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ABSTRACT Seca-ice identification is an essential process for safety critical navigation support of surface
vessels in polar waters. Semantic segmentation has drawn much attention as an enabling technique for fast
detection of objects in a scene including sea-ice conditions. Identifying sea-ice is a challenging problem,
especially in the presence of raindrops. The raindrop alters the boundaries of the objects in the scene, and
thus, degrades the identification performance. In this work, a raindrop removing framework is developed to
enhance the classification performance. Three deep-learning semantic segmentation networks are trained
to classify the scene of sea-ice images into ice, water, ship, and sky. The deep-learning networks are
VGG-16, fully convolutional network, and pyramid scene parsing network. Transfer learning along with
data augmentation operations have been implemented to improve the training process. Results illustrate that
data augmentation operations enhance the performance of the three models. Moreover, the raindrop removing
framework improves the models’ performance, e.g. the average intersection over union of the VGG-16 model

is improved from 85.91% to 91.70%.

INDEX TERMS Convolutional neural networks, raindrop removing, sea-ice, semantic segmentation.

I. INTRODUCTION
Recently, navigation through sea-ice has attracted more
research efforts as the need for operating surface vessels and
offshore operations in polar waters have increased. Unlike
in land navigation where road networks are deterministic,
navigable area in polar waters is continuous and the ice
thickness, shape, and concentration are changing over time.
Navigation under sea-ice conditions requires highly
trained and experienced ice navigators to find a safe route
through rapidly changing environment and to avoid the haz-
ardous ice conditions following established polar operation
risk assessment standards [1]. Satellite-based synthetic aper-
ture radar systems provide large-scale and high-spatial res-
olution of the sea-ice floes, which is useful for operational
planning through polar waters [2]. However, relying on aerial
air-borne or space-borne imagery requires a reliable and sus-
tainable communication channel between the aerial scanner
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and the earth. Moreover, the quality and temporal frequency
of aerially captured images degrades significantly in bad
weather conditions such as clouds. One advantageous alter-
native is to obtain the navigation information in situ, without
the need for external platforms. Onboard systems are consid-
ered to gather and process information in real-time, which is
important for time-critical decisions in maneuvering, control,
and monitoring systems [3], [4]. An example of onboard
system is the marine radar, which is an in-situ sensing device
that operates in the X-band. It has the capability of measuring
the backscatter from the polar water surface in space and
time, independent of lighting conditions and under different
weather conditions. However, marine radars have limited
spatial resolution and it is quite difficult to establish form and
type of ice based on the radar information alone. Currently,
for in-situ navigational risk assessment, the detailed informa-
tion about ice is captured by ice navigators using primarily
visual observations [5].

Computer-aided scene analysis techniques such as auto-
mated image processing and segmentation have paved the
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way for autonomous navigation systems, which reduces
costs, processing time, and human bias in the navigation
process. For this application at least, a trained human is
considered an expert over any onboard system due to the
experience required. Moreover, the resurgence of deep neu-
ral networks (DNN5s) has dramatically improved the perfor-
mance of many computer-aided scene analysis techniques
such as image classification [6], object detection and local-
ization [7], and semantic segmentation [8].

In contrast to image prediction, semantic segmentation
generates a fine-grained delineation of objects that embeds
their spatial information, which makes it a key enabling
technique to address diverse remote sensing problems [9].
In context of sea-ice monitoring, DNNs have been utilized in
image-based ice detection techniques such as sea-ice classifi-
cation in synthetic aperture radar (SAR) images [10], [11], ice
objects classification in optical close-range images [12], lake
ice monitoring algorithm [13], and river ice classification in
images collected by an unmanned aerial vehicle (UAV) [14].

A. RELATED WORK

Various classification and identification problems are of inter-
est in the ocean environments, such as underwater target
classification [15], maritime targets classification on high-
resolution image [16], classification of coral reef images [17],
and sea-ice condition identification and assessment [4].
Research efforts have been devoted to develop techniques
for sea-ice classification [2], [3], [18], [19]. In [2], the
authors proposed a remote sensing algorithm that utilizes
radar images to estimate the ice-drift velocity vector in a
region around a moving ship. Two Kalman filters were inte-
grated with radar image processing to estimate the local drift
vector from the vessel motion. In [3], the authors developed
an algorithm to quantify ice concentration and to estimate
ice thickness. The global Otsu method and the K-means
method were utilized to implement the ice concentration
analysis. In [18], a sea-ice monitoring model using SAR
was designed. This model performs SAR segmentation and
classification using the Markov random-field theory such that
a region-growing technique keeps refining the segmentation
iteratively. In [19], an ice navigation system was presented.
This system implements ship-based ice awareness by utiliz-
ing a combination of radar, lidar, and video processing for ice
detection and classification.

NNs have attracted considerable research attention
recently as a promising tool to avail automated sea-ice
monitoring solutions [10]-[14], [20]. In [10], a NN algo-
rithm was designed to classify sea-ice in SAR images of
central arctic. The algorithm classified the images into open
water, and deformed ice based on third and fourth central
statistical moments, inertia, cluster prominence, energy, and
homogeneity of image brightness. In [12], ice objects in
optical close-range images were classified into several cate-
gories using convolutional neural networks (CNNs). In [11],
an algorithm was proposed to classify the scene of SAR
images into several classes using CNNs. In [14], a data set
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was collected by a UAV of river ice and used to train a
semantic segmentation deep network, which classifies the
scene into ice, water, and other class. In [13], a lake ice
monitoring algorithm based on semantic segmentation was
proposed. The authors utilized video streams acquired by a
webcam to generate the data set with nomenclature classes
of water, ice, and clutter. In [20], two data sets were used
to train DNNs. The scene in the first data set captures four
classes, namely ice, vessel, ocean, and sky; while the scene
in the second data set captures more ice classes.

In this paper, we focus on studying the effect of rain
droplets on the sea-ice identification and develop a frame-
work to remedy this effect. Moreover, we study the effect
of changes in the camera location and mounting angle on
the sea-ice identification performance by data augmenta-
tion operations such as cropping and rotating the training
set. DNNs are utilized to classify images of sea-ice scenes
captured onboard of a ship using semantic segmentation.
Each sea-ice scene image is classified into four classes,
namely ice, water, ship, and sky. The initial dataset of this
work consists of 428 and 23 training and evaluation images,
respectively; this is constructed from images taken by the
Nathaniel B. Palmer icebreaker during its expedition through
the Ross Sea.! Data augmentation operations are applied to
enhance the size of the dataset, such that the total data set of
this work consists of 10,700 and 575 training and evaluation
images, respectively. Moreover, transfer learning is imple-
mented using the Cityscapes and CoCo datasets, which are
widely used in academia in the context of training semantic
segmentation models. Three DNN models are trained, namely
VGG-16, fully convolutional network (FCN-8), and pyramid
scene parsing network (PSPNet-50). The classification per-
formance of the models is measured using the precision and
intersection over union (IoU) of the predicted and the ground
truth images.

The rest of this paper is organized as follows. Section II
introduces the adopted DNN models. The data augmentation
operations are discussed in Section III. Section IV introduces
the raindrop removing framework. Results are discussed in
Section V and Section VI concludes the paper.

Il. DNN MODELS

In this work, we consider three models, each representing
different DNN architecture, namely CNN, fully convolutional
network, and encoder-decoder network architecture. This
section introduces the adopted DNN models.

A. VGG-16

VGG-16 is a CNN model proposed by the University of
Oxford [6]. The VGG-16 model includes convolution layers
and max pool layers consistently throughout its architecture.
In the end it has 2 fully connected layers (FCS) followed by a

1A video footage of the dataset can be seen in the following link:
https://youtu.be/BNZuluxNvlo.
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FIGURE 1. The architecture of the FCN model [8].
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FIGURE 2. The architecture of the PSPNet model [21].
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FIGURE 3. Sample of data augmentation operations.

soft-max for output. The number 16 in VGG-16 refers to the
fact that it has 16 layers.

B. FULLY CONVOLUTIONAL NETWORK (FCN-8)

FCN-8 is the first model to train a network end-to-end for
semantic segmentation that gained this name from its archi-
tecture, which is built from fully connected layers [8]. FCN-8
can work regardless of the image size. Figure 1 shows the
architecture of the FCN-8 model.

C. PYRAMID SCENE PARSING NETWORK (PSPNet-50)

PSPNet-50 model takes into account the global context of
the image to perform the local level predictions [21]; hence,
it achieves better performance in comparison with the FCN
model which classifies pixels without capturing the context of
the whole image. Figure 2 shows the structure of the PSPNet
model. It starts with an input image, then first uses the CNN
to obtain the feature map of the last convolutional layer as
in part (b), after which a pyramid parsing module is applied
to harvest different sub-region representations, followed by
upsampling and concatenation layers to form the final feature
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representation; this carries both local and global context
information as in part (c). Finally, the representation is fed
into a convolution layer to get the final per-pixel prediction
as in part (d).

Ill. DATASET ENHANCEMENT USING DATA
AUGMENTATION OPERATIONS

A. IMAGES SOURCE

The dataset is constructed from images taken from the
Nathaniel B. Palmer expedition through the Ross Sea, Antarc-
tica [20].! The images were captured in different light condi-
tions encountered in the voyage ranging from midday sun to
gray skies and setting sun. In addition, some images present
precipitation of rain. The original data set consists of 428
training images (380 clear weather images and 48 rainy
weather images) and 23 evaluation images that comprise
different weather conditions such as sunny, cloudy, rainy, and
clear weather. The scene in the images consists of ice, water,
ship, and sky classes. As the ship moves, the surrounding
ice, water, and to some extent the sky change. However, the
ship class does not change much because the images are
taken from a fixed location on the ship. Consequently, data
augmentation operations are performed to increase the data
diversity for a more robust model.

B. DATA AUGMENTATION OPERATIONS

Data augmentation encompasses a suite of operations that
enhances the size of training and evaluation datasets such
that better deep learning models can be built without the
need to collect new data [22]. Two main categories of data
augmentation operations are considered in this work, namely
geometrical data augmentation and image effect data aug-
mentation. In the following, we briefly describe the data
augmentation operations.

o Vertical and horizontal flip: The original images are
flipped along vertical (top to bottom) or horizontal (left
to right) axis.

« Rotation: Rotation augmentation is done by rotating
the images right on an axis with angle 6; we consider
different value of 6 = 10, 45, 65, 85, 90, 110, 130, 150,
180, 240, 270, 300, 320, and 340 degrees.

o Cropping: We adopt a random cropping approach,
in which we create random segments of the original
image. Each cropping operation is associated with an
appropriate scaling operation to maintain the size of each
image before and after cropping.

« Adding noise: Adding noise augmentation consists of
adding a random value to each pixel; the random value
is usually drawn from a zero-mean normal distribution
with variance o2, N 0, 02). In this work, we consider
0?=10and 0% = 20.

o Changing lighting condition: Changing lighting con-
dition augmentation is implemented by increasing or
decreasing the brightness of the images.
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The original training set consists of 428 images; we add
2 x 428 images through noise augmentation, 3 x 428 images
by applying cropping operation, and 18 x 428 images by
applying the rotation, flipping, and changing lighting condi-
tion operations. Figure 3 illustrates a sample example of some
of the augmentation operations.

IV. RAINDROP REMOVING FRAMEWORK

Images captured onboard a ship are subject to weather con-
ditions such as rain. The raindrop degrades the image quality
and alter the boundaries of the objects in the image, which
reduces the performance of the semantic segmentation mod-
els. Including rainy weather images in the training dataset
does not improve their performance. To cope with this issue,
removal of raindrop effects is essential to improve the per-
formance of DNN. Figure 4 illustrates the raindrop removing
framework, which consists of the following operations:

o The first step is to test whether there is any raindrop
in the image or not. This step is important to apply the
morphological operations to the images with raindrop.
We trained a deep CNN model as binary classifier to
classify the images. This model consists of a convo-
lutional 2D layer with 16 filters, a kernel of 3 x 3
pixels, the input size as our image dimensions, i.e.,
713 x 713 x 3. After that, a stack of 5 max pooling
layers is added. Finally, the output is flatten and feed
into a fully-connected layer, and then to a sigmoid layer
for binary classification. A data set of 10,700 images
is utilized to train the binary classifier, which achieves
99.5% accuracy.
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« Morphological operations: Images with raindrop

undergo morphological operations to reduce the corre-
sponding effects; these operations are image smoothing
and object edge detection.

— Image smoothing is the process of capturing
important objects in the image while leaving out
fine-scale structures/rapid patterns. In this work,
we adopt a bilateral filter which smooths out the
raindrop and preserves the edges of the object [23],
[24]. The bilateral filter takes a weighted sum of
the pixels in a local neighborhood; the weights
depend on both the spatial distance and the inten-
sity distance. In this way, edges are preserved well
while noise is averaged out. Mathematically, at a
pixel location x, the output of the bilateral filter is
calculated as follows

R ly — x|
1(x) = Ze ( 5 )

yeN(x) d

1(y) — I(x)|?
X exp (——| @)202(x)| ) 1(y),

where I and ] are the input and filtered images,
respectively, 03 and 0,2 are parameters controlling
the fall-off of the weights in spatial and intensity
domains, respectively, N(x) is a spatial neighbor-
hood of x, and C is a normalization constant such

that
lly —x]? 1(y) — 1)
C=exp|—F—|exp| ——5=5—)-
20y 207
with |-|] and ||-|| as the first and second norms,

respectively. The selection of oj and o2 depends
on the image intensity and the size of the object that
needs to be smoothed out [24], [25]. In this work,
we set 07 = 45 and 02 = 150.

— Objects edge detection: Edge detection is a mor-
phological operation for finding the boundaries of
objects within an image. The edge detection algo-
rithm identifies points in the image at which the
image brightness changes sharply or, more for-
mally, has discontinuities. The points at which
the image brightness changes sharply are typically
organized into a set of curved line segments termed
edges. In this work, we adopt the Canny edge detec-
tion algorithm which represents one of the most
efficient edge detection algorithms [26]. It consists
of the following steps: (1) Finds the intensity gra-
dients of the image; (2) Apply non-maximum sup-
pression to remove the spurious response to edge
detection. Non-maximum suppression means that
edge points are defined as points where the gradient
magnitude assumes a local maximum in the gradi-
ent direction; (3) Apply a threshold to determine
potential edges such that the pixels with gradient
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values greater than this threshold will be consid-
ered as edge; we set the threshold as 100, which is
obtained heuristically based on sensitivity analysis.

Clear boundaries between the objects in the image
enables the DNN models to accurately apply the seman-
tic segmentation. The raindrops alter objects’ boundaries
and the smoothing filter cannot obtain these boundaries.
The raindrops do not alter all the boundary pixels of
an object in the original image because their size is
smaller than the object. Consequently, the boundary pix-
els affected by the raindrops can be reconstructed using
the neighboring boundary pixels. The mode filter” is an
edge-preserving filter, in which the value of the output
pixel is obtained by the mode over all pixels within the
filter’s window. The locations of boundary pixels are
determined using the edge detector. The input of the
mode filter is the intensity of the boundary pixels in the
original image and its output determines the intensity
of the boundary pixels in the resulted image. Figure 5
illustrates a sample of the morphological operations.

Input VGG-16 PSPNet-50

M B s« I water Ship

FIGURE 6. A sample input image and the results of VGG-16, FCN-8, and
PSPNet-50 models.

A. COMPLEXITY ANALYSIS
Table 1 illustrates the number of training epochs, estimated
time of arrival (ETA) which in the context of Keras is the
estimated time before the model finishes one epoch, time of
each training step, and testing time per image of each deep-
learning network. The training epochs of each network are
selected by evaluating the performance after each iteration to
determine the optimal number of training epochs and to avoid
over-fitting. It is noticed that the PSPNet-50 performs more
epochs. It is worth mentioning that the training is an off-line
process and can be performed using powerful computers.
The proposed raindrop removing framework consists
of three morphological operations: (1) A bilateral image
smoothing filter, which has a complexity on the order of
OWNN + %%), where N is the number of pixels and R is

the extentdof the intensity scale [28, Chapter 4.5]. (2) Canny
edge detection, which has a complexity on the order of
O(N? log N). (3) Mode filter, which has a complexity on
the order of O(N?log N). Consequently, the computational
complexity of the proposed framework is O(N + %% +
N2logN + N%logN) = ON2logN + ;V—jaﬁ) It is worth
mentioning that the execution time of the proposed raindrop

2Each output pixel of a mode filter is assigned the intensity of the most
frequently occurring pixel in the input pixels [27].
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TABLE 1. Training and testing time of the considered deep-learning
networks.

DNN model | Number of epochs | ETA | Time per step | Testing time per image
VGG-16 30 1855 361 ms 550 ms
FCN-8 39 299 s 583 ms 692 ms

PSPNet-50 43 373s 728 ms 992 ms

removing framework is 55 ms per image and it is applied to
only the images with raindrop.

V. RESULTS

In this section, we evaluate the three DNNs using the orig-
inal and augmented datasets, with and without the raindrop
removal.

A. TRAINING SETTINGS
The three DNN models are trained using the original dataset
(428 images) and the augmented dataset (10,700 images); the
size of each image is 713 x 713 pixels. Transfer learning has
been implemented to train the models with both original and
augmented datasets. To train the DNN models with the orig-
inal dataset, pre-trained models with Cityscapes and CoCo
datasets have been used as starting points. The starting points
to train the DNN models with the augmented dataset are the
resulted models of the original dataset. The training has been
performed using a Lenovo ThinkStation-P920 server running
on Linux version Ubuntu 18.04 LTS; the central processor
unit is Intel Xeon 24 cores and 64 GB RAM is used. The
workstation has a GeForce RTX 2080 Ti graphics card with
11 GB memory.

The classes in each image represent the following:

« Ice: ice visible in the image including ice pans;

« Water: open water of the ocean that appears in the image

« Ship: sections of the ship that appear in the image

o Sky: visible sky in the image.
We evaluate the performance of the deep learning networks
using the intersection over union (IoU), precision, recall, and
F1-score [29]. IoU is a similarity coefficient representing the
ratio of the overlapping area of ground truth and predicted
area to the total area, and can be expressed as

TNP
IoU = x 100%, (1)
TUP
where T and P represent the ground truth image and image
produced by the deep learning model, respectively.

The precision and recall are defined as
Pr

Pr=—"' _ x100%, )
Pr + Pp
Pr
=T 100%, 3)
Pr + Nr

respectively, where P is the number of true positive pixels,
Pr is the number of false positive pixels, and Nr is the
number of false negative pixels.

Finally, the F1-score is defined as

Pr xR

Fl1 =2x R x 100%. “4)
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B. RESULTS OF A SAMPLE IMAGE

Figure 6 illustrates a sample image and the results of VGG-
16, FCN-8, and PSPNet-50 models. It is clear that the models
are able to classify the classes in the image. To get detailed
insight, Table 2 summarizes the performance of the three
models evaluated using the image in Figure 6. It is noticed
that the best performance is achieved by the PSPNet-50, and
the FCN-8 model outperforms the VGG-16 model. This is
in line with the results in [8] where FCN-8 outperforms the
VGG-16, as the former was designed by upgrading the latter
through including FCNs and transferring its learned repre-
sentations by fine-tuning. The PSPNet architecture achieves
state-of-the-art performance on both the original dataset and
the augmented dataset because it takes into account the global
context of the image, hence gives better performance. It is
worth mentioning that the values in Table 2 are the average
of the four classes ice, water, ship, and sky.

TABLE 2. The performance of the three models evaluated using the
image in Figure 6.

DNN model | Av.IoU | Av. Precision | Av. Recall | Av. Fl-score
VGG-16 93.00 95.08 94.70 94.88
FCN-8 93.80 95.65 94.12 94.86

PSPNet-50 97.50 98.04 97.84 97.93

C. PERFORMANCE OF THE MODELS USING THE
ORIGINAL DATASET

Figure 7 illustrates some sample images and the correspond-
ing results of the images based on training the models using
the original dataset.

VGG-16 FCN-8 PSPNet-50

Input Ground truth

-~
P
-

M

B Sky

B Water Ship

FIGURE 7. Sample original images and the corresponding results of
VGG-16, FCN-8, and PSPNet-50 models.

Figure 8 summarizes the performance of the three models
with the original dataset. It is noticed that the performance
of the three models in the water and ice classes is lower in
comparison with the other two classes. This is attributed to the
fact that the location of the sky and ship do not change in the
images of the original dataset. Consequentially, the location
of the sky and ship enables the models to identify these classes
more accurately. On the other hand, the location, shape, and
size of the water and ice classes are changing in the origi-
nal dataset, which reduces the models’ capability to classify
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FIGURE 8. The performance of the three models with the original dataset.

these classes. Motivated by this observation, geometrical data
augmentation operations are applied to increase the diversity
in the dataset.

D. PERFORMANCE OF THE MODELS WITH DATA
AUGMENTATION

Figure 9 illustrate an image with different augmenta-
tion operations in which image 1 is the original image
and images 2, 3, 4, and 5 represent the following aug-
mentation operations: rotation by 45°, rotation by 150°,
darker image, and cropped image, respectively. It is noticed
that the models can classify the ice, sea, ship, and sky
classes.

To study the effect of each augmentation operation,
Table 3 illustrates the average IoU of the three DNN models
using the original dataset, the dataset after applying each
augmentation operation, and the entire augmented dataset.
It is noticed that each operation improves the performance
of the three DNN models and the operation of adding
noise provides minor improvement. The performance of the
three models improve when all augmentation operations are
performed.

TABLE 3. Average loU of the data augmentation operations.

DNN model Withnul. Ve.: tical anq Rotation | Cropping Add.i"g C.hanging.li.gh- All.
horizontal flip noise ting condition | operations

VGG-16 83.01 85.33 86.24 88.66 83.09 83.21 89.51

FCN-8 85.55 87.06 87.10 88.50 85.71 86.00 90.08

PSPNet-50 88.13 89.12 90.78 91.20 88.70 88.89 9225

To get deep insight into the models performance with the
augmented dataset, Figure 10 summarizes the performance of
the three models. It is clear that data augmentation remark-
ably improves the performance of the PSPNet-50 model,
which takes into account the global context of the image while
the other models perform pixel per pixel classification. It is
worth noting that the classification performance of the models
is improved with the augmented dataset and the classification
performance of the water and ice classes is close to that of the
ship and sky classes. This result indicates that the augmented
dataset enables the models to gain spatial diversity of the
classes.
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Input VGG-16

FCN-8 PSPNet-50

Ice

FIGURE 9. Sample augmented images and the corresponding results of
VGG-16, FCN-8, and PSPNet-50 models.
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FIGURE 10. The performance of the three models with data
augmentation.

E. RAINDROP EFFECT

In Figure 7, it is noticed that the three models are incapable
to predict the classes properly in image 4, which is an image
with raindrop. It is clear that such images degrade the per-
formance of the three models dramatically. This motivates
the application of a removing model. Figure 11 shows a
sample of an image with raindrop before and after applying
the removing process using the proposed framework. It is
noticed that the performance of the models is improved with
this framework.
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FIGURE 11. A sample of the models performance with rainy images and
the results of the raindrop removing model.
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FIGURE 12. Models’ performance with good weather images.

To gain deep insight on the effect of the raindrop, Figure 12
and Figure 13 illustrate the average loU and precision of the
three models when evaluated using images of good and rainy
weather condition (without raindrop removal), respectively.
It is clear that rainy weather images significantly degrade the
performance of the three models.

Table 4 illustrates the performance of the three models
before and after removing the raindrop using the proposed
framework, the £-gradient minimization approach proposed
in [30], and the conditional generative adversarial network
developed in [31]. It is noticed that removing the raindrop
enhances the performance of the three models. Furthermore,
the proposed framework outperforms the approaches in [30]
and [31]. The three approaches are also compared in terms of
the peak signal-to-noise ratio (PSNR), which is expressed as:

MSE

where M is the maximum pixel score and MSE is the mean
square error between the input and resulted images. The aver-
age PSNR of the proposed framework, the approach proposed

M2
PSNR = 10 x log ( ) @)
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FIGURE 13. Models’ performance with rainy weather images.

TABLE 4. Performance of the raindrop removing framework.

VGG-16 | FCN-8 | PSPNet-50
Av. IoU 85.91 88.97 91.83
Without raindrop Av. Precision 89.98 92.85 97.44
removal Av. Recall 88.01 90.10 95.10
Av. Fl-score 89.07 91.45 93.29
Av. IoU 91.70 92.32 97.64
Proposed raindrop Av. Precision 94.44 95.87 98.99
removal framework Av. Recall 92.20 94.02 97.90
Av. Fl-score 93.30 94.93 98.44
Av. IoU 88.12 90.22 94.32
Raindrop removal appr- | Av. Precision 92.41 94.12 98.34
oach proposed in [30] | Av. Recall 90.22 92.30 96.95
Av. Fl-score 91.30 93.20 97.64
Av. IoU 87.20 89.01 92.24
Raindrop removal appr- | Av. Precision | 91.521 93.08 98.03
oach proposed in [31] Av. Recall 89.12 91.66 96.06
Av. Fl-score 90.00 92.70 95.01

in [30], and the model developed in
31.02 dB, and 30.30 dB, respectively.

[31] is 31.91 dB,

VI. CONCLUSION

In this work, three deep-learning semantic segmentation net-
works (VGG-16, FCN-8, PSNet-50) were applied to identify
sea-ice in a scene of ice, sky, water, and ship. The per-
formance of the models has been evaluated using the IoU
and precision metrics. Data augmentation operations have
been implemented to increase the diversity of the dataset
and a raindrop removing framework has been applied to
improve the performance of the models under rainy weather
conditions. Results have showed that the data augmentation
operations enhance the performance of the three models.
Moreover, results have illustrated that the raindrop removing
framework improves the performance of the three models.
Future research involves increasing the training dataset to
include different sea-ice types such as new ice, first-year ice,
and multi-year ice.
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