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Abstract 

The traditional iterative design flows for analog integrated circuit synthesis, which can help meet 

circuit performance requirements in the conventional technology processes, often experience 

longer runtime. The nonnegligible impact of layout parasitics and layout dependent effects (LDEs) 

on electrical performance has posed increasingly greater challenges to determining circuit 

parameters (i.e., circuit sizing), which makes it harder for designers to close the synthesis loop 

especially in the advanced nanometer technologies. This dissertation is focused on parasitic-aware 

and LDE-aware circuit sizing solutions in the early schematic design stage of the circuit synthesis 

process. A number of techniques, which include analytical modeling for devices and circuits, 

mathematical programming, sensitivity analysis, curve fitting, and heuristic optimization as well 

as machine learning, are utilized to construct the proposed circuit sizing methodologies. In this 

regard, we combine geometric programming and differential evolution as well as a many-objective 

evolutionary algorithm to construct a novel two-phase hybrid sizing methodology for dealing with 

parasitics. In addition, we propose to use gm/ID-based mixed-integer nonlinear programming to 

improve the accuracy of the first-phase sizing, and adapt it to address the layout-dependent effects 

with the aid of sensitivity analysis. Furthermore, we develop a machine-learning based approach 

called Bayesian optimization featuring high-dimensionality and many objectives to tackle 

parasitics and LDEs for analog circuit sizing. The ultimate objective of this research is to develop 

efficient methodologies and algorithms to include the consideration of parasitics and LDEs from 

layout design into schematic design stage as an early action to reduce the analog IC design 

iterations. The experimental results show the efficacy of our proposed sizing methodologies over 

other similar works for the layout-aware analog circuit sizing. 
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Chapter 1     Introduction                                                               

The semiconductor industry aims at developing more compact electronic products while 

maintaining higher speed and increasing functionality at lower cost. Moore’s Law provides sound 

prediction to the scalability of MOSFETs in industry that facilitates the achievement of this 

objective. However, along with the continuous advancement of complementary metal oxide 

semiconductor (CMOS) technology, some known drawbacks, such as strong impact of parasitics, 

short channel effect, interconnection problems, and layout-dependent effects (LDEs), have become 

more prominent in the advanced technologies.  

From the old technology processes to the contemporary 20nm and below technology nodes, 

analog integrated circuit synthesis flow is never an obsolete topic as it is the key from the designers’ 

perspective to provide a stable, malfunction-free, and low-cost design regarding power, chip area 

and redesign effort, and further a successful tape-out with sufficient design-for-manufacturability 

included. In the course of pursuing a high quality tape-out design, the LDEs, which are not 

prominent at old technology nodes, become increasingly influential with respect to circuit 

performance in the advanced technologies. Electrical parameter variations have been widely 

observed due to the stress incurred effects. In addition, the space among devices and 

interconnecting wires becomes closer as the technology node advances, which retains the 

importance of considering parasitics in the design of integrated circuits. Especially for the analog 

and radio-frequency (RF) integrated circuits, circuit electrical performance can be very sensitive 

to parasitics and/or parasitic mismatches. 

A macro standpoint of analog and RF circuit synthesis depicted in Fig. 1 includes topology 

selection, circuit sizing and layout generation (i.e., placement, routing, and extraction for parasitics 
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as well as LDEs). In the microscopic at the circuit level, the circuit synthesis only comprises 

topology formation and circuit sizing, while layout synthesis referring to the stage of layout 

generation resulting in a post-layout netlist is separated from the circuit synthesis. A post-layout 

simulation is needed to verify the design before fabrication. According to Kruiskamp and 

Leenaerts [1], circuit topology selection is to select device set out of hundreds of combinations. 

Each set behaves as one stage of the whole design at the schematic level. For instance, an 

operational amplifier (Op-Amp) is composed of an input stage, a gain stage, and an optional output 

buffer. Some detailed classification of design automation techniques for topology synthesis can be 

found in [2]. 

Analog/RF Design Specifications

Topology Generation/Selection

Circuit Sizing

Layout Synthesis

(Placement and Routing)

Layout Extraction 

(Parasitics and LDEs)

Verification

Fabrication

 

Fig. 1. Analog/RF circuit synthesis flow 
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With respect to circuit sizing, this design stage is aimed at determining various device 

geometries and electrical biases, which are essential in early part of the design flow. Device 

geometry, specifically in the CMOS technology, mainly refers to transistor width (W) and length 

(L) among others, and resistor/capacitor/inductor nominal values. The electrical bias may include 

circuit biasing voltage or current information among the sizing variables. Until now, circuit sizing 

is still mostly done manually or semi-automatically by experienced analog designers and therefore 

is a time-consuming and error-prone task [3]. Automated sizing tools are normally very application 

(i.e., circuitry) specific and problem (i.e., specification) specific. 

Layout generation following the completion of the sizing stage is a critical process, which can 

significantly affect the performance of fabricated chips. It is common that a well-designed circuit 

at the schematic level but omitting layout consideration is not able to function after fabrication in 

the advanced technologies. Layout information refers to physical placement and interconnection 

with the implication of parasitics and performance-related effects caused by neighboring devices 

and common underneath substrate. Those effects, which are found to be prominent, can cause 

performance degradation when an ideally symmetric structure (e.g., current mirror and differential 

pair) appears in a mismatch manner physically. As the technology scales down towards even finer 

grid, LDEs become more significant. However, the parasitics and LDEs cannot be fully detected 

until a schematic is converted to its corresponding layout in the traditional analog IC design flow 

(i.e., Fig. 1). Thus, analog designers may have to go back to the schematic stage to pursue another 

design solution if the performance degradation due to parasitics and LDEs cannot be alleviated by 

any subsequent layout refinement/modification. In such cases, plenty of tweaking effort including 

re-sizing, re-placement, and re-routing is expected to close the synthesis loop. 
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Therefore, it is no longer sensible for the circuit designers to stop at designing a sized circuit 

topology and toss the consideration of parasitics and LDEs over the wall to the layout designers. 

The optimization of those elements in the modern high-performance analog design calls upon 

either a more intensive cooperation between the two groups of designers or an advanced 

coordination mechanism that can help pass guidelines of optimizing parasitics and LDEs (e.g., the 

reference values of the related parameters) to the layout implementation [4]. As a reaction, some 

so-called layout-aware synthesis approaches, which are reviewed in [5], have come into being. In 

this dissertation, we are motivated to explore better analog/RF circuit synthesis flows, 

methodologies, and algorithms to consider the layout parasitics and LDEs in the schematic 

synthesis stage (i.e., circuit sizing stage) as an early action to reduce the whole circuit synthesis 

runtime while attaining satisfactory circuit performance. 

The rest of the dissertation is organized as follows. Chapter 2 reviews analog/RF electronic 

design automation (EDA) challenges with regard to layout effects, the definition of analog circuit 

sizing problem, and the previous related works in the area of analog/RF circuit sizing. Chapter 3 

demonstrates the geometric programing (GeoP) and evolutionary algorithm (EA) based hybrid 

methodology for parasitic-aware circuit sizing. In Chapter 4, a gm/ID- and EA-based hybrid 

methodology for parasitic-aware circuit sizing is detailed. Chapter 5 illustrates an LDE-aware 

hybrid sizing methodology by employing the techniques of gm/ID, sensitivity analysis, and EA. In 

Chapter 6, a machine-learning-based method using Gaussian-process-based Bayesian optimization 

(GP-BO) is presented for the LDE-aware circuit sizing. Chapter 7 concludes this dissertation and 

discusses the future work. Our contributions in this dissertation are summarized in the introduction 

sub-section at the beginning of each of Chapters 3-6. 
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Chapter 2    Analog Design Automation, Challenges 

and Solutions 

Electronic design automation (EDA) tools are computer-aided design (CAD) software specific 

to the electronics industry. They aim at reducing development effort and cost by allowing 

circuit/system designs to be simulated and analyzed before manufacturing. With the assistance of 

the EDA tools, the development period of an electronic system has been shortened a large extent. 

Usually the portion containing analog circuitry is smaller than the digital one in terms of silicon 

area in the modern System-on-Chip solutions. However, due to high complexity of analog circuits, 

the design of the analog/RF part stays as a bottleneck of the whole system design. Thus far, 

analog/RF circuitry has not largely benefited from the mature hardware description language 

synthesis flow as much as its digital counterpart. As a matter of fact, the analog/RF circuitry design 

is a creative and intuitive process that requires a clear understanding of circuit components and 

their matching requirements. Thus, it is knowledge intensive and complex in nature. It is often 

difficult to find a single solution that can satisfy all the analog constraints. 

In addition, the newer technologies are associated with some drawbacks, such as strong impact 

of parasitics, short channel effects, interconnection issues, layout-dependent effects (LDEs), etc. 

Thinner interconnects may produce unwanted larger parasitic resistance, and closely spaced 

interconnects can cause an increase of parasitic coupling capacitance. Especially for the nanometer 

technologies, parasitic resistance and capacitance may drastically affect circuit performance [6]. 

Furthermore, the surrounding layout around a device might change the behavior of its fine-grained 

model constructed originally for an isolated state, which are referred to as LDEs [7]. Thus, the 

analog layout designers, although being aware, are often heavily burdened due to either lack of 

knowledge passed along from the schematic-level circuit designers or intricacy of handling 
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parasitic and LDE constraints. In turn, a prolonged re-design cycle is typically expected since the 

incurred problems due to those effects may unfortunately not emerge until the final signoff check 

in the worst scenarios. In this chapter, Section 2.1 discusses the recent challenges of analog design 

automation including layout parasitics and LDEs. Then in Section 2.2, we will provide a literature 

survey of the solutions for addressing the challenges. 

 

2.1. Challenges in Analog Design Automation 

2.1.1. Parasitics 

In electrical networks, a parasitic element is a circuit element (resistance, capacitance or 

inductance) that is a real existence although usually undesirable when an electrical component is 

laid out on the substrate. In relatively older technologies (i.e., CMOS 90nm and above), parasitic 

resistance is nearly a local effect where a conducting wire or via does not rely on the presence or 

absence of neighboring wires and vias. The resistance value is a function of the geometry and 

resistivity of the conducting material. For newer technologies (i.e., CMOS 65nm and below), 

because the resistivity depends on neighboring wires and vias, which is not constant by nature, the 

parasitic resistance is not a local effect any more. Parasitic capacitance exists when two closely 

placed conductors (e.g., neighboring electrical nets) conducting different signals, and the electric 

field between them leads to electric charge to be stored on them. For parasitic inductance, when a 

wire conducting current exerts magnetic field, this field is coupled to the current in another (or the 

same) wire, which produces voltage when the magnetic flux is changed by the current change. The 

first two parasitic elements are the main focus in this dissertation. Parasitics are normally either 

extracted by accurate but slow off-the-shelf layout extraction tools such as Mentor Graphics PEX 
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[8] or approximated by using parasitic models [9] [10]. Circuit performance degradation due to the 

layout parasitics has been a major issue as a result of shrinking feature size in the advanced CMOS 

technologies. 

 

2.1.2. Layout-Dependent Effects (LDEs) 

The behavior of a MOSFET is not only reflected by its performance model built in the isolated 

state, but also affected by its surrounding devices in the physical layout, which is known as LDEs. 

Typical LDE-incurred impacts include variations of MOSFET characteristics, such as mobility 

and threshold voltage (Vth) drifting, which might further degrade circuit performance. In this 

dissertation, two dominant LDEs are studied, which includes shallow trench isolation (STI) and 

well proximity effect (WPE). For STI, the shallow trench is formed during the process of transistor 

isolation by etching onto the wafer and filling with undoped polysilicon or silicon oxide (SiO2) as 

isolation between active areas. This exerts mechanical force, which is a compressive stress 

applying to the vicinities, i.e., diffusion areas. This stress is commonly referred as STI stress, also 

called Length of Diffusion (LOD) effect, which improves the mobility of PMOS but decreases it 

for NMOS. As a result, STI can cause variations of mobility, saturation velocity, Vth, body effect, 

and drain-induced barrier lowering effect. 

SA/SB, STIW and other STI-related parameters are illustrated in Fig. 2. SA/SB is a pair of 

distance parameters measured from the edges of each poly finger to its corresponding diffusion 

edges. For a layout netlist, each finger has its individual SA/SB pair. The width of STI (i.e., STIW) 

is measured from the edge of a device to its adjacent active area. A linear relationship between 

stress and layout information, SA and SB, is modelled by BSIM [11] as below, 
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 𝑠𝑡𝑟𝑒𝑠𝑠 = 1 /(𝑆𝐴 + 0.5 ∗ 𝐿 ) + 1/(𝑆𝐵 + 0.5 ∗ 𝐿) . (1) 

The effect of this stress on mobility is modeled by BSIM [11] via (2)(3) below, 

𝜇𝑒𝑓𝑓

𝜇𝑒𝑓𝑓0
= 1 + 𝜌𝜇𝑒𝑓𝑓 , (2) 

𝜌𝜇𝑒𝑓𝑓 =
𝐾𝑈0

𝐾𝑠𝑡𝑟𝑒𝑠𝑠_𝜇0
∗ 𝑠𝑡𝑟𝑒𝑠𝑠 , (3) 

where 𝜇𝑒𝑓𝑓 is the effective mobility after considering STI effect and 𝜇𝑒𝑓𝑓0 is the one before that. 

𝐾𝑠𝑡𝑟𝑒𝑠𝑠_𝜇0 is a function of many parameters from numerical models like KU0, and some of them 

are not completely disclosed. Therefore, such numerical STI models are hardly employed by 

designers in a symbolic form, which calls for the need of direct involvement of numerical 

simulation. The effect of STI stress on other device characteristics like saturation velocity can be 

found in [11] in a similar way. 

 

Fig. 2. Illustration of STI factors [5] 

During the implantation process, some of the ions scattered from the edge of photoresist are 

implanted in the silicon surface near the mask edge, changing the threshold voltage of these devices 
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by upwards of 100mV [12]. This effect is known as well proximity effect (WPE). The result of 

WPE is the formation of a graded channel due to a MOSFET placed too close to a well edge. This 

graded channel can cause the shift of electrical characteristics of the MOSFET. The WPE is a 

strong function of the distance of a MOSFET from mask edges (or well edges). The electrical 

parameters of the MOSFET due to WPE show larger variation if it has shorter distance from the 

edge of well mask. In short, WPE can cause variations of mobility, Vth, and body effect. As exposed 

in the BSIM model [11], they can be analytically expressed in the following, 

𝜇𝑒𝑓𝑓 = 𝜇𝑒𝑓𝑓𝑜𝑟𝑔 ∗ (1 + 𝐾𝑈0𝑊𝐸 ∗
(𝑆𝐶𝐴 +𝑊𝐸𝐵 ∗ 𝑆𝐶𝐵 +𝑊𝐸𝐶 ∗ 𝑆𝐶𝐶) , (4) 

𝑉𝑡ℎ0 = 𝑉𝑡ℎ0𝑜𝑟𝑔 + 𝐾𝑉𝑇𝐻0𝑊𝐸 ∗ (𝑆𝐶𝐴 +𝑊𝐸𝐵 ∗ 𝑆𝐶𝐵 +𝑊𝐸𝐶 ∗ 𝑆𝐶𝐶) , (5) 

𝐾2 = 𝐾2𝑜𝑟𝑔 + 𝐾2𝑊𝐸 ∗ (𝑆𝐶𝐴 +𝑊𝐸𝐵 ∗ 𝑆𝐶𝐵 +𝑊𝐸𝐶 ∗ 𝑆𝐶𝐶) , (6) 

where SCA, SCB, and SCC are instance parameters that represent the integral of the 

first/second/third distribution functions for scattered well dopants. They are functions of MOSFET 

geometric parameters. In most cases, the first order distribution parameter SCA dominates as it can 

already exhibit a reasonable level of accuracy. SCB and SCC are used when a fine tuning for the 

model is needed in order to match observed data for a wide variety of processes. KU0WE, 

KVTH0WE, and K2WE are mobility degradation factor, threshold shift factor, and K2 shift factor 

respectively for WPE. WEB and WEC are just coefficients for SCB and SCC [11]. The modeling 

of SCA/SCB/SCC for WPE as well as SA/SB for STI will be further investigated in Chapter 5 for 

LDE-aware circuit sizing. 
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2.2. State-of-the-Art Analog Circuit Sizing Methods 

The state-of-the-art circuit sizing works can be categorized into two groups: analytical (or 

symbolic-analysis) based and stochastic based techniques. Some may employ both techniques as 

a hybrid solution in their work. The analytic-based methods often require nontrivial modeling 

efforts on performance objectives and constraints, while the modeling accuracy may be 

controversial. Mathematical programming is often resorted to for this group. The solving 

efficiency for a modeled circuit sizing problem is normally pretty good, and the high reusability is 

one important advantage for the analytical-based methods. For the stochastic-based methods, 

usually a series of semi-random trial solutions are composed to compete with the existing solutions 

via a heuristic or statistical-based selection mechanism. The numerical simulation is often involved 

for this kind of method. In the rest of this section, the analog circuit sizing problem is firstly defined, 

and its layout awareness is also emphasized in Section 2.2.1. Then four main state-of-the-art sizing 

methods that are highly relevant to this dissertation will be discussed from Section 2.2.2 to Section 

2.2.5. For the purpose of comprehensiveness, other layout-aware circuit sizing methods are also 

reviewed in Section 2.2.6. 

 

2.2.1. Definition of the Analog Circuit Sizing Problem  

Analog circuit sizing, usually referred to at the schematic level, is to determine device 

geometrical and electrical parameters, such as transistor width (W) and length (L), settings for 

resistors, capacitors and inductors as well as bias conditions. In the overall circuit synthesis, the 

sizing task takes place after topology generation/selection and is followed by layout design, which 

is mainly comprised of floorplanning/placement [13] and routing [14]. In the traditional process, 
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once a circuit is sized by the schematic designers, the layout designers take over the ideal design 

towards the physical/layout design domain. However, they might suffer from repeatedly adjusting 

the layout due to complex layout effects. Therefore, the so-called layout-aware circuit sizing 

methods came into being to take into account layout parasitics and/or layout-dependent effects. 

These methods may adjust or even generate new device and circuit parameters, which make the 

circuit performance less vulnerable to layout effects. Some may also generate useful layout 

information including layout floorplans, wire length and width for various electrical nets, and other 

geometrical parameters regarding LDEs as guidance to layout designers. 

 

2.2.2. Geometric Programming (GeoP) 

The geometric programming (GeoP) based methods originate from an observation that a wide 

variety of design objectives and constraints are in the posynomial or monomial form versus design 

variables [15]. The geometric program is an optimization problem in the following form [15], 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑜𝑏𝑗(𝑥) , 
 

subject to 𝑓𝑖(𝑥) ≤ 1,    𝑖 = 1,… , 𝑝 

 

 𝑔𝑖(𝑥) = 1,    𝑖 = 1,… ,𝑚 

 

𝑥𝑖 > 0,    𝑖 = 1,… , 𝑛 

(7) 

 

where 𝑥1 ,…, 𝑥𝑛  are n real, positive variables, and the vector (𝑥1 ,…, 𝑥𝑛 ) is denoted as x, the 

objective function 𝑜𝑏𝑗(𝑥)  and constraints of  𝑓1 ,…,  𝑓𝑝  are posynomial functions, and equality 

constraints of 𝑔1,…, 𝑔𝑚 are monomial functions. The GeoP problem can be reformulated as a 

convex optimization problem and solved by a GeoP solver that uses standard interior point 
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algorithm [16]. The GeoP-based methods are able to efficiently solve large convex optimization 

problems. If not solvable, certain constraints need to be loosened for reaching a resolution. 

Otherwise, a global-view solution is obtained. 

The GeoP is originally applied to circuit sizing for a two-stage operational amplifier (Op-Amp) 

to optimize power and die area [15]. The device characteristics and circuit electrical constraints as 

well as other geometrical constraints are all modeled in the GeoP form, and solved by such a 

mathematical GeoP solver in order to finally solve for the sizing variables. Reference [17] 

exhibited a fast parasitic-aware synthesis approach, which considers the performance constraints 

and layout induced parasitics simultaneously within a concurrent phase of circuit synthesis. The 

GeoP-based sizing algorithm can include both device intrinsic parasitics and interconnect 

parasitics induced from layout floorplan. The analytic expressions of interconnect parasitic 

substrate and coupling capacitance can be further improved with the aid of the work in [18]. 

Another single-GeoP-process-based optimization [19] divides the design space into sub-

problems by using piecewise-linear fitting instead of genetic-algorithm-based modeling in order 

to achieve accuracy improvement without compromising complexity. Given specific performance 

requirement and circuit topology, only a limited number of sub-spaces are needed and calculated 

rather than a costly blind search for all the sub-spaces. Without involving multiple GeoP execution 

for fine tuning, the optimization efficiency can be improved. However, a sound balance ought to 

be made between the GeoP process execution iteration and the knowledge-involved design effort 

regarding sub-space simplification. Zhang et al. [20] conducted an LDE-aware optimization in the 

schematic-level synthesis stage. Due to the employed square-law current equation involved in the 

GeoP formulation, its modeling accuracy is rather questionable. 
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2.2.3. gm/ID-Based Circuit Sizing 

The gm/ID-based methods are built upon the theory that transconductance over drain current 

(i.e., gm/ID) is solely dependent on node voltages (e.g., VGS) regardless of transistor sizes [21]. They 

have been recently promoted in the analog circuit retargeting and sizing domain [22]. The gm/ID 

amount can not only imply the electrical performance of analog devices, but also be used to derive 

transistor dimensions given the performance requirements. Jespers applied the gm/ID methodology 

to low-voltage analog CMOS circuits as a sizing tool [23]. 

Most of the early gm/ID works in the literature [21] [23] tackle analog circuit design as a manual 

sizing problem by firstly determining the slope factor and Early voltage. Then the designers’ 

knowledge is involved in order to determine bias conditions, transistor operating regions, and gm/ID 

values or ranges. Based on a gm/ID table derived from numerical simulations, the transistor sizes 

can be finally obtained through a mapping process as per the gm/ID theory [24]. In contrast, Girardi 

et al. [25] applied a gm/ID method to automate the circuit synthesis problem through a simulated 

annealing (SA) based heuristic scheme, which replaces the manual input of designers’ knowledge 

for the gm/ID estimation. Tlelo-Cuautle and Sanabria-Boron [26] combined the gm/ID and EA 

optimization to link gm/ID and transistor width (W) by using a lookup table (LUT) obtained via 

sweeping VGS at a preselected transistor length (L). However, this work is short of identical L’s for 

all the MOSFETs, and the decision of L’s requires the involvement of designer’s knowledge by 

plotting curves of gm/ID versus other device characteristics with different L’s. 

A normalized measure of ID, called inversion coefficient (IC), was defined in the EKV model 

[27] to reflect MOSFET’s inversion level, which is of importance in the gm/ID-based approaches. 

Binkley et al. [28] applied three independent degrees of analog CMOS design freedom (i.e., ID, 

IC, and L), where IC links to W, DC biases and small-signal parameters including gm/ID and gds/ID, 
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as well as device intrinsic gain and bandwidth. So a performance tradeoff of single devices can be 

reached by exploring the combination of the above three parameters for the sizing of the whole 

circuit. However, due to the nonlinear relationship between device and circuit performance, 

designers’ intervention and optimization iterations are still expected besides uncertain layout 

parasitic effects. 

Aside from the abovementioned methods that use gm/ID concept as a sizing inference, there is 

a bias driven approach for gm/ID-based circuit sizing as another main stream group. Lin et al. [29] 

developed such a gm/ID-based sizing automation approach by utilizing a bias-driven LUT. An SA 

engine is used to try different bias conditions within a range restricted by a group of constraints in 

the device operating regions. Once a trial bias condition is generated, a small-scale LUT is built 

by sweeping MOSFET width for a reference device. Later this idea was further extended in [22] 

[30], where the transistor operating points are treated as variables. Analytic performance equations 

are formed for linear programming (LP) problem solving, which replaces the real simulation for 

improving the sizing efficiency. These works have largely extended the scope compared to the 

previous gm/ID research by including parasitic handling in the analog circuit sizing process. 

Nevertheless, only simplified linear parasitic models are utilized yet without the layout-effect 

consideration of the MOSFET multi-finger structure and floorplan constraints. Moreover, they are 

not able to fully operate on gm/ID, gds/ID, and Meyer capacitance C over ID (altogether called gm/ID-

parameters thereafter in this dissertation), which are actually strong functions of VDS and L in 

addition to VGS for sub-100nm technologies [31]. However, this dependence is closely considered 

in our work, which is detailed in Section 4.3. 
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2.2.4. Evolutionary Algorithm (EA) 

Evolutionary algorithm (EA) is a subset of evolutionary computation that is a generic 

population-based metaheuristic optimization algorithm. It is inspired by biological evolution and 

involves four main steps: initialization, genetic operation, selection, and termination. The middle 

two steps execute in an iterative manner before the termination criteria are met. A semi-random 

trial solution is recombined and evaluated to make the whole population (i.e., candidate solutions, 

EA chromosomes or individuals) evolve through smart selections in a heuristic manner. EA is 

widely applied to solve problems that cannot be easily solved in polynomial time, such as 

classically NP-Hard problems. Besides the universal application to the other fields, EAs of all 

kinds of variants have been applied to the circuit sizing domain. Even though the convergence for 

this type of stochastic-based algorithms (including EAs, genetic algorithms (GAs), simulated 

annealing (SA), particle swarm optimization (PSO), and other) is hardly proved, optimal solutions 

can be empirically found via a balanced exploration and exploitation during the course of  solution 

space searching. Typical control parameters (i.e., genetic operators) including mutation and 

crossover rates determine the searching quality by balancing the weight between overall 

exploration and local refinement (i.e., exploitation). 

Many works in the last decade of the 20th century dealt with topology selection and sizing 

together. Thus, overhead was inevitable when useless topology was generated. Authors in [1] 

claimed their CMOS OPAMP synthesis tool called DARWIN, using genetic algorithm (a subclass 

of EA), can simultaneously deal with topology selection and sizing. They translated circuit 

specification and constraints into certain representations used in their genetic algorithm in order to 

require less expert knowledge for circuit optimization. Their tool can cover different topologies in 

an efficient way. However nowadays, as the CMOS technology is scaling down, this tool may not 
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be applicable due to lack in addressing many LDE issues (e.g., WPE and STI), which were not 

found prominent in the old days. 

In evolutionary computation, differential evolution (DE) [32], which originated from Ken 

Price's attempts to solve the Chebychev polynomial fitting problem, optimizes a problem through 

iteratively trying to improve a candidate solution with respect to a given measure of quality. It 

makes few or no assumptions about the problem being optimized and can search a very large 

solution space. As one of the promising heuristic methods, DE is capable of evolving 

multidimensional real-valued variable vector for a function. It does not utilize the gradient of the 

problem which makes it superior to those classical optimization methods, such as gradient descent 

and quasi-newton methods, in terms of less dependency of the problem being differential [32]. DE 

is also extended to be used in the area of discrete, noisy and time-variant problem optimization. 

There are two mutation schemes [32] that highlight the spirit of DE in the following. In the 

first scheme, for each candidate solution denoted by vector Xi, i = 0,1,2,…,NP-1, where NP is the 

number of population, a trial solution T is generated based on (8), 

𝑻 = 𝑿𝑠1 +𝑀 ∗ (𝑿𝑠2 − 𝑿𝑠3), M > 0 , (8) 

where 𝑠1, 𝑠2, 𝑠3 ∈ [0, NP-1] are randomly and mutually different integers and the mutation rate 

(M) controls the amplification of the difference between  𝑿𝑠2 and 𝑿𝑠3.The generation of T depends 

on 𝑿𝑠1,𝑿𝑠2, and 𝑿𝑠3 instead of the current individual 𝑿𝑖. In the second scheme, T is generated via 

(9), 

𝑻 = 𝑿𝑖 + 𝛾 ∗ (𝑿𝑏𝑒𝑠𝑡 − 𝑿𝑖) + 𝑀 ∗ (𝑿𝑠2 − 𝑿𝑠3), 𝑀 > 0, 𝛾 ∈ [0,1] . (9) 
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The additionally introduced control parameter 𝛾 helps enhance the greediness by taking the current 

best solution Xbest into account, which is especially effective for handling non-critical objective 

functions. The greatest dependence on the global best solution Xbest is achieved when 𝛾 = 1. 

Vancorenland et al. [33] extended the idea of analog circuit design from [1] to a new one 

involving tasks of circuit sizing and layout generation, in addition to parasitic estimation. The 

coupling of sizing and layout generation was made possible in the proposed layout-aware synthesis 

method, which contained DE-based optimization, cost function formulation, numerical simulation, 

and layout generation by using layout templates. The adopted Hooke algorithm in fitting the cost 

function was non-stochastic and thus contributed to faster convergence. The evaluation of the fitted 

cost function utilizes a mechanism, which combines few steps of model approximation with one 

simulation, in order to refine the model. According to the authors, this combined evaluation 

mechanism could largely increase the accuracy. However, this improvement is ensured at the cost 

of actual layout generation and detailed parasitic extraction. 

Multi-objective (i.e., ≤3 objectives) evolutionary algorithms (MOEAs) are well-known for 

solving complex multi-objective problems (MOPs), which mean to include two or three objectives 

conflicting from each other. Pareto set or Pareto front (PF), is a set of nondominated solutions, 

being chosen as optimal, where no objective can be improved without sacrificing another objective. 

Among the first in the field of analog EDA, Aggarwal and O’Reily [34] brought forth the concept 

of spatial locality and dimensional locality, with which an analog/RF sizing problem is usually 

equipped. They built up an adapted sizing engine based on NSGA-II [35] and proposed a 

correlation sensitive mutation operator (COSMO). Moreover, they exploited the locality concept 

to enhance variable exploration capability with the aid of the circuit knowledge extracted from the 
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first-order circuit performance equations or circuit sensitivity study. Nevertheless, no layout-

related information was considered in that work. 

Optimization problems with more than three objectives are commonly called many-objective 

problems (many-OPs), which most of the analog/RF sizing problems actually fall into. NSGA-II, 

as a typical implementation of MOEAs, is weak in handling many-OPs since a large number of 

solutions would be trapped in the first nondominated front, which leads to rich diversity but less 

exploitation capability. To address many-OPs, advanced many-objective EA (many-OEA) 

strategies have recently emerged. NSGA-III [36] stresses diversity more than convergence due to 

its less capability of attracting solutions towards Pareto Front (PF) in high-dimensional solution 

space, whereas MOEA/D [37] is able to approach PF quite well with its aggregation-function-

based selection operator. However, without a smart control on the aggregation function, it might 

lose some valuable search regions. Therefore, by combining the merits of prevalent NSGA-III and 

MOEA/D, Yuan et al. proposed θ-DEA [38], which is able to outperform its peers in handling 

many-OPs. θ-DEA can not only preserve the diversity by maintaining the structural strength of 

NSGA-III, but also promote the convergence by employing the fitness evaluation scheme 

borrowed from MOEA/D. 

 

2.2.5. Gaussian-Process-Based Bayesian Optimization (GP-BO) 

With a clear emphasis on utilizing statistics to manage probabilistic models and uncertainty, 

machine-learning-based methods have been emerging as an important stream under the stochastic-

based class. Most of the simulation-based stochastic approaches, which need little circuit 

knowledge compared to the symbolic-analysis-based methods, are usually called black-box 
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optimizers. They typically suffer from longer runtime due to slowness of SPICE simulation. 

Recently, Bayesian optimization (BO) has appeared as a prevalent scheme for handling expensive 

black-box derivative-free functions. BO comprises two key components: probabilistic surrogate 

model and acquisition function. The surrogate model, which can play a role of any expensive 

objective function, is normally established by first using some random data observations. It would 

be trained and improved with new promising data points (called query points) along the BO 

iterations. Interactively, the acquisition function serves as a query-point generator by integrating 

the statistical characteristics (e.g., mean and variance) of the surrogate model. Specifically, a good 

query point with balanced force of exploration (i.e., with high uncertainty) and exploitation (i.e., 

with high confidence) is generated by minimizing or maximizing the acquisition function. 

Gaussian-process-based Bayesian optimization (GP-BO) has been applied to the automated 

analog circuit sizing research [39]. However, multi-objective Bayesian optimization is only 

achieved by recovering the Pareto Front (PF) of objectives through weighted Tchebysheff 

formulation [39] or random scalarizations [40] instead of directly confronting the multi-objective 

problem. In [41], a direct multi-objective based GP-BO is proposed. However, it merely 

simultaneously evaluates multiple popular acquisition functions when selecting query points for 

the next BO iteration. The objective value is calculated by using a user-defined figure of merit 

(FOM) expressed in a summation form with weighting factors for various circuit performance 

aspects. In this regard, we deem this as a “pseudo multi-objective BO”, because the lumped FOM 

cannot necessarily loyally reflect the multi-objective nature. 

Besides that, the GP-BO scalability versus problem input space creates another barrier to the 

applicability for a variety of problems. Successful applications of GP-BO are typically found for 

the problems with low input dimension, i.e., less than 20 optimization variables [42]. References 
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[39] [41], which have not taken into account any layout effects (i.e., nf, parasitics, and LDEs) in 

the advanced technology nodes, might end up with impassable difficulties when optimizing a large 

number of sizing variables (e.g., involving LDE parameters). 

The framework of Gaussian-process-based Bayesian optimization (GP-BO) will be illustrated 

in Section 6.2 with more details. And our solution to overcoming the two difficulties when 

applying GP-BO to the optimization of analog circuit sizing is described in Chapter 6 as well. 

 

2.2.6. Other Circuit Sizing Tools 

In addition to the works reviewed in the above sections, other circuit sizing tools in the 

literature are developed for distinct purposes, which can be categorized into two big groups, i.e., 

using stochastic-based and non-stochastic-based techniques. Statistical and/or heuristic processes 

are often involved in the first group. The second group can be further categorized into two sub-

groups including pure symbolic-analysis-based (often involving mathematical modeling and 

programming) technique and gradient-based error-minimization-directed optimization technique. 

These works could suffer from using inaccurate device and parasitic models, insufficient or no 

layout considerations (parasitics and LDEs), or overwhelming involvement of placement and 

layout (e.g., massive layout numeration using costly off-the-shelf layout extraction tools), and/or 

over-simplified strategies for dealing with high-dimensional variable space and multiple circuit 

performances as well as neglecting the importance of taking into account domain knowledge from 

analog circuit. 

For the stochastic-based approaches, according to Rutenbar [43], simulated annealing (SA), 

which is a statistical and heuristic process, uses either some numerical cost functions or circuit-
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level simulation for verification. Design knowledge based optimization is usually integrated with 

such a heuristic technique to improve exploration efficiency. For instance, De Ranter et al. [44] 

presented a specification-driven layout-aware CMOS RF design tool called CYCLONE. They 

used adaptive simulated annealing (ASA) package as their search engine. A thought similar to [33] 

is that the circuit sizing and layout generation are combined for the optimization of oscillators. 

This tool includes three major components, the optimization startup, the optimization loop using 

electromagnetic simulation, and the layout generation. The design configuration file and 

technology layout file are inputs of the layout tool to form leaf cell branches, which are used as 

the building blocks to the final layout. The use of parameterized leaf-cell-based design method 

facilitates parasitic estimation in each layout generation step. The use of technology-independent 

template-based layout generation decreases the effort of generating redundant physical layout as 

that in [33]. 

Agarwal et al. [45] illustrated the importance of including layout information in circuit sizing 

by comparing the deviation in performance with and without parasitic consideration. Their core 

engine to size the circuit is SA. An integrated circuit sizing method with floorplan variation plus 

simulation for performance evaluation was introduced in [46]. At each step a floorplan is generated 

and parasitics are estimated using the floorplan and transistor sizes. Several floorplans are 

considered for performance evaluation. Once a floorplan is selected, a layout is then generated, 

extracted and verified. If the specification is not met, the loop would be executed again. Therefore, 

this simulation-based method tends to be CPU-time costly. 

For the non-stochastic methods, Ranjan et al. [47] proposed a slightly different approach, 

which uses a symbolic performance models (SPM) generated by using equations from small-signal 

models. The SPM is used as the evaluation method instead of real simulation in the sizing process. 
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Due to the integration of intelligence into performance evaluation (by using symbolic cost 

function), this work can be grouped into the symbolic-analysis-based techniques. Another work 

from Agarwal and Vemuri [48] used a similar sizing engine, but put more emphasis on the 

estimation of layout parasitics in RF circuit synthesis considering worst-case corners. 

Schwencker et al. [49] proposed an automatic sizing method for analog integrated circuit. 

They introduced structural constraints as circuit knowledge in the sizing process. Their sizing 

algorithm is based on linearization with sensitivity coefficient and gradient-based method for 

better convergence. The authors claimed that considering structural constraints could reduce 

design parameters and cut down simulation time, as well as being insensitive to process variation. 

Dessouky et al. [50] proposed a trial-and-error based method by using a tool called COMDIAC, 

which applies the equations already defined from the detailed knowledge of a circuit. At each step, 

a layout tool is called multiple times to generate parasitic estimation and a circuit sizing tool 

responds to the estimated parasitics by changing transistor sizes. However, this method may have 

problems on loop termination in newer CMOS technologies since the parasitics may deviate a lot 

even for a small change in sizing. 

Habal and Graeb [51] proposed an automatic layout-driven synthesis flow. Their sizing steps 

include partitioning the problem into sub-problems by using linearized approximation of 

constraints and specification with respect to design parameters in a manner identical to [52], and 

then solving the sub-problems by using a modified trust-region algorithm. The whole work even 

includes SPICE simulation for evaluation, parasitic capacitance extraction by an integral equation 

field solver, and placement optimization with B*-tree representation. In some optimization 

approaches, the designers’ knowledge is imperative to continue the sizing process, which is based 

on a deterministic algorithm introduced in [53]. The entire synthesis process was arranged at the 
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cost of additional effort in layout exploration and extraction. Overall this work is quite 

comprehensive in the circuit synthesis domain, although it tends to experience costly layout 

generation for every sized alternative. 

Another deterministic algorithm in [54] was proposed to consider process variation in the 

automated design of analog circuits that include mismatch-sensitive components. With respect to 

the consideration of manufacturing and operating variation, Schwencker et al. [53] proposed a 

generalized boundary curve (GBC) to decide the step length within an iterative trust-region 

optimization algorithm. Applying the nonlinear cost function on the linearized objectives can 

largely cut down the iteration number during the optimization. 

A sizing approach by using combined techniques was proposed in [55]. In this work, a 

transistor-level simulator (HSPICE) is used with simulated annealing technique for the first phase 

of sizing. In the second phase a deterministic method is used. Template-based layout generation, 

which takes a few seconds to generate layout, is deployed along with Cadence PCELL and SKILL 

programming language [56]. At first the sizing engine selects a set of random design values within 

a range. This set of values is used by the geometric constraint module (GCM) to generate a number 

of candidate layout styles. One candidate layout is selected as per some constraints. Then the 

parasitics are extracted from the selected layout and the performance is evaluated with some layout 

awareness. If the specification is not met, the loop is executed again. Therefore, the computation 

cost from layout enumeration under the various constraints can still be moderate or high. 
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2.3. Summary 

In this chapter, we have first discussed the main challenges (i.e., layout parasitics and LDEs) 

of analog/RF circuit synthesis in the advanced technology era. Since those issues are time-

consuming to be fixed in the later layout design stage with respect to the whole synthesis flow, it 

is the responsibility of the EDA tools to consider them in an earlier stage (i.e., schematic design 

stage) so as to make the designed layout less subject to layout-effects-induced performance 

degradation, and therefore the whole synthesis process can speed up. In addition, the previous 

works relevant to the abovementioned issues have been reviewed with their advantages and 

limitations pointed out. 

In the next chapter, our proposed efficient parasitic-aware hybrid sizing methodology will be 

detailed. It will not only address the efficiency challenge which the simple stochastic-based 

methods would often suffer from, but also resolve the accuracy issue that the plain symbolic-

analysis based methods may normally experience, meanwhile, considering the performance-

related parasitics for the analog/RF circuit synthesis. 
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Chapter 3    Efficient Parasitic-Aware Hybrid Sizing 

Methodology for Analog and RF Integrated Circuits 

 

3.1. Introduction 

In order to generate a quality-guaranteed tape-out as the objective of CMOS design, diverse 

analog integrated circuit synthesis flows have been proposed to address the drawbacks of the 

traditional iterative design flow that may meet performance requirements but are super time-

consuming. As the primary second-order effect, parasitic issues have to be seriously addressed 

when synthesizing high-performance analog and RF integrated circuits. For a new circuit structural 

design in the advanced technology, estimated pre-layout parasitics (i.e., before the actual circuit 

layout is available) by using a stereotypical method may have large deviations from the real or 

extracted ones by using off-the-shelf parasitic extraction tools. This is especially true for the 

synthesis process of high-performance analog and RF ICs where circuit sizing needs to be first 

identified before the formation of the corresponding layout. 

By extending our preliminary work [57], in this chapter, we have proposed a complete 

parasitic-aware GeoP-EA (geometric programming plus evolutionary algorithm) hybrid sizing 

method. We not only include floorplan optimization, GeoP modeling, and theoretical investigation 

on floorplan and interconnect parasitic modeling in a GeoP compatible way, but also explore 

performance enhancement by integrating single-objective evolutionary algorithm (SOEA) and 

many-objective evolutionary algorithm (many-OEA) together for the sizing problems. Compared 

to the existing schemes aforementioned, our proposed parasitic-aware GeoP-EA hybrid sizing 

method in this piece of work has the following notable advantages: 
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 It is an effective combination between GeoP and EA sizing optimizations. The GeoP-phase 

sizing process is fast and ensured to output a global optimum, if feasible [15]. This gives the 

simulation-based EA-phase sizing process an elite starting point with implied circuit 

knowledge to help exploration convergence. 

 By using device and interconnect parasitic models as well as floorplan symbolic constraints 

backed by our proven theorem, the proposed method provides more holistic parasitic 

estimation much faster than any actual layout generation or procedural layout generators 

typically used in the conventional nested sizing-layout loop. 

 Rather than by providing a pre-defined fixed floorplan template, the integral floorplan selection 

is conducted by an SA-driven engine with B*-tree representation [58] according to the 

constraints and objectives of a specific circuit. 

 To the best of our knowledge, this is the first work that applies many-objective EA in the 

analog circuit sizing domain, where the single- and many-objective EAs can switch as an 

optimization refiner. We also propose a scheme on experimental design and analysis of single- 

and many-objective EAs for optimizing engineering problems. 

The research conducted on this topic has been mainly published in Integration, the VLSI 

Journal [J4], and presented in IEEE/ACM 22nd Asia and South Pacific Design Automation 

Conference (ASP-DAC) [C4] among others [C5]. 
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3.2. Proposed Parasitic-Aware Hybrid GeoP-EA 

Circuit Sizing Flow 

Our proposed method within the sizing flow as shown in Fig. 3 is a two-phase hybrid sizing 

optimization process. A convex optimization formulation called GeoP is used in the first phase to 

incorporate a set of performance constraints formed by the given technology parameters and 

required specifications, as well as a set of symbolic parasitic expressions modeled by geometric 

requirements and floorplanning constraints. A GeoP solver is deployed to provide a solution 

considering layout-induced parasitic effects [15]. 
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Fig. 3. The proposed GeoP-EA two-phase hybrid sizing flow 
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After that, this GeoP solution provides an initial point with implied variable ranges as circuit 

knowledge to the second phase that involves EA solvers along with proper parasitic estimation. 

EA can optimize to derive a solution by iteratively improving the candidates with respect to a 

given measure of quality. Any commercial simulator (e.g., Spectre or HSPICE) can be involved 

in the EA process by returning simulation performance. Such numerical simulations would 

definitely help ensure the accuracy of the solutions that might be a controversy for the GeoP 

modeling. The second sizing phase (EA-based) remains parasitic-aware because it follows the 

parasitic modeling used in the first sizing phase (GeoP-based) and reflects such estimated 

parasitics through a circuit netlist. 

As shown in Fig. 3, two sets of constraints are formed for GeoP solving: geometric floorplan 

constraints and performance constraints, which rely on the required specifications and internal 

device parasitics as well as interconnect parasitics, both in a symbolic form. Since a floorplan 

optimizer normally requires a set of device sizes as input, in this work we deploy a standalone 

parasitic-free GeoP sizing process [15], which does not include any parasitic consideration, to 

generate a sizing solution as initial input to the subsequent floorplan operation. Then we run an 

SA-driven placement algorithm with B*-tree representation [58] to generate multiple sound 

floorplan candidates, among which the best floorplan (called floorplan template hereafter in this 

dissertation) is selected. The selection criteria include reasonable signal flows, resemblance to 

circuit schematic, and implementation constraints and objectives (e.g., matching and area). 

Afterwards, this floorplan template would be loyally preserved in the subsequent parasitic-aware 

sizing optimization. Compared to the work in [59], our method can effectively resolve the 

convergence problem caused by inconsistent parasitics from varying floorplans as exhibited in our 

experimental results of Section 3.5. 
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After a successful run with the GeoP solver, a derived sized circuit (called Global Solution as 

shown in Fig. 3) can be verified in any circuit design environment (e.g., Cadence) for pre-layout 

simulation. If the GeoP solver is not able to find a global solution or the pre-layout simulation fails 

to meet the due specifications as promised by the GeoP solver, the requirements of the GeoP 

formulation need to be adjusted by modifying the applied constraints and parameters. This first 

turning-back design can largely save the design cycles by avoiding passing invalid solutions on. 

Once verified, the sized circuit associated with the optimized floorplan is then passed as an elite 

solution to the EA solvers for further refinement. In the worst case where the possible trials 

including constraint relaxation and parameter tweaking for GeoP resolving have been exhausted, 

the second EA sizing phase should take over. Because it might be difficult to seek a global GeoP 

solution even with the most relaxed constraints, especially for sizing a circuit with strong 

nonlinearity or concave configuration space, EA-based sizing should take over in time rather than 

wasting CPU resources for model tweaking inside the GeoP sizing phase. 

In the second phase, the EA solvers involve repeated pre-layout simulations along with 

dynamic estimation of interconnect parasitics by using the same parasitic modeling as the first 

sizing phase (GeoP-based). The device parasitics, which do not need to be symbolic, can be 

included from the foundry technology model files into the simulation netlist. Firstly, a fast DE 

search based on the GeoP elite output is executed. If the best solution obtained from the DE solver 

fails to meet the specifications, the optimization automatically switches to the many-OEA solver. 

The many-OEA solving would be integrated with the GeoP-derived circuit knowledge, which 

includes one definite GeoP elite solution and implied information on shrinkable variable ranges. 

If even the sophisticated many-OEA solver fails the sizing task, a reiteration from the very 

beginning of the flow is expected. 
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The GeoP-based and EA-based hybrid sizing will be further elaborated on in Section 3.3. 

Below several EA terms are introduced for clarity purpose. The maximum number of generations 

(Gmax) indicates the depth of evolution. Inside each generation, all the individuals constitute a 

population with its size denoted by NP. The chromosome of an individual is represented by a 

variable vector, which is called chromosome-vector throughout this chapter. Each element within 

the chromosome-vector is named as chromosome-variable. 

 

3.3. Sizing with Geometric Programming and 

Evolutionary Algorithms 

3.3.1. Geometric-Programming-Based Sizing 

Even though a form of statistical or deterministic algorithms is adopted for sizing in most of 

the layout-inclusive synthesis works surveyed in Section 2.2, in practice this optimization process 

is very time-consuming due to large search solution space especially in the context of lack of sound 

domain knowledge for the starting point. A wide variety of design objectives and constraints have 

a special form, which is called posynomial functions of design variables [15]. This has motivated 

us to apply GeoP to take both performance constraints and floorplanning constraints 

simultaneously to quickly determine a first-level global optimal solution. It would effectively help 

reduce the intensive calling of computationally expensive commercial simulators or layout 

generators. Aggarwal and O’Reilly [34] developed an algorithm to automatically generate 

posynomial models for MOSFET parameters by utilizing pre-layout simulations based on genetic 

algorithm and quadratic programming. Thanks to the alleviated modeling efforts, GeoP can equip 

a highly efficient circuit sizing optimization method for quickly outputting a global-view solution. 



31 

 

For a target circuit, the performance constraints like open loop gain, unity gain bandwidth, 

symmetry, matching, etc. can be modeled either in a monomial or posynomial form, which is 

applied within the block “Performance Constraints” in our proposed sizing flow in Fig. 3. For 

common analog structures, these expressions are normally available in the literature. More 

complicated analog structures can be partitioned into several smaller blocks, for which expressions 

can be derived by using symbolic analysis [60]. In addition, a floorplan can be constructed by 

using device sizes, minimum allowable distances between geometries, and matching constraints 

among different components. All these constraints are represented in the form of 

equations/inequalities used by the GeoP solver in the GeoP-based first sizing phase. If the 

performance or parasitic constraints are found to be in a complex form, which cannot be expressed 

as a monomial or posynomial form, such as 

𝑓𝑖(𝑥) =
𝑎𝑥𝑏+𝑐𝑥𝑑+⋯

𝑝𝑞𝑟+𝑙𝑚𝑛+⋯
 , (10) 

they can be formulated by using temporary variables as follows: 

𝑎𝑥𝑏 + 𝑐𝑥𝑑 +⋯ ≤ 𝑡𝑒𝑚𝑝1 , 𝑝𝑞𝑟 + 𝑙𝑚𝑛 +⋯ ≤ 𝑡𝑒𝑚𝑝2 , 
 

𝑡𝑒𝑚𝑝1

𝑡𝑒𝑚𝑝2
= 𝑓𝑖(𝑥) . 

(11) 

 

3.3.2. Differential-Evolution-Algorithm-Based Sizing 

In this work, the compound EA solvers are composed of single-objective DE and many-

objective θ-DEA. As a population-based stochastic function minimizer, DE is capable of evolving 

multi-dimensional real-valued chromosome-vectors by using a fitness function for evaluation 

purpose, as shown in (12) utilized in our work: 
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𝐹(𝑋) = ∑ 𝛼𝑖 ∙
1

𝑅𝑖
∙ 𝑆𝑖

𝑡
𝑖=1 + ∑ 𝛼𝑖 ∙

1

𝑆𝑖
∙ 𝑅𝑖

𝑛
𝑖=𝑡+1 + 𝛽1 ∙ 𝐴𝑛𝑜𝑟𝑚 + ∑ 𝛽𝑖 ∙

𝑚
𝑖=2 𝐺𝑅𝑖(𝑛𝑜𝑟𝑚) , (12) 

where 𝛼𝑖’s and 𝛽𝑖’s are the user-defined weighting factors for different electrical specifications 

and geometric requirements, respectively. Ri is the resultant value returned from numerical 

simulations and Si is the corresponding defined specification. The first two terms on the right side 

of (12) show reciprocal division between Ri and Si. In this way, if minimizing F(X), the resultant 

value, Ri (i = 1 to t, such as open-loop gain), can be maximized, whereas Ri (i = t+1 to n, such as 

noise figure) can be minimized. Thus, both maximization and minimization of multiple objectives 

are integrated into one single-objective minimization problem of F(X), where n is the total number 

of electrical specifications, and m is the total number of geometrical requirements. A is the 

normalized layout total area and GRi’s are the normalized other geometric requirements, which 

can be weighted by 𝛽𝑖’s (i = 1 to m). 

In this work, the uniform initialization is adopted to help the inclusion of any potential optimal 

solutions right from the first generation. The mutation is implemented by a currently-best-

individual-based greedy scheme to favor a strong desire for local exploration. After evolutionary 

recombination operations, some chromosome-variables may not stay inside their originally 

defined bounds. A naive way to solve this is to set all cross-border data to either the upper bound 

or the lower bound. However, this may experience a weakness of big n-to-1 correspondence that 

those out-of-bounds solutions are all mapped to the boundary values, and so it may degrade the 

efficiency of genetic operations. Therefore, we propose a special clamping scheme as shown in 

Algorithm 1 based on modulo operation, which can also support floating-point chromosome-

variables. Line 2 converts all floating-point parameters to integer values where N is the smallest 

integer to achieve this purpose. Line 3 derives a positive interval starting from 0. In Line 5, out-
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of-bound infeasible solutions are mapped back to valid solution space since they may also contain 

useful genetic information from parental generation. Furthermore, another technique [61] adopted 

in our DE scheme is its self-adaption capability of the control parameters, mutation ratio δ and 

crossover probability σ in (13), 

𝛿 = 𝛿0 ∗ 𝑒
−2(𝑠𝑢𝑚𝑊𝑒𝑖𝑔ℎ𝑡/𝑏𝑒𝑠𝑡𝐹) , 𝜎 = 𝜎0 ∗ 𝑒

−2(𝑠𝑢𝑚𝑊𝑒𝑖𝑔ℎ𝑡/𝑏𝑒𝑠𝑡𝐹) , (13) 

where δ0 and σ0 denote the initial values of δ and σ respectively, 𝑠𝑢𝑚𝑊𝑒𝑖𝑔ℎ𝑡 =  ∑ 𝛼𝑖
𝑛
𝑖=1  + ∑ 𝛽𝑖

𝑚
𝑖=1  

whose symbols are defined in (12), and bestF is the currently best fitness amount. If the 

specifications are just met while evaluating the best chromosome-vector, namely Ri/Si = 1 or Si/Ri 

= 1, as well as Anorm =1 and GRi(norm) = 1 in (12), bestF should be the same as sumWeight. The 

exponential terms would be valued smaller if better solutions appear with smaller bestF. So the 

new δ and σ would be much shrunk compared to δ0 and σ0. That is to say, the better the performance 

turns, the more δ and σ shrink and thus favor local refinement to help the evolution converge. 

Algorithm 1. Variable clamping 

Input: floating-point interval [b1, b2] and the varaible a that might be out of the interval 

Output: clamped a within [b1, b2] 

1. if  (a is outside of the interval [b1, b2]) 

2.     Convert a, b1 & b2 to integers by 𝑎′ =10𝑁 ∗ a, 𝑏1
′
 =10𝑁 ∗ b1, and  𝑏2

′
 =10𝑁 ∗ 𝑏2; 

3.     Shift [𝑏1
′
, 𝑏2

′
] to [0, 𝑏2

′
- 𝑏1

′
]; 

4.     r = 𝑎′ mod (𝑏2
′
- 𝑏1

′
); 

5.     return (𝑏1
′
+r) / 10𝑁; 

6. end if 

7. return a; 

 



34 

 

SOEAs might perform well if the settings are properly configured for solving a group of 

similar problems. This configuration requires knowledge on the problem itself, e.g., variable 

boundaries, algorithmic control parameters, or evolutionary selection schemes. Such knowledge 

demands uncertain trials for achieving a good understanding in the landscape of solution space, 

which can help drive the evolution smoother. However, it has less value if the problem changes. 

In addition, in order to deal with multi- or many-objective tasks, SOEAs need a balanced weighting 

consideration to lump various objectives together in the fitness function (12). If multiple solutions 

with different emphases on distinct objectives are demanded, repeated executions with different 

settings have to be resorted to. Each successful run may require certain knowledge learned from 

initial trials. Therefore, an SOEA without special handling may not be able to complete the multi- 

or many-objective optimization tasks especially in the context of computation effectiveness. 

 

3.3.3. Theta Dominance-Based Evolutionary Algorithm 

θ-DEA [38] inherits the framework of NSGA-III, including the most important idea of cluster 

or niche. Firstly, N clusters are composed according to N systematically-distributed reference 

points that are dependent on the number of objectives and division parameters. After the 

initialization of the first generation, the simulated binary crossover operator is performed to 

generate candidate offspring (i.e., next-generation) solutions from the recombination of their 

parental (i.e., current-generation’s) solutions. The objectives (i.e., circuit performances in our 

context) are evaluated from the function evaluation (i.e., circuit numerical simulation in our case). 

Nondominated sorting across each generation can then be performed to filter out inferior solutions. 
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In order to utilize the reference points, the m-dimensional objective space has to be normalized 

by using the objective values, nadir points and the best points found so far all from the current 

children population. The objective values from function evaluations and the best points from 

records are already known, while the current nadir point is solved via the following steps. Firstly, 

the extreme points along each objective axis are solved by minimizing an achievement scalarizing 

function that takes into account the current best points and the last nadir points. Then the obtained 

m extreme points are used to construct an m-dimensional linear hyperplane. Lastly, the intercepts 

that are the target current nadir points are obtained by having the linear hyperplane intercepted 

with each objective axis. Thus, the m-dimensional solution space of a complicated real problem is 

mapped to a normalized unit solution space with the same dimension, where the systematically 

pre-composed reference points can take effect. 

Within the normalized objective space, N reference lines can be constructed between the origin 

and each reference point. Then each normalized objective vector can be projected to the reference 

lines, and two distance values are obtained, di,1 being the distance to the corresponding reference 

line and di,2 being the one between the projected vector and the origin, where 𝑖 ∈ {1,2,…,N}. The 

best diversity is achieved when di,1 = 0 thanks to its perfect alignment with the reference line, 

whereas better convergence is achieved with a smaller di,2 under di,1 = 0. Then the balance of 

exploitation and exploration can be controlled by di,1 and di,2 included in Fi (x), 

𝐹𝑖(𝑥) = 𝜃 ∗ 𝑑𝑖,1 + 𝑑𝑖,2(𝑥) , (14) 

where θ is a user-defined factor further controlling the balance. The regular nondominated sorting 

with respect to objective values will be modified to regard Fi (x) (so-called θ-dominance), which 

is the main difference from NSGA-III. With Fi (x) for θ-dominance based selection, the next 
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population can be prepared by selecting members from currently available clusters, and the 

evolution carries on until the termination condition is satisfied. 

To improve the θ-DEA performance for resolving the analog/RF sizing problem in this 

dissertation, we have proposed the following modifications to the original algorithm of [38]. First, 

the uniform initialization and clamping scheme are adopted as discussed in Section 3.3.2. Then 

regarding our selection scheme for the new generation, when the number of the remaining slots 

for composing the next generation is smaller than that of the clusters available, we opt to give 

selection priority to those with the smallest cluster members in order to preserve diversity all the 

way down to the end, rather than randomly selecting members from the available clusters. 

For many-OPs, there are two metrics when comparing performance: set coverage (called C-

metric), and inverse generational distance (IGD) for representing the distance from representatives 

in the PF (called D-metric) [37] by using (15), 

IGD(𝑄, 𝑃∗) =  
1

|𝑃∗|
∑ 𝑚𝑖𝑛 𝑖=1

|𝑄|
𝑞𝑖∈𝑄,𝑜∈𝑃

∗ 𝑑(𝑞𝑖 , 𝑜) , (15) 

where Q is the nondominated points in the solution space as an approximation to the ideal Pareto 

Front (PF), P*. IGD expresses the convergence of set Q by calculating the average Euclidean 

distance d(qi,o) between each point qi in Q and each member o in P*. However, in the analog/RF 

sizing problem, discovering all the optimal solutions and determining such an ideal PF is even 

harder than solving the sizing engineering problem itself. Therefore, a highly nondominated 

optimal set has to be formed as the known best representative for the ideal PF. Such a 

representative pseudo PF, 𝑃𝑝𝑠𝑒𝑢
∗ , would replace P* in (15) for this work. A solution pool, which is 

composed by all the specification-passing non-duplicate solutions from various optimization 
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methods running on the same problem, is maintained in our experiments. By applying a 

nondominated sorting to the solution pool with a predefined size n, the solution pool would be 

always refined to an n-size nondominated set as the updated 𝑃𝑝𝑠𝑒𝑢
∗ , which is a resource-free side 

product when we study different optimization methods in our experiments. Naturally, it is the 

currently best solution set for the analog/RF sizing problems themselves versus any others derived 

from each single optimization method. In this regard, our challenge is actually different from the 

conventional many-OPs research in the area of computer science whose target problems are 

normally certain well-defined mathematical problems with definite PF. 

The IGD metric is supposed to be used for comparison among different MOEAs if the ideal 

P* is known in advance, e.g., the benchmark test cases used in computer science [36] [38]. 

However, in the engineering applications, it might provide misleading clue if the IGD is employed 

as the sole metric for comparison among different methods because 𝑃𝑝𝑠𝑒𝑢
∗ , only an empirical subset 

of P*, may not include all the PF segments. In any practical experiments, usually limited runs are 

conducted for collecting statistics data. Since it is not easy to judge which solution should be used 

as a representative for reporting data, IGD can help serve as a criterion for evaluating optimization 

quality for one scheme. Therefore in our experiments, we choose the run with the median IGD to 

represent the scheme for comparison as reported in Section 3.5. 

 

3.3.4. Sizing with Hybrid Evolutionary Algorithms 

It is beneficial to exploit the merits of each adopted EA method in a unified optimization flow. 

A regular implementation of DE seems incompetent in resolving certain hard problems due to the 

weakness of SOEA. Nevertheless, DE features several advantages, including its implementation 



38 

 

simplicity and good time efficiency compared to the others [62]. These features have contributed 

to its continuous popularity in the most recent applications even for handling MOPs [63] [64]. 

As discussed in Section 3.3.1, GeoP features fast access to global optimum along with the 

convenience of easy integration with device parasitics, interconnect parasitics, geometrical and 

performance constraints. The first-level optimum solutions from the GeoP phase may be relaxed 

in terms of accuracy requirement in our analog/RF sizing problems. As long as the GeoP output 

can facilitate the evolution process in the subsequent EA optimization phase, we believe that the 

GeoP phase is helpful to be integrated due to its merit of a tiny footprint. Through exploration 

around the GeoP elite output, the solution space in the following DE optimization can be largely 

trimmed due to its inherent nature of strong focus but less diversity. Our experiments exhibit that 

this GeoP-DE combination cooperates very well for the problems with less complex solution space. 

The major challenge, which our θ-DEA scheme is aimed to address, is to harvest multiple 

clusters where diverse optimal solutions are located for the multi-dimensional complex problems, 

although at the cost of computation time. Its population size, NP, has to be set to be no less than 

the number of reference points, which relies on division parameter. It might be fine to select a 

smaller division parameter to still enjoy a good coverage of solution space for a less complex 

problem. However, this might lead to a loss of many optimal regions for a hard problem featuring 

widely distributed optima. On the other hand, a larger division parameter may lead to time-

consuming evolution that is actually unnecessary for a less complex problem. So it is not always 

worthwhile to solve the analog/RF sizing problems by just using many-OEAs. Instead, we can first 

apply GeoP-DE and then continue with many-OEA if really needed. In this way, GeoP can help 

shrink the solution space by providing trimmed chromosome-variable boundary more reliably than 

any aimless random reduction. Therefore, at least one GeoP elite solution is preserved and 
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exploited in the DE evolutionary process, and/or one cluster around the GeoP elite solutions would 

be discovered in the θ-DEA optimization process. 

In our proposed optimization flow, DE just functions as a trial toolbox that may quickly yield 

a solution to meet the specifications if feasible especially for relatively less complex problems, 

whereas θ-DEA would take over to further deal with harder problems by exploring multi-

dimensional clusters. To sum up, our proposed three blocks, GeoP, DE, and θ-DEA, can play their 

distinct roles complementarily in the hybrid optimization flow with increasing accuracy at the cost 

of CPU time. Although none of them is perfect, our proposed method can choose the right 

combination to deliver efficient search based on the complexity of the actual sizing problems. 

 

3.4. Parasitic-Aware Sizing Methodology 

3.4.1. Floorplan Generation 

An important feature of our proposed sizing methodology is the inclusion of layout effects to 

be considered among the sizing constraints. To incorporate sensible calculation of layout-induced 

capacitance and resistance in both sizing phases, the circuit is floorplanned by using an SA-based 

engine with the B*-tree representation (as illustrated in Section 3.2). The output floorplan template, 

which meets the specific constraints, e.g., symmetry, matching, signal flow, and user-defined 

topology requirements, would be sustained in the following sizing optimization. Moreover, our 

global routing scheme starts with recording interconnect pins and collecting obstacle regions (e.g., 

transistor devices) based on the generated floorplan. Then a fast lookup-table-based rectilinear 

Steiner minimum tree algorithm, FLUTE [65], is employed to generate a minimum-Steiner-tree 

(MST) path for each electrical net. Based on the formed MST routing paths, the interconnect 
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segments can be symbolically expressed in terms of the device geometric parameters and 

technology design rule factors. As a result of deploying the tractable floorplan template, the 

vulnerable parasitic impact can be effectively made up by tuning device sizes or bias conditions in 

the sizing process. So without compromising the optimization resolution, the search solution space 

can be significantly reduced. 
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Fig. 4. One floorplan of the differential-pair comparator 

Based on the floorplan template, each device capacitance and interconnect capacitance & 

resistance are modeled as a set of symbolic layout constraints. To mitigate the layout-induced 

mismatch, the symmetry requirements are put inside the floorplanning constraints. For example, 

one floorplan template of the differential-pair comparator in Fig. 5(b), is shown in Fig. 4 with the 

presence of interconnects. The transistors M1 & M2, M3 & M4, M7 & M8 and M9 - M12 are 
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placed symmetrically to avoid parasitic mismatch, which is also visible from the floorplan. 

Floorplanning constraints are formulated to minimize the total area. Cartesian coordinates are used 

to denote the position of devices. Special separation requirements between two adjacent devices 

can be reflected by user-defined spacing constraints or simply from technology-dependent design 

rules. Relative geometric positioning constraints are added to avoid overlap of devices. For 

instance, the following inequalities can be formulated for the transistors in Fig. 4, 

𝑤𝑚𝑖 + 2 ∗ 𝑝𝑜𝑙𝑦𝐸𝑥𝑡 + 𝑣𝑖1 ≤ 𝑣𝑖2 ,    𝑑 + 𝑣𝑖2 ≤ 𝑣𝑗1 , 

 

𝑙𝑚𝑖 ∗ 𝑛𝑓𝑖 + (𝑛𝑓𝑖 −  1) ∗ 𝑆𝐷 + 2 ∗ 𝐿𝑑 + ℎ𝑖1 ≤ ℎ𝑖2 , 

 

𝑑 + ℎ𝑖2 ≤ ℎ𝑗1 , 

(16) 

where wmi is the single transistor finger width, lmi is the transistor length, nfi is the total number of 

transistor fingers, polyExt is the polysilicon extension over active diffusion area, d is the user-

specified minimum distance between modules, SD is the distance between transistor fingers, Ld is 

the side lateral diffusion length of the source & drain region in the multi-finger structure, vi1 and 

vi2 are the vertical coordinates of the ith transistor, and hi1 and hi2 are the horizontal coordinates of 

the ith transistor. The multi-finger structure is implemented and demonstrated by M1 and M9 in 

Fig. 4, and the rest of devices are depicted by simplified blocks. Special constraints can be also 

included so that the total interconnect parasitics of sensitive nodes can be well restricted, e.g., Cintp 

and Cintn of the two output nodes in Fig. 4 staying equal in the minimum-sized floorplan for 

reducing capacitive mismatch. 
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3.4.2. Parasitics Consideration in Both GeoP and EA Sizing 

Phases 

Once a floorplan template is derived, two categories of parasitics, i.e., device parasitics and 

interconnect parasitics, can be modeled and integrated into a set of symbolic layout constraints as 

follows. Firstly, for the CMOS technology, sensible capacitance and resistance models for sub-

circuit device parasitics, like Cds, Cgs, and Cdb, are available from the foundry technology model 

files. These models provide acceptable device intrinsic capacitance, intra-device local interconnect 

capacitance, and resistance in terms of transistor width, length, number of fingers, and technology-

dependent coefficients. By using these parasitic models, intrinsic device capacitance, local 

interconnect capacitance, and resistance constraints are all formulated in a symbolic form and 

passed to the GeoP modeling and later be reused during the EA optimization phase. 

Secondly, by using interconnect geometric size, unit resistivity of interconnect layer, unit 

capacitance from interconnect layer to substrate and active region, as well as unit interconnect-

interconnect coupling capacitance, the symbolic expressions of interconnect parasitics can be 

obtained (as detailed by (17)-(20) in Section 3.4.3). We adopt the scheme in [10], which claimed 

to have estimation errors lower than 10% to accurately estimate the interconnect substrate parasitic 

capacitance and coupling parasitic capacitance between interconnects on the same or different 

layers. Such an analytic capacitance model, developed on the basis of electric field approximation 

and curve-fitting technique, and the inter-device parasitic resistance model [9] are used in our work 

to generate symbolic (for the GeoP-based sizing process) and numerical (for the EA-based sizing 

process) parasitic constraints for circuit interconnections. To be specific, these models 

incorporated in the EA phase can dynamically calculate the interconnect parasitics, which result 

from the fluctuating device geometries during the evolution. The updated interconnect parasitics 
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will be back annotated to netlist for numerical simulation. Furthermore, thanks to the availability 

of the device intrinsic parasitic models that come from the foundry and the interconnect parasitic 

models that come from the literature [9] [10], the only effort for formulating complete symbolic 

parasitic expressions relies on the derivation of interconnect segments, which are generated by the 

floorplan optimization and global routing. 

These parasitic expressions, which are present inside the analytic performance constraints in 

the GeoP sizing phase and through netlist for the numerical simulation in the EA sizing phase, 

would influence the sizing results. Furthermore, as a result of deploying the tractable floorplan 

template, the vulnerable parasitic impact can be effectively made up by tuning device sizes or bias 

conditions in the sizing process. So without compromising the optimization resolution, the search 

solution space can be significantly decreased. Below we demonstrate such a contrast quantitatively 

by using a circuit with only four MOSFETs. We assume only the following limited discrete values 

of MOSFET width, length and multiplier are included as the sizing solutions: the MOSFET width 

varies from 100nm to 1μm, the MOSFET length varies from 100nm to 500nm, the MOSFET 

multiplier varies from 1 to 5, and the minimum metric step size is 100nm for the width and length 

while the minimum multiplier step size is 1. Therefore, the number of sizing solutions is (9*4*5)4 

= 1,049,760,000. We also assume that the four transistors in this case study can only be located in 

certain places so that they form a regular matrix (i.e., just four options including 14 matrix, 22 

matrix, and their transposed counterparts). Thus, the total number of possible floorplans is at least 

4!*4=96 and accordingly the entire search solution space of this sizing problem contains as much 

as 96*1,049,760,000 = 100,776,960,000 distinct sizing solutions. Within such huge search solution 

space, by using our proposed scheme with the aid of a traceable floorplan template, we can 

effectively shrink the search scope by (96-1)/96 = 98.95%. 
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Moreover, for the high-performance analog circuits or RF circuits, the performance or 

geometric constraints should be properly managed within our proposed parasitic-aware hybrid 

sizing methodology. Sensitivity analysis can be conducted for these circuits to gain comprehensive 

domain knowledge. To account for the parasitic estimation difference between our proposed 

parasitic modeling and the off-the-shelf layout extraction tools, the designers may opt to apply 

conservative bounds for the sensitive nets in order to leave certain room in case the actual parasitics 

may drive the performance off track. 

 

3.4.3. GeoP Compatibility for Interconnect Parasitics 

In the following, we prove the intact GeoP-compatibility nature of an analog/RF circuitry 

design if adding floorplan and parasitic constraints. 

Theorem:  For a known floorplan, integration of floorplan and interconnect parasitic 

constraints has no impact on the GeoP-compatibility of an analog/RF circuitry design. 

Proof: The position of each rectangular device can be represented by symbolic coordinates 

of its four corners. The relative device positions in a given floorplan can be expressed by linear 

inequalities with device corner coordinates and distance symbols like Eq. (16). Without loss of 

generality, since all the expressions are non-negative if following the constraint construction 

scheme above, the formulated posynomial floorplan inequality constraints would not alter the 

GeoP-compatibility of the original analog/RF circuitry design. 

By using coordinates and segment symbols, interconnect length can be expressed to enclose 

several non-negative component lines based on a given floorplan while interconnect width can be 
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represented by a single variable to be optimized. The interconnect overlap capacitance can be 

calculated by [10], 

𝐶𝑜𝑣 = 𝑖𝑛𝑡𝐿𝑒𝑛𝑔𝑡ℎ ∗ 𝑖𝑛𝑡𝑊𝑖𝑑𝑡ℎ ∗ 𝐶𝑜𝑣_𝑢𝑛𝑖𝑡 , (17) 

where intLength and intWidth are the interconnect length and width to be optimized, and Cov_unit is 

a technology dependent constant. The interconnect fringe capacitance depends on the perimeter of 

the interconnect geometry, 

𝐶𝑓𝑟𝑖𝑛𝑔𝑒 = 2 ∗
𝜀0∗𝜀𝑟

𝜋
∗ 𝑙𝑛 (1 +

2∗𝑡

𝑑𝑖𝑠𝑡
) ∗ 𝐶𝑓𝑟𝑖𝑛𝑔𝑒𝑢𝑛𝑖𝑡 ∗ (𝑖𝑛𝑡𝑊𝑖𝑑𝑡ℎ + 𝑖𝑛𝑡𝐿𝑒𝑛𝑔𝑡ℎ) , (18) 

where ε0 is the vacuum permittivity, εr is the relative dielectric coefficient, t is the thickness of a 

given interconnect layer, dist is the vertical distance between this layer and substrate. Cfringe_unit is 

a technology-dependent constant, and so do t and dist. Therefore, the total interconnect capacitance 

is, 

𝐶𝑖𝑛𝑡 = 𝐶𝑜𝑣 + 𝐶𝑓𝑟𝑖𝑛𝑔𝑒 . (19) 

The interconnect parasitic resistance can be achieved by, 

𝑅𝑖𝑛𝑡 =
𝑖𝑛𝑡𝐿𝑒𝑛𝑔𝑡ℎ∗𝜌

𝑖𝑛𝑡𝑊𝑖𝑑𝑡ℎ ∗ 𝑖𝑛𝑡𝑇ℎ𝑖𝑐𝑘 
 , (20) 

where intLength is a posynomial, intWdith is a monomial, ρ is the sheet resistivity and intThick is 

the thickness of the interconnect layer (both as technology-dependent constants). Since all of the 

parasitic equations above are posynomials, adding these interconnect parasitic constraints would 
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not affect the original nature of the formulation in terms of GeoP-compatibility. Therefore, the 

theorem holds for the inclusion of both floorplan and parasitic constraints.            █ 

 

3.4.4. The Implication of GeoP Elite Output 

The implied knowledge from the GeoP output can help eliminate unknowledgeable random 

exploration. As the standalone EA sizing method has no knowledge of the target circuits, their 

chromosome-variable range is normally set much wider than that of the GeoP-EA scheme 

equipped by the implied knowledge from the GeoP elite output. Moreover, some fundamental 

knowledge of the circuit sizing design rules are required. Usually the device width and length (i.e., 

equivalently silicon area) are encouraged to be smaller. The minimal value of device width or 

length is limited by the technology node. Then the optimization job is to attempt to gain better 

performance by consuming less silicon area (i.e., selecting smaller width and length if possible). 

We have integrated the following tactics for generating design variables used within the EA 

optimization. A user-defined percentage (e.g., 50% by default) is added to each MOSFET length 

variable value obtained from the GeoP elite solution as its upper bound, whereas another user-

defined percentage (e.g., 100% by default) is appended to the other variables (including the 

MOSFET width) on top of the GeoP elite solution as their upper bounds. Based on these extended 

variable ranges, the EA optimization would select the optimal variable values and their 

combination to reach the best performance. The value selection of these user-defined percentages 

can be determined by the designers according to their understanding of the complexity level for 

the circuit to be sized. 
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Then a step size is determined for enumerating possible discrete variable values within the 

applied knowledge-implied variable range. The selection of the step size should consider the 

tolerance constrained by the target technology and circuit simulator. In our experiments, 10nm and 

5nm were used by default as the step sizes of MOSFET width and length, respectively. Special 

care should be given to the inductor since the relationship between its device properties (e.g., Q 

factor and inductance) and parameters (e.g., radius, width, and turns) are highly discontinuous and 

nonlinear. In contrast, without any clue of the GeoP elite solution, any EA method may have to be 

obligated to provide wider variable ranges to avoid missing any potential optimal solutions. This 

would naturally result in hardship in the evolutionary search and optimization. 

 

3.5. Experimental Results 

This section is divided into four sub-sections. Sub-section 3.5.1 briefly introduces the three 

experimental circuits followed by an elaboration of the GeoP modeling. Sub-section 3.5.2 studies 

performance difference between the parasitic-inclusive GeoP sizing and the one without 

consideration of parasitics. Following the introduction of experimental setup, Sub-section 3.5.3 

highlights the merits of our GeoP-EA hybrid method by providing experimental results compared 

to the other alternative schemes. Finally Sub-section 3.5.4 discusses the post-layout verification. 

The flow of our experiment is as follows. In the GeoP-based first sizing phase, the device sizes 

and bias are treated as the GeoP sizing variables, which are involved in the circuit modeling built 

in Matlab. Then the solved GeoP elite is input to the EA-based second sizing phase as one 

evolutionary individual introduced into the initial evolutionary generation. During the iterative 

evolution, every recombined trial solution and its contained sizing variables will be written into 
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the circuit netlist. It will then be simulated by using the numerical simulator (e.g., Cadence Spectre 

[56]). Then the performance is extracted and associated with its corresponding trial solution, which 

is used for competitive survival test for composing the next generation. The EA engine is 

implemented in C++. The experiment setup for a variety of experimental schemes are detailed in 

Section 3.5.3. 

 

3.5.1. Parasitic-Aware GeoP Modeling 

In this chapter, we use the following three circuits as demonstrative test examples. A widely 

used two-stage P-channel input operational amplifier (Op-Amp) made of a single-ended 

differential amplifier stage followed by a common-source stage is shown in Fig. 5(a). R1 and R2 

represent interconnect parasitic resistances between differential pair (M1 and M2) and tail 

transistor M5. A differential-pair comparator as depicted in Fig. 5(b) is explained in more detail to 

show the parasitic-inclusive GeoP modeling in compliance with the selected floorplan template in 

Fig. 4. The third circuit, a Cascode common-source low noise amplifier (LNA), is shown in Fig. 5 

(c). In our experiments, these circuits were designed in the different technologies: the two-stage 

Op-Amp in a CMOS 0.18um technology, the differential comparator in a regular CMOS 90nm 

technology, and the LNA in a CMOS 90nm low power technology. Moreover, we used BSIM4 

level-14 model for all the circuit numerical simulations. 
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Fig. 5. Circuit diagrams for a) two-stage Op-Amp, b) differential-pair comparator, and 

c) cascode common source LNA with source degeneration 

 

The differential-pair comparator, belonging to the category of dynamic comparators, is faster 

than any gain-based comparators yet still with minimum power consumption because it is driven 

by clock signals. As the comparator is a regenerative one based on latch, the latch time constant 

can be expressed as [66], 
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𝜏𝑙 =
𝐶𝑜𝑢𝑡

𝑔𝑚
 . (21) 

where Cout is the total capacitance at the positive (Cout,p) and negative (Cout,n) output nodes. These 

capacitances can be written as, 

𝐶𝑜𝑢𝑡,𝑝/𝑛 = 𝐶𝑑𝑏7/8 + 𝐶𝑑𝑏10/11 + 𝐶𝑔𝑠11/10 + 𝐶𝑔𝑠8/7 + 𝐶𝑖𝑛𝑡𝑝/𝑛 , (22) 

where the slash symbol represents the meaning of “OR”, and Cintp/n is the interconnect capacitance 

that can be modeled in a symbolic form by using the minimum-size floorplan as depicted in Fig. 

4. The propagation delay of the latch, tprop, as a target specification, can be written in terms of the 

final high and low output voltages (Voh and Vol), 

𝑡𝑝𝑟𝑜𝑝 = 𝜏𝑙𝑙𝑛 (
𝑉𝑜ℎ−𝑉𝑜𝑙

2∆𝑉𝑖𝑛
) , (23) 

where ∆𝑉𝑖𝑛, which is always less than Voh – Vol, is the difference between the two latch output 

voltages before the latch is enabled. The target maximum allowable propagation delay may be 

specified as a user-defined value (e.g., 1ns). 

When the two clocks are in the evaluative phase, the latch is enabled. And depending on the 

resistance of the two branches, the latch decides which output will stay high and which one will 

go low. As the transistors M1, M2, M3, and M4 work in triode region, the MOSFET on-resistance 

of the two branches can be written as, 

1

𝑅1,3/2,4
= 𝑘𝑛 [

𝑊1/2

𝐿1/2
(𝑣𝑖𝑛

+/−
− 𝑣𝑡) −

𝑊3/4

𝐿3/4
(𝑣𝑟𝑒𝑓

−/+
− 𝑣𝑡)] . (24) 
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As W2 & W4 (L2 & L4) and W1 & W3 (L1 & L3) are considered equal, respectively, the conductance 

of the two branches can be written as, 

𝐺1,3 = 𝐺2,4 = 𝑘𝑛
𝑊

𝐿
(𝑉𝑖𝑛 − 𝑉𝑟𝑒𝑓 − 2𝑉𝑡) . (25) 

The resistances, which must be equal for the same applied inputs voltages and reference 

voltages in order to ensure proper matching between two branches, are found to be the inverse of 

the conductances above. Each resistance is taken under a certain specified value Rmax to ensure 

sufficient speed. Moreover, a capacitive mismatch between the two output nodes can readily cause 

the comparator to malfunction. So another constraint (26) has to be added in order that the 

difference between the interconnect capacitances, modeled from the floorplan, is smaller than a 

certain specified value (𝐶𝑑𝑖𝑓𝑓), 

𝐶𝑜𝑢𝑡,𝑝 − 𝐶𝑜𝑢𝑡,𝑛  ≤ 𝐶𝑑𝑖𝑓𝑓 . (26) 

With the floorplan template as shown in Fig. 4, the geometric constraint in terms of overall 

silicon area can be formulated as, 

max (𝐷𝑖𝑠𝑡𝑣(9,5,1), 𝐷𝑖𝑠𝑡𝑣(10,7,2), 𝐷𝑖𝑠𝑡𝑣(11,8,3), 𝐷𝑖𝑠𝑡𝑣(12,6,4)) ∗ 

 

max (𝐷𝑖𝑠𝑡ℎ(9,10,11,12), 𝐷𝑖𝑠𝑡ℎ(5,7,8,6), 𝐷𝑖𝑠𝑡ℎ(1,2,3,4))  ≤ 𝑆𝑝𝑒𝑐.𝑎𝑟𝑒𝑎 , 

 

𝐷𝑖𝑠𝑡ℎ(9,10,11,12) = 𝐷𝑖𝑠𝑡ℎ9 + 𝐷𝑖𝑠𝑡ℎ10+𝐷𝑖𝑠𝑡ℎ11+𝐷𝑖𝑠𝑡ℎ12 + 3𝑑 , 

 

𝐷𝑖𝑠𝑡𝑣(9,5,1) = 𝐷𝑖𝑠𝑡𝑣9 + 𝐷𝑖𝑠𝑡𝑣5+𝐷𝑖𝑠𝑡𝑣1 + 2𝑑 , 

 

𝐷𝑖𝑠𝑡ℎ𝑖 = 𝑙𝑚𝑖 ∗ 𝑛𝑓𝑖 + (𝑛𝑓𝑖 −  1) ∗ 𝑆𝐷 + 2 ∗ 𝐿𝑑 , 

 

𝐷𝑖𝑠𝑡𝑣𝑖 = 𝑤𝑚𝑖 + 2 ∗ 𝑝𝑜𝑙𝑦𝐸𝑥𝑡 , 

(27) 



52 

 

where Disthi and Distvi are the horizontal and vertical edge-to-edge distances (i.e., module size) for 

module i, 𝑆𝑝𝑒𝑐𝑎𝑟𝑒𝑎 is the specification of the consumed silicon area, and all the other parameters 

are defined by following (16). 

With this floorplan template, the interconnect length for the positive output node (Cintp as 

shown in Fig. 4) is calculated by, 

𝑖𝑛𝑡𝐿𝑒𝑛𝑔𝑡ℎ𝑜𝑢𝑡,𝑝 = 𝐷𝑖𝑠𝑡ℎ7 + 0.5𝐷𝑖𝑠𝑡ℎ8 + 𝑖𝑛𝑡𝐿𝑜𝑐𝑎𝑙9,10,7,8,11 + 

 

0.5(𝐷𝑖𝑠𝑡𝑣9 + 𝐷𝑖𝑠𝑡𝑣10 + 𝐷𝑖𝑠𝑡𝑣7 + 𝐷𝑖𝑠𝑡𝑣8+𝐷𝑖𝑠𝑡𝑣11) + 4𝑑 , 

 

(28) 

where 𝑖𝑛𝑡𝐿𝑜𝑐𝑎𝑙9,10,7,8,11 is the total length of the intra-module interconnect segments for modules 

9, 10, 7, 8, and 11 (assuming that the length of each intra-module interconnect segment is constant). 

Then Cout,p can be calculated by applying 𝑖𝑛𝑡𝐿𝑒𝑛𝑔𝑡ℎ𝑜𝑢𝑡,𝑝 to (17)-(19). 

As exemplified above, the performance equations (e.g., (23)), electrical constraints (e.g., (24)-

(26)), and geometric constraints (e.g., (27)) are formulated in the GeoP-compatible form for sizing 

a circuit. Moreover, the intrinsic parasitics (e.g., Cdb and Cgs) and interconnect parasitics (e.g., Cintp) 

as described above are integrated together into (22) in order to control the circuit performance 

𝑡𝑝𝑟𝑜𝑝 via (21) and (23). The primary GeoP variables include MOSFET width, length, multiplier, 

and interconnect width. 

 

3.5.2. Parasitic Consideration in the GeoP Sizing Phase 

The highly efficient GeoP solver as the first-phase sizing engine can achieve an initial solution 

within a few seconds. It is much faster than any computationally intensive simulators or 
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statistical/deterministic algorithms running from scratch. The experimental performance of the 

two-stage Op-Amp from the GeoP sizing phase is listed in Table 1. Case A uses the performance 

model along with MOSFET intrinsic parasitic model, and Case B takes into account interconnect 

parasitics on top of the models used in Case A. Without considering the floorplan-induced 

interconnect parasitics in the sizing process, Case-A in Table 1 shows that the gain can only reach 

83.18dB. In contrast, if the interconnect parasitics are considered in the sizing process as proposed 

in Section 3.2, the device sizes from the GeoP optimization reflect such a change and derive a set 

of different sizing results accordingly. Thus the simulation results with interconnect parasitics 

consideration has exhibited a gain boost up to 88.94dB. 

Table 1. Pre-layout simulation results for Op-Amp when using the GeoP sizing methodology 
- Performance 

Specifications Case-A Case-B 

Gain ( >60dB ) 83.18 88.94  

UGF ( >1MHz ) 1.529 1.503 

PM ( >60° ) 80.58 80.13  

GM ( >10dB ) 35.39 35.33  

1 Ω Mismatch between Interconnect Parasitic Resistance R1 and R2 

Gain (dB) 82.57 88.84 

Gain Drop (dB) 0.61 0.1 

UGF (MHz) 1.523 1.499 

PM (°) 80.58 80.13 

GM (dB) 35.4 35.33 

5 Ω Mismatch between Interconnect Parasitic Resistance R1 and R2 

Gain (dB) 80.50 88.40 

Gain Drop (dB) 2.68 0.54 

UGF (MHz) 1.492 1.502 

PM (°) 80.6 80.14 

GM (dB) 35.44 35.34 

 

Although the size and layout structure (e.g., finger number) of matching-constrained devices 

are relatively easy to be considered in the sizing process, it is normally difficult to ensure a 

parasitic-matched design without floorplan information. This is particularly true for the matched 

MOSFETs that may be affected by distinct neighboring devices, different routing circumstances, 
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layers and vias in between, etc. Table 1 also shows the effects of interconnect parasitics mismatch 

on performance, mainly on gain due to parasitic resistance mismatch. As shown in Fig. 5(a), R1 

and R2 reflect the interconnect parasitic resistances between M5 and M1 and between M5 and M2, 

respectively. Two sets of resistance mismatch (1 Ω and 5 Ω), which can be readily attained from 

regular analog layouts, were applied to both Case-A and Case-B. In both mismatch cases, the gain 

drops of Case-A (i.e., 0.61dB and 2.68dB) are significantly greater than those of Case-B (i.e., 

0.1dB and 0.54dB). This experiment shows that the sizing results with interconnect parasitic 

consideration can be more immune to the parasitic mismatch, which might appear due to imperfect 

layout in practice. 

 

3.5.3. GeoP-EA Hybrid Sizing 

After the GeoP solver solves the modelled sizing problem exemplified in Section 3.5.1, a 

GeoP elite solution is obtained. Since the GeoP modeling is an approximation approach, modeling 

errors do exist. And if they can be compensated by a refinement optimization like EA, it is possible 

to further discover higher-accuracy solutions. Another reason of passing the GeoP results into the 

EA (i.e., DE or θ-DEA) optimization is to help form a condensed search space. Thus, by 

eliminating unknowledgeable random exploration, the time consumed by EA optimization can be 

significantly decreased without compromising the search accuracy. Based on the GeoP elite 

solution, the shrunk search space in the EA sizing phase can be established by properly arranging 

the variable bounds and setting the step size for each chromosome-variable in the chromosome-

vector as described in Section 3.4.4. 
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In our experiments, each method was run for 10 times iteratively and some statistics data were 

extracted to reflect the performance of the method under study. The IGD metric for multi- or many-

objective methods was defined in (15). The reported data in Table 2, Table 3, and Table 4 were 

extracted from a selected run with the median fitness for single-objective EAs or with the median 

IGD for many-objective EAs. For each test circuit, eight schemes are compared with one another. 

Scheme-0 is the standalone parasitic-aware GeoP-based sizing method as discussed in Section 

3.3.1 and Section 3.5.1. Scheme-1 follows the Synthesis Flow for fast Parasitic Closure (called 

SFPC for short) originally proposed in [59], which encloses placement and global routing inside a 

refined-sizing loop. 

The rest of parasitic-aware GeoP-EA hybrid sizing methods are implemented with different 

evolutionary configurations. Scheme-2 is for the single-objective DE sizing method (as discussed 

in Section 3.3.2) without GeoP phase (called NoGeoP-DE) whose NP and Gmax are set as 30 and 

50 respectively [67], while Scheme-3 is similar but integrated with the GeoP result (called GeoP-

DE) whose NP and Gmax are set as 15 and 8 respectively. Schemes 4-7 are for many-objective θ-

DEA (as discussed in Sec. 4.3), where Schemes 4-5 have no GeoP involvement and Schemes 6-7 

include the GeoP elite output in their evolution process. For each of the two categories above, 

large-scale and small-scale θ-DEA configurations with NP * Gmax of 56 * 40 (i.e., in Scheme-4 

and Scheme-6) and 32 * 20 (i.e., in Scheme-5 and Scheme-7) respectively are studied. In addition, 

Schemes 1-7 are based on simulation, and there is no actual layout generation procedure for any 

schemes in Table 2, Table 3, and Table 4. Thus, the reported run time only reflects the schematic-

level sizing optimization process. Moreover, the silicon area is estimated by the device sizes and 

the power consumption is reported from the simulation for the representative solutions. 



56 

 

For many-objective optimization problems, to encourage the generation of optimal clusters, 

the clusters have to be distributed across the entire solution space even in certain infeasible regions 

by managing a systematic construction of reference points. Therefore, only the solutions that pass 

specifications should be included in the statistics calculation for the many-objective methods. 

Otherwise, the collected statistical data, which are dominated by infeasible solutions, reflect little 

sense for evaluating the performance of any individual method. In addition, rather than using 

standard deviation in the final nondominated set, we employ success-rate to depict how many 

solutions within one population can meet the due specifications. On the other hand, for the single-

objective methods, the fitness function in (12) is used for the statistics calculation, while the 

standard deviation is still extracted to exhibit the status of convergence and diversity for the 

evolutionary optimization. If single-objective and many-objective methods have to be compared 

with each other, we suggest simply unifying the many-objective solutions by using (12) (as a post 

processing for each obtained solution from the many-objective methods) to treat the calculated 

fitness amount as the ultimate benchmark (as shown in the row of “Median IGD/Fitness Run: Best-

Fitness” in Tables 2-4), which itself should be viewed impartially due to lack of dominance concept 

in the operation above. 

As shown in Table 2, the single-objective methods generally perform worse than the many-

objective methods in terms of the best-fitness. But it is noticeable that Scheme-3 (GeoP-DE) can 

base its evolution on top of the GeoP elite output and deliver acceptable solutions with less runtime 

compared to the others. One can also observe that there is a very small difference of the fitness 

amounts among Schemes 4-7, which can hardly tell an overridden preference regarding the 

optimization quality. To the benefit of computation efficiency, the small-scale configuration is 

certainly appealing. 
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Table 2. Algorithmic settings and performance of the Two-stage Op-Amp 

Schemes 

GeoP Single-objective Methods Many-objective θ-DEA 

Sch-0 

Sch-1 

(SFPC) 

[59] 

Sch-2 

(NoGeoP-

DE) [67] 

Sch-3 

(GeoP-DE) 

[This 

work] 

Sch-4 

(NoGeoP

-θ-

Large) 

Sch-5 

(NoGeoP

-θ- 

Small) 

Sch-6 

(GeoP-θ-

Large) 

Sch-7 

(GeoP-θ-

Small) 

[This 

work] 

Median IGD/Fitness 

Run: Best-Fitness 
0.593 0.554 0.621 0.544 0.450 0.478 0.458 0.460 

Median IGD Run: 

Average-Fitness 
- - - - 0.519 0.552 0.528 0.569 

Median IGD Run: 

Success-Rate 
- - - - 30.36% 25.00% 53.6% 21.88% 

Median Fitness Run: 

Average 
- 0.734 0.731 0.711 - - - - 

Median Fitness Run: 

Standard-Deviation 
- 0.098 0.114 0.114 - - - - 

Run Time (hours) 
1.31 

sec. 
1.74 9.64 0.34 8.04 2.37 7.38 2.02 

Obj. & Spec. Performance (from the Representative Solution with the Smallest Fitness Value) 

Est. Area (μm2) 556.11 8243.05 5059.54 542.34 1749.16 4758.87 799.11 467.40 

DC Power (μW) 20.92 85.38 59.19 28.56 34.65 95.78 210.10 113.2 

Gain > 60dB 88.94 93.53 91.96 87.12 85.97 72.46 73.26 80.75 

UGF > 1M 1.50 2.53 1.35 2.54 4.06 4.32 20.83 5.52 

PM > 60° 80.13 78.39 81.86 76.58 124.41 131.35 91.32 87.59 

GM > 10dB 35.33 24.15 27.93 32.06 26.82 25.34 32.26 43.48 

 

With reference to Scheme-0 (i.e., standalone GeoP), the size variations of the eight transistors 

(i.e., M1/M2, M3/M4, M5, M6, M7, and M8) in the two-stage Op-Amp example are 50%, 0%, 

2.30%, 0.47%, 2.44%, and 2.28% for Scheme-3 (i.e., GeoP-DE), and 98.53%, 84.51%, 65.22%, 

34.32%, 86.57%, and 53.52% for Scheme-7 (GeoP-θ-Small), respectively. It is obvious that a close 

resemblance of device sizes can be observed between Scheme-0 and Scheme-3, whereas less 

similarity can be found between Scheme-0 and Scheme-7. This is because the many-objective θ-

DEA method treats the GeoP elite solution as a candidate only in one of its many clusters, which 

are explored simultaneously. So the reported representative solution might be derived from another 

cluster different from the one holding the GeoP elite solution. In contrast, the DE method explores 

the neighboring regions based on the current best-fitness solution. Depending on the configured 
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problem space and evolutionary operators, the DE method may not be able to conduct an 

adventurous search with big step size. Therefore, it normally accounts for less aggressive size 

variation with reference to Scheme-0. 

Table 3 provides the sizing results for the differential comparator. Propagation delay is one of 

the most important characteristics for the comparator circuit, and the positive and negative 

overshoots are given with the absolute values in the table. For the single-objective methods, SFPC 

(i.e., Scheme-1) and NoGeoP-DE (i.e., Scheme-2) exhibit the results of poor best-fitness and 

average-fitness but with good standard-deviation (i.e., 0.7, 0.837, and 0.111 respectively), or good 

best-fitness but with poor average-fitness and standard-deviation (i.e., 0.4, 0.957, and 0.804 

respectively). It is obvious that SFPC can only generate a less favorable solution compared to the 

standalone GeoP method (i.e., Scheme-0) with a fitness of 0.584. In contrast, GeoP-DE (i.e., 

Scheme-3) performs reasonably well with the acceptable performance as well as the least runtime. 

For the many-objective methods, both NoGeoP-θ-Large (i.e., Scheme-4) and NoGeoP-θ-Small 

(i.e., Scheme-5) perform relatively worse than GeoP-θ-Large (i.e., Scheme-6) and GeoP-θ-Small 

(i.e., Scheme-7) as per the data from the first two rows, which tend to exhibit a different trend from 

the two-stage Op-Amp. We believe this is highly related to the nature of the comparator circuit, 

whose switching operation in the current path may be reversed quickly when the logic balance is 

broken by sufficient change of device sizes or incurred parasitics. That is to say, the solutions 

space of the comparator is more complex than that of the two-stage Op-Amp. In this situation, the 

circuit knowledge from the GeoP elite seems more helpful for such complex sizing problems as it 

can lead to confined solution space for an enhanced depth of exploitation. 
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Table 3. Algorithmic settings and performance of the Differential Comparator 

Schemes 

GeoP Single-objective Methods Many-objective θ-DEA 

Sch-0 

Sch-1 

(SFPC) 

[59] 

Sch-2 

(NoGeoP-

DE) [67] 

Sch-3 

(GeoP-DE) 

[This 

work] 

Sch-4 

(NoGeoP

-θ-

Large) 

Sch-5 

(NoGeoP

-θ- 

Small) 

Sch-6 

(GeoP-θ-

Large) 

Sch-7 

(GeoP-θ-

Small) 

[This 

work] 

Median IGD/Fitness 

Run: Best-Fitness 
0.584 0.700 0.400 0.455 0.458 0.549 0.378 0.416 

Median IGD Run: 

Average-Fitness 
- - - - 0.502 0.542 0.508 0.507 

Median IGD Run: 

Success-Rate 
- - - - 3.85% 3.57% 9.62% 17.86% 

Median Fitness Run: 

Average 
- 0.837 0.957 0.778 - - - - 

Median Fitness Run: 

Standard-Deviation 
- 0.111 0.804 0.297 - - - - 

Run Time (hours) 
1.24 

sec. 
1.93 11.80 0.45 7.44 1.95 7.76 1.88 

Obj. & Spec. Performance (from the Representative Solution with the Smallest Fitness) 

Est. Area (μm2) 358.33 517.00 460.15 239.51 357.48 470.71 189.39 178.43 

DC Power (μW) 4.97 23.24 9.07 8.45 7.80 20.18 5.49 5.78 

Propagation Delay 

< 600ps 
594 245 311 409 472 540 332 512 

+Overshoot < 450mV 208 411 160 176 165 216 144 100 

-Overshoot < 150mV 45 117 49 44 33 40 39 26 

 

Similar experiments were conducted on the LNA circuit with the results listed in Table 4. On 

the single-objective side, none of the schemes can reach the specifications, which partially exhibits 

the hardship of the LNA sizing optimization. SFPC (i.e., Scheme-1) cannot deliver a solution with 

sound fitness due to its frequent floorplan variation. NoGeoP-DE (i.e., Scheme-2) fails on S22 

after running for 8.07 hours. Although highly efficient, GeoP-DE (i.e., Scheme-3) attempts to 

minimize the best-fitness to 0.759, but with a failure in satisfying S11 specification. In contrast, 

the many-objective EAs perform much better than the single-objective methods. Within the many-

objective EA group, one can observe that both NoGeoP-θ-Large (i.e., Scheme-4) and NoGeoP-θ-

Small (i.e., Scheme-5) perform worse than GeoP-θ-Large (i.e., Scheme-6) and GeoP-θ-Small (i.e., 

Scheme-7) with larger best-fitness and around five times lower success-rate (i.e., 3.13% and 1.79% 

versus 15.63% and 8.93%, respectively). This exhibits the positive effect of the circuit knowledge 
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integration from the GeoP elite output with the many-objective θ-DEA optimization. We believe 

this phenomenon is highly correlated to the complex nature of the LNA design, where the 

relationship between inductor parameters and properties does not follow one-to-one 

correspondence. As a result, the formed super complex solution space demands specific circuit 

knowledge assistance from the GeoP elite output to facilitate the localization of optimal regions 

provided that the same amount of distributed reference points is accessible. 

Table 4. Algorithmic settings and performance of the Low Noise Amplifier 

Schemes 

GeoP Single-objective Methods Many-objective θ-DEA 

Sch-0 

Sch-1 

(SFPC) 

[59] 

Sch-2 

(NoGeoP-

DE) [67] 

Sch-3 

(GeoP-DE) 

[This 

work] 

Sch-4 

(NoGeoP

-θ-

Large) 

Sch-5 

(NoGeoP

-θ- 

Small) 

Sch-6 

(GeoP-θ-

Large) 

Sch-7 

(GeoP-θ-

Small) 

[This 

work] 

Median IGD/Fitness 

Run: Best-Fitness 
0.767 2.983 0.885 0.759 0.691 0.702 0.615 0.646 

Median IGD Run: 

Average-Fitness 
- - - - 0.691 0.702 0.657 0.697 

Median IGD Run: 

Success-Rate 
- - - - 1.79% 3.13% 8.93% 15.63% 

Median Fitness Run: 

Average 
- 3.119 3.719 2.516 - - - - 

Median Fitness Run: 

Standard-Deviation 
- 0.129 1.972 1.300 - - - - 

Run Time (hours) 
1.76 

sec. 
1.61 8.07 0.38 8.14 2.74 7.84 2.46 

Obj. & Spec. Performance (from the Representative Solution with the Smallest Fitness Value) 

Est. Area (mm2) 0.267 0.308 0.292 0.255 0.281 0.306 0.288 0.260 

DC Power (mW) 42.96 19.97 18.73 47.05 18.59 25.97 16.72 14.70 

Gain > 15dB 20.32 3.01 20.21 19.63 21.00 16.47 19.55 19.34 

NF < 2.5dB 1.87 5.08 2.19 1.71 2.12 2.20 1.98 2.01 

S11 < -12dB -15.16 -8.23 -19.82 -11.71 -22.17 -29.13 -20.69 -19.41 

S22 < -12dB -15.16 -3.47 -9.12 -21.28 -18.14 -19.79 -37.47 -30.94 

 

Based on the analysis of the experimental data above, one can learn that the efficiency of GeoP 

(i.e., Scheme-0) is the highest thanks to its pure symbolic nature. The sizing result of GeoP is 

generally better than SFPC (i.e., Scheme-1) and NoGeoP-DE (i.e., Scheme-2). With the aid of the 
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GeoP elite information, Schemes 3, 6, and 7 can improve the performance in terms of the best-

fitness. In addition, even without the GeoP involvement as the first sizing phase, the powerful 

many-objective θ-DEA method in Schemes 4 and 5 can still achieve better performance than GeoP. 

Furthermore, it is observed that single-objective methods generally derive solutions inferior 

to those from the many-objective schemes. The SFPC scheme is not as suitable as our proposed 

hybrid GeoP-EA method for addressing the analog/RF parasitic-aware sizing problems along with 

layout effects. We believe this is strongly related to the fact that the evolving parasitics in SFPC 

are quite inconsistent along the optimization path. At each iteration, the sizing process may derive 

various module geometries, which can lead to very different floorplans due to free control in the 

subsequent placement and global routing. These frequently changed floorplans would, in turn, 

bring forth oscillating parasitics, which hardly provide a priori informative guidance to the next 

refined-sizing iteration. Our experimental results expose that the intractable parasitics fail to 

cooperate well with the optimization engine and thus increase the difficulty of localizing optimal 

solutions in practice. Moreover, NoGeoP-DE (i.e., Scheme-2) based on DE with large-scale setup 

fails to ensure a clear improvement despite high execution time. And GeoP-DE (i.e., Scheme-3) 

can perform well for simple and moderately complex problems but may fail in super complex 

problems. 

On the other hand, based on the observation of NoGeoP-θ-Large (i.e., Scheme-4), one can 

infer that the large-scale standalone θ-DEA scheme might work fine for a simple sizing problem 

like the Op-Amp example even without the GeoP-implied circuit knowledge, but may not 

necessarily be sufficient to any moderately or super complex sizing problems such as the 

comparator or LNA circuit. The slight improvement of average-fitness and success-rate only in 

the simple Op-Amp circuit can hardly justify over three times CPU hours in practical usage, 
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whereas the integrated GeoP running in Scheme-7 only takes a couple of seconds to generate a 

GeoP-elite solution for further improvement. By comparing GeoP-θ-Large (i.e., Scheme-6) and 

GeoP-θ-Small (i.e., Scheme-7), the largest improvement of the average-fitness (i.e., 7.2% in the 

Op-Amp example circuit) and the best-fitness (i.e., 9.1% in the comparator example circuit) has 

little support to the large-scale configuration, not to mention the fact that the representative 

solutions from both schemes are equally good, which are nondominated from each other in the 

three example circuits. It tends to be true that the more the reference points are assigned in this 

case, the more they are wasted as exposed from the low success-rate in GeoP-θ-Large (i.e., 

Scheme-6) for the comparator and LNA circuits. Therefore, our proposed GeoP-θ-Small (i.e., 

Scheme-7) with maximum execution time of up to 2.5 hours can provide a reasonable 

configuration of many-OEA after inheriting the knowledge from the GeoP elite output. 

 

Fig. 6. Plot of the resultant solution set from the many-objective θ-DEA method for the 

comparator test circuit 
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Fig. 6 shows one 3D plot of the resultant optimal solution set from the many-objective θ-DEA 

method for the comparator test circuit. Each axis is defined by its corresponding objective marked 

in the plot. The red solid dots represent the optimal solutions, while the blue dash-dot lines exhibit 

their projections towards the X-Y plane. To maintain a compact solution performance space, any 

solution with propagation delay of over 10ns is considered to saturate at the maximum amount of 

10ns in the plot. In such a minimization problem, the ideal optimum solution is supposed to be the 

origin (0, 0, 0) in the plot. 

In summary, the circuit knowledge information induced by the GeoP elite output tends to 

effectively facilitate the optimization process, especially for the sizing problems with complex 

solution space. The constrained search ranges can help skip the solution space that is full of inferior 

solutions. Thus, sound solutions can be more efficiently approached and explored. Even though 

some potential regions may be lost due to the elimination, in practical engineering tasks with 

resource limitation, the constrained space with the elite solution centered is more worthwhile or 

already sufficient in the exploitation especially for the complex problems. 

 

3.5.4. Post-Layout Verification 

By following the sizing results from the EA sizing phase as well as the floorplan template 

used in both GeoP and EA sizing phases, in our experiment we used Cadence Virtuoso Layout-

XL Suite [68] to automatically place and route the auto-generated modules to obtain the final 

layouts. Then we used Cadence Diva tool at the CMOS 0.18um technology node and Mentor 

Graphics Calibre xRC [8] at the CMOS 90nm technology node for automatic parasitics extraction. 

By comparing with the pre-layout simulation results for the GeoP-DE method (i.e., Scheme-3) and 
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the hybrid GeoP-θ-Small method (i.e., Scheme-7) from Tables 2-4, the similar post-layout 

simulation results as reported in Table 5 further confirm the suitability of the modeled intrinsic 

and interconnect parasitics along with the applicability of the deployed optimization scheme by 

using our proposed GeoP-EA hybrid sizing methodology. As a demonstration, the layouts of the 

three example circuits for our promoted GeoP-θ-Small method (i.e., Scheme-7) are depicted in Fig. 

7 (a), (b) and (c). 

 

Table 5. The post-layout simulation results of the three example circuits 

Circuits Performance 

Post-Layout 

Simulation Results, 

Scheme-3 

[This work] 

Post-Layout 

Simulation Results, 

Scheme-7 

[This work] 

CMOS 

0.18um Two-

stage 

Op-Amp 

Actual Area (μm2) 793.54 635.18 

DC Power (μW) 28.69 114.6 

Gain (dB) 87.14 80.67 

UGF (MHz) 2.54 5.36 

PM (°) 77.02 87.96 

GM (dB) 31.92 42.53 

CMOS 90nm 

Differential 

Comparator 

Actual Area (μm2) 434.61 273.54 

Average Power (μW) 9.44 5.88 

Delay (ps) 403.6 517.1 

+ Overshoot (mV) 181.5 147 

- Overshoot (mV) 132.5 56.62 

CMOS 

90nm(LP) 

LNA 

Actual Area (mm2) 0.398 0.434 

DC Power (mW) 41.03 14.21 

Gain (dB) 17.74 17.95 

NF (dB) 2.07 1.96 

S11 (dB) -21.27 -14.06 

S22 (dB) -10.93 -12.09 
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In summary, our proposed parasitic-aware sizing methodology is featured by its holistic 

concatenation of several optimization schemes. The GeoP-based first sizing phase can quickly 

attempt a global-view solution, which would facilitate the EA-based second sizing phase. An 

automatically generated floorplan template can be consistently utilized for symbolic and numerical 

parasitic representation in the GeoP and EA sizing process. Moreover, it is found that the single-

objective DE is generally inferior to the many-objective θ-DEA especially on the complex sizing 

problems although the latter one requires more run time. 

 

3.6. Summary 

In this chapter, we have presented a highly efficient parasitic-aware hybrid sizing 

methodology. The proposed method firstly utilizes a GeoP formulation by modeling circuit 

performance constraints and parasitic contribution for seeking a global solution in the first phase. 

   

(a) (b) (c) 

 

Fig. 7. GeoP-θ-Small (Scheme-7) final layouts for a): two-stage Op-Amp, b): differential-pair 

comparator, and c): Cascode common source LNA with source degeneration 
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Then in the second phase, it firstly employs a fast DE and then switches to a many-objective θ-

DEA (if needed) both with GeoP elite output as a guidance for more focused and refined search. 

Compared to the other approaches that use a pre-generated look-up table or 

interpolation/extrapolation for parasitic estimation, our proposed method includes intrinsic device 

parasitics and layout interconnect parasitics in the symbolic modeling with the aid of layout 

floorplan information. The experimental results demonstrate the efficacy of our proposed 

methodology as well as its reliability over the other similar works. 

In the next chapter, we will firstly propose another symbolic-analysis-based circuit modeling 

approach called gm/ID-based modeling, which is more accurate than the GeoP-based modeling due 

to the involvement of accurate numerical simulations. Then we will propose the gm/ID-EA two-

phase optimization for the analog/RF circuit synthesis with parasitic awareness. 
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Chapter 4    Efficient Parasitic-Aware gm/ID-Based 

Hybrid Sizing Methodology for Analog and RF 

Integrated Circuits 

 

4.1. Introduction 

In this chapter, we firstly emphasize the importance of considering the layout parasitics, 

preferably in the early design stage for analog/RF circuits, by using the following example. A 

Cascode common-source low noise amplifier (LNA) as shown in Fig. 5 (c) features several key 

factors, such as an input impedance match with 50Ω resistance and a sufficient gain to overpower 

the noise at a pre-defined resonant frequency of 5.6GHz. According to our experiments, input 

reflection coefficient S11 and output reflection coefficient S22 from a parasitic-free sizing process 

are initially -11.09dB and -12.61dB respectively verified in an ideal pre-layout simulation (i.e., no 

parasitics), which are perfectly good for their due specifications of less than -10dB. However, they 

deteriorate to -7.51dB and -9.1dB respectively once the estimated parasitics are back annotated to 

corresponding electrical nets in the further pre-layout verification. Moreover, after the design is 

actually laid out, S11 and S22 keep deteriorating to -6.68dB and -3.4dB respectively in the post-

layout verification, which definitely renders malfunctioning in reference to the specifications. 

Therefore, a solid and trustable parasitic-aware technique for analog and RF circuit sizing in the 

advanced technologies, preferably in an automated fashion, is highly demanded. 

In this chapter, we propose a new gm/ID-based parasitic-aware analog/RF circuit sizing 

methodology, which includes the modeling of technology-independent circuit structure and 

technology-dependent device characteristics as well as parasitics. Our developed sizing method 
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can integrate accurate intrinsic parasitics modeling (by using a piecewise curve fitting technique) 

and interconnect parasitics modeling (by considering layout floorplan and device geometry) into 

a mixed-integer nonlinear programming (MINLP) problem. The proposed gm/ID-based circuit 

models is more accurate than the geometric programming (GeoP) based circuit models introduced 

in Chapter 3 due to the involvement of accurate numerical simulations. In addition, we advocate a 

two-phase parasitic-aware sizing flow, which is comprised of a gm/ID-based nonlinear 

programming (aiming for a fast solution) and a theta dominance-based evolutionary algorithm (θ-

DEA) [38] sizing refiner (for fixing any modeling shortcomings in the previous phase).  

The research conducted in this chapter has been published in ACM Transactions on Design 

Automation of Electronic Systems (TODAES) [J3], and presented in 2018 IEEE International 

Symposium on Quality Electronic Design (ISQED) [C2] and 2018 IEEE International Symposium 

on Circuits & Systems (ISCAS) [C3]. 

 

4.2. Proposed Parasitic-Aware Hybrid Synthesis Flow 

In this chapter, we are motivated to develop a hybrid parasitic-aware analog/RF circuit sizing 

methodology by concatenating the best ingredients from the various categories discussed above. 

We intend to take advantage of the accuracy of numerical simulations embedded inside the 

stochastic-based methods, while we prefer to improve the optimization efficiency by offering 

advanced global insights through promising candidates derived from the earlier phase. We opt to 

preserve the global view of the analytic-based methods, while we strive to eliminate the concerns 

of losing the modeling accuracy by considering technology-dependent factors. In this regard, we 

propose to use gm/ID-based MINLP and curve-fitting technique for the first-phase optimization, 
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and a many-objective θ-DEA with the aid of numerical simulations for the second-phase 

optimization. 
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Fig. 8. The gm/ID-EA two-phase hybrid synthesis flow 

As shown in Fig. 8, our proposed analog/RF circuit synthesis flow consists of five modules, 

each of which is composed of several operational blocks. The initialization module is to determine 

an initial bias condition that includes the variables in the gm/ID phase for configuring the problem 

space. Since MOSFET length (L) has an impact on device characterization, we have proposed an 

L-selection mechanism in order to avoid selecting improper L values that might account for 
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repeated sizing failures in the following gm/ID-based modules. Both initial bias conditions (i.e., 

node voltages) and initial L are obtained by solving a nonlinear programming (NLP) problem 

formulated with topology-dependent circuit performance equations & specifications, bias 

constraints, and MOSFET model in addition to some technology parameters. The details of using 

W/L of each MOSFET as a result of the abovementioned NLP solving to determine the initial L 

will be further elaborated on in Section 4.3.2. 

The parasitic-free and parasitic-aware gm/ID-based sizing modules form the core of the first-

phase sizing process, where one optimal floorplan is generated in Module-III. Once L is identified, 

a group of numerical simulations on reference MOSFET will be performed so that the output data 

could be curve-fitted into analytic functions between device characteristics (e.g., gm, gds, and 

intrinsic capacitances) over ID and node voltages. In the parasitic-free gm/ID-based sizing module, 

the curve-fitted device characteristics (i.e., gm/ID-parameters), L, and initial bias conditions 

associated with the technology-independent circuit performance equations are used to formulate 

an MINLP problem. The sizing output from Module-II would be used as the input to the 

Floorplanning & Global Routing block in Module-III. Once an optimal floorplan is obtained and 

further globally routed, the symbolic interconnect relationship in terms of W and other geometrical 

parameters can be derived. With the aid of the nonlinear parasitic models [18], interconnect 

parasitic capacitances and resistances can be symbolically expressed. Then the symbolic 

interconnect parasitics plus their sensitivity constraints will be incorporated into the previously 

established MINLP problem for deriving a parasitic-aware solution via the MINLP solver in 

Module-III. 

The fourth module is to further improve the parasitic-aware solution by using the many-

objective θ-DEA sizing refiner that involves numerical simulations interacting with the 
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floorplanner. The last module reflects the conventional layout synthesis flow, which includes 

layout generation, parasitic extraction, and post-layout verification by using the off-the-shelf 

design tools. In case the MINLP solvers in Modules II-III fail to derive a feasible solution, the 

synthesis would redo the optimization by relaxing the constraints inside these modules. If the 

solutions from Modules II-V fail to pass any specification verified by the simulations, another set 

of L will be attempted from module II, which is selected via the proposed L-regulation scheme 

discussed in Section 4.3.5. Moreover, those solutions especially from Modules II and III, which 

were derived by successfully satisfying the symbolic constraints, might be able to provide some 

optimization insights and especially enrich the population diversity if being integrated into the 

second-phase (i.e., Module-IV) EA-based sizing optimization. 

 

4.3. Parasitic-Aware gm/ID-Based Sizing 

4.3.1. Preliminaries 

The gm/ID ratio, known as transconductance generation efficiency, is defined as follows, 

𝑔𝑚
𝐼𝐷

= 
1

𝐼𝐷
 
𝜕𝐼𝐷
𝜕𝑉𝐺𝑆

=
𝜕(ln 𝐼𝐷)

𝜕𝑉𝐺𝑆
=
𝜕[ln (𝐼𝐷/(

𝑊

𝐿
))]

𝜕𝑉𝐺𝑆
 

(29) 

 

where gm is the MOSFET transconductance, ID is the MOSFET drain current, VGS is the MOSFET 

gate-source voltage, W and L are the MOSFET width and length, respectively. As the aspect-ratio, 

W/L, does not depend on VGS, its introduction to the natural logarithm has no impact on the partial 

differential operation. This derivation also shows that the gm/ID ratio is independent of W/L for the 

fixed bias voltages in the long-channel transistors [69]. In addition, the analytical expression of 
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the large signal current ID always includes W/L as a multiplier irrespective of its operating region. 

Therefore, ID/(W/L), the normalized ID commonly referred to as IDN, is also independent of W/L 

for the fixed bias voltages in the long-channel transistors [69]. Moreover, gm/ID, IDN, and a set of 

node voltages for a MOSFET have one-to-one correspondence. For the short-channel transistors 

at advanced technology nodes, both gm/ID and gds/ID show certain dependence on W and L. Since 

L is always optimized via our proposed L-initialization or L-regulation before performing the 

following curve fitting and circuit modeling, we only need to consider their dependence on W, 

which will be handled via the current density factor illustrated in Section 4.3.3 and the multiple 

reference W’s scheme in Section 4.3.4. 

Therefore, once ID is available, the device aspect ratio (i.e., W/L) can be unambiguously 

determined via, 

𝑊

𝐿
= 

𝐼𝐷
𝐼𝐷𝑁

=
𝐼𝐷

𝐼𝐷_𝑅𝐸𝐹/(𝑊_𝑅𝐸𝐹 𝐿_𝑅𝐸𝐹⁄ )

 (30) 

 

where any parameter with “_REF” is acquired from simulations on the reference MOSFET by 

sweeping node voltages. Moreover, the drain-to-source conductance to current ratio, gds/ID, can be 

inversely measured by the Early voltage, (VEA)-1, which is proportional to L for long channel 

transistors. For short channel devices, we have proposed to use the current density factor detailed 

in Section 4.3.3 to address accuracy challenges. Finally, since the intrinsic parasitic capacitances 

Cij are mostly dependent on W * L where i and j are any of the drain, source, gate or bulk nodes, 

we can have 

𝐶𝑖𝑗

𝐼𝐷
= 𝐿2𝑓𝑜𝑡ℎ𝑒𝑟𝑠 , (31) 
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where fothers expresses other effects largely from oxide capacitance Cox and gate overlap 

capacitance Cov. Therefore, Cij/ID is also independent of transistor sizes if L and bias voltages are 

fixed. According to [31], the intrinsic capacitances rely on the inversion level (i.e., mostly VGS), 

VDS and L. In this work, we have used curve fitting technique to derive Cij/ID as a function of VGS 

and VDS as detailed in Section 4.3.4. 

 

4.3.2. Bias and L Initialization 

As depicted in Fig. 8, the synthesis flow starts with the initialization (i.e., Module-I), which 

helps configure manageable variable search space by providing reasonable bias and L values for 

the following sizing process. MOSFET performance is characterized by ID, gm, and gds, which are 

attributed to node voltages, W/L, and technology parameters. For the first NLP modeling in the 

initialization module, the node voltages as well as the bias current (i.e., VGS, VDS, and ID) for each 

MOSFET are set as variables. Given the operating region of each MOSFET, its current can be 

expressed in terms of W/L and node voltages. The MOSFET bias constraints and the circuit 

topology-dependent performance equations with respect to specifications can be also involved in 

the NLP modeling similar to [15]. After the NLP solving, the resultant bias conditions and W/L 

will be used as the initial state for the subsequent gm/ID sizing process. This W/L will be referred 

to when selecting promising L values by the L-initialization scheme. The final sizing of W will be 

determined by our proposed subsequent gm/ID sizing approach. 

In comparison with the previous works on optimizing L, our proposed performance-driven L-

initialization scheme is more general as it needs no deep insight into MOSFET characteristics. 

Firstly, a sensitivity analysis can be conducted via numerical simulations by sweeping L while 
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maintaining W/L. As for the sweeping boundary of L (i.e., L-bound), the lower bound is defined 

by the technology design rules, while the upper bound is specified by the users. The minimal L-

interval denoted by 𝐿λ (e.g., 5nm by default) is determined by the technology design rules or users. 

To reduce the optimization complexity for better efficiency, we simplify such a sweeping process 

by assuming all the MOSFETs in the circuit to share an identical L initially. Then we apply our 

proposed performance-driven L-initialization scheme as shown in Algorithm 2 to find the best L 

(𝐿𝐵 ) while minimizing the number of simulations required. Here we define the cost as a 

performance metric, the smaller the better, which is computed via the summation of all the 

normalized circuit performances (12) (e.g., DC gain) after a simulation is conducted by using an 

attempted L.  

Then we start the L-initialization process by firstly conducting a rough-sampling operation 

with a large step size (e.g., running simulations with an interval of 10𝐿λ = 50nm by default) within 

the L-bound (i.e., [𝐿𝑀𝑖𝑛 , 𝐿𝑀𝑎𝑥]) to return N sampling costs. In Lines 3-7 of Algorithm 2, we 

perform segmentation by dividing the whole L-bound into multiple segments. Firstly, a 

smoothness factor (Sth) is derived by the average of all the cost displacements (di,i+1, i = 1,2,…,N–

1), each of which is the absolute difference between two costs of any neighboring pair from the N 

sampling points. Reflecting the flatness of data distribution, Sth is used as a threshold to control 

segmentation operation in order to generate one relatively smooth segment (i.e., 𝜓𝑚, m = 1,2,…) 

enclosing one (i.e., Li) or multiple rough-sampling points. 

Then within each smooth segment, if the data trend is not monotonic, we further divide 𝜓𝑚 

into several sub-segments (𝜓𝑚
𝑛 ’s) with their corresponding bounds (say, [𝐿𝑏𝑚

𝑛 , 𝑈𝑏𝑚
𝑛 ]) defined 

according to the locations of trough and peak points during the division. As a result, each sub-

segment is in an ascending or descending shape. Due to the minimization purpose for later fine-
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sampling operation, the ascending shape is preferred where the cost becomes larger (i.e., worse) 

so that more points can be skipped when searching along the ascending direction. Therefore, the 

start point 𝐿𝑠𝑚
𝑛  in each 𝜓𝑚

𝑛  is selected at either 𝐿𝑏𝑚
𝑛  or 𝑈𝑏𝑚

𝑛 , whichever gives a smaller cost. The 

search direction is implicitly determined (e.g., from 𝐿𝑏𝑚
𝑛  to 𝑈𝑏𝑚

𝑛  if 𝐿𝑠𝑚
𝑛  = 𝐿𝑏𝑚

𝑛 , and vice versa). 

In the next step, a fine-sampling operation is performed inside each 𝜓𝑚
𝑛  with finer sampling 

yet varying step size (via k) in Lines 8-21. Along the search direction defined in Line-7, index j 

increases and lj denotes the L value mapped by j within each 𝜓𝑚
𝑛 , while costj is its corresponding 

cost obtained from simulation. This sampling process would skip a number of L values by 

enlarging k, which in turn can save simulation time. The update of k is controlled by the 

performance change as reflected by the simulation cost. As long as the sampling points with poorer 

performance (i.e., larger cost) are detected, k gets larger for the next sampling operation. Or k stays 

intact if the cost of the current sampling point bears no change. Otherwise, a backtrack operation 

(i.e., go back to examine the previously skipped region with a reset of k = 1) is required if a smaller 

cost is identified for the current sampling point. In Line-13, the update of k is dynamically 

controlled by the current sampling point, the last sampling point, and the global minimal point 

discovered so far (i.e., 𝑐𝑜𝑠𝑡𝐵). The best L, i.e., 𝐿𝐵, keeps being updated whenever a new sampling 

point provides a smaller cost that is even less than 𝑐𝑜𝑠𝑡𝐵. This process is repeated until the next 

scheduled sampling point is out of the range of 𝜓𝑚
𝑛  where the last element needs to be examined 

exactly once. 
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Algorithm 2. L-initialization 

Input: W/L’s of all the MOSFETs, Output: 𝐿𝐵 

1. Do a rough-sampling operation based on L-bound (i.e., [𝐿𝑀𝑖𝑛, 𝐿𝑀𝑎𝑥]) to return N sampling costs; 

2. Initialize 𝐿𝐵 (and 𝑐𝑜𝑠𝑡𝐵) with the L (and its corresponding cost) that has the best cost among the N points; 

3. Calculate the smoothness factor Sth based on the cost displacements (𝑑𝑖,𝑖+1) between any two neighboring points; 

4. L1 = 𝐿𝑀𝑖𝑛, LN = 𝐿𝑀𝑎𝑥, initialize 𝜓1= ∅ ∪ L1, m = 1, i = 1;    // 𝜓1 is a set with only one element L1 

5. while (1)    // handling one segment 𝜓𝑚 

6. Form a smooth segment 𝜓𝑚  by adding more rough sampling points (Li+1) if 𝑑𝑖,𝑖+1 ≤ 𝑆𝑡ℎ through i++; 

7.  Divide 𝜓𝑚  into several monotonic sub-segments 𝜓𝑚
𝑛 , each of which will be processed as an ascending sub-

segment as per the determined start point and search direction; 

8.  for each 𝜓𝑚
𝑛

    // Start the fine-sampling operation within each 𝜓𝑚
𝑛  

9.       j = 1, k = 1;    // j as the index used for the fine-sampling inside 𝜓𝑚
𝑛 , k for the step size 

10.       j = j + k, and run simulation for lj inside the current 𝜓𝑚
𝑛  if costj is unknown; 

11.      while (lj is within the range of the current sub-segment)  

12.  if (costj-k < costj)     // if the previous cost is smaller 

13.   k = k * 𝑒( 𝑐𝑜𝑠𝑡𝑗 − 𝑐𝑜𝑠𝑡𝑗−𝑘 )  ( 𝑐𝑜𝑠𝑡𝑗 − 𝑐𝑜𝑠𝑡𝐵 )⁄ ;     // increase the step size with control 

14.    else if (costj-k == costj)    k keeps intact;    // maintain the step size 

15.    else {     use lj & costj to update 𝐿𝐵 & 𝑐𝑜𝑠𝑡𝐵 if costj < 𝑐𝑜𝑠𝑡𝐵;    // better cost detected 

16.    if (k != 1)     j = j – k, k = 1; }    // backtrack 

17.    if (lj+k is not within the current sub-segment) 

18.   examine the very last element in the sub-segment and then leave this inner while loop; 

19.   else  j = j + k, and run simulation for lj if costj is unknown;    // examine lj 

20.       endwhile 

21. endfor 

22.   Calculate 𝑆𝑡ℎ
𝑥  based on the average of the cost displacements from all the sampled points thus far; 

23.   if (Sth ≥ 𝑆𝑡ℎ
𝑥 )    Sth = 2 * Sth – 𝑆𝑡ℎ

𝑥 ;    // enlarge Sth 

24.  else    Sth = Sth * Sth / 𝑆𝑡ℎ
𝑥 ;    // shrink Sth 

25.   if (LN is reached)    examine LN and terminate to output 𝐿𝐵; 

26.   else {  m++, 𝜓𝑚 = ∅ ∪ Li; } 

27. endwhile 

 

 

In Lines 22-24, we propose a self-adaptive Sth updating scheme by dynamically tracking the 

smoothness reflected from all the sampled points thus far. The dynamic update of Sth is used to 

reasonably control the next segmentation process for the remaining unvisited L-range in the L-
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bound. In Line-22, 𝑆𝑡ℎ
𝑥 , as a new smoothness factor, is calculated similarly to Sth described in Line-

3 but based on all the already sampled points (i.e., including all the elements in 𝜓1 to 𝜓𝑚 and the 

rest of the N rough sampling points). Sth is updated based on the relationship between the current 

Sth and 𝑆𝑡ℎ
𝑥 . If 𝑆𝑡ℎ

𝑥  is less than Sth, such an implied smoother data trend encourages us to try a larger 

segment in the next round. Thus, we opt to enlarge Sth by Sth = Sth + (Sth – 𝑆𝑡ℎ
𝑥 ). Otherwise, we 

shrink Sth (i.e., Sth = Sth * Sth / 𝑆𝑡ℎ
𝑥 ) to establish a smaller segment for conducting fine sampling if 

the already sampled points pose a bumpier data trend. Once Sth is updated, the process would 

reiterate through Lines 5-27 until the last rough-sampling point, i.e., LN, is examined. 

 

4.3.3. Parasitic-Aware Circuit Sizing Mechanism 

Device sizes can be determined if ID and any of gm/ID, IDN, and node voltages (i.e., VGS and 

VDS) are available. This has enlightened us to develop an analytic-based sizing methodology that 

takes node voltages and bias currents as free variables to calculate the device sizes by solving an 

optimization problem modeled with gm/ID and gds/ID in a symbolic form. First of all, the 

initialization module in Fig. 8 provides the initial bias conditions and derives a list of node voltage 

ranges for all the devices. Alternatively, these conditions as well as the initial L value can be 

loosely specified by designers in order to speed up the process. 

When a MOSFET works in weak inversion, its drain current is given by [70], 

𝐼𝐷 = 2𝑛𝜇𝐶𝑜𝑥
′ 𝑈𝑇

2(𝑊 𝐿⁄ )(𝑒
𝑉𝐺𝑆−𝑉𝑇𝐻

𝑛𝑈𝑇 ) , 
(32) 

where n is the substrate factor equal to 1.4 in the weak inversion region, UT is the thermal voltage 

equal to 25.9mV, 𝜇 is the carrier mobility, and 𝐶𝑜𝑥
′  is the gate oxide capacitance per unit area. IDN 
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has a dependence on W especially for short-channel devices. This dependence quickly changes 

with W starting from one small value (e.g., 120n𝑚) and finally becomes stable. The onset point of 

the stable region for W (called applicable region hereafter) depends on L. This IDN-versus-W 

dependence might result in sizing errors if (30) is followed. That is to say, it is not accurate enough 

to obtain a scaled W by just scaling ID for the short-channel devices. In this regard, we propose to 

utilize current density factor to overcome the accuracy problem of the conventional gm/ID 

approaches when dealing with short-channel devices as follows. 

The current density for a specific L is defined as (ID/W). To reflect the sizing error, we define 

(ID/W – ID_REF/W_REF) / (ID/W) as current density error, where W is within the applicable region. 

According to our experiments, this error may reach 25% for short-channel devices working in the 

weak inversion region, mainly due to 𝜇𝐶𝑜𝑥
′  and then 

𝑉𝐺𝑆−𝑉𝑇𝐻

𝑛𝑈𝑇
 in (32). Moreover, 𝜇𝐶𝑜𝑥

′  has a strong 

dependence on inversion level (i.e., VGS) and then VDS, while VTH is also affected by VDS and VGS. 

As a consequence, the error that depends on the bias condition always varies. Therefore, we have 

proposed to use a fitting-based factor as shown in (33) to improve the accuracy of (30), 

𝐶𝐷𝐹 =
𝐼𝐷

𝑊⁄

𝐼𝐷_𝑅𝐸𝐹
𝑊_𝑅𝐸𝐹
⁄

= 𝑓(𝑉𝐺𝑆, 𝑉𝐷𝑆)𝐶𝐷𝐹| 𝐿 , (33) 

 

where CDF is the current density factor under a specified L. Generally, CDF is greater than 1, and 

the task of sizing W in (30) should then be modified to 

𝑊 = 𝐿 ∗ (𝐼𝐷/𝐶𝐷𝐹)/𝐼𝐷𝑁 . (34) 

The onset point of the applicable region (i.e., the smallest applicable W) can be found by 

observing (ID/W)/(ID_REF/W_REF) in the weak and moderate inversion regions because the current 
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density error is very stable and almost ignorable in the strong inversion region even for short-

channel devices (e.g., 60nm) in our experiments. Pollissard et al. [31] suggested that the short-

channel devices with small W are not applicable to the conventional gm/ID-based approaches due 

to accuracy concern. However, MOSFETs with very small W sometimes may be useful in low-

power applications. To overcome this difficulty, we have proposed a scheme by using multiple 

reference MOSFET widths as further described in Section 4.3.4. Once the abovementioned 

limitations are resolved by our proposed schemes for CDF correction and multiple W references, 

we can apply the gm/ID idea into our nonlinear design problem formulation below. Firstly, the 

minimization-based objective function is defined by, 

𝑜𝑏𝑗 =  𝛼 ∑
(
𝑔𝑚𝑖
𝐼𝐷𝑖

)𝐼𝐷𝑖

(𝑉𝐺𝑆𝑖−𝑉𝑇𝐻𝑖)
+ 𝛽∑ 𝑖𝑛𝑡𝐿𝑒𝑛𝑗 +  𝛾𝐼𝑠𝑠𝑉𝐷𝐷

𝑛
𝑗=1

𝑚
𝑖=1  , 

(35) 

 

where α, β, and γ are the weighting factors for overall silicon dimension, interconnect length, and 

power consumption, respectively. Variable m is the number of MOSFET devices, n is the number 

of interconnect sections between any two devices, and intLenj is the length for each interconnect, 

which will be further explained in Section 4.5.2. 

Linear voltage and current inequalities, which are reflected by the relationship between the 

free variables (i.e., 𝑉𝐷𝑆 and 𝐼𝐷) and power components (i.e., VDD and ISS) based on circuit structure, 

can be built up. The operating region constraints for each MOSFET are reflected by a group of 

relationships among node voltages, threshold voltage, and thermal voltage if the subthreshold 

region is also considered for pursuing higher gm/ID ratio and in turn higher gain. All the 

performance equations, which are dependent on circuit structure, can be expressed as functions of 
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gm/ID, gds/ID, Cij/ID as well as node voltages of specific MOSFETs, which can be further 

transformed to inequalities with respect to specifications, 

𝑓𝑎(𝑉𝐺𝑆, 𝑉𝐷𝑆,
𝑔𝑚

𝐼𝐷
,
𝑔𝑑𝑠

𝐼𝐷
,
𝐶𝑖𝑗

𝐼𝐷
, 𝐼𝐷) ≤ or ≥ 𝑆𝑝𝑒𝑐.𝑎 , (36) 

where Cij typically refers to Cgs, Cds, and Cdb. Ratios gm/ID, gds/ID, and Cij/ID can be expressed in 

terms of free variables inclusive of node voltages, while IDN is a function of node voltages as well 

to help form geometrical constraints with the assistance of Eq. (34). 

According to (34), W/L of each transistor can be derived once the corresponding node voltages 

and ID are solved. That is to say, W can be determined if L is provided. Moreover, instead of the 

conventional LUT search mechanism used in the previous gm/ID-based sizing works, we use curve 

fitting technique in this research to transform the single-transistor simulation data to nonlinear 

equations in order to build up a systematic modeling platform that facilitates the inclusion of any 

special constraints, such as parasitics [57] or other layout-dependent effects [71]. Then the 

modeled MINLP problem can be solved within one single invocation of a nonlinear programming 

solver, which is more versatile and efficient than any LUT-based gm/ID approaches. 

Sizing high-performance analog/RF circuits with any second-order effects (e.g., parasitics) at 

one time would complicate the MINLP solver. Therefore as exhibited in Fig. 8, we decompose 

this sizing task by firstly solving the modeled problem without consideration of any interconnect 

parasitics, a process called parasitic-free optimization in this chapter. Then by using the parasitic-

free optimization outcome as an initial point, a parasitic-aware optimization process is followed 

along with an update of resistance and capacitance modeling as (37), 
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𝑅𝑡𝑜𝑡𝑎𝑙 = ((
𝑔𝑑𝑠

𝐼𝐷
)𝐼𝐷)

−1 𝑜𝑝  𝑅𝑖𝑛𝑡 ,    𝐶𝑡𝑜𝑡𝑎𝑙 = ((
𝐶𝑖𝑗

𝐼𝐷
)𝐼𝐷)  𝑜𝑝  𝐶𝑖𝑛𝑡 , (37) 

where 𝑅𝑡𝑜𝑡𝑎𝑙 and 𝐶𝑡𝑜𝑡𝑎𝑙 are the total resistance and capacitance, 𝑅𝑖𝑛𝑡 and 𝐶𝑖𝑛𝑡 are the interconnect 

parasitic resistance and parasitic capacitance for one electrical net, and op is either parallel or serial 

operator determined by the detailed connection configuration. 

In addition, we also include another type of parasitic constraint based on sensitivity analysis 

in our proposed parasitic-aware optimization, which would prevent certain influential parameters 

(e.g., gm or gds of some MOSFETs) from causing interconnect-parasitic-induced performance 

degradation. For instance, Fig. 9(a) depicts a widely used two-stage operational amplifier (Op-

Amp), while Fig. 9(b) and (c) exhibit the simulation results by using the sizing solutions from the 

parasitic-free and parasitic-aware optimizations. The resistance mismatch portion, DeltaR = R1 – 

R2, is swept for analysis purpose. Parameter gds6 is the drain-source conductance of NMOS 

transistor M6. In Fig. 9(b) and (c), the red solid curve and the blue dot curve indicate the output of 

voltage gain and gds6, respectively, with reference to DeltaR. For the parasitic-free sizing result, 

one can observe that the resistance mismatch (e.g., DeltaR increment from 0 to 1.4Ω) due to layout 

parasitics would lead to a bias voltage change on the operating point and thus an increase of gds6 

(e.g., from 4.15μS to 4.35μS), which in turn contributes to a decline of gain output (e.g., from 

60.33dB to 60dB). With the help of the sensitivity analysis, we can add a new constraint in the 

parasitic-aware optimization by restricting gds6 from increasing to an absolute threshold or a 

variation percentage based on the value solved from the parasitic-free optimization. Thus, in the 

parasitic-aware sizing result as shown in Fig. 9(c), we can see that gds6 would significantly decrease 

and the gain output would stay above 61dB even though a 5Ω of DeltaR is imposed. 
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Fig. 9. (a) Schematic of a two-stage Op-Amp, (b) gain and gds6 output versus DeltaR by 

using the parasitic-free sizing result, and (c) the parasitic-aware one from sensitivity analysis 

 

In [72], semi-empirical models are presented in order to characterize on-chip passive 

components at a target frequency with consideration of technology variation. For the inductors, 
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these semi-empirical models are generated in the form of look-up-table by sweeping inductor 

width, turn, and radius via numerical simulations. The resultant relationships are between the 

inductance and three important inductor characteristics including quality factor (Qind), parallel 

resistance (Rp,ind), and series resistance (Rs,ind). In our work, we reduce the modeling complexity 

by selecting discrete amounts of inductor turn & width (considering geometrical and electrical 

constraints in the applied technology) and sweeping inductor radius. By using the curve fitting 

technique, multiple symbolic expressions in between inductance and inductor radius can be 

derived for various combinations of inductor turn and width. Then any semi-empirical models of 

Qind, Rp,ind, and Rs,ind can be established as one-to-one correspondence to inductance. They are 

finally integrated into the mixed-integer nonlinear programming (MINLP) modeling for the 

subsequent problem solving. 

 

4.3.4. Refined Curve Fitting with VGS, VDS, and L 

For sub-100nm technologies, the transistor characteristics, gm/ID, gds/ID, Cij/ID, and IDN, are 

strongly affected by VDS and L in addition to VGS [31]. In this work, the relationship between these 

characteristics and VGS under the effect of VDS and L are fitted into nonlinear expressions and 

included in our problem formulation. The reference MOSFETs with fixed transistor width W and 

varying length L under various bias voltages applied among four terminals are used to conduct the 

simulations. For instance, in the CMOS 65nm technology, the transistor width W is set as 1μm 

with L ranging from 60nm to 600nm, while both VGS and VDS are swept from 50mV to 950mV. In 

the gm/ID and gds/ID curves shown in Fig. 10, the dashed line with squares, solid line with crosses, 
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and dot-dashed line with solid dots represent the configuration of VDS equal to 50mV, 500mV, and 

950mV, respectively. 

Parameters VDS (V)

0.05

0.05
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L(nm) VDS (V) L(nm)
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600
 

     

    (a)               (b)   

Fig. 10. (a) gm/ID and (b) gds/ID versus VGS: 0.05V - 0.95V for regular NMOS devices in the 

CMOS 65nm technology under the conditions of W=1μm, L: 60nm - 600nm, and VDS: 0.05V - 

0.95V 

 

In Fig. 10(a), when VGS is around 180mV as the breakpoint for the subthreshold region, some 

curves can reach gm/ID of around 30.5 S/A. When L is equal to 60nm, gm/ID has a monotonic 

relationship with VGS, while the impact of VDS is not significant. In contrast, when L gets larger, 
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gm/ID presents more reliance on VDS before the subthreshold breakpoint where a smaller VDS leads 

to a larger gm/ID. After this breakpoint, gm/ID becomes moderately dependent on VDS and L. As 

shown in Fig. 10(b), lower VDS leads to a significant increase of gds/ID, which would result in lower 

output impedance. Moreover, smaller L could lead to lower output impedance as a secondary 

impact. The influence of both L and VDS on IDN and Cij/ID is also observed but not detailed here. 

The observations above imply that VDS and L should be included in the curve-fitting equation 

(38), which is based on polynomial expressions in this work, 

𝑦𝑐𝑓 = 𝑓(𝑉𝐺𝑆, 𝑉𝐷𝑆)𝑐𝑓|𝐿 = ∑ ∑ 𝑎𝑖,𝑗𝑉𝐺𝑆
𝑖𝑛

𝑗=0 𝑉𝐷𝑆
𝑗𝑚

𝑖=0  ,    𝑚, 𝑛 ≥ 1 (38) 

where ycf is any of gm/ID, gds/ID, IDN, or Cij/ID for a given L, ai,j is the constant weighting factor, and 

m and n are the highest order for VGS and VDS, respectively. It offers a significant improvement 

compared to the large-signal square-law current equation that is commonly believed inaccurate for 

advanced technologies. Since these symbolic expressions through the curve fitting process stem 

from accurate numerical simulations, the accuracy of the whole modeling process in our proposed 

parasitic-aware gm/ID-based sizing methodology merely depends on (36), which is a group of 

inequalities containing relatively accurate circuit topology-dependent performance equations. 

In addition, from Fig. 10, it is also easy to understand that the L parameter is very important 

in characterizing the gm/ID-parameters. For example, a MOSFET with L = 60nm would not be able 

to produce high gm/ID (e.g., over 25 S/A) and low gds/ID (e.g., lower than 1 S/A) for pursuing high 

intrinsic gain regardless of any node voltages. So our proposed performance-driven L-initialization 

algorithm in the pre-optimization Module-I plays an indispensable role in generating a promising 

L that would influence the curve fitting and the subsequent MINLP. Furthermore, the solution of 

node voltages solved from the NLP in Module-I offers an initial bias solution, which can not only 
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facilitate the following MINLP search but also simplify the curve fitting process in (38). For 

instance, for a MOSFET with high intrinsic gain expectation, an output solution of VGS = 300mV 

and VDS = 600mV from Module-I could help form smaller voltage ranges of VGS  [200mV, 

400mV] and VDS  [400mV, 800mV] rather than the primitive full supply voltage range. This can 

contribute to fewer simulations, simpler and more accurate fitted equations. 

For an effective yet practical curve fitting operation, we need to determine proper sampling 

range and step size of the free fitting variables (i.e., VGS and VDS in (38)). In principle, when VGS 

and VDS vary from 0 to the power supply voltage VDD in simulations, all biasing inversion levels 

can be covered. Such curve-fitted equations can cover various inversion regions. The initial bias 

conditions obtained from Module-I in Fig. 8 would help decrease the bias range for a more focused 

fitting. Therefore, by using our proposed approach, it is not necessary to specify the inversion level 

of each MOSFET in a circuit. Yet it is beneficial if having certain knowledge of inversion level 

and circuit DC biasing constraints especially related to short-channel devices for the sake of 

improving fitting accuracy and efficiency. 

When W is too small to be included in the applicable region, nearly all gm/ID-parameters in 

𝑦𝑐𝑓 have dependence on W. Therefore, in order to extend the gm/ID-based sizing scheme to the non-

applicable region, we have selected several reference W values in the non-applicable region with 

the same preselected L based on a user-defined tolerance rate (10% by default) for all the gm/ID-

parameters. Firstly, since the non-applicable region depends on L and device type of MOSFET, 

each unique combination of L and device type is recorded into a list. Then we perform single-

device simulations with default reference width (i.e., 1μm by default) for each item on the list. For 

every single-device simulation, three bias conditions, which offer the weak, moderate, and strong 

inversion levels as reflected by inversion coefficient (IC) as per VGS and VDS, are provided. 
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Secondly, to identify the devices on the list with non-applicable region and specified bounds, for 

each single device at various IC levels, we sweep W from Wmin and keep monitoring the gm/ID-

parameters until a large width Wy (e.g., 10μm by default) is reached. We define Wx as a stable 

width if the following conditions are satisfied: (1) the difference of each gm/ID-parameter between 

Wx and Wy is less than the user-defined tolerance rate in the three IC cases; (2) the following several 

(e.g., 5 by default) W sampling values after Wx still meet condition-1. If such a Wx (not equal to 

Wmin) is discovered, then we say this device has a non-applicable region with its tight bound of 

[Wmin, Wx]. Lastly, we divide the non-applicable region [Wmin, Wx] into multiple smaller segments, 

each of which features relatively stable gm/ID-parameters (i.e., within the user-defined tolerance 

rate) at three IC levels. Then for each of the smaller segments, a reference W is used for the curve 

fitting operation. A bunch of curve fitting expressions, ycf_i in the similar form of (38), are obtained 

and then connected via (39), 

𝑦𝑐𝑓
′ = ∑ 𝐵𝑖

𝑛
𝑖=1 𝑦𝑐𝑓_𝑖 + 𝐵𝑛+1𝑦𝑐𝑓 ,          ∑ 𝐵𝑖

𝑛+1
𝑖=1 =1 ,     𝐵𝑖 ∈ {0,1} , (39) 

where 𝑦′𝑐𝑓 is any of the gm/ID-parameters for W in both applicable and non-applicable regions, 𝑦𝑐𝑓 

is only for the applicable region, and Bi is the binary coefficient (i = 1…n). So by using the 

piecewise curve fitting technique, Eq. (39) helps extend the gm/ID-based sizing method to the 

conventionally non-applicable W regions, which used to have large sizing error due to strong W 

dependence. In the worst scenario, inaccurate fitted equations may render the MINLP problems 

unsolvable. However, the introduced piecewise fitting in (39) normally clear such a concern at the 

cost of extra simulations. For the entire curve fitting process, the number of the required 

simulations is expected to be ∑ 𝑁𝑊_𝑖
𝑁𝐿
𝑖=1 ∗ 𝑁𝑉𝐺𝑆_𝑖 ∗ 𝑁𝑉𝐷𝑆_𝑖 , where 𝑁𝐿  is the number of the 
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preselected L’s, 𝑁𝑊_𝑖 is the number of the selected reference W’s, 𝑁𝑉𝐺𝑆_𝑖 is the number of the VGS 

sampling points, and 𝑁𝑉𝐷𝑆_𝑖 is the number of the VDS sampling points. 

 

4.3.5. Performance-Driven L-Regulation Scheme 

To the best of our knowledge, in the literature many existing gm/ID-based sizing automation 

works (e.g., [22] [29] [30]) assumed that L is a pre-defined constant although reference [31] 

acknowledged that L is influential to the device performance. References [26] [28] [31] selected L 

with the aid of designers’ intervention. In this chapter, we have proposed a new L-regulation 

scheme as follows. Firstly, the sizes of all the MOSFETs are available from the most recent 

progressive solution. Since the most recently conducted performance verification can report the 

failure constraints that are symbolically expressed in the corresponding MINLP modeling, this 

would help identify the influential MOSFETs whose L’s need to be regulated. For instance, if the 

second-stage amplifier fails to meet the specification, only M6 and M7 are involved. Then the 

sizes of all the MOSFETs are used as the starting point in the L-regulation as shown in Module-II 

of Fig. 8, while only the sizes of the influential MOSFETs are set as variables. 

Similar to the sensitivity study conducted in Module-I of Fig. 8, the L-bound and step size are 

provided. For each influential MOSFET, two sub-regions (i.e., [MinL, lastL) and (lastL, MaxL]) 

need to be examined if the last L value (i.e., lastL) causing a failure is neither MinL nor MaxL. 

Otherwise, only one sub-region that is just the L-bound but eliminating lastL will be obtained. The 

L-regulation is a three-step iterative process. Firstly, for each influential MOSFET, Algorithm 2 is 

executed in each sub-region respectively, and the L with the best cost is found after checking the 

two sub-regions (or only one sub-region if applicable). Secondly, the array of the best costs for all 
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the influential MOSEFTs is sorted in order to identify the most influential MOSFET and its L. 

Thirdly, the influential MOSFET found in the previous step is removed from the array by fixing 

its identified L value for the next iteration. This process iterates until the array turns to empty, 

where all influential MOSFETs are regulated successively. Our proposed L-regulation scheme 

makes the effort to tune the length of each influential MOSFET in order to recover the failed 

constraints with the aid of sensitivity analysis. Therefore, after the L-regulation iterative process, 

in principle, the L values of all the MOSFETs in the circuit might be different from one another. 

 

4.4. Second-Phase EA Sizing 

Even though our proposed gm/ID-based approach above includes numerical simulations to 

perform device characterization that can well consider the applied technology, the topology-

dependent circuit performance equations are still an approximation to the real circuit performance 

that can be accurately obtained through numerical simulation. Therefore, we employ a simulation-

involved many-objective evolutionary algorithm (many-OEA) sizing method as the second-phase 

optimization to further improve the sizing solution by addressing any modeling inaccuracy issues. 

As reflected by our proposed flow in Fig. 8, we strive to take advantages of the first symbolic-

based sizing phase to benefit the second heuristic-based sizing phase by introducing promising 

initial solutions into the first population of EA. They include both the output elite solution (𝜀) from 

Module-III and any intermediate solutions (𝜑) that can only satisfy symbolic constraints but fail 

in the subsequent simulation verification. In case 𝜀 cannot be found, a strategy as discussed in 

Section 4.5.3 can help configure the first EA population fully with 𝜑. We incorporate three pieces 

of information (i.e., 𝜀 derived from the gm/ID-based sizing phase (i.e., Module-III), the variable 
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boundaries implied by the locality around 𝜀  (called knowledge implication hereafter in this 

chapter), and 𝜑) into the second-phase EA-based sizing optimization. 

Then the initial EA population can be configured by using the following scheme, 𝑁𝑃 = 𝑁𝜀 +

𝑁𝜑 +𝑁𝜉 , where NP is the user-defined EA population size, 𝑁𝜀 is the number of elite solution (1 if 

existing), and 𝑁𝜑  is the number of intermediate solutions. Here 𝑁𝜉  is the number of candidate 

solutions (𝜉) generated within implied variable boundaries by using the following tactics. Firstly, 

a user-defined percentage (100% by default) is appended to each variable value obtained from 𝜀 

in order to determine its upper and lower bounds respectively. Then a step size is determined for 

enumerating possible discrete variable values within the applied knowledge-implied variable range. 

In our experiments, 10nm and 5nm were used by default as the step sizes of MOSFET width and 

length, respectively. Next, 𝑁𝜉  candidates representing the locality of 𝜀 are randomly generated 

within the selected variable boundaries. In the special case, where 𝜀 does not exist, the variable 

bounds need to be set to include all intermediate solutions provided from the iterative gm/ID-based 

symbolic sizing phase. And this could lead to a larger search space that might increase the hardship 

for the convergence of optimal solutions during the EA-phase sizing optimization. 

The implied knowledge from the gm/ID elite solution 𝜀, which provides a rich resource of 

locality information as reflected by 𝜉, can help eliminate unknowledgeable random exploration. 

As the traditional standalone EA-based sizing methods have no knowledge of the target circuits, 

their chromosome-variable range is normally set much wider than that of our proposed gm/ID-EA 

scheme equipped with the gm/ID elite knowledge in order to avoid missing any potential optimal 

solutions. This would naturally result in hardship in the subsequent search and optimization. Next, 

we apply the improved version of θ-DEA discussed in Section 3.3.3 to the circuit sizing problem 

as the second-phase sizing refinement. 
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4.5. Parasitic-Awareness in gm/ID and EA Sizing 

The intrinsic parasitics have been included in our proposed gm/ID-based sizing via (36) in 

Section 4.3.3. In this section, we mainly discuss how layout information is considered for 

interconnect parasitics in both gm/ID-based and EA-based sizing phases. 

 

4.5.1. Floorplan Optimization 

To extract interconnect parasitics, the geometric interconnection relationship among all the 

circuit modules has to be clearly identified. Although a carefully pre-designed floorplan can 

provide such interconnect information, it usually demands significant expertise and effort from 

designers. Therefore, we utilize a floorplan optimization method aimed for analog layouts [13], 

via a B*-tree representation driven by an SA-based engine, to derive a compact floorplan in each 

iteration shown in Module-III. 

We use the parasitic-free sizing solution, which provides definite device geometric 

information in order to initialize the input modules for the floorplanner. Once a floorplan is 

obtained, it will be used for estimating interconnect parasitics for the parasitic-aware sizing in 

Module-III, and input to the following EA sizing phase. The aspects, such as sensible signal flows, 

resemblance to circuit schematic, electrical and geometric constraints, are the necessary metrics 

for deriving robust floorplans. An adaptive floorplan variation scheme in the EA phase will be 

discussed in Section 4.5.3. 

For a derived floorplan, the Manhattan distance between two electrical terminals is used to 

express the length of the shortest path in a symbolic form. As an example, one floorplan of the 
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differential-pair comparator in Fig. 5(b) is shown in Fig. 4 with the presence of interconnects. The 

transistors M1 & M2, M3 & M4, M7 & M8, and M9-M12 are placed symmetrically to avoid 

parasitic mismatch [73]. Cartesian coordinates are used to denote the position of devices [74]. 

The following floorplan constraints are formulated to minimize the total area. The transistors 

in Fig. 4 are constrained via, 

𝑤𝑚𝑖 + 2 ∗ 𝑝𝑜𝑙𝑦𝐸𝑥𝑡 + 𝑣𝑖1 ≤ 𝑣𝑖2 ,    𝑑 + 𝑣𝑖2 ≤ 𝑣𝑗1 , 

 

       𝑙𝑚𝑖 ∗ 𝑛𝑓𝑖 + (𝑛𝑓𝑖 −  1) ∗ 𝑆𝐷 + 2 ∗ 𝐿𝑑 + ℎ𝑖1 ≤ ℎ𝑖2 ,    𝑑 + ℎ𝑖2 ≤ ℎ𝑗1 , 

(40) 

where wmi is the single transistor finger width, lmi is the transistor length, nfi is the total number of 

transistor fingers, polyExt is the polysilicon extension over active diffusion area, d is the distance 

between devices, 𝑆𝐷 is the distance between transistor fingers, Ld is the side lateral diffusion 

length of the source & drain region in the multi-finger structure, vi1 and vi2 are the vertical 

coordinates of the ith transistor, and hi1 and hi2 are the horizontal coordinates of the ith transistor. 

Additional constraints can also be included so that the total interconnect parasitics of sensitive 

nodes can be well restricted. For instance, Cintp and Cintn of the two output nodes in Fig. 4 should 

stay equal in the floorplan in order to reduce capacitive mismatch. 

 

4.5.2. Integration of Interconnect Parasitics 

Once a floorplan is generated, the interconnect relative location is definite and the interconnect 

length between any two transistors can be calculated as a function of MOSFET geometry including 

length, width, finger number, technology parameters, and other user-specified values (e.g., d). If 

the interconnect length is available, the derivation of interconnect parasitic capacitance involving 
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the coupling and fringe components can be done by following the modeling approach in [18]. The 

interconnect parasitic resistance, Rint, can be derived by (intLen * ρ) / (intWid * intThick), where ρ 

is the sheet resistivity and intThick is the thickness of the interconnect layer, both as technology-

dependent constants. Those parasitic equations above are of the simple nonlinear form, which can 

be readily integrated into our proposed gm/ID-based sizing framework through (37). 

In the subsequent EA optimization phase, the intrinsic parasitics are already considered in the 

numerical simulations through technology-dependent device models. The interconnect parasitics 

are calculated in the abovementioned way when W, L, and nf of all the transistors are definite from 

an evolutionary trial-solution along with its compatible floorplan. Finally, the values of 

interconnect parasitics are present as resistance and capacitance of electrical nets defined in a 

netlist called during circuit numerical simulations. Therefore, the second-phase EA sizing 

discussed in Section 4.4 remains to be parasitic aware. 

 

4.5.3. Compatibility-Aided Adaptive Floorplan Variation 

By offering geometric relationship among circuit devices, a floorplan helps induce estimation 

of parasitics. It tends to be improper to preserve a floorplan template while varying device sizes 

since the resultant layout might be substantially suboptimal. However, it is costly to enumerate 

device layout styles and extensively try the size combinations [51]. Therefore, we advocate 

applying a scheme as reflected in Algorithm 3 for adaptive floorplan variation embedded in the 

EA sizing phase. We define a metric called floorplan compatibility between a given floorplan and 

a new set of device sizes, which helps determine whether the given floorplan is still good to be 

reused for the new device sizes. 
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Algorithm 3. The first population configuration in EA with compatibility-aided adaptive floorplan variation 

Input: EA population size (NP), elite solution and floorplan, 𝑁𝜑 intermediate solutions (𝜑) and their floorplans 

Output: Configured EA population associated with their updated floorplans in the first generation 

1.   if (𝑁𝜑 < NP) {    // the elite solution is available 

2. Form (NP-𝑁𝜑-1) chromosomes to introduce elite locality by using the tactics discussed in Section 4.4; 

3. Use W, L, and nf of each device defined in the elite solution and other technology-defined parameters (e.g., 

finger distance SD) to calculate the geometrical width and height for all the devices; 

4. Calculate the summation of device area, Areadev, from all the devices in the elite solution; 

5. Calculate the estimated chip area, Areachip, from the bounding-box of the elite floorplan; 

6. Calculate floorplan compatibility FC for the elite solution (along with its elite floorplan) as a reference; 

7. Calculate Areadev for the other (NP-𝑁𝜑-1) chromosomes as initialized in Line-2; 

8. Follow the elite floorplan to derive Areachip and FC for the other (NP-𝑁𝜑-1) chromosomes; 

9. Decide if the elite floorplan is reusable or not for each of the other (NP-𝑁𝜑-1) chromosomes by calculating 

its floorplan compatibility difference. If not, derive a suitable floorplan and calculate FC; } 

10. Calculate FC for all the intermediate solutions 𝜑 with known device sizes and floorplans from the input; 

 

Given the user-defined EA population size NP, if the number of iterations, due to failure in 

the simulation verification from the preceding gm/ID-sizing modules, has reached NP, we consider 

there is no need for further effort seeking an elite solution under the limited resources since 

sufficient intermediate solutions have already been collected. 𝑁𝜑  denotes the number of the 

intermediate solutions (𝜑) that are input to Algorithm 3 along with the elite solution from Module-

III if 𝑁𝜑  < NP. Besides those, the corresponding floorplan is needed for each solution included in 

the input. The algorithm starts by focusing on the elite solution and generating 𝑁𝜉  = (NP – 𝑁𝜑  – 1) 

chromosomes for introducing the locality of the elite solution. Then it calculates the geometrical 

width and height of each device by using its schematic parameters and technology-dependent 

parameters (in Line-3). In Line-4, the total device area, Areadev, is calculated by the summation of 

width*height for all the devices from the elite solution. In Line-5 the estimated chip area, Areachip, 

can be calculated for the elite solution by using the bounding-box of the elite placement. In Line-
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6 the floorplan compatibility, defined as FC = Areadev / Areachip, is calculated for the elite solution. 

For each of the rest (NP – 𝑁𝜑  – 1) chromosomes initialized in Line-2, its Areadev can be readily 

obtained in Line-7, while a packing operation is needed to calculate Areachip and FC for each of 

the other (NP – 𝑁𝜑  – 1) chromosomes by using the elite floorplan in Line-8. 

We employ a new term called floorplan compatibility difference between chromosomes a and 

b both attempting a’s floorplan, as define below: FCDiff(a, b) = (FCa – FCb) / FCa, where FCa and 

FCb refer to the floorplan compatibility amounts of a and b by using a’s floorplan. A smaller 

FCDiff(a, b) represents a better compatibility when chromosome b is reusing a’s floorplan. For 

the first EA generation, if the floorplan compatibility difference between the elite solution and any 

one from the other (NP – 𝑁𝜑  – 1) chromosomes is less than a user-defined threshold value, 

FCDiffref (15% by default), we consider the elite floorplan is still good to be reused. Otherwise, a 

new floorplan has to be derived for the current chromosome by using our B*-tree-based 

floorplanner. After that, the bounding-box and compatibility of the current chromosome are 

updated in Line-9, while in Line-10 the floorplan compatibility FC of each solution in 𝜑  is 

calculated as per the corresponding input floorplan. Algorithm 3 ends by providing the 

configuration of the first evolutionary generation including the chromosomes (i.e., definite device 

sizes) and appropriate corresponding floorplans. From the second generation to the end, we always 

keep tracking the status of the parental floorplans and reuse them if possible. In detail, each 

chromosome, a, in each generation attempts to reuse its parental floorplan if any good one can be 

discovered (i.e., if FCDiff(a’s one parent, a) < FCDiffref). If the floorplans from both parents are 

all good, the one that offers larger compatibility will be selected for reuse. Otherwise, a new 

floorplan has to be derived by invoking the B*-tree-based floorplanner with FC updated for the 

evolution in the next generation. 
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4.6. Experimental Results 

This part is divided into three subsections. The experimental circuits of the two-stage Op-Amp 

in Fig. 5(a), the comparator in Fig. 5(b), and the Cascode common source LNA in Fig. 5(c) are 

employed. Subsection 4.6.1 briefly conducts a performance analysis between the parasitic-free and 

parasitic-aware gm/ID-based sizing methods using the Op-Amp as an exemplary circuit. Following 

the introduction of the experimental setup, subsection 4.6.2 highlights the merits of our proposed 

gm/ID-EA hybrid approach with the adaptive floorplan variation scheme by providing the 

experimental results compared to some alternative methods. Subsection 4.6.3 illustrates the 

robustness of our proposed gm/ID-EA hybrid sizing approach reflected by satisfactory post-layout 

simulation results from the real extracted designs. All the experiments in this chapter were 

conducted in the TSMC CMOS 65nm technology. 

 

4.6.1. Verification of the First-Phase Parasitic-Aware gm/ID-

Based Sizing 

To formulate the MINLP problem in the gm/ID form, each gm, gds and Cij in the given circuit 

performance equations will be replaced by gm/ID, gds/ID, and Cij/ID, respectively. Only the topology-

dependent circuit equations are employed, which eliminates the accuracy concerns caused by any 

MOSFET square-law-based equations. For integrating the interconnect parasitics, as one example, 

the total capacitance at the output net in the two-stage Op-Amp circuit is 𝐶𝐿 + (
𝐶𝑑𝑏

𝐼𝐷
⁄ )6𝐼𝐷6 +

(
𝐶𝑑𝑏

𝐼𝐷
⁄ )7𝐼𝐷7 + (

𝐶𝑔𝑑
𝐼𝐷
⁄ )6𝐼𝐷6 + (

𝐶𝑔𝑑
𝐼𝐷
⁄ )7𝐼𝐷7 + 𝐶𝑖𝑛𝑡 , where Cint is the interconnect capacitance 

estimated at the output net. Another example of circuit modeling and integration of interconnect 
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parasitics in the gm/ID form for the differential-pair comparator circuit as shown in Fig. 5(b) can 

be found in [75]. 

To demonstrate the significance of the pre-optimization module in our proposed synthesis 

flow, a case study was conducted for the two-stage Op-Amp by using the standalone parasitic-free 

sizing Module-II along with some user-defined input of node voltages and L’s (denoted by “User-

Defined” here). We granted L = 120nm, two times of the CMOS65nm technology minimal L, to 

all the MOSFETs in the circuit. We also doubled the voltage bounds and respected the constraints 

of all the MOSFET operating regions according to our reference design by using the proposed 

sizing method (i.e., Module-I + Module-II). The initial node voltages were set by the medians of 

the corresponding bounds. For testing such a method, in our experiment we had to loose some 

specifications in order to make the MINLP problem solvable. The experimental results of the User-

Defined method include DC gain of 50.24dB, unity gain bandwidth (UGB) of 19.65MHz, phase 

margin (PM) of 55.69 degrees, and gain margin (GM) of 32.71dB. They are obviously inferior to 

the performances of our reference design, including DC gain of 60.33dB, UGB of 12.02MHz, PM 

of 61.02 degrees, and GM of 24.77dB. Thus, one can understand the significance and effectiveness 

of our proposed pre-optimization Module-I towards the subsequent optimization modules in the 

synthesis flow as illustrated in Fig. 8. 

Table 6. gm/ID sizing result verification under mismatch condition for the two-stage Op-Amp 

 Spec. Ideal 
With 1.5Ω (5Ω) 

Mismatch 

Parasitic-free gm/ID-

based method 

Gain > 60dB 60.33 59.98 (59.10) 

UGB > 1M 12.02 12.01 (12.07) 

PM > 60° 61.02 61.08 (61.22) 

GM > 10dB 24.77 24.76 (24.72) 

Parasitic-aware gm/ID-

based method 

Gain > 60dB 61.70 61.51 (61.04) 

UGB > 1M 9.63 9.65 (9.66) 

PM > 60° 61.72 61.75 (61.84) 

GM > 10dB 23.11 23.12 (22.13) 
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Table 6 presents the pre-layout simulation verification of the sizing results from the standalone 

parasitic-free and parasitic-aware gm/ID-based sizing methods for the two-stage Op-Amp. The 

column with the title of “Ideal” shows the simulation results with no Rint and Cint involved. The 

column with the title of “Mismatch” shows the simulation results when a 1.5Ω or 5Ω resistive 

mismatch exists between R1 and R2 caused by imperfect layout design. Although the sizing result 

from the parasitic-free gm/ID-based method could satisfy the specifications if no layout parasitics 

are included in the pre-layout simulation, the gain (with 0.35dB drop) failed  to meet the 60dB 

specification if a 1.5Ω mismatch is involved. In contrast, our proposed parasitic-aware gm/ID-based 

method was able to achieve 61.51dB of gain (with only 0.19dB drop that is 45.7% less) in the 

same situation. Moreover, in the case of the 5Ω mismatch, the parasitic-free gm/ID-based method 

degraded the performance of gain by 1.23dB, while our parasitic-aware gm/ID-based method could 

reduce the degradation to 0.66dB (i.e., 46.3% less). Thus, we can conclude that our proposed 

parasitic-aware gm/ID-based sizing phase is able to derive a preliminary sizing result that can not 

only reserve some performance margin for absorbing parasitic disturbance but also be more 

immune from any unexpected parasitic effect caused by subsequent imperfect layout. 

 

4.6.2. gm/ID-EA Hybrid Sizing Verification 

To have a comprehensive comparison with the previous works, we have implemented the 

following eight alternative methods. Scheme-0 is the standalone parasitic-aware gm/ID-based sizing 

method as discussed in Section 4.3. Among the single-objective methods, Scheme-1 follows the 

Sizing Flow for fast Parasitic Closure (called SFPC for short) originally proposed in [59], which 

encloses placement and global routing inside a refined-sizing loop. Scheme-2 implements the idea 
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in [67] that uses a conventional evolutionary algorithm on analog circuit sizing. In order to be 

comparable with the other parasitic-aware schemes, the parasitic handling scheme proposed in this 

paper was also applied to Scheme-2. Due to no pre-optimization to generate any knowledge for 

evolutionary variables in [67], the variable ranges in Scheme-2 had to be set wide for covering 

large search configuration space, which can be also reflected by a large population size (i.e., NP = 

56) and a large maximum generation number (i.e., Gmax = 40). Scheme-3 mimics the idea from a 

layout-aware sizing work [33] by using the differential evolution (DE) algorithm. We grant it with 

the knowledge from the gm/ID phase, like that in our proposed method (i.e., Scheme-5), in order to 

fairly compare the performance between the single-objective EA and the many-objective θ-DEA. 

The NP and Gmax are set as 32 and 20, a smaller configuration for these two schemes, respectively. 

Scheme-4 is provided as a comparison set in the many-OEA group to show whether a sophisticated 

many-objective yet standalone EA can derive a good output under the same condition of large 

evolutionary configuration as in Scheme-2 if no gm/ID-involved knowledge is integrated. Scheme-

7 is our proposed parasitic-aware hybrid gm/ID-EA sizing method, which is integrated with our 

adaptive floorplan variation scheme. In order to demonstrate its efficiency, we have also 

introduced two more schemes with the same configuration of Scheme-7 but with fixed floorplan 

(for Scheme-5) and with full floorplan variation all the time (for Scheme-6). 

For each of Schemes 1-7 in our experiment, 10 runs were conducted for each test circuit. 

Statistical data (e.g., average and standard deviation) were then calculated for our comparison and 

analysis purpose. To enable a direct comparison between the single-objective and many-objective 

EAs, in the analysis part we evaluate the many-objective solutions with a unified metric called 

fitness that is calculated from a fitness function defined in (41), the smaller the better, as the 

ultimate benchmark (as shown in the row of “DE/θ: Best-Fitness” in Tables 7-8). 
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𝐹(𝑋) = ∑ 𝑢𝑖
𝑆𝑖

𝑃𝑖

𝐺
𝑖=1 + ∑ 𝑢𝑖

𝑃𝑖

𝑆𝑖

𝐻
𝑖=𝐺+1 + 𝑣1𝐴𝑛𝑜𝑟𝑚 + ∑ 𝑣𝑗

𝐾
𝑗=2 𝑇𝑗(𝑛𝑜𝑟𝑚) , (41) 

where 𝑢𝑖’s and 𝑣𝑖’s are the weighting factors for different electrical specifications and geometric 

requirements, respectively. Pi is the circuit performance returned from numerical simulations for 

solution 𝑋, and Si is its required specification accordingly. The first two terms on the right side of 

(41) show reciprocal division between Pi and Si. In this way, if minimizing F(𝑋), the performance 

value, Pi (i = 1 to G, such as open-loop gain), can be maximized, whereas Pi (i = G+1 to H, such 

as noise figure) can be minimized. Thus, both maximization and minimization of multiple 

objectives are integrated into one single-objective minimization problem of F(𝑋), where H is the 

total number of electrical specifications, and K is the total number of geometrical requirements. 

Anorm is the normalized layout total area and Tj(norm)’s are the normalized other geometric 

requirements, which can be weighted by 𝑣𝑗’s (i = 1 to K). From our experiments, the selection of 

the user-defined weighting factors in (41) may slightly alter the sizing performance as a local effect. 

Whereas the configuration of variable bounds, initial solution point, and the constraints would 

contribute more to the performance variation. The numbers of SPICE invocations for Schemes 1-

7 are reported in Tables 7 and 8. The run time only covers the simulation and optimization process 

without including any subsequent layout synthesis operations (i.e., layout generation and 

extraction). 

For a complete resultant solution set Ss from any scheme, the specification-satisfied solutions 

form a subset denoted as Ss-s, leaving a complementary subset with failure solutions. Since the 

nature of the single-objective EA is to converge to a best-fitness solution, the complete set should 

be used to reflect the evolution status, and the average fitness and standard deviation are calculated 

inside Ss. However for the many-objective θ-DEA, in order to promote the generation of optimal 
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clusters with the exploration emphasis on multiple objective aspects, the clusters have to be 

distributed across the entire solution space even in certain infeasible regions directed by the 

systematic construction of reference points. Therefore, the average fitness is calculated inside Ss-s 

only, which refrains from presenting unaccountable solutions from any infeasible regions. 

Moreover, we employ a success-rate (i.e., Ss-s/Ss) to exhibit the diversity of the final solution set 

for the many-objective methods. 

The experimental results of the differential-pair comparator are listed in Table 7. Propagation 

delay is one of the most important characteristics for this comparator circuit, and the positive and 

negative overshoots are given with the absolute values. Without the help of the elite or intermediate 

solutions from the gm/ID phase, the single-objective SFPC (i.e., Scheme-1) and single-objective 

EA method (i.e., Scheme-2) demonstrate poor best-fitness and average-fitness (i.e., 0.828 & 0.840 

and 0.707 & 0.712, respectively). As an alternative, although Scheme-3 slightly improves the best-

fitness by integrating the informative first-phase solutions from Scheme-0, it still fails for the delay 

specification. In contrast, the performance from the many-objective methods is definitely superior 

to that of all the single-objective methods. Since the output logic of the comparator frequently flips 

when the parasitic capacitance fluctuates during the solution exploration to break the balance 

between two output paths, the search configuration space might be highly bumpy. Therefore, the 

knowledge from the gm/ID phase comprising the gm/ID elite and other intermediate solutions, which 

is integrated into Scheme-7, can effectively help shrink the search configuration space with a better 

focus on the promising regions. As a result, our proposed Scheme-7 despite fewer resources 

involved not only ran faster but also performed better than Scheme-4 especially in terms of the 

success rate (i.e., 78.57% vs. 30.77%). 
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Table 7. Settings and performance of the various schemes for the differential-pair comparator 

Schemes 

gm/ID Single-objective Methods Many-objective θ-DEA Methods 

Sch-0 

Sch-1 

(SFPC)  

[59] 

Sch-2 

[67] 

Sch-3 

[33] 

Sch-4 

Larger 

setting 

Sch-5 

Fixed 

Fp. 

Sch-6 

Var.  

Fp.  

Sch-7 

 [This 

work] 

EA/θ: Best-Fitness 0.496 0.828 0.707 0.483 0.267 0.224 0.255 0.171 

θ: Average-Fitness - - - - 0.320 0.284 0.309 0.183 

θ: Success-Rate - - - - 
30.77

% 

82.14

% 

78.57

% 
78.57% 

EA: Average-Fitness - 0.840 0.712 0.513 - -  - 

EA: Standard-Deviation - 0.013 0.005 0.021 - -  - 

#SPICE Invocations - 560 2240 640 2240 640 640 640 

Run Time(mins) 
3.16 

Sec. 
13.27 28.27 12.15 37.72 12.52 17.18 14.90 

Specification Performance (from the Representative Solution with the Smallest Fitness) 

Propagation Delay < 

250ps 
152.5 493 279 320 175 108 95.88 83 

+Overshot < 350mV 183.0 400 220 20 11 37 61.39 23 

-Overshot < 150mV 53.3 89 57 13 10 20 30.73 18 

Area(μm2) 153.29 244.17 288.35 252.04 275.36 154.06 136.30 180.67 

 

By maintaining a floorplan template, the sizing result from Scheme-5 tends to be suboptimal 

compared to that from Scheme-7 (i.e., best-fitness of 0.224 vs. 0.171) since the fixed floorplan 

template might be erroneous to follow for non-scaled device sizes. In addition, for Scheme-6, an 

offspring solution may not be able to readily continue the floorplan style used by its parents due 

to dramatic floorplan variation between individuals. In particular, any offspring solutions with 

scaled device sizes compared to their parents may be equipped with very different floorplans, 

which would unnecessarily add hardship to the evolution process due to non-scaled parasitics. 

However, our proposed Scheme-7 endeavors to focus more on solutions with cooperative 

floorplans by introducing the concept of floorplan compatibility. It would not only effectively 

reduce the search configuration space, but also avoid awkward mismatch situations between device 

sizing and floorplan. As reflected from the experimental data, under limited evolution resources 

(i.e., small configuration of evolutionary population size and maximum generation), our proposed 

Scheme-7 could still improve the best-fitness to 0.171 on top of 0.255 obtained from Scheme-6. 
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For the experimental results of LNA in Table 8, the SFPC scheme could not work well with a 

lot of specification failures due to the following reasons. Firstly, the single-objective EA might not 

have enough strength in handling hard problems like LNA (partially due to the nonlinearity of 

inductors). Secondly, the frequently changed floorplans would bring forth oscillating parasitics, 

which can hardly provide a priori informative guidance to the next refined-sizing iteration. 

Similarly, the single-objective EA method Scheme-2 could not deliver a good result (i.e., best-

fitness of 1.058) even though it is equipped with extra evolutionary resources. In addition, the high 

average-fitness and standard-deviation (i.e., 2.649 and 1.654, respectively) from Scheme-3 shows 

that it requires a longer generation to converge. In contrast, the best-fitness and average-fitness 

attributes are much better for Schemes 5-7 with the same level of CPU time consumed in 

comparison to the others. Under the two big categories of many-objective schemes, Scheme-4 

produced a relatively premium best-fitness solution of 0.787 with a little over 0.2 mm2 area cost 

yet at the cost of almost triple execution time compared to Schemes 5-7, which indicates that the 

capability of θ-DEA is not fully exploited when there is no specific circuit knowledge offered. In 

addition, since the size of an inductor is much bigger than the other types of devices, the attempted 

floorplans for all the chromosomes may only have some local variations but with a major global 

resemblance. This partially explains why the percentage difference of best-fitness could only reach 

7.8% between Scheme-6 and Scheme-7, but it was improved by 32.9% between these two schemes 

for the comparator test circuit even though both circuits are sensitive to parasitics. Therefore, our 

proposed adaptive floorplan variation scheme (i.e., Scheme-7) could excel beyond the other two 

(i.e., Scheme-5 and Scheme-6) in terms of circuit performance by maintaining a good tradeoff 

between floorplan consistency and suitability. 
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Table 8. Settings and performance of the various schemes for the LNA circuit 

Schemes 

gm/ID Single-objective Methods Many-objective θ-DEA Methods 

Sch-0 

Sch-1 

(SFPC)  

[59] 

Sch-2 

[67] 

Sch-3 

[33] 

Sch-4 

Larger 

setting 

Sch-5  

Fixed  

Fp. 

Sch-6 

Var. Fp. 

Sch-7 

 [This 

work] 

EA/θ: Best-Fitness 0.814 1.158 1.058 0.813 0.787 0.764 0.793 0.731 

θ: Average-Fitness - - - - 0.838 0.803 0.828 0.807 

θ: Success-Rate - - - - 5.36% 6.25% 6.25% 9.38% 

EA: Average-Fitness - 1.340 1.058 2.649 - - - - 

EA: Standard-

Deviation 
- 0.347 

0.000

3 
1.654 - - 

- 
- 

#SPICE Invocations - 560 2240 640 2240 640 640 640 

Run Time(mins) 3.17 Sec. 11.31 23.85 9.94 32.26 11.09 12.67 11.71 

Specification Performance (from the Representative Solution with the Smallest Fitness) 

Gain > 15dB 21.21 15.62 18.75 20.05 21.45 18.15 18.17 20.47 

NF < 2.5dB  2.04 2.71 2.15 2.08 2.06 2.29 2.20 1.90 

S11 < -10dB -13.45 -7.33 -5.26 -13.52 -15.56 -12.76 -12.77 -17.08 

S22 < -10dB -10.10 -8.17 
-

14.88 
-10.74 -10.20 -18.85 

-14.60 
-11.80 

Area(mm2) 0.189 0.216 0.228 0.214 0.209 0.158 0.181 0.154 

 

These experimental results demonstrate that our proposed many-objective θ-DEA 

optimization search equipped with the knowledge from the gm/ID phase is the best choice out of all 

the alternatives not only in terms of performance but also in the view of computational efficiency. 

The experimental results of the two-stage Op-Amp, which exhibit similar comparison effect 

among all the alternative methods as Tables 7-8, are not detailed in this chapter. Finally, by 

following the gm/ID-EA two-phase hybrid sizing results and their final floorplans, we used Cadence 

Layout-XL tool [56] to place and route the auto-generated modules in order to obtain the final 

layouts. Then we used Mentor Graphics Calibre tool [76] for parasitic extraction and Cadence 

Spectre circuit simulator for post-layout performance verification. 
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4.6.3. Post-Layout Verification for the Proposed gm/ID-EA 

Hybrid Sizing Solutions 

In this section, the optimized designs from our proposed parasitic-aware hybrid sizing method 

are laid out and verified in post-layout simulations. For fair comparison, some intermediate 

optimization results are also laid out and verified in the same manner. Here we mainly use two 

examples (i.e., two-stage Op-Amp and LNA) to demonstrate the effectiveness of our proposed 

gm/ID-EA hybrid sizing methodology. 

Table 9 exhibits both pre-layout simulation verification (i.e., Columns 3 and 4) and post-

layout verification (i.e., Column-5) for the two-stage Op-Amp sizing results from the standalone 

parasitic-free sizing method (i.e., Row-(A)) and the two-phase hybrid sizing method with parasitic-

awareness (i.e., Row-(B)). As for the verification settings, there is no interconnect parasitics 

present in the “No Parasitic” case (i.e., Column-3), while there are floorplan-based estimated 

parasitics back annotated (denoted by “Estimated Parasitics”) into the corresponding electrical nets 

in Column-4. After the designs have been laid out along with the extraction of parasitics, the 

simulation setting would include the extracted parasitics (denoted by “Extracted Parasitics”) in 

Column-5. Moreover, the Bode plots that exhibit the frequency response for the three sizing 

solutions as reported in  

Table 10 are given in Fig. 11. Since both the gm/ID-based sizing Module-III and the EA-based 

sizing Module-IV feature parasitic awareness, the estimated parasitics are included in the 

frequency response as shown in Fig. 11(b) and (c), while no parasitic is included when obtaining 

Fig. 11(a) for the parasitic-free gm/ID-based sizing Module-II. 
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Table 9. Verification of sizing results for the parasitic-free sizing method and the proposed two-

phase hybrid parasitic-aware sizing method with no parasitics, estimated parasitics, and extracted 

parasitics for the two-stage Op-Amp circuit 
Op-Amp gm/ID 

Schemes & 

Performance 

Spec. No Parasitics 
Estimated 

Parasitics 

Extracted 

Parasitics 

(A). Parasitic-free 

Symbolic gm/ID 

(Module-II) 

Gain > 60dB 60.33 60.35 59.78 

UGB > 1M 12.02 12.02 11.30 

PM > 60° 61.02 60.64 60.28 

GM > 10dB 24.77 24.43 24.17 

(B). Parasitic-aware 

Symbolic gm/ID + 

Heuristic Many-OEA 

(Module-IV) 

Gain > 60dB 63.71 63.69 63.42 

UGB > 1M 27.27 27.22 26.51 

PM > 60° 106.1 105.1 100.0 

GM > 10dB 16.84 16.76 15.69 

 

Table 10. Sizing solutions from various sizing methods without and with parasitic awareness for 

the two-stage Op-Amp circuit 
Sizes / Methods 

(Modules) 

A. Parasitic-free 

(Module-II) 

B. Parasitic-aware 

(Module-III) 

C. Parasitic-aware 

(Module-IV) 

M1/M2 
L (𝛍) 0.3 0.3 0.98 

W (𝛍) 82.18 70.89 67.9 

M3/M4 
L (𝛍) 0.6 0.6 0.505 

W (𝛍) 5.3 5.14 5.54 

M5 
L (𝛍) 0.3 0.3 0.705 

W (𝛍) 16.38 13.38 47.25 

M6 
L (𝛍) 0.6 0.6 0.34 

W (𝛍) 17.3 17.89 24.96 

M7 
L (𝛍) 0.3 0.3 0.605 

W (𝛍) 1.36 1.13 128.08 

M8 
L (𝛍) 0.3 0.3 1.23 

W (𝛍) 1 1 11.48 

As reported in  

Table 10 for the optimized device sizes before and after the parasitics consideration in the 

two-stage Op-Amp, the parasitic-aware standalone gm/ID-based sizing approach yields the solution 

in Column-B based on the solution (as listed in Column-A) from the parasitic-free sizing method. 

Aside from 13.7% and 18.3% differences for M1/M2’s W and M5’s W respectively, there is a high 

resemblance of device sizes between the two solutions. By referring to the reported performance 
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under the “Ideal”-Column in Table 6, one can see the gain increase from 60.33dB to 61.70dB, 

which can be also seen through Fig. 11(a) and (b). 

After the elite solution from Module-III being refined via the parasitic-aware EA-phase sizing, 

a different solution is obtained in Column-C of  

Table 10. As reported in Tables 6 and 9, the solution from the EA sizing phase could improve 

the performances of Gain from 61.70dB to 63.69dB, UGB from 9.63MHz to 27.22MHz and PM 

from 61.72° to 105.1° at the cost of GM dropping from 23.11dB to 16.76dB. This improvement 

should be credited to the EA heuristics via the size adjustment of M5-M8. Moreover as observed 

from Fig. 11(c), the phase curve does not start to drop significantly before the Gain curve reaches 

the unit gain, which leads to ample PM (i.e., 105.1°) in comparison to those (i.e., 61.02° and 61.36°) 

in Fig. 11(a) and (b) from both gm/ID-based symbolic sizing approaches. 

Fig. 12(a) and (b) depict the final layouts from the two sizing methods reported in Table 9. 

Obviously, the extracted parasitics included in the post-layout simulation make the DC gain of Fig. 

12(a) fail in its specification of 60dB, whereas the layout of Fig. 12(b) from our proposed two-

phase hybrid parasitic-aware sizing method performs much better with sufficient margins in its 

post-layout simulation. 
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(a) 

 

 (b) 
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 (c) 

Fig. 11. Frequency response Bode plots of the two-stage Op-Amp for (a) parasitic-free 

gm/ID-based sizing method with no parasitics, (b) parasitic-aware gm/ID-based sizing method with 

estimated parasitics, (c) parasitic-aware gm/ID-EA hybrid sizing method with estimated parasitics 

 

  

      (a)              (b)     

Fig. 12. Layouts of sizing solutions from (a) parasitic-free gm/ID-based sizing method and (b) 

our proposed two-phase hybrid parasitic-aware sizing method (i.e., gm/ID-based plus EA-based) 

for the two-stage Op-Amp circuit 
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Table 11. Verification of various sizing results with no parasitics, estimated parasitics, and 

extracted parasitics for the LNA circuit 

LNA gm/ID Schemes & 

Performance 
Spec. 

No 

Parasitics 

Estimated 

Parasitics 

Extracted 

Parasitics 

(A). Parasitic-free  

Symbolic gm/ID 

(Module-II) 

Gain > 15dB 22.35 21.11  16.17 

NF < 2.5dB 2.02 2.06  1.938 

S11 < -10dB -11.09 -7.51  -6.68 

S22 < -10dB -12.61 -9.1 -3.40 

(B). Parasitic-aware 

Symbolic gm/ID 

(Module-III) 

Gain > 15dB 22.13 21.21 17.29 

NF < 2.5dB 1.99 2.04 1.87 

S11 < -10dB -16.56 -13.45 -9.20 

S22 < -10dB -24.08 -10.10 -4.04 

(C). Parasitic-aware 

Symbolic gm/ID + Heuristic 

Many-OEA 

(Module-IV) 

Gain > 15dB 20.04 20.47 18.91 

NF < 2.5dB 1.91 1.90 1.91 

S11 < -10dB -19.00 -17.08 -10.29 

S22 < -10dB -11.68 -11.80 -10.23 

 

To further demonstrate the effectiveness of our proposed hybrid sizing method on RF circuits, 

the post-layout analysis is conducted on the LNA circuit. Table 11 reports both pre-layout 

simulation verification (i.e., Columns 3 and 4) and post-layout verification (i.e., Column-5) for the 

LNA sizing results from the standalone parasitic-free sizing method (i.e., Row-(A)), parasitic-

aware gm/ID-based sizing method (i.e., Row-(B)), and the continued method after the concatenation 

of heuristic many-OEA sizing (i.e., Row-(C)). The columns are arranged in the same way as those 

in Table 9. All the three sizing results can meet the specifications initially as shown in Column-3, 

while only the sizing solutions with parasitic awareness (i.e., Row-(B) and Row-(C)) can pass the 

specifications if involving estimated parasitics. A certain amount of performance degradation can 

be observed between the “No Parasitic” and “Estimated Parasitics” cases for both the symbolic-

based parasitic-free and parasitic-aware methods, for instance, -11.09dB deteriorates to -7.51dB 

for S11 in Row-(A) while -24.08dB deteriorates to -10.10dB for S22 in Row-(B). One can also 

observe more performance degradation between the estimated (i.e., Column-4) and extracted (i.e., 
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Column-5) parasitics for both Row-(A) and Row-(B), none of which can pass the post-layout 

verification. However, the sizing result from our proposed parasitic-aware two-phase hybrid sizing 

method (i.e., Row-(C)) can achieve better performance convergence and meet all the specifications 

in the post-layout verification without fail. 

 

4.7. Summary 

In this chapter, an efficient parasitic-aware two-phase gm/ID-EA hybrid circuit sizing 

methodology for high-performance analog and RF circuits was presented. It utilizes the gm/ID and 

curve fitting design techniques to represent the parasitic-aware sizing problem in the mixed-integer 

nonlinear programming form by enclosing the technology-independent circuit structure models, 

technology-dependent device intrinsic parasitic characterization, and interconnect parasitic models 

in order to seek a global solution. Then in the second optimization phase, a many-objective θ-

dominance-based evolutionary algorithm is adopted for a more focused and refined search under 

an informative guide implied from the knowledge generated by the gm/ID sizing phase. With the 

adaptive floorplan variation scheme, the sizes and parasitics are harmoniously optimized in the EA 

sizing phase. The experiments on several analog and RF circuits demonstrate the efficacy of our 

proposed methodology compared to several well-known published alternatives. 

In the next chapter, aside from the parasitics, LDE that is identified as an emerging challenge 

for analog circuit synthesis will be firstly discussed. Then our proposed gm/ID-based LDE-aware 

sizing methodology will be presented in detail. 
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Chapter 5    An LDE-Aware gm/ID-Based Hybrid 

Sizing Method for Analog Integrated Circuits 

 

5.1. Introduction 

As the complementary metal oxide semiconductor (CMOS) technology advances, Layout-

Dependent Effects (LDEs) have become increasingly more influential to performance of custom 

and analog integrated circuit design [71]. This is because the surrounding layout around a device 

might change the behavior of its fine-grained model constructed originally for an isolated state. 

This is especially prominent in the sophisticated nanometer technologies. Thus, the analog layout 

designers, although being aware, are often heavily burdened due to either lack of knowledge passed 

along from the schematic-level circuit designers or intricacy of handling LDE constraints. In turn, 

a prolonged re-design cycle is typically expected since the LDE-incurred problems may 

unfortunately not emerge until the final signoff check in the worst scenarios. 

LDEs that have been identified as a prominent second-order effect might readily lead to circuit 

malfunction if not being properly taken care of. For instance, in terms of MOSFET finger number 

(nf), certain transistor key parameters (e.g., carrier mobility and threshold voltage (Vth)), which are 

affected by the nf-incurred LDEs, may in turn ruin the circuit performance. Therefore, 

consideration of the LDEs preferably in the early design stage becomes indispensable in the 

advanced technologies. 

In this chapter, we propose a two-phase hybrid sizing method for high-performance analog 

circuits. It consists of gm/ID-based device characterization, circuit modeling, sensitivity-based 
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constraints for LDEs, and mixed-integer nonlinear programming in the first phase, and a refined 

θ-DEA [38] in the second phase. The main contributions of this chapter are summarized as follows, 

 This is the first work that can optimize LDE parameters at the fast schematic level in the 

synthesis stage of analog design by using our gm/ID-based sizing framework. 

 The accuracy of the whole methodology is enhanced by adopting technology-variant curve-

fitted device characterization from SPICE simulations and sensitivity-study-aided curve-fitting 

models for the LDE parameters. Thanks to the involved simulation, it is very friendly to target 

newer technologies, which is not for those that use traditional device models like GeoP. 

 To the best of our knowledge, this is the first work that applies many-OEAs in the subject of 

LDE optimization. Moreover, our proposed model in the second EA sizing phase can offer 

more accurate estimation of device geometrical parameters at the schematic level. 

The research work conducted on this topic has been mainly published in IEEE Transactions on 

Computer-Aided Design of Integrated Circuits and Systems (TCAD) [J2] and Journal of 

Microelectronics and Solid State Electronics [J5], and presented in 2018 IEEE International 

Symposium on Circuits & Systems (ISCAS) [C1] among others [C6]. 

 

5.2. Proposed LDE-Aware Hybrid Synthesis Flow 

5.2.1. Preliminary of Layout-Dependent Effects 

The impact of LDEs on MOSFET characterization includes mobility, velocity saturation, Vth, 

body effect, drain-induced barrier lowering effect for STI, and Vth, mobility, and body effect for 

WPE [5]. However, it is not necessarily true that minimizing the LDEs would surely yield the best 
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circuit performance [77]. As a solution at the circuit schematic level, we have proposed a 

sensitivity-analysis-based approach that can study device features through circuit simulation to 

constrain the search space 𝒳 for the sizing variables (W,  nf ) and (LRext, SCt), denoted by 𝒳(W, 

nf) and 𝒳(LRext, SCt) respectively, for the LDE matters during the sizing optimization. 

 B    S     D
sd

B

SAmin SBmin

Lext Rextbs bs

ds

δ
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Fig. 13. Illustration of STI and WPE parameters for a multi-finger structure MOSFET with 

integrated bulk style (left) and detached bulk style (right) 

 

Fig. 13 depicts those geometrical parameters of STI and WPE for a multi-finger MOSFET 

that covers both integrated bulk connection style and detached style. Coefficients SCA (first-order), 

SCB, and SCC for each MOSFET, which are included in a simulation netlist, can reflect WPE in 

advanced CMOS technologies according to the BSIM model. They are functions of W, L, nf, and 

SCt (i.e., distances from well edges to polysilicon gate edges from various directions) [5]. For 

instance, 
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𝑆𝐶𝐴𝑖 =
1

𝑊𝑑𝑟𝑎𝑤𝑛𝐿𝑑𝑟𝑎𝑤𝑛
∗ [𝑆𝐶𝑅𝑒𝑓

2 ∑ (𝑊𝑡 (
1

𝑆𝐶𝑡
−𝑁

𝑡=1

1

𝑆𝐶𝑡+𝐿𝑑𝑟𝑎𝑤𝑛
)) +𝑆𝐶𝑅𝑒𝑓

2 ∑ (𝐿𝑡 (
1

𝑆𝐶𝑡
−

1

𝑆𝐶𝑡+𝑊𝑑𝑟𝑎𝑤𝑛
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𝑡=𝑁+1 ]
𝑖

 , 

 

𝑆𝐶𝐴𝑒𝑓𝑓 = ∑ 𝑆𝐶𝐴𝑖
𝑛𝑓
𝑖 /𝑛𝑓 , 

 

(42) 

 

where SCRef is a technology-dependent constant (e.g., 1µm for CMOS 65nm). Wdrawn (i.e., W/nf) 

and Ldrawn (i.e., L) are the channel width per finger and channel length, respectively. Depending on 

the shape of well enclosure, the perimeter (i.e., 2*Wdrawn+2*Ldrawn) of the MOSFET channel can 

be decomposed into segmental widths’ (Wt) and lengths’ (Lt) such that 2*Wdrawn = ∑ 𝑊𝑡
𝑁
𝑡=1  and 

2*Ldrawn = ∑ 𝐿𝑡
𝑁+𝑀
𝑡=𝑁+1 , where N and M are the numbers of well edge segments from all directions 

projected onto Wdrawn and Ldrawn, respectively. For the regular rectangular well enclosure (i.e., N = 

M = 2), Wt = Wdrawn and Lt = Ldrawn. And there are four distance values of SCt, t = 1,…,4, in the 

four directions (i.e., left, right, top, and bottom) of the rectangular device as depicted in Fig. 13. In 

the case of irregular well shape, SCt, which is perpendicular to the corresponding part of MOSFET 

body (i.e., Wt or Lt), is the distance between one well edge segment and its corresponding MOSFET 

channel edge in certain direction. SCx and SCy are set as the optimization variables solely 

accounting for WPE, which will be detailed in Section 5.3. SCAeff is the effective SCA for the entire 

multi-finger transistor. The consideration of SCB and SCC can be similarly managed if higher 

computation resolution is required. 

For the STI effect, the stress distribution and the incurred effects can be expressed by functions 

of two symmetrical parameters, SA and SB, which are the distances from the polysilicon gate edges 

to the device isolation edges on both sides. SAB uniformly expresses SA or SB since a device is 

usually self-symmetric. For a multi-finger MOSFET, SABeff denotes the effective SAB which is 
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calculated by averaging SAB from all fingers, and specifically, SABedge denotes the SAB only for 

the edge finger that is placed closest to the MOSFET isolation edge given as follows, 

𝑆𝐴𝐵𝑒𝑑𝑔𝑒 = 𝑆𝐴𝐵𝑚𝑖𝑛 + 𝐿𝑅𝑒𝑥𝑡 + 𝑘𝑖 ∗ 𝑏𝑠 , 

 

𝑆𝐴𝐵𝑒𝑓𝑓 =
∑ [𝑆𝐴𝐵𝑒𝑑𝑔𝑒
𝑛𝑓
𝑖=1  + (𝐿+𝑠𝑑)∗(𝑖−1)]

𝑛𝑓
 , 

(43) 

 

where SABmin is the allowable minimum distance for SAB, LRext uniformly expresses the left (i.e., 

Lext) or right lateral diffusion extension (i.e., Rext), 𝑘𝑖 is 1 if the bulk area abuts the source area (i.e., 

the integrated bulk style), and 0 otherwise. In Fig. 13, ds is the space left between the diffusion 

and the detached bulk in the L’s direction, and bs is the size of the bulk in the L’s direction. 

Parameter sd defines the finger space and nf is the number of fingers. The remaining parameters 

presented in Fig. 13 which are in linear relationships with the abovementioned ones will be 

introduced accordingly in the following sections. 

 

5.2.2. LDE-Aware Two-Phase Circuit Synthesis Flow 

Our proposed two-phase synthesis flow shown in Fig. 14 is comprised of four main modules. 

In the symbolic sizing phase as depicted in Fig. 14(a), Module-I and Module-II, which model the 

circuit sizing problem by using mixed integer nonlinear programming (MINLP), generate the 

LDE-free and LDE-aware solutions, respectively. In the many-OEA-based sizing phase as shown 

in Fig. 14(a), the heuristic many-OEA-based sizing Module-III takes the initial solutions from the 

previous module and seeks refined LDE-aware solutions. The device parameters and other layout 

factors optimized with LDE-awareness, which are included in Module-III’s output solutions, will 
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be used to perform the layout synthesis through placement and routing inside Module-IV. The 

flow iterates if failures emerge, and a more detailed diagram is depicted in Fig. 14(b). 

The first module, LDE-free gm/ID-based sizing, starts with the initialization and L-

determination (previously discussed in Section 4.3.2), which can generate initial biases and bounds 

for the following MINLP problem, and a uniform L for all MOSFETs. This initial L is used for the 

reference MOSFET (with 1µm width by default and varying node voltages) in the subsequent 

simulations and curve fitting process, where device characterization as reflected by gm/ID, gds/ID, 

Cij/ID, and normalized drain current IDN = ID/(W/L) (altogether called gm/ID-parameters hereafter) 

with respect to VGS and VDS is extracted and curve-fitted into the nonlinear form. These fitted 

characterization terms will be used in the objective function and constraints built for any MINLP 

problems, whose solving is called LDE-free sizing that employs the gm/ID-based circuit sizing 

approach discussed in Section 4.3. 

Performance of a sized circuit without LDE considerations might significantly change after 

they are enabled in the numerical simulation environment. So Module-II is to perform an LDE-

aware optimization process based on the LDE-free sizing solution obtained from Module-I. We 

firstly replace the independent design variables (i.e., node voltages) and the intermediate variables 

(i.e., gm/ID-parameters) in Module-I with symbolically expressed (X1, X2) and 𝜉i (formally defined 

in Section 5.3) in Module-II. Since the MOSFET device parameters of W (i.e., X1) and nf (i.e., X2) 

play an important role not only in affecting LDEs but also in device characterization, they are 

optimized in the first round of Module-II. It is followed by the second round (indicated by the dash 

arrows in Fig. 14) to further optimize the other LDE-related geometrical parameters of LRext and 

SCt by symbolically involving them into SA/SB (i.e., X1) and SCA (i.e., X2), which are present in 

the simulation netlist for reflecting LDEs. 
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Fig. 14. (a) Module-level and (b) detailed diagrams of the LDE-aware gm/ID-EA two-phase 

synthesis flow 
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In each inner optimization round, we keep observing circuit performance and DC current in 

all current branches by exploring the search space 𝒳(X1, X2) in a simulation-based sensitivity 

analysis for identifying sensitive current branches. Variable 𝜉i, a current ratio from the identified 

sensitive branch i over its reference value, is curve-fitted in terms of X1 and X2 of the related 

MOSFETs and is constrained by a user-defined bound. For example for the two-stage Op-Amp, 

from all random sampling points, if the observed DC gain varies between -100% and +20% based 

on the reference solved from the previous sizing module, we aim at the region between 0% and 

+18% (so-called user-defined) for attaining a larger gain. The top 20%-18% = +2% of maximum 

percentage in performance might be too difficult to attain. In general, 90% of the maximum 

variation is used (e.g., 90%*20% = 18%) as the user-defined percentage for building the bounds. 

After identifying the promising sampling points by gain variations, their current variations (based 

on the same reference) are collect to construct the bounds that cover the variation ranges.  

  So the optimization of X1 and X2 can be conducted through such bound-based constraints 

introduced in the LDE-aware MINLP. A simulated annealing driven B*-tree based floorplanner 

[78] is employed in Module-II. Once an LDE-free sizing solution from Module-I is generated, W, 

L, and initial nf of each device are determined. Such geometrical information is used to transform 

device sizes into rectangular blocks as the input to the floorplanner, which is to generate an 

optimum floorplan as output as per the defined constraints and objectives [74].The output floorplan 

offers the most compact estimated chip layout area and definite interrelationships among devices, 

which can be used to compute the shortest wire paths for estimation of interconnect parasitics. Due 

to the symbolic parasitic equations discussed in Chapters 3 and 4, there is no problem for 

considering the parasitics throughout our proposed LDE-aware symbolic gm/ID-based plus EA-

based hybrid sizing method. The focus in this Chapter is mainly on addressing LDEs. 
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In the second inner-loop inside Module-II, the floorplanner is invoked again to take the refined 

W and nf as input and output an updated optimum floorplan towards the following optimization of 

LRext and SCt. Based on the previous work [79], we have improved our floorplanner to include the 

LDE consideration. On top of the only optimization of nf and LRext in [79], in this work we can 

further deal with the optimization of W and nf as the first-round parameters over LRext and SCt, 

which are tackled in the second round of the LDE-aware optimization. 

There are two outlets after trying to solve the formulated MINLP problem. If it cannot be 

solved, constraints have to be tuned for a resolution. If it is solved but the solution does not satisfy 

the specification by being verified in numerical simulations, a process called L-regulation would 

be resorted to for generating new L’s in the next round of iteration. Since the L-regulation may 

generate different L values for the MOSFETs in the circuit, multiple standalone reference 

MOSFETs (i.e., default width with various L values) might be needed for conducting simulations 

and curve fittings. The details of L-determination as well as the L-regulation have been discussed 

in Section 4.3.2. 

The solution generated from Module-II is called LDE-aware elite solution. The solutions, 

which were successfully solved by the MINLP solver but fail in the following simulation 

verification, are referred to as intermediate solutions. Both of them will be imported to the LDE-

aware heuristic-based sizing module (i.e., Module-III). After a sufficient number of intermediate 

solutions are collected according to the configuration of the EA (e.g., evolutionary population size) 

in Module-III, the iteration in Module-II breaks from further pursuing a qualified elite solution. 

This means the standalone optimization within Module-II is too challenging to attain a good 

solution. Thus, this work should be taken over by Module-III. 
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Inside the EA-based sizing Module-III, a many-objective EA called θ-DEA is employed to 

refine the sizing optimization, which involves numerical simulations yet with our proposed device 

geometrical parameter models to maintain the LDE-awareness. We still adopt the adaptive 

floorplan variation scheme previously introduced in Section 4.5.3 to help the convergence of 

solutions and reduce the complexity of floorplan optimization. This LDE-aware EA-based sizing 

phase aims at improving the intermediate solutions and the elite solution by seeking better 

solutions in the vicinity, which might be masked by any inaccuracy of curve-fitting and circuit 

modeling adopted in the previous modules. The last module (i.e., Module-IV) reflects the 

conventional layout synthesis that includes layout generation, parasitic extraction, and post-layout 

verification by using off-the-shelf design tools. 

 

5.3. LDE-Aware Symbolic-Based Circuit Sizing 

A LDE-free sizing solution can be obtained from Module-I in Fig. 14, which utilizes the gm/ID-

based parasitic-aware sizing method introduced in Section 4.3. It is the input to the following LDE-

aware sizing process (i.e., Module-II in Fig. 14). In the case of geometric expansion or constriction 

of device body resulted from variation of W, L, SA/SB or nf, complex LDEs would be incurred. 

For example, assuming the well enclosure follows device shape variation by considering the 

minimal enclosure design rule, a lateral expansion on SA/SB will increase the effective SCt and 

ultimately decrease the corresponding SCA/SCB/SCC. That is to say, the variation of STI 

parameters (i.e., SA/SB) does impact on the calculation of WPE coefficients. In another example 

where a well encloses multiple MOSFETs, if one device increases its nf, it becomes thicker in the 

channel length direction, which leads to different SCt. In addition, the distances from the device 
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isolation edges on both sides to the edges of the center-located MOSFET fingers will increase due 

to the nf increment. This means the average STI effect of such a multi-finger structure device will 

diminish. In other words, the nf parameter that changes WPE by varying the effective SCt also 

impacts on the STI effect. Therefore, the WPE and STI effects have to be optimized simultaneously. 

 

Algorithm 4. LDE-aware circuit sizing 

Input: LDE-free sizing solution, floorplan, and the intermediate solution set 𝜑 

Output: W’s, nf’s, LRext’s and SCt’s of all sensitive MOSFETs 

1. Configure the W space around the initial reference value W0; 

2. Initialize nf0 by assuming a square-shape device via (44), and configure the nf space by constraining the device 

shape; 

3. Do a sensitivity study by sampling N points within 𝒳(W, nf); 

4. Identify sensitive current branches, and extract bounds [𝜉𝐿𝐵𝑖, 𝜉𝑈𝐵𝑖] for the normalized sensitive current 𝜉i; 

5. Sweep (W, nf) for each MOSFET j via simulation, and curve fit 𝜉𝑖 
𝑗
, the jth contributor to 𝜉i via (45) for all i; 

6. Link all 𝜉𝑖 
𝑗
 to 𝜉𝑖

∆ as per their contributions via (46)-(47); 

7. Solve the MINLP problem with objective (49) and constraints (48); 

8. Configure the LRext space for the second-round optimization; 

9. By assuming a rectangular-shape device and applying the symmetry constraint, configure SCX and SCY for the SCt 

space; 

10. Conduct another sensitivity study by firstly sampling new N points within the space of 𝒳(LRext, SCt); 

11. After identifying the sensitive current branches, similar to Line-4, extract bounds [𝜉
𝐿𝐵𝑖

, 𝜉
𝑈𝐵𝑖

] for 𝜉𝑖; 

12. Sweeping (LRext, SCt) for each MOSFET, calculate (SABeff, SCAeff) via (43) and (42), and curve fit 𝜉
𝑖

𝑗
 with (SABeff,  

SCAeff). 

13. Link all 𝜉
𝑖

𝑗
 to 𝜉

𝑖

∆
 as per their contributions similar to (46)-(47); 

14. Solve another MINLP problem with (51) and 𝜉
𝑖

∆
 being constrained with respect to 𝜉

𝐿𝐵𝑖
 and 𝜉

𝑈𝐵𝑖
 similar to (48); 

15. Tune constraints if the MINLP solving fails, until being successful; 

16. if (the sizing result cannot pass the simulation verification){  

17.  Include this failed sizing result into 𝜑; 

18.  Reiterate the flow via the L-regulation; } 

19. else { Output the verified LDE-aware sizing result; } //elite 
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A solution derived from the LDE-free optimization stage may degrade its performance after 

the LDE option is enabled in the numerical simulation. Provided L and bias variables from the 

previous optimization stage, there are still four types of geometric parameters, W, nf, SA/SB, and 

SCt, to be optimized for LDEs. Since both W and nf are not only related to LDEs but also MOSFET 

characteristics, we propose to optimize them within search space 𝒳(W, nf) in the first inner-

iteration of Module-II and leave SA/SB and SCt to be optimized within search space 𝒳(SA/SB, SCt) 

in the second inner-iteration. Our LDE-aware circuit sizing Algorithm 4 is thus proposed for them. 

As indicated in Line-1 of Algorithm 4, W’s search space is first created by allowing a user-

defined percentage variation (by default, 25%) based on the initial width, W0, from the LDE-free 

solution. Then in Line-2, we define the initial finger number, nf0, by assuming a starting point 

constraint that each MOSFET appears with a square shape as the following, 

𝑑𝑖𝑠𝑡𝑙𝑒𝑛 = (𝑛𝑓 − 1) ∗ (𝐿 + 𝑠𝑑) + 𝐿 + 2[𝑆𝐴𝐵𝑒𝑑𝑔𝑒 + 𝑘𝑑 ∗ (𝑑𝑠 + 𝑏𝑠)] , 

 

𝑑𝑖𝑠𝑡𝑤𝑖𝑑 =
𝑊

𝑛𝑓⁄ + 2𝛿 ,    Constraint: 𝑑𝑖𝑠𝑡𝑙𝑒𝑛 = 𝑑𝑖𝑠𝑡𝑤𝑖𝑑 , 

(44) 

where 𝑑𝑖𝑠𝑡𝑤𝑖𝑑 and 𝑑𝑖𝑠𝑡𝑙𝑒𝑛 represent the distances along MOSFET W’s direction and L’s direction 

respectively, and 𝛿  is the short extension over the active region along the W’s direction. The 

minimum values of sd and 𝛿 from the design rules are used, and 𝑘𝑑 is 1 if the bulk area and the 

source area are separate (called detached bulk style) and 0 otherwise. Then we use W0 for W and 

the pre-optimized L from the LDE-free sizing solution to solve for nf0 in (44). Next, nf is bound 

by [max(1, design-rule minimum), min(nfUB, design-rule maximum)], where nfUB can be supplied 

by the larger value of two nf’s solved via distlen / distwid  = CRo and distwid / distlen = CRo. Here CRo is 

a user-defined ratio, 5 by default, for constraining the device shape. The selection of CRo should 
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base on designers’ understanding of device/chip geometry as per targeted circuits. A general rule 

is to try to avoid very small nf (e.g., 1 or 2) if possible, which can be very sensitive to layout effects. 

In the LDE-free sizing stage, we have constrained the independent variables of bias node 

voltages and curve-fitted gm/ID-parameters, which are linked to circuit performance. When 

attempting various W and nf values in order to further optimize them for LDEs, the circuit bias 

condition keeps changing, and it would be hard to track node voltages that are not independent 

variables any more. To address this issue, we propose to track and constrain the DC bias current 

that flows through all branches in the given circuit topology. In the literature, Binkley et al. [28] 

and Enz et al. [27] suggested that the inversion coefficient, which is actually the drain current 

expressed in a normalized way, can reflect MOSFET’s all levels of inversion and other related 

device characteristics. Thus, it was used to explore the trade-offs among circuit performances. This 

has motivated us to leverage the correspondence between normalized branch current and circuit 

performance by using the sensitivity analysis shown in Lines 3-6. In the study, we explore the 

space of W and nf with SPICE simulations, identify sensitive current branches, and gain the 

knowledge of critical bounds for identified branch currents. The constraints for the identified 

sensitive branch currents are formed according to the sensitivity analysis and incorporated into the 

LDE-aware MINLP. Finally, W and nf, which are linked to the constrained branch currents via the 

curve-fitting technique, can be optimized via MINLP in the LDE-aware sizing (in Line-7). 

In this chapter, we call an LDE-free sizing result, which is to be verified in the LDE-on 

environment, as one reference solution. In our sensitivity study, we sample N points (N = 200 by 

default if using a pure random scheme) within 𝒳(W, nf). Less sampling points can be utilized if 

using a systematic reference approach [38]. After running SPICE simulations for the samples, the 

circuit performance and DC current (i.e., Ids of each MOSFET in the worst case) of all branches 
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are recorded. The sample data are filtered first by eliminating those, whose performance fails any 

specification. Then we examine the current variation of each branch individually based on the 

remaining data. Any branch, whose current stays over a certain amount of variation, 25% by default, 

is identified as a sensitive branch. We normalize each sensitive current Ii with respect to its 

reference value Iref_i (received from the reference solution) by using 𝜉𝑖 = Ii / Iref_i. Thus, we can 

obtain [𝜉𝐿𝐵𝑖 , 𝜉𝑈𝐵𝑖] of 𝜉𝑖 as the bound for the ith sensitive branch. Being constrained within such 

bounds, the circuit performance can be improved during the optimization of W and nf with MINLP. 

𝜉𝑖 can also be defined to specify the relationships among multiple sensitive branch currents. For 

example, in the comparator circuit shown in Fig. 5(b), due to the matching requirement, we can 

define 𝜉1 = (Ids1 / Ids4) / (Ids1_ref / Ids4_ref) and 𝜉2 = (Ids2 / Ids3) / (Ids2_ref / Ids4_ref). Moreover, it is possible 

to include multiple disjoint bounds so that a set of related requirements can be connected in a 

lumped expression as a single constraint for such 𝜉i in the mixed-integer fashion. 

Assume optimizing W and nf of one MOSFET in the circuit is to explore the circuit 

performance space dominated by a two-dimensional variable space. For m MOSFETs, we have m 

such two-dimensional spaces that impact on the performance. We can link these m two-

dimensional spaces to the performance via branch currents, especially in the sensitive branches. In 

this regard, we link each two-dimensional space to the normalized currents 𝜉i with the following 

tactics. Inside 𝒳(W, nf), we take turns to sweep (W, nf) for each MOSFET through LDE-on 

simulations while keeping the other MOSFETs the same as the reference solution. After the DC 

analysis from the sweeping simulations, the relationship between 𝜉𝑖 
𝑗
 (i.e., impact of MOSFET j on 

𝜉𝑖) and (Wj, nfj) pair is curve fitted as such, 

𝜉𝑖 
𝑗
= 𝑓(𝑊𝑗 , 𝑛𝑓𝑗)𝑐𝑓|𝐿 =

∑ ∑ 𝑎𝑝,𝑞𝑊𝑗
𝑝𝑁𝑞

𝑞=0 𝑛𝑓𝑗
𝑞𝑁𝑝

𝑝=0  , (45) 
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where ap,q is the constant weighting factor, Np and Nq are the highest order (≥1) for Wj and nfj. 

Higher order polynomial contributes to higher fitting accuracy at the cost of more complex form 

of the resultant fitting equation. The selection of orders and their combinations for involved 

variables depend on the quality of the fitting including the sum of squares due to errors (SSE), R-

square, adjusted R-square, root mean squared error (RMSE). Those statistics are available from 

the Matlab curve fitting tool box. In addition, higher order should be assigned to the variable (e.g., 

W) that has a more dominant influence in the fitting. The weighting factors are automatically 

adjusted (instead of user defined) by the fitting once the orders are decided by the users. 

For each identified sensitive branch i, 𝑆𝑖,𝑗
𝑊|𝑛𝑓 and 𝑆𝑖,𝑗

𝑛𝑓
|𝑊 are used to denote the sensitivity of 

𝜉𝑖 
𝑗
with respect to W and nf, 

𝑆𝑖,𝑗
𝑊|𝑛𝑓 =

𝜕𝜉𝑖 
𝑗

𝜕𝑊𝑗
|𝑛𝑓𝑗 , 

 

𝑆𝑖,𝑗
𝑛𝑓
|𝑊 =

𝜕𝜉𝑖 
𝑗

𝜕𝑛𝑓𝑗
|𝑊𝑗

 . 

(46) 

They are used in the 𝜉𝑖 variation that is defined as 𝜉𝑖
∆, 

𝜉𝑖
∆ = ∑ (𝑆𝑖,𝑗

𝑊|𝑛𝑓 ∗ ∆𝑊 + 𝑆𝑖,𝑗
𝑛𝑓
|𝑊 ∗ ∆𝑛𝑓)

𝑁𝑗
𝑗=1

 , (47) 

where Nj is the number of MOSFETs that have been identified influential to 𝜉𝑖, ∆𝑊 and ∆𝑛𝑓 are 

the minimal variations (10nm and 1 by default for W and nf, respectively). To prevent the 

performance from detriment, we constrain 𝜉𝑖
∆ within [𝜉𝐿𝐵𝑖 , 𝜉𝑈𝐵𝑖] by using the following constraint 

set that considers the sign of 𝜉𝑖
∆, 
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{
𝜉𝑖
∆ ≤ (𝜉𝑈𝐵𝑖 − 1),

−𝜉𝑖
∆ ≤ (1 − 𝜉𝐿𝐵𝑖).

 (48) 

Next, the MINLP’s objective function is defined as follows, 

𝑜𝑏𝑗1 = 𝛼1∑ (𝑑𝑖𝑠𝑡𝑤𝑖𝑑 ∗ 𝑑𝑖𝑠𝑡𝑙𝑒𝑛)𝑘
𝑚
𝑘=1 + 𝛽1𝑃𝑜𝑤𝑒𝑟 , (49) 

where 𝛼1 and 𝛽1 are the weighting factors for the device area and power consumption. The power 

consumption is calculated through multiplication of VDD and current that is a linear relationship of 

Ii (Ii = Iref_i * 𝜉i = Iref_i * (1 + 𝜉𝑖
∆)) as per topology. 

After W and nf are optimized from the MINLP solving, we continue to optimize the rest two 

parameters of SA/SB (i.e., SAB), and SCt. We optimize LRext instead of SAB for STI thanks to their 

linear relationship in (43). In our implementation, LRext ranges from 0 to 500nm and its initial value 

is set by the median because the STI effect normally quickly diminishes when the distance is 

greater than 500nm in our experiment technology. Once a topology is selected, the bulk style is 

determined and the corresponding distance values like ds and bs in (44) can be found from the 

technology-dependent design rules. 

In terms of the WPE parameters, by referring to Fig. 13, SAedge/SBedge is inevitably involved 

in calculating both STI and WPE parameters, and the fixed length of 𝑘𝑑 ∗ (𝑑𝑠 + 𝑏𝑠) is also a 

component of SC2 for WPE. So we introduce free variables SCX and SCY that are only related to 

WPE as follows: SCX = SC1 - SAedge = SC2 - SBedge - 𝑘𝑑 ∗ (𝑑𝑠 + 𝑏𝑠) along the L’s direction and 

SCY = SC3 = SC4 along the W’s direction. The symmetry constraints are imposed to simplify the 

layout implication in order to decrease the complexity of the variable search space denoted by 

𝒳(LRext, SCt) [80]. In our implementation, we set the bounds as [design-rule minimum, 0.5μm] 
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and [design-rule minimum, 1μm] for SCX and SCY, respectively, with their medians as the initial 

values. 

After the configuration of 𝒳(LRext, SCt) in Lines 8-9, we can optimize these variables similar 

to the previous operation on W and nf. Firstly in Lines 10-11, we similarly conduct the sensitivity 

study in order to extract the knowledge bounds, [𝜉
𝐿𝐵𝑖

, 𝜉
𝑈𝐵𝑖

], for the normalized sensitive currents 

denoted by 𝜉𝑖 and obtain the circuit performance by sampling points from 𝒳(LRext, SCt). With the 

optimized W, L, and nf as well as the LDE-related variables of LRext and SCt, we can calculate 

SABeff and SCAeff (i.e., the most important WPE coefficients for multi-finger MOSFETs) in Line-

12 by using (43) and (42) respectively. Then in Line-13, we link SABeff and SCAeff of each 

MOSFET j to 𝜉
𝑖

𝑗
 via the curve fitting (50) just like (45) and eventually to the 𝜉𝑖 variation (i.e., 𝜉

𝑖

∆
) 

as well as the constraints similar to (46)-(48): 

𝜉
𝑖

𝑗
= 𝑓(𝑆𝐴𝐵𝑒𝑓𝑓_𝑗 , 𝑆𝐶𝐴𝑒𝑓𝑓_𝑗)𝑐𝑓|

𝑊,   𝐿,   𝑛𝑓
 . (50) 

Thus, by mapping 𝒳(LRext, SCt) to 𝒳(SABeff, SCAeff), we are able to handle any irregular shape of 

well enclosure in the layout because there is no limit on the number of SCt to be considered. 

The 𝜉
𝑖

∆
 can be constrained in the second MINLP formulation with the following objective 

function including the user-defined weighting factors 𝛼2  and 𝛽2  for chip area and power 

respectively,  

𝑜𝑏𝑗2 = 𝛼2𝐶ℎ𝑖𝑝𝐴𝑟𝑒𝑎 + 𝛽2𝑃𝑜𝑤𝑒𝑟 . (51) 
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Compared to (49) where W and nf are not determined yet, the chip area in (51) can be well 

optimized by using a trustable floorplan output from a floorplanner that takes a list of devices as 

input, since the device shape is only subject to minor changes of LRext and SCt given the optimized 

W, L, and nf. In addition to the floorplanning criteria adopted in [78], in this work we have added 

one more LDE feature as follows. If two devices close to each other have the same type (i.e., 

PMOS or NMOS), a bonus score is added to such a trial floorplan solution during the floorplanning 

process. Such solutions are favored since they provide flexibility for applying a unified larger well 

that encloses a bunch of devices with the same type well compared to multiple isolated wells each 

enclosing an individual MOSFET. 

 

5.4. LDE-Aware EA-Based Circuit Sizing 

Even though the solution from the LDE-aware optimization, called elite solution, may pass 

all the given specifications, it may still have room to improve due to imperfect selection of initial 

points and variable bounds for MINLP. Approximation error might exist in the curve fitting and 

nonlinear modeling operations. Therefore, we propose to refine the elite solution by exploring its 

locality via a many-objective evolutionary algorithm with the aid of numerical simulations. In this 

regard, we have adopted the θ-DEA method discussed in Section 3.3.3 thanks to its advantages in 

balancing diversity and convergence. 

In the EA sizing phase, all sizing variables are represented as chromosomes to be evolved in 

a population along the evolutionary generations. In order to enhance the LDE-awareness in the EA 

sizing phase, all the device geometric parameters included in the simulation netlist have to 

dynamically follow the size variation along the EA process. These parameters include the finger 
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space (i.e., sd), STI parameter (i.e., SA/SB), areas of source and drain (i.e., AS and AD or ASD if 

symmetric), perimeters of source and drain (i.e., PS and PD or PSD if symmetric), and number of 

equivalent diffusion squares for the source and drain regions (i.e., NRS and NRD or NRSD if 

symmetric). 

Given W, L, nf, 𝐿𝑅𝑒𝑥𝑡, and bulk style, we propose to use the following analytical models for 

calculating these device geometric parameters. As shown in Fig. 13, the minimum sd and SABmin 

are constants from the design rule, while the diffusion length is Lendf = 𝑆𝐴𝐵𝑒𝑑𝑔𝑒 − 𝑘𝑖 ∗ 𝑏𝑠, which 

accounts for the lateral size of the diffusion region for an edge finger. The AS/AD is expressed by, 

{
 
 

 
 𝐴𝑆 =  2 ∗ 𝐿𝑒𝑛𝑑𝑓 ∗

𝑊

𝑛𝑓
+ (

𝑛𝑓

2
− 1) ∗ 𝑠𝑑 ∗

𝑊

𝑛𝑓
, 𝑛𝑓 𝑖𝑠 𝑒𝑣𝑒𝑛

𝐴𝐷 =  
𝑛𝑓

2
∗ 𝑠𝑑 ∗

𝑊

𝑛𝑓
, 𝑛𝑓 𝑖𝑠 𝑒𝑣𝑒𝑛

𝐴𝑆𝐷 =  𝐿𝑒𝑛𝑑𝑓 ∗
𝑊

𝑛𝑓
+
𝑛𝑓−1

2
∗ 𝑠𝑑 ∗

𝑊

𝑛𝑓
, 𝑛𝑓 𝑖𝑠 𝑜𝑑𝑑

 , (52) 

where we assume the source terminal is assigned to both outermost active regions if nf is even. 

The PS/PD is given by, 

{
 
 

 
 𝑃𝑆 = 4 (𝐿𝑒𝑛𝑑𝑓 +

𝑊

𝑛𝑓
) + 2 (

𝑛𝑓

2
− 1) (𝑠𝑑 +

𝑊

𝑛𝑓
) , 𝑛𝑓 𝑖𝑠 𝑒𝑣𝑒𝑛 

𝑃𝐷 =  2
𝑛𝑓

2
(𝑠𝑑 +

𝑊

𝑛𝑓
) , 𝑛𝑓 𝑖𝑠 𝑒𝑣𝑒𝑛

𝑃𝑆𝐷 =  2 (𝐿𝑒𝑛𝑑𝑓 +
𝑊

𝑛𝑓
) + 2

𝑛𝑓−1

2
(𝑠𝑑 +

𝑊

𝑛𝑓
) , 𝑛𝑓 𝑖𝑠 𝑜𝑑𝑑 

 . (53) 

The NRS/NRD is computed through (54), 

{
 
 

 
 𝑁𝑅𝑆 = (

𝐿𝑒𝑛𝑑𝑓

2
𝑊

𝑛𝑓

)||(
𝑠𝑑

2
𝑊

𝑛𝑓

)1||(
𝑠𝑑

2
𝑊

𝑛𝑓

)2|| … ||(
𝑠𝑑

2
𝑊

𝑛𝑓

)𝑛𝑓−2, 𝑛𝑓 𝑖𝑠 𝑒𝑣𝑒𝑛

𝑁𝑅𝐷 = (
𝑠𝑑

2
𝑊

𝑛𝑓

)1||(
𝑠𝑑

2
𝑊

𝑛𝑓

)2|| … ||(
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𝑊

𝑛𝑓

)𝑛𝑓,    𝑛𝑓 𝑖𝑠 𝑒𝑣𝑒𝑛

𝑁𝑅𝑆𝐷 = (
𝐿𝑒𝑛𝑑𝑓
𝑊

𝑛𝑓

)||(
𝑠𝑑

2
𝑊

𝑛𝑓

)1||(
𝑠𝑑

2
𝑊

𝑛𝑓

)2|| … ||(
𝑠𝑑

2
𝑊

𝑛𝑓

)𝑛𝑓−1, 𝑛𝑓 𝑖𝑠 𝑜𝑑𝑑

 , (54) 
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where “||” is the parallel operator like the one used for shunt resistance calculation. 

During the EA optimization, the device sizes keep changing among the trial solutions (i.e., 

evolutionary chromosome individuals). On the one hand, a fixed floorplan template obtained from 

Module-II is no doubt suboptimal. On the other hand, it is extremely time-consuming to rerun the 

floorplanner all the time as in [59] whenever a trial solution is constructed by evolutionary 

operators. This would inevitably increase the convergence difficulty since the exploitation of 

floorplans may not be in line with that of device sizes in the course of EA evolution. Therefore, 

we still employ the adaptive floorplan variation scheme discussed in Section 4.5.3 within the EA 

sizing phase to maintain potentially good floorplans and only rerun the floorplanner when the old 

floorplans’ compatibility is not acceptable for the updated device sizes. 

 

5.5. Experimental Results 

In Section 5.5.1, a case study is conducted to demonstrate high accuracy of our proposed 

symbolic modeling scheme for calculating device geometric parameters. Section 5.5.2 introduces 

another case study and a performance analysis of the first-phase sizing results. Section 5.5.3 

highlights the merits of our proposed LDE-aware hybrid sizing method by providing our 

experimental results in comparison with other layout-aware circuit sizing approaches. All the case 

studies and experiments in this chapter were conducted in a CMOS 65nm technology process with 

1V power supply. 
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5.5.1. Verification of Modeling for Device Geometric 

Parameters 

The following case study was conducted on a single NMOS transistor under the same bias 

voltages for different test cases. It demonstrates that our proposed modeling scheme can offer more 

accurate computation of the device geometric parameters, which lead to closer device electrical 

characteristics than the schematic-level estimation performed by the commercial Cadence tool [56] 

with reference to the corresponding layouts. 

The W and L of the test MOSFET device are 10μm and 100nm, respectively. To save silicon 

area, the integrated bulk type is adopted if one of the drain or source terminal is supposed to 

connect to the bulk terminal. Table 12 includes two groups of data for even (i.e., nf = 4) and odd 

(i.e., nf = 5) finger numbers. In the nf = 4 group, there are two sub-groups where the bulk 

connection style is either symmetrically integrated (denoted as I.-I.) or detached (denoted as D.-

D.) on both sides. In the nf = 5 group, one side uses the integrated bulk style while the other side 

utilizes the detached bulk style (denoted as I.-D.), as shown in Fig. 13. For estimation of geometric 

parameters, the Cadence Virtuoso schematic tool using the BSIM4 model considers effect of 

neither nf variation nor diffusion expansion, which is strongly dependent on the specific bulk 

connection style when calculating SAeff and SBeff. This would lead to large difference in the 

calculation of SCAeff compared to the post-layout references. In contrast, by using our proposed 

modeling scheme, a satisfactory convergence of the geometric parameters between this work and 

the post-layout reference can be reached. 

In terms of MOSFET electrical performance, the effective beta (Betaeff), which can reflect the 

effective mobility (𝜇𝑒𝑓𝑓) of a device for a given geometry in a specific technology, is, 
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𝐵𝑒𝑡𝑎𝑒𝑓𝑓 = 𝜇𝑒𝑓𝑓𝑐𝑜𝑒𝑥𝑊𝑒𝑓𝑓/𝐿𝑒𝑓𝑓 , (55) 

where Coex is a technology-dependent constant. Betaeff  is closely related to ID in all work regions 

of MOSFET. In our case study, the largest difference of ID, which can be found in the case of D.-

D. between the reference (i.e., 539.46) and Cadence estimation (i.e., 509.91), gives 5.48% error, 

whereas the estimation error is reduced to only 2.74% by using our proposed model (i.e., 554.64). 

Thus, a 2.73% (i.e., 5.47%-2.74%) reduction regarding the ID estimation error is achieved in our 

method. In general more than half of the estimation error can be reduced in other MOSFET 

electrical characteristics between Cadence and our proposed LDE-aware device characterization 

model with respect to the same reference. 

Table 12. Device parameter measurement and performance: A case study 

Settings, 

Measurement 

& 

Performance 

nf =4 nf =5 

Post-

layout 

I.-I. 

Cadence 
This 

work 

Post-

layout 

D.-D. 

Cadence 
This 

work 

Post-

layout 

I.-D. 

Cadence 
This 

work 

Device Geometrical Parameter Measurement 

SAeff (𝝁𝒎) 0.98 0.175 0.98 0.625 0.175 0.625 1.13 0.175 1.13 

SBeff (𝝁𝒎) 0.98 0.175 0.98 0.625 0.175 0.625 0.775 0.175 0.775 

AS (𝝁𝒎𝟐) 2.1 1.375 2.1 1.375 1.375 1.375 1.44 1.15 1.44 

AD (𝝁𝒎𝟐) 1 1 1 1 1 1 1.15 1.15 1.15 

PS (𝝁𝒎) 16.68 16.1 16.68 16.1 16.1 16.1 13.44 13.15 13.44 

PD (𝝁𝒎) 10.8 10.8 10.8 10.8 10.8 10.8 13.15 13.15 13.15 

NRS 0.015 0.010 0.015 0.013 0.010 0.013 0.012 0.010 0.012 

NRD 0.010 0.010 0.010 0.010 0.010 0.010 0.011 0.010 0.011 

SCAeff 4.969 7.540 4.969 4.651 7.540 4.651 5.364 7.601 5.364 

Performance of Device Electrical Characteristics from Simulation 

Betaeff (m) 13.68 13.30  13.77 13.70 13.30  13.81 13.79 13.49 13.88 

ID (𝝁) 537.54 509.91 550.14 539.46 509.91 554.64 538.02 517.03 550.30 

Vth (m) 362.28 369.30 360.46 361.81 369.30 359.49 363.25 368.77 361.54 

gm (𝒎) 3.334 3.228 3.371 3.340 3.228 3.385 3.347 3.267 3.384 

gds (𝒎) 0.275 0.252 0.284 0.276 0.252 0.287 0.274 0.257 0.283 
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5.5.2. Verification of LDE-Aware gm/ID-Based Sizing 

We have used the two stage Op-Amp in Fig. 5(a) and the differential comparator in Fig. 5(b) 

for our experiments. The bias condition of this comparator circuit includes: VINP = 0.8V, VINN = 

0.4V, VREFN = 0.6V, and VREFP = 0.8V. In Table 13, a case study is used to compare the 

performance of the Op-Amp between the traditional methods and our proposed scheme for 

optimizing W and nf. 

The second column records the performance of the gm/ID-based LDE-free sizing solution that 

passes the specification verification but with the LDE option inactivated. When simulating this 

solution under the LDE-on simulation environment, the performance drops significantly especially 

for Gain and UGB (unity gain bandwidth) as shown in Columns 3-4 of Table 13. Here PM and 

GM stand for phase margin and gain margin, respectively. In Columns 2-3, the finger numbers 

(i.e., nf) of all the MOSFETs are set by the minimum values as per the design rule. Since the 

minimal finger number is usually not desirable in terms of MOSFET geometry, in Column-4 we 

consider each device in a square shape by calculating nf’s according to (44). This change happens 

to show performance improvement but very limited due to lack of electrical consideration. 

By following our proposed framework for optimizing W (i.e., transistor width) and nf but 

using the traditional square-law MOSFET current equations instead of our proposed curve-fitting 

ones for linking W and nf to 𝜉𝑖, the solution shown in Column-5 of Table 13 can exhibit further 

performance improvement but still fail in the Gain due to inaccuracy of the applied square-law 

equations as well as the approximate technology parameters. However, a much better performance 

shown in the last column of Table 13 demonstrates the merit of our proposed optimization method 

by using the accurate simulation-based and fitted current expressions (45). 
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Table 13. Performance comparison between using the traditional methods and our fitting model: 

A case study for the two-stage Op-Amp 

Performance 
LDE-free Min. nf 

(W & L) 

LDE-on 

Traditional Methods Fitting Model 

Min. nf 
Fair  

(nf) 

Opt. Fp.  

(W & nf) 

Opt. Fp. 

(W & nf) 

Gain > 60 (dB) 61.71 56.77 57.54 59.66 62.52 

UGB > 4 (MHz) 9.62 5.63 8.49 9.02 8.30 

PM > 60 (°) 61.18 68.88 71.18 70.45 64.57 

GM > 15 (dB) 22.53 25.86 33.15 35.91 28.07 

 

Tables 14-15 present our sizing results in the standalone first sizing phase under different 

settings in comparison with [20] and [78], which use geometric programming with and without 

LDE considerations, respectively. The method used in [78] is actually detailed in Section 3. 

Setting-1 (i.e., Set-1), which is verified under the LDE-off simulation environment, presents the 

LDE-free sizing performance where nf’s are set by the minimum allowable values. Setting-2 (i.e., 

Set-2) is verified under the LDE-on simulation environment with the same sizing results used in 

Set-1. Without any implication of nf’s, repeated regulation might take place in practice during the 

transformation from the sizes associated with a floorplan to a real layout. 

To optimize nf’s for better LDEs, Setting-3 (i.e., Set-3) that represents our proposed first-

round LDE optimization tunes nf’s and W’s based on the gm/ID-based LDE-free reference solution. 

In the second-round optimization as represented by Setting-4 (i.e., Set-4), we optimize LRext and 

SCt that are the key parameters reflecting STI and WPE. Since Zhang et al. [20] optimizes all three 

LDE parameters (i.e., nf, SA/SB, and only one SC) in one stage, it has only Set-4 but no Set-3. 

For the Op-Amp in Table 14, the reported data in Set-2 reveal that after the LDEs are activated 

in the simulation environment, the performances drop dramatically for all three works with 

reference to Set-1. In addition, after the LDE parameters are optimized in [20], the Gain in Set-4, 

which is improved in comparison to that of Set-2, becomes close to the one in the ideal LDE-free 
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case (i.e., Set-1). While this demonstrates the effectiveness of the LDE-aware sizing method 

proposed in [20], the performances are still inferior to the given specifications. However in Set-3 

of our work, the performances of Gain, PM, and GM even excel the ones from Set-1, and the 

performances of Set-4 can be further improved in all aspects compared to Set-3. 

Table 14. Two-stage Op-Amp: gm/ID-based LDE-aware sizing results 

Settings  Settings 
Gain > 

60 (dB) 

UGB >  

4 (MHz) 

PM >  

60 (°) 

GM > 15 

(dB) 

T. Liao [78] 
Set-1 51.00 7.91 65.85 30.72 

Set-2 46.08 5.49 76.26 37.15 

Y. Zhang [20] 

Set-1 50.73 10.99 63.31 46.07 

Set-2 39.69 9.59 67.98 46.78 

Set-3 - - - - 

Set-4 49.95 11.94 64.71 46.70 

This Work 

Set-1 61.71 9.62 61.18 22.53 

Set-2 56.77 5.63 68.88 25.86 

Set-3 62.52 8.30 64.57 28.07 

Set-4 62.97 8.53 68.03 34.55 

 

Table 15. Comparator: gm/ID-based LDE-aware sizing results 

Settings  Settings 
Delay  

< 250 (ps) 

+Overshoot  

< 300 (mV) 

-Overshoot 

< 150 (mV) 

T. Liao [78] 
Set-1 249.9 200.6 46.0 

Set-2 310.8 200.3 50.2 

Y. Zhang [20] 

Set-1 299.9 266.6 74.0 

Set-2 337.5 263.3 72.2 

Set-3 - - - 

Set-4 318.6 296.2 77.9 

This Work 

Set-1 152.5 183.0 53.3 

Set-2 296.7 184.0 53.9 

Set-3 164.6 202.2 60.6 

Set-4 150.4 219.9 65.2 

 

In Table 15, propagation delay (i.e., Delay) is considered as an important aspect besides 

positive and negate overshoots for the comparator circuit. A similar trend of the Op-Amp in Table 

14 can be generally observed from the comparator case in Table 15. Moreover, it is interesting to 
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see that the Delay from our Set-3 (i.e., 164.6ps) fails to reach the one in Set-1 (i.e., 152.5ps). But 

by further optimizing LRext and SCt, Set-4 can achieve the delay of 150.4ps, which outperforms 

152.5ps gained by Set-1. This can help demonstrate the necessity of optimizing LRext and SCt in 

our proposed LDE-aware sizing method. 

By comparing all three methods, one can see [78] is obviously inferior due to lack of LDE 

consideration in the optimization. The performances were significantly degraded in the LDE-on 

simulation environment. On the other hand, in [20] the standalone GeoP-based approach fails to 

provide a sufficient level of accuracy, in comparison with our proposed gm/ID sensitivity-analysis 

based approach that can utilize numerical simulation and curve fitting technique in a more general 

MINLP modeling. This can not only be reflected from the inaccurate posynomial fitting model for 

WPE, but also the 𝜇𝑒𝑓𝑓/𝜇0 ratio (the mobility after considering WPE over the intrinsic one before 

the consideration), which is supposed to be always greater than 1 but different from our verification 

regarding the model in [20]. Moreover in that work, the basic circuit modeling just utilizes the 

traditional square-law equations (e.g., ID and gm), which are not accurate and hard to represent 

technology variations. 

 

5.5.3. Verification of LDE-Aware gm/ID-EA Hybrid Sizing 

In the many-OEA-based sizing phase, device sizes in addition to circuit bias inputs are 

included in the chromosome variable vector. By using the proposed device parameter models 

(42)(43)(52)-(54), all the layout-dependent parameters present in the simulation netlist can 

dynamically follow the device geometric variables whenever different chromosomes as a result of 

evolutionary recombination are attempted. This makes the many-OEA-based sizing process LDE-
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aware. The SPICE simulation invoked in the EA process is conducted with the setting of LDE-on. 

For each test circuit, six schemes are compared with one another. Scheme-0 is the LDE-aware 

standalone symbolic-phase sizing method whose performance data are copied from Set-4 in Table 

14 and Table 15. Scheme-1 follows the Synthesis Flow for fast Parasitic Closure (called SFPC for 

short) originally proposed in [59], which encloses placement and global routing inside a refined-

sizing loop. 

Scheme-2 reflects the idea in [67] that uses a traditional evolutionary algorithm on analog 

circuit sizing. The implementation of Scheme-3 imitates one layout-aware sizing work [33] by 

employing the differential evolution (DE) algorithm. As for the schemes implemented by using 

the many-objective θ-DEA method, Scheme-4 that is the standalone many-OEA-based sizing 

includes neither pre-optimized elite knowledge nor information from the intermediate solutions, 

as configured in the single-objective Scheme-2. By following the proposed methodology in this 

chapter, Scheme-6 takes advantage of the LDE-aware elite solution as well as the intermediate 

solutions, which is similarly configured in Scheme-3 too in order to fully test the capability of such 

a single-objective DE sizing method with our granted symbolic-sizing-phase results. In order to 

justify the necessity of conducting the gm/ID-based LDE-aware sizing in Module-II, Scheme-5 only 

includes Module-I and Module-III by solely taking the initial solutions from the LDE-free sizing 

(Module-I) and then running the subsequent LDE-aware many-OEA-based sizing process 

(Module-III). Furthermore, in order to fairly compare the performance among Schemes 1-6, 

features of parasitic-awareness and LDE-awareness are reasonably implemented for all of them by 

following [75] and reusing the advocated device parameter models (42)(43)(52)-(54) to compose 

a LDE-aware simulation netlist when attempting a new chromosome resulted from evolutionary 

recombination. Since our work in this chapter is focused on early awareness of LDEs for fast 
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circuit sizing optimization, detailed time-consuming layout generation and extraction are not 

included during the EA sizing process. Instead, layout parasitics and LDEs, which are estimated 

by our sizing tool, are derived and embedded into the circuit netlist for SPICE simulation. 

The initial solution from the LDE-free sizing Module-I and the elite solution from the LDE-

aware sizing Module-II as well as the intermediate solution set 𝜑 can be used to restrict the search 

space in the EA sizing phase for exploring the locality. Therefore, we choose the size of population, 

SP=32, and the maximum number of generation, Genmax=20, as a small configuration in Scheme-

3, Scheme-5, and Scheme-6, while they are 56 and 40 in Scheme-2 and Scheme-4 respectively as 

a large configuration in the context of lack of initial solution, elite and information from 𝜑. In this 

work, we adopt a minimization-based fitness function [78], which is a summation of terms with 

weighting factors accordingly from different performance aspects. A smaller fitness indicates a 

better circuit performance. For each scheme, we ran 10 times and evaluated the quality in terms of 

the best-fitness [81] for single-objective schemes and inverted generational distance (IGD, a metric 

(the smaller the better) to assess the quality of a solution set among the others [78]) for many-

objective schemes. Similar to [78], we collected all the specification-satisfied nondominated 

solutions from multiple runs of various schemes on the same problem to generate a pseudo Pareto 

Front for IGD calculation. The statistics of 10 runs for best-fitness and IGD are reported in Table 

16 and Table 17 for the two-stage Op-Amp, and Table 19 and Table 20 for the comparator circuit, 

respectively. For each run, if there is at least one solution satisfying the given specifications, we 

consider it successful. 
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We select the best run in terms of best best-fitness1 for the single-objective schemes and best 

IGD for the many-objective schemes for reporting the detailed performance in Table 18 (for the 

two-stage Op-Amp) and Table 21(for the comparator circuit). In these tables, we also provide the 

best-fitness for all the schemes in the row of “Single/θ: Best-Fitness” for comparison purpose. The 

total run time is comprised of three parts (i.e., Modules I-III). In addition, the total run time of 

MINLP taking place in Modules I-II is also reported. All the experiments were conducted on a 

server with 32-core Intel Xeon CPU E5-2650 @ 2.00GHz. 

Inside a selected best run, for a complete resultant solution set Xc in each scheme, the 

specification-satisfied solutions forms a subset, Xs-s, leaving the complementary subset with 

specification-failed solutions. By considering the convergence-oriented nature of the single-

objective methods, the complete solution set should be used to reflect the optimization quality. 

Therefore, average fitness and standard deviation are calculated inside Xc for Schemes 1-3. 

However, for the many-objective θ-DEA, in order to encourage the exploration of multiple clusters, 

the clusters have to be distributed across the entire solution space even in certain infeasible regions 

by managing a systematic construction of reference points [38]. Therefore, the average fitness is 

calculated inside Xs-s, which refrains from presenting senseless data penalized by infeasible 

solutions from certain poor regions. We employ the success-rate (i.e., |Xs-s|/|Xc|) to exhibit the 

diversity of the final solution set for the θ-DEA methods (i.e., Schemes 4-6). 

In Table 16 for the two-stage Op-Amp circuit, the number of successful runs is 5/10 (5 out of 

10 runs) when the elite and 𝜑 are employed in Scheme-3, which is much larger than those in 

Schemes 1-2 (i.e., 2/10 and 0/10, respectively) where there are no initial solutions or little specific 

                                                 
1 best best-fitness: the first ‘best’ refers to the selection among 10 runs with individual best-fitness, while the second ‘best-’ refers 

to the selection among the solution sets with individual fitness in each run. 
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information assumed for setting the search space. In addition, Scheme-3 gains the best statistics 

compared with Schemes 1-2 for all of the five aspects exhibiting the effectiveness of adopting the 

initial solutions from Module-II. For the IGD statistics in Table 17, the numbers of successful runs 

for Schemes 4-5 are 7/10 and 6/10 respectively, which are larger than those in the single-objective 

schemes. This helps exhibit higher effectiveness after adopting the recommended many-objective 

θ-DEA method in Module-III. Moreover, the highest number of successful runs (i.e., 10/10) and 

better or equivalent best-fitness statistics also demonstrate the superiority of our proposed Scheme-

6 over Schemes 4-5. 

In Table 18 for the two-stage Op-Amp, all the schemes except Scheme-2 can manage to pass 

the specification. For the single-objective schemes, the small-scale configuration with elite and 𝜑 

(i.e., Scheme-3) is able to derive a better solution in terms of best-fitness (i.e., 0.461) compared to 

0.561 and 0.547 in Scheme-1 and Scheme-2, respectively. Even though Scheme-1 runs faster (i.e., 

12.96min), its lower number of successful runs (i.e., 2/10 (2 out of 10 runs)) and poorer solution 

quality (i.e., best-fitness of 0.561) in comparison to those (i.e., 5/10 and 0.461) in Scheme-3 can 

hardly justify its adoption. Without any aid of initial solutions, Scheme-2 has to search in a huge 

variable space and thus may end up with useless outcome (i.e., number of successful runs as 0/10). 

Table 16. Two-stage Op-Amp: Statistics of the LDE-aware sizing results for single-objective 

schemes 

Statistics 

(10 Runs) 

Scheme-1 

( SFPC) 

Zhang [59] 

Scheme-2 

Tlelo-Cuautle 

[67] 

Scheme-3 

Vancorenland 

[33] 

Best (Best-Fitness) 0.561 0.547 0.461 

Worst (Best-Fitness) 0.880 1.252 0.807 

Median (Best-Fitness) 0.667 0.733 0.578 

Mean (Best-Fitness) 0.697 0.761 0.602 

# Successful Runs 2/10 0/10 5/10 
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Table 17. Two-stage Op-Amp: Statistics of the LDE-aware sizing results for many-objective 

schemes 
Statistics 

(10 Runs) 
Scheme-4 Scheme-5 

Scheme-6 

This work 

Best (IGD)  0.180  0.142  0.123 

Worst (IGD) 0.480 0.259 0.204 

Median (IGD) 0.234  0.197 0.171 

Mean (IGD) 0.249  0.194 0.165 

# Successful Runs 7/10  6/10  10/10 

 

Table 18. Settings and performance of the two-stage Op-Amp from the best run 

Statistics 

(Best Run) 

gm/ID Single-objective Methods Many-objective θ-DEA Methods 

Scheme-0 

LDE-

aware 

Solution 

Scheme-1 

( SFPC) 

Zhang [59] 

Scheme-2 

Tlelo-

Cuautle 

[67] 

Scheme-3 

Vancorenland 

[33] 
Scheme-4 Scheme-5 

Scheme-6 

This work 

Single/θ: Best-Fitness 0.559 0.561 0.547 0.461 0.465 0.469 0.466 

θ: Average-Fitness - - - - 0.506 0.502 0.500 

θ: Success-Rate - - - - 5.36% 15.625% 31.25% 

Single: Average-

Fitness 
- 0.848 1.03 0.921 - - - 

Single: Standard-

Deviation 
- 0.217 0.300 0.271 - - - 

Run 

Time 

(mins) 

Module-I 12.48 - - 12.48 - 12.48 12.48 

Module-II 9.89 - - 9.89 - - 9.89 

MINLPs’ 0.23 - - 0.23 - 0.18 0.23 

Module-III - 12.96 31.19 11.44 35.10 12.17 12.14 

Total 22.37 12.96 31.19 33.81 35.10 24.65 34.51 

Specification & 

Objectives 
Circuit Performance (from the Representative Solution with the Smallest Fitness) 

Gain > 60dB 62.97 61.01 48.81 61.60 60.52 63.04 61.22 

UGB> 4MHz 8.53 27.02 18.22 17.11 44.95 15.44 18.82 

PM > 60° 68.03 78.50 80.17 95.66 110.07 107.24 101.61 

GM > 15dB 34.55 23.65 55.02 35.53 35.63 32.68 31.35 

Area(μm2) 153.07 762.73 47.10 132.12 778.77 319.55 198.36 

 

For the many-objective schemes, the overall quality in terms of best-fitness for Scheme-6 is 

comparable to that of Scheme-4. However, without any focus especially inside a huge search space, 

even the sophisticated θ-DEA with sufficient evolutionary resources may encounter some 

difficulties in the search, and therefore a decreased number of successful runs (i.e., 7/10 in Table 

17) is observed for the two-stage Op-Amp. Furthermore, the number of successful runs, IGD, and 

success-rate (i.e., 10/10 (statistic from the total 10 runs), 0.123, and 31.25% (statistic from the best 
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single run)) in Scheme-6 are all better than those (i.e., 7/10, 0.180, and 5.36% correspondingly) in 

Schemes-4. This indicates that the small-scale configuration with the beneficial knowledge from 

the pre-optimized elite and 𝜑 is more efficient to provide competing solutions with similar level 

of run time (i.e., 34.51min vs. 35.10min). In comparison to Scheme-6, 28.66% (i.e., 

9.89min/34.51min) of run time can be saved by removing the gm/ID-based LDE-aware sizing 

Module-II as configured in Scheme-5. However, the number of successful runs is reduced to 6/10 

and the success-rate is halved (i.e., 15.625% vs. 31.25%). This is mainly due to the enlarged search 

space from the non-optimized nf and other LDE parameters, which can make strong impact on 

circuit performance. Therefore, with the assistance of our proposed comprehensive gm/ID-based 

LDE-aware sizing scheme in Module-II, more reliable performance can be beneficially gained 

over the other schemes yet at the cost of run time overhead. 

Table 19. Differential comparator: Statistics of the LDE-aware sizing results for single-objective 

schemes 

Statistics 

(10 Runs) 

Scheme-1 

( SFPC) 

Zhang [59] 

Scheme-2 

Tlelo-Cuautle 

[67] 

Scheme-3 

Vancorenland 

[33] 

Best (Best-Fitness) 0.344 0.530 0.293 

Worst (Best-Fitness) 3.00 1.514 0.627 

Median (Best-Fitness) 0.720 0.702 0.380 

Mean (Best-Fitness) 0.877 0.780 0.404 

# Successful Runs 2/10 1/10 9/10 

 

Table 20. Differential comparator: Statistics of the LDE-aware sizing results for many-objective 

schemes 
Statistics 

(10 Runs) 
Scheme-4 Scheme-5 

Scheme-6 

This work 

Best (IGD) 0.150 0.124 0.115 

Worst (IGD) 0.453 0.445 0.360 

Median (IGD) 0.217 0.202 0.165 

Mean (IGD) 0.280 0.240 0.212 

# Successful Runs 10/10 7/10 10/10 
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Table 21. Settings and performance of the differential comparator from the best run 

Statistics 

(Best Run) 

gm/ID Single-objective Methods Many-objective θ-DEA Methods 

Scheme-0 

LDE-

aware 

Solution 

Scheme-1 

( SFPC) 

Zhang 

[59] 

Scheme-2 

Tlelo-

Cuautle 

[67] 

Scheme-3 

Vancorenland 

[33] 
Scheme-4 Scheme-5 

Scheme-6 

This work 

Single /θ: Best-Fitness 0.429 0.344 0.530 0.293 0.142 0.162 0.143 

θ: Average-Fitness - - - - 0.182 0.213 0.205 

θ: Success-Rate - - - - 21.15% 40.625% 53.125% 

Single: Average-Fitness - 1.17 0.769 0.642 - - - 

Single: Standard-

Deviation 
- 0.374 0.141 0.242 - - - 

Run 

Time 

(mins) 

Module-I 5.19 - - 5.19 - 5.19 5.19 

Module-II 6.64 - - 6.64 - - 6.64 

MINLPs’ 0.35 - - 0.35 - 0.27 0.35 

Module-III - 13.99 33.01 12.48 39.93 13.01 12.80 

Total 11.83 13.99 33.01 24.31 39.93 18.20 24.63 

Specification & 

Objectives 
Circuit Performance (from the Representative Solution with the Smallest Fitness) 

Propagation Delay < 

250ps 
150.4 187.95 240.03 42.42 78.63 59.88 38.25 

+Overshoot < 350mV 219.9 1.00 241.05 181.87 17.07 57.91 64.38 

-Overshoot < 150mV 65.2 71.86 69.13 67.53 18.11 32.62 32.68 

Area(μm2) 148.93 403.67 31.34 93.71 235.88 74.68 37.13 

 

Similar trends of statistics, as discussed for the two-stage Op-Amp in Table 16 and Table 17, 

can be observed in Table 19 and Table 20 for the comparator circuit. For the selected best runs as 

the representatives reported in Table 21, the integration of elite and 𝜑 (i.e., Scheme-3) still yields 

outstanding performance, especially in best-fitness and average-fitness (i.e., 0.293 and 0.642, 

respectively), among the single-objective schemes (comparing to 0.344 & 1.17 in Scheme-1 and 

0.530 & 0.769 in Scheme-2, respectively), which further confirms the effectiveness of adopting 

the symbolic sizing phases via Modules I-II. By increasing the evolutionary resources but without 

any help from initial solutions, Scheme-4 just reaches similar best-fitness however with additional 

((39.93min - 24.63min) / 39.93min = 38.32%) run time in comparison to our proposed Scheme-6. 

In addition, the IGD statistics and the number of successful runs in Table 20 as well as the reported 

best-run’s performance in Table 21 from Scheme-6 are all superior to those in Scheme-5. This 

indicates that the gm/ID-based LDE-aware sizing optimization conducted in Module-II is essential 
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for improving the quality and robustness of the final solutions yet at the cost of run time overhead 

(i.e., 6.64min/24.63min=26.96%). 

Moreover, by observing the performance of Scheme-1 in Tables 16, 18, 19, 21, our 

experimental results illustrate that due to highly frequent floorplan variations in the SFPC scheme, 

the intractable parasitics and LDEs fail to cooperate well with sizing update along the course of 

evolution and thus increase the difficulty in exploring optimal solutions in practice. For our 

proposed Scheme-6, the resultant device sizes, whose performances are reported in the last column 

of Table 18 and Table 21 for the corresponding two experimental circuits, are provided as follows: 

For the two-stage Op-Amp, W1=33.93μm, L1=230nm, W2=33.93μm, L2=230nm, W3=21.39μm, 

L3=680nm, W4=21.39μm, L4=680nm, W5=14.55μm, L5=910nm, W6=35.53μm, L6=265nm, 

W7=9.85μm, L7=660nm, W8=1.26μm, and L8=260nm; For the comparator, W1=0.97μm, L1=200nm, 

W2=0.97μm, L2=200nm, W3=0.97μm, L3=200nm, W4=0.97μm, L4=200nm, W5=12.73μm, 

L5=70nm, W6=12.73μm, L6=70nm, W7=1.66μm, L7=65nm, W8=1.66μm, L8=65nm, W9=0.27μm, 

L9=80nm, W10=0.27μm, L10=80nm, W11=0.27μm, L11=80nm, W12=0.27μm, and L12=80nm. By 

following the sizing results associated with their floorplans, we used Cadence Layout-XL tool [68] 

to perform layout generation. Then we used Mentor Graphics Calibre tool [76] for parasitics 

extraction. The designs have been finally verified by the numerical simulator with satisfactory 

post-layout performance obtained. 

 

5.6. Summary 

In this chapter, we have proposed an efficient LDE-aware two-phase gm/ID-EA hybrid circuit 

sizing methodology for high-performance analog circuits. The proposed method firstly utilizes a 
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symbolic nonlinear optimization in the gm/ID form by modeling the first-order performance 

equations, technology-dependent device characterization and other constraints in order to seek a 

global reference solution. Then it continues to optimize the parameters for LDEs in another 

nonlinear optimization by constraining the normalized current with the aid of sensitivity analysis. 

In the second sizing phase, one advanced many-objective EA called θ-dominance-based 

evolutionary algorithm with sensible configuration is adopted for a more focused and refined 

search under an informative guide implied from the LDE-aware elite solution as well as the 

intermediate solutions. The methodology was applied to common analog circuits, and our 

comparison with other layout-aware approaches clearly demonstrates its efficacy. 

In the next chapter, we will introduce a machine-learning-based circuit sizing methodology 

with the consideration of LDEs. Only accurate numerical simulations will be involved due to the 

inaccuracy concern about circuit modeling discussed earlier. 
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Chapter 6    High-Dimensional Many-Objective 

Bayesian Optimization for LDE-Aware Analog 

Integrated Circuit Sizing 

 

6.1. Introduction 

In Section 2.1.2 , LDEs has been introduced. They are considered for analog circuit sizing by 

using the proposed gm/ID-EA hybrid sizing methodology in Chapter 5. To reinforce its detrimental 

impact on analog circuit performance, the following experimental results are reported. The LDEs 

that are intuitively reflected in the layout stage can actually be considered in the early 

schematic/netlist design stage. According to our experiments, LDEs can be reflected from the 

schematic design stage for the typical two-stage operational amplifier (Op-Amp) shown in Fig. 

5(a) in a 65nm CMOS technology. If ignoring LDEs in the simulation, the DC gain, unit gain 

bandwidth (UGB), phase margin (PM), and gain margin (GM) were initially 64.87dB, 22.01MHz, 

121.5°, and 21dB, respectively. They were changed to 55.8dB, 17.21MHz, 114.5°, and 23.51dB 

respectively after the LDEs were activated. In addition, when we further attempted different 

transistor finger number (nf) with the activated LDEs, the gain could drop to 41.96dB in the worst 

scenario. Further performance degradation may take place if such a design is placed and laid-out. 

Therefore, an LDE-aware circuit sizing method is highly demanded in the advanced technologies, 

preferably starting from the early schematic/netlist design stage. 

A machine-learning-based approach called Bayesian optimization (BO) has recently emerged 

to handle black-box optimization problems that involve computation-intensive function evaluators 

(e.g., SPICE simulator). As introduced in Section 2.2.5, the prevalent surrogate model used for 
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BO is Gaussian process (GP). Gaussian process based Bayesian optimization (GP-BO) has the 

scalability problem of the input space as discussed in Section 2.2.5. The additive models proposed 

in [42] were later adopted in [82] to further improve the high-dimensional GP-BO. Its success has 

formed part of our inspiration for developing an LDE-inclusive sizing algorithm to address the 

large number of optimization variables incurred by LDEs. Furthermore, on top of [82] solely 

dedicated to single-objective optimization, we have developed a high-dimensional and real many-

objective (i.e., >3 optimization objectives) GP-BO based (called HMBO) LDE-aware automated 

circuit sizing methodology in this chapter. In addition, we have proposed a more efficient 

dimension splitting scheme, which is especially beneficial when massive patterns exist in the high-

dimensional variable space. The main contributions of this chapter are summarized as follows: 

 To the best of our knowledge, this is the first work that utilizes machine-learning techniques 

to simultaneously optimize LDEs (i.e., WPE and STI) in the schematic-level automated analog 

circuit sizing process. 

 Our proposed HMBO can deal with high-dimensional variable space and real many-objective 

optimization of GP-BO for analog circuit sizing applications. 

 We have proposed a performance-driven parameter learning scheme for pattern generation and 

selection along with the adopted TileGPs [82] as the additive models. 

The research work conducted in this chapter has been submitted to IEEE Transactions on Very 

Large Scale Integration Systems (TVLSI) seeking for publication [J1]. 
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6.2. Bayesian Optimization 

Bayesian optimization (BO) is suitable for optimizing objective functions which take longer 

time to evaluate, that is, expensive black-box functions. It adopts a surrogate model and an 

acquisition function. The surrogate model mimics the behavior of the objective functions by 

providing predictions and quantifying uncertainties, while the acquisition function is to determine 

where to sample (or query) in the search space. Thanks to the well-calibrated uncertainty of 

prediction, Gaussian process (GP) model is highly recommended to serve as the surrogate model. 

With some randomly sampled data, prior probability distribution (i.e., prior for short) that captures 

beliefs about the behavior of the objective function can be obtained from GP regression with a 

particular mean and covariance (kernel). 

Let f : 𝒳 → ℝ be a black-box function to be optimized over a compact variable set 𝒳 =

[0, 𝑅]𝐷 ⊆ ℝ𝐷, where D is the number of dimensions for the input variable space. In this chapter, 

each dimension corresponds to one defined variable. The variable space implied by all D variables 

is referred to as the D-dimensional space. In the standard setting of BO, firstly consider optimizing 

a single objective function f(x) (e.g., DC gain of an Op-Amp) over free variables x (e.g., sizing 

variables). A Gaussian process with zero mean and covariance k is denoted by 𝒢𝒫(0, 𝑘), and let f 

be drawn from 𝒢𝒫(0, 𝑘). Given n observations Ω𝑛 = {(𝒙𝑡 , 𝑦𝑡)}𝑡=1
𝑛  where yt is drawn from normal 

distribution 𝒩(𝑓(𝒙𝑡), 𝜎
2)  and 𝜎2  is the variance for Gaussian noise, we can obtain the log 

likelihood for observations Ω𝑛 . The marginal likelihood can be used to estimate the 

hyperparameters in various kernels, such as the popular squared exponential (SE) and Matérn 

covariance functions. Then the posterior probability distribution (i.e., posterior for short) in terms 

of mean, variance, and covariance can be accordingly expressed [82]. Here the mean can be used 
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to conduct the probabilistic prediction of y with the confidence of prediction as reflected by the 

variance. 

The second component of BO is the acquisition function (𝛹 ), which is typically an 

inexpensive function representing how desirable evaluating f at a given point x is expected to be. 

By optimizing an acquisition function, the resultant x that has potential to achieve the best 

objective amount and reduce the uncertainty is selected as the location of the next observation (i.e., 

query point). To find such a promising x, search algorithms are needed. For example, the limited 

memory Broyden-Fletcher-Goldfarb-Shanno for bound constrained optimization algorithm (L-

BFGS-B) is normally used in the single-objective optimization setting, and NSGA-II or NSGA-

III can be used for multi-objective (equal or less than 3 objectives) or many-objective (more than 

3 objectives) optimization respectively. Based on various focuses on the balance between 

exploration and exploitation, common acquisition functions from the literature include probability 

of improvement (PI), expected improvement (EI), entropy search (ES), predictive entropy search 

(PES), max-value entropy search (MES), lower confidence bound (LCB), and upper confidence 

bound (UCB) [42]. 

We introduce the maximization-based UCB in the following due to our adoption in Algorithm 

6 and Algorithm 7 as well as its compatibility with additive structure [42], 

𝛹𝑡(𝒙) = 𝜇𝑡−1(𝒙) + √𝛽𝑡𝜎𝑡−1(𝒙) , 
(56) 

 

where if we maximize 𝛹𝑡 , points with larger mean (𝜇𝑡−1 ) and larger uncertainty (𝜎𝑡−1 ) are 

preferred based on the previous t-1 observations. The user-defined factor √𝛽𝑡  balances the 
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exploitation for minimizing instantaneous regret and the exploration for querying at regions where 

we are uncertain of the objective values yet. It has been theoretically proved that, under certain 

conditions, iterative invocations of 𝛹𝑡 will make f converge to its true global optimum [83]. 

With the GP posterior and acquisition function, we use Algorithm 5 to form the basic GP-BO 

framework in this chapter. The probabilistic surrogate model, which provides the GP prior, is 

constructed after conducting random sampling in Line-1. The reward function that is characterized 

by using the acquisition function, is constructed with the current GP posterior in Line-3. Then the 

expected reward is optimized in order to find the next query point that will be evaluated for 

updating the GP prior to produce a more informative posterior distribution over the space of the 

objective functions. Eventually the global optimum would be approached by iteratively obtaining 

more query points and updating the prior in Lines 2-8. 

Algorithm 5. Gaussian-process-based vanilla Bayesian optimization 

Input: number Ninit of initial samples, number Tmax of maximum iteration 

Output: best f(x) evaluated until Tmax 

1. Place a Gaussian process prior on f; // construct an initial GP model 

2. while t ≤ Tmax    // t = 1, 2,…,Tmax 

3. Construct 𝛹 using current GP posterior; 

4. Solve xt that optimizes 𝛹𝑡; 

5. Evaluate the new point 𝑦𝑡 = 𝑓(𝒙𝑡); 

6. update Ω𝑡 = Ω𝑡−1⋃(𝒙𝑡 , 𝑦𝑡) and the GP model; 

7. t = t +1; 

8. end while 
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6.3. High-Dimensional Many-Objective GP-BO 

6.3.1. Additive Structure for High-Dimensional Gaussian 

Process 

Scaling GP-BO to fit high-dimensional variable space is notoriously challenging as widely 

acknowledged in the literature. Kandasamy et al. [42] proposed additive Gaussian process (Add-

GP) to tackle this problem by assuming function f is a summation of G disjoint yet additive 

components, each being an independent function 𝑓(𝑔). By definition, 𝑓(𝒙) = ∑ 𝑓𝐺
𝑔=1

(𝑔)
(𝒙(𝒮𝑔)), 

where 𝒮𝑔 is a subset of the original set {D} having D dimensions such that 𝒙(𝒮𝑔) includes some 

variables of 𝒙. Precisely, {𝐷} = ⋃ 𝒮𝑔
𝐺
𝑔=1  and 𝒮𝑖 ∩ 𝒮𝑗 = ∅, ∀𝑖 ≠ 𝑗, i, j = 1,…,G. In this chapter, we 

use sub-dimension to refer to those specific variables contained in a subset 𝒮𝑔, which is called sub-

dimensional group g. 

By the assumption of additive property, if f(g) is drawn independently from 𝒢𝒫(𝜇(𝑔), 𝑘(𝑔)), 

the resultant f would be a sample from the lumped GP distribution, 𝒢𝒫(∑ 𝜇(𝑔)𝐺
𝑔=1 , ∑ 𝑘(𝑔)𝐺

𝑔=1 ). 

With the same condition of Ω𝑛 observations and 𝜎2 for Gaussian noise configured in the vanilla 

GP as listed in Algorithm 5, the log likelihood for observations Ω𝑛 with additive feature can be 

expressed as, 

log 𝑝(Ω𝑛|{𝑘
(𝑔), 𝒮𝑔}) = −

1

2
log|Σ| −

1

2
𝒚𝑛
TΣ−1𝒚𝑛 −

𝑛

2
log (2π) , (57) 

where matrix Σ = 𝑲𝑛 + 𝜎
2𝑰 , I is the identity matrix and kernel matrix 𝑲𝑛  describes the 

covariance (i.e., a measure of similarities between points) of the GP random variables. 𝑲𝑛 =

[∑ 𝑘(𝑔)(𝒙𝑖
(𝒮𝑔), 𝒙𝑗

(𝒮𝑔))] 𝐺
𝑔=1 for 𝑖, 𝑗 ≤ 𝑛 and 𝒙𝑖 , 𝒙𝑗 ∈ Ω𝑛, and yn would be the shared observation 
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amounts from yt for all sub-dimensional groups of each 𝒙𝑡 ∈ Ω𝑛. Thus the posterior mean, variance, 

and covariance can be accordingly expressed by, 

𝜇𝑛
(𝑔)(𝒙(𝒮𝑔)) = 𝒌𝑛

(𝑔)(𝒙(𝒮𝑔))
T
Σ−1𝒚𝑛 , 

 

𝜎𝑛
2(𝒙(𝒮𝑔)) = 𝑘(𝑔)(𝒙(𝒮𝑔), 𝒙(𝒮𝑔)) − 𝒌𝑛

(𝑔)(𝒙(𝒮𝑔))
T
Σ−1𝒌𝑛

(𝑔)(𝒙(𝒮𝑔)) , 

 

𝑘𝑛
(𝑔)
(𝒙𝑖

(𝒮𝑔), 𝒙𝑗
(𝒮𝑔)) = 𝑘(𝑔)(𝒙𝑖

(𝒮𝑔), 𝒙𝑗
(𝒮𝑔)) − 𝒌𝑛

(𝑔)(𝒙𝑖
(𝒮𝑔))

T
Σ−1𝒌𝑛

(𝑔)(𝒙𝑗
(𝒮𝑔)) 

(58) 

where 𝒌𝑛
(𝑔)(𝒙(𝒮𝑔)) = [𝑘(𝑔)(𝒙𝑖

(𝒮𝑔), 𝒙(𝒮𝑔))], 𝑖 ≤ 𝑛 and 𝒙𝑖 ∈ Ω𝑛  for any new observation point x 

because the function value of y = f(x) and the historical observation values of 𝑦𝑡= 𝑓(𝒙𝑡) should 

follow the joint Gaussian distribution [84]. Thus, the mean in (58) can be used to conduct the 

probabilistic prediction of y with the confidence of the prediction as reflected by the variance term 

but with the additive feature. 

In addition, the proposed acquisition function of UCB with the additive GP (Add-GP-UCB) 

[42] can be maximized separately on 𝒙(𝒮𝑔) for each group g given in (59), 

𝛹𝑡
(𝒮𝑔)(𝒙(𝒮𝑔)) = 𝜇𝑡−1

(𝒮𝑔)(𝒙(𝒮𝑔)) + √𝛽𝑡𝜎𝑡−1
(𝒮𝑔)(𝒙(𝒮𝑔)) . (59) 

Thanks to the additive structure, the exponential sampling complexity can be significantly 

alleviated when handling high-dimensional space. Moreover, the optimization difficulty of the 

acquisition function, requiring exponential computation in terms of dimension size, can be largely 

reduced in the group-wise style. 

As for our analog sizing problem, the additive structure naturally exists for the variable search 

space. That is, a portion of random sizing variables among all show more close relationships to 
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performance than others. A number of groups of variables are formed as per such relationships in 

different extent. Optimizing the variables with a lower dimension group by group is equivalent to 

optimizing the target problem with all variables altogether with higher dimensionality [42]. 

Moreover, a sound dimension splitting scheme can even help bring several variables, which are 

more correlated and sensitive to some objective attributes, into one group. For instance, in the two-

stage Miller Op-Amp shown in Fig. 5(a), the first-stage and second-stage DC gain can be 

symbolically expressed by 
𝑔𝑚1

𝑔𝑑𝑠1+𝑔𝑑𝑠3
 and 

𝑔𝑚6

𝑔𝑑𝑠6+𝑔𝑑𝑠7
, respectively. If maximizing the DC gain of 

both stages is one objective, it is more rational to include the design variables closely related to 

M1/M3 (e.g., W1, L1, W3, and L3) into one group and M6/M7 (e.g., W6, L6, W7, and L7) into another 

group rather than random selection for more effective 𝛹 optimization. 

 

6.3.2. High-Dimensional Many-Objective GP-BO (HMBO) 

The additive structure and the acquisition function (Add-GP-UCB) proposed in [42] provides 

a practical way to tackle the high dimensionality challenge for GP-BO. In addition, to deal with 

large observation data in the high-dimensional BO setting, the divide-and-conquer based strategy 

called Mondrian process [85] is conceived. It is a recursive generative process that partitions the 

input space in a hierarchical fashion (like decision trees) and divides the data samples by randomly 

making axis-aligned cuts. The locality of the samples is preserved by enclosing nearby points in 

one partition. In this chapter, by taking advantage of those advanced machine-learning techniques 

along with the strength of the ensemble Bayesian optimization (EBO) flow [82], we propose our 

HMBO as listed in Algorithm 6. 
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Algorithm 6. High-dimensional many-objective Gaussian-process-based Bayesian optimization (HMBO) 

Input: Ninit initial samples, maximum iteration Tmax, maximum number of query points Bmax, maximum number of 

Mondrian partitions Pmax, and minimum number of observations in each partition 𝐴𝑚𝑖𝑛 

Output: satisfactory f(x)’s recorded until termination as well as their corresponding x’s 

1. Generate Gaussian process priors on 𝒇|𝒊;  // i = 1,…,Nobj 

2. Initialize splitting parameter c, pattern information, and t = 1; 

3. while (t ≤ Tmax and performance margin has not been achieved) 

4.  𝑃 = 𝑚𝑖𝑛(
|Ω𝑡−1|

𝐴𝑚𝑖𝑛
, 𝑃𝑚𝑎𝑥); 

5.  Conduct a Mondrian process to slice the input space into P partitions: 𝒳 = ⋃ 𝒳𝑝
𝑃
𝑝=1 , and distribute 

observations accordingly among sliced partitions: Ω𝑡−1 = ⋃ Ω𝑡−1
𝑝𝑃

𝑝=1 ; 

6.  for p = 1,…,𝑃 

7.   Conduct Tile Coding to discretize Ω𝑡−1
𝑝

 into feature vectors; 

8.   Use Gibbs-UCB (c, pattern information) to derive 𝑐𝑝;  // invocation of Algorithm 7 

9.   Construct TileGP𝑝|𝑖 using Ω𝑡−1
𝑝

, 𝑐𝑝, and feature vectors; 

10.   Use 𝑐𝑝 to split D-dimensional space to ⋃ 𝒳𝑝
(𝒮𝑔)𝐺

𝑔=1  sub-spaces; 

11.   Construct acquisition function 𝛹𝑡−1
𝑝
|𝑖 by using Ω𝑡−1

𝑝
, 𝑐𝑝, and TileGP𝑝|𝑖;  

12.   for g = 1,…,G 

13.    𝒙⏞𝑡
𝑝,(𝒮𝑔)

 ← many-objective max
𝒙∈𝒳𝑝

(𝒮𝑔){𝛹𝑡−1
𝑝,(𝒮𝑔)(𝒙)|𝑖}𝑖=1

𝑁𝑜𝑏𝑗
; 

14.   end for 

15.  end for 

16.  Apply correlation clustering on cp to update c; // Merge cp to c 

17.  if (B > 𝐵𝑚𝑎𝑥) // B: number of solutions from all P partitions 

18.   {𝒙𝑡
𝑏}𝑏=1
𝐵𝑚𝑎𝑥 ← 𝑁𝑜𝑛𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑆𝑜𝑟𝑡 𝛹(𝒙)|

𝑖

𝑁𝑜𝑏𝑗 , ∀𝒙 ∈ {𝒙⏞𝑡
𝑝
}𝑝=1
𝑃 ; 

19.  else 

20.   Select all B solutions {𝒙𝑡
𝑏}𝑏=1
𝐵  as query points; 

21.  end 

22.  Perform multiple function evaluations to get {𝒚𝑡
𝑏} = 𝑓({𝒙𝑡

𝑏}); 

23.  Update pattern information based on {𝒙𝑡
𝑏, 𝒚𝑡

𝑏} and related {𝑐𝑝}𝑝=1
𝑃 ; 

24.  Update the observation set Ω𝑡 = Ω𝑡−1 ∪ {(𝒙𝑡
𝑏, 𝒚𝑡

𝑏)}
𝑏=1

𝑁𝑞𝑢𝑒𝑟𝑦
𝑡

; 

25.  t = t + 1; 

26. end while 
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With Nobj objectives (i.e., target circuit performances in our circuit sizing problem), the 

objective y in bold is a vector, and we conduct Nobj independent Gaussian processes with some 

random samples (i.e., SPICE simulations) to obtain Nobj priors in Line-1. To make use of the 

additive structure, the full space (i.e., including all circuit sizing variables) is split into a number 

of disjoint groups, each having some unique sub-dimensions, which are controlled by splitting 

parameter c as randomly initialized in Line-2. The combination of sub-dimensions within a group, 

which we refer to as pattern formally defined in Section 6.4.1, has its unique impact on objectives. 

Inside each iteration t, in Line-5 we conduct Mondrian process to partition the input space. 

The number of the partitions, P, is calculated in Line-4 by the number of observations at iteration 

t-1 (i.e., |Ω𝑡−1|) divided by the user-defined minimum number of observations per partition (i.e., 

𝐴𝑚𝑖𝑛), but not exceeding the maximum partitions (i.e., Pmax) to avoid efficiency degradation. Then 

the observations from the previous t-1 iterations can be automatically collected into P partitions 

by forming ⋃ 𝒳𝑝
𝑃
𝑝=1 . In this way, a problem with larger observations can be divided into a number 

of sub-problems with smaller observations and later be conquered within each partition. Here we 

borrow the technique of Tile Coding [82] in Line-7 to discretize the continuous observations Ω𝑡−1
𝑝

 

into feature vectors, which are sparse and computationally cheaper to be used for training the 

TileGP𝑝 (i.e., the additive GP model built inside each partition 𝒳𝑝). 

In Line-8, we conduct our proposed performance-driven Gibbs-UCB scheme as detailed in 

Algorithm 7 to generate dimension splitting parameter cp for each partition p. Next, within each 

partition p, TileGP can be constructed for each objective i in Line-9. Then the p-th partition, 𝒳𝑝, 

is further split into G sub-spaces (⋃ 𝒳𝑝
(𝒮𝑔)𝐺

𝑔=1 ) by using cp in Line-10. The size of each sub-

dimensional group, |𝒮𝑔|, is constrained to be no more than 10 by default due to the high dimension 
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challenges for GP-BO discussed in Section 2.2.5. Because the conventional acquisition function 

just works for a single objective, in Line-11 we create acquisition function 𝛹𝑡−1
𝑝
|𝑖  for each 

objective i, and promote its many-objective strategy in the following. 

Still inside partition p, for each group g, we will compose 𝒙𝑡
𝑝,(𝒮𝑔)

, the candidate next-query 

point 𝒙𝑡
𝑝
 for sub-dimensions only included in subset 𝒮𝑔, by simultaneously optimizing multiple 

acquisition functions as per multiple objectives in Line-13. Thus, the many-objective focus is 

emphasized when generating 𝒙𝑡
𝑝,(𝒮𝑔)

. Following this group-wise search for all g, the full dimension 

of 𝒙𝑡
𝑝

 will be constructed after all subsets (i.e., {𝒮𝑔}𝑔=1
𝐺 ) are attempted. Thanks to the additive 

structure, both the statistical difficulty of exponential sampling complexity for GP regression and 

the computational challenge of optimizing acquisition function due to high dimensionality can be 

significantly alleviated. In addition, due to the adopted many-objective acquisition function 

optimizer, the result for partition p is a set denoted by 𝒙⏞𝑡
𝑝
 with a user-defined set size. We select 

the maximization-based Add-GP-UCB (59) with 𝛽𝑡 = 2 log (
2𝑡2𝜋2

𝛿
) + 2𝐷log(𝐷𝑡3), where π is the 

Archimedes' constant and 𝛿 ∈ (0, 1) , as the acquisition function. In Line-16, the correlation 

clustering scheme is adopted to merge cp into c, which will be then used in the next iteration. 

When the number of candidate query points collected from all the partitions, B=|{𝒙⏞𝑡
𝑝
}𝑝=1
𝑃 |, 

exceeds the maximum batch size, 𝐵𝑚𝑎𝑥 , we conduct the nondominated sorting based on their 

performance of acquisition functions for all objectives in Line-18, and only obtain a subset 

solutions {𝒙𝑡
𝑏}𝑏=1
𝐵𝑚𝑎𝑥 ⊂ {𝒙⏞𝑡

𝑝
}𝑝=1
𝑃 . Otherwise, all the candidate solutions from P partitions are used 

for querying. Then the objective function evaluator (i.e., the SPICE simulator in our circuit sizing 

problem) is called multiple times to evaluate all query points {𝒙𝑡
𝑏} in Line-22. In our case, when 
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one sizing solution is simulated, all performance aspects can be obtained as denoted by 𝒚𝑡
𝑏. After 

querying, pattern information will be updated in Line-23, by tracing the patterns controlled by 𝑐𝑝 

of the corresponding query points {𝒙𝑡
𝑏}, which will be detailed in Section 6.4.1. 

After the objective values for 𝑁𝑞𝑢𝑒𝑟𝑦
𝑡 = Min(𝐵, 𝐵𝑚𝑎𝑥) query points are obtained, we update 

the observation set Ω𝑡 by including those new points in Line-24. The updated Ω𝑡 will refine the 

GP surrogate models so as to better approximate the behavior of the objective functions in the 

subsequent BO iterations. In our circuit sizing problem, a satisfactory solution is the one that can 

fulfill all circuit specifications. As indicated in Line-3, if the over-constrained specification margin 

(10% by default) for all performance aspects is achieved by any attempted solution (query point), 

such a solution is sufficiently satisfactory, and so we break the while loop before reaching Tmax. In 

addition, we record all satisfactory circuit sizing solutions along the iterations into a set as output 

and filter the set via a nondominated sorting operation in terms of the objective performance 

aspects to obtain a more refined set through post-processing. 

 

6.4. LDE-aware HMBO-based Circuit Sizing 

6.4.1. Performance-Driven Dimension-Based Pattern Learning 

In Line-10 of Algorithm 6, dimension splitting parameter 𝑐𝑝  splits D dimensions into a 

number of groups, each containing some unique sub-dimensions. As discussed in the example of 

maximizing the symbolically expressed DC gain in Section 6.3.1, many circuit performances are 

more closely related to only certain MOSFETs in the circuit. Since such correlation naturally exists 

in analog circuits, we call the combination of variables (i.e., certain selected sub-dimensions) 
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within each group as pattern. As a result, a number of patterns are constructed from total D 

dimensions for each partition p, which is controlled by 𝑐𝑝 as shown in Line-10 of Algorithm 6. 

The key challenge of making the most of the additive structure is how to generate a good cp 

in order to form a sound splitting structure. In [82], given the global dimension splitting parameter, 

the Gibbs sampling process is used to derive cp for sampling or grouping sub-dimensions inside 

partition p. Since the partitions are not fixed among iterations, premium query points within 

partition p from the last iteration t-1 have chances to be included into newly generated partitions 

in future iterations, which can favorably bring about implicit exploration capability. For a large 

number of iterations, optimum patterns might be discovered with the aid of such a mechanism 

offered by this plain Gibbs sampling scheme. But with limited computation resources (e.g., only 

several hundred costly circuit SPICE simulations involved [41]), the search quality may strongly 

suffer. Therefore, we propose a circuit performance-driven dimension-based pattern learning 

scheme called Gibbs-UCB in Algorithm 7 (invoked in Line-8 of Algorithm 6) for learning 𝑐𝑝 with 

reinforced exploitation strength especially efficient for the applications with a small BO iterations 

(i.e., 𝑇𝑚𝑎𝑥 ≤ 100). 

As observed from Lines 10-14 of Algorithm 6, the selected query points {𝒙𝑡
𝑏} are structurally 

determined by the dimension splitting operation controlled by the splitting parameters {𝑐𝑝}𝑝=1
𝑃 . 

That is to say, {𝑐𝑝}𝑝=1
𝑃  determines the structural composition of {𝒙𝑡

𝑏} in partition p. For example, 

assume the sizing task is to optimize a circuit with 10 variables. One 𝑐𝑝, which is represented by 

an ordered list [1, 2, 3, 2, 1, 2, 3, 2, 1, 2], is already obtained from Line-8 of Algorithm 6, and its 

list index k (k = 1,…,10) corresponds to one specific sub-dimension for one query point 𝒙𝑡
1 

generated later. Here there are three unique values (i.e., 1, 2, and 3) in 𝑐𝑝, which are referred to as 

group labels. The variables with the same group label value (i.e., 𝑐𝑘
𝑝
) form one pattern. So there 
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are three patterns contained in 𝑐𝑝, namely, {1, 5, 9}, {2, 4, 6, 8, 10}, and {3, 7} denoted by E1, E2, 

and E3, respectively. And there are three groups (i.e., 𝐺=3) of acquisition function optimization 

corresponding to E1, E2, and E3, which will finally generate 𝒙𝑡
1 (i.e., Lines 12-14 of Algorithm 6). 

After function evaluation (i.e., SPICE simulation) with 𝒙𝑡
1, we obtain performance 𝒚𝑡

1, which 

can be associated with patterns E1, E2, and E3. Our idea is to associate all attempted patterns with 

performance information (in t), which can facilitate the selection of premium patterns for deriving 

better 𝑐𝑝 in subsequent iterations (from t+1). We firstly build the association by establishing a 

fitness metric for {𝑐𝑝}𝑝=1
𝑃  and specifically for the involved patterns using the following tactic. 

After evaluating a query point 𝒙𝑡
𝑏, each pattern involved can be associated with a fitness amount 

calculated by using all the objective attributes (i.e., 𝒚𝑡
𝑏) with weighting factors composed in a 

lumped form [78]. Initially there is no pattern and therefore no fitness information available. While 

evaluating each query point, all newly identified patterns are associated with the same fitness 

obtained from performance evaluation of this point. For an old pattern, its associated fitness is 

updated by the average fitness, which is calculated by the accumulated fitness divided by its 

occurrence number among all the evaluated query points. 

For each pattern denoted by set 𝐸𝑖 ⊂ {1,… , 𝐷}, its associated fitness is denoted by 𝐻𝑖 and the 

number of occurrences is denoted by 𝑀𝑖 , where i =1,…,|E|, 𝐸 = {𝐸𝑖} is the collection of all 

patterns in the record. For instance, after evaluating the first query point 𝒙𝑡
1 if we continue to follow 

the example above, say we get 𝐸 = {𝐸𝑖}𝑖=1
3  = {E1, E2, E3}, {𝑀𝑖}𝑖=1

3  = {1, 1, 1} (i.e., one occurrence 

for each pattern), and {𝐻𝑖}𝑖=1
3 ={10, 10, 10} (i.e., the same fitness amount of 10 obtained from 𝒚𝑡

1). 

Given the second generated query point 𝒙𝑡
2 controlled by 𝑐𝑝 = [1, 2, 2, 2, 1, 2, 2, 2, 1, 2], it indicates 

two patterns {1, 5, 9} (i.e., an old pattern, namely, E1) and {2, 3, 4, 6, 7, 8, 10} (i.e., a new pattern 

called E4). After function evaluation, assuming the obtained fitness amount of 𝒚𝑡
2 is 20, then we 
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can get the updated 𝐸 = {𝐸𝑖}𝑖=1
4 ={E1, E2, E3, E4}, {𝑀𝑖}𝑖=1

4 = {1+1=2, 1, 1, 1}, and {𝐻𝑖}𝑖=1
4  = 

{(10+20)/2 = 15, 10, 10, 20}. The pattern information in our fitness metric, including {𝐸𝑖}, {𝑀𝑖}, 

and {𝐻𝑖}, is updated in each iteration t in Line-23 of Algorithm 6. It contains the performance-

driven feedback from objective function evaluation (i.e., SPICE simulation results), which will 

determine the priority of pattern selection for deriving the upcoming 𝑐𝑝 as illustrated in Algorithm 

7 below. 

In Line-1 of Algorithm 7, we initialize the ordered list [𝑐𝑘
𝑝
]𝑘=1
𝐷  as 0 (valid group label starting 

from 1) for all D elements, the pattern group label l as 1, as well as set 𝐸0 (𝐸𝑙 for a collection of 

the attempted non-duplicate desirable patterns) and set I (for the indices of unwanted patterns) both 

as ∅. We need to have some data to start learning by conducting some Gibbs sampling in Line-3 

for directly generating 𝑐𝑝 when the current iteration t is smaller than 𝜏0*Tmax, a small percentage 

(2% by default) of the total budget Tmax. Otherwise, we carry out the dimension splitting process 

with balanced exploitation (i.e., Lines 6-17 for selecting good patterns from the record) and 

exploration (i.e., Line-18 for using Gibbs sampling to create new patterns). This is controlled by 

the dimension threshold parameter, 𝑑𝑡ℎ , a percentage factor calculated in Line-5. In the early 

iterations, the number of patterns, |𝐸|, and t are relatively small. So 𝑑𝑡ℎ is also small, and thus 

only a small portion of all D dimensions (i.e., 𝑑𝑡ℎ ∗ 𝐷) conducts exploitation leaving the remaining 

majority subject to exploration done in Line-18. As t increases, the number of the collected patterns 

significantly increases. To slow down the increment of dth, the first term is logarithmized to prevent 

the process from over exploitation with the aid of the user-defined parameter 𝜏1. Another user-

defined parameter 𝜏2 < 1 can slightly slow down the increment of the 2nd term (i.e., 𝜏2
𝑡

𝑇𝑚𝑎𝑥
) in 

Line-5, which avoids exploration starvation as the iteration goes on. 
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Algorithm 7. Performance-driven pattern learning (Gibbs-UCB) 

Input: global splitting parameter c, partition p, iteration t, user-defined 𝜏1 & 𝜏2, pattern information including sets 

{𝐸𝑖}, {𝑀𝑖} and {𝐻𝑖} until t-1 

Output: local dimension splitting parameter 𝑐𝑝 for partition p at t 

1. Initialize 𝑐𝑝 = [𝑐𝑘
𝑝
]𝑘=1
𝐷 = [0]𝐷, l = 1, set 𝐸𝑙−1 = ∅, and set 𝐼 = ∅; 

2. if (𝑡 ≤ 𝜏0 ∗ 𝑇𝑚𝑎𝑥) 

3.  Conduct Gibbs sampling to derive 𝑐𝑝; 

4. else 

5.  Compute 𝑑𝑡ℎ = min (𝜏1log
|𝐸|

𝐷
+ 𝜏2

𝑡

𝑇𝑚𝑎𝑥
, 1);  // dimension threshold 

6.  while (|{𝑐𝑘
𝑝
, ∀𝑐𝑘

𝑝
≠ 0}| ≤ 𝑑𝑡ℎ ∗ 𝐷)    // for available sub-dimensions 

7.   𝑖 ← argmax𝑖∈{1,…,|𝐸|}\𝐼 (Eq. (60)); 

8.   Label 𝑐𝑘
𝑝
= l for each k location mapped by each element in 𝐸𝑖; 

9.   l = l + 1; 

10.   𝐸𝑙 = 𝐸𝑙−1 ∪ 𝐸𝑖 , 𝐼 = 𝐼 ∪ {𝑖};   // include desired pattern and index 

11.   if (𝐸𝑙 ∩ 𝐸𝑗 ≠ ∅, ∀𝑗 ∈ {1,… , |𝐸|}\𝐼)  

12.    𝐼 = 𝐼 ∪ {𝑗};    // include the index of a pattern due to overlap 

13.   end if 

14.   if (|I| == |E|)     // break when running out of available patterns 

15.    break; 

16.   end if 

17.  end while      // composed exploitation-based |𝐸𝑙 | dimensions of 𝑐𝑝 

18.  𝑐𝑝 ← conduct Gibbs sampling for remaining (D - |𝐸𝑙 |) dimensions; 

19. end 

 

For pattern exploitation, we keep selecting promising patterns generated from the previous t-

1 iterations, and labeling them by the group label l as shown in Line-8 as long as the number of 

the labeled variables from selected patterns does not exceed dth*D as indicated in Line-6. In each 

while iteration, the most promising pattern is selected by maximizing a score function that is 

inspired by the UCB scheme as follows, 
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𝐻𝑖 +√
2∗log (∑ 𝑁𝑞𝑢𝑒𝑟𝑦

𝑗𝑡−1
𝑗=1 )

𝑀𝑖
 , 

(60) 

 

where 𝐻𝑖 is the fitness amount of pattern 𝐸𝑖, the logarithm operand is the total number of query 

points attempted from iteration 1 to t-1, and 𝑀𝑖 is 𝐸𝑖’s occurrence from all evaluated query points 

so far. Thanks to Eq. (60), promising patterns in terms of high fitness (i.e., the first term Hi) and 

large uncertainty (i.e., the second square-root term) may be selected with high priority. That is to 

say, in our analog circuit sizing problem the performance-sensitive variables among all had better 

be grouped together since they can be simultaneously optimized for problem objectives in (59) to 

seek possible higher fitness. Thus, the sensitive groups would likely gain higher fitness much 

easier than the groups of non-sensitive variables so that the correlated sensitive variables can be 

intensively exploited within one group, which is in line with the concept of additive structure. In 

addition, the combinations of variables less frequently attempted (i.e., smaller Mi) would be also 

encouraged due to higher uncertainty. 

After one good pattern 𝐸𝑖 is selected, in Line-8 a number of elements on the ordered list [𝑐𝑘
𝑝
], 

which are mapped by sub-dimensions k’s contained in 𝐸𝑖, will be labelled by l. After l increments 

by 1 in Line-9, the newly selected 𝐸𝑖 will be merged to 𝐸𝑙, and 𝐸𝑖 will not be considered in the 

subsequent pattern selection after including index i into I in Line-10. In Lines 11-12, the remaining 

patterns that contain any overlapping k’s with the collected ones in 𝐸𝑙 will be excluded in the next-

iteration labelling process by updating I. As indicated in Lines 14-16, if we run out of the available 

patterns before violating the sub-dimension length condition in Line-6, the while loop breaks. After 

Line-17, associated with the labelled [𝑐𝑘
𝑝
] for the exploitation-based sub-dimensions, final 𝑐𝑝  is 

determined with the aid of the exploration-based Gibbs sampling on the remaining sub-dimensions 
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in Line-18. |𝐸𝑙| is the sum of set sizes for all selected 𝐸𝑖’s, which are previously merged into 𝐸𝑙 

in Line-10. 

In comparison with the plain Gibbs sampling method used in [82], in our proposed scheme 

the promising patterns are encouraged and prioritized by the UCB-based scoring function (60), 

which is closely related to the objective attributes (i.e., circuit performance) and uncertainty of 

candidate patterns (i.e., confidence regarding certain combinations of sizing variables). Such 

intelligence takes effect via dth in Line-5, which can balance the allocation of optimization 

resources towards either exploration or exploitation. This tactic plays a core role in Algorithm 7, 

which enhances performance of Algorithm 6 when applying to our high-dimensional LDE-aware 

IC sizing problem. 

As another benefit of the employed fitness metric for patterns, the optimization effort for the 

acquisition function in Lines 12-14 of Algorithm 6 can be tuned adaptively to improve algorithmic 

efficiency. If a pattern being attempted has a smaller score amount calculated with (60), we can 

assign a correspondingly less configuration of the utilized optimizer with reference to the default 

configuration (denoted by zdf). In this regard, all the attempted patterns in record are ranked 

according to their score amounts. For a pattern 𝐸𝑖, a ratio ri is calculated by 1 - 𝜔𝑖/|𝐸|, where 𝜔𝑖 is 

the rank of 𝐸𝑖. So zi, which denotes the configuration for optimizing the variables involved in 𝐸𝑖, 

can be set as max(ri*zdf, zmin), where zmin stands for the minimum configuration. As a result, those 

sizing variables that are more correlated and sensitive to circuit performance can be allocated with 

higher computational resources. In addition, newly generated patterns but not being evaluated have 

no entry in the record, and so would still use the default configuration. 
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6.4.2. Floorplanning and HMBO-Based LDE-Aware IC Sizing 

To achieve LDE-awareness when applying the proposed HMBO to the analog circuit sizing 

problem, our free sizing variables include W, L, nf, 𝐿𝑅𝑒𝑥𝑡, and SCt of every MOSFET, nominal 

values of passive devices (e.g., resistors, capacitors, and inductors) if any, as well as voltage or 

current biases in the circuit. With the same simplification scheme discussed in Section 5.3. SCx 

and SCy are set as the variables instead of SCt. Next, when the geometric information contained in 

the candidate sizing solution (i.e., query point) is available, SABeff and SCAeff can be calculated by 

using (43) and (42) to reflect STI effect and WPE. Associated with the basic MOSFET parameters 

of W, L, and nf as well as the other device properties calculated via Eqs. (52)-(54), the circuit 

simulation netlist can be constructed to fully take into account LDEs in the simulations invoked 

during the HMBO-based sizing optimization. 

Similar to the floorplanning strategy employed in the previous chapters, the simulated 

annealing driven B*-tree-based floorplanning method [58] is deployed to generate optimal 

floorplans for each query point. As the input to the floorplanner, geometric information contained 

in each query point is utilized to transform device sizes into rectangular blocks. The resultant 

floorplans are obtained as per the floorplanning objectives (mainly including total area and wire 

length) and various constraints (e.g., signal flows, resemblance to circuit schematic, and 

symmetry). The floorplan expressed in the B*-tree representation for a query point can be used as 

a reference for the global routing. Thus, the definite interrelationship among device blocks can be 

acquired, which can be further used to derive the shortest wire path for estimating the interconnect 

parasitics. Because of the better flexibility as discussed in Section 5.3, we offer bonus score to a 

trial floorplan if any two neighboring MOSFETs share the same type (i.e., PMOS or NMOS). 
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6.5. Experimental Results 

This section highlights the merits of our proposed HMBO-based LDE-aware circuit sizing 

method by providing our experimental results in comparison with other layout-aware circuit sizing 

approaches. All experiments in this chapter were conducted in the TSMC 65nm CMOS technology. 

In order to show the effectiveness of our novel Gibbs-UCB-based pattern learning scheme 

used in our proposed HMBO, we keep track of the generated patterns and hypervolume along the 

iteration in comparison with the plain Gibbs sampling based ensemble Bayesian optimization 

(EBO) [82] and HMBO along with the plain Gibbs sampling (called HMBO-p hereafter) on the 

circuit sizing problem with LDE-awareness for the two-stage Op-Amp in Fig. 5(a). As one of the 

most popular quality indicators, hypervolume provides a way to assess and compare the resultant 

performance among various optimization approaches, especially for multi-objective and many-

objective ones. As implied in [38], PF can be obtained by maximizing hypervolume. Therefore, 

we have adopted hypervolume as a performance metric, the larger the better, for comparing various 

approaches included in our experiment. In addition, the normalized specification serves as the 

reference point required for hypervolume calculation so that any solutions whose performance 

fails to pass any specification will not contribute to hypervolume. The maximum numbers of 

iterations (Tmax) and query points per iteration (Bmax) are set as 50 and 20 respectively in our 

experiment. 

Fig. 15 and Fig. 16 depict the number of generated patterns and hypervolume variation 

respectively for the two-stage Op-Amp. We have two settings for our proposed Gibbs-UCB-based 

HMBO method, which are 𝜏1= 𝜏2= 0.25 (i.e., called HMBO-1 illustrated by the green curve with 

stars) and 𝜏1= 𝜏2= 0.5 (i.e., called HMBO-2 illustrated by the black curve with dots) where 𝜏1 and 

𝜏2 (between 0.25 and 0.75 by default) are the factors of dth in Algorithm 7 for balancing the 
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exploration and exploitation towards pattern generation and reuse. In Fig. 15, for the plain Gibbs 

sampling based EBO approach (i.e., the blue curve with triangles), the number of generated 

patterns increases in approximately linear manner. The ratio is controlled by Bmax because more 

patterns are generated when more query points are attempted in each iteration. For HMBO-p (i.e., 

the red curve with diamonds), there are more patterns generated due to the many-objective feature 

of Algorithm 6. As observed from Fig. 16 for both plain Gibbs-based schemes, even though the 

hypervolume in HMBO-p starts at a low level but improves late (i.e., at iteration 5), it manages to 

override EBO (i.e., at iteration 17) and maintains the leading state till the 50th iteration thanks to 

the many-objective feature designed for the proposed HMBO in comparison to EBO. 

For any curve depicted in Fig. 15, if the slope of tangent at one point starts to become flat, it 

means that there are less new patterns being composed and more old patterns being reused, which 

accordingly indicates decreased exploration strength and increased exploitation momentum for 

optimum pattern search. The slope at different points of the curves varies more obviously for 

HMBO-1 and HMBO-2 than EBO and HMBO-p, which exhibits an adapted mechanism over 

pattern exploration and exploitation thanks to our proposed Gibbs-UCB scheme. 
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Fig. 15. Pattern generation along iterations for the two-stage Op-Amp 
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Fig. 16. Hypervolume variation along iterations for the two-stage Op-Amp 
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In comparison with HMBO-2 in Fig. 16, HMBO-1 holds the leading state until iteration 46 

thanks to a large hypervolume jump achieved at iteration 5, which is intrinsically attributed to its 

larger exploration strength (i.e., larger slope of tangent in Fig. 15). As shown in Fig. 15 for HMBO-

2, the exploitation starts to make larger impact yet still can enrich some pattern diversity around 

iteration 20, which is reflected by a flatter curve compared to HMBO-1. After iteration 30, there 

seems a strong exploitation strength for HMBO-2, and there is barely increment of new patterns 

after iteration 35. Accordingly in Fig. 16 for HMBO-2, there are two obvious boosts of 

hypervolume around iteration 20 and iteration 35, where the exploitation strength is becoming 

strong and then dominant. These observations suggest that the enhanced exploitation by reusing 

old patterns (around the 20th and 30th iterations) can contribute to the advancement of 

hypervolume. In addition, with even stronger exploitation strength (after iteration 35), there will 

be more opportunities to focus on attempted promising groups of performance-sensitive sizing 

variables with relative high scores (60). In addition, these focused groups of variables would stay 

being refined group by group via (59) with more optimization resources allocated (i.e., larger ri*zdf) 

because of their higher scores (i.e., higher ranking 𝜔𝑖’s). This helps justify that after iteration 46, 

there is still potential for HMBO-2 to further improve hypervolume and finally surpass HMBO-1. 

In contrast, the hypervolume of the plain Gibbs-based schemes (i.e., EBO and HMBO-p) is 

obviously inferior to that of the Gibbs-UCB-based schemes (HMBO-1 and HMBO-2). This 

suggests that without any care of pattern reuse for enhancing exploitation, performance-sensitive 

variables might not be readily optimally grouped and attentively refined, and thus it may take 

longer iterations for hypervolume to be improved. In contrast, the intelligence introduced by the 

UCB-based score function (60) in our proposed Algorithm 7 can help exploit sound patterns and 

contribute to the sizing performance enhancement. 
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In addition to the Op-Amp depicted in Fig. 5(a), a differential-pair comparator shown in Fig. 

5(b) is also used in our experiment. For each experimental circuit, seven heuristic-based or 

statistical-based schemes are compared with one another. Among evolutionary algorithm based 

Schemes 1-3, Scheme-1 follows the Synthesis Flow for fast Parasitic Closure (called SFPC for 

short) [59], which includes placement and global routing inside a refined-sizing loop. One layout-

aware sizing work [33], which uses differential evolution (DE), is implemented as Scheme-2. 

Scheme-3 imitates one state-of-the-art many-objective evolutionary algorithm called θ-DEA [38] 

applied to the layout-aware circuit sizing problem. For the Gaussian-process-based Bayesian 

optimization (GP-BO) related Schemes 4-7, the ensemble BO (EBO) [82] and the Multi-objective 

ACquisition Ensemble BO (MACE for short) [41] are applied to the LDE-aware circuit sizing as 

Scheme-4 and Scheme-5, respectively. Our proposed high-dimensional many-objective GP-BO 

(called HMBO) with adaptive Gibbs-UCB scheme for pattern learning is applied to the layout-

aware circuit sizing as Scheme-7. To highlight the effectiveness of the proposed Gibbs-UCB 

scheme, a plain Gibbs sampling based scheme that replaces the Gibbs-UCB in HMBO is 

configured in Scheme-6 (i.e., HMBO-p) as the only difference from Scheme-7. For a fair 

comparison among all the seven LDE-aware circuit sizing schemes, the floorplan can be derived 

whenever a trial solution (EA chromosome or BO query point) is available, and be used to estimate 

the interconnect parasitics. In addition, by following Eqs. (42) (43) and (52)-(54), the LDE effects 

are considered via the netlist included in the circuit simulations for all schemes. 

For the configuration of variable bounds, they are [0.5μm, 150μm] with step-size of 10nm for 

W, [60nm, 1μm] with step-size of 5nm for L, and [1, 50] with step-size of 1 for nf. nf will be 

automatically adjusted to ensure W/nf and L are compatible with the design rules of the used 

technology process. 𝐿𝑅𝑑𝑢𝑚, whose bound is set as [0, 750nm], is used to linearly adjust SABedge for 
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STI effect. For WPE, the bounds of SCx and SCy are configured by [0, 500nm] and [0, 1μm], 

respectively. The bounds for LRdum as well as SCx and SCy are set so since the stress effect and 

proximity effect would quickly diminish after the distances of SABedge and SCt are over 1μm in our 

adopted technology. 

In both Table 22 and Table 23, the type of optimization including single-objective, multi-

objective, and many-objective is specified for all Schemes 1-7. For Schemes 4-7, the size of the 

simulation-based initial training data set is 100. The number of query points per iteration (i.e., 

batch size) is set as 10 with maximum 50 iterations except for Scheme-5 where the batch size is 

set as 4 and the maximum iteration is set as 125 (i.e., a loyal implementation to [41]). Thus, the 

maximum number of the involved simulations for Schemes 4-7 is 600. For Schemes 2-3, the 

evolutionary size of population and the maximum generation are 36 and 17 respectively, which 

leads to 612 simulations. 600 simulations are reasonably configured in Scheme-1. For each scheme, 

the nondominated solutions are obtained only from valid solutions that pass the specification. The 

numbers of those solutions are reported in the fourth and fifth rows. 

In addition to the adopted hypervolume metric in both Table 22 and Table 23, our 

maximization-based fitness (41), which is a summation of various normalized performance 

attributes similar to [78], is used as another figure of merit but negated as a negative value (i.e., 

thus 0 as the ideal maximum) in order to be compatible with the maximization-oriented UCB. In 

the seventh row, “Best-fitness” is the solution that has the largest fitness within the resultant 

solution set. This best-fitness solution is also selected as the representative solution for each 

scheme to exhibit detailed performance of various objective attributes. 

For the two-stage Op-Amp in Table 22, among the EA-based schemes, the DE-based Scheme-

2 has the worst hypervolume (i.e., 2.01) and moderate best-fitness (i.e., -0.631). The many-
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objective based θ-DEA (i.e., Scheme-3) is able to derive a solution set with a higher hypervolume 

(i.e., 5.70) over Schemes 1-2 (i.e., 5.36 and 2.01 respectively). However, its best-fitness is slightly 

inferior to those of Schemes 1-2 because the aim of the single-objective based approaches is to 

converge to a better fitness value while the goal of the many-objective approaches is to 

simultaneously improve all performance attributes, which may not necessarily lead to the best 

fitness. The sophisticated θ-DEA based Scheme-3 is expected to have better best-fitness solutions 

if provided with larger evolutionary resources and reasonable configuration of fitness function. 

Table 22. Settings and performance of the two-stage Op-Amp 

Two stage Op-Amp EA Based GP-BO Based 

Schemes/Performances 

Sch-1 

SFPC 

[59] 

Sch-2 

DE 

[33] 

Sch-3 

θ-DEA 

[38] 

Sch-4 

EBO 

[82] 

Sch-5 

MACE 

[41] 

Sch-6 

Plain Gibbs- 

based 

HMBO-p 

Sch-7 

Gibbs-UCB 

based HMBO 

[This work] 

Optimization Type 
Single-

Obj. 

Single-

Obj. 

Many-

Obj. 

Single-

Obj. 

Pseudo 

Multi-

Obj. 

Many-Obj. Many-Obj. 

Spec.-passed Solutions 10 7 10 8 2 6 6 

Nondominated 

Solutions 
8 6 4 8 2 5 4 

Hypervolume (*1e-3) 5.36 2.01 5.70 4.72 2.05 5.32 7.81 

Best-fitness -0.615 -0.631 -0.653 -0.624 -0.613 -0.615 -0.586 

Objectives & 

Specification 
Representative Solution (from the one with the largest fitness) 

Gain > 60dB 64.84 60.81 61.60 61.89 60.50 62.17 62.23 

UGB> 4MHz 17.91 8.20 40.69 12.52 18.15 26.31 21.03 

PM > 60° 71.43 80.39 70.94 73.83 75.93 78.89 75.04 

GM > 15dB 31.80 49.62 21.65 38.19 33.26 25.68 38.42 

Runtime (hrs) 0.50 0.39 0.42 1.51 1.22 1.93 1.90 

 

Among the GP-BO based Schemes 4-7, the best-fitness from Scheme-5 (i.e., -0.613) is not 

that bad because although multiple acquisition functions are employed, this MACE method is still 

able to focus on improving a single metric (i.e., fitness). However, since there is no consideration 
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of handling high-dimensional variable space, it has only two specification-passed and 

nondominated solutions, which result in a low hypervolume of 2.05. Between Scheme-4 and 

Scheme-6 both having the consideration of high dimensionality, the many-objective feature 

included in Scheme-6 leads to a higher hypervolume (i.e., 5.32) and a slightly higher best-fitness 

(i.e., -0.615) than those (i.e., 4.72 and -0.624 respectively) in Scheme-4. As for our proposed 

Scheme-7, thanks to the proposed Gibbs-UCB scheme for pattern learning, the hypervolume (i.e., 

7.81) and best-fitness (i.e., -0.586) could even outstrip those in Scheme-6 (i.e., 5.32 and -0.615 

respectively) equipped with the plain Gibbs sampling scheme. Furthermore, when handling 

multiple optimization objectives, the single-objective based approaches, which rely on the user-

defined fitness function, may have a risk of ending up to the solutions having good fitness but 

narrow performance margin. For example in Scheme-5, the representative solution with relatively 

good fitness of -0.613 among all seven schemes only has DC gain of 60.50dB, which might make 

it hard satisfy certain subsequent verification under PVT variations. For the runtime, since there is 

no involvement of model training and inference as well as acquisition function optimization, the 

EA-based Schemes 1-3 are 2.44 - 4.95 times faster than the GP-BO based Schemes 4-7. However 

the hypervolume (i.e., 2.01) from the fastest Scheme-2 is 3.89 times less than Schemes-7’s (i.e., 

7.81). Compared to our proposed Scheme-7, there are less CPU resources required if a single-

objective problem is targeted (i.e., Schemes 4-5) or there is no splitting/learning strategy on high-

dimensional input (i.e., Scheme-5). 

For the comparator circuit in Table 23, propagation delay is one of the most important circuit 

characteristics, while the positive and negative overshoots are given in absolute values. Among 

the EA based Schemes 1-3, the SFPC Scheme-1 could not locate any premium region, which ends 

up with only one valid solution as well as poor hypervolume and best-fitness (i.e., 0.012 and -
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0.737, respectively). The search configuration space could be highly bumpy for the comparator 

circuit because it consists of multiple continuous regions but disjoint in between. This nature can 

be understood in that when the logic balance is broken by sufficient variations of device sizes, 

parasitics, and LDEs during the optimization, the charge and discharge of current paths for the 

output would immediately reverse. Scheme-2 successfully located several continuous regions as 

indicated by its large number of valid solutions and acceptable amount of nondominated solutions 

(i.e., 123 and 11, respectively). However, being trapped in suboptimal regions due to the nature of 

DE, its hypervolume and best-fitness are still inferior to the rest of Schemes 3-7. The θ-DEA 

Scheme-3 demonstrates its efficacy on this bumpy-search-space problem by yielding competitive 

hypervolume and best-fitness (i.e., 0.565 and -0.197) even in comparison with the GP-BO based 

Schemes 4-6. 

 

Table 23. Settings and performance of the differential comparator 

Two stage Op-Amp EA Based GP-BO Based 

Schemes/Performances 

Sch-1 

SFPC 

[59] 

Sch-2 

DE 

[33] 

Sch-3 

θ-DEA 

[38] 

Sch-4 

EBO 

[82] 

Sch-5 

MACE 

[41] 

Sch-6 

Plain Gibbs- 

based 

HMBO-p 

Sch-7 

Gibbs-UCB 

based HMBO 

[This work] 

Optimization Type 
Single-

Obj. 

Single-

Obj. 

Many-

Obj. 

Single-

Obj. 

Pseudo 

Multi-

Obj. 

Many-Obj. Many-Obj. 

Spec.-passed Solutions 1 123 15 12 27 106 51 

Nondominated 

Solutions 
1 11 10 3 8 18 9 

Hypervolume 0.012 0.263 0.565 0.535 0.544 0.581 0.625 

Best-fitness -0.737 -0.402 -0.197 -0.184 -0.259 -0.232 -0.180 

Objectives & 

Specification 
Representative Solution (from the one with the largest fitness) 

Propagation Delay < 

250ps 
168 147 81 88 131 108 68 

+Overshoot < 350mV 316 119 35 36 79 48 34 

-Overshoot < 150mV 96 41 15 15 4 19 25 

Runtime (hrs) 0.54 0.45 0.49 1.12 0.95 1.44 1.43 
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Among all of GP-BO based Schemes 4-7, Scheme-5 features some multi-objective qualities 

thanks to the utilized multi-objective acquisition functions despite the plain single-objective FOM 

for circuit performance attributes. So higher numbers of valid solutions and nondominated 

solutions (i.e., 27 and 8) are obtained, which leads to slightly higher hypervolume of 0.544 in 

comparison with those (i.e., 12 specification-passed solutions, 3 nondominated solutions, and 

hypervolume of 0.535) in Scheme-4. In contrast, without any care about multi-objective benefits, 

the full optimization effort in Scheme-4 is solely devoted to improving the fitness along one search 

path in comparison with Scheme-5. Thus, the best-fitness of -0.184 in Scheme-4 is better than that 

(i.e., -0.259) in Scheme-5. In contrast, Scheme-6 with our proposed high-dimensional many-

objective GP-BO framework could override the performance of Scheme-5 regarding the numbers 

of valid and nondominated solutions as well as hypervolume and best-fitness. In addition, despite 

less number of valid solutions and therefore less nondominated solutions observed in our propose 

Scheme-7 in comparison to Scheme-6, more superior performances of hypervolume and best-

fitness (i.e., 0.625 and -0.180 over 0.581 and -0.232, respectively) are obtained in Scheme-7. This 

indicates that although the plain-Gibbs-sampling based pattern learning scheme utilized in 

Scheme-6 could find more solutions due to its significant exploration strength, our proposed 

Gibbs-UCB based scheme can actually improve the quality of solution set with balanced 

exploration and exploitation especially when the computation resources (e.g., allowable maximum 

batch size and BO iterations) are limited in the analog circuit sizing problem. These experimental 

results help justify the effectiveness of our proposed HMBO in Scheme-7. 
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6.6. Summary 

In this chapter, an efficient high-dimensional many-objective Gaussian-process-based 

Bayesian optimization methodology called HMBO was presented to optimize the challenging 

LDE-aware analog circuit sizing problem. The layout dependent effects including STI and WPE 

were well modeled by accurate estimation of LDE parameters including SA/SB and SCA/SCB/SCC. 

Moreover, our developed performance-driven pattern learning Gibbs-UCB scheme can contribute 

to superior structural splitting of high dimensionality. Our experimental results clearly demonstrate 

its efficacy by comparing with other heuristic-based layout-aware circuit sizing approaches. 
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Chapter 7    Conclusion and Future Work 

In this dissertation, we have first explained the necessity of EDA for analog/RF circuit 

synthesis and then proposed multiple novel methodologies to address critical challenges in the area 

of analog/RF integrated circuit sizing. We mainly identified two kinds of prominent layout effects, 

parasitics and layout-dependent effects (LDEs), which may incur severe impact on circuit 

performance degradation. They cannot be fully detected until a schematic is converted to its 

corresponding layout in the traditional analog IC design flow. Thus, analog designers may have to 

go back to the completed schematic stage to pursue another design solution if the performance 

degradation due to the parasitics and LDEs cannot be alleviated by any subsequent layout 

refinement. In such cases, plenty of tweaking effort including re-sizing, re-placement, and re-

routing is expected to close the synthesis loop. As an appealing idea, early actions can be taken in 

the circuit sizing stage for early awareness of parasitics and LDEs, which is expected to alleviate 

the prospective trouble in the subsequent layout design stage. A widely accepted term for such an 

idea is called layout-aware circuit sizing for analog/RF integrated circuits. The main contribution 

of this dissertation is the proposed algorithms and methodologies to consider parasitics and LDEs 

in the early circuit schematic design stage. 

We have first proposed a two-phase hybrid circuit sizing flow including a symbolic phase (i.e., 

geometric programming (GeoP)) and a heuristic optimization phase (i.e., evolutionary algorithm 

(EA)). Our proved theorem shows the GeoP-compatibility for floorplan and interconnect parasitic 

constraints considered in the symbolic circuit sizing of GeoP platform. After taking the quick 

solution solved as a global view from the first GeoP-based sizing phase, we apply an EA-based 

optimization phase for sizing refinement. It involves two EAs including a single-objective EA (i.e., 

DE) and a many-objective EA (i.e., θ-DEA) for adaptively fit the target problem. To effectively 
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shrink the search scope caused by the variation of both device sizes and parasitics, we maintain a 

stable floorplan optimized by an SA-driven floorplanner with B*-tree representation in the EA 

sizing phase. Our experimental results show that the circuit knowledge information induced by the 

first GeoP phase tends to effectively facilitate the EA-phase optimization process, especially for 

the sizing problems with complex solution space. It also demonstrates the time efficiency and 

favorable circuit performance resolution of our proposed two-phase hybrid sizing method over the 

other similar works with supported pre-layout and post-layout simulation results for three 

analog/RF circuits in different technologies. Nevertheless, the modeling difficulty and limited 

accuracy pose a big challenge to fidelity of the first GeoP phase for the general analog/RF 

integrated circuits. 

By maintaining the concept of symbolic plus heuristic two-phase sizing, we have improved 

the accessibility and accuracy of the first symbolic sizing phase by replacing the GeoP-based 

circuit modeling with gm/ID-based MINLP one, and updated the synthesis flow accordingly. As 

one of our main contributions, thanks to the involved numerical simulations, the advocated curve-

fitting based equations are more accurate than the traditional equations for measuring device 

attributes (e.g., gm, gds, and Cij). For other contributions in this part of dissertation, we have firstly 

proposed the L-selection (or L-initialization) algorithm in order to avoid selecting improper L 

values that might account for repeated sizing failures in the subsequent gm/ID-based modules. We 

have then identified that each of the gm/ID-parameters (i.e., gm/ID, gds/ID, IDN, and Cij/ID) and a set 

of MOSFET node voltages (i.e., VGS and VDS) have one-to-one correspondence for a selected L. 

The relationships are obtained from accurate SPICE numerical simulations in a specific technology 

and then curved fitted into symbolic equations, which feature both generality and enhanced 

accuracy over the GeoP-based approach. Then we build the MINLP to include the free variables 
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of ID and node voltages in addition to the gm/ID-parameters symbolically expressed in free variables, 

and eventually solve for device sizes. Due to the accuracy concern on application region of W, we 

have proposed current density factor (CDF) to refine the original gm/ID sizing principle. In addition, 

because the curve-fitted relationships have some dependences on the selected reference W, 

multiple reference W’s are used for improving fitting accuracy. In this way, we have connected 

those piecewise-based fitting equations in the mix-integer fashion and employed the MINLP solver 

for this purpose. Due to the disadvantages of either keeping one out-of-date floorplan template or 

performing floorplanning all the time, we have proposed the compatibility-aided adaptive 

floorplan variation scheme, which only need to rerun the floorplanner when the current floorplan 

is not compatible with varied device sizes during the second θ-DEA based sizing phase. Our 

experimental results have demonstrated the effectiveness of the adaptive floorplan variation 

scheme employed in our proposed gm/ID-EA two phase hybrid sizing methodologies over other 

similar works by delivering much better fitness and favorable run time for three analog/RF circuits 

in CMOS 65nm technology. 

Beyond parasitics, we can also optimize LDEs by taking advantages of the trustworthy 

symbolic-based sizing platform (i.e., gm/ID-based MINLP sizing) developed before. Firstly, we 

have modeled the two types of LDEs including WPE and STI with formulations for the early 

design stage. Based on the gm/ID-based LDE-free sizing solution, we have integrated the 

sensitivity-analysis-based constraints regarding the normalized branch current and circuit 

performance to perform the LDE-aware symbolic sizing via another MINLP. We have advocated 

to optimize the two sets of design parameters (W and nf) and (LRext and SCt) in two separate inner 

iterations of the LDE-aware sizing module due to their different degrees of impact on circuit 

performance. Furthermore, we have formulated the symbolic modeling and made it LDE-aware 
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for calculating other device geometric parameters and included them in the second θ-DEA based 

sizing phase. In addition, we have refined our floorplanning strategy by favoring a unified larger 

well that encloses a bunch of devices with the same well type in comparison to multiple isolated 

wells. In our experimental results, we have used a case study on a single MOSFET to illustrate 

that our proposed LDE-aware device characterization model can reduce more than 50% estimation 

error on MOSFET electrical characteristics in comparison to Cadence (a commercial EDA tool). 

Moreover, the effectiveness of the proposed LDE-aware two-phase gm/ID-EA hybrid circuit sizing 

methodology is demonstrated in comparison to other similar works by reporting and analyzing 

statistically best-fitness amount, IGD, and successful runs among 10 runs as well as the detailed 

performance from the best run for several analog circuits in CMOS 65nm technology. 

With emphasis on utilizing statistics to manage probabilistic models and uncertainty, 

machine-learning-based approaches as another heuristic-based category have been increasingly 

getting popular over the last decade. Gaussian-process-based Bayesian optimization (GP-BO) as 

a good candidate to solve black-box optimization problem has been applied to analog circuit sizing 

domain, however not with any consideration of nf, parasitics, or LDEs. Because of the intricacy 

when mingling the conventional sizing variables, LDE parameters, layout floorplan and parasitic 

considerations, the increased input dimension poses a critical challenge for applying the regular 

GP-BO to analog circuit sizing. Thus, we have been motivated to propose a high-dimensional 

many-objective GP-BO (called HMBO) algorithm for the layout-aware analog circuit sizing. We 

have appropriately employed the Mondrian process to cut the input space in terms of variables’ 

bounds, utilized additive structure to split the input variables’ dimension (i.e., grouping more 

correlated variables) in order to divide and conquer the high dimensionality, and taken the 

advantages of the EBO flow to devise our HMBO. In addition, we have proposed a performance-
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driven parameter learning scheme, called Gibbs-UCB, for pattern generation and selection. The 

UCB-based score function used in this scheme can help group or select performance-sensitive 

variables among all combinations and exploit the selection to seek for higher circuit performance. 

This pattern learning scheme can adaptively balance the optimization strength between exploration 

and exploitation regarding the available resources along the iteration. In addition, we have 

allocated more optimization resources on favored patterns with higher score during the group-wise 

acquisition function optimization. In our experimental results, higher best-fitness amount and 

hypervolume are achieved by using our proposed HMBO method with Gibbs-UCB scheme 

embedded in comparison to other similar works running for several analog circuits in CMOS 65nm 

technology. 

Even though the topology-dependent circuit performance equations that do not alter with 

technology variation are relatively trustable for approximating the real circuit performance, 

manipulation of analytical-based sizing methods that utilize them can still be challenging in 

practice. This is because there are two levels of nonlinear relationships involved in circuit sizing. 

The first one is between device geometric sizes and MOSFET characteristics (e.g., gm and gds) as 

well as intrinsic parasitics (e.g., Cgs and Cds), while the other one lies between the MOSFET 

characteristics and circuit performance, not to mention the consideration of floorplan constraints, 

interconnect parasitics, and LDEs. This makes the analog/RF circuit sizing as a complex black-

box optimization problem. In addition, even though the performance equations for popular circuit 

topologies are available from textbooks and literature, the development efforts of the performance 

equations for new topologies are normally not tractable in practice. 

However, stochastic-based sizing approaches with accurate numerical simulations involved, 

which can discard those equations, seem to be a good alternative. In the era of artificial intelligence 
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(AI), plenty of novel machine-learning based methods and algorithms such as Bayesian network, 

reinforcement learning, and neural network have been already proposed and applied to a rich 

variety of disciplines and sub-fields. The concept of heuristics reflected from these techniques are 

well suited to meet the requirement of stochastic-based sizing approaches. Nevertheless, as a 

recommendation to the research in this domain, special emphasis should be placed onto their 

application to analog/RF EDA. Due to the costly simulation run time, we can only train those AI 

models with a limited number of real simulation data. It then becomes important to effectively 

search the solution space or manage the search exploration versus exploitation by integrating 

domain knowledge of analog/RF circuits (e.g., performance sensitivity) in order to put more focus 

on promising data to be sampled and used to improve the AI models. As one of our future works, 

the aforementioned machine-learning based techniques would be investigated for analog circuit 

optimization. 

PVT stands for the process, supply voltage, and operating temperature. It is understood that 

in everyday operation, the supply voltage and operating temperature can be fluctuating. Process 

variation refers to the deviations in the semiconductor fabrication process, which can be caused by 

non-uniform conditions during depositions and/or diffusions of the impurities. This leads to the 

variations of sheet resistance and transistor parameters like Vth. In addition, W/L variations are 

found due to limited resolution of the photolithographic process. Analog circuit sizing with 

tolerance design consideration from inevitable variations of manufacturing process and operating 

conditions are called PVT-variation-aware sizing. It is further divided into two sub-tasks including 

minimizing the worst-case performance deviation and maximizing the yield, which satisfies the 

performance specification regardless of performance variations due to PVT [86]. Apparently, there 

would be more parameters, which need fine tuning optimizations in order to have a stable worst-
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case performance and maximum yield (by using the design centering technique [86], for example). 

Therefore, it becomes our next challenge in the future work to comprehensively and efficiently 

consider layout parasitics, LDEs, and PVT variations all in the early schematic sizing stage of 

circuit synthesis. 

As a promising next-generation device, Fin Field-Effect Transistor (FinFET) has captured the 

attention of both digital and analog circuit designers. One key advantage of FinFET devices is that 

they have more drive current per unit area (i.e., current density) indicating a higher intrinsic gain 

than that of the planar CMOS devices at the same technology node. However, as the disadvantages 

of FinFETs, the conducting channel is harder to be controlled, and the higher source-to-drain 

resistance reduces transconductance. So the consideration of layout parasitics and LDEs in the 

context of FinFET circuit sizing would need further investigation in our future work. 
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Appendix A: User-defined Parameters 

Each 𝛼𝑖 = 1 and the summation of all 𝛽𝑖, i.e., ∑ 𝛽𝑖
𝑚
𝑖=1  = 0.5 …………………………………… 32 

𝜃 = 5 ……………………………………………………………………………………………. 35 

EA population size NP: 56 (large configuration) and 32 (small configuration in our setting) … 90 

Each 𝑢𝑖 = 1 and the summation of all 𝑣𝑖, i.e., ∑ 𝛽𝑣
𝐾
𝑣=1  = 0.5 …………………………….…… 100 

User-defined bounds: 0% and 90% of maximum performance variation based on reference ... 119 
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