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Abstract 

Background: Multiple sclerosis (MS) patients may experience varying gait disorders. In MS 

disease evaluation and diagnosis, instrumented walkways using embedded pressure sensors are 

widely used to provide information regarding gait disturbances. The information is delivered 

as predefined parameters, which may obscure salient features and patterns in the raw sensor 

data.  This thesis applied machine learning techniques to raw walkway data to distinguish MS 

patients from healthy controls while further distinguishing the impairment levels of MS patients. 

Methods: New features were constructed to supplement the standard parameters. A severity 

level was determined using patients' ratings of the severity of their gait problems on the MS 

Impact Scale-29. Two experiments were conducted. The first experiment focused on discerning 

healthy controls from MS patients. The second experiment attempted to classify patients with 

different impairment levels.  

Results: The MS vs. Healthy experiment achieved a good baseline accuracy of 81% using the 

standard feature set and received a 7% improvement using the augmented set. The mild MS vs. 

moderate MS experiment achieved an accuracy of 76% using the standard set, which was 

further improved by 2% using the augmented set. 

Conclusion: These experiments demonstrate that the newly generated features improve the 

machine learning model results with excellent accuracy and precision.  
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1 Introduction 

Multiple sclerosis (MS) is a common inflammatory neurodegenerative central nervous 

system disease [1] with a prevalence of 25 per 100,000 people in Canada and 35.9 per 100,000 

people worldwide [2]. MS symptoms, which include slower information processing, walking 

impairments, and feelings of mental fatigue, profoundly impact the patient’s quality of life [3]. 

People with MS experience gait disorders such as spasticity, leg weakness, foot drop, and ataxia, 

which interfere with their daily tasks [4]–[6]. These disorders may differ from person-to-person, 

likely due to the unique patterns of central nervous system lesions and neural reorganization 

[1], [7]. To examine gait disorders, therapists use visual inspection and clinical evaluation.  

Expanded Disability Status Scale (EDSS) is used by neurologists to assess the degree of 

disability among MS patients. The EDSS scores range from 0 to 10; higher scores indicate more 

disability. Although EDSS is widely used in the MS field, it is relatively insensitive to gait 

changes and is insufficient in characterizing patients with mild disabilities [8].  

Patients may identify symptom changes before neurologists detect declines or 

improvements. One MS-related patient-reported evaluation is the Multiple Sclerosis Impact 

Scale (MSIS-29). It includes 29 questions: 20 items about physical function and 9 describing 

cognitive and mental health problems. Ranging from 1 to 5, the higher the score, the more 

significant the impact of that symptom on everyday life is. Sample MSIS-29 questions include 

assessments of patient’s ability to use fine motor skills or questions on balance and coordination, 

such as using their hands or walking difficulties [9]. For patients in the early stages of the 

disease, MSIS-29 helps the clinician track changes in their mental and physical health. Both 
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EDSS and MSIS-29 emphasize the importance of walking, suggesting that gait detection and 

analysis are vital neurological benchmarks that can guide treatment decisions [10].  

Most studies examining gait changes in MS focus on reductionist methods, reporting output 

variables such as walking velocity or distance walked. Newer technologies and analytical 

techniques provide expanded opportunities to identify unique gait patterns within and between 

individuals. Such innovations can help detect early changes in direct rehabilitation interventions 

to improve walking [11], [12]. For example, using image-processing techniques [13] and 

wearable sensors, users can create movement-related features in a three-dimensional coordinate 

system [14], [15]. However, these methods require specialized equipment that is not readily 

available to clinicians. Data-driven techniques, such as machine learning classification, enable 

the analysis of specific gait features and their relationship with the disease. For instance, Chen 

et al. employed machine learning to identify gait variables extracted from walking and jumping 

tests in order to classify patients with mild cognitive impairment [16]. Data gathered from 

vertical ground reaction force sensors were provided to machine learning algorithms to 

successfully detect the early signs of Parkinson’s disease [17]. In the field of MS, one study 

used machine learning techniques to detect which gait parameters were most sensitive to subtle 

gait changes [18]. However, the study used the predetermined and limited gait variables 

available in conventional proprietary software. The instrumented walkway is an assistive tool 

increasingly used to sensitively map the spatiotemporal profile of gait. The instrumented 

walkway consists of a dense matrix of embedded sensors to capture temporal, spatial, and force-

related gait data from footsteps. Depending on the participant characteristics and the length of 
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the mat, one pass across the walkway captures 4 to 10 footsteps, thus generating thousands of 

data points. Walkway systems use secondary software packages to transform raw sensor data 

into a standard set of output variables that are useful for clinicians, such as walking speed and 

step length [19], [20]. By interrogating the raw data, subtle changes in gait patterns, which are 

signs of disease worsening/improvement, can be revealed [21]. Machine learning can be used 

to build models that reflect the relationships between gait variables and disease. Creating novel 

gait variables from raw walkway data may increase model accuracy and precision, pinpointing 

gait characteristics that require clinical attention. This may result in tailored, individualized, 

and effective rehabilitation strategies for gait training.  

This thesis aims to determine whether newly designed gait features, calculated directly 

from raw walkway sensor data, can be used to increase predictive performance when classifying 

patients from healthy controls and to determine the severity of MS impairment. Two 

classification experiments were conducted. One was to classify MS patients from healthy 

controls. The other classified patients with lower (mild severity) or higher (moderate severity) 

MSIS scores. Both classification processes used machine learning technology combined with 

raw data obtained from an electronic walkway (Protokinetics Havertown PA). For both 

experiments, two series of analyses were performed to enable classification with a standard set 

of features as well as an expanded set of features that included several new or underutilized 

parameters derived from raw data.  

It is hypothesized that machine learning models can effectively distinguish MS patients 

from healthy controls and patients with mild and moderate MS using only standard features. 



4 

 

These new or unutilized features would further improve detection accuracy. Such 

methodologies could be critical in automatically and accurately detecting subtle gait changes 

indicative of improvement or worsening neurological impairment.  

1.1  Thesis Outline 

In Chapter 2 of this thesis, previous and related work on how researchers detect and classify 

MS patients with various gait disorders are discussed, and the essential concepts used in this 

thesis are presented. In Chapter 3, the methodology is described, including two classification 

experiments. One is to classify MS patients from healthy controls. The other is to classify 

patients based on lower or higher MSIS scores. Both classification processes use machine 

learning technology combined with gait measurements calculated from raw walkway sensor 

data. Two experiments were performed for each classification experiment, with the first 

attempting to classify with a standard set of features. The second uses an expanded set of 

features that include standard features as well as several new or underutilized parameters 

derived from the raw data. In Chapter 4, the results of the two experiments are explained. 

Chapter 5 summarizes the findings of this thesis and discusses possible future improvements.  

1.2  Contributions 

To the best of our knowledge, this study is the first attempt to distinguish MS patients from 

healthy controls and to classify mild to moderate disease severity using machine learning on 

raw walkway sensor data. The first experiment, classifying MS patients from healthy controls 

[22], has been published. I have mainly contributed to the model training, testing, and validation 
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process in machine learning and manuscript preparation. In both experiments, raw sensor data 

provided opportunities to create new features. This study proved that new features improved 

the model performance. The use of MSIS-29 instead of EDSS as the standard for distinguishing 

the level of gait disorder is also new in classification experiments, which also raises the 

possibility of detecting self-reported problems.   
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2 Literature Review 

The gait of MS patients is somewhat different from that of healthy people due to the disease, 

and the gait disorder usually deteriorates over time as the disease progresses. Clinicians and 

therapists either visually inspect gait or calculate walking speed to determine the severity of a 

patient's condition. Machine learning is a valuable tool for dealing with the enormous amount 

of data generated by a typical set of walking tools and examining the relationship between the 

features and the disease.  

2.1 Gait & Gait Detection 

The movement of gait requires the cooperation of the entire nervous system. The nervous 

system controls walking stability and standing posture to prevent people from falling. The 

signal generated from the brainstem and spinal cord is passed to the motor neurons to power 

the movement of the lower limbs. Signals from the visual system, basal ganglia, and cerebellum 

help coordinate the muscles of the limbs. Unusual changes in the nervous system can lead to 

gait disorders [23]. 

 

Figure 2.1 Gait cycle and gait phases. Stance phase contains loading response, mid-stance, 

terminal stance and pre-swing events. Swing phase contains initial swing, mid-swing and 

terminal swing events [11]. 
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The gait contains continuous cycles, and each cycle can be divided into two phases: swing 

and stance phases (Figure 2.1). Each phase includes seven or eight events that switch from one 

event to another according to different definitions [24]–[26]. In the stance phase, the leading 

limb initiates the contact with the ground, and it consists of four events: loading response, mid-

stance, terminal-stance and pre-swing. The heel strike of the leading limb occurs at the 

beginning of the loading response. The foot flat of the leading limb marks the beginning of mid-

stance, while the heel off of the other limb in mid-stance and terminal-stance, and finally, the 

toe-off of the leading limb is the end action of the pre-swing. The stance phase ends, and the 

swing phase begins. The swing phase consists of three events: initial swing, mid-swing, and 

terminal swing, starting with the toe-off of the leading limb and lasting to the end of the toe-off 

of the other limb. Finally, the heel strike of the leading limb initiates a new gait cycle [11]. 

Detecting impairments in gait provides an indication of changes to the nervous system. 

Visual systems, wearable sensors, and electronic walkways are the most common gait detection 

tools. 

2.1.1 Visual Recording of Gait 

Video recording permits clinicians and therapists to replay how participants walk and to 

compare the walking differences over time. Researchers Decavel and Sagawa, in 2019, 

recorded how their patients walked from the front, back, and side in all walking tests. The 

recording allowed several evaluators to simultaneously evaluate gait impairment in patients 

[27]. The recording also provides the exact timing of foot contact and foot-off to differentiate 
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gait cycles. In another study, researchers designed a detection technique to automatically 

classify foot contact and foot-off by using a multilayer neural network. They used a motion 

capture system and force plates to collect walking data. The researchers then extracted features 

from the data by visually labeling the gait events. The trained model accurately detected foot 

contact and foot-off using the visual data [28]. 3-D gait analysis is another method for assessing 

gait [29]. This method reconstructs movement detected from reflective markers to produce 3-

D images of gait. Thus, kinematic, kinetic, and spatiotemporal parameters are calculated for 

subtle gait impairments and abnormal posture detection. However, such visual data collection 

methods require expensive equipment and professional operators that are not commonly 

available in clinical settings. 

2.1.2 Wearable Sensors 

Wearable sensors allow clinicians and medical researchers to monitor participants’ daily 

activities outside the laboratory. Meyer et al., in 2021, used wearable sensors and deep learning 

to detect fall risk for MS patients. They used wearable sensors to record the participant’s one-

minute trials in a hallway. Combined with the use of deep learning, they were able to 

successfully identify MS patients who had recently fallen and achieved an AUC of 88% [30]. 

Han et al., in 2007, developed a wearable activity monitoring system (W-AMS) to record the 

acceleration of both ankles in patients with Parkinson’s disease to detect gait events. This 

system can synchronize patients’ ankle acceleration with a video and foot pressure system. Five 

healthy controls and five Parkinson’s patients were engaged in this experiment. Participants 
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wore W-AMS on both ankles to measure the three-dimensional acceleration. The detection 

accuracy was 93% for healthy people and 94% for Parkinson’s patients [31]. 

A recent study by Zhao et al. aimed to design a system to detect gait events. This study 

detected gait using two foot-mounted inertial sensors, one on each heel. Six gait events, heel 

strike, foot flat, mid-stance, heel off, toe-off and mid-swing, were analyzed. The researchers 

used a neural network to extract features from raw data and provided the features as input into 

the hidden Markov model. This research showed that the hidden Markov model could classify 

different gait events using the sensor data [32]. Although wearable sensors were proven to be 

helpful in these studies, the accuracy of the wearable sensors varied depending on the sensor 

type or attached location [33], [34]. The unwillingness of participants [35] and sensor running 

battery life may also be limitations of wearable sensors.  

2.1.3  Walkways 

Walkways provide researchers with various information, for example, the walking distance, 

gait speed, and pressure distribution of the foot while people walk through it. Researchers have 

built and developed different walkways to adapt to different research purposes. For example, 

interactive walkways combined with external sensors provide clinicians or researchers with 3D 

full-body motion information and enable more task-specific walking and comprehensive gait 

evaluation by projecting visual context on the walkway [36], [37].  
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Figure 2.2 GAITRite electronic walkway is embedded with thousands of sensors and attached 

to the floor.  

Electronic walkway (Figure 2.2) is a relatively traditional walkway. It contains a dense 

matrix of embedded sensors to capture temporal, spatial, and force-related gait data from 

footsteps, which is now commonly used among patients with MS. While participants walk 

across the walkway, the embedded sensors are activated when pressure is detected, and the 

walking data are recorded. Depending on the participant in the study and the length of the 

walkway mat, the walkway captures four to ten footsteps for one pass across and generates 

thousands of data points. A secondary software package transforms the raw sensor data into a 

standard set of output variables, such as walking speed, step length, and cadence, which are 

useful for clinicians [19], [20]. The predetermined features provided by the software are not 

only gait measurements but also composite numerical values that represent the gait impairment 

situation. These numerical values were calculated according to spatial and temporal data and 
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served as features for different studies [19]. In 2017 and 2018, Kirkland et al. used the walkway 

to measure hopping variables to detect mild impairments in patients. The footprint location and 

degree of pressure provided by the walkway made it possible to calculate hop length, hop time, 

and velocity, which correlated well with the participant’s anticipatory motor control ability [38], 

[39]. Leone et al., in 2018, designed a study to examine the effect of rehabilitation in MS 

patients using gait parameters from the walkway system. The results showed that the gait 

parameters acquired from the walkway proved that after rehabilitation, the patients' walking 

condition improved [40]. The validity of using an electronic walkway to capture gait variables 

was demonstrated by the studies mentioned above. However, specific features can be created 

from raw sensor data using other machine learning techniques, and these newly created features 

may aim at specific gait disorders to further increase the accuracy of the studies. 

2.2  Overview of Multiple Sclerosis 

MS is a common inflammatory neurodegenerative central nervous system disease [1]. 

Ninety thousand Canadians live with MS, making Canada one of the countries with a high 

prevalence of MS. Approximately 2.8 million people live with MS worldwide (2020). This 

lifelong disease is diagnosed between the ages of 20 and 50 years [2]. 

2.2.1  The Effect of MS 

MS affects the quality of patients’ lives in both cognitive and physical aspects. MS may 

affect patients’ ability to walk, long-term memory, and efficiency of information processing as 

well as fatigue and depression [41]. 
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MS patients walk differently from healthy people due to limb weakness, sensory loss, and 

foot drop. These gait disorders eventually result in walking impairments [1], [7]. Due to 

unbalanced walking, MS patients have to change their walking posture to maintain walking 

stability. More than 90% of MS patients have lower limb movement problems [42]. It has been 

reported that patients have reduced speed and cadence, step length and stride length, and 

increased base width, step time, stride time, and double support time compared to healthy 

individuals [43].  

2.2.2  The Assessment of MS 

As the reaction of patients to rehabilitation training is unique for each individual, designing 

effective evaluation methods and walking tests to measure MS patients’ walking ability before 

and after rehabilitation is critical in medical examinations. Expanded Disability Status Scale 

(EDSS), Multiple Sclerosis Impact Scale (MSIS-29), Self-Selected speed walking test (SS), 

Dual-Task walking test (DT), and bipedal hopping tests are possible ways to measure and 

analyze walking patterns in patients with MS. 

Expanded Disability Status Scale (EDSS), a widely used assessment tool for MS patients, 

is a method to describe the disability level of MS to assess the patient’s disability changes over 

time [8]. Neurologists usually measure EDSS by looking at muscle weakness, ability to move 

arms and legs, uncontrollable eye movements, unusual sensations or numbness, and other 

functions. The EDSS score ranges from 0 to 10. Level 4 of EDSS is the starting point of 

significant walking impairment, and level 6 indicates that patients need assistive devices to help 
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them walk [7]. Although examining the EDSS score for each patient is a standard process when 

profiling this disease, EDSS has been reported to have limitations. For example, the EDSS score 

might be intensely subjective due to the assessment process. In addition, EDSS scoring is not 

always evenly distributed. After level 4, EDSS seems to focus more on walking disability than 

on other aspects of the disease [44]. Therefore, although EDSS is widely used in MS assessment, 

its use in patients with a mild disability is not sufficient to accurately describe the disability. 

However, machine learning can evaluate the difference between the disability levels of patients 

by analyzing the relationship between gait measurements and the patient's walking ability. 

Multiple Sclerosis Impact Scale (MSIS-29) is another scale used by clinicians to assess the 

disease severity by asking patients to self-report several questions related to physiological and 

psychological functions. Unlike EDSS, the MSIS-29 focuses on the patient’s perception of the 

impact of MS on their walking and cognitive abilities [10]. MSIS-29 contains nine cognitive-

related and 20 physiological-related questions. Each question is scored from 1 (not affected) to 

5 (severely affected) [9]. Thus, MSIS-29 presents a patient’s perceptions of the impact of the 

disease on cognitive and physiological aspects before neurologists detect the changes clinically. 

Self-Selected speed walking test (SS) is a widely used clinical walking test that simulates 

daily walking. The SS requires participants to walk at their comfortable pace, with researchers 

recording the gait measurements simultaneously. While walking at a comfortable speed, the 

energy cost can be used to differentiate healthy people from patients with MS. Stella et al., in 

2020, examined the energy cost differences between healthy controls and MS patients. The 

result showed that the energy cost of MS patients was 2 to 3 times higher than that of healthy 
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controls while walking at a comfortable speed [45]. SS is now prevalently used to detect the 

possibility of falls or to predict daily activities among older adults [46], [47]. SS was also used 

to detect the relationship between gait variables and the EDSS score. Preiningerova et al., 2015, 

asked their MS patients to perform the SS test to assess the changes in walking ability that align 

with the EDSS level. In their study, patient’s EDSS scores ranged from 0 to 6.5, where patients 

can walk with or without walking aids. Totally 284 MS patients participated in the study. The 

researchers found that, as the EDSS score increased, the patients had increased step length, 

prolonged step time, lower velocity, and extended double support time [48].  

The Dual-Task walking test (DT) requires patients to walk while performing simple 

cognition tasks simultaneously, such as subtracting 7 starting from 100 or walking while talking. 

By applying cognitive tasks while walking, gait measurement differences between healthy 

people and patients may reflect cognitive impairments in patients. To apply DT in the long run, 

its reliability must be tested. The validity of the walking-while-talking test in detecting minimal 

detectable changes has recently been attested by Henning et al. [49]. In 2020, Chen et al. 

examined the reliability of various DT parameters over the long term. Eighteen MS patients 

and 12 healthy controls were involved in the study. This study was designed to examine the 

reliability of SS, DT variables, and cognition over three sessions. Dual-task cost, the percentage 

changes in ST and DT, were also calculated for each variable. The greater the dual-task cost, 

the worse the performance was. The gait variables were obtained using a walkway. The authors 

concluded that the dual-task cost and coefficient of variability were unreliable; however, the 

pace and cognition rates showed outstanding reliability [21]. Kirkland et al. (2015) examined 
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different types of DTs to determine the most reliable DT test for disease steps assessment, which 

is a rating scale for functional disability level [50]. Patients performed three DT tasks: reciting 

every second letter of the alphabet, counting while leaving out the number including three, and 

repeatedly subtracting seven from 100. The third method was the best as it presented the most 

consistent cognitive dual-task cost for stride length and disease steps [51]. 

Bipedal hopping is an ambulatory test that can detect the muscle strength of a patient. It is 

a more challenging test to detect patients’ subtle deficits. Patients who pass the previous 

walking test may fail this test [52]. Kirkland et al. timed their participants bipedal hopping to a 

metronome to detect anticipatory motor control impairments. This study included 13 MS 

patients, 9 matched healthy controls, and 13 elderly controls. Participants performed 40 

beats/min and 60 beats/min of bipedal hopping following the metronome. Hop-related 

parameters (length, symmetry, and variability) were extracted to test the motor control ability. 

The results indicated that MS patients took a longer time to react to the metronome than the 

elderly and healthy controls. People with MS and healthy controls had a longer hop length, 

wider hop width, and higher velocity than the elderly group at 60 beats/min. The difference 

between MS patients and the elderly was much smaller at 40 beats/min [38]. 

 Kirkland et al. used bipedal hopping to reveal evidence of advanced neuromuscular aging 

in patients with mild multiple sclerosis. This study used bipedal hopping to examine whether 

patients with mild MS had signs of neuromuscular aging. MS patients (n = 13), matched 

controls (n = 9), and the elderly group (n = 13) participated in this study. Participants first 

performed a timed twenty-five-foot walk test. After rest, they underwent a bipedal hopping test. 
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The researcher extracted lower limb power, consistency, and symmetry parameters as features 

to draw conclusions. They found that MS patients had the highest integral pressure, longest hop 

time, and percentage stance time, and slowest velocity compared with the elderly and controls. 

For hopping consistency, the record for the variability of each characteristic patients fell 

between those of the controls and the elderly group [39]. These studies proved that bipedal 

hopping was able to detect athletic ability and motor prediction impairment in patients with MS. 

However, such tests require the hopping ability in patients, making it difficult to examine subtle 

changes in patients with higher disability levels.  

2.2.3  Gait Analysis 

Gait analysis is now prevalent in the medical field and is a valuable method to help 

clinicians and therapists analyze patients’ current gait disorders and walking disabilities over 

time. Researchers from different backgrounds have conducted gait analyses on gait 

measurements using various techniques. 

Statistical analysis is a widely used method for examining the differences and relationships 

between different groups. Preiningerova et al. conducted statistical analyses to analyze 

frequently used spatial and temporal gait measurements of MS patients, with the goal of 

determining which parameters are the best in determining the different disability levels of 

patients. In this study, all variables of each group are presented as mean ± standard deviation, 

and the differences between each group are compared [48]. Kim et al. applied the ANOVA test 

with Bonferroni adjustment to analyze the kinematic and kinetic features to determine the 
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differences in walking between the elderly and young people [53]. Although statistical analysis 

is helpful in determining the different patterns of various groups, it is possible that the variations 

between individuals decrease when all values are combined to calculate them for a summary 

result. Newer technologies apply machine learning to gait measurements to describe the 

relationship between gait variables and disease. 

2.3  Machine Learning 

Machine learning involves learning from data. The main idea of machine learning is to 

discover unobservable patterns by analyzing existing data using suitable algorithms [54]. In 

practice, machine learning can be divided into six steps: collecting data, pre-processing the data, 

choosing a model, training the model with the data, assessing the result, and using the model 

for prediction [54]. Machine learning algorithms can be broadly categorized into supervised 

and unsupervised learning. 

2.3.1  Supervised Learning 

Supervised learning uses labeled data to train machine learning algorithms to predict or 

classify data. The labeled datasets can be separated into training and testing sets. The supervised 

learning models are fitted to the training set to learn the patterns between the input and output 

in the training data. The trained model is then applied to the testing set to assess the model 

performance by comparing the prediction result with the data label. Supervised learning can be 

divided into classification and regression. Classification aims to assign data to specific classes, 
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and the goal of regression is to calculate the relationship between the variables and the 

prediction target [55]. 

K-nearest neighbors (kNN) is associated with simple instance-based models. This machine 

learning model learns only from existing samples. After being trained with the existing 

variables and classes, the trained model assigns the sample to the closest class when it 

encounters new samples. Here, k refers to the k-nearest neighbors searched when the algorithm 

comes across a new sample and assigns the new sample to the group with the majority number 

of neighbors. To determine the closest group, the distance between the new sample and the 

existing data must be calculated. The Euclidean distance between data points is calculated using 

Eq 1 with x and x’ representing two points in Euclidean n-space; xi and xi’ represent Euclidean 

vectors. The kNN is easy to implement and requires only tuning of the k value. 

𝑑(𝑥, 𝑥′) = √(𝑥1 − 𝑥′
1)2 + ⋯ + (𝑥𝑛 − 𝑥′

𝑛)2 (1) 

Logistic regression (LR) [56], despite the term regression, is arguably a popular classifier 

in machine learning used for binary, one vs. rest, or multinomial classification. It provides a 

probability for the target class between 0 and 1 to describe the relationship between the input 

variables and one or more output targets. The algorithm relies on a logistic function into which 

input values x are fitted, where the weights or coefficient values are adjusted to predict the 

output value y. The standard logistic function is represented by Eq 2. 

𝑓(𝑥) =
1

1+𝑒−𝑥  (2) 

Support Vector Machine (SVM) effectively works with high-dimensional data [57]. SVM 

defines a hyperplane boundary in an N-dimensional space, where N is the number of input 
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features. As many hyperplanes exist in this space, SVM attempts to find the optimal plane that 

maximizes the separation of both classes. Additional points can then be classified as belonging 

to either class depending on the side of the optimal hyperplane they occupy.  

Extreme Gradient Boosting (XGB) [58] is an optimized distributed gradient boosting 

library introduced by Chen and Guestrin in 2016. The gradient boosting technique is used for 

both classification and regression. Applied to an ensemble of weak prediction models, such as 

decision trees, the gradient boosting algorithm trains data with these weak learners, forces the 

poor learners to learn to increase their prediction score, and finally combines them into one 

accurate prediction algorithm. XGB utilizes the concept of gradient tree boosting while 

introducing regularization parameters to reduce overfitting. 

AdaBoost, which is short for adaptive boosting, is a machine learning method that focuses 

on previously under-fitted samples. AdaBoost first trains a base classifier with the original 

dataset and then uses the base classifier model to predict the training set. When the prediction 

is completed, the model training focuses on the samples that were not accurately predicted by 

the base classifier, and this process is repeated until the final model best fits the dataset [59]. 

2.3.2  Unsupervised Learning 

Unsupervised learning is another machine learning technique that uses unlabeled data [60]. 

This learning method clusters information in the dataset and finds unique patterns to separate 

the data into distinct groups without labeling the data. As unsupervised learning discovers 

information in the input data, it is helpful to find unknown patterns in input variables to 
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customize segmentation, for example, footprint clustering from pressure sensors, as 

demonstrated in this thesis.  

2.3.3  Machine Learning used for MS Gait Analysis 

Machine learning is a useful tool for gait analysis, as it can deal with an enormous number 

of gait variables, discover unobserved patterns between gait measurements and the disease, and 

apply these patterns to predict the future. McGinnis et al. (2017) designed a study to estimate 

the gait speed by applying machine learning to skin-mounted wearable sensors. The sensors 

were attached to the skin of the participants’ sacrum, both thighs, and both shanks. Thousands 

of data points were generated from the sensors, and support vector regression models were used 

to estimate walking speed according to the data points. Using machine learning, gait speed was 

accurately estimated by analyzing the features of skin-mounted wearable sensors [61]. 

Gait studies using the machine learning method were also conducted by researchers. In 

2018, Supratak et al. conducted a study to validate whether a timed 25-foot walk test could 

predict the real-life walking speed. Thirty-two patients with EDSS scores ranging from 0 to 6 

were recruited. They were required to wear an accelerometer for up to 7 days. In-home walking 

gait speed was calculated. Principal component analysis was conducted on the features 

extracted from the accelerometer to compute the first and second most important components. 

The results of the trained model demonstrated that the walking speed from the timed 25-foot 

walk test matched the maximum sustained walking speed in-home environment [62].  



21 

 

Machine learning has also been used to analyze fatigue in patients. Ibrahim et al. in 2020 

used machine learning algorithms to reveal the relationship between gait parameters and 

patient-reported fatigue. An inertial measurement unit was used for each foot of each participant. 

Researchers used the Borg scale of self-perceived exertion for fatigue measurement during 

exercise. The scale ranged from 6 (no exertion) to 20 (maximum exertion) [63]. Principal 

component analysis was first performed to obtain the principal components within the dataset, 

and a random forest regressor was then applied to these components to estimate the fatigue 

value. The results indicated that machine learning could predict fatigue by analyzing the 

temporospatial features [64]. 

Besides predicting gait speed or self-reported fatigue from patients’ data, Kaur et al. in 

2020 explored whether machine learning algorithms can help distinguish older patients with 

MS from healthy controls. Gait measurements were acquired from an instrumented treadmill 

and analyzed using nine machine learning models, decision tree, random forest, support vector 

machine with linear and radial basis function kernels, gradient boosting machine, adaptive 

boosting, extreme gradient boosting, multilayer perceptron, and logistic regression. Gradient 

boosting and multilayer perceptron were identified that surpassed the others. The results also 

proved that machine learning can distinguish aging patients from healthy controls [65].  

2.3.4 Model Evaluation 

A cross-validation technique was used to test model performance. The cross-validation 

requires the original dataset to be divided into training and testing sets. As the name implies, 
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the algorithm uses the training set data to train the models and the trained model to predict on 

the testing set. The model performance can be calculated using the prediction results and testing 

data labels [30]. Precisely, k-fold cross-validation randomly separates a dataset into k-folds that 

contain an equal number of samples. One fold is set as the testing data, and the remaining folds 

serve as the training data. The model was trained with the training set, tested using the testing 

data, then another fold was set as the testing data, and the process was repeated until all the data 

samples were tested.  

Ibrahim et al. used nested 10-fold cross-validation as a model performance assessment 

method [64]. The dataset used in this study includes 32 women and 17 men whose EDSS scores 

range from 1 to 6.5. Some of the gait features used in this study and this thesis overlap, which 

are stride length, gait velocity, stride time and stride length. The nested 10-fold cross-validation 

sets the k-fold cross-validation for hyperparameter selection as part of the k-fold cross-

validation of the model selection. Therefore, it is also referred to as double cross-validation. 

This cross-validation method reduces the bias during hyperparameter optimization and the 

likelihood of model overfitting. 

Leave one subject out cross-validation is another kind of k-fold cross-validation with k=n, 

where the n is the total number of samples. Leave one out method uses the data of all but one 

participant’s data as the training set while setting that one patient’s data as the testing set. The 

process was repeated until all participants were used as testing data. By testing the unobserved 

data, this process ensures that the model provides accurate predictions [30]. 
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3  Methodology 

This chapter describes data preprocessing methods. The design of MS vs. Healthy control 

classification and mild MS vs. moderate MS classification, including machine learning 

algorithms and cross-validation method were also introduced. Methods for feature selection and 

feature importance calculation were also presented. Python 3.7 was used to implement the 

feature creation and machine learning process. 

3.1  Data Collection and Experiments 

3.1.1 Data Collection 

Data were collected as part of the Health Innovation Team in MS (HITMS) project, which 

is a longitudinal study of people's health with MS in Newfoundland and Labrador, Canada [66], 

[67]. The study was approved by the Institutional Health Research Ethics Board (HREB # 

2015.103). Raw walkway sensor data were collected from participants in this study between 

2016 and 2020. Each patient had at least one visit and was permitted to walk with or without a 

walking assistive device [68]. Controls also had at least one visit and were required to have no 

gait disorders. 

Demographic data, including age, height, and weight, were gathered for all patients. People 

with MS were diagnosed by an MS neurologist, and their disease severity was scored using 

EDSS [69]. The EDSS score ranges from 0 to 10; a score of 0 indicates no observable gait 

dysfunction in patients; a score of 6 indicates that the patient requires bilateral walking aids and 

can walk at least 20 m; and a score of 10 indicates death due to MS. Patients in this project had 
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EDSS scores no higher than 6.5 because patients with EDSS scores higher than 6.5 were not 

able to finish walking tests across the walkway. Thus, data from 107 patients and 16 healthy 

controls data were included in the study. The average EDSS score of 107 patients was 2.11 ± 

1.89.  

All the patients were required to complete the MSIS-29 questionnaire. The MSIS-29 is a 

standardized self-evaluation form that asks patients to rank the impact of MS symptoms using 

various physical and psychological questions [70]. The MSIS-29 score ranges from 1 to 5, with 

1 indicating no impact, 2 indicating a little impact, 3 indicating moderate impact, 4 indicating 

quite a bit impact and 5 indicating severe effects on a patient’s lifestyle [71]. The replies to a 

subset of MSIS questions on how patients felt about their movement, as indicated in Table 3.1, 

were used to determine the patient exclusion criteria.  

An instrumented walkway (Zeno Walkway, Protokinetics Haverton PA) was introduced to 

this project. The walkway measured 90 cm x 420 cm and was embedded with a matrix of 

pressure sensors. Spatial measurements were provided as the (x, y) positions of the activated 

sensors and converted to distances measured in centimeters. Each sensor has an area of 1.27cm 

x 1.27 cm [72]. Timestamps were recorded when sensors detected ambulation, and the 

corresponding pressure levels were recorded in milliseconds.   

All the participants were required to complete two clinical walking tests across the 

walkway. The first walking test was the Self-Selected speed walking test (SS). All the 

participants walked at a comfortable pace. The second was the Dual-Task walking test (DT), 

with the participants required to walk along the walkway while subtracting 7 from 100. Each 
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walking test required the participants to walk at least two passes on the walkway; therefore, at 

least ten steps were recorded.  

3.1.2  Experiment 1. Classifying MS Patients versus 

Healthy Controls 

In this experiment, binary classifiers were trained using data from healthy controls and 

patients with at least one MSIS-29 score equal to or greater than 3. This experiment aimed to 

determine whether machine learning models could distinguish patients from healthy controls 

using a standard feature set and whether the newly designed features calculated from the raw 

sensor data (see Section 3.2.3) could further improve model performance. 

Patients with a score of 3 or higher for at least one of the MSIS-29 questions were selected 

for this experiment. Thirty-five patients were excluded from this study. The average EDSS 

score of the remaining patients was 2.73 ± 2.04. Healthy controls were not required to complete 

the MSIS-29 questionnaire or EDSS examinations. The final dataset for this experiment 

included 72 patients and 16 healthy controls (Table 3.1).  

Table 3.1 Patient demographic data and MSIS-29 score of MS vs. healthy control classification. 

Patient Data Features Mean, Variance 

EDSS Score 2.73  ±  2.04 

Age (years) 48.40  ±  9.95 

Height (cm) 169.82  ±  8.64 

Weight (kg) 83.52  ±  23.38 

MSIS-29-Q4 Problems with your balance? 2.99  ±  0.94  

MSIS-29-Q5 Difficulties moving about 

indoors? 

2.14  ±  1.01 

MSIS-29-Q6 Being clumsy? 2.76  ±  1.01 
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3.1.3  Experiment 2. Classifying Mild Patients versus 

Moderate Patients 

This experiment aimed to determine whether machine learning models could detect the 

level of self-reported gait disorders which were used to distinguish mild patients from moderate 

patients. Two sub-experiments were conducted to determine the machine learning baseline 

score of the standard feature and whether the augmented feature set could improve model 

performance. 

No data from healthy controls were included in the mild/moderate patient classification. 

The MSIS-29 was used to determine the patients' gait disorder levels as the gold standard for 

classification. Patients who scored less than 3 while answering the MSIS-29 were considered 

mild. The remaining patients were considered moderate. Data from all 107 patients were 

analyzed (Table 3.2).  

Table 3.2 Patient demographic data and MSIS-29 score of mild MS vs. moderate MS patient 

classification. 

MSIS-29-Q7 Stiffness? 2.86  ±  1.15 

MSIS-29-Q8 Heavy arms and/or legs? 2.90  ±  1.14 

MSIS-29-Q9 Tremor of your arms or legs? 2.17  ±  1.17 

MSIS-29-Q10 Spasms in your limbs? 2.29  ±  1.25 

MSIS-29-Q11 Your body not doing what you 

want it to do? 

2.39  ±  1.21 

Patient Data Features Mean, Variance 

EDSS Score 2.11  ±  1.89 

Age (years) 47.58  ±  9.98 

Height (cm) 168.05  ±  8.06 

Weight (kg) 81.61  ±  20.37 
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3.2 Data Analysis and Feature Extraction 

3.2.1  Deriving Footprints from Raw Sensor Data 

The attributes of the raw walkway sensor data included time, x-coordinate, y-coordinate, 

pressure level, foot type, foot count, footfall, and pass index. For each step, the maximum 

pressure reading for each sensor was involved in building footprint. After footprints were built, 

spatial centroid of the footprint was set. The x and y coordinates and timestamp data allowed 

the reconstruction of each pass across the walkway.  

Raw data were partitioned into individual footfalls using a k-means clustering [73] for each 

pass recording. This unsupervised clustering algorithm separates the n spatial coordinates into 

k individual footfalls, where each observation belongs to the cluster with the nearest centroid. 

The k was empirically determined as 5 for each pass. When doing walking tests, the walkway 

system records gait data and provides instant replay. If a patient walked out of the walkway 

accidentally or patients walked with a shuffling gait, such non-standard walking steps were 

excluded using the walkway system. Walking data were then clustered using k-means. The 

MSIS-29-Q4 Problems with your balance? 2.47  ±  1.08 

MSIS-29-Q5 Difficulties moving about indoors? 1.80  ±  0.96 

MSIS-29-Q6 Being clumsy? 2.30  ±  1.08 

MSIS-29-Q7 Stiffness? 2.38  ±  1.18 

MSIS-29-Q8 Heavy arms and/or legs? 2.35  ±  1.23 

MSIS-29-Q9 Tremor of your arms or legs? 1.81  ±  1.08 

MSIS-29-Q10 Spasms in your limbs? 1.90  ±  1.16 

MSIS-29-Q11 Your body not doing what you want it to do? 2.00  ±  1.14 
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footprint images were manually checked after the clustering to make sure the final dataset 

included only correct steps. 

For each footprint data (matrix), a quadrilateral was used to enclose the foot shape. The 

quadrilateral was generated using four lines: a medial line connected to two outer sensors on 

the medial side of the footprint, a lateral line connected to two outer sensors on the lateral side 

of the footprint, a rear line perpendicular to the medial line starting from the rear outer sensor, 

and a front line perpendicular to the medial line starting from the front outer sensor [72]. This 

quadrilateral was then subdivided into three regions with individual sub-centroids, which 

provided further details on the heel, mid, and fore of the footprint. Figure 3.1 demonstrates how 

a footprint is segmented. 

 

Figure 3.1 Footprint showing heel (red), mid (blue), and fore (green) sections, as well as the 

centerline of the foot (yellow). The segmented quadrilateral encloses the shape. 
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3.2.2  Standard Gait Features 

After identifying unique footfalls in the gait recording, a set of standard gait features was 

extracted based on each pass. These included the step/stride length and width, toe angle, 

step/stride time and velocity, single/double support time, and stance time. 

The details regarding each parameter can be found in Table 3.3. 

Table 3.3 Detailed description for each standard gait parameter 

Standard Gait Features 

Spatial 

Features 

Foot Type A descriptor for right or left foot. 

Foot Length (cm) Measured as the distance between heel/fore centroids of 

the same foot multiplied by 1.5. 

Foot Width (cm) Measured as the distance across the midpoint of the 

subregion enclosing the fore section of the footprint. 

Foot Area (cm2) Measured as the total activated area of the sensors involved 

in generating the footprint. 

Toe Angle Measured as the angle between the line of progression 

(LOP) (the line connecting the heel centers of two 

consecutive footprints of the same foot) and the midline of 

the footprint (the line connecting the heel and fore 

centroids of a given foot). 

Step Length (cm) Measured along the direction of the walkway, from the 

heel center of the current footprint to the heel center of the 

previous footprint on the opposite foot. 

Step Width (cm) Measured from the midline midpoint of the current 

footprint to the midline midpoint of the previous footprint 

on the opposite foot. 

Stride Length 

(cm) 

Measured on the LOP between the heel points of two 

consecutive footprints of the same foot. 

Stride Width 

(cm) 

Measured as the vertical distance from the midline 

midpoint of one footprint to the line formed by the midline 

midpoints of two footprints of the opposite foot. 

Base Width (cm) Measured as the vertical distance from the heel center of 

one footprint to the LOP formed by two footprints of the 

opposite foot. 

Temporal 

Features 

Step Time (sec) The time elapsed from the first contact of one foot to the 

first contact of the opposite foot.  
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Stride Time (sec) The time elapsed between the first contacts of two 

consecutive footfalls of the same foot, measured in 

seconds. 

Stride Velocity 

(cm/sec) 

Obtained by dividing the stride length by the stride time. 

Step Velocity 

(cm/sec) 

Obtained by dividing the step length by the step time. 

Single Support 

Time (sec) 

The time between the last contact of the current footfall to 

the first contact of the next footfall of the same foot. 

Double Support 

Time (sec) 

The time between the heel contact of the next footfall to 

toe-off of the current (and opposite) footfall. 

Stance Time 

(sec) 

The time between first contact and last contact of the same 

foot. 

3.2.3  New Feature Design 

New parameters, presented in Figure 3.2 and explained in detail in Table 3.4, were also 

designed and calculated from the raw sensor data. To the best of our knowledge, these features 

have not yet been rigorously tested in machine learning classification settings. 
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Figure 3.2 A. The pink shaded region shows the base of support area between two successive 

footfalls. B. The pink region shows the hull area for a single footfall. C. The green line 

represents the expected LOP, and the red line represents the actual LOP between two 

consecutive footfalls of the same foot. The angle between the desired and actual lines is the line 

of progression deviation angle. 

 

Table 3.4 Detailed descriptions of newly designed features 

New Feature Design 

Toe Direction 

 

Standard toe angle [74] on the walkway is recorded as a signed 

value. The original toe angle value is split into two features: 

magnitude and direction. The direction of the angle indicated that 

whether the foot is toe in or toe out. The magnitude is the value 

of the angle. 

Hull Area To better approximate the actual shape of the footprint, the 

convex hull enclosing the point cloud was calculated for each 

footprint. The hull area is the area enclosed by the line segments 

bounding the footprint tightly in a convex hull. Figure 3.2A 

shows the hull area. 
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Base of Support (BOS) 

Area 

 

In gait, the BOS [75] is commonly measured as a one-

dimensional length. A convex polygon constructed to enclose 

two footprints (a footprint and its preceding print) used to 

approximate the area of the BOS. Figure 3.2B shows the picture 

of the BOS area. 

LOP Deviation Angle The deviation angle between an expected regular LOP and the 

actual LOP. The actual LOP is the line connecting the heel 

centers of two consecutive footfalls of the same foot.  Ideally, the 

patient should walk parallel along the walkway. Figure 3.2C 

shows the picture of the LOP deviation angle 

3.2.4  Machine Learning Feature Sets 

Two feature sets, the standard and augmented sets, were designed for the experiments. The 

purpose of conducting experiments with these two feature sets was to assess the potential of the 

newly designed or unutilized features to determine the utility of creating new features from raw 

walkway data.  

The standard set included 14 features: step time, stride time, step velocity, stride velocity, 

single support time, double support time, stance time, foot type, signed toe angle, step length, 

step width, stride length, stride width, and base width.  

Foot length, width, and area are rarely documented as useful features in gait-related 

classification studies. Therefore, in this thesis, these features were included and used in the 

augmented feature set (see Section 3.2.4) to examine whether they can further improve 

classification accuracy. The augmented set included all features from the standard set and seven 

additional parameters, foot length, foot width, foot area, hull area, LOP deviation angle, 

unsigned toe angle, and toe direction. 
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3.3  Machine Learning Process 

3.3.1 Data Cleaning and Missing Data Prediction 

Data cleaning is the process of removing or fixing missing, irrelevant, duplicated, or 

incorrect data from a dataset. The goal was to improve data quality because using data that 

included misinformation would lead to erroneous results in interpreting the answer to research 

questions [76].  

Missing data are another problem when cleaning data, and two methods can be used to 

address this issue. The first is to remove the rows with missing data when the size of the dataset, 

after removal, is sufficiently large for training [77]. In this project, the first and last steps did 

not have the step/stride length and width data or LOP angle because of the nature of the walking 

tests. Samples with missing data were excluded from the analysis. Another method is to replace 

the missing data with reasonably predicted values using machine learning strategies if the 

missing data points are removed, the dataset is not large enough for training [16]. Data points 

in the dataset with complete information were used for model training. The data points with 

missing data were used as the prediction dataset. The machine learning model was first applied 

to data points with complete information. The trained model was then applied to the prediction 

dataset, and the missing data were replaced with the predicted result. The participant’s height 

for data normalization was calculated using this method. The process is described in detail in 

Section 3.3.3.  
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The features were directly collected and calculated from walkway sensor data. Misreported 

sensor points or footsteps that were too close to each other, leading to the miscalculations by of 

k-means cluster, were excluded. Data outliers, such as the negative value of time-related 

features or the value of spatial features that were two or more times higher than the average 

value, were deleted. The original dataset contains 5931 samples, and samples refer to footprints. 

For each participant, 45 to 50 samples were obtained. After data cleaning, the final dataset of 

MS vs. Healthy control classification has 2217 samples, and the final dataset of mild MS vs. 

moderate MS classification has 2317 samples. 

3.3.2  Data Balancing 

Imbalanced data are a common problem when in machine learning classification, meaning 

that the number of samples belonging to each class in the problem is not evenly distributed, 

with some classes having a much higher number of samples than others. This situation could 

lead to the bias of the prediction result. For example, if 90% of the data belongs to the same 

class, the model will reach 90% accuracy by classifying all data into the same class, but the 

model is biased. Therefore, data balancing is required to obtain an unbiased model. In our case, 

the patient/control ratio was about 6:1, and the mild/moderate patients had a ratio of 1:5. 

Therefore, during data analysis, data balancing was performed for both experiments prior to 

proceeding with the classification analysis [77]. The synthetic minority oversampling technique 

(SMOTE) [78] and adaptive synthetic sampling approach (ADASYN) [79] were introduced as 

data balancing methods in this project, and the one that provided the best model performance 
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was selected for the further classification. SMOTE synthesizes a new sample by randomly 

choosing a data point from a line segment in the feature space, formed by a minority class 

sample m and one of the m’s k-nearest neighbors (usually k = 5, both randomly chosen).  This 

process is repeated until the data of the two classes are balanced. The ADASYN was first 

introduced by He et al. (2008). This data balancing method works in a manner similar to 

SMOTE. However, the new samples generated by this method aim to create synthetic data next 

to the minority class samples, which are incorrectly classified by the k-nearest neighbors [79]. 

The bias is thus reduced, and such a method helps the model to learn difficult minority samples. 

MS vs. Healthy control classification worked better with the SMOTE method, whereas better 

results were obtained for mild MS vs. moderate MS classification with ADASYN.  

3.3.3  Data Normalization 

Data normalization involves rescaling the data in different numeric columns/features to a 

similar range of values without distorting the distribution in each column. Machine learning 

estimators may perform poorly if the features are not normalized. The numerical data collected 

in this thesis exhibited a variety of ranges and thus required rescaling. After normalization, the 

features were scaled to exhibit zero mean and unit variance, except for foot length, width, area, 

and hull area.  In general, taller people have larger foot length and wider foot width. The foot 

length, width, area and hull area were then scaled according to the height of the participant [80]. 

This project accomplished the normalization process of foot length, width, area, and hull area 

by dividing each participant's parameter measurements by the participant’s height (cm). For 
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participants with no record of height data, SVM was used to predict the value of the missing 

data. Participants with complete data were used to train the SVM regression model. The height 

of these participants was set as a prediction label, and their foot length, foot width, foot area 

and hull area as features. The trained SVM model was then applied to predict the height of 

patients who had no record of height. The foot length, foot width, foot area and hull area of 

these participants were used as the input data for their height prediction. 

3.3.4  Feature Selection 

The original dataset includes various features. Some were useful for classification, while 

others might provide little or no helpful information to distinguish between classes. It is 

necessary to exclude these less-helpful features to reduce overfitting, increase training speed, 

limit unnecessary noise in the data, and improve model performance. 

A straightforward way to select features is to calculate the correlation between the features 

as well as between the features and the target. Highly correlated features provide similar 

information to the model and thus can be reduced using feature selection or other techniques. 

Pearson’s correlation was calculated for both experiments to reduce the number of dependent 

features, and a correlation matrix with a heatmap [81] was used to visualize the correlations 

between features. The Seaborn library was used to plot a heatmap. Seaborn is a visualization 

library that provides an interface for drawing statistical graphics [82]. The relationship between 

the two features can be positive, negative, or none, as indicated by the color of the heatmap. 

The resulting feature correlation matrix consists of scores ranging from -1, strong negative 
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correlation, to +1, strong positive correlation, with a score of 0 indicating no correlation 

between the features. Our study used a removal threshold of -0.8 / 0.8 for feature selection, 

whereby features scores higher than 0.8 or lower than -0.8, would be considered for removal.  

The remaining features were tested using Analysis of Variance F-Test statistics (ANOVA) 

[83] and recursive feature elimination with cross-validation (RFECV) separately to form a 

subset of numerical features that had the greatest impact on the model result. The method that 

provides better model performance was selected. The ANOVA assigned each feature a score. 

The higher the score, the stronger is the features with more significant unexplained variance in 

the prediction. When the features were ranked by their F-statistic scores, the size of the optimal 

feature set had to be determined. For each possible size si of the final set [1, 2, ...n features], a 

grouped 5-fold cross-validation strategy [84] with an SVM classifier was used to obtain 

prediction accuracy of each size si. The average prediction accuracy was collected for each size 

si, and the optimal size was chosen based on the highest score.  

Because categorical features were not included in the correlation or feature selection 

process, they were reintroduced into the final feature set after the numerical feature selection 

process was completed. 

RFECV selects the final feature set by recursively eliminating features from the dataset 

according to the cross-validation score of an external estimator and the feature score. RFECV 

uses two outputs to measure the feature score: feature correlation and feature importance of the 

estimator. Cross-validation within the RFECV is used to calculate the model performance. 

Features with lower scores were excluded. The selection process of RFECV stops when the 
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final set of features helps the model obtain the best performance matrix. In this study, XGB was 

used as an external estimator. Both experiments performed better with the ANOVA-SVM 

feature selection method. 

3.3.5  Feature Importance 

Feature importance can be calculated for the LR and XGB classifiers. The ANOVA-SVM 

feature selection process also calculates the average F-score for the selected features. Linear 

models, such as logistic regression or support vector machines with linear kernels, calculate the 

coefficient of each feature to determine the feature importance. Tree-based models, such as 

random forest or XGB, calculate feature importance to explain the model results. Feature 

importance was calculated based on how the nodes of the tree used in the training improved the 

model results. The scores of the features were automatically computed when training was 

completed. All the scores were scaled, and their sum was equal to one. The higher the score, 

the higher is the importance of the feature. The ANOVA-SVM process calculated the average 

F-score for each selected feature. In this project, the average SHapley Additive exPlanations 

(SHAP) value [76] of each feature was calculated to determine the importance of each feature 

to the model. 

3.3.6  Machine Learning Algorithms  

Logistic regression (LR) [56], support vector machine (SVM) [57], and extreme gradient 

boosting (XGB) [58] were selected as they represent three well-known classification methods: 

probability, hyperplane polarity, and boosted decision-tree ensembles, respectively. Given a set 
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of features, each model was studied to categorize the footprint as belonging to an MS patient 

or a healthy control (Experiment 1) and to distinguish mild MS patients from moderate MS 

patients (Experiment 2) using a range of classification scoring metrics. 

3.3.7  Training and Evaluation 

To further reduce overfitting, a grouped 5-fold cross-validation strategy was employed. All 

data points in the training set were grouped according to the date of the participant visit and 

their unique ID. Each group was assigned a unique identifier for the separation. These groups 

were randomly and evenly split into five folds. For each round of validation, four folds were 

set as the training data set, and the remaining fold was set as the testing data. The models were 

trained on the training data and evaluated using testing data. This process was repeated until all 

the five folds were tested. The groups remained intact throughout the training/test validation 

splitting, and no group was permitted to appear in two different folds. In this fashion, the data 

of the same participant were not used simultaneously in the training and testing sets to avoid 

data leakage between these two datasets.  

Each model in this study had a unique set of hyperparameters that required tuning to 

provide the best results. A standard grid search method was used to test each model across a 

range of hyperparameter settings. The setting that provided the best scores were then selected. 

A summary of the tested parameters for each model, along with the optimal hyperparameter 

settings selected by the grid search, is presented in Tables 3.5, 3.6 and 3.7.   

 

 



40 

 

Table 3.5 Hyperparameter options for each model 

Algorithms Hyperparameter Options 

LR 'solver': ['newton-cg','lbfgs', 'liblinear'],    

'penalty': ['l1', 'l2', 'elasticnet'], 

'C': [100, 10, 1.0, 0.1, 0.01], 

'max_iter': [200, 400, 600] 

SVM 'kernel’: ['poly', 'rbf', 'sigmoid', ‘linear’], 

'C’: [8, 7, 6, 5, 4, 3, 1.0, 0.5, 0.1], 

'degree’: [0, 1, 2, 3, 4, 5] 

XGB 'max_depth': [2, 3, 4, 5, 6], 

'eta': [0.1, 0.2, 0.3, 0.4], 

'objective': ['binary:logistic', 'binary:logitraw', 'binary:hinge'] 

 

 

Table 3.6 Optimal hyperparameters for MS vs. healthy control classification. 

Algorithms Optimal Hyperparameters 

for Standard Set 

Optimal Hyperparameters 

for Augmented Set 

LR 'C': 1.0, 

'penalty': 'l2',  

'solver': 'newton-cg' 

'C': 1.0, 

'penalty': 'l1',  

'solver': 'liblinear' 

SVM 'C': 3,  

'degree': 3, 

'kernel': 'rbf' 

'C': 5,  

'degree': 3, 

'kernel': 'rbf' 

XGB 'eta': 0.3,  

'max_depth': 3,  

'objective': 'binary:logistic' 

'eta': 0.3,  

'max_depth': 3,  

'objective': 'binary:logitraw' 

 

Table 3.7 Optimal hyperparameters for mild MS vs. moderate MS patient classification. 

Algorithms Optimal Hyperparameters 

for Standard Set 

Optimal Hyperparameters 

for Augmented Set 

LR 'C': 10,  

'max_iter': 200,  

'penalty': 'l2',  

'solver': 'liblinear 

 

'C': 10,  

'max_iter': 200,  

'penalty': 'l2',  

'solver': 'liblinear' 

SVM 'C': 6,  

'degree': 0,  

'gamma': 'scale',  

'C': 8,  

'degree': 0,  

'gamma': 'scale',  
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'kernel': 'rbf' 'kernel': 'rbf' 

XGB 'eta': 0.1,  

'max_depth': 4,  

'objective': 'binary:logistic' 

'eta': 0.05,  

'max_depth': 6,  

'objective': 'binary:hinge' 

The number of true positive (TP), true negative (TN), false positive (FP), and false negative 

(FN) [85] predictions were calculated for each model, and the accuracy, precision, recall and 

F1 score were calculated to gauge the model effectiveness (Table 3.8). 

The terms positive and negative represent two different targets. For example, patients 

(moderate patients) were considered positive. Healthy controls (mild patients) were considered 

negative. TP means that the model predicts the data as ‘patient’ and the data really belong to a 

‘patient’. FP means that the model predicts the data as ’patient’, but the data actually are 

‘control’. The same applies to the negative sets.  

Table 3.8 Details for accuracy, precision, recall and F1-score. 

Accuracy (%): The total number of correct 

predictions out of the total 

number of all predictions. 

𝑇𝑁 + 𝑇𝑃

𝑇𝑁 + 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
∗ 100% 

Precision (%) Positive Predictive Value.  

Represents the proportion of 

true positive predictions to all 

actual positives.  

𝑇𝑃

𝑇𝑃 +  𝐹𝑃
∗ 100% 

Recall (%) Sensitivity. Measures the 

proportion of true positives to 

the total number of actual 

positives. 

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
∗ 100% 

F1 Score (%) The weighted harmonic mean of 

precision and recall. 
2 ∗ 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

∗ 100% 

Receiver Operating Characteristic (ROC) and Precision-Recall (PR) curves were also 

generated for each model. The area under these curves (AUC) can be assessed as another 
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measure of determining the model's predictive capability. The larger the area, the better the 

model performance is.  
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4  Experimental Results 

This chapter presents statistical analysis for participants and results of MS patients vs. 

healthy control classification and mild MS vs. moderate MS classification, respectively. 

4.1  Statistical Analysis 

Table 4.1 Mean values of gait parameters for mild patients, moderate patients, and healthy 

controls. 

Parameters  Mild Patients Moderate Patients Controls 

Number 35 72 16 

Foot Length (cm) 0.17 ± 0.01 0.16 ± 0.01 0.17 ± 0.01 

Foot Width (cm) 0.06 ± 0.01 0.06 ± 0.01 0.06 ± 0.01 

Foot Area (cm2) 1.30 ± 0.23 1.22 ± 0.20 1.34 ± 0.14 

Hull Area (cm2) 0.86 ± 0.12 0.81 ± 0.12 0.86 ± 0.09 

LOP_Dev_Angle 0.28 ± 2.23 0.30 ± 2.50 0.40 ± 1.98 

BOS Area (cm2) 669.25 ± 103.48 622.74 ± 108.20 683.97 ± 94.05 

Toe Angle 4.93 ± 3.33 5.97 ± 4.09 5.90 ± 3.61 

Step Length (cm) 63.40 ± 7.05 57.48 ± 10.35 66.92 ± 6.29 

Step Width (cm) 65.07 ±6.65 59.50 ± 9.57 68.09 ± 6.19 

Stride Length (cm) 126.09 ± 14.11 114.31 ± 19.99 133.32 ± 12.72 

Stride Width (cm) 13.43 ± 4.57 13.93 ± 4.25 11.51 ± 3.44 

Base Width (cm) 11.97 ± 4.30 12.24 ± 4.27 9.69 ± 3.36 

Step Time (sec) 0.62 ± 0.48 0.63 ± 0.32 0.64 ± 0.16 

Stride Time (sec) 1.25 ± 0.67 1.28 ± 0.50 1.30 ± 0.29 

Step Velocity 

(cm/sec) 

109.52 ± 21.60 96.61 ± 25.42 109.56 ± 21.60 

Stride Velocity 

(cm/sec) 

106.61 ± 21.08 94.41 ± 24.48 106.66 ± 21.11 

Single Support Time 

(sec) 

0.41 ± 0.06 0.42 ± 0.25 0.45 ± 0.13 

Double Support 

Time (sec) 

0.18 ± 0.05 0.21 ± 0.23 0.19 ± 0.05 

Stance Time (sec) 0.78 ± 0.15 0.84 ± 0.47 0.82 ± 0.21 
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Table 4.1 shows the mean values of the gait parameters for all participants. Participants 

were divided into three groups: mild patients, moderate patients, and healthy controls. Gait data 

related to body size, such as foot length, foot width, foot area, and hull area, were first 

normalized according to the participants’ height and then subjected to statistical analysis. Foot 

length, foot width, foot area, hull area and LOP_Dev_Angle showed little difference among the 

three groups. For the BOS area, step/stride length, width and base width, mild patients had a 

value that fell between that of moderate patients and healthy controls. While mild patients had 

the lowest toe angle, moderate patients had the lowest values for both step stride velocity. 

Healthy controls had a much lower stride width value than the other groups. 
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4.2  MS vs. Healthy Control Classification 

4.2.1  Feature Selection 

 

Figure 4.1 Heatmap for feature correlations for MS vs. healthy control classification. Heatmap 

regions that are increasingly dark show higher correlations.   

Correlation analysis of all the numerical features was performed to determine their 

independence, as shown in Figure 4.1. The heatmap displays a strong positive correlation 

between the ‘step’ and ‘stride’ parameters (r >0.8), the base width and stride width. Stride time, 

stride velocity, and base width were excluded from further analysis to reduce interdependence 

among the features. 

After removing the highly correlated features, feature selection was performed on both the 

standard and augmented feature sets to determine the optimal size of each set. 
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4.2.1.1  Selected Features 

The feature selection method used for the MS vs. healthy control classification was 

ANOVA-SVM because the model performance was better than that of RFECV. The standard 

set was initialized with 10 numerical input features and one categorical feature (Table 4.2). The 

ANOVA-SVM suggested an optimal subset of nine features: step velocity, single support time, 

double support time, stance time, signed toe angle, step length, step width, stride length and 

stride width. After numerical feature selection was completed, the categorical feature, foot type, 

was reintroduced, resulting in the final standard set. 

The augmented set was initialized with 16 numerical and 2 categorical features. The 

ANOVA-SVM selected 15 numerical features: step velocity, single support time, double 

support time, foot length, foot width, foot area, hull area, unsigned toe angle, step length, step 

width, stride length, stride width, and BOS area. The features step time, stance time and LOP 

angle were dropped. Once the processing of the numerical features was completed, the 

categorical features, foot type and toe direction, were reintroduced to the final augmented set. 

The original and final features are displayed in Table 4.2. 

Table 4.2 Features for MS vs. healthy control classification. 

Feature set Original Features Set Final Features Set 

Standard set Step time 

Step velocity 

Single support time 

Double support time 

Stance time 

Toe angle (signed) 

Step length 

Step width 

Stride length 

Stride width 

Foot type 

 

Step velocity 

Single support time 

Double support time 

Stance time 

Toe angle (signed) 

Step length 

Step width 

Stride length 

Stride width 

Foot type 
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Augmented set Step time 

Step velocity 

Single support time 

Double support time 

Stance time 

Toe angle (unsigned) 

Step length 

Step width 

Stride length 

Stride width 

Foot type 

Toe direction (in/out) 

Hull area 

BOS area 

LOP deviation angle 

Foot length 

Foot width 

Foot area 

 

Step velocity 

Single support time 

Double support time 

 

Toe angle(unsigned) 

Step length 

Step width 

Stride length 

Stride width 

Foot type 

Toe direction (in/out) 

Hull area 

BOS area 

 

Foot length 

Foot width 

Foot area 

 

4.2.2  Feature Importance 

The importance of each gait feature in differentiating classes was calculated. The average 

F-score from ANOVA-SVM (Tables 4.3 and 4.4), for feature correlation of LR, feature 

importance of XGB, and SHAP were tested. As SHAP is not supported by SVM when its kernel 

parameter is set as a radial basis function, it was calculated only for LR and XGB. The absolute 

value of a feature indicates the importance of the feature. The higher the absolute value, the 

more important the feature is. 

Table 4.3 Average F- score for optimal standard set features 

Features Feature Score 

Stride Length 974.54 

Step Length 924.42 

Step Width 862.72 

Stride Width 330.42 

Step Velocity 243.75 

Single Support Time 37.58 

Double Support Time 25.77 

Toe Angle Signed 4.89 
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Stance Time 4.10 

 

Figure 4.2 Absolute value of feature coefficient of LR using the standard set (MS vs. healthy 

control classification) 

 

Figure 4.3 Mean SHAP value of LR using the standard set (MS vs. healthy control classification)  
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Figure 4.4 Feature importance of XGB using the standard set (MS vs. healthy control 

classification) 

 

Figure 4.5 Mean SHAP value of XGB using the standard set (MS vs. healthy control 

classification). 

The figures above present the importance of each feature in the final standard set of this 

experiment. The results from all methods indicate that stride length was the most important 

feature for prediction. Table 4.3 presented the average F-score of each selected feature from the 

ANOVA-SVM. The stride length, step length and step width had the highest F-scores. Figures 

4.2 and 4.3 show that stride length and step velocity are the most important features of the LR 
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classifier. Figures 4.4 and 4.5 display the importance of the features of the XGB classifier. The 

toe angle was evaluated as the second most important feature in the prediction using the SHAP 

value. However, the second most important feature calculated for XGB was stride length, 

followed by step length.  

Table 4.4 Average F-score for optimal augmented set features 

Features Feature Score 

Stride Length 977.28 

Step Length 934.28 

Step Width 874.32 

Foot Area 374.92 

BOS Area 281.11 

Stride Width 265.59 

Step Velocity 250.78 

Hull Area 222.84 

Foot Length 91.88 

Single Support Time 67.70 

Double Support Time 29.05 

Foot Width 19.32 

Toe Angle Unsigned 2.37 

 

Figure 4.6 Absolute value of feature coefficient of LR using the augmented set (MS vs. healthy 

control classification) 
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Figure 4.7 Mean SHAP value of LR using the augmented set (MS vs. healthy control 

classification) 

 

Figure 4.8 Feature importance value of XGB using the augmented set (MS vs. healthy control 

classification) 
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Figure 4.9 Mean SHAP value of XGB using the augmented set (MS vs. healthy control 

classification) 

Table 4.4 indicates that, for the augmented set, the most important features selected by the 

ANOVA-SVM were the stride length, step length and stride width, followed by new features, 

foot area and BOS area. Figures 4.6 and 4.7 display the importance of the features of the LR 

classifier. The most important feature was stride length. The second most important feature was 

foot type, as evaluated by the feature coefficient of LR; SHAP evaluated the stride width as the 

second most important feature for LR. Figures 4.8 and 4.9 present the importance of the features 

of the XGB classifier. While stride length is the most critical feature of XGB, this classifier also 

considered the new features of foot length and foot area, which contributed significantly to the 

model prediction result.  
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4.2.3 Prediction Results 

 

Figure 4.10 Accuracy, precision, recall and F1 score for each model of MS vs. healthy control 

classification. S refers to the standard set, and A refers to the augmented set. 

When the standard feature set was used, the highest accuracy of 81% (using SVM), the 

precision of 94% (SVM and LR), recall of 81% (SVM) and F1 score of 87% (SVM) were 

achieved. The details of these comparisons are presented in Figure 4.10.   

The improvements measured across all metrics using the augmented feature set are also 

worth noting. The inclusion of the extra features increased the accuracy by 7%, recall by 9%, 

and F1 score by 6% from both the XGB and SVM models. Note that precision was not improved 

because of the imbalance in the testing dataset, where the number of false positives was 

relatively small compared to that of true positives. The strongest improvement in the scores was 

obtained using SVM. 

In addition to the scoring metrics, the area underneath the receiver operating characteristic 

(AUROC) and the area underneath the precision-recall curves (AUPRC) was also used to 

determine a classifier's overall effectiveness.  
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Figure 4.11 PRC curves for LR, XGB and SVM. AP refers to average precision. 

 

Figure 4.12 ROC curves for LR, XGB and SVM. AUC refers to the area under the curves. 

According to Figures 4.11 and 4.12, when studying the standard feature set, the best 

baseline of AUROC was 0.88 (XGB), and for AUPRC, it was 0.89 (SVM). The variance 

measured between all classifiers was low with these scoring metrics, resulting in similar scores 

for all models 
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AUPRC and AUROC metrics were compared for the augmented feature set, as well. When 

using the augmented set, the AUROC of LR and XGB did not improve; however, the AUROC 

increased when using SVM and AUPRC improved for all models. 

4.3  Mild MS vs. Moderate MS Classifications 

4.3.1  Feature Selection 

 

 

Figure 4.13 Heatmap for feature correlations for mild MS vs. moderate MS patient 

classification. Heatmap regions that are increasingly dark (light) show areas of higher (lower) 

correlations. Q4-Q11 represent the MSIS-29 questions 4 to 11. 
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For the mild/moderate patient task, correlations between the MSIS-29 subset score and 

other features were also calculated. The heatmap for the mild/moderate patient experiment 

showed that none of the features were significantly correlated with any of the questions. The 

correlations between features were almost the same as those in Experiment 1. 

4.3.1.1  Selected Features 

ANOVA-SVM provided better results than RFECV in this experiment. For both the 

standard and augmented sets, ANOVA-SVM determined that all features could be selected, and 

that all contributed to model prediction (Table 4.5).  

Table 4.5 Features for mild MS vs. moderate MS patient classification. 

Feature set Features 

Standard set Step time 

Step velocity 

Stride velocity 

Single support time 

Double support time 

Stance time 

Toe angle (signed) 

Step length 

Step width 

Stride length 

Stride width 

Foot type 

Augmented set Step time 

Step velocity 

Single support time 

Double support time 

Stance time 

Foot length 

Foot width 

Foot area 

Hull area 

LOP deviation angle 

Toe angle (unsigned) 

Step length 

Step width 

Stride length 
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Stride width 

BOS area 

Foot type 

4.3.2  Feature Importance 

Feature importance was also calculated for mild/moderate patient classification. The 

average F-score value for ANOVA-SVM, feature coefficient for LR, feature importance for 

XGB and mean SHAP value for both LR and XGB are presented below. 

Table 4.6 Average F- score for optimal standard set features 

Features Feature Score 

step time 271.74 

stride width 193.39 

step width 108.83 

step length 87.43 

step velocity 64.30 

single support time 63.04 

stance time 23.92 

toe angle (signed) 16.15 

stride length 12.39 

double support time 12.16 

 

 

Figure 4.14 Absolute value of feature coefficient of LR using the standard set (mild MS vs. 

moderate MS patient classification) 
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Figure 4.15 Mean SHAP value of LR using the standard set (mild MS vs. moderate MS patient 

classification) 

 

Figure 4.16 Feature importance of XGB using the standard set (mild MS vs. moderate MS 

patient classification) 
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Figure 4.17 Mean SHAP value of XGB using the standard set (mild MS vs. moderate MS 

patient classification) 

Table 4.6 shows that step time, stride width, and step width are the top three important 

features evaluated by ANOVA-SVM. Figures 4.14 to 4.17 also demonstrate that step time and 

step width were the two features that contributed the most to model prediction. According to 

the feature importance and SHAP value, stride length was important to the XGB model result. 

Table 4.7 Average F- score for optimal augmented set features 

Features Feature Score 

step width 561.98 

step length 504.57 

BOS area 416.50 

hull area 402.72 

stride length 354.94 

foot area 339.31 

foot length 261.41 

step velocity 181.54 

foot width 60.07 

toe angle 46.48 

double support time 39.89 

stance time 35.75 

step time 35.70 

LOP Dev angle 10.66 

single support time 4.90 

stride width 1.41 
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Figure 4.18 Absolute value of feature coefficient of LR using the augmented set (mild MS vs. 

moderate MS patient classification) 

 

Figure 4.19 Mean SHAP value of LR using the augmented set (mild MS vs. moderate MS 

patient classification) 
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Figure 4.20 Feature importance of XGB using the augmented set (mild MS vs. moderate MS 

patient classification) 

 

Figure 4.21 Mean SHAP value of XGB using the augmented set (mild MS vs. moderate MS 

patient classification) 

Table 4.7 indicates that step width, step length, BOS area, and hull area are the top four 

most important features for the augmented set. As step width and area-related features are still 

of great importance in LR prediction, as presented in Figures 4.18 and 4.19, the feature step 

time is of importance in the classification. For the XGB classifier, Figures 4.20 and 4.21 show 
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that area-related features, BOS area, foot area and hull area, are the most important features. 

The step time and step width are less important than the area-related features. 

4.3.3  Prediction Results  

 

Figure 4.22 Accuracy, precision, recall and F1 score for each model of mild MS vs. moderate 

MS patient classification. S refers to the standard set, and A refers to the augmented set. 

Accuracy, precision, recall and F1 score were calculated for the mild MS vs. moderate MS 

patient classification (Figure 4.22). For the standard set, the best results were accuracy of 76% 

(SVM), precision of 83% (LR), recall of 91% (SVM), and F1 score of 86% (SVM). When the 

augmented set was introduced to the models, the model performance slightly increased in 

accuracy by 2% (XGB), precision by 2% (LR), and F1 score by 1% for XGB. 

 The AUROC and AUPRC were also printed for both feature sets. Figures 4.23 and 4.24 

present the details of AUROC and AUPRC, respectively. 
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Figure 4.23 PRC curves for LR, XGB and SVM. AP refers to average precision 

 

Figure 4.24 ROC curves for LR, XGB and SVM. AUC refers to the area under curves. 

The best baseline AUPRC was achieved with 0.87 (SVM and XGB) and the best baseline 

AUROC was 0.89 (XGB). The use of the augmented set slightly improved the AUPRC and 

AUROC of the LR and XGB.  
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5  Discussion and Conclusion  

This chapter summarizes the findings in this study and discusses possible future 

improvements. 

5.1 Discussion 

The research question, whether gait features calculated from the raw walkway sensor data 

can be used to separate healthy controls from MS patients or to classify patients with different 

gait disability severities, has been addressed by the results presented in this thesis. The use of 

the standard set for Experiment 1, MS vs. Healthy control classification, provided a prediction 

accuracy of 81%, and including the newly created or unutilized features generated from the raw 

walkway data improved the model performance by 7%. For Experiment 2, mild MS vs. 

moderate MS patient classification, using the standard set provided a baseline accuracy of 76%, 

and the augmented set improved the accuracy by 2%.  

The main difference between this thesis and previous works [46], [48] is that our features 

were derived from raw sensor data. This study focused on these new features to prove that the 

raw walkway sensor data can provide clinicians with unique features for gait analysis. In 

contrast to wearable sensors and visual systems, walkway sensors can detect and record a 

stream of continuous data that reflects the relationship between steps. The walkway makes it 

possible to create unique features that are rarely used in gait studies, such as the line of 
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progression deviation angle, toe angle, and base of the support area. It was demonstrated that 

these new features improved the prediction performance. 

5.1.1  Data Balancing Methods 

Two data balancing methods were used in this thesis: SMOTE and ADASYN. SMOTE 

yielded better results for the patient/control separation experiment, whereas ADASYN yielded 

higher results for patient severity prediction. SMOTE and ADASYN execute similar algorithms 

to create new samples. They both create new samples via interpolation. However, these two 

methods differ in the approach taken for the new sample generation. SMOTE chooses a sample 

and the sample’s k-nearest neighbors from the minority class generate new samples from line 

segments that connect these samples, and new samples are selected from the line. This process 

is repeated until the data of the two classes are balanced. ADASYN creates new data next to 

the original samples that the k-nearest neighbors incorrectly classify. Therefore, the possibility 

of obtaining a correct prediction on these samples is increased because the model learns more 

from them. Such a method may be useful in situations where the labeled classes have data points 

close to each other, such as the dataset of mild MS vs. moderate MS patient classification in 

this thesis.  

5.1.2  Feature Selection Methods 

Two feature selection methods (RFECV and ANOVA-SVM) were tested in this thesis and 

the results for both methods were very similar, with ANOVA-SVM providing slightly better 

results. The ANOVA-SVM method calculates the correlation between the features and targets, 
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and only the features that are highly correlated with the targets are selected before proceeding. 

RFECV determines the final feature set according to the importance of each feature based on 

their cross-validation scores. Both methods can choose the candidate features that would 

maximize model prediction. RFECV takes much longer than ANOVA-SVM to complete the 

feature selection process. Therefore, when dealing with very large feature sets, ANOVA-SVM 

is a better choice. Because RFECV requires the feature coefficient or feature importance 

attributes of the model to determine which features to choose, and thus, the use of this method 

may be limited. 

5.1.3 Feature Importance 

The sets of features determined as the most important for the two classification experiments 

were different. When using the standard set to classify MS patients from healthy controls, all 

feature importance calculation methods valued stride length the most. The feature step velocity 

was considered the second most important feature for the LR classifier. The signed toe angle 

was selected by LR, and the average SHAP value of the features of the XGB was important for 

distinguishing patients from healthy controls. For the augmented set, stride length was still 

determined to be the most important feature, indicating that stride length was found to be very 

useful for discriminating between MS patients and healthy controls. This can be a pointer for 

clinicians or therapists when studying the rehabilitation effect in MS patients. In addition to the 

stride/step length/width features, foot area and foot length were also important for both LR and 

XGB as they contributed significantly to the classification result. Foot area and foot length were 
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considered as new features in this study, whereas they have been usually ignored in other gait 

studies. However, the results of our study indicate that the shape of the foot of MS patients is 

important for classification, indicating that it may be affected by the disease or the ongoing gait 

disability.  

In contrast to MS patients vs. healthy control classification, stride length was not the most 

important feature of the classifiers when using the standard set for classifying mild patients 

from moderate patients. Instead, step time and step width were evaluated as the two most 

important features of classifiers. This may indicate that patients with different severity levels 

might have similar stride lengths, whereas their step time and step width vary. As reported by 

Brach et al. in 2005, people with either low or high step width were more likely to report a fall 

[87], and step width can also be an indicator in identifying patients with potential gait disability. 

When using the augmented set, LR still valued step width and step time as the most important 

features. However, area-related features were preferred by XGB. When determining the disease 

severity, the BOS area, foot area and hull area were of higher importance to the XGB classifier. 

It is worth noticing that, similar to Experiment 1, this result may indicate that the foot might be 

affected by the progression of the disease. 

5.2  Conclusion 

This thesis demonstrates that machine learning can be used to distinguish healthy controls 

from MS patients as well as classify patients’ disability levels using only the raw data collected 

from an instrumented walkway system. Advances in computerized machine learning and 



68 

 

classification can easily handle complicated underlying sensor data, thus enabling researchers 

to create new gait measurements to detect gait issues automatically and rapidly. 

This thesis has chosen to study gait by creating features from the raw underlying data 

instead of using gait measurements using gait analysis software. This allows the reconstruction 

of the standard gait parameters and the development of new features, such as the base of support 

area, line of progression deviation angle, hull area and toe direction, using unsupervised 

learning techniques like k-means. These standard and newly created parameters were then 

provided to the machine learning classifiers to determine the separability of the targets. 

When trying to differentiate MS patients from healthy controls, the machine learning 

system discussed in this thesis achieved a base classification accuracy of 81% using only 

standard spatial and temporal gait parameters derived from the raw data. When these standard 

parameters were augmented with other custom parameters, the classification accuracy of the 

SVM was increased to 88%. Stride length and step width are two features that are highly 

recommended for MS patients and healthy controls classification studies. When classifying 

mild patients from moderate patients, the base accuracy score was 76% using the standard 

features; the inclusion of the augmented features increased the model performance by 2% for 

the XGB classifier. Stride time and step time are the two features that contribute the most to the 

classification of mild patients from moderate patients. At the same time, base of support area, 

foot area, and hull area functioned as the assistive features in the classification. 
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Both classification experiment results demonstrate that SVM and XGB models are suitable 

for analyzing raw gait data, and customizing new gait measurements is a worthwhile endeavor 

in increasing classification accuracy.   

5.3 Future Work 

The results obtained in this thesis are promising in identifying MS patients with gait-related 

dysfunction. Several improvements have been identified for future studies, which may further 

increase the usefulness of the results for gait researchers and clinicians.  

The first involves pre-screening patients based on the MSIS-29 intake survey [70], [88]. 

The first experiment examined the separability of healthy controls and MS patients. Patients in 

this experiment answered gait-related MSIS-29 questions with at least one score equal to or 

higher than 3. This experiment showed that MS patients could be effectively classified from 

healthy controls. However, by including patients who report lower MSIS-29 scores, it may be 

possible, in future studies, to classify healthy controls from patients with milder symptoms of 

gait dysfunction [19], [20]. 

The second improvement could involve using pressure level data on top of the temporal 

and spatial data available from the walkway systems. Pressure data can be calculated according 

to the sensor record of the participants walking timeline and thus provide researchers and 

clinicians with more details on the way patients walk. This may enrich the dataset and is likely 

to be helpful in further enhancing classification accuracy. For instance, machine learning can 

be useful for mapping changes in specific types of gait impairments, such as those resulting 
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from hemiplegia or ataxia, with the help of pressure level data over time. Furthermore, using 

deep learning approaches to create features instead of using “hand-crafted” method can be 

considered a part of future work. 

Finally, machine learning models can be improved using a larger training dataset. Previous 

studies have shown that machine learning technology combined with gait measurements can 

effectively distinguish patients with cognitive impairment levels [16]. Coordinating efforts 

between laboratories and research hospitals could result in a dataset of thousands of subjects, 

allowing machine learning models to train on a much richer set of underlying data, leading to 

more robust conclusions.  
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