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Abstract: Climate change is one of the biggest environmental, political, economic, technological, and
social challenges of the 21st century. Due to ever-increasing fossil fuels costs. The world energy
system should be transitioned to renewable energy sources to mitigate greenhouse gas emissions.
Solar energy is one of the suitable alternatives to fossil fuel usage. Currently, the most widely
available solar technologies are solar photovoltaic (PV) and solar thermal. The integration of these
two techniques enables the exploitation of the most significant amount of solar radiation. This
combination has led to a hybrid photovoltaic/thermal system (PV/T). Concentrated solar radiation
on PV cells, known as concentrated photovoltaic (CPV), effectively decreases PV receivers’ area
and harnesses the same quantity of solar radiation. However, the main problem with CPV is the
elevated PV surface temperature, which often requires active cooling. This issue can be solved by
introducing a Concentrating Photovoltaic Thermal (CPVT) system. In this article, a new CPVT hybrid
system based on Point Focus Fresnel Lens (PFFL) and embedded Multi Junction Photovoltaic (MJPV)
(GaInP/InGaAs/Ge) cells has been experimentally investigated and numerically modelled under
indoor conditions. Experiments and simulations were carried out at different heat transfer fluid (HTF)
flow rates and under constant irradiation emitted from a sun simulator. The results indicate that the
thermal and electrical performance of the CPVT system improves under the testing conditions, where
the total efficiency was 68.7% and 73.5% for the experimental and CFD models, respectively. At the
same time, the highest thermal efficiency of the experimental and CFD models was 49.5% and 55.4%,
respectively. In contrast, the highest electrical efficiency was 36.5% and 37.1%. Therefore, the CPVT
system has an excellent possibility of being competitive with conventional power generation systems.

Keywords: hybrid concentrating photovoltaic/thermal system CPVT; multi-junction photovoltaic;
point focus Fresnel lens; heat sink

1. Introduction

As energy costs continue rising worldwide, efforts are being put into seeking alter-
native technologies to meet increasing energy demands. The amount of solar energy that
hits the Earth’s surface in four hours is estimated to be greater than the amount of energy
consumed by the entire Earth’s population in one year [1]. Therefore, solar energy is an
excellent alternative energy source. However, solar energy still faces several hurdles before
replacing fossil fuels for power generation. The most significant drawback of solar energy
is its low energy density. As a result, solar energy penetration technology is continuously
developed to increase the efficiency of equipment converting sunlight into usable energy.
Solar photovoltaic (PV) and solar thermal are currently the most commonly available solar
technologies whereas in PV technology, solar radiation is converted directly into electrical
power. With solar thermal technology, thermal power can be generated from dissipative
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heat from solar radiation and utilized in practical applications. One of the methods to
achieve better overall efficiency is to use the co-generation principle, where waste heat
is captured and used as an additional energy product. Integrating these two techniques
enables exploitation of the most significant amount of solar radiation. This combination
has led to a hybrid system called the Photovoltaic/Thermal system (PV/T), which includes
a heat exchanger or flow channel underneath the PV cells to collect heat dissipated from
the cells.

However, the major challenge of PV/T technology is generating heat at a relatively low
operating temperature and managing the high cost of PV cells. Further, as the temperature
of PV cells rises, their conversion efficiency decreases [2]; keeping the PV surface at a
low temperature is imperative. To increase productive energy, large areas of conventional
PV arrays are required. PV panels for wide-ranging energy generation are expensive
and have long payback periods. Concentrated solar radiation on PV cells is an effective
method to decrease PV receivers’ area and harness the same quantity of solar radiation;
this technology is known as a CPV. These CPV systems replace expensive PV cells with
inexpensive concentrator optics, which is their main advantage. The main problem with
CPV is the increased PV surface temperature caused by concentrated solar radiation, which
often requires active cooling. In addition to the issue of the limited amount of thermal
energy generated. We can address these issues by implementing the concept of a CPVT
system, which harvests and converts the excess heat produced in PV cells into thermal
energy. Thereby, the PV cells are maintained at a moderate temperature.

CPV systems commonly consist of multi-junction photovoltaic cells (MJPV), also
known as a tandem, consisting of multiple material layers, usually triple, stacked on top
of one another. Gallium indium phosphide (GaInP), Indium gallium arsenide (InGaAs),
and germanium (Ge) are used, for example. These semiconductors utilize a different
wavelength range of the solar spectrum to generate electricity [3]. To stack the layers, the
materials with the largest bandgap are put on top and the materials with the smallest
bandgap are at the bottom. In this configuration, the photons with the shortest wavelength
are absorbed first, while those with the longest wavelength are absorbed last [4].

Each layer of the MJPV absorbs a part of the solar spectrum from its bandgap energy
up to the following layer. Since each layer has a narrow absorption range, extra electrical
power rather than heat will be produced. Therefore, MJPV cells are naturally prepared
for concentrating systems such as a CPVT hybrid system and can operate at different
concentration ratios [5,6]. In addition, MJPV considers the third generation of solar cells,
which have a high electrical conversion efficiency even at a high concentration ratio. The
advancement in MJPV over the last 30 years has been remarkable. The efficiency of MJPV
cells, has increased by more than 200% since 1988. The Fraunhofer Institute for Solar
Energy Systems set the record for MJPV efficiency in 2013 and 2014, where 44.7% and 46%
have been recorded for a quadruple-layers cell [7,8]. Compared with the other PV cell
technologies, MJPV cells have achieved much higher efficiencies than any other approach.
For instance, the highest independently certified efficiencies for MJPV solar cells have
improved from 29.1% in 2018 to the latest confirmed efficiency record of 47.1% in 2020 [9].
Due to the lack of manufacturers in this area, MJPV solar cells are currently more expensive
than single-junction PV cells. The cost of these cells is expected to decrease as the technology
matures and production capacity increases. These cells would become more economically
competitive [4].

The CPVT system is considered a relatively complicated system. Despite enormous
research, this system has no precise classification. Sharaf and Orhan [10] classified CPVT
into three distinct types: CPVT-focused, system integration-focused, and component
improvement-focused, as shown in Figure 1. We can also see from Figure 1, that the
CPVT system has been divided into high concentration and low concentration. The high-
concentration CPVT systems are divided into linear-focus and point-focus according to
their concentration shape. The system could be based on linear Fresnel reflectors, linear
Fresnel lenses, or parabolic trough collectors in the linear focus. While in point-focus, the
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system could be based on parabolic dish collector, heliostat field central receiver or point
focus Fresnel lenses. Concentration Photovoltaic Thermal CPVT systems with a point focus
will be studied in the current research.

Furthermore, in CPVT systems, the concentration ratio is a significant parameter, and
the review of previous studies demonstrates no specific definition of the concentration
ratio. However, the concentration ratio is often classified into two categories. The first is the
geometric concentration ratio, defined as the entrance aperture (area of the primary lens)
divided by the exit aperture (receiver area). The second is the intensity of concentration
(suns), defined as the ratio of the average intensity of the concentrated light on the active
cell area divided by peak solar irradiance that is usually set at 1000 W/m2. Besides that,
Katie et al. [11] mentioned in their study that the concentration ratio can be divided into
four categories; low concentration (<10 suns), medium (10–100 suns), high (100–2000 suns),
and ultrahigh (>2000 suns).
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Figure 1. Shows the classification of the CPVT hybrid system [10].

The first CPVT prototype was produced at Sandia National Laboratories. This early
work described and attempted to solve most of the problems associated with concentration
systems, and many of them were satisfactorily answered [12]. Several CPVTs have been
designed and constructed for numerical and experimental research. The results reveal that
they have high electrical and thermal performance. Kandilli, for example, found that the
overall efficiency of these systems is 65.1 percent [13]. Moreover, Zhao et al. illustrated that
the outlet temperature of the medium fluid reached 200 ◦C [14].

Furthermore, an excellent review of CPVT systems has been conducted by Sharaf and
Orhan [10,15]. Their study focused on the design considerations and the characteristics of
CPVTs and reviewed the crucial elements that compose a CPVT. Moreover, the geometrical
parameters of different concentrators were investigated to achieve uniform illumination
on PV panels. The experimental results showed that the linear Fresnel reflector could
harvest more energy, with thermal energy and overall efficiency improved by 16 and
17.5 percent, respectively [16]. However, a comparative study between line-focus and point-
focus Fresnel lenses as solar concentrating systems indicated that the thermal performance
of the point-focus Fresnel lens is slightly better than the line-focus [17]. Besides that, there
has been a significant increase in the number of CPVT-published research over the past
10–15 years [18,19]. Design considerations and theoretical and experimental investigations
have been carried out throughout these studies. The results from these studies illustrate that
hybrid CPVT systems have unique merits to penetrate the energy market. Daneshazarian
et al. also reviewed of CPVT technology which included the basic concepts, design, and
investigation of CPVT solar collectors. In their study, CPVT collectors were divided into
system elements to illustrate the subsystems’ functionality and roles in the overall system
performance [20]. Alzahrani et al. highlighted the influence of increasing the concentration
ratio and the temperature on CPVT components in terms of MJPV and optical concentrator
materials. Also, they discussed optical, thermal, and economic implications. The results
showed that higher concentration ratios increased the temperature at which the CPVT
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system’s operation, performance, and reliability were affected [21]. According to the
performance of the CPVT, the cost and payback period are concise. For example, the cost of
electricity in a CPVT collector is 2.37 $/W [22], and total electrical and thermal expenses
are 8.7 $/W [23]. Further, to estimate the energy costs of the CPV/T system, levelized costs
of energy (LCOE) were conducted. The direct cost of the CPV/T system includes the PV
cells, concentrators, heat exchanger, pump, pipes, HTF, etc. The results revealed that for
an installed capacity of 30 MW and 120 MW, the values of LCOE are 0.043 $/kWh and
0.016 $/kWh, respectively [24].

According to the literature review, although many studies on the CPVT model have
been conducted, the CPVT system is based on a point-focus Fresnel lens, MJPV cells, heat
sink, and active cooling, which are still not mature. More research, investigation, and
development work related to these design considerations are still necessary.

The present study focused on experimental investigations and numerical modelling
of a CPVT system based on a point-focus Fresnel lens concentrator equipped with a
high-efficiency GaInP/InGaAs/Ge triple-junction solar cell, a copper heat sink, and an
absorber tube as an active cooling system. An experimental investigation was conducted
to calculate the thermal and electrical performance of the CPVT system. Furthermore, a
three-dimensional CFD model using Ansys code was developed to analyze the heat transfer
during the CPVT model at various HTF flow rates and incidence irradiance. The results
from the CFD model were compared with experimental results.

2. Experimental Setup

Figure 2 shows a photograph of the experimental setup of the CPVT system, which
mainly consists of five parts (1) Sun simulator, which includes a 1000 W halogen lamp.
(2) CPVT system including point focus Fresnel lenses, MJPV cell, and heat sink. (3) Flow
loop includes a 1/2-inch copper pipe, HTF, circulation pump, and a flow meter to measure
the mass flow rate. (4) Heat exchanger and thermal path system to control the inlet HTF
temperature. (5) Data-collection system including data acquisition, an ammeter, a multi-
meter, and a solar meter.
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Figure 2. Photograph of the experiment test section: (a) Fresnel lens; (b) cooling fan; (c) MJPV;
(d) pipe and insulator; (e) flowmeter.

Nine T-type thermocouples were installed at several locations to measure the ambient,
MJPV cell surface, heat sink surface, and HTF inlet and outlet temperatures. Besides
that, the MJPV cell has been pasted onto a copper heat sink designed and manufactured
specifically for this experiment using OB-101 Epoxy adhesive (high thermally conductive
& high electrical insulation) glue. The heat sink has been fixed on a 1/2-inch copper pipe.
The solar cell aligns against their respective Fresnel lens in the focal length. The area of the
Fresnel lens is 280 × 280 mm2, and the size of the solar cell is 10 × 10 mm2, which means
the geometric concentrating ratio of the CPVT system will be 784x. Moreover, the test
section was fully automated through a PC using a data acquisition system (DAQ). Before
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taking any measurements in these experiments, a benchmarked test has been done for all
equipment to ensure it is appropriately functional.

3. Thermal and Electrical Analysis

In this research, we used a FULLSUNS Triple-Junction Photovoltaic solar cell made of
GaInP/InGaAs/Ge with an area of 100 mm2. Under measurement conditions, cell temper-
ature of 25 ◦C and air mass AM of 1.5; the typical electrical efficiency is 41.15% and 40.34%
at a concentration ratio of 500× and 1000×, respectively [25]. Furthermore, we considered
several assumptions to evaluate the CPVT system’s performance and simplify the thermal
analysis. The made assumptions for thermal and electrical analysis are as follows:

1. Materials properties of MJPV are homogeneous and isotropic.
2. Flow within the copper pipe is considered incompressible and uniform.
3. The system is well insulated; therefore, the thermal losses will be negligible.
4. The thermal properties of the HTF are constant.
5. Fresnel lenses are free from manufacturing errors.
6. Neglect dust or any other agent deposited on the CPVT system.
7. The temperature gradients between cells and their substrates are negligible.
8. The radiation concentrated uniformly along the area of the MJPV cells.
9. The internal reflections within the transparent layers of the MJPV were neglected.

Figure 3, shows the energy balance through the CPVT system. As we can see, part of
the total incident energy (qirr) on the MJPV solar cell is lost as optical losses (Qopt), while
the remaining (Qin) is converted into two forms. The first portion is converted to electrical
power (Pele), while the remaining is converted into heat (Qheat). A portion of this heat (Qth)
is transferred to the water by convection, while the rest (Qloss) is transferred to the ambient
by convection and radiation.
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The geometrical concentration ratio of the CPVT system is calculated as follows [26]:

GCR =
AFr
AC

(1)
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where AFr is the Fresnel lens area, and Ac is the solar cell area, and the maximum concen-
tration ratio of the CPVT system can be calculated as [27]:

CR =
AFr
AC

ηopt (2)

ηopt is the optical efficiency of the concentrator system, and it is typically around
80–90% [11]. The solar radiation flux Qin, which reaches the MJPV cell, can be evaluated
from the following relation:

Qin = qirr CR AC (3)

where qirr is the solar radiation flux emitted from the sun simulator measured above the
Fresnel lens in (W/m2). The solar radiation flux received by the MJPV cell is converted into
electrical power and heat. The electrical power can be determined as follows:

Pele = Qinηsc (4)

while the following equation can be used to calculate the amount of energy that converts to
heat [28]:

Qheat = Qin(1− ηsc) (5)

where ηsc is the cell’s electrical efficiency of the MJPV and can be calculated as follows [29]:

ηsc = ηre f

[
1− βre f

(
Tc − Tre f

)]
(6)

where ηre f is the cell’s electrical efficiency at the solar cell reference temperature Tre f ,
which is equal to the ambient temperature of 25 °C, Tc is the solar cell temperature, and
the βre f is the temperature coefficient of the MJPV solar cell. The values of ηre f , βre f are
usually provided by the solar cell manufacturer. Also, the relation between the MJPV
solar cells’ electrical efficiency and cell temperature and concentration ratio was expressed
from experimental data. Compared to other equations, this experimental correlation gives
ultra-high electrical efficiency values [19,30].

ηsc = 0.298 + 0.0142ln(CR) + [−0.000715 + 0.0000697ln(CR)](Tc − 298) (7)

The thermal energy Qth absorbed by HTF is expressed as:

Qth =
.

mCp(Tout − Tin) (8)

where
.

m, Cp, Tin, and Tout are mass flow rate, specific heat, inlet, and outlet temperatures
of the HTF, respectively. Hence, the thermal efficiency can be determined as follows:

ηth =
Qth
Qin

(9)

The electrical parameters of the solar cell are open-circuit voltage VOC, short circuit
current ISC, current at maximum power Im, the voltage at maximum power Vm, maximum
power Pm, theoretical maximum power PT , and fill factor FF. These electrical parameters
are important to characterize the electrical performance of the solar cell. The maximum
power produced by the solar cell exposed to the solar radiation flux can be determined
as follows:

Pm = ImVm (10)

The theoretical maximum power can be determined as follows:

PT = VOC ISC (11)
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The ratio of the actual rated maximum power to the theoretical maximum power is
known as the “Fill Factor” and can be calculated using the following equation:

FF =
Pm

PT
(12)

The electrical efficiency of the system can be calculated as follows:

ηele =
Pm

Qin
(13)

The overall efficiency of the CPVT system can be calculated using the following
equation:

ηtot =
Pm + Qth

Qin
(14)

4. Theory and Governing Equations

The proposed model’s heat transfer characteristic and thermal performance analysis
are based on an energy balance around the CPVT components. The energy balance includes
the incident solar radiation, optical losses from the Fresnel lens, thermal losses from the
CPVT, and the heat flow into the HTF. Figure 4 shows a side view of the one-dimensional
steady-state energy balance for a cross-section of the CPVT model. Three heat transfer
mechanisms exist: conduction, convection, and thermal radiation. Further, a part of this
heat is transferred within the multi-junction solar cell solid layers by conduction. The
remaining parts of the heat are lost to the surrounding environment by convection and
radiation. As stated by Chou et al. [28], in the structure of the MJPV, the top (GaInP) and
middle (InGaAs) subcells are much thinner than the bottom (Ge) substrate. Moreover, the
(Ge) layer absorbs long-wavelength photons (870–1950 nm) and usually absorbs the most
received irradiation. Therefore, the MJPV solar cell can be modelled as one homogeneous
Germanium cell (Ge), and they would not influence the junction temperature. The thermal
resistance diagram corresponding to the CPVT assembly layers is shown in Figure 5.
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The steady-state heat conduction within the MJPV assembly to the top surface of the
copper pipe is defined by Fourier’s law as follows:

Qcond = −kA∇T (15)

where Qcond is the conduction heat transfer rate, A is the layer area, k is the thermal
conductivity of the material of the layer, and ∇T is the temperature gradient. The solar
energy converted to heat will be collected from the CPVT assembly by HTF or dissipated
to the environment by convection and radiation.
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The heat which is transferred by natural convection is described by [28,31]:

Qn/c = hAc∆T (16)

where Qn/c is the natural convection heat transfer rate, h is the natural convection heat
transfer coefficient, and ∆T is the temperature difference between the surface and the
ambient. Since the MJPV is placed in a horizontal position, it can be considered a horizontal
heated upward-facing plate with uniform heat flux. The concentrated light heats the fluid
near the top surface of the MJPV. Consequently, a natural convection is created. Therefore,
the heat transfer by natural convection from the upper surface of the MJPV is correlated for
(1 < Ra < 1010) by the equations presented below [32]:

NuT = 0.835Cl Ra1/4 (17)

Nul =
1.4

ln
(

1 + 1.4
NuT

) (18)

Nut = CU
t Ra1/3 (19)

Nu =
(
(Nul)

m + (Nut)
m )1/m, m = 10 (20)

where NuT is the average “thin-layer-solution” Nusselt number for laminar flow. Nul is the
average Nusselt number taken over MJPV, assuming the laminar heat transfer is dominated.
Nut is the average Nusselt number taken over MJPV, assuming turbulent heat transfer is
dominated, and Cl , CU

t is an approximately universal function of Prandtl numbers and
have the values 0.515, 0.14 respectively [32]. The natural convection heat transfer coefficient
h can be expressed as follows:

h =
Nu k

Lc
(21)

where k is the thermal conductivity of the air, and Lc is the characteristic length defined as
Lc = A/P where A, and P are the surface area and the perimeter of the MJPV, respectively,
and Ra is the Rayleigh number, which is defined as follow:

Ra =
gβ∆TL3

c
υα

(22)
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where β is the coefficient of volumetric thermal expansion, α is the thermal diffusivity, υ is
the kinematic viscosity, and g is the gravitational acceleration.

The radiation heat transfer can be calculated from the following relations:

Qrad = εσAc

(
T4

s − T4
a

)
(23)

where Qrad is the radiation heat-transfer rate, ε is the emissivity of the solar cell material,
σ is the Stefan Boltzmann constant, Ts is the surface temperature, and Ta is the ambient
temperature.

5. Numerical Analysis

A numerical model was developed to investigate the heat transfer mechanism and the
thermal performance of the CPVT system; these include the heat transfer from the MJPV
to the HTF and the total heat losses to the surrounding. The simulation was performed
using the computational fluid dynamic technique (CFD) in the Ansys Fluent 19.0. A
three-dimensional CPVT model was designed using Ansys Design Modeller, as shown in
Figure 6. The CPVT model consists of a single MJPV solar cell, a copper heat sink, and a
1/2-inch copper pipe. Unlike the experimental model, in the numerical model, the thermal
resistance of the epoxy resin layer has been neglected since it is very thin and has high
thermal conductivity.
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Further, the model’s dimensions were chosen based on the actual geometry of the
experimental model. The numerical simulation is performed by applying the Ansys Fluent
solver, which uses the Finite Volume Method (FVM) to discretize the governing equations
of continuity, momentum, and energy [27,28].

The flow of HTF inside the CPVT model was assumed to be incompressible and
steady-state. Therefore, the continuity equation is given as:

∂ρ

∂t
=

∂(ρu)
∂x

+
∂(ρv)

∂y
+

∂(ρw)

∂z
= 0 (24)

where ρ is the density of HTF, and u, v, and w denote to HTF velocity in x, y, and z
directions.

The momentum equations in the x, y, and z directions for steady and laminar flow,
which are also called Naiver Stokes equations and are expressed as:

ρ
Du
Dt

= −∂p
∂x

+
∂τxx

∂x
+

∂τyx

∂y
+

∂τzx

∂z
+ ρgx (25)
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ρ
Dv
Dt

= −∂p
∂y

+
∂τxy

∂x
+

∂τyy

∂y
+

∂τzy

∂z
+ ρgy (26)

ρ
Dw
Dt

= −∂p
∂z

+
∂τxz

∂x
+

∂τyz

∂y
+

∂τzz

∂z
+ ρgz (27)

where ρ, is the pressure on the HTF element, τxx, τyx, and τzx are the shear force, and ρgx,
ρgy and ρgz are the gravitational forces in x, y, z directions. The energy balance equation is
given as:

∂(ρT)
∂t

+
∂(ρuT)

∂x
+

∂(ρvT)
∂y

+
∂(ρwT)

∂z
=

∂

∂x

[
k
cp

∂T
∂x

]
+

∂

∂y

[
k
cp

∂T
∂y

]
+

∂

∂z

[
k
cp

∂T
∂z

]
+ ST (28)

where cp is the specific heat, T is the temperature, k is thermal conductivity of the HTF, and
ST is the heat source (i.e., solar radiation flux that reaches the MJPV cell).

5.1. Mesh of the CPVT Model

A hybrid unstructured tetrahedral and hexahedral mesh was employed in this simula-
tion. The meshing has been done using the Ansys Fluent Meshing tool to generate small
elements to solve flow and energy equations for the CPVT model computationally. The
quality of the mesh plays a vital role in the stability and accuracy of the numerical results.
Generating a low-quality mesh might lead to numerical diffusion and inaccurate results. In
Ansys Fluent, checking the mesh’s quality is a significant step in implementing a robust
simulation. Several mesh quality metrics for quantifying the quality include skewness,
orthogonal quality, and aspect ratio. The skewness shows the perfectness of cells in terms
of their angles. The skewness quality spans from 0 to 1, where the skewness quality of zero
is the highest-meshed cell quality, and one indicates poor quality cells. Also, orthogonal
quality ranges between 0 and 1, but unlike skewness, where values close to one correspond
to high-quality meshed cells, whereas those close to zero are the worst quality [33].

Further, the aspect ratio represents the balance of the cells’ sides. To achieve an
excellent overall mesh quality, it should be less than 100. Figure 7a illustrates the meshed
CPVT model’s side view and isometric view. The mesh nodes were more than 1.3 million,
whereas the mesh elements exceeded 2.0 million and the measured mesh qualities for
the skewness, orthogonal quality and aspect ratio were 0.13, 0.86, and 26.87, respectively.
Besides that, Figure 7 displays the mesh metrics graphs for the skewness (Figure 7b), and
orthogonal quality (Figure 7c).
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5.2. Mesh Independency Study

Six mesh independence tests have been conducted to obtain mesh-independent solu-
tions and sustain credible results. The objective of these tests is to eliminate the influence of
discretization, rounding, and iterative errors. The number of mesh elements ranges from
0.6 to 3.0 million, and the study was undertaken in terms of cell temperature and HTF outlet
temperature. As shown in Figure 8, both cell temperature and HTF outlet temperature
do not vary significantly with increasing the grid elements further. With these results,
the number of mesh elements used in this study is sufficient for accuracy and simulation
run time.

5.3. Numerical Implementation

The meshed CPVT model was loaded into Ansys Fluent to solve the governing equa-
tions and show the actual physical heat and flow domain solutions. The computational
domain was divided into several discrete control volumes and integrated into the differen-
tial governing equations to create algebraic equations for the dependent variables such as
temperature, velocity, and pressure. Further, the double-precision option has been activated
to obtain accurate results. The energy and laminar flow models are used for this simulation.
The pressure-based type, absolute velocity formulation, and steady time solvers are default
values [34]. The gravitational effect has been selected according to the HTF flow direction
and geometry design of the CPVT model.
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For the materials settings, water, copper, and MJPV were used, and their properties
are presented in Table 1. The mass flow rate and the inlet temperature of the HTF were set
up as input parameters, and their values have been imported from the experimental data.
Constant heat flux was applied on the top surface of the MJPV. Its value was calculated
based on the measured solar radiation flux emitted from the sun simulator, concentration
ratio, optical efficiency of the Fresnel lens, and the solar cell area.

Table 1. Materials properties for the CPVT simulation.

Materials Density (ρ) (kg/m3) Specific Heat (Cp) (J/kg.K) Thermal Conductivity (k)
(W/m.K) Emissivity (ε)

Water-liquid 998.2 4182 0.6 -
Germanium Ge 5323 320 60 0.9

Copper 8960 385 401 0.05

Notably, the boundary condition of all outer surfaces in contact with the surroundings
was assumed to be adiabatic (fully insulated), i.e., zero heat flux, except the upper surface
of the heat sink and MJPV.

The solution method incorporated the pressure-velocity coupling scheme using the
SIMPLEC algorithm. For spatial discretization, a second-order discretization was utilized
to obtain accurate results. Therefore, the second-order scheme was employed to spatially
discretize the pressure, whereas the second-order upwind scheme was applied to discretize
the momentum and energy. Besides, to control the solution variables, under-relaxation
factors were used, and all default values were set as optimum values. The residuals
of all variables have been monitored to ensure a convergent solution. The residuals of
continuity, x-velocity, y-velocity, z-velocity, and energy are set to 1 × 10−3, 1 × 10−6,
1 × 10−6, 1 × 10−5, and 1 × 10−8 respectively. Further, before starting the calculations,
standard initialization has to be applied to implement initial values of all variables in all
cells of the domain.

6. Results and Discussion

The present study focused on experimental investigation and numerical modelling
for a CPVT system based on a point-focus Fresnel lens concentrator, a single cell MJPV, a
copper heat sink, and a copper pipe. The most common approach to evaluate the electrical
characteristics of a CPVT system is to find its response curves, which provide short-circuit
current Isc, open-circuit voltage Voc, and maximum power output. These responses are
known as the I-V and P-V curves. In this regard, a mathematical I–V and P–V curve model
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was developed to calculate the current and voltage of the MJPV at different concentration
ratios at the standard MJPV surface temperature. Therefore, the model is validated by com-
paring the results with indoor experimental data from manufacturers. Figure 9 shows the
I-V curve created by the mathematical model compared to the manufacturer’s experimental
data at an MJPV surface temperature of 25 ◦C and different concentration ratios.
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Figure 9. Verification of the mathematical model results with the datasheet of I-V characteristics in
different concentration ratios for FULLSUNS Triple-Junction Photovoltaic solar cell.

It is observed that the changes in Isc with radiation are more significant than the
changes in the Voc. However, both changes increase with the incident radiation. The Isc
increased by almost triples due to the increased CR from 250× to 1000×. Moreover, it
can be noticed that the MJPV model simulation results of the I-V curve are a good match
with the experimental data from the manufacturer, where the maximum percent error is
less than 2%. Figure 10 shows the P-V curve generated by the developed electrical model
under the same conditions. Figure 10 indicated that the higher concentration ratio would
positively influence the solar cell output power.

Moreover, the influence of mass flow rate, the temperature difference between inlet
and outlet of HTF, and concentrated solar radiation on thermal and electrical efficiency has
been studied experimentally and numerically in this paper. A variety of mass flow rates
have been chosen according to the used OMEGA flowmeter range. The solar radiation
emitted from the sun simulator has been measured on the Fresnel lens using a TES 1333
Solar Power Meter, which reads 783.7 w/m2. These experimental measurements, such as
mass flow rates, the inlet temperature of the HTF, incident solar radiation, and ambient
temperature, have been exported to the CFD model to ensure the comparison of the results
will be conducted under the same conditions.

Figure 11 shows the effect of varying the mass flow rate of HTF on the temperature
difference between the inlet and outlet of HTF. The temperature difference decreases as
the mass flow rate of HTF increases. The results revealed a slight discrepancy between
the experimental and simulation results attributed to the heat losses associated with the
experimental model. Further, Figure 12 illustrates the electrical and thermal efficiencies
changes with the mass flow rates. Based on Figure 12, as the mass flow rate increased,
both electrical and thermal efficiencies increased. The highest thermal efficiencies of the
experimental and CFD models were 49.5% and 55.4%, respectively, with an error percent of
10.65%. In contrast, the highest electrical efficiencies were 36.5% and 37.1%, respectively,
with an error percent of 1.35%. Also, Figure 12 displays the total thermal and electrical
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efficiencies of the experimental and CFD models, which amounted to 68.7% and 73.5%,
respectively.
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Figure 11. The temperature difference between the outlet and inlet of the HTF at different mass
flow rates.

Figures 11 and 12 demonstrate that, as the mass flow rate of HTF increases, the
temperature difference decreases while the thermal efficiency increases. This is due to
the influence of the mass flow rate of HTF, which overrides the effect of the temperature
difference.
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Figure 12. Comparison of thermal, electrical, and total efficiency at different mass flow rates.

Figure 13 represents the variations in the cell temperature with various mass flow rates
as we can see the cell temperature decreases with increased mass flow rates. Also, Figure 13
shows that the cell temperature directly impacts electrical efficiency; this effect corresponds
to what was mentioned earlier. In the exact figure, we can also see that the thermal efficiency
increased as the mass flow rate increased. The thermal efficiency increases dramatically at
a low mass flow rate, while the efficiency curve increases slightly at a high mass flow rate.
The reason is that the heat exchange time between the HTF, wall pipe, heat sink, and MJPV
is too short at a high mass flow rate. Consequently, the difference between the inlet and
outlet temperatures would be small.
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In addition, the effect of the internal heat transfer coefficient has been studied in this
paper. The internal heat transfer coefficient plays a vital role in the CPVT system since it
influences thermal and electrical performance. A higher heat transfer coefficient enhances
the thermal energy of the CPVT system, reduces the solar cell temperature, and improves
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electrical efficiency. Many design parameters affect the heat transfer coefficient, such as
flow conditions, pipe diameter, thickness and thermal conductivity of the individual layers
in the CPVT, and solar radiation intensity. Figure 14 demonstrates the change in the heat
transfer coefficient with a variety of Reynolds numbers in the laminar regime. As the
Reynolds number increased, the heat transfer coefficient increased. The experimental and
simulated results for the heat transfer coefficient were well in agreement.
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Figure 15 displays 3D surface plots of the average wall temperature along the pipe at
different mass flow rates. The highest temperature appeared at low mass flow rates due
to HTF having a longer time to absorb the heat from the solar cell via heat sink and pipe
thickness layers.
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Further, in this research, the influence of the mass flow rate on the temperature distri-
bution of the MJPV surface was studied. Figure 16 presents the temperature distribution
contours of MJPV at selected flow rates from low, medium, and high. To facilitate the
comparison, all temperature contours were plotted in the CFD model at the same specified
temperature range. The highest and lowest MJPV temperature was 38.33 °C and 21 °C,
respectively. Also, it can be seen that the changes in the MJPV temperature are not signifi-
cant at high mass flow rates. This is because, at high flow rates, the temperature of MJPV
approaches the HTF inlet temperature.
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Figure 16. Temperature distribution on MJPV surface at different mass flow rates.

Besides, Figure 17 shows temperature contours of outlet HTF at selected flow rates
from low, medium, and high. All temperature contours have been plotted at the individual
local temperature range in the CFD model. The highest and lowest outlet temperature was
28.7 ◦C and 14.2 ◦C, respectively, whereas the inlet temperature of HTF was 13.95 ◦C. Also,
it is observed in all contours that the highest temperature distribution is near the wall since
the flow regime was laminar.
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Figure 17. Outlet temperature distribution contours at different mass flow rates.

To monitor the temperature of MJPV and avoid overheating, a thermal camera has been
used. Figure 18 shows an infrared image of the MJPV cell. The temperature distribution
over the cell surface is almost homogeneous, and there are no hotspots on the cell surface.
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Also, the image, indicates that the highest temperature of the solar cell was significantly
below the maximum allowable temperature provided by the manufacturer in the datasheet.
Consequently, active cooling plays a significant role in keeping the temperature of the
MJPV cell low, so it has become necessary in the concentration photovoltaic systems.
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7. Conclusions

In this research, experimental and CFD analysis allowed for the evaluation of both
the thermal and electrical performance of the proposed CPVT model under a variety of
parameters such as HTF flow rates, HTF inlet temperature, MJPV cell temperature, incident
radiation, concentration ratio, and the optical efficiency of the Fresnel lens. The experimen-
tal tests were conducted in laboratory conditions. The experimental measurements were
exported to the CFD simulation model to ensure that the results will be compared under
the same conditions. The significant findings are summarized below:

� The temperature difference decreases as the mass flow rate of HTF increases. The
results reveal a slight discrepancy between the experimental and simulation results,
which was attributed to the heat losses associated with the experimental model.

� It was found that as the mass flow rate increased, both electrical and thermal efficien-
cies increased. The highest thermal efficiency of the experimental and CFD models
was 49.5% and 55.4%, respectively, with an error percent of 10.65%. In contrast, the
experimental and CFD models’ highest electrical efficiency was 36.5% and 37.1%,
respectively, with an error percent of 1.35%.

� The total efficiency was 68.7% and 73.5% for the experimental and CFD models,
respectively.

� The cell temperature decreases with increased mass flow rates. Also, the results reveal
that the cell temperature directly impacts electrical efficiency.

� As the Reynolds number increases, the heat transfer coefficient increases.
� The study shows the thermal and electrical performance could be a key factor for

realizing a more complex prototype of a CPVT system.
� A good agreement is found between experimental results and CFD simulation. The

CPVT system has an excellent possibility to be competitive with conventional power
generation systems.
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Nomenclature

Cl approximately universal function of Prandtl number
AFr m2 Fresnel lens area
Cp J/kg.K specific heat
CU

t approximately universal function of Prandtl number
.

m Kg/s mass flow rate

Nul
Average Nusselt number taken over MJPV assuming the laminar heat
transfer is dominated

NuT average “thin-layer-solution” Nusselt number for laminar flow

Nut
average Nusselt number taken over MJPV, assuming turbulent heat
transfer is dominated

Pele W electrical power
Qcond W conduction heat transfer rate
Qheat W amount of energy that converts to heat
Qin W solar radiation flux that reaches the MJPV cell

qirr W/m2 solar radiation flux emitted from the sun simulator measured above the
Fresnel lens

Ql0ss W thermal losses
Qn/c W natural convection heat transfer rate
Qrad W radiation heat-transfer rate
Qth W thermal energy absorbed by HTF
Tc °C solar cell temperature
Tin °C inlet temperatures of the HTF
Tout °C outlet temperatures of the HTF
Tre f °C solar cell reference temperature
A m2 layer area
Ac m2 solar cell area
g m/s2 gravitational acceleration
h W/m2.K natural convection heat transfer coefficient
k W/m.K thermal conductivity of the material of Layer
Lc m characteristic length
P m perimeter of the MJPV
Ra Rayleigh number
Ta °C ambient temperature
Ts °C surface temperature
Greek letters
βre f %/K temperature coefficient of the MJPV solar cell
ηele electrical efficiency of the system
ηopt optical efficiency
ηre f cell’s electrical efficiency at the solar cell reference temperature
ηsc cell’s electrical efficiency
ηth thermal efficiency
ηtot overall efficiency of the CPVT system
∇T K/m temperature gradient
α m2/s thermal diffusivity
β K−1 coefficient of volumetric thermal expansion
∆T K temperature difference between HTF and surface
ε emissivity of the solar cell material
ρ Kg/m3 Density
σ W/m2.K4 Stefan Boltzmann constant
υ m2/s kinematic viscosity
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Abbreviations
CPVT Concentrating Photovoltaic Thermal
CR maximum concentration ratio
FVM Finite Volume Method
GCR geometrical concentration ratio
HTF heat transfer fluid
GaInP/InGaAs/Ge Gallium indium phosphate/Indium gallium arsenide/Germanium
MJPV Multi Junction Photovoltaic
PFFL Point Focus Fresnel Lens
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