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Abstract— One of the most important characteristics 

contributing to the thermal management efficiency of 

commercial, industrial, institutional or home environments is 

the optimal functioning of HVAC (heating, ventilation, air 

conditioning) systems. In addition to using supervisor 

controllers for balancing comfort level in a building, the 

majority of today’s HVACs employ nonlinear time variance 

controllers when dealing with a variety of disturbances. This 

paper investigates both current and potential HVAC systems at 

Memorial University’s S. J. Carew building, St. John’s, 

Newfoundland. The study investigates the viability of algorithm-

based supervisor fuzzy logic controllers (SFLC) for the control 

of the building’s four air-handling units (AHUs) used to manage 

the interior environment. Along with temperature, the SFLCs 

also control the AHUs’ fan speeds and CO2 concentrations 

modifying hot water and air flow rates. This work presents 

models of damper positions, fan speeds and globe valves that 

have been built in accordance with current rates of air and hot 

water flow in the S. J. Carew building. Based on these 

specifications, a novel method of SFLC adaptation using fuzzy 

rules has been devised. The novel system aims to better balance 

the performance level of the Carew building’s HVAC system on 

a floor-by-floor basis. The overall results indicate better overall 

thermal comfort levels and enhanced cost-effectiveness when 

using the SFLC redesign. 

  

Index Terms— Modeling and simulation, HVAC system, 

IDA-ICC program, system identification, state space model, 

fuzzy logic, SFLC.  

 

I. INTRODUCTION 

   The purpose of HVAC systems is to create comfortable and 

cost-efficient internal environments within structures. 

However, these systems must also be able to deal with 

constantly changing variables affecting their performance 

level. To accomplish this task, appropriate control systems 

are required, such as mathematics-based HVACs controllers. 

These approaches, which use input/output variable data to 

determine the parameters of individual systems, are able to 

refine and enhance HVAC systems through the process of 

system identification (SI) (ASHRAE, 2005) [1]. 

The thermal management efficiency of commercial, 

industrial, institutional and home environments relies, to a 

large extent, on the optimal functioning of their respective 

HVAC (heating, ventilation, air conditioning) systems. Air 

quality and thermal comfort levels are nearly entirely 

dependent on HVACs, and these systems also have a major 

role in a building’s operational costs. In commercial or 

industrial structures, up to 50% of the building’s overall 

energy use is contingent on how well the installed HVAC 

system is functioning [2-4]. In developed countries, 

                                                           
 

mitigating pollution levels is almost equally as important as 

cost-effectiveness when it comes to heating and cooling 

systems, so there has been a recent surge in research that 

investigates combining renewable energy production with 

state-of-the-art HVAC systems [5]. 

A driving force behind the development of building 

intelligent energy management systems (BIEMS) in larger 

structures such as hotels and office buildings is the smart 

management of thermal comfort levels and the smart 

management of power costs. BIEMS enables buildings to 

essentially manage their own energy use by constant 

intelligent monitoring of the building’s macroclimate. Based 

on the data, the operational parameters are then adjusted to 

suit the needs of the building’s several microclimates. In 

research, as well as in practical application, BIEMS that use 

fuzzy techniques have consistently outperformed traditional 

control systems [6-8]. 

The main difference between intelligent systems (i.e., 

automatic controllers) and traditional control methods is that 

intelligent systems do not require a mathematical model to 

monitor and control a building’s operations. Instead, 

intelligent systems, like PMV [9], use optimized fuzzy 

controllers based on adaptive control strategies and genetic 

algorithms. Fuzzy logic control is already being used for 

state-of-the-art furnace controllers in select homes. These 

controllers employ adaptive heating control to determine the 

best use of the available energy to achieve the desired comfort 

level [10]. Also, fuzzy controllers are currently being tested 

in real-life ventilation and thermal subsystems, giving 

promising results [11, 12]. 

Over the past thirty years, numerous HVAC experts have 

developed operational and control methods for specific 

applications. During the same timeframe, numerous research 

studies, textbooks and journal articles have also investigated 

various issues of HVAC operation and control, including the 

supervisor control technique (e.g., Honeywell [13]; 

Levenhagen and Spethmann [14] ; Wang and Jin [15]; 

Zaheer-uddin and Zheng [16]; Hordeski [17]; Haines and 

Hittle [18]; Nassif et al. [19]; Wang [20]; etc.). They classify 

the primary supervisory control approaches that are employed 

in HVAC systems into four different types of supervisory 

control methods: 1) model-based, 2) model-free, 3) 

performance map-based, and 4) hybrid [21].  

In a study conducted by Kanagaraj, Sivashanmugam, and 

Paramasivam [22], the researchers investigated the tuning of 

input scaling factors for direct expert controllers by applying 

error and process input parameters for closed-loop systems. 

Their aim was developing improved controller performance 

in relation to load disturbances and set-point changes. In 

general, the on-line tuning strategy involves significantly 

decreased levels of operator input and dependency, while 
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improving the performance of the controller across a broad 

operational spectrum. The approach, which is a form of 

hierarchical control, comprises the input of an intelligent 

upper-level supervisory fuzzy controller in tandem with a 

lower-level direct fuzzy controller. The task of the upper-

level controller is to introduce applicable mechanisms for the 

system’s primary goals, while the task of the lower-level 

controller is to provide solutions for specific problems. 

A few years later, Soyguder, Servet, Karakose, and Alli [23], 

used MATLAB / SIMULINK, to model expert HVAC 

systems that had variable flow-rates. They used fuzzy 

adaptive controllers that were self-tuning PIDs to 

demonstrate PID parameters for kp, ki and kd. The outcome 

of their tests showed that their novel control algorithm 

performed comparably to traditional PID, as well as fuzzy-

PD type controllers. 

Shepherd and Batty [24], conducted experiments that 

employed a high-level fuzzy supervisor for control decisions. 

Their aim was to obtain optimal quality for indoor 

environments by using a modified fuzzy supervisor. Their 

approach also considered how issues around cost and energy 

efficiency can ultimately impact the decisions. From the 
outcomes of their simulation tests, the researchers determined 

that systems operation could be enhanced by applying their 

approach. 

Lianzhong and Zaheeruddin [25], built a non-linear dynamic 

model for water heating HWDH systems. Their work also 

included intelligent fuzzy logic-based hybrid control 

methods. The researchers’ simulation results suggest that 

fuzzy logic-based PI provides enhanced control and 

regulation of return temperature of water, particularly, when 

combined with IATP strategies for controlling air 

temperature within a specific zone. The researchers noted a 

17% improvement in energy savings through reduced 

consumption. 

Hussain, Sajid, and Gabbar [26], attempted to improve energy 

consumption outcomes by tuning an FLC via GAs. Using a 

novel air conditioner, the researchers succeed in saving 

approximately 15% compared to strategies that simply 

employ an ON-OFF control method. They noted no increase 

either in the discomfort index / dissatisfaction levels but 

instead recorded a significant reduction, falling to 62% from 

a high of 91%. Meanwhile, in [27], dual-level controllers 

(lower-level and higher-level) are presented and tested. The 

lower level controller comprises a traditional PID-type 

controller, whereas the higher-level controller comprises a 

fuzzy controller which acts over the low-level controller’s 

parameters.  

Using these and other research outcomes as an inspiration for 

the present research, this work investigates a fuzzy level 

control method that controls outputs for four AHUs to 

maintain CO2 concentrations, static air pressure, and zonal 

temperatures. The aim is to determine the best approach for 

fuzzy control methods to perform the desired actions required 

for each parameter, on a parameter-by-parameter basis. The 

proposed fuzzy supervisor will be able to decide whether a 

certain desired action is or is not in the best interest of the 

entire system (in terms of overall performance). The fuzzy 

supervisor might also be given control over aspects of energy 

savings that better balance a building’s overall heating and 

cooling system’s performance levels, taking the needs of each 

floor into consideration. 

 

II. CASE STUDY 

The present paper employs as a case study the S. J. Carew 

building, which is located on the campus of Memorial 

University, St. John’s, Newfoundland. The building is 

currently used to house the Faculty of Engineering and 

Applied Science at Memorial and is divided into numerous 

lecture rooms and labs. There is also a large cafeteria space. 

Interiorly, the Carew building measures approximately 

25,142 m2 and features four individual air-handling units for 

the building’s 300+ zones. Table 1 lists an energy report for 

the Carew building, while Figure 1 depicts a 3D model. 

 

 
Fig.1 .  3D model for system 

 

TABLE 1.  Energy Report for the building 

 

III. SIMULATION TOOL 

The Carew building’s multifaceted interior climate and 

energy use is modeled by the IDA-ICE 4.7 simulation tool. 

This tool can easily model multiple-zone HVAC systems like 

those existing within the Carew. Through dynamic 

simulations based on the monitoring and measuring of 

internal air quality (IAQ), the IDA-ICE 4.7 can gauge 

desirable thermal comfort levels for the structure. For 

instance, to maintain individual zonal temperatures, the heat 

exchanger employs controllers that are set to fixed points 

through control valve modulation. Figure 2 illustrates how a 

hot water valve gathers pertinent data on water which has 

been warmed via direct contact with a heating coil. As shown 

in the figure, the building’s system has only one valve to 

produce hot water, but the IDA-ICE tool creates four sub-

valves to allow every air-handling unit its own valve [28, 29]. 
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Fig.2 .  AHU1 of the building 

 

IV. SIMULATION VALIDATION FOR IDA-ICE  

 

Two key features that are necessary to forming a 

viable model are the model’s ease in satisfying specifications 

and the model’s accuracy. Figure 3 depicts the Carew 

building’s Jan-Dec/2016 hot water usage as modelled in IDA-

ICE. The figure shows hot water energy consumption 

exceeding 800,000 kWh per month in winter and nearly 

300,000 kWh per month for July and August. Real (i.e., 

measured) data for the building’s annual power consumption 

shows lower hot water usage in some months compared to 

others, but the overall consumption levels for both the real 

and modeled data are nearly the same. Electrical power use 

data for both the IDA-ICE model and real consumption are 

shown in Figure 4. The real data is somewhat higher than the 

simulation data, which could be a result uncontrolled lighting 

and equipment in the building. 

 

 

 
Fig.3 .  Energy use from hot water 

 

 
Fig.4 .  Electrical power use 

 

 

V. SYSTEM IDENTIFICATION 

The present study employed the simulation tool IDA-

ICE 4.7 to model the internal environment and energy 

performance of the S. J. Carew building on the Memorial 

University campus, St. John’s, Newfoundland. IDA-ICE 

software can easily simulate & model HVAC systems that 

have multi-zonal features. The simulation tool can also 

measure a range of other important parameters, such as power 

requirement, thermal comfort levels, and interior air quality 

(IAQ). To model the building, the identification data must 

have the zonal inputs and outputs. System identification 

occurs over three consecutive steps, as listed below [30, 31]:  

i. Data collection towards identification of appropriate 

model. 

ii. Choice of most suitable model structure. 

iii. Construction of optimal model that satisfies required 

specifications and provides accurate results. 

The main focus, when following through on each of the 

above steps, should be on choosing and then optimizing a 

model to reflect the real-life needs of the system. In this study, 

the Carew building has four AHUs, so the state space model 

was deemed most appropriate. Moreover, because our data 

employed for system identification were sourced in the winter 

(November to April), the chiller were not operational during 

that time frame. As the Carew building features four AHUs 

over four floors, there are 12 inputs and 12 outputs (i.e., 3 

inputs [𝑈] and 3 outputs [𝑌] for each AHU). Each AHU 

inputs are 

1. hot water valve for the heating coil/zones radiators 

2. supply fan speed 

3. fresh air from outdoors 

 The system controlled outputs for each AHU are 

1. Return air temperature (unit is degree Celsius, oC) 

for controlling the valve aperture of hot water 

2. Static Air Pressure PS (unit is inch in water, INW) in 

ducts for controlling supply fan speed 

3. CO2 levels )unit is parts per million, PPM) for 

controlling fresh air dampers. 

A detailed state space model used for controller design 

for AHU1 was presented in [29]. 
 

VI. CONTROL STRATEGIES 

The simulation results of the fuzzy control methods 

developed in this research work suggest enhanced comfort 

levels and energy efficiency across the entire system. The 

outcome of these improvements would therefore also indicate 

improved cost efficiencies. Overall, we can assert that fuzzy 

logic can work with partial truth values along the same lines 

as humans process ideas and in this way have certain 

advantages in comparison to traditional controllers, such as: 

i. Fuzzy controllers can work with control process 

models that are imperfect or incomplete (i.e., they do 

not require mathematical precision). 

ii. Employing fuzzy modelling conditions and 

parameters actually expands the application of 

successful control strategies due to the flexibility of 

the model. 

iii. We can successfully model non-linear processes, 

which are applicable to HVAC systems because these 

systems are nonlinear. 

iv. Fuzzy controller systems can perform the function of 

approximate decision-making and reasoning, just 

like human thought processes. 
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v. In a fuzzy controller, multi-input / multi-output 

parameter strategies are controllable.  

A number of different methods have been successfully 

used to employ fuzzy logic in a closed-loop control system, 

but the fuzzy PI controller is currently the most popular 

approach [32, 33]. In this strategy, fuzzy logic controller 

inputs and outputs are used to work the actuators, with fuzzy 

PI controllers serving as incremental controllers. Equation (1) 

expresses the formulation of a traditional fuzzy PI controller, 

with the output determined by fuzzy rules [34]. 

         𝑢 (𝑘 +  1)  =  𝑢 (𝑘)  +  𝛥𝑢 (𝑘)                                     (1) 

where k indicates sampling instance and Δu (k) denotes the controller’s 

incremental change. K was selected as 3s 

 

For the AHU model, this case study utilizes a traditional 

fuzzy PI controller. Combining the proportional (P) and 

integral (I) actions enhances the inherent stability that is 

characteristic of proportional controllers. When a motor or 

valve are the actuator, incremental controllers are the 

appropriate choice. Fuzzy PI controllers are also suitable if 

the controller output comes mainly from an integrator, as 

these types of controllers are easily able to mitigate issues 

such as wind-up and noise. 

Figure 5 illustrates how a fuzzy PI controller uses as inputs 

error and changes of error signals. An additional feature of 

fuzzy PI controllers is that they are not limited by operational 

set-points. In control methods that are rule-driven, any 

discrepancies between measured or set-point values are first 

discerned to determine whether it is appropriate to use 

increments or decrements for the control variables. However, 

in fuzzy logic controllers, non-linear control strategies can be 

performed by using fuzzy logic for actual applications, as 

follows [35]: 

a) In Fuzzification, crisp data is turned into fuzzy data, 

which are also known as membership functions (MFs). 

b) MFs are then included as part of the control rules to 

find the requested fuzzy output, a process which is 

termed fuzzy inference. 

c) Finally, in the defuzzification step, several different 

approaches are employed in order, firstly, to 

incorporate all relevant outputs, secondly, to position 

them as in a table format, and thirdly, to find the output 

in a look-up table that matches the current input in the 

desired application.  

Figure 5 shows the fuzzy controller being designated to 

control CO2 levels, static air pressure, and zonal 

temperatures. As illustrated in the figure, the fuzzy controller 

is fed error signals and modifications, with the fuzzy 
controller outputs used as system inputs. The resulting 

outputs are then forwarded to the fuzzy controller, forming a 

closed-loop control system.  

Figure 6 depicts a fuzzy logic design in Matlab fuzzy logic 

toolbox according to system specifications (e.g., add/remove 

input/output or select fuzzy inference operations could be 

done in Matlab toolbox).  

SFLC of the system have 24 inputs as following: 1) 8 inputs 

are temperature differences (∆T) and the ratio for the 

difference (d∆T) of AHUs, 2) 8 inputs are static air pressure 

PS differences (∆PS) and the ratio for the difference (d∆PS), 

and 3) 8 inputs are differences in CO2 Levels (∆CO2) and the 

ratio for the difference (d ∆CO2). There are 12 outputs of the 

SFLC, each AHU has three (fresh air, air flow and hot water). 

   The values are introduced as gains to the system to move 

system responses towards a stability state. As a means to 

increase output gains, PI controller tuning can be used.  

 

 
Fig.5 .  The SFLC with four AHUs. 

 

 
Fig.6 .  Application designer of SFLC 

 

A. Fuzzy Membership Function  

The MFs editor is used to separate the fuzzy toolbox that is in 

the form defined by all membership variables for MFs. The 

final factors are assigned to the variable inputs and output 

variables as follows: 

1. SFLC input variables 

The control system has 6 inputs from each AHU. Three 

for difference between setpoints and current values and 

three inputs are the ratio for response differences. The 

following data show inputs from AHU1. Also, Tables 2 

and 3 illustrate the details of all controller inputs. 

a. Temperature Differences of AHU1 (Δ𝑇z1). Zone 

temperature of return air as recorded by an electronic 

sensor as shown in Fig. 2 that Eq. (2) expresses 

differences between setpoint (Tsetp1) and current zone 

temperature (Tz1) for time (k). Figure 7 shows the five 

MFs of (V-High, High, Optimal, Low, and V-Low). 

Table 2 illustrate the details of this MFs. 

 

  𝛥𝑇𝑧1 (𝑘)  = 𝑇𝑠𝑒𝑡𝑝1 (𝑘)  − 𝑇𝑧1 (𝑘)        ( ̊𝐶)          (2)                    
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Fig.7 .  MFs differences between setpoint (Tsetp1) and current zone     

temperature (Tz1) 

 

b. Change in ΔTz1 in AHU1 (𝑑Δ𝑇z1). The variables for the 

error input in temperature changes are set by observing 

the difference ratio between current and actual 

temperature error values and the sampling time (Δ𝑡), as 

shown in Eq. (3). The building’s real system gives a 

system sampling time of three seconds (Honeywell 

Offices and Department of Facilities Management and 

at Memorial University). Figure 8 and Table 3 illustrate 

that three MFs used to define error variable changes: 

Positive (𝑃), Negative (𝑁), and Zero (𝑍) 

 

  (𝑑𝛥𝑇𝑧1) = (𝛥𝑇𝑧1 (𝑘) − 𝛥𝑇𝑧1(𝑘 −  1))/ 𝛥𝑡    ( ̊𝐶/𝑠)       (3)    

                                    

 
Fig.8 .  MFs ratio between current and actual temperature 

c. Static Air Pressure Differences of AHU1 (PS1). Figure 

2 illustrates changes in present duct PS, these 

differences were noted by sensors located in both cold- 

and hot-deck ducts. As can be seen, the static pressure 

(PS-setp1) setpoints occur for time (k), given in Eq. (4). 

Figure 9 and Table 2 present five MFs of (V-High, 

High, Optimal, Low, and V-Low). 

            𝛥𝑃𝑆1 (𝑘)  =  𝛥𝑃𝑆−𝑠𝑒𝑡𝑝1  − 𝑃𝑆1 (𝑘)      (𝐼𝑁𝑊)        (4)                                       

 
Fig.9 .  MFs of Static Air Pressure Differences 

d. Change in Δ𝑃𝑆1 (𝑑Δ𝑃𝑆1) in AHU1. As expressed in Eq. 

(5), All changes of the (PS) error input variables are 

made with ratios for the differences between current 

and actual (PS) values depending on the sampling time 

(Δ𝑡). Figure 10 shows three MFs that show changes in 

the displayed error variables Positive (𝑃), Negative 

(𝑁), and Zero (𝑍). 

 

  𝑑𝛥𝑃𝑆1 (𝑘) = (ΔP𝑆1(𝑘) − ΔP𝑆1(𝑘 − 1))𝛥𝑡    (𝐼𝑁𝑊/𝑠)   (5)                          

 

Fig.10 .  MFs of ratios for the differences between current and actual (PS) 

values 

 

e. Differences in 𝐶𝑂2 Levels in AHU1 (Δ𝐶𝑂2-1). As shown 

in Figure 2, this is the difference between the current 

CO2-1 level in the return air from the sensor in the 

AHU1 return duct and the CO2 level of setpoint CO2-

setp1, as recorded at time (k) and expressed by Eq. (6). 

The 5 MFs of (V-High, High, Optimal, Low, and V-

Low) are shown in Figure 11. 

 

 𝛥𝐶𝑂2−1(𝑘) = 𝐶𝑂2−𝑠𝑒𝑡𝑝1 − 𝐶𝑂2−1(𝑘)     (𝑃𝑃𝑀)      (6)                           

 
Fig.11 .  Difference between the current and setpoint of CO2-1 level 

 

f. Change in Δ𝐶𝑂2-1 (𝑑Δ𝐶𝑂2-1). As indicated in Eq. (7), 

the input variable CO2 error changes can be formed by 

observing the difference ratio between the current and 

previous CO2 error values as a function of the sampling 

time (Δ𝑡). Figure 12 show the three MFs error variable 

changes as sets labelled Positive (𝑃), Negative (𝑁), and 

Zero (𝑍). 

 

 𝑑𝛥𝐶𝑂2−1(𝑘) = (𝛥𝐶𝑂2−1(𝑘) − 𝛥𝐶𝑂2−1(𝑘 − 1))𝛥𝑡   

                                                                    (𝑃𝑃𝑀/𝑠)                    (7) 
 

Table 2 and Table 3 lists all limits of MFs used in Matlab 

fuzzy logic toolbox for all AHUs. 
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Fig.12 .  Difference ratio between current and previous CO2 error 

values 

TABLE 2.  Difference between setpoints and current values  

 
TABLE 3.  Ratio between the current and previous values 

 

2. Output Variables.  

The inlet of all ventilation units (hot water, fan speed and 

fresh air) acts as an SFLC output. This means that SFLC 

has twelve output. Values are entered as a gain in the 

system to introduce system reactions into a steady state. 

To increase the output gain, the tuning of a PI controller 

can be used, as described the outputs of the first AHU1 

in the following subsections [29]. Also, the table 4 

illustrate all the details of MFs (Close-Fast, Close, No-

Change, Open and Open-Fast) and the related operation 

percentages of hot water valve’s, fan speed and fresh air 

dampers of whole system. 

a. Aperture on Hot Water Valve of AHU1 (HWV1). The 

5 MFs indicates the output of the process controller 

to open and close the hot water valve to set the 

temperature range of the zone (Tsetp1). Figure 13 

depicts MFs using MATLAB/Fig. 

 

 
Fig.13 .  MFs of the first output of SFLC 

 
   

b. Supply Fan Speed of AHU1(SFS1). The second output 

of the SFLC is the speed control of the supply fan to 

reach the static air pressure setpoint (PS-setp1) inside 

ducts. Figure 14 shows the five MFs for this process. 

 

 
Fig.14 .  The second output of the SFLC 

 

c. Fresh Air Dampers Position of AHU1 (FAD1). Five 

MFs were used for the controller output to open and 

close the position of the fresh air dampers to 

determine the CO2 concentration setpoint (CO2-setp1), 

Figure 15 shows that. Table 4 provides list of limits 

of output MFs of all AHUs. 

   
Fig.15 .  The third output of the SFLC 

TABLE 4.  All the outputs of SFLC 

 

B. Fuzzy Rules 

In systems that operate using fuzzy inference, the output 

variables are controlled by fuzzy rules, which essentially are 

IF-THEN rules that contain both a condition and a 

conclusion. Fuzzy membership functions can alter input 

errors (Δ𝑇z, Δ𝑃𝑆, Δ𝐶𝑂2) as well as error changes (𝑑Δ𝑇z, 

𝑑Δ𝑃𝑆, 𝑑Δ𝐶𝑂2) in accordance with their appropriate fuzzy 

values. Additionally, for each output investigated in this 

paper (e.g., hot water valve, fan speed and damper position), 

fuzzy rules provide the control action for values of error and 

error changes [36-38]. Note that because each control signal 

output has 5 × 3 i.e. 15 rules. Table 5 illustrate the rules 

between first and second input (Δ𝑇z1 and 𝑑Δ𝑇z1) of the 

controller as the fuzzy default rule, there are three inputs in 

      Range  

Inputs 
V-Low Low Optimal High V-High 

Δ𝑇z1 [-5.26 -4.24 -0.611 -0.5] [-0.611 -0.5 -0.134 0] [-0.134 0 0.1357] [0 0.134 0.51 0.7817] [0.5797 0.7323 1.774 9.13] 

ΔPS1 [-7 -0.15 -0.083- 0.068] [-0.08 -0.06 -0.008 0] [-0.007 0 0.0095] [0 0.008 0.071 0.081] [0.07052 0.08278 0.1399 9] 

Δ𝐶𝑂2-1 [-62.73 -5.04 -4.1 -3.55] [-4.117 -3.5 -0.73 0] [-0.28 0 0.28] [0 0.73 2.21 3.082] [2.098 3.025 30 119.5] 

Δ𝑇z2 [-8.76 -4.24 -0.611 -0.5] [-0.611 -0.5 -0.134 0] [-0.134 0 0.1357] [0 0.134 0.51 0.7815] [0.5795 0.7325 1.774 9.63] 

ΔPS2 [-5.6 -0.126 -0.06 -0.05] [-0.07 -0.05 -0.007 0] [-0.0061 0 0.007] [0 0.006 0.056 0.065] [0.05642 0.0662 0.1119 7.2] 

Δ𝐶𝑂2-2 [-56.4 -5.04 -4.107 -3.5] [-4.11 -3.507 -0.73 0] [-0.18 0 0.18] [0 0.73 2.21 3.082] [2.098 3.025 30 119.5] 

Δ𝑇z3 [-5.26 -4.24 -0.611 -0.5] [-0.611 -0.5 -0.134 0] [-0.134 0 0.1357] [0 0.134 0.51 0.7815] [0.5795 0.7325 1.774 9.63] 

ΔPS3 [-6.4 -0.12 -0.066 -0.05] [-0.06 -0.05 -0.006 0] [-0.0061 0 0.007] [0 0.0067 0.057 0.06] [0.05642 0.0662 0.1119 7.2] 

Δ𝐶𝑂2-3 [-56.48 -5.048 -4.1 -3.5] [-4.117 -3.51 -0.73 0] [-0.28 0 0.28] [0 0.73 2.21 3.082] [2.098 3.025 30 119.5] 

Δ𝑇z4 [-5.26 -4.24 -0.611 -0.5] [-0.611 -0.5 -0.134 0] [-0.134 0 0.1357] [0 0.134 0.51 0.7815] [0.5795 0.7325 1.774 9.63] 

ΔPS4 [-4.9 -0.12 -0.06 -0.048] [-0.06 -0.04 -0.005 0] [-0.005 0 0.0067] [0 0.006 0.049 0.058] [0.05 0.05795 0.09793 6.3] 

Δ𝐶𝑂2-4 [-56.5 -5.04 -4.11 -3.55] [-4.12 -3.507 -0.73 0] [-0.288 0 0.288] [0 0.73 2.21 3.082] [2.098 3.025 30 119.5] 

 

          Range  

Inputs 
P Z N 

dΔ𝑇z1 [-0.1062 -0.09279 -0.045 -0.009] [-0.04601 -0.009 0.01 0.04499] [0.0109 0.0395 0.1381 0.175] 

dΔPS1 [-0.005533 -0.005 -0.003 -0.001469] [-0.002833 -0.0014 0.001478 0.002833] [0.00158 0.00293 0.00595 0.0065] 

dΔ𝐶𝑂2-1 [-2.1 -1 -0.5 -0.3] [-0.499 -0.3002 0.2993 0.5] [0.3 0.5 1 1.091] 

dΔ𝑇z2 [-0.1062 -0.09279 -0.045 -0.009] [-0.045 -0.009 0.009 0.045] [0.009 0.045 0.1381 0.1615] 

dΔPS2 [-0.0053 -0.005 -0.0028 -0.00149] [-0.002833 -0.0014 0.001478 0.002833] [0.00148 0.003 0.00635 0.00635] 

dΔ𝐶𝑂2-2 [-2.21 -1.1 -0.53 -0.323] [-0.5 -0.3 0.3 0.5002] [0.3005 0.501 1 1.1001] 

dΔ𝑇z3 [-0.1064 -0.09279 -0.045 -0.01] [-0.045 -0.019 0.0101 0.045] [0.009002 0.04502 0.139 0.162] 

dΔPS3 [-0.005433 -0.005 -0.00288 -0.00147] [-0.002833 -0.0014 0.001478 0.002833] [0.00148 0.00283 0.00585 0.0055] 

dΔ𝐶𝑂2-3 [-2.21 -1.4 -0.555 -0.343] [-0.5 -0.289 0.3 0.499] [0.3 0.5005 1 1.0891] 

dΔ𝑇z4 [-0.1072 -0.09379 -0.04501 -0.01] [-0.045 -0.009 0.009 0.045] [0.01 0.045001 0.138 0.161501] 

dΔPS4 [-0.005433 -0.005 -0.0028 -0.001478] [-0.002833 -0.0014 0.001478 0.002833] [0.0025 0.00298 0.00585 0.0075] 

dΔ𝐶𝑂2-4 [-2.103 -1 -0.501 -0.312] [-0.5 -0.3 0.3 0.5] [0.299 0.50035 1 1.1] 

 

Corresp-

onding 0% - 20% 20% - 40% 40% - 60% 60% - 80% 80% -100% 

        Range 

Outputs 
Close-Fast Close No-Change Open Open-Fast 

HWV1 [-17160 -13000 -10270 -6578] [-9447 -7241 -2054 0] [-895 0 998] [0 2054 6630 8576] [6588 8590 13280 13340] 

SFS1 [-14020 -12170 -8227 -5319] [-7296 -6307 -1958 0] [-1963 0 1963] [0 1911 7723 9475] [7680 9612 12020 12130] 

FAD1 [-7823 -7545 -5779 -4310] [-6010 -4121 -1405 0] [-1404 0 1407] [0 1408 2936 4622] [3332 4595 7515 7988] 

HWV2 [-15840 -12000 -9473 -6072] [-8717 -6684 -1896 0] [-826 0 921] [0 1896 6120 7913] [6081 7929 12260 12310] 

SFS2 [-8768 -7605 -5138 -3323] [-4563 -3938 -1223 0] [-1227 0 1227] [0 1195 4827 5925] [4800 6008 7515 7583] 

FAD2 [-11460 -11060 -8476 -6322] [-8814 -6044 -2062 0] [-2059 0 2065] [0 2066 4307 6778] [4886 6738 11020 11720] 

HWV3 [-11090 -8400 -6631 -4249] [-6102 -4679 -1327 0] [-578 0 645] [0 1327 4284 5539] [4257 5549 8585 8617] 

SFS3 [-7010 -6083 -4110 -2659] [-3652 -3150 -979 0] [-981 0 981] [0 955.8 3862 4735] [3840 4805 6014 6065] 

FAD3 [-9379 -9053 -6935 -5173] [-7211 -4945 -1686 0] [-1684 0 1689] [0 1690 3524 5546] [3998 5514 9017 9587] 

HWV4 [-11220 -8500 -6707 -4301] [-6172 -4735 -1343 0] [-585 0 652] [0 1343 4335 5604] [4307 5616 8686 8720] 

SFS4 [-31540 -27410 -18520 -11960] [-16450 -14180 -4406 0] [-2614 0 2614] [0 4298 17360 21330] [17280 21620 27050 27290] 

FAD4 [-17600 -17010 -13020 -9709] [-13550 -9287 -3166 0] [-1456 0 1469] [0 3177 6616 10400] [7505 10330 16930 18020] 

 

http://dx.doi.org/10.24018/ejece.2019.3.4.92


EJECE, European Journal of Electrical and Computer Engineering 

Vol. 3, No. 4, June 2019 

 
 

DOI: http://dx.doi.org/10.24018/ejece.2019.3.4.92                                                                                                                                                                    7 

each AHU and four AHUs for the system, that mean the SFL 

controller has (15 × 3 × 4) 180 rules. Also, The SFLC can 

control aspects of energy saving that better the performance 

of the heating and cooling system of building, taking into 

account the needs of each floor, for that there is extra rules 

between floors. 

TABLE 5.  The rules between first and second input of the controller 

 

C. Defuzzification 

Defuzzification changes fuzzy output variables into crisp 

variables in order to meet control objectives. The 

defuzzification step is used in hardware applications where 

crisp data are exchanged and defuzzified output is deemed the 

best solution. The underlying mechanisms for this approach 

are the maxima strategy and the centroid strategy. The 

maxima approach actively seeks the highest pack, whereas 

the centroid approach seeks to find the balance point. In our 

case study of the S. J. Carew building, the centroid method is 

used. 

Figure 16 shows the control surface with the applied MFs. 

Error values for zonal temperatures along with change of 

error values based on fuzzy rules have been used. The control 

output values derive from a range of input combinations in 

hot water valve functions.  

 

Fig.16 .  Control surface of Δ𝑇z1 and 𝑑Δ𝑇z1 based on fuzzy rules 

In Figure 17, the control surface employed to implement 

static air pressure error value MFs and fuzzy rule-

implemented change of error values is illustrated. In this case, 

the control output values derive from a range of input 

combinations for moderating supply fan speed as a means to 

determine the ducts’ static air pressure set-points.  

 

Fig.17 .  Control surface of ΔPs1 and dΔPs1 based on fuzzy rules 

The control surface for values of error and changes of error 

in MFs measuring CO2 levels is depicted in Figure 18. As 

shown, fuzzy rules have been used to control output values in 

order to determine the CO2 set-point which is most 

appropriate. 

 

Fig.18 .  Control surface of ΔCO2-1 and dΔCO2-1 based on fuzzy rules 

For the extra rules between floors, the Figure 19 shows the 

control surface between second and third floor temperature 

differences for saving energy and better the performance of 

hot water valve of AHU2 (HWV2). 

 

Fig.19 .  Control surface of ΔTz2 and ΔTz3 based on fuzzy rules 

In Figure 20 shows the control surface between second and 

third floor Static Air Pressure Differences for saving energy 

and better the performance of supply fan speed of AHU2 

(SFS2). 

 

Fig.20 .  Control surface of ΔPs2 and ΔPs3 based on fuzzy rules 

VII. SIMULATION AND RESULTS 

In this section the simulation results and the Simulink model 

are presented. Figure 21 shows a block diagram for state 

space models of a whole building (four AHUs), supervisor 

fuzzy logic controller and all setpoints using MATLAB / 

Simulink. There are four state space models, each AHU has 

         ∆ inputs 

d∆ inputs V-Low Low Optimal High V-High 

N Open-Fast Open-Fast Open No-Change Close 

Z Open-Fast Open No-Change Close Close-Fast 

P Open No-Change Close Close-Fast Close-Fast 
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one with 3 inputs and 3 outputs, the advantage of separate the 

system to four is decrease the rules of the controller. In  

Fig.21 .  Block diagram for state space models of whole system with SFLC 

addition, the sampling time was selected as 3 seconds of the 

control action the same as that for the real system [29]. Also, 

the initial conditions and setpoints are selected for state space 

model of temperatures, air pressures, and CO2 levels of AHUs 

of the system as following: 

i. 22.46 oC for temperature, 1.013 INW for air pressure, and 

471 PPM for CO2 levels of the AHU1 initial conditions.  

Furthermore, the real system’s indoor air quality 

setpoints are a zone temperature of 23 oC, air pressure of 

1.5 INW, and a CO2 level of 480 PPM. 

ii. Initial conditions of AHU2 it was 20.29 oC for 

temperature, 1.11 INW for static air pressure, and 502 

PPM for CO2 levels. Setpoints are 24 oC, 1.2 INW, and 

550 PPM of zone temperature, air pressure and CO2 level, 

respectively. 

iii. For the AHU3 the initial conditions were 22.31 oC for 

temperature, 1.39 INW for static air pressure, and 469 

PPM for CO2 levels, the setpoints 23.7 oC, 2 INW, and 

500 PPM of zone temperature, air pressure and CO2 level, 

respectively. 

iv. AHU4 has initial condition of temperature 21.3 oC, static 

air pressure 1.01 INW, and CO2 levels 486 PPM. 

Setpoints are 23.5 oC, 1.2 INW, and 530 PPM of zone 

temperature, air pressure and CO2 level, respectively. 

 

SFLC control characters receive both errors and changes. 

System input control signals can be changed, including hot 

water, fresh air, and airflow gains to reach the reference 

points. Figure 22 shows the first of the system’s output 

responses of each AHU that demonstrate the system’s 

stability. Zones temperature (Tz1, Tz2, Tz3 and Tz4) achieves 

setpoints of 23 oC, 24 oC, 23.7 oC and 23.5 oC at good rise time 

and there is a small overshoot of some responses. Also, the 

setpoints of the system were changed to see the action of the 

controller, the figure shows good responses with this change. 

 

 

 

 

 

 

 

 

 

 

 
Fig.22 .  Zones temperature responses 

Figure 23 depicts the second responses of static air 

pressure of AHUs (Ps1, Ps2, Ps3 and Ps4), with perfect 

rise time and some small overshoots of the responses. 

With the changing of the references of the system for 

period of time the responses have no study state error. 

  

 
Fig.23 .  Responses of static air pressure of AHUs 

Figure 24 shows the CO2 level responses of AHUs (CO2-1, 

CO2-2, CO2-3 and CO2-4), achieving the setpoints of CO2 level 

with good rise time and small overshoot of some responses. 
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As before the setpoints were change in period of time, the 

next figure shows that. 

 
Fig.24 .  CO2 level responses of AHUs 

VIII. CONCLUSIONS 

The simulation results covered the proposed HVAC model, 

which reflects its capability in maintaining comfort 

conditions. The S.J Carew building control system was 

simulated in MATLAB 2018a. The building’s AHUs were 

modelled with the MATLAB System Identification Toolbox 

with real data and IDE-ICE results available to determine 

input and output system parameters. The designed supervisor 

fuzzy logic controller modulates the AHUs input (fresh air 

distributing air flow and hot water for each AHU) to achieve 

comfort level in the building. Modelling building each floor 

as a separate block results in four spatial models that offers 

advantage that the rules of the supervisor controller are 

reduced to 180. The results show that the performance of 

fuzzy controller was better compared to traditional algorithms 

and current controller used to control HVAC system. In 

addition, the SFLC algorithm responded systematically to all 

laboratory conditions and was able to handle a variety of 

parameters, including response time, steadying errors, and 

overshoot. By adding additional rules between the entry 

steps, the SFLC can control energy saving features and results 

in an improved performance in the heating and cooling of 

buildings. 
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