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Abstract—The recent digital revolution has sparked a growing 

interest in applying convolutional neural networks (CNNs) and 
deep learning to the field of image forensics. The proposed 
methods aim to train algorithms for solving a range of 
predetermined tasks. However, training a model that has been 
randomly initialized requires extensive time for computation as 
well as an enormous pool of training data to draw from. 
Moreover, such a model needs to be developed and redeveloped 
from the ground up if there are any alterations to the feature-
space distribution. In addressing these problems, the present 
paper proposes a novel approach to training image forgery 
detection models. The method applies prior knowledge that has 
been transferred to the new model from previous steganalysis 
models. Additionally, because CNN models generally perform 
badly when transferred to other databases, transfer learning 
accomplished through knowledge transfer allows the model to be 
easily trained for other databases. The various models are then 
evaluated using image forgery techniques such as shearing, 
rotating, and scaling images. The experimental results, which 
show an image manipulation detection has validation accuracy of 
over 94.89%, indicate that the proposed transfer learning 
approach successfully accelerates CNN model convergence but 
does not improve image quality.      

Keywords—Forgery detection; Deep learning; Transfer 
learning; Neural network 

1. INTRODUCTION 
       Human beings are generally hard-wired to apply or transfer 
knowledge that they have learned in one skill to other related 
skills. In this way, acquired knowledge can help solve problems 
in less time through the cross-utilization of knowledge which 
occurs during these transfers [1]. Considering this built-in 
problem-solving framework, let us look at two critical 
problems currently restricting progress in the field of image 
forensics. These problems are: (1) developing a sufficiently 
large and diverse body of annotated images for use as training 
models; and (2) including in the models non-image data in 
order to permit and enable broader application of the model(s). 
This research will address both of these challenges. Regarding 
the creation of a large body of images, this can be an extremely 
costly undertaking, as the task requires humans rather than 
machines to do the image classification. Even so, the workers 
tasked with this job could be severely challenged by the image 
complexity and vast array of different classes for 
categorization. Regarding issues around incorporating non-
image data in the models, researchers and other workers in the 
field still experience problems when trying to extract image 
data from images that also incorporate non-image data, such as 
text. However, finding a way to include non-image data in 
transfer learning is crucial if the models are to be applied to 
areas such as the medical field or insurance industry. 

In overcoming these challenges, the present work will employ 
text metadata to deal with noisy classifications in images. 
Within these datasets are forged images which will comprise 
the metadata. So, instead of attempting image classification or 
categorization, it will be assumed that the images share certain 
metadata features along with some aspects of feature 
representations.  Two distinct image categories – pristine 
images and forged images – will be presented, with the 
metadata being sourced from the Internet. Although this will 
enable us to substantially expand our available training data set, 
it will also likely mean that we will be including some forged 
labels as a trade-off. 
We will use cosine similarity to gauge similarities within the 
metadata, even though this will result in some compromise in 
feature representation quality and similarity complexity that the 
system learns. This is another trade-off that is considered 
negligible. However, there is a relatively significant problem 
with this strategy – namely, the similarities that exist between 
the pristine image and forged image metadata. These 
similarities exist because the Internet-sourced data were not 
developed as image classifiers but instead were specifically 
created as fakes of original images. 
We note that, though beyond the scope of the present work, 
numerous applications have shared and related images as well 
as repeatable features that have similar or even the same colors 
(e.g., claims in the insurance field that feature damaged vehicle 
images). These existing models can already incorporate both 
images and text as data, but they are also prohibitively 
expensive to build and maintain. This is because large training 
datasets must be employed to compensate for noisy labels. So, 
while acknowledging the existence of these models, our work 
aims to utilize datasets in combination [3], as this approach 
requires smaller datasets and shows promise of high image 
quality. 
Moreover, our study relies on the concept of transfer learning 
as a means to reduce both the amount of resources required and 
the time it takes to train the networks. In our experiments, we 
initialize the networks by applying basic weights learned in 
earlier large-scale training, such as CaffeNet and VGG16 
[1][13]. We can see by the accuracy in the baseline 
classification task (i.e., cat versus dog images) that the 
convolutional neural network (CNN) weights are able to give 
high-quality feature representation on diverse image datasets. 
So, our baseline here will be to develop a “cat versus dog” 
image classifier through fine-tuning CNN weights as a means 
to significantly shorten the computational time required to train 
the network. 
We will run the network using an extensive sampling of image 
pairings, with the network learning similarity between the 
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provided images, both forged and pristine. As well, we will 
fine-tune the CNN weights in order to achieve feature 
representations with minor differences that are not so different 
that they require a full re-training. Furthermore, because CNN 
middle layers and baseline architecture are alike, we aim to 
demonstrate the practicality and effectiveness of re-training the 
baseline by applying the original network weights instead of 
new CNN weights, with the aim of enhancing forgery detection 
abilities with more accurate image classification. 
    
     This paper is organized as follows. Following the 
introduction, we will provide an overview and revision of the 
related works. In the subsequent sections, we will dive deeper 
into the topics mentioned in the overview training, performance 
testing, and also validation of the used methods.    

 
2. RELATED WORKS 

        The present paper presents a full review of the 
background, foundational ideas, and current applications for 
transfer learning, including both historical and recent examples. 
It is generally well-known in the industry that transfer learning 
evolved from machine learning as well as statistical modeling. 
With this in mind, we look at some research conducted by Han 
et al. [9] and Doersch et al. [10]. Additionally, we review 
MatchNet and the study of D. Itera [2], noting that their two-
tower architecture shares some similarities with that used in the 
present work. Specifically, the towers share weights that are 
first concatenated; the resulting feature representations for 
patch pairs are then relayed through the metric network (fully 
connected) and SoftMax loss function. In the metric network, 
similarities between the two features representations are 
measured, after which the ground truth similarity loss of the 
patch pair is formulated. The outcome is equivalent to the 
present work’s formulation for similarities in the two feature 
representations; however, the ground truth towers rely on the 
text metadata accompanying the images instead of relying on a 
computed function overlaying the images. 

In [10], Doersch et al. study the behavior of learning features in 
unsupervised datasets. They divide each image to create a 
“patch” and then train networks to figure out the right (i.e., 
original) orientation among the patched pieces. The aim here is 
to see whether or not a network is able to learn objects 
occurring within images; if a network can do this, it indicates 
an ability to learn underlying feature orientation for images. 
Therefore, by applying these learned representations, features 
learned from this network could potentially be reused in 
unsupervised object detection for other datasets.  

It is important to note that transfer learning, as mentioned, is a 
concept which evolved from machine learning and statistical 
modeling. More recently, transfer learning has been 
investigated for its application in deep learning. However, 
earlier approaches that were previously employed to construct 
and train machine learning models differ significantly from 
methodologies that adhere to transfer learning strategies. The 
present work aims to locate similarities in “similar” images’ 

underlying map features by applying the latest deep learning 
techniques. 

 

3. TRANSFER LEARNING STRATEGIES 
The type of transfer learning strategy that is most suitable 

for a given problem is determined by several factors, including 
data availability, the task to be performed, and the domain. In 
general, transfer learning methods are classified according to 
the kind of conventional ML algorithms that are used. The 
three main categories explored in this work are: unsupervised 
transfer learning, transductive transfer learning, and inductive 
transfer learning, as explained below. 

The first category, unsupervised transfer learning, deals with 
unsupervised tasks located in target domains. Although both 
the target and the source domains could potentially be similar, 
their tasks are quite dissimilar. Later in this study, we will work 
on labeled data which has been made unavailable at both 
domains. The second category to be explored here is 
transductive transfer learning, which is employed when there 
are similarities between target and source tasks but dissimilar 
corresponding domains. In this scenario, there is no labeled 
data in the target domain, whereas the source domain contains 
ample labeled data. Transductive transfer learning can also 
include subcategories regarding settings (e.g., marginal 
probabilities or different feature spaces). In inductive transfer 
learning, which will be the third category studied, both the 
target and source domains are the same, even though their 
respective tasks differ. In the inductive transfer learning setting, 
algorithms employ the source domain’s inductive biases as a 
means to make improvement to the target tasks. This setting 
can be divided into the sub-categories of self-taught learning 
and multitask learning, according to whether there is labeled 
data in the source domain or not. The source task’s inductive 
biases help to carry out the target task. As shown in the figure 
below, this is accomplished by making adjustments to the 
target task’s inductive biases through the restriction of model 
space, adjusting the search process using knowledge acquired 
from the source task, or limiting the hypothesis space. 

 

Fig. 1 Inductive transfer techniques of a target [1] 
 

4. TRANSFER LEARNING APPROACHES 
We will demonstrate in our work that a few of the 

approaches are able to be used in the aforementioned strategies, 
as follows: (1) Instance transfer: This involves reusing (or re-
purposing) knowledge obtained from a source domain in a 
target task. However, in many instances, we cannot directly 
reuse source domain data, but we might be able to reuse these 
data in tandem with target data. For inductive transfer cases, we 
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can apply modifications like AdaBoost (Dai et al.) to assist 
with improvements to target tasks when training from source 
domains. (2) Relational-knowledge transfer: This approach 
deals with non-IID data (e.g., data which are not identically 
distributed or independent). These type of data have data points 
that are related to other (sometimes similar) data points. A good 
example of relational-knowledge transfer in current application 
is social network data. (3) Parameter transfer: In the parameter 
transfer approach, it is assumed that models used for related 
tasks involve a few or more shared parameters and/or 
hyperparameters. (4) Feature-representation transfer: The 
purpose of this technique is to mitigate error rates and domain 
divergence through the identifications of positive (good) 
feature representations. Such feature representations can then 
be used for target domains from source domains. Instances 
where feature-representation transfer is used include 
supervised/unsupervised methods, if there is sufficient labeled 
data available. 
Similarity detection. In the similarity detection process, 
similarity is measured by taking any related metadata text 
applied to an image pair, from which the score of 0 to 1 
indicates the similarity of the images, according to the detected 
features in the objects measured. Although features which are 
similar will probably produce similar results, repeated features 
(e.g., neighbourhood or background features) do not always 
give similar results. Furthermore, this function should be 
sufficiently robust to compare large and small areas, as patches 
of various sizes need to be comparable. However, this 
operation can be very costly, given how many pairs are able to 
be generated in a dataset and considering that that the operation 
typically runs several times. 
At the outset, the present work employs cosine similarity, 
which offers users a good similarity measure for comparing 
sets of varying sizes. However, a trade-off between results 
accuracy and computational complexity is expected and 
understood between cosine similarity and other more 
complicated and time-consuming approaches. Using cosine 
similarity, two feature “bags” will be developed with feature 
sets related to the images as well as to the counts for every 
feature.  This model is expected to be biased toward images 
that are dissimilar, given that dissimilarity has been shown to 
be more common. As well, we will construct a preprocessing 
engine which is able to compute image similarity and from that 
to develop balanced pairs out of the similar/dissimilar images. 
These will then be labeled accordingly as contradictory 
categories. Note that this component also includes similarities 
between different texts and is able to be expanded as needed. 

5. SIMILARITY DETECTION 
In the similarity detection process, similarity is measured by 

taking any related metadata text applied to an image pair, from 
which the score of 0 to 1 indicates the similarity of the images, 
according to the detected features in the objects measured. 
Although features which are similar will probably produce 
similar results, repeated features (e.g., neighbourhood or 
background features) do not always give similar results. 
Furthermore, this function should be sufficiently robust to 
compare large and small areas, as patches of various sizes need 
to be comparable. However, this operation can be very costly, 
given how many pairs are able to be generated in a dataset and 
considering that that the operation typically runs several times. 

At the outset, the present work employs cosine similarity, 
which offers users a good similarity measure for comparing 
sets of varying sizes. However, a trade-off between results 
accuracy and computational complexity is expected and 
understood between cosine similarity and other more 
complicated and time-consuming approaches. Using cosine 
similarity, two feature “bags” will be developed with feature 
sets related to the images as well as to the counts for every 
feature.  This model is expected to be biased toward images 
that are dissimilar, given that dissimilarity has been shown to 
be more common. As well, we will construct a preprocessing 
engine which is able to compute image similarity and from that 
to develop balanced pairs out of the similar/dissimilar images. 
These will then be labeled accordingly as contradictory 
categories. Note that this component also includes similarities 
between different texts and is able to be expanded as needed. 
If we obtain positive results from the simplified similarity 
function, we would consider carrying out a future study 
focusing on the kind of trade-offs incurred between using 
highly complex similarity models and simpler ones, based on 
effectiveness and runtime. This, however, is outside the scope 
of the present work, whose main aim is to test similar and non-
similar images, not performance grades of similarity.  
 

6. THE PROPOSAL TRANSFER LEARNING APPROACHES 
The present work mainly investigates a range of deep 

learning models. Although the various techniques mentioned 
above are applicable in different instances of machine learning, 
is transfer learning also applicable to deep learning? Deep 
learning models can best be described as being inductive 
learning approaches. As touched on in a previous section, 
inductive transfer is a learning mechanism’s ability to enhance 
task performance as a result of having learned a similar 
skill/task from another (i.e., earlier) one [3]. Hence, a general 
inductive-learning algorithm objective is to apply mapping 
based on training examples. So, for example, if the task is 
classification, a model thus learns to map class labels and input 
features, using seen and unseen data based on sets of 
assumptions concerning training data distribution. The 
assumption sets are referred to as inductive biases and include 
factors like search process and hypothesis space restrictions. 
These assumed biases limit the model’s learning capacity but 
also streamline the process. In our proposed approach, we use 
transfer knowledge in model image classification related to the 
categories of “cat” and “dog”, using a pre-trained model for 
detecting pristine images in comparison to forged images. 

 
Datasets Environment  
This experiment was conducted using multiple datasets [3]. The 
training used mainly dogs vs cats dataset which 25,000 images 
of dogs and cats in total each category has 12500 images. We 
can verify with the preceding output that we have 12,500 
images for each category. Let’s now build our smaller dataset, 
so that we have 3,000 images for training, 1,000 images for 
validation, and 1,000 images for our test dataset and that 
applied to the both categories [4]. 
 
         A collection dataset out of online and public existing 
datasets for training and testing. In total, we collected 1792 pair 



EJECE, European Journal of Electrical and Computer Engineering 
Vol. 3, No. 5, September 2019 

 

DOI: http://dx.doi.org/10.24018/ejece.2019.3.5.125                                                                                                                                                         4 

images with good quality to present different samples for copy-
move forgery. The first one was constructed by Christlein et al 
[5], consisting of 48 base images and 87 copied with a total of 
copy-move forged images of 1392. The second database 
MICC-F600 was introduced by Amerini et al [6] [7] with 400 
images. Caltech-101, image manipulation dataset. IM dataset 
(240 images) [5]. The Oxford buildings dataset (198 images 
and 5062 resized images) [8]. Coverage dataset (200) [9] and 
collection of online and self-producer images. Note that, even 
the total images look bigger than what we used in training and 
testing, that is because we avoid using some images either 
because they are in bad shape or low resolution. Therefore, 
here we used selected ponch of images with total of 1348 
image which devided for 1248 for training and 100 for testing 
task.  
   

7. IMPLEMENTATION 
Using Python 3.6, our experiments ran basic classification 

task on a network of similar images pairs in MatchNet. The 
model training data were kept in a secure H5 file, and the 
original convolutional neural network was built accord to [4]. 
Hence, the transfer learning network is more or less identical to 
the earlier network that employed pre-knowledge from the 
original CNN model. The towers have two main requirements, 
as follows. 1) Weight share: The towers have to be able to 
share weights, as this is how the network is able to learn image 
pairs simultaneously (i.e., running image pairs through the 
same weight set for every layer). 2) Towers as CNNs: 
Specifically, the towers must be CNNs of themselves, which 
then permits the learned weights from one network model to be 
used on the other. Therefore, the towers must have the same 
parameter and architecture names to enable weights to be 
transferable between them.  

 
This is accomplished as follows. In the weight-training 

stage, weights are initialized. At the completion of the training, 
the model is saved in an H5 file, which can then be loaded for 
additional training/testing utilizing the same weight parameters. 
The CNN networks comprise standard convolutions, 
normalization layers, ReLu and pool (i.e., frozen convolutional 
layers). However, they are unique in that images that are loaded 
are split, after which they are recombined prior to reaching 
fully connected layers. Individual images are fed into input 
layers, with the outputs being vectors with representations 
comprising 4,096 elements. Next, the vector is fed to fully 
connected layer sets which have been re-trained to convert 
vectors into similarity/non-similarity scores. In the final step, 
the cosine similarity computes a Softmax loss of expected 
similarity vs. predicted similarity for image content. The total 
operation is function as deep learning classifier to classify the 
output in the designation target.  
 

8.  EXPERIMENT RESULTS 
There are several tasks that can be evaluated using these 

features to compare to the state-of-the-art systems. While there 
are many such tasks in the unsupervised learning space, to 
bound the difficulty of evaluating the results of this work, the 

first set of experiments will simply attempt to test if the weights 
learned in the CNN are a better initialization for fine-tuning an 
image classification task than the provided weights which were 
learned on the training task. The rest of this section will outline 
in detail how these experiments were built and how weights 
were transferred.  
Frist, we present the result of training the original model to 
show how the results look like and then we’ll use the new 
dataset to see how the knowledge transferred and show the 
result for the new task. 
 
The baseline training model and the transfer learning model are 
layered in same architectures. The last layers (dense layers) 
were trained slightly different to serve the different output 
target. This architecture of layered network allowed us to 
employ the trained/or pre-trained network in the original model 
to extract the new features in the other model with the 
consideration of re-train the classifier to serve the new labeled 
case. Figure 2 show the models summery in both tasks while 
the table 1 shows the parameters’ summary of the same model. 

 
Table. 1 Model summary information 

 
Model 

parameters 
summary 

Total 
parameters 

Trainable 
parameters 

Non-trainable 
parameters 

12,942,786 12,941,314 1,472 
 
In this work, the initial experiments aim to determine whether 
the weights that were learned in the CNNs improve 
initialization of image classification task fine-tuning compared 
to the weights learned during training task of the original 
dataset. The remainder of the section provides a detailed 
discussion on the construction of the experiments as well as the 
manner in which the weights are transferred during the tasks. 
Specifically, we will review and present the outcomes from the 
original model training, after which we will apply the new 
dataset in order to determine the means of knowledge transfer. 
The results of the new approach will also be provided. 
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Fig. 2 Shows the summary of the processing of the transfer learning model form the original trained model  
 

 
Training data generator 
In normal cases the all dataset images can’t be uploaded to the 
process memory in one shout. Also, this may drop down the 
performance of the used GPU’s / or CPU in the training task. 
Therefore, we will load the dataset in group of 15 images at 
once in each time to all dataset using data generator. The other 
advantage of using data generator is make many changes in 
each image which known as data augmentation to learn all 
possible image transformation to the used neural network after 
fixing the image scale according to the input layer which in 
our case is 126 × 126 × 32. Also this will present different 
image forgery techniques such as shearing, rotating, and 
scaling images. Figure 3 shows two examples of data 
generator. The output of this task can be summarized as 
following: Found 20000 images belonging to 2 classes. 
Training Generator: Found 5000 images belonging to 2 
classes. Found 0 images belonging to 0 classes. 
 

 
Fig. 3 Shows examples of the data generator work using the original dataset 

 
Note: Categories: 0: 'cat', 1: 'dog'. The original dataset has 
same number of the two categories that used in the training 
task as shown in the next illustration, figure 3.  
 

 
Fig. 3 shows the training result map to dog is 1 and cat is 0 

 

 
Fig. 4 Random samples from the training result in image’s presentation 

   

 
Fig. 5 Shows the validation result map to model using the original dataset: dog 

is 1 and cat is 0 
 

Create Testing Generator 
We will convert the predict category back into our generator 
classes by using train_generator. class_indices. It is the classes 
that image generator map while converting data into computer 
vision 
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Fig. 6 Shows the testing result map to dog is 1 and cat is 0 

 

 
Fig. 7 Shows the predicted result with images representation  

 
Training task initial output: Found 998images belonging to 
class 1, found 250 images belonging to class 0. 
After preparing the new dataset and go through the above steps 
we see the results: 
 

   
Fig. 8 Random sample images from the new dataset 

 

     
Fig. 9 Shows examples of the data generator work using new dataset 

 

 
Fig. 10 Shows a map result of training set for new dataset 

 
Table 2 Shows the numerical raining result which was 

presented in the above figure  

 
 
For the training task, we used the two categories with total 
image of 1248 images as we mentioned above. Here we show 
random sample pairs images out of the used dataset: 

 

 
Fig. 11 Shows random samples of the two new categories with their labels 

 
 

 
Fig. 12 Shows the predicted result with images using new dataset 

 
Now for the new dataset the result should look like: 
('dog': 1, 'cat': 0) => ( 'pristine': 1, 'forged': 0 ) 
i.e. each image labeled with dog that means this image is a 
pristine image, and each image tagged in cat is a forged image 
as you can see in figurre13. 
 

 
Fig. 13 Shows the image labels presentation for new dataset based on the 

original dataset labels.   
 

Based on the original model weights the second dataset will be 
judged. Next figure shows the deep learning classifier output 
after re-trained to deserve the new task. However, the output 
still shows some false detection which can be overtaken by 
using closer model for the learning transfer assignment.       
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Fig. 14 Shows some predicted results in images presentation for validation 

task  
 
According to sample result presented in the figure 14, the first 
image from left hand is forged image and here shows as 
(dog==pristine). The other two images are (cat==forged) and 
that is correct.  
Now, in order to increase the accuracy of this model, we train 
the original datatset for longer time using 25 Epochs with 
same conditions to avoid over fitting. 
 
Validation: The next figure 15 shows the validation data for 
both datasts before we flatten the data and feed our deep 
learning classifier. 
 

   

 
Fig. 15 Shows the validation data of the presented models in both datasets. 

 
As shown in the results, the validation accuracy of the 
baselines was higher than the accuracies using the weights 
learned in the original network. The next visual illustration 
shows clearly the gap between the training accuracy and 
validation accuracy for the both datasets.  
 

 

     

 
Fig. 16 Shows the training loss vs. validation loss in different training trial 

 

    

  
Fig. 17 Shows the training accuracy vs. validation accuracy in different 

training trial 

     

 
Fig. 18 Shows the training loss vs. validation loss in different training trial 

(new dataset) 
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Fig. 19 Shows the training accuracy vs. validation accuracy in different 

training trial (new dataset) 
 

From the figures 16, 17, 18 and 19 we can notes that the model 
is getting over fitting with new dataset, however, the model still 
able to maintain excellent validation accuracy. However, 
second training show more improvement in both loss and 
accuracy training vs. validations. Also, from the table 3 we can 
see that we achieved validation accuracy of 94.89% which 4% 
improvement in accuracy from the previous model.      
 

Table. 3 Shows the loss and the validation accuracy of the 
both models 

The model    Loss Acc. Val_loss Val_Acc. 
Trained model 0.2683 88.93% 0.2122 91.29% 
Transfer model 0.2583 92.94% 0.2347 94.89% 

  
Evaluate this work with the-state-of-the-art is presented in the 
table 4.  
 

Table. 4 The evaluation based on the validation accuracy 
between two closer targets 

The Model Training data Validation accuracy 

[2] MSCOCO 77% 
ImageNet subset 93% 

Presented 
model 

Dogs & Cats 91.29% 
Pristine & Forged 94.89% 

 
 

9. CONCLUSION AND FUTURE WORK 
     The present work demonstrates that, by employing different 
CNN architectures, deep learning can be successfully applied in 
tasks such as image classification, image identification and 
object recognition.  Cost-effective image classification is 
achieved on manipulated and/or larger datasets, and improved 
image feature mapping are obtained from similar images in text 
metadata using CNNs. However, although using feature map 
representations is shown to be cheaper and faster, it does not 
improve the quality of the image classifications, indicating that 
this approach is not optimal for evaluating quality, given the 
weak correlation between feature labels and similar (and/or 

non-) images. Nevertheless, the results of the present work 
could lead to future investigations that include looking at other 
forms of forgery detection by applying the newly transfer 
learned weights. Overall, the present work indicates that 
metadata sampling and classification requires highly 
disciplined scaling model which can be scored by employing 
pre-trained model with and that can be a future extension steps 
to this work. 
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