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Abstract— A highly efficient deep learning method for short-

term power load forecasting has been developed recently. It is 
a challenge to improve forecasting accuracy, as power 
consumption data at the individual household level is erratic 
for variable weather conditions and random human behaviour.  
In this paper, a robust short-term power load forecasting 
method is developed based on a Bidirectional long short-term 
memory (Bi-LSTM) and long short-term memory (LSTM) 
neural network with stationary wavelet transform (SWT). The 
actual power load data is classified according to seasonal 
power usage behaviour. For each load classification, short-
term power load forecasting is performed using the developed 
method. A set of lagged power load data vectors is generated 
from the historical power load data, and SWT decomposes the 
vectors into sub-components. A Bi-LSTM neural network layer 
extracts features from the sub-components, and an LSTM 
layer is used to forecast the power load from each extracted 
feature. A dropout layer with fixed probability is added after 
the Bi-LSTM and LSTM layers to bolster the forecasting 
accuracy. In order to evaluate the accuracy of the proposed 
model, it is compared against other developed short-term load 
forecasting models which are subjected to two seasonal load 
classifications. 

Index Terms—Load forecast, Stationary wavelet transform, 
Long short-term memory, Neural Network.  

I. INTRODUCTION 
Load forecasting with high accuracy is very important for 

practical power system and smart grids analysis. There are 
three categories of load forecasting methodologies: LTLF 
(long term load forecast: more than 1 year), MTLF (medium 
term load forecast: within 1 month to 1 year) and STLF 
(short-term load forecast:1 hour to 1 day or 1 week ahead) 
[1], [9]. Among those, short-term load forecast is more 
reliable and efficient. STLF improves the efficiency and 
reliability of smart grid including home energy 
management, demand response implementation, electricity 
price market design [18]-[20], [23]. Two techniques are 
commonly used for STLF: statistical techniques such as the 
linear regression model, exponential model etc.; and 
artificial intelligence techniques [9]. 

It is studied that among all STLF techniques, artificial 
neural networks (ANNs) is most popular for short-term 
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electric load forecasting. ANNs has distinct advantages and 
more accurate prediction compared to others [3],[6]-[8]; 
which influence more research on neural network based 
STLF. It is found that STLF is implemented by neural fuzzy 
network, recurrent neural network (RNN), wavelet based 
neural network or hybrid neural network [5],[10]-[13].  

Nowadays, hybrid neural networking has become more 
popular and suitable for learning non-stationary and 
complex time series data. A hybrid forecasting method 
consisting of discrete wavelet transform (DWT), 
autoregressive integrated moving average (ARIMA) and 
artificial neural network (ANN) is proposed in [14] to 
forecast daily peak load. Such hybrid model used load data 
of Fars Electrical Power Company, Iran in 2009 and 
predicted daily peak load of the system. Recently, it is 
invested that the performance of STLF is improved by using 
LSTM model [24] but using a single LSTM model has less 
accuracy than the hybrid model combined with LSTM [5]. 
The author of [15] designed a hybrid forecasting method 
called a recurrent inception convolution neural network, a 
composition of 1-D convolution neural network and LSTM. 
This model is verified by using power consumption data 
from three large distribution complexes in South Korea. A 
combination of short-term wind power forecasting approach 
based on DWT and LSTM is proposed in [16]; and 12 
months data from three wind farms in Mongolia, the 
Netherlands, and Yunnan, China were used to verify this 
model. The author of [4] developed a hybrid DWT and 
collaborative representation (CRT) method. In this method, 
DWT including CRT is used for feature extraction from the 
input vector composed by the lagged power load and 
forecasting is predicted by LSTM. The lagged load variables 
consist of the load values in last 3 hours of the same day, the 
last 3 hours and same hour of the day before, and the last 3 
hours and same hour of the previous week. It is found that 
the load features extracted from the lagged power load 
variable vector provide superior forecasting performance. t 
the individual household level, a hybrid deep learning 
methodology combined with LSTM neural network and 
with SWT is proposed [5], in which SWT decompose the 
input data into signal components and each signal 
component is fed to LSTM separately for forecasting. This 
developed model accuracy is verified by using remote 
sensor data of five different family houses in London, 
United Kingdom. 

They suggested that SWT alleviates the volatility and 
increases the data dimensions, improves the accuracy of 
LSTM forecasting. Although the developed neural network 
[4]-[5], [15]-[16] can learn the features, overfitting is a 
threatening problem for large neural networks and reduces 
the accuracy of forecasting. In order to avoid the overfitting 
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problem of neural network, [17] developed an hourly natural 
gas demand forecasting method by adding a dropout layer in 
the neural network which prevents units from co-adapting 
too much [27]. This model consists of multi-layer Bi-LSTM 
model and LSTM combined with DWT; DWT and multi-
layer Bi-LSTM model is used to decompose the actual data 
into sub-components and capture the features in the sub-
components, respectively; and LSTM predict the hourly 
natural gas demand. A dropout layer is added after each Bi-
LSTM and LSTM layer in this model.  

Although neural network based STLF is becoming more 
popular, [2] indicates that neural network was commonly 
used for an aggregate level load forecasting and limited 
research has been undertaken based on individual household 
[3]-[7] before. Recently, the availability of high frequency 
data collected by new smart metering system in individual 
households opens the opportunities to research on individual 
household load forecasting. In addition, having a large 
amount of data increases the prediction accuracy of load 
consumption at the individual household level; adding value 
to improve efficiency of smart grid technologies, such as 
home energy management and demand response 
implementation [18]-[20]. Individual household load 
forecasting will help to project future load consumption and 
better manage electricity use. 

Although smart meter based individual household load 
consumption data is highly volatile [21], and univariate time 
series load forecasting is a challenging problem for deep 
learning; a hybrid model [5] resolves this problem by using 
SWT combined with LSTM. The developed model of [5] 
feeds the original energy consumption values to SWT for 
decomposition of original signal; but [4] mentions that the 
load value at any time is correlated to the loads in the 
previous time steps. 

It is reported by Natural Resources Canada’s Office of 
Energy Efficiency in 2013 that in the Canada residential 
sector, the energy was distributed 63% for space heating, 
19% for water heating, 16% for appliance and lighting; and 
1% for cooling [25]. In winter, the space heating load is 
dominant which is not included in summer. This creates 
complexity and difficulty of intro-class data fitting as space 
heater is completely unused at summer. In order to 
overcome the difficulty of data fitting in input and improve 
the accuracy of forecasting, [26] developed Solar 
photovoltaic (PV) power forecasting hybrid method based 
on  DWT-CNN-LSTM models; independently established 
for four weather types : sunny, cloudy, rainy, and heavy 
rainy days.  

In this paper, we propose a robust short-term electric load 
forecasting model for the individual household level by 
using the power data from smart meter, installed in house. 
The deep learning model is based on SWT with a Bi-LSTM 
and LSTM neural network. A set of lagged power load data 
vectors is assigned to SWT, it decomposes the vectors and 
creates sub-components. In order to determine the most 
appropriate wavelet packet function, a comparison is made 
among the wavelet functions. The sub-components are 
individually fed to Bi-LSTM to capture the features by 
considering the data information bidirectionally. The 
abstracted features from Bi-LSTM are fed to LSTM for 
forecast learning. The power forecast is constructed from the 

predicted sub-components by using ISWT. This process is 
independently constructed for two seasonal load 
classifications. The evaluation of the developed model is 
verified for all seasonal classified load by using the dataset 
of an individual household in St. John’s, Newfoundland and 
Labrador, Canada. The power consumption profile of 
individual household is a very common scenario and reflects 
the power consumption profile in Canada residences, so this 
study can represent an important load profile forecasting 
study. 

The paper is arranged as follows: in Section II the data 
description and observation are analyzed, in Section III a 
curve fitting method for STLF is described; in Section IV 
the methodology included with five main parts SWT, Bi-
LSTM, LSTM, Dropout layer, ISWT of the proposed short-
term power load forecasting model are explained; in Section 
V the accuracy of the proposed load forecasting model is 
evaluated by case study using experimental data; and in 
Section VI conclusions are drawn. 

II. DATA DESCRIPTION AND OBSERVATIONS 
 

 
Fig. 1. 24 hourly Weekdays load profile for each month. 

 

 
Fig. 2. 24 hourly Weekends load profile for each month. 

 
The power load data of a house in St. Johns was collected 

by installing current sensors. Five current sensors are 
installed to measure consumption of the garage, house space 
heater, domestic water heater, lights and appliances. The 
total power consumption is calculated by combining the five 
current sensors dataset. The data was collected every 3 
minutes for many years, however only one-year data is used 
for this study. 

The 24-hourly weekdays and weekends load profile for 
all months are presented in Fig. 1 and Fig. 2 respectively. It 
is shown that 24 hourly load consumption profile varies 
from each month. A box and whisker plot of the seasonal 
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profile is shown in Fig. 3. For each month, the top and 
bottom line corresponds to that month's overall maximum 
and minimum, respectively. The middle line of the blue box 
is the overall average for the whole month. The top and 
bottom of the blue box present the average of the daily 
maxima and minima of all of the days in the month, 
respectively. It shows that the overall average is higher from 
November to May than from June to October. 
 

 
Fig. 3. One-year seasonal load profile of the house 

 

III. CURVE FITTING METHOD 
Firstly, a curve fitting method is used to develop a 

prediction model for load forecasting. Two variable 
regression models have been considered here. Here x stands 
for hours and y stands for power consumption. MATLAB 
Surface fitting toolbox has been used to develop the models 
and to analyze the developed models’ accuracy. Five 
regression models, known as Sum of Sine (1), Polynomial 
(2), Power (3), Rational (4), and Weibull (5) models are 
tested to fit the load forecasting model shown in Fig. 4. it is 
shown that the actual power load data at the individual 
household is non-stationary time series data and the 
developed five regression models are significantly far from 
the fitting with the actual power load data 
 

 
Fig. 4. Curve fitting method for short-term power load forecasting 

 
𝑦 = 𝑎! sin(𝑏!𝑥 + 𝑐!)            (1) 
𝑦 = 𝑝!𝑥" + 𝑝#𝑥$ + 𝑝%𝑥& + 𝑝'𝑥( + 𝑝(𝑥' + 𝑝&𝑥% + 𝑝$𝑥# +
𝑝"𝑥 + 𝑝)            (2) 
𝑦 = 𝑎𝑥* +c                (3) 
𝑦 = +!,"-+#,$-+%,%-+$,#-+",-+&

,"-.!,$-.#,%-.%,#-.$,-."
              (4) 

𝑦 = 𝑎𝑏𝑥*/!𝑒/0,'                 (5) 
 

The accuracy of the developed regression models is 
evaluated by sum square error (SSE), R-square values and 
root mean square error (RMSE) between experimental and 
calculated data using these equations. The R-square value 
represents how closely the fitted model can follow the 

variance of the actual data set. It ranges from 0 to 1 where a 
value closer to 1 and RMSE value closer to 0 represents a 
better fit. Regression models along with sum square error, 
R-square values and RMSE are shown in Table I. 

From the Table I, it can be seen that for all regression 
models the R-square value is close to 0; and the SSE and 
RMSE values are very high, indicating that the curve fitting 
models are unable to predict load consumption for an 
individual household load. 

 
TABLE I: REGRESSION MODELS ALONG WITH SUM SQUARE ERROR, R-

SQUARE VALUES AND RMSE 
Model SSE R-square RMSE 
Sum of Sine 2.648 × 10!  0.1052 3.882 
Polynomial  2.517 × 10!  0.1495 3.785 
Power 2.733 × 10!  0.0766 3.944 
Rational  2.951 × 10!  0.0028 4.099 
Weibull 4.252 × 10!  0.4369 4.92 

IV. METHODOLOGY 
This research presents short-term power load 

consumption forecasting for a house. The residential power 
is consumed by space heating, water heating, appliances and 
lighting. Water heater, lighting and other appliance are used 
daily, on the other hand space heater usage is influenced by 
variable weather conditions and human behavior. Space 
heater is used according for certain weather condition 
specifically November to May in a year as shown Fig. 5; 
and remaining months of the year, it is excluded from the 
load. Based on Fig. 1 and Fig. 2, although 24 hourly load 
profile for June, July, August, September and October vary 
slowly for both Weekdays and Weekends, the load profile 
changes abruptly for November, December, January, 
February, March, April and June. The yearly seasonal load 
profile Fig. 3 shows that the load with space heater 
consumed higher average power than the load without space 
heater. Therefore, the actual power load data is classified as 
two different types: 1) power loads without space heater, 
and 2) power loads with space heater. Classified data are 
processed individually by the proposed short-term power 
load forecast model as shown in the overall flowchart of 
proposed model in Fig. 6. 

The structure of the proposed forecasting model is 
illustrated in Fig. 7. There are five main steps for the 
proposed model: (1) data preprocessing; (2) a lagged power 
load  variable vector is decomposed by SWT; (3) Bi-LSTM 
feature extraction from each sub-components; (4) LSTM 
based prediction with dropout layer are applied for each sub 
components; and (5) finally, ISWT based re-constructor is 
used to generates actual power load forecast signal by 
combining predicted sub-components.  
 

 
Fig. 5. Yearly space heater load profile for the house 
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Fig. 6. Overall Flowchart of the short-term power load forecasting model 

 

 
Fig. 7. The structure of the short-term power load forecasting model 

 

A. Data Preprocessing 
There are 175200 data samples collected per year by 3 

minutes interval steps; 116160 and 47040 samples are used 
for power loads with space heater and without space heater 
deep learning framework. 

The power load value for a certain time is corelated to the 
previous time steps load value. Hence, in order to increase 
the data dimension, a set of lagged power load variable 
vector is created from actual data similar to [4]. The vector 
is generated by considering only the load values in the last 
three hours of the same day, the last three hours and same 
hour of the day before, and the last three hours and same 
hour of the previous week, in 30 minute time steps as shown 
in (6). The developed variable vector is assigned to each 
point of the load curve. 

 
𝑋 = [	𝑥(𝑡 − 3431), . . 𝑥(𝑡 − 3361), 𝑥(𝑡 − 551),… 	𝑥(𝑡 −
481), . . 𝑥(𝑡 − 61), . . , 𝑥(𝑡 − 1)]1            (6) 

  
𝑋 is a set of lagged variable vectors for a certain point 

with dimension 𝑙 × 1, 𝑙=20. For the m power load samples 
data, the training data 𝑛 = 𝑚 − 3232,  is considered for the 
RNN. 

B. SWT Decomposition and Reconstruction 
The SWT algorithm is adopted to decompose a signal into 

wavelets as shown in Fig. 8. SWT is known as non-
sampling wavelet transform and a time invariance extension 
of DWT. At the 1st level of SWT, the original signal 𝑥(𝑛) 
splits into approximation coefficients 𝑎!(𝑛) and the detail 
coefficients 𝑑!(𝑛). Then the next level, 𝑎!(𝑛) splits into 
two: 𝑎#(𝑛) and 𝑑#(𝑛); and this step is continued for until 
the number of decomposition steps 𝑖. The original signal 
𝑥(𝑛) can be reconstructed through ISWT whereas 𝑥(𝑛) is 

the last level approximation coefficients 𝑎2(𝑛) and 
summation of all levels detail coefficients (i.e. 𝑑!(𝑛), 
𝑑#(𝑛)………..	𝑑2(𝑛)). 
 

 
Fig. 8. SWT decomposition for i level 

C. LSTM and Bi-LSTM 
LSTM is a special type of RNN and it is effective for 

processing time series data. LSTM consists of ‘self-
connected’ memory cells, multiplicative gate units in the 
hidden state as shown in Fig. 9. Where, 	𝑖, 𝑓, 𝑔	𝑎𝑛𝑑	𝑜 
represent input gate, forget gate, cell candidate and output 
gate, respectively. LSTM neural network can be explained 
by following (7) to (12):  

 
𝑖3 = 𝜎4(𝑊2𝑥3 + 𝑅2ℎ3/! + 𝑏2)                (7) 
𝑓3 = 𝜎4L𝑊5𝑥3 + 𝑅5ℎ3/! + 𝑏5M                (8) 
𝑔3 = 𝜎6L𝑊4𝑥3 + 𝑅4ℎ3/! + 𝑏4M          (9) 
𝑜3 = 𝜎4(𝑊7𝑥3 + 𝑅7ℎ3/! + 𝑏7)                    (10) 
𝑐3 = 𝑓3 ⊙𝑐3/! + 𝑖3 ⊙𝑔3               (11) 
ℎ3 = 𝑜3 ⊙𝜎6(𝑐3)            (12) 
 
𝑖3 , 𝑓3 , 𝑔3 , 𝑜3 , 𝑐3	𝑎𝑛𝑑	ℎ3 denote input gate, forget gate, cell 

candidate, output gate, cell state and hidden state at time 
step t, respectively. 𝑊,𝑅	𝑎𝑛𝑑	𝑏 represent the input weights, 
the recurrent weights, and the bias of 𝑖, 𝑓, 𝑔	𝑎𝑛𝑑	𝑜 ; 
respectively. State and gate activation function are denoted 
by 𝜎6and 𝜎4; respectively. 

 

 
Fig. 9. The architecture of LSTM 

 
In Bi-LSTM model, the same output layer connects the 

two separate hidden layers known as forward LSTM layer 
and backward LSTM layer [31]-[33]; as shown in Fig. 10. 
The previous and future data information are used in this 
model. The forward output layer sequence, ℎO⃗ 3 and the 
backward output layer sequence, ℎ⃖O3 are computed by using 
input in a positive time sequence and reversed time 
sequence, respectively. The output layer 𝑦3 can be expressed 
as follows: 
 
𝑦3 = 𝐺LℎO⃗ 3	, ℎ⃖O3	M             (13) 
 

Where, 𝐺 is a function, used to generate output based on 
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ℎO⃗ 3	and ℎ⃖O3. 
 

 
Fig. 10. The architecture of Bi-LSTM 

D. Dropout Layer 

 
Fig. 11. The dropout network 

The dropout layer improves the accuracy of forecasting 
by preventing the neural network from overfitting. The 
dropout network is shown in Fig. 11 and can represent as 
follows: 

 
𝑟9
(;)~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝)         (14) 
�͂�(;) = 𝑟(;) ∗ 𝑦(;)          (15) 
𝑧2
(;-!) = 𝑊2

(;-!)�͂�(;) + 𝑏2
(;-!)        (16) 

𝑦2
(;-!) = 𝜎L𝑧2

(;-!)M          (17) 
 

Where * presents element-wise product. 
A vector of independent Bernoulli random variables for 

the specific layer 𝑙,	𝑟(;) each of which has probability being 
1. 𝑦(;) and �͂�(;) denote outputs and thinned outputs for the 
specific layer 𝑙. �͂�(;)is obtained by randomly sampled 𝑟(;) 
multiplied element-wise with 𝑦(;). Then generated �͂�(;) are 
fed to the layer as input. The same process is repeated at 
each layer.  

V. CASE STUDY 
The developed STLF model is verified by comparing with 

DWT_Bi-LSTM_LSTM, SWT_LSTM, SWT_Bi-LSTM 
model through MATLAB/Simulink simulation using a case 
study. In this case study, two different cases are considered: 
1) Case 1 – load without space heater and 2) Case 1 – load 
with space heater. For both cases, in order to select the best 
basis wavelet functions, the mean absolute percentage error 
(MAPE) of reconstructed signal and actual signal are 
compared among Haar (haar), Fejer-Korovkin filters (fk), 
Coiflets (coif), Symlets (sym), Daubechies (db), and 
Discrete approximation of Meyer (dmey) wavelets as shown 
in Table II. It is found that Haar wavelet has comparatively 
less percentage of reconstruction error among other wavelets 
for both cases. Hence Haar wavelet is used for SWT and 
ISWT. The Pearson correlation coefficient (PCC) was used 
in [5] to determine the number of wavelets and 
recommended three decomposition steps of SWT. 

 

𝑀𝐴𝑃𝐸 = !
=
×∑ _

(>(/>))

>)
_=

2?! 	× 100	       (18) 

 
TABLE II: MAPE OF RECONSTRUCTED SIGNAL AND ACTUAL SIGNAL FOR 

DIFFERENT BASIS WAVELET FUNCTION 
 Wavelet MAPE(%) 
Case 1 Haar 4.5113e-14 

Fejer-Korovkin filters 1.3556e-14 

Coiflets 2.6704e-10 

Symlets 1.5876e-10 

Daubechies 9.4170e-11 

Discrete approximation of Meyer 0.0012 

Case 2 Haar 5.2138e-14 

Fejer-Korovkin filters 2.0130e-14 

Coiflets 4.9429e-10 

Symlets 3.3480e-10 

Daubechies 1.8231e-10 

Discrete approximation of Meyer 0.0021 

 
For both cases, during the deep learning training process, 

one Bi-LSTM layer with 120 hidden units and one LSTM 
layer with 120 hidden units are designed for this model. 
Each layer has dropout layer with 0.3 probability. Adam 
optimizer is used for this case study. Table III shows the 
used training option for both cases study to train data in the 
deep learning toolbox. 

 
TABLE III: TRAINING OPTION TO TRAIN DATA IN THE DEEP LEARNING 

TOOLBOX 
Option Parameter 
Max Epochs 150 
Gradient Threshold 1 
Initial Learn Rate 0.010 
Mini Batch Size 30 
Learn Rate Drop Period 75 
Learn Rate Drop Factor 0.316 

 
Three statistical featured including average, median and 

L1 norm are determined as tabulated in Table IV for 
evaluating the forecasting accuracy.  

 
TABLE IV: STATISTICAL FEATURES 

Features Equation 
Average 𝜇" = 	

#
$
∑ 𝑥%$
%&#   

Median 𝑚𝑒𝑑 = #
'
(𝑥(!"#$ ( + 𝑥(!$()#

)  

L1 Norm ‖𝐿‖# = ∑ |𝑥%|$
%&#   

 
Where,	𝑥2 is the ith sampled measurement point, i = 1, 2, 

…, n for n observations. 
Three different comparison: 1) Comparison 1 – among 

SWT_Bi_LSTM_LSTM with dropout layer for a set of 
lagged power load data vectors (i.e. proposed model) and 
other developed STLF model Comparison 2 – between 
proposed model and SWT_Bi_LSTM_LSTM with dropout 
layer for instantaneous power load data; and 3) Comparison 
3 – between proposed model and SWT_Bi_LSTM_LSTM 
without dropout layer for a set of lagged power load data 
vectors are studied. 
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𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒	𝑜𝑓	𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = a1 − b1@A3/BCDEFGH
BCDIEFGH

bc 	× 100    
                                         (19)       

A. Comparison 1 
 

TABLE V: STRUCTURE OF OTHER STLF MODEL 
Model Structure 

DWT_Bi-LSTM_LSTM • DWT (Haar wavelet, three 
decomposition steps) decomposition 
for original data 

• Bi-LSTM (120 hidden units) 
• Dropout (0.3 probability) 
• LSTM (120 hidden units) 
• Dropout (0.3 probability) 
• Fully connected layer 
• Regression layer 
• IDWT  

SWT_LSTM • SWT (Haar wavelet, three 
decomposition steps) decomposition 
for original data 

• LSTM (120 hidden units) 
• Dropout (0.3 probability) 
• Fully connected layer 
• Regression layer 
• ISWT 

SWT_Bi-LSTM • SWT (Haar wavelet, three 
decomposition steps) decomposition 
for original data 

• Bi-LSTM (120 hidden units) 
• Dropout (0.3 probability) 
• Fully connected layer 
• Regression layer 
• ISWT 

 
In Comparison 1, the proposed model is compared with 

other developed STLF models DWT_Bi-LSTM_LSTM, 
SWT_LSTM, SWT_Bi-LSTM to evaluate the accuracy of 
proposed model. The structure of the three developed STLM 
models are listed in Table V. The same neural network 

properties are used to train the data for all models. The 
comparison of the proposed model vs. other STLF models 
are shown in Table VI and VII for Case 1 and Case 2, 
respectively. Table VI show that the proposed forecast 
model is comparatively much more accurate than the other 
developed models in Case 1. For example, the predicted 
daily average power consumption accuracy for the proposed 
model, DWT_Bi-LSTM_LSTM, SWT_LSTM and 
SWT_Bi-LSTM are 97.5338%, 89.4967%, 44.4417% and 
84.7646%; respectively. For Case 2 as shown in Table VII, 
the proposed model forecast is also more accurate compared 
to the other STLF models but with a much higher error than 
Case 1. Case 2 has less prediction accuracy because Case 2 
– 24 hourly daily load profile varies rapidly than Case 1 as 
shown in Fig. 1 and 2. 

B. Comparison 2 
In Comparison 1, SWT_Bi_LSTM_LSTM with dropout 

layer for a set of lagged power load data vectors (i.e. 
proposed model) and SWT_Bi_LSTM_LSTM with dropout 
layer for instantaneous power load data are considered. 
Table VII shows the forecasting result of Comparison 1. The 
SWT_Bi_LSTM_LSTM with dropout layer for 
instantaneous power load data model creates significantly 
higher error compared to proposed model for both cases. For 
example, for Case 1: the accuracy of daily average power, 
median and L1 norm with respect to proposed model are 
97.5338%, 85.5504% and 97.5411% respectively; and for 
the other model, the values are 80.6084%, 52.093% and 
80.6089% respectively. Therefore, it is concluded from 
Comparison 1 that considering a set of lagged power load 
data vectors improves forecasting accuracy. 

 

 
TABLE VI: COMPARISON AMONG PROPOSED MODEL AND OTHER DEVELOPED STLF MODEL FOR CASE 1 

Model Average power 
(KW) 

Percentage of 
accuracy for 
average 
power (%) 

Median  Percentage of 
accuracy for 
median (%) 

L1 norm Percentage of 
accuracy for 
L1 norm (%) 

Test 0.7988  0.6450  19.1712  
Proposed model 0.7791 97.5338 0.7150 89.1473 18.6998 97.5411 
DWT_Bi-LSTM_LSTM 0.7149 89.4967 0.7382 85.5504 17.1567 89.4921 
SWT_LSTM 1.2426 44.4417 1.2607 95.4574 29.8233 44.4370 
SWT_Bi-LSTM 0.9205 84.7646 0.9211 42.8062 22.0923 84.7631 

 
TABLE VII: COMPARISON AMONG PROPOSED MODEL AND OTHER DEVELOPED STLF MODEL FOR CASE 2 

Model Average power 
(KW) 

Percentage of 
accuracy for 
average 
power (%) 

Median  Percentage of 
accuracy for 
median (%) 

L1 norm Percentage of 
accuracy for 
L1 norm (%) 

Test 3.5190  2.4825  84.4554  
Proposed model 3.6878 95.2032 2.7958 87.3797 88.5070 95.2027 
DWT_Bi-LSTM_LSTM 3.7352 93.8562 3.7355 49.5267 89.6450 93.8552 

SWT_LSTM 3.7165 94.3876 3.712 50.4733 89.1951 94.3879 
SWT_Bi-LSTM 4.3726 75.7431 4.3741 23.8026 104.9413 75.7435 
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TABLE VIII: COMPARISON BETWEEN PROPOSED MODEL AND SWT_BI_LSTM_LSTM WITH DROPOUT LAYER FOR INSTANTANEOUS POWER LOAD DATA FOR 
BOTH CASES 

 Model Average 
power 
(KW) 

Percentag
e of 
accuracy 
for 
average 
power (%) 

Median  Percentag
e of 
accuracy 
for 
median 
(%) 

L1 norm Percentag
e of 
accuracy 
for L1 
norm (%) 

Case 1 Test 0.7988  0.6450  19.1712  
Proposed model 0.7791 97.5338 0.7382 85.5504 18.6998 97.5411 
SWT_Bi-LSTM_LSTM for 
instantaneous power load data  

0.9537 80.6084 0.9540 52.093 22.8887 80.6089 

Case 2 Test 3.5190  2.4825  84.4554  
Proposed model 3.6878 95.2032 2.7958 87.3797 88.5070 95.2027 
SWT_Bi-LSTM_LSTM for 
instantaneous power load data 

4.4892 72.4297 4.4909 80.9023 107.7406 72.4290 

 
TABLE IX: COMPARISON BETWEEN PROPOSED MODEL AND SWT_BI_LSTM_LSTM WITHOUT DROPOUT LAYER FOR A SET OF LAGGED POWER LOAD DATA 

VECTORS FOR BOTH CASES 
 Model Average 

power 
(KW) 

Percentag
e of 
accuracy 
for 
average 
power (%) 

Median  Percentag
e of 
accuracy 
for 
median 
(%) 

L1 norm Percentag
e of 
accuracy 
for L1 
norm (%) 

Case 1 Test 0.7988  0.6450  19.1712  
Proposed model 0.7791 97.5338 0.7150 89.1473 18.6998 97.5411 
SWT_Bi-LSTM_LSTM without 
dropout layer 

0.6692 83.7757 0.6423 99.5796 16.0613 83.7783 

Case 2 Test 3.5190  2.4825  84.4554  
Proposed model 3.6878 95.2032 2.7958 87.3797 88.5070 95.2027 
SWT_Bi-LSTM_LSTM without 
dropout layer 

4.1392 17.6243 4.1162 65.8087 99.3401 82.3757 

A. Comparison 3 
In Comparison 3, a comparison between the proposed 

model and SWT_Bi_LSTM_LSTM without dropout layer 
for a set of lagged power load data vectors are studied. 
Comparison 3 is conducted in order to evaluate whether 
adding a dropout layer after each Bi-LSTM and LSTM layer 
leads to better prediction accuracy. A comparison between 
proposed model and SWT_Bi-LSTM_LSTM without 
dropout layer is shown in Table IX. It is found that the 
proposed model has higher forecasting accuracy for both 
cases because adding a dropout layer after the Bi-LSTM and 
LSTM neural network boost the prediction accuracy.  

VI. CONCLUSION 
The nature of variable weather conditions and random 

human behaviour cause randomness in the power 
consumption profile at the individual household level and 
create a serious difficulty to improve the short-term power 
load accuracy. A robust short-term power load forecasting 
has been developed by using wavelet transform and deep 
learning method in this paper. The developed model consists 
of SWT and a Bi-LSTM and LSTM neural network with 
dropout layers. 

In order to evaluate the accuracy of the proposed model, 
three comparisons for each of two cases are studied by using 
the real power load dataset of a house in St. John’s, 
Newfoundland and Labrador, Canada. From Comparison 1, 
it is found that the proposed model has higher forecasting 
accuracy compared to the other developed STLF model. 
From Comparison 2, it is found that considering a set of 
lagged power load data vectors introduced significantly 

better forecasting accuracy than the original data input, as 
this increases the dimensions of the training data. 
Comparison 3 has been conducted to evaluate the 
effectiveness of adding dropout layers after the Bi-LSTM 
and LSTM neural network and it shows that the dropout 
layer improves the accuracy of the proposed model.  
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