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Abstract

The class of locally compact groups has been widely studied in group theory, repre-

sentation theory, and harmonic analysis. There is a current program of extending

geometric techniques used in the study of discrete groups to this larger class [Wil94,

KM08,CCMT15,CdlH16]. This thesis is part of that program. We use geometric

methods to study the compactness properties of subgroups in the class of topological

groups containing a compact open subgroup. This class includes discrete groups,

profinite groups, and totally disconnected locally compact groups as subclasses.

In the first project, we study discrete hyperbolic groups. Finitely presented

subgroups of hyperbolic groups are not necessarily hyperbolic; the first examples of

this phenomenon were constructed by Brady [Bra99]. In contrast, for hyperbolic

groups of integral cohomological dimension at most two, finitely presented subgroups

are hyperbolic; this is a result of Gersten [Ger96b]. We extend this result to hyperbolic

groups with rational cohomological dimension bounded by two. This applies to

examples of groups constructed by Bestvina and Mess, fully describing the nature of

their finitely presented subgroups, which was previously unknown.

In the second project, we extend Gersten’s result for totally disconnected locally

compact (TDLC) groups. In particular, we prove that closed compactly presented

subgroups of hyperbolic TDLC groups of discrete rational cohomological dimension

bounded by two are hyperbolic. We also characterize hyperbolic TDLC groups in terms

of isoperimetric inequalities and study small cancellation quotients of amalgamated

free products of profinite groups over open subgroups.

In the last project, we study coherence of topological groups. A group is coherent

if every compactly generated subgroup is compactly presented. We prove that amalga-

mated free products of coherent groups over compact open subgroups are coherent. We

also show that certain small cancellation quotients of these groups are also coherent,
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generalizing a result of McCammond and Wise [MW05]. In order to prove the main

results, we study relative hyperbolicity for topological groups containing compact open

subgroups with respect to finite collection of open subgroups, and extend some results

of Osin [Osi06].
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Lay summary

A group in mathematics is an abstraction of the concept of symmetry. For any object,

the collection of all its transformations forms a group. For instance, the collection

of all the moves of a Rubik’s cube is a group. The subject of this thesis falls under

the domain of Geometric group theory, which aims to study infinite groups from the

perspective of geometry. For instance, many properties of groups can be understood

by studying graphs, called Cayley graphs; and these graphs are unique up to quasi-

isometry. Intuitively, this means that all Cayley graphs of a finitely generated group

look the same from far away. A finite set of points and a single point; or a discrete line

and a continuous line, are some simple examples of objects that look the same from

far enough distance. They are in fact, quasi-isometric under the formal framework.

This opens up a whole paradigm where geometric properties that are preserved under

quasi-isometry can be attributed to groups.

An interesting property of groups that we study in this thesis is δ-hyperbolicity,

where δ is any real number. Intuitively, a finitely generated group is hyperbolic if

any triangle in its Cayley graph is thin. To illustrate hyperbolicity, imagine a planet

where every person on it can see up to δ unit distance. If this planet is δ-hyperbolic,

then among any three neighboring house properties on this planet, none of them can

have privacy. In particular, any part of each house can be seen from at least one of

the other neighbour’s property. Groups with such underlying geometry have very

interesting properties and have been studied widely by mathematicians over the past

three decades. In this thesis, we study the behavior of subgroups of certain hyperbolic

groups. A subgroup is a subcollection of the group that itself forms a group. In general,

a subgroup need not have the same geometric properties as the group. We study

hyperbolic groups among other groups and provide results where subgroups preserve

the geometric structure of the ambient group.
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Chapter 1

Introduction

Geometric group theory aims to study groups using topological and geometric tech-

niques. The underlying principle is that many properties of groups can be understood

by studying associated spaces. There are numerous examples of spaces associated

to groups that have been paramount in the study of groups including Cayley graphs,

classifying spaces, presentation complexes, homogeneous spaces, buildings etc. [Geo08].

Some of the pioneering ideas of using geometry and topology to study groups were

introduced in the early 20th century in the works of J.H.C. Whitehead, E. Van Kampen,

J. R. Stallings, and many others. For instance, Max Dehn [Deh11] in 1911, used the

geometry of the hyperbolic space to solve the word problem for the fundamental groups

of surfaces. Small Cancellation theory [Gre60] and Bass-Serre theory [Ser80] are some

of the other key examples of early theories using such methods.

By the late 20th century, many interesting techniques and results in this direction

emerged from different areas of mathematics; for instance, the Mostow rigidity theorem

from the study of lattices in Lie groups [Mos68], the study of Kleinian groups and

3-manifolds [Thu82], and the study of groups as formal languages in the work of

Cannon, Thurston et al. [ECH+92]. Gromov’s influential monograph on hyperbolic

groups [Gro87] and his theorem characterizing virtually nilpotent groups in terms

of geometric attributes [Gro81], are considered instrumental to the development of

geometric group theory as an independent subject of study.

Geometric group theory currently has large overlaps with homological algebra,

topology, geometry, formal language theory, probability, dynamics, and more. The

techniques in geometric group theory have been highly successful in solving some
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major long-standing problems in mathematics, for instance, the Virtual Haken Conjec-

ture [Ago13] and Tarski’s problem on elementary theory of free groups [KM98,Sel01].

Although most tools in geometric group theory were developed to study discrete

groups, recent works have shown that these techniques can also be successfully applied

to study locally compact topological groups [KM08,CCMT15,CdlH16]. The study

of locally compact groups has been fundamental in the context of harmonic analysis,

ergodic theory, and representation theory. For a locally compact groupG, the connected

component of the identity, denoted by G0, is a connected locally compact normal

subgroup, and we have a short exact sequence 1 → G0 → G → G/G0 → 1, where

the quotient group G/G0 is a totally disconnected and locally compact group, often

abbreviated as a TDLC group. So, in principle, the study of locally compact groups

can be divided into studying connected locally compact groups and TDLC groups.

The connected case has been studied exhaustively and is understood better, especially

after the solution to Hilbert’s fifth problem; it is known that connected locally compact

groups are inverse limits of Lie groups, see [Tao14] for an exposition.

However, no similar understanding of the structure of TDLC groups exists. The

class of TDLC groups comprises a large collection of seemingly unrelated subclasses of

groups like discrete groups, profinite groups, algebraic groups over p-adic numbers,

and the automorphism groups of locally finite graphs, among others. The geometric

approach to understanding locally compact groups has gathered a new interest in their

study. In this thesis, we continue this approach.

The general theme of the thesis is to understand the behavior of subgroups of

locally compact groups. Specifically, the results of the thesis concerns compactness

properties of subgroups. Compactness properties are the properties of groups that

are trivially satisfied by compact groups, like being compactly generated, admitting

compact presentation, etc. This is a natural generalization of finiteness properties

for discrete groups, like being finitely generated, admitting finite presentation, etc.

These properties have well-defined geometric interpretations and a natural hierarchical

generalization, called Fn-properties, studied in [Bro94] and [CC20], for discrete groups

and TDLC groups, respectively.

In general, compactness properties of subgroups can be quite different from that

of the ambient group. For certain classes of groups, an additional hypothesis on the

dimension of groups can ensure that the compactly presented subgroups inherit the
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geometric structure of the ambient groups; or that the compactly generated subgroups

are in fact compactly presented. This thesis comprises three projects covered in

Chapters 3, 4, and 5; that provide positive results in this direction. In the first project,

we study discrete groups, and in the last two projects, we study these properties for

topological groups.

In the first project, presented in Chapter 3, we study discrete hyperbolic groups.

These groups were introduced by Gromov in his monograph [Gro87] and have been the

centre of interest in geometric group theory, see Chapter 2 for the definition. Examples

of hyperbolic groups include free groups, fundamental groups of surfaces with genus

at least two, one-relator groups with torsion, fundamental groups of Riemannian

manifolds of negative sectional curvature, special linear group SL2(Z), among others,

see [DK18].

Hyperbolic groups, though defined geometrically, have an interesting algebraic

structure. For instance, they are finitely presented, (in fact are of type Fn for all

n ≥ 1 [Rip82]), have solvable word problem [Deh12,BH99], have finitely many finite

subgroups up to conjugacy [BsG95,Bra00], etc. Interestingly, in a certain sense almost

all finitely presented groups are hyperbolic, see [Os92] for a formal statement. It is

thus natural to investigate whether a subgroup of a hyperbolic group is hyperbolic.

In general, the answer is negative; for instance, the commutator subgroup of the free

group over two generators is not even finitely generated. Rips [Rip82] constructed

the first examples of hyperbolic groups with finitely generated subgroups that are

not hyperbolic. However, in 1996, Gersten proved the following result in the positive

direction,

Theorem 1.0.1 (Gersten [Ger96b]). Let G be a hyperbolic group such that cdZ(G) = 2.

If H is a finitely presented subgroup, then H is hyperbolic.

Note that cdZ(G) represents the cohomological dimension of the group with respect

to the ring of integers. For the definition, refer Chapter 2. Gersten’s result turned

out to be sharp for integral cohomological dimension 2, since Noel Brady in [Bra99]

proved that this phenomenon fails for higher dimensions. In particular, he constructed

hyperbolic groups with integral cohomological dimension 3, that contain finitely

presented subgroups that are not hyperbolic.

In this project, we extend Gersten’s result for rational cohomological dimension. In

fact, there exist hyperbolic groups with integral cohomological dimension 3 and rational
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cohomological dimension 2. The first examples of such groups were discovered by

Bestvina and Mess [BM91] based on methods given by Davis and Januszkiewicz [DJ91].

This class also contains finite index subgroups of hyperbolic Coxeter groups, examples

that were discovered by Dranishnikov [Dra99]. The nature of finitely presented

subgroups of groups in this class was not known before. In particular we prove that

Theorem 1.0.2. [AMP20] Let G be a hyperbolic group such that cdQ(G) ≤ 2. If H is

a finitely presented subgroup, then H is hyperbolic.

For the proof of Theorem 1.0.1, Gersten’s argument uses homological isoperimetric

inequalities for groups with respect to the ring of integers and relies upon the existence

of finite-dimensional Eilenberg–MacLane complexes corresponding to the groups.

Homological isoperimetric inequalities with respect to the integers have been studied

by many authors, see [You11,Fle98,HMP16] for example. For this project, we study

homological isoperimetric inequalities in arbitrary dimensions with respect to the

rational numbers. Since direct topological constructs are not available in the generality

we work, we use tools from the field of homological algebra.

Another motivation of this project is to generalize Gersten’s result to groups

admitting torsion, specifically, to the class of hyperbolic groups G admitting a 2-

dimensional classifying space for proper actions, denoted as EG. A model for EG is

a G-CW-complex X with the property that, for each subgroup H the subcomplex

of fixed points is contractible if H is finite, and empty if H is infinite. The minimal

dimension of a model for EG is denoted by gd(G). Considering the cellular chain

complex with rational coefficients of a model for EG with minimal dimension shows

that

cdQ(G) ≤ gd(G).

This inequality implies the following corollary.

Corollary 1.0.3. [AMP20] If G is a hyperbolic group such that gd(G) ≤ 2, then any

finitely presented subgroup is hyperbolic.

The results of this project are published in [AMP20], and this article is presented

in Chapter 3.

Hyperbolic groups, though widely studied for the discrete case, can be studied

for the more general class of locally compact groups, see [CCMT15]. In the second
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project, which is presented in Chapter 4, we study hyperbolicity for locally compact

groups with totally disconnected topology, i.e. TDLC groups. By van Dantzig’s

Theorem [VD36], all TDLC groups admit a basis of compact open subgroups. This

allows extension of some of the techniques from geometric group theory to this setting.

For instance, every compactly generated topological group with a compact open

subgroup admits a cocompact action on a locally finite graph with compact open

vertex stabilizers. These graphs can be chosen uniquely up to quasi-isometry. This

is analogous to the Cayley graph for finitely generated groups, and these graphs are

called Cayley-Abels graph [KM08]. As a consequence, hyperbolicity for these groups

can be defined as follows: A compactly generated TDLC group is said to be hyperbolic

if any Cayley-Abels graph of G is δ-hyperbolic for some real number δ. For an example

of a hyperbolic topological group, consider the following:

Example 1.0.4. For any prime p, the Cayley-Abels graph of the special linear group

SL2(Qp) over the p-adic numbers is quasi-isometric to a tree [KM08, Example 2], and

hence it is a hyperbolic TDLC group.

A group G is compactly presented if it admits a group presentation with a compact

generating set and relators of bounded length. A discrete hyperbolic group can be

completely characterized by isoperimetric inequalities, see [Ger96b, Theorem 3.1]. In

this project, we characterize TDLC hyperbolic groups in terms of weak isoperimetric

inequalities. In particular,

Theorem 1.0.5. [ACCCMP21] A compactly generated TDLC-group G is hyperbolic

if and only if G is compactly presented and satisfies the weak linear isoperimetric

inequality.

The main goal of this project is to extend Gersten’s result to hyperbolic TDLC

groups. In [CW16a], Castellano and Weigel introduced rational discrete cohomology

for TDLC groups, a cohomology theory that captures the geometry of the actions of

TDLC groups on Cayley-Abels graphs. This allows the notion of rational cohomological

dimensions to be defined for TDLC groups. We extend some of the techniques

developed in the first project to this framework, and prove the following generalization

of Theorem 1.0.2:

Theorem 1.0.6. [ACCCMP21] Let G be a hyperbolic TDLC-group with cdQ(G) ≤ 2.

Every compactly presented closed subgroup H of G is hyperbolic.



6

The above theorem can be applied, for instance, to the following geometric scenario.

Corollary 1.0.7. [ACCCMP21] Let X be a locally finite 2-dimensional simplicial

CAT (−1)-complex. If Aut(X) acts with finitely many orbits on X, then every com-

pactly presented closed subgroup of Aut(X) is a hyperbolic TDLC-group.

We further use small-cancellation theory to illustrate hyperbolic TDLC groups

satisfying the hypothesis of Theorem 1.0.6.

Theorem 1.0.8. [ACCCMP21] Let A ∗C B be the amalgamated free product of the

profinite groups A,B over a common open subgroup C. Let R be a finite symmetrized

subset of A ∗C B that satisfies the C ′(1/12) small cancellation condition. Then the

quotient G = (A ∗C B)/〈〈R〉〉 is a hyperbolic TDLC-group with cdQ(G) ≤ 2.

The results of this project are published in [ACCCMP21].

In the last project, presented in Chapter 5, we study coherence among topological

groups. A topological group is said to be coherent if every open compactly generated

subgroup is compactly presented. Compact groups are the easiest examples of coherent

topological groups. In the case of discrete groups, the study of coherent groups has been

a topic of wide interest, motivated by long outstanding conjectures like Baumslag’s

conjecture [Bau74]. Finite groups, polycyclic groups, free groups, surface groups are

some of the examples of discrete coherent groups. A remarkable result proven by

Scott [Sco73] and Shalen (unpublished) independently shows that fundamental group

of manifolds of dimension at most three are coherent. A recent survey by Wise [Wis20]

reviews the progress in the field of coherent groups and poses current open questions.

We focus on coherence in the class of locally compact groups with a compact open

subgroup. Recall that all TDLC groups are particular examples of these groups. In

the discrete case, amalgamated free products of coherent groups over finite groups are

coherent [MPW11b]. In this project, we generalize that as follows:

Theorem 1.0.9 (Combination of Coherence Groups). [AMP22] If G = A ∗C B is

a topological group that splits as an amalgamated free product of two coherent open

subgroups A and B with compact intersection C, then G is coherent.

In particular, groups splitting as the amalgamated free products over compact

open subgroups are coherent groups. This implies that SL2(Qp) is coherent since
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it splits as an amalgamated free product of compact groups over a common open

subgroup. One can also iterate the construction, for instance: The amalgamated free

product SL2(Qp) ∗SL2(Zp) SL2(Qp) of two copies of SL2(Qp) along the compact open

subgroup of SL2(Zp) is a coherent group. We are able to import McCammond and

Wise’s perimeter method in the class of locally compact groups with a compact open

subgroup:

Theorem 1.0.10. [AMP22] Let A∗CB be a topological group that splits as an amalga-

mated free product of two coherent open subgroups A and B with compact intersection

C. Suppose r ∈ A ∗C B is not conjugate into A or B. If m is sufficiently large

and rm satisfies the C ′(1/6) small cancellation condition, then the quotient group

G = (A ∗C B)/〈〈rm〉〉 is coherent.

This result in the case that A and B are free groups is a result of McCammond

and Wise [MW02, Theorem 8.3], and the generalization where A and B are coherent

discrete groups is a result in [MPW11b, Theorem 1.8].

In order to prove the above results, we extend some of the classical theory of discrete

groups studied by Osin in [Osi06] to topological groups with a compact open subgroup.

In particular, we introduce the notion of relative compact generation, relative compact

presentation, and relative hyperbolicity. The relative notions concern groups along

with a collection of their subgroups; in particular, we focus on what we refer to as

proper pairs:

Definition 1.0.11 (Proper pair). A pair (G,H) is called a proper pair if

1. G is a topological group with a compact open subgroup;

2. H is a finite collection of open subgroups of G;

3. No pair of distinct subgroups in H are conjugate in G.

We develop the notion of compact generation of a topological group relative to

a finite collection of open subgroups. A topological group G is compactly generated

relative to a collection of subgroups H if there is a compact subset K ⊂ G such that G

is algebraically generated by K ∪
⋃

H. This is a natural generalization of the work of

Osin in [Osi06].
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We complement the algebraic notion of relative compact generating set with an

equivalent notion of a relative compact generating graph, see Definition 5.4.4. It is

particularly suited for the study of topological groups since it encodes the topology of

the group, see Proposition 5.4.3, and it allows for a natural application of geometric

techniques.

We prove that topological groups compactly generated relative to a finite collection

of open subgroups act cocompactly and discretely on connected graphs. In particular,

we prove the following topological characterization.

Theorem 1.0.12 (Topological Characterization). [AMP22] Let (G,H) be a proper

pair. The following statements are equivalent:

1. G is compactly generated relative to H.

2. G admits a compact generating graph relative to H.

3. There is a discrete, connected cocompact G-graph Γ with compact edge stabilizers,

vertex stabilizers are either compact or conjugates of subgroups in H, every

H ∈ H is the G-stabilizer of a vertex, and any pair of vertices with the same

G-stabilizer H ∈ H are in the same G-orbit if H is non-compact.

We define the connected G-graph satisfying the condition (3) in Theorem 1.0.12, as

a relative Cayley-Abels graph of G with respect to H, see also Definition 5.4.10. These

graphs are not necessarily locally finite; however, we show that they are pairwise quasi-

isometric. There is a generalization of locally finite graphs introduced by Bowditch

known as fine graphs [Bow12]; a graph is fine if for any pair of vertices u, v and any

integer n, there are finitely many embedded n-paths from u to v.

Theorem 1.0.13 (Quasi-isometry Invariance). [AMP22] Let (G,H) be a proper pair.

1. Any two relative Cayley-Abels graphs of G with respect to H are quasi-isometric.

2. If one relative Cayley-Abels graph of G with respect to H is fine, then all are

fine.

The above theorem allows for large-scale geometric techniques to apply. For

example, we can define relative hyperbolicity for (G,H) pairs: A topological group G
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is said to be relatively hyperbolic with respect to H if there exists a relative Cayley-

Abels graph of G with respect to H that is fine and hyperbolic. This is a generalization

of relative hyperbolicity for finitely generated groups given by Bowditch [Bow12]. This

definition of relative hyperbolicity for discrete groups has been studied in [MP16],

[MPW11a]. There are multiple definitions of relatively hyperbolic groups in the discrete

case. For a proof of equivalence, see [Hru10]. A generalization of a different definition

of relative hyperbolicity for locally compact groups has been studied in [CCMT15].

Example 1.0.14. For examples of relative hyperbolic topological groups, consider

the following. See Proposition 5.8.5 for details and Theorem 1.0.8 for a comparison.

1. Let (G,Λ) be a finite graph of topological groups with compact open edge groups.

Then the fundamental group of (G,Λ) is relatively hyperbolic with respect to

the vertex groups Gv.

2. Let A ∗C B be the amalgamated free product of the topological groups A,B over

a common open subgroup C. Let R be a finite symmetrized subset of A ∗C B

that satisfies the C ′(1/12) small cancellation condition. Then the quotient

G = (A ∗C B)/〈〈R〉〉 is relatively hyperbolic with respect to {A,B}.

We generalize the concept of compact presentation for pairs (G,H) in Defini-

tion 5.6.1, and we prove that:

Theorem 1.0.15 (Topological Characterization). [AMP22] Let (G,H) be a proper

pair. The following statements are equivalent:

1. G is compactly presented with respect to H.

2. There exists a relative Cayley-Abels graph Γ of G with respect to H which is the

1-skeleton of a simply-connected cocompact discrete G-complex.

We define the G-complex satisfying the condition (2) in Theorem 1.0.15, as relative

Cayley-Abels complex of G with respect to H. A stronger version of the above theorem

is proven as Corollary 5.6.7, which generalizes a classical result by [Mac64] that a

discrete group is finitely presented if and only if it acts cellularly, cocompactly, and

with finite vertex stabilizers on a simply connected space.
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We further prove that if G is relatively hyperbolic with respect to H, then G is

compactly presented relative to H. We also generalize results of Osin [Osi06, Theorem

1.1 and Theorem 2.40] for topological pairs (G,H).

Theorem 1.0.16. [AMP22] Let (G,H) be a proper pair. Suppose that G is compactly

presented relative to H.

1. If each H ∈ H is compactly presented then G is compactly presented.

2. If G is compactly generated, then each H ∈ H is compactly generated.

The details of this project are presented in Chapter 5.

We conclude this introduction with an application obtained by combining results

from Chapter 4 and Chapter 5. We will cover the future directions of research in

Chapter 6.

Theorem 1.0.17. LetW = A∗CB be a topological group that splits as an amalgamated

free product of profinite groups over a common open subgroup. Suppose r ∈ A ∗C B is

not conjugate into A or B. If m is sufficiently large and rm satisfies the C ′(1/6) small

cancellation condition, then compactly generated subgroup of the group G = W/〈〈rm〉〉

is hyperbolic.

Proof. Let H be any compactly generated subgroup of G. By Theorem 1.0.10, G is

coherent, hence H is compactly presented. By Theorem 1.0.8, G is a hyperbolic group

with cdQ(G) ≤ 2. Therefore, Theorem 1.0.6 implies H is hyperbolic.

Observe that, by applying the coherence result Theorem 1.0.10, we get a stronger

result, describing the nature of all compactly generated subgroups, as compared to

just applying Theorem 1.0.8, which deals with compactly presented subgroups.



Chapter 2

Background

In this chapter, we recall some of the definitions used in this thesis and illustrate

them with examples. Some of the technical definitions are included in the individual

chapters. For detailed background, we refer to these texts [Geo08,BH99,Bro94].

Quasi-isometry

Quasi-isometry is an equivalence relation on metric spaces. It is a coarse version of

Lipschitz equivalence and intuitively means that two spaces look the same from far

enough distance. Formally, two metric spaces are said to be quasi-isometric if there

exists a map f : X → Y and constants λ ≥ 1, k ≥ 0, and c ≥ 0 such that

1. For any p, q ∈ X, we have

1

λ
d(p, q)− k ≤ d(f(p), f(q)) ≤ λd(p, q) + k

2. For every y ∈ Y there exists x ∈ X such that d(y, f(x)) ≤ c.

Such a map f is said to be a quasi-isometric embedding. Some easy examples to

observe here are the following:

• A singleton set and a finite set, as metric subspaces of Rn, for any natural number

n, are quasi-isometric.
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• The real line with the usual metric and the set of integers as its subspace are

quasi-isometric.

The metric spaces we will be working within this thesis are connected graphs. A

connected graph can be considered as a metric space by assigning a unit length to

each edge.

A Cayley graph for a finitely generated group is a directed graph with transitive

and free action of the group by graph automorphisms. It is a classical result that

all Cayley graphs of a finitely generated group are quasi-isometric to each other.

A generalization of Cayley graphs for compactly generated topological groups with

compact open subgroups is known as Cayley-Abels graph, see Section 4.4 for details.

Any two Cayley-Abels graphs for a compactly generated topological group with a

compact open subgroup are quasi-isometric, see [KM08] for a proof.

In this thesis, we will introduce relative Cayley-Abels graphs for pairs (G,H), where

G is a topological group with a compact open subgroup, and H is a finite collection

of open subgroups. We will generalize the quasi-isometry result for these graphs in

Section 5.5.

Cellular complexes

A map Y → X between CW complexes is cellular if its restriction to each open cell of

Y is a homeomorphism onto an open cell of X. A CW -complex X is cellular provided

that the attaching map of each open cell of X is cellular for a suitable subdivision.

An example of a cellular complex in which we are interested in this thesis is the

presentation complex. It is a 2-dimensional cell complex associated to any presentation

of a group G. The complex has a single vertex, and one loop at the vertex for each

generator of G. There is one 2-cell for each relation in the presentation, with the

boundary of the 2-cell attached along the appropriate word. The fundamental group

of a presentation complex of a group is the group itself; higher dimensional cells

can be attached to the presentation complex to get an Eilenberg–MacLane K(G, 1)

space for G, which has trivial homotopy groups for n > 1. The universal cover of the

presentation complex is called Cayley complex, whose 1-skeleton is a Cayley graph of

the group.
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Figure 2.1: Note that γ ⊆ Nδ(α) ∪Nδ(β)

In Section 5.6, we will introduce relative Cayley-Abels complexes for proper pairs

(G,H), which are 2-dimensional cellular complexes with relative Cayley-Abels graphs

as 1-skeleton.

Hyperbolic groups

A finitely generated group is hyperbolic if any of its Cayley graph is a δ-hyperbolic

space, for some real number δ. The δ-hyperbolicity, often called Gromov hyperbolicity,

is a metric generalization of Riemannian manifolds with constant negative sectional

curvature. For a geodesic metric space, being a δ-hyperbolic space means that all its

geodesic triangles are δ-slim. Formally, a geodesic space X is Gromov-hyperbolic if

there exists a real number δ such that for any geodesic triangle, each side is contained

in the δ-neighbourhood of the other two sides, see Figure 2.1. It is a classical result

that Gromov-hyperbolicity is a quasi-isometric invariant and hence is a well-defined

property of a finitely generated group. Some of the examples of hyperbolic groups are

finite groups, free groups, fundamental group of closed surfaces of genus grater than

one, etc.

Projective resolution

A module P is projective if and only if for every surjective module morphism f : N →M

and every module morphism g : P →M , there exists a module morphism h : P → N

such that f ◦ h = g. Given a module M , a projective resolution of M is an infinite

exact sequence of modules.

· · · → Pn → · · · → P2 → P1 → P0 →M → 0,
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where all Pi are projective modules. It is said to have length m if

0 → Pm → · · · → P2 → P1 → P0 →M → 0,

is exact.

We will use projective resolutions in Chapter 3 and Chapter 4, to define the

dimensions of groups. In particular, the cohomological dimension cdR(G) of a group G

with respect to a commutative ring R is less than or equal to n if the trivial RG-module

R has a projective resolution of length n. Here RG is the group ring, which is defined

as follows: Suppose G is a group and R is a commutative ring, then the group ring

RG is
⊕
g∈G

R(g), where R(g) is the free R-module generated by the set {g}. The

multiplication is defined as follows

(
∑

g∈G

rgg)(
∑

g′∈G

sg′g
′) =

∑

g,g′∈G

rgsg′(gg
′)

These rings are usually very large; for example, the group ring for a commutative

ring R and the group of integers Z = 〈t〉 is isomorphic to the Laurent polynomials

R[t, t−1] over the ring R. Investigating the properties of these rings is a very popular

area of research, for instance see recent resolution to the long-standing Kaplansky’s

conjecture [Gar21].

For a group G and a commutative ring R, we can construct a projective resolution

of the trivial RG-module R by considering the cellular R-chain complex corresponding

to the universal cover X̃, where X is a K(G, 1)-space for the group G. Since G acts

on X̃ freely, each module in the chain complex is a free RG-module; and since X̃ is

contractible, the cellular chain complex is a resolution. In summary, for a group G

and a commutative ring R, the cellular R-chain complex of the universal cover of a

K(G, 1)-space of a group G, is a free resolution of the trivial RG-module R.

Totally disconnected locally compact groups

A topological group is a group with a structure of a topological space such that the

group multiplication and inversion maps are continuous. All topological groups in

this thesis are assumed to be Hausdorff. A topological space X is said to be locally
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compact if each point x ∈ X has a compact neighbourhood, i.e. there exists a compact

subset K and open subset U of X such that x ∈ U ⊆ K. A locally compact group is

a topological group with locally compact and Hausdorff topology. The main objects

of study in Chapter 5, are topological groups containing a compact open subgroup.

Observe that these groups are implicitly locally compact.

A totally disconnected and locally compact group is a locally compact group such

that the connected component of the identity is the identity. We will often refer to

them as TDLC groups in this thesis. By van Dantzig’s Theorem [VD36], all TDLC

groups have a basis of compact open subgroups, and hence are particular examples of

topological groups containing a compact open subgroup.

All discrete groups are TDLC groups. Non-discrete TDLC groups include profinite

groups. A profinite group is a topological group that is isomorphic to the inverse limit

of an inverse system of discrete finite groups. They are precisely the compact TDLC

groups [Ser02, Proposition 0]. For example, the p-adic integers Zp, for any prime p.

An important class of non-discrete TDLC groups is the class of non-Archimedean local

fields. For instance, p-adic numbers Qp, and consequentially the general linear groups

over Qp are TDLC groups. We will use the fact that the ring of p-adic integers Zp is a

compact open subgroup of Qp in Chapter 4 and Chapter 5.



Chapter 3

Subgroups of hyperbolic groups in

low cohomological dimension

3.1 Abstract

A result of Gersten states that if G is a hyperbolic group with integral cohomological

dimension cdZ(G) = 2 then every finitely presented subgroup is hyperbolic. We

generalize this result for the rational case cdQ(G) = 2. In particular, our result applies

to the class of torsion-free hyperbolic groups G with cdZ(G) = 3 and cdQ(G) = 2

discovered by Bestvina and Mess.

3.2 Introduction

The cohomological dimension cdR(G) of a group G with respect to a ring R is less

than or equal to n if the trivial RG-module R has a projective resolution of length n.

Let Q denote the field of rational numbers. The main result of this chapter:

Theorem 3.2.1. Let G be a hyperbolic group such that cdQ(G) ≤ 2. If H is a finitely

presented subgroup, then H is hyperbolic.

The analogous statement for cdZ(G) is a result of Steve Gersten that we recover as
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a consequence of the inequality

cdQ(G) ≤ cdZ(G).

Corollary 3.2.2 (Gersten). [Ger96b, Theorem 5.4] Let G be a hyperbolic group such

that cdZ(G) = 2. If H is a finitely presented subgroup, then H is hyperbolic.

The first motivation to generalize Gersten’s result to the rational case is the

existence of hyperbolic groups of integral cohomological dimension three and rational

cohomological dimension two. The nature of finitely presented subgroups of groups

in this class was not known. The first examples of such groups were discovered by

Bestvina and Mess [BM91] based on methods by Davis and Januszkiewicz [DJ91].

The class also contains finite index subgroups of hyperbolic Coxeter groups, examples

that were discovered by Dranishnikov [Dra99, Corollary 2.3]. We recall the nature of

Bestvina-Mess examples in the following corollary.

Corollary 3.2.3. [BM91] Let X be a finite polyhedral 3-complex such that

• X admits piecewise constant negative curvature cellular structure satisfying

Gromov’s link condition, and

• X is a 3-manifold (without boundary) in the complement of a single vertex whose

link is a non-orientable closed surface.

If G = π1X then cdQ(G) = 2, cdZ(G) = 3 and any finitely presented subgroup of G is

hyperbolic.

The statement of Corollary 3.2.2 is sharp in the sense that there exist hyperbolic

groups of integral cohomological dimension three containing finitely presented sub-

groups that are not hyperbolic, the first example was found by Noel Brady [Bra99].

More recently, infinite families of hyperbolic groups of integral cohomological dimension

three containing non-hyperbolic finitely presented subgroups have been constructed,

see for example [Kro21].

Corollary 3.2.4. If G is a hyperbolic group such that cdZ(G) = 3 and it contains a

non-hyperbolic finitely presented subgroup, then cdQ(G) = cdZ(G).
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A second motivation of this project was to generalize Gersten’s result to groups

admitting torsion, specifically, to the class of hyperbolic groups G admitting a 2-

dimensional classifying space for proper actions EG. Recall that a model for EG is

a G-CW-complex X with the property that for each subgroup H the subcomplex of

fixed points is contractible if H is finite, and empty if H is infinite. The minimal

dimension of a model for EG is denoted by gd(G). Considering the cellular chain

complex with rational coefficients of a model for EG with minimal dimension shows

that

cdQ(G) ≤ gd(G).

This inequality implies the following corollary.

Corollary 3.2.5. If G is a hyperbolic group such that gd(G) ≤ 2, then any finitely

presented subgroup is hyperbolic.

The statement of Corollary 3.2.5 was known in the following cases:

• If G admits a CAT(−1) 2-dimensional model for EG, see [HMP16, Corollary

1.5].

• If G admits a 2-dimensional model for EG, and H is finitely presented with

finitely many conjugacy classes of finite groups, a consequence of [MP17, Theorem

1.3].

• IfG is a hyperbolic small cancellation group of type C(7), C(5)−T (4), C(4)−T (5),

C(3)−T (7) or C ′(1/6), see [Ger96b, Theorem 7.6].

We remark that for a groupG satisfying the hypothesis of Corollary 3.2.5, the conclusion

follows from Gersten’s result 3.2.2 if, in addition, G is assumed to be virtually torsion

free. It is an outstanding question whether hyperbolic groups are virtually torsion

free [KW00].

Homological filling functions and the Proof of Theorem 3.2.1

Let R be a subring of Q. The (n+1)-dimensional homological Filling Volume function

over R of a cellular complex X is a function FVn+1
X,R : N → R describing the minimal
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volume required to fill integral cellular n-cycles with cellular (n + 1)-chains with

coefficients in R. For a formal definition, see Definition 3.4.2.

For a group G with a K(G, 1) model X with finite (n+ 1)-skeleton, the (n+ 1)-

dimensional homological Filling Volume function over R of G, denoted by FVn+1
G,R , is

defined as FVn+1

X̃,R
where X̃ is the universal cover of X. This function depends only

of the group G up to the equivalence relation on the set of non-decreasing functions

N → R defined as f ∼ g if and only if f � g and g � f , where f � g means there is

C > 0 such that for all k ∈ N,

f(k) ≤ Cg(Ck + C) + Ck + C.

Recall that a group G is of type R-FPn if the trivial RG-module R admits a partial

projective resolution

Pn → · · · → P2 → P1 → P0 → R → 0

where each Pi is a finitely generated RG-module. In [HMP16], it is shown that to

define FVn+1
G,Z , it is enough to assume that the group G is of type Z-FPn+1. We prove

that the same statement holds for FVn+1
G,R in Section 3.4. The main technical result of

this note is the following.

Theorem 3.2.6. Let R be a subring of Q. Let G be a group of type R-FPn+1 and

suppose cdR(G) = n+ 1. Let H ≤ G be a subgroup of type R-FPn+1. Then

FV n+1
H,R � FV n+1

G,R .

This theorem generalizes the main result of [HMP16], by considering an arbitrary

subring of the rational numbers instead of only the ring of integers, and by replacing

the topological assumptions Fn+1 on G and H with the weaker hypothesis R-FPn+1.

The main result of this note, Theorem 3.2.1, is a consequence of Theorem 3.2.6

and the characterization of hyperbolic groups stated below, which is credited to

Gersten [Ger96a]. This characterization was revised by Mineyev [Min02, Theorem 7,

statements (0) and (2)], and it was also revisited by Groves and Manning in [GM08,

Theorem 2.30].

Theorem 3.2.7. [Min02, Theorem 7] [GM08, Theorem 2.30] A group G is hyperbolic
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if and only if G is finitely presented and the rational filling function FV2
G,Q is bounded

by a linear function, i.e., FV2
G,Q(k) � k.

Proof of Theorem 3.2.1. Let G be a hyperbolic group such that cdQ(G) = 2, and let

H be a finitely presented subgroup. Theorem 3.2.7 implies that FV2
G,Q is bounded by

a linear function. By Theorem 3.2.6, FV2
H,Q � FV2

G,Q. It follows FV
2
H,Q is bounded by

a linear function. Then Theorem 3.2.7 implies that H is a hyperbolic group.

In view of Theorem 3.2.7, we raised the following question.

Question 3.2.8. Let G be a Q-FP2 group and suppose FV 2
G,Q is bounded by a linear

function. Is G a hyperbolic group?

The analogous question obtained by replacing Q with Z is known to have a positive

answer [Ger96b, Theorem 5.2]. One motivation behind this question is that a positive

answer would imply that in our main result Theorem 3.2.1 H can be assumed to be

Q-FP2 instead of being finitely presented. Recall that Q-FP2 condition is weaker than

being finitely presented, see the examples in [BB97].

The rest of the note is devoted to the definition of homological filling function and

the proof of Theorem 3.2.6. The argument is relatively self-contained, and uses and

simplifies ideas from [HMP16]. The main contributions of the article beside the results

stated above are:

1. The definition of filling functions for arbitrary subdomains of the rationals, since

the definition in [HMP16] does not generalize directly, and

2. the replacement of topological arguments in [HMP16] by algebraic ones that allow

us to prove certain statements under the weaker homological finiteness condition

R-FPn+1 instead of the topological assumption Fn+1; see Proposition 3.5.1 which

is a construction based on the homological mapping cylinders, and Remark 3.5.2.

Organization

Preliminary definitions are included in Section 3.3, specifically the notions of filling

norms and bounded morphisms on modules over arbitrary normed rings. Section 3.4

discusses the generalization of homological filling functions defined over arbitrary sub-

domains of the rational numbers. The last section contains the proof of Theorem 3.2.6.
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3.3 Filling Norms, Bounded morphisms

Let R be a ring and let R denote the ordered field of real numbers. A norm on R is a

function | · | : R → R such that for any r, r′ ∈ R

• |r| ≥ 0 with equality if and only if r = 0,

• |r + r′| ≤ |r|+ |r′|, and

• |r1r2| ≤ |r1||r2| for r1, r2 ∈ R.

A normed ring is a ring equipped with a norm.

From here on, assume that R is a normed ring. A norm on an R-module M is a

function ‖ · ‖ : M → R such that for any m,m′ ∈M and r ∈ R

• ‖m‖ ≥ 0 with equality if and only if m = 0,

• ‖m+m′‖ ≤ ‖m‖+ ‖m′‖, and

• ‖rm‖ ≤ |r|‖m‖.

A function M → R that satisfies the last two conditions and has only non-negative

values is called a pseudo-norm.

The ℓ1-norm on a free R-module F with fixed basis Λ is defined as

∥∥∥∥∥
∑

x∈Λ

rxx

∥∥∥∥∥
1

=
∑

x∈Λ

|rx|.

A free R-module with fixed basis is called a based free module.

Definition 3.3.1 (Filling norm). A filling norm on a finitely generated R-module M

is defined as follows. Let ρ : F →M be a surjective morphism of R-modules where F

is a finitely generated free R-module with fixed basis Λ and induced ℓ1-norm ‖ · ‖1.

The filling norm on M induced by ρ and Λ is defined as

‖m‖M = inf{‖x‖1 : x ∈ F, ρ(x) = m}.

Remark 3.3.2. The following statements can be easily verified.
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1. An ℓ1-norm ‖ · ‖1 on a finitely generated free R-module F is a filling norm.

2. A filling norm ‖ · ‖ on a finitely generated R-module M is a pseudo-norm, and is

regular in the sense that

‖rm‖ = |r|‖m‖

for any any m ∈M and r ∈ R such that r is a unit and |r||r−1| = 1.

Definition 3.3.3 (Bounded Morphism). A morphism f : M → N between R-modules

with norms ‖ ·‖M and ‖ ·‖N respectively is called bounded (with respect to these norms)

if there exists a fixed constant C > 0 such that ‖f(a)‖N ≤ C‖a‖M for all a ∈M .

The following lemma appears in [MP17] for the case that R is a group ring. The

proof for an arbitrary ring is analogous, we have included the argument for the

convenience of the reader.

Lemma 3.3.4. [MP17, Lemma 4.6] Morphisms between finitely generated R-modules

are bounded with respect to filling norms.

Proof. First observe that if ϕ̃ : A→ B is a morphism between finitely generated based

free R-modules, then for a ∈ A,

‖ϕ̃(a)‖B ≤ C‖a‖A,

where ‖ · ‖A and ‖ · ‖B are the corresponding ℓ1-norms, the constant C is defined as

max{‖ϕ̃(a)‖B : a ∈ Λ} where Λ is the fixed basis of A.

Now we prove the statement of the lemma. Let ϕ : P → Q be a morphism between

finitely generated R-modules, and let ‖ · ‖P and ‖ · ‖Q denote filling norms on P

and Q respectively. Suppose A is a finitely generated based free R-module and that

ρ : A → P induces the filling norm ‖ · ‖P , and analogously assume that ρ′ : B → Q

induces the filling norm ‖ · ‖Q. Then, since A is free, there is a morphism ϕ̃ : A→ B

such that ϕ ◦ ρ = ρ′ ◦ ϕ̃. Let C be the constant for ϕ̃ defined above. Let p ∈ P and

note that for any a ∈ A such that ρ(a) = p,

‖ϕ(p)‖Q ≤ ‖ϕ̃(a)‖B ≤ C‖a‖A.

Hence ‖ϕ(p)‖Q ≤ C‖p‖P .
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Two norms ‖ · ‖ and ‖ · ‖′ on an R-module M are said to be equivalent if there

exists a constant C > 0 such that for all m ∈M

C−1‖m‖ ≤ ‖m‖′ ≤ C‖m‖.

By considering the identity function on a finitely generated module M , the previous

lemma implies:

Corollary 3.3.5. Any two filling norms on a finitely generated R-module M are

equivalent.

Remark 3.3.6. Let M be a free R-module with basis Λ, and let N be a free R-

submodule generated by a finite subset Λ′ ⊆ Λ. Consider the induced ℓ1-norms ‖ · ‖Λ

and ‖ · ‖Λ′ on M and N respectively.

1. The projection map π : M → N is bounded with respect to the induced ℓ1-norms.

2. The inclusion map ı : N →M preserves the induced ℓ1-norms, in particular, it

is bounded.

Lemma 3.3.7. Let N be a finitely generated module with filling norm ‖ · ‖N . Suppose

that N is an internal direct summand of a free module F with an ℓ1-norm ‖ · ‖1. Then

‖ · ‖N ∼ ‖ · ‖1 on N .

Proof. Since N is a finitely generated module contained in F , there exist a finitely

generated free submodule I of F which is an internal summand, F = I ⊕ J , such that

N ⊆ I, and the restriction of ‖ · ‖1 to I is an ℓ1-norm on I. Let ι : N → I denote the

inclusion and φ : F → N denote the projection. By Lemma 3.3.4, both φ|I : I → N

and ι : N → I are bounded morphisms with respect to the norms ‖ · ‖1 and ‖ · ‖N ; let

C1 and C2 be the corresponding constants. Then

‖n‖N = ‖φ(ι(n))‖N ≤ C1‖ι(n)‖1 ≤ C2C1‖n‖N

for all n ∈ N , and hence ‖ · ‖N ∼ ‖ · ‖1 on N .

For the rest of this section, let G be a group, let H be a subgroup, and as above

let R be a ring with norm | · |.
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Remark 3.3.8. Let M be a free RG-module with ℓ1-norm ‖ · ‖Λ induced by a free

basis set Λ. Then M is a free RH-module and there exist a free RH-basis ΛH of M

such that the induced ℓ1-norms ‖ · ‖Λ and ‖ · ‖ΛH
are equal.

Indeed, if S is a right transversal of the subgroup H in G, then ΛH = {gx : x ∈

Λ, g ∈ S} is a free RH-basis of M as an H-module, and the statement about the

ℓ1-norms holds.

Lemma 3.3.9. Let M be a finitely generated and projective RG-module with filling

norm ‖·‖M and let N be a finitely generated RH-module with filling norm ‖·‖N . Suppose

that N is an internal direct summand of M as an RH-module. Then ‖ · ‖N ∼ ‖ · ‖M

on N .

Proof. Let F be a finitely generated free based module with ℓ1-norm ‖ · ‖1, and let

φ : F →M be a surjective RG-morphism inducing the filling norm ‖ · ‖M . Since M is

projective, there exist an RG-morphism j : M → F such that j◦φ = idM . Lemma 3.3.4

implies that j and φ are bounded RG-morphisms. Therefore ‖ · ‖M ∼ ‖ · ‖1 on M .

Now consider F as an RH-module with the same ℓ1-norm ‖ · ‖1, see Remark 3.3.8.

Since N is a direct summand of M as an RH-module, it is a direct summand of F as

an RH-module. Then Lemma 3.3.7 implies ‖ · ‖N ∼ ‖ · ‖1 on N .

3.4 Definition of Homological Filling Functions

In this section R denotes a subring of the rational numbers with the absolute value as

a norm. Let G be a group. The group ring RG is a free module over R, observe that

RG is a normed ring with ℓ1-norm induced by the free R-basis G. From now on, we

consider RG as a normed ring with this norm.

Definition 3.4.1 (Integral part). Let P be a finitely generated RG-module. An

integral part of P is a ZG-submodule A that is finitely generated as a ZG-module and

generates P as an RG-module.

From here on, [0,∞] denotes the set of non-negative real numbers and infinity. The

order relation as well as the addition operations are extended in the natural way.
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Definition 3.4.2. The nth–filling function of a group G of type R-FPn+1,

FV n+1
G,R : N → [0,∞],

is defined as follows. Let

Pn+1
∂n+1
−→ Pn

∂n−→ . . .
∂2−→ P1

∂1−→ P0 −→ R → 0, (3.4.1)

be a partial projective resolution of finitely generated RG-modules of the trivial RG-

module R. Let Kn be an integral part for ker(∂n), let ‖ · ‖Pn
and ‖ · ‖Pn+1 be filling

norms for Pn and Pn+1 respectively. Then

FV n+1
G,R (k) = max

{
‖γ‖∂n+1 : γ ∈ Kn, ‖γ‖Pn

≤ k
}
,

where

‖γ‖∂n+1 = inf
{
‖µ‖Pn+1 : µ ∈ Pn+1, ∂n+1(µ) = γ

}
.

By convention, define the maximum of the empty set as zero.

See Remark 3.4.8 on finiteness of FV n+1
G,R . The rest of this section discusses the

proof of the following theorem, which generalizes [HMP16, Theorem 3.5]. Consider

the equivalence relation on the set of non-decreasing functions N → [0,∞] defined as

f ∼ g if and only if f � g and g � f , where f � g means there is C > 0 such that for

all k ∈ N,

f(k) ≤ Cg(Ck + C) + Ck + C.

Theorem 3.4.3. Let G be a group of type R-FPn+1. Then the nth–filling function

FV n+1
G,R of G is well defined up to the equivalence relation ∼.

The proof of Theorem 3.4.3 relies on the following basic structure theorem for

subrings of Q.

Proposition 3.4.4. Let R be a subring of Q. Then there is a set S of prime numbers

in Z+ such that R consists of all fractions a
b
where a ∈ Z and b is a product of powers

of elements of S.

In the following proposition, which is a consequence of Proposition 3.4.4, we use

the convention that for an element a of an RG-module A, and any r ∈ R, ra denotes
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the element (re)a ∈ A where e is the identity element of G; moreover, the ring of

integers Z is naturally identified with the subring of RG via m 7→ me.

Proposition 3.4.5. Let P and Q be finitely generated RG-modules. Then

1. If A is an integral part of a finitely generated module, then for all units r ∈ R,

rA = {ra : a ∈ A} is an integral part of a finitely generated module.

2. If f : P → Q is a morphism of RG-modules, and A and B are integral parts of

P and Q respectively, then there exists a positive integer m which is a unit in

RG and such that f(mA) ⊆ B.

Proof. The first statement is immediate from the definition. For the second statement,

let S be a finite generating set of A as a ZG-module, and observe that S generates

P as an RG-module. Let F (S) be the free RG-module on S, let φ : F (S) → P , and

let C be the ZG-submodule of F (S) generated by S, and observe that φ(C) = A.

Analogolusly, let T be a finite generating set of B as a ZG-module, let ψ : F (T ) → Q,

and let C ′ be the ZG-submodule of F (T ) generated by T , and note that ψ(C ′) = B.

Since F (S) is free, there is an RG-morphism η : F (S) → F (T ) such that the

following diagram commutes.

F (S) F (T )

P Q

η

φ ψ

f
(3.4.2)

Note that η : F (S) → F (T ) is described by a finite matrix with entries in RG.

By Proposition 3.4.4, there is an integer m, which is a unit in R, such that the

morphism mη : F (S) → F (T ) given by α 7→ mη(α) has the property that η(C) ⊆ C ′.

By commutativity of the diagram f ◦ (mφ) = ψ ◦ (mη) and therefore f(mA) ⊆ B.

The following lemma is a strengthening of Proposition 3.4.5 that will be used in

the last section.

Lemma 3.4.6. Let H 6 G be a subgroup and let P and Q be finitely generated RH

and RG modules respectively. If f : P → Q is an RH-morphism, and A and B are
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integral parts of P and Q respectively, then there exists a positive integer m, which is

a unit in R, such that f(mA) ⊆ B.

Proof. Considering Q as an RH-module, the proof proceeds similar to 3.4.5 except

that here F (T ) is infinitely generated and so the matrix is infinite. But observe that

only finitely many entries are non-zero, so the same argument holds.

Proof of Theorem 3.4.3. The proof is divided into two steps. The second step is a

small variation of the argument in [HMP16, Proof of Theorem 3.5] for which we only

remark the changes.

Step 1. FV n+1
G (up to equivalence) does not depend on the choice of the integral part

Kn.

Let A and B be two integral parts of ker(∂n), and let FVA and FVB denote

the corresponding nth-filling functions of G. By Proposition 3.4.5, there exists a

positive integer m, that is a unit in RG, such that mA ⊆ B. Let γ ∈ A such

that ‖γ‖Pn
≤ k. Then, since m is a unit and |m||m−1| = 1, ‖γ‖δn+1 = 1

m
‖mγ‖δn+1

and ‖mγ‖Pn
= m‖γ‖Pn

≤ mk; see Remark 3.3.2. Observe that mγ ∈ B therefore

‖γ‖δn+1 ≤ 1
m
FVB(mk). Since γ was arbitrary, FVA(k) ≤

1
m
FVB(mk). By symmetry

we get the other inequality.

Step 2. FV n+1
G (up to equivalence) does not depend on the choice of the resolu-

tion (3.4.1).

Let (P∗, ∂∗) and (Q∗, δ∗) be a pair of resolutions as in (3.4.1). Since any two

projective resolutions of R are chain homotopy equivalent, there exist chain maps

fi : Pi → Qi, gi : Qi → Pi, and a map hi : Pi → Pi+1 such that

∂i+1 ◦ hi + hi−1 ◦ ∂i = gi ◦ fi − Id.

By Proposition 3.4.5, there exist integral parts Kn and K ′
n of ker(∂n) and ker(δn)

respectively, such that fn(Kn) ⊆ K ′
n. This ensures that the same argument in [HMP16,

Proof of Theorem 3.5] works except for a minor change in the choice of the constant

named β in the cited proof. Replace it by the following: “For ǫ < C, choose β ∈ Qn+1

such that δn+1(β) = fn(α) and ‖β‖Qn+1 < ‖fn(α)‖δn+1 + ǫ”. The rest of the proof

proceeds in the same manner.
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Remark 3.4.7 (Topological interpretation of filling functions). Assume G admits a

K(G, 1) model X with finite (n+ 1)-skeleton. The augmented cellular chain complex

C∗(X,R) of the universal cover X̃ of X is a projective resolution of the trivial RG-

module R by free modules. By considering the ℓ1-norm of Ci(X,R) induced by

the basis consisting of i-dimensional cells of X̃, the definition of FVn+1
G,R using this

resolution provides the interpretation FVn+1
G,R as the minimal volume required to fill

integral n-cycles with (n+ 1)-cellular chains with coefficients in R. Observe that

FV n+1
G,R ≤ FV n+1

G,Z (3.4.3)

Remark 3.4.8. [Finiteness of FV n+1
G,R ] Assume that G admits a K(G, 1) model X

with finite (n+ 1)-skeleton. By the main result of [FMP18], for every positive integer

k, FV n+1
G,Z (k) <∞. Then equation (3.4.3) implies that FV n+1

G,R (k) <∞ for any k ≥ 0.

A positive answer to the following question in the case that R = Z is given

in [FMP18].

Question 3.4.9. Suppose that G is of type R-FPn+1. Is FV n+1
G,R (k) < ∞ for all

k ∈ N?

Remark 3.4.10 (On the use integral part in Definition 3.4.2). We note that the filling

function FVn+1
G,Z was defined in [HMP16] by considering ker(∂n) in lieu of its integral

part. This approach does not work to define FVn+1
G,Q as the following example illustrates.

Consider the group presentation G = 〈x, y|[x, y]〉 and let X be the universal cover of

the presentation complex, i.e., the Cayley complex. In X consider the following cycles

with rational coefficients an = 1
4n
[xn, yn] for n ∈ N. Then ‖an‖1 = 1 and by regularity

‖an‖∂ = 1
4
n, in particular

max{‖γ‖∂2 : γ ∈ Zn(X̃,Q), ‖γ‖1 ≤ 1} = ∞,

and hence the approach in [HMP16] does not yield a well defined FV 2
G,Q(k). In contrast,

using Definition 3.4.2, FV 2
G,Q � FV 2

G,Z ∼ k2.

3.5 Proof of Theorem 3.2.6

The proof of Theorem 3.2.6 is discussed after the proof of the following proposition.
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Proposition 3.5.1. Suppose that cdR(G) = n+ 1, G is of type R-FPn+1, and H is

a subgroup of G of type R-FPn+1. Then for any partial projective resolution of the

trivial RH-module R of finite type

Qn+1 → Qn → · · · → Q0 → R → 0, (3.5.1)

there is a projective resolution of the trivial RG-module R of finite type

0 →Mn+1 →Mn → · · · →M0 → R → 0, (3.5.2)

and injective morphisms ıi : Qi →Mi of RH-modules, 0 ≤ i ≤ n, such that

Qn · · · Q1 Q0 R

Mn · · · M1 M0 R.

ın ı1 ı0 Id (3.5.3)

is a commutative diagram of RH-modules, and the short exact sequences of RH-modules

0 Qi Mi Si 0
ıi (3.5.4)

split. In particular each Si is a projective RH-module.

Remark 3.5.2. Proposition 3.5.1 replaces topological arguments in [HMP16], based

on work of Gersten [Ger96b], that use topological mapping cylinders. The arguments

there are relatively less involved. In the generality that we are working, it is not

possible to rely on this type of constructions. We would need free cocompact actions

on (n + 1)-acyclic complexes for G and H, they are not known to exist under our

hypothesis. Specifically, recall that a group G is of type FHn, if G admits a cocompact

action on an n-acyclic space X; in this case the action of G on the cellular chain

complex of X induces a resolution of Z as a ZG-module. Hence FHn implies FPn. It

is an open question whether groups of type FPn are of type FHn for n ≥ 3, see [BB97].

The proof of the Proposition 3.5.1 is an application of the mapping cylinder of

chain complexes from basic homological algebra that we recall below.

Let B∗ = {Bi, di} and C∗ = {Ci, d
′
i} be two chain complexes of modules over

some fixed ring, and let f : B∗ → C∗ be a chain map. Then the mapping cylinder
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M∗ = {Mi, d
′′
i } is a chain complex where Mi = Ci ⊕ Bi ⊕ Bi−1 with

d′′i =



d′i 0 −fi−1

0 di idBi−1

0 0 −di−1




In particular, d′′i : Mi →Mi−1 is given by (c, b, b′) 7→ (d′i(c)−fi−1(b
′), di(b)+b

′,−di−1(b
′)).

The natural inclusion C∗ →֒M∗ is a chain homotopy equivalence with homotopy inverse

map M∗ → C∗ given by (c, b, b′) 7→ c+ f(b). Also note that, if both B∗ and C∗ consists

of only finitely generated projective modules then the the same holds for M∗. For

background on mapping cylinders see [Wei94].

Proof of Proposition 3.5.1. We split the proof into four steps.

Step 1. Definition of the resolution (3.5.2) as a mapping cylinder

Since cdR(G) = n+ 1 and G is of type R-FPn+1, there is a projective resolution of

RG-modules of finite type

0 → Pn+1 → Pn → .....→ P0 → R → 0, (3.5.5)

see [Bro94, pg.199, Prop. 6.1].

The group ring RG is a free right RH-module. It follows that the extension

of scalars functor from left RH-modules to left RG-modules M 7→ RG ⊗RH M is

exact. This functor also preserves finite generation and projectiveness. From the

given resolution (3.5.1), we obtain a partial projective resolution of the RG-module

RG⊗RH R of finite type

RG⊗RH Qn → · · · → RG⊗RH Q0 → RG⊗RH R → 0. (3.5.6)

Consider the RG-morphism φ : RG⊗RH R → R induced by

φ : RG×R → R, (s, r) 7→ ǫ(s)r, (3.5.7)

where ǫ : RG → R is the augmentation map, ǫ(
∑
rigi) =

∑
ri. Since each of the

RG-modules RG⊗RH Qi is projective, there are RG-morphisms fi : RG⊗RH Qi → Pi
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such that

RG⊗RH Qn · · · RG⊗RH Q0 RG⊗RH R

Pn · · · P0 R.

fn f0 φ (3.5.8)

is a commutative diagram, see [Bro94, pg.22, Lemma 7.4].

Let M∗ = (Mi) be the mapping cylinder of the chain map f = (fi) where fi is the

RG-morphism defined above for 0 ≤ i ≤ n, fn+1 is the morphism 0 → Pn+1, and fi is

the morphism 0 → 0 for any other value of i.

Observe that

Mi = Pi ⊕ (RG⊗RH Qi)⊕ (RG⊗RH Qi−1)

for 1 ≤ i ≤ n, M0 = P0 ⊕ (RG⊗RH Q0)⊕ 0, Mn+1 = Pn+1 ⊕ 0⊕ (RG⊗RH Qn), and

Mi = 0 for any other value of i. Hence all Mi are finitely generated and projective.

Let P∗ = (Pi) be the chain complex induced by (3.5.5), where Pi = 0 for i > n+ 1

and i < 0. Observe that P∗ is the target of the chain map f . Since P∗ and M∗ are

chain homotopic,

0 →Mn+1 →Mn → · · · →M0 → R → 0,

is a projective resolution of finite type of the trivial RG-module R.

Step 2. Definition of the injective RH-morphisms ıi : Qi →Mi.

We have the following commutative diagram of RH-modules

Qn · · · Q1 Q0

RG⊗RH Qn · · · RG⊗RH Q1 RG⊗RH Q0

Mn · · · M1 M0.

τn τ1 τ0

n 1 0

(3.5.9)

where τk : Qk → RG ⊗RH Qk is the natural inclusion given by q 7→ e ⊗ q (here e
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denotes the identity element of G), and the vertical arrows i : RG⊗RH Qi →Mi are

the natural inclusions. Then define

ıi = i ◦ τi

for 0 ≤ i ≤ n, and observe that they are injective RH-morphisms.

Step 3. Verifying commutative diagram (3.5.3).

In view of the commutative diagram (3.5.9), we only need to verify that if H0(Q)

and H0(M) denote the cokernels of Q1 → Q0 and M1 → M0 respectively then the

RH-morphism H(ı0) : H0(Q) → H0(M) induced by ı0 is an isomorphism.

Before the argument, we remark that this is not immediate, it depends on the

choice of the RG-morphism f0; the available choices for f0 depend on the choice of

the RG-morphism φ : RG⊗RH R → R; our choice is defined by (3.5.7).

Let H0(P ) denote the cokernel of P1 → P0. Let τ−1 : R → RG⊗RH R be defined

by r 7→ e⊗ r where e denotes the identity element of G. Then φ ◦ τ−1 is the identity

map on R. It follows that the induced RH-morphism H0(f0 ◦ τ0) : H0(Q) → H0(P ) is

an isomorphism. Since κ : M∗ → P∗ given by (p, q, q′) 7→ p+ f(q) is a chain homotopy

equivalence, H(κ0) : H0(M) → H0(P ) is an isomorphism. Observe that H(f0 ◦ τ0)

equals H(κ0) ◦H(ı0) and hence H(ı0) is an isomorphism.

Step 4. The exact sequence (3.5.4) splits, and each Si is a projective RH-module.

This is immediate since ıi : Qi →Mi is the inclusion of a direct summand of Mi as

an RH-module. Since restriction of scalars preserves projectiveness, Mi is projective

as an RH-module and hence Si is projective as well.

Proof of Theorem 3.2.6. Consider projective resolutions as (3.5.1) and (3.5.2) as well

as RH-morphisms ıi : Qi →Mi as described in Proposition 3.5.1.

Let M∗ = (Mi, δ
M
i ) denote the chain complex induced by (3.5.2), with the assump-

tion that Mi = 0 for i > n and i < 0. Analogously, let Q∗ = (Qi, δ
Q
i ) be the chain

complex induced by (3.5.1), with the assumption that Qi = 0 for i > n and i < 0.

Observe that we are not using the modules Qn+1 and Mn+1 in the definition of Q∗ and

M∗. Let S∗ be the quotient chain complex M∗/Q∗. Consider the induced chain map

ı = (ıi) : Q∗ →M∗.
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We use the following notation. The kernel of δQn is denoted by Zn(Q). The n-

homology group of the complex Q∗ is denoted by Hn(Q). Analogous notation is used

for the other chain complexes.

Step 1. The induced sequence

0 Zn(Q) Zn(M) Zn(S) 0
ın (3.5.10)

is exact and satisfies

• Zn(Q) is a finitely generated RH-module .

• Zn(M) is a finitely generated and projective RG-module.

• Zn(Q) is a direct summand of Zn(M) as an RH-module.

Observe that Hn+1(Q) and Hn−1(Q) are both trivial. The short exact sequence of

chain complexes of RH-modules

0 Q∗ M∗ S∗ 0ı (3.5.11)

induces a long exact sequence

0 Hn(Q) Hn(M) Hn(S) 0
ın (3.5.12)

which is precisely (3.5.10).

The RH-module Zn(Q) is finitely generated since Qn+1 is a finitely generated

RH-module and δQn+1 maps Qn+1 onto Zn(Q).

That Zn(M) is a finitely generated and projective RG-module follows from a

direct application of Schanuel’s lemma [Bro94, pg.193, Lemma 4.4] to the exact

sequences (3.5.2) and

0 → Zn(M) →Mn → · · · →M0 → R → 0. (3.5.13)

Finally, to show that Zn(Q) is a direct summand of Zn(M) as an RH-module, we argue

that that Zn(S) is projective RH-module. Consider the sequence of RH-modules

induced by S∗

0 → Zn(S) → Sn → · · · → S0 → 0. (3.5.14)
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Note that this sequence is exact by observing the long exact sequence of homologies

induced by (3.5.11). Indeed, Hi(Q) and Hi(M) are trivial for 0 < i < n, and

H(ı) : H0(Q) → H0(M) is an isomorphism by (3.5.3). Since each Si is projective,

exactness of (3.5.14) implies that Zn(S) is projective.

Step 2. FV n+1
H,R � FV n+1

G,R .

Let ‖ · ‖Mn
and ‖ · ‖Zn(M) denote filling norms on the RG-modules Mn and Zn(M)

respectively. Similarly, let ‖ · ‖Qn
and ‖ · ‖Zn(Q) denote filling norms on RH-modules

Qn and Zn(Q). For the map Zn(Q)
ın−→ Zn(M), by Lemma 3.4.6 there exist integral

parts K and K ′ of Zn(Q) and Zn(M) respectively, such that K maps into K ′ by the

morphism ı.

Since ı : Qn →Mn is the inclusion of a direct summand of Mn as an RH-module,

and Mn is a projective RH-module, Lemma 3.3.9 implies that ‖ · ‖Mn
∼ ‖ · ‖Qn

on Qn.

In particular, there is a constant C0 such that

‖ın(γ)‖Mn
≤ C0‖γ‖Qn

for every γ ∈ Qn.

By Step 1, ın : Zn(Q) → Zn(M) is the inclusion of a direct summand of Zn(M)

as an RH-module, and Zn(M) is a projective RH-module. Lemma 3.3.9 implies

‖ · ‖Zn(M) ∼ ‖ · ‖Zn(Q) on Zn(Q). Hence there is C1 > 0 such that

‖γ‖Zn(Q) ≤ C1‖ın(γ)‖Zn(M)

for every γ ∈ Zn(M), and ρ ◦ ı is identity on Zn(Q).

Let k ∈ N and γ ∈ K ⊆ Z(Qn) such that ‖γ‖Qn
≤ k. Then

‖γ‖Zn(Q) ≤ C1‖ın(γ)‖Zn(M) ≤ C1 FV
n+1
G,R(‖ın(γ)‖Mn

) ≤ C1 FV
n+1
G,R(C0‖γ‖Qn

)

Therefore FVn+1
H,R(k) ≤ C1 FV

n+1
G,R(C0k) for every k.



Chapter 4

Subgroups of totally disconnected

locally compact topological groups

4.1 Abstract

This article is part of the program of studying large-scale geometric properties of

totally disconnected locally compact groups, TDLC-groups, by analogy with the theory

for discrete groups. We provide a characterization of hyperbolic TDLC-groups, in

terms of homological isoperimetric inequalities. This characterization is used to prove

that, for hyperbolic TDLC-groups with rational discrete cohomological dimension ≤ 2,

hyperbolicity is inherited by compactly presented closed subgroups. As a consequence,

every compactly presented closed subgroup of the automorphism group Aut(X) of a

negatively curved locally finite 2-dimensional building X is a hyperbolic TDLC-group,

whenever Aut(X) acts with finitely many orbits on X. Examples where this result

applies include hyperbolic Bourdon’s buildings.

4.2 Introduction

A locally compact group G is said to be totally disconnected if the identity is its

own connected component. For an arbitrary locally compact group, the connected

component of the identity is always a closed normal subgroup with a totally discon-

nected quotient. Therefore, in principle, the study of locally compact groups can
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be reduced to the study of the two subclasses formed by connected locally compact

groups and totally disconnected locally compact groups. By the celebrated solution

to Hilbert’s fifth problem, connected locally compact groups are inverse limits of Lie

groups. However, such a thorough understanding has not been achieved for the totally

disconnected counterpart.

Hereafter, we use TDLC-group as a shorthand for totally disconnected locally

compact group. The class of TDLC-groups has been a topic of interest in the last three

decades since the work of G. Willis [Wil94], and of M. Burger and S. Mozes [BM97].

Large-scale properties of a TDLC-group G can be addressed by investigating a

family of quasi-isometric locally finite connected graphs which are known as Cayley-

Abels graphs of G; see § 4.4.1 for the definition and further details. Therefore, the

theory of TDLC-groups becomes amenable to many tools from geometric group theory

(see [Bau07,BSW08,Möl02] for example) and the notion of hyperbolic group carries

over to the realm of TDLC-groups.

The motivation for this work is to gain a better understanding of the interaction

between the geometric properties of the TDLC-group G and its cohomological prop-

erties by analogy with the discrete case. An investigation of this type was initiated

by Castellano and Weigel in [CW16b,Cas20] where the rational discrete cohomology

for TDLC-groups has been introduced and the authors have shown that many well-

known properties that hold for discrete groups can be transferred to the context of

TDLC-groups (in some cases after substantial work).

For a TDLC-groupG, the representation theory used in [CW16b] leans on the notion

of discrete QG-module, that is a QG-module M such that the action G×M →M is

continuous when M carries the discrete topology. In the case that G is discrete, any

QG-module is discrete. Because of the divisibility of Q, the abelian category QGdis

of discrete QG-modules has enough projectives. As a consequence, the notions of

rational discrete cohomological dimension, denoted by cdQ(G), and type FPn can be

introduced for every TDLC-group G in the category QGdis (see §4.3.3 for the necessary

background). This opens up the possibility of investigating TDLC-groups by imposing

some cohomological finiteness conditions.

The main result of this article is a subgroup theorem for hyperbolic TDLC-groups

of rational discrete cohomological dimension at most 2.

Theorem 4.2.1. Let G be a hyperbolic TDLC-group with cdQ(G) ≤ 2. Every
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compactly presented closed subgroup H of G is hyperbolic.

This theorem generalizes the following two results for discrete groups:

• Finitely presented subgroups of hyperbolic groups of integral cohomological

dimension less than or equal to two are hyperbolic. This is a result of Ger-

sten [Ger96b, Theorem 5.4] which can be recovered as a consequence of the

inequality cdQ( ) ≤ cdZ( ).

• Finitely presented subgroups of hyperbolic groups of rational cohomological

dimension less than or equal to two are hyperbolic. This is a recent result

in [AMP20] which is the analogue of Theorem 4.2.1 in the discrete case.

We remark that Brady constructed an example of a discrete hyperbolic group of

integral cohomological dimension three that contains a finitely presented subgroup

that is not hyperbolic [Bra99]. Hence the the dimensional bound on the results stated

above is sharp.

In the discrete case, a class of hyperbolic groups of rational cohomological dimension

two is given by groups admitting finite presentations with certain small cancellation

conditions. This is also the case for TDLC-groups for small cancellation quotients of

amalgamated free products of profinite groups. We refer the reader to Section 4.8 for

details on the following result.

Theorem 4.2.2. Let A ∗C B be the amalgamated free product of the profinite groups

A,B over a common open subgroup C. Let R be a finite symmetrized subset of

A ∗C B that satisfies the C ′(1/12) small cancellation condition. Then the quotient

G = (A ∗C B)/〈〈R〉〉 is a hyperbolic TDLC-group with cdQ(G) ≤ 2.

In the framework of discrete groups, it is a result of Gersten that type FP2 (over

Z) subgroups of hyperbolic groups of integral cohomological dimension at most two

are hyperbolic [Ger96b, Theorem 5.4]. We raise the following question:

Question 1. Does Theorem 4.2.1 remain true if H is of type FP2 but not compactly

presented?

It is well known that if X is a locally finite simplicial complex then the group

of simplicial automorphisms Aut(X) endowed with the compact open topology is a
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TDLC-group [Cam96, Theorem 2.1]. If, in addition, X admits a CAT (−1) metric and

Aut(X) acts with finitely many orbits on X, then Aut(X) is a hyperbolic TDLC-group

with cdQ(Aut(X)) ≤ dim(X).

Corollary 4.2.3. Let X be a locally finite 2-dimensional simplicial CAT (−1)-complex.

If Aut(X) acts with finitely many orbits on X, then every compactly presented closed

subgroup of Aut(X) is a hyperbolic TDLC-group.

A discrete version of Corollary 4.2.3 was proved in [HMP14, Corollary 1.5] using

combinatorial techniques. There are different sources of complexes X satisfying the

hypothesis of Corollary 4.2.3 and such that Aut(X) is a non-discrete TDLC-group.

For example:

• Bourdon’s building Ip,q, p ≥ 5 and q ≥ 3, is the unique simply connected

polyhedral 2-complex such that all 2-cells are right-angled hyperbolic p-gons and

the link of each vertex is the complete bipartite graph Kq,q. These complexes

were introduced by Bourdon [Bou97]. The natural metric on Ip,q is CAT (−1)

and Aut(Ip,q) is non-discrete.

• For an integer k and a finite graph L, a (k, L)-complex is a simply connected

2-dimensional polyhedral complex such that all 2-dimensional faces are k-

gons and the link of every vertex is isomorphic to the graph L. A result

of Świa֒tkowski [Świ98, Main Theorem (1)] provides sufficient conditions on the

graph L guaranteeing that if k ≥ 4 then Aut(X) is a non-discrete group for

any (k, L)-complex X. It is a consequence of Gromov’s link condition, that a

(k, L)-complex admits a CAT (−1)-structure for any k sufficiently large.

In order to prove Theorem 4.2.1, we follow ideas from Gersten [Ger96b]. We introduce

the concept of weak n-dimensional linear isoperimetric inequality for TDLC-groups,

which is a homological analogue in higher dimensions of linear isoperimetric inequalities.

Profinite groups are characterized as TDLC-groups satisfying the weak 0-dimensional

linear isoperimetric inequality: see Section 4.5. The weak 1-dimensional linear isoperi-

metric inequality is called from here on the weak linear isoperimetric inequality. The

following result generalizes for TDLC-groups a well-known characterization of hyper-

bolicity in the discrete case [Ger96b, Theorem 3.1].

Theorem 4.2.4. A compactly generated TDLC-group G is hyperbolic if and only if

G is compactly presented and satisfies the weak linear isoperimetric inequality.
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The property of satisfying the weak n-dimensional linear isoperimetric inequality

is inherited by closed subgroups under some cohomological finiteness conditions.

Theorem 4.2.5. Let G be a TDLC-group of type FP∞ with cdQ(G) = n + 1 that

satisfies the weak n-dimensional linear isoperimetric inequality. Then every closed

subgroup H of G of type FPn+1 satisfies the weak n-dimensional linear isoperimetric

inequality.

The major part of the paper is devoted to the proof of Theorem 4.2.5. Our strategy

borrows ideas from [AMP20,Ger96b,HMP16]. Some remarks:

• In the case that G is discrete, Theorem 4.2.5 is a consequence of [AMP20,

Theorem 1.7].

• The arguments in [AMP20], where the authors replace some topological tech-

niques from [Ger96b, HMP16] with algebraic counterparts, carry over to the

TDLC class under the stronger assumption that the subgroup H is open, see

Remark 4.6.2.

• Currently, for TDLC-groups, there is no well studied notion of n-dimensional

homological Dehn function as the definitions available in the discrete case, see

for example [ABDY13,HMP16]. In contrast to the arguments in [AMP20], we

avoid the use of these objects and provide a straight forward argument.

It is a simple verification that Theorem 4.2.1 follows by Theorems 4.2.5 and 4.2.4.

Proof of the Theorem 4.2.1. Since G is hyperbolic, Theorem 4.2.4 implies that G sati-

sfies the weak linear isoperimetric inequality. By Theorem 4.2.5, H also satisfies

the weak linear isoperimetric inequality. We can then apply Theorem 4.2.4 again to

conclude the proof.

Locally compact hyperbolic groups

The monograph [CdlH16] by de Cornulier and de la Harpe laid out the foundations of

the study of locally compact groups from the perspective of geometric group theory.

In this context, a locally compact group is hyperbolic if it has a continuous proper
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cocompact isometric action on some proper geodesic hyperbolic metric space [CCMT15];

this generalizes the classical definition in the discrete case as well as the definition in

the class of totally disconnected locally compact groups used in the present article. By

analogy with the discrete case, the asymptotic dimension provides a quasi-isometry

invariant of locally compact compactly generated groups. The question below suggests

a possible generalization of Theorem 4.2.1 for the larger class of locally compact

hyperbolic groups.

Question 2. Let G be a locally compact hyperbolic group such that asdimG ≤ 2.

Are compactly presented subgroups of G hyperbolic?

We conclude the introduction of the article by verifying that the the above question

has a positive answer for discrete hyperbolic groups. The argument provides a

blueprint to answer the question in the positive in class of hyperbolic TDLC-groups

using Theorem 4.2.1.

Theorem 4.2.6. Let G be a discrete hyperbolic group such that asdimG ≤ 2. Then

every finitely presented subgroup of G is hyperbolic.

Proof. The main result of [AMP20] states that if cdQG ≤ 2, then any finitely presented

subgroup of G is hyperbolic. Therefore it is enough to verify the inequality

cdQG ≤ asdimG.

This inequality relies on important work of Buyalo and Lebedeva [BL07] and Bestvina

and Mess [BM91] as explained below.

It is a result of Buyalo and Lebedeva, [BL07, Theorem 6.4], that the asymptotic

dimension of every cobounded, hyperbolic, proper, geodesic metric space X equals the

topological dimension of its boundary at infinity plus 1,

asdimX = dim ∂∞X + 1.

On the other hand, for a compact metrizable space Y , there is a notion of cohomo-

logical dimension dimR Y over a ring R. It is known that if dimY <∞ then

dimQ Y ≤ dimZ Y = dimY,
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see [BM91] for definitions and references.

Let ∂∞G denote the Gromov boundary of G. Recall that ∂∞G is a compact

metrizable space with finite topological dimension, see for example [KB02]. It follows

that

dimQ ∂∞G ≤ dim ∂∞G.

The work of Bestvina and Mess [BM91, Corollary 1.4] implies that if cdQG <∞ then

cdQG = dimQ ∂∞G+ 1. (4.2.1)

Since discrete hyperbolic groups admit finite dimensional models for the universal

space for proper actions (Rips complexes with large parameter, see [MS02] or [HOP14]),

it follows that cdQG <∞. Therefore cdQG ≤ asdimG.

Remark 4.2.7. We expect a positive answer to Question 2 for hyperbolic TDLC-groups.

Indeed, to obtain a positive answer it is enough to verify the following statement

generalizing work of Bestvina and Mess [BM91, Corollary 1.4]:

Let G be a hyperbolic TDLC-group. If cdQG < ∞ then cdQG = dimQ ∂∞G + 1,

where cdQG is the rational discrete cohomological dimension.

Then the proof of Theorem 4.2.6 works in the TDLC case by using Theorem 4.2.1

and that hyperbolic TDLC-groups have finite rational discrete cohomological dimension,

see Proposition 4.4.7. An attempt to generalize the work of Bestvina and Mess

in [BM91] for TDLC-groups is currently work in progress by the second author, F.W.

Pasini and T. Weigel. In the generality of locally compact groups, the authors are not

aware of a cohomology theory for locally compact groups that allow to pursue the

techniques of this article.

Organization

Preliminary definitions regarding TDLC-groups and rational discrete modules are

given in Section 4.3. Then Section 4.4 consists of definitions and some preliminary

results on Cayley-Abels graphs, compact presentability and hyperbolicity for TDLC-

groups. Section 4.5 introduces the weak n-dimensional linear isoperimetric inequality.

Section 4.6 is devoted to the proof of Theorem 4.2.5. Finally, Section 4.7 relates

hyperbolicity and the weak linear isoperimetric inequality and contains the proof of
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Theorem 4.2.4.

4.3 TDLC-groups and rational discrete G-modules

Throughout this section G always denotes a TDLC-group. Note that a TDLC-group is

Hausdorff. Discrete groups are TDLC-groups. Profinite groups are precisely compact

TDLC-groups [Ser02, Proposition 0]. A fundamental result about the structure of

TDLC-groups is known as van Dantzig’s Theorem:

Theorem 4.3.1 (van Dantzig’s Theorem, [VD36]). The family of all compact open

subgroups of a TDLC-group G forms a neighbourhood system of the identity element.

Note that every Hausdorff topological group admitting such a local basis is necessar-

ily TDLC. Hence the conclusion of van Dantzig’s Theorem characterizes TDLC-groups

in the class of Hausdorff topological groups.

For example, the non-Archimedean local fields Qp and Fq((t)) admit, respectively,

the following local basis at the identity element:

1. {pnZp | n ∈ N}, where Zp = {x ∈ Qp | |x| ≤ 1} = {x ∈ Qp | |x| < p} is compact

and open;

2. {tnFq[[t]] | n ∈ N}, where the norm is defined by q−ord(f).

4.3.1 Rational discrete G-modules

Let Q denote the field of rational numbers, and let QGmod be the category of abstract

left QG-modules and their homomorphisms. A left QG-moduleM is said to be discrete

if the stabilizer

Gm = {g ∈ G | g ·m = m},

of each elementm ∈M is an open subgroup of G. Equivalently, the action G×M →M

is continuous when M carries the discrete topology. The full subcategory of QGmod

whose objects are discrete QG-modules is denoted by QGdis. It was shown in [CW16b]

that QGdis is an abelian category with enough injectives and projectives.
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4.3.2 Permutation QG-modules in QGdis

Let Ω be a non-empty left G-set. For ω ∈ Ω let Gω denote the pointwise stabilizer.

The G-set Ω is called discrete if all pointwise stabilizers are open subgroups of G, and

Ω is called proper if all pointwise stabilizers are open and compact.

The Q-vector space Q[Ω] - freely spanned by a discrete G-set Ω - carries a canonical

structure of discrete left QG-module called the discrete permutation QG-module

induced by Ω.

Note that a discrete permutation QG-module in QGdis is a coproduct

Q[Ω] ∼=
∐

ω∈R

Q[G/Gω],

in QGdis, where R is a set of representatives of the G-orbits in Ω, and Ω is a discrete

G-set.

A proper permutation QG-module is a discrete QG-module of the form Q[Ω] where

Ω is a proper G-set.

A proper permutation QG-module is a projective object in QGdis; see [CW16b].

The arguments of this article rely on the following characterization of projective

objects in QGdis, a non-trivial result that in particular relies on Maschke’s theorem on

irreducible representations of finite groups, and Serre’s results on Galois cohomology.

Proposition 4.3.2 ([CW16b, Corollary 3.3]). Let G be a TDLC-group. A discrete

QG-module M is projective in QGdis if, and only if, M is a direct summand of a

proper permutation QG-module in QGdis.

Throughout the article, we only consider resolutions consisting of discrete permu-

tation QG-modules, and we refer to this type of resolutions as permutation resolutions

in QGdis. Analogously, a resolution that consists only of proper permutation modules

is called a proper permutation resolution in QGdis. When the category is clear from

the context, we will omit the term “in QGdis”.



44

4.3.3 Rational discrete homological finiteness

Following [CW16b], we say that a TDLC-group G is of type FPn (n ∈ N) if there

exists a partial proper permutation resolution in QGdis

Q[Ωn] // Q[Ωn−1] // · · · // Q[Ω0] // Q // 0 (4.3.1)

of the trivial discrete QG-module Q of finite type, i.e., every discrete left G-set Ωi is

finite modulo G or equivalently Q[Ωi] is finitely generated. Type FPn in this paper will

always mean over Q, though the definition generalizes to finite type proper permutation

resolutions over discrete rings other than Q, where the proper permutation modules are

no longer projective in general – see for example [CC20]. The group G is of type FP∞

if it is FPn for every n ∈ N. Notice that having type FP0 is an empty condition for a

TDLC-group G. On the other hand, having type FP1 is equivalent to be compactly

generated (see [CW16b, Proposition 5.3]) and compact presentation implies type FP2.

The rational discrete cohomological dimension of G, cdQ(G) ∈ N ∪ {∞}, is defined

to be the minimum n such that the trivial discrete QG-module Q admits a projective

resolution

0 // Pn
∂n // Pn−1

// · · · // P0
// Q // 0 (4.3.2)

in QGdis of length n. The rational discrete cohomological dimension reflects structural

information on a TDLC-group G. For example, G is profinite if and only if cdQ(G) = 0.

By composing the notions above, one says that G is of type FP if

(i) G is of type FP∞, and

(ii) cdQ(G) = d <∞.

For a TDLC-group G of type FP , the trivial left QG-module Q possesses a projective

resolution (P•, ∂•) which is finitely generated and concentrated in degrees 0 to d. It is

not known whether (P•, ∂•) can be assumed to be a proper permutation resolution of

finite length.
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4.3.4 Restriction of scalars

Let H be a closed subgroup of the TDLC-group G. It follows that H is a TDLC-group

and in particular the category QHdis is well defined. The restriction of scalars from

QG-modules to QH-modules preserves discretness. In other words there is a well

defined restriction functor

resGH( ) : QGdis → QHdis, (4.3.3)

obtained by restriction of scalars via the natural map QH →֒ QG. The restriction

is an exact functor which maps projectives to projectives. Indeed, for every proper

permutation QG-module Q[Ω], the discrete QH-module resGH(Q[Ω]) is still a proper

permutation module in QHdis. To simplify notation, for a discrete QG-module M , we

may write M for resGH(M) when the meaning is clear.

4.4 Cayley-Abels graphs, Compact presentability

and Hyperbolicity

4.4.1 Compactly generated TDLC-groups and Cayley-Abels

graphs

In this article a graph is a 1-dimensional simplicial complex, hence graphs are undirected,

without loops, and without multiple edges between the same pair of vertices.

A locally compact group is said to be compactly generated if there exists a compact

subset that algebraically generates the whole group.

Proposition 4.4.1. [KM08, Theorem 2.2] A TDLC-group G is compactly generated

if and only if it acts vertex transitively with compact open vertex stabilizers on a

locally finite connected graph Γ.

A graph with a G-action as in the proposition above is called a Cayley-Abels graph

for G. In [KM08] these graphs are referred to as rough Cayley graphs but the notion

of Cayley-Abels graph traces back to Abels [Abe72].
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As soon as the compactly generated TDLC-group G is non-discrete, the G-action

on a Cayley-Abels graph is never free. That is to say, the action always has non-trivial

vertex stabilizers. Nevertheless, these large but compact stabilizers play an important

role in the study of the cohomology of G: they give rise to proper permutation

QG-modules.

A consequence of van Dantzig’s Theorem is the following.

Proposition 4.4.2. For a TDLC-group G the following statements are equivalent:

1. G is compactly generated.

2. There exists a compact open subgroup K of G and a finite subset S of G such

that K ∪ S generates G algebraically.

3. There exists a finite graph of profinite groups (A,Λ) with a single vertex, together

with a continuous open surjective homomorphism φ : π1(A,Λ,Ξ) → G such that

φ|Av
is injective for all v ∈ V(Λ).

Proof. Note that if C is a compact set generating G and K is a compact open subgroup

of G then there a finite subset S ⊂ G such that the collection of left cosets {sK|s ∈ S}

covers C. Hence, by van Dantzig’s Theorem, (1) implies (2). To show that (2) implies

(3), consider the graph of groups with a single vertex and an edge for each element

of S. The vertex group is K, and each edge group is K ∩ Ks with morphisms the

inclusion and conjugation by s: see [CW16b, Proposition 5.10, proof of (a)]. That (3)

implies (1) is immediate since G is a quotient of the compactly generated TDLC-group

π1(A,Λ,Ξ).

Note that in the terminology of the third statement of the above proposition,

a Cayley-Abels graph for G can be obtained by considering the quotient of the

(topological realisation as a 1-dimensional simplicial complex of the) universal tree of

(A,Λ) by the kernel of φ.

4.4.2 Quasi-isometry for TDLC-groups and Hyperbolicity.

The edge-path metric on a Cayley-Abels graph Γ of a TDLC-group G induces a

left-invariant pseudo-metric on G, by pulling back the metric of the G-orbit of a vertex

of Γ. In the following proposition, we denote this pseudo-metric by distΓ.
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Following [CdlH16], an action of a topological group G on a (pseudo-) metric space

X is geometric if it satisfies:

• (Isometric) The action is by isometries;

• (Cobounded) There is F ⊂ X of finite diameter such that
⋃

g∈G gF = X;

• (Locally bounded) For every g ∈ G and bounded subset B ⊂ X there is a

neighborhood V of g in G such that V B is bounded in X; and

• (Metrically proper) The subset {g ∈ G : distX(x, gx) ≤ R} is relatively compact

in G for all x ∈ X and R > 0.

The following version of the Švarc-Milnor Lemma is a consequence of work by

Cornulier and de la Harpe on locally compact groups; see [CdlH16, Corollary 4.B.11

and Theorem 4.C.5].

Proposition 4.4.3. Let G be a TDLC-group, let X be a geodesic (pseudo-) metric

space, and let x ∈ X. Suppose there exists a geometric action of G on X. Then there

is a Cayley-Abels graph Γ for G such that the map between the pseudo-metric spaces

(G, distΓ) → (X, distX), x 7→ gx

is a quasi-isometry.

This proposition implies the following result from [KM08, Theorem 2.7].

Corollary 4.4.4. The Cayley-Abels graphs associated to a compactly generated

TDLC-group are all quasi-isometric to each other.

This quasi-isometric invariance of Cayley-Abels graphs allows us to define geometric

notions for compactly generated TDLC-groups such as ends, number of ends or growth,

by considering quasi-isometric invariants of a Cayley-Abels graph associated to G.

Definition 4.4.1. A TDLC-group G is defined to be hyperbolic if G is compactly

generated and some (hence any) Cayley-Abels graph of G is hyperbolic.

For an equivalent definition of hyperbolic TDLC-group using (standard) Cayley

graphs over compact generating sets see [BMW12] for details.
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4.4.3 Compactly presented TDLC-groups

A locally compact group is said to be compactly presented if it admits a presentation

〈K | R〉 where K is a compact subset of G and there is a uniform bound on the length

of the relations in R. Observe that being compactly presented implies being compactly

generated. There are also an equivalent definition of compact presentation [CW16b,

§ 5.8] based on van Dantzig’s Theorem in the context of Proposition 4.4.2.

Corollary 4.4.5. [CdlH16] A TDLC-group G is compactly presented if and only if

1. there exists a finite graph of profinite groups (A,Λ) with a single vertex together

with a continuous open surjective homomorphism φ : π1(A,Λ,Ξ) → G such that

φ|Av
is injective for all v ∈ V(Λ), and

2. the kernel of φ is finitely generated as a normal subgroup.

Proof. Note that the if direction is immediate since π1(A,Λ,Ξ) is compactly presented.

Indeed, a group presentation of π1(A,Λ,Ξ) has as generators the formal union of

the vertex group and a finite number of elements corresponding to the edges of the

graph. The set of relations consists of the multiplication table of the vertex group and

the HNN-relations; note that all these relations have length at most four. Since the

kernel of φ is finitely generated as a normal subgroup, it follows that G is compactly

presented.

For the only if direction, since G is compactly presented, in particular it is compactly

generated and hence there is a finite graph of profinite groups (A,Λ) with the required

properties for (1). It remains to show that the kernel of φ is finitely generated as a

normal subgroup. By [CW16b, Proposition 5.10(b)], ker(φ) is a discrete subgroup of

π1(A,Λ,Ξ). Since π1(A,Λ,Ξ) is compactly generated and G is compactly presented,

[CdlH16, Proposition 8.A.10(2)] implies that ker(φ) is compactly generated as a

normal subgroup; by discreteness it follows that ker(φ) is finitely generated as a normal

subgroup.

Proposition 4.4.6. A TDLC-group G is compactly presented if and only if there

exists a simply connected cellular G-complex X with compact open cell stabilizers ,

finitely many G-orbits of cells of dimension at most 2, and such that any element of G

fixing a cell setwise fixes it pointwise (no inversions).
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A G-complex with the properties stated in the above proposition is called a

topological model of G of type F2.

Proof of Proposition 4.4.6. The equivalence of compact presentability and the exis-

tence of a topological model for F2 follows from standard arguments. That compact

presentability is a consequence of the existence of the topological model follows directly

from [BH99, I.8, Theorem 8.10]; for compact presentability implying the existence of

such a complex see for example [CC20, Proposition 3.4].

The following result is well known for discrete hyperbolic groups. The proof

in [BH99, III.Γ Theorem 3.21] carries over for hyperbolic TDLC-groups by considering

the Rips complex on a Cayley-Abels graph instead of the standard Cayley graph.

Proposition 4.4.7. Let G be a hyperbolic TDLC-group. Then G acts on a simplicial

complex X such that:

1. X is finite dimensional, contractible and locally finite;

2. G acts simplicially, cell stabilizers are compact open subgroups, and there are

finitely many G-orbits of cells.

3. G acts transitively on the vertex set of X.

In particular, the topological realization of the barycentric subdivision of X is a

topological model for F2, and hence G is compactly presented.

For a topological model X of G of type F2, by standard techniques we may add

cells to kill higher homotopy, and get a contractible G-complex X ′ on which G acts

simplicially with compact open stabilizers . Then the assumption on cell stabilizers

implies that the collection of i-cells of X ′ is a proper G-set and hence Ci(X
′,Q) is

a proper permutation QG-module. Since X ′ is contractible, the augmented chain

complex (C•(X
′,Q), ∂•) is a projective resolution of Q in QGdis and, since X

′(2) = X(2)

has finitely many orbits of cells, the chain complex is finitely generated in degrees 0, 1

and 2. In particular compactly presented TDLC-groups have type FP2 in QGdis.
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4.5 Weak n-dimensional isoperimetric inequality

4.5.1 (Pseudo-)Norms on vector spaces

Given a vector space V over a subfield F of the complex numbers, a pseudo-norm on

V is a nonnegative-valued scalar function ‖ ‖ : V → R+ with the following properties:

(N1) (Subadditivity) ‖u+ v‖ ≤ ‖u‖+ ‖v‖ for all u, v ∈ V ;

(N2) (Absolute Homogeneity) ‖λ · v‖ = |λ| ‖v‖, for all λ ∈ F and v ∈ V .

A pseudo-norm ‖ ‖ on a vector space V is said to be a norm if it satisfies the following

additional property:

(N3) (Point-separation) ‖v‖ = 0, v ∈ V ⇒ v = 0.

Let f : (V, ‖ ‖V ) → (W, ‖ ‖W ) be a linear function between pseudo-normed vector

spaces. We say that f is bounded if there exists a constant C > 0 such that ‖f(v)‖W ≤

C ‖v‖V for all v ∈ V . In such a case, we write ‖ ‖W �f ‖ ‖V when the constant

C is irrelevant. Two different norms ‖ ‖ and ‖ ‖′ on V are said to be equivalent,

‖ ‖ ∼ ‖ ‖′, if ‖ ‖ �id ‖ ‖′ �id ‖ ‖. From here on the relation �id will be denoted as

�.

4.5.2 ℓ1-norm on permutation QG-modules

Let Q[Ω] be a permutation QG-module. In particular, Q[Ω] is a Q-vector space with

linear basis Ω. Therefore, the nonnegative-valued function

‖ ‖Ω1 : Q[Ω] → Q+,
∑

ω∈Ω

αωω 7→
∑

ω∈Ω

|αω|, (4.5.1)

defines a norm on Q[Ω]. As usual, we shall refer to ‖ ‖Ω1 as the ℓ1-norm on Q[Ω].

Notice that ‖ ‖Ω1 is G-equivariant.

Proposition 4.5.1. Let φ : Q[Ω] → Q[Ω′] be a morphism of finitely generated permu-

tation QG-modules. Then ‖ ‖Ω
′

1 �φ ‖ ‖Ω1 .
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Proof. This is a consequence of the G-invariance of the ℓ1-norm and the fact that

the modules are finitely generated. Indeed, the morphism φ is described by a finite

matrix A = (aij) with entries in QG. Consider the ℓ1-norm ‖ ‖1 on QG and let

C = max ‖aij‖. Then ‖φ(x)‖Ω
′

1 ≤ C ‖x‖Ω1 for every x ∈ Q[Ω].

The above proposition will be used for discrete permutation modules over QG.

4.5.3 Filling pseudo-norms on discrete QG-modules

LetM be a finitely generated discrete QG-module. Since QGdis has enough projectives,

there exists a finitely generated proper permutation QG-module Q[Ω] mapping onto

M , that is, Q[Ω]
∂
։ M and G acts on Ω with compact open stabilizers and finitely

many orbits. The filling pseudo-norm ‖ ‖∂ on M induced by ∂ is defined as

‖m‖∂ = inf{‖x‖Ω1 | x ∈ Q[Ω], ∂(x) = m}. (4.5.2)

One easily verifies that ‖ ‖∂ is subadditive and absolutely homogeneous. Note that

‖ ‖∂ �∂ ‖ ‖Ω1 . (4.5.3)

It is an observation that an ℓ1-norm on a finitely generated discrete permutation

G-module Q[Ω] is equivalent to a filling norm.

Proposition 4.5.2. Morphisms between finitely generated discrete QG-modules are

bounded with respect to filling pseudo-norms.

Proof. Let f :M → N be a morphism of finitely generated discrete QG-modules. Since

M and N are both finitely generated in QGdis, there exist morphisms Q[Ω1]
∂1
։M and

Q[Ω2]
∂2
։ N such that each Q[Ωi] is a finitely generated proper permutation module.

By the universal property of Q[Ω1] as a projective object, there is φ : Q[Ω1] → Q[Ω2]



52

such that the following diagram commutes:

Q[Ω1] Q[Ω2]

M N

φ

∂1 ∂2

f

For any m ∈M and any ε > 0, let xm ∈ Q[Ω1] such that ∂1(xm) = m and ‖xm‖
Ω1

1 �∂1

‖m‖∂1 + ε. Since f(m) = ∂2(φ(xm)), one has

‖f(m)‖∂2 �∂2 ‖φ(xm)‖
Ω2

1 by (4.5.3),

�φ ‖xm‖
Ω1

1 by Proposition 4.5.1,

�∂1 ‖m‖∂1 + ε.

Since ε is arbitrary, we deduce ‖ ‖∂2 �
f ‖ ‖∂1 .

By considering the identity function on a finitely generated discrete QG-module

M , the previous proposition implies:

Corollary 4.5.3. Let G be a TDLC-group. Any two filling pseudo-norms on a finitely

generated discrete QG-module M are equivalent.

In particular, all the filling pseudo-norms on a finitely generated proper permutation

QG-module Q[Ω] are equivalent to ‖ ‖Ω1 , and therefore they are all norms.

The former implies that each finitely generated discrete QG-module M admits a

unique filling pseudo-norm up to equivalence. Therefore, by abuse of notation, we

denote by ‖ ‖M any filling pseudo-norm of M and we refer to ‖ ‖M as the filling

pseudo-norm of M .

4.5.4 Undistorted submodules

Let M be a discrete QG-module with a norm ‖ ‖ and let N be a finitely generated

discrete QG-submodule of M . Then N is said to be undistorted with respect to ‖ ‖ if

the restriction of ‖ ‖ to N is equivalent to a filling norm on N . In the case that M is
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finitely generated and N is undistorted with respect to the filling norm ‖ ‖M we shall

simply say that N is undistorted in M .

We note that in general it is not the case that finitely generated submodules of M

are undistorted; we refer the reader to Section 4.7 for counter-examples.

Proposition 4.5.4. Let G be a TDLC-group. The filling pseudo-norm ‖ ‖P of a

finitely generated projective discrete QG-module P is a norm. Moreover, if P is a

direct summand of a finitely generated proper permutation module Q[Ω], then P is

undistorted in Q[Ω].

Proof. Let Q[Ω] be a finitely generated proper permutation module such that P is a

direct summand of Q[Ω]; see Proposition 4.3.2. Let ι : P → Q[Ω] be the inclusion and

let π : Q[Ω] ։ P be the projection such that π ◦ ι = idP . Proposition 4.5.2 implies

‖ ‖Ω1 �ι ‖ ‖P and ‖ ‖P �π ‖ ‖Ω1 on P . The former inequality implies that ‖ ‖P is a

norm, and both of them imply that ‖ ‖P ∼ ‖ ‖Ω1 on P .

More generally, this argument shows that a direct summand of any finitely generated

discrete QG-module, with the filling norm, is undistorted.

We conclude the section with a technical result about bounded morphisms that

will be used later and relies on the proof of the previous proposition.

Proposition 4.5.5. Let G be a TDLC-group and H a closed subgroup of G. Let M

be a finitely generated and projective QG-module in QGdis with filling norm ‖ ‖M .

Regard M as a QH-module via restriction, and suppose that N is a finitely generated

direct summand of M in QHdis. Then N is an undistorted QH-module of M with

respect to the norm ‖ ‖M .

Proof. The QH-module N is projective since in the context we are working, restriction

of M is projective and hence N is a direct summand of a projective QH-module.

By Proposition 4.5.4, M can be assumed to be a finitely generated proper permu-

tation QG-module Q[Ω]. Note that the restriction of Q[Ω] is a proper permutation

Q[H]-module.

Since N is finitely generated, there exists an H-subset Σ of Ω such that Σ/H is

finite and N is a QH-submodule of Q[Σ]. Since N and Q[Σ] are direct summands of
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Q[Ω] as QH-modules, it follows that N is a direct summand of the finitely generated

proper permutation QH-module Q[Σ].

Proposition 4.5.4 implies that the pseudo-norm ‖ ‖N is a norm and ‖ ‖N ∼ ‖ ‖Σ1
on N . Since ‖ ‖Σ1 = ‖ ‖Ω1 on Q[Σ], it follows that ‖ ‖N ∼ ‖ ‖Ω1 on the elements of

N .

4.5.5 Weak n-dimensional linear isoperimetric inequality

Let G be a TDLC-group of type FPn+1. Then there exists a partial proper permutation

resolution

Q[Ωn+1]
δn+1 // Q[Ωn]

δn // · · · // Q[Ω1]
δ1 // Q[Ω0] // Q // 0 (4.5.4)

of finite type, i.e. it consists of finitely generated discrete QG-modules. We say

that G satisfies the weak n-dimensional linear isoperimetric inequality if ker(δn) is an

undistorted submodule of Q[Ωn]. The special case for n = 1 is referred as the weak

linear isoperimetric inequality.

Note that, by Proposition 4.5.2, ‖ ‖Ωn

1 �ı ‖ ‖ker(∂n) where ı : ker(∂n) → Q[Ωn]

is the inclusion. Hence, the weak n-dimensional linear isoperimetric inequality is

equivalent to the existence of a constant C > 0 such that ‖ ‖ker(∂n) ≤ C ‖ ‖Ωn

1 on

ker(∂n).

The proof of the following proposition is an adaption of the proof of [HMP16,

Theorem 3.5] that we have included for the reader’s convenience.

Proposition 4.5.6. For a TDLC-group G of type FPn+1, the property of satisfying

the weak linear n-dimensional isoperimetric inequality is independent of the choice of

the proper permutation resolution of finite type in QGdis.

Proof. Let (Q[Ωi], ∂i), (Q[Λi], δi) be a pair of proper permutation resolutions of Q

which contain finitely generated modules for degrees i = 0, . . . , n + 1. Suppose G

satisfies the weak n-dimensional linear isoperimetric inequality with respect to the

resolution (Q[Λi], δi). Hence there is C > 0 such that

‖x‖ker(δn) ≤ C ‖x‖Λn

1 . (4.5.5)
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for all x ∈ ker(δn).

Since any two projective resolutions of Q are chain homotopy equivalent, there

exist chain maps f : (Q[Ωi], ∂i) → (Q[Λi], δi)) and g : (Q[Λi], δi) → (Q[Ωi], ∂i), and a

1-differential h : (Q[Ωi], ∂i) → (Q[Ωi], ∂i) such that

∂i+1 ◦ hi + hi−1 ◦ ∂i = gi ◦ fi − Id. (4.5.6)

Diagrammatically, one has

· · · // Q[Ωn+1]
∂n+1

//

fn+1

��

Q[Ωn]
∂n

//

fn
��

hn

yy
Q[Ωn−1]

fn−1

��

hn−1

yy
// · · ·

· · · // Q[Λn+1]
δn+1

//

gn+1

OO

Q[Λn]
δn

//

gn

OO

Q[Λn−1]

gn−1

OO

// · · ·

(4.5.7)

Since gn+1, fn and hn are morphisms between finitely generated discrete QG-

modules, Proposition 4.5.2 applies and, therefore, the constant C defined above can

be assumed to satisfy:

(D1) ‖gn+1(λ)‖
Ωn+1

1 ≤ C ‖λ‖Λn+1

1 , for all λ ∈ Q[Λn+1];

(D2) ‖fn(ω)‖
Λn

1 ≤ C ‖ω‖Ωn

1 , for all ω ∈ Q[Ωn]; and

(D3) ‖hn(ω)‖
Ωn+1

1 ≤ C ‖ω‖Ωn

1 , for all ω ∈ Q[Ωn].

We prove below that that there is a constant D > 0 such that for any α ∈ ker(∂n)

and ǫ > 0

‖α‖ker(∂n) ≤ D‖α‖Ωn

1 +Dǫ.

Then it follows that G satisfies the weak n-dimensional linear isoperimetric inequality

with respect to the resolution (Q[Ωi], ∂i) by letting ǫ→ 0.

Let α ∈ ker(∂n) and ǫ > 0. By the diagram (4.5.7), it follows that fn(α) ∈

ker(δn) = δn+1(Q[Λn+1]). Since Q[Λn+1] is finitely generated, we can consider the

filling-norm ‖ ‖ker(δn) to be induced by δn+1. Therefore, by the definition of the filling

norm ‖ ‖ker(δn) there is β ∈ Q[Λn+1] such that δn+1(β) = fn(α) and

‖β‖Λn+1

1 ≤ ‖fn(α)‖ker(δn) + ǫ. (4.5.8)
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By evaluating α in Equation 4.5.6, we can write

α = gn(fn(α))− ∂n+1(hn(α)) (4.5.9)

= gn(δn+1(β))− ∂n+1(hn(α))

= ∂n+1 (gn+1(β)− hn(α)) .

Hence

‖α‖ker(∂n) ≤ ‖gn+1(β)− hn(α)‖
Ωn+1

1 by (4.5.9) and definition of filling norm

≤ ‖gn+1(β)‖
Ωn+1

1 + ‖hn(α)‖
Ωn+1

1

≤ C‖β‖Λn+1

1 + C‖α‖Ωn

1 by inequalities (D1) and (D3)

≤ C‖fn(α)‖ker(δn) + Cǫ+ C‖α‖Ωn

1 by inequality (4.5.8)

≤ C2‖fn(α)‖
Λn

1 + C‖α‖Ωn

1 + Cǫ by inequality (4.5.5)

≤ C3‖α‖Ωn

1 + C‖α‖Ωn

1 + Cǫ by inequality (D2).

4.5.6 Weak 0-Dimensional Linear Isoperimetric Inequality and

Profinite Groups

As previously mentioned, a group is profinite if and only if it is a compact TDLC-

group [Ser02, Proposition 0]. The following statement is a simple application of the

definitions of this section.

Proposition 4.5.7. Let G be a TDLC-group. Then G is compact if and only if it is

compactly generated and satisfies a weak 0-dimensional linear isoperimetric inequality.

The only if direction of the proposition is immediate. Indeed, if G is a compact

TDLC-group, then the trivial G-module Q is projective in QGdis. In this case,

one can read the weak 0-dimensional isoperimetric inequality from the resolution

0 → Q → Q → 0.

For the rest of the section, suppose that G is a TDLC-group satisfying a weak

0-dimensional linear isoperimetric inequality. Let Γ be a Cayley-Abels graph of G, let

dist be the combinatorial path metric on the set of vertices V of Γ, and let E denote

the set of edges of Γ. In order to prove that G is profinite, it is enough to show that

V is finite.
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Choose an orientation for each edge of Γ and consider the augmented rational

cellular chain complex of Γ,

Q[E]
δ
→ Q[V ]

ε
→ Q → 0.

Since Γ is Cayley-Abels graph, this is a partial proper permutation resolution.

Following ideas in [FMP18], define a partial order � on Q[E] as follows. For

ν, µ ∈ Q[E], ν =
∑

e∈E tee and µ =
∑

e∈E see, then ν � µ if and only if t2e ≤ tese

for every e ∈ E. Observe that if ν � µ then ‖µ‖E1 = ‖µ− ν‖E1 + ‖ν‖E1 ; in particular

‖ν‖E1 ≤ ‖µ‖E1 . An element ν ∈ Q[E] is called integral if te ∈ Z for each e. Define

analogously � on Q[V ].

Lemma 4.5.8. Suppose that µ ∈ Q[E] is integral and δ(µ) = m(v−u) where u, v ∈ V

and m is a positive integer. Then there is an integral element ν ∈ Q[E] such that

δ(ν) = v − u and ν � µ and ‖ν‖E1 ≥ dist(u, v).

Sketch of the proof. Suppose µ =
∑

e∈E see. Consider a directed multigraph Ξ (mul-

tiple edges between distinct vertices are allowed) with vertex set V and such that

for each e ∈ E if se ≥ 0 then there are |se| edges from a to b where δ(e) = b − a;

and if se < 0 then there are |se| from b to a. The degree sum formula for directed

graphs implies that u and v are in the same connected component of Ξ. It is an

exercise to show that there is a directed path γ from u to v in Ξ that can be assumed

to be injective on vertices. The path γ induces an element ν ∈ Q[E] such that if

ν =
∑

e∈E tee then te = ±1 and ν � µ. Moreover γ induces a path in Γ from u to v

and hence ‖ν‖E1 ≥ dist(u, v).

Suppose, for a contradiction, that V is an infinite set. Fix v0 ∈ V . For every

n ∈ N, let vn ∈ V such that dist(v0, vn) ≥ n. Note that such a vertex vn always

exists since Γ is locally finite and connected. Let αn = vn − v0 and observe that

αn ∈ ker(ε) and ‖αn‖
V
1 = 2. We will show that ‖αn‖ker(ε) ≥ n for every n, and hence

G cannot satisfy a weak 0-dimensional linear isoperimetric inequality. Fix n ∈ N,

and let µ =
∑

e∈E see ∈ Q[E] such that δ(µ) = αn = vn − v0.Then there is m ∈ N

such that mµ is integral. Since δ(mµ) = m(vn − v0), Lemma 4.5.8 implies that there

is ν1 ∈ Q[E] such that δ(ν1) = vn − v0 and ν1 � mµ and ‖ν‖1 ≥ dist(v0, vn). Let
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µ1 = mµ− ν1 and note that µ1 is integral, δ(µ1) = (m− 1)(vn − v0), and

‖mµ‖E1 = ‖µ1‖
E
1 + ‖ν1‖

E
1 ≥ ‖µ1‖

E
1 + dist(v0, vn).

An induction argument on m then proves that ‖mµ‖E1 ≥ m dist(v0, vn) and hence

‖µ‖E1 ≥ dist(v0, vn). Since µ was an arbitrary element such that δ(µ) = αn, it follows

tha that ‖αn‖kerδ ≥ dist(v0, vn) ≥ n.

4.6 Proof of Subgroup Theorem

The proof of the theorem relies on the following lemma. Let G be a TDLC-group of

type FPn and H a closed subgroup of G of type FPn.

Lemma 4.6.1. There are partial proper permutation resolutions

Q[Ωn]
δn−→ Q[Ωn−1] → · · · → Q[Ω0] → Q → 0,

Q[Σn]
∂n−→ Q[Σn−1] → · · · → Q[Σ0] → Q → 0

of Q in QHdis and QGdis respectively, satisfying the following properties.

1. Ω0, . . . ,Ωn are finitely generated H-sets;

2. Σ0, . . . ,Σn are finitely generated G-sets;

3. restricting the G-action on each Σi to H, Ωi is an H-subset of Σi via ιi : Ωi → Σi;

4. the diagram

ker(δn) //

��

Q[Ωn]
δn //

Q[ιn]
��

· · · // Q[Ω0]
δ0 //

Q[ι0]
��

Q // 0

ker(∂n) // Q[Σn]
∂n // · · · // Q[Σ0]

∂0 // Q // 0

of Q[H]-modules commutes;

5. coker(ker(δn) → ker(∂n)) is a projective QH-module.
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Proof. Take a partial proper permutation resolution

Q[Σn]
∂n−→ Q[Σn−1] → · · · → Q[Σ0] → Q → 0

of Q in QGdis. We construct the required resolution

Q[Ωn]
δn−→ Q[Ωn−1] → · · · → Q[Ω0] → Q → 0

in QHdis by induction on n. So suppose we have already constructed a diagram

ker(δn−1) //

��

Q[Ωn−1]
δn−1 //

Q[ιn−1]
��

· · · // Q[Ω0]
δ0 //

Q[ι0]
��

Q // 0

ker(∂n−1) // Q[Σn−1]
∂n−1 // · · · // Q[Σ0]

∂0 // Q // 0

satisfying the conditions for n− 1 (this is trivial for the base case n = 0).

Write ι for the induced map ker(δn−1) → ker(∂n−1); by hypothesis, there is a map

π : ker(∂n−1) → ker(δn−1) such that πι is the identity on ker(δn−1). Since H has type

FPn, ker(δn−1) is finitely generated; pick a finite generating set x1, . . . , xk and pick a

preimage yi of each element xi in Q[Σn], via the map Q[Σn]
∂n−→ ker(∂n−1)

π
−→ ker(δn−1).

Each yi is a finite sum
∑ji

j=1 aijαij with αij ∈ Σn and aij ∈ Q. Now let Ωn be the

(finitely generated) H-subset of Σn generated by the αij. We get an induced map

π∂nQ[ιn] : Q[Ωn] → ker(δn−1) extending the commutative diagram as required; it only

remains to check condition 5.

To see this, consider the following commutative diagram in QHdis

0

��

0

��

0

��
0 // ker(δn)

ι′

��

// Q[Ωn]

Q[ιn]
��

δn // ker(δn−1) //

ι

��

0

0 // ker(∂n) //

��

Q[Σn]
∂n //

��

ker(∂n−1) //

��

0

0 // coker(ι′) //

��

coker(Q[ιn]) //

��

coker(ι) //

��

0

0 0 0.
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Note that the diagram consists of exact rows and exact columns. Since Q[ΩH
n ] is a

direct summand of Q[ΣG
n ] in QHdis, it follows that each coker(Q[ιn]) is projective;

coker(ι) is projective by hypothesis. Then exactness of the bottom row implies that

coker(ι′) is projective.

Remark 4.6.2. In QGdis, it is possible to develop a homological mapping cylinder

argument analogous to [AMP20, Proposition 4.1] that yields a similar conclusion to

Lemma 4.6.1 but only for open subgroups of G. This argument was developed in a

preliminary version of this article.

Proof of Theorem 4.2.5. Since G and H have type FPn, we may use the partial proper

permutation resolutions described in Lemma 4.6.1; we keep the notation from there.

Because G has type FPn+1 and cdQ(G) = n+1, ker(∂n) is finitely generated (in QGdis)

and projective; because H has type FPn+1 and coker(ι′) is projective, ker(δn) is a

finitely generated (in QHdis) summand of ker(∂n). So:

1. ‖ ‖ker(δHn ) ∼ ‖ ‖ker(∂G
n ) on the elements of ker(δHn ), by Proposition 4.5.5;

2. ‖ ‖
ΩH

n

1 ∼ ‖ ‖
ΣG

n

1 on the elements of Q[ΩH
n ], because Ωn is a subset of Σn;

3. ‖ ‖ker(∂G
n ) ∼ ‖ ‖

ΣG
n

1 on the elements of ker(∂Gn ), because G satisfies the weak

n-dimensional linear isoperimetric inequality.

Therefore ‖ ‖ker(δHn ) ∼ ‖ ‖
ΩH

n

1 on the elements of ker(δHn ), i.e. H satisfies the weak

n-dimensional isoperimetric inequality.

4.7 Weak linear isoperimetric inequality and hy-

perbolicity

The notion of linear isoperimetric inequality was used to characterise discrete hyperbolic

groups by Gersten [Ger96a]. Different generalizations of Gersten’s result have been

presented by various authors; see for example [GM08], [Min02] and [HMP16]. In

particular, Manning and Groves [GM08] reformulated Gersten’s argument to provide

a homological characterization of simply connected hyperbolic 2-complexes by means

of a homological isoperimetric inequality. Here we use results from [GM08] to provide

an analogue characterization of hyperbolic TDLC-groups.
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Let X be a complex with i-skeleton denoted by X(i). Consider the cellular chain

complex (C•(X,Q), ∂•) of X with rational coefficients. Each vector space Ci(X,Q)

is Q-spanned by the collection of i-cells σ of X. An i-chain α is a formal linear

combination
∑

σ∈X(i) rσσ where rσ ∈ Q. The ℓ1-norm on Ci(X,Q) is defined as

‖α‖X,i
1 =

∑
|rσ|,

where | | denotes the absolute value function on Q.

Definition 4.7.1 ( [GM08, Definition 2.18] Combinatorial path). Let X be a complex.

Suppose I is an interval with a cellular structure. A combinatorial path I → X(1) is

a cellular path sending 1-cells to either 1-cells or 0-cells. A combinatorial loop is a

combinatorial path with equal endpoints.

From here on, to simplify notation, the 1-chain induced by a combinatorial loop c

in X is denoted by c as well.

Definition 4.7.2 ([GM08, Definition 2.28] Linear Homological isoperimetric inequal-

ity). Let X be a simply connected complex. We say that X satisfies the linear

homological isoperimetric inequality if there is a constant K ≥ 0 such that for any

combinatorial loop c in X there is some σ ∈ C2(X,Q) with ∂(σ) = c satisfying

‖σ‖X,2
1 ≤ K‖c‖X,1

1 . (4.7.1)

Definition 4.7.3. Let G be a compactly presented TDLC-group. There exists a

simply connected G-complex X with compact open cell stabilizers, the 2-skeleton X(2)

is compact modulo G, the G-action is cellular and an element in G fixing a cell setwise

fixes it already pointwise. The group G satisfies the linear homological isoperimetric

inequality if X does.

The above definition is independent of the choice of X as a consequence of Propo-

sition 4.5.6, the fact that a compactly presented TDLC-group has type FP2, and the

following statement.

Proposition 4.7.1. Suppose G is a compactly presented TDLC-group and X is a

topological model of G of type F2. Then G satisfies the weak linear isoperimetric

inequality if and only if X satisfies the linear homological isoperimetric inequality.
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Proof. The augmented cellular chain complex (C•(X,Q), ∂•) of X is a proper partial

permutation resolution of Q of type FP2. The module Ci(X,Q) is a proper permutation

module and we can take as its filling norm ‖ ‖Ci
the ℓ1-norm induced by G-set of

i-cells.

The weak linear isoperimetric inequality means that the filling norm ‖ ‖Z1
of

Z1(X,Q) is equivalent to the restriction of ‖ ‖C1
to Z1(X,Q). Hence there is a con-

stant C > 0 such that ‖ ‖Z1
≤ C ‖ ‖C1

on Z1(X,Q). To prove the linear homological

isoperimetric inequality is enough consider non-trivial combinatorial loops, the inequal-

ity is trivial otherwise. Let c be a non-trivial combinatorial loop and let µ ∈ C2(X)

such that ∂µ = c and ‖µ‖C2
≤ ‖c‖Z1

+ 1. In particular, ‖µ‖C2
≤ ‖c‖Z1

+ ‖c‖C1
, since

‖c‖C1
is a positive integer. It follows that ‖µ‖C2

≤ (C + 1) ‖c‖C1
for any non-trivial

combinatorial loop.

Conversely, suppose that X satisfies the linear homological isoperimetric inequality

for a constant C. Let γ ∈ Z1(X,Q). Then the filling norm on γ ∈ Z1(X,Q) is given

by ‖γ‖Z1
= inf{‖µ‖C2

: µ ∈ C2(X,Q), ∂µ = γ}. There is an integer m such that mγ

is an integer cycle. Then mγ = c1 + c2 + · · ·+ ck where each ci is a cycle induced by a

combinatorial loop, and ‖mγ‖C1
=

∑
‖ci‖C1

, see [Ger98, Lemma A.2]. Then there are

2-cycles σi ∈ C2(X,Q) such that ∂σi = ci and ‖σi‖C2
≤ C ‖ci‖C1

. It follows that

‖mγ‖Z1
≤

∥∥∥∥∥
∑

i

σi

∥∥∥∥∥
C2

≤
∑

i

‖σi‖C2
≤ C

∑

i

‖ci‖C1
= C ‖mγ‖C1

.

Since both ‖ ‖Z1
and ‖ ‖C1

are homogeneous (see (N2) in Section 4.5), the previous

inequality implies that ‖ ‖Z1
≤ C ‖ ‖C1

on Z1(X,Q). On the other hand, since the

inclusion Z1(X,Q) →֒ C1(X,Q) is bounded, there is another constant C ′ such that

‖ ‖C1
≤ C ′ ‖ ‖Z1

on Z1(X,Q). Therefore the norms ‖ ‖Z1
and ‖ ‖C1

are equivalent

on Z1(X,Q).

Below we recall a characterization of hyperbolic simply connected 2-complexes

from [GM08].

Proposition 4.7.2. [GM08, Proposition 2.23, Lemma 2.29, Theorem 2.30 ] Let X

be a simply connected 2-complex.

1. If X(1) is hyperbolic, then X satisfies the linear homological isoperimetric in-

equality.
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2. If there is a constant M such that the attaching map for each 2-cell in X has

length at most M , and X satisfies a linear homological isoperimetric inequality;

then X(1) is hyperbolic.

Proof of Theorem 4.2.4. Let G be a compactly generated TDLC-group. Suppose that

G is hyperbolic. By Proposition 4.4.7, G is compactly presented and there is a

topological model X of G of type F2. By Proposition 4.4.3, the 1-dimensional complex

X(1) is quasi-isometric to a Cayley-Abels graph of G. It follows that X(1) is hyperbolic.

Hence, Propositions 4.7.1 and 4.7.2 imply that G satisfies the weak linear isoperimetric

inequality.

Conversely, suppose that G is compactly presented and satisfies the weak linear

isoperimetric inequality. Proposition 4.4.6 implies that there is a topological model X

of G of type F2. By Proposition 4.7.1, X satisfies the linear homological isoperimetric

inequality. Since the G-action on the 2-skeleton X(2) has finitely many G-orbits

of 2-cells, there is a constant M such that the attaching map for each 2-cell in X

has length at most M . Then Proposition 4.7.2 implies that X(1) is hyperbolic. By

Proposition 4.4.3, the Cayley-Abels graphs of G are hyperbolic.

4.8 Small cancellation quotients of amalgamated

free products of profinite groups

This section relies on small cancellation theory over free products with amalgamation

as developed in Lyndon-Schupp textbook [LS01, Chapter V, Section 11]. Before we

state the main result of the section, we recall some of the terminology.

Let A and B be groups, and let C be a common subgroup. A reduced word1 is a

sequence x1 . . . xn, n ≥ 0, of elements of A ∗C B such that

1. Each xi belongs to one of the factors A or B.

2. Successive xi, xi+1 belong to different factors.

3. If n > 1, no xi belongs to C.

1In [LS01, Section V Chapter 11] this is also called normal form.
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4. If n = 1, then x1 6= 1.

A sequence x1 . . . xn is semi-reduced if it satisfies all the above items with (2) replaced

by

(2’) The product of successive xi, xi+1 does not belong to C.

Every element of A∗CB can be represented as the product of the elements in a reduced

word. Moreover, if x1 . . . xn, n ≥ 1 is a reduced word, then the product x1 · · · xn is not

trivial in A ∗C B (see [LS01, Theorem 2.6]). A reduced word w = x1 . . . xn is cyclically

reduced if n = 1 or if xn and x1 are in different factors of A ∗C B. The word w is weakly

cyclically reduced if n = 1 or if xnx1 /∈ C.

A subset R of words in A ∗C B is symmetrized if r ∈ R implies r is weakly

cyclically reduced and every weakly cyclically reduced conjugate of r±1 is also in R.

A symmetrized subset R is finite if all elements represented by words in R belong to

a finite number of conjugacy classes in A ∗C B. Let R be a symmetrized subset of

A ∗C B. A word b is said to be a piece (relative to R) if there exist distinct elements

r1 and r2 of R such that r1 = bc1 and r2 = bc2 in semi-reduced form.

C ′(λ): If r ∈ R has semi-reduced form r = bc where b is a piece, then |b| < λ|r|. Further,

|r| > 1/λ for all r ∈ R.

Theorem 4.8.1. Let A ∗C B be the amalgamated free product of the profinite groups

A,B over a common open subgroup C. Let R be a finite symmetrized subset of

A ∗C B that satisfies the C ′(1/12) small cancellation condition. Then the quotient

G = (A ∗C B)/〈〈R〉〉 is a hyperbolic TDLC-group with cdQ(G) ≤ 2.

Since the rational discrete cohomological dimension of a TDLC-group G is less

or equal to the geometric dimension of a contractible G-CW-complex acted on by G

with compact open stabilizers (see [CC20, Fact 2.7] for example), in order to prove

the theorem, we construct a contractible cellular 2-dimensional G-complex X with

compact open cell stabilizers, and such that its 1-skeleton is hyperbolic. The 1-skeleton

is obtained as a quotient of the Bass-Serre tree of A ∗C B, and then X is obtained by

pasting G-orbits of 2-cells in one to one correspondence with conjugacy classes defined

by R.
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Recall that there exists a unique group topology on A ∗C B with the following

properties (see [CdlH16, Proposition 8.B.9] for example): the natural homomorphisms

A→ A ∗C B, B → A ∗C B, and C → A ∗C B are topological isomorphisms onto open

subgroups of A ∗C B. Moreover, A ∗C B is a TDLC-group, and in particular, all open

subgroups of C form a local basis at the identity of compact open subgroups of A ∗C B.

Proof. Let T be the Bass-Serre tree of A ∗C B. Observe that T is locally finite, the

action of A ∗C B on T is cobounded and it has compact open stabilizers. In particular,

the action of A ∗C B on T is geometric and hence A ∗C B is a hyperbolic TDLC-group.

LetN denote the normal closure of R in A∗CB. By Greendlinger’s lemma [LS01, Ch.

V. Theorem 11.2], the natural morphisms A→ G and B → G are monomorphisms. It

follows that the subgroup N does not intersect A, B and C. Thus the action of N on

the tree T is free, and as a consequence N is discrete. Hence N is closed in A ∗C B,

and G is a TDLC-group.

Let X(1) denote the quotient graph T/N . Since N was acting freely and cellularly

on T , the quotient map ρ : T → X(1) is a covering map. Since T is locally finite, X(1)

is locally finite. Since the quotient map A∗CB → G is open, the action of A∗CB on T

induces an action of G on X(1) which is cobounded and has compact open stabilizers.

Let x0 be a fixed vertex of T that we consider as the base point from now on. Since

T is simply connected, there is a natural isomorphism from N to the fundamental

group π1(X
(1), ρ(x0)). Specifically, for each g ∈ N , let αg be the unique path in T

from x0 to g.x0. Let γg = ρ ◦ αg be the closed path in X(1) induced by αg based at

ρ(x0). Thus, the isomorphism from N to π1(X
(1), ρ(x0)) is defined by g 7→ γg.

We are ready to define X. For g ∈ G and h ∈ N , let g.γh be the translated closed

path without an initial point, i.e., these are cellular maps from S1 → X. Consider

the G-set Ω = {g.γr | r ∈ R, g ∈ G} of closed paths in X(1). Let X be the G-complex

obtained by attaching a 2-cell to X(1) for every closed path in Ω. In particular, the

pointwise G-stabilizer of a 2-cell of X coincides with the pointwise G-stabilizer of its

boundary path and, therefore, compact and open. Then X is a discrete G-complex

of dimension 2. Observe that the natural isomorphism from N to π1(X
(1), ρ(x0))

implies that X is simply connected. Moreover, since R is finite, X is a cobounded

2-dimensional discrete G-complex.

We observe that X is a C ′(1/6) complex and in particular the one-skeleton of X
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is a Gromov hyperbolic graph with respect to the path metric, this is a well known

consequence, see [GS90]. Let R1 and R2 be a pair of distinct 2-cells in X such that

the intersection of their boundaries contains an embedded path γ. We can assume, by

translating by an element of G, that the base point of X is either the initial vertex of

γ or the second vertex of γ. Let γ′ be the sub-path of γ with initial point the base

point of X; observe that |γ| ≤ |γ′| + 1. Consider the boundary paths of R1 and R2

starting at the base point and oriented such that γ′ is an initial sub-path of both of

them. Consider the lifts of the chosen boundary paths of R1 and R2 in the tree T

starting from the base point. They intersect along the lifting of the path γ′. Let us

call this path γ̂. Then the reduced word in A ∗C B corresponding to γ̂ is a piece, and

hence its length is bounded by 1
12
|∂Ri|, for i = 1, 2. We have the following inequality

|γ| ≤ |γ′|+ 1 = |γ̂|+ 1 ≤
1

12
|∂Ri|+

1

12
|∂Ri|, for i = 1, 2.

Hence X is a C ′(1/6) complex.

We conclude that the complex X is contractible by using a well known argument

of Ol′shanskĭı [Ol’91]. By a remark of Gersten [Ger87, Remark 3.2], if every spherical

diagram in X is reducible, then X has trivial second homotopy group, and therefore X

is contractible because it is simply connected. Let S → X be a spherical diagram, and

suppose that it is not reducible. Consider the dual graph Φ to the cellular structure

of S, specifically Φ is the graph whose vertices are the two cells of X and there is an

edge between two vertices for each connected component of the intersection of the

boundaries of the corresponding 2-cells. Observe that Φ is planar. Since X is a C ′(1/6)

complex, the boundary paths of 2-cells are embedded paths and the intersection of the

boundaries of any pair of 2-cells is connected, and hence Φ is simplicial. Also since

X is C ′(1/6), every vertex of Φ has degree at least 6. Since a finite planar simplicial

graph has at least one vertex of degree at most 5, we have reached a contradiction

and therefore the diagram S → X has to be reducible. The above sketched argument

can be found in [MP17, Proof of Theorem 6.3] in a different framework.



Chapter 5

Topological groups with a compact

open subgroup, coherence and

relative hyperbolicity

5.1 Abstract

The main objects of study in this article are pairs (G,H) where G is a topological

group with a compact open subgroup, and H is a finite collection of open subgroups.

We develop geometric techniques to study the notions of G being compactly generated

and compactly presented relative to H. This includes topological characterizations

in terms of discrete actions of G on complexes, quasi-isometry invariance of certain

graphs associated to the pairs (G,H) when G is compactly generated relative to H,

and extensions of known results for the discrete case. For example, generalizing results

of Osin for discrete groups, we show that in the case that G is compactly presented

relative to H:

• if G is compactly generated, then each subgroup H ∈ H is compactly generated;

• if each subgroup H ∈ H is compactly presented, then G is compactly presented.

The article also introduces an approach to relative hyperbolicity for pairs (G,H) based

on Bowditch’s work using discrete actions on hyperbolic fine graphs. For example, we
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prove that if G is hyperbolic relative to H then G is compactly presented relative to

H.

As an application of the results of the article we prove results on coherence of

groups. A topological group is coherent if every open compactly generated subgroup

is compactly presented.

5.2 Introduction

This article is part of the program of generalizing geometric techniques in the study of

discrete groups to the larger class of locally compact groups in the spirit of the book

by Cornulier and de la Harpe on Metric geometry on locally compact groups [CdlH16].

As a convention, all topological groups considered in the article are Hausdorff, and

all group actions on CW-complexes are assumed to be cellular. Throughout the article,

we work in the class of topological groups with a compact open subgroup. Note that

such groups are locally compact, and by van Dantzig’s Theorem [VD36], all totally

disconnected locally compact groups (TDLC groups) belong to this class. The class

of TDLC-groups has been a topic of interest in the last three decades since the work

of G. Willis [Wil94], of M. Burger and S. Mozes [BM00], and P.E Caprace and N.

Monod [CM11]. TDLC groups include profinite groups, discrete groups, algebraic

groups over non-archimedean local fields, and automorphism groups of locally finite

graphs.

Let G be a topological group. The group G is compactly generated if it admits a

compact generating set; it is compactly presented if it admits a standard presentation

〈S | R〉 with S a compact subset of G and R a set of words in S of uniformly bounded

length. A topological group is said to be coherent if every open compactly generated

subgroup is compactly presented.

The definition of coherence only considers open subgroups instead of the larger

class of closed subgroups. One of the reasons is the following remark, used in some of

our arguments, which is a consequence of the fact that quotient maps of topological

groups are open but not necessarily closed (see Proposition 5.6.17).

Remark A. Let G be a topological group and N E G be a compact normal subgroup.

Then G is coherent if and only if G/N is coherent.
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The simplest coherent groups are compact groups. In the discrete case, any virtually

free group is also coherent, a statement that can be generalized as follows:

Theorem B (Combination of Coherence Groups). If G = A ∗C B is a topological

group that splits as an amalgamated free product of two coherent open subgroups A and

B with compact intersection C, then G is coherent.

There are classical examples that illustrate the above proposition, for instance the

splitting of the discrete group SL2(Z) as C4 ∗C2 C6 where Cn denotes a cyclic group

of order n. In the non-discrete case, if Qp denotes the field of p-adic numbers and

Zp the p-adic integers, the group SL2(Qp) splits as an amalgamated free product of

two open subgroups isomorphic to the compact group SL2(Zp) along their common

intersection, see for example [Ser80]. One can also iterate the construction, for

instance the amalgamated free product SL2(Qp) ∗SL2(Zp) SL2(Qp) of two copies of

SL2(Qp) along the compact open subgroup of SL2(Zp) is a coherent group. Let us

remark that coherence of SL2(Qp) follows directly from a result attributed to J.Tits,

see [Pra82, Thm. T].

We are able to use McCammond and Wise’s perimeter method in the class of

locally compact groups with a compact open subgroup to obtain the following result.

Theorem C. Let A ∗C B be a topological group that splits as an amalgamated free

product of two coherent open subgroups A and B with compact intersection C. Suppose

r ∈ A ∗C B is not conjugate into A or B. If m is sufficiently large and rm satisfies the

C ′(1/6) small cancellation condition, then the quotient group G = (A ∗C B)/〈〈rm〉〉 is

coherent.

This result in the case that A and B are free groups is a result of McCammond

and Wise [MW02, Theorem 8.3], and the generalization where A and B are coherent

discrete groups is a result of Wise and the second author [MPW11b, Theorem 1.8]. The

proofs of these results rely on a technique known as the perimeter method developed

in work McCammond and Wise [MW02]. Their work was motivated by the well known

question of Gilbert Baumslag of whether all one relator groups are coherent [Bau74],

see the survey on coherence by Wise [Wis20] and the recent work by Louder and

Wilton [LW20].

The quest to prove Theorem C took us to develop versions in the framework of

locally compact groups of other techniques in the study of discrete groups, specifically,
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tools that deal with properties of groups relative to collections of subgroups. We

summarized this work below, where the main objects of study are pairs (G,H) where

G is a topological group with a compact open subgroup and H is a finite collection of

open subgroups. Then we conclude the introduction with the proof of Theorem B. In

order to avoid repetition, we introduced the following terminology.

Definition D (Proper pair). A pair (G,H) is called a proper pair if

1. G is a topological group with a compact open subgroup;

2. H is a finite collection of open subgroups of G;

3. No pair of distinct subgroups in H are conjugate in G.

Note that for a proper pair (G,H), we allow H to be the empty collection.

5.2.1 Compact relative generating sets.

A topological group G is compactly generated relative to a collection of subgroups H if

there is a compact subset K ⊂ G such that G is algebraically generated by K ∪
⋃

H.

An action of a topological group on a CW-complex by cellular automorphisms is called

discrete if pointwise stabilizers of cells are open subgroups. A graph is a 1-dimensional

CW complex, and the graph is simplicial if there are no loops or multiple edges

between the same vertices. Relative compact generation is topologically characterized

as follows.

Definition E (Cayley-Abels graph). Let (G,H) be a proper pair. A Cayley-Abels

graph of G with respect to H is a connected cocompact simplicial G-graph Γ such that:

1. edge stabilizers are compact,

2. vertex stabilizers are either compact or conjugates of subgroups in H,

3. every H ∈ H is the G-stabilizer of a vertex, and

4. any pair of vertices with the same G-stabilizer H ∈ H are in the same G-orbit if

H is non-compact.
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Theorem F (Topological Characterization of Relative compact generation). Let

(G,H) be a proper pair. The following statements are equivalent:

1. G is compactly generated relative to H.

2. There exists a Cayley-Abels graph of G with respect to H.

In the case that G is a discrete group and H is empty, the above result is the

well-know fact that a discrete group is finitely generated if and only if it acts properly

and cocompactly on a connected graph. In the case that G is discrete and H is a

finite collection of subgroups, the result appears implicit in the work of Hruska on

relatively hyperbolic groups [Hru10] where there resulting graphs are called coned-off

Cayley graphs. In the case that G is a TDLC group and H is empty, this is a result

of Krön and Möller’s [KM08] who show that the resulting graphs can be assumed to

be vertex transitive and call them rough Cayley graphs ; this graphs are also know as

Cayley-Abels graphs after related work of Herbert Abels [Abe73]. In the case that G

has a compact open subgroup and H is empty, the theorem is a result of Cornulier

and de la Harpe [CdlH16, Proposition 2.E.9].

Relative Cayley-Abels graphs of proper pair (G,H) are not necessarily locally finite

graphs, however we show that they are pairwise quasi-isometric. There is a generaliza-

tion of locally finite graphs introduced by Bowditch known as fine graphs [Bow12]; a

graph is fine if for any pair of vertices u, v and any integer n, there are finitely many

embedded n-paths from u to v.

Theorem G (Quasi-isometry invariance). Let (G,H) be a proper pair. If Γ and ∆

are relative Cayley-Abels graphs of G with respect to H, then

1. Γ and ∆ are quasi-isometric, and

2. Γ is fine if and only if ∆ is fine.

This theorem in the case that G is a TDLC group and H is empty is a result of

Krön and Möller’s [KM08]. The quasi-isometry invariance of relative Cayley-Abels

graphs allow us to define geometric invariants for pairs (G,H) where G is a topological

group with a compact subgroup and H is a finite collection of open subgroups. For

example, hyperbolicity in the class of topological groups with a compact open subgroup
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can be defined as the groups that admit a hyperbolic Cayley-Abels graph (with respect

to the empty collection) an approach considered in [ACCCMP21]. We use Theorem G

to start the developing of a theory of relatively hyperbolic groups, see subsection 5.2.3.

The approach to hyperbolic groups for locally compact groups developed by Caprace,

Cornulier, Monod and Tessera [CCMT15] when restricted to locally compact groups

with a compact open subgroup provides an equivalent definition.

5.2.2 Compact relative presentations

Let G be a topological group and let H be a finite collection of open subgroups. We

say that G is compactly presented relative to H if there is a short exact sequence

1 → 〈〈R〉〉 → π1(G,Λ)
φ
−→ G→ 1

where π1(G,Λ) is the fundamental group of a finite graph of groups (G,Λ) endowed

with the topology induced by the vertex groups (see see Proposition 5.4.3), such that

• There are vertices {v1, v2, · · · vn} of Λ and isomorphisms of topological groups

φi : Gvi → Hi such that

Gvi π1(G,Λ)

Hi G

ivi

φi φ

is a commutative diagram.

• For every v ∈ V (Λ), the map φ ◦ iv is injective.

• For each edge e ∈ E(Λ) and each vertex v 6= vi in V (Λ), the edge group Ge and

the vertex group Gv are compact topological groups.

• φ is a continuous open surjective epimorphism whose restriction to each vertex

group of (G,Λ) is injective.

• 〈〈R〉〉 is a discrete normal subgroup generated by a finite subset R of π1(G,Λ).

In this case, 〈(G,Λ, φ) | R〉 is called a compact generalized presentation of G with

respect to H.
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In the case that G is compactly presented with respect to the empty collection, we

say that G is compactly presented. This is equivalent to the definition stated at the

beginning of the introduction, see Corollary 5.6.9 in the main body of the article.

In the case that G is discrete and H is empty, the definition is equivalent to G being

the quotient of a virtually free group of finite rank by a normal subgroup generated

by a finite number of elements. In the case that G is a discrete group and H is not

empty, it is an observation that our definition of G being finitely presented relative to

H coincides with the approach by Osin [Osi06]. We previously mentioned that in the

case that G is a TDLC group and H is empty, this approach was used by Castellano

and Weigel [CW16a,Cas20].

Theorem H (Topological Characterization of Relative compact presentation). Let

G be a topological group with a finite collection H of open subgroups. The following

statements are equivalent:

1. G is compactly presented with respect to H.

2. There exists a relative Cayley-Abels graph Γ of G with respect to H which is the

1-skeleton of a simply-connected cocompact discrete G-complex.

Note that for a discrete group G with an empty collection a stronger version of

Theorem H holds in the sense that the second item can be expressed with an universal

quantifier. In order to obtain this type of equivalence in our context we need to impose

an additional hypothesis:

Corollary I. Let (G,H) be a proper pair. Suppose there is a fine relative Cayley-Abels

graphs of G with respect to H. The following statements are equivalent:

1. G is compactly presented with respect to H.

2. Any relative Cayley-Abels graph of G with respect to H is the 1-skeleton of a

simply-connected cocompact discrete G-complex.

We are not aware whether the assumption on fineness of all Cayley-Abels graphs is

necessary. The fineness property of a graph was placed in the context of isoperimetric

inequalities in [MP16] (see also [HMPS21]). The complexes given by Corollary I, which

are not necessarily locally finite satisfy the hypothesis of the following result.
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Proposition J (Proposition 5.8.8). [MP16, Propositions 2.1 and 2.6] Let X be a

cocompact simply-connected G-complex. Suppose that each edge of X is attached to

finitely many 2-cells. Then the 1-skeleton of X is a fine graph if and only if the

combinatorial Dehn function of X takes only finite values.

Corollary I in the case that G is a TDLC group and H is the empty collection

is a result of Castellano and Cook [CC20, Proposition 3.4], and for generally locally

compact groups with empty H, there is a version by Cornulier and de la Harpe,

see [CdlH16, Corollary 8.A.9].

Theorem K. Let (G,H) be a proper pair. Suppose that G is compactly presented

relative to H.

1. If each H ∈ H is compactly presented then G is compactly presented.

2. If G is compactly generated, then each H ∈ H is compactly generated.

In the case of the discrete groups, Theorem K is a result of Osin [Osi06, Theorem

1.1 and Theorem 2.40].

5.2.3 Relative hyperbolicity

Let (G,H) be a proper pair. The topological group G is relatively hyperbolic with

respect to H if there exists a relative Cayley-Abels graph of G with respect to H that

is fine and hyperbolic.

Remark L. Let (G,H) be a proper pair. If G is hyperbolic relative to H then:

1. G is compactly generated relative to H by Theorem F; and

2. relative Cayley-Abels graphs of G with respect to H are fine and hyperbolic by

Theorem G.

Our definition of relative hyperbolicity when restricted to discrete groups coincides

with the approach by Bowditch [Bow12] which is also equivalent to the approach by

Osin [Osi06].
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Theorem M. Let (G,H) be a proper pair. Suppose G is hyperbolic relative to H.

Then G is compactly presented relative to H.

Putting together Theorems K and M we obtain:

Corollary N. Let (G,H) be a proper pair. Suppose G is hyperbolic relative to H.

1. If each H ∈ H is compactly presented then G is compactly presented.

2. If G is compactly generated, then each H ∈ H is compactly generated.

Let us conclude the introduction with the proof of Theorem B that illustrates the

results that have been stated.

5.2.4 Proof of Theorem B

Let T be the Bass-Serre tree of the splitting G = A ∗C B. Observe that the G-action

on T is discrete since A, B and C are open subgroups of G, and edge stabilizers are

compact since C is compact.

Let Q be a compactly generated closed subgroup of G. If Q fixes a vertex of T ,

then coherence of A and B imply that Q is compactly presented.

Suppose that Q does not fix a vertex of T and let U = Q∩C. Observe that U is a

compact open subgroup of Q. Since Q is compactly generated and U is open, there is

a finite subset S ⊂ Q such that S ∪ U generates Q. Let e be an edge of T which is

stabilized by U , let D the minimal connected subgraph of T containing e and g.e for

all g ∈ S. Since S is finite, D is a finite subtree. Since S ∪ U generates Q, it follows

that ∆ :=
⋃

g∈Q gD is a discrete cocompact Q-invariant subtree of T such that all

edge stabilizers are compact. Let H be a collection of representatives of conjugacy

classes of vertex Q-stabilizers of ∆, and note that H is finite and Q 6∈ H. In particular,

(Q,H) is a proper pair, and ∆ is a relative Cayley-Abels graph of Q with respect to

H. Since trees are hyperbolic and fine, it follows that Q is hyperbolic relative to H.

Since Q is compactly generated, Corollary N implies that each H ∈ H is a compactly

generated group. On the other hand, observe that each H ∈ H is either compact or it

is a closed subgroup of A or B up to conjugation in G. Since A and B are coherent, it

follows that each H ∈ H is compactly presented. By the first part of Corollary N, it

follows that Q is compactly presented.
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Organization

The rest of the article is organized into seven sections. Each section contains the proof

of one the theorems stated in the introduction, except Section 5.3 that contains a

technical result about fineness. The mapping of results in the introduction with the

main body of the article:

Definition E Section 5.4 Definition 5.4.10 and Theorem 5.4.11

Theorem F Theorem 5.4.9

Theorem G Section 5.5 Corollary 5.5.3

Theorem H Section 5.6 Theorem 5.6.6

Corollary I Corollary 5.6.7

Theorem K Section 5.7 Theorem 5.7.1

Theorem M Section 5.8 Theorem 5.8.4

Proposition J Proposition 5.8.8

Theorem C Section 5.9

5.3 Equivariant Edge Attachments and Fineness

This section revisits an argument from [MPR21] in order to prove that certain nat-

ural extensions of G-graphs preserve fineness. The main result of this section is

Theorem 5.3.4.

Throughout the section, G denotes a topological group. All graphs in this section

are 1-dimensional simplicial complexes. Let Γ be a simplicial graph, let v be a vertex

of Γ, and let

TvΓ = {w ∈ V (Γ) | {v, w} ∈ E(Γ)}.

denote the set of the vertices adjacent to v. For x, y ∈ TvΓ, the angle metric ∠v(x, y)

is the combinatorial length of the shortest path in the graph Γ− {v} between x and y,

with ∠v(x, y) = ∞ if there is no such path.

Definition 5.3.1 (Bowditch fineness). [Bow12] A simplicial graph Γ is fine at v if

(TvΓ,∠v) is a locally finite metric space. A graph Γ is fine if it is fine at every vertex.
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Definition 5.3.2 (Equivariant attachment of edges). Let G be a group and let Γ and

∆ be G-graphs.

1. Let u ∈ V (Γ) and let H ≤ G be a subgroup. The G-graph ∆ is obtained from Γ

by attaching an edge G-orbit with representative {u,H} if

V (∆) = V (Γ) ⊔G/H, E(∆) = E(Γ) ⊔ {{gu, gH}|g ∈ G}

where G/H denotes the G-set of left cosets of H in G.

2. Let u, v ∈ V (Γ) distinct vertices. The G-graph ∆ is obtained from Γ by attaching

a G-orbit of edges with representative {u, v} if

V (∆) = V (Γ), E(∆) = E(Γ) ∪ {{g.u, g.v} | g ∈ G}

Definition 5.3.3 (Discrete G-graph). Let G be a topological group and let Γ be a

G-graph. If vertex and edge stabilizers are open subgroups, we say that Γ is a discrete

G-graph.

Theorem 5.3.4. Let Γ be a connected discrete G-graph with compact edge stabilizers.

Let u, v, a ∈ V (Γ), and let H ≤ G be a compact open subgroup. Let ∆ be a G-graph

obtained from Γ

1. by attaching a G-orbit of edges with representative {u, v}; or

2. by attaching a G-orbit of edges with representative {u,H}.

If Γ is fine at a, then ∆ is fine at a.

Corollary 5.3.5. Let Γ1 and Γ2 be cocompact connected discrete G-graphs with compact

edge stabilizers. Let V∞(Γi) be the set of vertices of Γi with non-compact stabilizer. If

there is a G-equivariant bijection V∞(Γ1)
η
−→ V∞(Γ2), then:

1. Γ1 and Γ2 are quasi-isometric, and

2. Γ1 is fine if and only if Γ2 is fine.

Proof. Let Γ be the simplicial G-graph obtained by taking disjoint union of Γ1 and Γ2

identified along V∞(Γ1) and V∞(Γ2) through η. By cocompactness of Γ2, the G-graph
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Γ can be constructed from Γ1 by finitely many G-edge attachments. Since V∞(Γ2)

contains all vertices of Γ2 with non-compact stabilizer, we only need to equivariant

edge attachment of edges satisfying the hypothesis of Theorem 5.3.4. By induction, Γ

is fine if and only if Γ1 is fine. It is not difficult to verify that the inclusion Γ1 →֒ Γ is

a quasi-isometry, see subsection 5.3.5 for an argument. Analogously, Γ2 is fine if and

only if Γ is fine, and Γ2 is quasi-isometric to Γ.

Theorem 5.3.4 addresses two constructions that preserve fineness of vertices, we

will refer to them as the first and second case according to the enumeration in the

statement. There are versions of Theorem 5.3.4 in the case of the first construction

and under the assumption that G is discrete:

1. Bowditch shows that if Γ has finitely many G-orbits of vertices and edges and

is fine, then ∆ fine; see [Bow12, Lemma 4.5]. An alternative argument for this

statement can be found in [MPW11a, Proof of Lemma 2.9].

2. The statement of Theorem 5.3.4 for the first construction in the case that G is

discrete can be found in [MPR21, Proposition 4.2].

The proof of Theorem 5.3.4 for both constructions follows the same strategy as the

argument in [MPR21, Proof of Proposition 4.2]. We only prove Theorem 5.3.4 for

the second construction, i.e., the case that ∆ is obtained by attaching a G-orbit of

edges with representative {u,H}. This case has not been addressed even in the case

that the group is discrete. While there is a significant overlap with the argument

in [MPR21, Proof of Proposition 4.2], we decided to include a complete proof since

there is number of additional lemmas that are required besides addressing topological

matters arising from replacing finiteness of edge stabilizers with the assumption that

edge stabilizers are compact and open. For the convenience of the reader we included

some arguments from [MPR21] in some cases almost verbatim.

5.3.1 Preliminaries

Let us fix some notation for paths in a simplicial graph Γ. A path or an edge-path from

a vertex v0 to a vertex vn of Γ is a sequence of vertices [v0, v1 . . . , vn], where vi and

vi+1 are adjacent (in particular distinct) vertices for all i ∈ {0, . . . , n− 1}. The path
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is embedded if all vertices of the path are distinct. The length of a path is the total

number of vertices in the sequence minus one. A path of length k is called a k-path.

If α = [u1, . . . , uk] and β = [v1, . . . vℓ] are paths with uk = v1, then [α, β] denotes the

concatenated path [u1, . . . , uk, v2, . . . vℓ].

5.3.2 Alternative approach to fineness

A path [u, u1 . . . , uk] in a graph Γ is an escaping path from u to v if v = uk and ui 6= u

for every i ∈ {1, . . . , k}. For vertices u and v of Γ and k ∈ Z+, define:

~uv(k)Γ = {w ∈ TuΓ | w belongs to an escaping

path from u to v of length ≤ k}.

Proposition 5.3.6. [MPR21, Lemma 4.4] A graph Γ is fine at u ∈ V (Γ) if and only

if ~uv(k)Γ is a finite set for every integer k > 0 and every vertex v ∈ V (Γ).

Remark 5.3.7. For vertices u and v of Γ and k ∈ Z+, if the set of vertices adjacent

to v is {wj : j ∈ J} then

~uv(k + 1)Γ =
⋃

{ ~uw(k)Γ : w ∈ TvΓ} .

5.3.3 A Compactness argument

Proposition 5.3.8. Let Γ be a connected discrete G-graph with compact edge stabiliz-

ers. Let c = [x, y, z] be a 2-path and let e = [u, v] be a 1-path. The set

B = {g.z ∈ V (Γ) | g ∈ G, g.x = u, g.y = v}

is finite.

Proof. Suppose B is non empty. Then

A = {g ∈ G : g.x = u, g.y = v} =
⊔

g∈A

g(Gx ∩Gy ∩Gz)

is a nonempty subspace of G. Since Γ is a discrete G-graph, Gx ∩Gy ∩Gy is an open

subgroup; hence A is both open and closed in G. Fix an element g0 ∈ A and observe
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that

A ⊂ g0(Gx ∩Gy).

Since Γ has compact edge stabilizers, Gx ∩Gy is a compact subgroup. Therefore A is

a closed subset of a compact set, hence A is compact.

Consider B as a discrete set, and consider the map

ϕ : A→ B, g 7→ g.z.

Since Gx∩Gy is open, one easily verifies that ϕ is continuous. Note that ϕ is surjective.

Since A is compact, B is finite.

5.3.4 Proof of Theorem 5.3.4

Let Γ be a connected discrete G-graph with compact edge stabilizers. Let u ∈ V (Γ),

let H ≤ G be a compact open subgroup, and let ∆ be the G-graph obtained from Γ

by attaching a new G-orbit of an edge with representative {u,H}.

Lemma 5.3.9. ∆ is connected discrete G-graph with compact edge stabilizers.

Proof. It is an observation that ∆ is connected and the vertex H of ∆ has G-stabilizer

the subgroup H which is open by assumption. The edge {u,H} of ∆ has G-stabilizer

Gu ∩H which is open since both Gu and H are open, and it is compact since H is

compact by assumption. Since any vertex or edge of ∆ which is not in the G-orbits of

the vertex H or the edge {u,H} is in Γ, we have that ∆ is a discrete G-graph.

Lemma 5.3.10 (The vertex H has finite degree). The set TH∆ of vertices of ∆

adjacent to the vertex H is a finite subset of V (Γ).

Proof. By definition of ∆, every vertex adjacent to the vertex H is a vertex of Γ.

Observe that the vertex H of ∆ has stabilizer the subgroup H, and the edge {u,H}

has stabilizer Gu ∩ H. Since all vertices of ∆ adjacent to the vertex H are in the

G-orbit of u, it follows that the vertex H has degree equal to the index of the subgroup

H ∩ Gu in the group H. Since H is compact and H ∩ Gu is an open subgroup, the

vertex H of ∆ has finite degree.

Lemma 5.3.11 (Fineness criterion for ∆). If ~ab(k)∆ is finite for every k ≥ 1 and

every b ∈ V (Γ), then ∆ is fine at a.
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Proof. Let v be a vertex of ∆ and let k ≥ 1. If v is not in the G-orbit of the vertex

H, then by assumption ~ab(k)∆ is finite for every k ≥ 1. Suppose that v is in the

G-orbit of the vertex H. Then Lemma 5.3.10 implies that v has finite degree and

Tv∆ = {b1, . . . , bm} is a subset of V (Γ). Then Remark 5.3.7 implies that

~av(k)∆ =
k⋃

i=1

~abi(k − 1).

Since each bi ∈ V (Γ), the hypothesis implies that ~abi(k − 1) is a finite set for each bi.

Therefore ~av(k)∆ is a finite set for every v ∈ V (∆) and k ≥ 1. By Proposition 5.3.6,

∆ is fine at a.

Suppose that Γ is fine at the vertex a. Let b be a vertex of Γ and let k ≥ 1. We

prove below that ~ab(k)∆ is finite. Observe that this implies that ∆ is fine at a in view of

Lemma 5.3.11. The argument follows the skeleton of the proof of [MPR21, Proposition

4.2].

The paths αij and the constants ℓ and n.

By Lemma 5.3.10,

TH∆ = {v1, v2, . . . , vm} ⊂ V (Γ).

For each vi, vj ∈ TH∆, let αij be a minimal length (embedded) path from vi to vj in

Γ, note that such a path exists since Γ is connected. Let ℓ be an upper bound for the

length of the paths αij, that is

|αij| ≤ ℓ

for any vi, vj ∈ TH∆. Let

n = kℓ. (5.3.1)
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The finite sets Wi and Zi.

A subpath of length two of a path P is called a corner of P . Let

Wn = ~ab(n)Γ.

Let j ≤ n and suppose Wj has been defined. Let

Zj−1 = Wj ∪ {z ∈ TaΓ | ∃w ∈ Wj ∃g ∈ G ∃vi, vj ∈ TH∆

∃c corner of αij such that g.c = [z, a, w]}.

Wj−1 = {w ∈ TaΓ | ∃z ∈ Zj−1 such that ∠TaΓ(z, w) ≤ n}.

Observe that

Wj ⊆ Zj−1 ⊆ Wj−1, for all 1 ≤ j ≤ n (5.3.2)

Lemma 5.3.12. If Wj is finite, then Zj−1 is finite.

Proof. This is a consequence of the assumption that G acts discretely on Γ and edges

have compact G-stabilizers. By contradiction, assume that Zj−1 is infinite and Wj is

finite. Since there are finitely choices for αij and each of these paths has finitely many

corners, the pigeon-hole argument shows that there is w ∈ Wj, there is an αij, and

there is corner c = [v, x, y] of αij such that the set

B = {g.v ∈ V (Γ) | g ∈ G, g.x = a, g.y = w}

is infinite. Since Γ is a discrete G-graph with compact edge stabilizers, Proposition 5.3.8

implies that B is finite, a contradiction.

Lemma 5.3.13. For 1 ≤ j < n, Wj and Zj are finite subsets of TaΓ. In particular,

W1 is finite.

Proof. [MPR21, Proof of Lemma 4.6]. The conclusion follows by an inductive argument

using Lemma 5.3.12 and the following pair of claims.

Claim 1: If Zj is finite, then Wj is finite. Since Γ is fine at a, for each z ∈ Zj−1,
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there are finitely w ∈ TaΓ such that ∠TaΓ(w, z) ≤ n. Hence if Zj is finite, then Wj is

finite.

Claim 2. Wn is finite. By hypothesis, Γ is fine at a. Then Lemma 5.3.6 implies

that ~abΓ(n) = Wn is finite.

Projecting paths from ∆ to Γ.

Let δ be a k-path in ∆ with initial vertex in Γ. An α-replacement of δ is a path γ in

Γ obtained as follows: Replace each corner of δ of the form [g.vi, gH, g.vj] for some

vi, vj ∈ TH∆ and g ∈ G by the path g.αij (make a choice of g if necessary); if the

terminal vertex of the resulting path is not in Γ then remove that vertex. Observe

that γ is a path of length at most n, recall that n is defined in (5.3.1).

Lemma 5.3.14. Let δ be an escaping k-path in ∆ from a to b and let γ be an

α-replacement. Then

δ ∩ TaΓ ⊆ γ ∩ TaΓ ⊆ W1,

where δ ∩ TaΓ is the set of vertices of δ that belong to TaΓ, and γ ∩ TaΓ is defined

analogously.

Proof. The following argument is taken almost verbatim from [MPR21, Proof of Lemma

4.7]. It only requires minor modifications due to our definition of α-replacement.

By construction, δ ∩ TaΓ ⊆ γ ∩ TaΓ. Observe that γ is a path of the form

γ = [a, γ1, a, γ2, a, . . . , a, γm],

where each γi is a path that does not contain the vertex a. Note that m ≤ n and that

γ is not escaping when m > 1. In order to prove γ ∩ TaΓ ⊆ W1 is enough to show that

γi ∩ TaΓ ⊂ Wi for 1 ≤ i ≤ m in view of (5.3.2) and that γ ∩ TaΓ =
⋃m

i=1 γi ∩ TaΓ.

Let wi and zi denote the initial and terminal vertices of γi, respectively. The main

observation: since δ is an escaping path from a, it follows that the corner [zi, a, wi+1]

of γ is a translation of a corner of a path αij for some vi, vj ∈ TH∆.

Claim 1. wm ∈ Wm. Note that [a, γm] is an escaping path of length at most

n from a to b in Γ. Therefore wm ∈ ~abΓ(n) = Wn. Since m ≤ n, it follows that

wm ∈ Wn ⊆ Wm.
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Claim 2. zm−1 ∈ Zm−1. Note that [zm−1, a, wm] is the translation of a corner of

αij; since wm ∈ Wm, we have that zm−1 ∈ Zm−1.

Claim 3. If zi ∈ Zi then wi ∈ Wi. Indeed, since

∠TaΓ(zi, wi) ≤ |γi| ≤ n

and zi ∈ Zi, it follows that wi ∈ Wi.

Claim 4. If wi+1 ∈ Wi+1 then zi ∈ Zi. As [zi, a, wi+1] is the translation of a corner

of an αij, if wi+1 ∈ Wi+1, then by definition we have that zi ∈ Zi.

Claim 5. If zi ∈ Zi then γi ∩ TaΓ is a subset of Wi. Let x ∈ γi ∩ TaΓ. Observe that

∠TaΓ(zi, x) ≤ n. Since zi ∈ Zi, it follows that x ∈ Wi.

To conclude, observe that the first four claims imply that zi ∈ Zi for 1 ≤ i ≤ m.

Then the last claim imply that γi ∩ TaΓ is a subset of Wi ⊂ W1 for 1 ≤ i ≤ m.

The finite set X0

Let

X0 = {x ∈ ~ab(k)∆ | x 6∈ TaΓ}.

Lemma 5.3.15. X0 is a finite set.

Proof. If x ∈ X0 then x is a translate of the vertex H of ∆. Hence if X0 is nonempty,

then a is adjacent to a translate of the vertex H. Suppose that X0 is nonempty and

without loss of generality, assume that a is adjacent to H, specifically

TH∆ = {v1, v2 . . . , vm}, and a ∈ TH∆.

Suppose that X0 is infinite. For each x ∈ X0 choose an escaping path δx from a

to b in ∆ of length at most k. Then there is gx ∈ G and vix , vjx ∈ TH∆ such that

[gx.vix , gxH, gx.vjx ] is the initial 2-subpath of δx.

Since TH∆ is finite, by the Pigeon hole argument there is a fixed pair, after

renumbering if necessary, v1, v2 ∈ TH∆ such that

X1 = {x ∈ X0 | vix = v1 and vjx = v2}
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is an infinite set. Observe that

gx.v1 = a and gx.H = x for all x ∈ X1.

For x ∈ X1, let γx be an α-replacement of δx that has gx.α12 as an initial subpath.

By Lemma 5.3.14,

γx ∩ TaΓ ⊂ W1.

We showed that W1 is finite, see Lemma 5.3.13. By the Pigeon-hole argument, there

is a z ∈ TaΓ such that

X2 = {x ∈ X1 : γx has z as its second vertex.}

is an infinite set. Let w be the second vertex of α12. Then for every x ∈ X2, gx.v1 = a

and gx.w = z. Since gx.H = x for all x ∈ X2, it follows that

C = {g.H ∈ V (∆) | g ∈ G, g.w = z, g.v1 = a}

is an infinite set. Since ∆ is a discrete G-graph with compact edge stabilizers, [w, v1, H]

is a 2-path in ∆, and [a, z] is a 1-path of ∆; Proposition 5.3.8 implies that C is finite,

a contradiction.

Conclusion.

It is left to verify that ~ab(k)∆ is finite. Let δ be an escaping path from a to b in ∆

of length ≤ k. Then Lemma 5.3.14 implies that δ ∩ TaΓ ⊆ W1. Since any vertex

in δ ∩ Ta∆ is either in TaΓ or X0, it follows that δ ∩ Ta∆ ⊆ W1 ∪ X0. Since δ was

arbitrary,
~ab(k)∆ ⊆ W1 ∪X0.

By Lemmas 5.3.13 and 5.3.15, W1 ∪X0 is a finite set, and hence ~ab(k)∆ is finite.

5.3.5 Remark on Quasi-isometry

Under the assumptions of Theorem 5.3.4, the inclusion Γ →֒ ∆ is a G-equivariant

quasi-isometry. Indeed, for any path δ in ∆ with endpoints in Γ, its α-replacement γ
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is a path in Γ with the same endpoints and |γ| ≤ ℓ|δ|. Hence for any pair of vertices

u, v of Γ, distΓ(u, v) ≤ ℓ dist∆(u, v) ≤ ℓ distΓ(u, v). On the other hand, every vertex of

∆ is adjacent to a vertex of Γ.

5.4 Relative generation of groups

Definition 5.4.1 (Relative Compact Generation). A topological group G is compactly

generated relative to a collection of subgroups H if there is a compact subset A ⊂ G

such that G is algebraically generated by A ∪
⋃
H; in this case we say that A is a

compact generating set of G relative to H.

The Milnor-Svarc Lemma implies that a discrete group is finitely generated if and

only if it acts cellularly, cocompactly and with finite vertex stabilizers on a connected

graph [BH99, Proposition 8.19]. The main result of this section generalizes this fact

for proper pairs (G,H), see Definition D.

For a definition of graph of groups we refer the reader Serre’s book on trees [Ser80].

Definition 5.4.2 (Graph of topological groups). Let Λ = (V,E, r) be a connected

graph. A graph of topological groups (G,Λ) based on the graph Λ consists of

1. a topological group Gv for every vertex v ∈ V .

2. a topological group Ge for every edge e ∈ E.

3. an open continuous monomorphism ηe : Ge → Gv for every edge e ∈ E and v ∈ V

such that v ∈ r(e).

Denote by π1(G,Λ, a) the fundamental group of the graph of groups (G,Λ), where

a is a vertex of Λ, see [Bas93]. There are canonical monomorphisms

iv : Gv →֒ π1(G,Λ, a)

up to conjugation. Since the group is independent of the choice of a, we will simply

denote it by π1(G,Λ).

An embedding of topological spaces is a continuous map f : X → Y that is

homeomorphism onto its image. An embedding is open if f is an open map. Specifically
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open embedding is an injective, open, and continuous map. The fundamental group of

a topological graph of groups (G,Λ) admits a canonical topology:

Proposition 5.4.3. [CdlH16, Propositions 8.B.9 and 8.B.10] Let (G,Λ) be a finite

graph of topological groups. There exists a unique topology on π1(G,Λ) such that

Gv →֒ π1(G,Λ) is an open topological embedding for each vertex v. Moreover if vertex

and edge groups are locally compact then π1(G,Λ) is locally compact.

From here on, all graphs of topological groups (G,Λ) are assumed to satisfy that

Λ is a finite connected graph and we always consider π1(G,Λ) as a topological group

with the topology provided by Proposition 5.4.3.

Definition 5.4.4 (Compact generating graph). Let G be a topological group with a

finite collection H = {H1, H2, · · ·Hn} of open subgroups. A compact generating graph

of G relative to H is a triple (G,Λ, φ) where (G,Λ) is a finite graph of topological

groups, φ : π1(G,Λ) → G is a continuous open surjective homomorphism, and the

following properties hold:

1. There are vertices {v1, v2, · · · vn} of Λ and isomorphims of topological groups

φi : Gvi → Hi such that

Gvi π1(G,Λ)

Hi G

ivi

φi φ

is a commutative diagram.

2. For every v ∈ V (Λ), the map φ ◦ iv is injective.

3. For each edge e ∈ E(Λ) and each vertex v 6= vi in V (Λ), the edge group Ge and

the vertex group Gv are compact topological groups.

Example 5.4.5. Let G be a finitely generated group with a finite generating set

X = {x1, x2, · · · xt}. Consider a compact generating graph (G,Λ, φ) of G relative to

the empty collection with Λ given by the Figure 5.1a; with vertex group and edge

groups trivial. Note that π1(G,Λ) is isomorphic to the free group F (X) generated over

X and φ : F (X) → G is the natural quotient map.

Example 5.4.6. Let G be a discrete group finitely generated with respect to a finite

collection of groups H = {H1, H2 · · ·Hn} in the sense of Osin [Osi06, Definition 2.1].
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xt

x1

x2

x3
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Figure 5.1: Compact generating graphs

In particular, there exists a finite set X ⊆ G such that (
n⋃

i=1

Hi) ∪ X generates G.

Then (G,Λ, φ) is a compact generating graph of G relative to H with Λ given by the

Figure 5.1b; with edge groups and central vertex group trivial, and other vertex groups

given by H ∈ H. The homomorphism is the natural quotient map φ : π1(G,Λ) → G.

Example 5.4.7. Let G be a topological group with a compact open subgroup U and

a finite set X such that X ∪ U generates G. Then (G,Λ, φ) is a compact generating

graph of G relative to the empty collection with Λ given by the Figure 5.1a; with

vertex group U and edge groups given by U ∩ Ux for x ∈ X.

Remark 5.4.8 (Compact generating graph =⇒ Compact open subgroup). Let G

be a topological group with a compact generating graph (G,Λ, φ) relative to a finite

collection H of open subgroups. If Λ is a nontrivial graph (at least one edge) or H is

empty, then G contains a compact open subgroup and hence G is locally compact. In

particular, if G has no compact open subgroup, then H = {G}.

A G-action on a cell complex X is called discrete if it is a cellular action such

that the pointwise stabilizer of each cell is an open subgroup of G. A graph is a

1-dimensional cell complex.

Theorem 5.4.9 (Topological Characterization). Let (G,H) be a proper pair. The

following statements are equivalent:

1. There is a compact generating set of G relative to H.

2. There exists a compact generating graph of G relative to H.

3. There is a discrete, connected cocompact simplicial G-graph Γ with compact edge

stabilizers, vertex stabilizers are either compact or conjugates of subgroups in H,
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every H ∈ H is the G-stabilizer of a vertex, and any pair of vertices with the

same G-stabilizer H ∈ H are in the same G-orbit if H is non-compact.

Theorem 5.4.9 relies on the notion of relative Cayley-Abels graph. Its definition

uses Bass-Serre trees. For the rest of the article when considering a Bass-Serre tree,

we mean the realization as a CW-complex of dimension at most one as described in

the book by Serre [Ser80, Pg. 14].

Definition 5.4.10 (Relative Cayley-Abels graph). Let (G,Λ, φ) be a compact gener-

ating graph of a topological group G relative to a finite collection H of open subgroups,

and let T be the corresponding Bass-Serre tree. The relative Cayley-Abels graph

Γ(G,Λ, φ) of G with respect to H corresponding to (G,Λ, φ) is defined as the G-graph

T / ker(φ). A G-graph isomorphic to Γ(G,Λ, φ) for some compact generating graph

(G,Λ, φ) of G with respect to H is called a relative Cayley-Abels graph of G with respect

to H.

Theorem 5.4.11 (Characterization of Relative Cayley-Abels graphs). Let (G,H) be

a proper pair. For a G-graph Γ, the following statements are equivalent:

1. There is a compact generating graph (G,Λ, φ) of G relative to H such that Γ is

the corresponding relative Cayley-Abels graph (up to isomorphism of G-graphs).

2. Γ is a connected discrete cocompact simplicial G-graph with compact edge sta-

bilizers, vertex stabilizers are either compact or conjugates of subgroups in H,

every H ∈ H is the G-stabilizer of a vertex, and any pair of vertices with the

same G-stabilizer H ∈ H are in the same G-orbit if H is non-compact.

Moreover, if Γ satisfies the above conditions, then for any vertex v ∈ Γ, the stabilizer

Gv is compact if and only if v has finite degree.

Example 5.4.12. The Cayley graph of a discrete group G with respect to a finite

generating set X is defined as a graph Γ with vertex set V (Γ) = G and edge set

E(Γ) = {{g, gx}|g ∈ G, x ∈ X}. Consider a generating graph of G given by the

graph in the Figure 5.1a. Then the corresponding relative Cayley-Abels graph is

G-isomorphic to the Cayley graph with respect to the generating set X.

Example 5.4.13 (Farb’s Coned-off Cayley Graph [Far98]). Let G be a group, let

H = {H1, H2 · · · , Hn} be a finite collection of subgroups, and let X ⊂ G be a relative
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finite generating set of G with respect to H. The Coned-off Cayley graph Γ̂(G,H, X)

of G with respect H is the graph Γ̂ with the vertex set V (Γ̂) = (
n⋃

i=1

G/Hi)∪G and edge

set E(Γ̂) = {{g, gx} | g ∈ G, x ∈ X} ∪ {{k, gH} | g ∈ G,H ∈ H, k ∈ gH}. Consider

a compact generating graph of G relative to H given by the graph of groups described

in Figure 5.1b, and observe that the corresponding relative Cayley-Abels graph is

G-isomorphic to a Coned-off Cayley graph Γ̂.

Example 5.4.14 (Krön and Möller’s Cayley-Abels graph [KM08]). Let G be a

compactly generated totally disconnected locally compact group. Then G contains a

compact open subgroup U and a finite subset X ⊂ G such that any element of G is

in a left coset wU where w is a word in X, see [KM08, Lemma 2]. The Cayley-Abels

graph Γ(G,U,X) is defined as a graph Γ with the vertex set V (Γ) = G/U and the

edge set E(Γ) = {{gU, gxU} | g ∈ G, x ∈ X}; the resulting graph is a connected

vertex-transitive locally finite G-graph [KM08, Construction 1]. The quotient of Γ by

G induces a compact generating graph of G with respect to the empty collection of

the form Figure 5.1a with compact vertex group.

Let us record two immediate consequences of Theorem 5.4.9.

Corollary 5.4.15. Let G be a topological group with a compact open subgroup. The

following statements are equivalent:

1. G admits a compact generating set.

2. G admits a compact generating graph relative to the empty collection.

Corollary 5.4.16 (Krön and Möller). [KM08, Corollary 1] Let G be a totally discon-

nected locally compact group. Suppose G acts on a connected locally finite graph Γ

such that the stabilizers of vertices are compact open subgroups and G has only finitely

many orbits on V (Γ). Then G is compactly generated.

The rest of the section is divided into four subsections. The proof of Theorem 5.4.11

is divided into two propositions which are the contents of subsections 5.4.1 and 5.4.2

respectively. Subsection 5.4.3 contains the proof of Theorem 5.4.11. Then we prove

Theorem 5.4.9 in Subsection 5.4.4.
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5.4.1 From Compact generating graph to discrete cococom-

pact action on a graph.

Versions of the following proposition can be found in the literature, for example

see [ACCCMP21, Proof of Theorem 7.1] and [HMPS21, Proposition 4.9].

Proposition 5.4.17. Let (G,Λ, φ) be a compact generating graph of G relative to a

finite collection H of open subgroups, and let T be the corresponding Bass-Serre tree.

Consider the relative Cayley-Abels graph Γ = Γ(G,Λ, φ), the quotient map ρ : T → Γ,

and the sequence

1 → ker(φ) → π1(G,Λ)
φ
−→ G→ 1.

Then the following statements hold:

1. The group ker(φ) is a discrete and closed subgroup of π1(G,Λ) which acts freely

on T , and ρ is a covering map.

2. If x is a vertex of Γ, then there is a group isomorphism

ker(φ) → π1(Γ, x) g 7→ [γg],

where γg = ρ ◦ αg and αg is the shortest path from x to g.x in T .

3. The group G acts on Γ discretely, cocompactly, edge stabilizers are compact, and

vertex stabilizers are either compact or conjugates of subgroups in H.

4. For any H ∈ H, there is a vertex v ∈ Γ such that Gv = H.

5. Suppose (G,H) is a proper pair. Then any pair of vertices with the same G-

stabilizer H ∈ H are in the same G-orbit if H is non-compact.

6. A vertex of Γ has compact G-stabilizer if and only if it has finite degree.

Recall that a group action on a complex has no inversions if for every cell its setwise

stabilizer coincides with the pointwise stabilizer.

Lemma 5.4.18. Let G be a group acting on a connected graph K discretely, cocom-

pactly, and with compact edge stabilizers. Then for any vertex v ∈ K incident to at

least one edge, v has infinite degree if and only if its stabilizer Gv is non-compact.
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Proof. If the action has inversions, replace K with its barycentric subdivision. Let v

be vertex in K and e be an edge incident to v, then there is bijection between the set

of left cosets Gv/Ge and the Gv-orbit of e given by gGe 7→ ge. Let us suppose v has

infinite degree. Since the action is cocompact, there exists an edge e adjacent to v with

an infinite orbit. Thus [Gv : Ge] is infinite. Since Ge is open, the cosets of Ge form an

infinite cover of Gv with no finite subcover. Conversely suppose Gv is non-compact

and let e be an edge adjacent to v. Since Ge is compact, [Gv : Ge] is infinite. Thus v

has infinite degree.

Proof of Proposition 5.4.17. Let G̃ = π1(G,Λ) and let x̃ ∈ T be any vertex. Since φ

is injective on the vertex stabilizer G̃x̃, we have ker(φ) ∩ G̃x̃ = 1. Hence ker(φ) acts

freely and cellularly on T . Therefore ρ : T → Γ is a covering map, and ker(φ) is a

discrete and closed subgroup of G̃. The isomorphism ker(φ) → π1(Γ, x) is a well known

consequence of covering space theory.

For item (3), we first observe the following properties about the G̃-action on T .

The action is cocompact since T /G̃ ≃ Λ is a finite graph; and since vertex and edge

stabilizers of T in G̃ are isomorphic to vertex and edge groups, by Proposition 5.4.3,

they are open subgroups of G̃, in particular the G̃-action on T is discrete. Moreover,

by Definition 5.4.4, for the G̃-action on T , edge stabilizers are compact and vertex

stabilizers are either compact or conjugates of subgroups in H. Moreover, for every

H ∈ H, the tree T contains a vertex with G̃-stabilizer equal to H.

Let N denote the normal subgroup ker(φ) and let ρ : T → Γ be the quotient map.

The G̃-action on T induces an action of G = G̃/N on Γ = T /N . The covering map

ρ : T → Γ is equivariant with respect to φ and the restriction φ : G̃v → Gφ(v) is an

isomorphism for any vertex v of T .

Let y be any vertex or edge in Γ, and let ỹ in T such that ρ(ỹ) = y. Then G̃ỹN is

an open subgroup and Gy = φ(G̃ỹN) = φ(G̃ỹ). Therefore Gy is open as φ is an open

map, and if G̃y is compact, then Gy is compact as well. To summarize, G-action on

Γ is discrete; is cocompact since Λ is finite; has compact edge stabilizers, and each

vertex stabilizer is either compact or a conjugate of some H ∈ H, and each H ∈ H is

the G-stabilizer of a vertex of Γ.

Now we prove item (5). Each subgroup H ∈ H is naturally identified with an

isomorphic subgroup of G̃, see Definition 1; to simplify notation, we assume H is a
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subgroup of G̃ and φ restricted to H is the identity map.

Let u1 and u2 be vertices of Γ with the same G-stabilizer H ∈ H and suppose

H is non-compact. Let v1 and v2 vertices of T mapping to u1 and u2 respectively.

Suppose that v1 has G̃-stabilizer the vertex group Hg1
1 , and v2 has G̃-stabilizer Hg2

2

where g1, g2 ∈ G̃ and H1, H2 ∈ H. Then φ(Hg1
1 ) = H and φ(Hg2

2 ) = H; it follows that

H1, H2 and H are subgroups in H that are pairwise conjugate in G. Since (G,H) is a

proper pair, H1 = H2 = H. Then g−1
1 v1 and g−1

2 v2 have both G̃-stabilizer H. Since H

is non-compact and open and all edge G̃-stabilizer of the the tree T are compact open,

it follows that g−1
1 v1 and g−1

2 v2 are the same vertex. Hence v1 and v2 are in the same

G̃-orbit, and therefore u1 and u2 are in the same G-orbit.

For the last item, Lemma 5.4.18 implies that each vertex of Γ with compact

stabilizer has finite degree.

5.4.2 From cocompact discrete action on a graph to compact

generation

Proposition 5.4.19. Let G be a topological group that acts on a connected graph Γ

cocompactly, discretely, without inversions, and with compact edge stabilizers.

Let S be a subset of vertices of Γ such that distinct elements are in distinct

G-orbits, and all vertices of Γ with non-compact G-stabilizer are represented. Let

H = {Gv | v ∈ S}.

Then there exists a compact generating graph of G relative to H such that the

corresponding relative Cayley-Abels graph and Γ are isomorphic as G-graphs.

Lemma 5.4.20. Suppose G,H, and K are topological groups such that the diagram

K H

G

i

j
φ

of homomorphism of groups commutes. If i, j are open, continuous. Then φ is

continuous and open.

Proof. To prove that φ is continuous, we show that φ is continuous at 1. Let U ⊆ G
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be an open set containing 1. Since j is continuous, j−1(U) is open. Let W = i(j−1(U)).

Then W is open since i is an open map; and by the commutative diagram, 1 ∈

W ⊆ φ−1(U). Since U was an arbitrary neighborhood of 1 in G, this shows that φ

is continuous at 1. To prove that φ is open, first observe that if V is open in H and

V ⊂ i(K), then i being continuous and j being open imply that φ(V ) = j(i−1(V ))

is open in G. Moreover, for any h ∈ H, φ(h.V ) = φ(h).φ(V ) is open in G. For an

arbitrary open subset U of H, let Uh = U ∩ h.i(K). Observe that h−1.Uh is open in H

and h−1.Uh ⊂ V . Therefore φ(Uh) is open in G, and hence φ(U) =
⋃

h∈H

φ(Uh) is open

in G.

Proof of Proposition 5.4.19. For discrete groups, the result follows from a well known

construction of Bass [Bas93, Section 3] that we recall below. The case for topological

groups follows from the same construction after addressing topological matters.

Let Λ be the quotient graph given by Γ/G, and let r : Γ → Λ be the quotient map.

Choose a tree T and a connected graph S such that T ⊆ S ⊆ Γ, r : T → Λ is bijective

on vertices, and r : S → Λ bijective on edges. For any v ∈ Λ and e ∈ Λ, the vertex

group Gv and edge group Ge are defined to be the vertex stabilizer Gv′ and the edge

stabilizer Ge′ , where v
′ and e′ are preimages of v and e under r in T and S respectively.

For every vertex s ∈ S, choose gs ∈ G such that gss ∈ T and assume gs = 1 if s ∈ T .

Let e be an edge of Λ with endpoint vertices u and v. Let e′ be the preimage of e in

S with end points u′ and w′. Since e′ has at least one endpoint in T , without loss of

generality assume that u′ ∈ T . Define the morphism Ge → Gu to be the inclusion. The

morphism from Ge → Gv is defined as h 7→ gw′hg−1
w′ . Thus (G,Λ) defines a graph of

groups. Observe that if G is a topological group with discrete action on Γ then Ge′ and

Gv′ are topological groups with the subspace topology and the morphisms Ge′ → Gv′

are open topological embeddings. In particular, (Λ,G) is a graph of topological groups.

Fix a vertex a ∈ Λ and let a′ ∈ Γ such that r(a′) = a. Let G̃ = π1(G,Λ, a) be the

fundamental group of graph of groups, and let T be the corresponding Bass-Serre tree.

Then by [Bas93, Theorem 3.6] there is a short exact sequence

1 → π1(Γ, a
′) → G̃

φ
−→ G→ 1,

and a φ-equivariant morphism of graphs ρ : T → Γ, such that for any vertex y ∈ T ,

the restriction of φ to stabilizers G̃y
φ
−→ Gρ(y) is an isomorphism.
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Now we construct a compact generating graph of G relative to H. Consider the

graph of topological groups (Λ,G) constructed above. Since G acts on Γ cocompactly,

(Λ,G) is a finite topological graph of groups. The hypothesis on the G-stabilizers of

vertices and edges of Γ imply that the edge groups of (Λ,G) are compact and the

vertex groups are either compact or in H. Let w ∈ Γ be any vertex and w̃ ∈ T be

one of its pre-images under ρ. Then G̃w̃
φ
−→ Gw is an isomorphism and we have the

following commutative diagram.

G̃w̃ G̃

Gw G

φ

Since G̃-action on T is discrete, G̃w̃ is open in G̃, and thus by Lemma 5.4.20, φ is

continuous and open. Therefore (Λ,G, φ) is a compact generating graph of G relative

to H. Since ρ : T → Γ is a φ-equivariant morphism of graphs, the corresponding

relative Cayley-Abels graph is isomorphic to Γ as a G-graph.

5.4.3 Proof of Theorem 5.4.11

That (1) implies (2) follows directly from Proposition 5.4.17. Conversely, suppose

(2) holds. For each H ∈ H, let vH be a vertex in Γ with G-stabilizer H, and let

S = {vH | H ∈ H}. Since no two distinct subgroups in H are conjugate, no two

distinct elements of S are in same G-orbit. For any vertex v of Γ with non-compact

G-stabilizer, Gv is conjugate to a subgroup in H. Since any pair of vertices with the

same G-stabilizer H ∈ H are in the same G-orbit if H is non-compact; it follows that

every vertex of Γ with non-compact stabilizer is in the G-orbit of an element in S. By

Proposition 5.4.19, there exists a compact generating graph (G,Λ, φ) of G relative to

H such that the corresponding relative Cayley-Abels graph is isomorphic to Γ. The

statement for vertices of Γ on the equivalence on having compact G-stabilizer and

having finite degree in Γ is part of the conclusion of Proposition 5.4.17.
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5.4.4 Proof of Theorem 5.4.9

The equivalence of (2) and (3) is a direct consequence of Theorem 5.4.11. The

equivalence of (1) and (3) follows from Proposition 5.4.22 stated below.

Proposition 5.4.21. [BH99, Theorem 8.10] Let X be a topological space, let G be

a group acting on X by homeomorphisms, and let U be an open subset such that

X = GU . If X is connected, then the set S = {g ∈ G | g.U ∩ U 6= ∅} generates G.

Proposition 5.4.22. Let G be a topological group with a compact open subgroup U .

Let H be a finite collection of open subgroups. The following statements are equivalent.

1. There is a compact subset A ⊂ G such that G = 〈A ∪
⋃
H〉.

2. There is a Cayley-Abels graph Γ of G relative to H.

Proof. Suppose there is a relative compact generating set A of G with respect to

H. Compactness of A implies that there is a finite subset S ⊂ G such that A ⊂

SU . Define Γ as the G-graph with vertex set V (Γ) = G/U ∪ G/H and edge set

E(Γ) = {{gU, gxU} | g ∈ G, x ∈ S} ∪ {{gU, gH} | g ∈ G, H ∈ H}. Note that G acts

discretely, there are only finitely many orbits of vertices and edges on Γ, edge stabilizers

are compact open, vertex stabilizers are conjugates of U or H ∈ H; moreover, for

every H ∈ H there is a vertex in Γ with stabilizer equal to H. It is left to prove that

Γ is connected. Indeed, if there is a path α in Γ from U to gU and h ∈ X ∪
⋃

H, then

there is a path from u to ghu, namely the concatenation of the path α and gβ where

β is a path from u to hu given by

β = [u,H, h.u], or β = [U, hU ]

if h ∈
⋃
H or h ∈ X respectively. By Theorem 5.4.11, Γ is a Cayley-Abels graph of G

relative to H.

Suppose Γ is a Cayley-Abels graph of G relative to H. Since Γ is connected and

cocompact, Theorem 5.4.21 implies that G is generated by finite number of vertex

stabilizers Gv1 , . . . , Gvk and a finite set S. Then S together with the union of the Gvi

that are compact is a compact generating set of G relative to H.
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5.5 Invariance of relative Cayley-Abels graphs

The main results of this section are Theorem 5.5.2 and Corollary 5.5.3. These results

generalize the fact that any two Cayley graphs with respect to finite generating sets

of a group are quasi-isometric [Bra99, Chapter I, Example 8.17(3)]. Note that these

graphs are locally finite.

Definition 5.5.1. [Bow12] A graph Γ is said to be fine if each edge of Γ is contained

in only finitely many circuits of length n for any n.

There is relationship between fineness and isoperimetric functions which was made

explicit by Groves and Manning [GM08, Proposition 2.50, Question 2.51]. This relation

has also been studied in [MP16,HMPS21].

Theorem 5.5.2. Let (G,H1) and (G,H2) be proper pairs. Suppose the symmetric

difference of H1 and H2 consists only of compact subgroups.

If Γ1 and Γ2 are relative Cayley-Abels graphs of G with respect to H1 and H2

respectively, then

1. Γ1 and Γ2 are quasi-isometric; and

2. Γ1 is fine if and only if Γ2 is fine.

The following corollary follows directly from Theorem 5.5.2.

Corollary 5.5.3 (Quasi-isometry Invariance of Relative Cayley-Abels Graphs). Let

(G,H) be a proper pair.

1. Any two relative Cayley-Abels graphs of G with respect to H are quasi-isometric.

2. If one relative Cayley-Abels graph of G with respect to H is fine, then all are

fine.

We also recover the following results as direct corollaries.

Corollary 5.5.4. [MP16, Theorem 1.4] Let G be a discrete group finitely generated with

respect to a finite collection H of subgroups. If the collection H is almost malnormal,

then any two coned-off Cayley graphs are quasi-isometric.
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Note that the malnormality condition in the above corollary can be relaxed to

require that (G,H) is a proper pair.

Corollary 5.5.5. [KM08, Theorem 2] Let G be a compactly generated topological group

with a compact open subgroup. Then any two Cayley-Abels graphs are quasi-isometric.

5.5.1 Proof of Theorem 5.5.2

Let us fix some notation. For a graph Γ denote by V∞(Γ) its set of vertices with infinite

degree. For a collection of subgroups H of G, let H∞ = {H ∈ H | H is non-compact}

and G/H∞ = {gH | g ∈ G,H ∈ H∞}.

Lemma 5.5.6. Let (G,H) be a proper pair. If Γ is a relative Cayley-Abels graph.

Then there exists a G-equivariant bijection between G/H∞ and V∞(Γ).

Proof. By Theorem 5.4.11, for any Hi ∈ H∞ there exists a vertex vi ∈ Γ such that

Gvi = Hi. Since (G,H) is proper, no two distinct subgroups of H∞ are conjugate. It

follows that if Hi and Hj are distinct subgroups in H, then vi and vj are in distinct

G-orbits. By Theorem 5.4.11, each vi has infinite degree in Γ; if w is a vertex of Γ

with G-stabilizer a conjugate of Hi then w and vi are in the same G-orbit; and any

vertex in V∞(Γ) has non-compact G-stabilizer. Consider the G-map π : G/H∞ → V∞

given by gHi 7→ gvi. Then

1. π is well defined since gHi = fHi iff f
−1g ∈ Hi = Gvi iff gvi = fvi.

2. π is injective. Suppose gHi, fHj ∈ G/H∞ and gvi = fvj . Then vi and vj are in

the same G-orbit and hence Hi = Hj. Thus gvi = fvi implies gHi = fHi.

3. π is surjective. Let w ∈ V∞. Then the Gw is non-compact and therefore Gw

is conjugate to some Hi ∈ H∞. Hence vi and w are in the same G-orbit, say

w = gvi. Then gHi ∈ G/H∞ maps to w.

Proof of Theorem 5.5.2. Let (G1,Λ1, φ1) and (G2,Λ2, φ2) be two compact generating

graphs of G relative to H1 and H2 respectively, and let Γ1(G1,Λ1, φ1) and Γ2(G2,Λ2, φ2)

be their corresponding relative Cayley-Abels graphs. By Lemma 5.5.6, there exists

a G-equivariant bijection η between V∞(Γ1) and V∞(Γ2). The result follows from

Corollary 5.3.5.
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5.6 Compact relative presentations

A discrete group is finitely presented if and only if it acts cellularly, cocompactly and

with finite vertex stabilizers on a simply connected space. This result is credited to

[Mac64], see [BH99, Corollary 8.11]. The main results of this section, Theorem 5.6.6

and Corollary 5.6.7, generalize this fact for proper pairs (G,H). We introduce the

notions of compact generalized presentation and relative Cayley-Abels complex for

pairs (G,H) in order to state our main result.

Definition 5.6.1 (Compact generalized presentation). Let G be a topological group

and let H be a finite collection of open subgroups. A compact generalized presentation

of G relative to H is a pair

〈 (G,Λ, φ) | R 〉 (5.6.1)

where (G,Λ, φ) is a compact generating graph of G relative to H, and R ⊆ π1(G,Λ) is

a finite subset such that 〈〈R〉〉 = ker(φ). In particular,

1 → 〈〈R〉〉 → π1(G,Λ)
φ
−→ G→ 1

is a short exact sequence and φ is a continuous open surjective homomorphism.

The generalized presentations have been previously studied for TDLC groups [CW16a].

Definition 5.6.2. A topological group G is said to be compactly presented relative to a

finite collection of open subgroups H if there exists a compact generalized presentation

relative to H.

Remark 5.6.3 (Compact generalized presentation =⇒ Compact open subgroup). If

is G a topological group is compactly presented relative to a finite collection of open

subgroups H, then G has a compact open subgroup or H = {G}. This is a consequence

of Remark 5.4.8.

Example 5.6.4. We note examples of compact generalized presentation 〈 (G,Λ, φ) |R 〉

for some groups.

1. Let G be a finitely presented group with presentation P = 〈X|R〉. Then a

compact generalized presentation of G relative to the empty collection is given by

〈 (G,Λ, φ) | R 〉, where (G,Λ, φ) is the graph of groups given in the Figure 5.1a.
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〈
C

A B

∣∣∣∣∣ R
〉

Figure 5.2

2. Let G be a discrete group finitely generated with respect to a finite collection

of groups H = {H1, H2 · · ·Hn}. Let X ⊆ G such that (
n⋃

i=1

Hi) ∪ X generates

G. Let 〈X,H|R〉 be the relative presentation of G with respect to H as defined

by Osin [Osi06]. Then a compact generalized presentation of G relative to H

is given by 〈 (G,Λ, φ) | R 〉, where (G,Λ, φ) is the graph of groups given in the

Figure 5.1b.

3. Let A ∗C B be an amalgamated free product of groups A and B over a common

compact open subgroup. Let R satisfy the C ′(1/12)-small cancellation condition

and let N = 〈〈R〉〉 be the normal subgroup of G generated by R. Then N is a

discrete group of A ∗C B by Proposition 5.4.17 (see also [ACCCMP21, Proof of

Theorem 7.1]). Then a compact generalized presentation of G = (A ∗C B)/N

relative to the collection {A,B} is given by 〈 (G,Λ, φ) | R 〉, where (G,Λ, φ) is

the graph of groups given in the

Definition 5.6.5 (Relative Cayley-Abels complex). Let G be a topological group

compactly generated relative to a finite collection H of open subgroups. A relative

Cayley-Abels complex of G with respect to H is a discrete simply connected cocompact

2-dimensional G-complex with 1-skeleton a relative Cayley-Abels graph of G with

respect to H

Theorem 5.6.6 (Topological Characterization). Let G be a topological group and let

H be a finite collection of open subgroups. The following statements are equivalent:

1. G is compactly presented with respect to H.

2. There exists a relative Cayley-Abels complex of G with respect to H.

The following corollary strengthen the previous theorem by imposing an additional

hypothesis; it is proven in Section 5.6.2.

Corollary 5.6.7. Let (G,H) be a proper pair. Suppose there is a fine relative Cayley-

Abels graphs of G with respect to H. Then the following statements are equivalent:
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1. G is compactly presented with respect to H.

2. Any relative Cayley-Abels graph of G with respect to H is the 1-skeleton of a

relative Cayley-Abels complex of G with respect to H.

Definition 5.6.8 (Compactly presented). [CdlH16, Definition 8.A.1] A topological

group G is compactly presented if G has a group presentation 〈S|R〉 with S compact

and R a set of words in S of a bounded length.

Corollary 5.6.9 below states that compactly presented is equivalent to being com-

pactly presented relative to the empty collection in the case that the group has

a compact open subgroup. The proof of this statement is implicit in the results

of [CdlH16] and [CW16a, Section 5.8]. A proof in the class of TDLC groups is

discussed in [ACCCMP21, Corollary 3.5]. We discuss the argument in Section 5.6.3.

Corollary 5.6.9. The following statements are equivalent for any topological group

G.

1. G is compactly presented relative relative to the empty collection.

2. G has a compact open subgroup and is compactly presented.

As a consequence, we also recover the following corollary from [ACCCMP21,

Proposition 3.6], the proof of which relied on a result from [CC20, Proposition 3.4].

Corollary 5.6.10. [CC20] A TDLC-group G is compactly presented if and only if

there exists a simply connected cellular G-complex X with compact open cell stabilizers,

finitely many G-orbits of cells of dimension at most 2, and such that elements of G

fixing a cell setwise fixes it pointwise (no inversions)

The rest of the section is subdivided into three subsections covering the proofs of

the Theorem 5.6.6, Corollary 5.6.7, and Corollary 5.6.9 respectively.

5.6.1 Proof of the Theorem 5.6.6

The proof follows directly from Proposition 5.6.11 and Proposition 5.6.13 below.

Proposition 5.6.11 is a standard construction for discrete groups, see [BH99, Lemma

8.9], and it appears as [ACCCMP21, Theorem 7.1] for TDLC groups that split as an

amalgamated free product over a compact open subgroup.
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Proposition 5.6.11. Let G be a topological group compactly presented relative to a

finite collection H of open subgroups. Then there exists a relative Cayley-Abels complex

X of G relative to H such that no distinct 2-cells of X have the same boundary.

Proof. Let P = 〈 (G,Λ, φ) | R 〉 be a compact generalized presentation of G relative

to H, and let T be the corresponding Bass-Serre tree. Consider a G-complex X

constructed as follows. Let 1-skeleton X(1) be the relative Cayley-Abels graph Γ =

T / ker(φ), and let ρ : T → Γ be the natural quotient map. Suppose x ∈ Γ be any

vertex, then by Proposition 5.4.17, there is a group isomorphism from ker(φ) → π1(Γ, x)

given by g 7→ [γg], where γg is an combinatorial closed path in Γ based at x. For g ∈ G

and h ∈ ker(φ), let gγh be the translated closed path without an initial point, i.e.,

these are cellular maps from S1 → X. Consider the G-set Ω = {gγr | r ∈ R, g ∈ G} of

closed paths in X(1).

Let X be the G-complex obtained by attaching a 2-cell to X(1) for every closed

path in Ω. In particular, the pointwise G-stabilizer of a 2-cell of X coincides with the

pointwise G-stabilizer of its boundary path. By Proposition 5.4.17, the G-action is

discrete on X. Observe that the natural isomorphism from ker(φ) to π1(X
(1), ρ(x0))

implies that X is simply connected and since G acts cocompactly on X(1) and R is

finite, X is a cocompact G-complex. Note that the definition of Ω, implies that no

two distinct 2-cell of X have the same boundary.

Example 5.6.12. Let G = A ∗C B/〈〈r
m〉〉, where A and B are locally compact groups,

C is a common compact open subgroup, and r ∈ G. Consider a compact generalized

presentation 〈 (A ∗C B, φ) | R 〉 of G relative to {A,B} as in Example 5.6.4. Let T be

the Bass-Serre tree corresponding to A ∗C B, and let φ : π1(G,Λ) → G be the natural

quotient map. Then the corresponding relative Cayley-Abels complex X is a simply

connected 2-complex with 1-skeleton given by T / ker(φ). The G-complex X has a

single orbit of 2-cells. Let D be a 2-cell such that φ(r) ⊆ GD, where GD is the setwise

stabilizer of D. Observe that GD is the subgroup 〈r〉, and the GD-translated of the

path in X(1) corresponding to r cover the ∂D.

Proposition 5.6.13. Let G be a topological group with compact generating graph

(G,Λ, φ) relative to a finite collection of open subgroups H, and let Γ be the corresponding

relative Cayley-Abels graph. If Γ is the 1-skeleton of a discrete simply connected

cocompact G-complex X, then G has a compact generalized relative presentation

relative to H with generating graph (G,Λ, φ).
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Proof. Since X is simply connected, if there are no 2-cells in X, ker(φ) is trival and

there is compact generalized presentation 〈 (G,Λ, φ) 〉. Suppose that ker(φ) is not

trivial. Since G acts cocompactly on X, there exists a finite collection {∆1,∆2, · · ·∆k}

of G-orbit representatives of 2-cells in X. Let {γ1, γ2, · · · , γk} be their corresponding

boundary paths. Let x0 be a fixed vertex in T and for any γi, let αi be a path in

1-skeleton of X from ρ(x0) to some fixed vertex of γi. Lift the concatenated paths

αi ∗ γi to α̃i ∗ γi in T starting at x0. Then there exist ri ∈ ker(φ) such that ri.x0 is the

endpoint of α̃i ∗ γi. As a consequence of Proposition 5.4.17, R = {r1, r2, · · · , rk} is a

finite set normally generating ker(φ). Hence we have a compact relative presentation

〈 (G,Λ, φ) | R 〉 of G.

5.6.2 Proof of the Corollary 5.6.7

We will use the following definition of large-scale simply connectedness introduced

in [dlST19, Definition 1.3].

Definition 5.6.14. Let Γ be a connected graph. For k ∈ N, define a 2-complex Ωk(Γ)

with 1-skeleton Γ and 2-cells as m-gons for any simple loop of length m up to cyclic

permutation, where 0 ≤ m ≤ k.

Definition 5.6.15. [dlST19, Definition 1.3] A graph Γ is said to be k-simply connected

if Ωk(Γ) is simply connected. If there exists such a k, then we shall say that Γ is

large-scale simply connected.

Remark 5.6.16. We note the following observations:

1. If Γ is a G-graph, then Ωk(Γ) is a G-complex.

2. The large-scale simply connectedness for a graph is preserved by quasi-isometry.

See [dlST19, Theorem 2.2].

3. If a graph Γ is a 1-skeleton of a simply connected cocompact G-complex, then Γ

is large-scale simply connected.

Proof of the Corollary 5.6.7. (2) implies (1) is direct from Theorem 5.6.6. Conversely,

let Γ be any relative Cayley-Abels graph of G with respect to H. Since G is compactly

presented, Theorem 5.6.6 implies there exists a relative Cayley-Abels graph Γ1 that
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is large-scale simply connected, see Remark 5.6.16. Since there exists a fine relative

Cayley-Abels graph of G with respect to H. By Corollary 5.5.3, Γ is large-scale simply

connected and fine. Observe that by Proposition 5.4.17, G acts cocompactly on Γ. Let

E be a finite set of G-orbit representatives of edges in Γ. Since Γ is fine, for any e ∈ E ,

there exists finitely many circuits of length at most k containing e. By construction,

Ωk(Γ) has finitely many 2-cells up to the G-action. Hence Ωk(Γ) is a discrete simply

connected cocompact G-complex with 1-skeleton Γ.

5.6.3 Proof of Corollary 5.6.9

We will use the following proposition for the proof.

Proposition 5.6.17. [CdlH16, Prop. 8.A.10] Let 1 → N → G → Q → 1 be a short

exact sequence of locally compact groups groups and continuous homomorphisms.

1. Assume that G is compactly presented and that N is compactly generated as a

normal subgroup of G. Then Q is compactly presented.

2. Assume that G is compactly generated and that Q is compactly presented. Then

N is compactly generated as a normal subgroup of G.

3. If N and Q are compactly presented, then so is G.

Proof of Corollary 5.6.9. Suppose 〈 (G,Λ, φ) | R 〉 is a a compact generalized presen-

tation of G relative to the empty collection. By Remark 5.6.3, G has a compact open

subgroup. On the other hand, all vertex and edge groups of (G,Λ, φ) are compact, and

hence π1(G,Λ) has an compact generating set S consisting of the union of all vertex

groups and a finite set of elements (stable letters for HNN-extensions). Then a group

presentation of π1(G,Λ) with generating set S is obtained by considering all relations

given by the multiplication tables of the vertex groups and the HNN relations; note

that all relations have length at most four. Since R is a finite set, we have a bounded

presentation for G. Conversely, assume G has a bounded presentation 〈S|R〉 and a

compact open subgroup. Theorem 5.4.9 implies that G admits a compact generating

graph (G,Λ, φ) relative to the empty collection. Since π1(G,Λ) is compactly generated

and G is compactly presented, Proposition 5.6.17 implies that ker(φ) is compactly

generated as a normal subgroup. By Proposition 5.4.17, ker(φ) is discrete and therefore

finitely generated as a normal subgroup.
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Remark 5.6.18. Corollary 5.6.9 can also be obtained as a consequence of Theo-

rem 5.6.6 and [BH99, Theorem 8.10]

5.7 Relatively compactly presented groups

In this section we prove two results whose restriction to discrete groups were proven

by Osin in [Osi06, Theorem 2.40 and Theorem 1.1].

Theorem 5.7.1. Let G be a topological group compactly presented relative to a finite

collection H of open subgroups.

1. If each H ∈ H is compactly presented then G is compactly presented.

2. If G is compactly generated, then each H ∈ H is compactly generated.

Remark 5.7.2. Note that the statements of Theorem 5.7.1 are trivial if G has no

compact open subgroup since in this case Remark 5.6.3 implies that H = {G}.

The section consists of three parts. The first subsection discusses the proof of

Theorem 5.7.1(1), then the other two sections contain the proof of Theorem 5.7.1(2).

5.7.1 Normal forms

Let us recall the notion normal form for amalgamated free products and HNN extensions.

For details we refer the reader to [LS01].

Normal form for amalgamated free product

Let G = A ∗C B be an amalgamated free product. Choose a system of representatives

TA of right cosets of C in A and a system of representatives TB of right cosets of C

in B. Assume that 1 represents the coset of C in A and B. A normal form in the

amalgamated free product A ∗C B is a sequence x0x1 · · · xn such that

1. x0 ∈ C.

2. xi ∈ TA \ {1} or xi ∈ TB \ {1}. for i ≥ 1, and consecutive terms xi and xi+1 lie

in distinct system of representatives.
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Normal form for HNN extension

Let A be a group, let B and C be subgroups of A, and let α : C → B be an isomorphism.

Suppose G is the group defined as the HNN extension

G = A∗α = 〈A, t | t−1ct = α(c), c ∈ C〉.

Choose a system of representatives TC of right cosets of C in A and a system of

representatives TB of right cosets of B in A. Assume that 1 represents the coset of C

and B. A normal form in an HNN extension is a g0t
ǫ
1g1 · · · t

ǫngn such that

1. g0 is an arbitrary element of G,

2. if ǫi = −1, then gi ∈ TB,

3. if ǫi = 1, then gi ∈ TC ,

4. there is no consecutive subsequence t−11t.

Theorem 5.7.3. [LS01] Suppose G = A ∗C B or G = A∗α. Every element g ∈ G can

be uniquely written as the product of sequence in normal form.

5.7.2 Proof of Theorem 5.7.1(1)

Lemma 5.7.4. If (G,Λ) is a finite topological graph of groups with compactly presented

vertex groups and compact edge groups, then π1(Λ,G) is compactly presented.

Proof. It is enough to prove the result for the graph of groups corresponding to the free

product with amalgamation and HNN extension. The general case follows by induction.

Let Λ be a single edge with compactly presented vertex groups A and B and compact

edge group C. Let iA : C → A and iB : C → B be open topological embeddings. A

presentation of π1(Λ,G) ≃ A∗CB is given by 〈A,B | iA(c)iB(c)
−1 for c ∈ C〉. Let 〈SA |

RA〉 and 〈SB | RB〉 be bounded presentations of A and B over compact sets SA and SB

respectively such that C ⊆ SA and C ⊆ SB. Then 〈SA ∪ SB | iA(c)iB(c)
−1 for c ∈ C〉

is a bounded presentation of G over a compact set, and hence G is compactly presented.

For HNN extension, let Λ be an edge loop with compactly presented vertex group

A and compact edge group C. Let i1 : C → A and i2 : C → A be open topological
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embeddings. Let 〈S | R〉 be a bounded presentation of A over compact set S such

that C ⊆ S. Let y be a symbol not in S. Then a presentation of π1(Λ,G) is given by

〈S, y | R, i1(c)
−1yi2(c)y

−1 for c ∈ C〉. This is a bounded presentation over a compact

set. Hence π1(Λ,G) is compactly presented.

Proof of Theorem 5.7.1(1). Suppose eachH ∈ H is compactly presented. Let 〈 (G,Λ, φ) |

R 〉 be a compact generalized presentation of G relative to H, and let G̃ = π1(Λ,G)

be the fundamental group of the graph of groups (Λ,G). Since (G,Λ, ) is a finite

graph of topological groups with compactly presented vertex groups and compact

edge groups, by Lemma 5.7.4 , G̃ is compactly presented. Consider the short exact

sequence 1 → ker(φ) → G̃→ G→ 1. Since R is finite, ker(φ) is compactly generated

as a normal subgroup. By Proposition 5.6.17, G is compactly presented.

5.7.3 Compactly generated topological graphs of groups.

In this part, we prove the following proposition which is a particular case of Theo-

rem 5.7.1(2).

Proposition 5.7.5. Let G be the fundamental group of a finite graph of topological

groups (G,Λ) such that edge groups are compactly generated. If G is compactly generated,

then vertex groups of (G,Λ) are compactly generated.

This proposition can also be stated as follows:

Corollary 5.7.6. Let G be a topological group acting discretely, cocompactly and

without inversions on a tree such that the edge stabilizers are compactly generated. If

G is compactly generated, then the vertex stabilizers are compactly generated.

Corollary 5.7.6 in the case that G is a TDLC group and the edge stabilizers are

compact is a result of Castellano [Cas20, Proposition 4.1]. The proof of Proposition 5.7.5

follows by induction on the number of edges of Λ, so it reduces to prove the result

for amalgamated free products and HNN extensions. For definitions and results on

normal forms, refer [LS01, Page 181].

Lemma 5.7.7. Let G = A∗CB be a topological group such that G and C are compactly

generated, and C is an open subgroup containing a compact open subgroup. Then A is

compactly generated.
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Proof. Let U be a compact open subgroup of C. Let CA and CB denote the copies

of C in A and B respectively. Since G and C are compactly generated, there are

finite subsets X ⊂ G and Y ⊂ C such that G = 〈X ∪ U〉 and C = 〈Y ∪ U〉. For each

element of X choose a normal form; and let Z ⊂ A consists of all a ∈ A such that

a appears in a chosen normal form of an element of X. Observe that Z is a finite

set. We claim that A = 〈Y ∪ Z ∪ U〉 and hence A is compactly generated. Let A′

be the subgroup of A generated by Y ∪ Z ∪ U . Since CA = 〈Y ∪ U〉, it follows that

CA ≤ A′. Let ψ : A′ ∗C B → G the morphism induced by the inclusions A′ →֒ A →֒ G

and B →֒ G. Then ψ is surjective since its image contains ψ(X ∪ U) = X ∪ U which

generates A ∗C B. Note that ψ preserves the length of normal forms and ψ(B) = B;

therefore surjectivity of ψ implies that ψ(A′) = A.

Lemma 5.7.8. Let A be a topological group, let B and C be open subgroups of A

containing compact open subgroups and let α : C → B be an isomorphism of topological

groups. Let G be the TDLC group defined as the HNN extension

G = A∗α = 〈A, t | t−1ct = α(c), c ∈ C〉.

If G and C are compactly generated, then A is compactly generated.

Proof. Let U be a compact open subgroup in C ∩B. Since G, C, and B are compactly

generated, there are finite subsets X ⊂ G, Y ⊂ C, and W ⊂ B such that G = 〈X ∪U〉,

C = 〈Y ∪U〉, and B = 〈W ∪U〉. For each element of X choose a normal form; and let

Z ⊂ A consists of all a ∈ A such that a appears in a chosen normal form of an element

of X. Observe that Z is a finite set. We claim that A = 〈W ∪Y ∪Z∪U〉 and hence A is

compactly generated. Let A′ be the subgroup of A generated by W ∪Y ∪Z ∪U . Since

B = 〈W ∪U〉 and C = 〈Y ∪U〉, it follows that B ≤ A′ and C ≤ A′. Consider the group

G′ = A′∗α and the morphism ψ : G′ → G induced by the inclusions A′ →֒ A →֒ G.

Then ψ is surjective since its image contains ψ(X ∪ U) = X ∪ U which generates G.

Note that ψ preserves the length of normal forms; therefore surjectivity of ψ implies

that ψ(A′) = A.

5.7.4 Proof of the Theorem 5.7.1(2)

Definition 5.7.9 (Link). Let X be a simplicial 2-complex and let σ be a cell in X.

The star st(σ) of σ is defined as the set of all closed cell of X incident to σ. The link
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of σ in X is a subcomplex of X defined as the collection of closed cells of st(σ) that

do not intersect σ. We will denote it as linkX(σ). If σ is a 0-cell, linkX(σ) can also be

interpreted as a graph Γ = linkX(σ) defined with the set of vertices

V (Γ) = {e | e is a 1-cell in st(σ) adjacent to σ}

and the set of edges E(Γ) = {(e1, e2)}, where e1, e2 are pair of edges in st(σ) adjacent

to σ contained in the boundary of same 2-cell in st(σ).

Remark 5.7.10. We note the following facts without proof.

1. Let X be a 2-dimensional G-complex with cellular and cocompact action of G.

Then G acts cocompactly on the barycentric subdivision of X.

2. Let X be a 2-dimensional G-complex. After sufficient subdivisions, X can be

considered a simplicial G-complex. In particular, for any cell σ in X, linkX(σ) is

well-defined and we can consider the Gσ-action on the linkX(σ).

3. Let X be a 2-dimensional simplicial G-complex and let X ′ be the barycentric

subdivision of X. For any 0-cell σ ∈ X, there is an Gσ-equivariant isomorphism

linkX(σ) → linkX′(σ).

Lemma 5.7.11. Let X be a 2-dimensional cocompact simplicial G-complex without

inversions. Let σ ∈ X be a 0-cell. Then Gσ acts cocompactly on linkX(σ).

Proof. Let X ′ be the barycentric subdivision of X with the induced cellular G-action.

Then G acts on X ′ without inversions and, by Remark 5.7.10, the action is cocompact.

Let st(σ) be the set of closed cells of X incident to σ. Since the G-action on X is

cocompact, there exists finitely many cells {τi} in st(σ) such that for any τ ∈ st(σ)

there exists gτ ∈ G such that gττ = τi for some i. By the definition of induced action

on X ′, gτσ = σ. Therefore, gτ ∈ Gσ. Hence Gσ acts cocompactly on st(σ) and thus

on linkX′(σ). By Remark 5.7.10, item (3), we conclude that G acts cocompactly on

linkX(σ).

Remark 5.7.12. [MW02, Definition 2.6] Let D be a disc diagram not homeomorphic

to a disc, then D is either trivial, consists of a single 1-cell joining two 0-cells, or

contains a cut 0-cell i.e. a 0-cell whose removal disconnects the diagram.
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Remark 5.7.13. Let G be a group acting on a graph Γ without inversions. Let e be

an edge with vertex representatives v, w. Let H = Gv. Then H acts on set of vertices

adjacent to v, and Ge = Hw.

Lemma 5.7.14. Let X be a simply connected 2-dimensional simplicial G-complex and

let v be a 0-cell. Let K be the set of connected components of linkX(v) and Ω be the set

of connected components of X \ {gv | g ∈ G} whose closure contain v. Then there is a

Gv-equivariant bijection between K and Ω.

Proof. Since linkX(v) is subspace of X \{gv | g ∈ G}, there is a natural Gv-equivariant

inclusion η : K → Ω. We claim that η is a bijection. Let k1, k2 ∈ K and x, y be vertices

of X in k1 and k2 respectively. Suppose η(k1) = η(k2). Then there exists a path p in

X \ {gv | g ∈ G} between x, y. Since k1, k2 ∈ K, there exist paths p1, p2 in X joining

v, x and y, v respectively. Let γ be the loop in X obtained by concatenating p1, p, p2.

Choose γ to be of minimal length such that it is an embedding in X. Since X is simply

connected, by [MW02, Lemma 2.17] there exists a disc diagram D and a reduced map

φ : D → X such that γ = φ ◦ γ′, where γ′ : S1 → D is the boundary cycle of D. Since

γ is an embedding, by Remark 5.7.12, D is homeomorphic to a disc. Let w be a vertex

in D mapping to v. Observe that φ induces a map between linkD(w) and linkX(v).

Since linkD(w) is path connected, there is path between x and y in linkX(v). Thus

k1 = k2 and η is injective.

Let ω ∈ Ω. Then ω contains the interior of a cell σ incident to v. Let k be the

connected component of linkX(v) containing linkX(v) ∩ σ. Then k maps to ω, and

hence η is surjective.

Proposition 5.7.15. Let X be a simply connected 2-dimensional simplicial G-complex

with discrete cocompact G-action such that every cell of dimension greater than 0 has

compact stabilizer. Then for any vertex v, the setwise Gv-stabilizer of any connected

component of linkX(v) is compactly generated.

Proof. Let ∆ be a connected connected component of linkX(v) and let K be its setwise

Gv-stabilizer. That X is a discrete G-complex and stabilizers of 1-cells and 2-cells

are compact, ∆ is a connected discrete K-graph with compact cell stabilizers. By

Lemma 5.7.11, we also have that ∆ is a cocompact K-graph. Hence by Theorem 5.4.9,

K is compactly generated.
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Proof of the Theorem 5.7.1(2). Let P = 〈 (G,Λ, φ) | R 〉 be a compact relative gener-

alized presentation of G with respect to the collection H of open subgroups, and let

X be the barycentric subdivision of the corresponding relative Cayley-Abels complex.

In particular, the G-action on X has no inversions, links of cells are well defined, and

every cell of dimension greater than 0 has compact stabilizer.

Let H ∈ H and let vH denote a 0-cell of X such that GvH = H, note that such

vertex exists by Proposition 5.6.11. The proof is divided into two cases:

Case 1: vH is not a cut-point in X.

By Lemma 5.7.14, linkX(vH) is connected. In this case H acts on linkX(vH)

discretely, cocompactly and with compact stabilizers. By Proposition 5.7.15, H is

compactly generated.

Case 2: vH is a cut-point in X.

Observe that for any g ∈ G, the 0-cell gvH is a cut-point in X. Let Ω be the set

of connected components of the set X \ {gvH | g ∈ G}. For any ∆ ∈ Ω, denote ∆

be the closure of ∆ in X. Construct a tree T corresponding to X(1) with V (T ) =

{gvH | g ∈ G} ∪ {v∆ | ∆ ∈ Ω} and E(T ) = {{gvH , v∆} | gvH ∈ ∆, g ∈ G,∆ ∈ Ω}.

Observe that T is a tree with a natural G-action and GvH = H. We claim that the

edge G-stabilizers in T are compactly generated. Without loss of generality, consider

an edge e = {vH , v∆} incident to vertex vH in T . Then Ge is the setwise H-stabilizer

of ∆. By Lemma 5.7.14, Ge is the setwise H-stabilizer of a connected component of

linkX(vH). Thus Proposition 5.7.15 implies H∆ is compactly generated. Therefore G-

stabilizers of edges of T are compactly generated; and since G is compactly generated,

Proposition 5.7.5 implies vertex stabilizers are compactly generated. In particular, H

is compactly generated.

5.8 Relatively hyperbolic groups

In this section, we generalize the notion of relatively hyperbolic group for proper

pairs (G,H). Our definition extends Bowditch’s approach to relative hyperbolicity for

discrete groups [Bow12]. The main result of the section is that relative hyperbolic

groups admit compact relative presentations, see Theorem 5.8.4.

Definition 5.8.1. Let (G,H) be a proper pair. The group G is relatively hyperbolic
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with respect to H if there exists a relative Cayley-Abels graph Γ of G with respect to

H which is fine and hyperbolic.

Remark 5.8.2. Let (G,H) be a proper pair. If G is a topological group with compact

open subgroup, and G is hyperbolic relative to a finite collection H of open subgroups,

then:

1. the group G is compactly generated relative to H by Theorem 5.4.9; and

2. every relative Cayley-Abels graph of G with respect to H is fine and hyperbolic

by Theorem 5.5.3.

Example 5.8.3. Let G be the fundamental group of a finite graph of topological

groups (G,Λ) with compact open edge groups. Then G is hyperbolic relative to the

collection H of vertex groups Gv. Indeed, the Bass-Serre tree of (G,Λ) is a relatively

Cayley-Abels graph of G with respect to H which is hyperbolic and fine.

Theorem 5.8.4. Let (G,H) be a proper pair. If G is hyperbolic relative H, then G is

compactly presented relative to H

Small cancellation quotients of free products are a source of relatively hyperbolic

groups in the discrete case [Osi06, Example(II) Page 4]. Proposition 5.8.5 generalizes

this construction. For background on small cancellation quotients of amalgamated free

products we refer the reader to the book by Lyndon and Schupp [LS01].

Proposition 5.8.5. Let A ∗C B be a topological group that splits as an amalgamated

free product over a common compact open subgroup C. If R ⊆ A ∗C B is symmetrized

set satisfying C ′(λ) condition and G = (A ∗C B)/〈〈R〉〉 then:

1. For the compact generalized presentation 〈(A ∗C B, φ) | R〉 of G relative to

{A,B}, the presentation complex is C ′(2λ) small cancellation complex.

2. For λ ≥ 12, any compact generating graph of G relative to {A,B}, the relative

Cayley-Abels graph is fine and hyperbolic. In particular, G is relatively hyperbolic

with respect to {A,B}.

Corollary 5.8.6. Let G be as in Proposition 5.8.5 and R = {rm}, where r is a

reduced and weakly reduced element in G. If m ≥ 12 and R satisfies the C ′(1/12) small

cancellation condition, then G is relatively hyperbolic with respect to {A,B}.
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The rest of the section is divided into two subsections containing the proofs of

Theorem 5.8.4 and Proposition 5.8.5 respectively.

5.8.1 Proof of Theorem 5.8.4

We will use the following result by Bowditch.

Lemma 5.8.7. [Bow12, Proposition 3.1] Let Γ be a hyperbolic graph with hyperbolicity

constant k. Then there is a constant n = n(k) with the following property. If Ωn(Γ) is

the 2-complex with 1-skeleton the graph Γ and such that each circuit of length at most

n is the boundary of a unique 2-cell, then Ωn(Γ) is simply-connected.

Proof of Theorem 5.8.4. Let Γ be a Cayley-Abels graph of G relative to H. By

Remark 5.8.2, Γ is hyperbolic and fine. Let n be the constant given by Lemma 5.8.7.

Since Γ is fine and G-cocompact, there are finitely many G-orbits of circuits of length

at most n. Then X = Ωn(Γ) is a discrete simply-connected cocompact 2-dimensional

G-complex with 1-skeleton Γ. By Theorem 5.6.6, G is compactly presented with

respect to H.

5.8.2 Proof of Proposition 5.8.5

The Dehn filling function for a finitely presented group is defined in [Gro87]. It is a

generalization of isoperimetric inequality. Moreover, hyperbolic groups are character-

ized as finitely presented groups with linear Dehn function, see [ABC+91, Section 2].

We will use the following result to prove fineness of certain complexes.

Proposition 5.8.8. [MP16] [HMPS21] Let X be a cocompact simply-connected G-

complex. Suppose that each edge of X is attached to finitely many 2-cells. Then the

1-skeleton of X is a fine graph if and only if the combinatorial Dehn function of X

takes only finite values.

The if direction is proved in [MP16, Proposition 2.1] for homological Dehn functions

FVX(k). In [Ger96b, Section 3], Gersten observe that FVX(k) � δ1X(k) and hence the

if direction of the proposition above follows. The proof of the only if direction is the

same argument as [HMPS21, Proof of Lemma 2.3].
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Proof of Proposition 5.8.5. G admits a a compact presentation 〈 (G,Λ, φ) | R 〉 relative

to {A,B}, where (G,Λ) is a graph of groups with a single edge with A, B as vertex

groups, C as edge group C. Let X be the corresponding presentation complex of

G, see Example 5.6.12. If R is a symmetrized set satisfying C ′(λ) small cancellation

condition, then X is C ′(2λ) complex, see [ACCCMP21, Theorem 7.1] for a proof. A

classical result in [LS01, Theorem 11.2] implies that δX(k) is linear and hence X(1)

is hyperbolic by [Gro87, Theorem 2.3.D]. Further X(1) is fine by Proposition 5.8.8.

Therefore, G is relatively hyperbolic with respect to {A,B}.

5.9 Proof of Theorem C

5.9.1 Consequences of the McCammond and Wise’s Perime-

ter method

A 2-complex is M-thin,

#{D | D is a 2-cell in X and e belongs to ∂D}} ≤M

for any 1-cell e in X. A 2-complex is uniformly circumscribed if there is an integer L

such that for each 2-cell D of X, the boundary cycle ∂D has length at most L.

Proposition 5.9.1. Let X be a C ′(λ) small cancellation complex that is simply

connected, uniformly circumscribed, M-thin, and 6λM < 1.

1. [MPW11b, Theorem 3.3] If Q acts faithfully on X, and is finitely generated

relative to a finite collection of 0-cell stabilizers. Then there is a connected and

quasi-isometrically embedded H-cocompact subcomplex of X.

2. If Q is a compactly generated topological group with a compact open subgroup

which acts faithfully and discretely on X, 1-cell Q-stabilizers are compact, then Q

is relatively hyperbolic with respect to a finite collection K of 0-cell Q-stabilizers.

In particular, Q is compactly presented with respect to K.

3. If H is a topological group with a compact open subgroup which acts faithfully

and discretely on X, 1-cell H-stabilizers are compact, and 0-cell H-stabilizers

are coherent, then H is coherent.
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Proof. To prove the second statement, let U be the Q-stabilizer of a 1-cell of X.

Observe that U is a compact open subgroup of Q. Since Q is compactly generated, Q

is finitely generated with respect to U . Hence Q is finitely generated with respect to

the Q-stabilizer of a 0-cell of X. By the first statement of the proposition, there exists

a connected Q-cocompact 1-dimensional subcomplex Y quasi-isometrically embedded

in X. The Dehn function of the C ′(1/6) simply connected small cancellation complex

X is linear [LS01, Ch.5 Thm 4.4] and hence the 1-skeleton X(1) is a hyperbolic graph

by [Gro87, Theorem 2.3.D]. Further X(1) is fine graph by Theorem 5.8.8. Therefore,

the Q-complex Y is also hyperbolic and fine. Since Q acts cocompactly on Y , by

Proposition 5.4.19, there exists a finite collection K of representatives of conjugacy

classes of 0-cells Q-stabilizers such that there exists a compact generating graph of

Q with respect to K such that the corresponding relative Cayley-Abels graph is Q-

isomorphic to Y . Observe that (Q,K) is a proper pair. Thus Q is relatively hyperbolic

with respect to K and by Theorem 5.8.4, Q is compactly presented with respect to K.

To prove the third statement, let Q be a compactly generated open subgroup of H.

The second statement shows Q is compactly presented with respect to a finite collection

K of Q-stabilizers of 0-cells. Since Q is also compactly generated, Theorem 5.7.1 implies

that every subgroup in K is compactly generated. Since Q is open in H, and the

subgroups in K are open subgroups of H-stabilizers of 0-cells of X which are coherent;

it follows that every subgroup in K is compactly presented. By Theorem 5.7.1, Q is

compactly presented.

5.9.2 Proof of Theorem C

Without loss of generality, assume that the normal form x0x1x2 · · · xℓ of r as an element

of A ∗C B is a cyclically reduced word, that is, x1 ∈ A if and only if xk ∈ B; see

Section 5.7.2 for a definition of normal form. Since r is not conjugate into A or B, the

assumption can be achieved by conjugating r if necessary. Let |r| denote the length of

the normal form, that is, |r| = ℓ.

Consider a compact presentation

〈 (A ∗C B, φ) | R 〉 (5.9.1)

of G relative to {A,B}, where φ : A ∗C B → G is a continuous epimorphism induced
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by the inclusions A →֒ G and B →֒ G, and R is a finite symmetric set generated by

rm. Suppose that R satisfies the C ′(1/12) small cancellation condition. Let G̃ denote

A ∗C B and let T be the corresponding Bass-Serre tree.

Fix a vertex y ∈ T , let γ be the unique fixed path from y to r2y, and let

M = k|r|, where k = max
{
[G̃t : G̃γ] | t is a 1-cell in the image of γ

}
. (5.9.2)

Let us observe that k is finite. Observe that the pointwise G̃-stabilizer G̃γ of the path

γ equals the intersection of the G̃-stabilizers of edges of γ. Since γ is a finite path, G̃γ

is an open subgroup of G̃t. Since G̃t is a compact group, the index [G̃t : G̃γ] is finite.

Note that M is independent of m. Let X be the relative Cayley-Abels complex

associated to (5.9.1), see Example 5.6.12.

Proposition 5.9.2. The G-complex X is M-thin.

The proof of Proposition 5.9.2 is postponed to the Subsection 5.9.3. Below we

complete the proof of the Theorem C using this proposition.

Since r is reduced and weakly reduced, the symmetrized set R of elements of A∗CB

induced by rm satisfies C ′(1/m) small cancellation condition. By Proposition 5.8.5, X

is a C ′(2/m) small cancellation complex. By Proposition 5.9.2, X is M -thin. Since M

is independent of m we can assume that

m ≥ 12M.

In particular m ≥ 12 and therefore Proposition 5.8.5 implies that the 1-skeleton of X

is fine and hyperbolic. Since G acts cocompactly, X is uniformly circumscribed.

Consider the short exact sequence 1 → N → G→ Aut(X) → 1 induced by the G-

action on X. Observe that N is a compact subgroup of G since G-stabilizers of cells of

x are open subgroups, and 1-cell G-stabilizers are compact. Let H = G/N and observe

that H acts faithfully, discretely, cocompactly and with compact 1-cell stabilizers on

X. Since H-stabilizers of 0-cells of X are conjugates in H of the subgroups A/N and

B/N ; by Remark A, X has coherent H-stabilizers of 0-cells. By Proposition 5.9.1, H

is coherent and hence Remark A implies that G is coherent.
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5.9.3 Proof of Proposition 5.9.2

Recall that T denotes the Bass-Serre tree of A ∗C B, y is a fixed vertex of T , and

ρ : T → X(1) is the quotient map.

We use the following observation in the argument below: For a reduced and

cyclically reduced word w of length k > 0, the edge-length of the unique embedded

path in the tree T from y to w.y is k.

By definition, X has a 2-cell D whose boundary path is the image by ρ of the path

in T from y to rmy. Let GD denote the setwise stabilizer of D and GD the pointwise

stabilizer. Consider the finite set

U = {(t,D) | t is a 1-cell in ∂D}

and observe that U is a GD-set. Let U be the set of GD-orbits of elements of U .

Claim. The cardinality of U is bounded by |r|.

Proof. Since φ(r) setwise stabilizes ∂D and no pair of distinct 2-cells of X have the

same boundary, φ(r) is an element of GD. Note that φ(r) has order m in G. Let q be

the unique path in T from y to ry. Then ρ(q) is a subpath of ∂D of length |r|. Since

translates of the path ρ(q) by 〈φ(r)〉 cover ∂D, the set of elements (t,D) where t is a

1-cell in ρ(q) contains representatives of all GD-orbits of elements of U . Hence U has

at most |r| elements.

Let e be a 1-cell in X. The thinness of e is given by the cardinality of the following

Ge-set,

Se = {(e,K) | K is a 2-cell in X and e ∈ ∂K}.

Let S be the set of Ge-orbits in Se. We break the calculation of |Se| into the following

claims.

Claim. There is an injective map from S to U

Proof. Since there is a single G-orbit of 2-cells in X, for any (e,K) ∈ Se, there

exists a gk ∈ G such that gk.K = D. This defines a map ψ : S → U given by

(e,K) 7→ (gk.e, gk.K). To prove the claim, we show that for any pair of elements of Se,
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they are in the same Ge-orbit in Se/Ge if and only if their images under ψ are in the

same GD-orbit in U/GD.

Let (e,K) and (e,K ′) be elements of Se. First suppose there is f ∈ Ge such

that (e,K) = f.(e,K ′). Then for h = gkfg
−1
k′ ∈ GD, we have (gk.e,D) = h.(gk′ .e,D).

Conversely, suppose that there exists h ∈ GD such that ψ(e,K) = h.ψ(e,K ′). That

is (gk.e, gk.K) = h.(gk′ .e, gk′ .K
′). Hence for f = g−1

k hgk′ ∈ Ge, we have that (e,K) =

f.(e,K ′). To summarize, we have the following equation.

ψ(e,K) = h.ψ(e,K ′) ⇔ (gke, gk.K) = h(gk′ .e, gk′K) ⇔ (e,K) = g−1
k hgk′(e,K)

Claim. If (e,K) ∈ Se then [Ge : GK ] ≤ k.

Proof. Recall that γ is the unique path between y and r2y in T . Consider the path

p = ρ(γ) in X(1). Note that p is a subpath of ∂D. We claim that Gp = GD, where GD

is the pointwise stabilizer of D. Observe that GD ⊆ Gp. Conversely, if g ∈ Gp, then

g.D is a 2-cell of X such that |∂D ∩ ∂(g.D)| = 2|r| = 2
m
|∂D| and hence by the small

cancellation condition on X, D = g.D pointwise and thus g ∈ GD.

Let (e,K) ∈ Se be any pair. Since there is a single orbit of 2-cells in X, there

exists g ∈ G such that g.K = D; and since GD translates of p cover ∂D, g can be

chosen such that g.e is in the image of p. Let g̃.e be a 1-cell in γ such that ρ(g̃.e) = g.e.

Since φ restricted to the stabilizer of edges is an isomorphism, we have the following

commutative diagram

G̃γ G̃g̃.e

Gp Gg.e,

φ φ

and therefore,

[Ge : GK ] = [Gg.e : GD] = [Gg.e : Gp] = [G̃g̃.e : G̃γ] ≤ k.

The number of Ge-orbits in Se is bounded by |r| as a consequence of first two

claims. On the other hand, each Ge-orbit in Se is bounded by k by the last claim. The



119

Therefore, the cardinality of Se is bounded by |r|k =M and this concludes the proof

of the Proposition 5.9.2.



Chapter 6

Conclusions and future work

We present the conclusion of the thesis in the form of future projects that relate to

the results obtained in this thesis.

6.1 Asymptotic Dimension

In Chapter 4, we proved the following.

Theorem 6.1.1. [ACCCMP21] Let G be a hyperbolic TDLC-group with cdQ(G) ≤ 2.

Every compactly presented closed subgroup H of G is hyperbolic.

Hyperbolicity can be studied for more general locally compact groups. In particular,

a locally compact group is hyperbolic if it has a continuous proper cocompact isometric

action on some proper geodesic hyperbolic metric space [CCMT15]; this generalizes the

classical definition in the discrete case as well as the definition in the class of totally

disconnected locally compact groups used in this thesis. By analogy with the discrete

case, the asymptotic dimension provides a quasi-isometry invariant of locally compact

compactly generated groups. The question below suggests a possible generalization of

Theorem 6.1.1 for the larger class of locally compact hyperbolic groups.

Question 6.1.2. Let G be a locally compact hyperbolic group such that asdimG ≤ 2.

Are compactly presented subgroups of G hyperbolic?

In the generality of locally compact groups, we are not aware of a cohomology

theory for locally compact groups that allows extending the techniques used to prove
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Theorem 6.1.1. However, using the results of Buyalo and Lebedeva [BL07] and Bestvina

and Mess [BM91], we proved that this is true for the discrete case in Chapter 4.

Theorem 6.1.3. [ACCCMP21] Let G be a discrete hyperbolic group such that asdimG ≤

2. Then every finitely presented subgroup of G is hyperbolic.

We believe that same can also be proven for the locally compact groups using the

same strategy as the discrete case. It will require generalizing the work of Bestvina

and Mess [BM91] for the locally compact groups.

6.2 Baumslag’s Conjecture

The following question is one of the outstanding open problems in the group theory.

Question 6.2.1 (Baumslag). Is every one relator group coherent?

The problem is proven to be true for partial cases, see [MW05] for example.

Remarkable progress in this question was made by independent works of Louder,

Wilton [LW20]; and Wise [Wis22], proving the following:

Theorem 6.2.2. Every one relator group with torsion is coherent.

In Chapter 5, we proved the following:

Theorem 6.2.3. Let A ∗C B be a topological group that splits as an amalgamated

free product of two coherent open subgroups A and B with compact intersection C. If

r ∈ A ∗C B is not conjugate into A or B, then for any sufficiently large integer m, the

quotient group G = (A ∗C B)/〈〈rm〉〉 is coherent.

The above theorem relied upon the perimeter method, a tool developed to prove

partial cases of Baumslag’s conjecture [MW05]. We believe that the new tools developed

in the recent works [LW20,Wis22] can be used to prove the following in the affirmative.

Question 6.2.4. Let A ∗C B be a topological group that splits as an amalgamated

free product of two coherent open subgroups A and B with compact intersection C. If

r ∈ A ∗C B is not conjugate into A or B, is the quotient group G = (A ∗C B)/〈〈rm〉〉

coherent for any m > 1?
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6.3 Relatively hyperbolic groups

In Section 5.8, the definition of relatively hyperbolic groups for the pairs (G,H) is a

generalization of the definition by Bowditch [Bow12]. Relative hyperbolicity has been

a popular topic of research in geometric group theory with different definitions, not

known to be equivalent at the time, see [Osi06], [Gro87], [Far98], [DS05]. Note that

not all of these definitions require groups to be finitely generated, and some are defined

for any countable groups. All of these definitions are now known to be equivalent in

complete generality, see [Hru10]. One of the generalizations of another definition of

relative hyperbolicity for locally compact groups has been studied in [CCMT15]. A

future direction of research is to extend other versions of the definition and verify if

they are equivalent.

For instance, in [Osi06], Osin defined relative Dehn functions for pairs (G,H),

where G is a group and H is a finite collection of subgroups; and proved the following:

Theorem 6.3.1. Let G be a finitely generated group and H be a finite collection of

subgroups of G. Then the following conditions are equivalent.

1. G is finitely presented with respect to H and the corresponding relative Dehn

function is linear.

2. G is hyperbolic relative to H in the sense of Bowditch.

We studied homological Dehn functions for TDLC groups in the terms of weak

isoperimetric inequalities in Chapter 4 and proved the following:

Theorem 6.3.2. [ACCCMP21] A compactly generated TDLC-group G is hyperbolic

if and only if G is compactly presented and satisfies the weak linear isoperimetric

inequality.

The theory of weak isoperimetric inequalities can be extended to define relative

homological functions for proper pairs (G,H) using the tools from Chapter 5 to prove

the following.

Conjecture 6.3.3. Let (G,H) be a proper pair. The following are equivalent:

1. G is compactly presented relative to H and the corresonding relative homological

function is linear.
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2. G is relatively hyperbolic to H.

A subgroup H of a group G is quasi-convex if H → G is quasi-isometric embedding.

Quasi-convex subgroups are an excellent source of examples of ’well-behaved’ subgroups

and are widely studied in the discrete case. The theory of relative quasi-convexity has

been extended to groups with respect to the collection of subgroups, in the discrete case.

We are currently extending that theory for locally compact groups with a compact

open subgroup. We would also like to note that the subgroups in the Theorem 6.2.3

are in fact quasi-convex.
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