
 EJECE, European Journal of Electrical Engineering and Computer Science

Vol. 4, No. 5, September 2020

DOI: http://dx.doi.org/10.24018/ejece.2020.4.5.234 Vol 4 | Issue 5 | September 2020 1

Abstract — In this research, an open-source IoT platform

named openHAB smart home automation is used as a home

server, an ESP32 Thing microcontroller board is used to design

a remote-control system for a thermal energy storage system. It

consists of temperature sensors for real-time temperature

monitoring, ESP32 Thing board is used for data receiving,

processing and sending it to the MQTT broker, openHAB

software installed in the personal computer is used as a home

server for creating dashboard panel, MQTT broker is used to

establishing the communication in between openHAB home

server and ESP32 Thing board, Wi-Fi router is used to create

the communication channel, a battery-powered remote-

controlled heater with a digital thermostat is used as a testing

device where user can set the desired temperature for house

heating. The main objectives of this work are to design a low-

cost monitoring and control system for thermal energy storage

systems, to monitor the real-time temperature data, to design a

control system for thermostat settings with the following

features such as manual/automatic operations, local/remote

control options. The user can access the dashboards locally via

any computer and remotely via openHAB Cloud console from

anywhere in the world. The proposed system in this work will

help residence to manage their heating systems smartly in a cost-

effective way, which will be the replacement of the conventional

thermostat settings. The utility provider company can also use

this system to control the thermostat settings from centrally,

wirelessly, and remotely.

Index Terms — open HAB home automation, MQTT, IoT,

Sparkfun ESP32 Thing, Remote control, Remote Monitoring.

I. INTRODUCTION1

The space heating system and domestic water heating

system is prevalent and used in every house in Canada.

Conventionally, the wood, gas, and oil-based heating system

have been used, and even nowadays, in some regions, these

are being used. In a typical single-family house, the standard

electric heating components are a small water tank integrated

with the electric heating element, electric heating resistance

elements, sensors, a small control system to turn on and off

the auxiliary heater. House demand-side management is

essential to supply continuous space heating and domestic

water heating in various weather scenarios. In cold climate

countries like Canada, people are paying high electricity bills

monthly. But the electric-based thermal energy storage

systems consume a lot of grid electricity; thus, grid energy

saving and greenhouse gas (GHG) reduction are the primary

concern in Canada [1].

1Published on September 17, 2020.

Md. Habibur Rahaman, Memorial University of Newfoundland, Canada.

(corresponding e-mail: mhrahaman mun.ca, tariq@mun.ca)
M. Tariq Iqbal, Memorial University of Newfoundland, Canada.

In our previous research [1], [2], we proposed the solar

photovoltaic and solar thermal collector based short term and

long term (sessional) thermal energy storage systems. There

is some one-time investment cost for system modification and

solar photovoltaic or thermal collector installation. Still, the

rate of return was acceptable (5~7 years), and the system

saves grid electricity and GHG.

The system components sizing has been conducted

considering the housing demand and weather. The necessary

control system has also been proposed and simulated.

Without proper control, these losses can not be minimized to

apply the effective operation with proper monitoring and

control systems.

To address this effective and robust controller, we

developed a monitoring system with some sensors to monitor

the sensing parameters such as ambient temperature, indoor

house temperature, tank water temperature. Similarly, based

on the sensor value, a control system has been developed with

a low-cost open-source IoT platform named openHAB home

automation, which can control the thermostat settings, to turn

on/off of auxiliary heater. A demonstration has been

presented in this research. The paper organized as follows: In

section 3, the details literature review and the latest IoT based

automation, control projects have been presented. We

presented the problem statement, and how this the proposed

system is practically meaningful. In section 3, we presented

the latest IoT thermostat control technology and highly

popular thermostat which is available in the market. Their

market price, operating principle, pros and cons have also

mentioned shortly. In section 4, the proposed system

architecture, system development approach, the system

requirement and specifications have been listed. In section 6,

the details description of the proposed system components,

their ratings, connection procedure and requirements, short

working principle have been presented. The step by step

openHAB IoT setup in a personal computer windows,

configuration, connection with MQTT broker have been

conducted in section 6. The JAVA programming

methodologies and details development have been presented

there based on the practice experience. In section 7, the

proposed system experimental setup, component connection,

testing and validation, how to monitor the sensor values and

control the thermostat have been presented. In section 8, the

proposed system performance, cost and power consumption

analysis have been conducted and compared with the existing

technology. The strength and highlighted features of the

 @

A Remote Thermostat Control and Temperature

Monitoring System of a Single-Family House using

openHAB and MQTT

Md. Habibur Rahaman*, M. Tariq Iqbal

mailto:mhrahaman@mun.ca
mailto:tariq@mun.ca

 EJECE, European Journal of Electrical Engineering and Computer Science

Vol. 4, No. 5, September 2020

DOI: http://dx.doi.org/10.24018/ejece.2020.4.5.234 Vol 4 | Issue 5 | September 2020 2

proposed system has been presented. The conclusion and

future work has been drawn at the end.

II. LITERATURE REVIEW

There are several published works on solar thermal energy

storage system design and control to ensure an efficient

system and reliable control. The system components

monitoring and control can reduce system losses and improve

system efficiency. Authors in [3] developed an optimal

control system of integrated heating and cooling systems that

are capable of reducing 5-11% electricity cost depending on

the electricity price, weather, and size of the storage tanks.

Still, the details system cost calculation is absent. A model

predictive control (MPC) has been applied to an on-grid

photovoltaic (PV) based heating and cooling energy storage

systems in [30], where the authors monitored the operations

for 24 hours and achieved 58% energy savings.

Similarly, in [4], the authors proposed another MPC

control system incorporated with the artificial neural network

and saved 29% operating cost but presented only 1-hour data

and did not present the monthly and sessional. An optimal

control algorithm has been applied in borehole thermal

energy storage systems in various weather scenarios to supply

continuous heat and cold [4]. Authors in[5] presented a fuzzy

logic-based control system considering weather information

and heating demand. Basically, in that research, they did

energy management. Similarly, there is more similar

simulation-based research available; however, very few

research available in hardware applications. The energy

storage system can be monitored and controlled by using

open source Internet of Things (IoT) such as Thinger.io,

ThingsSpeak, openHAB home automation, Home Assistant

platforms, and so on. Similar to software simulation, there are

several types of research available with the application of

single-family residential house apparatus control and

monitoring. For instance, authors in [6], [7], designed an IoT

based system with Raspberry Pi device with the integration

of openHAB platform with integration of hypertext transfer

protocol (HTTP) networks, which can monitor the system

components remotely, but the system is not customer

friendly. Another research[8] presented the design and

implementation of the wireless module with openHAB GPIO

binding, Raspberry Pi, Arduino, NodeMCU, which is also

capable of monitoring the sensor values and controlling the

household supporting devices. Other studies in [9] proposed

a single-family house demand-side management systems

with openHAB platform with various communication

protocols such as HTTP and use datagram protocol (UDP)

and energy sharing based algorithm. The research conclusion

was to monitor and control of house devices, but they did

calculate the total device energy consumption and cost.

Similar to the above research, some sensors, MQTT protocol,

Raspberry Pi, IoT based home assistant, and openHAB

platform has been used for home devices automation[10].

Finally, the authors concluded the remote controllability, and

which one would be better in between home assistant or

openHAB? In a Germany based openHAB conference, the

authors in [11] fully automated the most significant public

Building using the openHAB platform. Paper[12], [13] also

highlighted the security concern of openHAB and open-

source IoT based systems.

In 2018, the University of Tartu published a master's thesis

[14] about the security concern of openHAB, such as

authentication and authorization. Another latest research

published in 2019 [15], where the authors proposed a home

device control system with ESP32, openHAB, MQTT

protocol, that's the almost similar research like me, but the did

not mention the system energy consumption, energy

management systems and system cost.

There are also other similar works[16], device control

using mobile phone or web through Arduino, Bylink, relay,

MQTT, and so on. Another application of IoT is the

monitoring of refrigerated temperature is mentioned in [16].

Similarly, authors in [17]-[19]proposed a web-based control

system and an intelligent thermostat using IoT, MQTT,

Arduino, but they did not work with open source cloud

control capabilities.

In this paper, the authors proposed a low-cost open-source

IoT based remote monitoring and control system for a thermal

energy storage system. Where a thermostat has been

controlled from locally and remotely, and the energy storage

systems temperature has been monitored by using the

openHAB home server dashboard, MQTT establishes the

connection in between openHAB home server and Sprukfun

ESP32 Thing microcontroller. The authentication and system

security has also been ensured and also worked with the open-

source cloud development.

III. AVAILABLE TECHNOLOGIES IN THE MARKET

Several products on the market are working as the same

functions, such as Google Nest thermostat, Honeywell

thermostat, ecobee thermostat, Sinop thermostat, Lux Kono

thermostat, Johnson controls the thermostat, ThermoPro

digital hygrometer thermometer, Mysa smart thermostat and

so on. Among all of them, Google nest thermostat is highly

popular.

A. Google Nest thermostat

It first developed in 2011 form Google bought nest labs,

and now the 3rd generation is available in the market, which

one brilliant way to control the heating and to cool simply.

The compact hardware packages wiring is simple as well, the

common point is C, and 24-volt wires can be connected with

the other. This smart thermostat can support multi-stage, heat

pump, and multi-zone HVAC systems, but it does not like

geofencing and expensive, $329 market price [20].

B. Honeywell thermostat

This allows local and remote control options through a

computer, tablet, or smartphone. In the digital screen, the

humidity, temperature, and thermostat settings options are

available. But the worst Thing is that it does not include the

wall plate for installation, wiring is too complicated, which

can cause expensive equipment damage, it is a non-

programmable device as well, and its price is around

$149[20].

 EJECE, European Journal of Electrical Engineering and Computer Science

Vol. 4, No. 5, September 2020

DOI: http://dx.doi.org/10.24018/ejece.2020.4.5.234 Vol 4 | Issue 5 | September 2020 3

C. Ecobee thermostat

It is compatible with temperature and humidity sensors,

and in the automatic mode, it is estimated that around 23%

annual savings are possible in heating and cooling. Similar to

another thermostat, the house components can be controlled

locally and remotely using a laptop and mobile phone, and its

cost is in between the above two thermostats, which is around

$229[20]. The main issue with that is it has only one

temperature sensor and two occupancy sensors build in at

Ecobee4 systems.

These are the most popular available smart and Wi-Fi

thermostat, which is used commonly in the single-family

house for room heating and cooling application. However,

there are other manufacturer's smart thermostats available at

different prices.

IV. SYSTEM DESCRIPTION

A. System Architecture

Lots of wireless smart thermostats are available in the

market that already discussed in section 2 what market price

is high, and some thermostat wirings are not so simple.

Some other PLC applications are also available what

require particular installation, and the majority of circuit

elements, sensors, and relay are connected with other

integrating technologies. Those technologies are also useful;

however, in this study, we are proposing a smart way, cost-

effective structure of house heating and cooling applications,

temperature measurement, and monitoring[8]. The openHAB

home assistant open-source IoT platform is a highly popular

and designer choice IoT platform. It is free and easy to install

and easy to integrate with an electronic microcontroller such

as Arduino, Sprukfun ESP32 Thing, ESP8266, and so on.

Similarly, it is so simple to connect solid state relay and

DHT11 temperature and humidity sensors and other analog

temperature sensors with those devices. The working system

architecture is shown in Fig. 1 below: The proposed system

architecture is designed to reduce the complexity and cost of

implementation. No expensive and complicated components

has been used in this research such personal computer, mobile

devices, Wi-Fi router, which is available in every single-

family house in Canada.

Demand

cold water in

A. H= Auxiliary heater

A
p
p

lia
n

c
e
s

Radiator

+DHW

Router

Internet
openHAB cloud

Remote control and

monitoring device

Home server

Mobile device

Thermostat

Pre-heating Tank

Grid

Collector

A. H

Pump Controller

Main tank

Solar thermal energy storage systems
Single family home

Fig. 1. the system architecture.

The system is designed as user-friendly, low power

consumption, low cost, allowing users to use a traditional

thermostat, to monitor the room, ambient temperature, and to

control the thermostat settings locally and remotely. The

users can monitor temperatures and can manage the

thermostat settings using their laptops or mobile devices

through the local available Wi-Fi network. Through the

portable device uses communication services such as GSM,

with access to the internet, a user can have access to the home

server using openHAB apps or openHAB Cloud and can do

the same. The other family member can also have access to

the home server using their laptops and monitor and control

the thermostat settings. The system architecture has a flexible

user interface that can be customized based on user

requirements, such as indoor room temperature settings. As

the server has no SIM card or separate IP address, so the users

do not need to memorize. The system components setup flow

is shown in Fig. 2.

 EJECE, European Journal of Electrical Engineering and Computer Science

Vol. 4, No. 5, September 2020

DOI: http://dx.doi.org/10.24018/ejece.2020.4.5.234 Vol 4 | Issue 5 | September 2020 2

Set-up

Start

Already have an

account?

Router with WLAN port

Create an

account

Login

Setup the HUB

to work on user

home network

Configure Home

Appliances

Login

Password?

IP Address?

Add

Subnet

Musk

Select

Interface

Configuration

End

Enter IP

Address

No

Yes

No

Yes

No

Yes

Fig. 2. The Wi-Fi setup and other components setup.

B. System Development Approach

The openHAB home automation is a very user-friendly

open-source IoT platform software that is easy to set up at

Windows, RaspbberyPi, Linux, Windows, macOS,

openHABian, PINE A64, Armbian, Docker and so on. But in

this work, we installed openHAB in a laptop with Windows

operating systems. It is using the same process of the

computer, no need to buy RaspberyPi and pay an extra dollar

or RaspberyPi software version is available freely, which is

also same as the hardware RaspberyPi. The performance of

openHAB with windows installation is excellent as the home

server, and there is no need for any extra third party software

or hardware. Arduino or ESP23 board is also another

microprocessor where the sensors are connected, which is

made with the reply, temperature sensors. The temperature

sensors measure the environment temperature and sent it to

the microcontroller, the ESP32, or the Arduino

microcontroller. The microcontroller is connected with the

Wi-Fi network [9], so it embedded the data and sent it to the

openHAB windows home server. Similarly, the thermostat

control signal came from the openHAB windows home server

to the Arduino microcontroller through the Wi-Fi network;

thus, the solid-state reply controlled, and thermostat settings

controlled. The detailed system block diagram is given below

in Fig. 3.

H
o
m

e
 C

o
n

tro
l D

e
v
ic

e
s

Home Appliances

openHAB Home Server

Processors

Microcontroller Unit

(ESP32 Thing)

Sensors and Actuators

Data-Base

Wi-Fi Router

openHAB Cloud

(Remote access)

Internet

U
se

r

U
se

r ID
/P

a
ssw

o
rd

E
n

tra
n

ce

Fig. 3. The overview of system development.

C. System Specifications and Requirements

The proposed monitoring and control systems have some

requirements which are given below:

➢ All sensors, microcontroller devices must be low power

consumption, energy-efficient, low cost, smaller sizes.

➢ The home server should be easily accessible from

locally or remotely. There is no need to memorize the

computer or network IP address or SIM number to

access the home server.

➢ The system must be secured enough to ensure that there

will be no third-party intrusion and the safety of the

householder.

➢ For security and safety operations, just a user login and

credential and password will be well enough to access

and control the whole systems.

➢ The systems should be controllable from anywhere in

the world.

➢ The system architecture should be simple so that every

illiterate user can use these systems.

➢ Limit the amount of power an appliance can consume.

➢ Update the user on the state of appliances, either running

or not.

V. COMPONENTS DESCRIPTION

The proposed control and monitoring system are made up

of sensors, ESP32 Thing board, relay, digital thermostat, and

so on. The temperature sensors have been used for data

accusation. Similarly, SparkFun ESP32 Thing micro-

controller is a primary device used for data receiving,

processing, and transmitting to other hardware. A solid-state

 EJECE, European Journal of Electrical Engineering and Computer Science

Vol. 4, No. 5, September 2020

DOI: http://dx.doi.org/10.24018/ejece.2020.4.5.234 Vol 4 | Issue 5 | September 2020 3

relay is used to turn on/off the heater, and a heater with digital

thermostat used a plant which is capable of indicating the

status of room temperature. To create Wi-FI Router for local

Wi-Fi network creation (communication channel), and

openHAB home automation server is a local IoT server with

a graphical user interface (dashboards) for monitoring the

sensor's data and controlling the thermostat locally and

remotely. The details description of every component are

given below.

A. OpenHAB Home Automation Local Server IoT Platform

openHAB home automation software is an open-source

powerful and user-friendly software for the Internet of Thing

(IoT), which can be installed in RaspberyPi, windows, Linux,

and so on. It supports the Representational State Transfer

(REST) Application Programming Interface (API) which

enables controlling and reading of smart devices. REST uses

Hypertext Transfer Protocol (HTTP) for communication, and

it is an architecture based on the standard of the web. This

protocol enables the different machines on the network by

considering every component as a resource. The unique

features of the HTTP protocol which can connect and manage

IoT devices using the automatic discovery of API. openHAB

IoT platform is fully supported by GitHub (the highly popular

and world-leading open-source development platform).

openHAB open-source home automation IoT platform is

fully supported with the other software such as MQTT broker

and other hardware. openHAB is integrating with Arduino

IDE compatible. The following boards which are worked

with Arduino IDE, such as Arduino, Arduino+Ethernet

Sheild, Arduino+WIfi Sheild, ESP32/8266/13, NodeMCU,

TC CC320, and so on. It can operate in Windows and Linux

powered devices such as Raspberry Pi (both version), Intel,

and any other personal computers working with Windows,

Linux running with Ubuntu, or macOS.

In this research, the openHAB software IoT platform has

been installed in computer windows, so there is no

component associated with it. It can perform well and can

communicate well as a home server with all other external

microcontrollers at Wi-Fi networks such as Arduino,

Sparkfun Esp32 Thing. In this project, openHAB smart home

automation software has been installed in C drive of personal

computer windows, and openHAB worked as a home server

in the Wi-Fi environment, and it will be fully able to

communicate with other microcontroller development board.

Home server (openHAB) specifications will be the same as

the personal computer specifications such as RAM capacity,

Processor capacity, HDMI port, Memory capacity, and so on.

In this section 8, the authors presented the detailed description

of low-cost and low power consumption hardware and

software components used in the realization of the proposed

openHAB IoT based remote monitoring and control systems

design. The ESP32 Thing microcontroller is configured with

the MQTT Client to process and publish the sensor data to

openHAB and similarly sent the thermostat settings value to

the ESP32 microcontroller through MQTT subscribe/publish

protocol which is also configured as the MQTT broker as

shown in Fig.15. Finally, a Wi-Fi router is used for creating

the TCP/IP Wi-Fi connection for the MQTT protocol

implementation. The external hardware components

associated with this project are described below:

B. DHT11 digital temperature sensors

The DHT11 is a temperature and humidity sensors, it has a

dedicated NTC to measure the environment temperature, and

an 8-bit microcontroller inside that can generate the output in

the values of temperature as a serial data. The serial pin is

connected with one of the digital PIN in ESP32

microcontroller. This is cheap and available anywhere. It can

measure temperature from 0 oC to 50 oC with an accuracy of

±1°C. It's a small device with a length of 16 mm, and the

width is 12.9 mm. DHT11 is available in two different pin

configurations, and it may contain 4 pins or 3 pins. The PIN

diagram of both DHT11 sensors is shown in Fig. 4.

Fig. 4. The pin diagram of DHT11 temperature sensors.

The out (data) pin is connected with an I/O pin of the

ESP32 microcontroller digital input pin (pin 34 and 35).

Typically, 5 voltage is available in ESP32 think device and

power supply board, but DHT11 needs 3.3 V power supply:

that's why a 5k pull-up resistor is needed. The out pin (pin 34

and 35) value is a serial data contains temperature and

humidity. The library file for DHT11 is available, which has

been uploaded to the ESP32 library for successful operation.

ESP32 sensors have 3.3 V pin, so the VDD pin of DHT11 is

connected to the 3.3 V pin of ESP32. Similarly, the ground of

ESP32 and ground of DHT11 are connected. The connection

of DHT11 sensors with ESP32 microcontroller is shown in

Fig. 5.

S
p

a
rk

fu
n

 E
S

P
3

2
 T

h
in

g

(M
C

U
)

DHT11

Temperature

sensors

VDD
VDD

GND

Data

1

2

4

5K

Fig. 5. The connection diagram of ESP32 and DHT11.

The specifications of DHT11 sensors are given below:

• Operating Voltage: 3.5V.

• Operating current: 0.3mA (measuring) 60uA (standby).

• Output: Serial data.

• Temperature tolerable range: 0°C to 50°C.

• Humidity detect range: 20% to 90%.

• Resolution: Temperature and Humidity both are 16-bit.

 EJECE, European Journal of Electrical Engineering and Computer Science

Vol. 4, No. 5, September 2020

DOI: http://dx.doi.org/10.24018/ejece.2020.4.5.234 Vol 4 | Issue 5 | September 2020 4

• Accuracy: ±1°C and ±1%.

C. Sparkfun ESP32 Thing Micro-Controller (RTU)

The Sparkfun ESP32 Thing microcontroller board,

manufactured and supplied by the Sparkfun Electronics, is a

micro-controller unit that is almost similar to an Arduino

development board. It is a Wi-Fi compatible micro-controller

with around 30 Input/Output pins, and it supports off Wi-Fi

line Bluetooth low-energy such as BLE, BT4.0, Bluetooth

Smart. Based on the manufacture report (datasheet), the

reason of its name "Thing" is that it is mainly manufactured

for the Internet of Things software so that the user can

implement and do lots of projects, for example, wireless

monitoring and control system development for local or

remote control through Wi-Fi network. Compare to all other

available IoT supported microcontroller development boards,

it has unique characteristics that it has low power

consumption (around 0.5W), low cost (about CA$ 20) [21].

There are two ways to supply power to this board with either

a 5 V USB power supply cable or with a small lithium-

polymer (Lipo) battery. It's operating signal voltage range is

2.2 V to 3.6 V, although the I/O pins of ESP32 Thing board

van tolerate 3.3 V. A single Sparkfun ESP32 Thing

development board is shown in Fig. 6.

Fig. 6. The picture of Sparkfun ESP32 Thing.

It can be programmed with the Arduino integrated

development board (IDE) tools. If the ESP32 board is

connected with a personal computer with a USB cable, any

program written in Arduino IDE can be uploaded directly to

ESP32 micro-controller by selecting the board types and port

type. The common name of the Arduino program is Sketches,

and typically, it's C/C++ functions. To implement this

project, the ESP32 thing microcontroller has been hooked up

in a breadboard, and the temperature sensors and solid relay

are connected. There two temperature sensors have been

used; one is to measure the room temperature, and the other

one is to measure the ambient temperature—the C++ program

written in Arduino IDE in degree centigrade format and

uploaded to the board. The ESP32 thing board has been

powered with 5 V USB power cable. The measured and

calculated temperatures are displayed in the IDE serial

monitor by selecting the specific Baud Rate. Both

temperatures will show as a digital form at the user

monitoring panel. The Input/Output and analog/digital pin,

ground, VCC pins, reset pin, USB connected power supply

pin configuration, and details structure of the Sparkfun

ESP32 Thing development board are shown in Fig. 7.

Fig. 7. The detailed architecture of the ESP32 Thing board.

D. Wi-Fi Router (Communication Channel)

In this monitoring and control system work, the local Wi-

Fi serves as the communication channel between the ESP32

Thing (RTU) and the openHAB IoT home server. The high-

speed Bell-Aliant Router (Model number Home HUB 3000)

has been used to create the local WI-FI network. Its data

transfer rate is 1 Gbps, 802.11b/g wireless protocol, and it is

IEEE 802.11 standards-compliant. The Router operating

frequency is 2.4 GHz, and it has one WAN power and four

LAN ports. According to the datasheet of ESP23 Thing

(MCU), it can implement TCP/IP full 802.11b/g/e/i WLAN

MAC protocol and Wi-Fi direct, so it matched. A local

WLAN Ethernet cable has been connected to the LAN port

of Router. The Router has been configured to set up the

needed local Wi-Fi network. After that, the communication

established in between openHAB home IoT server and

ESP32 Thing using the server IP address to identify the

platform. To ensure the network security, the Wi-Fi Router

user credentials (network name SSID and the password has

been assigned.

E. Digital Thermostat and Heater

The project is related to temperature monitoring and

thermostat control, so these components are the output

components where the openHAB thermostat control topology

has been applied. It has a digital thermostat, which indicated

the running room temperature in degree centigrade in digital

format. We selected one digital output port of ESP32 and

connected the solid-state relay to turn on and off the heater.

The other two digital output pin has been selected in ESP32

Thing are for thermostat control and for setting the thermostat

value. In this work, a comfort zone brand heater has been

chosen, which has a large easy to read digital display

thermostat as well as a remote power by two 1.5 V dry-cell

battery. It is a built-in electronic circuit. It is a 23 in black

oscillating ceramic tower heater with 1500 watts ratings. It

 EJECE, European Journal of Electrical Engineering and Computer Science

Vol. 4, No. 5, September 2020

DOI: http://dx.doi.org/10.24018/ejece.2020.4.5.234 Vol 4 | Issue 5 | September 2020 5

has three temperature settings, lower (800 W), medium (1000

W), and high (1500 W). The connection of heater thermostat

and ESP32 Thing is shown in Fig. 8.

ESP32 Thing

Microcontroller

Thermostat settings

Wireless

Remote

Model: Comfort Zone CZ523RBK

UpDown

ON/OFF

5 15 23

Fig. 8. The connection diagram of remote and ESP32 Thing for

thermostat settings.

The remote has two buttons one is used to up the thermostat

settings (connected with Pin 15 and 23), and the other one is

used to down the thermostat settings. According to the user

demand, the user can press these two buttons in remote and

wirelessly; the thermostat settings have been changed. These

two buttons in remote are connected with the digital output

pins of ESP32 Thing to control the thermostat settings from

ESP32.

VI. OPENHAB SETUP AND JAVA PROGRAMMING

Open Home Automation Bus (openHAB) is an open-

source IoT platform that is working with the JAVA

programming language [22]. There is so many open-source

IoT based software available like Thinger.io,

ThingSpeak.com, Ubidots, ThingsBoard, Zetta, Node-RED,

Flutter, Kaa, and so on. Among all of them, it has some

strength such as it is capable of working with Linux,

Windows, macOS, Unix, and Solaris operating systems, and

it can integrate with other devices and systems, it can provide

a uniform user interface and a common approach to

automation rules across the entire system, it is more flexible.

openHAB first developed in 2010, which is fully

customizable and was capable to connects devices and

services from various vendors. Now in the 2019 update, it has

300 bindings as OSGI modules, and multiple control options

are available such as controlling the lights, relays, and the

manual, and automatic controls are also possible in the user

interface by triggering the rule developed by JAVA language.

openHAB works on Java virtual machine (JVM), which

enables a computer to run Java programs. If the programs are

written in other languages that also compiled to Java

bytecode, all openHAB Bindings have a separate function.

Whatever we need, we need to install that at runtime via

OSGi. For storing and querying the sensors data, including

relation and time series database, it also supports several

persistence backends.

The openHAB IoT platform has a cloud console with an

attractive designed front end where a user can monitor and

control the connected devices and visualize the connected

devices from another computer on the same server or another

computer anywhere in the world. To ensure security, a user

must log in to the cloud console using his user authentication

ID and a protected password to avoid the misuse.

To work with openHAB IoT platform, the first step should

be to choose the operating system where to install it, such as

Windows, Linux, macOS, Raspberry Pi, Docker, PINE A64.

To start with openHAB platform, the first step is to visit its

official webpage and download the openHAB windows

software latest version, in this project, the latest release

version is Stable 2.5.5 and Snapshot 2.5.6-SNAPSHOT, it is

better to download Snapshot latest version.

The openHAB is working with JAVA open source

development platform, and there are several versions of

JAVA platforms available. Among all of them, Zulu 8 is

correctly working with openHAB. Then the user should

follow the installation steps mentioned in Fig. 9.

A. openHAB Configuration

openHAB is the smartest IoT platform among all of them

where the Configuration is also s user friendly, which is

capable of connecting all devices available under the Wi-Fi

network. Every device is logically and functionally different

connected to openHAB. The openHAB-MQTT channel

definition is shown in Fig. 10. To represent all of these,

openHAB defines the following base components:

TABLE 1: DESCRIPTION OF OPENHAB COMPONENTS

openHAB

components
Short descriptions

Add-ons To communicate with connected devices
Things Device representation in openHAB

Items Things properties and capabilities

Groups Items collections and categories

Sitemaps
User-defined interface to arrange groups, items,

and so on.

Transformations Functions to transform user data.
Persistence Store updated data service

Rules It is used to automate the systems.

Javascript
Define rule and other runtime objects using Java

programming.

Fig. 10. openHAB and MQTT Configuration.

 EJECE, European Journal of Electrical Engineering and Computer Science

Vol. 4, No. 5, September 2020

DOI: http://dx.doi.org/10.24018/ejece.2020.4.5.234 Vol 4 | Issue 5 | September 2020 1

Start

Install Zulu 8 (Windows) for JAVA programming

Download, unzip it to to the C Drive (C:\openHAB2) the

latest Windows Snapshot ZIP file of openHAB software.

Launch the runtime by executing the script

(C:\openHAB2\start.bat)

 openHAB start

page?

Point your browser to http://localhost:8080

Updating the openHAB Runtime

Starting openHAB as a Service

Shutdown the openHAB (logout)

openHAB start

page?

Update wrapper at openHAB2-wrapper.conf

Run Command Prompt as an administrator

openHAB start

page?

Verifying that the Windows Service is running (Start

manu>services.msc)

openHAB service

running?

Install SSH clientand connect to the openHAB console

(MQTT, Putty, kiTTY)

Is it connected?

All done (End)

Fig. 9. openHAB installation steps in Windows.

B. Communication Mechanism

openHAB can communicate electronically with smart and

not so smart devices, can perform user-defined actions, and

can provide a webpage with user-defined information as well

as user-defined tools for interaction with all devices.

It has some specific segments, functions, and operations.

The main components of openHAB are described below:

Channels: The user can find the channel under the

openHAB>PaperUI>Configuration. It is a logical link

between a Thing and an Items. The primary function of

channels are communication; it originates from Things and

communicates with Items or vice versa. During the Thing

definition, the user will create channels where items will be

lined. Every item has a unique identification number, which

we put to the JAVA programming to establish external

communication as well with MQTT. Thus the connection has

been established between Things and Items. Figure 11

represents the relation between Things and Items and the

confirmation of communication establishment in between

openHAB and MQTT broker is shown in Fig. 12.

Fig. 11. The relation between Things and Items.

 EJECE, European Journal of Electrical Engineering and Computer Science

Vol. 4, No. 5, September 2020

DOI: http://dx.doi.org/10.24018/ejece.2020.4.5.234 Vol 4 | Issue 5 | September 2020 2

Fig. 12. openHAB home server and ESP32 Thing communication via

MQTT broker.

VII. EXPERIMENTAL SETUP

This research mainly focuses on the thermal energy storage

system monitoring and control, as mentioned in Fig. 1. The

prototype consists of indoor and outdoor temperature sensor

data monitoring and thermostat settings control using

Sprukfun ESP32 Thing device and openHAB smart home

automation open-source IoT platform. Analog (TMP35) and

digital (DHT11) temperature sensors have been used to

monitor indoor room and ambient temperature. Similarly, a

remote control electric heater with a digital temperature

display has been considering as a thermostat settings device.

openHAB home server is used for remote monitoring and

supervisory control. Here one set of sensors and thermostat

control systems is used for testing purposes.

A. Implementation Methodologies

The primary implementation methodologies are to design

a low cost, low power consumption open-source IoT remote

monitoring and control system. The analog and digital

temperature sensors are connected to the analog and digital

input pins of Sparkfun ESP32 Things, respectively. One

temperature is placed on the outside, and another one has

been placed in the room. These sensors collected temperature

data form room and outside environment and sent it to the

ESP32 microcontroller through the serial port. The

microcontroller is programmed with Arduino IDE to receive

these sensor data, displayed them in a serial monitor, and then

sent it to the local Wi-Fi network to the MQTT broker. The

MQTT broker sent these data to the openHAB home server

via the local WI-FI network to display at the openHAB

control panel. On the openHAB cloud console, the user can

visualize the sensor data by merely putting the user

credentials and password, no need to remember the IP/TCP

address. The implementation methodology is shown in Table

2 below, and the appearance of the received data on MQTT

broker and openHAB home server, which is described earlier,

is shown in Fig. 18.

TABLE 2: THE IMPLEMENTATION METHODOLOGIES

Initialization:

1. Read sensor values on digital pin 34 and 35.

2. Display the sensor values on Arduino IDE serial monitor

3. Connect to the local Wi-Fi network with Wi-Fi Name and

password.

4. Connect to the MQTT broker with local WI-Fi.

5. Display the sensor values on the MQTT broker.

6. Connect to the openHAB home server by writing localhost:8080

at the browser URL.

7. Go the BasicUI>Sitemaps>Control and monitoring panels to

display the sensor values.

8. Go to the PaperUI>Control to display the sensor values.

9. Change the value of relay and thermostat settings on openHAB

control panel.

10. Display the user control response in the MQTT broker.

11. Monitor the output of ESP32 digital output pins to visualize the

relay and thermostat display change.
While openHAB home server and MQTT broker Acknowledge data

receipt do
12. Display sensor data on openHAB Cloud, and

13. Display "Ok" on Arduino IDE serial monitor.

14. If No data receipt acknowledge form openHAB home server then

15. Display Debug/Error message on Arduino IDE serial monitor and

MQTT broker.

16. else

17. Go to step 1
end

end

The user will be confirmed that this algorithm is working

perfectly when he/she will see the MQTT broker output, as

mentioned in Fig. 12, and the sensors post the data as like Fig.

18.

Prototype design: The hardware components and the

operational principles for every element discussed above

have been used to design and to implement the low-cost

monitoring and control systems, as shown in Fig. 15. The

sensors, resistor arrangement, and the ESP32 Thing

microcontroller are connected following the correct pin

configuration on a breadboard. The ESP32 ADC pins require

3.3 V, but the power supply is 5 V because the ESP32 has

been powered with a USB power supply. That's why pull-

down resistors are needed. The Wi-Fi router has been turned

on; thus, ESP32 is connected to the MQTT broker and

openHAB home server installed in the personal computer.

DHT 11 Temperature sensors data

5 V USB

Heater Remote

Up
Down

ON/OFF

ESP32 Thing Board

Fig. 14. Hardware connection of the proposed monitoring and control

systems.

 EJECE, European Journal of Electrical Engineering and Computer Science

Vol. 4, No. 5, September 2020

DOI: http://dx.doi.org/10.24018/ejece.2020.4.5.234 Vol 4 | Issue 5 | September 2020 3

The proposed monitoring and control system project has

been implemented at the author's residential house as shown

in Fig. 14 and Fig. 15. Two temperature sensors have been

connected, one is in the outside, and another one is in the

room inside to measure the ambient and room temperature,

respectively. The rest of the components, Wi-Fi- routers,

personal computer integrated with openHAB home server,

MQTT broker have been set up in the place inside, as shown

in Fig. 15. The heater remote and thermostat have been

connected with the ESP32 Things. The communication

happened bi-directional ways, as shown in Fig. 13. The

complete experimental setup is shown in Fig. 15.

Remote Access

(Log in ID/Password)

openHAB Cloud

openHAB Home Server
ESP32 Thing microcontroller board

DHT11 Sensor

(Inside/

Outside)

Solid State Relay

User 1

User 2

User 3

Publish/SubscribePublish/Subscribe

Connection Through

Wi-Fi

myopenhab.org

Fig. 13. The communication mechanism.

DHT11 Sensors Data

5 V USB

ESP32

Thing Board

Heater Remote

Local Server

Electrical Heater

Digital Thermostat

Control and Monitoring Dashboard

Fig. 15 Experimental Setup of proposed systems.

B. System Testing

The components have been set up at one of the author's

residential homes to implement the proposed monitoring and

control system. The overview and flow chart of the data

acquisition, processing, visualization, and supervisory

control process from the sensors to the openHAB home server

IoT platform is shown in Fig. 16.

Fig. 16. The sensor data is in the openHAB server.

The experimental trouble shooting and data verification

has been conducted based on the flowchart in Fig. 17.

C. Experimental Results

The openHAB local server IoT platform was configured in

the personal computer following the steps shown in Fig. 9,

 EJECE, European Journal of Electrical Engineering and Computer Science

Vol. 4, No. 5, September 2020

DOI: http://dx.doi.org/10.24018/ejece.2020.4.5.234 Vol 4 | Issue 5 | September 2020 2

configured the MQTT broker to the personal computer as

well, and the necessary library files (MQTT, DHT11 sensor)

uploaded to the Arduino IDE to configure and establish the

connection among the openHAB home server, MQTT broker

and ESP32 Thing.

Start

Sensors Read Data From Room

Inside and Outside Environment

ESP32 Thing Receives Data From

Sensors

ESP32 Displays Data on Serial

Monitor

ESP32 Connects to the Local Wi-Fi

Network

MQTT Broker Publishs/Subcribes

Post Data on openHAB Homer

Local Server

IoT Server

Acknowledges Data

Receipt?

Is Relay Gets ON/

OFF Signal?

Register at openHAB Cloud Console

with UUID & Secrete Number

Do You Able to Access

Dashboard Remotely?

Yes

Yes

Yes

Yes

No

No

No

Re-check C Drive

for UUID/Secrete

Number

Fig. 17. Flow chart of the proposed system.

The sensor's data were posted on the openHAB local

monitoring and control system dashboard and Cloud console

for remote monitoring and control using a mobile phone and

any other computer devices. The openHAB server control

panel and main user control panel from Sitemap are shown in

Fig. 18 and Fig. 19 respectively.

Fig. 18 The openHAB home server control panel.

Fig. 19. Main control and monitoring dashboards.

D. Remote Control and monitoring

openHAB Cloud is a smart service that allows users to

quickly put the user credentials and explore the dashboard

using any computer, laptop, tablets or mobile devices from

anywhere in the world. During the setup and Configuration,

remote access option was allowed. Similarly, in Fig. 9, it is

mentioned that how to registrar at openHAB Cloud and where

to get the UUID and secrete code for registration. Now, for

remote access, the user need to browse the openHAB Cloud

console by visiting https://myopenhab.org/login and simple

put the user credentials as shown in Fig. 20.

Fig. 20. User credential for remote access.

 EJECE, European Journal of Electrical Engineering and Computer Science

Vol. 4, No. 5, September 2020

DOI: http://dx.doi.org/10.24018/ejece.2020.4.5.234 Vol 4 | Issue 5 | September 2020 3

User no need to memorize the IP/TCP address or any other

credentials. Rather than, users will be simply able to access

the monitoring and control dashboard from anywhere in the

world, as shown in Fig. 21.

Fig. 21. The access of the dashboard from a remote place.

VIII. DISCUSSION

Some of the highlighted features of the proposed low-cost,

open-source smart monitoring and control systems are

discussed below:

IoT based system: The proposed system is based on the

Internet of Thing (IoT) which have four basic parts such as

the heater with a digital thermostat is used as the facilities

(plant) to be managed; sensors are the field instrumentation

devices used as a data collection and acquisition, the ESP32

Thing microcontroller device is used as a Master Terminal

Unit (MTU) as it has data handling, processing, and human-

machine interactions capabilities. The wireless Wi-Fi router

is created a communication channel between the openHAB

home server and MTU.

Low-cost and open-source: All the components discussed

above are pretty cheap and readily available everywhere

around the world (nearby local store and online). It is the

customer's choice to buy the components from their own,

which is the key feature of open-source systems. It is assumed

that the thermostat and Wi-Fi router are available in every

house, so those components cost have been excluded in the

cost calculation. The cost of induvial components and over

the system is summarized in Table 1. As seen, the overall

system costs are just around $50 CAD (Table 3). So, it is

proved that the proposed systems are a low-cost system

compared to the other available technology in the market.

TABLE 3: PROJECT COST CALCULATION

S/N Name of the components QTY
Price

(CA$)

1 ESP32 Thing 1 31.90
2 TMP35 temperature sensors 2 2

3 DHT11 Temperature sensor 2 2

4
Miscellaneous (Breadboard,

Resistors, Wires, Boxes, etc.)
1 10

 Grad total: 45.9

Low power: The components described above in Table 1

consume very negligible power around (W) in total, which is

very low. The power consumption of all components have

been measured during the operation and summarized in Table

4.

TABLE 4: PROJECT COMPONENTS POWER CALCULATION

S/N Hardware Power (W)

1 ESP32 Thing 0.5

2
Breadboard (with Sensors, ESP32,

Resistors, etc. connected)
3.3

 Total: 3.8 W

Monitoring: The openHAB home server system has a

dashboard for data monitoring and thermostat control. These

dashboards are accessible to the user in so many ways, such

as the server personal computer, other personal computers

and remote computer or mobile devices through openHAB

mobile App.

Supervisory control: The system allows the user to access

the home server via a personal computer to monitor and

control. Similarly, the user can log in to the openHAB cloud

console by merely putting their user credential and password

and can monitor and control the devices anywhere in the

world.

IX. CONCLUSION

In the most residential house in Canada uses a large amount

of electricity for space heating and water heating. To do that,

there are huge monthly electricity bills every residence needs

to pay, and the grid became overload sometimes. Due to the

mismanagement of the electrical heater, radiator, the

consumption would be more as well. To ensure the optimum

management of heating elements, to monitor the status of

room temperature and ambient temperature from locally and

remotely, to reduce the system supervisory system cost and

power consumption, the proposed system would be highly

useful for real application. This system ensured the reliable,

flexible, cost-effective, lower power requirement, and

sophisticated, coordinated monitoring and control of

measurement of temperature and heater/radiator thermostat

settings. Although there is some similar system existing in the

market which is described in the introduction section, these

systems have several drawbacks, such as there is no way to

develop the system because the supply industry controls it.

There are some limitations in several device integrations, and

those systems are costly. Rather than the proposed method is

cost-effective, simple, the user can add the Bindings,

channels and can add as much as a device he needs to connect

for the whole operations. The utility company, such as

Newfoundland power, can also use these systems for

controlling the thermostat settings in a large area centrally.

For example, the utility company will monitor the power

generation and demand, as they know that around 60%

consumptions are for space heating. Approximately 20%

consumptions are for water heating, if they set the thermostat

settings as a specific temperature for all house by using the

openHAB Cloud console from their office (remotely), then

the residence cannot increase the heating temperature beyond

this settings, thus grid overloading will be resolved, and

mismanagement issue will be resolved.

 EJECE, European Journal of Electrical Engineering and Computer Science

Vol. 4, No. 5, September 2020

DOI: http://dx.doi.org/10.24018/ejece.2020.4.5.234 Vol 4 | Issue 5 | September 2020 4

ACKNOWLEDGMENT

The authors are grateful to the NSERC, Canada, and

Memorial University of Newfoundland for providing

sufficient funds and support for this project.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interest

regarding the publication of this paper.

REFERENCES

[1] H. Rahaman, R. Rasha, and M. T. Iqbal, “Design and analysis of a solar

water heating system for a detached house in newfoundland,” in 2019

IEEE Canadian Conference of Electrical and Computer Engineering

(CCECE), May 2019, pp. 1–4, doi:

10.1109/CCECE43985.2019.8995175.

[2] M. H. Rahaman and T. Iqbal, “A Comparison of Solar Photovoltaic and

Solar Thermal Collector for Residential Water Heating and Space

Heating System,” European Journal of Engineering Research and

Science, vol. 4, no. 12, pp. 41–47, Dec. 2019, doi:

10.24018/ejers.2019.4.12.1640.

[3] D. Rohde, B. R. Knudsen, T. Andresen, and N. Nord, “Dynamic

optimization of control setpoints for an integrated heating and cooling

system with thermal energy storages,” Energy, vol. 193, p. 116771,

Feb. 2020, doi: 10.1016/j.energy.2019.116771.

[4] F. De Ridder, M. Diehl, G. Mulder, J. Desmedt, and J. Van Bael, “An

optimal control algorithm for borehole thermal energy storage

systems,” Energy and Buildings, vol. 43, no. 10, pp. 2918–2925, Oct.

2011, doi: 10.1016/j.enbuild.2011.07.015.

[5] M. LeBreux, M. Lacroix, and G. Lachiver, “Control of a hybrid

solar/electric thermal energy storage system,” International Journal of

Thermal Sciences, vol. 48, no. 3, pp. 645–654, Mar. 2009, doi:

10.1016/j.ijthermalsci.2008.05.006.

[6] “Keeping eyes on your home: Open-source network monitoring center

for mobile devices - IEEE Conference Publication.”

https://ieeexplore.ieee.org/document/7296336 (accessed May 31,

2020).

[7] S. Chivarov, P. Kopacek, and N. Chivarov, “Cost Oriented Humanoid

Robot communication with IoT devices via MQTT and interaction with

a Smart Home HUB connected devices,” IFAC-PapersOnLine, vol. 52,

no. 25, pp. 104–109, Jan. 2019, doi: 10.1016/j.ifacol.2019.12.455.

[8] T. Sysala, D. Fogl, and P. Neumann, “The family house control system

based on Raspberry Pi,” MATEC Web Conf., vol. 125, p. 02034, 2017,

doi: 10.1051/matecconf/201712502034.

[9] “Demand Side Management of Smart Homes Using OpenHAB

Framework for Interoperability of Devices - IEEE Conference

Publication.” https://ieeexplore.ieee.org/document/8506917 (accessed

May 31, 2020).

[10] S. Saxena, S. Jain, D. Arora, and P. Sharma, “Implications of MQTT

Connectivity Protocol for IoT based Device Automation using Home

Assistant and OpenHAB,” in 2019 6th International Conference on

Computing for Sustainable Global Development (INDIACom), Mar.

2019, pp. 475–480.

[11] D. Uckelmann, B. Wohlfarth, and M. Guedey, “Smart Public

Building,” Dec. 2018.

[12] M. Ramljak, “Security analysis of Open Home Automation Bus

system,” in 2017 40th International Convention on Information and

Communication Technology, Electronics and Microelectronics

(MIPRO), May 2017, pp. 1245–1250, doi:

10.23919/MIPRO.2017.7973614.

[13] C. Coté, M. Heidarinejad, and B. Stephens, “Elemental: An Open-

Source Wireless Hardware and Software Platform for Building Energy

and Indoor Environmental Monitoring and Control,” Sensors, vol. 19,

p. 4017, Sep. 2019, doi: 10.3390/s19184017.

[14] J. A. S. Velázquez, “Securing openHAB Smart Home through User

Authentication and Authorization,” 2018.

[15] “Implementation of Home Automation System Using OpenHAB

Framework for Heterogeneous IoT Devices - IEEE Conference

Publication.” https://ieeexplore.ieee.org/document/8980370 (accessed

May 31, 2020).

[16] H. S. Doshi, M. S. Shah, and U. S. A. Shaikh, “INTERNET of THINGS

(IoT): INTEGRATION,” vol. 1, no. 4, p. 9, 2017.

[17] A. Loumpas, G. Panaras, and M. Dasygenis, “Design and

implementation of an open-source infrastructure and an intelligent

thermostat,” May 2018, pp. 1–4, doi:

10.1109/MOCAST.2018.8376651.

[18] M. H. Yaghmaee and H. Hejazi, “Design and Implementation of an

Internet of Things Based Smart Energy Metering,” in 2018 IEEE

International Conference on Smart Energy Grid Engineering (SEGE),

Aug. 2018, pp. 191–194, doi: 10.1109/SEGE.2018.8499458.

[19] I. Froiz-Míguez, T. M. Fernández-Caramés, P. Fraga-Lamas, and L.

Castedo, “Design, Implementation and Practical Evaluation of an IoT

Home Automation System for Fog Computing Applications Based on

MQTT and ZigBee-WiFi Sensor Nodes,” Sensors (Basel), vol. 18, no.

8, Aug. 2018, doi: 10.3390/s18082660.

[20] M. Divyashree and H. G. Rangaraju, “Internet of Things (IoT): A

Survey,” in 2018 International Conference on Networking, Embedded

and Wireless Systems (ICNEWS), Dec. 2018, pp. 1–6, doi:

10.1109/ICNEWS.2018.8903919.

[21] L. O. Aghenta and M. T. Iqbal, “Low-Cost, Open Source IoT-Based

SCADA System Design Using Thinger.IO and ESP32 Thing,”

Electronics, vol. 8, no. 8, p. 822, Aug. 2019, doi:

10.3390/electronics8080822.

[22] “openHAB.” https://www.openhab.org/ (accessed May 31, 2020).

