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Abstract

Sample preparation has always been the challenging part of analysis in both
environmental and biological samples. The need for trace monitoring of organic pollutants
in different water matrices has initiated a lot of research to develop a sensitive sample
preparation method. Furthermore, with the advancement in precision medicine facilitating
healthy lives, a high throughput and simple biological sample preparation is of prime
importance. Besides the challenges in sensitivity, throughput and simplicity, matrix effect
IS a serious problem in sample preparation techniques which adversely affect the accuracy
of the results in both environmental water and biofluid analysis. Molecularly imprinted
polymer (MIP) sorbents implementation in sample preparation devices can add selectivity

in extraction of targeted analytes and limit the matrix effect.

In this thesis, MIP sorbent were fabricated on a frosted glass and a stainless-steel
substrate to produce MIP-thin film microextraction (MIP-TFME) devices for water and
plasma samples analysis, respectively. Polycyclic aromatic hydrocarbons (PAHS)
pollutants in different water matrices were extracted using a MIP-TFME device previously
developed in Dr. Bottaro’s research group. The device size was decreased compared to
previous studies to accommodate a high throughput method for analysis of sixteen
regulated PAHs with detection limits ranging from 2 ng L to 400 ng L* using gas
chromatography with atmospheric pressure chemical ionization mass spectrometry (GC-
APCI-MS). As for bioanalysis, a MIP-TFME device was developed for analysis of tricyclic
antidepressants (TCAS) in plasma by optimizing different parameters affecting the MIP

performance such as template: monomer ratio, monomer:crosslinker ratio and progen



volume. TCAs were extracted using the optimized MIP-TFME device and analytical
method from pooled human plasma and patient samples; and quantified using ultra high-
performance liquid chromatography-tandem mass spectrometry. The optimized MIP-
TFME device showed good selectivity over corresponding non-imprinted polymers
(imprinting factors 2.36-4.36). In another bioanalysis study, the applicability of an
optimized porous polymer thin film device as a micro-sampling technique for analysis of
TCAs was assessed. These devices allowed for analysis of small volume (10 pL) of plasma
sample using spot extraction procedure. Important factors affecting the extraction
efficiency such as sample volume, solvent desorption, washing, and the time of the
extraction were studied to develop and validate the analytical method. Two spiked
individual plasma samples were analyzed using the validated method and the obtained data
proved the acceptable accuracy (86.7% to 114%) and precision (RSD values of 0.1-10%)
of this method. Further evaluation such as matrix effect, method of normalization using
deuterated compound and preservation of the extracted TCAs were performed. The
satisfactory results of these studies provided more confirmation of the suitability of the

porous thin film device for microsampling analysis of TCAs in plasma samples.
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Bisphenol F

Bisphenol S

Lyophilized bovine serum albumin

Benzothiophene
Carbamazepine
Coated blade spray

Carbendazim

Celecoxib

Chrysene

(3-(10,11-dihydro-5H-dibenzolb,f]lazepin-5-yl)propyl)(methyl)



Chry-d12 Chrysene-d12

CIP Ciprofloxacin

Clo Clomipramine

DAD Diode array detector
DART Direct analysis in real time

DB(ah)A Dibenzo(a,h) anthracene

DBP Dibutyl phthalate
DBS Dried blood spot
DBT Dibenzothiophene
DC Doxycycline
DCM Dichloromethane
DEP Diethyl phthalate
Des Desipramine

DI Deionized

DLLME Dispersive liquid-liquid microextraction

DMAC N,N-dimethylacetamide

DMC Dimethoxycoumarin

DMF Dimethyl formamide

DMPA 2,2-dimethoxy-2-phenylacetophenone
DMS Dried matrix sopt

DMSO Dimethyl sulfoxide

Dox Doxepin

DPS Dried plasma spot
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DVA

DVB

EBS

EDCs

EDMA

EGDMA

EHDPP

EME

ENR

EP

ESI

EU

FA

FID

Flu

Flut

FPD

GC

GAT

HEMA

HF-LPME

HREA

HREB

2,5-Divinylterephthalaldehyde
Divinylbenzene

Extracted blood spot

Endocrine disruptors

Ethylene dimethacrylate
Ethylene glycol dimethacrylate
2-Ethylhexyl diphenyl phosphate
Electro membrane extraction
Enrofloxacin
Ethyl-p-hydroxybenzoate
Electrospray ionization
European Union

Formic acid

Flame ionization detector
Fluorene

Fluoranthene

Flame photometric detector

Gas chromatography
Gatifloxacin

Hydroxyethyl methacrylate
Hollow fiber liquid phase microextraction
Health Research Ethics Authority

Health Research Ethics Board
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Imi
Imi-D3

InP

KH-560
LC

LDH

LDR

LLE

LOD

LOQ

LR

MAA
MAPS
MCLs

ME

MeOH
MEPS
MIPs
MIP-SBSE
MIP-TFME

MMIPSPE

Imprinting factor

Imipramine

Imipramine-D3

Indeno(1,2,3-cd) pyrene

Internal standard

3-(2-cyclooxypropoxyl) propyltrimethoxysilane
Liquid chromatography

Layered double hydroxide

Linear dynamic ranges

Liquid-liquid extraction

Limit of detection

Limit of quantification

Linear range

Methacrylic acid
3-Methacryloxypropyltrimethoxysilane
Maximum contamination levels

Matrix effect

Methanol

Microextraction by packed sorbent

Molecular imprinted polymers

Molecularly imprinted polymer-stir bar sorptive extraction
Molecularly imprinted polymer-thin film microextraction

Magnetic molecularly imprinted solid phase extraction
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MOFs
MP
MRM
MS
MS/MS
N2

NAB
Nap
Naph
Naph-d8
NFZ
Nor
NIPAM
NIP
NPD
NVCL
OH-TSO
OPPs
oTC
PAHSs
PAN
PASHSs

PBS

Metal organic frameworks
Methylparaben

Multiple reaction monitoring
Mass spectrometry

tandem MS

Nitrogen

Nabumetone

Naproxen

Naphthalene

Naphthalene-d8

Nitrofurazone

Nortriptyline
N-isopropylacrylamide
Non-imprinted polymer
Nitrogen phosphorus detector
N-vinylcaprolactam
Hydroxy-terminated silicone oil
Organophosphorus pesticides
Oxytetracycline

Polycyclic aromatic hydrocarbons
Polyacrylonitrile

Polycyclic aromatic sulfur heterocycles

Phosphate-buffered saline solution
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PDMS
PEG
PETA
PFAS
Phe
Phe-d10
PMHS
PP
PPZ
PQ
Pry-D12
PTFE
PTMOS
PT-SPE
PVC
Pyr

RZ
RAMIP
RR
RSD
SBSE
SC

SDM

Polydimethylsiloxane
Polyethylene glycol
Pentaerythritol triacrylate
Polyfluoroalky! substances
Phenanthrene
Phenanthrene-d10
Poly(methylhydrosiloxane)
Protein precipitation
Propazine

Paraquat

Perylene-d12
Polytetrafluoroethylene
Phenyltrimethoxysilane
Solid phase extraction in pipette tips
Polyvinyl chloride

Pyrene

Correlation coefficients
Restricted access molecularly imprinted polymer
Relative recovery

Relative standard deviation
Stir bar sorptive extraction
Semicarbazide

Sulfadimethoxine
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SDZ
SEM
SMD
SM-FTN
SMM
SMzZ
SPE
SPME
Sty
TAP
TBZ
TC
TCAs
TCEP
TDM
TEA
TEOS
TFA
TFME
TF-MIP
TF-SPME
TMP

TPhP

Sulfadiazine

Scanning electron microscopy
Sulfamotoxydiazine

Sample manager flow-through needle
Sulfamonomethoxine
Sulfamethazine

Solid phase extraction

Solid phase microextraction
Styrene

Thiamphenicol
Thiabendazole

Tetracycline

Tricyclic antidepressants

Tri (2-chloroethyl) phosphate
Therapeutic drug monitoring
Triethylamine
Tetraethoxysilane
Trifluoroacetic acid

Thin film microextraction
Thin film molecularly imprinted polymer
Thin film SPME

Trimethyl phosphate

Triphenyl phosphate
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TPPO
Tri
TRIM
TSM

US EPA
UHPLC
uv

B-CD

Triphenylphosphine oxide

Trimipramine

Trimethylol propane trimethacrylate
Triflusulfuron-methyl

United States Environmental Protection agency
Ultra high-performance liquid chromatography
Ultra-violet

B-cyclodextrin
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