritic biotite-muscovite syenogranite to leucosyenogranite
with lesser monzogranite-leucomonzogranite.

17 Pringles Monzogranite Coarse-grained porphyritic to even-grained K-feldspar-rich biotite monzogranite and leu-
cocratic syenogranite.

18 Banalasta Monzogranite Blue-grey to buff, coarse- to very coarse-grained, strongly porphyritic biotite monzogran-
ite.

19 Whitlow Formation Multiply deformed, thickly bedded feldspathic- and volcanic-lithic wacke, interbedded
siltstone, fine wacke and minor conglomerate. Low-grade regional metamorphism.

20 Sandon beds Low-grade, regionally metamorphosed, multiply deformed lithic wacke, paraconglomer-
ate, siltstone, mudstone, minor chert, spilite.

21 Sandon Association Lithic metamorphic wacke, slate, phyllite, chert, amphibolite, metabasalt. Greywacke,
sandstone, siltstone, mudstone and paraconglomerate.
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Figure 7.2: The geologic map of the 56× 70 km region of interest in the SNEO (modified from Colquhoun
et al. 2021). The associated descriptions of each unit are provided in Table 7.1.
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7.3 Data

An airborne geophysical dataset containing three radiometric channels (Potassium – K %, equivalent Tho-

rium – eTh ppm, and equivalent Uranium – eU ppm) and reduced-to-pole (RTP) magnetic data covers the

56 × 70 km region of interest. These data were collected in 2001 by Tesla Geophysics for the NSW De-

partment of Mineral Resources and are made publicly available by the GSNSW on their MinView portal

(https://minview.geoscience.nsw.gov.au/); this dataset is called Southern Peel. The data were collected us-

ing 250 m line spacing and are gridded to raster layers with 100 m cells using bi-cubic spline interpolation. I

also considered using satellite remote sensing data (e.g., ASTER, Sentinel-2), but analysis of the normalized

difference vegetation index (NDVI) indicated that a significant portion of the region is vegetated; therefore,

these data are not included. As a result, there are only four input features for this machine learning prob-

lem. A limited number of features can lead to poor classification performance because there may not be

enough features to discriminate the classes of interest adequately. Nonetheless, I can compute additional

input features from the original inputs (i.e., feature expansion) using techniques established in geophysics

and remote sensing literature.

7.3.1 Feature engineering

A common approach for expanding radiometric features is to compute ratios of the original channels, such

as eTh/K, eU/K, and eU/eTh (Cracknell & Reading, 2014; Harris & Grunsky, 2015; Carter-McAuslan &

Farquharson, 2021). The eU channel is quite noisy for the Southern Peel dataset, and any ratios computed

from eU are also noise-prone. I elect to keep the eU channel, but do not use the eU/K or eU/eTh ratios.

However, I do use eTh/K, but I take the natural logarithm of this ratio because doing so better differentiates

the signals between the intrusive units. It is also common to visualize the K-eTh-eU channels as a red-green-

blue (RGB) ternary image, but the only benefit that this RGB raster can provide is visualization; I cannot

use this RGB image as an input feature for any of the machine learning algorithms that I consider in this
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work. My way around this is to convert the RGB ternary image to a single-channel grayscale raster; this is

achieved by computing a linear combination of the K-eTh-eU channels via ηKK + ηTheTh + ηUeU, where

ηK , ηTh, and ηU are the weights given to each of the radiometrics channels and they all sum to 1. Weighting

each of the channels equally (0.33 for each weight) gives too much weight to the eU channel and introduces

noise into the grayscale image. I experiment with a few different weight settings, and find (ηK , ηTh, ηU ) =

(0.6, 0.3, 0.1) gives good results (see Feature 12 in Table 7.2, and Figure 7.3e).

There are several techniques for potential field methods to expand the number of features such as spatial

derivatives, upward continuation, residuals, and more. I compute three additional features from the RTP

magnetics: upward continuation, a residual, and a pseudogravity residual. Upward continuation simulates

the RTP signal at a higher elevation (akin to a low-pass filter), and I use a height of 500 m. I compute a

residual feature by subtracting an upward continuation response from the original RTP signal; this removes

longer wavelength features (akin to a high-pass filter), and I use a height of 1000 m. The other feature

that I compute is pseudogravity (Baranov, 1957; Blakely, 1995), a signal that approximates the gravity data

response based on magnetics data. To better accentuate the signals in the pseudogravity, I compute its

residual after subtracting an upward continued field with a height of 100 m.

A common magnetics feature in the mineral exploration industry is the first vertical derivative (1VD),

which is helpful for mapping structure, complexity, and texture. However, recent publications (Kuhn et al.,

2019, 2020) show that the 1VD may not be diagnostic of lithology for pixel-wise machine learning appli-

cations. These authors conclude that magnetic lineaments highlighted in the 1VD are likely at a smaller

scale than the lithological domains. Recognizing this, I posit that features that can quantify the behavior

of the 1VD in a local neighborhood of a given pixel may be more useful for this application. Rather than

include the RTP 1VD directly, I elect to quantify its textural information using gray-level co-occurrence

matrix (GLCM) features (Haralick et al., 1973). This process first requires converting the input data to gray

levels (i.e., quantized to a set of integers). Computing GLCM textures is a sliding window approach where
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a GLCM is computed for a given window (e.g., 9× 9), and texture attributes are calculated from the GLCM

and assigned to the cell in the center of the window (see Hall-Beyer, 2017a, for details). The GLCM features

that I choose to compute from the RTP 1VD are the energy, difference entropy, and inverse difference mo-

ment (a.k.a. homogeneity) with a window size of 7× 7. The size of the window impacts how crisp (small)

or blurry (large) the resulting texture attributes become, and I find 7 × 7 windows to be a good balance for

this problem.

The use of GLCM texture attributes applied to satellite imagery is well-documented. For example, Hall-

Beyer (2017b) computes GLCM textures from Landsat data for a land-cover classification problem, and

Radford et al. (2018) use GLCM textures from radar imagery to serve as inputs to a lithology classification

problem. Conversely, computing texture attributes from geophysical data is less established. Yu et al. (2012)

compute neighborhood statistics (mean and variance) from apparent susceptibility data. Another example

uses a GLCM attribute (entropy) computed from RTP magnetics data in a workflow involving other filters

to locate prospective gold deposits (Holden et al., 2008). Therefore, the potential of using GLCM texture

attributes computed from geophysical data is not fully realized in the context of machine learning problems,

and I explore their efficacy in this study.

7.3.2 Bedrock lithology classification

The radiometric, magnetic, and magnetic texture features form the inputs for my machine learning problem

(12 total, see Table 7.2). A subset of these input features is provided in Figure 7.3. Each of these features

is projected to the Geocentric Datum of Australia (GDA) Map Grid of Australia (MGA) zone 56 (EPSG

= 28356) with coincident 100-m cells. Thereby, each input feature has 560 x 700 cells, which amounts to

392,000 total cells. The associated targets for this ML problem are the categorical data represented as the

lithologies from Figure 7.2. Geologic maps are commonly digitally represented as a series of polygons for

each lithology in a vector data format such as a shapefile (.shp). To use these data for this problem, they
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are converted to a raster using a process called rasterization, and the resulting raster has 100-m cells aligned

with the input features. As a result, each pixel can be thought of as a 12-dimensional vector containing a

value from each of the input features, with its associated target being an integer representing one of the 21

possible lithologies. With these data, I conduct a series of machine learning experiments to reflect various

input conditions representative of realistic bedrock mapping problems. In each experiment, I assume that

the a priori knowledge of lithology is limited to a discrete number of locations, and these locations vary with

each experiment.

The first scenario (Scenario A) reflects an early exploration stage where a field mapping campaign is

conducted along transects. Here, field geologists walk along a particular bearing and record the observed

lithology along the traverse. For this situation, there are four transects: two are oriented north-south, and two

are oriented east-west. However, these observations are not made continuously along each transect because

obstructions (brush, dense vegetation, roads, etc.) can hinder observations from being made. I capture this

phenomenon by randomly decimating lithology observations along these four transects, which produces a

scenario with 1258 total training data (see Figure 7.4a). It is noteworthy that five of the smaller lithologic

units on the map (Classes 6, 9, 11, 13, 14) are not sampled in these training data.

The second scenario (Scenario B) also reflects an early exploration stage, but in this instance, recon-

naissance field mapping is performed at 70 outcrop locations distributed across the map. At each of these

outcrop locations, the field geologist indicates that they are confident that the mapped lithology remains

consistent within 250-m of the field station. I represent this with a circular polygon (with a radius of 250-m)

around each station, which results in 1371 training data upon rasterizing the polygons (see Figure 7.4b).

Note that each lithology contains at least one station, and each station is on average 6 km from another.

The third situation (Scenario C) represents a mature exploration stage that utilizes more extensive geo-

logical information. Here, I treat the labeled data as representing lithologies determined from grab samples

or the first intercepted lithology from diamond drill hole (DDH) samples. These sampling locations are spa-
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Table 7.2: The 12 features used as inputs for the bedrock-lithology machine learning problem. Those
indicated with an * are the original four inputs, and the rest are determined via feature expansion methods.
The features indicated with an ** are shown in Figure 7.3. The Number column is used as a short-hand to
refer to particular features in Table 7.4. The Abbreviation column denotes the names that are used to refer
to certain features in subsequent plots.

Number Feature description Abbreviation
1* Magnetics reduction to pole **Magnetics RTP
2 Magnetics RTP upward continuation with 500 m Magnetics RTP upcont
3 Magnetics RTP pseudogravity residual with 100 m **Magnetics RTP pseudogravity
4 Magnetics RTP residual with 1000 m Magnetics RTP residual
5 Difference entropy texture from magnetics RTP 1st vertical derivative Texture difference entropy
6 Energy texture from magnetics RTP 1st vertical derivative Texture energy
7 Homogeneity texture from magnetics RTP 1st vertical derivative **Texture homogeneity
8* Radiometrics potassium channel (in %) Radiometrics (K)
9* Radiometrics thorium channel (in ppm) Radiometrics (Th)
10* Radiometrics uranium channel (in ppm) Radiometrics (U)
11 Radiometrics ratio log(Th/K) **Radiometrics ratio
12 Radiometrics RGB ternary image converted to single-channel grayscale **Radiometrics composite

tially distributed across the map, and there are 1250 points in total (see Figure 7.4c). The main distinction

between this situation and the second scenario is that the training data in the second scenario are situated in

isolated clusters, whereas here, those training data are more evenly dispersed across the map.

These subsampled lithology pixels and their co-located feature vectors form the labeled data for machine

learning, and the remaining feature vectors are the unlabeled data for which I predict the lithology labels.

The goal of each of these scenarios is to produce geologic maps from limited direct observations and to

compare the performance of supervised to semisupervised algorithms. A benefit of this study is that I have

a high-quality geologic map against which I can evaluate the machine learning predictions. While this is a

useful means for evaluating the machine learning performance, such a polished geologic map may not exist

in a realistic exploration scenario. In such instances, it would still be beneficial to have something to use

for qualitative comparisons. This introduces the fourth situation (Scenario D) where I take advantage of

unsupervised learning, which clusters the input data into its natural groups independently of any lithological

constraints. I qualitatively compare cluster results to the predictions from supervised and semisupervised

learning to determine if incorporating the limited training data helps the machine learning recognize detail

that the clustering cannot.
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Figure 7.3: A subset of the input features with 100-m cell sizes. Panels a-e share the same relative grayscale
colorbar. Panel (f) is an RGB composite of the three radiometric channels with K = red, Th = green, and U
= blue (see bottom right).
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Figure 7.4: Three experiments are conducted where I assume that we know the lithology at a limited number
of locations (i.e., the training data), and these locations vary with each scenario. The three training scenarios
represent lithologic sampling from (a) transects, (b) outcrop polygons, and (c) distributed grab samples.
The black dots indicate where the lithology is sampled from the geologic map. The remaining points are
assumed to be unlabeled data for each machine learning experiment and the goal in each scenario is to make
predictions for these data. The lithologic units have 50% transparency to make the training points stand out.

7.4 Methodology

7.4.1 Machine learning techniques

Performing the machine learning analysis for the four scenarios described above requires three different

kinds of machine learning techniques: unsupervised, semisupervised, and supervised. I utilize the label

propagation method with a nearest-neighbors kernel for semisupervised learning (Chapter 2.2.1, Eq. 2.6)

and the XGBoost and LightGBM methods (Chapter 2.1.3) for supervised learning. One of the simplest meth-

ods that is easy to implement for unsupervised learning is k-means clustering (MacQueen, 1967). However,

one of the disadvantages of k-means is that the clusters have no topological properties, i.e., there is no in-

formation on how one cluster relates to another. Clusters in this context will represent proxies for lithologic

units, so having knowledge of which clusters are closely related to each other (or not) could aid in their

interpretation.

I employ self-organizing maps (SOMs), a topologically constrained unsupervised technique that is well-
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established (Kohonen, 1982, 1998, 2013). The SOM is represented by a series of nodes that are typically

organized onto a 2D mesh. Each node also has a weight vector with the same dimensionality as the input

data. Training the SOM nodes is an iterative, two-step process. The process begins by choosing a random

input data vector xi, and then determining the SOM node that is closest; this node, mc, is called the best

matching unit (BMU). The weight vector of this BMU is then moved in the direction toward xi by the

distance [xi −mc] scaled by a learning rate, α; this is the first step. The second step consists of identifying

the nodes on the 2D mesh that lie within the neighborhood of the BMU, as defined by hc,j , and then updating

the weights of these nodes (mj) so they also move in the direction towards xi. The following formula

encapsulates these steps for learning the weights for the SOM nodes,

mj = mj + α(t)hc,j(t)[xi −mj ], ∀j ∈ neighborhood of mc (7.1)

where t is an integer representing iterations. Once this process is repeated for each data point xi, this

marks one iteration. The learning rate α and neighborhood function hc,j decrease and shrink, respectively,

as iterations progress, which eventually leads the algorithm to a state of convergence. After the SOM is

trained, each xi can be assigned to the SOM node with the most similar weight vector. Therefore, each

SOM node can be considered a cluster of input data, where neighboring SOM nodes in the 2D mesh also

represent similar clusters.

SOM meshes typically contain 100s or 1000s of nodes based on the established heuristic of 5
√
N , where

N is the total number of data (Vesanto & Alhoniemi, 2000), but in reality, we expect far fewer clusters if they

represent proxies for lithologic units. As such, it is common to perform a secondary clustering on the weights

to merge SOM nodes and produce an interpretable number of clusters to analyze. Some techniques that have

been used for the secondary clustering of SOM nodes are k-means (Carneiro et al., 2012; Carter-McAuslan

& Farquharson, 2021) and agglomerative clustering (AC, Cracknell et al., 2015), where the Davies-Bouldin
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Index (DBI, Davies & Bouldin, 1979) is used to select an appropriate number of clusters. The DBI metric

measures a ratio of intra-cluster distances to inter-cluster distances, therefore, lower scores result in a better

clustering. I mimic the approach of Cracknell et al. (2015), where AC is used in conjunction with SOMs. To

select the number of clusters for AC, I use the DBI metric and the silhouette coefficient (Rousseeuw, 1987).

SuSi is the Python package (Riese et al., 2020) used for the SOM implementation, and I use a mesh size

of 50 × 50 nodes (this roughly follows the heuristic based on the number of data in this problem) with the

remaining parameters set to their defaults. Lastly, I use the AgglomerativeClustering class in scikit-learn

as the implementation for AC.

7.4.2 Training, testing, and evaluation

The supervised and semisupervised methods both have hyper-parameters that must be tuned during training.

For the supervised methods, I use 5-fold cross-validation (Figure 2.10) on the training data (Figure 7.4), and

the models with the highest cross-validation score are used to make predictions for the entire map. Hyper-

parameter tuning for semisupervised methods is more challenging, but there are three possible strategies.

The first is simply a trial-and-error, heuristic-based approach to trying different hyper-parameter settings

and seeing which work best. The second strategy is to use the standard cross-validation approach designed

for supervised methods (i.e., using the labeled data only). For semisupervised methods, the validation

fold in cross-validation can be treated as unlabeled data to include during training, and the goal is to still

predict labels for the validation fold and evaluate the performance. The problem with this strategy is that

some semisupervised hyper-parameters relate to the density of the data as a whole, and only using the

labeled data would drastically underestimate the value for these parameters (e.g., the nearest-neighbors

hyper-parameter for LP). However, we can mitigate this issue by augmenting the validation fold with all

(or a fraction) of the unlabeled data from the problem (Figure 2.11). When predictions are made on this

augmented unlabeled data set, only those corresponding to the validation fold can actually be evaluated, but
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including the unlabeled data can help inform the learning for semisupervised algorithms. That being said,

the increased computational cost of including the unlabeled data in cross-validation could be substantial.

Luckily, label propagation only has two hyper-parameters that must be set, and I use the heuristic-based

strategy from Chapter 5.3.6 for setting the number of nearest neighbors to 100. That leaves α as the only

remaining hyper-parameter, and I use the modified cross-validation approach (Figure 2.11) with five folds

to determine α.

Cross-validation and evaluating the predictions on the testing data requires classification metrics to quan-

tify performance (Lever et al., 2016). The classes in this problem are imbalanced, so accuracy and weighted

metrics will give more weight to the classes with more points. Even if specific lithologic units have small

extents, this does not necessarily mean these units are any less valuable; the smaller, isolated lithologies

could indeed be targets for mineral deposits. I choose to weigh each class equally using macro-based met-

rics rather than give larger units more weight and smaller units less weight. For the cross-validation scores, I

use macro-F1, and for evaluating the testing data predictions (the entire map), I use macro precision, recall,

and F1.

In addition to computing classification metrics for the map prediction, we can also measure the uncer-

tainty in these predictions. Each of the supervised and semisupervised algorithms considered can produce

what are called class membership probabilities (CMPs). The CMPs from any given algorithm are rep-

resented as a u × K matrix, where u is the number of (unlabeled) data and K is the number of classes

encountered during training. The final classification for any given data point is the class with the highest

CMP, but this CMP could be the maximum by only a narrow margin (e.g., other classes could contain near-

equal probabilities). In this situation, there would be low confidence (high uncertainty) in the prediction

result, but in the case of the highest CMP having a large margin, this may be a point with higher confidence.

However, all this information is lost if only the predictions are analyzed, highlighting the importance of

assessing the CMPs. It is possible to analyze the CMPs for each class (i.e., produce a raster for each class),
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Table 7.3: A summary of the numerical results for Scenarios A, B, and C. The first data column provides
the cross-validation scores during training. The values provided are the means and standard deviations
(in italics) computed from five cross-validation scores. The second column provides the testing (map)
performance. A precision, recall, and F1 testing score is computed for each class (21 scores total), and
this column provides the means and standard deviations (in italics) computed from the 21 individual class
scores. However, the macro testing metrics for Scenario A are only computed using 16 of the 21 individual
class scores (see Chapter 7.5.1). The values in bold indicate the algorithm that performs best for that
metric. *Only ten features are used as inputs to prevent overfitting artifacts. **Hyper-parameter tuning
using semisupervised cross-validation is inconclusive to determine α, so a fixed value of 0.5 is used.

Training (cross-validation) scores Testing data (map) performanceMachine learning
method Macro F1 Macro precision Macro recall Macro F1

Scenario A: Transects
XGBoost* 61.95 ± 8.90 53.03 ± 18.91 53.55 ± 13.28 50.85 ± 13.02
LightGBM* 66.59 ± 7.68 54.68 ± 19.43 53.78 ± 13.36 51.95 ± 13.82
LP** 91.58 ± 3.32 60.89 ± 19.89 60.84 ± 16.25 58.01 ± 16.07

Scenario B: Outcrop polygons
XGBoost 84.87 ± 8.25 49.01 ± 20.93 52.68 ± 16.50 48.60 ± 18.25
LightGBM 89.42 ± 7.19 53.71 ± 22.89 55.29 ± 18.77 52.19 ± 20.75
LP** 99.81 ± 0.16 59.63 ± 24.23 64.58 ± 14.95 58.28 ± 18.63

Scenario C: Distributed samples
XGBoost 61.95 ± 13.81 70.77 ± 15.44 69.52 ± 17.59 69.53 ± 16.07
LightGBM 63.07 ± 15.23 74.20 ± 13.87 70.68 ± 18.01 71.83 ± 15.52
LP 69.56 ± 4.55 73.32 ± 17.27 72.19 ± 16.69 71.71 ± 16.15

but capturing this information into a single number for each point may be more efficient. One method for

quantifying the prediction uncertainty is the normalized information entropy (Kuhn et al., 2018, 2019, 2020)

given by,

Hi = − 1

K

K∑
k=1

pi,k log pi,k (7.2)

where pi,k is the CMP of class k for the data point i. The value of H is at its maximum when the CMPs

are equally probable across all classes, and it is at its minimum when a probability of 1.0 belongs to one of

the classes. In the following sections, I use the classification metrics and associated lithology predictions in

conjunction with entropy to assess the results of Scenarios A, B, and C.
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7.5 Results

A summary of the numerical results for Scenarios A, B, and C is provided in Table 7.3. In this table, I provide

the cross-validation performance on the training data and the testing (map) performance for each algorithm.

There are no metrics for Scenario D in Table 7.3, given that Scenario D is an unsupervised analysis reflecting

a situation with no a priori labeled data. In the subsections below, I provide a brief description of the results

for each Scenario.

7.5.1 Scenario A: Transects

The first situation that I explore is Scenario A, where the training data represent sampling taken along four

different transects (Figure 7.4a). Using all 12 features as inputs to train both supervised methods produces

erroneous results. The predictions for LightGBM (see red polygons, Figure 7.5a) show recognizable artifacts

in the north-western portion of the map (while not shown, XGBoost has the same artifacts). These artifacts

have a long-wavelength behavior to them, and upon inspection of the feature importances for LightGBM

and XGBoost (Figure 7.6, top row), it is clear that these methods are overfitting the smoothest input features

(magnetics RTP upcont and pseudogravity). To fix these artifacts, I must remove both of these input features.

This makes the feature importances on the remaining ten inputs for LightGBM and XGBoost more evenly

distributed (Figure 7.6, bottom row), and the subsequent predictions no longer contain the long-wavelength

artifacts (predictions and entropy for LightGBM are shown in Figures 7.7a and 7.7b, respectively). The

cross-validation and testing data performances for LightGBM and XGBoost, using the ten input features,

are provided in Table 7.3. A unique aspect of this scenario is that the training data do not sample every

class on the basemap, as the transects do not intersect five of the units: 6, 9, 11, 13, and 14 (see Figures 7.2

and 7.4a). As a result, these five units on the map get classified as one of the other 16 classes encountered

during training, which is easily seen by looking at the rows of the confusion matrix corresponding to these

five classes (see Figure 7.8a). This translates to the classification metrics being 0% for these five units on the
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testing (map) data. Rather than let these zeros bias the macro metric calculations, the testing data metrics in

Table 7.3 only come from the 16 classes that can be predicted by the algorithms.

Unlike the two supervised methods, label propagation can train using all 12 input features without any

of the long-wavelength artifacts noted above (see Figures 7.7c and 7.7d). However, the complication with

this scenario is that the semisupervised cross-validation scores to determine α are not trustworthy. This is

ultimately a consequence of the spatial distribution of the training data. Points from the same class that are

in close proximity to each other will likely have highly correlated input features. Given that the training data

for this scenario are taken along transects, we can expect neighboring training samples of the same class to

be highly correlated. The nature of label propagation is to spread its labels to the unlabeled data, and in this

instance, validation folds are strongly correlated to the training folds (Figure 2.11b). The consequence here

is that regardless of which α is used, the cross-validation scores are unrealistically high, which leads me not

to trust the hyper-parameter selection. Rather than use the α with the highest cross-validation score, which I

suspect is not trustworthy, I instead fix it to a conservative value of 0.5. I provide the cross-validation score

associated with α = 0.5 in Table 7.3, and notice the disparity between the cross-validation performance for

the supervised methods versus LP. Conventional knowledge would attribute an inflated training performance

to overfitting, but that is not the case here; the phenomenon observed is attributed to highly correlated

training data. Nonetheless, this LP model performs well on the testing data as indicated by the predictions

(Figure 7.7c) and confusion matrix (Figure 7.8b).

7.5.2 Scenario B: Outcrop polygons

The next scenario that I simulate is the situation where the labeled data are obtained from 70 outcrop stations,

which are represented as circular polygons with a radius of 250-m (Figure 7.4b). Unlike Scenario A, the

supervised methods in this situation can train with all 12 features as inputs without generating prominent

artifacts. The feature importance graph suggests that LightGBM is overfitting the pseudogravity feature
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Figure 7.5: The (a) predictions and (b) entropy for LightGBM in Scenario A using all 12 input features.
There are noticeable long-wavelength artifacts in the western-portion of the map (denoted by red polygons),
indicating that the LightGBM model is overfitting the training data.



CHAPTER 7. SEMISUPERVISED LITHOLOGY MAPPING 165

Figure 7.6: The feature importances for LightGBM and XGBoost in Scenario A using (top row) 12 inputs
and (bottom row) 10 inputs. Figure 7.5 shows LightGBM overfitting the smoother input features, Magnetics
RTP pseudogravity and upcont, so these two features are removed to mitigate these artifacts. The feature
importances for LightGBM and XGBoost are much more balanced with these two features removed (bottom
row).
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Figure 7.7: The Scenario A predictions and entropy for LightGBM (a, b) and LP (c, d). The predictions
and entropy shown for LightGBM are for when 10 input features are used to prevent overfitting artifacts
(compare to Figure 7.5). LP is able to utilize all 12 input features without producing the artifacts seen
by LightGBM. The LP predictions are generally less noisy and slightly more accurate than the LightGBM
predictions. Refer to Figure 7.2 for the lithologic unit key, Figure 7.4(a) for the Scenario A training data
locations, and Table 7.3 for the numerical results.
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Figure 7.8: The Scenario A confusion matrices for (a) LightGBM and (b) LP. These confusion matrices are
computed from the testing data predictions (Figures 7.7a and 7.7c) and the known geologic map (Figure
7.2). The training data only sample 16/21 classes, so five of the classes cannot be predicted for (6, 9, 11, 13,
and 14).

(Figure 7.9a), but the predictions and entropy (Figures 7.10a and 7.10b) are generally devoid of the long-

wavelength artifacts observed in Figure 7.5.

Much like Scenario A, the training data from Scenario B are still strongly correlated. The semisupervised

cross-validation for α is once again indeterminate as all the cross-validation scores are nearly 100%. While

the correlation among labels appears to impact LP the most, the supervised methods also seem to be affected

with cross-validation scores near 90% (see Table 7.3). Out of caution, I once again fix α to a value of 0.5.

The resulting model still performs well on the testing data (Figure 7.10c), and the confusion matrices in

Figure 7.11 show that the LP model performs better than LightGBM on most classes.

7.5.3 Scenario C: Distributed samples

For the third situation that I explore, the labeled data are assumed to represent lithologies determined from

1250 grab samples spatially distributed across the map (Figure 7.4c). When the training data are spatially

distributed in this manner, this reduces the correlation among training points for a given class and better
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Figure 7.9: The feature importances for LightGBM (left) and XGBoost (right) in Scenario B. LightGBM
has a significant weight placed on the magnetics RTP pseudogravity, but the associated predictions (Figure
7.10a) do not contain the same overfitting artifacts encountered in Scenario A. The feature importances for
XGBoost are relatively balanced.

captures their distribution. As a result, Scenario C produces the best performance on the map compared

to Scenarios A and B, and the cross-validation scores more closely reflect the testing performance for each

algorithm (see Table 7.3). The supervised methods continue to have imbalanced feature importances (Figure

7.12), but this seems to have little impact on the predictions as they appear relatively clean (Figure 7.13a).

The semisupervised cross-validation for α is finally insightful in this scenario, as the CV scores have reliable

values (e.g., not 99%), and there is a clear maximum mean CV score associated with a corresponding low

CV standard deviation (see Figure 7.14). The cross-validation suggests an α = 0.75, which performs well on

the testing data. Interestingly, the testing data performance, predictions, and associated confusion matrices

for LP and LightGBM are comparable in this Scenario (see Figures 7.13 and 7.15).

7.5.4 Scenario D: Unsupervised clustering

The final scenario aims to define the natural groups, or clusters, in the data that are independent of litho-

logical constraints from training data. Figure 7.16 shows some key components of the SOM-AC workflow.

The histogram plot (Figure 7.16a) is a convenient way to visualize how many points are assigned to each

SOM node. There are many points assigned to boundary nodes, which is a well-known consequence of

2D sheet-like meshes that can lead to SOM nodes not accurately capturing the topology of the data space
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Figure 7.10: The Scenario B predictions and entropy for LightGBM (a, b) and LP (c, d). The LP predictions
are generally less noisy and slightly more accurate than the LightGBM predictions. For both methods,
the entropy is effective at indicating misclassified areas and unit boundaries. Refer to Figure 7.2 for the
lithologic unit key, Figure 7.4(b) for the Scenario B training data locations, and Table 7.3 for the numerical
results.
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Figure 7.11: The Scenario B confusion matrices for (a) LightGBM and (b) LP. These confusion matrices are
computed from the testing data predictions (Figures 7.10a and 7.10c) and the known geologic map (Figure
7.2). The LP confusion matrix shows higher values on the diagonal than the LightGBM confusion matrix
for most units, which explains the higher metrics for LP in Table 7.3.

Figure 7.12: The feature importances for LightGBM (left) and XGBoost (right) in Scenario C. Both super-
vised algorithms are sensitive to particular input features, but this does not appear to cause any artifacts in
the predictions.
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Figure 7.13: The Scenario C predictions and entropy for LightGBM (a, b) and LP (c, d). The results
from this scenario produce the best predictions compared to those from Scenarios A and B. The testing
data performance is also comparable for LightGBM and LP. Despite the predictions being rather clean,
the entropies suggest significant uncertainty in most of the Uralla Supersuite and the north-western portion
of Unit 10. Refer to Figure 7.2 for the lithologic unit key, Figure 7.4(c) for the Scenario C training data
locations, and Table 7.3 for the numerical results.
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Figure 7.14: The semisupervised cross-validation (Figure 2.11b) mean and standard deviation scores to
determine α for label propagation in Scenario C. The chosen α = 0.75 has the highest mean score, and also
has a relatively low standard deviation score.

Figure 7.15: The Scenario C confusion matrices for (a) LightGBM and (b) LP. These confusion matrices are
computed from the testing data predictions (Figures 7.13a and 7.13c) and the known geologic map (Figure
7.2). The confusion matrices for both algorithms are comparable, which aligns with the similar performance
of both algorithms indicated in Table 7.3.
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(Mount & Weaver, 2011; Carter-McAuslan & Farquharson, 2021). A solution is to use a toroidal-based

mesh for the SOM nodes, but the SuSi Python package currently does not have this functionality. Figure

7.16(b) is the U-matrix, which shows how far the SOM weight vectors are to their adjacent neighbors in

Euclidean distance. Regions of larger distances in the U-matrix could signify heterogeneous lithologic units

or perhaps boundaries between units in this context.

The next two panels in Figure 7.16 are related to the secondary clustering of the SOM nodes using AC.

Figure 7.16(c) shows two clustering metrics, DBI and the silhouette score, for a range of cluster values from

5-20. The optimal cluster setting minimizes the DBI and maximizes the silhouette score, which suggests that

9 clusters are optimal. The appearance of these 9 secondary clusters projected onto the 2D SOM node map

is given in Figure 7.16(d). The U-matrix is also superimposed onto Figure 7.16(d) with 50% transparency to

help indicate which clusters contain the large U-matrix distances (e.g., Clusters 3, 7, and 9). I still analyze

a few other cluster settings, such as 11 and 13, and find that they have a closer resemblance to the geologic

map than 9 clusters. However, I am only able to make this determination because I have prior knowledge of

the true map; without this knowledge, I would be drawn to the 9 clusters option. In Figure 7.17(a), I show

the cluster map using 9 clusters, but I also compare this result to using 13 clusters in Figure 7.17(b).

7.6 Discussion

7.6.1 Analysis of Scenarios A, B, and C

Even though each of the experiments has roughly the same amount of training data (1258, 1371, and 1250

for Scenarios A, B, and C, respectively), the ultimate predictions for the entire map look different for each

scenario. Scenario A does not sample five of the smaller igneous intrusive units (6, 9, 11, 13, and 14),

which end up classified as one of the 16 classes that are present in the training data. For both supervised and

semisupervised algorithms, Units 9, 11, and 14 are classified as other intrusive units (refer to Figures 7.2,
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Figure 7.16: The key components of the SOM-AC workflow for the unsupervised clustering performed in
Scenario D. The (a) histogram and (b) U-matrix are standard outputs from a trained SOM model (see text
for details). A secondary clustering of the SOM using AC (c) suggests that 9 clusters are optimal based on
the DBI and silhouette score metrics. Panel (d) shows the distribution of these 9 clusters on the 2D SOM
node map with the U-matrix superimposed at 50% transparency.
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Figure 7.17: The Scenario D SOM-AC cluster maps using (a) 9 clusters and (b) 13 clusters. The locations of
the clusters in the 2D SOM node space (see the keys) are consistent between 9 and 13 clusters, with certain
clusters from Panel (a) being decomposed into two clusters for Panel (b). These results also bear a strong
resemblance to the geologic map in Figure 7.2.

7.7, and 7.8). However, Units 6 and 13 are assigned to background Units 21 and 20, respectively, and the

entropies for LightGBM and LP also indicate that they are rather confident in these classifications (Figure

7.7). This suggests that the signals for Units 6 and 13 are likely too subtle with respect to the background

units to be confidently classified as one of the intrusive units (this is also supported by the clustering in

Figure 7.17). One of the most-obvious misclassifications for all algorithms in Scenario A is Units 17 and 18

of the Bundarra Supersuite (center of the map) being classified as units of the Uralla Supersuite (Figures 7.7

and 7.8). There are, however, noticeable differences overall between the predictions of LightGBM and LP.

LightGBM overpredicts the presence of Unit 12 (red unit) in the Moonbi Supersuite, whereas LP does not

contain these misclassifications. Generally, the LP predictions are less noisy than those from LightGBM,

which is undoubtedly the case for the background units (Figure 7.7). These observations show why LP

outperforms the supervised methods on the testing data by 6−7% for all macro metrics (Table 7.3). Similar
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conclusions can be drawn regarding Scenario B. There are regions where all algorithms struggle, such as

the north-eastern area of the map and the north-western portion of Unit 10, but LP performs much better on

Units 5, 13, and 18 (see Figures 7.10 and 7.11). This experiment shows LP performing 6 − 9% better than

LightGBM for all macro metrics (Table 7.3). Scenario C is where we begin to see some different phenomena

occur with regards to performance. All the algorithms have their best testing (map) performance in this

experiment, and depending on the algorithm and metric, some improvements are on the order of 10− 20%

relative to Scenarios A and B (see Table 7.3). The predictions are relatively noise-free (Figure 7.13), and

the confusion matrices show high values situated along the diagonal (Figure 7.15). Despite the training

data still being quite limited, LP only marginally outperforms XGBoost and has comparable performance to

LightGBM.

The distinctions in map performance between Scenarios A and B and Scenario C are a result of how the

training data are distributed spatially. In Scenarios A and B, the training samples are incredibly localized,

which creates situations where the ML predictions can be interpreted as having to perform extrapolation

spatially (see Figure 7.4). Despite the highly correlated training data creating challenges for semisupervised

cross-validation, the LP method performs better than the supervised methods under these extrapolation-style

scenarios. On the contrary, the training samples for Scenario C are well distributed, which creates a situation

where the ML predictions can be interpreted as performing interpolation spatially (see Figure 7.4c). The

testing (map) performance is the best for all algorithms in this scenario, likely because the well-distributed

training data better capture the distribution of each lithologic unit making the learning of decision boundaries

much easier. This significantly improves the performance of the SL methods to the point where SSL appears

not to provide any added value; it is sufficient to use SL methods. Cracknell & Reading (2014) explore at

length the impact of training data spatial distribution; they arrive at the same conclusion that as the training

data become more dispersed, the performance on the testing data improves. This has practical implications

because if a company plans on using ML to produce lithological maps in greenfield areas, they can use
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this prior knowledge to design field campaigns with better spatial sampling to ensure a better ML product

downstream. However, it is not always possible to secure spatially distributed training samples due to cost

or logistical factors; in this circumstance, these findings suggest that semisupervised methods are preferred.

As a whole, these results can help guide users toward whether SL or SSL is more appropriate based on the

training data situation in their own problems.

Even though I show that semisupervised algorithms can perform better than supervised algorithms under

more challenging circumstances, the predictions for both types of methods are still not perfect. This could

be attributed to several factors, such as the spatial distribution of the training samples discussed above, but

another aspect to be mindful of is that the training samples are themselves typically an approximation made

by a geoscientist. These factors, among others, can undoubtedly introduce errors, noise, and uncertainties

into the machine learning predictions. These uncertainties in the predictions can be expressed as a significant

spread in the CMPs (i.e., the algorithm does not have confidence in the class assignment for a given data

point), which I quantify in this study using information entropy.

Generally, high entropy values correlate well with misclassifications, unit boundaries, or heterogeneous

areas within units. The misclassification of Units 17 and 18 of the Bundarra Supersuite as being units of

the Uralla Supersuite from Scenario A is a perfect example (center of the map, Figure 7.7). Even though

the predictions for all algorithms are incorrect in this area, the entropy values are significantly elevated here,

suggesting that these predictions are untrustworthy (Figures 7.7b and 7.7d). The entropies can also some-

times indicate if a boundary between units is abrupt or transitional. Unit boundaries with abrupt transitions

exhibit a spatially isolated spike in entropy, such as the boundaries between the Bundarra Supersuite and

Moonbi Supersuite units with the background meta-sediment units (see Figures 7.10b, 7.10d, 7.13b, 7.13d).

However, a transitional unit boundary exhibits elevated values of entropy distributed over a larger spatial

region. Some examples that we observe are between the meta-sediment Units 19 and 20 in the northern por-

tion of the map, and between the shared boundary of intrusive Unit 16 and Units 15 and 17 in the southwest
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(see Figures 7.10b and 7.10d). We can also gain insights regarding the heterogeneous nature of units from

the entropy information. Homogeneous units that are correctly classified tend to have low entropy values

(e.g., most of the Bundarra Supersuite in Figures 7.10 and 7.13). By contrast, heterogeneous units tend to

have higher entropy values, and they can still be correctly classified. Some examples include most of the

Uralla Supersuite in the east, and the north-western portion of Unit 10 (refer to Figures 7.13b and 7.13d).

I am able here to distinguish high entropy values associated with misclassifications and heterogeneity

because I have the basemap to evaluate and compare against. In reality, this basemap would not be available

because that is what I am trying to produce; so, the misclassifications and heterogeneous areas may be

indistinguishable. Nonetheless, regardless of their underlying source, a high entropy prediction represents

regions with uncertainty that need refinement. From a practical point of view, these regions could indicate

focus areas for subsequent field campaigns (i.e., obtaining more training data). For instance, gathering

additional training data could enhance the resolution of uncertain (smooth) unit boundaries, or reveal the

presence of additional units in an area assumed to be one homogeneous unit. In the context of this study, it

seems that additional training data may help reduce the uncertainty in the eastern portion of the map.

7.6.2 Analysis of Scenario D

My purpose for performing unsupervised learning on this dataset is to see how well the clustering can

recover map patterns independent of any label information and to assess the value of applying unsupervised

learning when training data are still available. The SOM-AC results in Figure 7.17 appear to strongly

resemble the geologic map in Figure 7.2. When comparing the clustering results to the geologic map, we

generally observe three phenomena: (1) some clusters correlate well with a single unit on the map, (2) some

clusters represent more than one geologic unit, and (3) single map units are represented by multiple clusters.

Recall that the resulting clusters have a topology associated with them, in that neighboring clusters on the

SOM grid will be more similar than those that are more distant. The three clusters in the bottom-left portion
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of the SOM grid (e.g., clusters 5, 6, and 8 in Figure 7.17a) correlate reasonably well with the background

meta-sedimentary units on the map (Units 19, 20, and 21); given that these three clusters are in the same

region of the SOM grid indicates that they are similar as well. This helps explain why the SL and SSL

performance on these three background units is generally quite good.

Given that the optimum number of clusters is 9 and the total number of units on the map is 21, certain

clusters must represent more than one geologic unit, and there are several instances of this. One obvious

example is one cluster representing Units 14, 15, 16, and 17 (or just Units 14, 15, and 16 in the Figure 7.17b

case). If all of these units can be captured by a single cluster, then perhaps the training data associated with

these units could be merged. If each of these units is indeed all part of the same cluster, then this would help

explain why there is some confusion/misclassification in the predictions for these four units in Scenarios A,

B, and C. Despite this observation, the SL and SSL algorithms are still capable of reasonably distinguishing

each of these units from each other (see Figure 7.10). Another example is one cluster representing Units 2

and 18 on the map. Much like before, this may explain some of the misclassifications observed (e.g., parts

of Unit 2 being misclassified as Unit 18 in Figure 7.10c), but the SL and SSL algorithms can still adequately

distinguish between these two units. One more example that stands out for multiple reasons is Cluster 6

(Figure 7.17b), which encapsulates Unit 7 and portions of Unit 3. The classification results in Figure 7.10

show halos of Unit 3 predicted around the two locations of Unit 7; this may be happening because both

units share the same cluster, and misclassifications are likely. Interestingly, the southern portion of Unit 7

on the map does not relate well with how the cluster is defined in this area (i.e., the cluster has a much more

pronounced east-west extent). Upon inspection of the input data, this cluster may be responding to signals

that do not necessarily relate to lithologic changes. The RTP magnetics data in Figure 7.3(a) show two

demagnetization anomalies within Unit 8, which could represent alteration, and Cluster 6 directly captures

these two anomalies. The northern demagnetization anomaly roughly coincides with the northern portion

of Unit 7, but the southern anomaly does not align with the southern portion of Unit 7 (compare Figures 7.2
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Table 7.4: Results showing the impact of feature expansion on Scenario C. The purpose is to quantify the
impact that the texture features have on the testing data performance compared to if the magnetics RTP
1VD is used. Including the RTP 1VD provides no benefit, or worsens performance, and using the texture
attributes only provides a minor benefit. The last column has the same values from Table 7.3. *Refer to
Table 7.2 for the features representing the integers 1-12.

Machine learning
method

Input features (4 tot):
*1, 8-10

Input features (9 tot):
*1-4, 8-12

Input features (10 tot):
*1-4, 8-12, RTP 1VD

Input features (12 tot):
*1-12

XGBoost 0.4915 0.6800 0.6789 0.6953
LightGBM 0.5165 0.7100 0.7103 0.7183
LP 0.5156 0.7080 0.6931 0.7171

and 7.17). This potential alteration signal also manifests itself in the SL and SSL predictions as well and is

something to be mindful of (see Figures 7.7 and 7.10).

The third situation that occurs is instances where one unit on the map is characterized by more than one

cluster. One example is the north-western portion of Unit 10, which comprises roughly three clusters (see

Figures 7.2 and 7.17). The more obvious examples are Units 3 and 4 being represented by several clusters.

What is interesting in each of these circumstances is that they are all coincident with regions that contain

high entropy in Scenarios A, B, and C.

For this dataset, using SL and SSL with the limited training data, I am able to recover more lithologic

detail than the cluster results, which may just be a consequence of the number of clusters being fewer than

the number of classes in the training data. As mentioned above, there are multiple instances where the SL

and SSL approaches can distinguish several lithologic units from each other that are only described by a

single cluster. However, this does not mean that the clustering results are without value. The clusters clearly

indicate heterogeneous areas that correlate with high-entropy regions in the SL and SSL predictions. In

other words, the clustering results can help calibrate expectations on how good (or poor) the subsequent SL

and SSL results might be, given that certain behaviors in the clustering still manifest themselves in the SL

and SSL results.
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7.6.3 Feature expansion and texture attributes

A secondary objective of this study is to evaluate the impact of the GLCM texture attributes on this problem.

The feature importance measurements for Scenarios A, B, and C (Figures 7.6, 7.9, and 7.12, respectively)

indicate that there is a noticeable contribution from the three texture features, but their importance is rel-

atively less overall compared to the other nine features. However, to truly quantify the impact of texture

features on the problem, I investigate how they affect the testing (map) performance, but I do so in the

greater context of feature expansion. To demonstrate this, I perform additional simulations with all three

algorithms using different combinations of input features in Scenario C. I start by only using the original

four features, which are the magnetics RTP and the three radiometric channels (K, Th, U). Second, I include

the expanded features for magnetics and radiometrics, but I exclude the texture features, giving nine inputs.

In the next situation, I use the same nine previous features, but I include the magnetics RTP 1VD for the

first time. Then for the final situation, I use all 12 inputs (i.e., including the texture attributes, but not the

RTP 1VD) as I do for the main part of this study. These four situations allow me to isolate the performance

changes attributed to certain features or groups of features.

The results from each of these four situations are provided in Table 7.4, and there are a few notable

observations. The performance boost is most significant when going from the initial four input features

(Column 1) to including the magnetic and radiometric expanded features (Column 2). Not surprisingly,

including the RTP 1VD provides no benefit or worsens performance. These results confirm the conclusions

from recent publications (Kuhn et al., 2019, 2020) that the 1VD may not be diagnostic of lithologic changes.

What is particularly interesting, however, is that including the texture attributes only provides a minor ben-

efit (compare Columns 2 and 4). While including the texture attributes is better than using the RTP 1VD,

these results show that this is only marginally the case (compare Columns 3 and 4). So the question remains,

are the texture attributes computed from the RTP 1VD impactful enough to justify their inclusion? Perfor-

mance boosts of < 1% would suggest that the answer to this question is perhaps no. However, the fact that
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the texture attributes are able to make an improvement (when the RTP 1VD could not) at least shows that

the texture attributes can extract some meaningful information out of the RTP 1VD. I see this as a move in

the right direction of finding new input features that could be useful for these types of problems. Perhaps

it is worth exploring other types of local neighborhood, moving window-type features such as spatial auto-

correlation (Anselin, 1995) or Tamura’s texture features (Tamura et al., 1978), which is a subject of future

work.

7.7 Conclusion

This paper presents a comprehensive study involving unsupervised, supervised, and semisupervised machine

learning techniques for bedrock-lithology classification using a publicly available dataset from New South

Wales, Australia. Using the geophysical data and geologic map provided for the study area, I compare

the performance of supervised and semisupervised algorithms in three different scenarios where the known

lithology data are varied in each situation. I also consider a fourth scenario where I perform an unsupervised

data analysis to cluster the data. The value of clustering is assessed by comparing the recovered clusters

to the known geologic map and to the previous supervised and semisupervised results. Using an existing

reliable geologic map allows me to evaluate the results, which can help calibrate my understanding of which

algorithms are preferable under different circumstances.

The outcomes of this work have several practical implications. When the training data are well dis-

tributed spatially, the performance improves and is comparable for both supervised and semisupervised

algorithms. However, if the training data are spatially sparse, or localized, then semisupervised methods

perform better. These valuable findings can help guide users toward supervised or semisupervised algo-

rithms based on the training data situation in their own problems. The information entropy values that can

be calculated from supervised or semisupervised class membership probabilities can also be used to guide

decision-making. High entropy values indicate regions where there are uncertainties in the lithology predic-
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tions that need refinement, and these regions could suggest focus areas for subsequent field campaigns. For

this dataset, the supervised and semisupervised predictions can accurately distinguish between more litho-

logic units than the cluster results, but the clusters still provide valuable insights. In this case, the cluster

map indicated heterogeneous regions that directly correlated with high entropy areas in the supervised and

semisupervised predictions. So regardless of training data availability, I recommend performing an unsu-

pervised analysis of data because it may reveal lithologies not previously seen in the training data, or it may

help explain why misclassifications occur in supervised or semisupervised predictions.



Chapter 8

Conclusion

8.1 Overall discussion and recommendations

At the beginning of this thesis, there is a quote by R. Buckminster Fuller that reads “...doing more with

less”. This quote has several philosophical interpretations related to overconsumption and efficiency, but

it also summarizes the theme of this thesis quite succinctly. The premise of semisupervised learning is to

improve the classification of datasets with limited training data, i.e., doing more with less. Many geoscience

applications are inherently challenged with limited data, three of which are considered in this thesis: well-

log classification, seismic classification, and bedrock-lithology mapping. The primary research question that

I seek to address with this work is if semisupervised algorithms can perform better than supervised methods

in the context of these three examples. If semisupervised methods can consistently perform better across

different datasets, this makes a stronger case for the robustness of the SSL algorithms in question and their

broader applicability.

The results show that semisupervised methods can outperform state-of-the-art supervised learning ap-

proaches, such as XGBoost and LightGBM, when applied to various geophysical problems. In the well-log

example from Chapter 3, LP does not outperform XGBoost, but the coupled self-training LP technique

184
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surpasses the performance of XGBoost with visibly less chaotic predictions shown in the well views. The

ssGMM technique in Chapter 4 also achieves a better performance and visibly less noisy predictions than

XGBoost. A similar phenomenon is observed in the seismic classification example from Chapters 5 and

6. The results from Chapter 5 indicate that LP outperforms XGBoost and RNNs (Chapter 6), but only

marginally so. Compared to LP, the coupled self-training LP method outperforms XGBoost and RNNs by a

larger margin, and is also shown to be more robust to changes in training data. For the bedrock-lithology ex-

ample in Chapter 7, the relative performance of LP and the supervised methods (XGBoost and LightGBM)

depends on the spatial distribution of the training data. If the training data are spatially localized, then LP

surpasses the performance of both SL methods.

In summary, the semisupervised methods are generally able to outperform the supervised techniques,

but this is not always the case. When model assumptions are violated, such as when the seismic attributes

are not de-trended in Chapter 5, LP performs just as poorly as XGBoost, and self-training further degrades

the performance of LP. Before obtaining the results in Chapter 7, I was operating under the assumption

that if a problem had limited training data, then supervised methods would be prone to overfitting, and

semisupervised methods would produce better-generalized predictions. Much of the results in this thesis

support this premise, but the findings from Chapter 7 suggest a noteworthy exception. Scenario C (Chapter

7.5.3) shows that even though the training data are limited, the performance between LP and the SL methods

is still comparable. This phenomenon is attributed to the spatially dispersed sampling of the training data,

which allows the distribution of each class to be better captured, facilitating the determination of decision

boundaries. As stated in Chapter 7.5.3, this essentially turns the machine learning predictions into more of

an interpolation-like problem because the training data are well constrained. In this situation, including the

unlabeled data during training (i.e., SSL) appears to provide no additional benefit.

The exception above suggests that the criteria for determining whether SL or SSL methods would be

preferred for a problem need to be revised (see Figure 8.1). If the training data are numerous, then SL
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Figure 8.1: A high-level flowchart showing the criteria for determining whether supervised or semisuper-
vised learning is preferred.

is undoubtedly favored. At the onset of this thesis, I assumed that SSL methods would be favorable if

the training data were scarce. However, it seems that the training data sampling/distribution also has an

influence. If the training data are sampled well, despite being few in number, supervised learning may still

be appropriate. The results presented in this thesis indicate that SSL is preferred when the training data

sampling is poor (e.g., training data coming from a single well, or spatially sparse measurements). If SSL

algorithms are determined to be most suitable for a problem, the next question becomes which algorithm(s)

to consider. Different semisupervised methods have different model assumptions (as discussed in Chapter

2.2), so the data need to be assessed to determine which assumptions are (in-)valid. For instance, many of

the lithologic units in Chapter 7 are not Gaussian distributed, which violates assumptions for ssGMM, so

this method is not considered for that problem. However, there may be systematic approaches to determine

which SSL algorithms are best suited, which is a subject of future work (see below).

A secondary focus of this thesis is hyper-parameter estimation for SSL methods. As stated in Chapters

1.2 and 2.3, there is a lack of consensus in the literature on preferred approaches for determining hyper-

parameters for SSL algorithms. Throughout the body chapters of this thesis, there are additional treatments

for determining the best strategies for SSL hyper-parameter estimation, and I summarize them here. Chap-

ter 3 shows that standard k-fold cross-validation can select optimal hyper-parameters (σ, α) for LP, but not

always. However, fixed settings for self-training seem to work well. In Chapter 4, the standard k-fold cross-

validation approach makes poor selections for ssGMM. I explore using repeated k-fold cross-validation
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and a new selection strategy that also takes the standard deviation scores into account. The best ssGMM

hyper-parameter selections are achieved using the new selection strategy, but the selections are still relatively

unstable, likely because only the training data are used. Chapter 5 uses heuristic-based approaches for esti-

mating the hyper-parameters for LP and default settings for self-training, and both are effective. Chapter 7

introduces the new semisupervised k-fold cross-validation technique, which is used to estimate α for LP (the

number of nearest neighbors, p, is set using the heuristic from Chapter 5). This approach is inconclusive for

two scenarios because the labeled data are highly correlated, but the semisupervised k-fold cross-validation

works well for estimating α in Scenario C (Figure 7.14).

Several different approaches are explored for SSL hyper-parameter estimation, but a few techniques

appear to be preferred. Chapters 3 and 4 show that hyper-parameter estimation using (supervised) k-fold

cross-validation (Figure 2.10) can be unstable, and should perhaps be avoided if possible. The semisu-

pervised k-fold cross-validation (Figure 2.11) technique looks promising, but it requires more testing to

determine its applicability. The difficulty with this approach is the significant computational demand it re-

quires; augmenting the validation fold with all the unlabeled data can drastically increase the computation

time and memory requirements. However, this is not necessarily an issue for problems with fewer data. The

well-log dataset used in Chapters 3 and 4 is relatively small, and while this is speculation, I expect that the

semisupervised k-fold cross-validation approach would improve the stability of the SSL hyper-parameter

estimation in those chapters. Another technique that works surprisingly well is the trial-and-error, heuristic-

based approach. The default parameters for self-training work well in Chapters 3 and 5, and the heuristic

scheme to determine p for LP is effective in Chapters 5 and 7. Given these observations, my recommen-

dation is to use heuristics where possible, and then use semisupervised k-fold cross-validation to estimate

any remaining hyper-parameters. Semisupervised k-fold cross-validation is expensive, so estimating some

hyper-parameters with heuristics can actually reduce the overall computational burden. These recommenda-

tions may be most appropriate for the three SSL methods considered in this thesis, but they may still apply
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to other SSL methods.

In many geoscience disciplines, semisupervised methods are rarely (or never) considered, as evidenced

by the lack of published examples in the literature. The outcomes of this work help fill this gap, but they

also raise the awareness of SSL methods. It is established that SSL is not appropriate for every problem,

but this thesis shows that SSL can be an effective tool in certain situations. The far-reaching impact of this

work is for other researchers to consider the applicability of SSL to their own problems, as well as have an

understanding of how to estimate the hyper-parameters for SSL techniques.

8.2 Future work

This thesis explores applying SSL techniques to geoscience domains that have traditionally never considered

SSL as an option. However, there are several directions to improve this work as well as challenges that

remain to be reconciled. Some of the methods and concepts in this thesis are relatively new and continue

to require additional testing. One example is the semisupervised k-fold cross-validation technique; this

concept needs to be applied to more datasets to determine if it can improve the stability of hyper-parameter

estimation for SSL methods compared to the standard (supervised) k-fold cross-validation. An ideal place

to start would be with smaller problems, such as the well-log examples of Chapters 3 and 4, and using this

new hyper-parameter estimation strategy on LP and ssGMM. Another method that needs further testing is

self-training. Chapters 3 and 5 show that self-training is effective when applied to LP, but the impact that

self-training has on LP performance in Chapter 7 is ±1% (these results are not shown). More work is needed

to understand why self-training is not working for Chapter 7, but works well for the previous examples.

There are also several improvements needed for the ssGMM method, both critical and auxiliary. The

input data (de-trended seismic attributes) in Chapter 5 are Gaussian distributed (see Figure 5.13b), so this

would make ssGMM an ideal candidate to apply to this problem. However, when I try using ssGMM, I

encounter several instabilities that I have been unable to resolve. Computer science is not my domain of
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expertise, so perhaps collaborations with someone with this expertise could assist in resolving these insta-

bilities. Once this issue is resolved, there are a few components to consider adding to ssGMM to improve its

functionality. The code is currently limited to representing each class by a single multivariate Gaussian dis-

tribution, but there is the potential to extend the method to handle bimodal or multimodal distributions (i.e.,

more than one Gaussian distribution representing each class). Another feature that could improve ssGMM is

incorporating transition probabilities from hidden Markov models. Several researchers (Lindberg & Grana,

2015; Feng et al., 2018a,b) apply this concept to unsupervised Gaussian mixture models to constrain the

machine learning output by preventing geologically implausible predictions (e.g., brine-saturated sand pre-

dicted stratigraphically above gas-saturated sand). Given that these ideas have been applied to unsupervised

GMMs, it is plausible to think they could also be extended to ssGMM.

Another concept that could build on this work is meta-learning, which refers to when a machine learning

algorithm learns from the output of other machine learning algorithms (Feurer et al., 2015). This idea could

be helpful to learn information from the data to indicate which SSL method(s) would be most appropriate.

Recall that different SSL methods have different assumptions (e.g., manifold, smoothness, and cluster as-

sumptions) about how the data are distributed. Knowing which assumptions are (in-)valid before choosing

an SSL algorithm and carrying out a project could save time and resources. Li et al. (2019b) propose a

meta-learning scheme that attempts to accomplish this task. First, they use a few different clustering algo-

rithms that are sensitive to different unlabeled data distributions (e.g., k-means for recognizing the cluster

assumption, spectral clustering for recognizing the manifold assumption, etc.). Next, they compute a series

of metrics for each clustering algorithm. Then, the clustering algorithm that recovers the best metric scores

can indicate which assumption is best realized, and by extension, which SSL algorithm is most suitable.

This meta-learning approach proposed by Li et al. (2019b) could help determine which SSL methods to use

instead of blindly testing a collection of algorithms.
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Malvić, T., Velić, J., Horváth, J., & Cvetković, M., 2010. Neural networks in petroleum geology as inter-

pretation tools, Central European Geology, 53(1), 97–115.

Martelet, G., Truffert, C., Tourlière, B., Ledru, P., & Perrin, J., 2006. Classifying airborne radiometry data

with agglomerative hierarchical clustering: A tool for geological mapping in context of rainforest (French

Guiana), International Journal of Applied Earth Observation and Geoinformation, 8(3), 208–223.

McCormack, M. D., 1991. Neural computing in geophysics, The Leading Edge, 10(1), 11–15.

Meng, Z., Merkurjev, E., Koniges, A., & Bertozzi, A. L., 2017. Hyperspectral image classification using

graph clustering methods, Image Processing On Line, 7, 218–245.

Mount, N. J. & Weaver, D., 2011. Self-organizing maps and boundary effects: quantifying the benefits of

torus wrapping for mapping SOM trajectories, Pattern Analysis and Applications, 14, 139–148.

Mukerji, T., Jørstad, A., Avseth, P., Mavko, G., & Granli, J. R., 2001. Mapping lithofacies and pore-fluid

probabilities in a North Sea reservoir: Seismic inversions and statistical rock physics, Geophysics, 66(4),

988–1001.

Navidi, W., 2010. Statistics for engineers and scientists, McGraw-Hill, 3rd edn.



BIBLIOGRAPHY 205

Ng, A., Jordan, M., & Weiss, Y., 2002. On spectral clustering: analysis and an algorithm, in Advances in

Neural Information Processing Systems, vol. 14, pp. 1–8, MIT Press.

Nigam, K., McCallum, A. K., Thrun, S., & Mitchell, T., 2000. Text classification from labeled and unlabeled

documents using EM, Machine Learning, 39(2), 103–134.

Paasche, H. & Eberle, D. G., 2009. Rapid integration of large airborne geophysical data suites using a

fuzzy partitioning cluster algorithm: a tool for geological mapping and mineral exploration targeting,

Exploration Geophysics, 40(3), 277–287.

Paisley, J. W., 2017. ColumbiaX Machine Learning Lecture 13: Boosting, in CSMM.102x Machine Learn-

ing.

Pascanu, R., Mikolov, T., & Bengio, Y., 2013. On the difficulty of training recurrent neural networks, in 30th

International Conference on Machine Learning, vol. 28 of Proceedings of Machine Learning Research,

pp. 1310–1318, PMLR, Atlanta, Georgia, USA.

Pereira Leite, E. & de Souza Filho, C. R., 2009. Artificial neural networks applied to mineral potential map-

ping for copper-gold mineralizations in the Carajás Mineral Province, Brazil, Geophysical Prospecting,

57(6), 1049–1065.

Pirkle, F. L., Howell, J. A., Wecksung, G. W., Duran, B. S., & Stablein, N. K., 1984. An example of cluster

analysis applied to a large geologic data set: Aerial radiometric data from Copper Mountain, Wyoming,

Mathematical Geology, 16(5), 479–498.

Porwal, A., Carranza, E. J. M., & Hale, M., 2003. Artificial neural networks for mineral-potential mapping:

A case study from Aravalli Province, Western India, Natural Resources Research, 12(3), 155–171.

Qi, J., Lin, T., Zhao, T., Li, F., & Marfurt, K., 2016. Semisupervised multiattribute seismic facies analysis,

Interpretation, 4(1), SB91–SB106.



BIBLIOGRAPHY 206

Radford, D. D. G., Cracknell, M. J., Roach, M. J., & Cumming, G. V., 2018. Geological mapping in Western

Tasmania using radar and random forests, IEEE Journal of Selected Topics in Applied Earth Observations

and Remote Sensing, 11(9), 3075–3087.

Raeesi, M., Moradzadeh, A., Ardejani, F. D., & Rahimi, M., 2012. Classification and identification of

hydrocarbon reservoir lithofacies and their heterogeneity using seismic attributes, logs data and artificial

neural networks, Journal of Petroleum Science and Engineering, 82-83(1), 151–165.

Riese, F. M., Keller, S., & Hinz, S., 2020. Supervised and semi-supervised self-organizing maps for regres-

sion and classification focusing on hyperspectral data, Remote Sensing, 12(7), 1–23.

Roberts, J. & Engel, B. A., 1987. Depositional and tectonic history of the southern New England Orogen,

Australian Journal of Earth Sciences, 34(1), 1–20.

Roden, R., Smith, T., & Sacrey, D., 2015. Geologic pattern recognition from seismic attributes: Principal

component analysis and self-organizing maps, Interpretation, 3(4), SAE59–SAE83.

Rogers, S. J., Fang, J. H., Karr, C. L., & Stanley, D. A., 1992. Determination of lithology from well logs

using a neural network, AAPG Bulletin, 76(5), 731–739.

Rosenberg, C., Hebert, M., & Schneiderman, H., 2005. Semi-supervised self-training of object detection

models, in 2005 Seventh IEEE Workshops on Applications of Computer Vision, vol. 1, pp. 29–36, IEEE.

Ross, C. P. & Cole, D. M., 2017. A comparison of popular neural network facies-classification schemes,

The Leading Edge, 36(4), 340–349.

Rousseeuw, P. J., 1987. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis,

Journal of Computational and Applied Mathematics, 20, 53–65.

Roy, A., Dowdell, B. L., & Marfurt, K. J., 2013. Characterizing a Mississippian tripolitic chert reservoir



BIBLIOGRAPHY 207

using 3D unsupervised and supervised multiattribute seismic facies analysis: An example from Osage

County, Oklahoma, Interpretation, 1(2), SB109–SB124.
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