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Background
Multiple sclerosis (MS) is a common inflammatory neurodegenerative disease [1] with 
a prevalence of 1:400 (90,000) in Canada [2]. MS symptoms, which include slower 
information processing, walking impairment and feelings of mental fatigue, profoundly 
impact a patient’s quality of life [3].
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MS-related gait disorders, including spasticity, leg weakness, foot drop and ataxia, dis-
rupt everyday tasks [4–6] and present differently from person-to-person likely because 
of unique central nervous system lesions and neural reorganization [1, 7]. Most studies 
examining gait changes in MS focus on reductionist methods, which report output vari-
ables such as walking velocity or distance walked.

Newer technologies and analysis techniques provide expanded opportunities to map 
the unique gait patterns within and between individuals. Such innovations help detect 
changes early, which may direct rehabilitation interventions to improve walking [8, 9]. 
For example, using image-processing techniques [10] and wearable sensors, users can 
create movement-related features such as standing and sitting accelerations, rotation 
velocity of turning and inclination degrees of the trunk in a three-dimensional coordi-
nate system [11, 12] to detect dynamic balance and the risk of falling [13]. In most cases 
these methods require specialized equipment not readily available to clinicians such as 
inertial measurement units and electromyograms.

A standard gait analysis system employed in clinical settings involves the use of an 
instrumented walkway containing a dense matrix of embedded sensors to capture tem-
poral, spatial and force-related gait data from footsteps. Depending on the subject and 
the length of the mat, one pass across the walkway captures 4 to 10 footsteps and can 
generate thousands of individual raw sensor data points. Walkway systems often use sec-
ondary software packages to transform the raw sensor data into a standard set of output 
variables (speed, step length, etc.) which may be useful for clinicians [14, 15]. However, 
by interrogating the raw data directly, subtle changes to gait patterns could reveal signs 
of disease progression or improvement [16]. Data-driven techniques such as machine 
learning classification make it possible to analyze specific gait features and their rela-
tionships with one another. For instance, Chen et al. in 2020 employed machine learning 
to gait variables extracted from walking and jumping tests to classify patients with mild 
cognitive impairment [17]. Furthermore, data gathered from vertical ground reaction 
force sensors provided algorithms that detected early signs of Parkinson’s disease [18]. 
In the field of MS, there is a study using machine learning techniques to detect which 
gait parameters were most sensitive to subtle changes in gait [19]. However, this study 
and those described above, used the predetermined, and rather limited, gait variables 
available in conventional proprietary software, meaning clinicians have to interpret what 
they need from the data.

Creating novel gait variables from raw walkway data may further increase detection 
accuracy, thereby specifically pinpointing the gait characteristics requiring clinical atten-
tion. This may result in more tailored, individualized, and effective rehabilitation strate-
gies for gait training.

The purpose of this study was to employ machine learning technology, in combination 
with raw data obtained from an electronic walkway (Protokinetics Havertown PA), to 
classify subjects as an MS patient or a healthy control. We achieved this in two series of 
analysis using a standard set and an expanded set of features, respectively; the expanded 
feature set included several new or underutilized parameters derived from the raw data, 
including toe direction, hull area, base of support area, foot length and foot area.

We hypothesized that machine learning models can effectively distinguish MS patients 
from the healthy control group using only standard features, and those novel features 
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would further improve the detection accuracy. To the best of our knowledge, this study 
is the first attempt to distinguish MS patients from healthy controls using machine 
learning of raw walkway sensor data. Such methodologies could have important implica-
tions for detecting subtle gait changes indicative of worsening or improvement of neuro-
logical impairment automatically and accurately.

Results
Our study compares the classification metrics of two distinct feature sets when separat-
ing MS patients from healthy controls using only gait-related spatial and temporal data. 
Gait parameters for each feature set were calculated from the raw data provided from an 
instrumented walkway in a clinical setting.

The first set has been defined as the standard set and contains a collection of gait-
related parameters similar to those involved in regular gait studies. This set was initial-
ized with 11 standard parameters, which were optimized into a final set of 10 parameters 
for machine learning testing and training (see Table 1).

The second feature set, defined as the augmented set, contains the same initialization 
as the standard set, plus additional new parameters that were derived from the raw walk-
way data (see Method section for details). The classification value of these additional 
parameters has not been well documented in the literature, and it is likely that some are 
novel to the field. We began with an initial set of 18 parameters in the augmented set, 
which was optimized to a final set of 15 features for machine learning. Table 1 outlines 
the initial and optimal features selected for machine learning in each set.

Three classification algorithms, Logistic Regression (LR), XGBoost (XGB), and Sup-
port Vector Machine (SVM), were evaluated on both feature sets. For each feature set, 
the accuracy, precision, recall, and F1 scores were calculated to analyze the predictive 
ability of each machine learning model. Figure 1 shows the classification metrics of the 
standard set (black) and the augmented set (grey) for the three classification algorithms, 
respectively.

The results outlined above show that by just using the standard set, we achieved accu-
racy of 81% (SVM), precision of 95% (SVM and LR), recall of 81% (SVM) and F1-score of 
87% (SVM). The results also indicate a varying level of ability among the three machine 
learning models that were tested, with SVM providing the highest overall scores.

Worth noting are the improvements measured across all metrics when using the aug-
mented set. This inclusion of novel features increased accuracy by 7%, recall by 9%, and 
F1 score of 6% from both XGB and SVM models. Notice that precision has not been 
improved due to the imbalanced data in the testing data set (see Table 9 for the defini-
tion of precision), where the number of false positives was relatively small compared to 
that of true positives.

In addition to the scoring metrics, the area underneath the precision-recall (AUPRC) 
and area underneath the receiver operating characteristic (AUROC)  curves were also 
used for determining the overall effectiveness of a classifier. Figures 2 and 3 summarize 
the results from these three models. 

When studying the standard feature set, we achieved our best baseline of AUROC at 
0.88 (XGB), and baseline of AUPRC at 0.89 (SVM). Low variance was measured between 
all classifiers on these scoring metrics, resulting in similar scores for all models.
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Table 1 Initial and final features for each feature set after feature selection

Initial standard features Final standard features

Standard set

 Step time

 Step velocity Step velocity

 Single support time Simple support time

 Double support time Double support time

 Stance time Stance time

 Toe angle (signed)  Toe angle (signed)

  Step length Step length

  Step width Step width

  Stride length Stride length

  Stride width Stride width

  Foot type Foot type

Augmented set

 Step time

  Step velocity Step velocity

  Single support time Single support time

  Double support time Double support time

 Stance time

  Toe angle (unsigned) Toe angle (unsigned)

  Step length Step length

  Step width Step width

  Stride length Stride length

  Stride width Stride width

  Foot type Foot type

  Toe direction (in/out) Toe direction (in/out)

  Hull area Hull area

  Base of support area (BOS Area) Base of support area 
(BOS area)

 Line of progression deviation angle (LOP deviation angle)

  Foot length Foot length

  Foot width Foot width

  Foot area Foot area

Fig. 1 Accuracy, precision, recall and F1 score for each model. The black bars represent the standard set, 
while the grey bars represent the results for the augmented set
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The AUPRC and AUROC scoring metrics were compared for the augmented feature 
set as well. When using the augmented set, AUROC of LR and XGB was not improved, 
however, the AUROC increased when using SVM and AUPRC of all models were 
improved.

Discussion
Our hypothesis was supported by the results that machine learning classifiers using raw 
walkway data can distinguish between persons having MS-related gait dysfunction and 
healthy controls. Using only the gait features extracted from the raw walkway data, the 

Fig. 2 PRC curves for LR, XGB and SVM. AP refers to the area underneath the precision-recall (AUPRC)

Fig. 3 ROC curves for LR, XGB and SVM. AUC refers to the area underneath the precision-recall (AUPRC)
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machine learning classifiers were capable of separating MS patient and control groups 
with an accuracy of 81%. When novel features, foot length, foot area, hull area, and BOS 
area were added to the dataset, the classifiers gained roughly a 7% increase in accuracy. 
These results demonstrate that machine learning models trained on new features from 
raw walkway data can more effectively separate patient and control targets and could 
potentially be served as an alternative method for identifying gait abnormalities in MS.

The results obtained from these experiments are notable for several reasons. Firstly, 
classification with high accuracy was possible using only data gathered from an instru-
mented walkway system [14, 15]. At present, clinicians, and patients use a wide variety 
of walking tests (Timed 25 Foot Walk Test, Six-Minute Walk Test, Dynamic Gait Index, 
12-Item Walking scale, and others) to identify gait problems [20–22]. The machine 
learning process described in this paper may be useful to automatically distinguish gait 
problems. Future work is needed to examine performance of the classifier in longitudi-
nal studies of gait. It is also important to determine whether the tool could be used to 
detect very subtle changes not easily observed by assessors.

Secondly, there is a wealth of information residing in the raw gait data that clinicians 
may not be taking full advantage of. Previous studies focused on the analysis of the pre-
determined features provided by the conventional software [19]. In contrast, the present 
study has shown that it is possible to design and develop new measurements of gait from 
raw walkway data (toe direction, hull area, BOS area, foot length and foot area). As for 
BOS area, this gait variable has been previously used to distinguish MS patients from 
healthy controls [23], however, the current project is the first to use BOS area as a fea-
ture for machine learning classification. In addition, these new measurements can pro-
vide a significant improvement in classification accuracy. Furthermore, these novel and 
hidden gait features may have utility as indicators of gait-related impairment that may 
be useful to clinicians for treatment, or to researchers who study ways to detect or delay 
disease progression.

Thirdly, classification based solely on gait analysis may not be restricted to impairment 
in MS. Gait impairment is an unfortunate side effect of many neurological diseases such 
as Parkinson’s disease and stroke [24–26]. This machine learning structure may be appli-
cable in other fields of study as a relatively fast and reliable method of identifying a range 
of gait-related impairments. However, this study did not examine the model’s ability to 
distinguish patients with MS from patients with other neurological disorders such as 
mild cognitive impairment. Future studies could test whether the model could discern 
between patient groups.

The results gathered in this stage of the study are promising for the identification of 
subjects with gait-related dysfunction. Several improvements have been identified for 
future study which may further increase the usefulness of the results for gait researchers 
and clinicians.

The first of these involves the pre-screening of patients based on the Multiple Sclerosis 
Impact Scale (MSIS-29) intake survey [27, 28]. This study included only those patients 
who reported moderate-to-high scores (> 3 indicating moderate to severe walking prob-
lems) on the MSIS-29. Future studies could include patients who report lower scores 
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(1 and 2) on the MSIS-29 to possibly classify patients that show milder forms of gait 
dysfunction.

The second improvement would involve layering kinematic data (i.e., joint angles) on 
top of the temporal and spatial data available from the walkway systems. This would 
enrich the dataset and would likely prove useful in boosting classification accuracy even 
further. For instance, machine learning could be useful to map changes in specific types 
of gait impairment such as hemiplegia or ataxia, over time.

Finally, the machine learning models would be better served with a larger dataset. Pre-
vious larger studies have proven that machine learning technology combined with gait 
measurements could effectively distinguish patients at cognitive impairment levels [17]. 
Coordinating efforts between multiple laboratories and research hospitals could result 
in a dataset of thousands of patients, allowing the machine learning models to train on a 
much richer set of underlying data and provide stronger conclusions.

Conclusions
This paper demonstrates how machine learning can be used to classify healthy controls 
from persons with neurological gait impairment due to MS using only raw data collected 
from an instrumented walkway system. Advances in computerized machine learning 
and classification can easily handle the complicated underlying sensor data and make it 
possible for researchers to detect gait issues automatically and rapidly.

This paper has chosen to study gait by an examination of the raw underlying data. This 
allowed for the reconstruction of the standard gait parameters, but also for the develop-
ment of new features, such as BOS area, LOP deviation angle, hull area and toe direc-
tion, for gait study. These parameters were then given to machine learning classifiers to 
determine the separability of MS patients and healthy controls based on gait.

The machine learning system discussed in this paper has achieved a base classifica-
tion accuracy of 81% using only standard spatial and temporal gait parameters derived 
from the raw data. When these standard parameters were augmented with other cus-
tom parameters and normalized subject characteristics, the classification accuracy of 
SVM was improved to 88%. This result demonstrates that analyzing the raw gait data is a 
worthwhile exercise in increasing the classification accuracy of patients/healthy controls.

Methods
Participants and experimental protocol

Data were collected as part of the Health Innovation Team in MS (HITMS) project, a 
longitudinal study of the health of people with MS in Newfoundland & Labrador, Can-
ada [29, 30]. The study was approved by the institutional health research ethics board 
(HREB # 2015.103). We extracted all walkway data from participants who attended 
between 2016 and 2019 (n = 126). Each patient had at least one visit and was able to walk 
with or without a walking assistive device [31]. Controls were required to have no walk-
ing impairments.

We then gathered demographic data for all participants (age, height, and weight). 
People with MS had a confirmed diagnosis by an MS neurologist who scored disease 
severity using the Expanded Disease Severity Scale (EDSS) [32]. The EDSS ranges from 
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0 to 10; 0 having no symptoms, 6 using a gait aid and 10 means death due to MS. The 
patients had EDSS scores from 0 (no observable gait dysfunction) to EDSS 6.5 (requires 
bilateral walking aids, can walk at least 20  m). The average EDSS score of all patients 
was 2.11 ± 1.89. At the visit, all patients completed the MSIS-29 before completing the 
walking tests. The MSIS-29 is a standardized self-evaluation form that requires patients 
to rank the impact of MS symptoms from 1 (no impact) to 5 (extreme) across various 
physical and psychological questions [28].

We selected a subset of MSIS-29 questions related to gait dysfunction and included 
only those patients with a score of 3 or higher (mild to moderate) for at least one ques-
tion. 35 patients were excluded at this step. The average EDSS score for the remaining 
patients was 2.74 ± 2.06. Control participants were not required to complete the MSIS-
29 questionnaire. The final dataset included 72 patients and gait data from 16 healthy 
controls. Table 2 shows the patients’ demographic and MSIS-29 information.

Patients and healthy controls walked at a comfortable pace across the instrumented 
walkway (Zeno Walkway, Protokinetics Haverton PA) measuring 90 × 420 cm, contain-
ing a matrix of embedded sensors with a spatial resolution of 1.27 cm and a resolution 
accuracy of ± 1.27 cm. Spatial measurements are provided as the (x,y) positions of acti-
vated sensors, which are converted to distances measured in cm. Time stamps recorded 
when each sensor was activated, measured in seconds.

Data analysis and feature extraction

Deriving footprints from raw sensor data

The raw data from the walkway provides the time, X-coordinate, Y-coordinate, pres-
sure level, foot type, foot count, footfall, and Pass Index for each sensor. We focused our 
analysis on two spectrums: time and location. If a sensor was detected multiple times at 
varying pressure intensity, only the time stamp for maximum pressure was selected. This 
temporospatial data collected allowed reconstruction of each pass across the walkway.

The raw spatial information was partitioned into left and right footfalls using a 
K-Means clustering [33] for each gait recording. The unsupervised clustering algorithm 

Table 2 Patient demographic and MSIS-29 information

Patient data features Mean, variance

EDSS score 2.74 ± 2.06

Age 47.95 ± 9.8

Height (cm) 169.97 ± 8.06

Weight (kg) 82.2 ± 20.37

MSIS-29-Q4 Problems with your balance? 2.99 ± 0.94

MSIS-29-Q5 Difficulties moving about indoors? 2.14 ± 1.01

MSIS-29-Q6 Being clumsy? 2.76 ± 1.01

MSIS-29-Q7 Stiffness? 2.86 ± 1.15

MSIS-29-Q8 Heavy arms and/or legs? 2.90 ± 1.14

MSIS-29-Q9 Tremor of your arms or legs? 2.17 ± 1.17

MSIS-29-Q10 Spasms in your limbs? 2.29 ± 1.25

MSIS-29-Q11 Your body not doing what you want it to do? 2.39 ± 1.21
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separated the n spatial coordinates into k individual footfalls, where each observation 
belongs to the cluster with the nearest centroid.

For each footprint cluster, a quadrilateral was generated which enclosed the shape of 
the foot. This quadrilateral was then subdivided into three regions with individual sub-
centroids, which provided further detail on the heel, mid, and fore sensors of the foot-
print. Figure 4 demonstrates how a footprint is segmented.

Standard gait features

After identifying the unique footfalls from the gait recording, an analysis was per-
formed on each footfall, and standard gait parameters were extracted. These included 
step/stride length and width; toe in/out; step/stride time and velocity; single/double 
support time; and stance time.

Dimensions of foot length, width, and area are rarely documented as features in 
gait-related classification studies. Since these features were present in our data set, 
we included them to examine whether they could affect classification accuracy. The 
details regarding each parameter can be found in Table 3.

New feature design

New parameters were designed and calculated from the walkway data (Fig.  5 and 
Table 4). As far as we are aware these features have not yet been rigorously tested in a 
patient/controls classification setting.

Fig. 4 Footprint segmentation. Footprint showing heel (red), mid (blue), and fore (green) sections, as well as 
centerline of the foot (yellow) and the segmented quadrilateral enclosing the shape
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Feature sets design for classification

Two feature sets, namely the standard feature set and the augmented feature set, were 
designed for the classification task. The standard set included the step time, stride 
time, step velocity, stride velocity, single support time, double support time, stance 
time, foot type, toe angle signed, step length, step width, stride length, stride width, 
and base width.

The augmented set included all the features from the standard set, as well as addi-
tional parameters of foot length, foot width, foot area, hull area, LOP deviation angle, 
BOS area, toe angle, and toe direction.

Table 3 Detail description for each standard gait parameter

Standard gait features

Spatial features Foot type Descriptor for right or left foot

Foot length (cm) Measured as the distance between heel/fore centroids multiplied 
by 1.5

Foot width (cm) Measured as the distance across the midpoint of the subregion 
enclosing the fore section of the footprint

Foot area  (cm2) Measured as the total activated area of the sensors involved in 
generating the footprint

Toe angle Measured as the angle between the line of progression (the line 
connecting the heel centers of two consecutive footprints of the 
same foot) and the midline of the footprint (the line connecting 
the heel and fore centroids of a given foot)

Step length (cm) Measured along the direction of the walkway, from the heel 
center of current footprint to heel center of previous footprint on 
opposite foot

Step width (cm) Measured from the midline midpoint of the current footprint to 
the midline midpoint of the previous footprint on the opposite 
foot

Stride length (cm) Measured on the line of progression between the heel points of 
two consecutive footprints of the same foot (left to left, right to 
right)

Stride width (cm) Measured as the vertical distance from midline midpoint of one 
footprint to the line formed by midline midpoints of two footprints 
of the opposite foot

Base width (cm) Measured as the vertical distance from heel center of one footprint 
to the line of progression formed by two footprints of the opposite 
foot

Temporal features Step time (s) The time elapsed from first contact of one foot to first contact of 
the opposite foot

Stride time (s) The time elapsed between the first contacts of two consecutive 
footfalls of the same foot. It is measured in seconds

Stride velocity (cm/s) Obtained by dividing the stride length by the stride time

Step velocity (cm/s) Obtained by dividing the step length by the step time

Single support time (s) The time between the last contact of the current footfall to the first 
contact of the next footfall of the same foot

Double support time (s) Measured as the time between the heel contact of next footfall to 
toe-off of the current (and opposite) footfall

Stance time (s) Measured as the time between first contact and last contact of the 
same foot
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Machine learning process

Data balancing

With a patient-to-control ratio of approximately 6:1, we performed balancing on 

Fig. 5 A The light pink shaded region shows the hull area for a single footfall. B The light pink shaded region 
shows the BOS area between two successive footfalls. C The light green line represents the normal (desired) 
line of progression, the red line represents the actual line of progression between two consecutive footfalls of 
the same foot. The angle between the desired and actual lines is the line of progression deviation angle

Table 4 Detailed descriptions of newly designed features

New feature design

Toe direction Standard toe angle is recorded by the walkway as a signed value. We split the original toe 
angle value into two features: magnitude and direction. We keep the absolute value of 
deviation in toe angle and store the toe direction as a binary categorical feature, with 0 
denoting negative toe angle and 1 denoting toe angles greater than or equal to zero

Hull area To better approximate the actual shape of the footprint, we calculated the convex hull 
enclosing the point cloud for each footprint. The hull area is the enclosed area of the line 
segments bounding the footprint tightly in a convex hull. Figure 5A shows the hull area

BOS area In gait, the BOS [23] is commonly measured as a one-dimensional length. We construct a 
convex polygon enclosing two footprints (a footprint and its preceding print) and then use 
this to approximate the area of the BOS. Figure 5B shows the picture of BOS area

LOP deviation angle The deviation angle from an expected normal line of progression. A LOP is the line con-
necting the heel centers of two consecutive footfalls of the same foot. Ideally, the patient 
should be walking parallel with the walkway. We measure the deviation angle as the angle 
between:
- a line that starts on a foot and runs parallel to the walkway (the ’normal LOP’)
- a line that starts at the center of the same foot, and stops at the center point of the next 
footfall of the same foot (the actual LOP)
Figure 5C shows the picture of line of progression deviation angle
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the target classes before proceeding with classification analysis [34]. The training 
data set were balanced using a synthetic minority oversampling technique (SMOTE). 
SMOTE synthesizes a new sample by randomly choosing a data point from a line 
segment in the feature space, formed by a minority class sample m and one of m’s 
k-nearest neighbors (usually k = 5, both randomly chosen); then this process is 
repeated till the two classes’ data are balanced [35].

Data normalization

The numerical data collected exhibited a variety of ranges between different features and 
participants and thus required scaling. The resulting numerical data columns were pro-
portionally scaled to exhibit zero mean and unit variance. The mean and variance calcu-
lated from the training set were applied to both the training and testing datasets.

In addition to proportionally scaling the ranges for each feature, it was also necessary 
to normalize the measurements for foot length, foot width, foot area, and hull area. This 
was accomplished by dividing the individual parameter measurement for each patient by 
the patient’s height (cm).

Feature selection

Figure 6 shows the process of feature selection. Reducing correlation among the numeri-
cal features is important for reducing prediction bias, speeding up the training process 
for the models, limiting unnecessary noise in the data, thus improving the overall effec-
tiveness of the classifier. Pearson correlation was used to reduce the number of depend-
ent features and a heatmap was used to visualize the correlations between features of 
training set. The resulting feature correlation matrix contained scores ranging from -1, 
strong negative correlation, to + 1, strong positive correlation, with a score of 0 denoting 
no correlation between the features. Our study used a removal threshold of − 0.8/0.8 
for feature correlation. The heatmap determined the interdependence of all numerical 
features shown in Fig. 7.

The heatmap shows a strong positive correlation between the ‘step’ and ‘stride’ param-
eter sets (r > 0.8), as well as the base width and stride width. Stride time, stride veloc-
ity, and base width were excluded from further analysis to reduce the interdependence 
among the features.

Once the highly correlated features were removed, feature selection was performed on 
both the standard feature set and the augmented feature set, respectively, to determine 

Fig. 6 Feature selection process
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which features provided the strongest response on the target variable, and to determine 
the optimal size of each set. The goal was to build two optimized sets of features (stand-
ard and augmented) which were used in the training and testing process.

Analysis of variance F-test statistics (ANOVA) was used on the training set to choose a 
subset of numerical features that had the most impact on the response variable. ANOVA 
gives each feature a score, with higher scores representing stronger features that have 
greater unexplained variance in prediction. When the features were ranked by their 
F-statistic score, it was then necessary to choose the size of the final set.

To determine the optimal size of this final feature set, all features were ranked by 
ANOVA score. Then, for each possible size  si of the final set [1, 2, …n features], a 
fivefold cross-validation strategy with a SVM classifier was used to get the predic-
tion accuracy for each size  si. The average prediction accuracy was collected for each 
size  si, and the optimal size was chosen with the highest score.

Since the categorical features are not included in the correlation or feature selec-
tion process, it is necessary to reintroduce these to the final feature set when the 
numerical processes are completed.

Fig. 7 Heatmaps for correlations between features in the standard and augmented feature sets. Heatmap 
regions that are increasingly dark show areas of higher correlation, vice versa
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The standard set was initialized with 11 input features, from which the ANOVA 
algorithm suggested an optimal subset of 9 features. Step time was dropped as it had 
the lowest ANOVA F-statistic of the original group. When numerical feature selec-
tion was completed, the categorical feature foot type was reintroduced, resulting in 
the final standard set.

The augmented feature set was created from the same base features as the standard 
set, and these were complemented with hull area, BOS area, LOP deviation angle, 
toe angle magnitude, foot length, foot width, and foot area. Once completed, the 
ANOVA algorithm suggested an optimal size of 13 best features in the augmented 
set. The same features as the training set were dropped in the testing set. Tables 5 
and 6 provide detail F-statistic score for optimal features.

Machine learning algorithms

We tested the separability of the target classes using three general classification algo-
rithms. LR [36], SVM [37], and XGB [38] were selected as they represent three well 
known methods of classification; probability, hyperplane polarity, and boosted decision-
tree ensembles. Given a set of input features, each model was studied for its ability to 

Table 5 F-statistic score for optimal standard set features

Features Feature score

Stride length 974.54

Step length 924.42

Step width 862.72

Stride width 330.42

Step velocity 243.75

Single support time 37.58

Double support time 25.77

Toe angle signed 4.89

Stance time 4.10

Table 6 F-statistic score for optimal augmented set features

Features Feature score

Stride length 977.28

Step length 934.28

Step width 874.32

Foot area 374.92

BOS area 281.11

Stride width 265.59

Step velocity 250.78

Hull area 222.84

Foot length 91.88

Single support time 67.70

Double support time 29.05

Foot width 19.32

Toe angle unsigned 2.37



Page 15 of 18Hu et al. BioMedical Engineering OnLine           (2022) 21:21  

categorize footprints as belonging to an MS patient or a healthy control through a range 
of classification scoring metrics.

LR is arguably the most popular binary classifier in machine learning. It relies on a 
logistic function into which input values x are combined linearly using weights or coef-
ficient values to predict an output value y which is modeled as a binary categorical 
response [36].

SVM attempts to define a hyperplane boundary in an N-dimensional space, where N 
equals the number of input features. While many hyperplanes may exist in this space, 
SVM attempts to find the optimal plane that maximizes the separation of both classes. 
Additional points can then be classified as belonging to class 0 or 1 depending on the 
side of the optimal hyperplane that they occupy [37].

XGB is an optimized distributed gradient boosting library introduced by Chen & 
Guestrin in 2016 [38]. Applied to an ensemble of decision trees, boosting describes the 
combination of many weak learners into one accurate prediction algorithm. XGB uti-
lizes the concept of gradient tree boosting while introducing regularization parameters 
to reduce overfitting.

Training and evaluation

To further reduce overfitting, we employed a grouped fivefold cross-validation strategy 
when training each model. All rows in the dataset were grouped according to the date 

Table 7 Hyperparameter options for each model

Algorithms Hyperparameter options

LR ’solver’: [’newton-cg’,’lbfgs’, ’liblinear’],
’penalty’: [’l1’, ’l2’, ’elasticnet’],
’C’: [1000, 100, 10, 1.0, 0.1, 0.01]

SVM ’kernel’: [’poly’, ’rbf’, ’sigmoid’],
’C’: [5, 3, 1.0, 0.5, 0.1],
’degree’: [3–5]

XGB ’max_depth’: [2, 3],
’eta’: [0.3, 0.4],
’objective’: [’binary:logistic’, 
’binary:logitraw’, ’binary:hinge’]

Table 8 Hyperparameters used by each algorithm to train the model

Algorithms Optimal hyperparameters (standard set) Optimal 
hyperparameters 
(augmented set)

LR ’C’: 1.0,
’penalty’: ’l2’,
’solver’: ’newton-cg’

’C’: 1.0,
’penalty’: ’l1’,
’solver’: ’liblinear’

SVM ’C’: 3,
’degree’: 3,
’kernel’: ’rbf’

’C’: 5,
’degree’: 3,
’kernel’: ’rbf’

XGB ’eta’: 0.3,
’max_depth’: 3,
’objective’: ’binary:logistic’

’eta’: 0.3,
’max_depth’: 3,
’objective’: ’binary:logitraw’
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of the patient visit and given a unique identifier. These groups remained intact through-
out train/test validation splitting, and no group was permitted to appear in two different 
folds. In this fashion, the same participant’s data were not used simultaneously in train-
ing and testing sets.

Each model in the study has a unique set of hyperparameters that must be tuned to 
provide the best result. We used a standard grid search method on training data to test 
each model across a range of hyperparameter settings and selected the best parameter 
values for each. A summary of the tested parameter values for each model, along with 
the optimal hyperparameter settings for this data set, can be found in Tables 7 and 8.

The number of true positive (TP), true negative (TN), false positive (FP), and false 
negative (FN) [39] predictions were calculated for each model, and a range of standard 
classification metrics were calculated to gauge the model effectiveness. Score metrics are 
explained in Table 9.

ROC and PR curves were also generated for each model. The area under these curves can 
be assessed as another measure for determining the predictive capability of the model.
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