
1Frontiers in Marine Science | www.frontiersin.org July 2022 | Volume 9 | Article 899812

Edited by: 
Laurie Carol Hofmann,  

Alfred Wegener Institute Helmholtz 
Centre for Polar and Marine Research 

(AWI), Germany

Reviewed by: 
Alberto Sánchez-González,  

Instituto Politécnico Nacional (IPN), 
Mexico 

Erwann Legrand,  
Norwegian Institute of Marine 

Research (IMR), Norway

*Correspondence: 
Patrick Gagnon 

pgagnon@mun.ca 
 

†These authors have contributed 
equally to this work and share senior 

authorship

Specialty section: 
This article was submitted to  
Marine Ecosystem Ecology,  

a section of the journal  
Frontiers in Marine Science

Received: 19 March 2022 
Accepted: 30 May 2022 
Published: 12 July 2022

Citation: 
Hacker Teper S, Parrish CC and 

Gagnon P (2022) Multiple Trophic 
Tracer Analyses of Subarctic 

Rhodolith (Lithothamnion glaciale) 
Bed Trophodynamics Uncover  

Bottom-Up Forcing and  
Benthic-Pelagic Coupling. 
Front. Mar. Sci. 9:899812. 

doi: 10.3389/fmars.2022.899812

Multiple Trophic Tracer Analyses of 
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glaciale) Bed Trophodynamics 
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Benthic-Pelagic Coupling
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We paired a survey of cryptofaunal abundance and rhodolith morphology with lipid, fatty 
acid, and stable isotope analyses to quantify nutritional patterns and trophic linkages of 
six dominant echinoderm, bivalve, gastropod, and polychaete species, two macroalgal 
species, seawater, and underlying sediment in a large (>500 m2) rhodolith (Lithothamnion 
glaciale) bed in southeastern Newfoundland (Canada). We found high densities of chitons 
(Tonicella marmorea and T. rubra) and daisy brittle star (Ophiopholis aculeata), and overall 
species composition, rhodolith morphology (shape and size), and total rhodolith biomass 
were consistent with other studies of the bed, indicating high temporal stability. Our lipid 
and fatty acid analyses revealed high levels of phospholipids and unsaturated fatty acids 
combined with low sterols in all animal species, suggesting adaptation for enhanced cell 
membrane fluidity in a cold-water environment. They also showed that most taxa sampled 
feed on a shared resource; diatoms, and that (non-kelp) macroalgal detritus are a key 
food source within rhodolith communities. Our stable isotope analysis uncovered three 
distinct trophic levels; producers, suspension/filter feeders and grazers, and predators, 
and unveiled potential resource partitioning between first- (H. arctica) and second- (O. 
aculeata and Tonicella spp.) order consumers, whereby differences in feeding strategies 
enable utilization of specific components of the same organic and inorganic material. 
The unprecedented analytical resolution enabled by the combined use of three trophic 
tracers indicate that bottom-up forcing (as a mechanism of trophic control) and benthic-
pelagic coupling (as a pathway of nutrient and energy flow) operate simultaneously, at 
least seasonally, in subarctic rhodolith beds.
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1 INTRODUCTION

Trophic ecology is the study of feeding relationships and energy 
transfers among organisms interacting in a community. In all 
ecosystems, energy is transferred through feeding from primary 
producers to primary and higher-order consumers. This transfer 
is often unclear in marine benthic ecosystems partly because 
of the broad diets of many species, a large detritus pool, and, 
sometimes, complex benthic-pelagic relationships, which 
can also vary seasonally (Kharlamenko et  al., 2001; Pitt et  al., 
2009; Kelly and Scheibling, 2012). Trophic relationships can 
be studied with analysis of lipid classes, fatty acids (FA), and 
stable isotopes. Lipids are the densest form of energy (cal/g) in 
marine ecosystems, essential for structural integrity, storage, and 
signaling of molecules in cell membranes (Parrish et  al., 2000; 
Parrish, 2009). Lipids and FAs can be used as biomarkers for 
food sources and nutrition because their composition can show 
input, cycling, and loss of material within food webs (Kelly and 
Scheibling, 2012). The intake, accumulation, and transferability 
of lipids and FAs make them an excellent tool to study trophic 
pathways (Richoux et  al., 2005; Drazen et  al., 2008b; Drazen 
et  al., 2008a). Bulk stable isotope analysis is a useful approach 
to pair with FA analysis to help identify trophic relationships 
(Michener, 1994; Connelly et al., 2014), food and carbon sources 
(Carreón-Palau et al., 2013; Trueman et al., 2014), and food web 
structure (Grall et al., 2006; Linnebjerg et al., 2016).

Rhodoliths (free-living, non-geniculate red coralline algae 
growing as balls, branched twigs, or rosettes) often form dense 
aggregations, known as “rhodolith beds”, at depths of up to 
150 m in tropical to polar seas (Foster, 2001; Foster et al., 2007). 
Rhodolith beds, along with seagrass meadows, kelp beds and 
forests, and mangrove forests, are one of the four major types 
of marine benthic primary producers (Foster, 2001; Foster et al., 
2007). The relatively complex morphology of rhodoliths creates 
suitable habitats for attachment (Kamenos et  al., 2004a; Steller 
and Cáceres-Martínez, 2009; Riosmena-Rodríguez and Medina-
López, 2010), reproduction (Kamenos et al., 2004b; Steller and 
Cáceres-Martínez, 2009; Gagnon et  al., 2012), and feeding 
(Steneck, 1986; Gagnon et  al., 2012; Riosmena-Rodríguez 
et al., 2017) of highly diverse algal and faunal assemblages. The 
important contribution of rhodolith beds to marine biodiversity 
(Steller et  al., 2003; Gagnon et  al., 2012; Riosmena-Rodríguez 
et al., 2017) and global calcium carbonate (CaCO3) production 
(Amado-Filho et al., 2012; Harvey et al., 2017; Teed et al., 2020) 
has, in part, triggered the recent increase in studies of factors 
and processes regulating their structure and function (Marrack, 
1999; Hinojosa-Arango et  al., 2009; Millar and Gagnon, 2018) 
and growth resilience to natural and anthropogenic stressors 
(Bélanger and Gagnon, 2020; Bélanger and Gagnon, 2021; 
Arnold et al., 2021)

Knowledge about trophodynamics in rhodolith beds is limited 
to only a couple of studies in northeastern Atlantic (Grall et al., 
2006) and eastern Pacific (Gabara, 2014) systems, that together 
suggest suspended particulate organic matter (SPOM), sediment 
organic matter (SOM), and macroalgae are important components 
of rhodolith bed food webs. Both studies’ findings are based on 
use of bulk stable isotope analysis, in particular consideration of 

organisms’ carbon (δ13C) and nitrogen (δ15N) isotopic signatures 
(DeNiro and Epstein, 1978; DeNiro and Epstein, 1981; Minagawa 
and Wada, 1984) to identify primary producers (Peterson and 
Fry, 1987; Post, 2002; Bouillon et al., 2011) and trophic levels of 
consumers (Iken et  al., 2001; Post, 2002). As noted by Newell 
et al. (1995) and Kelly and Scheibling (2012), benthic food webs 
with significant macroalgal and bacterial components are often 
too complex to be characterized uniquely with stable isotope 
analysis. This is likely the case for rhodolith beds, in particular 
those in seasonal seas, where phytoplankton blooms and growth 
of microalgal and bacterial films on the surface of benthic 
organisms occur seasonally. In such cases, FA and stable isotope 
analyses can, in principle, simultaneously help distinguish algal 
and bacterial inputs (Sargent et  al., 1987; Kharlamenko et  al., 
2001; Kelly and Scheibling, 2012).

The present study aims to resolve a part of the trophic 
ecology of a large (>500 m2), well-studied, cold-water rhodolith 
(Lithothamnion glaciale) bed in southeastern Newfoundland 
(eastern Canada). Specifically, we combine stable isotope, 
lipid, and FA analyses to: (1)  identify lipid compositions of 
organisms to better understand functional strategies in relation 
to environmental characteristics; (2) delineate trophic linkages 
among organisms to understand the nutritional value of their 
diets and the extent of benthic-pelagic coupling versus strictly 
benthic interactions; and (3) document specific challenges and 
requirements for future lipid- and stable isotope-based studies of 
feeding relationships in rhodolith beds. In doing so, we test the 
overall hypotheses that: (1) the lipid composition of rhodolith 
epifauna generally reflects the predominantly cold-ocean 
conditions of Newfoundland; and (2)  the rhodolith bed food 
web is mainly controlled from the bottom up by planktivores and 
detritivores as reflected by high abundance of planktonic and 
bacterial biomarkers.

2 MATERIALS AND METHODS

2.1 Study Site and Selection of Focal 
Species
Our study was carried out during the spring of 2017 in a 
rhodolith (Lithothamnion glaciale) bed, which extends ~5  to 
30  m in depth along the coast of St.  Philip’s, southeastern 
Newfoundland, Canada. Consistent with our broader objective 
of characterizing spatial and temporal variability in rhodolith bed 
trophodynamics, we chose to study the section of the bed fringing 
Broad Cove (47° 35′ 36.5″ N, 52° 53′ 31.0″ W; Figure 1A) because 
of presumed differences in marine environmental conditions in 
this area.  Broad Cove is connected to a marina, which is the 
end point of a river originating from several large ponds in the 
centre of the northern Avalon Peninsula. Volumes of freshwater 
entering Broad Cove vary seasonally and are generally lowest 
in summer, when precipitations (ECCC, 2019), and hence river 
discharge, decrease (P.  Gagnon, personal observations). Our 
study focuses on the southernmost of two sites, i.e. the “South” 
site (Figure 1A), which represents a relatively stable environment 
for the rhodoliths because of low hydrodynamic forces and 
sedimentation, and nearly unchanged rhodolith size structure 
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over the past few years, as documented in the present and other 
studies of the bed (Figure 1B; Gagnon et  al., 2012; Millar and 
Gagnon, 2018). We include the “North” site (Figure  1A) in 
a follow up study of trophic variability (Hacker Teper, 2022) 
because of the presumably greater environmental variability at 
this site resulting from greater proximity to freshwater input 
from the marina. The present study, therefore, focuses on trophic 
interactions at one site based on a single point in time, and serves 
as a baseline for expansion of spatial and temporal dimensions in 
a follow-up study (Hacker Teper, 2022).

Our food web analyses (described below) focused on the 
following six animal (1-6; Figures  1C, 2A−F), two macroalgal 

(7-8), and two environmental (9-10) components inside (1-6, 8, 
10) or outside (7, 9) of the bed: (1)  common sea star, Asterias 
rubens; (2)  wrinkled rock-borer, Hiatella arctica [bivalve]; 
(3)  juvenile  Nereis spp. [polychaetes]; (4) daisy brittle star, 
Ophiopholis aculeata; (5)  green sea urchin, Strongylocentrotus 
droebachiensis; (6) red molted chiton, Tonicella marmorea, 
and Atlantic red chiton, T.  rubra, which were too difficult to 
distinguish morphologically, and hence were pooled to genus 
Tonicella spp.; (7) pieces of Laminaria digitata [kelp] from nearby 
kelp beds; (8) Lithothamnion glaciale [rhodoliths]; (9)  seawater 
[containing seston] from a few meters above the rhodolith 
bed; and (10) sediment [containing infauna] underlying the 

FIGURE 1 |   (A) Location of the two study sites within the rhodolith (Lithothamnion glaciale) bed fringing St. Philip’s (southeastern Newfoundland) used to study 
rhodolith bed trophodynamics. The present study focuses on the food web at the “South” site in the spring of 2017. The “North” site is included in a follow up 
study (Hacker Teper, 2022) examining spatial and temporal variability in food web structure. Both sites are located at the periphery of Broad Cove, which receives 
seasonally variable volumes of freshwater from the adjacent marina and river to which it is connected (Image: Google Earth). (B) Section of the rhodolith bed 
at the South site at a depth of ~15 m. Rhodoliths are tightly aggregated, with very little to no epiphytes and a relatively high abundance of green sea urchins 
(S. droebachiensis) moving on the bed surface (the biggest urchins are ~6 cm in test diameter) (Image: Patrick Gagnon). (C) Staged photograph of rhodoliths 
(Lithothamnion glaciale) and associated macrofauna (visible: Ophiopholis aculeata, Strongylocentrotus droebachiensis, cryptic: Tonicella spp.) out of water from a 
laboratory bench at the Ocean Sciences Centre. (Image: Sean Hacker Teper).

A B C

D E F

FIGURE 2 | The six animal species included in the present study’s food web analyses; (A) common sea star, Asterias rubens; (B) wrinkled rock-borer, 
Hiatella arctica [bivalve]; (C) Nereis spp. [polychaete]; (D) daisy brittle star, Ophiopholis aculeata; (E) green sea urchin, Strongylocentrotus droebachiensis 
and (F) Atlantic red chiton, Tonicella rubra (Images: (A, B, D, F) - Sean Hacker Teper; (C) https://www.enasco.com/p/Sandworm-Clam-Worm-Nereis%2C-
Preserved%2BLS01292; (E) https://pugetsoundsealife.sseacenter.org/pugetsoundsealife.com/puget_sound_sea_life/Green_Sea_Urchin.html.
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rhodoliths. We chose these six animal species because they exhibit 
different dominant feeding strategies defined as per Macdonald 
et al. (2010), namely suspension/filter feeding (2, 4), grazing (5, 
6), and predation (1, 3), but occur in sufficient abundance to 
quickly provide enough biological material for the analyses as 
per cryptofaunal diversity and abundance studies for this bed 
(Gagnon et al., 2012; Bélanger, 2020). Pieces of kelp (8), seawater 
from above the rhodolith bed (9), and sediment underlying the 
rhodolith bed (10) were sampled to explore possible benthic-
pelagic coupling.

2.2 Timing of Sampling
To increase the likelihood of detecting benthic-pelagic coupling, 
we sampled the rhodolith bed during the annual spring 
phytoplankton bloom in southeastern Newfoundland, when 
diatom abundance in the water column was predictably highest 
(Budge and Parrish, 1998; Parrish et  al., 2005). We collected 
fluorescence data at the study site with a CTD (conductivity, 
temperature, and depth) profiler equipped with PAR 
(photosynthetically active radiation) and fluorescence sensors 
to monitor the progression and confirm the occurrence of the 
bloom (Appendix A). The bloom began in the last few days of 
March 2017 and continued until at least 23 April, 2017 (Figure 
A.1A), when we sampled the rhodolith community and collected 
rhodoliths for food web analyses.

2.3 Rhodolith Community
To broadly characterize the rhodolith community at our 
collection/study site, scuba divers hand collected, on 23 April, 
2017, all the rhodoliths from one 30 x 30 cm quadrat placed every 
5 m along a 30-m long transect at a depth of ~15 m at the South 
site (for a total of seven quadrats sampled). We chose to sample 
this section of the bed because of the relatively homogenous 
distribution and high abundance of rhodoliths there (Gagnon 
et al., 2012; Millar and Gagnon, 2018); Figure 1B). Rhodoliths 
and their associated cryptofauna were deposited in labelled, 
sealable plastic bags, with several bags per quadrat. Bags were 
sealed under water, placed in mesh collection bags, and lifted to 
a boat where they were stored in plastic bins filled with seawater 
collected at the site. They were transported to the Ocean Sciences 
Centre (OSC) of Memorial University of Newfoundland (MUN) 
within 4 h of collection and placed in large (320-L) holding tanks 
supplied with running seawater pumped in from the adjacent 
Logy Bay.

Lengths of the longest, intermediate, and shortest axes, as well 
as gross weight of the 247  rhodoliths collected were measured 
with calipers (precision of 0.1 mm) and a balance (precision of 
0.1 g; PB3002-S/FACT; Mettler Toldeo). Each rhodolith’s linear 
dimensions and number of rhodoliths in each of the seven quadrats 
were subsequently used to calculate each rhodolith’s sphericity 
(as per Graham and Midgley [2000] and Sneed and Folk [1958]) 
or to estimate rhodolith abundance (density) in the bed. We 
plotted rhodolith shape with the spreadsheet TRIPLOT (https://
www.lboro.ac.uk/microsites/research/phys-geog/tri-plot/tri-
plot_v1-4-2.xls) (Sneed and Folk, 1958; Graham and Midgley, 

2000) as described by Gagnon et al. (2012). All cryptofauna on 
the external surface and inside of each rhodolith were extracted 
with tweezers and forceps, breaking rhodoliths in pieces with a 
screwdriver and a hammer to extract hidden specimens when 
needed. We placed organisms in labeled specimen cups filled 
with a 4% formalin solution prior to permanent changeover 
after three days into a 70% ethanol solution. Over the following 
few weeks, preserved cryptofauna were identified and counted 
with a stereomicroscope (DMW-143-N2GG; Motic) at 10 or 20X 
magnification and weighed with a balance (precision of 0.1  g; 
PB3002-S/FACT; Mettler Toldeo). Epiphytes and encrusting 
invertebrates such as bryozoans and sponges were present in 
trace amounts, and hence excluded from the analysis. For each 
quadrat, we subsequently subtracted total cryptofaunal weight 
from gross rhodolith weight to obtain net rhodolith weight, 
which we used to calculate rhodolith abundance (biomass) in 
the bed.

2.4 Collection and Preparation of Samples 
for Food Web Analyses
To limit influences of manipulation of rhodoliths and their 
cryptofaunal content on data quality, we used a different group 
of rhodoliths for food web analyses than those sampled to 
characterize the rhodolith bed community. On 23 April, 2017, 
divers hand collected ~150 live rhodoliths measuring 8 to 10 cm 
along the longest axis from the same area where we sampled the 
associated bed community. Broken rhodoliths and rhodoliths 
partially buried in sediment or with blackened or whitened 
tissue on their surface (indicative of stress or necrosis) were 
not collected because of potential influences on the abundance, 
diversity, and chemical composition of resident cryptofauna. 
Preliminary analysis indicated that common sea star and green 
sea urchin biomasses within the rhodoliths were too low to 
provide the minimum amount of tissues required to run the 
lipid and stable isotope analyses (see below). We resolved this 
requirement by collecting an additional ~10 small individuals 
(1-2  cm in diameter) from atop the bed for each species. The 
fronds of three, ~1 m long kelp (L. digitata) growing on rocks at 
a depth of ~2 m near the rhodolith bed were also hand collected. 
Rhodoliths and kelp fronds were placed in plastic bags sealed 
underwater. We collected seawater a few centimeters above the 
rhodolith bed with two, 12-L Niskin bottles that we deployed 
gently to prevent resuspension of sediment from the bed. 
Water from the bottles was transferred (on the boat) to plastic 
containers pre-rinsed with distilled water, from which a total of 
17 L of seawater was subsequently taken to meet the requirements 
of the various analyses (see below). Three sediment samples were 
also scooped from the top (~10 cm) layer of muddy sediment 
underneath rhodoliths with 15-mL centrifuge tubes.

All rhodoliths and their cryptofaunal content, as well as kelp 
fronds, were transported to the OSC as described above (see 
section 2.3). At the OSC we transferred all the rhodoliths in their 
sealed plastic bags to large (320-L) holding tanks supplied with 
running seawater to keep water temperature in the bags naturally 
low (~0.5°C), while retaining all cryptofauna. Bags were kept 
sealed in the tanks for 24 h to (1) facilitate stomach emptying of 
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focal species; (2) prevent hypoxia and degradation of biological 
tissues; and (3) avoid mixing water from St. Philip’s [in the bags] 
with water from Logy Bay [in the holding tanks]. This procedure 
reduced the likelihood of contaminating the original lipid class, 
FA, and isotopic signatures of the focal species. After this 24-h 
resting phase, we removed bags from the tanks and processed 
them one by one with pre-cleaned/sterilized tools and glassware 
manipulated with frequently changed nitrile gloves, again to 
avoid contamination of samples. Test tubes and scintillation vials 
were heated in an oven for 8 h at 425°C to remove lipid material, 
then labeled and weighed. Test tube caps and the tools used to 
break rhodoliths (hammer, screwdriver, mortar, and pestle) and 
extract and separate cryptofauna (tweezers, forceps, filters) were 
lipid-cleaned with three rinses each of methanol and chloroform 
to remove any residual lipids. We rinsed collection and storage 
items (sealable plastic bags and containers, centrifuge tubes) with 
distilled water.

We extracted the six focal animal species from the surface of 
rhodoliths with tweezers and forceps, breaking rhodoliths in pieces 
with a screwdriver and a hammer to extract cryptic specimens 
when needed. For lipid class and FA analyses, we obtained three 
replicates of 0.5 to 1.5 g of tissue each (wet weight) for each species 
from one or several individuals (i.e. pooling tissue as needed). We 
included whole individuals (i.e. shells, exoskeletons, and internal 
organs) in the wet weight of lipid class and FA analysis samples. 
Each replicate was placed in a 40-mL test tube (one replicate 
per tube) and stored on ice in a cooler until we had collected all 
replicates. Test tubes were then filled with 8 mL of chloroform, 
flushed under a gentle stream of nitrogen, capped, sealed with 
Teflon tape, stored in freezers at -20°C, and their content analyzed 
within two months. For stable isotope analysis, we collected ~5 
g of tissue, excluding shells and exoskeletons, into one 20-mL 
scintillation vial for each species to be split into three replicates 
once dry (see section 2.7). Due to the randomness of availability 
of material of the small, pooled organisms and because lipid 
extraction may affect δ15N data (Post et al., 2007), we did not use 
the same organism material between lipid-extraction and stable 
isotope analysis (see section 2.9 for statistical implications). After 
oven drying for 24 h at 60°C, at least 1 to 1.5 mg of tissue remained 
for each replicate. Each scintillation vial was capped with tin foil 
and a cap, stored in freezers at -80°C, and their content analyzed 
within 12 months.

Upon arrival at the OSC, kelp fronds and sediment samples 
were immediately stored in their individual, sealed plastic bags 
(kelp) or centrifuge tubes (sediment) in freezers at -80°C. We 
used the same procedures as above to prepare rhodolith, kelp, 
and sediment samples for lipid class, FA, and stable isotope 
analyses, with the following modifications. Rhodoliths were first 
gently scrubbed by hand to remove epibionts, broken off with 
a screwdriver and a hammer, and ground into a powder with 
a mortar and a pestle. Rhodolith powder was analyzed; within 
two (lipid class and FA analyses) or 12 (stable isotopes) months. 
Kelp fronds (blades and stipes) were gently scrubbed by hand 
to remove epibionts. Each replicate of sediment for the lipid 
class and FA analyses weighed 6 to 8  g (wet weight). We also 
analyzed kelp and sediment samples within two (lipid class and 
FA analyses) or 12 (stable isotopes) months.

We processed seawater samples immediately upon arrival at 
the OSC. The two plastic containers holding the seawater were 
shaken to re-suspend any settled materials. We transferred this 
water and its content with 250- to 500-mL graduated cylinders 
to a mechanized filtration system, which suctioned water with 
an aspirator through a 47-mm diameter GF/C filter (Whatman; 
General Electric) at the bottom of a Büchner funnel. During 
suction, we washed the contents of graduated cylinders onto the 
filters with filtered seawater to transfer all lipid material. Visual 
inspection of the first filter indicated an acceptable accumulation 
of suspended materials upon completing the filtration of the first 
3 L of seawater. Given the total volume of water available (~17 L), 
we created three replicates for the lipid class and FA analyses; one 
per each 3 L of filtered seawater. We also filtered the remaining 
water, 8 L, yielding three replicates for the stable isotope analysis; 
one per each 2.5 L of filtered seawater. Each filter used was rolled 
with tweezers and placed in a 40-mL test tube (one filter per tube) 
for the lipid class and FA analyses, or in a 20-mL scintillation vial 
(one filter per vial) for the stable isotope analysis. Test tubes were 
filled with 8 mL of chloroform, flushed under a gentle stream 
of nitrogen, capped, sealed with Teflon tape, stored in freezers 
at  -20°C, and their content analyzed within two months. Vials 
were capped with tin foil and a cap, stored in freezers at -80°C, 
and their content analyzed within 12 months.

2.5 Extraction and Characterization  
of Lipid Classes
Extraction of lipids followed protocols by Folch et  al. (1957) 
with modifications by Parrish (1999). We took samples in their 
test tubes out of the freezers and handled 8 to 16 at a time. Each 
tube was held in ice and contents were immediately ground to a 
pulp with a metal-ended rod washed into the tube with ~1 mL of 
chloroform:methanol (2:1) and 0.5 mL of chloroform-extracted 
water. We sonicated the tube for 4  min and centrifuged it for 
3 min at 3000 rpm. The resulting organic layer at the bottom of 
the tube was completely removed and transferred to a 15-mL 
vial with a double pipetting technique to bypass the upper 
aqueous layer and transfer only the lower aqueous layer. After 
three repetitions, we washed both pipettes into the 15-mL vial 
with 3 mL of chloroform. All vials were flushed under a gentle 
stream of nitrogen, capped, sealed with Teflon tape, and stored in 
freezers at -20°C. We subsequently transferred each vial’s content 
to a 2-mL, lipid-clean vial with three or more rinses of 0.5 mL of 
chloroform, until the chloroform in the 15-mL tube remained 
transparent. Each 2-mL vial was flushed under a gentle stream of 
nitrogen, capped, sealed with Teflon tape, and stored in freezers 
at -20°C.

We used thin-layer chromatography with flame ionization 
detection (TLC-FID) to characterize lipid classes (Parrish, 1987). 
Separation of lipid classes followed a 3-step development method 
in which four solvent solutions of different polarities were used 
to obtain three chromatograms per rod (Parrish, 1987). In a 
first step, we created calibration curves (against which samples 
were compared) with a 9-component standard (nonadecane, 
hydrocarbon; cholesteryl palmitate, steryl ester; 3-hexdecanone, 
ketone; tripalmitin, triacylglycerol; palmitic acid, free fatty acid; 
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cetyl alcohol, alcohol; cholesterol, sterol; monopalmitoyl glycerol, 
acetone mobile polar lipid; phosphatidylcoline dipalmitoyl, 
phospholipid; Sigma Chemicals). Prior to applying samples, 
silicic acid-coated quartz rods (Chromarods, Type SV; Iatron 
Laboratories Inc.) were blank scanned (the process of cleaning 
and activating rods by burning off any residual lipids from 
previous samples) three times in an Iatroscan TLC-FID system 
(Mark VI; Iatron Laboratories Inc.). We operated the Iatroscan 
with a hydrogen flow between 195 and 199 mL min-1 and an air 
flow of 2 L min-1 at a room temperature of ~20°C. After sample 
application (spotting) and before each development, the rods were 
dried and conditioned for 5 min in a constant humidity chamber 
(30%). We spotted samples individually onto one of 10 rods in 
each of 2 racks (for a total of 20 rods) with a 25-μL Hamilton 
syringe (Hamilton Co.). Depending on the lipid concentration 
of each sample (estimated by colour and confirmed by trial 
and error), we spotted 0.5 to 10 μL was spotted at the origin 
of each rod. Both racks were then dipped twice into a 100% 
acetone solution and were removed each time when acetone 
reached the spotted samples. We then double-developed rods 
in a hexane:diethyl ether:formic acid (98.95:1:0.05) solution, for 
25 min, and then for another 20 min to separate hydrocarbons 
(HC), steryl esters (SE), and ethyl and methyl ketones (KET). We 
scanned each rod in the Iatroscan beyond the KET peak to obtain 
the first chromatogram showing lipid quantities of HC, SE, and 
KET in each sample.

In a second step, we developed rods for 40  min in a 
hexane:diethyl ether:formic acid (79:20:1) solution to separate 
diacyl glyceryl ethers, triacylglycerols (TAG), free fatty acids 
(FFA), alcohols (ALC), sterols (ST), and diacylglycerols (DG). 
We scanned each rod beyond the DG peak to obtain the second 
chromatogram showing lipid quantities of TAG, FFA, ALC, ST, 
and DG in each sample. In a third step, we double-developed 
rods twice, first in a 100% acetone solution for 15 min each, then 
in a chloroform:methanol:chloroform-extracted water (5:4:1) 
solution for 10 min each to separate the most polar lipid classes, 
acetone-mobile polar lipids (AMPL), and phospholipids (PL). 
Finally, each rod was completely scanned to obtain the third and 
final chromatogram showing lipid quantities of AMPL and PL.

2.6 Preparation and Characterization of 
Fatty Acid Methyl Esters (FAME)
We prepared fatty acid methyl esters (FAME) of lipids by 
transesterification of extracts following a modified procedure 
described by Christie (1982) and Hamilton (1992). We took 
extracted lipid samples in their 2-mL vials from the freezer and 
held them in ice. Depending on each sample’s lipid concentration 
(estimated by colour and confirmed by trial and error), we 
transferred 20 to 1000 µL of lipid extract with a 20 to 100 µL 
Drummond microdispenser (Drummond Scientific) into a 
lipid-clean, 15-mL vial. We evaporated the transferred extract 
to dryness under a stream of nitrogen gas, then we added 1.5 mL 
of dichloromethane and 3 mL of prepared Hilditch reagent (an 
alkylation derivatization reagent, 1.5 H2SO4: 98.5 MeOH). Each 
vial was vortexed, sonicated for 4 min, flushed with nitrogen, 
heated at 100°C for one hour, cooled to room temperature, filled 

with 0.5  mL of a supersaturated sodium bicarbonate solution 
and 1.5 mL of hexane, and agitated vigorously. This process 
created an organic layer containing fatty acids transesterified 
to fatty acid methyl esters (FAME), which we transferred with 
a pipette to a lipid-clean, 2-mL vial, and evaporated to dryness 
under a stream of nitrogen. Each 2-mL vial was then filled with 
~0.5 mL of hexane, flushed with nitrogen, capped, sealed with 
Teflon tape, and stored in freezers at -20°C.

We used gas chromatography and flame ionization detection 
(GC-FID) to measure fatty acids (Ackman, 1986; Christie, 
1989; Budge et  al., 2006). FAME samples were analyzed in a 
HP 6890 GC equipped with an Agilent 7683 autosampler. The 
GC column was a 30-m long ZB wax+ (Phenomenex) with 
an internal diameter of 0.32 mm. We introduced each FAME 
sample individually into a heated injector at 150°C. A stream 
of hydrogen then carried the sample at a rate of 2 mL min-1 
through the GC column, which retained FAME depending 
on structure. This selective retention resulted in the detection 
of individually eluted FAME by the FID. The GC column 
temperature started at 65°C for 30 s before it was increased 
to 195°C at a rate of 40°C min-1, held there for 15  min, then 
increased again to 220°C at a rate of 2°C min-1, and held there 
for 45 s. The initial injector temperature of 150°C increased to a 
final temperature of 250°C at a rate of 120°C min-1. The detector 
(FID) temperature remained constant at 260°C. We identified 
FA peaks by comparing retention times in the GC column 
with those from various standards: FAME mix (47885-U; 
Supelco), Bacterial acid methyl ester mix (47080-U; Supelco); 
PUFA 1 (47033; Supelco); and PUFA 3 (47085-U; Supelco). 
We integrated chromatogram peaks with Varian Galaxie 
Chromatography Data System V1.9.3.2 software.

2.7 Stable Isotope Preparation  
and Analysis
We removed samples in scintillation vials from the freezer and 
thawed and oven dried them at 60°C for 24 h. Each sample was 
split equally by weight into three new, 20-mL scintillation vials. 
Each triplicate was ground with a mortar and pestle and rinsed 
three times with acetone. We then split each ground sample into 
two equal parts: one for analysis of carbon content, the other 
for nitrogen. Vials with samples for nitrogen analysis were each 
rinsed three times with distilled water to remove salt because 
halides interfere with the Elemental Analyzer (described below). 
We acidified samples for carbon analysis to remove inorganic 
carbon by adding drops of 1 M HCl to the vials until no bubbles 
formed. Vials were left with lids off in a fume hood overnight, 
rinsed three times with distilled water to remove both HCl and 
halides, dried again at 60°C for 24 h, transferred to desiccators, 
and subsequently taken to The Earth Resources Research and 
Analysis (TERRA) facility at MUN for analysis. We used tools 
and tin capsules pre-cleaned with acetone to extract, weigh, and 
hold the following quantities of solidified samples from each 
vial: 1 to 1.5 mg for animals; 4 to 4.5 mg for rhodolith and kelp; 
14 to 15 mg for sediment; 5  to 7 mg of filter for seawater δ13C 
and carbon content; and 8  to 10 mg of filter for seawater δ15N 
and nitrogen content. We held tin capsules and their content 
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in a desiccator and processed them within a month as per the 
following procedure.

We analyzed bulk stable isotopes and complementary C and 
N elemental proportions (%) in an Elemental Analyzer (EA) 
system (NA1500; Carlo-Erba) consisting of an autosampler, an 
oxidation reactor (oven), a reduction reactor, a water trap, a gas 
chromatography (GC) column, and a thermal conductivity meter 
(TCD). The entire EA was flushed continuously with helium at a 
rate of 90 to 110 mL min-1. We dropped each tin capsule and its 
content individually onto the oxidation reactor at a temperature 
of 1050°C, with simultaneous injection of oxygen and quick 
flushing with He. This sequence triggered a flash combustion at 
1800°C between the tin capsule and oxygen, creating combustion 
gases that were pushed through an oxidation catalyst (chromium 
trioxide, CrO3) to ensure complete oxidation of the sample and 
silvered cobaltous/cobaltic oxide, which removes halides and 
SO2. The resulting gas mixture passed through the reduction 
reactor (reduced copper) at 650°C, which reduces nitrogen 
oxides to nitrogen gas and absorbs oxygen. The gases then passed 
through a magnesium perchlorate Mg(ClO4)2 water trap, after 
which the remaining gases (N2, CO2) entered a 3-m GC column 
(QS 50/80; Poropak) at 40 to 100°C. The individual gases were on 
the GC column. Upon reaching the TCD, they were detected as 
separate gas peaks; first N2, then CO2. From the TCD, He carried 
the gases to a ConFloIII interface (Finnigan, Thermo Electron 
Corporation), which has split tubes, open to the atmosphere, 
which allow a portion of the He and combustion gases to 
enter directly into the ion source of the mass spectrometer 
(MS) (DeltaVPlus; Thermo Scientific). During operation, He 
from the EA flowed continuously into the MS. Internal and 
external reference material was used to calibrate MS data. We 
used EDTA  #2 and D-Fructose for carbon isotope calibration, 
and IAEA-N-1 ((NH4)2SO4) and IAEA-N-2 ((NH4)2SO4) for 
nitrogen isotope calibration. We used NBS-18 (CaCO3), B2150 
(high organic sediment), B2151 (high organic sediment), and 
B2105 (Cystine) to aid data interpretation of carbon isotope 
analyses, and sorghum flour, B2153 (low organic soil), USGS-25 
((NH4)2SO4), USGS-26 ((NH4)2SO4), sulfanilamide, and BBOT 
to aid data interpretation of nitrogen isotope analyses. L-glutamic 
acid and B2155 (protein) were used for both carbon and nitrogen 
elemental calibration.

2.8 Trophic Magnification of Fatty Acids
Stable isotope ratios are expressed in the conventional (δ) 
notation as parts per thousand (‰) as per the equation of 
Minagawa and Wada (1984):

( ) ( )13 15
sample standardC or N ‰ R R 1 1000 δ δ = ÷ − × 

where Rsample and Rstandard are the ratios of 13C/12C or 15N/14N of a 
given sample and corresponding standard, respectively. Results 
are reported relative to atmospheric N2 for nitrogen stable 
isotopes, and Vienna PeeDee Belemnite (VPDB) for carbon stable 
isotopes. Species trophic position (TPconsumer) was calculated with 

the equation used by Gale et al. (2013), and developed originally 
by Cabana and Rasmussen (1996):

TP N N N TPconsumer consumer base base= −( ) ÷



 +δ δ15 15 15∆

where δ15Nconsumer is the mean stable N isotope ratio of each 
species, and Δ15N is the fractionation factor which, to be 
consistent with rhodolith food web studies, is 3.4‰ (Grall et al., 
2006). δ15Nbase and TPbase represent the nitrogen stable isotope 
composition and trophic positions from the base of the food 
web, respectively. We then calculated a trophic magnification 
factor (TMF) for fatty acids (FA) correlated with δ15N. This factor 
quantitatively represents the biomagnification of compounds 
along a food web (Borgå et  al., 2012; Connelly et  al., 2014). 
Compound concentrations often change across trophic levels, 
thus the equation:

FA% em TP= ×

or

log FA% m TP be = ×( ) +

and, therefore,

TMF e= m

where m and b are the slope and intercept of the linear relationship 
(which strength was determined with conventional Spearman 
Rank-Order correlation tests) between loge FA% and trophic 
position (TP), respectively. Positive values of m and TMF imply 
biomagnification throughout the food web, whereas negative 
values denote proportional depletion. To this extent, we did not 
use TMF as a tool to see changing concentrations of FAs through 
direct predator-prey relationships among organisms. Instead, we 
used TMF as a method to assess biomagnification and depletion 
of FAs by comparing FAs to one another and to help confirm the 
presence of key identified biomarkers throughout the food web 
(Connelly et al., 2014).

2.9 Statistical Analysis

2.9.1 Lipid Classes
We used a one-way permutational MANOVA (PERMANOVA) 
(Euclidean distance matrices with 9999  permutations) with 
the factor Component (nine of the 10 components of the food 
web studied [six animal species, kelp, sediment, and seawater]) 
to examine differences in proportions of lipid classes among 
samples (N=25, accounting for accidental loss of two samples 
during the analyses). We excluded the rhodolith component 
because of insufficient rhodolith tissue for lipid extraction. To 
limit extraneous data variability while focusing on the most 
significant lipid classes, our analysis included only lipid classes 
present in over 50% of the samples. Sample sizes for each food web 
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component (N=2 or 3) was too low to examine differences among 
specific components. Consequently, for comparison purposes 
only, we pooled the data into the five following functional 
groups reflecting the three dominant feeding strategies of the six 
animal species, one macroalgal species, and two environmental 
components: (1)  suspension/filter feeders [two species]; (2) 
grazers [two species]; (3) predators [two species]; (4) kelp; and 
(5)  seawater/sediment [samples combined because of expected 
benthic-pelagic coupling and to achieve a sufficient sample size 
for statistical analysis] (see section 2.1 for details). We then ran 
a one-way PERMANOVA with the factor Functional Group (the 
five groups explained above). This approach yielded statistically 
reliable comparisons, except with kelp, for which sample size 
was too low and could not be pooled with any of the four other 
groups because of its unique nature. We therefore do not present 
comparisons with kelp. We examined relationships between 
total lipid and each of the major lipid classes with conventional 
Spearman Rank-Order Correlation tests (Zar, 1999).

2.9.2 Fatty Acids
To examine differences in the proportions of FAs among samples 
(N=25), we used the same statistical approach (two one-way 
PERMANOVAs; one with Component as factor followed by one 
with Functional Group as factor) with the same data exclusion 
and grouping as for the lipid classes analysis. We then used a 
one-way SIMPER analysis (run on untransformed data with 
a Bray-Curtis similarity matrix) with the factor Component 
(nine of the 10 components of the food web studied [six animal 
species, kelp, sediment, and seawater], to identify potential food 
sources and the main FAs contributing to the lipid composition 
of each component (Kelly and Scheibling, 2012; Gabara, 2014). 
To limit extraneous data variability while focusing on the 
most significant FAs, we included only FAs contributing to 
over 70% of the similarities in the SIMPER analysis. We used 
a follow-up principal coordinates analysis (PCO; also run on 
untransformed data with a Bray-Curtis similarity matrix) with 
the factor Component (same as above), mainly for visualization 
of the feeding relationships among specific groups of organisms 
(Guest et  al., 2008; Drazen et  al., 2009). To increase clarity on 
the PCO, we plotted only samples with a Pearson coefficient of 
correlation >65% (plus DHA; 22:6ω3, because of its importance 
as an essential FA).

2.9.3 Stable Isotopes
We examined differences in carbon (δ13C) and nitrogen (δ15N) 
isotope ratios with two one-way PERMANOVAs (one for each 
type of ratio; both types based on Euclidean distance matrices 
with 9999  permutations) with Component as factor. The δ13C 
isotope ratio analysis (N=27, accounting for accidental loss 
of three samples during the analyses) included all taxa (six 
animal species, kelp, and rhodoliths) and both environmental 
components (seawater and sediment). We included both 
environmental components and all except one taxon (Nereis 
spp., for which we lacked sufficient amounts of tissues for 
quantification of stable isotope ratios) in the δ15N isotope ratio 
analysis (N=26, accounting for accidental loss of one sample 
during the analyses). Due to our using separate samples for 

lipid-extract and stable isotope analyses, we used the averages 
of stable isotope results of individual components to make 
comparisons to lipid and FA data. To group and map, in the form 
of a dendrogram, statistically different components of the food 
web, we also carried out a cluster analysis using “Group Average” 
clustering on δ13C and δ15N isotope ratios simultaneously, and 
complementary SIMPROF test (Euclidian distance matrix with 
9999 permutations) (N=23 because of a few unmatched pairs of 
δ13C and δ15N ratios) (Grall et al., 2006; Gabara, 2014). Four main 
isotopic groups emerged from the SIMPROF test. We therefore 
ran follow-up one-way PERMANOVAs (one with both isotopic 
ratios combined, followed by one for each type of isotopic ratio) 
and complementary one-way ANOVAs and post-hoc tests with 
the factor Group to identify differences among these four main 
trophic groups.

2.9.4 General Aspects of Statistical Tests
In all PERMANOVAs, data were untransformed and computed 
on Bray-Curtis similarity or Euclidian distance matrices (9999 
permutations) to meet the assumptions of multivariate normal 
(Gaussian) distribution and homogeneity of the covariance 
matrices (Budge et al., 2006; Clarke et al., 2006; Hair et al., 2006). All 
FA multivariate data were computed using Bray-Curtis similarity 
matrices, while lipid and stable isotope multivariate data were 
computed using Euclidean distance matrices due to its better 
ability to handle missing data. Contrary to the recommendation 
from Kelly and Scheibling (2012), we used untransformed 
data because the dispersion of variance was equivalent to 
transformed data and it avoided artificial weighting of FAs with 
smaller proportions on our results compared to transformed 
data (Carreón-Palau et  al., 2017). We used PERMDISP (9999 
permutations) to inform our decision (p=0.391); we tested 
for homogeneity of multivariate variances and confirmed all 
variances were homogenous. We used PCO (principal coordinates 
analysis) instead of PCA (principal components analysis) to 
more efficiently account for missing data (Rohlf, 1972). In all 
ANOVAs, we verified homogeneity of variance and normality of 
residuals by examining the distribution of the residuals and the 
normal probability plot of the residuals, respectively (Snedecor 
and Cochran, 1994). We used a significance level of 0.05 in all 
analyses and report all means with standard deviation (mean 
± SD) unless stated otherwise. We used standard error where 
applicable for consistency with corresponding literature (Gagnon 
et al., 2012; Connelly et al., 2014; Parzanini et al., 2018). We used 
PRIMER v7 with PERMANOVA+ for multivariate statistical 
analyses, Minitab 18 for univariate statistical analyses, and 
Microsoft Excel for descriptive statistics.

3 RESULTS

3.1 Rhodolith Community
Rhodolith biomass at the study site averaged 19.5 ± 0.9 (SE) 
kg m-2. The 247 rhodoliths sampled varied in size from 11.3 to 
65.6 mm, and 24.0 to 116.2 mm along the shortest and longest 
axes, respectively. Those rhodoliths were predominantly 
spheroidal and compact (~61%), but otherwise platy (~12%), 
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bladed (~19%), or elongate (~8%) Figures  3A, B). Total 
cryptofaunal biomass averaged 34.5 ± 4.3  g kg-1 rhodoliths. 
The 1191 animals extracted from the rhodoliths belonged to 
at least 21 species under six phyla, with echinoderms (452.7 ± 
47.0  individuals kg-1 rhodoliths) and molluscs (427.6 ± 39.6 
individuals kg-1 rhodoliths) as the two numerically dominant 
groups (Table 1). Species included in the biochemical analyses 
were particularly abundant, including Ophiopholis aculeata 
(336.7 ± 30.8 individuals kg-1 rhodoliths), Tonicella spp. (191.6 ± 
27.2  individuals kg-1 rhodoliths) and Hiatella arctica (152.8 ± 
23.2 individuals kg-1 rhodoliths). A few species not included in 
the analyses were also relatively abundant, including the brittle 
star, Ophiura robusta (72.7 ± 13.8 individuals kg-1 rhodoliths), 
the caridean shrimp, Pandalus borealis (36.9 ± 7.5 individuals 
kg-1 rhodoliths), and the polychaete, Potamilla reniformis (30.0 ± 
10.3 individuals kg-1 rhodoliths).

3.2 Total Lipid Content and Lipid Classes
Of the nine food web components included in the lipid 
analysis, the three echinoderm species exhibited the highest 
concentrations of total lipids, ranging from 8.5 ± 2.2 mg g-1 (ww) 
in A. rubens, to 13.2 ± 3.7 mg g-1 in O. aculeata (Table 2). The 
molluscs H. arctica and Tonicella spp. had, respectively, similarly 
high and slightly lower concentrations of total lipids, with 6.7 ± 
1.6 mg g-1 in Tonicella spp. (Table 2). The polychaete Nereis spp. 
exhibited the lowest concentration among animals, with 6.0 ± 
1.9 mg g-1. Kelp (L. digitata), seston (from seawater samples), 
and sediment had significantly lower total lipid concentrations 
than O. aculeata (Tukey HSD, p<0.01 in all cases) (Table 2). The 
nine food web components contained nine lipid classes (PL, 
TAG, FFA, ST, AMPL, HC, SE, KET, and ALC), with six (PL, 
TAG, FFA, ST, AMPL, and HC) present in >50% of all samples 
(Table 2). PL was the dominant lipid class in every component, 

with a proportional contribution to total lipid concentration of 
48% in O. aculeata to 76% in A. rubens (Table 2). Animal species 
contained the highest proportion of TAG, ST, and AMPL, with 

A B

FIGURE 3 | (A) Ternary diagram of rhodolith [Lithothamnion glaciale] shape relative to purely spheroidal, discoidal, and ellipsoidal rhodoliths [N=247; one solid circle 
per rhodolith]. Rhodoliths were collected in April 2017 at the South site (see Figure 1A). The position of each rhodolith in the diagram is determined by its sphericity, 
calculated from the length of its longest [L], intermediate [I], and shortest [S] axes. (B) Corresponding proportion of rhodoliths under each of 10 finer shape 
categories as defined by Sneed and Folk (1958).

TABLE 1 | Taxonomical breakdown and abundance of invertebrate cryptofauna 
associated with rhodoliths (Lithothamnion glaciale) collected in April 2017 at the 
South site (see Figure 1A).

Phylum/species Mean ( ± SE) density

 (individuals kg-1 rhodoliths)

Annelida 75.9 (8.3)
 Myxicola spp.  8.9 (4.7)
 Nerididae (including Nereis spp.)  21.7 (4.7)
 Potamilla reniformis  30.0 (10.3)
Arthropoda 72.8 (13.1)
 Amphipoda  34.1 (12.4)
 Cancer irroratus  1.8 (1.0)
 Pandalus borealis  36.9 (7.5)
Echinodermata 452.7 (47.0)
 Asterias rubens  19.7 (4.1)
 Ophiopholis aculeata  336.7 (30.8)
 Ophiura robusta  72.7 (13.8)
 Strongylocentrotus droebachiensis  22.8 (3.7)
Mollusca 427.6 (39.6)
 Hiatella arctica  152.8 (23.2)
 Lacuna vincta  1.8 (1.0)
 Margarites costalis  15.8 (3.6)
 Modiolus  14.7 (3.5)
 Moelleria costulata  8.6 (3.0)
 Puncturella noachina  21.2 (5.4)
 Tonicella spp.  191.6 (27.2)
 Turbonilla spp.  3.4 (2.3)
 Velutina velutina  2.4 (1.5)
Nemertea 19.3 (5.5)
Sipuncula 5.8 (5.3)

Each phylum’s total abundance (bolded values) includes cryptofauna not identified to 
the genus level.
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34% in H. arctica, 19% in Nereis spp., and 16% in S. droebachiensis, 
respectively. FFA was highest (31%) in seston, lowest (2%) in 
A. rubens, and not detected (0%) in S. droebachiensis (Table 2). 
Kelp and seston contained no measurable TAG. Seston lipids 
were largely PL (50%), FFA (31%), ST (11%), and AMPL (12%). 
Sediment was dominated by PL (53%), followed by TAG (16%) 
and AMPL (13%). All components contained PL, ST, and AMPL. 
Overall, lipid class composition differed significantly among 
the nine food web components (PERMANOVA; Pseudo-F8,24 = 
5.732, P (perm)=0.0003) and five functional groups (suspension/
filter feeder, grazer, predator, kelp, and seawater/sediment) 
studied (PERMANOVA; Pseudo-F4,24= 3.504, P (perm)=0.0059). 
Specifically, lipid class composition differed between grazers 
and predators (t=2.485, p=0.018), and between suspension/
filter feeders and predators (t=4.450, p=0.003). Total lipid 
concentration correlated with ST proportion only (r=-0.469, 
p=0.018, N=25).

3.3 Fatty Acid Profiles
The nine food web components included in the FA analysis 
contained 63 FA, with 43 present in >50% of all samples. Each 
component exhibited a distinct set of dominant FAs and biomarkers 
(Table S.1 and Figure 4). With a proportional contribution to FA 
profiles ranging from 19% in H. arctica to 32% in A. rubens, EPA 
(eicosapentaenoic acid, 20:5ω3; a typical diatom biomarker) was 
the dominant FA within each of the six animal species sampled 
(Table S.1). ARA (arachidonic acid, 20:4ω6; a kelp and amphipod 
biomarker), palmitoleic acid (16:1ω7; a diatom biomarker), and 
palmitic acid (16:0; a flagellate, bacteria, and marine vegetation 
biomarker) were the next most prominent FA among the 
animals, with a contribution between 11% and 20% (Table S.1). 

Kelp contained mainly palmitic acid (18%), eicosatetraenoic 
acid (20:4ω3; 14%) and oleic acid (18:1ω9, 13%; a crustacean, 
detritus, dinoflagellate, and brown seaweed biomarker). Seston 
FA were largely oleic acid (33%), palmitic acid (22%), and 
stearic acid (18:0, 18%; a detritus biomarker). Sediment was 
dominated by palmitoleic acid (21%), palmitic acid (15%), and 
vaccenic acid (18:1ω7, 9%; an aerobic microorganism, bacteria, 
and vegetation biomarker) (Table S.1). Overall, FA composition 
differed significantly among the nine food web components 
(PERMANOVA, Pseudo-F8,24 = 26.278, P (perm)<0.001) and five 
functional groups studied (PERMANOVA, Pseudo-F4,24 = 7.6664, 
P (perm)=0.001), except kelp whose composition was similar to 
that of any of the four other functional groups.

Of the three essential FAs (EPA, DHA [docosahexaenoic 
acid], and ARA), EPA was the most prevalent, present in all food 
web components except kelp and particularly abundant among 
the six animal species (Table S.1). ARA was in all components 
except seston, peaking in A. rubens (20%) and S. droebachiensis 
(15%) (Table S.1). Together, EPA and ARA contributed to 46% 
and 62% of the similarities in S. droebachiensis and A. rubens diets, 
respectively (Table B.1). DHA was present in all components 
except kelp, and was nevertheless less abundant than EPA and 
ARA, peaking at 9% in H. arctica (Table S.1).

Animal and kelp FA profiles were generally dominated 
by polyunsaturated FA (PUFA), which ranged from 44% in 
Tonicella spp. to 65% in S. droebachiensis, and to a lesser extent 
by monounsaturated FA (MUFA), which varied from 17% in L. 
digitata and S. droebachiensis to 30% in Tonicella spp. (Table 3). 
Animals and kelp contained lower levels of saturated FA (SFA), 
with lowest and highest proportions in respectively A. rubens 
(11%) and O. aculeata (27%) (Table 3). Conversely, seston and 
sediment contained more MUFA (37.9% and 42.5%, respectively) 

TABLE 2 | Sample size (N), mean wet weight, mean total lipid, and mean proportion (%) of the six dominant lipid classes (PL, phospholipid; TAG, triacylglycerol; FFA, 
free fatty acid; ST, sterol; AMPL, acetone mobile polar lipid; and HC, hydrocarbon) in the six animal species (common sea star, Asterias rubens; wrinkled rock-borer, 
Hiatella arctica [bivalve]; Nereis spp. [polychaetes]; daisy brittle star, Ophiopholis aculeata; green sea urchin, Strongylocentrotus droebachiensis; and chitons, Tonicella 
spp.), two macroalgal species (Laminaria digitata [kelp] and Lithothamnion glaciale [rhodoliths]), and two environmental components (seawater and sediment) sampled 
inside (I) or outside (O) of the South site (see Figure 1A).

    Wet Weight Total Lipid PL TAG FFA ST AMPL HC

 Component  N g ( ± SD) mg g-1 ww ( ± SD) % ( ± SD) % ( ± SD) % ( ± SD) % ( ± SD) % ( ± SD) % ( ± SD)

Animal
A. rubens (I) 3 1.0 (0.2) 8.5 (2.2) 75.9 (5.2) 1.9 (1.5) 1.5 (2.0) 9.8 (2.7) 8.6 (2.6) 0.8 (0.3)
H. arctica (I) 3 1.1 (0.3) 9.2 (3.6) 45.3 (11.2) 34.4 (13.9) 5.1 (1.3) 7.5 (1.5) 5.4 (0.1) 0.5 (0.3)
Nereis spp. (I) 3 0.9 (0.2) 6.0 (1.9) 63.3 (10.0) 3.9 (5.7) 5.9 (2.1) 19.2 (4.7) 5.0 (3.5) 1.5 (1.3)
O. aculeata (I) 3 1.3 (0.1) 13.2 (3.7) 47.8 (2.6) 25.1 (6.3) 5.5 (4.6) 5.7 (5.0) 11.3 (7.3) 2.9 (1.7)
S. droebachiensis (I) 2 1.0 (0.2) 10.6 (11.0) 60.8 (3.2) 6.0 (4.7) 0 (0) 14.9 (12.0) 16.6 (4.3) 1.2 (1.0)
Tonicella spp. (I) 3 0.7 (0.1) 6.7 (1.6) 49.2 (8.4) 28.9 (2.6) 3.2 (3.0) 10.0 (2.6) 7.3 (4.2) 1.0 (1.2)
Mean   1.0 (0.2) 8.9 (4.2) 56.8 (13.1) 17.3 (14.9) 3.7 (3.1) 11.0 (6.3) 8.6 (5.1) 1.3 (1.2)
Macroalgal
L. digitata (O) 2 1.6 (0.5) 1.3 (0.1) 49.3 (4.9) 0 (0) 0.4 (0.6) 16.2 (2.8) 32.7 (7.2) 0.1 (0.2)
L. glaciale (I) N/A N/A N/A N/A N/A N/A N/A N/A N/A
Mean   1.6 (0.5) 1.3 (0.1) 49.3 (4.9) 0 (0) 0.4 (0.6) 16.2 (2.8) 32.7 (7.2) 0.1 (0.2)
Environmental
Seawater (O) 3 0.1 (0) 4.1 (1.1) 49.7 (9.9) 0 (0) 31.2 (3.1) 10.9 (1.7) 7.0 (12.2) 0 (0)
Sediment (I) 3 6.6 (0.9) 0.6 (0.5) 52.7 (45.7) 15.6 (21.9) 4.6 (4.0) 6.0 (3.7) 13.4 (16.5) 0 (0)
Mean   3.3 (3.7) 1.5 (2.1) 51.2 (29.6) 7.8 (16.3) 17.9 (14.9) 8.4 (3.8) 10.2 (13.4) 0 (0)

N/A Data not available.
Each variable’s lowest and highest values are bolded.

https://www.frontiersin.org/journals/marine-science
http://www.frontiersin.org/
http://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


Teper et al.

11Frontiers in Marine Science | www.frontiersin.org July 2022 | Volume 9 | Article 899812

Subarctic Rhodolith Bed Trophodynamics

than PUFA (20.2% and 25.9%, respectively) (Table 3). SFA levels 
were higher in seston (41.6%) than sediment (24.2%) (Table 3). 
Animals exhibited the highest ratio of polyunsaturated to 
unsaturated FA (P/S; 3%), followed by kelp (2%), and seston and 

sediment (1%) (Table  3). All components, except for seawater, 
had a higher proportion of ω3 (omega-3) FAs than ω6 (omega-
6). Animals and kelp contained about 3 times as many ω3 FAs 
(37.1% and 29.7%, respectively) than ω6 (11.9% and 10.5%, 

FIGURE 4 | (A) PCO plot (based on Bray-Curtis similarity matrices) of the 12 fatty acids exhibiting at least 70% correlation in the six animal species, two macroalgal 
species, and two environmental components (see Table 1 for species list) sampled inside or outside of the South site (see Figure 1A). (B) Typical fatty-acid trophic 
biomarkers for those fatty acids included in the analysis (adapted from Parrish (2013) and Legeżyńska et al. (2014).

TABLE 3 | Sample size (N), mean proportional sum (Σ) of saturated (SFA), monounsaturated (MUFA), polyunsaturated (PUFA), ω3 (omega-3), and ω6 (omega-6) 
fatty acids, and mean ratios of polyunsaturated:saturated (P/S) and DHA  EPA (DHA/EPA), in the six animal species, two macroalgal species, and two environmental 
components (see Table 1 for species list) sampled inside (I) or outside (O) of the South site (see Figure 1A). 

    ∑SFA ∑MUFA ∑PUFA ∑ω3 ∑ω6 P/S DHA/EPA

Component   N % ( ± SD) % ( ± SD) % ( ± SD) % ( ± SD) % ( ± SD) Mean ( ± SD) Mean ( ± SD)

Animal
A. rubens (I) 3 11.6 (3.4) 24.0 (1.2) 63.2 (4.0) 39.4 (5.0) 22.4 (6.9) 5.9 (2.4) 0.2 (0.1)
H. arctica (I) 3 24.6 (0.9) 27.6 (3.8) 45.7 (4.5) 37.5 (5.8) 5.2 (1.6) 1.9 (0.2) 0.5 (0.0)
Nereis spp. (I) 3 18.6 (0.4) 22 (2.7) 58.2 (2.9) 40.9 (6.0) 11.1 (3.8) 3.1 (0.2) 0.0 (0.0)
O. aculeata (I) 3 26.8 (12.7) 24.6 (3.3) 47.8 (10.8) 34.4 (7.4) 4.2 (0.7) 2.1 (1.2) 0.0 (0.0)
S. droebachiensis (I) 2 16.6 (1.1) 16.8 (1.5) 65.2 (3.0) 36.7 (4.4) 20.8 (0.6) 3.9 (0.5) 0.1 (0.0)
Tonicella spp. (I) 3 19.4 (4.0) 30.3 (3.8) 43.9 (0.2) 33.4 (0.2) 10.6 (4.4) 2.3 (0.5) 0.0 (0.0)
Mean   19.8 (7.2) 24.7 (4.8) 53.3 (9.7) 37.1 (5.3) 11.9 (7.8) 3.2 (1.8) 0.1 (0.2)
Macroalgal
L. digitata (O) 2 23.7 (1.7) 17.2 (0.3) 56.7 (2.2) 29.7 (1.4) 10.5 (0.4) 2.4 (0.3) 0 (0)
L. glaciale (I) N/A N/A N/A N/A N/A N/A N/A N/A
Mean   23.7 (1.7) 17.2 (0.3) 56.7 (2.2) 29.7 (1.4) 10.5 (0.4) 2.4 (0.3) 0 (0)
Environmental
Seawater (O) 3 41.6 (5.4) 37.9 (12.1) 20.2 (17.6) 2.6 (1.1) 6.3 (0.3) 0.5 (0.5) 0.9 (0.1)
Sediment (I) 3 24.2 (2.8) 42.5 (3.4) 25.8 (4.9) 13.0 (3.3) 6.6 (0.9) 1.1 (0.3) 0.2 (0.1)
Mean   32.9 (10.3) 40.2 (8.3) 23.0 (12.0) 7.8 (6.1) 6.4 (0.6) 0.8 (0.5) 0.5 (0.4)

N/A Data not available.
Each variable’s lowest and highest values are bolded.
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respectively) and sediment about twice as many ω3 FAs (13.0%) 
than ω6 (6.5%), while seston contained about half as many ω3 
FAs (2.6%) than ω6 (5.3%) (Table 3). The DHA/EPA ratio was 
highest in seston (0.9), intermediate in sediment, A. rubens, H. 
arctica, and S. droebachiensis (0.1 to 0.5), low in Nereis spp., O. 
aculeata, and Tonicella spp. (0.02 to 0.03), and null (0) in kelp 
(Table 3).

3.4 Stable Isotopes and Trophic 
Magnification
Stable carbon isotope ratio (δ13C) differed significantly among 
the ten food web components included in the carbon isotope 
analysis (PERMANOVA, Pseudo-F9,26 

= 40.241, P (perm)<0.001), 
ranging from most depleted in seawater (-26.6‰) to least 
depleted in L. glaciale and A.  rubens (-18.9‰) (Table  4). The 
δ15N values, which were lowest in L. digitata (3.4‰) and highest 
in A. rubens (11.0‰) (Table 4), also differed significantly among 
the nine food web components included (i.e. all components 
except Nereis spp.; PERMANOVA, Pseudo-F8,25 

= 130.64, P 
(perm)<0.001), indicating distinct trophic levels (see below). 
Hierarchical clustering analysis of δ13C and δ15N separated the 
latter nine components in four distinct groups (PERMANOVA, 
Psuedo-F3,22 

= 53.25, P (perm)<0.001; Figures  5 and S.1). Two 
of these groups each contained all samples of a single food 
web component, namely seston and L. digitata (kelp), hereafter 
termed respectively Group 1 and Group 4 (Figure 5). Group 3 
contained three subgroups, each also containing all samples of 
a single food web component: sediment (Group 3a), L. glaciale 
(rhodolith, Group 3b), and H.  arctica (Group 3c) (Figure  5). 
Group 2 had four subgroups, of which two were monospecific: 
A. rubens (Group 2a) and O. aculeata (Group 2d), and two each 
contained two species; A. rubens and Tonicella spp. (Group 2b) 
and S. droebachiensis and Tonicella spp. (Group 2c) (Figure 5). 

Group 1 (seston) had a significantly lower δ13C than all other 
groups (Tukey HSD, p<0.001), yet its δ15N was similar to that of 
Group 3 (infauna, L. glaciale, H. arctica) (Tukey HSD, p=0.779) 
(Figure 5). Group 2 (A. rubens, O. aculeata, Tonicella spp., and 
S. droebachiensis) had a significantly higher δ15N than Group 
1, Group 3, and Group 4 (L. digitata) (Tukey HSD, p<0.001). 
Group 2’s δ13C was also significantly more enriched than that 
of Group 1 (Tukey HSD, p<0.001) and Group 3 (Tukey HSD, 
p=0.021), but not Group 4 (Tukey HSD, p<0.062). Group 4 had 
a significantly lower δ15N than all other groups (Tukey HSD, 
p<0.001) (Figure 5).

At our assumed Δ15N fractionation factor of 3.4‰ (see 
section 2.8), the 10 food web components encompassed over 
three trophic positions (TP), with kelp (TP=1) and A. rubens 
(TP=3.2) at the base and top of the web, respectively (Table 4). 
Seston, sediment, rhodoliths (L.  glaciale), and H. arctica 
occupied intermediate positions ranging from 1.8 to 2.1, whereas 
the three remaining animal species sampled had similarly high 
positions of 2.6 to 2.9 (Table 4). Thirty-seven (37) FAs correlated 
significantly with δ15N. Of those FAs, four (16:4ω3, 20:1ω11, 
20:4ω6 [ARA], and 20:5ω3 [EPA]) exhibited a TMF > 1, and 
hence were biomagnified through trophic levels, whereas 33 had 
a TMF < 1, indicating biodilution (Table 5).

4 DISCUSSION

Our study of the trophodynamics of a Newfoundland rhodolith 
bed is the first attempt to characterize nutritional patterns and 
trophic linkages of a rhodolith bed community with combined 
use of lipid, FA, and stable isotope analyses. Isotope-based 
rhodolith studies in the Northeast Atlantic (Grall et  al., 2006) 
and California (Gabara, 2014) suggest macroalgae-based 
detritus are a key food source within rhodolith communities. 

TABLE 4 | Sample size (N), bulk stable isotope ratio (δ13C and δ15N; ‰), and relative trophic position (TP) in the six animal species, two macroalgal species, and two 
environmental components (see Table 1 for species list) sampled inside (I) or outside (O) of the South site (see Figure 1A).

    Dry weight Carbon   Dry weight Nitrogen TP

Component N mg ( ± SD) δ
13C ( ± SD) N mg ( ± SD) δ

15N ( ± SD)  

Animal
A. rubens (I) 3 1.3 (0.2) -18.9 (0.9) 3 1.4 (0.0) 11.0 (0.3) 3.2
H. arctica (I) 3 1.1 (0.1) -20.0 (0.4) 3 1.3 (0.2) 6.3 (0.0) 1.9
Nereis spp. (I) 2 1.3 (0.2) -22.5 (0.1) – N/A N/A N/A
O. aculeata (I) 3 1.2 (0.2) -19.9 (0.3) 3 1.3 (0.1) 8.9 (0.6) 2.6
S. droebachiensis (I) 3 1.2 (0.1) -19.8 (1.4) 2 1.2 (0.2) 10.0 (0.9) 2.9
Tonicella spp. (I) 3 1.1 (0.0) -19.3 (0.3) 3 1.2 (0.2) 9.7 (0.3) 2.9
Mean   1.2 (0.1) -19.9 (1.2)   1.3 (0.1) 9.1 (1.7)  
Macroalgal
L. digitata (O) 3 1.1 (0.2) -21.0 (0.5) 3 4.5(0.4) 3.4 (0.2) 1.0
L. glaciale (I) 1 1.1 -18.9 3 4.4 (0.2) 7.3 (0.2) 2.1
Mean   1.1 (0.1) -20.5 (1.1)   4.4 (0.3) 5.4 (2.1)  
Environmental
Seawater (O) 3 6.5 (0.4) -26.6 (0.1) 3 9.0 (0.8) 7.0 (0.5) 2.0
Sediment (I) 3 14.2 (0.1) -22.3 (0.2) 3 14.4 (0.4) 6.3 (0.2) 1.8
Mean   10.4 (4.2) -24.4 (2.3)   11.7 (3.0) 6.6 (0.5)  

N/A Data not available.
Trophic position is based on an isotopic model with a Δ15N fractionation factor of 3.4‰ (see section 2.8). Each variable’s lowest and highest values are bolded. Nereis spp. was not 
included in the N analysis because of insufficient tissues for quantification.
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Our comprehensive approach supported these findings, while 
showing that kelp may not be a significant food source among the 
10 rhodolith bed components we considered. We identified three 
distinct trophic levels - producers, suspension/filter feeders and 
grazers, and predators - and discovered a potentially specific link 
between a macroalga-based diet and carbon source in mollusks 
and ophiuroids.

4.1 Rhodolith Community
Rhodolith communities vary globally in terms of numerically 
dominant cryptofauna, with gastropods dominating in the Maltese 
Islands (Sciberras et  al., 2009), crustaceans in Santa Catalina 
Island (Gabara, 2014) and Ireland (de Grave and Whitaker, 1999), 
echinoderms and annelids in the Gulf of California (Foster et al., 
2007), and polychaetes in South Australia (Harvey and Bird, 
2008). In Newfoundland, chitons (Tonicella marmorea and T. 
rubra) and daisy brittle star (Ophiopholis aculeata) are the most 
common rhodolith epifauna (present study, Gagnon et al., 2012; 
Bélanger, 2020). The preponderance of chitons and daisy brittle 
stars at our study site, as well as overall species composition, 
aligned with the first detailed rhodolith bed biodiversity report 
from Newfoundland and Labrador (Gagnon et  al., 2012). The 
consistency of chiton and brittle star abundances in conjunction 
with similar overall species composition in Newfoundland after 
over eight years, suggest high community stability within this 
bed. This notion is also supported by highly similar rhodolith 
morphological traits (shape and size) and biomass (19.5  kg 
m-2) between both studies (present study, Gagnon et al., 2012). 
In the present study, most observed rhodolith cryptofauna was 
juvenile-sized, supporting the view that rhodolith beds are 
nursery grounds for a number of marine invertebrates (Foster, 
2001; Kamenos et al., 2004b; Steller and Cáceres-Martínez, 2009; 
Gagnon et al., 2012).

4.2 Lipid Content and Classes
Lipid structure can vary based on environmental conditions, food 
availability, metabolism, and reproductive strategies (Fraser, 1989; 
Lloret and Planes, 2003; Parzanini et al., 2018). Low temperatures 
affect organisms by inducing changes in cell membrane fluidity, 
structure, and function (Crockett, 1998; Parrish, 2013; Colombo 
et  al., 2017). To accommodate cold temperatures, cold-water 
ectotherms exhibit homeoviscious adaptation, a process of 
reducing sterol molecules and lengthening and unsaturating 
phospholipids (Hazel et  al., 1991) to change lipid structure 
(Hall et  al., 2000; Copeman and Parrish, 2003; Parrish, 2009). 
In the present study, we showed that the lipid structure of all 
samples varied by component, with overall high proportions 
of phospholipids (45 – 76%) and unsaturated FAs (58 – 87%), 
low proportions of sterols (6 – 19%), and a correlation between 
total lipids and sterol proportions. These findings strongly 
suggest increased cell membrane fluidity, while supporting our 

TABLE 5 | Trophic multiplication factor (TMF) of 37 fatty acids (FA) as calculated 
from the slope (m) of corresponding linear relationship between FA concentration 
and bulk nitrogen (δ15N) stable isotope ratio (see section 2.8).

FA TMF m ( ± SE) b ( ± SE) r p-value

20:1ω11 1.19 0.2 (0) 7.7 (0.2) 0.4 <0.001
20:4ω6 (ARA) 1.16 0.2 (0) 7.4 (0.2) 0.6 <0.001
20:5ω3 (EPA) 1.15 0.1 (0) 6.0 (0.3) 0.7 <0.001
16:4ω3 1.10 0.1 (0) 8.1 (0.2) 0.2 0.037
18:1ω9 0.95 -0.1 (0) 8.7 (0.2) -0.2 0.006
22:6ω3 (DHA) 0.93 -0.1 (0) 8.6 (0.2) -0.2 0.024
22:4ω6 0.90 -0.1 (0) 8.5 (0.2) -0.3 <0.001
16:0 0.88 -0.1 (0) 9.9 (0.3) -0.5 <0.001
TMTD† 0.88 -0.1 (0) 8.5 (0.2) -0.4 <0.001
16:1ω7 0.87 -0.1 (0) 9.2 (0.2) -0.4 <0.001
21:5ω3 0.87 -0.1 (0) 8.5 (0.2) -0.4 <0.001
18:1ω11 0.87 -0.1 (0) 8.6 (0.2) -0.3 <0.001
22:5ω3 (DPA) 0.86 -0.1 (0) 8.6 (0.2) -0.3 0.003
20:0 0.86 -0.2 (0) 8.5 (0.2) -0.4 <0.001
20:3ω3 0.85 -0.2 (0) 8.5 (0.2) -0.4 <0.001
20:4ω3 0.85 -0.2 (0) 8.6 (0.2) -0.4 <0.001
ai16:0 0.83 -0.2 (0) 8.5 (0.2) -0.4 <0.001
16:1ω9 0.82 -0.2 (0) 8.5 (0.2) -0.4 <0.001
20:1ω7 0.81 -0.2 (0.1) 8.7 (0.2) -0.3 <0.001
16:3ω4 0.80 -0.2 (0) 8.6 (0.2) -0.4 <0.001
18:2ω4 0.79 -0.2 (0) 8.5 (0.2) -0.4 <0.001
16:4ω1 0.77 -0.3 (0.1) 8.7 (0.2) -0.4 <0.001
18:3ω6 (GLA) 0.73 -0.3 (0.1) 8.5 (0.2) -0.3 <0.001
18:4ω3 (OTA) 0.71 -0.3 (0.1) 9.1 (0.2) -0.4 <0.001
18:2ω6 (LA) 0.69 -0.4 (0.1) 9.0 (0.2) -0.5 <0.001
i16:0 0.67 -0.4 (0.1) 8.5 (0.2) -0.4 <0.001
18:3ω3 (ALA) 0.62 -0.5 (0.1) 8.8 (0.2) -0.6 <0.001
16:1ω11 0.58 -0.5 (0.1) 8.7 (0.2) -0.5 <0.001
ai17:0 0.54 -0.6 (0.1) 8.8 (0.2) -0.3 0.001
ai15:0 0.52 -0.7 (0.1) 8.8 (0.2) -0.6 <0.001
16:2ω4 0.34 -1.1 (0.2) 9.0 (0.2) -0.5 <0.001
16:1ω5 0.26 -1.4 (0.2) 9.0 (0.2) -0.6 <0.001
17:0 0.20 -1.6 (0.4) 9.1 (0.2) -0.3 <0.001
i15:0 0.18 -1.7 (0.2) 9.2 (0.2) -0.6 <0.001
15:0 0.18 -1.7 (0.3) 9.3 (0.2) -0.4 <0.001
i17:0 0.06 -2.8 (0.3) 9.5 (0.2) -0.6 <0.001

†Trimethyltridecanoic acid.
Five animal species, two macroalgal species, and two environmental components (see 
Table 1 for species list) sampled in the South site (see Figure 1A) were included in the 
analysis. Nereis spp. was not included because of insufficient tissues for quantification. 
Only FA with a statistically significant correlation coefficient (r) are shown.

FIGURE 5 | Biplot of bulk carbon (δ13C) and nitrogen (δ15N) stable isotope 
ratios of five animal species, two macroalgal species, and two environmental 
components (see Table 1 for species list) sampled inside or outside of 
the South site (see Figure 1A). Nereis spp. was not included because of 
insufficient tissues for quantification in the N analysis. Components grouped 
(circled) based on agglomerative hierarchical cluster analysis (see Figure S.1).
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hypothesis that the lipid composition of our study organisms 
generally reflects the predominantly cold-ocean conditions of 
Newfoundland (0.3°C in April in the present study).

Triacylglycerols are a key component of lipid structure and 
the primary energy storage molecules. They are important 
to organisms during stressful periods such as limited food 
availability or reproduction. High variability of TAG content 
among organisms can result from differences in allocation 
strategies (i.e. reproduction, growth, or survival) (Fraser, 1989; 
Lee et  al., 2006; Parzanini et  al., 2018). As such, elevated TAG 
levels in H. arctica (Lebour, 1938), Tonicella spp., and O. aculeata  
(Himmelman et  al., 2008) likely correspond to an abundance 
of food (i.e. phytoplankton) or reproductive timing; organisms 
increase and maintain their energy storage as they prepare for the 
reproductive season (Vanderploeg et al., 1992). Given the timing 
of our study (during the April phytoplankton bloom), high levels 
of TAG in H. arctica (34%), Tonicella spp. (29%), and O. aculeata 
(25%) likely demonstrate this energy storage trend and potential 
benthic-pelagic coupling, utilizing phytoplankton from the water 
column in the benthos as it becomes seasonally available (Iken 
et al., 2001; Hacker Teper, 2022). However, low TAG levels and 
high PL and ST levels of predatory/omnivorous A. rubens (2%, 
76%, 10%, respectively), Nereis spp. (4%, 63%, and 19%), and S. 
droebachiensis (6%, 61%, and 15%) probably link to organisms in 
search of food for rapid growth during harsh winter conditions 
(Luis and Passos, 1995; Lee Jr et  al., 2006). Over prolonged 
periods, low TAG levels could indicate stress (Fraser, 1989).

While seemingly low, lipid content levels of animal samples 
(~1% g g-1 wet weight) were similar to those in other studies 
(Allen, 1968; Parzanini, 2018). In comparison to the animals, 
seston samples were mainly comprised of PL (50%) and FFA 
(31%), with no evidence of TAG (0%). This finding challenges 
previous reports of Newfoundland seston rich in AMPL and low 
in FFA (Parrish et al., 1995). Although rare, high levels of FFA 
could reflect degradation of lipids as a result of sewage runoff 
from St. Philip’s township (Parrish et al., 1992; Galois et al., 1996). 
Despite the unusual lipid profiles of our seston lipids, total lipid 
levels (~57 µg L-1) were comparable to samples collected from a 
nearby Newfoundland site in 1991 (Parrish et  al., 1995), likely 
evidence of the annual phytoplankton bloom with fresh, lipid 
rich diatoms (Budge and Parrish, 1998; Kiriakoulakis et al., 2005; 
Parrish et  al., 2005). A sample volume greater than the 3 L of 
seawater filtered likely would have helped lipid class analyses. We 
therefore recommend filtering at least 10 L of seawater for future 
studies. Total lipid content of L. digitata samples (~1.3 mg g-1 wet 
weight) were markedly lower than the wide range conveyed in 
the literature (~11 – 60 mg g-1) (Raven et al., 2002; Schaal et al., 
2010). A small portion of this difference could be because of the 
different techniques employed; gravimetric assays are typically 
10 to 15% higher than Iatroscan-derived lipids (Parrish, 2013). 
Such low lipid contents could also reflect chemical changes 
of L.  digitata in response to sea-ice induced environmental 
changes. However, brown seaweeds in subarctic cold waters have 
significantly more total lipid than those in tropical warm waters 
(Terasaki et al., 2009; Nomura et al., 2013), and brown seaweeds 
increase their total lipids in winter and under low light conditions 
(Honya et al., 1994; Nelson et al., 2002; Nomura et al., 2013). This 

pattern suggests our noted low total lipid content in L. digitata 
could indicate issues with the extraction of L. digitata lipid.

54.3 Fatty Acids and Stable Isotopes
Higher levels of unsaturated FAs compared to saturated FAs 
typically result from cold-water conditions (Parrish, 2009). 
However, unlike lipid structure, which organisms solely regulate 
(Arts et al., 2009), FA composition also depends on diet, feeding 
strategy, and phylogeny (Dalsgaard et al., 2003; Makhutova et al., 
2011). High levels of ω3 FAs eicosapentaenoic acid (EPA; 20:5ω3) 
and docosahexaenoic acid (DHA; 22:6ω3), and occasionally 
ω6 FA arachidonic acid (ARA; 20:4ω6), typically characterize 
the marine environment. Our results suggest that except for 
H. arctica (9%) and A. rubens (5%), only trace amounts of DHA 
occur within the Newfoundland rhodolith community. Hiatella 
arctica and A. rubens likely require more DHA because mollusks 
need it for growth (Wacker et  al., 2002; Arts et  al., 2009) and 
hatching in copepods (Arendt et al., 2005), which were abundant 
in the diet of  A. rubens. The relatively high levels of DHA in 
H.  arctica mirror findings of Copeman and Parrish (2003) 
who reported that bivalves conserve relatively higher levels of 
plankton-derived DHA, and lower ARA, than echinoderms. The 
enhanced trophic relationship (TMF > 1) between A. rubens and 
calanoid copepod-derived lipids such as 20:1ω9 and 20:1ω11 
(TMF, 1.19), whether feeding directly or indirectly, follows 
the suggestion from Connelly et  al. (2014) that organisms can 
maintain lipid-rich energy stores from copepod-derived lipids 
in the same way as from DHA. The trophic relationship also 
aligns with our diatom abundance findings because calanoids in 
Newfoundland also rely on a diatom-based diet in winter (Urban 
et al., 1992; Beaugrand et al., 2002). Based on its nitrogen (δ15N) 
signature (11.0) and TP (3.2), we identified A. rubens as the top 
consumer of the studied components in the rhodolith food web. 
While we cannot ascertain the sources of its diet, its similar FA 
composition to H. arctica, combined with the predatory lifestyle 
of A. rubens towards mollusks (Allen, 1983) suggests H. arctica 
may be a potential prey item.

Eicosapentaenoic acid was the most abundant FA in each 
of the six animals sampled (A. rubens, 32%; H. arctica, 19%; 
Nereis spp., 29%; O. aculeata, 27%; S. droebachiensis, 25%; and 
Tonicella spp., 22%), which suggests a compensatory role for 
DHA deficiency. High levels of essential FA typically reflect the 
dominant microalgal group (Dalsgaard et al., 2003); EPA levels are 
consistently high in diatom-dominated environments, whereas 
DHA prevails where dinoflagellates dominate. We conducted our 
study at the beginning of the spring phytoplankton bloom, so 
high concentrations of EPA (diatoms) might have overshadowed 
any presence of DHA, such as in H. arctica and A. rubens (Budge 
et al., 2001; Dalsgaard et al., 2003). As indicated by its prevalence 
in all diets, EPA has a high trophic magnification factor (TMF, 
1.15). The biomagnification of EPA may confirm our hypothesis 
of a bottom-up food web in which most organisms rely on 
a shared resource (diatoms, EPA) passing from first order 
consumers onto second and third order consumers. The presence 
of diatom trophic biomarkers 16:0 and 16:1ω7 in sediment and in 
all animal diets, further points to diatoms as a major food source 

https://www.frontiersin.org/journals/marine-science
http://www.frontiersin.org/
http://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


Teper et al.

15Frontiers in Marine Science | www.frontiersin.org July 2022 | Volume 9 | Article 899812

Subarctic Rhodolith Bed Trophodynamics

in this rhodolith community. Although synthesized biomarkers 
like 16:0 are less useful for understanding dietary intake than 
externally derived FAs like EPA, we recommend considering 
synthesized FA given their obvious accumulation in the present 
study (Wennberg et  al., 2009). Interestingly, seston samples 
contained little EPA (1.2%) or 16:1ω7 (1.2%), but rather large 
proportions of 16:0 (21.7%; diatom and particulate macroalgae), 
18:1ω9 (32.9%; zooplankton and particulate macroalgae), and 
18:0 (18.2%; detrital) biomarkers (Wakeham and Canuel, 1988; 
Parrish, 2013; Legeżyńska, et al., 2014). This is in accordance 
with Bec et  al. (2010) who concluded phytoplankton only 
explains 27% of the variance in seston. Because of our study site’s 
proximity to riverine input, some proportions of 18:1ω9 and 
18:2ω6 (5.3%) could also be influenced by conifer pollen found 
in large quantities during spring (Masclaux et  al., 2013; Lichti 
et  al., 2017). Regardless, diatoms help support a rich infaunal 
community living underneath rhodoliths, which likely depends 
on deposition of organic material at the rhodolith-sediment 
interface (Steller et  al., 2003; Grall et  al., 2006; Berlandi et  al., 
2012). However, diatoms may provide more than just food to 
rhodolith beds, as per Steller and Cáceres-Martínez’s (2009) 
suggestion that diatom films on rhodoliths promote larval 
settlement of invertebrates (Morse et  al., 1988; Daume et  al., 
1999; Huggett et al., 2006).

Although less abundant than EPA or DHA, at least some 
marine organisms also require ARA as an essential FA. ARA is 
particularly important for echinoderms (Copeman and Parrish, 
2003) to regulate metabolic activities (Ciapa et al., 1995) and to 
maintain membrane structure and function (Parrish, 2009). In 
our study, ARA was highest in the echinoderms A. rubens (20%) 
and S. droebachiensis (15%). These high levels of ARA in sampled 
urchins were higher than those reported by Kelly et  al. (2008) 
from both a coralline barren and kelp bed (Laminaria digitata). 
Laminaria digitata, a common food source for S. droebachiensis 
in eastern Canada, is typically rich in ARA (Fleurence et al., 1994; 
Schmid et al., 2014) and its low nitrogen (δ15N) signature (3.4) 
places it at the base of our food web (TP: 1.0). However, our kelp 
samples contained only 0.1% of ARA proportionally, making it 
an unlikely source of ARA across our food web. Nevertheless, 
high levels of a FA precursor to ARA, 18:2ω6 (9%), marked FA 
profiles of L. digitata. The ability of S. droebachiensis to synthesize 
ARA from 18:2ω6 complicates biomarker identification from 
algal FAs (Kelly et  al., 2008). Combining FA analyses with 
stable isotope analyses can increase the resolution of organism 
diets. Thus, given some similarities of carbon (δ13C) signatures, 
S. droebachiensis (-19.8‰) may consume L. digitata (-21.0‰); 
however, δ13C signatures of L. digitata were degraded compared 
to literature (Raven et  al., 2002; Schaal et  al., 2010). Although 
we could not identify the dietary source of ARA among sampled 
components, we conclude amphipods represent a potential 
source of ARA in the rhodolith system because of both their high 
abundance in the rhodolith community and their typical ARA 
richness (Guerra-García et al., 2004). Given its biomagnification 
across diets (TMF, 1.16), ARA likely represents a key essential FA 
in the rhodolith food web and should be a focus of future studies.

Three potential photosynthetic carbon sources exist 
within a rhodolith bed: macroalgae (including the rhodoliths 

themselves), phytoplankton, and microphytobenthos (Grall 
et al., 2006). Similarly to S. droebachiensis, the (δ13C) signature 
(-19.3‰) of Tonicella spp. resembled that of rhodoliths 
(-18.9‰) and not kelp, suggesting that our focal grazing species 
feeds directly on coralline algae with little to no dietary input 
from kelp.  Strongylocentrotus droebachiensis  often leaves star-
shaped tooth marks on rhodoliths (personal observations) 
and consumes coralline algae and microalgal films in coralline 
barrens, though limiting their bites to tips of rhodolith branches 
(Steneck, 1990; Scheibling et  al., 1999; Lauzon-Guay and 
Scheibling, 2007). Tonicella spp. occurs in high abundance, often 
on the outside of rhodoliths. Although their bite marks are not 
as evident as those of S. droebachiensis, their articulating plates 
give them the unique ability to graze between rhodolith branches 
(Steneck, 1990). In addition to consuming corallines, these 
grazers can graze on diatom films on the surface of rhodoliths 
(James, 2000). Lipid concentrations were too low to confidently 
rely on our rhodolith lipid and FA results, therefore preventing 
comparisons with results for S. droebachiensis and Tonicella. spp. 
Contrary to Kelly et al. (2008) who sampled a blend of coralline 
algae taxa, our study is the first to explore lipids in a (presumably) 
single rhodolith species (L. glaciale). We were uncertain of the 
quantity of rhodolith material needed for our lipid analyses. 
We found that 3-5 g of rhodolith material yields negligible lipid 
concentrations. Based on our subsequent calculations and recent 
findings by Teed et  al. (2020) that Newfoundland rhodoliths 
are 85% CaCO3 by weight (Teed et  al., 2020), we recommend 
a minimum of 12-15  g of rhodolith material (organic and 
inorganic, combined) for future analyses. As mentioned above, 
δ13C signatures of L. digitata were lower than published accounts. 
We propose that sea ice contributed to carbon depletion in this 
species by causing bacterial degradation of kelp tissues or the 
production of new fronds on stored photosynthates containing 
little nutritional value, or by creating inadequate phytosynthetic 
conditions (Fredriksen, 2003; Vanderklift and Bearham, 2014). 
Furthermore, because δ15N signatures are influenced by light 
availability (Vanderklift and Bearham, 2014) and nutrient status 
(Gagné et  al., 1982; Schaal et  al., 2009), it is possible that sea 
ice also contributed to the unusually low δ15N signatures of L. 
digitata (3.4‰) (Raven et al., 2002; Schaal et al., 2010). This and 
the low total lipids in L. digitata require additional investigation.

Fatty acid profiles of H. arctica, O. aculeata, and Tonicella spp. 
were influenced by bacterial (16:2ω4 and  i17:0) and red and 
green seaweed (18:1ω7) trophic biomarkers. δ15N signatures 
identified H. arctica (6.3‰) as a first order consumer and O. 
aculeata (9.0‰) and Tonicella spp. (9.7‰) as second order 
consumers. Though their trophic levels differed (TP, 1.9, 2.6, and 
2.9, respectively), the similar δ13C signatures (-19.3 – -20.0‰) in 
the three species indicate similar carbon sources. In combining 
FA and stable isotope analyses, we identified similarities between 
the diets of non-predatory benthic organisms that suggest 
a  resource partitioning relationship wherein animals consume 
different elements of the same foods (i.e. particulate algae, 
microphytobenthos, phytoplankton) at different times using 
different strategies (filter feeding, suspension feeding, and grazing, 
respectively), resulting in the effective use of the majority of the 
food source (Hines, 1982; Parrish et al., 2009). Accordingly, the 
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feeding strategy of O. aculeata offers a possible explanation for 
the feeding relationship described above. Although brittle stars 
shared a nearly identical δ13C signature to  H. arctica (-19.9‰ 
and -20.0‰, respectively), their stronger δ15N signature (9.0‰ 
versus 6.3‰, respectively) presumably originated from POM 
enrichment as POM settled on the seafloor (Iken et  al., 2001). 
Therefore, O. aculeata likely consumes the same material as H. 
arctica, but as resuspended matter rather than through direct 
filter feeding, and thus benefits from the particulate leftover 
from H. arctica. Additionally, Tonicella spp. may graze on larger 
particulate material inaccessible to O. aculeata, potentially 
breaking it down into smaller pieces for consumption by O. 
aculeata. Indeed O. aculeata utilizes several different suspension 
feeding mechanisms to collect from the water column 
enriched, resuspended benthic particles (Labarbera, 1978). 
The species  may therefore enhance benthic-pelagic coupling 
in transferring organic material from the pelagic zone to the 
benthos (Guerra-García et al., 2004). Our findings corroborate 
Grall et al.’s (2006) demonstration that rhodolith beds comprise 
both pelagic (Herman et  al., 2000) and benthic, algae-based 
feeding relationships (Takai et al., 2004).

4.4 Conclusion and Future Research 
Directions
Our study supports the hypotheses that (1) the lipid composition of 
rhodolith cryptofauna generally reflects the predominantly cold-
ocean conditions of Newfoundland; and (2)  the rhodolith bed 
food web is mainly controlled from the bottom up by planktivores 
and detritivores as reflected by high abundance of planktonic and 
bacterial biomarkers. Our lipid and FA analyses revealed high 
levels of phospholipids and unsaturated FAs combined with low 
sterols in all animal species, suggesting adaptability for enhanced 
cell membrane fluidity in a cold-water environment. Our FA and 
stable isotope analyses showed that many taxa in the rhodolith 
community rely on a shared resource: diatoms. We also unveiled 
potential resource partitioning between first- (H. arctica) and 
second- (O. aculeata and Tonicella spp.) order consumers, 
whereby differences in feeding strategies enable utilization of 
specific components of the same organic and inorganic material.

Our study documents, for the first time, the specific diets 
of, and feeding relationships among, dominant animal taxa in 
a cold-ocean, Newfoundland rhodolith bed. The complexity of 
feeding relationships in benthic systems (Kharlamenko et  al., 
2001; Pitt et  al., 2009; Kelly and Scheibling, 2012), temporal 
variability of benthic-pelagic coupling (Iken et al., 2001; Hacker 
Teper, 2022), and uncertainty in the amount of sample material 
required for some bed components (seawater and L. glaciale), 
limited the ability to decipher all possible linkages among and 
above the ten rhodolith bed components included in the present 
study. Future studies of rhodolith bed trophydynamics should 
use the aformentioned minimal sampling material requirements. 
We also recommend expanding the breadth of focal species to 
include, for example, pelagic organisms such as amphipods and 
copepods (Guerra-García et  al., 2004; Pakhomov et  al., 2004). 
The unknown contribution to trophodynamics of sediment and 
associated infauna underlying rhodoliths should be explored, 

particularly that of bacteria and microbes and their production 
of FAs (e.g. 16:0, 16:1ω7, and 18:1ω7) (Fullarton et al., 1995). The 
present study provides a snapshot of the feeding relationships 
in a subartcic rhodolith bed. A companion study at our study 
site suggests the feeding relationships reported in the present 
study are spatially and temporally stable with no appreciable 
intra annual changes outside of the spring phytoplankton bloom 
(Hacker Teper, 2022). Similar studies with broader spatial and 
temporal coverage would help further understand the diversity 
and stability of these relationships in rhodolith communities.
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