
EJECE, European Journal of Electrical and Computer Engineering
Vol. 3, No. 5, September 2019

DOI: http://dx.doi.org/10.24018/ejece.2019.3.5.125 1

Image Forgery Detection Based on Deep Transfer Learning

Younis E. Abdalla, M. T. Iqbal, and M. Shehata

Abstract—The recent digital revolution has sparked a growing

interest in applying convolutional neural networks (CNNs) and
deep learning to the field of image forensics. The proposed
methods aim to train algorithms for solving a range of
predetermined tasks. However, training a model that has been
randomly initialized requires extensive time for computation as
well as an enormous pool of training data to draw from.
Moreover, such a model needs to be developed and redeveloped
from the ground up if there are any alterations to the feature-
space distribution. In addressing these problems, the present
paper proposes a novel approach to training image forgery
detection models. The method applies prior knowledge that has
been transferred to the new model from previous steganalysis
models. Additionally, because CNN models generally perform
badly when transferred to other databases, transfer learning
accomplished through knowledge transfer allows the model to be
easily trained for other databases. The various models are then
evaluated using image forgery techniques such as shearing,
rotating, and scaling images. The experimental results, which
show an image manipulation detection has validation accuracy of
over 94.89%, indicate that the proposed transfer learning
approach successfully accelerates CNN model convergence but
does not improve image quality.

Keywords—Forgery detection; Deep learning; Transfer
learning; Neural network

1. INTRODUCTION
 Human beings are generally hard-wired to apply or transfer
knowledge that they have learned in one skill to other related
skills. In this way, acquired knowledge can help solve problems
in less time through the cross-utilization of knowledge which
occurs during these transfers [1]. Considering this built-in
problem-solving framework, let us look at two critical
problems currently restricting progress in the field of image
forensics. These problems are: (1) developing a sufficiently
large and diverse body of annotated images for use as training
models; and (2) including in the models non-image data in
order to permit and enable broader application of the model(s).
This research will address both of these challenges. Regarding
the creation of a large body of images, this can be an extremely
costly undertaking, as the task requires humans rather than
machines to do the image classification. Even so, the workers
tasked with this job could be severely challenged by the image
complexity and vast array of different classes for
categorization. Regarding issues around incorporating non-
image data in the models, researchers and other workers in the
field still experience problems when trying to extract image
data from images that also incorporate non-image data, such as
text. However, finding a way to include non-image data in
transfer learning is crucial if the models are to be applied to
areas such as the medical field or insurance industry.

In overcoming these challenges, the present work will employ
text metadata to deal with noisy classifications in images.
Within these datasets are forged images which will comprise
the metadata. So, instead of attempting image classification or
categorization, it will be assumed that the images share certain
metadata features along with some aspects of feature
representations. Two distinct image categories – pristine
images and forged images – will be presented, with the
metadata being sourced from the Internet. Although this will
enable us to substantially expand our available training data set,
it will also likely mean that we will be including some forged
labels as a trade-off.
We will use cosine similarity to gauge similarities within the
metadata, even though this will result in some compromise in
feature representation quality and similarity complexity that the
system learns. This is another trade-off that is considered
negligible. However, there is a relatively significant problem
with this strategy – namely, the similarities that exist between
the pristine image and forged image metadata. These
similarities exist because the Internet-sourced data were not
developed as image classifiers but instead were specifically
created as fakes of original images.
We note that, though beyond the scope of the present work,
numerous applications have shared and related images as well
as repeatable features that have similar or even the same colors
(e.g., claims in the insurance field that feature damaged vehicle
images). These existing models can already incorporate both
images and text as data, but they are also prohibitively
expensive to build and maintain. This is because large training
datasets must be employed to compensate for noisy labels. So,
while acknowledging the existence of these models, our work
aims to utilize datasets in combination [3], as this approach
requires smaller datasets and shows promise of high image
quality.
Moreover, our study relies on the concept of transfer learning
as a means to reduce both the amount of resources required and
the time it takes to train the networks. In our experiments, we
initialize the networks by applying basic weights learned in
earlier large-scale training, such as CaffeNet and VGG16
[1][13]. We can see by the accuracy in the baseline
classification task (i.e., cat versus dog images) that the
convolutional neural network (CNN) weights are able to give
high-quality feature representation on diverse image datasets.
So, our baseline here will be to develop a “cat versus dog”
image classifier through fine-tuning CNN weights as a means
to significantly shorten the computational time required to train
the network.
We will run the network using an extensive sampling of image
pairings, with the network learning similarity between the

EJECE, European Journal of Electrical and Computer Engineering
Vol. 3, No. 5, September 2019

DOI: http://dx.doi.org/10.24018/ejece.2019.3.5.125 2

provided images, both forged and pristine. As well, we will
fine-tune the CNN weights in order to achieve feature
representations with minor differences that are not so different
that they require a full re-training. Furthermore, because CNN
middle layers and baseline architecture are alike, we aim to
demonstrate the practicality and effectiveness of re-training the
baseline by applying the original network weights instead of
new CNN weights, with the aim of enhancing forgery detection
abilities with more accurate image classification.

 This paper is organized as follows. Following the
introduction, we will provide an overview and revision of the
related works. In the subsequent sections, we will dive deeper
into the topics mentioned in the overview training, performance
testing, and also validation of the used methods.

2. RELATED WORKS

 The present paper presents a full review of the
background, foundational ideas, and current applications for
transfer learning, including both historical and recent examples.
It is generally well-known in the industry that transfer learning
evolved from machine learning as well as statistical modeling.
With this in mind, we look at some research conducted by Han
et al. [9] and Doersch et al. [10]. Additionally, we review
MatchNet and the study of D. Itera [2], noting that their two-
tower architecture shares some similarities with that used in the
present work. Specifically, the towers share weights that are
first concatenated; the resulting feature representations for
patch pairs are then relayed through the metric network (fully
connected) and SoftMax loss function. In the metric network,
similarities between the two features representations are
measured, after which the ground truth similarity loss of the
patch pair is formulated. The outcome is equivalent to the
present work’s formulation for similarities in the two feature
representations; however, the ground truth towers rely on the
text metadata accompanying the images instead of relying on a
computed function overlaying the images.

In [10], Doersch et al. study the behavior of learning features in
unsupervised datasets. They divide each image to create a
“patch” and then train networks to figure out the right (i.e.,
original) orientation among the patched pieces. The aim here is
to see whether or not a network is able to learn objects
occurring within images; if a network can do this, it indicates
an ability to learn underlying feature orientation for images.
Therefore, by applying these learned representations, features
learned from this network could potentially be reused in
unsupervised object detection for other datasets.

It is important to note that transfer learning, as mentioned, is a
concept which evolved from machine learning and statistical
modeling. More recently, transfer learning has been
investigated for its application in deep learning. However,
earlier approaches that were previously employed to construct
and train machine learning models differ significantly from
methodologies that adhere to transfer learning strategies. The
present work aims to locate similarities in “similar” images’

underlying map features by applying the latest deep learning
techniques.

3. TRANSFER LEARNING STRATEGIES
The type of transfer learning strategy that is most suitable

for a given problem is determined by several factors, including
data availability, the task to be performed, and the domain. In
general, transfer learning methods are classified according to
the kind of conventional ML algorithms that are used. The
three main categories explored in this work are: unsupervised
transfer learning, transductive transfer learning, and inductive
transfer learning, as explained below.

The first category, unsupervised transfer learning, deals with
unsupervised tasks located in target domains. Although both
the target and the source domains could potentially be similar,
their tasks are quite dissimilar. Later in this study, we will work
on labeled data which has been made unavailable at both
domains. The second category to be explored here is
transductive transfer learning, which is employed when there
are similarities between target and source tasks but dissimilar
corresponding domains. In this scenario, there is no labeled
data in the target domain, whereas the source domain contains
ample labeled data. Transductive transfer learning can also
include subcategories regarding settings (e.g., marginal
probabilities or different feature spaces). In inductive transfer
learning, which will be the third category studied, both the
target and source domains are the same, even though their
respective tasks differ. In the inductive transfer learning setting,
algorithms employ the source domain’s inductive biases as a
means to make improvement to the target tasks. This setting
can be divided into the sub-categories of self-taught learning
and multitask learning, according to whether there is labeled
data in the source domain or not. The source task’s inductive
biases help to carry out the target task. As shown in the figure
below, this is accomplished by making adjustments to the
target task’s inductive biases through the restriction of model
space, adjusting the search process using knowledge acquired
from the source task, or limiting the hypothesis space.

Fig. 1 Inductive transfer techniques of a target [1]

4. TRANSFER LEARNING APPROACHES
We will demonstrate in our work that a few of the

approaches are able to be used in the aforementioned strategies,
as follows: (1) Instance transfer: This involves reusing (or re-
purposing) knowledge obtained from a source domain in a
target task. However, in many instances, we cannot directly
reuse source domain data, but we might be able to reuse these
data in tandem with target data. For inductive transfer cases, we

EJECE, European Journal of Electrical and Computer Engineering
Vol. 3, No. 5, September 2019

DOI: http://dx.doi.org/10.24018/ejece.2019.3.5.125 3

can apply modifications like AdaBoost (Dai et al.) to assist
with improvements to target tasks when training from source
domains. (2) Relational-knowledge transfer: This approach
deals with non-IID data (e.g., data which are not identically
distributed or independent). These type of data have data points
that are related to other (sometimes similar) data points. A good
example of relational-knowledge transfer in current application
is social network data. (3) Parameter transfer: In the parameter
transfer approach, it is assumed that models used for related
tasks involve a few or more shared parameters and/or
hyperparameters. (4) Feature-representation transfer: The
purpose of this technique is to mitigate error rates and domain
divergence through the identifications of positive (good)
feature representations. Such feature representations can then
be used for target domains from source domains. Instances
where feature-representation transfer is used include
supervised/unsupervised methods, if there is sufficient labeled
data available.
Similarity detection. In the similarity detection process,
similarity is measured by taking any related metadata text
applied to an image pair, from which the score of 0 to 1
indicates the similarity of the images, according to the detected
features in the objects measured. Although features which are
similar will probably produce similar results, repeated features
(e.g., neighbourhood or background features) do not always
give similar results. Furthermore, this function should be
sufficiently robust to compare large and small areas, as patches
of various sizes need to be comparable. However, this
operation can be very costly, given how many pairs are able to
be generated in a dataset and considering that that the operation
typically runs several times.
At the outset, the present work employs cosine similarity,
which offers users a good similarity measure for comparing
sets of varying sizes. However, a trade-off between results
accuracy and computational complexity is expected and
understood between cosine similarity and other more
complicated and time-consuming approaches. Using cosine
similarity, two feature “bags” will be developed with feature
sets related to the images as well as to the counts for every
feature. This model is expected to be biased toward images
that are dissimilar, given that dissimilarity has been shown to
be more common. As well, we will construct a preprocessing
engine which is able to compute image similarity and from that
to develop balanced pairs out of the similar/dissimilar images.
These will then be labeled accordingly as contradictory
categories. Note that this component also includes similarities
between different texts and is able to be expanded as needed.

5. SIMILARITY DETECTION
In the similarity detection process, similarity is measured by

taking any related metadata text applied to an image pair, from
which the score of 0 to 1 indicates the similarity of the images,
according to the detected features in the objects measured.
Although features which are similar will probably produce
similar results, repeated features (e.g., neighbourhood or
background features) do not always give similar results.
Furthermore, this function should be sufficiently robust to
compare large and small areas, as patches of various sizes need
to be comparable. However, this operation can be very costly,
given how many pairs are able to be generated in a dataset and
considering that that the operation typically runs several times.

At the outset, the present work employs cosine similarity,
which offers users a good similarity measure for comparing
sets of varying sizes. However, a trade-off between results
accuracy and computational complexity is expected and
understood between cosine similarity and other more
complicated and time-consuming approaches. Using cosine
similarity, two feature “bags” will be developed with feature
sets related to the images as well as to the counts for every
feature. This model is expected to be biased toward images
that are dissimilar, given that dissimilarity has been shown to
be more common. As well, we will construct a preprocessing
engine which is able to compute image similarity and from that
to develop balanced pairs out of the similar/dissimilar images.
These will then be labeled accordingly as contradictory
categories. Note that this component also includes similarities
between different texts and is able to be expanded as needed.
If we obtain positive results from the simplified similarity
function, we would consider carrying out a future study
focusing on the kind of trade-offs incurred between using
highly complex similarity models and simpler ones, based on
effectiveness and runtime. This, however, is outside the scope
of the present work, whose main aim is to test similar and non-
similar images, not performance grades of similarity.

6. THE PROPOSAL TRANSFER LEARNING APPROACHES
The present work mainly investigates a range of deep

learning models. Although the various techniques mentioned
above are applicable in different instances of machine learning,
is transfer learning also applicable to deep learning? Deep
learning models can best be described as being inductive
learning approaches. As touched on in a previous section,
inductive transfer is a learning mechanism’s ability to enhance
task performance as a result of having learned a similar
skill/task from another (i.e., earlier) one [3]. Hence, a general
inductive-learning algorithm objective is to apply mapping
based on training examples. So, for example, if the task is
classification, a model thus learns to map class labels and input
features, using seen and unseen data based on sets of
assumptions concerning training data distribution. The
assumption sets are referred to as inductive biases and include
factors like search process and hypothesis space restrictions.
These assumed biases limit the model’s learning capacity but
also streamline the process. In our proposed approach, we use
transfer knowledge in model image classification related to the
categories of “cat” and “dog”, using a pre-trained model for
detecting pristine images in comparison to forged images.

Datasets Environment
This experiment was conducted using multiple datasets [3]. The
training used mainly dogs vs cats dataset which 25,000 images
of dogs and cats in total each category has 12500 images. We
can verify with the preceding output that we have 12,500
images for each category. Let’s now build our smaller dataset,
so that we have 3,000 images for training, 1,000 images for
validation, and 1,000 images for our test dataset and that
applied to the both categories [4].

 A collection dataset out of online and public existing
datasets for training and testing. In total, we collected 1792 pair

EJECE, European Journal of Electrical and Computer Engineering
Vol. 3, No. 5, September 2019

DOI: http://dx.doi.org/10.24018/ejece.2019.3.5.125 4

images with good quality to present different samples for copy-
move forgery. The first one was constructed by Christlein et al
[5], consisting of 48 base images and 87 copied with a total of
copy-move forged images of 1392. The second database
MICC-F600 was introduced by Amerini et al [6] [7] with 400
images. Caltech-101, image manipulation dataset. IM dataset
(240 images) [5]. The Oxford buildings dataset (198 images
and 5062 resized images) [8]. Coverage dataset (200) [9] and
collection of online and self-producer images. Note that, even
the total images look bigger than what we used in training and
testing, that is because we avoid using some images either
because they are in bad shape or low resolution. Therefore,
here we used selected ponch of images with total of 1348
image which devided for 1248 for training and 100 for testing
task.

7. IMPLEMENTATION
Using Python 3.6, our experiments ran basic classification

task on a network of similar images pairs in MatchNet. The
model training data were kept in a secure H5 file, and the
original convolutional neural network was built accord to [4].
Hence, the transfer learning network is more or less identical to
the earlier network that employed pre-knowledge from the
original CNN model. The towers have two main requirements,
as follows. 1) Weight share: The towers have to be able to
share weights, as this is how the network is able to learn image
pairs simultaneously (i.e., running image pairs through the
same weight set for every layer). 2) Towers as CNNs:
Specifically, the towers must be CNNs of themselves, which
then permits the learned weights from one network model to be
used on the other. Therefore, the towers must have the same
parameter and architecture names to enable weights to be
transferable between them.

This is accomplished as follows. In the weight-training

stage, weights are initialized. At the completion of the training,
the model is saved in an H5 file, which can then be loaded for
additional training/testing utilizing the same weight parameters.
The CNN networks comprise standard convolutions,
normalization layers, ReLu and pool (i.e., frozen convolutional
layers). However, they are unique in that images that are loaded
are split, after which they are recombined prior to reaching
fully connected layers. Individual images are fed into input
layers, with the outputs being vectors with representations
comprising 4,096 elements. Next, the vector is fed to fully
connected layer sets which have been re-trained to convert
vectors into similarity/non-similarity scores. In the final step,
the cosine similarity computes a Softmax loss of expected
similarity vs. predicted similarity for image content. The total
operation is function as deep learning classifier to classify the
output in the designation target.

8. EXPERIMENT RESULTS
There are several tasks that can be evaluated using these

features to compare to the state-of-the-art systems. While there
are many such tasks in the unsupervised learning space, to
bound the difficulty of evaluating the results of this work, the

first set of experiments will simply attempt to test if the weights
learned in the CNN are a better initialization for fine-tuning an
image classification task than the provided weights which were
learned on the training task. The rest of this section will outline
in detail how these experiments were built and how weights
were transferred.
Frist, we present the result of training the original model to
show how the results look like and then we’ll use the new
dataset to see how the knowledge transferred and show the
result for the new task.

The baseline training model and the transfer learning model are
layered in same architectures. The last layers (dense layers)
were trained slightly different to serve the different output
target. This architecture of layered network allowed us to
employ the trained/or pre-trained network in the original model
to extract the new features in the other model with the
consideration of re-train the classifier to serve the new labeled
case. Figure 2 show the models summery in both tasks while
the table 1 shows the parameters’ summary of the same model.

Table. 1 Model summary information

Model

parameters
summary

Total
parameters

Trainable
parameters

Non-trainable
parameters

12,942,786 12,941,314 1,472

In this work, the initial experiments aim to determine whether
the weights that were learned in the CNNs improve
initialization of image classification task fine-tuning compared
to the weights learned during training task of the original
dataset. The remainder of the section provides a detailed
discussion on the construction of the experiments as well as the
manner in which the weights are transferred during the tasks.
Specifically, we will review and present the outcomes from the
original model training, after which we will apply the new
dataset in order to determine the means of knowledge transfer.
The results of the new approach will also be provided.

EJECE, European Journal of Electrical and Computer Engineering
Vol. 3, No. 5, September 2019

DOI: http://dx.doi.org/10.24018/ejece.2019.3.5.125 5

Fig. 2 Shows the summary of the processing of the transfer learning model form the original trained model

Training data generator
In normal cases the all dataset images can’t be uploaded to the
process memory in one shout. Also, this may drop down the
performance of the used GPU’s / or CPU in the training task.
Therefore, we will load the dataset in group of 15 images at
once in each time to all dataset using data generator. The other
advantage of using data generator is make many changes in
each image which known as data augmentation to learn all
possible image transformation to the used neural network after
fixing the image scale according to the input layer which in
our case is 126 × 126 × 32. Also this will present different
image forgery techniques such as shearing, rotating, and
scaling images. Figure 3 shows two examples of data
generator. The output of this task can be summarized as
following: Found 20000 images belonging to 2 classes.
Training Generator: Found 5000 images belonging to 2
classes. Found 0 images belonging to 0 classes.

Fig. 3 Shows examples of the data generator work using the original dataset

Note: Categories: 0: 'cat', 1: 'dog'. The original dataset has
same number of the two categories that used in the training
task as shown in the next illustration, figure 3.

Fig. 3 shows the training result map to dog is 1 and cat is 0

Fig. 4 Random samples from the training result in image’s presentation

Fig. 5 Shows the validation result map to model using the original dataset: dog

is 1 and cat is 0

Create Testing Generator
We will convert the predict category back into our generator
classes by using train_generator. class_indices. It is the classes
that image generator map while converting data into computer
vision

EJECE, European Journal of Electrical and Computer Engineering
Vol. 3, No. 5, September 2019

DOI: http://dx.doi.org/10.24018/ejece.2019.3.5.125 6

Fig. 6 Shows the testing result map to dog is 1 and cat is 0

Fig. 7 Shows the predicted result with images representation

Training task initial output: Found 998images belonging to
class 1, found 250 images belonging to class 0.
After preparing the new dataset and go through the above steps
we see the results:

Fig. 8 Random sample images from the new dataset

Fig. 9 Shows examples of the data generator work using new dataset

Fig. 10 Shows a map result of training set for new dataset

Table 2 Shows the numerical raining result which was

presented in the above figure

For the training task, we used the two categories with total
image of 1248 images as we mentioned above. Here we show
random sample pairs images out of the used dataset:

Fig. 11 Shows random samples of the two new categories with their labels

Fig. 12 Shows the predicted result with images using new dataset

Now for the new dataset the result should look like:
('dog': 1, 'cat': 0) => ('pristine': 1, 'forged': 0)
i.e. each image labeled with dog that means this image is a
pristine image, and each image tagged in cat is a forged image
as you can see in figurre13.

Fig. 13 Shows the image labels presentation for new dataset based on the

original dataset labels.

Based on the original model weights the second dataset will be
judged. Next figure shows the deep learning classifier output
after re-trained to deserve the new task. However, the output
still shows some false detection which can be overtaken by
using closer model for the learning transfer assignment.

EJECE, European Journal of Electrical and Computer Engineering
Vol. 3, No. 5, September 2019

DOI: http://dx.doi.org/10.24018/ejece.2019.3.5.125 7

Fig. 14 Shows some predicted results in images presentation for validation

task

According to sample result presented in the figure 14, the first
image from left hand is forged image and here shows as
(dog==pristine). The other two images are (cat==forged) and
that is correct.
Now, in order to increase the accuracy of this model, we train
the original datatset for longer time using 25 Epochs with
same conditions to avoid over fitting.

Validation: The next figure 15 shows the validation data for
both datasts before we flatten the data and feed our deep
learning classifier.

Fig. 15 Shows the validation data of the presented models in both datasets.

As shown in the results, the validation accuracy of the
baselines was higher than the accuracies using the weights
learned in the original network. The next visual illustration
shows clearly the gap between the training accuracy and
validation accuracy for the both datasets.

Fig. 16 Shows the training loss vs. validation loss in different training trial

Fig. 17 Shows the training accuracy vs. validation accuracy in different

training trial

Fig. 18 Shows the training loss vs. validation loss in different training trial

(new dataset)

EJECE, European Journal of Electrical and Computer Engineering
Vol. 3, No. 5, September 2019

DOI: http://dx.doi.org/10.24018/ejece.2019.3.5.125 8

Fig. 19 Shows the training accuracy vs. validation accuracy in different

training trial (new dataset)

From the figures 16, 17, 18 and 19 we can notes that the model
is getting over fitting with new dataset, however, the model still
able to maintain excellent validation accuracy. However,
second training show more improvement in both loss and
accuracy training vs. validations. Also, from the table 3 we can
see that we achieved validation accuracy of 94.89% which 4%
improvement in accuracy from the previous model.

Table. 3 Shows the loss and the validation accuracy of the
both models

The model Loss Acc. Val_loss Val_Acc.
Trained model 0.2683 88.93% 0.2122 91.29%
Transfer model 0.2583 92.94% 0.2347 94.89%

Evaluate this work with the-state-of-the-art is presented in the
table 4.

Table. 4 The evaluation based on the validation accuracy
between two closer targets

The Model Training data Validation accuracy

[2] MSCOCO 77%
ImageNet subset 93%

Presented
model

Dogs & Cats 91.29%
Pristine & Forged 94.89%

9. CONCLUSION AND FUTURE WORK
 The present work demonstrates that, by employing different
CNN architectures, deep learning can be successfully applied in
tasks such as image classification, image identification and
object recognition. Cost-effective image classification is
achieved on manipulated and/or larger datasets, and improved
image feature mapping are obtained from similar images in text
metadata using CNNs. However, although using feature map
representations is shown to be cheaper and faster, it does not
improve the quality of the image classifications, indicating that
this approach is not optimal for evaluating quality, given the
weak correlation between feature labels and similar (and/or

non-) images. Nevertheless, the results of the present work
could lead to future investigations that include looking at other
forms of forgery detection by applying the newly transfer
learned weights. Overall, the present work indicates that
metadata sampling and classification requires highly
disciplined scaling model which can be scored by employing
pre-trained model with and that can be a future extension steps
to this work.

 ACKNOWLEDGEMENT
 This work is funded by the ministry of higher education of
Libyan Government, which managed by CBIE in Canada. The
authors acknowledged Mr. T. Iqbal, who make most of the
help and reviews to make this work existed.

AUTHOR’S CONTRIBUTIONS

 The authors confirm that the manuscript has been read and
approved by all authors and that there are no other persons
who satisfied the criteria for authorship but are not listed.

 CONFLICT OF INTEREST

 The authors declare that there is no actual or potential
conflict of interest regarding the publication of this article.

REFERENCES
[1] R. T. C. Dipanjan Sarkar, Hands On Transfer Learning With Python,

Packt, 2018.
[2] D. Iter, "Image Classification using Transfer Learning from Siamese

Networks based on Text Metadata Similarity," Stanford University, pp. 1
- 13, 2016.

[3] R. V. G. B. Soares, " Inductive Transfer," In: Sammut C., Webb
G.I.(eds) Encyclopedia of Machine Learning. Springer, Boston, MA,
2011.

[4] D. Sarkar, "A Comprehensive Hands-on Guide to Transfer Learning
with Real-World Applications in Deep Learning," Midum, 14 Nov. 2018.

[5] W. H. Z. Jing, "Exposing digital forgeries by detecting traces of image
splicing," in 8th International Conference on Signal Processing. IEEE,
vol. 2, 2006.

[6] A. V. A. Mahendran, "Visualizing deep convolutional neural networks
using natural pre-images," International Journal of Computer Vision,
vol. 12, no. 3, pp. 233-255, 2016.

[7] K. Z. and He, "Identity mappings in deep residual networks," arXiv
preprint arXiv, no. 1611.05431, 2016.

[8] R. A. James P., "http://robots.ox.ac.uk/~vgg/data/oxbuildings/,"
[Online]. [Accessed 8 Aug. 2019].

[9] Y. Z. B. Wen, "COVERAGE - A Novel Database for Copy-Move
Forgery Detection," in Proc. IEEE Int. Conf. Image Processing (ICIP),
pp. 1-19, 2016.

[10] T. A. B. X. Han, " MatchNet: Unifying Feature and Metric Learning for
Patch-Based Matching.," Proceedings of Computer Vision and Pattern
Recognition, 2015.

[11] M. T. Lin, "Microsoft COCO: Common Objects in Context," in ECCV,
2014.

[12] D. A. B. Thomee, "The New Data and New Challenges in Multimedia
Research," arXiv , 2015.

[13] E. S. Y. Jia, "Caffe: Convolutional Architecture for Fast Feature
Embedding," arXiv , 2014

