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Abstract

This thesis aims at developing the study of invasion speed determinacy for wave prop-

agation in partial differential equations arising from population biology. Along this

direction, we first investigate a reaction-diffusion-advection equation in a cylindrical

domain with a Fisher-KPP type nonlinearity. Using the upper and/or lower solutions

method, we obtain sufficient conditions under which the linear or nonlinear selection

is realized when the model is prescribed with Neumann boundary conditions and

Dirichlet boundary conditions, respectively. To study the invasion speed determinacy

of a system, we investigate a reaction-diffusion-advection population model arising

in stream ecology. We concentrate on how the spreading speed (the minimal wave

speed) is impacted by the Allee effect in the model. Linear and nonlinear selection

mechanisms for the spreading speed are first defined, and the determinacy is further

established by way of the upper and lower solution method. It is found that the

nonlinear determinacy is realized if there exists a lower solution with a faster decay.

For a multiple species population system having diffusion, individual species possi-

bly invade into the far end with different spreading speeds. Predicting or determining

them (the fast and slow-spreading speeds) becomes challenging. Hence, we first ana-

lyze a cooperative Lotka-Volterra system, which admits a single or multiple spreading

speeds (co-speed or fast-slow speeds). We successfully derive a necessary and suffi-

cient condition for this particular model to determine whether the system has a single

spreading speed or multiple spreading speeds. We define the linear and nonlinear

speed selection mechanism for each case and derive new conditions to classify the

speed selection. After studying the former three particular models arising from popu-

lation biology, we further, in the last part, present the speed selection mechanism for

an abstract time-periodic monotone semiflow. At the end of this thesis, we present

our future work.
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Lay summary

The wave propagation, found in partial differential equation models, has wide ap-

plications in physics, chemistry, and biology. The invasion speed (spreading speed,

mathematically) is an essential characteristic of the waves. This thesis focuses on

studying the invasion speed determinacy for wave propagation by presenting three

typical models from population biology and studying the spreading speeds of time-

periodic semiflows.

We start with a reaction-diffusion-advection equation in an infinite cylindrical

domain with a Fisher-KPP type nonlinearity. We prescribe this model with either

Neumann boundary conditions or Dirichlet boundary conditions to have broader appli-

cations. Using the upper and lower solutions method, we obtain sufficient conditions

under which the spreading speed is linearly or nonlinearly selected. Numerically, we

provide two examples that match our theoretical result. We then proceed to inves-

tigate systems of partial differential equations by a population model from stream

ecology. We concentrate on how the Allee effect impacts the spreading speed. We de-

fine the linear and nonlinear speed selection mechanisms, derive conditions to classify

them and perform several numerical simulations that illustrate our discovery.

When a model consists of multiple species, individual species may invade at differ-

ent speeds. To study such a phenomenon, we consider a cooperative Lotka-Volterra

model. This model admits either a single spreading speed or multiple spreading speeds

based on different parameter sets. We prove a sufficient and necessary condition to

decide which case will happen. Then, we define the speed selection mechanism for

each case and derive conditions to classify the selection mechanisms by the upper

and lower solutions method. For each case, we also perform numerical simulations

to confirm our results. Accumulating all the knowledge learned from the above three

models, we finally present a study of the speed selection mechanism for time-periodic

semiflows.
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Chapter 1

Introduction

The wave propagation, described by partial differential equation models, has always

been a hot topic for applied mathematical research due to its various applications in

practice areas, especially population invasion in biology. The invasion speed for wave

propagation is an essential character to describe the waves. Thus, in this thesis, we

focus on the determinacy of the invasion speed.

In the present introduction, we attempt to give a clear picture of invasion speed

determinacy by presenting a prototype model which admits traveling waves – the

famous Fisher-KPP equation. This model is given asut = uxx + f(u), x ∈ R, t > 0,

u(0, x) = u0(x).
(1.0.1)

For the history and development of this model, we refer to [3, 4, 24, 37, 68, 82] and

references therein. In the model, the function u(t, x) ∈ [0, 1] represents the population

density of a species at location x and time t. The growth function f(u) is assumed to

satisfy

f(0) = f(1) = 0, f ′(0) > 0, f ′(1) < 0 and f(u) > 0 for u ∈ (0, 1).

To investigate the wave propagation of such a model, we focus on the traveling wave

solutions. A traveling wave solution is a solution of special type satisfying

u(t, x) = U(z), z = x− ct,
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where U(z) is called the wave profile, z is the wave coordinate, and c > 0 is the wave

speed. It is well-known that there exists a critical number c∗ so that the equation

(1.0.1) has traveling wave solutions for all c > c∗, see, e.g., [3, 4, 24, 37]. The critical

number c∗ is the spreading speed in the sense that

lim
t→∞, x>(c∗+ε)t

u(t, x) = 0, lim
t→∞, x<(c∗−ε)t

u(t, x) = 1, (1.0.2)

for any ε > 0, when the initial data u0(x) has compact support. The solution with

this kind of initial data will converge to a traveling wave solution with speed c∗. To

estimate the spreading speed c∗, we linearize (1.0.1) around 0 to obtain a linear speed

denoted as c0 = 2
√
f ′(0). It is known that, see, e.g., [43],

c∗ > c0.

The determinacy of spreading speed is to find conditions to decide which selection

occurs: a linear selection c∗ = c0 or a nonlinear selection c∗ > c0. It is known that

when f satisfies a subhomogeneous condition (sublinear condition, in some context)

f(u) 6 f ′(0)u,

the system (1.0.1) has a spreading speed c∗ = c0, that is, the linear selection is realized.

This subhomogeneous condition for the growth function has important applications. A

representative example of the growth function is the Logistic growth function given as

f(u) = u(1−u), which clearly satisfies the subhomogeneous condition; thus, it follows

that c∗ = c0 = 2. However, when an Allee effect appears, e.g., f(u) = u(1−u)(1+ρu),

the inequality f(u) 6 f ′(0)u fails when ρ > 1 and u ∈ (0, ρ−1
ρ

). Thus, the equality

c∗ = c0 may not happen.

We here show a numerical simulation to give a visual idea. Figure 1.1 is drawn

by choosing f(u) = u(1 − u). The left panel of Figure 1.1 is the initial data. As

time increases, we see in the right panel of Figure 1.1, a wave-like function with a

stationary form propagates to the right. To find its corresponding speed, we use

the level set method. After running the simulation a few minutes so that a stable

wave-like solution has appeared, we extract the solutions’ data. Then, we obtain a

number of solutions u(t, x) at different time t, shown in Figure 1.2. Thus, we find
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Figure 1.1: Traveling wave solutions of the Fisher-KPP equation with f(u) = u(1−u).

0 50 100 150
0

0.5

1

Figure 1.2: Traveling wave solutions at different time.

the positions of x(t) for u(t, x) = 0.5 in each curve, that is, the intersections of those

colorful curves and the cyan dashed line which denotes u = 0.5 in Figure 1.2. Thus,

we can compute the speed as c∗ = 2.00047, which indicates a linear selection c∗ = c0.

Using the same initial condition and the level set method, we find the speed increases

to c∗ = 2.1374 > 2 when f(u) = u(1−u)(1+4u). This indeed implies that a nonlinear

selection is realized.

The investigation of spreading speed c∗ when the subhomogeneous condition does

not hold is a challenging problem. In this thesis, we study the invasion speeds of

three partial differential equation models arising in population biology as well as a

time-periodic abstract semiflow. A summary of our research work is given below.
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1.1 A Reaction-Diffusion-Advection Equation in a

Cylinder

In the first project, we consider a reaction-diffusion-advection equation in a cylindrical

domain with a Fisher-KPP type nonlinearity. The equation is given as
ut = uxx + ∆yu+ α(y)ux + f(u), (x, y) ∈ R× Ω, t > 0,

Bu = 0, (x, y) ∈ R× ∂Ω,

u(x, y, 0) = u0(x, y), (x, y) ∈ R× Ω.

We prescribe the equation with either the Neumann boundary condition (i.e., ∂νu(x, y, t) =

0) or the Dirichlet boundary condition (i.e., u(x, y, t) = 0). When the initial condi-

tion is chosen as a step function in x and satisfying its own boundary condition in

y, this model has a traveling wave, propagating along x-direction, with the form

u(x, y, t) = U(x− ct, y).

Since it is well-known that there exists a minimal wave speed cmin such that a

traveling wave solution exists if and only if c > cmin, we mainly here are concerned with

the linear or nonlinear selection mechanism for the minimal speed. By using the upper

and/or lower solutions method, we establish the speed selection mechanism. To have a

more direct understanding of the speed selection mechanism, we present two examples

in Chapter 2. One application has a cubic reaction term f(u) = u(1− u)(1 + ρu) and

Ω = (−Ly, Ly) and the other one is a subcritical quintic Ginzburg-Landau equation,

that is, f(u) = µu + u3 − u5 and Ω = (−Ly, Ly). We obtain sufficient conditions

under which the linear or nonlinear selection is realized for both boundary conditions.

Numerical simulations are carried out and illustrate our theoretical results.

1.2 A Stream-Population Model with Allee Effect

In the second model of this thesis, we consider a reaction-advection-diffusion popula-

tion model from stream ecology. In 2005, Pachepsky, Lutscher, Nisbet, and Lewis [67]



5

proposed a model as ∂u
∂t

= −σu+ µv − α∂u
∂x

+ d∂
2u
∂x2 ,

∂v
∂t

= +σu− µv + (1− v)v.

This model describes one species living in stream with a drift flow. By dividing

the total population into two interacting compartments: individuals residing on the

benthos (the bottom of the stream) and individuals drifting in the flow, their model

explains the population persistence very well. However, as the model shown, the only

nonlinear growth function is subhomogeneous due to v(1−v) 6 v when v ∈ [0, 1]; thus,

the invasion speed of this species has to be its linear speed obtained by linearizing the

model around zero.

In Chapter 3, we extend the above model to the following one with the reaction

term possibly having the Allee effect and the residing individuals having a weak

diffusive behavior: ∂u
∂t

= −σu+ µv − α∂u
∂x

+ d∂
2u
∂x2 ,

∂v
∂t

= +σu− µv + f(v) + ε ∂
2v
∂x2 .

With the appearance of the Allee effect, f(v) may not satisfy the subhomogeneous

condition (f(v) 6 f ′(0)v). A typical example for f(v) is v(1 − v)(1 + ρv) where ρ is

an Allee factor (see [84]).

We first define the linear and nonlinear selection mechanisms for the minimal speed

(or the spreading speed). Then, by way of the upper and lower solutions method, we

establish the determinacy of the speed. It is found that the nonlinear determinacy is

realized if there exists a lower solution with a faster decay. By constructing appropri-

ate trial functions, novel results are obtained. At the end of this chapter, numerical

simulations are carried out to illustrate our discovery.

1.3 A Cooperative Lotka-Volterra System

Cooperation in a population system can result in the existence of a co-existence (win-

win) equilibrium. When diffusion is incorporated, individual species possibly invade

into the far end with different spreading speeds. Predicting or determining them (the

fast and slow spreading speeds) becomes challenging. The third model we choose is a
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cooperative Lotka-Volterra systemut = d1uxx + r1u(1− u+ b1v),

vt = d2vxx + r2v(1− v + b2u),

with di, ri, bi > 0 (i = 1, 2), b1b2 < 1 and d1r1 > d2r2. Under these parameter

conditions, this model admits single or multiple spreading speeds (co-speed or fast-

slow speed).

In the case of single spreading speed, the two species share a common invasion

speed, and nonnegative traveling wave profiles exist, either connecting the co-existence

state or the extinction equilibrium, if and only if the wave speed is not less than the

common speed. Predicting or determining the invasion speed is more linked to the

linearized system at the extinction state.

The existence of multiple spreading speeds indicates new connections of traveling

wave profiles into some intermediate states. Due to this, the determinacy of each

spreading speed focuses on not only the extinction states but also the corresponding

intermediate states. Based on the constructions of upper-lower solutions, we derive

new results determining the fast-slow invasive speeds.

When a model does admit multiple spreading speeds, the analysis of it is com-

plicated. To have a clear map for the cooperative Lotka-Volterra model, we perform

several numerical simulations that confirm our theoretical predictions. Our numerical

simulations also show the existence of traveling wave with a terrace.

1.4 Speed Determinacy for Abstract Time-Periodic

Monotone Semiflows

The last chapter is devoted to studying the speed selection mechanisms of traveling

waves to an abstract time-periodic monotone semiflow, which is of monostable type

with weak compactness and admits boundary equilibria in the phase space. We study

various cases when a single spreading speed exists or there exist multiple spreading

speeds (fast and slow spreading speeds) and provide a series of conditions to classify

the linear and nonlinear selection. When the single spreading speed coincides with

the so-called minimal wave speed, we can find a necessary and sufficient condition
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for the nonlinear selection. Furthermore, by way of comparison principle, we give

a bound estimate for the minimal wave speed when it is nonlinearly selected. We

apply our results to four time-periodic models: a delayed diffusive equation, a stream

population model with the benthic zone, a nonlocal dispersal Lotka-Volterra model,

and a reducible cooperative system.



Chapter 2

Speed Selection for Traveling

Waves of a

Reaction-Diffusion-Advection

Equation in a Cylinder

2.1 Introduction

In this chapter, we investigate the speed selection mechanism for traveling wave solu-

tions to a reaction-diffusion-advection equation in an infinite cylindrical domain. The

equation we consider is in the following form
ut = uxx + ∆yu+ α(y)ux + f(u), (x, y) ∈ R× Ω, t > 0,

Bu = 0, (x, y) ∈ R× ∂Ω,

u(x, y, 0) = u0(x, y), (x, y) ∈ R× Ω.

(2.1.1)

Here Ω ⊂ Rn−1(n > 2) is a bounded smooth domain. The boundary condition

“Bu = 0” denotes either the Neumann boundary condition, i.e., ∂νu(x, y, t) = 0 for

(x, y) ∈ R× ∂Ω, which implies there is no flux of u across the wall of the cylinder, or

the Dirichlet boundary condition, i.e., u(x, y, t) = 0 for (x, y) ∈ R× ∂Ω, which means



9

the value of u is fixed at zero on the wall of the cylinder. The third term α(y)ux

on the right hand side is a predetermined transport term, or a driving flow, in the

x-direction, and the function α(y) is always assumed to be bounded. The reaction

term f : R→ R is assumed to be a C2 function with the properties: f(0) = f(1) = 0,

f ′(0) and f ′(1) with f ′(1) < 0.

There are three typical types of function f in applications:

(A1) f > 0 on (0, 1);

(A2) for some θ ∈ (0, 1), f = 0 on [0, θ] and f > 0 on (θ, 1);

(A3) for some θ ∈ (0, 1), f < 0 on (0, θ), f(θ) = 0, and f > 0 on (θ, 1).

Actually, when (A1) or (A3) occurs, these semilinear parabolic equations have many

applications in biology, such as population dynamics, gene developments and so on.

For more details and descriptions, please see [3, 4, 7, 22, 23, 64]. When (A1) or (A2)

occurs, such equations also arise in the study of flame propagation in a tube. For a

detailed derivation and physical discussion, we refer readers to [3,7,10,11,39,56,58,92].

Here, we focus on the so-called traveling wave solutions. The traveling wave solu-

tions are defined as solutions of the form

u(x, y, t) = U(ξ, y), ξ = x− ct. (2.1.2)

Here, U(ξ, y) is called the wave profile, and ξ is the wave variable, and c ∈ R is the

speed of the wave, which is to be determined. After substituting the solution form

(2.1.2) into Equation (2.1.1), we find the equation for U(ξ, y) as

Uξξ + ∆yU + [α(y) + c]Uξ + f(U) = 0. (2.1.3)

The traveling wave solutions are required to satisfy the limiting conditions

lim
ξ→+∞

U(ξ, y) = 0, lim
ξ→−∞

U(ξ, y) = β(y) 6≡ 0, (2.1.4)

uniformly for y ∈ Ω̄, where the non-negative limiting state β(y) is the solution of∆yU + f(U) = 0, y ∈ Ω,

BU = 0, y ∈ ∂Ω.
(2.1.5)
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Clearly, if the Neumann boundary condition occurs, it is easy to have β(y) ≡ 1. On

the other hand, in the case of the Dirichlet boundary condition, we can have only one

non-negative solution β(y) with 0 < β(y) < 1 for y ∈ Ω under some mild condition

(i.e., the zero solution is linearly unstable) and this can be shown later.

Before stating our main results, we review relevant references on the traveling

wave solutions of (2.1.3)-(2.1.4). There is a vast list of literature on the theory related

to the existence of the traveling wave solutions in such an equation. For example,

in [20, 43, 44], the authors studied the theory of asymptotic speeds of spreading in

terms of abstract monotonic systems. In particular, in [7,10,25,69,80,81], the authors

considered the existence and uniqueness of the traveling wave solutions in a cylindrical

domain.

The most related works to ours are [10] and [44]. In [10], Berestycki and Nirenberg

considered Equation (2.1.3)-(2.1.4) prescribed by the Neumann boundary condition.

When f(U) satisfies (A2) or (A3) respectively, the authors proved the existence of a

traveling wave solution (c, U) and then used the sliding method to further prove the

uniqueness of such a solution. Here, the uniqueness is up to a translation, i.e., if there

exist solutions (c, U) and (c′, U ′), then c′ = c and U ′(ξ, y) = U(ξ + τ, y) for some real

constant τ . For the case (A1), the authors proved that there exists a critical number

(or the minimum number) c∗ ∈ R such that the solution (c, U) exists for c being any

value in [c∗,+∞) and also showed that, if f(s) 6 f ′(0)s for 0 < s < 1, this critical

number c∗ is explicitly determined by Ω, α(y) and the value of f ′(0).

In section 6 of [44], Liang and Zhao focused on investigating the theory of spreading

speeds and traveling waves for abstract monostable evolution systems. They proved

that the spreading speed c∗ coincides with the minimal wave speed with a result that

traveling wave solutions, connecting β and 0, exist for all c > c∗. When f satisfies

the subhomogeneous condition in the sense that f(%s) > %f(s) for all % ∈ [0, 1] and

0 6 s 6 1, they obtained a formula for the speed c∗.

Based on the results in [10, 43, 44], in the case (A1), we know that there always

exists a minimal wave speed cmin such that (2.1.1) has a traveling wave solution if

c > cmin and no traveling wave solution exists if c < cmin. To proceed, we only

consider the case (A1) in this chapter and denote the minimal wave speed cmin as

cmin := inf{c : the system (2.1.3)-(2.1.4) has a non-negative solution U(ξ, y)}.
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With the understanding that the minimal wave speed is always the spreading speed

of biological invasion, it is natural to ask how to determine the speed cmin. To estimate

it, first by the standard linearization analysis near the zero solution, we will obtain

a linear system and the linear speed c0 in the next section, where cmin > c0 will be

shown. Furthermore, it was numerically observed that depending on the nonlinearity

f(u), the wave speed cmin is either equal to or greater than the linear speed c0. Thus,

to distinguish the two different cases, we give the following classification of the speed

selection mechanism.

Definition 2.1.1. The speed selection mechanism for (2.1.3)-(2.1.4) is called a linear

selection if cmin = c0; otherwise, it is called a nonlinear selection if cmin > c0.

When the space dimension is confined in one dimension, the speed selection can

be found in [18,63,70,75,87,90] and the references therein. But in higher dimensions

with a non-constant convection term, there are not many references on such a topic.

In this chapter, we shall focus on the speed selection of the monotone traveling wave

solution connecting β to 0 under the condition when zero solution is linearly unstable

and β is linearly stable. To see the linear stability, we linearize (2.1.5) near one of

the steady states (using ψ to denote either 0 or β) and consider the corresponding

eigenvalue problem as ∆yφ+ f ′(ψ)φ = µ1(ψ)φ, y ∈ Ω,

Bφ = 0, y ∈ ∂Ω,

where µ1(ψ) is the principal eigenvalue. We say that ψ is linearly stable if µ1(ψ) < 0

and linearly unstable if µ1(ψ) > 0. Thus, to have such a monotone traveling wave

solution, we further require f to satisfy the following conditions:

(A4) If (2.1.3)-(2.1.4) is prescribed by the Neumann boundary condition, then we

require f ′(0) > 0 and f ′(1) < 0;

(A5) If (2.1.3)-(2.1.4) is prescribed by the Dirichlet boundary condition, then we

require µ1(0) > 0, and µ1(β) < 0.

Under these conditions, we can confirm that there exists a unique solution β(y)

to (2.1.5) satisfying 0 < β(y) 6 1.
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With the application of the upper and lower solution method, we are able to

establish the linear and/or nonlinear selection mechanism for our system. The detail

is shown in Sections 3 and 4 which are valid for both Neumann and Dirichlet boundary

conditions. We also find a sufficient condition for the nonlinear selection mechanism

to our model under the Neumann boundary condition. We should emphasize that our

investigations greatly extend the conclusions in [47,70,87].

The rest of this chapter is organized as follows. In Section 3.2, we perform the

local analysis near zero to find the linear speed c0. In Section 3.3, we study the speed

selection mechanism and present the main result. Then, we give two applications

in Section 3.4, one with a cubic nonlinearity and the other with a subcritical quintic

Ginzburg-Landau equation in a cylindrical domain. Finally, in Section 3.5 we summa-

rize the obtained results and discuss some open problems. Section 3.6 is an appendix

to illustrate the upper and lower solutions method used in our model.

2.2 Local analysis near zero

Linearizing Equation (2.1.3) near zero givesUξξ + ∆yU + (α(y) + c)Uξ + f ′(0)U = 0, ξ ∈ (−∞,∞), y ∈ Ω,

BU = 0, y ∈ ∂Ω.
(2.2.1)

Then, letting U = ϕ(y)e−λξ for some non-negative function ϕ(y) and a real constant

λ, we obtain an eigenvalue problem∆yϕ+ [λ2 − λ(α(y) + c) + f ′(0)]ϕ = 0, y ∈ Ω,

Bϕ = 0, y ∈ ∂Ω.
(2.2.2)

To further discuss the above problem, we denote

Lλ = ∆y +
[
λ2 − λ(α(y) + c) + f ′(0)

]
. (2.2.3)

Then solving the problem (2.2.2) can be regarded as seeking the non-negative solu-

tion(s) of Lλϕ = 0 with the boundary condition Bϕ = 0. Let µ(λ) be the principal
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eigenvalue of the operator Lλ, and we consider the following eigenvalue problem

Lλψ = µ(λ)ψ, Bψ|y∈∂Ω = 0, (2.2.4)

for some non-negative non-zero function ψ(y), y ∈ Ω. It is clear that to find the solu-

tion of (2.2.2) is equivalent to find (c, λ) such that µ(λ) = 0, with the corresponding

eigenfunction ψ(y) as the solution. For the eigenvalue problem (2.2.4), we have the

following results.

(1) When λ→ 0, Lλϕ→ ∆yψ + f ′(0)ψ. From (A4) or (A5), we have µ(0) > 0.

(2) When λ → +∞, we have λ2 − λ(α(y) + c) + f ′(0) > M for any large positive

number M . In this case, by comparison, we have µ(+∞) > 0 for both boundary

conditions.

Furthermore, due to the convexity of the function “λ2− λ(α(y) + c) + f ′(0)” with

respect to λ, it is easy to have the following proposition.

Proposition 2.2.1. The principal eigenvalue µ(λ) defined in (2.2.2) is convex with

respect to λ > 0.

Proof. Due to the term λ2, through a direct computation, it follows that µ
(
λ1+λ2

2

)
6

1
2

(µ(λ1) + µ(λ2)). This proves the result.

From Equation (2.2.4), it is clear to see that µ is decreasing in c. Thus, we can

define

c0 := min{c| c ∈ R such that µ(λ) = 0 has a solution λ ∈ (0,+∞)}.

Now, in view of the above proposition, we can arrive at the following theorem.

Theorem 2.2.2. For the eigenvalue problem (2.2.4), there exists a critical number

c0 ∈ R such that

(1) when c < c0, there is no positive λ such that µ(λ) = 0, and (2.2.2) has no non-

negative non-zero solution;

(2) when c = c0, there is only one positive λ0 such that µ(λ) = 0, and (2.2.2) has one
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solution ϕ0 = ψ0, where ψ0 is the principal eigenfunction corresponding to λ = λ0 in

(2.2.4);

(3) when c > c0, there exist λ1(c) and λ2(c) with λ2(c) > λ1(c) > 0 such that

µ(λi(c)) = 0, i = 1, 2, and (2.2.2) has two solutions ϕj = ψj when λ = λj(c), where

ψj is the principal eigenfunction corresponding to λ = λj(c) in (2.2.4) for j = 1, 2.

Remark 2.2.3. Near ξ =∞, equation (2.1.3) is approximated by the linear equation

(2.2.1). From the above theorem, we can see that c > c0 is a necessary condition for

(2.1.3)-(2.1.4) to have a non-negative traveling wave solution. Therefore, cmin > c0.

Moreover, λ2(c) > λ0(c0) > λ1(c) > 0 if c > c0.

2.3 The speed selection

In this section, we study the speed selection mechanism for (2.1.3)-(2.1.4) through the

upper and lower solutions method. The key point is to construct a pair of suitable

upper and lower solutions. The definition of an upper (or a lower) solution and the

details of this method are shown in the Appendix section. To begin with, we denote

the left hand side of Equation (2.1.3) as

L(U) := Uξξ + ∆yU + (α(y) + c)Uξ + f(U). (2.3.1)

For any c = c0 + ε1 with ε1 > 0, we have two pairs of solutions (λ1(c), ϕ1) and

(λ2(c), ϕ2) with λ2(c) > λ1(c) > 0 for (2.2.2) by Theorem 2.2.2. Then we define a

continuous function U(ξ, y) as the solution of the following equation

U ξ = −λ1(c)U

(
1− U

γ

βγ

)
, (2.3.2)

where γ > 0 is a parameter to be determined. Considering the boundary conditions

as U(ξ, y) ∼ β(y) when ξ → −∞, and U(ξ, y) ∼ ϕ1(y)e−λ1(c)ξ → 0 when ξ → +∞,

we will obtain the formula for U as

U =
βϕ1

[βγeλ1(c)γξ + ϕγ1 ]
1
γ

. (2.3.3)
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It is easy to see that 0 6 U 6 β for all (ξ, y) ∈ R× Ω and

U ξξ = λ2
1(c)U

(
1− U

γ

βγ

)(
1− (γ + 1)

U
γ

βγ

)
. (2.3.4)

By substituting the formulas of U , U ξ, U ξξ and ∆yU into (2.3.1), and after a tedious

computation, we finally obtain

L(U) =
U

(γ+1)

βγ

(
1− U

γ

βγ

){
− (γ + 1)λ2

1(c)− (γ + 1)
ϕ2

1

β2

[
∇
(
β

ϕ1

)]2

+G1(ξ, y)

}
,

(2.3.5)

where

G1(ξ, y) =
[f(U)− f ′(0)U ] +

(
U
γ+1

βγ

) [
f ′(0)− f(β)

β

]
U
γ+1

βγ

(
1− U

γ

βγ

) . (2.3.6)

It is clear that if ε1 → 0, then c → c0, λ1(c) → λ0(c0) and ϕ1 → ϕ0. Thus, for

ε1 � 1, in the sense of Definition 2.6.1 and Lemma 2.6.2, the function U is an upper

solution to (2.3.1) if

max
(ξ,y)∈R×Ω

G1(ξ, y) < (γ + 1)λ2
0(c0) + (γ + 1)

ϕ2
0

β2

[
∇
(
β

ϕ0

)]2

. (2.3.7)

Consequently, we have the following lemma for an upper solution.

Lemma 2.3.1. Suppose c = c0 + ε1 with ε1 being a sufficiently small positive number.

If the inequality (2.3.7) holds, then the function U , defined in (2.3.3), is an upper

solution to system (2.1.3)-(2.1.4) with U(−∞, y) = β(y) and U(+∞, y) = 0.

Remark 2.3.2. To have the above lemma hold, we need the boundedness of G1 (at

least being bounded from above). Indeed, G1(ξ, y) is continuous on (ξ, y) ∈ R × Ω.

Thus it suffices to find lim
ξ±∞

G1(ξ, y) and determine whether they are bounded. As
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ξ → −∞, i.e., U → β, we have

lim
ξ→−∞

G1(ξ, y) = lim
U→β

f(U)− U
γ+1

βγ+1 f(β)

U
γ+1

βγ

(
1− U

γ

βγ

) − f ′(0)
U
γ

βγ

 = −f
′(β)

γ
+
γ + 1

γβ
f(β)− f ′(0).

(2.3.8)

The last equality is obtained by L’Hospital’s rule. For ξ → +∞, i.e., U → 0, we have

lim
ξ→+∞

G1(ξ, y) = lim
U→0

f(U)− f ′(0)U

U
γ+1

βγ

(
1− U

γ

βγ

) +
f ′(0)− f(β)

β

1− U
γ

βγ


= lim

U→0

f ′′(U)

γ(γ + 1)U
γ−1

βγ
− 2γ(2γ + 1)U

2γ−1

β2γ

+ f ′(0)− f(β)

β
(2.3.9)

The boundedness of the above term depends on the choice of γ and the formula of

f(u). Actually, we give the following results.

(1) If f ′′(0) exists, then by choosing 1
2
6 γ 6 1, we find that G1 is bounded for all

−∞ < ξ < +∞.

(2) If U = 0 is a solution for f ′′(U) = 0 with multiplicity k, k = 1, 2, · · · , then by

choosing γ = k + 1, we also find that G1 is bounded for all −∞ < ξ < +∞.

According to Theorem 2.6.4 in the Appendix, to obtain the existence of traveling

wave solution U(ξ, y), we also need to find a lower solution to Equation (2.1.3) when

c = c0 + ε1. For this purpose, define a continuous function U(ξ, y) as

U(ξ, y) = max{0, ϕ1(y)(1−Me−δξ)e−λ1(c)ξ}. (2.3.10)

Here, (λ1(c), ϕ1) has the same meaning as in U from Lemma 2.3.1. We fix a small

δ > 0 such that λ1 + δ < λ2 and the constant M > 0 is to be determined. Let

ξ0 = lnM

δ
, it is easy to see that U satisfies the following:

(1) When ξ 6 ξ0, U = 0;

(2) When ξ > ξ0, U = ϕ1(1−Me−δξ)e−λ1ξ.
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Notice that maxξ∈R U(ξ, y) = δϕ1(y)
λ1+δ

[
λ1

M(λ1+δ)

]λ1
δ � 1 when M is sufficiently large.

Furthermore, we can obtain the following lemma.

Lemma 2.3.3. When c = c0 + ε1, the function defined in (2.3.10) is a lower solution

to the system (2.1.3)-(2.1.4).

Proof. If ξ 6 ξ0 (i.e., U = 0), a direct computation gives L(U) = 0. If ξ > ξ0, by

substituting the formula of U , we obtain the following:

L(U) = −e−(δ+λ1)ξML(λ1+δ)ϕ1 + f(U)− f ′(0)(1−Me−δξ)ϕ1e
−λ1ξ

= −e−(δ+λ1)ξML(λ1+δ)ϕ1 + f(U)− f ′(0)U

> 0 (2.3.11)

provided M is sufficiently large. Note that, in the last inequality, we have used the

fact that Lλ1ϕ1 = 0 and L(λ1+δ)ϕ1 < 0 when λ1 + δ < λ2, and [f(U) − f ′(0)U ] ∼

O(ϕ2
1e
−2λ1ξ) as U is close to 0. By (2.3.11), Definition 2.6.1 and Lemma 2.6.2, it then

follows that there exist positive numbers δ and M = M(δ) such that U is a lower

solution of (2.1.3)-(2.1.4) when c = c0 + ε1. This completes the proof.

Now, with the construction of an upper and a lower solution above, it is easy to

find a ξ1 so that Ū(ξ−ξ1) is still an upper solution with 0 6 U 6 U(ξ−ξ1). Therefore,

we are ready to give our results for the linear speed selection.

Theorem 2.3.4. When (2.3.7) is satisfied, the minimal wave speed cmin of the system

(2.1.3)-(2.1.4) is linearly selected, i.e., cmin = c0.

Proof. When c = c0 + ε1, by Lemma 2.3.1 and Lemma 2.3.3, we have a pair of an

upper and a lower solution. Thus, the existence of a monotone traveling wave solution

U of (2.1.3)-(2.1.4) with the speed c = c0 + ε1 follows from Theorem 2.6.4 and the

traveling wave solution satisfies U(+∞, y) = 0 and U(−∞, y) = β(y).

In the case when c = c0, a limiting argument can be applied to obtain the existence

of traveling waves.
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To be exact, we choose a sequence {cn} such that cn ∈ (c0, c0+1] and lim
n→+∞

cn = c0.

For instance, we can choose cn = c0 + 1
n

which clearly satisfies the requirement.

Corresponding to each cn, by the above arguments and Theorem 2.6.4, there exists a

monotone decreasing traveling wave solution Un(ξ, y) of (2.1.3)-(2.1.4). Since Un(ξ +

ξ̄0, y), ξ̄0 ∈ R is also such a solution, by translation we can always assume Un(0, y0) =

1
2
β(y0) for a given y0 ∈ Ω.

Notice that Un(ξ, y) is uniformly bounded, that is, |Un(ξ, y)| 6 β(y) 6 max β(y),

∀(ξ, y) ∈ R × Ω̄, n > 1. According to Theorem 2.6.4, Un is the fixed point of the

solution map T−ctQt, that is, T−ctQt[Un](x, y) = Un(x, y). Moreover, {T−ctQt[Un]}n>1

is precompact. It then follows that there exists a convergent subsequence of Un, say

{Unk}k>1, converging to a function W ∈ Cβ as k → +∞. That is, there exists a

function W satisfying Qt[W ](x, y) = W (x − c0t, y) = W (ξ, y), or equivalently the

equation

Wξξ + ∆yW + (α(y) + c0)Wξ + f(W ) = 0, (ξ, y) ∈ R× Ω.

Clearly, W (ξ, y) is non-increasing in ξ ∈ R and W (0, y0) = 1
2
β(y0). Moreover, W (ξ, y)

connects β to 0 with W (−∞, y) = β(y) and W (+∞, y) = 0 for all y ∈ Ω. Con-

sequently, when (2.3.7) is satisfied, (2.1.3)-(2.1.4) has a monotone traveling wave

solution connecting β(y) to 0 with c = c0. The proof is complete.

Next, we want to investigate the nonlinear speed selection. To proceed, we first

prove the following lemma.

Lemma 2.3.5. For c1 > c0, suppose that there exists a lower solution U(ξ, y) to

system (2.1.3)-(2.1.4), which is non-increasing in ξ and satisfies 0 < U < β(y) and

U ∼ ϕ2(y)e−λ2(c1)ξ

as ξ → +∞, where (λ2(c1), ϕ2) is defined in Theorem 2.2.2 and ξ = x − c1t, i.e.,

U(ξ, y) has the faster decay rate near positive infinity. Then there is no traveling

wave solution to system (2.1.3)-(2.1.4) connecting β(y) to 0 with speed c ∈ [c0, c1).
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Proof. By this assumption, there exists a lower solution U(x− c1t, y) with c1 > c0 to

ut = uxx + ∆yu+ α(y)ux + f(u), (2.3.12)

with initial data

u(x, y, 0) = U(x, y).

By way of contradiction, we assume that, for some c ∈ [c0, c1), there exists a monotonic

traveling wave solution U(x− ct, y), which connects β(y) to 0 and has initial data as

u(x, y, 0) = U(x, y).

We should note that if c = c0, then we have traveling wave solutions for all c > c0.

Thus we can always assume that c ∈ (c0, c1).

Following the calculations from the previous section (see, e.g., from (2.2.1) to

(2.2.4)), it is easy to find the asymptotic behavior of U(x− ct, y) with

U(ξ, y) ∼ C1ϕ1(y)e−λ1(c)ξ + C2ϕ2(y)e−λ2(c)ξ, ξ →∞,

for C1 > 0, or C1 = 0, C2 > 0. A rigorous proof of this can be obtained by the

comparison principle and the linearization of the model. Moreover, we have λ2(c1) >

λ2(c) > λ0(c0) > λ1(c) > λ1(c1) when c ∈ [c0, c1). Thus, we can always assume

U(x, y) 6 U(x, y) for (x, y) ∈ R×Ω (by shifting of U if necessary). Since U(ξ, y), ξ =

x− ct, is assumed to be a lower solution to Equation (2.3.12) and U(x, y) 6 U(x, y),

by comparison, we have

U(x− c1t, y) 6 U(x− ct, y), (x, y, t) ∈ R× Ω× R+. (2.3.13)

Now, if we fix ξ1 = x − c1t, then U(ξ1, y) > 0 is fixed. On the other hand, from
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U(x− ct, y), it is clear to see

U(x− ct, y) = U(ξ1 + (c1 − c)t, y) ∼ U(+∞, y) = 0, as t→ +∞.

By (2.3.13), we therefore get U(ξ1, y) 6 0. This is a contradiction. Thus, there is no

traveling wave solution when c ∈ [c0, c1). This completes the proof.

Remark 2.3.6. This lemma implies that if there is a lower solution U satisfying

0 < U < β(y) and U ∼ ϕ2(y)e−λ2(c1)ξ as ξ → +∞, for c1 > c0, then the nonlinear

selection is realized.

Now, let c1 = c0 + ε2 and define a continuous function as follows

U1 =
βϕ2

[βγeλ2(c1)γξ + ϕγ2 ]
1
γ

. (2.3.14)

Similarly to the previous computations, we get

L(U1) =
U

(γ+1)
1

βγ

(
1− Uγ

1

βγ

){
− (γ + 1)λ2

2(c1)− (γ + 1)
ϕ2

2

β2

[
∇
(
β

ϕ2

)]2

+G2(ξ, y)

}
,

(2.3.15)

where

G2(ξ, y) =
[f(U1)− f ′(0)U1] +

(
Uγ+1

1

βγ

) [
f ′(0)− f(β)

β

]
Uγ+1

1

βγ

(
1− Uγ1

βγ

) . (2.3.16)

To obtain a condition for the nonlinear selection, we will take U1 as the lower solution

which satisfies U1 ∼ ϕ2(y)e−λ2(c1)ξ as ξ → +∞. Notice that when ε2 → 0, we have

λ2(c1)→ λ0(c0) and ϕ2 → ϕ0. Thus, if the following condition

min
(ξ,y)∈R×Ω

G2(ξ, y) > (γ + 1)λ2
0(c0) + (γ + 1)

ϕ2
0

β2

[
∇
(
β

ϕ0

)]2

(2.3.17)

is true, then the nonlinear selection is realized.

In the case of Neumann boundary conditions, we have β(y) ≡ 1, and thus (2.3.14)

can be simplified as

U1 =
ϕ2

(eλ2(c)γξ + ϕγ2)
1
γ

. (2.3.18)
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We thus have

L(U1) = U
(γ+1)
1 (1− Uγ

1)

{
− (γ + 1)λ2

2(c)− (γ + 1)

[
ϕ2∇

(
1

ϕ2

)]2

+G2(ξ, y)

}
,

(2.3.19)

and

G2(ξ, y) =
f(U1)− f ′(0)U1 + Uγ+1

1 f ′(0)

Uγ+1
1 (1− Uγ

1)
.

Moreover, when ε2 → 0, under the condition

min
(ξ,y)∈R×Ω

G2(ξ, y) > (γ + 1)λ2
0(c0) + (γ + 1)

[
ϕ0∇

(
1

ϕ0

)]2

, (2.3.20)

we are ready to have the nonlinear selection as follows.

Theorem 2.3.7. If the inequality (2.3.20) is satisfied, then the minimal speed of

system (2.1.3)-(2.1.4) prescribed by the Neumann boundary condition is nonlinearly

selected.

In the case of Dirichlet boundary condition, through similar analysis to that in

Remark 2.3.2, we obtain

lim
ξ→−∞

G2(ξ, y) = −f
′(β)

γ
+
γ + 1

γβ
f(β)− f ′(0)

or

lim
ξ→−∞

G2(ξ, y) = −β
γ
g′(β)− g(0) + g(β)

where g(u) = f(u)/u. This gives lim
y→∂Ω

lim
ξ→−∞

G2(ξ, y) = 0. Thus (2.3.17) cannot be

true, i.e., this choice of the lower solution (i.e., U1 in (2.3.14)) is not valid when

(2.1.3)-(2.1.4) is prescribed by the Dirichlet boundary condition. We suspect that

other challenging types of lower solutions need to be constructed. This will be a

subject of our future study.
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2.4 Applications

In this section, we apply the results of Section 3 to the reaction-diffusion model with a

cubic reaction term and a subcritical quintic Ginzburg-Landau equation respectively.

By applying numerical simulations to each case, we will find the linear wave speed, i.e.,

c0 defined in Theorem 2.2.2 as well as the numerical minimal wave speed. Comparison

of them is carried out to illustrate our theoretical results.

2.4.1 A cubic reaction term

The first application is a cubic reaction term given as f(u) = u(1− u)(1 + 2εu) with

ε > 0 and Ω = (−Ly, Ly), that is, we consider traveling wave solutions of the following

equation

ut = uxx + uyy + α(y)ux + u(1− u)(1 + 2εu), (x, y) ∈ R× (−Ly, Ly), t > 0. (2.4.1)

The corresponding wave profile (i.e., letting u(t, x, y) = U(ξ, y) and ξ = x − ct )

becomes

Uξξ + Uyy + (α(y) + c)Uξ + U(1− U)(1 + 2εU) = 0, (2.4.2)

satisfying

lim
ξ→+∞

U(ξ, y) = 0, and lim
ξ→−∞

U(ξ, y) = β(y). (2.4.3)

The speed selection of such an equation in one dimensional case was first considered

by Hadeler and Rothe [29] in 1975. They studied the equation

ut = uxx + u(1− u)(1 + 2εu), ε > −1

2
, x ∈ R, t > 0, (2.4.4)

and obtained that the minimal speed of the traveling waves is linearly selected when

ε 6 1 and nonlinearly selected when ε > 1. For more details of this result, please refer

to [29].

In the sequel, for the model (2.4.1) we always assume that ε > 0 and also show

that there exists a critical number of ε to classify the linear and nonlinear selection

mechanism.
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The reaction term f is smooth on [0, 1] and

f(0) = f(1) = 0, f ′(0) = 1 > 0 > f ′(1) = −1− 2ε, and f(u) > 0 for u ∈ (0, 1).

Thus f satisfies (A1), (A4) and (A5) for all ε. Moreover, there are equilibria 0 and

a nonzero function β(y) with 0 6 β(y) 6 1 for all y ∈ Ω. Since −2 − 8ε 6 f ′′(u) =

4ε − 2 − 12εu 6 4ε − 2, we can choose γ = 1 in (2.3.5). Then, by substituting the

formula of f into Equation (2.3.5) and simplifying it, we obtain

L(U) =
U

2

β

(
1− U

β

){
−2λ2

1(c)− 2
(β′ϕ1 − βϕ′1)2

ϕ2
1β

2
+ 2εβ2

}
. (2.4.5)

Here, G1(ξ, y) = 2εβ2 is clearly monotonic in ε. Thus, the condition (2.3.7) for the

linear selection becomes

ε < min
y∈Ω

[
λ2

0(c0)

β2
+

(β′ϕ0 − βϕ′0)2

ϕ2
0β

4

]
. (2.4.6)

Similarly, the condition (2.3.20) for the nonlinear selection becomes

ε > max
y∈Ω

[
λ2

0(c0)

β2
+

(β′ϕ0 − βϕ′0)2

ϕ2
0β

4

]
. (2.4.7)

Next, we will show the existence of a threshold value of ε so that, when ε in-

creases to cross through this critical value, the speed selection changes from linear to

nonlinear. To this end, we want to prove the following lemma first.

Lemma 2.4.1. Let (2.4.2)-(2.4.3) be prescribed by Neumann boundary conditions (or

Dirichlet boundary conditions). If the wave speed is linearly selected when ε = εl for

some εl > 0, then it is linearly selected for all ε < εl.

Proof. By this assumption, when ε = εl, we have Ul as a solution, which is decreasing

in ξ ∈ R, with c = c0 + ε1 to (2.4.2) for any small ε1 > 0. Thus, it satisfies

(Ul)ξξ + (Ul)yy + (α(y) + c)(Ul)ξ + Ul(1− Ul)(1 + 2εlUl) = 0. (2.4.8)
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Then, by substituting Ul(ξ, y) into (2.4.2) with ε < εl, we obtain

(Ul)ξξ + (Ul)yy + (α(y) + c)(Ul)ξ + Ul(1− Ul)(1 + 2εUl)

= (Ul)ξξ + (Ul)yy + (α(y) + c)(Ul)ξ + Ul(1− Ul)(1 + 2εlUl − 2εlUl + 2εUl)

= −2U2
l (1− Ul)(εl − ε)

6 0. (2.4.9)

This implies that Ul can be viewed as an upper solution to (2.4.2) for ε < εl. Then

taking the lower solution defined in Lemma 2.3.3, we conclude that the wave speed is

linearly selected for ε < εl. This completes the proof.

From the above lemma, we can define the threshold value of ε as

εc := sup{ε| the linear speed selection of (2.4.2)-(2.4.3) is realized}. (2.4.10)

Remark 2.4.2. By the above definition, we have 0 6 εc 6∞. Furthermore, if εc = 0,

then the interval 0 < ε 6 εc is empty, thus the nonlinear speed selection is realized for

all ε > 0; if εc =∞, then the linear speed selection is realized for all ε > 0.

Depending on the choice of boundary conditions, the critical value εc may differ.

We start with the case where (2.4.2)-(2.4.3) is prescribed by Neumann boundary

conditions, i.e., Uy(ξ,−Ly) = Uy(ξ, Ly) = 0. In this case, β(y) ≡ 1 and we have the

following theorem about the value of εc.

Theorem 2.4.3. If the system (2.4.2)-(2.4.3) is prescribed by the Neumann boundary

condition, then

λ2
0(c0) 6 εc 6 λ2

0(c0) + max
y∈[−L,L]

(
ϕ′0
ϕ0

)2

,

where λ0 and ϕ0 are defined in Theorem 2.2.2.

Proof. For the Neumann boundary case, we have β ≡ 1; thus, (2.4.6) reduces to

ε < λ2(c0) due to the fact that min(ϕ′0)2 = 0 (at the boundary). It leaves us to prove

the linear selection in the case when ε = λ2
0(c0). To this end, we choose a sequence
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εn → λ2
0(c0). By Theorem 2.3.4, it follows that (2.4.2)-(2.4.3) has a monotone traveling

wave solution when c = c0 for any ε = εn. Due to the compactness of the solution

map, a limiting argument gives the existence of traveling waves when ε = λ2
0(c0) for

all c ≥ c0. In other words, when ε = λ2
0(c0), the minimal speed of (2.4.2)-(2.4.3) is

linearly selected.

To obtain an upper bound of the critical value εc, we will concentrate on the

nonlinear selection. From (2.4.7) and Theorem 2.3.7, it follows that the nonlinear

selection is realized when ε > λ2
0 + maxy∈Ω

(
ϕ′0
ϕ0

)2

. Consequently, combining those

results, this theorem holds.

Remark 2.4.4. From Theorem 2.4.3, for the Nuemann boundary case with α(y) = 0,

we obtain that εc = 1 since ϕ0 = 1 and λ0 = 1 under such a condition. This recovers

the result of [29],

For the case where (2.4.2)-(2.4.3) is prescribed by Dirichlet boundary conditions,

i.e.,

U(ξ,−Ly) = U(ξ, Ly) = 0,

we have 0 6 β(y) 6 1 for y ∈ [−Ly, Ly]. From (2.4.6), it immediately follows that

(2.4.2) is linearly selected when ε = λ2
0(c0) < min

y∈Ω

λ2
0(c0)

β2 . Furthermore, it is easy to see

that min
y∈Ω

λ2
0(c0)

β2 =
λ2

0(c0)

max
y∈Ω

(β2)
. Similarly to Theorem 2.4.3, we arrive at the following result

for the linear selection.

Theorem 2.4.5. Let the system (2.4.2)-(2.4.3) be prescribed by Dirichlet boundary

conditions. Then the linear selection is realized for all ε 6 ε, where ε =
λ2

0

max
y∈Ω

(β2)
.

Let us now perform some numerical simulations on (2.4.2)-(2.4.3) using the Matlab

software. To make our numeric method look more convincing, we first compare the

numerical results with the accurate solution obtained in [29]. The authors have found

that the formula of the minimal wave speed is

cmin =

2, ε 6 1,
√
ε+

√
1
ε
, ε > 1,

(2.4.11)
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Figure 2.1: The speed comparison of numerical results and theoretical results. The
figures show the speed for ε ∈ [0, 2].

and the traveling wave solution is a so-called Huxley’s solution

u(x, t) =
1

1 + e
√
ε(x−ct) , with c =

√
ε+

√
1

ε
.

The comparison results are summarized in Fig. 2.1. The figures show results related

to the minimal wave speed. The left figure tells us that our numerically computed

speeds matches the speeds predicted by the accurate formula (2.4.11); the right one

shows the absolute difference between them, which are as small as O(10−3). Thus, our

numeric methods are reliable and will be explained in details in the following context.

Throughout simulations in the rest of this section, we fix α(y) = sin(y) if not

specified otherwise, and Ly = 5π. The simulations are also taken into two cases: one

is the Neumann boundary condition case and the other one is the Dirichlet boundary

condition case.

(1) When (2.4.2)-(2.4.3) is prescribed by the Neumann boundary condition, we

do the following numerical computations. Through applying the central difference

method to the eigenvalue problem (2.2.4), we determine that c0 = 2.58 and λ0 = 0.93.

As we can see in Figure 2.2, the large one manifests the relation between µ and λ,

which verifies the convexity of µ(λ) with respect to λ; the small one is an enlarged

figure when λ ∈ [0.6, 1.2], which implies c0 = 2.58.

Furthermore, to obtain a traveling wave solution, we do numerical simulations on

(2.4.1). By applying the central difference method on space variables, the 4th-order
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Figure 2.2: The relation between the principal eigenvalue µ(λ) and λ. From top to
bottom, c = 2.5, 2.52, 2.54, 2.56, 2.58 and 2.6 respectively.

Runge-Kutta method on the time variable, and choosing an initial condition as

u0(x, y) =
1

1 + e105(x+x0)
, (x, y) ∈ R× Ω, x0 = 900, (2.4.12)

we will obtain a solution that stabilizes to a traveling wave solution. We conjecture

without proof that the wave takes the minimal speed due to the fast decaying initial

function. To have a stable wave profile, we start to store all the data after t =

200. As shown in Figure 2.3, the left panel is a 3-D figure that displays the shape

of the solution; the right panel is obtained through fixing y = 0 and letting t =

210, 211, · · · , 220. Actually, in Figure 2.3 (b), by letting u(t, x, 0) ≡ 0.5, we can find

the level set x(t) for every t through linear interpolation, and use it to compute the

spreading wave speed. Through this method, we calculate the minimal wave speed

c whose result is shown in Figure 2.4. As we can see in this figure, the numerically

computed speed cnum ' c0 when ε 6 λ2
0 = 0.865. By substituting the value of

c0 and λ0 into the eigenvalue problem (2.2.4), we can numerically solve ϕ0 and by

which we find max
y∈[−L,L]

(
ϕ′0
ϕ0

)2

= 0.2205. Therefore, by Theorem 2.4.3, the system is

nonlinearly selected if ε > 1.091, which has been verified by the figure. Actually, from

the numerical simulation, we find that εc ' 1.

(2) When (2.4.2)-(2.4.3) is prescribed by the Dirichlet boundary condition, we do



28

(a)

-1000 -950 -900 -850 -800

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

u

(b)

Figure 2.3: Figure (a) depicts the solution of (2.4.1) with the Neumann bound-
ary condition when t = 220. Figure (b) depicts the solution when y = 0,
t = 210, 211, · · · , 220. The parameter set corresponds to: (x, y) ∈ [−1000, 1000] ×
[−5π, 5π] and x0 = 900.
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Figure 2.4: The relation between the asymptotic spreading speed c and ε. The blue
line with stars denotes the numerically computed speed obtained by direct simulation,
and the red line is c0 = 2.58.
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Figure 2.5: The solution of (2.4.1) with the Dirichlet boundary condition when t =
220.

similar simulations. The same method applied to the eigenvalue problem (2.2.4) with

Dirichlet boundary conditions, we obtain c0 = 2.36 and λ0 = 0.885. Next, to obtain

a traveling wave solution here, we choose the initial data as

u0(x, y) =
cos(πy/2Ly)

1 + e105(x+x0)
, (x, y) ∈ R× Ω, x0 = 900. (2.4.13)

Due to the zero boundary condition, the shape of a traveling wave solution in this

case looks like an arch, which is quite different from the former one and is shown in

Figure 2.5. Finally, using the same method as the one used in the previous case, we

calculate the wave speed corresponding to different values of the parameter ε. The

results are shown in Figure 2.6. As shown in the figure, there is a critical number εc

such that the speed is linearly selected when ε 6 εc, and nonlinearly selected when

ε > εc. Here, by the numerical simulation, we can see εc ' 0.8 > λ2
0 = 0.783.

To complete the numerical simulations for the cubic nonlinearity, we provide some

discussions of the effect of α(y) on the critical number εc when the Neumann bound-

ary condition occurs. When α(y) ≡ α with α being a constant, through a direct

computation, we find that the eigenfunction of (2.2.2) can be always normalized to



30

The minimal speed c vs. ε

0 0.5 1 1.5 2 2.5

1.6

1.8

2

2.2

2.4

2.6

2.8

T
h

e
 m

in
im

a
l 
s
p

e
e

d
 c

Linear speed

Numerical result

Figure 2.6: The relation between the minimal speed c and ε. The blue line with stars
denotes the numerically computed speed obtained by direct numerical simulations
and the red line is c0 = 2.36.

be “ϕ0 = 1” and the eigenvalue

λ0 =
α + c0

2
≡ 1 where c0 = 2− α.

By Theorem 2.4.3, εc ≡ 1 for all α ∈ R. In other words, α only affects the value of

the linear speed c0 but it does not affect the critical value εc.

When α(y) is not a constant, with the help of numerical simulations, we also find

that εc always equals to 1. We first give a table to manifest the influence of α on c0, λ0,

and the range of εc by Theorem 2.4.3. As Table 2.1 shows, when α2(y) 6 α1(y) for all

y ∈ [−L,L], λ0,2 > λ0,1 while max
y∈[−L,L]

(
ϕ′0,2
ϕ0,2

)2

6 max
y∈[−L,L]

(
ϕ′0,1
ϕ0,1

)2

, where λ0,i (i = 1, 2)

denotes λ0 corresponding to αi(y) (i = 1, 2) and the same notations are used for ϕ0,i.

The last column of Table 2.1 shows the range of εc. It is clear that all of them contain

the value 1. Furthermore, we apply the same numerical method used for α(y) = sin(y)

to other two cases: (a) α(y) = 1.5 sin(y) and (b) α(y) = 0.5 sin(y). The details are

shown in Figure 2.7. From those figures, we can see that εc = 1 for both cases. It can

be interesting to prove this result rigorously.
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α(y) c0 λ0 max
y∈[−L,L]

(
ϕ′0
ϕ0

)2

the range of εc

1.5 sin(y) 2.95 0.914 0.3362 [0.8354,1.1713]
1.25 sin(y) 2.7 0.92 0.2747 [0.8464,1.1211]

sin(y) 2.58 0.93 0.2195 [0.8649,1.0844]
0.75 sin(y) 2.4 0.938 0.1683 [0.8798,1.0481]
0.5 sin(y) 2.23 0.951 0.1191 [0.9044,1.0235]
0.2 sin(y) 2.08 0.974 0.0645 [0.9478,1.0132]

0 2 1 0 1

Table 2.1: The influence of α(y) on the range of εc.
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Figure 2.7: The numerical speed c corresponding to different ε. Figure (a) is depicted
when α(y) = 1.5 sin(y) while (b) is depicted when α(y) = 0.5 sin(y).
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2.4.2 Subcritical quintic Ginzburg-Landau Equation

In our second application, we consider a subcritical quintic Ginzburg-Landau equation

in a cylindrical domain. The equation is given by

ut = uxx + uyy + α(y)ux + µu+ u3 − u5, (x, y) ∈ R× Ω, µ > 0. (2.4.14)

Here f(u) = µu+ u3 − u5 and Ω = (−Ly, Ly). Thus, for traveling wave solutions, we

mean u(t, x, y) = U(ξ, y) where ξ = x− ct. Then, the equation for the wave profile is

Uξξ + Uyy + (α(y) + c)Uξ + µU + U3 − U5 = 0, (2.4.15)

satisfying

lim
ξ→+∞

U(ξ, y) = 0, lim
ξ→−∞

U(ξ, y) = β(y) 6 µ+, y ∈ Ω, (2.4.16)

where

µ+ =

√
1 +
√

1 + 4µ

2
> 1.

It is easy to have

f(0) = f(µ+) = 0, f ′(0) = µ > 0 > f ′(µ+) = −2µ2
+

√
1 + 4µ+.

Clearly, f satisfies (A1) and (A4). Notice that f ′(0) depends on the parameter µ.

Thus, we may require some extra conditions on µ for f to satisfy (A5) when (2.4.15)

is prescribed by the Dirichlet boundary condition.

Since f ′′(u) = 6u − 20u3 and f ′′′(u) = 6 − 60u2, u = 0 is a solution of f ′′(u) = 0

with multiplicity k = 1. Following Remark 2.3.2, we will choose γ = 2 in (2.3.2). By

substituting the formula of f into Equation (2.3.5) and simplifying it, we then obtain

L(U1) =
U3

1

β2

(
1− U2

1

β2

){
−3λ2

1(c)− 3
(β′ϕ1 − βϕ′1)2

ϕ2
1β

2
+ β4

}
, (2.4.17)

and now G1 = β4. With the condition 0 6 β(y) 6 µ+ for y ∈ Ω, we further have

max
(ξ,y)∈R×Ω

G1(ξ, y)6µ4
+ =

1

2
+ µ+

1

2

√
1 + 4µ. (2.4.18)
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Thus, the condition (2.3.7) for the linear selection becomes

1

2
+ µ+

1

2

√
1 + 4µ < 3λ2

0(c0). (2.4.19)

We then have the following theorem.

Theorem 2.4.6. When (2.4.15)-(2.4.16) is prescribed by Neumann (or Dirichlet)

boundary conditions, the minimal wave speed is linearly selected if the inequality

(2.4.19) holds.

As for the nonlinear selection, we give a condition for the Neumann boundary

condition case as follows. Substituting the formula of f into (2.3.20) gives G2 = β4 =

µ4
+ = 1

2
+ µ+ 1

2

√
1 + 4µ. Then, we arrive at the following theorem.

Theorem 2.4.7. When (2.4.15)-(2.4.16) is prescribed by Neumann boundary condi-

tions, the minimal wave speed is nonlinearly selected if

1

2
+ µ+

1

2

√
1 + 4µ > 3λ2

0(c0) + 3

(
ϕ′0
ϕ0

)2

, (2.4.20)

where λ0(c0) and ϕ0(c0) are defined in Theorem 2.2.2.

Remark 2.4.8. Actually, if the Neumann boundary condition case occurs with α(y) =

0, (2.4.19) and (2.4.20) imply that there is a critical value µc = 0.75 such that the

minimal wave speed of (2.4.15) is linearly selected if µ > µc and nonlinearly selected

if µ < µc. This means, our results include the one in [47]. When α(y) 6= 0, there is a

gap between conditions (2.4.19) and (2.4.20), we conjecture that there exists a critical

number µc and its exact value can be found by numerical simulations.

Next, we perform numerical simulations on (2.4.15)-(2.4.16). Here, we also fix

α(y) = sin(y) and Ly = 5π. Similarly, we apply the same method as that in the

previous application and carry out simulations in two cases.

(1) We first do simulations for the Neumann boundary condition case. By direct

calculations on (2.4.19), we obtain the left panel of Figure 2.8. In the figure, we use

the green line to represent the left hand side of (2.4.19), i.e., 1
2

+ µ + 1
2

√
1 + 4µ, and
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Figure 2.8: The numerical speed c corresponding to µ.

the red line to denote the right hand side, that is, 3λ2
0. Clearly, there is an intersection

µc ' 1.1 shown in Figure 2.8(b). Following Theorems 2.4.6 and 2.4.7, we expect that

the system (2.4.14) is linearly selected when µ > µc and nonlinearly selected when

µ 6 µc. In the right panel of Figure 2.8, we illustrate the relation between cnum

and c0. By choosing the same initial condition given in Equation (2.4.12), we obtain

the traveling wave solution for (2.4.14). The shape of this solution is similar to the

one shown in Figure 2.3, so we will not repeat showing it here. To obtain a stable

traveling wave solution, we record all the speed data after 200 seconds. On the other

hand, c0 is from (2.2.4) and its value differs as µ varies. Then, we use the blue line

with stars to denote cnum and the red line to denote c0. As we can see, the system

is nonlinearly selected when µ 6 1 and linearly selected when µ > 1. Thus, with the

help of numerical simulations, we indeed have verified the theoretical results.

(2) In the Dirichlet boundary condition case, we carry out similar procedures. In

the left panel of Figure 2.9, we find an intersection µd ' 1.25 from (2.4.19). Following

Theorem 2.4.6, we expect that the system (2.4.14) is nonlinearly selected when µ 6 µd.

To verify this, we choose the same initial condition defined in (2.4.13) to obtain the

traveling wave solution for (2.4.14). Again, we store all the data after 200 seconds

and use the red line to denote c0 while the blue line with stars to denote cnum. As we

can see in the right panel of Figure 2.9, in our depicted region µ ∈ [0.1, 1.5], the blue

line is always above the red one, which means the system is nonlinearly selected for

all µ ∈ [0.1, 1.5]. Thus, we have verified that the system is indeed nonlinearly selected

when µ 6 µd.
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Figure 2.9: In the left panel, the green line denotes the left hand side of (2.4.19), i.e.,
1
2

+ µ + 1
2

√
1 + 4µ, and the red line denotes the right hand side, i.e., 3λ2

0. The right
panel depicts the relation between the parameter µ and c0 (red line) or cnum (blue line
with stars).

2.5 Conclusion and discussion

In summary, by the upper and lower solutions method, we have obtained a speed

selection mechanism (including linear and nonlinear) for traveling wave solutions of

a reaction-diffusion-advection equation in a cylindrical domain. Precisely, we found

conditions on the linear selection when the model is prescribed by Neumann (or

Dirichlet) boundary conditions, see the inequality (2.3.7) and Theorem 2.3.4. We

also give results on the nonlinear selection when the model is prescribed by Neumann

boundary conditions, see the inequality (2.3.20) and Theorem 2.3.7. To see the speed

selection mechanism more specifically, we gave two applications in Section 4. In

each application, we obtained the corresponding simplified conditions for the speed

selection mechanism and then verified them by direct numerical simulations.

We should emphasize that, because of our newly constructed upper and lower

solutions, our results make a significant progress in the study of the speed selection

in higher dimension models such as (2.1.1). These constructed solutions are more

accurate for approaching the true traveling wave solutions. With this method, we

extend the previous results in the Neumann boundary condition case, and even give

a sufficient condition on the linear selection in the Dirichlet boundary condition case,

which was thought to be very difficult to study.
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There are many interesting but open problems related to the topic of speed se-

lections. One open problem arising in this chapter is how to find a suitable lower

solution to analyze the nonlinear selection in the Dirichlet boundary condition case.

Furthermore, concerning the problem of wave speeds, it is interesting and challeng-

ing to find an estimation of cmin or even give the exact formula when the nonlinear

selection is realized.

2.6 Appendix

The upper and lower solution method has proved to be a very powerful tool to inves-

tigate the existence of monotone traveling wave solutions (see e.g. [96]). This method

was first introduced by [16] and Weinberger [85], independently, and has been ex-

tended by many academics, such as in [55, 96]. The main idea is as follows. By

transforming the wave profile equation (2.1.3) or its original partial differential equa-

tion (2.1.1) into an integral one, we can define a monotone solution map. Then with

the definition of the solution map, we can construct a pair of upper and lower solu-

tions of (2.1.1) to set up an iteration scheme. Through the scheme, we then obtain

the existence of traveling wave solutions of (2.1.1).

To proceed, we present the phase space used in our model. Let C (C̃) be the

set of all bounded continuous functions from R × Ω to R (or C̃ = C(R, X), where

X = C0(Ω)), and Cβ := {ϕ ∈ C : 0 6 ϕ 6 β} (C̃β := {ϕ ∈ C̃ : 0 6 ϕ 6 β}). Here,

C is used for the Neumann boundary condition case, while C̃ is used for the Dirichlet

boundary condition case. Since the process in each case is similar, we then only take

the Neumann boundary condition case to show the scheme.

To obtain a monotone solution map, we let M1 be a sufficiently large positive

number such that F1(u) := f(u) + M1u is monotone in u. Thus, Equation (2.1.1) is

equivalent to the following one:

ut = uxx + ∆yu+ α(y)ux −M1u+ F1(u). (2.6.1)

Next, we want to transform it into an integral form. To this end, we first investigate

the corresponding homogeneous equation, that is,

ut = uxx + ∆yu+ α(y)ux −M1u. (2.6.2)
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Let Γ(t, x, y) (or Γ̃(t, x, y)) be the Green’s function of (2.6.2) prescribed by the Neu-

mann (or Dirichlet) boundary conditions (see, e.g., [27]). Then the solution of (2.6.2)

with the initial value u(0, ·) = ϕ(·) can be expressed as

u(t, x, y) = Γ(t, x− x0, y − y0) ∗ ϕ(x0, y0).

By the comparison principle (see, e.g., [49]), the above Green’s function is monotone

in u, that is, Γ ∗ u1 > Γ ∗ u2 when u1 > u2 for (x, y) ∈ R × Ω. Now, by variation of

parameters, the equation (2.6.1) can be written in an integral form as

u(t, x, y) = Γ(t, x−x0, y−y0)∗ϕ(x0, y0)+

∫ t

0

Γ(t−t0, x−x0, y−y0)∗F1(u(t0, x0, y0))dt0,

(2.6.3)

where the initial data ϕ ∈ Cβ and ∗ denotes the convolution as

Γ(t, x− x0, y − y0) ∗ ϕ(x0, y0) =

∫
R

∫
Ω

Γ(t, x− x0, y − y0) · u0(x0, y0)dy0dx0.

We define

Qt[ϕ] = u(t, ·, ϕ).

It then follows that {Qt}∞t=0 is a semiflow on Cβ with Qt(0) = 0 and Qt(β) = β. Then,

by a traveling wave solution of the map Qt for each t > 0, we mean a special solution

U(x, y) satisfying

Qt[U ](x, y) = U(x− ct, y)

for some constant c, and U(x, y) connecting β to 0 if U(−∞, y) = β(y) and U(+∞, y) =

0. Notice that, in the literature of Qt, the minimal wave speed defined in the Intro-

duction means that Qt has a non-increasing traveling wave connecting β to 0 if and

only if c > cmin. Furthermore, for any t > 0, the solution map Qt has the following

properties:

(1) Qt is monotone in the sense that Qt[U1] > Qt[U2] whenever U1 > U2 for (x, y) ∈
R× Ω;

(2) If U ∈ Cβ is decreasing with respect to ξ ∈ R, so is Qt[U ];

(3) Qt[Cβ] is precompact in Cβ (see, e.g., [43] for the Neumann boundary conditions

and [44] for the Dirichlet boundary conditions).

Then, corresponding to the solution map Qt, we introduce the definition of an
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upper (or a lower) solution. Given x0 ∈ R, we define the translation operator Tx0 by

Tx0 [U ](x, y) = U(x− x0, y).

Definition 2.6.1. For any given c, a continuous function u(x, y) is called an upper

solution to the integral equation (2.6.3) if

T−ct [Qt[u]] (x, y) 6 u(x, y), ∀(x, y) ∈ R× Ω.

A lower solution of (2.6.3) is defined by reversing the inequality.

In the following lemma, we give the inequality in Definition 2.6.1 in terms of the

differential equation for the wave profile, since these differential form inequalities are

straightforward in our analysis.

Lemma 2.6.2. A continuous function U(ξ, y) = Tct[U ](x, y), where ξ = x − ct, is

twice continuously differentiable on R× Ω except finite many points ξi with

Uξ(ξ
+
i , y) 6 Uξ(ξ

−
i , y), i = 1, 2, · · · ,m, (2.6.4)

and

Uξξ + ∆yU + [α(y) + c]Uξ + f(U) 6 0, ∀(ξ, y) ∈ R\{ξi}×Ω, i = 1, 2, · · · ,m. (2.6.5)

Then, it is an upper solution of (2.6.3). A lower solution is obtained by reversing the

afore-mentioned inequalities.

Proof. Suppose there is a solution U(ξ, y) satisfies (2.6.5). We denote

u(t, x, y) = U(x− ct, y).

Substituting it into (2.6.1) gives ut = −cU ξ, uxx = U ξξ and ∆yu = ∆yU. Then,

(2.6.5) implies ut > uxx + ∆yu+ α(y)ux + f(u),

u(0, x, y) = U(x, y).

(2.6.6)
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Since Qt[U ](x, y) is the solution of (2.6.1) with an initial data as U(x, y). By the

comparison principle (see, e.g., [49]), we then obtain u(t, x, y) > Qt[U ](x, y) for all

t > 0. That is, U(x − ct, y) = Tct[U ](x, y) > Qt[U ](x, y) for all t > 0. Thus,

U(x, y) > T−ct[Qt[U ]](x, y), which exactly meets the requirement for an upper solution

in Definition 2.6.1. A similar proof can be applied to the lower solution of (2.6.3) if

we reverse (2.6.4) and (2.6.5). This completes the proof.

The existence of an upper and a lower solution to the system (2.6.3) will give the

existence of an actual traveling wave solution. Indeed, for our problem, we assume

the following hypothesis.

Hypothesis 2.6.3. For c > c0, there exists a monotone non-increasing upper solution

U(x, y) with respect to x and a non-zero lower solution U(x, y) to the system (2.6.1)

with the following properties:

(1) U(x, y) 6 U(x, y), for all (x, y) ∈ R× Ω;

(2) U(−∞, y) = β(y), U(+∞, y) = 0, for all y ∈ Ω;

(3) U(−∞, y) = β∗(y), U(+∞, y) = 0, where 0 6 β∗ 6 β for all y ∈ Ω.

When the above hypothesis holds true, we can define an iteration scheme as

U0(x, y) = U(x, y), Un+1(x, y) = T−ct[Qt[Un]](x, y), n = 0, 1, 2, · · · . (2.6.7)

With the construction of upper and lower solutions and the iteration scheme, we

then arrive at the following existence theorem for a traveling wave solution (see,

e.g., [16, 43, 55] for the Neumann boundary condition case, and [44] for the Dirichlet

boundary condition case).

Theorem 2.6.4. If the hypothesis 2.6.3 holds true and Qt is defined in (2.6.3), then

the iteration (2.6.7) converges to a function U(x, y). This function is a solution to

(2.1.3)-(2.1.4) with U(x − ct, y) = Qt[U ](x, y). Furthermore, U(x − ct, y) = U(ξ, y)

with ξ = x− ct is non-increasing in ξ ∈ R with U(−∞, y) = β(y) and U(+∞, y) = 0

uniformly for y ∈ Ω.



Chapter 3

Speed Determinacy of Traveling

Waves to a Stream-Population

Model with Allee Effect

3.1 Introduction

The study of the biological population of species in streams, rivers, and estuaries have

been attracting considerable attention recently (see, e.g., [50, 61, 67, 73]). As in these

investigations of stream ecology, the so-called “drift paradox” is an interesting phe-

nomenon, according to which the species at any fixed location will not become extinct,

even though there exists a downstream drift that washes away the species. Perhaps

the first reasonable explanation was the theory of the colonization cycle proposed by

Müller [61, 62]. Afterward, different from Müller’s idea, Speirs and Gurney [73] fur-

ther formulated a constant-coefficient scalar partial differential equation to describe

the situation. Their model demonstrated a simplified one-dimensional representation

of a species residing in a stream, a river or an estuary subject to advection (stream

drift flow) and diffusion (random movement), with

∂u

∂t
= g(u)u− α∂u

∂x
+ d

∂2u

∂x2
. (3.1.1)
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Here, u(x, t) is the density of the species, g(u) is the per capita growth rate of the

population, α is the advection speed (i.e., the speed of the flow), and d is the diffusion

coefficient. They concentrated on the role of diffusion, variable river flow direction,

and the swimming of organisms to the persistence of the species.

Later, Pachepsky, Lutscher, Nisbet, and Lewis [67] extended (3.1.1) to a coupled

system, investigating the persistence of benthic aquatic organisms. They assumed

the total population to be divided into two interacting compartments: individuals

residing on the benthos (the bottom of the stream) and individuals drifting in the

flow. Their non-dimensional system is given by∂u
∂t

= −σu+ µv − α∂u
∂x

+ d∂
2u
∂x2 ,

∂v
∂t

= +σu− µv + (1− v)v,
(3.1.2)

where the newly introduced coefficients µ is the per capita rate at which individuals

in the benthic population enter the drift; σ is the per capita rate at which the species

returns to the benthic population from drifting, e.g., the number of the species that

settle down to the benthos to give birth or find food. This separation has significant

implications for the population persistence (for full details, please see [50,67]). Except

for the persistence or the critical domain size, for such a model, academics were also

interested in the propagation speed. Since the system includes advection, it can distin-

guish the propagation speed with two cases: downstream (same direction of advection)

and upstream (opposite direction of advection). Clearly the downstream propagation

speed increases with the advection, whereas the upstream speed decreases. However,

from the mathematical point of view, the analysis for an upstream-facing traveling

wave solution will be similar to that of the downstream’s; thus we will only consider

a downstream-facing traveling wave solution that demonstrates a situation where a

species invades an uninhabited downstream terrain. The main model in this chapter

is extended from (3.1.2) with the reaction term possibly having the Allee effect and

the residing individuals having a weak diffusive behavior:∂u
∂t

= −σu+ µv − α∂u
∂x

+ d∂
2u
∂x2 ,

∂v
∂t

= +σu− µv + f(v) + ε ∂
2v
∂x2 ,

(3.1.3)

where ε is a small nonnegative number due to the fact that the population living in
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the benthos barely move horizontally; the reaction term f(v) is a smooth function

(say, with second-order derivative) satisfying f(0) = f(1) = 0, f ′(0) > 0 > f ′(1)

and f(v) > 0 for v ∈ (0, 1); d, σ, α, µ are positive constants with similar biological

meanings to those in the model (3.1.2). The spatially homogeneous solutions to (3.1.3)

are e0 = (0, 0) and e1 = (µ
σ
, 1). Moreover, one can easily find that e0 is unstable and

e1 is stable for the corresponding spatially homogeneous system.

To investigate the propagation phenomena, we change the model with the wave

moving coordinates so as to introduce the following wave profile

u(x, t) = U(ξ), v(x, t) = V (ξ), ξ = x− ct, (3.1.4)

where c > 0 is the unknown wave speed. Now, for a downstream-facing wave, the

system for the wave profile is−cU ′ = −σU + µV − αU ′ + dU ′′,

−cV ′ = +σU − µV + f(V ) + εV ′′,
(3.1.5)

subject to

(U, V )(−∞) = (
µ

σ
, 1), (U, V )(+∞) = (0, 0). (3.1.6)

A typical example for f(V ) is V (1−V )(1+ρV ) which has an Allee factor ρ (see [84]),

compared to the conventional Logistic growth.

By Theorems 4.1 and 4.2 in [43], it is known that there exists a critical number

cmin defined as

cmin := inf{c| c ∈ R such that (3.1.5)-(3.1.6) has a nonnegative solution},

so that the system (3.1.5)-(3.1.6) has a nonnegative solution if and only if c > cmin.

Biologically and significantly, this speed is also equal to the asymptotic spreading

speed that indicates the velocity of biological invasion. Usually, the exact value of

this speed is difficult to determine, even for the simple Fisher-KPP scalar model with

the Allee effect. What we are able to do is to find the speed for the linearized system

around zero and use it to estimate the spreading speed. For instance, for our model,

by linearizing the system (3.1.5) near zero, we can obtain the linear speed c0 whose

details will be shown in the next section, and by which, it can be seen that cmin > c0,

a fact that is believed to be true for all cooperative systems. Whether they are equal
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becomes a challenging problem, and this results in the following definition of linear

or nonlinear determinacy, classifying the speed selection.

Definition 3.1.1. If cmin = c0, we say the minimal speed of the system (3.1.5)-(3.1.6)

is linearly selected; otherwise, if cmin > c0, we say the minimal speed is nonlinearly

selected.

Currently, there are a few references working on the speed determinacy to scalar

reaction-diffusion equations or the diffusive Lotka-Volterra competition model (see

[1,2,47,87]). As we notice that the variation principle in [47] does not work here, we

will investigate the speed selection of by the upper-lower solution technique to the

wave profile system coupled with the comparison principle to the partial differential

equations (3.1.3). Our construction of the upper or lower solution is different from the

classical upper (or lower) solution of [16] that is an exponential function (a solution

to the linear system) capped by the positive constant solution, and it usually gives

the mechanism of the linear speed determinacy, with a further requirement that the

nonlinear model is bounded by its linearized system. Our new upper solution comes

directly from the solution of a nonlinear system. It can effectively approximate the

real wavefront and thus provides better or superior conditions for the linear speed

selection. Furthermore, by analyzing the nature of the pushed wavefront (wavefront

with cmin > c0), we will construct a lower solution with a fast decay rate to establish

the nonlinear selection mechanism. The spreading speed is shown to be an increasing

function of the Allee factor. Numerical simulations are carried out to obtain the linear

speed, and to indicate the linear and nonlinear speed determinacy.

The remaining part of this chapter is organized as follows. In Section 4.2, we will

study the wave profile behavior locally near the equilibrium e0. In Section 4.3, we will

present our main results for the speed selection mechanism. In Section 4.4, we will

apply our results to a cubic reaction term to obtain further results, by choosing subtle

forms of upper and lower solutions. In the last section of this chapter, we append the

idea of the upper and lower solution method.

3.2 Linearization at e0 = (0, 0)

In this section, we focus on the local analysis near e0, i.e., (U, V ) = (0, 0). To begin

with, we linearize system (3.1.5) near e0 to derive the following system
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−cU ′ = dU ′′ − αU ′ − σU + µV,

−cV ′ = εV ′′ + σU − µV + f ′(0)V.
(3.2.1)

This can be regarded as a fourth-order linear differential system with constant coef-

ficients. Let (U, V ) = (A1, A2)e−λξ with λ > 0 and A1, A2 being constants. We then

obtain the following eigenvalue problem:cλA1 = dλ2A1 + αλA1 − σA1 + µA2,

cλA2 = ελ2A2 + σA1 − µA2 + f ′(0)A2.
(3.2.2)

For simplicity of notations, we denote it in a matrix form:

cλA =

(
dλ2 + αλ− σ µ

σ ελ2 − µ+ f ′(0)

)
A, (3.2.3)

where A = (A1 A2)T . To solve the above eigenvalue problem, we first consider the

eigenvalue problem of the right-side operator :

B(λ)A = k(λ)A, (3.2.4)

where k(λ) denotes the principal eigenvalue and

B(λ) =

(
B1(λ) µ

σ B2(λ)

)
, B1(λ) = dλ2 +αλ−σ, B2(λ) = ελ2−µ+f ′(0). (3.2.5)

Clearly, to obtain a nonzero solution of (3.2.4), we require

k2 − (B1 +B2)k +B1B2 − σµ = 0.

Thus, we obtain

k± =
(B1 +B2)±

√
(B1 +B2)2 − 4(B1B2 − σµ)

2
.
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Notice that, the determinant ∆ = (B1 +B2)2−4(B1B2−σµ) = (B1−B2)2 +4σµ > 0.

This means that k− < k+, and they both are real. Substituting B1 and B2 into it,

the exact formula of k+ is given by

k+ =
(d+ ε)λ2 + αλ− σ − µ+ f ′(0) +

√
[(d+ ε)λ2 + αλ− σ + µ− f ′(0)]2 + 4σµ

2
.

(3.2.6)

Furthermore, since all the parameters are positive, from the above formula, we have

the following result.

Proposition 3.2.1. k+ > 0 for all λ ∈ (0,+∞).

The principal eigenvalue of the cooperative matrix B(λ) is

k(λ) = k+(λ), (3.2.7)

where k+ is defined in (3.2.6). Moreover, due to the term “dλ2”, it follows that k is

convex with respect to λ (see, e.g., [13]).

From (3.2.3), we want to find c such that cλ = k(λ) has a solution λ ∈ (0,+∞).

It is not hard to find the following property of the function k(λ).

Lemma 3.2.2. k(λ) defined in (3.2.7) is a real continuous and convex function with

respect to λ ∈ R. If we define

c0 = inf
λ∈(0,+∞)

k(λ)

λ
∈ R+, (3.2.8)

which is called the linear speed, then the equation cλ = k(λ) has

(1) no solution if c < c0;

(2) exactly one solution λ0(c0) if c = c0;

(3) two solutions λ1(c) and λ2(c) with λ1(c) < λ2(c) if c > c0.

Here, we manifest this lemma with a particular example, see Fig. 3.1. Letting

d = 3, ε = 0.1, α = 1, µ = 1, σ = 3, and f ′(0) = 1, we obtain that c0 = 1.99456

and λ0 = 0.6906. In the figure, the black curve denotes k(λ)
λ

. As we can see from the

figure, there is no intersection when c < c0 (see the yellow line); there is exactly one
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Figure 3.1: The function k(λ)
λ

vs. λ. This figure is obtained in the parameter set:
d = 3, α = 1, µ = 1, σ = 3, ε = 0.1, and f ′(0) = 1. The black curve denotes the

function k(λ)
λ

, and the blue line is the value of c0 = 1.99456.

intersection when c = c0 (see the blue line); there are two intersections when c > c0

(see the red line).

Moreover, based on the above lemma, we can give the exact exponential behavior

of the waves (U, V )(ξ) as ξ → +∞ in the following lemma.

Lemma 3.2.3. Under the definition of c0 in Lemma 3.2.2, for any c > c0, the wave

profile (if it exists) has the following asymptotic behavior

 U

V

 ∼ C1

 − µ
B1(λ1(c))−cλ1(c)

1

 e−λ1(c)ξ + C2

 − µ
B1(λ2(c))−cλ2(c)

1

 e−λ2(c)ξ

(3.2.9)

with C1 > 0, or C1 = 0, C2 > 0. Here B1 is defined in (3.2.5).

Proof. For any given c > c0, the traveling wave satisfies (U, V ) → (0, 0) as ξ → ∞.

Therefore, as ξ →∞, by way of asymptotic analysis, the leading term of (U, V ) (still

denote as (U, V )) satisfies (3.2.1). Therefore, via the characteristic equation of the

linear system, the decaying solution of (3.2.1) can be obtained as in the right side of

(3.2.9). In other words, the positive wave profile satisfies

 U

V

 = C1

 − µ
B1(λ1)−cλ1

1

 e−λ1ξ + C2

 − µ
B1(λ2)−cλ2

1

 e−λ2ξ + o(e−λ1ξ),
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Figure 3.2: There relation between the linear speed c0 and d. This figure is obtained
when α = 3, µ = 1, σ = 2, ε = 0.1, f ′(0) = 1 and d varies from 1 to 4. The blue curve
denotes the linear speed corresponding to each d, while the black line is the value of
α.

with C1 > 0, or C1 = 0, C2 > 0. This completes the proof.

Remark 3.2.4. According to Lemma 3.2.3 and the eigenvalue problem (3.2.3), when

c > c0, the asymptotic behavior of the wave can also be given by U

V

 ∼ C1

 −B2(λ1(c))−cλ1(c)
σ

1

 e−λ1(c)ξ + C2

 −B2(λ2(c))−cλ2(c)
σ

1

 e−λ2(c)ξ,

which is equivalent to (3.2.9).

Remark 3.2.5. Lemma 3.2.2 implies cmin > c0. It is impossible to expect a nonneg-

ative wavefront for ξ near infinity when c < c0 since λ has a non-trivial imaginary

part, and (0, 0) becomes a spiral point. When c > c0, λ1(c) is decreasing in c and

λ2(c) is increasing in c.

From the formula of c0 (see (3.2.8)), it is clear to see that c0 is increasing in d. By

numerical simulations, we show their relation in Fig. 3.2. It is interesting to observe

that c0 may even be less than α (the drift speed of the stream) when d is small enough,

in which the species is fighting with the drift flow to stay via the choice of residing at

the bottom.

Remark 3.2.6. Moreover, if we normalize by setting A2 = 1, then the eigenvalue
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problem (3.2.2) can be rewritten as

dλ
2A1 − (c− α)λA1 = σA1 − µ,

ελ2 − cλ+ f ′(0) = −(σA1 − µ).

When c = c0, we have

A1(c0) = − µ

B1(λ0)− c0λ0

, (3.2.10)

where λ0 is given in Lemma 3.2.2 (2).

3.3 The speed selection mechanism

In this section, we want to study the speed selection mechanism of the system (3.1.5).

The method used is the upper and lower solution technique (please see the Appendix

section for details). Noticing that the first equation in (3.1.5) is always a linear

equation in U , thus by the variation of parameters, we can solve U in terms of V as

U(ξ) =
µ

d(τ2 − τ1)

{∫ ξ

−∞
eτ1(ξ−s)V (s)ds+

∫ ∞
ξ

eτ2(ξ−s)V (s)ds

}
:= H(V ), (3.3.1)

where τ1, τ2 satisfy

dτ 2 + (c− α)τ − σ = 0,

with

τ1 =
−(c− α)−

√
(c− α)2 + 4σd

2d
< 0 < τ2 =

−(c− α) +
√

(c− α)2 + 4σd

2d
.

(3.3.2)

For any c > c0, by Lemmas 3.2.2 and 3.2.3, it is easy to verify that

H(e−λi(c)ξ) = A1,i(c)e
−λi(c)ξ and H(1) =

µ

σ
, i = 1, 2,

where

A1,i(c) =
−µ

B1(λi(c))− cλi(c)
.
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Clearly, for any given continuous function V (ξ) satisfying V (−∞) = 1 and V (+∞) =

0, by (3.3.1), we have the existence of U subject to U(−∞) = µ
σ

and U(+∞) = 0.

For simplicity of notations, we denote

L1(U, V ) := dU ′′ + (c− α)U ′ − σU + µV,

L2(U, V ) := εV ′′ + cV ′ + σU − µV + f(V ).

By the U ’s formula, (3.1.5) reduces to a non-local equationεV ′′ + cV ′ + σU − µV + f(V ) = 0,

V (−∞) = 1, V (+∞) = 0,
(3.3.3)

where U = H(V ) is the integral given in (3.3.1).

From now on, we will focus on constructing a pair of suitable upper and lower

solutions to the above V -equation (see Theorem 6.4).

For any c = c0 + ε1, by Lemma 3.2.2, there exist 0 < λ1(c) < λ2(c). Inspired by

Lemma 3.2.3, we proceed to construct upper or lower solutions with suitable decaying

behaviors. Let

V̄ (ξ) =
k̄v

[1 + (k̄veλ1(c)ξ)m]
1
m

, m > 1, k̄v > 1. (3.3.4)

It is easy to see that this V̄ function has the asymptotic behaviors: V̄ ∼ e−λ1(c)ξ as

ξ → +∞ and V̄ → k̄v as ξ → −∞. Then, through a simple computation, its first and

second derivatives are found as follows:

V̄ ′ = −λ1(c)V̄
(
1− V̄ m

1

)
and V̄ ′′ = λ2

1(c)V̄
(
1− V̄ m

1

) (
1− (m+ 1)V̄ m

1

)
,

where V̄1 = V̄
k̄v

. Substituting all the above formulas into the left-hand side of (3.3.3),

we obtain

L2(Ū , V̄ ) = V̄ 2(1− V̄ m
1 )

{
− (m+ 1)ελ2

1(c)
1

k̄v
V̄ m−1

1 +
σ[H(V̄ )

V̄
− A1(1− V̄ m

1 )]− µV̄ m
1

V̄ (1− V̄ m
1 )

+
f(V̄ )

V̄
− f ′(0)(1− V̄ m

1 )

V̄ (1− V̄ m
1 )

}
=: V̄ 2(1− V̄ m

1 ) · Jλ1(m, k̄v).
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In view of the definition of an upper solution (see Def. 3.6.1 and Lemma 3.6.2 for

details) and λ1 → λ0 as ε → 0, we can easily derive that the continuous function V̄

given by (3.3.4) is an upper solution to (3.3.3) if

Jλ0(m, k̄v) < 0, (3.3.5)

with m and k̄v suitably chosen. Now, we summarize the above discussion into the

following lemma.

Lemma 3.3.1. If the inequality (3.3.5) holds, then the continuous function V̄ given

by (3.3.4) is an upper solution to (3.3.3) (i.e., L2(Ū , V̄ ) 6 0).

To apply Theorem 3.6.4 on (3.3.3), we need to construct a lower solution to (3.1.5)

when c = c0 + ε1. To this end, we define a continuous function V as

V =

e−λ1(c)ξ(1−Me−ε2ξ), ξ > ξ0,

0, ξ 6 ξ0,
(3.3.6)

where 0 < ε2 � 1, M is a positive number to be determined, and ξ0 = logM
ε2

.

Lemma 3.3.2. When c = c0 + ε1, there exists 0 < ε2 � 1 and M � 1 such that the

pair of continuous functions (U, V )(z), where V is defined in (3.3.6) and U = H(V )

is defined by (3.3.1), is a lower solution to the system (3.1.5)-(3.1.6).

Proof. To prove the chosen function satisfying the definition of a lower solution, we

need to show that for all ξ ∈ R,

dU ′′ + (c− α)U ′ − σU + µV > 0,

εV ′′ + cV ′ + σU − µV + f(V ) > 0.

Notice that the first inequality is always true for all ξ ∈ R, and the second one holds
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for ξ 6 ξ0. As for ξ > ξ0, by direct substitution, we have

εV ′′ + cV ′ + σU − µV + f(V )

= e−λ1(c)ξ[ελ2
1(c)− cλ1(c) + σA1 − µ+ f ′(0)]−Me−(λ1(c)+ε2)ξ[ε(λ1(c) + ε2)2

−c(λ1(c) + ε2)− µ+ f ′(0)]− σMH(e−(λ1(c)+ε2)ξ) + [f(V )− f ′(0)V ]

> −Me−(λ1(c)+ε2)ξ[ε(λ1(c) + ε2)2 − c(λ1(c) + ε2) + σA1 − µ+ f ′(0)] + [f(V )− f ′(0)V ]

The last inequality is guaranteed by H(e−(λ1(c)+ε2)ξ) < A1e
−(λ1(c)+ε2)ξ, which can be

derived by direct computation. For the last line, it is easy to see that the first term is

always positive when ε2 is sufficiently small. By choosing M to be sufficiently large,

we can have ξ0 > 0 and V � 1 so that [f(V )− f ′(0)V ] ∼ O(e−2λ1(c)ξ); thus the first

term dominates the second one. Hence, the proof is complete.

The condition V ′(ξ−0 ) 6 V ′(ξ+
0 ) can be easily verified, and by translation if nec-

essary, we can have U(ξ) 6 Ū(ξ) and V (ξ) 6 V̄ (ξ) for ξ ∈ (−∞,+∞). Then we

conclude that (Ū , V̄ )(ξ) and (U, V )(ξ) are a pair of upper and lower solutions respec-

tively. By Theorem 3.6.4, we obtain the following linear selection result.

Theorem 3.3.3. (Linear selection) When (3.3.5) is satisfied, the minimal speed of

the system (3.1.5)-(3.1.6) is linearly selected (i.e., cmin = c0).

We then turn to study the nonlinear selection through the upper and lower solu-

tions method. The key observation is that, when a lower solution has an asymptotic

behavior e−λ2ξ (i.e., the faster decay rate) as ξ → +∞, the nonlinear selection will be

realized. We give the following theorem as a justification.

Theorem 3.3.4. For a given c1 > c0, assume that there exist a pair of nonnega-

tive functions (U, V )(ξ) with ξ = x − c1t, as a pair of lower solutions to the partial

differential system ut = duxx − αux − σu+ µv,

vt = εvxx + σu− µv + f(v).

(3.3.7)
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We further suppose that V (ξ) is monotone, and satisfies

lim sup
ξ→−∞

V (ξ) < 1,

and has the asymptotic behavior Ce−λ2ξ as ξ → +∞, for some positive constant C.

Then there exists no traveling solution to (3.1.5)-(3.1.6) for c ∈ [c0, c1).

Proof. We prove here by contradiction. Assume that there exists a monotone traveling

wave solution (U, V )(ξ), ξ = x− ct with c ∈ [c0, c1), subject to the initial conditions

u(x, 0) = U(x) and v(x, 0) = V (x).

We should note that if c = c0, then we have traveling wave solutions for all c > c0 by

Theorems 4.1 and 4.2 in [43]. Thus we can always assume that c ∈ (c0, c1).

Moreover, (U, V ) satisfies (3.1.5), and their decaying behavior near +∞ can be

easily analyzed (see, e.g., Section 2). By the monotonicity of λ1(c) and λ2(c) in terms

of c, we can always assume (by shifting if necessary) that (U, V )(x) 6 (U, V )(x), ∀x ∈

R. Since (U, V )(x− c1t) is a lower solution to the system (3.3.7) with the initial data

(U, V )(x), by comparison, we obtain

U(x− c1t) 6 U(x− ct), and V (x− c1t) 6 V (x− ct), (3.3.8)

for all (x, t) ∈ R × R+. Now, if we fix ξ = x − c1t, then V (ξ) > 0 is fixed. On the

other hand, from V (x− ct), it is clear to see

V (x− ct) = V (ξ + (c1 − c)t)→ V (+∞) = 0, as t→ +∞.

By (3.3.8), we thus get V (ξ) 6 0. This is a contradiction. Therefore, there is no

traveling wave solution for c ∈ [c0, c1). This completes the proof.

Remark 3.3.5. Due to the above theorem, for the nonlinear selection, we only need
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to find a lower solution that has an asymptotic behavior e−λ2(c)ξ, as ξ → +∞ for some

c > c0.

Now, suppose V 2 has the following form:

V 2(ξ) =
kv

[1 + (kveλ2(c)ξ)m]
1
m

, m > 1, 0 < kv < 1. (3.3.9)

Clearly, this function connects k̄v to 0 and has the asymptotic behavior e−λ2ξ as

ξ → +∞. By substituting the above formula into the left-hand side of (3.3.3), we

obtain

L2(U2, V 2) = V 2
2(1− V m

1 )

{
− (m+ 1)ελ2

2(c)
1

kv
V m−1

1

+
σ[H(V 2)

V 2
− A1(1− V m

1 )]− µV m
1

V 2(1− V m
1 )

+

f(V 2)
V 2
− f ′(0)(1− V m

1 )

V 2(1− V m
1 )

}
=: V 2

2(1− V m
1 ) · Jλ2(m, kv),

where V 1 = V 2

kv
. For suitably chosen m and kv, it follows that V 2 is a lower solution

to (3.3.3) (i.e., L2(U2, V 2) > 0) if

Jλ2(m, kv) > 0. (3.3.10)

Then, by Lemma 3.3.4, the following result holds.

Theorem 3.3.6. (Nonlinear selection) If the inequality (3.3.10) holds for some m

and kv, then the minimal speed of traveling waves to the system (3.1.5)-(3.1.6) is

nonlinearly selected.

3.4 Applications

In this section, we will apply the linear and nonlinear selection theorems proved in

the previous section to the model with a cubic nonlinear reaction term, i.e., f(v) =

v(1−v)(1+ρv) with ρ being a nonnegative constant. This cubic reaction term can be

viewed as the classical logistic growth with a weak Allee effect (see [84]) and can be
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applied to model a lot of biological phenomena. We want to investigate how the Allee

effect impacts the spreading speed. In current references such as [20,91], they require

that f(v) is sublinear in the sense that f(v) 6 f ′(0)v, and thus a linear selection result

is obtained. Following this, we immediately obtain that the minimal wave speed is

linearly selected when ρ 6 1. Now, with our methods, conclusions on the speed

selection can be considerably extended. To proceed, we start with the system of the

wave profile 
dU ′′ + (c− α)U ′ − σU + µV = 0,

εV ′′ + cV ′ + σU − µV + (1− V )(1 + ρV )V = 0,

(U, V )(−∞) =
(
µ
σ
, 1
)
, (U, V )(+∞) = (0, 0).

(3.4.1)

With the values of d, ε, µ, σ, α and f ′(0) being fixed, we first show the existence

of a threshold ρ̄ so that, when ρ increases to cross over this critical value, the speed

selection changes from linear to nonlinear. To see this, we will prove the following

lemma.

Lemma 3.4.1. If the minimal wave speed of (3.4.1) is linearly selected when ρ = ρl

for some ρl, then it is linearly selected for all ρ < ρl.

Proof. From the assumption that ρ = ρl, we have (Ul, Vl) as a pair of solutions, which

are decreasing with respect to ξ ∈ R, with c = c0 + ε1 to (3.4.1) for any small ε1 > 0.

Thus, they satisfydU
′′
l + (c− α)U ′l − σUl + µVl = 0,

εV ′′l + cV ′l + σUl − µVl + (1− Vl)(1 + ρlVl)Vl = 0.

Then, by substituting (Ul, Vl) into (3.4.1) with ρ < ρl, we see that the first equation

is always zero and the second one becomes

εV ′′l + cV ′l + σUl − µVl + (1− Vl)(1 + ρVl)Vl

= (1− Vl)V 2
l (ρ− ρl) < 0.
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This means that (Ul, Vl) is an upper solution to (3.4.1) for ρ < ρl. Then, by taking

the lower solution defined in Lemma 3.3.2, we conclude that the minimal wave speed

is linearly selected for all ρ < ρl. This completes the proof.

From the above lemma, we can define the threshold value of ρ as

ρ := sup{ρ | the linear speed selection is realized for (3.4.1)}.

Although we obtained the existence of the threshold ρ̄, its exact value is hard to

derive. In practice, we want to give an estimate of it. Moreover, the exact formula

of U in terms of V (see (3.3.1)) is too complicated to determine the conditions in

the speed selection, so we will establish some novel upper (lower) solutions to the

U -equation simultaneously, i.e., L1(Ū , V̄ ) 6 0 (L1(U, V ) > 0), instead of using the

formula H(V ).

To carry on, we numerically compute the value of U
V

= H(V )
V

, where V is defined

in (3.3.4) with m = 2, k̄v = 1, and c = c0. An example is shown in Fig. 3.3. These

figures are depicted when d = 3, ε = 0.1, α = 1, µ = 1, and σ = 3. With the

parameter set, we find that A1 = 0.44325, c0 = 1.9945625, and λ0 = 0.6906. The left

panel shows the functions of V and U = H(V ). The right panel shows the value of
U
V

. As we can see, U
V
→ µ

σ
as ξ → +∞, U

V
→ A1 as ξ → −∞, and the curve looks like

a vertical parabola. When m = 1, similar phenomena can happen. Inspired by this

observation, we will construct innovative approximate formulas of U in terms of V ,

which are much simpler than the abstract one U = H(V ). The details are shown as

follows.

Motivated by this observation, we first give results on the speed selection by using

the trial function U = V · (A1 + bV + aV 2) with b = µ
σ
− A1 − a and a ∈ R+ to

be determined. We give the following notations to state our theorems more fluently.

Denote

hc0(a) := a2
{

33d2λ4
0 + 6dλ3

0(c0 − α) + 9λ2
0(c0 − α)2 + 48dλ2

0σ
}

+ a

{
12d2λ4

0

µ

σ

−108d2λ4
0A1(c0)− 60dλ3

0

(µ
σ
− A1(c0)

)
(c0 − α)

}
+ 36d2λ4

0

(µ
σ
− A1(c0)

)2

,(3.4.2)
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Figure 3.3: The functions U, V and U
V

. These figures are obtained in the parameter
set: d = 3, α = 1, µ = 1, σ = 3, ε = 0.1, and f ′(0) = 1.

and
a3(c0, λ0) =

2dλ0(µσ−A1(c0))
5dλ0−(c0−α)

, a4(c0, λ0) =
dλ2

0(
4µ
σ
−6A1(c0))−2λ0(c0−α)(µσ−A1(c0))

4dλ2
0−2λ0(c0−α)−σ ,

a5(c0, λ0) =
2[dλ2

0
µ
σ

+λ0(c0−α)(µσ−A1(c0))]
[−dλ2

0−λ0(c0−α)+σ]
.

(3.4.3)

Notice that hc0(a) is a quadratic polynomial and hc0(0) = 36d2λ4
0

(
µ
σ
− A1(c0)

)2
> 0;

thus, if hc0(a) = 0 has solutions a1(c0, λ0) and a2(c0, λ0), then they must satisfy that

0 < a1(c0, λ0) 6 a2(c0, λ0) or a1(c0, λ0) 6 a2(c0, λ0) < 0. Due to the requirement

a > 0, we only consider the former case. Furthermore, define the sets

S1(c0, λ0) := {a : a 6 a1(c0, λ0) or a > a2(c0, λ0)},

and S ′1(c0, λ0) := {a : a1(c0, λ0) < a < a2(c0, λ0)},

S2(c0, λ0) := {a : a < a3(c0, λ0)} and S ′2(c0, λ0) := {a : a > a3(c0, λ0)},

S3(c0, λ0) := {a : a 6 a4(c0, λ0)} and S ′3(c0, λ0) := {a : a > a4(c0, λ0)},

S4(c0, λ0) := {a : a 6 a5(c0, λ0)} and S ′4(c0, λ0) := {a : a > a5(c0, λ0)}.

(3.4.4)

To proceed, we summarize the above notations into an assumption as follows.

(H1) Let c0, λ0, A1(c0), and hc0(a) be defined in (3.2.8), Lemma 3.2.2, (3.2.10),

and (3.4.2), respectively. Assume that hc0(a) = 0 has two nonnegative solutions

0 6 a1(c0, λ0) < a2(c0, λ0) and then define ai (i = 1, · · · , 5) and Sj, S
′
j (j = 1, · · · , 4)

as shown in (3.4.3) and (3.4.4), respectively.
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Theorem 3.4.2. Let the assumption (H1) hold. Define

M̄(c0, λ0) := M̄1 ∪ M̄2 ∪ M̄3 ∪ M̄4 ∩ {a : a > 0},

whereM̄1 := (S2(c0, λ0) ∩ S3(c0, λ0)) ∪ S ′1(c0, λ0), M̄2 := (S2(c0, λ0) ∩ S ′3(c0, λ0)) ∪ S ′1(c0, λ0),

M̄3 := (S ′2(c0, λ0) ∩ S3(c0, λ0)) ∪ S ′1(c0, λ0), M̄4 := (S ′2(c0, λ0) ∩ S ′3(c0, λ0)) ∪ S ′1(c0, λ0).

Then the linear selection is realized if there exists a positive constant a ∈ M̄ and

ρ 6 σā+ 2ελ2
0, where ā = sup M̄. (3.4.5)

Proof. When c = c0 + ε1, let V̄ be defined in (3.3.4) with m = 1 and k̄v = 1 (which

implies V̄1 = V̄ ). Define

Ū = V̄ · [A1(c) + bV̄ + aV̄ 2], a > 0, (3.4.6)

where b = µ
σ
− A1(c)− a and a is to be determined. Here, we emphasize that such a

Ū function satisfies Ū
V̄
→ µ

σ
as ξ → −∞ and Ū

V̄
→ A1(c) as ξ → +∞. In the following

context, we denote λ1 = λ1(c) and A1 = A1(c) for short unless otherwise specified.

Then, through tedious computations, we obtain the first and second derivative of Ū

as follows:

Ū ′ = −λ1V̄ (1−V̄ )(A1+2bV̄+3aV̄ 2)Ū ′′ = λ2
1V̄ (1−V̄ )[A1+(4b−2A1)V̄+(9a−6b)V̄ 2−12aV̄ 3]

and

Ū ′′ = λ2
1V̄ (1− V̄ )[A1 + (4b− 2A1)V̄ + (9a− 6b)V̄ 2 − 12aV̄ 3].
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By substituting Ū , Ū ′ and Ū ′′ into L1, we obtain

L1(Ū , V̄ ) = V̄ 2(1− V̄ )G1(V̄ ), (3.4.7)

where

G1(V̄ ) = −12dλ2
1aV̄

2 + V̄ · [dλ2
1(9a− 6b)− 3λ1a(c− α)] + dλ2

1(4b− 2A1)− 2λ1(c− α)b+ σa

= −12dλ2
1aV̄

2 + 3λ1V̄
[
(5dλ1 − (c− α))a− 2dλ1(

µ

σ
− A1)

]
+a
[
−4dλ2

1 + 2λ1(c− α) + σ
]

+ dλ2
1

(
4µ

σ
− 6A1

)
− 2λ1(c− α)

(µ
σ
− A1

)
.

It is clear that Ḡ1(V̄ ) is a parabolic function, which opens down, in V̄ . Through a

direct computation, its determinant can be found as

∆ = a2
{

33d2λ4
1 + 6dλ3

1(c− α) + 9λ2
1(c− α)2 + 48dλ2

1σ
}

+ a

{
12d2λ4

1

µ

σ

−108d2λ4
1A1 − 60dλ3

1

(µ
σ
− A1

)
(c− α)

}
+ 36d2λ4

1

(µ
σ
− A1

)2

,

which is hc(a) by replacing c0 and λ0 with c and λ1 in hc0(a). When ε1 is small enough

and by assumption, the equation hc(a) = 0 has two roots 0 6 a1(c, λ1) 6 a2(c, λ1).

Then, there are two cases to discuss.

When a1(c, λ1) < a < a2(c, λ1) (i.e., a ∈ S ′1(c, λ1)), it follows that hc(a) 6 0.

In other words, ∆ < 0, which implies that G1(V̄ ) = 0 has no solution. Therefore,

L1(Ū , V̄ ) 6 0 if a ∈ S1(c, λ1).

When 0 6 a 6 a1(c, λ1) or a > a2(c, λ1) (i.e., a ∈ S1(c, λ1)), it immediately

obtains that ∆ > 0. Thus, under this condition, G1(V̄ ) = 0 must have solutions.

Furthermore, if the symmetric axis of G1(V̄ ) is less than zero and G1(0) 6 0, then

L1(Ū , V̄ ) 6 0. The first condition means

(5dλ1 − (c− α))a− 2dλ1(
µ

σ
− A1) < 0.
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The second condition (G1(0) 6 0) shows that

a
[
−4dλ2

1 + 2λ1(c− α) + σ
]

+ dλ2
1

(
4µ

σ
− 6A1

)
− 2λ1(c− α)

(µ
σ
− A1

)
6 0.

When 5dλ1 − (c− α) > 0 and 4dλ2
1 − 2λ1(c− α)− σ > 0, then

a < a3(c, λ1) and a > a4(c, λ1). (3.4.8)

Thus, when a ∈ S1(c, λ1) ∩ S2(c, λ1) ∩ S ′3(c, λ1), we have L1 6 0. Summarizing the

above discuss, we obtain that if

a ∈ (S1(c, λ1) ∩ S2(c, λ1) ∩ S ′3(c, λ1)) ∪ S ′1(c, λ1)

= (S2(c, λ1) ∩ S ′3(c, λ1)) ∪ S ′1(c, λ1) = M̄1(c, λ1),

then L1(Ū , V̄ ) 6 0. It is clear to see that, depending on the signs of 5dλ1 − (c − α)

and 4dλ2
1− 2λ1(c−α)− σ, we will obtain sets M̄2(c, λ1), M̄3(c, λ1), and M̄4(c, λ1). In

summary, if a ∈ M̄(c, λ1), then L1(Ū , V̄ ) 6 0.

By inserting Ū -formula into L2, we have

L2(Ū , V̄ ) = V̄ 2(1− V̄ )(−2ελ2
1 − σa+ ρ).

Now, it is clear to see that, if ρ 6 σā1 + 2ελ2
1 with ā1 = sup M̄(c, λ1), then L2 6 0.

Thus, (Ū , V̄ ) is a pair of upper solutions when a ∈ M̄(c, λ1) and ρ < σā+ 2ελ2
1 hold.

Combining a pair of lower solutions from Lemma 3.3.2 and using Theorem 3.6.4, we

obtain the existence of (U, V )(ξ) when c = c0 + ε1, which implies the linear selection

of (3.4.1). Then, a limiting argument can show that the linear selection is realized

when a ∈ M̄(c0, λ0) and ρ 6 2ελ2
0 + σā. This completes the proof.

Remark 3.4.3. If hc0(a) = 0 has no solution when a > 0, then the above theorem

still holds by replacing S ′1 = φ where φ is the empty set.
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Since the minimal wave speed is always linearly selected when ρ 6 1, it immedi-

ately implies the following corollary.

Corollary 3.4.4. Let (H1) be true. The minimal wave speed is linearly selected if

a ∈ M̄(c0, λ0) and

ρ 6 max{σā+ 2ελ2
0, 1}. (3.4.9)

For the nonlinear selection, we first give the following theorem.

Theorem 3.4.5. Let the assumption (H1) hold and

M(c0, λ0) := (M1 ∪M2 ∪M3 ∪M4) ∩ {a : a > 0},

whereM1 := S1(c0, λ0) ∩ S3(c0, λ0) ∩ S4(c0, λ0), M2 := S1(c0, λ0) ∩ S ′3(c0, λ0) ∩ S4(c0, λ0),

M3 := S1(c0, λ0) ∩ S3(c0, λ0) ∩ S ′4(c0, λ0), M4 := S1(c0, λ0) ∩ S ′3(c0, λ0) ∩ S ′4(c0, λ0).

Then the nonlinear selection is realized if there exists a ∈M and

ρ > σa+ 2ελ2
0, where a = inf M > 0. (3.4.10)

Proof. When c = c0 + ε2, let V be defined in (3.3.9) with m = 1 and kv = 1, and

U = V [A1(c) + bV + aV 2], a > 0,

with b = µ
σ
− A1(c) − a and a is to be determined. For simplicity, we will denote

λ2 = λ2(c) and A1 = A1(c) unless otherwise specified. With the help of calculations

done in Theorem 3.4.2, we can relatively easily derive the following formulas for L1:

L1(U, V ) = V 2(1− V )G2(V ), (3.4.11)
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where

G2(V ) = −12dλ2
2aV

2 + 3λ2V
[
(5dλ2 − (c− α))a− 2dλ2(

µ

σ
− A1)

]
+a
[
−4dλ2

2 + 2λ2(c− α) + σ
]

+ dλ2
2

(
4µ

σ
− 6A1

)
− 2λ2(c− α)

(µ
σ
− A1

)
.

Notice that G2(V ) is a parabolic function in V . Through a similar analysis on its

determinant done in Theorem 3.4.2, we obtain that G2(V ) = 0 has solutions when

a ∈ S1(c, λ2). Under this condition, the inequalities “G2(0) > 0” and “G2(1) > 0”

assure L1 > 0. That means,

G2(0) = a
[
−4dλ2

2 + 2λ2(c− α) + σ
]

+ dλ2
2

(
4µ

σ
− 6A1

)
− 2λ2(c− α)

(µ
σ
− A1

)
> 0

and

G2(1) = a
[
−dλ2

2 − λ2(c− α) + σ
]
− 2

[
dλ2

2

µ

σ
+ λ2(c− α)

(µ
σ
− A1

)]
> 0.

Depending on the sign of −4dλ2
2 + 2λ2(c− α) + σ and −dλ2

2− λ2(c− α) + σ, we have

four cases. Since the analyses on those four cases are similar, we only present the case

when −4dλ2
2 + 2λ2(c − α) + σ > 0 and −dλ2

2 − λ2(c − α) + σ > 0 in details. Under

this condition,

a >
dλ2

2

(
4µ
σ
− 6A1

)
− 2λ2(c− α)

(
µ
σ
− A1

)
4dλ2

2 − 2λ2(c− α)− σ
, and a >

2
[
dλ2

2
µ
σ

+ λ2(c− α)
(
µ
σ
− A1

)]
−dλ2

2 − λ2(c− α) + σ
.

That means, if a ∈ S ′3(c, λ2)∩S ′4(c, λ2)∩S1(c, λ2), then L1(U, V ) > 0. In other words,

when a ∈M3(c, λ2), we have L1(U, V ) > 0.

For V -equation, we obtain

L2(U, V ) = V 2(1− V )Jλ2(V ) = V 2(1− V )(−2ελ2
2 − σa+ ρ).

It is easy to see that if the strict inequality (3.4.10) holds, then ρ > σa + 2ελ2
2 with
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a = inf M , that means, L2(U, V ) > 0. Therefore, we have found a pair of lower

solution with the faster decay rate. If we take kv = 1 − η for sufficiently small η, by

continuity, the above derivation is still true. By Theorem 3.3.4, the nonlinear selection

is realized.

Since the ratio U
V

has a parabolic behavior as shown in the right panel in Fig. 3.3,

we can give another approach to find conditions for the nonlinear selection.

Theorem 3.4.6. Let κ = A1(c0)
µ
σ

+A1(c0)
. Suppose that



2λ0(c0 − α)A1(c0) + µ− 6dλ2
0A1(c0) > 0,

σA1(c0) + 2µ+ 2λ0(c0 − α)A1(c0) > 0,

−6dλ2
0A

2
1(c0) + 2A1(c0)

(
µ
σ

+ A1(c0)
)

(2dλ2
0 − λ0(c0 − α)) + σ

(
µ
σ

+ A1(c0)
)2
> 0,

−2dλ2
0 − 2λ0(c0 − α) + σ > 0.

(3.4.12)

Then the minimal wave speed of system (3.4.1) is nonlinearly selected if

ρ > 2ελ2
0 +

µκ

1− κ
, (3.4.13)

where A1(c0) and λ0 defined in (3.2.10) and Lemma 3.2.2, respectively.

Proof. When c = c0 + ε3 with ε3 > 0 being small, let V be defined in (3.3.9) with

m = 1 and kv = 1. Define

U = V ·max
ξ∈R

{
A1(c)(1− V ),

µ

σ
V
}

=

A1(c)(1− V )V , ξ > ξ2,

µ
σkv

V 2, ξ < ξ2,

where ξ2 ∈ R such that V (ξ2) = A1(c)

A1(c)+
µ
σ

. Thus, by substituting them into L1 and L2,
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we obtain

L1(U, V ) =



V 2

{
− 6dλ2

2A1V
2 + V [12dλ2

2A1 − 2λ2(c− α)A1] + 2λ2(c− α)A1 + µ− 6dλ2
2A1

}
,

V ∈ [0, V (ξ2)],

µ
σ
V (1− V )

{
− 6dλ2

2V
2 + V [4dλ2

2 − 2λ2(c− α)] + σ

}
, V ∈ (V (ξ2), 1]

and

L2(U, V ) =


V 2(1− V )

{
− 2ελ2

2 + −µ
1−V + ρ

}
, V ∈ [0, V (ξ2)],

µ
σ
V 2(1− V )

{
− 2ελ2

2 + −σA1

V
+ ρ

}
, V ∈ (V (ξ2), 1].

For L1 part, let G3(V ) := −6dλ2
2A1V

2 +V [12dλ2
2A1 − 2λ2(c− α)A1]+2λ2(c−α)A1 +

µ−6dλ2
2A1, which is a quadratic function in V . The first inequality in (3.4.12) implies

G3(0) > 0, and

G3(V (ξ2)) =
µ2 (−6dλ2

2A1 + 2λ2(c− α)A1 + µ) + µσA1 (2λ2(c− α)A1 + σA1 + 2µ)

(µ+ σA1)2
> 0

provided by the first and second inequalities. Therefore, G3(V ) > 0 for V ∈ [0, V (ξ2)].

Then, denote G4(V ) := −6dλ2
2V

2 + V [4dλ2
2 − 2λ2(c− α)] + σ, which is convex down

in V . Thus, it suffices to find the values of G4(V (ξ2)) and G4(1). Through a direct

computation and the third and fourth inequalities in (3.4.12), we obtain that G4(1) =

−2dλ2
2 − 2λ2(c− α) + σ > 0 and

G4(V (ξ2)) =
−6dλ2

2A
2
1(

µ
σ

+ A1

)2 +
A1 [4dλ2

2 − 2λ2(c− α)](
µ
σ

+ A1

) + σ > 0.

As for L2 part, it is not difficult to verify that L2(U, V ) > 0 if ρ > 2ελ2
2 + µ

1−V (ξ2)

when ξ > ξ2, and ρ > 2ελ2
2 + σA1

V (ξ2)
when ξ < ξ2. Notice that σA1

V (ξ2)
= µ

1−V (ξ2)
. When

ε3 is small enough, (3.4.13) implies that if ρ > 2ελ2
2 + µ

1−V (ξ2)
, then L2(U, V ) > 0 for

ξ ∈ R. Thus, the nonlinear selection result follows.

Remark 3.4.7. In this application, we only present conditions for the speed selection
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when m = 1. In fact, if m = 2 (the derivation is much more complicated), we can

obtain the following result.

Theorem 3.4.8. Let

Fc0(a) := a2
[
469d2λ4

0 + 135dλ3
0(c0 − α)

]
−a
[
128d2λ4

0

µ

σ
+ 7d2λ4

0A1(c0)
]
+64d2λ4

0

(µ
σ
− A1(c0)

)2

(3.4.14)

and Fc0(a) = 0 has two roots 0 < am(c0) < aM(c0) with A1(c0) and λ0 being defined

in (3.2.10) and Lemma 3.2.2, respectively. Assume that

4dλ2
0 − 2λ0(c0 − α)− σ > 0. (3.4.15)

Then the system (3.4.1) is linearly selected if

ρ 6 1 + σA1(c0)− µ+ σaM(c0). (3.4.16)

We omit the proof, since it is similar to the previous one. Later, we will demon-

strate a numerical example (the first one) in which the result in the choice of m = 2

may be better than that in the choice of m = 1 when 4dλ2
0 − 2λ0(c0 − α)− σ > 0.

To complete this section, we provide two numerical examples to manifest our

theoretical results. In the first example, we choose the parameter set as d = 3,

ε = 0.1, µ = 1, σ = 3 and α = 1. In this set, we find that c0 = 1.9946, λ0 = 0.6906 and

A1 = 0.4433. Then, by a simple computation, we obtain that 4dλ2
0−2λ0(c0−α)−σ =

1.3495 > 0, 5dλ0−(c0−α) = 9.36444 > 0, a3 = −0.0486, and a4 = −1.2942. Through

Theorem 3.4.2 and its corollary, the linear selection result is only valid if ρ 6 1, but

Theorem 3.4.8 can show an improvement. We find that Fc0(a) = 0 has two solutions

am = 0.0231 and aM = 0.0626. Thus, by Theorem 3.4.8, the system under this

parameter set is linearly selected when ρ 6 1.5175. To find numerical speeds cnum

corresponding to different values of ρ, we use the Matlab software to compute the

solution of (3.1.3), where the initial conditions are

u(x, 0) =
µ
σ

1 + e10x
and v(x, 0) =

1

1 + e10x
(3.4.17)
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Figure 3.4: The relation between the spreading speed and ρ. (a) This figure is depicted
when d = 3, ε = 0.1, σ = 3, µ = 1 and α = 1. Here, c0 = 1.9945625. (b) This figure
is depicted when d = 2, ε = 0.2, µ = 3, σ = 1 and α = 2. Here, c0 = 2.7458.

such that they are steep enough to be close to the step functions. By [20, 91], the

spreading speed of solutions with such initial data will evolve to cmin, so our nu-

merically computed cnum, obtained from the level set of the solution, would give an

approximation to the minimal wave speed. The values of numerically computed speed

are shown in Fig. 3.4 (a). As we can see, the critical value for ρ is ρ̄ ' 2.2. Further-

more, this result illustrates our theoretical results.

In the second example, we fix d = 2, ε = 0.2, µ = 3, σ = 1 and α = 2. Under this

choice of parameters, we can find that c0 = 2.7458, λ0 = 0.3947, and A1 = 3.0526.

Through a direct computation, it follows that 4dλ2
0 − 2λ0(c0 − α) − σ = −0.3424,

5dλ0− (c0−α) = 3.2012, −dλ2
0−λ0(c0−α) +σ = 0.3941, a3 = −0.0259, a4 = 5.6567,

and a5 = 4.6653. Moreover, hc0 = 0 has two solutions a1 = 0.0003 and a2 = 1.4477.

Thus, (3.4.1) is linearly selected if a ∈ [a1, a2] and ρ 6 σa2 + 2ελ2
0 = 1.51 by Theorem

3.4.2. As for the nonlinear selection, by Theorem 3.4.5, we obtain that the nonlinear

selection is realized if a > a4 = 5.6567 and ρ > 5.7190. Using the same method as

that in the first example, the numerical speeds (spreading speeds) are obtained and

shown in Fig. 3.4 (b). As we can see in the figure, ρ̄ ' 1.6, which confirms our

theoretical result.

Remark 3.4.9. Finally, we would like to emphasize that the model here is completely

different from the diffusive Lotka-Volterra competition system in [1, 2], where two

species compete for the same resource. Here, we study a significant model describing
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a species in two different compartments or stages. The Allee effect appears in this

model, while we cannot see this in [1,2]. We focus here on how the spreading speed is

impacted by the Allee strength. Furthermore, in [1,2], the linearized system at (0, 0) is

decoupled so that the linear speed was given by a simple formula c0 = 2
√

1− a1. For

the construction of upper or lower solutions to the system, we can take V = kU for

different values of k or can assume that V admits different decay behavior than U . For

the stream population model in this chapter, the linear system at (0, 0) is irreducible

and the linear speed is determined by an order-4 polynomial. No explicit formula c0

can be obtained. To determine the spreading speed (the minimal speed), our numerical

simulation indicates that the graph of U/V looks like a vertical parabola. This provides

us insight to construct novel solution pairs with U/V = aV 2 + bV + c.

3.5 Conclusion

In this chapter, we investigated the speed selection mechanism (linear and nonlinear)

via the upper and lower solution method for traveling waves to a reaction-advection-

diffusion model (3.1.3).

For this stream population model, we focus on how the spreading speed is impacted

by the Allee effect. Here, the so-called asymptotic spreading speed (which represents

a critical value of biological invasion) coincides with the minimal speed cmin of the

traveling waves. However, its value is usually difficult to determine. We consider the

case when the system is modeled with a weak Allee effect [84], i.e., with a growth

function as f(v) = v(1 − v)(1 + ρv). For such a growth function, when ρ > 1 (i.e.,

f(v) > f ′(0)v when v ∈ [0, 1]), the per capita growth rate (f(v)/v) of this species

attains its maximum at an intermediate population size. The strength of the Allee

effect increases in the parameter ρ. When ρ = 0, it reduces to the classical logistic

growth. We are successful in establishing the relation between the spreading speed

and the Allee effect. We also have proved that there exists a threshold value (a critical

number) ρ̄ to divide the speed selection. Specifically, our theoretical and numerical

results show that the spreading speed is an increasing function of ρ. For given values

of µ, σ, α, ε, d (through experiments), we can compute the linear speed c0 and further

estimate the threshold value ρ̄ with analytic formulas.
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In the novel construction of upper and lower solutions for the speed selection,

we should emphasize that the parabolic formula for U
V

in terms of V is entirely new

and totally different from the formula given in [1, 2] (where they only assumed a

linear relation, i.e., U
V

= k, and this idea doesn’t work here). By this technique, we

successfully establish explicit conditions for both the linear and the nonlinear selection:

see Theorems 3.4.2 (m = 1) and 3.4.8 (m = 2) for the linear selection and Theorems

3.4.5-3.4.6 for the nonlinear selection.

We should also mention that all the coefficients of our main model are constant,

but this is not essential in our method and idea. It can be interestingly extended to a

more general case, such as where all the coefficients are time-periodic functions, and

even with periodic habitats. Efforts on these aspects are currently in progress and

will be presented in future publications.

3.6 Appendix

In this appendix, we will show the upper and lower solutions method in detail. This

method is originated in [17,85] and used to prove the existence of monotone traveling

wave solutions to the partial differential equations. In the meantime, we can also

apply it to derive the linear speed selection.

Let M̄1 be a sufficiently large positive number so that

F (U, V ) = σU − µV + f(V ) +MV

is monotone in V . Then the wave equations in (3.1.5) are equivalent todU ′′ + (c− α)U ′ − σU = −µV,

εV ′′ + cV ′ −MV = −F (U, V ).
(3.6.1)

For the first equation, we have already solved it by (3.3.1). For the second equation,

when ε > 0, the integral form is given by

V (ξ) =
1

ε(γ2 − γ1)

{∫ ξ

−∞
eγ1(ξ−s)F (U(s), V (s))ds+

∫ +∞

ξ

eγ2(ξ−s)F (U(s), V (s))ds

}
=: T2(U, V ), (3.6.2)
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where

γ1 =
c−
√
c2 + 4εM

2ε
< 0 < γ2 =

c+
√
c2 + 4εM

2ε
. (3.6.3)

When ε = 0,

V (ξ) =
1

c

∫ +∞

ξ

e
M
c

(ξ−s)F (U(s), V (s))ds =: T2(U, V ). (3.6.4)

Thus, the system (3.6.1) in an integral form readsU(ξ) = H(V ) = T1(U, V )

V (ξ) = T2(U, V ),
(3.6.5)

where H(V ) is defined by (3.3.1) and T2(U, V ) is defined by (3.6.2) when ε > 0 or

(3.6.4) when ε = 0. Then, with the integral form, we can define an upper (or a lower)

solution.

Definition 3.6.1. A pair of continuous functions (U, V )(ξ) is an upper (a lower)

solution to the integral system (3.6.5) if

U(ξ) > (6)T1(U, V )(ξ),

V (ξ) > (6)T2(U, V )(ξ).

Since the above integral forms are not practical in finding upper or lower solutions,

we then give inequalities in terms of differential equations themselves that imply the

Definition 3.6.1 in the following lemma.

Lemma 3.6.2. A pair of continuous functions (U, V )(ξ) which is differentiable on R

except at finite numbers of points ξi, i = 1, · · · , n, and satisfiesdU
′′ + (c− α)U ′ − σU + µV 6 0,

εV ′′ + cV ′ + σU − µV + f(V )V 6 0,

for ξ 6= ξi, and (U ′, V ′)(ξ−i ) > (U ′, V ′)(ξ+
i ) for all ξi, is an upper solution to the integral
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system (3.6.5). A lower solution can be defined by reversing all the inequalities.

Proof. We give a proof for the upper solution, while a similar argument can be applied

for the lower solution. From the above inequalities, we have

T1(U, V )(ξ) =
µ

d(τ2 − τ1)

{∫ ξ

−∞
eτ1(ξ−s)V (s)ds+

∫ ∞
ξ

eτ2(ξ−s)V (s)ds

}
(3.6.6)

6
−µ

d(τ2 − τ1)

{∫ ξ

−∞
eτ1(ξ−s)(dU ′′ + (c− α)U ′ − σU)(s)ds

+

∫ ∞
ξ

eτ2(ξ−s)(dU ′′ + (c− α)U ′ − σU)(s)ds

}
.

By a similar calculation to that of [ [55], proof of Lemma 2.5], we can show that

T1(U, V )(ξ) 6 U(ξ).

The same result holds for T2(U, V )(ξ) 6 V (ξ). This implies that (U, V )(ξ) is an

upper solution to the system (3.6.5). The proof for the lower solution is the same and

omitted.

To move on to the upper and lower solutions method, we first assume the following

hypothesis.

Hypothesis 3.6.3. For a given c > c0, assume there exists a monotone non-increasing

upper solution (U, V )(ξ) and a non-zero lower solution (U, V )(ξ) to the system (3.6.5)

with the following properties:

(1) (U, V )(ξ) 6 (U, V )(ξ), for all ξ ∈ R;

(2) (U, V )(+∞) = (0, 0) and (U, V )(−∞) = (k1, k2);

(3) (U, V )(+∞) = (0, 0) and (U, V )(−∞) = (k1, k2), for (0, 0) 6 (k1, k2) 6 (µ
σ
, 1)

and (k1, k2) > (µ
σ
, 1) so that no other equilibrium solution to (3.1.5) exists in the set

{(U, V )|(0, 0) 6 (U, V ) 6 (k1, k2)}.

Then, under the conditions of the above hypothesis, we can define an iteration
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scheme as 
(U0, V0) = (U, V ),

Un+1 = T1(Un, Vn), n = 0, 1, 2, · · · ,

Vn+1 = T1(Un, Vn), n = 0, 1, 2, · · · .

(3.6.7)

At last, by the results in [17, 88], we can arrive at the following theorem, which

shows the existence of an upper and a lower solution indicates the existence of the

actual solution.

Theorem 3.6.4. If Hypothesis 3.6.3 is true, then the iteration scheme (3.6.7) con-

verges to a pair of non-increasing functions (U, V )(ξ), which is a solution to the system

(3.1.5) with (U, V )(+∞) = (0, 0) and (U, V )(−∞) = (µ
σ
, 1). Moreover, (U, V )(ξ) 6

(U, V )(ξ) 6 (U, V )(ξ) for all ξ ∈ R.



Chapter 4

Spreading Speeds Determinacy for

a Cooperative Lotka-Volterra

System with Stacked Fronts

4.1 Introduction

The Lotka-Volterra cooperative model considered in this chapter is given byut = d1uxx + r1u(1− u+ b1v),

vt = d2vxx + r2v(1− v + b2u),
(4.1.1)

where all the parameters (di, ri, bi) are positive with b1b2 < 1. In the model, u and

v stand for the population densities of two collaborated species at time t > 0 and

location x ∈ R; d1 and d2 are diffusion coefficients; r1 and r2 are the net birth rates;

b1 and b2 represent the cooperation strengths. For applications of this model, see

e.g., [34, 88]. It is easy to find four equilibria of (4.1.1) as

0 = (0, 0), α1 = (1, 0), α2 = (0, 1), β =

(
1 + b1

1− b1b2

,
1 + b2

1− b1b2

)
=: (e1, e2). (4.1.2)
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Among them, 0 is called the extinction state, α1 and α2 are the intermediate (or

monoculture) states, and β is the co-existence state. Moreover, from its corresponding

space-homogeneous ordinary differential system, i.e.,u′ = r1u(1− u+ b1v),

v′ = r2v(1− v + b2u),

it is easy to see that 0 is unstable while β is stable; α1 and α2 are saddles.

Since this chapter focuses on the spreading phenomena of model (4.1.1), we follow

the pioneering work [20, 41] and references therein to define the spreading speed(s)

first. Let C denote the set of all bounded and continuous functions from R to R2, and

[φ, ψ]C := {w ∈ C : φ 6 w 6 ψ}. For more details including the ordering signs of 6

and �, please see the aforementioned references.

Denote w0(x) = (u0, v0)(x), and we know that system (4.1.1) generates a monotone

semiflow Qt : [0, β]C → [0, β]C defined by

Qt[w0](x) = w(t, x; w0) = (u, v)(t, x), ∀(t, x) ∈ [0,+∞)× R,

where w(t, x; w0) is the unique solution of (4.1.1) satisfying w(0, ·; w0) = w0 ∈ [0, β]C.

Let ω̄ be a vector with 0� ω̄ � β and choose the initial condition w0 satisfying: (a).

w0(x) is nonincreasing in x, (b). w0(x) = 0 for all x > 0, and (c). w0(−∞) = ω̄. For

a given real number c, a sequence {an(c; s)} can be defined by the recursion

a0(c; s) = w0(s), an+1(c; s) = max{w0(s), Q1[an(c; ·)](s+ c)}.

It follows from [48] that this sequence converges to a continuous function a(c; s) which

is nonincreasing in both s and c with a(c;−∞) = β, and a(c;∞) is an equilibrium of

Q1, i.e., a(c;∞) = 0, α1, α2, or β.

Two critical numbers with biological implications can be defined as follows. The

slowest spreading speed is

c∗ = sup{c ∈ R : a(c;∞) = β} (4.1.3)
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and it has the property such that for any ε > 0,

lim sup
t→∞, x>(c∗+ε)t

w < β and lim
t→∞, x6(c∗−ε)t

[β −w] = 0. (4.1.4)

The fastest spreading speed is

c∗f = sup{c ∈ R : a(c;∞) > 0} (4.1.5)

and it has the property such that for any ε > 0,

lim
t→∞, x>(c∗f+ε)t

w = 0 and lim inf
t→∞, x6(c∗f−ε)t

w > 0, (4.1.6)

see e.g., [20,48,88]. It is clear that c∗ 6 c∗f . We call that a single spreading speed exists

if c∗ = c∗f , which definitely will happen for a system without other equilibria between 0

and β, and multiple spreading speeds exist if c∗ < c∗f . Moreover, by [20,48], it follows

that c∗ and c∗f are independent of the choice of the initial function. In population

invasion, the existence of a single spreading speed means that all species invade the

inhabited area at the same speed c∗, while the existence of multiple spreading speeds

(i.e., c∗ < c∗f ) can be interpreted as follows: no species spreads more slowly than c∗

and at least one spreads at this speed, and no species spreads more quickly than c∗f
and at least one is equal to the speed c∗f .

The above two speeds are related to an important biological phenomenon: travel-

ing wave fronts. A traveling wave front of (4.1.1) is a special pattern-moving solution

with the form

(u, v)(t, x) = (U, V )(z), z = x− ct. (4.1.7)

Here, U, V are moving profile that is nonincreasing in z, and c ∈ R is the wave speed

to be determined. The system for the wave profile (U, V )(z) (z = x− ct) can be easily

given by d1U
′′ + cU ′ + r1U(1− U + b1V ) = 0,

d2V
′′ + cV ′ + r2V (1− V + b2U) = 0.

(4.1.8)

In terms of Qt, the traveling wave W(x) = (U, V )(x) with speed c satisfies

Qt[W](x) = W(x− ct) = (U, V )(x− ct), ∀x ∈ R, t > 0. (4.1.9)
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Moreover, we say that this traveling wave connecting β if (U, V )(−∞) = β. Since

there are other equilibria between 0 and β, it is uncertain which equilibrium will be

reached when z → ∞. This means that (U, V )(+∞) could be α1 or α2 or 0 if no

further conditions are restricted.

Following Theorem 4.2 in [20], the existence of traveling wave of (4.1.1) can be

obtained as follows.

Theorem 4.1.1 ( Theorem 4.2 [20]). Let c∗ and c∗f be defined as in (4.1.4) and

(4.1.6), respectively. Then the following statements are true:

(1) For any c > c∗, (4.1.1) has a traveling wave solution (U, V )(x− ct) connecting β

to some fixed point β1 except β, i.e., β1 is one of 0, α1, and α2.

(2) For any c > c∗f , either of the following holds:

(i) (4.1.1) has a traveling wave solution (U, V )(x− ct) connecting β to 0;

(ii) (4.1.1) has a traveling wave solution (U1, V1)(x− ct) connecting β to α and a

traveling wave (U2, V2)(x− ct) connecting α to 0, where α= αi (i = 1 or 2).

(3) For any c < c∗, (4.1.1) has no traveling wave connecting β, and for any c < c∗f ,

there is no traveling wave connecting β to 0.

We would like to review important past applications on the model (4.1.1). Li,

Weinberger, and Lewis ( [41], Example 4.1) studied the spreading speeds c∗ and c∗f ,

and the existence of traveling wave solutions (as a typical example) under a strong

condition where d1r1 > d2r2e2 so that c∗ < c∗f . Later, Lin, Li, and Ma ( [46], Theorem

5.11) proved the existence of traveling waves connecting β to 0 with c > 2
√
d1r1 plus

some further conditions. More recently, Lin ( [45], Theorem 3.1) showed c∗f = 2
√
d1r1

and c∗ > 2
√
d2r2(1 + b2) if d1r1 > d2r2e2, and also pointed out that there exist

traveling waves, connecting β and 0, for c > 2
√
d1r1, if d1 > d2 with r1 > r2, or if

d1 = d2 with r2(1 + b2) > r1 > r2. For spreading speed determinacy to the Lotka-

Volterra competitive model as well as cooperative systems with stacked fronts, we

refer to [1, 2, 28,32–34,53,88].

The purpose of this chapter is to investigate the speed selection mechanism for

(4.1.1) either with a single spreading speed or with multiple spreading speeds. Through-

out this chapter, we assume that

d1r1 > d2r2, (4.1.10)
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since the dynamics will be similar if the inequality is reversed. By relating the fastest

and slowest spreading speeds to each species’ individual spreading speed, under the

condition (4.1.10), we find that the invasion speed of v-species is always not faster

than that of u-species. A necessary and sufficient condition is established for the

existence of a single common speed. The results show that the invasion speed of u is

faster than that of v if and only if the spreading speed c∗α1,β
of the system, confined

to the phase space between α1 and β, is less than 2
√
d1r1. We develop the theory

of speed selection separately for each case and our results provide the determinacy

of each spreading speed, no matter whether they are equal or not. The numerical

simulations not only demonstrate our theoretical discovery, but also indicate new and

interesting phenomena that show the existence of terrace-type wave patterns.

Our speed selection mechanism can help us greatly understand the movement

of stacked fronts, an interesting phenomenon originally observed from combustion

theory in [36] and mathematically investigated in [34]. In the case when ĉ∗ (the

spreading speed for the system confined to the phase space [α1, β]C) is strictly less

than 2
√
d1r1, stacked fronts (in the first species) consist of two parts that can move

with different speeds so that the upper part is slower than the lower part (see also

the numerical simulation Figure 4.1). In the case when ĉ∗ = 2
√
d1r1, it is found a

stacked wavefront with upper and lower parts moving with the same speed that can

be sometimes determined by the linear speed 2
√
d1r1. This results in the formation of

a wavefront with a terrace, when the initial data are properly assigned, see Figure 4.7

in the simulation. On the other hand, when ĉ∗ > 2
√
d1r1, no existence of terrace can

be found and the whole solution will finally evolve into a traveling wave connecting β

and zero, with a common speed that can be linearly determined by 2
√
d1r1 (see e.g.,

Figure 4.8).

The rest of this chapter is organized as follows. Section 4.2 is devoted to the study

of the individual spreading speed of each species and some preliminaries related to

our model. Section 4.3 provides a necessary and sufficient condition to decide whether

(4.1.1) has a single spreading speed or multiple spreading speeds. The determinacy

of multiple spreading speeds is provided in Section 4.4, while the selection of a single

spreading speed is presented in Section 4.5. Numerical results will be provided in

Section 4.6. The last section contains further discussions.
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4.2 Individual spreading speed

To better understand c∗ and c∗f , we introduce the definition of the spreading speed

of each species. For model (4.1.1) with initial data satisfying (a), (b), and (c), the

spreading speed c∗u of the species u(t, x) is a constant such that

lim inf
t→∞, x6(c∗u−ε)t

u(t, x) > 0, lim
t→∞, x>(c∗u+ε)t

u(t, x) = 0, ∀ ε > 0, (4.2.1)

and similarly, the spreading speed c∗v of v(t, x) is a constant such that

lim inf
t→∞, x6(c∗v−ε)t

v(t, x) > 0, lim
t→∞, x>(c∗v+ε)t

v(t, x) = 0, ∀ ε > 0, (4.2.2)

Remark 4.2.1. In the above definitions, it implies that there exist two small positive

constants ηu, ηv > 0 such that

lim
t→∞, x6(c∗u−ε)t

u(t, x) > ηu, lim
t→∞, x6(c∗v−ε)t

v(t, x) > ηv, ∀ ε > 0.

According to their definitions, the fastest and slowest spreading speeds of (4.1.1)

can be related to the two individual spreading speeds in the following proposition.

Proposition 4.2.2.

c∗f = max{c∗u, c∗v}, c∗ = min{c∗u, c∗v}. (4.2.3)

If c∗u = c∗v, then (4.1.1) has a single spreading speed, i.e., c∗ = c∗f . Otherwise, it has

multiple spreading speeds, i.e., c∗ < c∗f .

The proof of this proposition is straightforward and we omit it here.

If we forget about the condition (4.1.10), we have the following lemma.

Lemma 4.2.3. Without the restriction (4.1.10), the following statements hold.

(1) If c∗u > c∗v, then for c ∈ [c∗v, c
∗
u), (4.1.1) has a traveling wave (U, V )(x − ct)

connecting β to α1 = (1, 0). Furthermore, c∗u = 2
√
d1r1.

(2) If c∗v > c∗u, then for c ∈ [c∗u, c
∗
v), (4.1.1) has a traveling wave (U, V )(x − ct)
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connecting β to α2 = (0, 1). Moreover, c∗v = 2
√
d2r2.

(3) There is an estimate for c∗u and c∗v as: 2
√
d1r1e1 > c∗u > 2

√
d1r1 and 2

√
d2r2e2 >

c∗v > 2
√
d2r2.

Proof. We start with proving (1). Under the condition of (1), by Proposition 4.2.2

and Theorem 4.1.1, we know that for any c ∈ [c∗v, c
∗
u), (4.1.1) has a traveling wave

W(x − ct) = (U, V )(x − ct) with W(−∞) = β and W(+∞) = β1(< β) (being an

equilibrium). Next, we want to show β1 = α1.

Now, choose w0(x) = (u0, v0)(x) with the properties (a), (b), and (c) such that

w0(x) 6 W(x), x ∈ R.

Then, by comparison, we obtain that

(u, v)(t, x) = Qt[w0](x) 6 Qt[W](x) = W(x− ct),

Let ε = c∗u − c. Thus, for x = (c+ ε
2
)t = (c∗u − ε

2
)t and t→∞, we have

β1 = W(+∞) > lim
t→+∞, x=(c∗u− ε2 )t

Qt[w0](x).

On the other hand, (4.2.1) with its remark shows that

lim inf
t→∞, x=(c∗u− ε2 )t

u(t, x) > ηu > 0. (4.2.4)

This implies that the u-coordinate of β1 is always positive when c ∈ [c∗v, c
∗
u). Combin-

ing with β1 < β, it immediately follows that β1 = α1 = (1, 0). This proves the first

statement of (1).

To prove the second statement of (1), we consider the case where c > c∗v, i.e.,

c = c∗v + ε for some ε > 0. Formula (4.2.2) indicates that lim
t→∞, x>(c∗v+ε)t

v(t, x) = 0.

Thus, with t → ∞ and x > (c∗v + ε)t, we have a limiting system associated with
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(4.1.1) (in which v ≡ 0) as follows:

ut = d1uxx + r1u(1− u). (4.2.5)

This is the famous Fisher-KPP equation. It is well-known that (4.2.5) has a spreading

speed c∗l = 2
√
d1r1 and there exists also traveling wave U1(x− ct) connecting 1 to 0 if

and only if c > c∗l = 2
√
d1r1. Therefore, c∗u = c∗l = 2

√
d1r1, which verifies the second

statement.

As to part (2), the proof is similar and omitted.

For part (3), as in the proof of (1), we already know that c∗u > 2
√
d1r1 via

linearization. Since v 6 e2 is always true, by the comparison principle, u can-

not spread more quickly than the wave generated by letting v ≡ e2 in the first

equation of (4.1.1). The resulting equation is again a Fisher-KPP equation. Thus,

c∗u 6 2
√
d1r1(1 + b1e2) = 2

√
d1r1e1. In summary, the spreading speed of u has the

range 2
√
d1r1 6 c∗u 6 2

√
d1r1e1.

Because 0 6 u 6 e1, by letting u = 0 (or u = e1) in the second equation of

(4.1.1) and using the comparison principle, we can similarly show that 2
√
d2r2 6 c∗v 6

2
√
d2r2e2. This completes the proof.

In this chapter, since the parameter condition (4.1.10) is assumed to be true, we

can further have the following lemma.

Lemma 4.2.4. When (4.1.10) holds (i.e., d1r1 ≥ d2r2), it always follows that

c∗u > c∗v. (4.2.6)

Proof. By contradiction, we assume c∗u < c∗v. Then in view of Lemma 4.2.3 (2), we

find that c∗v = 2
√
d2r2. This leads to a contradiction since the inequality 2

√
d1r1 6

c∗u < c∗v = 2
√
d2r2 disagrees with our condition (4.1.10). The proof is complete.

Remark 4.2.5. From the above lemma, the condition (4.1.10) implies that u-species

spreads more quickly than (at least the same speed as) v-species. Biologically, it means



79

that u-species has a stronger intrinsic spreading ability. Similarly, reversing (4.1.10)

reserves (4.2.6).

Next, we introduce the definition of speed determinacy (selection). Since (4.1.1)

indeed admits either a single spreading speed, or multiple spreading speeds, we will

divide our analysis of them separately.

For the single spreading speed case, i.e., c∗u = c∗v, there always exists a traveling

wave connecting zero.

Through linearizing (4.1.8) around 0, we obtain a reducible system (whose defini-

tion can be found in [88]) d1U
′′ + cU ′ + r1U = 0,

d2V
′′ + cV ′ + r2V = 0.

For the first equation, a direct analysis shows that

cu0 = 2
√
d1r1, (4.2.7)

where cu0 is the minimal speed so that the first equation has nonnegative traveling

wave solutions. By comparison (see [43]), it always follows that

c∗u > cu0 . (4.2.8)

Similarly, from the second equation, we have that

c∗v > cv0 = 2
√
d2r2, (4.2.9)

where cv0 is the minimal speed so that the second equation has nonnegative traveling

wave solutions.

Now, we are ready to give the definition of speed selection corresponding to the

single spreading speed case, based on the linearized system at zero.

Definition 4.2.6. When (4.1.1) has a single spreading speed, we say that c∗u is linearly

selected if c∗u = cu0 , and nonlinearly selected if c∗u > cu0 ; c∗v is linearly selected if c∗v = cv0,

and nonlinearly selected if c∗v > cv0.
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Remark 4.2.7. Under the condition d1r1 > d2r2, we see that cu0 > cv0. Thus, if

c∗v = c∗u , we can always have that c∗v is nonlinearly selected due to c∗v = c∗u > cu0 > cv0.

For the case where c∗u > c∗v, by Lemma 4.2.3, we know that when c ∈ [c∗v, c
∗
u), (4.1.1)

has a traveling wave (U, V )(x− ct) with (U, V )(−∞) = β and (U, V )(+∞) = α1. To

indicate such a wave, we introduce an auxiliary system by using the change of variables

w = u− 1 and v = v. Hence the auxiliary system can be obtained aswt = d1wxx + r1(w + 1)(−w + b1v),

vt = d2vxx + r2v(1 + b2 − v + b2w).
(4.2.10)

Clearly, the auxiliary system has only two nonnegative equilibria

β̂ = (e1 − 1, e2) and 0 = (0, 0).

Then, following a similar analysis for the original system (4.1.1), (4.2.10) generates a

monotone semiflow Q̂t : [0, β̂]C → [0, β̂]C defined by

Q̂t[ŵ0](x) = ŵ(t, x) = (w, v)(t, x),

where ŵ0(x) = ŵ(0, x). By [43] (or [20, 41]), it follows that (4.2.10) has a single

spreading speed ĉ∗ (or c∗α1,β
) defined as

ĉ∗ = sup{c ∈ R : â(c;∞) > 0}, (4.2.11)

where

â0(c; s) = ŵ0(s), ân+1 = max{ŵ0(s), Q̂1[ân(c; ·)](s+ c)},

â(c; s) = lim
n→∞

ân(c; s), and ŵ0(s) satisfies (a), (b), and (c) with β replaced by β̂.

Furthermore, by the proof of Lemma 2.8 of [43], it then follows that ĉ∗ does not

depend on the choice of ŵ0(s) as long as it satisfies conditions (a), (b), and (c). For

any ε > 0, this spreading speed ĉ∗ has properties

lim
t→∞, x>(ĉ∗+ε)t

ŵ(t, x) = 0, and lim
t→∞, x6(ĉ∗−ε)t

|β̂ − ŵ(t, x)| = 0. (4.2.12)
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The wave profile corresponding to system (4.2.10) is

(w, v)(t, x) = (W,V )(z), z = x− ct,

and the corresponding wave profile system can be obtained asd1W
′′ + cW ′ + r1(W + 1)(−W + b1V ) = 0,

d2V
′′ + cV ′ + r2V (1 + b2 − V + b2W ) = 0,

(4.2.13)

subject to

(W,V )(−∞) = β̂, (W,V )(∞) = 0. (4.2.14)

Such a wave solution with speed c satisfies

Q̂t[(W,V )](x) = (W,V )(x− ct).

Similar to Example 4.1 in [41], by Proposition 4.2.2 and Lemma 4.2.3, we have

the following lemma to manifest the exact relation between ĉ∗ and c∗v.

Lemma 4.2.8. Under conditions (4.1.10) and c∗u > c∗v, we have

c∗v = ĉ∗, (4.2.15)

where ĉ∗ is the spreading speed of the auxiliary system (4.2.10).

This lemma implies that we can use the information on ĉ∗ to further study the

speed selection for c∗v. A standard linearization analysis of (4.2.13) around 0 shows

that

ĉ∗ > 2
√
d2r2(1 + b2) =: cvα1

, (4.2.16)

where cvα1
is the minimal speed such that the corresponding linear system has a non-

negative traveling wave solution.

We continue to find c∗u. Under the condition c∗u > c∗v, c
∗
u is determined by the

limiting system

ut = d1uxx + r1u(1− u)

which has a linear speed
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cu0 = c∗l = 2
√
d1r1, (4.2.17)

where c∗l is the spreading speed of the system (4.2.5).

Now, with the understanding of c∗v, c
∗
u and their corresponding linear speeds cvα1

and

cu0 , we can give the definition of speed selection when (4.1.1) has multiple spreading

speeds.

Definition 4.2.9. If (4.1.1) has multiple spreading speeds (i.e., c∗u > c∗v) and let cvα1

and cu0 be defined in (4.2.16) and (4.2.17), respectively, we say that c∗u is linearly

selected if c∗u = cu0 and nonlinearly selected if c∗u > cu0 , c∗v is linearly selected if c∗v = cvα1

and nonlinearly selected if c∗v > cvα1
.

From the proof of Lemma 4.2.3, we have the following lemma to determine c∗u.

Lemma 4.2.10. Under conditions (4.1.10) and c∗u > c∗v, we have that

c∗u = c∗l = 2
√
d1r1, (4.2.18)

where c∗l is the spreading speed of the limiting system (4.2.5).

Remark 4.2.11. Based on the above definition and lemma, it immediately follows

that, if c∗u > c∗v, then c∗u is always linearly selected, since c∗u = 2
√
d1r1 = cu0 ,

For the reader’s convenience, we provide the following definition of an upper (or

a lower) solution to (4.1.1).

Definition 4.2.12. Assume that a pair of continuous functions (U, V )(z), z = x−ct,

is twice continuously differentiable on R except for finite m points zi with

U ′(z+
i ) 6 U ′(z−i ), V ′(z+

i ) 6 V ′(z−i ), i = 1, 2, · · · ,m, (4.2.19)
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and satisfyLu[U, V ] := d1U
′′ + cU ′ + r1U(1− U + b1V ) 6 0,

Lv[U, V ] := d2V
′′ + cV ′ + r2V (1− V + b2U) 6 0, ∀z ∈ R \ {zi}, i = 1, 2, · · · ,m.

(4.2.20)

Then, this pair of functions is called an upper solution to (4.1.1). A lower solution is

defined by reversing all the aforementioned inequalities.

Similarly, for the auxiliary system (4.2.10), an upper (or a lower) solution is ob-

tained by replacing Lu[U, V ] and Lv[U, V ] with L̂w[W,V ] and L̂v[W,V ], respectively,

where L̂w[W,V ] := d1W
′′ + cW ′ + r1(W + 1)(−W + b1V ),

L̂v[W,V ] := d2V
′′ + cV ′ + r2V (1 + b2 − V + b2W ).

(4.2.21)

4.3 Single or multiple spreading speeds: a neces-

sary and sufficient condition

As our main model (4.1.1) may admit single spreading speed or multiple spreading

speeds, we need to decide when c∗u = c∗v or c∗u > c∗v. We will make use of the spreading

speed ĉ∗ from the auxiliary system (4.2.10) to attack the problem.

A necessary and sufficient condition is obtained via the following theorem.

Theorem 4.3.1. System (4.1.1) has multiple spreading speeds (i.e., c∗u > c∗v), if and

only if ĉ∗ < 2
√
d1r1, where ĉ∗, defined in (4.2.11), is the spreading speed for the system

confined to the phase space [α1, β]C.

Proof. If c∗u > c∗v, from Lemmas 4.2.3 and 4.2.8, we immediately obtain that

c∗v = ĉ∗ and c∗u = 2
√
d1r1. (4.3.1)

The necessity is clear.
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To prove the sufficiency, we use a contradiction argument. Suppose that c∗u = c∗v.

By (4.2.7)-(4.2.9), we have that c∗v = c∗u > 2
√
d1r1. By the definition of ĉ∗, we know

that the auxiliary system (4.2.10) has a traveling wave (W (x− ĉ∗t), V (x− ĉ∗t)). Back

to (4.1.1), it has a traveling wave (U(x− ĉ∗t), V (x− ĉ∗t)) satisfying V (+∞) = 0. By

comparison, this implies that ĉ∗ > c∗v. This contradicts the condition ĉ∗ < 2
√
d1r1;

the proof is complete.

Next, we will find some specific sufficient conditions to determine whether a single

or multiple spreading speeds exist. The result is shown in the following theorem.

Theorem 4.3.2. Let c∗u, c∗v, ĉ
∗, and cvα1

be defined in (4.2.1), (4.2.2), (4.2.11), and

(4.2.16), respectively. The following statements for (4.1.1) hold.

(I) If d1r1 > d2r2e2, then c∗u > c∗v.

(II) Suppose d2r2e2 > d1r1 > 2d2r2(1 + b2). It follows that

(i) if ĉ∗ = cvα1
, then c∗u > c∗v;

(ii) if ĉ∗ > cvα1
but it has an upper bound ĉ2 satisfying 2

√
d1r1 > ĉ2 > cvα1

, then

c∗u > c∗v;

(iii) if ĉ∗ > cvα1
and it has a lower bound ĉ1 satisfying ĉ1 > 2

√
d1r1, then c∗u = c∗v.

(III) If d2r2(1 + b2) > d1r1, then c∗u = c∗v.

Proof. For (I), the result directly follows from Lemma 4.2.3 (3), since from the lemma,

we have that

c∗u > 2
√
d1r1 > 2

√
d2r2e2 > c∗v.

Due to the necessary and sufficient condition found in Theorem 4.3.1, the proof

of (II) is relatively straightforward. For (II)(i), it means that ĉ∗ = 2
√
d2r2(1 + b2) <

2
√
d1r1. Therefore, multiple spreading speeds occur. Similarly, (II)(ii) and (II)(iii)

can be obtained through Theorem 4.3.1.

The proof to (III) is also straightforward. Because ĉ∗ > 2
√
d2r2(1 + b2) (i.e.,

(4.2.16)), combining the condition of (III), we have that ĉ∗ > 2
√
d1r1. Then, by

Theorem 4.3.1, it is clear that c∗v = c∗u.
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Remark 4.3.3. In the above lemma, we list (II)(i) separately from (II)(ii) since the

equality ĉ∗ = cvα1
means that ĉ∗ is linearly selected when the auxiliary system (4.2.10)

is considered. It is worth to be discussed individually.

Remark 4.3.4. If d1r1 = d2r2, a single spreading speed always exists by (III) of the

above theorem.

4.4 Determinacy of multiple spreading speeds

In this section, we study the determinacy of individual spreading speed when multiple

spreading speeds exist. We will use the upper and lower solutions method to do the

speed selection analysis. Since the construction of an upper or a lower solution is based

on the asymptotic behaviors near the unstable equilibrium, we start with investigating

the corresponding linear system.

Linearizing (4.2.13) near 0 givesd1W
′′ + cW ′ − r1W + r1b1V = 0,

d2V
′′ + cV ′ + r2(1 + b2)V = 0.

(4.4.1)

Let (W,V )(z) = (Cw, Cv)e
−µ̂z, where Cw, Cv are nonnegative constants, and µ̂ > 0.

Substituting it into the above linear system produces an eigenproblem(
d1µ̂

2 − cµ̂− r1 r1b1

0 d2µ̂
2 − cµ̂+ r2(1 + b2)

)(
Cw

Cv

)
=

(
0

0

)
(4.4.2)

Setting the right-bottom diagonal element to be zero, we get

µ̂1(c) =
c−

√
c2 − 4d2r2(1 + b2)

2d2

, µ̂2(c) =
c+

√
c2 − 4d2r2(1 + b2)

2d2

, (4.4.3)

and we have that Cw = Cv · −r1b1
d1µ̂2

i−cµ̂i−r1
, where i = 1, 2.

Letting the top-left diagonal element equal to zero, we obtain a positive root

µ̂3(c) =
c+
√
c2 + 4d1r1

2d1

. (4.4.4)
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To have a positive solution (W,V ), we need c > 2
√
d2r2(1 + b2), that is, c > cvα1

.

When c > cvα1
, it is easy to see that 0 < µ̂1(c) 6 µ̂2(c) with µ̂1(c) being decreasing in c

while µ̂2(c) being increasing; µ̂3(c) > 0 is always increasing in c. Then, for simplicity,

we can set Cv = 1 or Cv = 0, Cw = 1. Thus, for c > cvα1
, the decaying positive

solution (W,V ) has following asymptotic behavior:W
V

 ∼ Ĉ1

k1(µ̂1)

1

 e−µ̂1z + Ĉ2

k1(µ̂2)

1

 e−µ̂2z + Ĉ3

1

0

 e−µ̂3z, as z → +∞, (4.4.5)

where

k1(µ̂i) = − r1b1

d1µ̂2
i − cµ̂i − r1

, i = 1, 2, (4.4.6)

and Ĉ1 > 0 or Ĉ1 = 0, Ĉ2, Ĉ3 > 0. Here, in (4.4.5), we assume that µ̂1, µ̂2 and µ̂3 are

not equal. If two of them are equal, then a similar but modified formula can be derived.

The result follows from the standard phase plane analysis (see, e.g., [28, 35, 60]).

Alternatively, the method of successive approximation (see, e.g., [52]) can be used to

prove (4.4.5), and we leave it to interested readers.

Next, we will use the well-known upper and lower solutions method to investigate

the classification of the speed selection for the auxiliary system (4.2.10).

Lemma 4.4.1. For the spreading speed ĉ∗ of system (4.2.10), the following statements

are true.

(1) ĉ∗ is linearly selected (i.e., ĉ∗ = cvα1
), if for c = cvα1

, there exists a pair of con-

tinuous, positive and nonincreasing functions (W,V )(z) being an upper solution to

(4.2.13)-(4.2.14) and satisfying

lim
z→−∞

(W,V ) > β̂ and lim
z→∞

(W,V ) = (0, 0). (4.4.7)

(2) ĉ∗ is nonlinearly selected with ĉ∗ > ĉ1 > cvα1
, if for c = ĉ1, there exists a pair of

continuous, nonnegative and nonincreasing functions (W,V )(z) being a lower solution

and satisfying

lim
z→−∞

(W,V )� β̂, and V ∼ e−µ̂2z as z →∞, (4.4.8)

where µ̂2 = µ̂2(ĉ1) is defined in (4.4.3).

(3) ĉ∗ has an upper bound by ĉ∗ 6 ĉ2 with ĉ2 > cvα1
, if there exists a pair of continuous
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and positive functions (W 2, V 2)(x− ĉ2t) being an upper solution and satisfying

lim
z→−∞

(W 2, V 2) > β̂ and V 2 ∼ e−µ̂2z, as z →∞,

where µ̂2 = µ̂2(ĉ2) is defined by (4.4.3).

Proof. (1) To prove ĉ∗ = cvα1
, we only need to show ĉ∗ 6 cvα1

due to ĉ∗ > cvα1
(since

(4.2.16) is well-known). Suppose that we have an upper solution (W̄ , V̄ )(x − cvα1
t)

satisfies (4.4.7). Then, recall the process to define ĉ∗ = sup{c : â(c; +∞) = β̂}, see

(4.2.11). Let c = cvα1
, we can define the sequence {ân} and its limit â by


â0(c;x) = ŵ0(x),

ân+1(c, x) = max{â0(c;x), Q̂1[ân(c; ·)](x+ c)},

â(c;x) = lim
n→∞

an(c;x),

where the initial data ŵ0(x) satisfies (a), (b), (c) by replacing β with β̂ and

ŵ0(x) < (W,V )(x), ∀ x ∈ R.

An induction shows that ân(c;x) 6 (W,V )(x), n > 1, which implies that â(c;x) 6

(W,V )(x), and hence,

â(c; +∞) = lim
x→∞

â(c;x) 6 lim
x→∞

(W,V )(x) = (0, 0).

Since ĉ∗ is independent of the initial data ŵ0, the definition of ĉ∗, see (4.2.11), shows

that ĉ∗ 6 c = cvα1
. This completes the proof of (1).

(2) To prove the second statement, we shall use the way of contradiction. Based on

the definition of ĉ∗, it is well-known that (4.2.10) has traveling waves for any c ≥ ĉ∗.

To the contrary, assume ĉ∗ < ĉ1. Then there exists a c ∈ (cvα1
, ĉ1), such that (4.2.10)

has a monotone traveling wave solution (W,V )(x − ct) connecting β̂ to 0. Clearly,
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as x → −∞, (4.4.8) shows that (W,V )(x) < (W,V )(x). Using the monotonicity of

µ̂1 and µ̂2, see (4.4.3), it is always true that V (x) < V (x) as x → ∞. Thus, we can

always assume that V (x) < V (x) for x ∈ R, by shifting if necessary.

Now, we claim that, for any given non-increasing and continuous function V (z),

where z = x − ct with c > cvα1
, and V (−∞) = a > 0, V (+∞) = 0, there exists a

nonincreasing function W (z) satisfying

d1W
′′ + cW ′ + r1(1 +W )(b1V −W ) = 0,

W (−∞) = b1a, W (+∞) = 0.

(4.4.9)

To see this, we will apply the upper and lower solutions method. It is easy to see that

W̄ = b1a is an upper solution due to L̂w[W̄ , V ] 6 0, while W = 0 is a lower solution

since L̂w[W,V ] > 0; thus, the result follows. Moreover, since the reaction term

r1(1+W )(b1V −W ) is monotone in V , by comparison, we obtain that W (V1) > W (V2)

if V1 > V2 for z ∈ R.

The above claim combing the condition V < V implies that

(W,V )(x) 6 (W,V )(x), ∀x ∈ R.

Hence, by comparison, we have

ŵ(x− ĉ1t) 6 Q̂t[ŵ] 6 Q̂t[ŵ] = ŵ(x− ct),

where ŵ(x) = (W,V )(x). Since ŵ(x) = (W,V )(x) 6≡ 0 nonincreasing in x, there is

x1 ∈ R such that ŵ(x1) > 0. For x, t satisfying x − ĉ1t = x1 and t → ∞, we can

derive ŵ(x1) 6 0. This is a contradiction.

(3) When ĉ∗ > cvα1
holds, we proceed to find an upper bound of ĉ∗. Again, by the

fact that ĉ∗ is independent of the choice of the initial condition ŵ0(x) as long as it

satisfies (a), (b), and (c), through replacing cvα1
and (W̄ , V̄ ) with ĉ2 and (W̄2, V̄2) in

the proof of (1), we can show that ĉ∗ 6 ĉ2. The proof is completed.
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Based on the above lemma, we proceed to find some specific conditions to classify

the speed selection of system (4.2.10) by picking up some trial functions.

Theorem 4.4.2. If d1

d2
6 2, then the spreading speed of system (4.2.10) is linearly

selected, i.e., ĉ∗ = cvα1
.

Proof. For c = cvα1
, we have µ̂1(c) = µ̂2(c) = µ̂0 =

√
r2(1+b2)

d2
and

0 < k1 = k1(µ̂0) =
b1

1− r2(1+b2)
r1

(
d1

d2
− 2
) 6 b1

provided that d1

d2
6 2. Then, define

V̄ (z) =
e2

1 + eµ̂0z
, and W̄ (z) = (e1 − 1)

V̄

e2

= b1V̄ (z). (4.4.10)

It is easy to see that V̄ → e2, W̄ → e1 − 1 as z → −∞, and V̄ → 0, W̄ → 0 as

z → +∞. Through a direct computation, we find the first and second derivatives of

V̄ as

V̄ ′ = −µ̂0V̄ (1− V̄1), V̄ ′′ = µ̂2
0V̄ (1− V̄1)(1− 2V̄1), where V̄1 =

V̄

e2

. (4.4.11)

Substituting them all into L̂w[W,V ] and L̂v[W,V ] (see, 4.2.21) gives

L̂w[W̄ , V̄ ] = d1µ̂
2
0b1V̄ (1− V̄1)(1− 2V̄1)− cµ̂0b1V̄ (1− V̄1) + 0

=
V̄ 2

e2

(1− V̄1)

{
−2d1µ̂

2
0 + r1

1− b1
k1

V̄1

}

and

L̂v[W̄ , V̄ ] = d2µ̂
2
0V̄ (1− V̄1)(1− 2V̄1)− cµ̂0V̄ (1− V̄1) + r2V̄ (1 + b2 − V̄ + b2W̄ )

=
V̄ 2

e2

(1− V̄1)
{
−2d2µ̂

2
0

}
.

Since 1− b1
k1

6 0, it is clearly that L̂w[W̄ , V̄ ] 6 0 and L̂v[W̄ , V̄ ] 6 0. Then, by Lemma
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4.4.1 (1), we have found an upper solution satisfying (4.4.7) with c = cvα1
. Thus,

ĉ∗ = cvα1
, which completes the proof.

Let V̄ be defined as (4.4.10) and

W̄ = min{e1 − 1, k1V̄ } =

e1 − 1, z 6 z1,

k1V̄ , z > z1,

where z1 ∈ R such that V̄ (z1) = e1−1
k1

= b1
k1
e2 < e2. We can have the following result.

Theorem 4.4.3. If



d1

d2
> 2,

max
{
d1

d2
− r1

r2(1+b2)
, b2k1

1−b1b2

}
< 2,

where k1 = b1

1− r2(1+b2)
r1

(
d1
d2
−2
) ,

(4.4.12)

then ĉ∗ is linearly selected, i.e., ĉ∗ = cvα1
.

Proof. For c = cvα1
, we still have µ̂0 =

√
r2(1+b2)

d2
and

k1(µ̂0) =
b1

1− r2(1+b2)
r1

(
d1

d2
− 2
) > b1

since 0 < d1

d2
− 2 < r1

r2(1+b2)
. Let V̄ be defined as (4.4.10) and

W̄ = min{e1 − 1, k1V̄ } =

e1 − 1, z 6 z1,

k1V̄ , z > z1,

where z1 ∈ R such that V̄ (z1) = e1−1
k1

= b1
k1
e2 < e2. Thus, when z 6 z1, we have

L̂w[W̄ , V̄ ] = 0 + 0 + r1e1(−e1 + 1 + b1V̄ ) 6 r1e1(−e1 + 1 + b1e2) = 0,
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and

L̂v[W̄ , V̄ ] = d2µ̂
2
0V̄ (1− V̄1)(1− 2V̄1)− cµ̂0V̄ (1− V̄1) + r2V̄ (1 + b2 − V̄ + b2(e1 − 1))

=
V̄ 2

e2

(1− V̄1)

{
−2d2µ̂

2
0 +

r2b1b2e2

V̄1

}
6

V̄ 2

e2

(1− V̄1)

{
−2d2µ̂

2
0 +

r2b1b2e2

b1
k1

}
since V̄1 ∈ [

b1

k1

, 1] as z 6 z1

=
V̄ 2

e2

(1− V̄1)

{
r2(1 + b2)[

b2k1

1− b1b2

− 2]

}
6 0,

The last inequality holds by the second inequality from (4.4.12). When z > z1,

through a direct computation, we obtain that

L̂w[W̄ , V̄ ] = d1µ̂
2
0k1V̄ (1− V̄1)(1− 2V̄1)− cµ̂0k1V̄ (1− V̄1) + r1(k1V̄ + 1)(−k1V̄ + b1V̄ )

=
k1V̄

2

e2

(1− V̄1)

{
−2d1µ̂

2
0 + r1

b1
k1
− 1 + b1e2 − k1e2

1− V̄1

}

is less than zero since b1 < k1. Also,

L̂v[W̄ , V̄ ] = d2µ̂
2
0V̄ (1− V̄1)(1− 2V̄1)− cµ̂0V̄ (1− V̄1) + r2V̄ (1 + b2 − V̄ + b2k1V̄ )

=
V̄ 2

e2

(1− V̄1)

{
−2d2µ̂

2
0 + r2

(1 + b2)− e2(1− k1b2)

1− V̄1

}
<

V̄ 2

e2

(1− V̄1)

{
−2d2µ̂

2
0 + r2(1 + b2)

1− 1−b2k1

1−b1b2

1− b1
k1

}
since V̄1 ∈ [0,

b1

k1

) as z > z1

=
V̄ 2

e2

(1− V̄1)

{
r2(1 + b2)

[
b2k1

1− b1b2

− 2

]}
6 0.

This means that we have found an upper solution satisfying (4.4.7) with c = cvα1
,

which implies ĉ∗ = cvα1
.

With the help of above theorems, we immediately obtain the following speed se-

lection theorem for the original system (4.1.1).
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Theorem 4.4.4. If d1r1 > d2r2(1 + b2) and one of the following holds:

d1

d2

6 2 (4.4.13)

or, 
d1

d2
> 2, max

{
d1

d2
− r1

r2(1+b2)
, b2k1

1−b1b2

}
< 2,

where k1 = b1

1− r2(1+b2)
r1

(
d1
d2
−2
) , (4.4.14)

then (4.1.1) has multiple spreading speeds and both of them are linearly selected, i.e.,

c∗v = cvα1
and c∗u = cu0 .

Proof. Since under conditions (4.4.13) or (4.4.14), by Theorems 4.4.2 and 4.4.3, it

immediately follows that ĉ∗ = 2
√
d2r2(1 + b2) < 2

√
d1r1. Through Theorem 4.3.1,

c∗u > c∗v. Then, by Lemma 4.2.8 and Remark 4.2.11, the linear selection result follows.

The proof is completed.

The conditions in the above theorem imply that µ̂3(cvα1
) > µ̂0(cvα1

). From (4.4.5),

it follows that W and V from the traveling wave (W,V )(x − cvα1
t) have the same

exponential decaying rate µ̂0. When µ̂3(cvα1
) < µ̂0(cvα1

), W may have a different

exponential decaying rate from V as z →∞. We will present an example in Section 6

(see, Example 6.2) to show that, under such a condition, both the linear and nonlinear

selection may happen depending on the parameters.

4.5 Determinacy of the single spreading speed

When ĉ∗ > 2
√
d1r1, the system has a single spreading speed c∗u = c∗v. Based on the

linearized system at zero, it is easy to know that c∗v is always nonlinearly selected.

Now we want to determine whether c∗u is linearly or nonlinearly selected. Indeed, let

(U, V )(z) = (Cue
−µz, Cve

−µz) with Cu, Cv, µ being positive numbers. By inserting it

into the linear system, we find the eigenproblem as[d1µ
2 − cµ+ r1]Cu = 0,

[d2µ
2 − cµ+ r2]Cv = 0.
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The first equation with Cu > 0 gives

µ1(c) =
c−
√
c2 − 4d1r1

2d1

, µ2(c) =
c+
√
c2 − 4d1r1

2d1

, (4.5.1)

and the second equation with Cv > 0 gives

µ3(c) =
c−
√
c2 − 4d2r2

2d2

, µ4(c) =
c+
√
c2 − 4d2r2

2d2

. (4.5.2)

We also want to obtain a positive solution. Thus c > max{2
√
d1r1, 2

√
d2r2} =

2
√
d1r1, that is, c > cu0 . Clearly, when c > cu0 , 0 < µ1(c) 6 µ2(c), 0 < µ3(c) 6 µ4(c),

and µ1,3(c) are decreasing while µ2,4(c) is increasing with respect to c. Hence, for

c > cu0 , the decaying positive solution (U, V )(z) behaves like

(
U

V

)
∼

(
C1e

−µ1(c)z + C2e
−µ2(c)z

C3e
−µ3(c)z + C4e

−µ4(c)z

)
, as z →∞, (4.5.3)

where C1 > 0 or C1 = 0, C2 > 0 while C3 > 0 or C3 = 0, C4 > 0.

Lemma 4.5.1. Suppose c∗u = c∗v. The following statements are true.

(1) c∗u is linearly selected, i.e., c∗u = cu0 , if for c = cu0 , there exists a pair of continuous

and positive functions (U, V ) being an upper solution to (4.1.9) and satisfying

lim
z→−∞

(U, V )� 0 and lim
z→∞

U = 0. (4.5.4)

Furthermore, if lim
z→∞

(U, V ) = (0, 0), then there exists a traveling wave connecting β

and zero.

(2) c∗u is nonlinearly selected and c∗u > c1 > cu0 , if for c = c1, there exists a pair of

continuous and non-increasing functions (U, V ) being a lower solution to (4.1.9) and

satisfying

lim
z→−∞

(U, V )� β and (U, V ) ∼ (e−µ2(c1)z, e−µ4(c1)z) as z →∞, (4.5.5)

where µ2(c1), µ4(c1) are defined in (4.5.1) and (4.5.2), respectively.
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(3) c∗u has an upper bound c∗u 6 c2 with c2 > cu0 , if there exists a pair of continuous and

positive functions (U2, V 2)(x− c2t) being an upper solution to (4.1.9) and satisfying

lim
z→−∞

(U2, V 2)� 0 and U2 ∼ e−µ2(c2)z, as z →∞, (4.5.6)

where µ2(c2) is defined in (4.5.1).

Proof. (1) Since (Ū , V̄ )(−∞) � 0, we can choose the initial data w0(x) satisfying

(a), (b), (c), and

w0(x) 6 (Ū , V̄ )(x) for x ∈ R, and w0(−∞)� 0.

Then, because (Ū , V̄ )(x − cu0t) is an upper solution to (4.1.1) with the initial data

(Ū , V̄ )(x), and by comparison, we obtain that

(u, v)(t, x; w0) 6 (Ū , V̄ )(x− cu0t) for all (t, x) ∈ R+ × R. (4.5.7)

Via the linearization, c∗u > cu0 is always true, see (4.2.7)-(4.2.8). To the contrary,

suppose that c∗u > cu0 . Let ε = c∗u − cu0 > 0, then x = (c∗u − ε
2
)t = (cu0 + ε

2
)t. From

(4.5.7), we obtain that

lim
t→∞, x=(c∗u− ε2 )t

u(t, x) 6 lim
t→∞, x=(cu0 + ε

2
)t
Ū(x− cu0t) = 0. (4.5.8)

This is a contradiction through the definition of c∗u, see (4.2.1). Thus, we must have

c∗u = cu0 if an upper solution satisfies (4.5.4).

From Proposition 4.2.2 and the assumption c∗u = c∗v, it follows that c∗ = c∗u = c∗v.

By Theorem 4.1.1 and (4.5.7) with the condition (Ū , V̄ )(+∞) = (0, 0), we immediately

obtain that (4.1.1) has a traveling wave connecting β to zero when c > c∗u.

(2) We suppose for the sake of contradiction that c∗u < c1. Then, under the

condition c∗u = c∗v and Theorem 4.1.1, we can assume that, for c ∈ [c∗u, c1), (4.1.1) has

a traveling wave (U, V )(x− ct) connecting β to some equilibrium β1 where β1 can be
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0, α1 or α2.

We first start with the case when β1 = 0, i.e., (U, V ) connecting β to zero.

Near the equilibrium zero, we have the asymptotic behavior defined in (4.5.3). Since

µ2(c1) > µ2(c) and µ4(c1) > µ4(c) (see, (4.5.1) and (4.5.2)), it immediately follows

that (U, V )(x) < (U, V )(x) as x→∞. By a shifting if necessary, we get

(U, V )(x) 6 (U, V )(x), for all x ∈ R.

Since (U, V ) is a lower solution to (4.1.1) and by comparison, we obtain

(U, V )(x− c1t) 6 (U, V )(x− ct) for all (x, t) ∈ R× R+. (4.5.9)

Fixing z1 = x− c1t, we have that V (z1) > 0. On the other hand,

V (x− ct) = V (z1 + (c1 − c)t)→ 0 as t→∞.

It follows that V (z1) 6 0, which is a contradiction.

In the case when β1 = α1 = (1, 0), the assumed traveling wave (U, V ) connects

β to α1. Thus, U(x) > 1 > U(x) as x → ∞. For the other component V , through

linearizing (4.1.1) around α1, we find the asymptotic behavior of V , which is near

zero, as

V ∼ C1e
−µα1

1 (c)z + C2e
−µα1

2 (c)z,

where C1 > 0, or C1 = 0, C2 > 0, and

µα1
1 (c) =

c2 −
√
c2 − 4d2r2(1 + b2)

2d2

, µα1
2 (c) =

c2 +
√
c2 − 4d2r2(1 + b2)

2d2

,

for c > 2
√
d2r2(1 + b2). This is the same as the auxiliary system (4.2.10), see (4.4.5).

Then, it is easy to see that µ4(c1) > µ4(c) =
c2+
√
c2−2d2r2
2d2

> µα1
2 (c) > µα1

1 (c). Thus,

when x→ +∞, it follows that V (x) < V (x). Then, through a shifting, we shall have
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(U, V )(x) 6 (U, V )(x), for all x ∈ R. The relation shown in (4.5.9) is still valid, and

a contradiction follows.

Lastly, the proof of the case when β1 = α2 = (0, 1) is similar to the above one.

In this case it is clear that V (x) > V (x) for all x ∈ R. Through a linear analysis of

(4.1.1) near α2, we can obtain that U(x) < U(x) for all x ∈ R. Thus, (4.5.9) still

holds. Then, by applying the arguments below (4.5.9) to U and U , we also obtain a

contradiction. Therefore, c∗u > c1 when such a lower solution exists at c = c1.

(3) By replacing cu0 , Ū and V̄ with c2, Ū2 and V̄2 respectively in the proof of part

(1), we shall find c∗u 6 c2. The proof is complete.

Based on the above lemma, we then proceed to construct some appropriate upper

and lower solutions to find specific conditions to classify the speed selection. For

simplicity, we denote

µ0 := µ1(cu0) =
√

r1
d1
, µ̄3 := µ3(cu0) =

√
d1r1−

√
d1r1−d2r2
d2

, µ̄4 := µ4(cu0) =
√
d1r1+

√
d1r1−d2r2
d2

.

(4.5.10)

Theorem 4.5.2. If d2r2 < d1r1 6 d2r2(1 + b2) and

1√
d1r1 +

√
d1r1 − d2r2

<

√
r1

d1r2
2

<
1√

d1r1 −
√
d1r1 − d2r2

, (4.5.11)

then system (4.1.1) has a single spreading speed and c∗u = cu0 .

Proof. By Theorem 4.3.2 (III), we have that c∗u = c∗v; thus, we then focus on finding

suitable upper solutions satisfying Definition 4.2.12.

Let c = cu0 , and µ0, µ̄3, µ̄4 be defined in (4.5.10). Then, define

Ū =
e1

1 + eµ0z
, (4.5.12)

whose first and second derivatives can be found as

Ū ′ = −µ0Ū(1− Ū1), Ū ′′ = µ2
0Ū(1− Ū1)(1− 2Ū1), where Ū1 =

Ū

e1

, (4.5.13)
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and set V̄ = e2Ū1 = e2
e1
Ū . Substituting all the formulas into Lu[U, V ] and Lv[U, V ]

gives

Lu[Ū , V̄ ] = d1µ
2
0Ū(1− Ū1)(1− 2Ū1)− cµ0Ū(1− Ū1) + r1Ū(1− Ū + b1e2Ū1)

=
Ū2

e1

(1− Ū1)
{
−2d1µ

2
0

}
6 0,

and

Lv[Ū , V̄ ] = d2µ
2
0

e2

e1

Ū(1− Ū1)(1− 2Ū1)− cµ0
e2

e1

Ū(1− Ū1) + r2
e2

e1

Ū(1− e2Ū1 + b2Ū)

=
e2

e1

Ū(1− Ū1)
{
d2µ

2
0 − cµ0 + r2 − 2d2µ

2
0Ū1

}
< 0.

Here we have made use of (4.5.11). Since (4.5.11) implies µ̄3 < µ0 < µ̄4, the quadratic

function d2µ
2
0 − cµ0 + r2 < 0. Then, (Ū , V̄ )(x − cu0t) forms a pair of upper solutions

satisfying (4.2.19). By Lemma 4.5.1 (1), the proof is complete.

Theorem 4.5.3. If d2r2 < d1r1 < d2r2(1 + b2) and


1√

d1r1+
√
d1r1−d2r2

>
√

r1
d1r2

2
,

p = µ̄3

µ0
, M1 = max {p− 1, 1} , e2 6

d2µ̄2
3(1+ 1

p
)

r2M1
,

(4.5.14)

then system (4.1.1) has a single spreading speed and c∗u is linearly selected, that is,

c∗ = c∗f = c∗u = cu0 .

Proof. Let c = cu0 and Ū be the same as in Theorem 4.5.2, i.e., Ū = e1
1+eµ0z

and

Ū1 = Ū
e1

. For V -part, we define

V̄ = e2Ū
p
1 , p =

µ̄3

µ0

> 1, (4.5.15)
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and then the first and the second derivatives of V̄ areV̄
′ = −pµ0V̄ (1− Ū1) = −µ̄3V̄ (1− Ū1),

V̄ ′′ = (pµ0)2V̄ (1− Ū1)(1− (1 + 1
p
)Ū1) = µ̄2

3V̄ (1− Ū1)(1− (1 + 1
p
)Ū1).

(4.5.16)

We point out that such a function has an asymptotic behavior:

V̄ (−∞)→ e2, V̄ (z) ∼ e−µ̄3z, as z →∞.

By inserting all the above formulas into Lu[U, V ] and Lv[U, V ] defined in (4.2.20), we

obtain that

Lu[Ū , V̄ ] = d1µ
2
0Ū(1− Ū1)(1− 2Ū1)− cµ0Ū(1− Ū1) + r1Ū(1− Ū + b1e2Ū

p
1 )

=
Ū2

e1

(1− Ū1)

{
−2d1µ

2
0 + r1b1e2

Ūp−1
1 − 1

1− Ū1

}
,

and

Lv[Ū , V̄ ] = d2µ̄
2
3V̄ (1− Ū1)(1− (1 +

1

p
)Ū1)− cµ̄3V̄ (1− Ū1) + r2V̄ (1− e2Ū

p
1 + b2Ū)

= Ū1V̄ (1− Ū1)

{
− d2µ̄

2
3(1 +

1

p
) + r2e2

1− Ūp−1
1

1− Ū1

}
.

In Lu[Ū , V̄ ], since p > 1, the fraction
Ūp−1

1 −1

1−Ū1
is less than zero and we always have

Lu[Ū , V̄ ] 6 0. To determine the sign of Lv[Ū , V̄ ], we consider the monotonicity of the

function h(u) = 1−up−1

1−u for u ∈ [0, 1]. Through a direct analysis (by finding h′), we

find that h is decreasing when 1 < p 6 2 while increasing when p > 2. Moreover,

h(0) = 1 and h(1) = p− 1. Thus, we have the following two statements:

(i) when 1 < p 6 2,

Lv[Ū , V̄ ] 6 Ū1V̄ (1− Ū1)

{
− d2µ̄

2
3(1 +

1

p
) + r2e2

}
6 0, if e2 6

d2µ̄
2
3(1 + 1

p
)

r2

.
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(ii) when 2 < p,

Lv[Ū , V̄ ] 6 Ū1V̄ (1− Ū1)

{
− d2µ̄

2
3(1 +

1

p
) + r2e2(p− 1)

}
6 0, if e2 6

d2µ̄
2
3(1 + 1

p
)

r2(p− 1)
.

The second inequality in (4.5.14) guarantees (i) and (ii).

As a result, we have found a pair of upper solutions satisfying Lemma 4.5.1 (1);

thus, c∗u = cu0 . The proof is complete.

4.6 Numerical Simulations

In this section, we shall use the MATLAB software to simulate our model and numer-

ically find the spreading speeds to better understand and demonstrate our obtained

results. For the first three examples, we choose the following step functions as the

initial data:

u0(x) =

0.5, x < −95,

0, x > −95,
and v0(x) =

0.5, x < −95,

0, x > −95.

Numerically, the solutions with such initial data evolve into traveling waves profile

with the spreading speed(s). The detailed simulations are shown as follows.

Example 6.1 For the first example, we take

d1 = 1, d2 = 1, r1 = 4, r2 = 1, b1 = 1, b2 = 0.5.

Under such a choice, it is easy to find that e1 = 4, e2 = 3, and d1r1 > d2r2e2; thus, this

example belongs to the case (I) in Theorem 4.3.2, i.e., the case of multiple spreading

speeds. Furthermore, by a direct computation, we find that

cu0 = 4, cvα1
= 2
√

1.5 = 2.44948974278. (4.6.1)

Since d1

d2
− 2 < 0, we expect that c∗v = cvα1

and c∗u = cu0 by Theorem 4.4.4. The

simulation is shown in Figure 4.1. The 3-D movements of u and v are shown in the

left column; the 2-D figures in the right column depict the same movements from the
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top view, which show the dynamics more clear.

To calculate the numerical speeds, we use the level sets shown in Figure 4.2. The

level set chosen to compute c∗u is u ≡ 0.5; see the line in the left figure. Since c∗v

is the spreading speed of the traveling wave connects β = (4, 3) to α1 = (1, 0), the

speeds found by u ≡ 3 in the left figure and v ≡ 1.5 in the right figure are the same.

By finding their x-positions and dividing by the corresponding time unit, we find the

numerically-computed fastest speed c̃∗u as c̃∗u = 4.0634 and the numerically-computed

slowest speed c̃∗v as c̃∗v = 2.4467. Therefore, this example shows the linear selection of

the spreading speeds in multiple spreading speeds case and agrees to our result.

Example 6.2 This example aims at showing that a nonlinear selection indeed

exists when c∗u > c∗v. Let

d1 = 4, d2 = 0.1, r1 = 2, r2 = 1, b1 = 0.2.

The last parameter b2 varies from 0.1 to 4.5. It is easy to see that e1 and e2 are

increasing in b2 and d1r1 > d2r2e2 for all chosen b2; thus, by Theorem 4.3.2, c∗u >

c∗v. Through a direct computation, we can verify that µ̂3(cvα1
) < µ̂0(cvα1

) in such a

parameter set. Here, we present a figure to see it more clear, see the left panel of

Figure 4.3. As shown in the figure, the red solid line is always above the blue one,

which implies the inequality. Then, using the same initial data and numerical methods

as in the former example, we can find the numerical spreading speeds for different b2.

From Remark 4.2.11, c∗u = 2
√
d1r1 is always linearly selected, so we then only focus

on c∗v. The result is shown in the right panel of Figure 4.3. Since the linear speed

cvα1
is increasing in b2, we depict it in the same figure as well. From the picture, we

observe that the numerical speed is very close to the linear speed when b2 < 1.5 and

has an obvious increment as b2 becomes larger than 1.5. Thus, from the numerical

simulation, we can see that c∗v is linearly selected when b2 < 1.5 and the nonlinear

selection is indeed realized when b2 > 1.5.

Example 6.3 In this example, we take

d1 = 1, d2 = 1, r1 = 2, r2 = 1, b1 = 1, b2 = 0.5,

so that e1 = 4, e2 = 3, and d2r2e2 > d1r1 > d2r2(1 + b2). Thus, this example belongs

to case (II) in Theorem 4.3.2. Notice that d1/d2 = 1 < 2, ĉ∗ = cvα1
< 2
√
d1r1; thus, by
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Figure 4.1: (Color online) Simulation of (u, v)(t, x) when d1r1 > d2r2e2. Figures in
the left column present the movements of u and v as time increases. Figures in the
right column are the same movements but from the top view.
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Figure 4.2: (Color online) Snapshots of u and v’s movements. The left figure is for u
while the right one is for v.
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Figure 4.3: (Color online) A nonlinear selection example when c∗u > c∗v. The left panel
depicts the relation between µ̂0 and µ̂3 as b2 increases. The right panel draws the
numerical speed c∗v and the linear speed cvα1

for different b2.

Theorem 4.4.4, we expect that c∗v = cvα1
< c∗u = cu0 . Through a simple computation,

we obtain that

cu0 = 2.8284, cvα1
= 2.4495, (4.6.2)

The simulation is shown in Figure 4.4. As we can see in the picture, we do observe

different terraces in u. By the same method used in Example 6.1, we find the numer-

ically computed speeds are c̃∗u = 2.8310 and c̃∗v = 2.4392. That means both spreading

speeds are linearly selected.

Example 6.4 We then show an example whose parameters satisfy case (III). Let

d1 = 1, d2 = 1, r1 = 1.5, r2 = 1, b1 = 0.5, b2 = 1.

Then, we have e1 = 3, e2 = 4, and d2r2(1 + b2) > d1r1 which clearly indicates case

(III). By Theorem 4.3.2, this is the single spreading speed case. Then, we only need

to focus on cu0 and decaying exponential rates near (0, 0). By a simple computation,
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Figure 4.4: (Color online) Simulation of (u, v)(t, x) when d2r2e2 > d1r1 > d2r2(1+b2).
The left figure is for u while the right one is for v.

Figure 4.5: (Color online) Simulation of (u, v)(t, x) when d2r2(1 + b2) > d1r1 > d2r2.
The left figure is for u while the right one is for v.

we find that

cu0 = 2.4495, µ0 = 1.22475, µ̄3 = 0.5176, µ̄4 = 1.9318.

Clearly, µ̄3 < µ0 < µ̄4 which implies (4.5.11); thus, by Theorem 4.5.2, we wish to see

the single spreading speed exists and c∗u = cu0 . The simulation outcome is depicted in

Figure 4.5. As the picture has shown, there is only one connection from β = (3, 4) to

0, which implies the single spreading speed case. Numerically, we find the speeds for

both species are c̃∗u = 2.4487 and c̃∗v = 2.4430; thus, we have that c̃∗u = c̃∗v ' cu0 . This

example gives a numerical demonstration of our main result.

The remaining two examples are trying to show some interesting phenomena. The

initial data chosen for the former examples decays simultaneously, by which, we mean

that u0(x) and v0(x) reach 0 at the same position, i.e., u0(x) = 0 = v0(x) when
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x > −95. Now, we choose another step function as follows:

u0(x) =


1.2, x < −400,

1, −400 6 x < 0,

0, x > 0,

and v0(x) =

0.5, x < −400,

0, x > −400.

The plotting is shown in Figure 4.6. As seen in the picture, u0(x) has a terrace u ≡ 1

when −400 6 x < 0 and v0 reaches zero first. The two examples below will use these

initial data.

0 1000 2000 3000 4000
x

0

0.2

0.4

0.6

0.8

1

Initial data

u
0
(x)

v
0
(x)

Figure 4.6: (Color online) The initial data for Examples 6.5 and 6.6.

Example 6.5 Choose

d1 = 1, d2 = 1, r1 = 2, r2 = 1, b1 = 0.2, b2 = 1,

then e1 = 1.5, e2 = 2.5, and cu0 = 2.8284. It is clear that d1r1 = d2r2(1+b2) . Applying

Theorems 4.3.2 (III) and 4.4.2, we obtain 2
√
d2r2(1 + b2) = ĉ∗ = c∗u = 2

√
d1r1. The

simulation is plotting in Figure 4.7. Numerically, we find that c̃∗u = 2.8299 and

c̃∗v = 2.83; thus, c̃∗u = c̃∗v = cu0 . In the picture, we can see that the terrace where u = 1

appeared in the initial data exists all the time. This phenomenon is reasonable. Since

above the terrace u = 1, the traveling wave connects β to α1. With the chosen initial

condition, this upper wave (connecting β and α1) propagates at its own spreading

speed ĉ∗ at the beginning, but ĉ∗ also equals c∗u. That means, the upper part cannot

catch up with or pass the one ahead of it. Thus, the terrace keeps happening there.

In fact, for (u0, v0) satisfying (a), (b), (c) (see the Introduction), as long as u0 reaches

zero ahead of v0, one can always observe such a phenomenon when ĉ∗ = c∗u.

The last example shows that the upper part can indeed catch up with the one

ahead of it, and finally the whole picture merges into a traveling wave with the slower
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Figure 4.7: (Color online) Simulation of (u, v)(t, x) for case d2r2(1 + b2) = d1r1. The
left figure is for u while the right one is for v.

speed, connecting β to 0 without the appearance of terrace.

Example 6.6 Choose

d1 = 1, d2 = 1, r1 = 2, r2 = 1, b1 = 0.2, b2 = 4,

then e1 = 6, e2 = 25, and cu0 = 2.8284. Now, d2r2(1 + b2) > d1r1 implies c∗ = c∗f by

Theorem 4.3.2. Through a simple computation, it is easy to find that

µ̄3 = 0.4142 < µ0 = 1.4142 < µ̄4 = 2.4142.

Then by Theorem 4.5.2, c∗u = cu0 . Based on the chosen initial data, when we consider

the system restricted between α1 and β (i.e., the auxiliary system), this traveling

wave must propagate with the speed ĉ∗ > 2
√
d2r2(1 + b2) = 4.472 > c∗u. It implies

that the upper part moves faster than the lower one and they will merge somewhere.

The simulation is shown in Figure 4.8. As we can see, around t = 225, they combine

together as a traveling wave solution connecting β to 0, with the numerical spreading

speed as the linear speed of u, i.e., c̃∗u = 2.824 ' cu0 .

4.7 Discussion

Propagation dynamics have extensive applications in practical areas such as popula-

tion invasion in biology and combustion propagation in physics. Among the studies of

the moving patterns, the investigation of the speed selection mechanism is challenging,

especially for the case when multiple spreading speeds exist.

First of all, we would like to point out that our study in this chapter focuses
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Figure 4.8: (Color online) Simulation of (u, v)(t, x). The left figure is for u while the
right one is for v.

on the speed selection mechanism for the individual spreading speed of each species.

It provides a way to understand better the connection patterns of traveling wave

profiles. We should also emphasize that our definition of the selection mechanism has

been significantly developed than those in the classical case, see Definitions 4.2.6 and

4.2.9. Moreover, these definitions can be further extended to a system with n-species

interaction, an interesting topic that will be studied in the future.

We also should mention that, for a system with only two equilibria β and zero (like

the auxiliary wave profile system (4.2.13)-(4.2.14)), there exists a single spreading

speed c∗ and traveling wave profiles connecting β and zero always exist as long as

c ≥ c∗. However, for our main model (4.1.1), even when there exists a single spreading

speed, the traveling wave may have different connections since the case (2)(ii) in

Theorem 4.1.1 is not excluded. Thus, we need to find an upper solution connecting

to zero so as to prove the existence of traveling waves connecting β to 0. The details

can be found in Lemma 4.5.1 (1), see the conclusion under (4.5.4). Similar results can

also be seen in [45, 46]. However, from our numerical simulation experience, we find

that when c∗u = c∗v, with the initial data (satisfying (a) (b) and (c)) being properly

assigned, the solution always stabilizes to a traveling wave connecting β to zero with

the spreading speed. Thus, we propose a conjecture:

(H) if c∗u = c∗v, then for any c > c∗u, (4.1.1) has a traveling wave connecting β to 0.

This is left for interested readers.

Finally, our numerical simulations show the existence of traveling waves with a

terrace. This type of profile looks like a joint (gluing) or connection of two different

traveling waves. For some parameter range, these terrace-like wave profiles initially

appear and finally merge to form a classical traveling wave without any terrace. Our

speed selection mechanism helps us better understand when and how this will happen.



Chapter 5

Determining spreading speeds for

abstract time-periodic monotone

semiflows

5.1 Introduction

Since the pioneering work of Fisher [24], and Kolmogorov, Petrovskii and, Piskunov

(KPP) [37], traveling phenomena have been widely investigated in many practical

fields such as biological invasions, combustion theory, and propagation of chemical

materials modeled by reaction-diffusion equations, nonlocal dispersal systems and

discrete lattice systems for evolution of a single population species in [3,8–10,24,37],

or for interactions of multiple species in [1, 2, 4, 20, 40, 43, 44, 48, 51, 83, 88]. In 1982,

by using the language of dynamical system, Weinberger [86] generalized the above

approaches by studying wave propagation for an abstract semiflow Qt (or Q1 with

t = 1) in the so-called monostable case (when the zero equilibrium is unstable and the

positive equilibrium, say β, is stable in the spatially-homogeneous environment). This

abstract idea was further investigated in [20,43,44,48,53,88]. By a traveling wave of

the semiflow, we mean a special solution W , connecting zero and β, and satisfying

Qt[W ](x) = W (x− ct) (5.1.1)
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for some wave speed c. In the monostable case where only two equilibria exist, there is

a crucial speed called the spreading speed c∗, which was firstly proposed by Aronson

and Weinberger [3] in 1975 and was then thoroughly investigated by Lui [48]. This

speed is an essential number for species invasion outwardly when the initial data have

compact support, which can be recurringly defined by Lui’s formula or alternatively

can be understood as the limit of the solution level set over a time unit. In the case

when only two equilibria exist, as seen in the Fisher-KPP model, there exists the

so-called minimal speed cmin so that the dynamical equation (5.1.1) has a traveling

wave solution, connecting zero and β, if and only if c > cmin. Thanks to the paper

of Liang and Zhao in [43], it was proved that these two speeds are amazingly equal

(i.e., c∗ = cmin), although one may have difficulty in obtaining its explicit formulas.

To estimate the spreading speed which is biologically significant, researchers resort

to study the associated linear semiflow Mt obtained from the nonlinear map Qt after

linearizing at the equilibrium zero. A linear (spreading) speed c0 can be readily derived

from the characteristic equation of Mt and a comparison argument (see, e.g., [43])

always shows cmin > c0. Whether they are equal or not has becomes a challenging

problem. We say that the minimal speed (or the spreading speed) is linearly selected

if cmin = c0, and nonlinearly selected if cmin > c0. Physically or biologically, the

traveling wave with the single spreading speed (the minimal speed) is called pulled

wave if linear selection is realized, and pushed wave if nonlinear selection is realized.

The dynamics behind a nonlinear selection can be understood in this way: a pushed

wave is determined by its nonlinear “interior part,” that is, it is pushed from behind

by the whole system. Similarly, a pulled wave is determined only by the contribution

of linearization about the unstable state, being pulled along by the dynamical force

of the linear part at the far end.

As can be seen from [19, 20, 40, 88], most models concerning the interaction of

multiple species may possess one or more equilibria between zero and the positive

equilibrium β, possibly on the boundary of a box bounded by zero and β in the phase

space, and this makes the speed selection problem even more challenging. Since the

existence of more equilibria, a complicated model may admit more than one spreading

speed: a slowest spreading speed c∗ and a fastest one c∗f (see, e.g. [48, 88], or (5.2.5)

and (5.2.6) in Section 2 for details). When they are equal, we say a single spreading

speed exists. As before, if the existence of traveling waves connecting zero and β is

considered, due to the potential boundary equilibira, we are not sure whether there
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exists a minimal wave speed cmin so that a traveling wave solution of (5.1.1) exists if

and only if c > cmin. Furthermore, the linear semiflow Mt may be reducible and it

has a fastest linear speed cf0 . Depending on the situation whether a single spreading

speed exists or not, we are interested in establishing the speed selection mechanism

of c∗, and c∗f as well as individual spreading speed of each species.

Contrast to traditional research topics as the existence, uniqueness and stability

of traveling waves, the study of speed selection is challenging (see [18,29,29,72,74,75,

77–79, 87] and references therein). W. Saarloos [77, 78] used the theory of linear and

nonlinear marginal stability to investigate the speed selection, but all his arguments

are formal (not rigorous). Lucia, Muratov, and Novaga [47] applied the variational

principle and successfully established the speed selection mechanisms for a generalized

KPP-Fisher model. However, this method is only valid for a scalar reaction-diffusion

model or a model possessing a variational structure. Weinberger, Lewis, and Li [88]

considered the recursion un+1 = Q[un] for a map Q and provided some sufficient

conditions for linear selection under the condition when a single spreading speed ex-

ists. They didn’t study nonlinear selection or linear selection when multiple spreading

speeds appear. For further study on linear selection with a condition that the nonlin-

ear system is bounded by its rival linear one, we refer to [5, 6, 20,42,54,94].

Most recently, Ma and Ou [53] focused on the case when the map Q (or Qt) is com-

pact and has only two fixed points: zero and β, which implies that a single spreading

speed always exists. They revealed an essential property about the nonlinear selection

that a pushed traveling wave exists if and only if it decays to zero exponentially at

the far end with a fast rate. Such a result is completely new in an abstract case. By

constructing upper or lower solutions with particular decaying rates, they established

a series of new easy-to-apply results on speed selection mechanism and extended their

application to several practical models.

All aforementioned contributions are focused on traveling propagating in a homo-

geneous environment. However, in the natural environment, inhomogeneities are often

present. For example, when formulating a model, seasonality and sunlight strength

both introduce time-periodicity. Related references can be found in [6,21,42,54,91,94]

for time-periodic dynamical models.

In this chapter, we are concerned with the speed selection mechanism for traveling

waves of an abstract time-periodic semiflow {Qt}t>0, which is of monostable type with

weak compactness and admits multiple equilibria. The difficulties and challenges in
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the study are mainly from below: (i) A time-periodic model is much more complicated

than the traditional constant-coefficient one; (ii) The existence of extra equilibria

between zero and β induces the possible non-uniqueness of the spreading speeds,

and if a model indeed has two spreading speeds, to our knowledge, no references

are focusing on classifying the speed selection currently; (iii) In the case when its

linear system (around zero) is reducible so that the principal eigenvalue of linear map

Mt doesn’t possess a strongly positive eigenvector, problems arise in determining the

linear speed, especially in the case where multiple linear spreading speeds exist; (iv)

As to the fast decay of the pushed wave to the nonlinear semiflow Qt, we need to

determine whether the whole species components takes the same faster decay rate, or

if not, which species will decay at a fast rate.

The remaining of this chapter aims at overcoming those difficulties and is organized

as follows. We shall give the existence of the spreading speeds as well as traveling

waves (see Lemma 5.2.4) in Section 5.2. Section 5.3 considers the linear semiflow

(around zero) and establishes the linear speeds. Section 5.4 contains our main result

on the speed selection, in which, to better solve (ii) and (iii), the study has been

divided into three main cases: from subsections 5.4.1 to 5.4.3. We apply our results

to four typical time-periodic models in Section 5.5: a delayed and diffusive equation,

a stream population model with a benthic zone, a nonlocal dispersal Lotka-Volterra

competitive model, and a reducible cooperative system. The last section presents a

conclusion and some future study directions.

5.2 Spreading speeds and traveling waves of Qt

Before investigating the speed selection mechanism for the abstract time-periodic

semiflow Qt, we need to establish the definition of spreading speeds as well as the ex-

istence of traveling waves. The idea was originated from [3,4,48] and further extended

in [20,41,42,88].

Let Ω be a compact metric space with metric d, Rl be the l-dimensional Euclidean

space, and X = C(Ω,Rl). We endow X with the maximum norm || · || and define the

positive cone as X+ = C(Ω,Rl
+). Then (X ,X+, || · ||) is a Banach lattice. We use M

to denote all the nonincreasing and bounded functions from H to X , where H = R or

Z. Any element in X can be viewed as a “constant” function in M. Then we equip

M with the compact open topology in the sense that un → u in M means that the
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sequence of un(s) converges to u(s) in X uniformly for s in any compact set of H.

For the definitions of orderings >,>,�, please see [20]. We say S of M is bounded

if {|φ(x)| : φ ∈ S, x ∈ H} is bounded. For any subset A ⊂M and s ∈ H, we define

A(s) := {u(s) : u ∈ A}. Moreover, we use the Kuratowski measure of noncompactness

in X (see, e.g., [15]), that is,

α(B) := inf{r : B has a finite cover of diameter < r},

for any bounded set B ⊂ X . It is easy to derive that α(B) = 0 if and only if B is

precompact.

Since this chapter mainly concerns about the abstract time-periodic semiflow, we

first introduce its definition. Let ω ∈ T be the time period, where T = R+ or Z+.

Assume β : T → Int(X+) is continuous and ω-periodic in t ∈ T , i.e., β(t) = β(t+ ω).

Then for any t ∈ T , define

Mβ(t) := {u ∈M : 0 6 u(t) 6 β(t)}, for t ∈ T ,

and assume that the map Qt :Mβ(0) →Mβ(t) satisfies Qt[0] = 0 and Qt[β(0)] = β(t).

Definition 5.2.1. A family of mappings {Qt}t∈T is said to be an ω-periodic monotone

semiflow from Mβ(0) →Mβ(t) if the following properties hold:

(i) Q0[u] = u, ∀u ∈Mβ(0);

(ii) Qt+ω[u] = Qt[Qω[u]], ∀ t ∈ T and u ∈Mβ(0);

(iii) Qt[u] is jointly continuous in (t, u) on T ×Mβ(0);

(iv) Qt[u] > Qt[v] for all t ∈ T whenever u > v in Mβ(0).

The map

P = Qω

is called the Poincaré map associated with this periodic semiflow. Clearly, P [0] = 0

and P [β(0)] = β(ω) = β(0), that means, 0 and β(0) are two fixed points of P . Thus

P maps Mβ into itself, where we denote β = β(0) for short.

Definition 5.2.2. We say that W (t, x−ct) is a periodic traveling wave solution of the

ω-periodic semiflow {Qt}t>0 with speed c if W (t, z) is ω-periodic in t and nonincreasing
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in z ∈ R, and there exists a countable subset Σ ⊂ R such that

Qt[W (0, ·)](x) = W (t, x− ct), ∀t > 0, x ∈ R/Σ, (5.2.1)

and

W (t,±∞) exist such that Qt[W (0,±∞)] = W (t,±∞). (5.2.2)

To proceed, we define a translation operator Ty on Mβ as: for any y ∈ R,

Ty[u](x) = u(x − y), ∀ x ∈ H. By [20, 42], we further assume that the ω-periodic

semiflow Qt satisfies the following assumptions:

(A1) (Translation invariance) Ty ◦Qt = Qt ◦ Ty for each t ∈ T and any y ∈ R.

(A2) (Point-α-contraction) There exists a real number k ∈ [0, 1) such that for any

U ⊂Mβ, α(P [U ](0)) 6 kα(U(0)).

(A3) (Monostability) P : X+ → X+ satisfies P [0] = 0 and P [β] = β with lim
n→∞

P n[$] =

β for any $ ∈ X+ with 0� $ ≤ β. The map P may also admit other boundary

fixed points lying between β and 0. Biologically, it means that at least one of

the species is extinct.

In view of (A1), it follows that (A2) is equivalent to ∃ k ∈ [0, 1) such that α(P [U ](x)) 6

kα(U(x)) for any U ⊂ Mβ and x ∈ H. Note that the assumption (A2) is much

weaker than the classical compact assumption; that means, if P [Mβ] is precompact

in Mβ, then it satisfies (A2) by choosing k = 0. For more interpretations of this

assumption, please refer to [20]. The assumption (A3) implies that β is the minimal

strictly positive equilibrium of P ; biologically, there is no other all-species coexistence

equilibrium below β.

To define the spreading speed of Qt, we employ the idea in [42]. We first define

the spreading speed of P = Qω. Let $ ∈ Xβ with 0� $ � β, and choose φ to be a

continuous function from R to X with following properties:

(B1) φ is a nonincreasing function;

(B2) φ(x) = 0 for x ≥ 0;

(B3) φ(−∞) = $.

Let c be a given real number, we define an operator Rc by

Rc[a](s) := max{φ(s), T−c[P [a]](s)}, (5.2.3)
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and a sequence of functions {an(c; s)}n>0 by

a0(c; s) = φ(s), an+1(c; s) = Rc[an(c; ·)](s). (5.2.4)

Then, following the idea of [20] which originates from Lui [48], the sequence has the

following properties:

(a) an 6 an+1 ≤ β;

(b) an(c; s) is nondecreasing in n and nonincreasing in both s and c, and continuous

in (c, s);

(c) For each n, an(c;−∞) > P n[$] and an(c; +∞) = 0;

(d) lim
n→∞

an(c; s) = a(c; s) pointwise and a(c; s) is nonincreasing in s and c;

(e) a(c;−∞) = β and a(c; +∞) exists in Xβ and is a fixed point of P .

Define

c∗ := sup{c : a(c; +∞) = β = β(0)}, (5.2.5)

and

c∗f := sup{c : a(c; +∞) > 0}. (5.2.6)

Clearly, c∗ 6 c∗f . We call c∗ as the slowest spreading speed and c∗f the fastest spreading

speed. If c∗ = c∗f , then we say that this system has a single spreading speed.

Remark 5.2.3. The above definition implies that the slowest spreading speed is a

number c∗ so that

lim
x≤(c∗−ε)n

P n(φ) = β, lim sup
x≥(c∗+ε)n

P n(φ) < β, as n→∞ (5.2.7)

for any small positive ε, and the fastest speed is a number c∗f so that

lim inf
x≤(c∗f−ε)n

P n(φ) > 0, lim
x≥(c∗f+ε)n

P n(φ) = 0, as n→∞ (5.2.8)

for any small positive ε. When H = Z, we prefer to define the two speeds in this

manner.

Back to Qt, it is easy to see that there exist two spreading speeds
c∗f
ω

and c∗

ω
.

Now, applying Theorem 3.8 in [20] and Theorems 2.1, 2.2 in [42], the existence of an
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ω-periodic traveling waves can be summarized into the following lemma.

Lemma 5.2.4. (see, [20,42]) Let Qt be an ω-periodic semiflow satisfy (A1)-(A3), in

which P = Qω, and c∗, c∗f be defined in (5.2.5) and (5.2.6) respectively. Then the

following statements are valid:

(1) For any c > c∗/ω , Qt has a left-continuous traveling wave W (t, x− ct) connect-

ing β(t) to an ω-periodic function α(t) < β(t), where α(t) satisfies Qt[α(0)] =

α(t).

(2) If, in addition, 0 is isolated from the other equilibrium, then for any c > c∗f/ω,

either of the following holds true.

(2.1) There exists a traveling wave W (t, x− ct) connecting β(t) to 0;

(2.2) P has two ordered fixed points α1(0) and α2(0) in Xβ/{0, β} such that Qt

has a left-continuous ω-periodic traveling wave W1(t, x− ct) connecting α1(t) to

0 and a left-continuous traveling wave W2(t, x− ct) connecting β(t) to α2(t).

(3) For any c < c∗/ω, Qt has no traveling wave connecting β(t), and for any c <

c∗f/ω, Qt has no ω-periodic traveling wave connecting β(t) to 0.

Based on the above lemma and following Theorem 3.1 from [41], we can further

have the following lemma, which gives sufficient conditions for c∗ = c∗f .

Lemma 5.2.5. Under the conditions of Lemma 5.2.4, if (2.2) in Lemma 5.2.4 can

be excluded, then Qt has a single spreading speed. Moreover, if P = Qω has only two

fixed points 0 and β in Xβ, then c∗ = c∗f .

Remark 5.2.6. Besides the sufficient condition for a single spreading speed mentioned

in the above lemma, if P satisfies the conditions of Theorem 3.1 or 3.2 in [88], then

c∗ = c∗f .

5.3 Linear speed(s) near the extinction state

In this section, we introduce the definition of linear speed(s) near the extinction state

0 for the abstract semiflow Qt, which gives an estimate of the spreading speeds.
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Assume that for any t > 0,

(A4) Qt is Fréchet-differentiable around any ϕ(t) ∈ [0, β(t)].

Now, let Mt be the linearization operator of Qt around 0 in the following sense:

Mt[ϕ] = lim
ρ→0

Qt[ρϕ]

ρ
. (5.3.1)

Assume that Mt is a map fromM toM, and satisfies the properties of translation

invariance, jointly continuous and point-α-contraction, i.e., (A1) and (A2) hold by

replacing Qt by Mt and P = Qω by Mω respectively. Next, we introduce further

hypotheses for Mt:

(C1) Mt is a positive operator, that is, Mt[v] > 0 whenever v > 0.

(C2) Define a linear map Bt
µ : X → X as

Bt
µ[υ] = Mt[e

−µxυ](x = 0),

where µ is a positive real number and υ is a real vector. Let Bω
µ be the Poincaré

map associated with Bt
µ. We shall assume that Bω

µ is a l × l matrix and is in

Frobenius form, whose definition can be found in [88]. Without loss of generality,

we further assume that it has N0 elements of diagonal blocks. Let λi(µ) (i =

1, · · · , N0) be the principal eigenvalue of the i-th diagonal block of Bω
µ . Among

all the principal eigenvalues, we always assume that λ1(0) > 1, λi(0) 6= 1 for all

i. Then, for the whole system, we denote

I0 := {i |λi(0) > 1, for 1 6 i 6 N0} ,

and I1 := {1, · · · , N0}\I0.

(C3) Let Mt,ϕ be the linearization of Qt around ϕ(t), where 0 6 ϕ(t) 6 β(t). In

particular, define a linear map Bt
γ,β(t) : X → X by

Bt
γ,β(t)[φ] = Mt,β(t)[e

γxφ](x = 0).

Then Bω
γ,β is the Poincaré map associated with Bt

γ,β(t). We also assume that Bω
γ,β

is in Frobenius form and has Nβ diagonal blocks. Then, for each j-th block,
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there exists a simple principal eigenvalue denoted as λ̄j(γ) (j = 1, · · · , Nβ).

Furthermore, since β is a stable fixed point for P |X+ (see (A3)), λ̄j(0) is further

assumed to be less than 1 for all j.

By a similar argument to the spreading speed analyzed previously, when some

boundary equilibria occur, the matrix Bω
µ may be reducible and the definition of

single linear speed c0 in [53] needs to be developed. Thus, we introduce the idea

from [88] to handle this difficulty. Notice that, by (C2), for the uppermost (first)

block, we assume that there always exists

cω1 = inf
µ>0

lnλ1(µ)

µ
=

lnλ1(µ̄1)

µ̄1
, and c1

0 =
cω1
ω

for a finite number µ̄1. Moreover, if N0 > 1 in (C2), we can also define

cωi = inf
µ>0

lnλi(µ)

µ
=

lnλi(µ̄
i)

µ̄i
, i ∈ I0,

where µ̄i is assumed to be finite. Among all of them, there must exist the maximum

number of the above speed, denoted as

cωσ := max
i∈I0
{cωi }, for some σ ∈ I0.

Thus, Qt has a faster linear spreading speed, defined as

cf0 =
cωσ
ω
. (5.3.2)

Now, we turn to find properties of λi. In (C2), for each i, λi(µ) is log convex with

respect to µ (see, [48]); thus, it is easy to arrive at the following lemma.

Lemma 5.3.1. (1) For each i ∈ I0, the following two statements are true.

(a) For any c > cωi /ω, there exist two positive numbers µi1(c) < µ̄i < µi2(c) such

that

c =
1

ω
· lnλi(µ

i
1)

µi1
=

1

ω
· lnλi(µ

i
2)

µi2
, (5.3.3)

and 1
ω
· lnλi(µ)

µ
< c for any µ ∈ (µi1, µ

i
2). Moreover, µi1(c) is a decreasing
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function while µi2(c) is an increasing function in c.

(b) for c = cωi /ω, µi1(c) = µi2(c) = µ̄i.

(2) For each i ∈ I1 and any c > c1
0, similarly there exists an unique solution µi = µi3

such that

− µicω + lnλi(µ
i) = 0. (5.3.4)

Moreover, µi3(c) is increasing in c.

Remark 5.3.2. It is clear that if c > cf0 , (1)(a) and (b) in the above lemma are also

true due to the definition of cf0 .

5.4 Speed selection mechanism

We have defined four essential numbers: c∗, c∗f , c
1
0, and cf0 . However, their explicit

formulas are usually unknown. Therefore, we proceed to study the determinacy of

the spreading speeds by the two linear speeds c1
0 and cf0 that are derived by the

characteristic equations of the linear semiflow Mt.

Define a projection operator Pi as Pi[w], which takes the same coordinate value

as w in the directions corresponding to the i-th diagonal block of Bω
0 , and zero values

in the other direction components. Since Qt[Pσ[w]] 6 Qt[w] for t ∈ T , following the

idea from [88], it is easy to see that

cf0 6 c∗f/ω.

From the classical scaler Fisher-KPP model with f(t, u) ≡ f(u), say in [26,47,53],

we know that pushed and pulled traveling waves possess different exponential decaying

behaviors around the unstable zero equilibrium. In [53], under time-homogeneous

coefficient environment with only two fixed points, if the linear map Mt is irreducible

or the principal eigenvalue possess a strongly positive eigenvector in the whole space,

the authors rigorously proved that nonlinear selection is realized if and only if the

pushed wave decays to zero at the far end in a faster rate. For a time-periodic

semiflow with more fixed points such that a single spreading speed may not exist, or a

case that the principal eigenvalue of linear map Mt doesn’t possess a strongly positive
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eigenvector (e.g., in the reducible case), the study of speed determinacy becomes

complex and challenging. Due to this, we want to divide our study into the following

three cases.

(I). The linear system around zero is irreducible, that is, the matrix Bω
0 is irreducible.

(II). The linear system around zero is reducible, with λi(0) < 1 for all i > 1, that is,

N0 = 1 in (C2) or I0 = {1}.

Biologically, this means that in the absence of other species, the first species is

unstable near zero and it becomes the source of the invasion.

(III). The linear system around zero is reducible, and λi(0) > 1 for some i > 1, that

is, N0 > 1 in (C2) or I0\{1} 6= ∅.

Biologically, this means that, in the absence of other species, there exists at least

one other species (except the first one) that is unstable near zero. This results in

the existence of non-unique spreading speeds and a competition between them

may happen.

5.4.1 Case (I): an irreducible linear system

We begin with investigating the case when the linear system Mt is irreducible. In this

case, we will have a single spreading speed.

Let {Qt}t∈T be an ω-periodic semiflow satisfying (A1)-(A4). When Bω
0 is irre-

ducible, we find that, by comparison principle, P cannot have a fixed point α (with

the first component to be zero) between zero and β. Indeed, to the contrary, if there

is such α, then the first component of Bω
0 (εα), for any small ε, must be positive due to

fact that Bω
0 is positive and irreducible (in fact, the monotone operator Bω

0 is strongly

positive). Since Bω
0 is a linearization of P , we can derive that the first component

P (εα) must be positive for a sufficiently small ε, so is the first component of P (α)

by comparison principle. This is a contradiction. As such, there exist only two fixed

points zero and β for P and a single spreading speed exists.

With the understanding that (2.2) in Lemma 5.2.4 is excluded, we have the fol-

lowing result.
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Lemma 5.4.1. If Bω
0 is irreducible, then we have

c∗

ω
=
c∗f
ω
, cf0 = c1

0 =: c0.

Thus, the speed determinacy definition of this spreading speed is given as follows.

Definition 5.4.2. When Bω
0 is irreducible, we say the single spreading speed of Qt is

linearly selected if c∗f/ω = c0 and nonlinearly selected if c∗f/ω > c0.

Assume that a traveling wave Wc exists for c > c0, connecting β and zero. Since

Wc(t, x) → 0 uniformly for t ∈ R, as x → ∞, the asymptotic behaviors of the

wave satisfying (5.2.1) can be obtained by the linearized system at zero as well as its

corresponding characteristic equation. Since the structure of the nonlinear map near

x = ∞ is geometrically hyperbolic in the sense that no real part of the eigenvalue

(decay rate) is zero, the behavior of the wavefront can be readily derived by the linear

wave-profile equation via the theory of asymptotic analysis. From the linear semiflow,

we can derive that, for any c > c0, the asymptotic behavior of a positive traveling

wave solution Wc (if it exists) is given by

Wc(t, x) = C1e
−µ1(c)xζµ1(c)(t) + C2e

−µ2(c)xζµ2(c)(t) as x→∞, (5.4.1)

where C1 > 0 or C1 = 0, C2 > 0. Here, µi = µ1
i (i = 1, 2) is defined in Lemma 5.3.1,

ζµi is the strongly positive eigenfunction corresponding to µi. For a rigorous proof of

such a behavior, please refer to [12,30,65,66].

Now, we first give a necessary and sufficient condition for the nonlinear selection.

Theorem 5.4.3. Let {Qt}t∈T satisfy (A1)-(A4) and Bω
0 is irreducible. The following

results hold true:

(i). There exists a critical number

cmin =
c∗

ω
=
c∗f
ω

such that Qt has an ω-periodic wave solution Wc(t, x), connecting zero and β, if and

only if for c > cmin.
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(ii). Assume that the wave Wc has a continuous derivative W ′
c(t, x), and the prime “ ′”

denotes the derivative with respect to the second variable. Moreover, we further assume

that Mω,Wcmin
has a simple principal eigenvalue with a strongly positive eigenfunction.

Then, the following two statements are equivalent:

( F1) cmin > c0, that means, the nonlinear selection is realized;

( F2) there exists a speed c̄ > c0 such that Qt has an ω-periodic traveling wave Wc̄(t, x)

(see, Definition 5.2.2), having the following property:

Wc̄(t, x) = Ce−µ2(c̄)xζµ2(c̄)(t), as x→ +∞,

for some positive constant C and µ2(c̄) = µ1
2(c̄) is defined in (5.3.3) and ζµ2(c̄)(t) is

the corresponding eigenfunction.

Proof. (i). The proof of this part follows from Lemmas 5.2.5 and 5.4.1.

(ii). The proof is similar to that in [53] except that we need keep in mind that the

semiflow Qt is now time-periodic. To make the chapter self-contained, we state it in

two steps: one for the sufficiency and the other one for the necessity.

Step 1 (the sufficiency, from (F2 ) to (F1 )): We shall show that Qt has no traveling

waves for any c in [c0, c̄) by way of contradiction.

For c ∈ (c0, c̄) (maybe close to c̄), to the contrary, we suppose that Qt has an ω-

periodic traveling wave Wc(t, x). By (5.4.1), we know that, when c > c0, Wc(0, x) has

the following behavior:

Wc(0, x) ∼ W0 ∼ C1e
−µ1(c)xζµ1(c)(0) + C2e

−µ2(c)xζµ2(c)(0), as x→∞,

with C1 > 0 or C1 = 0, C2 > 0. As discussed in Lemma 5.3.1, µ1(c) and µ2(c) are

continuous and monotone in c, i.e., µ1(c̄) < µ1(c) < µ0 < µ2(c) < µ2(c̄). This leads

to a conclusion Wc(0, x)� Wc̄(0, x) when x is near the positive infinity.

Near the negative infinity, i.e., x → −∞, we also have a claim that Wc̄(0, x) �

Wc(t, x) as x = −∞, if c < c̄. To see this, we want to use the wave profile equation
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as well as its linearization at β(t). As such, asymptotically, we let the asymptotic

behavior of Wc(t, x) near negative infinity to be

Wc(t, x) ∼ β(t)− eγxζγ(t)

for some positive number γ and ω-periodic function ζγ(t). This γ is dependent on c

and we want to derive the relationship. By (C3), Bω
γ,β has Nβ diagonal blocks, and

there exists a principal eigenvalue λ̄j(γ) (j = 1, · · · , Nβ) for each block. From the

linearization of the equation Qt[Wc(t, ·)](x) = Wc(t, x− ct) at β(t), we can derive that

γcω + ln λ̄j(γ) = 0, j = 1, · · · , Nβ. Since λ̄j(0) < 1 and ln λ̄j(γ) is convex regarding

to γ, one can find that, for each j = 1, · · · , Nβ, there exists a unique γj solving this

equation, and each γj = γj(c) is decreasing in c for c ≥ c0.

If all the components of Wc decay at a same exponential rate, i.e., if Bω
γ,β has a

strongly positive principal eigenvector ζγ̄(0) with γ̄ = min
16j6Nβ

{γj}, then

Wc(0, x) ∼ β(0)− eγ̄xζγ̄(0), as x→ −∞.

Moreover, γ̄(c̄) < γ̄(c) since c < c̄. Thus, Wc(0, x)� Wc̄(0, x) as x→ −∞.

If Bω
γ,β does not have a strongly positive eigenvector for the whole system, then

for each j-th block, the decay rate γj = γj(c) is decreasing in c. We still can conclude

that Wc(0, x)� Wc̄(0, x) as x→ −∞.

Therefore, by a shift of distance ξ0 for x, we can make Wc(0, x+ ξ0) satisfy

W̄c(0, x) = Wc(0, x+ ξ0)� Wc̄(0, x).

Then, by the monotonicity of P , it follows that

W̄c(0, x− cnω) = P n[W̄c(0, ·)](x) ≥ P n[Wc̄(0, ·)](x) = Wc̄(0, x− c̄nω) (5.4.2)

for x ∈ H. Fixing some z0 = x− c̄nω, then Wc̄(0, x− c̄nω) = Wc̄(0, z0)� 0. On the
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other hand, we will have

W̄c(0, x− cnω) = W̄c(0, z0 + (c̄− c)nω)→ 0, as n→∞,

which contradicts to the inequality (5.4.2). Therefore, Qt has no traveling waves when

c ∈ (c0, c̄).

Finally, if for c = c0, Qt has traveling waves, then Qt has traveling waves for all

c > c0 by Lemmas 5.2.4 and 5.2.5. choosing a c ∈ (c0, c̄), we can repeat the above

process to get a contradiction. The proof of this part is complete.

Step 2: (the necessity, from (F1 ) to (F2 )). By assumption, we need to prove

that, if cmin = c∗f/ω > c0, then the ω-periodic traveling wave Wcmin
of Qt has the

following property:

Wcmin
(t, x) ∼ C2e

−µ2(cmin)xζµ2(cmin)(t) as x→∞,

for some constant C2 > 0. Here again, we prove it by way of contradiction. Thus, to

the contrary, at t = 0 we assume that

Wcmin
(0, x) ∼ C3e

−µ1(cmin)xζµ1(cmin)(0) as x→∞, (5.4.3)

for some positive constant C3 and eigenvector ζµ1(cmin)(0). Then we want to prove

that, under this assumption, P does have a traveling wave Wc(0, x) satisfying

P [Wc(0, ·)](x) = Wc(0, x− cω), or T−cωP [Wc(0, ·)](x) = Wc(0, x) (5.4.4)

for some speed c = cmin − δ with δ > 0 being sufficiently small. Such a result implies

that c∗f is not the minimal speed of P , which induces a contradiction to the definition

of cmin. Under the assumption (5.4.3), we introduce a weighted function by

W̄ (x) = Wcmin
(0, x)%(x), where %(x) =

1

1 + δe[µ1(c)−µ1(cmin)]x · ζµ1(c)(0)

ζµ1(cmin)(0)

.
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The division and multiplication in the above formula are componentwise, so W̄ (x)

is well-defined componentwisely. We shall emphasize that the modified function W̄

is close to Wcmin
when δ is sufficiently small, but it has different decaying rates near

positive infinity (indeed, W̄ (x) has the same decay rate as Wc(0, x) if it exists). Now,

we want to apply a perturbation argument under the assumption (5.4.3) to prove the

existence of Wc to (5.4.4) for sufficiently small δ. To proceed, we set

Wc = W̄ (x) +W1 (5.4.5)

and then back-substitute it into (5.4.4) to have

T−cωP [W̄ (x) +W1] = W̄ (x) +W1,

where W1 = W1(0, x) is a function to be determined. Through a direct computation

and simplification, the equation of W1 is obtained as

W1 = T−cminωMω,Wcmin
[W1] + F0 +M δ

ω[W1] + Fh[W1], (5.4.6)

where

F0 = T−cωP [W̄ (x)]− W̄ (x),

M δ
ω[W1] =

(
T−cωMω,W̄ (x) − T−cminωMω,Wcmin

)
[W1],

and

Fh[W1] = T−cωP [W̄ (x) +W1]− T−cωP [W̄ (x)]− T−cωMω,W̄ (x)[W1].

Here Mω,Wcmin
and Mω,W̄ (x) denote the Fréchet derivative of P around Wcmin

and W̄ (x)

respectively, i.e., Mω,Wcmin
is defined by

Mω,Wcmin
[ϕ] = lim

η→0

P [Wcmin
+ ηϕ]− P [Wcmin

]

η
.

Now, the existence of solution W1 to (5.4.6) implies the existence of Wc to (5.4.4);
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thus, we then focus on investigating solutions to (5.4.6). Through a simple estimate,

we observe that M δ
ω[W1] = O(δ)W1, F0 = O(δ) with F0 = o(e−µ1(cmin)x) as x → ∞,

Fh = O(W 2
1 ) which is a higher order term.

To further study the existence of solutions to (5.4.6), we notice that W1 is in the

space M0, where

M0 = {u(0, ·) ∈M : u(0,±∞) = 0}.

By assumption (ii) and a direct computation, we find that the operator T−cminωMω,Wcmin

has a simple principal eigenvalue λ = 1 and its corresponding eigenvector is ū =

W ′
cmin
∈ M0, which represents the first derivative of Wcmin

(0, x) with respect to x. It

is easy to find that W ′
cmin

and Wcmin
have a common asymptotic behavior as x→∞,

that is,

W ′
cmin
∼ C4e

−µ1(cmin)x as x→∞

for some vector C4.

To find a solution of (5.4.6), we need to omit this eigenvector ū, so we define a

weighted space W by

W = {u ∈M0 : ueµ1(cmin)x = o(1) as x→∞}.

It is clear that the spaceW has excluded the eigenvector ū = W ′
cmin

, and T−cminωMω,Wcmin

has no eigenvalue λ = 1 in this space. By assumption, the operator T−cminωMω,Wcmin

has λ = 1 as its simple principal eigenvalue with a strongly positive eigenfunction in

W , we know that I − T−cminωMω,Wcmin
has a bounded inverse in W , where I is the

identity operator. Applying the well-known inverse function theorem in the abstract

space W , we obtain a conclusion: there exists a small number δ0 > 0 such that for

any δ ∈ [0, δ0), the equation (5.4.6) has a solution W1 inW . Moreover, for sufficiently

small δ, the positivity of the solution Wc is guaranteed. Thus, we have proved the

existence of Wc to (5.4.4) when c = cmin − δ. This completes the proof.

Remark 5.4.4. Theorem 5.4.3 reveals an essential property of the nonlinear selection,
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i.e., the pushed wave Wc∗ has the fast decaying rate. The condition in case (I) can

be satisfied by many biological and physical models, such as the stream population

model(see, [91]).

In practice, it is not easy to verify Theorem 5.4.3, since we are not easy to find an

exact traveling wave with a particular decay rate, so we shall provide the following

easy-to-apply condition for the nonlinear selection.

Theorem 5.4.5. Assume that {Qt}t∈T satisfy (A1)-(A4), Mt satisfies (C1)-(C3), and

Bω
0 is irreducible. If for c1 > c0, suppose that there exists a continuous ω-time-periodic

function W (t, x) satisfying

0� W (t, x)� β(t), lim sup
x→−∞

W (t, x)� β(t), W (t, x) = e−µ2(c1)xζµ2(c1)(t) as x→∞,

and

Qt[W (0, ·)](x) > W (t, x− c1t),

where µ2(c1) = µ1
2(c1) is defined in (5.3.3). Then cmin > c1 and no traveling waves

exist for c ∈ [c0, c1). In other words, the nonlinear selection is realized.

Proof. We prove this theorem by way of contradiction, which is similar to Step 1 of

Theorem 5.4.3; thus, it is omitted.

Corollary 5.4.6. Under the assumptions that {Qt}t∈T satisfy (A1)-(A4), Mt satisfies

(C1)-(C3), and Bω
0 is irreducible, if there exists an ω-periodic function W (t, x) =

β(t)
1+eµ̄x/ζµ̄(t)

:=
(

β1(t)
1+eµ̄x/ζuµ̄(t)

, · · · , βl(t)

1+eµ̄x/ζlµ̄(t)

)
, where µ̄ = µ̄1 defined in Lemma 5.3.1, is a

strongly-strict lower solution in the sense that

Qt[W (0, ·)](x)� W (t, x− c0t),

then the nonlinear selection is realized, i.e., cmin > c0.

Proof. By the continuity, there is a constant number c1 which is slightly larger but

sufficiently close to c0, and an ω-time-periodic function β1(t), which is approaching
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β(t) from below, such that W 1(t, x) = β1(t)

1+eµ2(c1)x/ζµ2(c1)(t)
is a lower solution in the sense

that Qt[W 1(0, ·)](x) > W 1(t, x − c1t). Then, the result can be directly deduced by

Theorem 5.4.5. Thus, the proof is complete.

When an ω-periodic semiflow is known to be nonlinearly selected, i.e., cmin =

c∗f/ω > c0, it is usually hard to obtain the exact formula for cmin. Even for constant-

coefficient cases, there are only limited results, e.g., [29, 47]. We want to give an

estimate of cmin when the nonlinear selection is realized. It is easy to see that Theorem

5.4.5 has already given a lower bound for cmin, i.e., cmin > c1. Now, we will give the

following theorem for an upper bound of cmin.

Theorem 5.4.7. (upper bound for the minimal speed) When {Qt}t∈T satisfy (A1)-

(A4), Mt satisfies (C1)-(C3), and Bω
0 is irreducible, for c2 > c0, if there exists a

continuous positive ω-time-periodic function W (t, x) ∈Mβ(t), satisfying

lim inf
x→−∞

W (t, x)� 0, W (t, x) = e−µ2(c2)xζµ2(c2)(t) as x→∞, (5.4.7)

and

Qt[W (0, ·)](x) 6 W (t, x− c2t), (5.4.8)

where µ2(c2) = µ1
2(c2) is defined in (5.3.3), then cmin = c∗f/ω 6 c2.

Proof. Recall that c∗f := sup{c : a(c; +∞) > 0}, i.e., (5.2.6), where a(c; s) = lim
n→∞

an(c; s)

with

a0(c, s) = φ, an+1(c, s) = Rc[an], and Rc[a](s) = max{φ(s), T−c[P [a]](s)}.

By [20], c∗f is independent of choice of a0(c;−∞) = $ ∈ X as long as 0 � $ � β.

Thus, we can let $ be small enough to have W , or a shift of W , to be an upper

solution of P satisfying

a0(c2ω; s) = φ(s) 6 W (0, s).
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Following (5.2.3), (5.2.4), (5.4.7), and (5.4.8), and then by induction, we obtain that

an+1(c2ω; s) 6 W (0, s), for all n > 0.

Moreover, a(c2ω; +∞) = 0. By (5.2.6), we have c∗f 6 c2ω; thus, cmin 6 c2.

With the nonlinear selections constructed in above theorems, we now study the

linear selection.

Theorem 5.4.8 (Linear Selection). Suppose that {Qt}t∈T satisfy (A1)-(A4), Mt sat-

isfies (C1)-(C3), and Bω
0 is irreducible. Further assume that there exists an ω-periodic,

continuous, and positive function W (t, x) satisfying

lim inf
x→−∞

W (t, x)� 0, lim
x→∞

W (t, x) = 0, and Qt[W (0, ·)](x) 6 W (t, x− c0t).

Then the linear selection is realized.

Proof. The main part of the proof is similar to that of Theorem 5.4.7. By choosing

an initial data φ(x) 6 W (0, x) for all x ∈ R, then c∗f/ω 6 c0 directly follows from

the comparison principle. The proof of c∗f/ω > c0 is rather trivial by [42] or [88].

Therefore, we have c∗f/ω = c0.

We then present two corollaries to give an idea for choosing some suitable upper

solutions to achieve a linear selection result.

Corollary 5.4.9. Suppose that {Qt}t∈T satisfy (A1)-(A4), Mt satisfies (C1)-(C3),

and Bω
0 is irreducible. If W = e−µ̄xζµ̄(t) is an upper solution of the wave profile

equation, that is,

Qt[e
−µ̄xζµ̄(0)] 6 e−µ̄(x−c0t)ζµ̄(t)

where µ̄ = µ̄1 is defined in Lemma 5.3.1, then the linear selection is realized.

Corollary 5.4.10. Let {Qt}t∈T satisfy (A1)-(A4), Mt satisfies (C1)-(C3), and Bω
0 be

irreducible. Suppose that W̄ (t, x) = β(t)
1+eµ̄x/ζµ̄(t)

:=
(

β1(t)
1+eµ̄x/ζuµ̄(t)

, · · · , βl(t)

1+eµ̄x/ζlµ̄(t)

)
, where
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µ̄ = µ̄1 is defined in Lemma 5.3.1, is an upper solution of the wave profile equation,

i.e., Qt[W̄ (0, ·)](x) 6 W̄ (t, x− c0t). Then the linear selection is realized.

5.4.2 Case (II): Bω
0 is not irreducible and I0 = {1}

The case when Bω
0 is not irreducible may admit boundary fixed points of P = Qω in

Mβ. To deal with it, we begin with a simpler one (II), i.e., λi(0) < 1 for all i 6= 1.

Then, we need the following assumption on Bω
0 so that the extinction state zero can

be invaded.

(C4) Bω
0 has at each diagonal block at least one nonzero entry underneath the first

diagonal block. This means when the populations are very small, an increase in

population of any species in the first block increases the populations of all the

other species in a finite number of time steps.

Correspondingly, we have the following assumption to Qt.

(A5) For every fixed point α(t) of Qt in Mβ(t) other than β(t), P1[α(t)] = 0.

Notice that assumption (A5) is consistent to (C4): to have a semi-trivial equilibrium

α that is not strongly positive, we have to require all the components in the first block

to be zero. Otherwise all the population of other blocks will follow the growth of the

first block to stabilize into the unique positive equilibrium β.

The condition of (II) immediately shows that

cf0 = c1
0 =

cω1
ω
.

Then, due to the importance of the uppermost block, we give the following notation.

Denote the components corresponding to the uppermost block of Bω
0 as U-system.

That means, if W (t, x) is a traveling wave solution of Qt satisfying Definition 5.2.2,

then it can be expressed as W (t, x) = (U, V )(t, x), and V collects the rest components

except U . Correspondingly, β(t) = (βu, βv)(t) satisfies W (t,−∞) = (U, V )(t,−∞) =

(βu, βv)(t).

Next, we provide a condition so that a single spreading exists.

Lemma 5.4.11. Assume that {Qt}t∈T satisfy (A1)-(A5), Mt satisfies (C1)-(C4), and

Case (II) hold. Suppose that cαmin is the minimal speed so that the semiflow Qt has
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no traveling waves conecting β(t) to α(t) if c < cαmin, where α(0) is any fixed point of

P = Qω other than zero and β. Suppose that for any fixed point α1(0) = (0, α̂(0))

of P , the reductive system of Qt restricted on M[0,α1(0)] →M[0,α1(t)] has no traveling

wave, connecting (0, α̂(t)) and (0, 0), for c ≥ cαmin. Then Qt has a single spreading

speed.

Proof. The proof is trivial, since item (2.2) in Lemma 5.2.4 can be excluded.

With the above lemma, we therefore have the following qualities for this case:

c0 = cω1 /ω, and c∗/ω = c∗f/ω.

And the definition of the speed selection for this case is given as follows.

Definition 5.4.12. When Case (II) and Lemma 5.4.11 hold, the single spreading

speed of Qt is said to be linearly selected if c∗f/ω = c0 and nonlinearly selected if

c∗f/ω > c0.

Then, we specify the asymptotic behaviors of traveling wave U near positive infin-

ity. For c > c0, if Wc = (Uc, Vc) is a traveling wave solution, then Uc has the following

behavior:

Uc(t, x) = C1e
−µ1(c)xζµ1(c)(t) + C2e

−µ2(c)xζµ2(c)(t) as x→∞, (5.4.9)

where C1 > 0 or C1 = 0, C2 > 0. Here, µi = µ1
i (i = 1, 2) is defined in Lemma 5.3.1,

ζµi are the strongly positive eigenfunction corresponding to µi.

Then, we give a necessary and sufficient condition for the nonlinear selection.

Theorem 5.4.13. Suppose that the conditions in Lemma 5.4.11 hold.

(i). It follows that

c0 = cω1 /ω, and c∗/ω = c∗f/ω =: cmin,

where cmin is the critical number so that Qt has ω-periodic traveling wave solutions

Wc(t, x), connecting β and 0, if and only if c > cmin.
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(ii). Assume that the traveling wave Wc(t, x) has a continuous derivative W ′
c(t, x)

where ′ denotes the derivative with respect to x. Moreover, the map Mω,Wcmin
has a

simple principal eigenvalue with a strognly positive eigenfunction. Then, the following

two statements are equivalent:

(F1 ′) cmin > c0, that means, the nonlinear selection is realized;

(F2 ′) There exists a speed c̄ > c0 such that Qt has an ω-periodic traveling wave

Wc̄(t, x) = (Uc̄, Vc̄)(t, x) connecting zero and β, with the following property

Uc̄(t, x) = Ce−µ2(c̄)xζuµ2(c̄)(t), as x→ +∞,

for some positive constant C.

Proof. (i). The proof of this part follows from Lemma 5.4.11.

(ii). We start with the sufficiency. That means, if (F2 ′) holds for some c̄ > c0, then

there is no traveling wave for c ∈ [c0, c̄) and cmin = c̄. As before, we only need to prove

that under (F2 ′), there is no traveling wave solution for c ∈ (c0, c̄). For this purpose,

to the contrary, we suppose that a positive Wc exists for some c ∈ (c0, c̄) (maybe

close to c̄). If there is only one stable block in Bω
0 , i.e., I1 = 2, by the characteristic

equation of the linear system Mt, similar to (5.4.9) we know the asymptotic behavior

of Wc near x =∞ is

Wc =

Uc
Vc

 ∼ C1

ζuµ1(c)(t)

ζvµ1(c)(t)

 e−µ1(c)x+C2

ζuµ2(c)(t)

ζvµ2(c)(t)

 e−µ2(c)x+C3

 0

ζvµ3(c)(t)

 e−µ3(c)x,

if µ3 is not equal to µ1 or µ2, where C1 > 0, C3 > 0, or C1 = 0, C2 > 0, C3 > 0, and

Wc̄ is

Wc̄ =

Uc̄
Vc̄

 ∼ C2

ζuµ2(c̄)(t)

ζvµ2(c̄)(t)

 e−µ2(c̄)x + C3

 0

ζvµ3(c̄)(t)

 e−µ3(c̄)x.

By the continuity and monotonicity of µi(c), i = 1, 2, 3, for x near positive infinity, we

always have Wc � Wc̄ due to µ1(c) < µ2(c) < µ2(c̄) and µ3(c) < µ3(c̄) from Lemma

5.3.1. By the same arguments as that in Theorem 5.4.3, we also obtain Wc � Wc̄
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near x = −∞. Moreover, this result can follow from the same arguments, even in the

case that µ3 is equal to µ1 or µ2, or I1 contains more elements. Thus, by a translation

ξ0, we have

W̄c(t, x) = Wc(t, x+ ξ0) > Wc̄(t, x), for all x ∈ R, t ∈ R+.

Fixing some z0 = x − c̄nω, we know that Wc̄(0, x − c̄nω) = Wc̄(0, z0) � 0. On the

other hand, we will have

W̄c(0, cnω) = W̄c(0, z0 + (c̄− c)nω)→ 0, as n→∞.

This is a contradiction. Therefore, Qt has no traveling waves when c ∈ (c0, c̄). The

proof of this part is complete.

Step 2: If cmin > c0, we need to prove the wave Ucmin
in the ω-periodic traveling

wave Wcmin
= (Ucmin

, Vcmin
) of Qt has the following property

Ucmin
(t, x) ∼ C2e

−µ2(cmin)xζµ2(cmin)(t) as x→∞.

Assume to the contrary, if we have

Ucmin
(t, x) ∼ C1e

−µ1(cmin)xζµ1(cmin)(t) as x→∞,

for some positive constant C1. Then, we want to prove that P does have a traveling

wave Wc(0, x) satisfying

T−cωP

U
V

 (0, ·)

 (x) =

U
V

 (0, x). (5.4.10)

for some speed c = cmin − δ, where δ > 0 is sufficiently small. This results in a

contradiction.

Similar to Step 2 in Theorem 5.4.3, we then use a perturbation argument to prove
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the existence of Wc to (5.4.10), where c = cmin − δ for sufficiently small δ. We define

Ū(x) = Ucmin
(0, x)%(x), V̄ (x) = Vcmin

(0, x), where %(x) =
1

1 + δe[µ1(c)−µ1(cmin)]x ·
ζu
µ1(c)

(0)

ζu
µ1(cmin)

(0)

.

Wc = W̄ (x) +W1

Substituting it into (5.4.4), we have

T−cωP [W̄ (x) +W1] = W̄ (x) +W1,

where W1 = W1(0, x) is a function to be determined. The rest of proof is similar to

that in Step 2 of Theorem 5.4.3 by defining a weighted space by

W = {v ∈M0 : v = (v1, v2)T where v1 has the same dimension as U -system, and

v1 · eµ1(cmin)x = o(1) as x→∞}.

Therefore, we obtain that, there exists a small number δ0 > 0 such that for any

δ ∈ [0, δ0), (5.4.10) has a solution Wc with c = cmin − δ, which is a contradiction to

the definition of c∗. The proof is complete.

We then give sufficient conditions for linear or nonlinear selections.

For the whole system W = (U, V ), U is an invader and drives W to invade onto the

zero solution. This inspires us to make the following reasonable assumption, which

indicates the existence of V in terms of U .

(A6) We consider the equation Qt[W (0, ·)](x) = W (t, x − ct), and W = (U, V ). For

c > c1
0 and any given continuous function U = U(t, z) (z = x− ct), which is ω-

periodic in t and nonincreasing in z, satisfies U(t,−∞) = a(t) 6 βu(t) for some

ω-periodic function 0 � a(t), U(t,+∞) = 0. We assume that the V -system

always has a solution V (t, z) satisfying V (t,−∞) 6 βv(t) and V (t,+∞) = 0,

which is also ω-periodic in t and nonincreasing in z. Denote the solution as

V = V (U). Moreover, it is monotone in U ; in other words, V (U1) > V (U2) if

U1 > U2 for (t, z) ∈ T × R.
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Remark 5.4.14. Assumption (A6) is raised for a technique reason, and it can be

proved by many biological models, e.g., a famous Lotka-Volterra model, see [51, 83].

Theorem 5.4.15. Assume that the conditions in Lemma 5.4.11 hold and Qt further

satisfies (A6). If for c1 > c0, suppose that there exists a continuous ω-time-periodic

function W (t, x) = (U, V )(t, x) satisfying

0� U(t, x)� βu(t), lim sup
x→−∞

U(t, x)� βu(t), U(t, x) = e−µ2(c1)xζuµ2(c1)(t) as x→∞,

and

Qt[W (0, ·)](x) > W (t, x− c1t),

where µ2(c1) = µ1
2(c1) is defined in (5.3.3). Then cmin > c1 and no traveling waves

exist for c ∈ [c0, c1). In other words, the nonlinear selection is realized.

Proof. Due to the fact that V 6 V (U), the proof is similar to Step 1 of Theorem

5.4.3; thus, it is omitted.

Theorem 5.4.16. (upper bound for the minimal speed) Suppose that the conditions

in Lemma 5.4.11 hold and Qt further satisfies (A6). For c2 > c0, if there exists a con-

tinuous positive ω-time-periodic function W (t, x) = (U, V )(t, x)) ∈Mβ(t), satisfying

lim inf
x→−∞

U(t, x)� 0, U(t, x) = e−µ2(c2)xζuµ2(c2)(t) as x→∞, (5.4.11)

and

Qt[W (0, ·)](x) 6 W (t, x− c2t), (5.4.12)

where µ2(c2) = µ1
2(c2) is defined in (5.3.3), then cmin = c∗f/ω 6 c2.

Proof. Due to the fact that V ≥ V (U), the proof here is similar to that of Theorem

5.4.7

In this case, we can also give conditions for linear selection.



134

Theorem 5.4.17 (Linear Selection). Let the conditions in Lemma 5.4.11 be true and

the assumption (A6) holds. Further assume that there exists an ω-periodic, continu-

ous, and positive function W (t, x) satisfying

lim inf
x→−∞

W (t, x)� 0, lim
x→∞

W (t, x) = 0, and Qt[W (0, ·)](x) 6 W (t, x− c0t).

Then the linear selection is realized.

Proof. The proof is similar to that in the proof of Theorem 5.4.8

Corollary 5.4.18. Assume that {Qt}t∈T satisfy (A1)-(A6), Mt satisfies (C1)-(C5),

and Case (II) holds. If an ω-time-periodic function W = (U, V )T (where the dimen-

sion of U equals to that of U-system) has the formula

U(t, x) =
βu(t)

1 + eµ̄x

ζuµ̄(t)

, V = V (U) , and satisfies Qt[W (0, ·)](x) 6 W (t, x− c1
0t),

then the linear selection is realized.

5.4.3 Case (III): Bω
0 is not irreducible and I0 \ {1} 6= ∅

The previous two cases indicate that Qt has a single spreading speed. When Bω
0 is

not irreducible with I0 \{1} 6= ∅, we shall see in this section that Qt may have a single

spreading speed or multiple spreading speeds.

To better understand c∗ and c∗f , we introduce the individual spreading speed of

each species. Let Qt satisfy (A1)–(A4) and initial data φ satisfy (B1)–(B3), the

individual spreading speed c∗j (1 6 j 6 l) of the j-th species is a constant such that

lim
n→∞,x>(c∗j+ε)n

[P n(φ)]j(x) = 0, lim
n→∞,x6(c∗j−ε)n

[P n(φ)]j(x) > ηj > 0, (5.4.13)

where P = Qω, ηj > 0 is a constant and ε > 0 is small.

According to their definitions, the slowest and fastest spreading speeds can be

related to each individual spreading speed in the following proposition.
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Proposition 5.4.19.

c∗ = min
16j6l
{c∗j}, c∗f = max

16j6l
{c∗j}. (5.4.14)

For a specific model, both cases c∗ < c∗f and c∗ = c∗f can happen. We will establish

speed determinacy separately.

When Qt has a single spreading speed with c∗ = c∗f , we want to indicate how they

are determined by the speeds of the linearized system at zero. Assume cf0 > ci0 for

any i ∈ I0. We can see that c∗/ω > ci0 for any i ∈ I0. From Section 3, we have the

definition cf0 and c∗f/ω > cf0 . We want to see whether c∗ = c∗f can be determined by the

linear speed cf0 . Therefore, the definition of speed selection for the fastest spreading

speed is given as follows.

Definition 5.4.20. Suppose that Qt has a single spreading speed with c∗ = c∗f . We

say c∗f is linearly selected if c∗f/ω = cf0 and nonlinearly selected if c∗f/ω > cf0 .

Let I0 = {1, i1, · · · , iN} for 1 < i1, i2, · · · , iN 6 N0, U = (U1, Ui1 , · · · , UiN ) and

W = (U, V ). We assume that (A6) is true. We have the following theorem.

Theorem 5.4.21. Assume that Qt satisfies (A1)-(A4) and (A6), and the linear map

Mt satisfies (C1)-(C3). Then c∗, c∗f , c
f
0 are defined. When Bω

0 is not irreducible with

I0\{1} 6= ∅ and c∗ = c∗f , the following statements are valid.

(1) If for c = cf0 , there exists a continuous and positive functions W̄ satisfying

lim
x→∞

W̄ (t, x) = 0, and Qt[W̄ (0, ·)](x) 6 W̄ (t, x− ct). (5.4.15)

Then Qt has a traveling wave connecting β to zero and c∗f is linearly selected,

i.e., c∗f/ω = cf0 .

(2) If for c = c1 > cf0 , there exists a pair of continuous and non-increasing functions

(U, V ) being a lower solution to Qt and satisfying

lim
z→−∞

(U, V ) < β and U i ∼ e−µ
i
2(c1)z as z →∞, (5.4.16)

i ∈ I0, where µi2(c1) are defined. Then c∗f is nonlinearly selected with c∗f/ω > cf0 .
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Next, we proceed to study the case when Qt has multiple spreading speeds, i.e.,

c∗ < c∗f . We need to consider the linearization of the semiflow around each α(t). We

give the following assumption.

(C5) Let Mt,α(t) be the linearization of Qt around α(t), where α(t) satisfies Qt[α(0)] =

α(t). Define a linear map Bt
γ,α(t) : X → X by

Bt
µ,α(t)[ξ] = Mt,α(t)[e

−µxξ](x = 0),

where µ > 0 is a constant, and ξ is a real vector. Assume that Bω
µ,α(0) is

in Frobenius form and has Nα
0 elements of diagonal blocks. Let λαi (µ) (i =

1, · · · , Nα
0 ) be the principal eigenvalue of the i-th diagonal block of Bω

µ,α(0).

Among all the principal eigenvalues, we always assume that λα1 (0) > 1, λαi (0) 6= 1

for all i. Then, for the whole system, we denote

Iα0 := {i |λi(0) > 1, for 1 6 i 6 N0} ,

and Iα1 := {1, · · · , Nα
0 }\Iα0 .

Then for each α(t), there exists a corresponding fast linear speed cfα = max
i∈Iα0
{ciα},

where ciα = 1
ω

inf
µ>0

λαi (µ)

µ
.

Remark 5.4.22. Lemma 5.3.1 is still true by replacing cf0 with cfα around each α.

Denote

c∗1 = min
16j6l

{
{c∗j : 1 6 j 6 l}\{c∗}

}
.

Then, c = c∗ + ε < c∗1 for sufficiently small ε > 0, we assume that Qt has a traveling

wave connecting β(t) to α1(t) with speed c. Define

Q
(α1,β)
t := Qt|M[α1,β]

: M[α1(0),β(0)] →M[α1(t),β(t)]

Then Q
(α1,β)
t satisfies (A1)-(A3) and has a single spreading speed c∗α1

= c∗, since there

exists no fixed point between β and α1.

Now, from (C5), corresponding to c∗, we have c∗/ω > cfα1
. Then the speed selection

for the spreading speeds is defined as follows.
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Definition 5.4.23. Assume that the semiflow admits multiple spreading speeds. The

slowest speed c∗ is linearly selected if c∗/ω = cfα1
and nonlinearly selected if c∗/ω >

cfα1
. The fastest speed c∗f is linearly selected if c∗f/ω = cf0 and nonlinearly selected if

c∗f/ω > cf0 .

To determine c∗, we can study the semiflow Qt in the phase space (α1, β) as in

Case (I) and (II). Similar results can hold.

To determine the fastest speed, we can study a reduced system. Indeed, let c∗2 =

max
16i6l

{
{c∗i }\{c∗f}

}
. Assume that there exists α2 so that lim

n→∞,(c∗f−ε)n>x>(c∗2+ε)n
|P n(φ)(x)−

α2(0)| = 0 for sufficiently small ε > 0. Then by restricting Qt in the phase space

[0, α2(0)], that is,

Q
(0,α2)
t := Qt|M[0,α2]

:M[0,α2(0)] →M[0,α2(t)],

we can study the fastest speed selection as in cases (I) and (II). The detail is omitted.

According to the properties of Q
(α1,β)
t and Q

(0,α2)
t , we can further give a necessary and

sufficient condition to decide whether Qt has a single spreading speed or not.

Theorem 5.4.24. Assume that Q
(α1,β)
t (Q

(0,α2)
t ) has a single spreading speed c∗α1

/ω

(c∗α2
/ω) so that Q

(α1,β)
t (Q

(0,α2)
t ) has a traveling wave connecting β and α1 (α2 and

0) if and only if c > c∗α1
/ω (c > c∗α2

/ω). Then Qt has a single spreading speed, i.e.,

c∗ = c∗f , if and only if c∗α1
> c∗α2

.

5.5 Applications

In this section, we will apply our results to four examples with time-periodic coef-

ficients, and they are listed as follows: (1) a single delayed and diffusive equation

corresponding to case (I); (2) a stream population model with the benthic zone cor-

responding to case (I), and it is a system with its linear system around zero being

irreducible; (3) a non-local dispersal Lotka-Volterra model corresponding to case (II);

(4) a reducible cooperative system corresponding to case (III).
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5.5.1 A time-periodic diffusive equation with discrete delay

We begin with a periodic diffusive equation with a discrete delay. Let ω > 0, τ > 0

be two constants. The model is given as

∂u

∂t
= d(t)

∂2u

∂x2
+ f(t, u, uτ ), t > 0, x ∈ R, (5.5.1)

where d(t) > η for some constant η > 0 and it is a bounded ω-periodic function;

f ∈ C1(R+
3 ,R) is also ω-periodic in t; and uτ = u(t− τ, x). To investigate monostable

periodic traveling wave solutions, we further require f to satisfy

(D1) f(t, 0, 0) ≡ 0, ∂f(t,u,v)
∂v

> 0, ∀(t, u, v) ∈ R3
+, and there is a real number H > 0

such that f(t,H,H) 6 0.

Let X = C([−τ, 0],R) andM be defined in Section 2 with H = R and l = 1, that

is, M is the space of all bounded and nonincreasing functions from R to X . Using

the periodic semiflow generated by the periodic heat equation ∂u
∂t

= d(t)∂
2u
∂x2 (see, e.g.,

Section 2 of [14]) and Theorem 2.2 of [71], it can be shown that (5.5.1) generates a

monotone periodic semiflow Qt :MH →MH defined by

Qt[φ](x)(θ) = u(t+ θ, x;φ), θ ∈ [−τ, 0], (t, x) ∈ R+ × R,

where ut(θ, x;φ) = u(t+θ, x;φ) is the unique solution of (5.5.1) for any given φ ∈MH .

It is easy to see that Qt satisfies (A1). Let Q̂t be the restriction of Qt to XH . We can

see that Q̂t : XH → XH is the periodic semiflow generated by

du

dt
= f(t, u(t), u(t− τ)), t > 0, (5.5.2)

with the initial dada u0 = φ ∈ XH . To have a positive ω-periodic solution of (5.5.2),

we need the following assumption:

(D2) r0 > 1, where r0 is the spectral radius of the Poincaré map P̂ associated with

du

dt
= f ′u(t, 0, 0)u(t) + f ′v(t, 0, 0)u(t− τ), t > 0,

where f ′u (f ′v) denotes the partial derivative with repsect to the second (third)

variable u (v) in f(t, u, v).
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By [ [95], Theorem 2.1.2], (5.5.2) has a positive ω-periodic solution β(t), which satisfies

lim
n→∞

P̂ n[u] = β(0) when u ∈ XH\{0}. Thus, assumption (A3) holds for P = Qω since

P̂ = P |XH .

Following Section 4 in [42], we obtain that Qt satisfies (A2). Thus, Qt satisfies

all the assumptions (A1)-(A3) and the existence of traveling waves can be obtained

directly.

Lemma 5.5.1. Assume (D1) and (D2) hold. (5.5.1) has a single spreading speed

c∗ defined in (5.2.5) (i.e., c∗ = c∗f) so that (5.5.1) has a periodic traveling wave

U(t, x− ct), connecting β and 0, if and only if c > c∗/ω.

Now we focuse on the speed selection through applying our theorems in Section

3. To proceed, let’s work out the linear speed.

Let λ(µ) be the spectral radius of the Poincaré map associated with the following

linear equation

du

dt
= d(t)µ2u(t) + f ′u(t, 0, t)u(t) + f ′v(t, 0, 0)u(t− τ), t > 0.

(D2) implies that λ(0) > 1. Therefore, it is not hard to see that (C1)-(C3) hold. This

is a scalar equation, and thus it belongs to case (I): the linear system is irreducible.

Furthermore, following Theorem 5.4.3 (i), there exists a critical number cmin = c∗/ω =

c∗f/ω.

To investigate this traveling wave, we let u(t, x) = U(t, ξ) (ξ = x− ct). Then, the

equation for this traveling wave profile is found asd(t)Uξξ + cUξ + f(t, U, U(t, ξ + cτ))− Ut = 0,

U(t,−∞) = β(t), U(t,+∞) = 0.
(5.5.3)

Now we want to obtain the characteristic equation of the linearized system. Lin-

earizing (5.5.3) around zero gives

d(t)Uξξ + cUξ + f ′u(t, 0, 0)U + f ′v(t, 0, 0)U(t, ξ + cτ)− Ut = 0.

Through letting U = ζ(t)e−µξ with ζ(t) being ω-periodic and integrating over a
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period, we obtain

h(µ) := d̄µ2 − cµ+ f̄ ′u + f̄ ′ve
−µcτ = 0,

where d̄ =
∫ ω

0
d(t)dt/ω, f̄ ′u =

∫ ω
0
f ′u(t, 0, 0)dt/ω, and f̄ ′v =

∫ ω
0
f ′v(t, 0, 0)dt/ω.

Define

c0 := inf {c ∈ R |h(µ) = 0 has a positive real solution} .

Theorem 5.5.2. Let

Ū(t, ξ) =
β(t)

1 + eµ̄ξ

ζ(t)

.

If

− 2µ̄2d(t) + max
ξ∈R

{
f
(
t, Ū , V

)
− f(t, β, β(t− τ))Ū1 − F (t, ξ)

Ū2

β

(
1− Ū1

) }
6 0, (5.5.4)

where F (t, ξ) = Ū(1− Ū1) · [f ′u(t, 0, 0) + f ′v(t, 0, 0)e−µ̄c0τ ], Ū1 = Ū/β, V (t, ξ) = Ū(t, ξ+

c0τ), µ̄ = µ(c0), then cmin = c0.

Proof. When c = c0, we find formulas of Ūξ, Ūξξ, and Ūt, and substitute them all into

the left-hand side of (5.5.3) to obtain

d(t)Ūξξ + cŪξ + f(t, Ū , V )− Ūt

= Ū2

β

(
1− Ū

β

){
− 2µ̄2d(t) +

f
(
t,Ū ,V

)
−f(t,β,β(t−τ))Ū1

Ū2

β (1−Ū1)
− f ′u(t,0,0)+f ′v(t,0,0)e−µ̄c0τ

Ū1

}
= Ū2

β

(
1− Ū

β

){
− 2µ̄2d(t) +

f
(
t,Ū ,V

)
−f(t,β,β(t−τ))Ū1−F (t,ξ)

Ū2

β (1−Ū1)

}
6 0,

provided that (5.5.4) holds. This means, Ū is an upper solution of (5.5.3). Then, by

choosing φ = Ū(0, x− c0θ) and using the comparison principle, it immediately follows

that Qt[Ū(0, ·− c0θ)](x) 6 Ū(t, x− c0(t+ θ)). Therefore, by Theorem 5.4.8, the linear

selection is realized.

As for the nonlinear selection, we apply Corollary 5.4.5 and obtain the following

result.
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Theorem 5.5.3. If c1 > c0, let U be defined as

U(t, ξ) =
kβ(t)

1 + eµ2ξ

ζµ2 (t)

,

where 0 < k < 1. If

− 2µ2
2d(t) + min

ξ∈R

{
f
(
t, U, V

)
− f(t, β, β(t− τ))U1 − F2(t, ξ)

U2

β
(1− U1)

}
> 0,

where µ2 = µ2(c1), F2(t, z) = U (1− U1)
[
f ′u(t, 0, 0) + f ′v(t, 0, 0)e−µ2(c1)c1τ

]
, U1 = U/β,

V (t, ξ) = U(t, ξ + c1τ), then the nonlinear selection is realized, i.e., cmin > c1 > c0.

The above theorem not only gives a condition such that the nonlinear selection is

realized but also provides a lower bound of cmin. Next, by applying Theorem 5.4.5,

we are able to give an upper bound for cmin when cmin > c1.

Theorem 5.5.4. For any c2 > c0, let U be defined as

U(t, ξ) =
β(t)

1 + eµ2ξ

ζµ2 (t)

,

if

−2µ2
2d(t)+max

ξ∈R

{
f
(
t, U, V

)
− f ′u(t, 0, 0)U (1− U1)− f ′v(t, 0, 0)e−µ2c2τU (1− U1)

U2

β
(1− U1)

}
6 0,

where µ2 = µ2(c2), U1 = U/β, V (t, ξ) = U(t, ξ + c2τ), then cmin 6 c2.

5.5.2 A stream population system with a benthic zone

In this subsection, we study a periodic stream population model with the benthic

zone, which can be used to handle the persistence of benthic aquatic organisms. The

system is a monotonic coupled system given byut = −a(t)u+ b(t)v − σ(t)ux + d(t)uxx,

vt = a(t)u− b(t)v + v(1− v)(1 + ρv) + ε(t)vxx.
(5.5.5)
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Here, all the coefficients (a(t), b(t), σ(t), ε(t), and d(t)) are positive continuous ω-

time-periodic functions with ω > 0. In the model, u(t) denotes the population density

in the drift while v(t) denotes the one resided on the benthic zone (benthos). The

periodic coefficient a(t) denotes the per capita rate at which individuals on the benthic

zone entering the drift while b(t) is the one describing the reverse direction; σ(t) is

the advection speed due to the drifting itself; and d(t) is the diffusion coefficient from

the drifting while ε(t) is small (even can be zero) and represents the diffusion from

the benthic zone. This model originates with constant coefficients from [67] and was

extended by [50], in which, the authors considered temporal variability but with a

linear birth function. Later, Yu and Zhao in [91] considered a nonlinear case, but

with a subhomogeneous condition, i.e., replacing v(1 − v)(1 + ρv) by f(t, v)v with

f(t, v) 6 f(t, 0). However, the nonlinear function considered in (5.5.5) has a wider

application in the study of Allee efect. Such a birth function can be seen in [29], and

it corresponds to a so-called weak Allee effect [26, 76].

According to the phase settings in Section 2, we assume that X = R2 and M
be the space of all bounded and nonincreasing functions from R to X . Using [91],

it follows that (5.5.5) generates an ω-periodic monotone semiflow Qt : M+ → M+

defined by

Qt[(φ1, φ2)](x) = (u(t, x;φ1), v(t, x;φ2)), ∀(φ1, φ2) ∈M+, (t, x) ∈ R+ × R, (5.5.6)

and P = Qω is the corresponding Poincaré map. It is easy to see that (A1) (translation

invariance) holds for Qt, t > 0.

To see the existence of a traveling wave solution to (5.5.5), we first consider the

spatially homogeneous systemut = −a(t)u+ b(t)v,

vt = a(t)u− b(t)v + v(1− v)(1 + ρv).
(5.5.7)

Linearizing it around (0, 0) givesut = −a(t)u+ b(t)v,

vt = a(t)u− b(t)v + v.
(5.5.8)
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To have a positive periodic solution, we need the following assumption.

(D3) Let r1 be the principal Floquet multiplier of (5.5.8) and r1 > 1.

By Theorem 2.1.2 in [95], (5.5.7) has two ω-periodic solution: (0, 0) and (u∗(t), v∗(t))�
(0, 0). Moreover, 0 = (0, 0) is unstable while we assume that β(t) = (u∗(t), v∗(t)) is

stable in the sense that lim
n→∞

P̂ n[w] = β(0) when 0 � w ≤ β(0) = (u∗(0), v∗(0)),

where P̂ is the Poincaré map associated with (5.5.7). Thus, (A3) holds for P since

P = P̂ when the phase space is restricted on X+.

By Lemma 2.2 in [91], it follows that Qt satisfies (A2) (point-α-contraction). Fur-

thermore, Qt :Mβ(0) →Mβ(t) has only two spacially homogeneous periodic solutions;

therefore, (2.2) in Lemma 5.2.4 is ruled out immediately. The existence of traveling

waves is summarized into the following lemma.

Lemma 5.5.5. Assume that (D3) holds. Then P has a single spreading speed c∗ = c∗f

and the minimal wave speed satisfies cmin = c∗/ω such that (5.5.5) has a traveling

wave, connecting β and zero, if and only if c > cmin.

To apply our theory on the speed selection mechanism, we first need to figure out

the linear speed of system (5.5.5). Linearizing (5.5.5) around 0 givesut = −a(t)u+ b(t)v − σ(t)ux + d(t)uxx,

vt = a(t)u− b(t)v + v + ε(t)vxx.
(5.5.9)

Let (u, v)(t, x) = (w1, w2)(t)e−µx with µ ∈ R+, then we havew′1 = d(t)µ2w1 + σ(t)µw1 − a(t)w1 + b(t)w2,

w′2 = ε(t)µ2w2 + a(t)w1 − b(t)w2 + w2.
(5.5.10)

Let Mt be the solution map associated with (5.5.9), and Bt
µ be defined by Mt as in

Section 2. It is clear to see that Bt
µ is the solution map of (5.5.10). Let λ(µ) be the

principal Floquet multiplier of the linear map Mω. Then it follows that λ(µ) is the

principal eigenvalue of Bω
µ . Thus, the linear speed of system (5.5.5) is

c0 =
1

ω
inf
µ>0

lnλ(µ)

µ
. (5.5.11)
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Moreover, by the Floquet theory, there exists a positive ω-periodic functions (ζ1, ζ2)(t)

such that (5.5.10) has a solution (w1, w2)(t) = (ζ1, ζ2)(t)e(lnλ(µ))t. Next, we consider

the wave profile system, that is, let (u, v)(t, x) = (U, V )(t, z) with z = x − ct; thus,

the system for the wave profile (U, V ) is given by
d(t)Uzz + (c− σ(t))Uz − a(t)U + b(t)V − Ut = 0,

ε(t)Vzz + cVz + a(t)U − b(t)V + V (1− V )(1 + ρV )− Vt = 0,

(U, V )(t,−∞) = β(t), (U, V )(t,+∞) = (0, 0).

(5.5.12)

Alternatively, we can find the linear speed from the wave profile equations. By way

of asymptotic analysis, we can assume (U, V ) ∼ (ζ1, ζ2)(t)e−µz as z →∞. This givesd(t)µ2ζ1 − µ(c− σ(t))ζ1 − a(t)ζ1 + b(t)ζ2 − ζ ′1 = 0,

ε(t)µ2ζ2 − cµζ2 + a(t)ζ1 − b(t)ζ2 + ζ2 − ζ ′2 = 0,
(5.5.13)

It is easy to know that there exists a minimal linear speed c0 so that the above

equations have a strongly positive solution (ζ1, ζ2)(t) if and only if c ≥ c0. For c > c0,

the asymptotic behavior of (U, V ) as z →∞ is given by

(
U(t, z)

V (t, z)

)
∼ C1

(
ζ1,µ1(t)

ζ2,µ1(t)

)
e−µ1(c)z + C2

(
ζ1,µ2(t)

ζ2,µ2(t)

)
e−µ2(c)z,

with C1 > 0, or C1 = 0, C2 > 0. Here, ζj,µi (i, j = 1, 2) is the positive ω-periodic

functions satisfyingd(t)µ2ζ1 − µ(c− σ(t))ζ1 − a(t)ζ1 + b(t)ζ2 − ζ ′1 = 0,

ε(t)µ2ζ2 − cµζ2 + a(t)ζ1 − b(t)ζ2 + ζ2 − ζ ′2 = 0,

with µ = µi(c), respectively. Clearly, this model belongs to the case (I): an irreducible

linear system.

For this particular case, we can prove that there exists a critical value of ρ for

speed selection.

Lemma 5.5.6. For given a(t), b(t), σ(t), µ(t) and d(t), (5.5.5) has a critical ρ̄ such
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that the minimal wave speed is linearly selected if ρ ≤ ρ̄, and nonlinearly selected if

ρ > ρ̄.

Proof. To prove the existence of ρ̄, it suffices to prove the following claim.

Claim. If (5.5.5) is linearly selected for some ρ = ρl, then the linear selection is

realized for all ρ 6 ρl.

By assumption, (5.5.5) has a traveling wave solution (Ul, Vl) with speed c = c0 when

ρ = ρl. Thus,d(t)Ul,zz + (c0 − σ(t))Ul,z − a(t)Ul + b(t)Vl = 0,

ε(t)Vl,zz + c0Vl,z + a(t)Ul − b(t)Vl + (1− Vl)(1 + ρlVl)Vl = 0.

Then, we substitute (Ul, Vl) into (5.5.5) when ρ < ρl. It is easy to see that the first

equation is always zero; the second one becomes

ε(t)Vl,zz + c0Vl,z + a(t)Ul − b(t)Vl + (1− Vl)(1 + ρVl)Vl

= (1− Vl)V 2
l (ρ− ρl) < 0.

This means that (Ul, Vl) is an upper solution to (5.5.5) for ρ < ρl. By Theorem 5.4.8,

we conclude that the minimal wave speed is linearly selected for all ρ ≤ ρl. The proof

is complete.

Therefore, we can define

ρ̄ := sup{ρ ∈ R | (5.5.5) is linearly selected}.

By the theory of [42] (see also in [91]), it is known that if ρ 6 1, the system is

linearly selected. The reason is that the Poincaré map is subhomogeneous under such

a condition, i.e., v(1− v)(1 + ρv) 6 v. Although the existence of ρ̄ has been proved in

the above lemma, its explicit formula is unknown. Next, we will give an estimate of ρ̄

for the speed selection by the theorems in our chapter. This also provide an estimate

of the critical value.
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Now, we choose a testing function as

V =
v∗(t)

1 + eµ̄z

ζ2(t)

and let

U =
ζ1

ζ2

V +m2(t)V 2 +m1(t)V 3,

where

m2(t) =

[
u∗(t)

v∗(t)
− ζ1(t)

ζ2(t)

]
1

v∗(t)
−m1(t)v∗(t).

Here, µ̄ = µ̄(c0) and ζj = ζj,µ̄ (j = 1, 2). Substituting them into the wave profile

system (5.5.12), the first equation becomes

L1(U, V ) =
V 2

v∗(t)

(
1− V

v∗(t)

)
G1(V ) (5.5.14)

where

G1(t, z) = −12d(t)µ̄2m1(t)V 2 + V

[
d(t)µ̄2(9m1(t)v∗(t)− 6m2(t))− 3µ̄(c0 − σ(t))m1(t)v∗(t)

−3m1(t)v∗(t)
ζ ′2
ζ2

]
+ d(t)µ̄2(4m2(t)v∗(t)− 2

ζ ′2
ζ2

)− 2µ̄(c0 − σ(t))m2(t)v∗(t)

+a(t)m1(t)v∗(t) +
v∗
′

v∗(t)

(
ζ1

ζ2
+ 3m1(t)v∗2

)
+m′1(t)v∗2 − 2

ζ ′2
ζ
m2(t)v∗(t).

For the second equation, we have

L2(U, V ) =
V 2

v∗(t)

(
1− V

v∗(t)

)[
−2ε(t)µ̄2 − a(t)m1v

∗(t)− v∗
′
(t)

V
+ ρv∗2(t)

]
(5.5.15)

With the above computations and by Theorems 5.4.8, 5.4.5 and 5.4.7, we then have the

following result for the speed selection.

Theorem 5.5.7. Let L1(U, V ) and L2(U, V ) be defined in (5.5.14) and (5.5.15) respectively.

System (5.5.5) has a following speed selection mechanism.
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(1) It is linearly selected, i.e., c = c0 where c0 is defined in (5.5.11), if

max
(t,z)∈[0,ω]×R

G1(V ) 6 0 and ρ 6 max
(t,z)∈[0,ω]×R

{
2µ2 ε(t)

v∗2(t)
+
a(t)m1(t)

v∗(t)
+

v∗
′
(t)

v∗2(t)V (t, z)

}
.

(5.5.16)

(2) It is nonlinearly selected, i.e., c > c0, if

min
(t,z)∈[0,ω]×R

G1(V ) > 0 and ρ > min
(t,z)∈[0,ω]×R

{
2µ2 ε(t)

v∗2(t)
+
a(t)m1(t)

v∗(t)
+

v∗
′
(t)

v∗2(t)V (t, z)

}
.

(5.5.17)

Remark 5.5.8. The idea dealing with this example can be easily extended by replacing

v(1−v)(1+ρv) by a general function f(t, v) with one positive zero (e.g., f(t, 0) = f(t, 1) = 0).

It is left to interested readers.

5.5.3 A nonlocal dispersal Lotka-Volterra model

In this subsection, we investigate a nonlocal dispersal Lotka-Volterra model, which can

reflect case (II). The model is given by


∂u
∂t =

[
J1 ∗ u− u

]
(t, x) + u(r1(t)− a1(t)u− b1(t)v),

∂v
∂t =

[
J2 ∗ v − v

]
(t, x) + v(r2(t)− a2(t)u− b2(t)v).

(5.5.18)

Here, all the coefficients ri(t), ai(t), bi(t) are nonnegative continuous ω-periodic functions

with ω > 0 being a constant; Ji ∗ w =
∫ +∞
−∞ Ji(x − y) · w(t, y)dy, i = 1, 2. Here, we require

the kernel Ji satisfying

(D4) For i = 1, 2,
∫
R Ji(y)dy = 1, Ji(y) = Ji(−y), and

∫
R Ji(y)eµydy <∞ for every µ > 0.

When we consider the space-homogeneous system, that is,


du
dt = u(r1(t)− a1(t)u− b1(t)v),

dv
dt = v(r2(t)− a2(t)u− b2(t)v),
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it is readily seen that it has three nonnegative ω-periodic solutions: e0 = (0, 0) (locally un-

stable), e1 = (p(t), 0) (locally stable), and e2 = (0, q(t)) (locally unstable) under conditions:

∫ ω

0
r1(t)dt >

∫ ω

0
b1(t)q(t)dt,

∫ ω

0
r2(t)dt <

∫ ω

0
a2(t)p(t)dt, (5.5.19)

where 
p(t) =

p0e
∫ t
0 r1(s)ds

1 + p0

∫ t
0 e
∫ s
0 r1(τ)dτa1(s)ds

, p0 =
e
∫ ω
0 r1(s)ds − 1∫ ω

0 e
∫ s
0 r1(τ)dτa1(s)ds

,

q(t) =
q0e

∫ t
0 r2(s)ds

1 + q0

∫ t
0 e
∫ s
0 r2(τ)dτ b2(s)ds

, q0 =
e
∫ ω
0 r2(s)ds − 1∫ ω

0 e
∫ s
0 r2(τ)dτ b2(s)ds

.

We further assume that there exists no other positive ω-periodic solutions. We are interested

in the existence of monotone traveling waves connecting e1 to e2. To simplify (5.5.18) and

obtain a cooperative system (under which, our results in Section 3 can be applied directly),

we let ũ(t, x) = u(t,x)
p(t) , ṽ(t, x) = 1− v(t,x)

q(t) and drop the tilde to obtain


ut =

[
J1 ∗ u− u

]
+ u
[
a1(t)p(t)(1− u)− b1(t)q(t)(1− v)

]
,

vt =
[
J2 ∗ v − v

]
+ (1− v)

[
a2(t)p(t)u− b2(t)q(t)v

]
.

(5.5.20)

Corresponding to the settings in Section 2, we have periodic solutions β = (1, 1), α = (0, 1),

and 0 = (0, 0), originating from (p(t), 0), (0, 0), and (0, q(t)), respectively.

Now, let X = R2 and Xβ, M and Mβ be defined as in Section 2. Denote w = (u, v)T ,

and F (t, w) denotes the right-hand side vector field of (5.5.20) without the nonlocal dispersal

term. Then, denote Q̃t as the solution semigroup of the linear nonlocal dispersal equation

ut = J ∗ u− u. By [20,89],

Q̃t[φ](x) = e−tΣ∞m=0

tm

m!
am(φ)(x),

where a0(φ) = φ and am(φ) = J ∗ am−1(φ) ∀m > 1. Hence, (5.5.20) can be written into an

integral form:

w(t, x) = Q̃t[w(0, ·)](x) +

∫ t

0
Q̃t
[
F [s, w(s, ·)]

]
(x)ds.

By [20], it follows that ∀φ ∈ Mβ, (5.5.20) has a unique mild ω-periodic solution u(t, x;φ)

with u(0, x;φ) = φ.
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Let Qt be the solution map of (5.5.20), i.e., Qt[φ] = u(t, ·;φ), satisfying Definition 5.2.1,

and P = Qω be the associated Poincaré map. It is easy to see that (A1) and (A3) hold for

Qt. Following the arguments in the proof of Theorem 5.1 in [20], it follows that (A2) holds.

Applying [Theorem 5.3, [20]] to P , (2.2) in Lemma 5.2.4 is excluded. Therefore, we obtain

that cmin = c∗/ω = c∗f/ω, and the existence of traveling waves is given below.

Lemma 5.5.9. Assume (5.5.19) and (D4) hold. Let cmin = c∗f/ω be defined in (5.2.6) as-

sociated with Qt. Then (5.5.20) has an ω-periodic traveling wave (U, V )(t, x−ct) connecting

β to 0 if and only if c > cmin.

Next, we go further for its speed selection mechanism. First, we can find the system for

the wave profile (by setting u(t, x) = U(t, ξ) and v(t, x) = V (t, ξ) (ξ = x− ct)) as


[J1 ∗ U − U ] + cUξ + U [a1(t)p(t)(1− U)− b1(t)q(t)(1− V )]− Ut = 0,

[J2 ∗ V − V ] + cVξ + (1− V )[a2(t)p(t)U − b2(t)q(t)V ]− Vt = 0,

(U, V )(t,−∞) = (1, 1), (U, V )(t,+∞) = (0, 0).

(5.5.21)

Linearizing (5.5.21) near zero, and letting (U, V ) = (ζu(t), ζv(t))e−µξ with µ > 0 and ζu, ζv

being ω-periodic give fµ(t)− cµ 0

a2(t)p(t) gµ(t)− cµ

ζu
ζv

 = 0, (5.5.22)

where 
fµ(t) = [

∫∞
−∞ J1(y)eµydy − 1] +

[
a1(t)p(t)− b1(t)q(t)

]
− ζu

′

ζu ,

gµ(t) = [
∫∞
−∞ J2(y)eµydy − 1]− b2(t)q(t)− ζv

′

ζv .

Integrating the diagonal elements in (5.5.22) from 0 to ω gives two characteristic equations

fωµ :=

∫ ∞
−∞

J1(y)eµydy − 1 + a1p− b1q = cµ,

and

gωµ :=

∫ ∞
−∞

J2(y)eµydy − 1− b2q = cµ,

where u is defined as u =
∫ ω
0 u(t)dt

ω for any ω-periodic functionu. Clearly, fω0 = a1p− b1q > 0
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by (5.5.19) and gω0 = −b2q < 0, it immediately follows that

c0 = inf
µ>0

∫∞
−∞ J1(y)eµydy − 1 + a1p− b1q

µ
. (5.5.23)

The right-hand side attains its infinitum at some finite value µ̄. Moreover, it is clear to

see that for c > c0, there exists µ1(c) and µ2(c) such that c = fωµ1
/µ1 = fωµ2

/µ2, and µ1 is

decreasing while µ2 is increasing in c. The asymptotic behavior of (U, V ) is

U
V

 ∼ C1

ζuµ1
(t)

ζvµ1
(t)

 e−µ1ξ + C2

ζuµ2
(t)

ζvµ2
(t)

 e−µ2ξ + C3

 0

ζvµ3
(t)

 e−µ3ξ,

when µ3 is not equal to µ1 and µ2, where µ3 is the unique solution of gωµ = cµ for any given

c > c0 and increasing in c.

In summary, this model can be classified into case (II). To apply our theorems under

this case, we want to prove (A6), the following lemma provides a justification.

Lemma 5.5.10. Let (D4) and (5.5.19) hold. For c > c0 (see, (5.5.23)), and a given

continuous ω-periodic function U(t, ξ) (ξ = x − ct) satisfying U(t,∞) = 0, U(t,−∞) >
b2(t)q(t)
a2(t)p(t) , ω-periodic in t, and nonincreasing in ξ, there exists an ω-periodic function V (t, ξ),

which is also nonincreasing in z, solving
Vt = [J2 ∗ V − V ] + cVξ + (1− V )

(
a2(t)p(t)U(t, ξ)− b2(t)q(t)V

)
,

V (t,−∞) = 1, V (t,∞) = 0,

V (t, ξ) = V (t+ ω, ξ).

Moreover, V is monotone in U .

Proof. By letting W (t, z) = 1− V (t, ξ), z = −ξ, we obtain that


Wt = [J2 ∗W −W ]− cWz + b2(t)q(t)W [R(t, z)−W ],

W (t,−∞) = 1, W (t,+∞) = 0,

W (t, z) = W (t+ ω, z).

(5.5.24)
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Here, R(t, z) = 1− a2(t)p(t)
b2(t)q(t)U(t, ξ). Thus, R(t,−∞) = 1 > 0 > R(t,+∞) > −∞. Following

[Theorem 1.1, [93]], we immediately get the existence of W to (5.5.24); therefore, the exis-

tence of V is obtained. Moreover, the monotonicity of V in U is guaranteed by the positivity

of (1− V ) and a2(t)p(t). The proof is complete.

Remark 5.5.11. In [93], the authors proved such an existence result through the upper and

lower solutions method. They constructed a trivial upper solution W̄ = 1 and a nontrivial

lower solution from a lower system with a combustion-type nonlinearity. We should mention

that a lower solution can also be proved by following the ideas in [51, 83], in which, a lower

nontrivial solution is constructed from a lower system with a bistable nonliearity.

Next, we will provide some specific conditions on the speed selection and give an estimate

on cmin when it is nonlinearly selected. Since the formula V = V (U) is too complicated

(cannot be found explicitly), we will give testing functions of U and V simultaneously. The

results are presented as follows.

Theorem 5.5.12. Let

Ū(t, ξ) =
1

1 + eµ̄ξ

ζuµ̄(t)

, V̄ = min{1, kŪ}, with k > 1,

where µ̄ = µ(c0) and ξ1(t) be an ω-periodic function satisfying kŪ(t, ξ1) = 1. If

Γ1,µ̄ := max

{[∫ ∞
−∞

J1(ξ − y)
Ū(t, y)− eµ̄yŪ(1− Ū)

Ū2(1− Ū)
dy − 1

1− Ū

]
+G1(t, z)

}
6 0,

(5.5.25)

and

Γ2,µ̄ := max

{∫
R

[
J2(ξ − y)

Ū(t, y)

Ū(1− Ū)
− J1(y)eµ̄y

]
dy − Ū

1− Ū
+G2(t, z)

}
6 0, (5.5.26)

where 
G1(t, z) = − (b1(t)q(t)+1)Ū−b1(t)q(t)

Ū(1−Ū)
,

G2(t, z) = −a1(t)p(t) + b1(t)q(t) +
(1−kŪ)(

a2(t)p(t)
k

−b2(t)q(t))

1−Ū ,

then the linear selection is realized.
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Proof. Substituting formulas of Ū and V̄ into the left-hand side of (5.5.18), and through a

tedious computation, we have

[∫ ∞
−∞

J1(y)Ū(t, ξ − y)dy − Ū
]

+ c0Ūξ + Ū
[
a1(t)p(t)(1− Ū)− b1(t)q(t)(1− V̄ )

]
− Ūt

=

[∫ ∞
−∞

J1(y)Ū(t, ξ − y)dy − Ū
]
− c0µ̄Ū(1− Ū)

+Ū
[
a1(t)p(t)(1− Ū)− b1(t)q(t)(1− V̄ )

]
−
ζu
′

µ̄

ζuµ̄
Ū(1− Ū)

= Ū2(1− Ū)

{[∫ ∞
−∞

J1(ξ − y)
Ū(t, y)− eµ̄yŪ(1− Ū)

Ū2(1− Ū)
dy − 1

1− Ū

]
+ b1(t)q(t)

V̄ − Ū
Ū(1− Ū)

}
,

and

[
J2 ∗ V̄ − V̄

]
+ cV̄ξ + (1− V̄ )(a2(t)p(t)Ū − b2(t)q(t)V̄ )− V̄t

= kŪ(1− Ū)

{∫
R

[
J2(ξ − y)

Ū(t, y)

Ū(1− Ū)
− J1(y)eµ̄y

]
dy − Ū

1− Ū
+G2(t, z)

}

Here, Ū = Ū(t, ξ). Notice that, for t ∈ [0, ω],

V̄ − Ū
Ū(1− Ū)

=


1
Ū
, ξ ≤ ξ1(t),

k−1
1−Ū , ξ > ξ1(t).

Thus, it is less than 1
Ū

for ξ ∈ R. Then, by (5.5.25) and (5.5.26), the above two equations

are less than 0. This implies that such a choice of Ū and V̄ forms upper solutions to (5.5.21).

Therefore, the linear selection result directly follows from Theorem 5.4.8. This completes

proof.

Theorem 5.5.13. For some c1 > c0, let µ2 = µ2(c1), and

U(t, ξ) =
k

1 + eµ2z

ζuµ2
(t)

, V =
U

k
, with 0 < k < 1.

The nonlinear selection is realized if

min

[∫ ∞
−∞

J1(ξ − y)
U − eµ2yV (1− V )

kV 2(1− V )
dy − 1

1− V

]
+
a1(t)p(t) (1− k)

1− V
> 0,
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and

min

{∫
R

[
J2(ξ − y)

U

U(1− V )
− J1(y)eµ2y

]
dy − V

1− V
+G3(t, z)

}
> 0,

where

G3(t, z) = −a1(t)p(t) + b1(t)q(t) + ka2(t)p(t)− b2(t)q(t).

Furthermore, for some c2 > c1 > c0, let a pair of ω-time-periodic functions be defined as

U(t, z) =
1

1 + eµ2z

ζuµ2
(t)

, V = min{1, k2U}, with k2 > 1,

where µ2 = µ2(c2), and there exist ξ2(t) such that k2U(t, ξ2) = 1. Replace µ̄, Ū , V̄ with µ2,

U , V in Γ1,µ2 and Γ2,µ2 (whose definitions are seen in (5.5.25) and (5.5.26)), respectively.

If the inequalities Γ1,µ2 6 0 and Γ2,µ2 6 0 hold, then c1 6 cmin 6 c2.

Remark 5.5.14. Here, we only choose V = kU to show how to apply our theorems in

Section 3. To gain some sharper conditions, we can use the idea in the stream population

example and choose

V = AU +BU2 + CU3

with suitably chosen parameters: A, B, and C. For U , we can use

Uξ = −µU(1− Um), m > 0, or Uξ = −µU(1− 1

1− lnU
).

We leave this for interesting readers.

5.5.4 A reducible cooperative system

Finally we will work on a reducible periodic cooperative system, which may admit multiple

spreading speeds so that it provides an example for Case (III). The system is given by


∂u
∂t = d1(t)∂

2u
∂x2 + f(t, u),

∂v
∂t = d2(t) ∂

2v
∂x2 + g(t, v) + k(t)u.

(5.5.27)
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Here, d1(t), d2(t), k(t), f(t, u), and g(t, v) are all ω-periodic Hölder-continuous functions, and

f(t, u) and g(t, v) are Lipschitz continuous in the second variable. Moreover, di(t) > η > 0

(i = 1, 2), and k(t) > 0, f and g are assumed to satisfy

(D5) f(t, 0) = g(t, 0) = f(t, 1) = g(t, 1) = 0, f(t, u) > 0, g(t, v) > 0 for all 0 < u, v < 1,

and f ′u(t, 0) > 0, g′v(t, 0) > 0 where f ′u, g′v denote the derivative with respect to the

second variable.

Following (5.4.13) in Case (III), we can define the individual spreading speeds for species

u (c∗u) and v (c∗v) as


lim

t→∞, x>(c∗u/ω+ε)t
u(t, x) = 0, lim

t→∞, x6(c∗u/ω−ε)t
u(t, x) > ηu > 0,

lim
t→∞, x>(c∗v/ω+ε)t

v(t, x) = 0, lim
t→∞, x6(c∗v/ω−ε)t

v(t, x) > ηv > 0,

(5.5.28)

for any small ε > 0 and ηu, ηv being positive constants.

When f(t, u) = u(1 − u2), g(t, v) = v(1 − v2), d1(t) ≡ 1, d2(t) ≡ d, and k(t) ≡ K,

this model was studied in [74]. Notice that, under these conditions, the nonlinearities are

subhomogeneous (i.e., f(u) 6 f ′(0)u and g(v) 6 g′(0)v); thus, c∗u is always linearly selected

by [42]. Moreover, in [74], the authors claimed that (i) if d < 1, then species u and v share

a common spreading speed spread c∗u = c∗v = 2; (ii) if d > 1, then species u and v have

different spreading speeds: c∗u = 2 and c∗v = 2
√
d.

Next, we will remove the subhomogeneous condition and study a time-periodic system.

To apply our theorems, we need to identify β(t) and α(t) (if any); thus, let

dv

dt
= g(t, v) + k(t)

have a unique positive ω-periodic solution v∗(t) > 1 for t ∈ [0, ω]. Define β(t) = (1, v∗(t)).

Then, between β(t) and 0, (5.5.27) has three spacial homogeneous but ω-periodic solutions:

β(t) = (1, v∗(t)), α(t) = (0, 1), 0 = (0, 0), (5.5.29)

with β(t) being stable and 0 being unstable.

Following [ [31], Chapter II], the ω-periodic heat equation ∂u
∂t = D(t)∆u generates an
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ω-periodic semiflow denoted as Q̂(t, s) (0 6 s 6 t 6 T ) such that the solution of (5.5.27)

can be represented in an integral form as

u(t, ·;φ) = Q̂(t, 0)φ+

∫ t

0
Q̂(t, s)f(s,u(s, ·;φ))ds, (5.5.30)

where u = (u, v)T , D(t) = diag(d1(t), d2(t)), and f = (f, g)T . Define Qt[φ] := u(t, ·;φ) and

it satisfies Definition 5.2.1. Moreover, notice that (5.5.27) is a cooperative system and f is

Lipschitz continuous in u ∈ C1 and Hölder continuous in t ∈ R+. It is easy to verify (A1),

(A3) and (A4) for Qt and P = Qω. Moreover, P is a compact map, thus (A2) is satisfied

automatically. Therefore, by Lemma 5.2.4, we have the existences of c∗, c∗f , and traveling

waves for Qt. It has been shown that, in the constant case, the inequality c∗ < c∗f can be

true under some further requirements (e.g., d > 1). Following the procedure in Case (III),

we then relate the slowest and fastest spreading speeds to the individual spreading speeds

and investigate the determinacy of them.

A traveling wave solution takes the form u(t, x) = U(t, ξ), v(t, x) = V (t, ξ), ξ = x− ct.

Thus, by substituting the wave profiles into (5.5.27), we obtain


d1(t)Uξξ + cUξ + f(t, U)− Ut = 0,

d2(t)Vξξ + cVξ + g(t, V ) + k(t)U − Vt = 0.

(5.5.31)

Linearizing (5.5.31) around 0 and then substituting (U, V )T = (ζu, ζv)e−µz into it, we obtain

an eigen problem f̃µ(t)− cµ 0

k(t) g̃µ(t)− cµ

ζu
ζv

 =

0

0

 , (5.5.32)

where f̃µ(t) = d1(t)µ2 + f ′u(t, 0) − ζu
′

ζu and g̃µ(t) = d2(t)µ2 + g′v(t, 0) − ζv
′

ζv . Here, from the

linear system (5.5.32), it is clear to see that (5.5.27) belongs to Case (III): Bω
0 is reducible

with I0 \ {1} 6= ∅. Integrating the diagonal elements of (5.5.32) leads to

f̃ωµ := µ2

∫ ω

0
d1(t)dt+

∫ ω

0
f ′u(t, 0)dt = cµω
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and

g̃ωµ := µ2

∫ ω

0
d2(t)dt+

∫ ω

0
g′u(t, 0)dt = cµω.

Due to (D5), f̃ω0 > 0 and g̃ω0 > 0; therefore, we have

cu0 :=
1

ω
inf
µ>0

f̃ωµ
µ

= 2

√
d1f ′u(t, 0), and cv0 :=

1

ω
inf
µ>0

g̃ωµ
µ

= 2

√
d2g′u(t, 0).

For c > max{cu0 , cv0}, the asymptotic behaviors near 0 can be found as

U
V

 ∼ C1

ζuµ1
(t)

ζvµ1
(t)

 e−µ1ξ +C2

ζuµ2
(t)

ζvµ2
(t)

 e−µ2ξ +C3

 0

ζvµ3
(t)

 e−µ3ξ +C4

 0

ζvµ4
(t)

 e−µ4ξ,

if µi = µi(c), i = 1, 2, 3, 4 are not equal.

Similarly, through linearizing (5.5.31) near α = (0, 1), there exists a single linear speed

satisfying

cfα = cu0 . (5.5.33)

In this special case, we notice that the U -equation has been decoupled from the system

and has only two equilibrium. Thus, by applying Lemma 5.2.4, we obtain the following

lemma.

Lemma 5.5.15. Let (D5) be true. Then the following two statements hold.

(1) Let c∗u be the spreading speed u-species, then it is the critical number in the sense

that the U -equation in (5.5.27) has a traveling wave U(t, ξ) satisfying U(t,−∞) = 1,

U(t,+∞) = 0, and nonincreasing in ξ if and only if c > c∗u/ω > cu0 .

(2) There exists a critical number ĉv such that


d2(t)Vξξ + cVξ + g(t, V )− Vt = 0,

V (t,−∞) = 1, V (t,+∞) = 0,

(5.5.34)

has solutions if and only if c > ĉv/ω > cv0.

Then, according to the definitions of c∗u, c∗v and ĉv, we have the following lemma to

determine their relation.



157

Lemma 5.5.16. Let (D5) hold and c∗u, c∗v are the spreading speeds of u and v species. Then

the following results are true.

(i). c∗v ≥ ĉv .

(ii). c∗v ≥ c∗u.

(iii). c∗u = c∗v if and only if c∗u ≥ ĉv.

Proof. (i). Since the term k(t)u is always nonnegative, by comparison, the result follows.

(ii). Assume to the contrary that c∗v < c∗u. Let x = ( c
∗
v+c∗u

2 )t and t → ∞. From the

second equation of the system, we obtain a contradiction 0 = k(t)u(t, x) > 0. Thus, it is

always that c∗v > c∗u.

(iii). If c∗u ≥ ĉv, we will derive c∗u = c∗v. Otherwise, we will get c∗u < c∗v by (ii). As such,

from the limiting equation of the second equation, we get c∗v = ĉv. This is a contradiction.

The remainder part can be similarly proved.

Following Definitions 5.4.20 (single) and 5.4.23 (multiple) in Case (III), and Lemma

5.5.16, we proceed to give a speed selection theorem, which shows sufficient conditions to

decide the speed selection mechanism for (5.5.27) with either a single spreading speed or

multiple spreading speeds.

Theorem 5.5.17. Let (D5) hold. The following statements are true.

(1) c∗u/ω = cu0 , if

max

{
−2d1(t)µ̄2

u +
f(t, Ū)− f ′u(t, 0)Ū − Ū

Ū2(1− Ū)

}
6 0, (5.5.35)

where µ̄u = µu0(cu0) and Ū(t, z) = 1/[1 + exp{µ̄uz}/ζuµ̄u(t)].

(2) ĉv/ω = cv0 if

max

{
−2d2(t)µ̄2

v +
g(t, V̄ )− g′v(t, 0)V̄ − V̄

V̄ 2(1− V̄ )

}
6 0, (5.5.36)

where µ̄v = µv0(cv0) and V̄ (t, z) = 1/[1 + exp{µ̄vz}/ζvµ̄v(t)].

(3) Let (5.5.35) and (5.5.36) hold. If, in addition,

d1f ′u(t, 0) < d2g′v(t, 0), (5.5.37)



158

then (5.5.27) has multiple spreading speeds and both of them are linearly selected, that

is, c∗u/ω = cu0 < cv0 = c∗v/ω.

(4) When (5.5.35) and (5.5.36) hold, and besides,

d1f ′u(t, 0) > d2g′v(t, 0), (5.5.38)

then (5.5.27) has a spreading speed with c∗u being linearly selected while c∗v being non-

linearly selected in the sense that c∗v/ω = c∗u/ω = cu0 > cv0.

(5) c∗u/ω > cu0 if

min

{
−2d1(t)µ̄2

u +
f(t, U1)− f ′u(t, 0)

U2
1 (1− U1)

}
> 0, (5.5.39)

where U1 = 1/[1 + exp{µ̄uz}/ζuµ̄u(t)] and µ̄u = µ̄u(cu0).

(6) ĉv/ω > cv0 if

min

{
−2d2(t)µ̄2

v +
g(t, V1)− g′v(t, 0)

V 2
1 (1− V1)

}
> 0, (5.5.40)

where V1 = 1/[1 + exp{µ̄vz}/ζvµ̄v(t)] and µ̄v = µ̄v(c
v
0).

(7) Let (5.5.39) and (5.5.40) be true. If (5.5.27) has a single spreading speed, then c∗u = c∗v

and they are both nonlinearly selected in the sense that c∗u/ω > cu0 and c∗v/ω > cv0.

Otherwise, (5.5.27) has multiple spreading speeds, then c∗u < c∗v and both of them are

nonlinearly selected in the sense that c∗u/ω > cu0 and c∗v/ω > max{cu0 , cv0}.

Proof. (1) Since the condition (5.5.35) implies that Ū(t, x − cu0t) is an upper solution to

U -equation. By Theorem 5.4.8, the result follows.

(2) Similar to (1), when the limiting system (5.5.34) is considered, the condition (5.5.36)

indicates the desired result.

(3) Under conditions (5.5.35), (5.5.36) and (5.5.37), we have that c∗u/ω = cu0 < cv0 =

ĉv/ω. Thus, following Lemma 5.5.16 (iii), we immediately obtain that (5.5.27) has multiple

spreading speeds, i.e., c∗u < c∗v. Moreover, we have that c∗v/ω = ĉv/ω = cv0.

(4) The inequalities (5.5.35), (5.5.36) and (5.5.38) implies that c∗u/ω = cu0 > cv0 = ĉv/ω.

Thus, we get that c∗u = c∗v by Lemma 5.5.16 (iii). Moreover, it follows that c∗v/ω = c∗u/ω =

cu0 > cv0.
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(5) From Corollary 5.4.6, it immediately follows that c∗u/ω > cu0 when (5.5.39) holds.

(6) Similar to (5), when the limiting system (5.5.34) is considered, (5.5.40) implies the

desired result.

(7) Combining Lemma 5.5.16 (i) and (ii), it is always that

c∗v > max{c∗u, ĉv}.

When conditions (5.5.39) and (5.5.40) hold, the rest of this proof is straightforward. If the re-

ducible system (5.5.27) has a single spreading speed, then c∗u/ω > cu0 and c∗v/ω > ĉv/ω > cv0.

If (5.5.27) has multiple spreading speeds, then c∗u/ω > cu0 and c∗v/ω > max{c∗u/ω, ĉv/ω} >

max{cu0 , cv0}.

To finish this example, we give a small discussion here. Since this is an example to

present the usage of our theory, we only give a quite general discussion here. More specific

discussions of such a typical model to learn the speed selection are left for interesting readers.

5.6 Conclusion

In this chapter, we have investigated the speed selection mechanism for traveling waves to

monotone periodic semiflows in the monostable case and successfully improved the current

results on the linear selection and made a breakthrough on the nonlinear selection. The

improvements of this chapter mainly focus in three aspects: the results are applicable to

time-periodic reaction-diffusion models even having boundary equilibria; the conditions for

the linear selection have been improved from the classical one, which requires the monotone

semiflow can be governed by its corresponding linear map; the results for the nonlinear

selection are novel.

In Section 5.2, we introduced some preliminaries to establish the existence of traveling

waves. Then, we examined the linear speed in Section 5.3. Our main theoretical result was

presented in Section 5.4. We gave our definition of the speed selection, and considered three

cases to investigate the mechanism further (see, subsections 5.4.1–5.4.3). Here is a brief

review of new results in this chapter: we found a sufficient and necessary condition of the

nonlinear selection and provided an estimate of the speed when the nonlinear selection occurs
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for Case (I) and (II); a fairly detailed investigation (containing both linear and nonlinear

selection) has been provided for Case (III). Four applications are carried out in Section 5.5,

and they covered all the cases discussed in Section 5.4.



Chapter 6

Future Work

Research of the invasion speed determinacy for wave propagation as well as traveling waves is

explosively expanding. The models considered in this thesis have either constant coefficients

or time-periodic coefficients. Thus, a direct extension is to investigate the speed selection

of time-space periodic monotone models. The existence of a traveling wave of time-space

periodic monotone semiflows can be found in [19]. It is worthy of extending our speed

determinacy discussion in Chapter 5 to the time-space periodic case since the time-space

periodic environment is typical in biology.

In Chapters 4 and 5, we discussed the case where a model admits multiple spreading

speeds. However, we only considered the speed determinacy for the slowest and fastest

spreading speeds. A possible extension would be to investigate the speed determinacy for

all spreading speeds when a model has more than two speeds, which is indeed observed in

combustion phenomena, see, e.g., [34, 57].

In this thesis, we always assume that f ′(0) > 0 so that c0 > 0, while it is possible

to have f ′(0) = 0. A typical example is a degenerate Fisher equation, i.e., (1.0.1) with

f(u) = um(1 − u), m > 1. From [38], it has a critical number c∗(m) > 0 so that the

degenerate Fisher equation has a traveling wave connecting 1 to 0 if and only if c > c∗(m).

Moreover, it is easy to see that this equation has a linear speed c0 = 0. Thus, the invasion

speed of this equation is always nonlinearly selected. It would be challenging to determine

the spreading speed of a degenerate system.
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