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Abstract

In this thesL'i. a comprehensive stud)' of tbe structure and physical propt'rties uf

polymer layers, l:arried out using numerical seLf-consistent fidd theury. is ]Jr~t-'ntt-'d.

Dihlock copolymer with one of the blocks adsorbed at tbe surfau~ ,wd (Lf! S("'uud

block dangling intO solution, and forming the polymer brusb is considered. For many

properties, the results are compared with e.xperimental data. therefore reali·nit: values

of the statistical segment lengths. interaction parameters. densities of pnrt-' materials

and molecular weights are used throughout the calculations. tn other case>. model

calculations are performed and the results are <.:ompared with the mmlytical prt'(lit;~

tions.

The properties of the Ifficompressed polymer brush are examined first. The thiek

ne:-;s. the free energy lUtd density profile. iwd the dependenc:t' of tuest-' propPrti,'s 1m

surface density, molecular weight and solvent quality an' examilJ.t'd. The d{'usiry fI[""·

file is discussed in terms of its general shape, ma.xi.mum polymer concentratiou aut!

its location, and the depletion and tail regions.

:;.Jext, the compression of polymer brushes in good and H solvents is (,(lllsidered.

For l'1.\ch case. the density profile. root mean squared thickness and frfOi' f!fJ.(·rh'Y of

the compressed brush, as functions of the molecula.r weight and surfiwl' c:overa~e.

are calculated and presented in the form of power law dependences. Three mudes

of compression are considered: by a second bntsh adsorbed on a second slufaee.

by a bare. repulsive surface and by a surface which is nentral for adsorptiou. TIll'



iii

interpenetration of opposing layers is quantified a.I.ld the results are compart~d with

recent numerical studies.

Finally. surface pressure effects in the adsorbed layers are e.xamined. First. a

homopolymer/poor solvent system with an attractive surface interaction is cunsid

ered. The surface pressure a:;; a function of coverage is calculated. Tuell tilt' copoly

mer/solvent system is considered in which the i\llchorwg" block is the same <l."; tup

homopolymer and the solvent is good for the dangling blm:k. Both blocks arl' iu

<:orporated within the self-consistent formalism. The excess slUf<wp prt'S-";UH' fjjr rhi.....

!-iystem is calculated and <:ompared with recellt e.,,<perirnental work in which rapid

increases were observed.
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Chapter 1

Introduction

1.1 Polymers at Surfaces - General Remarks

Structures formed by polymers constitute .a field of very diverse and inH~rdi:-ici·

plinary studic!>. The variety and (~omplexity of polymer s~"Stems arisiu,L!; fWIlI a [1-'\\'

simple building blocks inspire much experimental and theoretical work. <.wd physi·

eists. chemists and material scientists are aU active contributors.

One of the aspect.s of polymer science which. in recent years. l.HIS attrac[t-'d cOll

siderab!e interest is the stmen,re and the properties of polymer S:-"Stf'IllS llear sllrfun-'s

and interfaces. These interfaces are very important in many t:Omnwrdal applkatiollS

stich as blends. I:omposite materials. adhesives and eoatiu,L!;s. Til" adsorvtiou O[ ~ri\ft

inp; of polymers onto snrfaces L" of importance in a number uf uther ilIf'H.'i .•.\ [anm'd

curr~nt application is the L-oating of medical d~vices with polymer surfaces tuat form

stron~ repulsion layers; this technolo~y is used in the manufacture of hioirnplams.

.-\ more comprehensive understandin,l!; of how different types of polymers orJ{anizt' at



the !lurface may provide further advances in the design of such biomedical devices.

There is also strong interest in the lubricating properties of these layers in contact

with the tissue and other biomatter. Furthenllore. diblo<:k eupol:nnt'rs 011'''' tilt' Iti~h

molecular-weight analoK of short-chain a.mphiphilk mulf;'{;ules. TI..lt'r mar b.· surfa..,·

active and may form a variety of phases (micellar. lamellar and t:yliudrind aIlWU~

many others). Thus, they can be used in the prevention of protein l1dsorbtiun tu

biosurfaces and in the design of new druK delivery systems. The successful dp.sih'tl

of these polymeric materials depends on the physiea1 and cheminu propprtit>s of all

the constituent elements and this, in turn. requires a nmdamental unden;taudill~of

the relationship between the molecular architecture and thermodynamic: propt'rties

of ~1.lch polymer systems.

Polymers ute larv;e molecules c:onsistin~ of repeated chemical lInits (mmw1/1l'rs)

bondt',l tOV;t>ther. Thp. simplest iUThitectllr... is a linear hOlllOl'olrult't": idt'tHil";d ImiL...

are joined in a line. much as a chain is built up from its Jiub. III "dlt'r l"<L.-a->s. th,'

chains are branched or interconnected to fonn three-dimellitiomd str1lt:tHres. fnrthPl"

complexity can arise from the fact that polymer chains can be built from two or more

kinds of monomers and assembled into distinct blOcks. first onp species and tllPll

another. The reslutin/o\" structure is referred to as a block copvlymcr.

When polymer molecules are immersed in a sol....ent. tLeir behavior depends strouv;ly

on the interaction between the solvent and polymer molecules. One can distill~'1lish

between good, poor and e solvents. A good solvent is one in which a polymer of



infinite molecular weight would dissolve. A poor one is one in which it would not.

Finally, a e solvent corresponds to the cross-over between good and bad solvent.

Diblock copolymer/solvent systems are the primary focus of this thesis.

~ear a surface, large molecules experience constraints on their confij.{luatiow; and

experience interactions tbat differ from those in bulk. When a solution cOlllprist>d of

different polymers and solvent is in cont,lct with a surface or air-liquid iIlt('rfan". tlw

constituents of the polymer solution wwcb can best iH:commodi:\te the constraints i.U1d

interactions tend to concentrate near surface. Furthermore. the molecular I:uuu~("ti\"

ity of the polymers can effectively link tbe surface to the interior llf tLt> S~·SH'lll. or ill

other words, a long cbain located D.ear the surface can abo extend rdarivdy dl'!'ply

into tbe bulk of the system. it is cOD.\o-enient to consider three types of surfact's. In

geD.eraL one can think. of the surface exerting attractive. neutral or repllJsiw forces

on the polymer in solution. The range of this interaction is also important; it can be

short or long-range. All these effects can bt' enhanced or diminished by thl' qnality

of the solvent.

Tbe interfacial properties of homopolymer chains iu a sulmioll (tepf~llIl ~null~ly

on their affinity towards tbe surface. 1£ the surface is attnu:tive. then au adsurlJl'd

layer forms. Repllbive interactions between the surface and the monomf'rs rt'sulr

in a rednction of thf' amount of homopolymer Ilear the surri\.e~. oftt'u refern'd to

as depletion. When one end of every polymer chain is attached to tbe snrfa(:p by

functionalized end-groups, tbe interfacial properties of :>1.I.ch a stmetllrf' dppeud uot



only on tbe properties of the surface bllt also on the KfaftiuA" density. If r.ht' h'TaftiuA"

density is high enough such that the chains stretch away from the sltrfan', a strlll·tnrc'

referred to as a polymer brush is formed. For end-grafted homopolymer:;. au attr;wtlw

monomer-surface interaction can also lead to adsorption of the polymer chain at tht'

slIIface. Conversely. if only the Krafted eud is attracted to cht' surfact'. a dt'plt"tilJ11

layer is formed and tbe density of polymer near tht' sllIface is lowt'red. Pol~'IIlt'r

bmshes can also be formed by a selective adsorption of dibloc;k copolymers. The

block with the higher surface affinity (anchoring block) adsorbs onto the surface i.Uld

the second block (buoy) e.'<tends to at least some def:,'Iee into the solution. When the

density of adsorbt:!l:l chains in the vidnity of the surface is hi;!;h ellOHl!:"h such that the

dan~linK chains stretch away from the surfact'. a polymer hrush is fOrIlU'd.

This variety of possible situatiollS. as well as the complexity of 1-'<.1("11 systc'tll. llIakc'

the study of polymers at stufaces interesting and challenging. Ptt'rlktiou of tUt' stl"lH"

tnre and physical properties of copolymer/solvent systems near surfaces and inter

faces is the objective of this work. Polymers at an air-liquid interface art> prt'st!llt in a

llIilllber of !»'Stem:; indudin~ composite materials and colloidal displ'rsions. tUlI:; ~.;uc:h

theoretical predictions can be technologically important [31. :\.dditional motivation

for this work is provided by the possibility of coupling tbe results presented in this

work to a number of experimental studies [1, 2].

The picture of homopolymer acl<;orbed at thl:' surfm:C:' Gill he dt'SITib(-'(! ;1.-; a t'ou-

ttnuons suceessioll of "loops" and "trains" i.l."i well as "[ails" ..\ tmill is ;1 sprit's 'Jf



consecutive segments. all in contact with the surface. A loop consists of Seh'1Ilent.s.

all extending into the solvent; it is bound by a train au each side. .-\ tail is termi

nally bound to a train; the outer end dangles into the solution [4]. The adsorption uf

bomopolymers, when each monomer caD adsorb at the :mrfact!. is rath",r wdl llIlder-

stood at present. At low surface concentrations when neighboriuJ!; ad.sorbed dmius

do [lot overlap, the confonnatiO[l of macromolecules is determin~t prulli.\.fily by tLI-'

vallie of the adsorption energy of each monomer [.51. At hij..(h surfact' (·ovt'ra~t·. tilt'

structure of the adsorption layer depends also on the (:ollcentratloll. chain tlt"xilJility.

adsorption energy and polymer-solvent interaction as lVell as che molecHlar \\'pil!:hr

of the adsorbing chains. The physical description of the adsorbed layer contains tht"

detaiL<; of the density distribution profile. thickness of the adsorbed layer. us well ao.'i"

the acborbed amoUDt. r. which is defined as the total Dumber of monomers per lluit

area which belonp; to the adsorbed layer.

.-\ different Stnlctnre is formed by end-p;rafting: technique. Honwp,)I~llll'reli.tiliS an'

terminally attat:hed to the surfat:e or interfat:e and. dependioJ..\" on chI-' ).!;rafciuJ..:" dt'lisity.

different regimes are (:onsidered. The main factors whkh detf'mliuf' rhf' proPl'rtil"S of

these polymer layers are che deKI"ee of polymerizatiou of thf' chain. Z. (hI' qllalit:t· of

the solvent. and the averap;e area per adsorhed molecule, l:. As is commonly dunl'. it

is useful co introduce the reduced surface concentration, rr" . defined by

u. = ii~/, (U)

where Rg is the radius of gyration of an isolated polymer in che solvent. wich fi...J .:x. Z"o.



where v :::::: 0.5 or 0.6 in 8 or good solvent. respectively. in worse than H solvent

v :::::: 1/3 [61. To within a numerical factor. a- is the ratio of the cr~ *ctiona1 area

of a molecule in solution to the average area assodated with it in the j"rraft(!d state.

Two limits are commonly identified and schematically presented in figure 1.1. lu

Figur!' 1.1: P()I~-nler dmins atta<:ht'd by one end to nonadsorhilll-\" ~nrf:\(:t,. ;\lll~hrourn

(a) and hm-;h (b) regimes. The brush thi{:knes." i~ h.

the first, IT' « 1, the distance between the p;rafting points is v;r..at..r than R~r TIll'

chains are isolated from one another, and extend a distance which i." proportioual

to ~ from tbe smface. This limit is known as the '1nushroom re.IPme" 17l in tbe

otber limit. which corresponds to IT" »1. the averav;e area per ~rafted chain is mnch

smaller than the cross sectional area of a chain in a solution, and tbey are ohli,l!;t'([ to



stretch away from the surface. This limit is frequently referred to i:L... the brush limiT

and will be considered in this thesis.

The adsorption of diblock copolymers depends ver~.. stwnj.(ly '111 tht> qluJity 'If s"l

vent for each block of the copolymer. One can dbtinKUish between non-sdectiw <Wd

selective solvents. [f tbe interaction parameters between the solvent molecules and

both bloclc; of the copolymer are similar. the solvent is called non-selectiw. The ad

sorbed block can be interpreted in terms of 11 self-similar. ·'fluffy carpet" stnH:rurp {Sl.

In the case of a selective solvent the solvent is poor for one block and j.(00(1 for rht>

other. The block for which the solvent is poor can then adsorb ooto the surface.

and the second dangles into solution. The adsorbed blot:k is interpreted in u~rllls of

molten and swollen by solvent layer [9J. In either selective or noo-sdec.:tivl" soln'lIt till'

dalll(ling block is similar to the end-grafted homopolymer and is trt'atl~d iI.-; a polYllIt-'r

brush.

In order to fully describe the adsorption layer, both the demil... of tht> dl'usity

distribution profile and the free energy of the system uave to be determiIlecl. \Iost

of the Other thermodynamic quantities can be derived or calculated froUl the fn~t'

encfl~Y. In mDst analytical and numerical approaches the Hdmhoitz frt>p t'nl'r~·. F.

of the system is specified. L'sually it is expressed as a stun of two contributions - tUI"

interaction energy, which involves all components of the s}~tem and tLt· iutt'r:wtion

with the surface, pIlLS the entropic contribution. Then the surfact' tt'llsiou .... eall ht-'



calculated using

(1.2)

where A is tbe total area of the interfat:e, Tis tbe temperature. \.' is the vuhmH~of tho"

system,and .V" are the numbers of the molecules of spedcs ,.. preSt-ut in rh.· syst,~ru.

In the case of tbe air·liquid interface the change ill tIlt' Slitfa...' [!"'/.l."WU "au 1)<'

interpreted as a two-dimensional pressure. This chan~e is mllfff the sndae!"' pn'ssnrl'

n .. =1o--y. ('-")

where 1-0 is the surface tension of the pure solvent and l' is tbt' ~<lllle with all adsurlwd

polymer.

Polymer layers at surfaces or interfaces have been e.'(tensively studied theoreti<:ally

and experimentally. and in [be following sections some important and relevd.nt tf'Slllt~

will be discussed in detail.

1.2 Analytic Theories of Polymers at Surfaces

Tbe ultimate Koal of every polymer adsorption theory is to provide a '("scriptiun

of the polymer concentration in the vicinity of the surface as well the physical prop

erties of the adsorbed layer. One can categ:orize each theoretical method a."; t'itlH'r

an analytical or a ~;:mulation technique. III this section. analytic descriptiolls of ho-

mopolymer adsorption will be discussed first. ~e.'(t, anal)-·tk models of end-/.,'Tafted

homopolymers and nonadsorbing surfaces will be considered. Finally some models



for iliblock l:opolymer adsorption will be presente(l.

1.2.1 Homopolymer Adsorption

There are two major analytic approaches to the descriptioI! of homopolymer ad-

sorption. i.e., scalin,ll; [10-161, and mean field description... [17-191.

The scaling description of homopolymer adsorption from ~ood aIld e sO!Vl"nts was

developed by de Cennes [10, 121. It is based on the concept of tbe correlation leu!!;th.

(, introduced by scaling theory in the description of dilute and semidilute polymer

solution... [51. Tbe central result of this theory is tlim tills l:orrt>lariou It'ul-{tL. f.. is

proportional to the concentration of PolY'TJlt"r in solution. f!J. whil:L s.:alt>s a.";

~ == {q,-JH Kood solvent

¢~I e solvent
11--')

where a is the monomer length. This result was used to derive power law dependences

for different parts of the polymer density profile in tLe vicinity 1)[ tbe surface. Tht,

adsorbed layer is divided into three regions:

L The proximal regime. x < D, dose to tbe surface where tbe profile is very

sen!>itive to the details of the segment-~mrface interaction. The paramNer D

is approximately the thickness of an isolated adsorbed polymer chain ami is

determin~ by the adsorption ener",'y parameter d.

2. The central regime, D < x < CI>, where the profile follows a 1t1liwrsal S!'alillp;

law, and for tbe adsorbing wall is independent of the bulk concentration. £.1> is
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the bulk correlation length and it is assumed that D and ~11 satisfy [10]

(L;)

3. The distal regime. x > ~b, where the density profile. ID(~·). approud.lt:'s the bulk

concentration. tPb' exponentially.

In ,l(eneraL the adsorbed amoullt r is obtained by wte/.,"ratiu,I( (eD(;"') - (t!/,) Clwr

the distance from the surface and depends on the adsorption eDt·r...~· .wd the 111l1lL[)f>r

of segments per chain as well as the quality of the solvent. Similarly. one j"Uli abo

obtain the e.xpression for the free energy or the interfadal teIL!>i.on. "1. The derailed

discussioD of these quantities and their dependences on relevant pammetcn; g;oes

beyond the scope of this thesis btlt can be found in tbe literature [lao 1-L 16. ~ol.

The scaling- theory provides only g-lobal infonnation Ull till' propt'nil's of adslJrlwd

bumopolymers. Furthermore, it is valid o\'er rather limited ntUg"t' of ("ouditiuHs. T1LP1"l'

are several analytic treatments of homopolymer adsorption hased ou tht' lIleau til'ld

appruach. JOlles and RicLmom[ {IS] eonsidered adsorptiun frum SUhllioll onto a pl1.\+

nar surface using theself-mnsistent field theory (SCF) of Edwards ml<1 Dolan [:H. 22J.

They discussed. adsorption from e and good solvents. Their approach is basf>i{ Ill!

the ground state approximation for the solution of a diffusion equation. The prob

ability distribution function for a polymer of Z segments starting at r and ending

at r' which satisfies the diffusion equation is expanded in terms of ei/ol;eufuw:tions

with corresponding eigenvalues. and only the lowest eip;enval.ue lUid correspoudillg
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eigenfunction is assumed to contribute to the solution.

Another approach is based on the square gradient tbeory introduced by Cahu and

Hilliard [171, ,Uld developed for polymer adsorption by Poser and Sanchez [191 and Ily

de Gennes [10]. In this method the local contribution to the surface tension or fr~

energy excess is decomposed into a concentration gradieor teno and a cODl:t!Utratiun

dependent term. The interfacial tension can be written as

II.G)

The sciffuess function L(¢) represents tbe eDerh~' cost of makinj.( jo<:al duw).(P:' in rh,-

polymer concentration 110J and, for low polymer concentration. l.:aD bp writtell [:2:j!

k T ( ')'L(~)=...!!.- ~
aJ 24/p

(l.7)

whetl:' C!J is the local volume fraction of homopolymer iUld a is the mUDomt-'r ~ize. Tut'

second term in Eq. (1.6) represents the free enerKY density dif[ert'w:e a....."odated with

the transfer of molecules from blllle to the adsorbed layer

(l.8)

wlll>re Z is the degret-' of polymerizi\tion and I: aud II' an' thl' I'xdm{t-'<! vo!Jml<' iUld

ternary interaction coefficients respectively, Equatiou (1.8) was nna ill[rodlH~I'd IJ.\·

Flory [24J. By minimizinA" -y, the equilibrium profile and frt.'t! euer,!.\"y eXt:e~" ("oUl lJt-'

obtained. For some cases analytic solutions for adsorption from p;ood [10. :n] and H

solvents [23, 25J, and for worse than e solvents (26], have been fonnd.



The interesting and very detailed discussion of these aspects of IWnlo(.lolYIlIt!r

adsorption is also presented in a comprehensive book by Fleer et at. [2;"j.

1.2.2 End Grafted Homopolymer

There are two main analytical approaches to highly stretched polYlUer !lnL',hes.

the scaling (7,11,281, and mean field [29, 30J. The scaling theory of polymer bruslles.

formed by end.grafting, in a good solvent was developed by Alexander and de Gennes

(ADG) [7, 281. They consider a flat, Ilonadsorbin,l!; surface bearin,l{ monodisperse

chains of Z monomers characterized by mean statistical seKIllent leu,I!;th. b. such that

Z b ",<ives the full contour len~h of the chain. The theory is based on the concept

of "blobs" of linear size d. where d is the average distance between l1lafted sitt's uti

the surface (see Fig.i.l b). lutroduction of this characteristic leuS!;tu scale le;:u.6 to a

density profile which, except for a small depletion zone and a tail rt'~..j,on. is a S[t'p

like function. i.e.. the polymer volume fraction within the layer. Q ::::: ZfP/(f!"'. is

constant and h is the equilibrium layer thickness. The In'aftin~ densit.\· of chaius ('an

be e..xpressed in dimensionless terms as (T = b2 /dl
. Furthermore. the modd assumes

that all the chains are uniformly stretched. so the free end of every chain is IOt:ated in

the tail region of the brush. Dense f.,'Taftin,l{ results in strOll,!!; overlap amou~ tht> chains

and this increases the number of monomer-monomer contacts and the eorr~spoudinJ.\'

interaction energy. This effect is reduced by stretching" the chains alollg" the uurmal ttl

the ,",.rafting surface. but results in an increase of the layer thickIH'SS. It. Tllt' iml'rplay



between the interaction energy and the entropy loss du~ to stretchiuJ;{. or in other

words. the increase of elastic energy, determines the equilibrium value of h.

There are two ways to obtain an explicit e.xpression for the free ener,l{y per chain.

The first is based on a simple Flory type mean-field argument [24], and the free enerl{Y

per chain (in tbe units of kHT) is written as

11.!J1

where u is a dimensionless e.xcluded volume parameter (a measllr~ of binary 1lI011lJllIN

contacts) and Zl/'lb = ~ is the nn.... end-to-end distance of an unperrurhetL ideal

chain. In tbe above Eq. (1.9) the symhol:::::; means that every term should he mtt!ri·

plied by some numerical factor of order one. The first term r"'presents interartiom; (0

b It dependent) and the second one is the elastic contrihution. In terms of ,L?;taftiu).,(

density, d, and the deb'Tee of polymerization. Z. Eq. (1.9) t:all be expres....;t'd as

(1.101

The second way to cstinlate the free l'llt'r,c;y pI'r l:haill ill a br1!.... lJ is IH.l.'wd Oil sl'alia:-::

arJ.,".tments. A polymer chain in this picrure is l:onsidl,ft·d to satisfy i<ll'al Calls..... ialJ

behavior on the scale of bloh size d. The correlations of the monomer:.; illsith> ""t'il blul,

result in an interaction energy of order kElT. Since the number of ulohs per chain is

(Zig), where g = (dlb)5!3 is the number of segments per blob. the intemetion enl'tl0'

can be written as

(1.11)
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The elastic free enerR/ is modified in the terms of blob pknue by recoguiziug; char

the chain can be considered as ideal at larger scale and

(1.12)

where R ~ (Zjg)lnd is the radius gyration of an unperturbed chain of (Zig) blobs.

each of size d (311. In contrast to the first approach. the elastic eontributioIt here

is concentration dependent. The total free energy per dlain (in kilT lWitS' nln be

written in terms very similar to Eq. (1.9), but now the term deserihiIl~ tU.I' I'l1L'>tic

contribution has bet:ome explicitly ¢ dependent:

Expressing the volume fraction of the polymer in terms of the )..,'Taftinp; ((pu..,icy ilwl

cht! dCKl"ce of polymerization result!> in

(!.l-I)

The equilibrium state of tbe bmsh is obtained by minimizing the fn~e eoerj.{y with

respect to h. The two approaches result in the same scaliol'!: for the thkkness of the

brush. Le..

(Ln)

hut sliKhtly different dependenr:e of the equilibrium free ener.IQ" per dmiu. P.-.

{

Zt7'J./J Flory - type argument
F,e<

Z(15/6 Scalinp; - type arp;um~nt

(L16)



The difference in tbe power of (j between tbe Flory type approach and scal.illK pictun'

reflects differences in tbe elastic and interaction terms in tbe free energy, whkh ,;.w b~

seen by a direct comparison of Eqs. (1.9) and (1.13). Both tenus of Eq. fL9) differ by

a factor of 1I l/ '; from the correspondiuJ;!; terms W Eq. (1.1:3) [;j. :.12). This rliff,'n'uc',' ..au

be accounted for the fact that in the Flory - type arj(lmH.'nt thl' c·urrt>latioll.... wir.ltiu

each blob are neglected. A difficulty in both approaches. however. i:; the asslIlILptiuu

of a uniform density profile,

.-\. more detailed picnue of the density distribution with.iu the polymer brush wa..'i

proposed in the analytic SCF model developed independently .ulIl sirnnltalle()lIsl~' by

two research b'TouPS: .Milner. Witten and Cates (hereafter referred to as .\I\\'C) (:la.

331, and Zhulina, Serisev, Pryamitsyn and Birshteiu [:341. The key puwt of this

analytical model is based on the analogy drawn by S~meno" [35], that a confiJ,.,'llration

of weakly stretch~1 or nustretr:hed chain is ,walo/;!;olls to tht' possihlt' traj",'wri,'s uf iI

qll<llltulU-me<:haninu p;utide. where;:l,.; in the limit of cOlUph~t(' stn·tdlilllo!.. [LII' dtaill

confih'1ll'ation is reminiscent of the trajectory of a classical particlt>. ('OllSt>qllt'mlr. fur

strongly stretched chains, tbe analytic SCF model looks for the dominant trajf'i·tory

between the two Kiven endpoints for which the classical action is at a minimulII [:U].

furthermore, in this model the a.<;sumption that aU the chains have their frt'e pud

in the periphery of the layer i.'> rehLxed and, instead. chains c,w havt· their frt>t> ,'mb

anywhere within the bmsh. If one oey;ins the trajectory at the fret' f'ud of cad.! I"haiu.

no matter what the confonuatioD, it takes Z steps (monodisperse chains) to arriw at



the surface, beginniDg with zero stretching (mechanical equilibrium condition). (II tilt'

mechanical analogue, the chain path, X(7), is the particle trajectory; the monomer

number 7 corresponds to time; tbe chain length Z is the total time of flill:ht of the

particle; the local chain stretching dx/d7 is tbe particle velocity: and tIte t:ondition

that the free end of the chain is tlILStrett:hed corresponds to a particle startin~ from

rest [30J. The next step is the self-consistent determination of the me.w-field potential.

.-\ hannonic field has these properties; the period of an oscillator in a bannonk fidd

is Dot dependent on the amplitude of oscillation. Since in mean field and for tow

polymer density the effet:tive potential is proportional to the monomer den~it~· till'

composition profile is parabolic. L"sinp; the notation of ~I\-\"C. this paralJulil- protil,'

is expressed as

ILl,)

where w is an excluded volume parameter with dimensions of leuKth:l [:J6] . .r is tilt'

distance from the Ktaftiu/o\" surface and h is the thickness of the brush. Tht' (·onsrant

.-l.{h) is fL'Xed by requiring that the number of monomers per unit area l'(jual Zrr.

The constant B is obtained by the equal "time" requirement [291..-\,I.("ain ltsin~ rhpir

notation. the result is

~Ix)

h =

ILl"1

Ill")

where v has dimensions of length-2 and can be related to statistical seKlllcnt ICLl)!;rh
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discussed in the next chapter.

The free energy per chain in the MWC model is obtained by Pruh'T~ivdy addiul-:"

chains; tbe change in system free energy upon adding a chain i.s ....{I'T) for that 1:1I1\ill.

The ':;(d) is independent of the location of the chain's free end. and the free eut'r~y

can be calculated by considering the chain which starts very near the surf.we {29]. It

results in

9
(

, )'1'F. = _ IT V (W")2/:IZ.
c 10 12 (l.:!O)

These solutions are strictly correct in tbe limit of infinite molecular weight. bi,l!;hly

stretched molecules and low to moderate polymer density. ill this limit tbt' deple-

tion rCb';on near the surface and the a.... tended tail can be neglected beci.\uSt' tht' total

thickness of the layer scales linearly with cbp del!;I"ee of polYlllt'rization. Simihu"ly. for

the long stretched chains the tlm:tnations around cht> must prubablt' rrajl'l"tlJr~' an'

negligible in the high moleewar weight limit. In later work. ~lillll>r. WiW~. allli \nr·

ten formally cOlli>idered finite moleewar we~ht corrections [:371. and .\l\\"C iucludt'd

polydispersity [:381. Each of these corrections is most important at the tip of tht~

brush.

An important conclusion of the MWC model is that tht' simpler .-\le:mutlt'r-de

Gennes picture based on the step profile gives the same scaling relationships for the

thickness of the brush, Eqs. (LI5) and (L19), but with different numerical prefac-

tors. The scalin,e; relationships for the free energy per chain are also esseutially tht~

samf' in both models. except for a sli.e;ht difference in th", case when on(' applit'S till'
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blob picture in determining the elastic and interaction contributions. Eqs. (1.16) and

(1.20). The analytical SCF treatment of MWC includes the same physics as tbe .-\.DG

model. namely, it balances tbe o1>ffiotic type interactions with the ela.."itit: resbtU[l(:e to

stretching, but does it locally at every point along the chain rather than ~lohallyo~r

the entire chain. The difference arises physically from the reduction in stretdtill~ with

increased. distance from tbe surface, since the decreasinK density means that there is

more space to relieve crowdinp;.

Both the scalioK and analyti(:al SCF mmteLs also diSl'nSo-; the-> ClJlllpn'ssioll of IllJh'

mer brushes, which is one of the earliest experimental techniques !L'';!'t[ til il1....tOStiJ.!.ilt.'

their properties aDd stmcture. Both models assrune tbat the opposinJ.: lJrnslJ.t-'s do nut

interpenetrate, at least at the initial stage of compression. An argument for the 0011

interpenetration a&umption is that the stretchiu,e; which Of.:I.:U!"S in the sillg"le layer b

caused by swellinv; into ehe plUe solvent bath in order to reduce OSlIwtil: interilt"tiollS

within the brush. When the two layers are brought into c011taf.:t. this tt'l.Ldel.Lcy i:;

removed, so the layers retract to reduce their streeching ener~' [:jD]. Hel.Lce. tLl' COUl

pression of the two brushes bef.:omes equi...-alent to compression of t\\·o llOll-ilJeer<l<:eiup;

bn\,shes by a nonadsorbin~ surfaces. Ftuehermore. the profile; arl" iL...."lllfil'd to rl'taill

their ori/-,>i.nal shapes, with suitable increase in densities. Tbus. dlf' .,\OG JlrotiJ,..~ !'I'

main fiat. and the .\tIWC profiles remain parabolic up to the midpotm IlI't\\''''''u tllt'

:,urfaces, where there is a discontinuity in the slope. Both theories predict that ehf'

free energy per unit area of the compressed brush, E, can be e.....pressed ill terms of a
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free energy per unit area of the uncompressed brush, Eo, and some universal function

of the reduced distance, u = Dj(2h), where D is the dbtance between the surfaces

with terminally attached chains and h is the thickness of the unLumpress~d ~<Jl.nller

brush

E {EO(~+'!f) ADC
Eo (t + uJ + -f) 1tlWC

The lateral compression of tbe polymer brush formed at the air-liquid iu[t~rfm:t'

re!>-ults in a change in tbe grafting dew.'ity and, according to Eq. (LI). tilt' .\1\\'(' or

Flory mean field models predict that the !outface pressure scales as

rL.cxZrr5J:I. (1.1:2)

and the scaling picture of ADC. which takes into account ehf' c:orrt-'latioDs of dlt'

mODomers inside the blob predicts

The details of the structure and scalinA" relations for the polymer brnsh nudp("

/-{ood solvent conditions and detailed compari.son with analytic theorit~s <I.'i wt'll a:.;

comparison with the experiments will be discussed in (:hapt~r :.t Interpt'll~trati(Jll

of the brushes, and the flIDctional dependence of the free e!ler!-.~· uf thl:' (·olllpl"t'S..';t:'d

brush, will be examined in chapter 4. The surfa<.-e pressure effects and the :,walin).;

relation of Eq. (1.22) will be e.'i:amined and discussed in chapter 5.

The structure of end-grafted chains in 9 and worse than H solvent has Iwen the

suhject of several analytical studies [40-47]. In the laterally hutllugt:'ucons layer ill
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e and worse than e solvent, inhomogeneities can develop leading tu the "dimpled"

stnlcture [45. 48], but as long as the density of grafting points is Iar~e ell{)u~h that

the neighboring chains overlap. polymer brushes still form with the chain~ ~tretcLin)!;

away from tbe surface [45j. The essential idea of the _\DG model. a glotml balam:t>

of interaction and stretching energies, was applied by Halperin Hi] fur mOllodi~pen;t>

chains irreversibly bonded to a flat, solid surface, and Zhulina et at. [42] who ..xtp.nded

this type of analysis to (:ylindrit:al and ~pherkal surfaces. In thfSe stmUt-'s [h~' St·,tHH,!.(

relations for the thickness \)[ the brush and the p.quilihrinlll frl...· I'tlt'l'J.!Y ill (-) ailll

worse than e solvents were obtained. and for the planar surfact-'. tLit:kups.>; of [Lt,

brush scales as

{

Zal/2 e solvent
h"

Z(f worse than B solvent

and the equilibrium free energy per chain

{

Z~ e ,n[vent
F<"

Z worse than 8 solvent

(1.24)

(1.25)

It i~ wortL noting tLat. for worse than e solvent. the fr~ ent-'rA"Y pt't chain is inr!l'-

pendent of surface concentratiun. In this model. n:; in thp. .-\OG pierar... rIll' <!~'l1sir.'"

distribution is assumed to be constant within the layer. In order to obtain [ht'Sl'

~J'DlPtotic relations, only the leading terms were kept during the minimization of

the free energy e.xprf'SSion with respect to the beight of the brush. For 8 ~olvent.

these were the elastic stretchin?; and the ternary type interactions. Eq. (1.8) with
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I) = O. approximated through F;..l ex: ¢3, while for worse than e solvent only hinary

and teroary interactions were considered as dominant and the stretchin~ of thp t:haius

was ueKlected.

.-\ more detailed and complete theory tlf the structure of a planar layer ill otht'r

than good solvent conditions was presented by Zhulina et a1. [-12. 4al, and hy Shim

and Cates [401. Tbe approach proposed by Zhulilli.\ is essentially the same as }lv\'C':

the interaction and stretching energies are balanced locally. The scalinp; rdations for

the thickness and equilibrium free ener~ are recovered ,\.'; in the simpler Flury t~l)t'

picture but the density profile obtained in e solvent conditiollS is describpd by ,Ill

elliptic function. Shim i.wd Cates [40] e..'Cpluited the "equal timt''' requireult'ut of tlu'

self·consistent potential and derived a set of coupled inteKtal equations for thp dt'llsity

profile of the end-grafted chains and the free energy of tbe system in ctjuilibrilllU lL-;

well as durin?; tbe compre~ion of two polymer layers. Tht' [t'sult for tht' tlt-usit.\·

profile in e solvent is elliptic and the same as was ohtained hy Zhlliina t't (ll. [42. -(:31.

The assumption of uoninterpenetration is still a key point in calculations uf thl' frt,t'

energy of the system during compression. In this picture. tbe t:omprcssiou of tht>

polymer layer by tbe second brush is assumed to be equivalent to a ("omprt'&~i()n hy

an impenetrable wall. Tbe analytic solution can he obtained only for a very simpl.,

case (athermal solvent. .\ = 0).



1.2.3 Diblock Copolymer Adsorption

In the previous section the properties of the polymer brushes were dllicw.sed and

this discussion can be applied. to the dangling block of the adsorbed diblock copolymer.

This section is meant as a short description of tbe adsorption of diblock c.opol~~li:·rs.

Scalinv: and mean field descriptions of diblock copulymer (l(!sorptiol1 frolll UtllJ

selective and selective solvents were originally propo~d b~' :-darqH~ t:t fit. [8. !..II. III

non-selective solvent, they considered an A - B diblock copolymer. i\{borhiuj.{ frum it

dilute solution onto a solid surface which strongly attracts the .-l block and strollgly

repels the B block. The solvent was considered to be v;ood for both blo<:ks. The

structure of the adsorbed la~:er was described as cousistinM" of a swolleI.L il1.lcboriuj.{

layer and a more dilute and extended buoy layer. The key parameter in determinin/-l;

the layer structure is the relative length of the blocks expressed in terms of CUf-'

asymmetry ratio, fl. which is

(L:2Gl

where RA, and R(I are tbe radii of ~ation of the andlOreJ (struul-tly anrill·t,'d) awl

buoy (stron~ly repelled) block respectively. and ZA, and Z8 Jue the eorrespoudillJ.,::

degrees of polymerization. When the asymmetry is small. the adsorbioK hlock forIns

a self-similar layer which corresponds to the same typt> of profile a.<; in homupolymer

a(borption. and the nonadsorbing block form.s a bmsh-like stnu:ture. When the

nonadsorbing block is much larger than tbe adsorbing ODe. tbe anchored hlock forms



a discontinuous "pancak~" structure and the B block remaillS stretched and furm... a

brush structure. The scaling relations for the thickness of the adsorhed aUlI dallj.(lill~

layer as well ~ the average surface COlH.:entratioll are obtained throuj.(h millirnizatilH).

of the free energy functional.

Ln. a highly selective solvent. the ..l. block is in a poor solvent environment. This

leads to its collapse on the surface and it forms a molten layer on the solid wall wlwre

the solvent does not penetrate. The B block is considered to Ill' in a Knot! solwnt

environment and forms a bnlsh grafted on this molten layer. Tut' structun' of CU('

adsorbed layer is governed by the chemical potential of th~ soluble hlm:k ill solution.

1J.~.r' An imponant issue of this work is the role of che van dt~r \\"aals illtpr,u'cioll

between the wall and the adsorbed ..l. layer. The as~'llI.L.Letry bet\\'Pt'U till' two Pilrt:'>

of the copolymf'r is nwasnred by

(1.:17)

If the copolymer asynunetry is large enough, the thickness of the Ulolteu layer results

from a balance between the van der \oVaals energy aud the stretchiuj.( eUt'r,,"y of tUI'

brush. Various other adsorption rehrimes Ol:<:ur when tht' asynUllt'cry of the ("opol~1l.LI'r

is decreased [8].



1.3 Summary of Relevant Experimental Work

The present rapid growth in the experimental activity in the field was initiilted

with the surface foree measurements on Layers of adsorbed copolymers hy Hadzi

iUaDlloU et al. [49], and Patel et at. [31], and 00 eOd-h'1'ufted puLYfIle~ Ily :\Iarm d

ai, [50], and Taunton et al [51]. Subsequent and current experimental wurk iudlldt'S

force balance measurements [52-.,)4], small angle neutron scatterinK (S.:\.\i5) 15;), .,)61,

and neutron reflectivity memmrements [1, 57, 58]. Excellent revit'w~ of expt'rimt'utal

tech.niques are presented by Stamm [591, Tirrell and ParsonaKP [60]. <lucl Carba.':isi.

Morra and OcchieUo [3], In this section representative experimental results whkh iW'

relevant to this thesis will be discussed. More extensive deseriptions will he pro",ided

in later chapters, when the results obtained in this thesis are diseussed.

The polymer density profiles t:an be direetly probed by neutron scattt'rill~awL rt>-

tlcctivityexperiments. field d (Il. {(H] nsed Ilt'Htron retlt~'to(lIt'u~· ttl II11'il.>;IW' till' dt,U

sity profile of four P5-PEO copolymers adsorbed on quartz from ,Lt-'llu'rau'd Tu!llt'W'.

The profiles of the dangling P5 could be well described by a parabolic or error fUllctiun

with maximum at the surface and an exponential-like tail. USlnK SA:\'S. Cosj.{ruvp.

et at. [55) studied one dellterated P$-PVP eopol~-mer adsorhed onto mica with tlw

d-PS danKling into good solvent. The data suggested the presetlt:e uf it depktiou Layp.r

and a ma..'timum in the polymer density about J nm from the surface. foUoIVL-'t! by

a decrease which is similar to the parabolic fonn, Auroy et ai. [56. 62J used 5.\:-0;5

to study POMS polymer grafted onto porous silica, with ZPDMS ranKing" from ahout



350 to 8,000. They found that a consistent density profile of the ADG form coull!

not be constructed., and concluded that a parabola with a smooth tail was indicated.

However, in contrast to the results of Cosgrove et ai. [55], they detected no depletion

layer near the surface for the Kood solvent case, which they su);");"ested could be due to

a surflU:e-monomer attraction. Overall. therefore. a picture of the profile::; is elUerh"ini!:

which indicates a ma.'Cimum at or near the surface (depletion layer). beyond which tht'

density monotonically decreases. smoothly reaching zero at the tips. The SCF" theory

of :\oIWC however. predicts a profile for monodisperse poJ:!.mer with no depletiuulayer

and an abmpt drop to zero density at the outer ed);"e uf tbe bm""h .

..vIany of the e..-..:perimental and numerical results have bt'eu aI.LUlyzed ill t{-'tlllS of

the scaling relations given by the scaling picture of ADG (Eq. (i.i.j)). aod the analytic

SCF theory ofMWC (Eq. (1.19)). and the results have often been daimed w support

them. The actual degree of this support is dependent on assumptious made in tht,

analyses. and limited by the fact that. UDti! tue recent work of h::ellt d nl. [1. 1] tht'rt'

have been no experiments in which the molecular weij.{hts and surfan" ,leWiities \wre

independently varied.

Hadziioannou, Patel and coworkers [31. 491 carried out surface furce 1llt-"L-;lIt1'

ments on PS brushes in toluene. with PS degrees of polymerization. Z/,s. of aho1\t

600 and 1.500. On the basis of the surface separations at which rhl> forn>s Iw~all.

these e.xperiments were said to suppurt the sCiuinp; of Eqs. (1.15) and (i.E). Huw

ever, Ansarifar and Luckham [631 later studied poly(t-butylstytcne) (PBS) brushes
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in toluene. with Zpss =::: 50, 200 and ....00, and were able to incorporate their rf'Mtlt:-;

and those of Patel et at. [31] within one, milch weaker. S{~alinA" law. h' '),. ZU·'. :\Iarra

and Hair [50] also studied PSjTOL. A compari.<;on of the cases with A,...... ::::: 8::itl iUlll

2,400, which had nearly equal values of E. suggests that the ranKP of the foret' Sl:alt'(!

faster tban linearly with Z/-s. This can be e..xplainen by the additionaleomplicatiou

tbat the interpretation of these experiments depeuds on the defiuitiou uf tht, nw~t' of

the force [64J. jf it is defined by the surface separation at whkh tht' [orct-' rt'iH:hl-'s it

given value, e.g. the threshold for measurement, then its scalinV; differs from thilt of

the brush height: if the brusb height scales as h' (X Z''', then this nlnKe of th(~ fon:e

would scale approximately as Z<>-0.2 •

.-\S another illustration of the difficulties in data interprNatiou. Field ,'t rd. [ul)

found that. by assuminv; h' :x n1i:l. then tht' best fit for tilt' Ilwlt-'{'nlar w{'ig:hr dl'lll'lI

dence was h' ex ZO·97, However. if no a priO" ossumptioDs 'lre made, rheu thl' ht'sr

fit to their published data Wves h' 'X ZO,7\rO,14, in sharp coutrast with Eq. (l.l;j) alld

similar to the Ansarifar and Luckham result [6:31.

The point to be empha.!>ized is that determining tbe quautitatiVl' depetlllences of

the brush thickness on botb molecular weignt and surface covem~e has been IJwb

lematic, and tbese results do not, necessarily, indicate tbat tbe systems are in thl-'

asymptotic scaling regime. In particular, UDtil very recently. there has heen unly

one ,i;urfacf' (:overage for a p,iveu molecular weip;bt in each experimeut. This sitllat.iou

l:hanp;ed with the work of Kent I't fT.t, [I. 2] whu stmlied SI'V"U [·tlptll~·llIl·rs. with ti...
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PS molecular weight ranf:,ring over a factor of about 10. By applyin/!; lateral pressure.

the surface density was independently varied for each copolynwr. also over factors

of about 10. Hence, they were able to e.xtract quantitative functional dependelu:es

of the brush thickness, and to fully compare them with the scalinK predictiollS of

the asymptotic theories. The experiments of Kent et al. [1. 11 also provide demiJed

infonnation on the density profiles. includin~ the depletion layer.

One general cQnclusion that l:an he drawn from the;e expt-'rilllt-'llrs is thar. ,'xn'W

for the experiments by Auroy et at. [56. 621 and Karim d «t. ['3S! Ull systelllS at \"t'ry

high /T., the L"O'o-erage in real experiments is limited ro /TO :::: I;j. and tllt-'Y du !lot

correspond to the asymptotic regime of analytic theories.

The properties of compressed brushes can be probed by measuring the long range

forces between the surfaces with adsorbed polymer. The results are convenit'utly

expressed in terms of F(D)/ R where R is the geometric mean ufthe radii of curvat lin"

of cylinders used in the Israelachvilli force apparatus and D is the dist,wct" uf dosest

approach. With the Deryah"l.lin approximation [651. this io" dirf-'ctly r('lated to tLw fret"

enerj..,"Y per unit area for liat. parallel plates "ia

Flf:) = 2rr ( £(D) - £(0<1) (1.11:\)

where E(D) is the free energy per unit area of the system at separatiou D and

£(00) = Eo is the free energy per unit area of the system when the brushe> attached

to the opposite surfaces do not overlap. As discussed in section 1.1.1. the analytic

theories predict that these forces can be expressed as universal functions of D/h.
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where It is the height of the uncompressed brush.

Mo.st of the experiments on compressed brushe.s have been analyzed iu tenus of

analytic theories, and they tend to support universal behaviur predicted by analytk

theories [31, :.16, 51, 66]. However. Watanabe and Tirell [52]. and Dhuot t'l (It. [;):.1],

made mea.<;urements using highly monodisperse brushes in a ~ood solwIJ[ ilnd fOllnd

that the force and its range were unpredicted by a factor of about 2 in analytic

theories.

The experimental studies performed by Kent et al. [1. 2..'57] are of h'TCat impur

tance in this tbesis. first. as noted already. in these experiments huth lllo[t'('nlar

weight and surface coverage for layers of chains tetbered to dIP air-liquid illTt'rf;It"l·

were varied. independently, each over an order of maf"rnitndt'. Tat- results pn's"lltt'(!

there contain detail and careful examinations of the density profiles and the scaling"

relations. Second, in these experiments the maxinnun attainable snrraCt· dew;ir.it-':'

were limited by a sharp rise in pressure. with the result tlli\t (1" varied frum ahonr

1 to 12 and is typical of e.'"periments in which the chains have beell tethert>d ttl tul'

surface from dilute .solutions in a good solvent. To date. the systems studied hy .-\u

roy et at. [56. 62] and Karim et at. [58J appear to be the only ones which eXt:p.ed this

coverap;e. Furthermore, tbis rapid increase of surf,~ce pressure canllot Iw explail1ed

on the hasis of Rnalytic tbeories. The experimental work of Kt~m d (It. i:; tl1I' fond

point of numerical 5tudics presented in chapter:} and chapter ,j and in lllaUy "'IL.":,>

motivates this thesis.
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in summary, many questions addressed by experimental studies cannot he ex·

plained in terms of analytic theories and more detailed numerical work which j.<; Llot

limited to the asymptotic limits or sharply defined regimes is needed. The relevant

numerical result..<; and SOllie theoretkal predictions drawn from thl"se stndil"s will !w

discussed below.

1.4 N umericaJ Approaches to Brushes and Adsorbed Layers

A system comprised of a large number of interacting macromolecules and soh'P.ut

molecules is suitable for description in the lan~uageof statistical physic'S. I..u Kl"lll"ral.

the description of the s~"stem proceeds in three steps:

1. Characterization of the V.u10US microscopie coufiKUratious of the systell1 which

are compatible with its macros(:opie state and. for every confip;uration. den-I'

mination of its energy.

1. Evaluation of the partition function Z

:t Determination of the Helmholtz free enerK}'

F= -k8 TInZ (1.19)

Most other quantities of physical interest can be directly obtained from the free enerj.{y

expression, Eq. (1.29). The way the particular approach addresses points (1) and (2)

can be used to classify it to a given type of theory. The methods used to study the



polymer system near the surfaces and interfaces vary from the modd~ in wwch all

the properties of tbe interfacial layer are expressed in the local concentration:> iUtd

concentrations gradients, self-consistent mean field (SCF) type approaches to ;\{ontl-'

Carlo (Me) and molecular dynamics (MD) E>imulatiofiS.

Polymer configurations are modeled as walks in continuou~ space or on a lattice:

tbus one can distinguish between continuous and discrete, lattice type models. III thl-'

models which start from the density profile. individual conformations of (:hains an'

not considered. but only their overall effect on the concentration prufile is mken intu

acconnt. The (atti(:e models of Roe [67], and the square gradient theory uf ('aillt awl

Hilliard [17] which describe homopolymer adsorption. are examples of this tY}JP uf

approach. In many mean field approaches. fiuetuations of thl;' po(yml;'r d.lains abont

their equilibrium positions are neglected and the (ree ener~' of the system is eViullatt'd

for the configuration which corresponds to the sharp maximum ill the Boltzmann

distribution. The numerical self-consistent field theory presented ill cl.tapter 2 and

used throughout this thesis is another example of a mean field approach rcaliZI'd

in the I.:Olltmuous space and applied to diblol.:k copolymers in the presencp of [hI'

interface..-\ slightly different approach is presented by PIOt~hn [68].

Lattice models, exemplified by the Scheutjens and flet'r tht'ory i\1Jl'lil-'d ro 110

mopol~mer 14, 69, 70,71], and copolymer (72-74] adsorptiun. represent Sp;WI' as ;\

discrete lattice with cells of constant volume. The total potential enerKY is assumed

to be the sum of pair interactions. and the surface·monomer interaction;; are restricted
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to those lattice sites in direct (.'ontact witb tbe ~;urface. In the Seheutjens-Fteer theory.

chI' pol~"mer chains are described as walks on a iattice. and each step is wt>iv;hted with

two factors. a local t!ntropy of mi.xing and all t!uerv;y factur dt-'~crilJillg thl' U1'awsT.

neighbor interactions. The lattice sites are occupied by either IlLOUOUlt>r or it sol Wilt

molecule. The space adjoining the surface is divided into parallel lauice layers..\r

equilibrium, there is a certain concentration profile for se"rments and for SOIVt'llt. The

eutropic weighting factor for any step in this concentration profile depends un thl! lat·

tice type and on the local concentration in the nearest layers...\ St't of sdf-cOllSistt-'llt

equations are derived and solutions have to be found numerically.

In the MC method, stntes of the system are generated randomly. and dH' t<u;k

lies in the selection of the most probable configurations followed by the l.\vemJ;!;inv; of

various characteristit..'S over them [7.'5. 761. 110me Carlo simulatiulls of I'opolynlt'l" at

surfaces were reported by Zhau ~t (If. [77-79]

The essential principle of the MD method is to ullmerkall~· solw' cLI' dils."ic"al

~ewtonian equation of motion. assuming the potential energies of iuteractions to 1Jt'

known [76J. MD studies on grafted polymer brushes were reported by ~..tllrat and

Grest [80-821.

Finall~' polymers near the surfaces can be also studied by mt'ans of [ht-' dnS[I'r

variational method CVM [83] and renormalization !!;fOUP (R<J) cakulatiolls [8-l1.

Comprehensive reviews oC numerical approaches which include SCf ealt:nladotls

in continuum and on lattice, square gradient approaches, :\IC and .\10 simulatiuu."



applied to homopolymer and copolymer adsorption as well as to end-h<tafted polymers

are given by Fleer et ai. [27], and Sanchez [851. Many aspects of polymers near surfac.:es

are aL'ro discussed in an earlier monoKI'aph by Napper (861.

The main focus of chapter :j of this thesis is the structur~ of the polymer hrush

in a ~ood :;olvent. Nmnerical SCF calculations have been reported by I,.Vhitmore and

Noolandi (64], Evers et at. [73], Milner [871, Wijmans et ai. [881. and CariJ.{n'lI1tJ <l.wl

Szleifer (891. These calculations covered the cases of good, 8 and poor sU(V~lIts with

realistic interaction parameters (64. 7:3,871 extremely good solvent wi.th \: = -1 [88].

and athermal solvents (88, 891. .-\11 density profile:; showed a tlpplt·tion la.\·p[ .unl

a maximum, followed by a decrease which terminated in a smooth mil. with sunll'

V"d.riation in the location of tbe maximum and e.xtent of the tail. The \'ahles of 0,,,

generally depended only weakly on Z. The profile shapes become more parabolic

with increasing Z. q' and solvent quality, with the depletion layer and tail sizes

diminishing relative to the overall size of the profile. :\5 well. for a )..\:iVt'll degrPt'

of polymerization, the deh'Tee of stretchinp; increases with solvent quality [&-1. 881.

Recently. Carip;nano and Szleifcr performed nllm~rkal cakulatiuu IlSill,L\ th.· siu).!;k-

cbain mean ficid theory (SCMF) on tetbered polymer layen; in a )..\:ood SOIH'lIl [!.IO).

They studied chains consisting of up to 100 segments and surface cuvera~t' fT" ~ :!o

alld fOlllld that, ill a ~ood solvent. the mushroom to brush re",oi.lllp is bruad Hud tht'

thickness of tbe brush scales as h "" f11/"'ZO.9 throu~bout the hrusb reJ,!;ime. III tilt'

study of Shull (91), tbe numerical Scheutjens-.Fleer SCF theory was llsed and J..(uod
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<\KI"t'ement with the parabolie type profile proposed by M\\lC was reported.

lVhuat and Crest [8()"82] carried uut MD sinmlatiuus of 7 l:haiu~ ill ~lIod SIJI\"'·ut:,

with Z ranging from 10 to 200 and surface coverages of0" ~ 20. Tudr dl:'llsity protilps

contained a depletion layer near the surface, followed by a quasi-parabolil; decrease

ending in a smooth tail.

Chakrabarti and Toral [921. and Lai and Binder [9:31 carried ont detailed .\lulltl:'

Carlo calculations, including only hard core repulsions between munomt-!rs fur the

interactions. Together, they treated chain lengths tip to Z = 100 and ~urfa,:e l:uver·

al/;es up to, approximately, a" :::: 15. All the density profiles showed a depletion layer

and maximum. beyond which they could be approximated by parabola.'i t'volviu,l.( iutu

tails. The distance from the ~1\rfact' to the maximum WilS ou tht' urdt'r of. Imt sliJ,!;hth'

smaller tban, tbe radius of gyration. and decreased wt'akly with ilWn~;L'.;illJ,!; ,.,.

The properties of tethered polymers in a mushroom reg-iUte werl' invt'stiKilu'd hy

Adamtlti~Trache et at. [841 using RC calculations. They considered exduded volume

and variable surface-polymer interactions for the tethered chains in a J.\u()d SO/Wilt

and reported qualitative aw-eement with tbe experimental resulrs of Kent d at. Pj.

The compression of polymer brushes and formal compari..'>Oll with tht' ,Ulalytical

theories is the subject of the chapter 4. Numerical calculations based on SCF theory

were reported by Mutbulrumar [941 who investigated tbe compression of polymer

brushes by a second bmsh as well as a bard wall in p;ood. A and worst' tball H

solvents. The conclusions drawn from this work. howt>vt'r. ,up nnly <[\l;ditarivl>.



The eompression of two polymer brushes and detailed comparison with the ana~

lytic theories and the experimental studies was reported by Whitmore and ~uolaudi{641.

They determined the thic:kness and shape of the polymer density profilp.s. obtained ap

proximate scaling relations and the ranges of their applieability. studied tillite mult'i:~

tuar weights effeets, as well as the extent of the interdij..,'1tation of layers ado;orbed IJli

opposite surfaces.

The calculations perfonned by Dan and Tirrd [951. and )'lanin and \Yaug, [!Jlij

support the analytical SCF model of compression. except they indicatt'd illtcrpt!ut'tra~

tion of the opposing bmshes during compression. The effect of the interpcll(~tratitHi

was also emphru>ized. in the numerical SCF study of \Vijmans et ai. (97]. The uumcr~

ical two dimeru.ional SCF study on compression of polymer brushes in H and poor

solvents were also reported by Singh and Balazs [98].

The interactions between grafted polymer brushes in Kood solvent were abo s[lld~

ied by means of Me [99, 100), and 1IO [101] methods. Chakraharti Pot at. [99] ad-

dressed tbe interpenetration of polymer brushes and mad.. a diren ,·omparistlu To

the results of Shim .wd Cates [40]. Their results showed that hoth comprf-'SsiOl.l and

interpenetration effects are present as the plate separation is d['crl~i.I.S{"1. in coutr;l.'ir

with tbe analytical pktwe, which predicts no interpenetration of tbe hrtlsht~ in such

situations. They attributed this discrepancy to tbe fact that tbe simulations curn'

sponded to the "non-classical~ regime of short chains. Dickman and Anderson [100)

performed. extensive MC simulations of brush <.."ompressioD in atbermal (A"ood) solvent



and found that the force between the brushes as well as the structure of tlat.. tll'Ilsit~·

profiles are in overall agreement with the prediction of the analytic SCF theory of

MWC. At hilth surface <:overages. the density profiles of stronKly <:ompr~1 ImL... I).('s

,)brained through the simulations resembled the step-function profiles ~lmlrtl. in tut'

sealin,; theory. The main disagreements between ~lWC theory and tuc simulatioIL'"

OCl."U.lTed. at large separations. and were attributed to the tails in tbe dern.ity profiles

for finite-length brushes.

Murat and Crest [1011 performed an ~ID study of the system of two paralld

surfaces with end~gfiUtedpolymers in a good ~oh·ent. They fOHlld that tilt' intt'raeriull

Wl,lS purely repulsive and tue onset of the force starts u.s soon l,lS tue UPVUSlll)! brlL... llI's

touch each other before any interpenetration. They also found thar. for lnU·rt!lI'diau·

values of surface covera,;e, the force pro6.1es were satisfactorily described by both tbe

sealing and SCF theories. and the interpenetration of the bmshcs (.-iW Iw dt'S('rilwcl

by a !>i.mple scaling form.

There have been only a very few numerical studies which haw as their suhjt't·t

the rapid increase in excess !>"Urlace pressure in experiments on diblock c.:opolymp.r

layers at the air-Liquid interface [1, 21. ~Iost of the work deals with the homopolymer

adsorbed at the interfac.:e and the related reduction of tbe interfacial t~nsi()n [2:1. 102.

1031. An increase of snrfac.:e pre;:;me \\~.lS r~purted by Carig-uanu ami Szlt'if('r [\)O!.

who performed SCMF (single chain mean field) call:1I1atiulls and fUHUr! rluu latl'raJ

pressures in the brush regime (good solvent) can be desc.:ribet..l by an apprtlximatt>
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power law dependence, n ...... (T'l.~. Crest [B2] has reported !....ID simulations for end

grafted chains in good solvent in which the surface pressure was found to incre1.l.se

slightly more rapidly than predicted by scaling and analytic SCF models. n "- rT'l··~.

This was also confirmed in SCMF simulation.s by CariKDano .wd Szleiff'l' [104) WUI)

fOIl.nd that snrface pressure shows ~ood agreemeD.t with <lllalytil- SCr: t1WUfy l!uh

when the parabolic density profile is used in the full virial t"qnati,JU. TUI' ~'iLbu'~

of the exponent on order of 2.5 are sil!,"D.ificantly higher tban tbe ....dues of :>;:3 ur

11/6 predicted by Eqs. (1.22) and (L23), but still much lower tban the rt!Stllts of

experimental observations, in which the values in tbe range (-1.2-6.6) were obtained.

1.5 Outline of the Thesis

This thesis uses numerical SCF tbeory to study the problems of the structltCt-' and

properties of the polymer/solvent systems at surfaces that are lIot addn'~'i,'ied full,' hy

other (:alculations. The general theory for uumerical se!(·cOI1sistl,nt neld Ci:dI'Hlatillll~

i:; introduced in chapter 2. The approach is thell llsf'd to study lllLl"olllpn'ssl'd hrus!ll's.

compressed brushes. and lateral surface pressure effects.

Following de Gennes early work on brushes a great deal of emphasis. in both

experimental and theoretical studies, has been placed on the stronKly stretched chain

reb'ime. Recently, de Gennes [105] noted that many interestinJ;!; effects can take place

in mushroom aud intermediate rehrimes. The numerica.l SCF caku!ations presented

in this thesis are in the intermediate and mushroom re"rime. It is also intcrestinl{



to explore the limits of applicability of the mean field approximation. via detailed

comparison 'vith experiment.

Chapter 3 provides quantitative and qualitative descriptions of the polymer brush

in a good solvent and formed by selective adsorption uf one block of eopolymer.

The thickness of the brush, the maximum polymer cOll(:entration, the location uf the

ma..'Cimum, the depletion layer, and the dependence of these properties on surface

density and molecular \Veight are discussed. The results are eompared in detail with

the recent experiments of Kent et at. [1, ~I performed on poly(dimechylsilox<lwo-blor;k

styrene) copolymer spread as a monolayer at the free surfi\f.:l~ uf etbyllwllZuwltl>. Tilp.,·

are also analyzed in terms of the scaling [7. 11, 281, aud analytic SCF theuries [~!).

1061. The results presented in this chapter have appeared in a previously pllbli.-;hed

artide [1071. The stnH:ture of the bmsh in e solvent is also analyzed aud cumpan'd

with the predictioILS of the analytic theories.

Chapter 4 deals with the compression of a polymer brusb. in good and H solvents.

Three modes of compression are considered. The first is the eompressioll of a polymer

brush by a second identical bmsh: the second corresponds to compression of the poly

mer brush by a bare repulsive surface; and, finally. the third tIlode is [111' (·olilpn'ssiuu

of the brush by a surface which is neutral for adsorptiou. These lllOdt"1 ..aIcHlll[i(Jn~

are directly compared with analytic theories of polymer bmshes Huder (Lifft:[l'ut sol

vent conditions. The density profiles, as well as the free energy Ullder compressiun.

are calculated for each type of deformation and the results are pre;ented in terms of



effective power laws and universal functions of the simple measure of the de~ee of

compression of a brush. The questions raised there address the problem of equivalence

of iliffert'nt modes of the compression aud the iuterpt'uetratiou lJf polyuwt brllslw,.,

The range of force and its ma~uitllde is also of intert>st ill this dlaptl'r,

The lateral compression of the polymer layers is the subjt>ct of chaptt·t'.1. First.

a homopolymer/poor solvent system with an attractive surface interaction is cousid

ered. The surface pressure as a function of coverage is calculated. Then. a copoly

mer/solvent system is considered in which the anchoring block is tht' salile as th,'

homopolymer and tbe solvent is good for the danglinj.{ block. Both blocks are in

corporated within the self-consistent fonnalism. The excess surfac(' pressure. defint'c1

as a difference between the surface pressure for the diblock copol~'mer systt~m ~llid

the system when only homopolymer is present, is calculated and <:ompared with the

rapid rist' ohserved in ret:ent expt'rimentaJ work [~I. luten'stinl-\" qlll':'tlollS raisl'd ill

that chapter are about the sterk etfe<:ts in the adsorbed PoIYll11~r Layl'l"s awl r.lip l'iIHi

Iihrimu of the system nuder consideration.

Chapter 6 summarizes and concludes with some general comments ou the results

drawn from all studies presented in this dissertation.



Chapter 2

Numerical Self-Consistent Field Theory

2.1 Introductory Remarks

In the following section the general self-consistent theory fur polymer/soi"l~llt sys

tems near surfaces will be discussed. The formalism preseured Lere \Vmi illtrudllCt'<[

by Hon~ and Noolandi [108-110J , and Helfand and coworkers [111-113]' and devel

oped by Ohta and Kawasaki [114], Whitmore and Noolandi 1115. 641. as well a.-; by

Bamu;zak [116J and is based on the SCF theory of Edwards and Dolau [:21. :!:!. 11 .).

As J.iscus.~d in section lA. tLe statistical me<;Laninu upscriVtiull lJf a lJul.nlwr

system prol.:eeds in three steps. In order to characterize the \luiullS lllin"l'w"pil'

l:onB.Kurations of the system, models for linear flexible polymer l'Lallls awl [h~' illtt'r

actions between se~eDts within the chain are needed. The intenu;tious art' divided

into two parts. Th~ interactions among the polym~r s~gments Limited to within <l few

neighbors along th~ chain, are usually called "short range intemctions" amI tUo.se

between the segments which are far apart along the chain are teferred to a.'i "long
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ran~~, or solvent mediated. effective monomer-monomer intera.ctions (:H. :tl. 1181.

The conditions under wbkh tbe effective. -'two body" JUDI-{ nU1Kt' iutt'ml"citJus \"allisIJ

define the e point at which tbe chain is considered as an "ideal polymer" [:tl]. Thl' H

point can be also defined considering a dilute solution of polymer chains in a soh-ent.

Tbe osmotic pressure can be expressed in the fonn of a virial e..xpansion

(2.1)

where N.{ is the Avogadro number. cp is the polymer concentration and the .-I.; are

the vidal coefficients. A'2 is called the second virial coefficient or excluded volmne

parameter. For tbe polymer/solvent system..-h = 0 defines the ~ solvent.

The simplest quantity which characterizes tbe spatial size of it polymer l:haiu i:-;

the rout-mean·squared (Tm.s) pud-co-end distance..\[icroSl.:upicaUy ditft't"t-'lH 1IlUdt'ls

of polymer chains produc.:e the same gencral univcrsal description iII t~nllS ,)f rlll' 1"1/1.,'

end-to-cnd distance [32J

(2.2)

If one introduces the effective bond leoKth b [118J Eq, (2.2) becomes < R~ >= ZiJ~.

In addition to < R 2 > of the chain. there is a more specific qll,Ultity describiuK thl.'

chain. This is III z(R), the probability distribution function that the end-to-eud Vt'ctor

of Z segments equals R. For the freely jointed and freely rotating chain models [:.i2].

as well as for other ideal chain models in which the orientational correlations dimillbh

rapidly with distance, Ilt"z(R) has a Gaussian distributioll fOf Z » 1. FnrtlwnllUft'.

the local stmcture of the cha.in appears in these models only throHj.{lt tlw df.-I,ti\·"



bond length b. The simplest model which satisfies these criteria but is still very useful

and powerful, is a Gaussian chain. The Gaussian chain is detined as a chain in whieb

every bond has a Gaussian distribution, w(r), ilDd

( 3 )'" (3r')II,(r) = 211"tJ2 exp -w .

so that the mean squared bond length is

(2.3)

I:!. I)

The effec..:tive boud lenh'th b is referred to as the statistical scj.,"IIlen[ leI.LI-,'1:h. Till' "tlwr

quantity of interest here is the probability that a chain consistwJ.;" of Z seh'1llt'llts will

follow a particular spatial t:onformation, \[1(rO,rl' ... rz-d :;:;: l[iz(rr}. l[iz{rr~ is

conditioned by "linear memory" and can be written as

z-,
l[iz{rr} = l! L'(r~'_1 - rk)' {:!.';j

.-\..0 important property of tbe Gaussian chain is tbat tht" distribution of rbI' n'l·tur

r1: - r J betwccn any two units k and j is Gaussian [1181. Hent:e. tht> f:If'xililt' I-',jl~," ..r

chain. without loss of Renerality. can be modeled via a.n equivalent Gau.",<riafl f;liai,t

[;]2]. which has Ii lreKments and the same rm,y end-to-end distance as fur th.. rt'al

macromolecule. The segment length in the l..'quivalent chain. denoted .l..... is choseu

such that

nas=Zb, (1.6)

where Z is the degree of polymerization of the molecule, and < R 2 >= Zb2 . t.:si.nK
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Eq. (2.3), the probability distribution for any link can be writtt'U <1.-;

( J )'1' (3r' )
¢(T) = 21ibLls exp - 2b~s . (2.,)

it is convenient to consider a polymer chain whose two terminal :-;e~cnts are fi.'(ed

in space. The chain's ::;egments are indexed from °to 'IL. This situatiun is ::;cht'lllutically

presented in figure 2.1. The probability distribution function that tbe chain starts llt

II
...---:

fignre 2.1: Polymer chain configuration which starts at position T(l linn aft..r II st..ps
ends at Tn. with the intermediate po:>itions specified by {rr}

position ro and ends at Tn is called the Green's function of the polymer chain, or [be

chain "propap;acor", for tbe equivalent Gaus..<;ian chain. it caD ht' pxpres.'ipd as

Q(Tn ,lIl r (l,O) == / IJ,rn{r~~6(r~ - roJ6(r~ - r,,) flo dr~ (:2.S,1

C7t:.il,i) 3n/2 / exp [-~ to (r~ ...~~ r~r!J 6(r~ - ro)6(r~ - rIC) t! dr~ .
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In tbe limit tbat n -+ 00 and ~.s- --+ °so tbat Eq. (2.6) is satisfied. one CUll pas..,; tu

the continuous limit (119, 120J which defines tbe Wiener jHea.~1J.re

[
3 [z Idr(rJI']P(r(·)1 0.: exp -2&2 Jo d-r -;;:;:- . (:U))

and tbe polymer cbain is modeled as a space curve r(T) witu T "<'lIyiuK fWIIl 0 to Z

The Creen's function or c.:bain propaKator becomes

Q(rz,Zlr"O) ~ f or(-)o(r(O) -r,)O(r(Z) -rzJP[r(·)I· (".HI)

and it can be shown tbat it satisfies tbe ordinary diffusion equation

~V'Q(r.Tlr'. 0) ~ ';;Q(r. Tlr'. 0)

witb tbe initial conditions

Q(r.Olr'. 0) = 6(r - r') .

(2.11)

(:!.U)

The more rigorous definition of tbe Wiener .Yleasure and thl' <:orrespondt'lln> of tlit,

Wiener integral. Eq. (2.10), to the diffusion and SchrOdin~er~qHatiow; call lw f01l!ul

in Refs. [119. 121. 1221 and references therein.

2.2 Partition Function

In tbis section the general theory for the diblock t:opolymer spread as a monolayer

at the air-liquid interface will be introduced. The modifications and simplifications

of this formalism for tbe analysis of tbe properties of the dallg:ling block uuly will ht,



discus;ed in the chapter:3. The details of the formalism for compn.-ssion of a polynwr

brush by two kinds of surfaces and by a second identical brush will be dhicllSl;eU in

detail in chapter ..I. Finally the details of the theory and simplifications to th~ ca.*

of a homopolymer spread as a monolayer will be presented in the chapter ..1.

The ~}'Stem under investigation can be deseribed by ;\Ie dibloek copolymer chaiu'i

and ils solvent moleeules in some volume O. The interfaee is loeated at x =O.•wel

is characterized by its total area. A. A diblock cOpol:Ylller cou."ists of a hlock ..t.

dmracterized by its de~ee of polymerization. Z.-l.. statistinu st'J-,''nlPut i,·u~[h. f' ..I. awl

the density of pure material, PoA. in monomers per uuit volnme. Similarly. h!u"k U

can be eharacterized by ZB, bB, and PaB. For solvent molecules. the density of lllLn'

material, Pas. has CO be spedfied. Since the system consL'its of ..''-c .:baius tht> total

number of monomers of t:1'1>e K is NK. = ,,"(-,ZK.. K = A. B

It is Ilseful to introduce at this point the l:oncept of conservation of mhLDU' 'Jll

mixing. The condition of no voltune change associated with mixing is eqniw\lenr to

the local vollUOe fractions adding up to unity everywhere

whert" 'o•.:tr) is tbe lo!.:.\! density of species K for a J-,';n~u counh"uratiou. awl -<

denotes tbe ensemble average. Equation (:2.1:3) is often referred to as iurolllpft"s."i1lilir.\·

condition [108].

Having the model for tbe polymer ehains and assuming that there is uo volume

cbange upon mbdng, the confi~rationa1partition function can be written uliinp; fUl!I'-



tional integrals over all possible chain con.figur:ations and locations of solvent mok'Cules

z = CIL1;) J(~drs" x

.Ve-Il] 6rAj(·)P[r,-tk)]9(r"J(OJ)6rHJ(·)P[rHJ(·)j x ru II

J (rBj(Zs) - r.-l.i(Z..d) x

II6(1 - L: p.(rJ) x
r 1<=",8,$ Po..

,-"p[-IJV]

in this expression P[r,,;(-)] denotes ally eonfih"Uratiou of the j - tit t:baiu uf ty~

K., 6r",j(') denotes the \rViener Measure. and tbe kinetic contribution of tht' SO[WlH

molecule or polymer chain is denoted by Z"" The funetion g{r..\}(O)) is introd\l(;~[

here for the (;onvewCDee. it describes the a priori probability distrihution for tnt" frPt"

end of a .4. t,ype cbain. In must cases. it is simply 9 = 1 t"wry\\"her... HuW!-wr. ill

tbose cases wbere. for pby~..i.cal reasons. the t.'bain is localizt'(! to a partklllar illlt-rfac-ial

region. it is convenient to use Q{r .-tj(O)) in tbe form

(:U5)

Tbus from all possible conformations of chains. only these whkb baw rht- A t~'PI'

end of every chain in the interface contribute. This explicit form if; u~d uuly ill tilt'

calculations of chapter 5 of this thesis. 6(r8j(Zld -r .-\J(Z.-l.)) assures the couut.'t.,tivity

of A. and B blocks and the condition tbat there is no local volume cnanV;t- ou mL"iu~



·16

is imposed by the expression &(1- L~) [1141. The potential f.H~: which apptmrs

in Eq. (2.14) is due to the interactions between all components present in thl' system

and interactions with the boundaries. It is a function of the microscopi(: pa.rticle

d.~nsities which are modeled as

ps(r) = ~ ti{r - r.sd

p..(r) = i= lZ~ dT 6(r - r"'l(T)) .
j:01o

where r ..j(r) describes the position of monomer r of type,.. in j chain.

(1.Hi)

1:!.17)

In Keneml the interactions between all molecules presellt in the systp.1l1 art' not

pairwise additive. However in most of the theoretical models in which thl' cbaiw; ,In'

modeled as the equivalent Gaussian chains it is assumed that the hinary interactiun..;

are sufficient to describe the real polymers in a solution [32]. The two-bod~' interaction

potential can be written

/j(. -= t·i; = ~ L / dr / dr'p..(r)H'-"",(r - r'),i",{r') + (2.18)
- "''''=.-t.H.S

...:r:s.::o./ drp..(r)Il,,(r).

where H......'{r - r') defines the potential acting on a particle of typt' " at tin' !'lJsiciul1

r due to a particle of type ",' at the position r'. and u..(r) is the potential expcrien{;l~d

by component'" due to the surface.

Equations (2.16) and (2.17) express the microscopic particle densities in terms

of the individual solvent molecules and chain sel"rmeuts. Since the polymer l:ha.i.ns
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are modele~ by continuous Gaussian chains it is essential to tran.sforru tht' mil·ro·

scopic. poi.ut·li.ke delLSities to continuous functiollS. Thi:; c.w Ill' dlJut' th1"lJ1lAh til<'

introduction, for each independent function ,O",(r), of a Dirac ddta fllUt:tion

where ~I/( {p",(.)}) is defined as in Eq. (2.18) but for continuous {p",(rJ}. Tht' pLysil'al

meaning of the Eq. (2.19) is that with every conformation of th~ polyIllt!r/soh·t>llt

system there is associated a set of smooth functions which describes the distrihution

of .~.(: diblock copolymer chains and ;Vs solvent molecules pr~cnt in the sy:>tl>m. TIlt'

next step is the use of tbe Fonrier transform for each Dirae l!dea rUllnioll.

and

where the limits of integration for tbe fields ""''''(.) and 1/(-) art' ±ix.

Transformations of tbe microscopic densities into continuous functions Pk (.). and

introduction of tbe integral representation of the Ii funetionaLo;; leads to thp. followin~

form of the partition function [11.5. 1161:
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ells Q~~) x exp [f dr 1J(r)(l- 1<"'~B.s P~~»)] x (2.22)

exp [:J~8'SJ drWdr)PdT)] x exp[-H:[{Pk(·)}]1 .

where. for solvent

Q .... = Jdr exp{-...:s(rl].

and for copolymer

Qc = J'r.,Cl6rBClP!rAI·)IP[rHI·119(r.,IO)) x

e..xp [- foZ"- d, ...J.-\.[T(TJI} e..'(p [- LZ/l dT ...J8[T(7)J] x (1.2.tl

o(rB(Z8) - r ... (Z,dl·

One can introuuce, in a si.m.i1ar way as in Eq. (2.11). the propagators

Q,(r. Tlr'. 0) ~ J'r.I·I'[r.IT) - rl'lr.IO) - r'J x

{ 1" ~ ( .J IdrIT)I' [ , I)}exp - Q d, ~~. + ....'"T•.(,) .

whic:h sati~fy the modified r1iffusion equation [:J2]

[~V' -",.Ir l] Q.lr.Tlr'.0) = ~Q,(r.Tlr'.O). (1.26)

with the initial condition given by Eq. (2.12). With these a:;.<;ttmptiolls tl..L~ illtl',I.{ral

of the distribution function, Eq. (2.24) can be written as

Qc = ! drdr' dr"QB(r, Zslr',O)QA(r, Z.-t!r". O)Q(r"(O») (2.:27)



finally, IlS~ the Stirling approximation. the partitiou fuuc[iou ("all l){' writtt'll a...;

where Fr[{p,,(·)}, {W"(')}, 11(')] is the free energy functional ¢,ven by

hl{p.(·)}· {",.I·)}·'II·II = F[(P.I·)}· {",.(.)}] + GI{p.I·)}·'1(·J!· 1"."9)

with

FI{p.(-)}. {",.I·j}! [W[{P«-)}J - .JB.Jdr ",«r)p«r j ] +

<~/< {In i.VQ. - I} 1"1111

GI(p.(·)}· 'I('J! = I dr 'I(r) [.J::H./;~) - l] I." HI

To complete the presentation, the expressiollS for the averu,i;!;t' dellsity clistrilmti'JIl "f

each component are needed. L:sing the partition fUl1I:tion Eq. (2.14). the density of

component Ii: call be expressed as

(e.(r) ~ ~ CIL zt) 1111 drsd x

'c/ I}&r.-\j(·)P[r.-1j(.)]Q(r.-1j(O)) 6rHj( ·)P[rUj(·)] x (:!.:t!)

c5 (rBj(ZB) - r.-1j(Z.-\)) x

ti,,(r) x

II6 (1- L A(r)) x
r "c:=.-\.B,S Po"

exp[-~ti]
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Performing the same transfonnations of v-driables for this expression as were doue for

the partition function, it can be shown [1161 that, for solvent. the deusity is

NJ - ""s oQs(pslr) ~ Z [.JI
B
/p·I·)Ow.I·)!O"I·)Q,:6w.>lr)

exp [-TT[{P.I·)}, (w.I·)}, ',1,)11 1'.'J'I)

Ulld for each block of copolymer (K = .-1. B)

(P.IT)) ~ J::!..J[ II 6P,'I·)6w.'I·)16"I·)S,.~
Z ..':A.8.s Qf: d....·.. (r)

exP[-TT[{P<O}.(w.'I·)}.ql·)j] . I'·'J<)

2.3 Mean Field Approximation

To obtain the free ener~ of the system and the spatial distributiotl of chI' dt'llsities.

one has to evaluate Eqs. (2.18). (2.:33), and (2.3-1). SincE' the eqnilihrillfil statl' is til..

state with the minimum of free energy. these fUlll:tionals nUl oe approxilllatl·d by

the saddle point technique [123. 124J. Let tbe correspolldiul1; fields which mitlilllizl'

the free energy functional, or in other words contribute the most to tl.w partitiull

function. be denoted oy p~(.). Then the free energy. partition fUllction and density

distributions reduce to

hl{p~C)},(w~I')}',,'1·)1

z --> Z' '" ,,-,p{-h[(~I·)}.{w:C)}./,'C)j} (2.36)

(ps(r») (1.:.rj)



K:=.-1.,B.

:ji

(:!.:J8)

Tu find the saddle point, Fr has to be minimized with respect to each fJ,.Jr) ..•:,,(r) aud

1J(r) subje<~t to the constraint of conserV".ltian of particle rmmlH'f for each t:ompoueU[

in the system

! dr(p,,(r» = N" K: = S, .4., 8. (1.:j9)

where faf solvent "Vs =/Iis . -,V.4. = .Vc Z.4. for the.4. block. and ;,irH = .V{,.Zfj for rue 8

block. Praceediul-!: with the minimization. the only part of Fr wuit:h dp!JPwls Ull t1w

field 11(r). is G and this minimization gives

and hence

G =0

so that

Minimization with respect to to the field w,,(r) yields

o .\'" 6Q"
p,,(r) + Q: J....:,,(r) = 0

(:!.·IO)

(:!.-11)

(1 ..11)

Compari50n of Eq. (2.43) with Eqs. (2.37) and (2.38) ,L,oives the very im!Jon<lur rl':'Hh

that the saddle point values of tfAr}, which are what can be calculated. are eqlLal to

the equilibrium density distributions (Pk(r)} in this approximation. and the constraint



of Eq. (2.39) can be applied as

/ drp~(r) = N", /I: =S..-L B . ('-<4)

~li.nitnizationgives a set of equations for every cumpUlll:'ut. clJuue{'tiu~ thp ilHNW·tioli

enerJ.,')·, densities and self-consistent potentials

:Y", JQ",
p,,(r) + Q. ow,,(r)

~ _ w",(r) + 11(r) _)...
op,,(r) Po<

~ O.

O.

(2.-15)

(2.46)

where AI< are tbe LaKtanl!;e multipliers associated with Eq. (2.-14). and the supersnipt:';

can be dropped. Equations (2.4.'j) and (2.23) yield

'Ysps(r) = Q; exp[-w....(r)]. (LIT)

In order to obtain expressions for the densities of f'ach block. the functioual derh'a-

tives~ and~ have to be evaluated. FollowittJ.{ tUt· df'rivatiun pt'l'S(·ut'·,[ ill

Rd. [U6J. it can he shown that

p.-l.(r) = ~foZ'" dT{/ dr'dr"dr"'QA(r, 'Ir'. 0)9(r')

Q.-l.(r", (Z.-l. - r)lr, rlQ8{r", Zulr"'. O)} . (2.48)

Similarly, tbe B-block density distribution is given by

Pll(r) = ~foZB dT{/ dr'dr" dr"'Q.-l.(r". ZAlr'.O)9(r')

QR(r. 7Ir".0)Q.(r"'. (2. - 7)lr.7)} (2 ..10)



The potential energy, Eq. (2.18), is very general. It is useful to expres."i it in terms

of Flory interaction parameters [24] and the volume fractions of tht> componf'nts. To

do so, a symmetric form of the potential energy [108]. which vanishes for interaction

between like molecules, is introduced

U"",(r) = ~V....,(r) - ~ (W....'(r)p~" + lV"",(r)p~",) . (:L5UI

Equation (2.18) can be written as

~v = 4 L W....,Po"N" +
..=A,B,S

~ ~!dr dr'p,,(r)U....'(r - r')p,.,.{r') +

..=='f:-BSJdrp.. (r)u.. (r) . (2.51)

where

1--"....' = f dr~V....,(r) (2 ..52)

and is measure of the overall strength of each interaction. ~ow assmninl{ f...·",,'(r -r')

to be of short range and performing a gradient expansion [108]. the potential call he

written in the followin~ form

~v = ~ L W""IJo"·V,, +
- "=A.H,S

Flory parameters [24] are defined as [116]

(2.;j4)
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where

U",,,,, = ! drU",,.,(r).

172 = I dr!rj:lU.....,(r)
Uk/<'

(~.i'j(j)

The reference density used to define Flory interaction parameters i.s lLSually mkeu w

be the density of pure solvent present in the system, Pos. The parameter fT is the

effective range of the interaction ~llld, in most calculations. is takl'D to bf' fT:!' :::: b1..

where b is the average of the statistical sebrment len~ths. <!l,,(r) is the !m:i.J volmu...

fraction and is defined. as

(~..'j7)

The self-consistent potentials can be evaluated through Eq. (2.-16). Hsin).!; [h... l'xpn'S-

sion for the potential energy, Eq. (2.5:3). The result is

,,(r) Pos [ n"] 1
....."'(r) = - +~ LX",.' <!l",{r) - -V-rD",,(r) + -u,,(r) -..\,.

Po" -Po", ,,' 6 Po,.
(:!.·:;~l

The field 11(r) and unknown Lagrange multipliers c:an be elimirmted. To diminate

the Lagrange multipliers )... , one can require that .:..o..(r) = 0 in a pure solvent re/;{iou.

Eq. (2.-17) yields

Now, in a bltlk phase, only solvent i.<; present, p~ = Po:; and the self-cousistt!ut pott'utial

for solvent has to be constant. which can be set zero. This in tllrn gives

"'s(r) = In (¢s:r)) (1.60)
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Because of the incompressibility assumption. Eq. (2.40). only w.oI.(r) and ...JH(r) are

needed and the deru:.ity distribution of the solvent can be obtain through

(2.61)

Thus, Eq. (2.58) evaluated for solvent, and Eq. (2.59) are sufficient to dt,tt!rmiut! tu'"

fielclIJ(rJ.

riually the free energy in the mean field approximation can be written il::i

1.:!.62)

where W[{p,,(')}] is given by Eq. (2.53).

The details of the calculations. as well as the model of the interactions with the

surface, will be discussed in the following chapters.

2.4 Summary - Self Consistent Mean Field Theory

To summarize. the theoretical approach, presented above. is based uu th... following;

as.'ilunptions:

• Polymer chains in bulk are described by continuous Gaussian random walk.. [;i:~.

!l8, !l91,

• The local volume fractions of all components sum locally to lmi~' everywhere.

This condition is introduced assuming no volume change upon mixing; it is
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equivalent to assuming incompressibility 11081.

• Effective intet'actions between the components are two-body. cow be expressed

in terms of Flory parameters and a finite range of interactions which is on order

of a statistical segment length of a polymer [24. 1081 .

• ~!ean field approximation - the density Huctuations aoollt the most prubablp

conformation are neglected.

These general assumptions result in equations for the density profiles of t:'wry com-

ponent present in the system and a free energy expression writte.n in terms of the

ut:'nsitit!S and intera(:tion parameters.

The profiles for both copolymer blocks are calculated using Eqs. (:~.-IS) and (:2.·IV).

and the density distribution of solvent is detennined using Eq. (2.6l). To ubtaiu tllt'

density distributions for copolymer, one has to solve tbe modilied diffusion el:llIi.\tion

for the propagators Q ..(r,Tlr'.O) :<mbjel.:t to geometry-depcudcnt initial .wd bound·

ary conditions. The potentials w..(r) which modify the diffusion equatious ludndt'

euthalpic interactions between the molecules, written in terms of Flory parammecs.

as well as interal.:tions with the surface and terrn.s arisinA" from thf' I:onditioll that

then' is no volllDle chanA"e npon mbdng.

The problem has to be solved self.consistently. Tu solvf' the diffusiun I.'t[llatiulls.

potentials are needed which depend on the densities, ,md the densities are determiued
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Chapter 3

Properties of Uncompressed Polymer Brushes

3.1 Introduction

In this chapter the properties of polymer beushes in good and H solvclIts an' in

vestigated (the system is schematically presented in figure l.ib). The brush hei~ht.

Keneral shape of the density profile. including depletion la~~r. IOI:atioll of du' n1iL'Ci

mum and tail r~on ace in..-esti,l!;ated. The free enerJO' of the beush ami its dt>pt'udt"nt·l'

on the degree of polymerization of the dangling block and swfal,."t' (:ULl~entratiou ar..

also probed. One of the purposes of this chapter is to provide a quantitativt' <.:ump<\,['

ison of the numerical. SCF theory with the experiments of Kent et aL [l. :lJ. In tLese

experiments the properties of the polymer brush in a J!oud SO(wut \\'!'fl' iU\·t':'iri~aTI~1.

For this comparison compreheusive numerical (:alculations \WIt' pl'rfowlt'd. For rllt'

clI.k:u1ations, the statistical se~ent length of the dan~lin~ block. b. thl' dt'lisitit's of

pure materials Pas and PaB' the degrees of polymerization. Z, and tbe sllrf,u:e cover

ages, E, were chosen to agree as closely as possible \vitb tbe e.'Cperimeotal v-.uues. To



investigate the free energy of the brush in a good solvent and IDllke a comparooll uf tht'

numerical SCF theory with the analytic picture of MWC [:oW, :J:3]. model e<llculatioll.";

for a polymer brush in a good solvent were performed. Similarly, moclel l'.dt'lliatioll:>

were performed in order to compare the properties of the pulymer IItlL:>L ill 11 (-I sol

vent with the analytic pictures of Shim and Cates {40] and Zhulil.la .;t rtf. (-IL -I:J!.

Similar calculations to those presented. in this !.:hapter were performed by Whitmurt>

and Noolandi [64], however in the work presented here more detailed analysis of tht'

numerical results and comparison with the experimental data are presented. The free

enerKY and its dependence ou the deh'"I:ee of polymerization and snrfan' l'UWtaJ.(f-' 11:>

well as the quality uf the solvent are alsu probed,

3.2 Details of the Numerical SCF formalism

The experiments of Kent et at. (1. 21 were performed on poly(dimf-'ch~-l:>iloxallt'

blQdv·sc:--rene) copolY1-IH~r (POMS-PS) spread a.., a rnouolayt~r at tilt> fn'p snrfact> uf

ethyl benzoate (E8). In this system the POMS (,-'I.-block) lies flat un tup of the EB.

with the PS (B-block) dangling into the EB which is a good solwllt for PS. All tht'

A-B joints lie in a very narrow interphase region of width a. estimated by Kent (I] to

be on the order of 1 urn for all samples, For the calculations. therefore, it lulti been

and asslUned that all the joints are randomly distributed throUKhollt thi:,; iuterpha::it'

of width a = 1 nm, _\s well. the system is assumed [Q Iw trausla[ionally invariant

parallel to the surface, and the problem becomes on~ dimensional.
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There are three de~ity profile:; to detennioe, for the solvent and for rht> A and

B hlocks. The surface, x = O. is defined as the plane at which the solvent and B

block densities reach zero. The interphase is thus tbe layer through which the volume

fraction of the solvent and B-block together, q)s(x) + tils(x), rises from zero to anity.

and tPA.(X) falls from unity to zero. In this chapter the daliglinK, B-b!o(:k L..; of primt>

interest. and the SCF theory is lIut n.sed to detenl1iut' tlwdt'u:-;ity <If ..I-h[urk, lustl'<I<1.

the \'Clume fraction ¢lA(X) is represented by a simple. standard form

rPA.(x) = 1 - tanh:l (f). x 2: o. ('J.l)

with tbe parameter l chosen so that rf>.~(x) falls effectively to zero over the interpba..-;p

width of 1 urn: it bas been chosen i-I =:3 urn-I. so that rOA. = 0.01 at J: = II = I nm.

To determine the density of dangling B block it is useful to introduee th(' iott'

gral representation of the propagators given by Eq. (2.25). where the iutt'j.,'T,uiou Is

performed over all starting positions [108J. The first propag-ator is defined as

aud tue secoud propagator is defined as

fJl(r, ,) = qt(x, ,) = Jdr' dr" Q.-\(r". Z ...lIr', O)Q(r')Q[I(r, Tlr". OJ " (:i.:ij

In this calculation, the role of the A-block is to anchor the danglinp; block to tht'

interface, and there is no need to calculate Q.-\" Since the dependences ou rand ..

appear only in a single propagator Q.. , the propaA"ators qi also satisfy the diffusion
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equation

[
b' a'] 1 a-6'" 8x2 + .u(x) qi(X, r) = -z&i"'(x,,) .

with the V'driable T ba~ been mapp~d onto interval {D. 11. Th~ propa~atup; Uil\"P

a simple physical interpretation. The first, ([(J(x, r). is proportional to the prolJability

tbat a B chain of length T ends at x given that it starts somewhere in the :-;ystem.

while ((I (x, r) is proportional to the probability that a B chain of length j" ends at x

given that it starts in the interface.

[n addition to satisfying the diffusion equation, the propal-\"utors satisfy apprupriatP

boundary and initial conditions. Since rP.{(x) = 0 at tbe upper ed,l{c uf chI' illterpui.l.";t'

reKion. one boundary condition is

q,(o. T) ~ 0 (:i ..j)

.-\S well. the chains can extend only a l:i.nite distance wto tLp solvent. whidl implies

((;(00, r) =0 (H)

for the otber boundary condition. In practice. this condition is applied at a finite

Wstant:e, which is chosen to be (ar~e enou~h as to have no effect on the hmsh.

The initial condition for ql follows from the assumption that thl' fl-B juints art·

randomly distributed throughout the interphase of width Q. This irnplip.s

{

I.
ql(X,O} =

O.

O<x~a

(:.l.I)
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Since the free end of the dangling block is not localized, the initial condition for qo is

CJo(x,O) = 1, x > 0 . (:J.8)

\Vith this choice of propaJ!;ators. the inteh'Tal of distrihution fUIlI;ritJI1 Eq. f:2.:tj)

becomes

Q == l"" dx fJ. (x, 1).

and the density of the danglinK B block. Eq. (:2.49). can be written

(:J.!.I)

(HO)

where the average area per grafted chain, E, was introduced. For laf,l!;c t.tlu~s uf ~

the lateral averaging introduced in the one dimensional model causes thl-! polym~r-

polymer interactions to be unden:ounted. Thus. if the average area per g-mfted chain

is large and the chains are in the mushroom reKime the model i...; uot expt'{·tP.£1 to lw

a .I1;ood description of the real systt'tll.

The potential....;(x) which modifies the diffllSioI1 {!l[llatiou iu a /o!;1'IIt'ral flJl":1l is ).!.it·l'\l

by Eq. (2.58), and includes enthalpic interactions and tenus arisiI1J!; from tilt' ('OlldirjlJll

that tbere is no volume change llpon mixing, Eq. (2.61). After determinatiull uf tIlt'

field 1/(r) and the Lagrange multiplier..\, w(x) can be written for the ODC tlimellsiolliJ

.;...r(x) Prt:.f {>CBS [¢S(X) - ¢~ - (¢8(X) - ¢~) + ~'V2(1pS(x) - fPH(1:))] +
~8 6

(X.-IB - X.-Is) [¢.-t(X) - dI~ + ~'V2¢A(X)]} + (3.11)



G:.1

!!2!..ln~+U.B(X)- PoSUS(X).
P08 4JS(X) PcB

wbere an additive constant bas been chosen so tbat ,:,;(x) -+ 0 far away from th~

surface, where ¢~ = L Since the experiments suggested there \Va..;; little evidence

of any particular affinity of the B-block for tbe surface. both \A8 and \$,.1. should

he positive and of l.:omparable magnitude. For convenienc~. \.~B = x.... u has heell

used. Similarly the effective e."(ternal potential acting on the B-hlock of l.:opolyuwr.

UB(X) - [PoS/PoB]US(X), is negligible. \-Vith this choice. tbe potential call bt! written

...;(x) = Pos {In -._1_ + \SR [¢S(X) - ¢ff(X) - 1+ ~ (ID:~(X) - rp'~(x)) ] !.(:.I.l:.n
Poff tJ)s(x) 6

where X~;H has been defined usinK the ~)Qlvent for the referencl' deusity. TIlt, par,uno'r,'!"

(T~ characterizes the effective range of the interactions. and Will; chosen to Iw t-'qllal to

b2
, where b is the statistical segment length of the B-block. The direct contact with

the analytic SCF theory can be made by assuming that IPII(:C) i:; small ewrywhere

and the gradient correctiollS can be neg-leeted. ExpandinK tbe lo~arithm appearill~

in the expression for the potential. Eq. (3.12). and iWlorioJ..( (he ITOSS [NUlS of ellt'

form ¢A(X)¢'g(x) because there is very little overlap of A and B polymer densieit's.

the potential nas the form

.u(x) ::::

This w(x) diverges logarithmically at the snrface, so the polymer d~u.':iity ).("oes to zero

there. The analytic SCF theory, which ignores the depletion rep;ion. does not have
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such tenru; in the potential and the density remains finite. in fact a miL"<..imum. Hence.

to obtain the analytic limit. these terms are dropped from this expres.<;iou. Tht-' width

of the anchoring region is also set to zero. The resulting potential

Pos ( 1 , :.!.:..;(x) ':::::.:..Jo + fJfJs (1- 2XSB)lPB(X) + 2"I;!l£l(x j +. (;J.[.I)

is equivaleut to the analytic potential if Pus/Pol:J(l - 2\:'-"11) is idenriJied <l." a biLIary

polymer-polymer interaction (e.xduded volume parameter).

Finally, to determine the density profile of the solveut. E4. (2,61) is n."ied and

4ls(x) at any point is given by

Fur a Kivell system. which i.s specified lJy the values fur fl. Z. ~. (JoH. f~H' fJlJ.~·. II

and XSH, a self.·consistent solution has to bt-' obtained for the pwhlem spedtit'd 1,.\'

Eqs. (3.1) to (3.15). This is done via an iterative procedure di.'il:ussp<! in mort'd... t;lil

in AppendL"<: A.

T)1Jical density profiles of both blocks are shown in n/,'llrf! :11. F"or tht' A block.

!PA(X) decreases smoothly from unity at tbe surface to zero over the thickutSS of [ht'

interface region, ac(:ording to Eq. (3.1). For tbe B block. (i.lH(~·) rises from zero at

the surface to its maximum value tPrr" and then decreases :;moothly to Zf'l'O in th~

c-'<:tended region. In all calculations, the ma.:'ci.mum is located \VeU beyond tbe point

at which thf' density of tbe A-block v-anishes, and so tbis iuitial rCj!;ioll hetweeu tilt'

:;urfacc and tbe Om can be identified as a depletion la....er. Thron~ho1lt ttll' lIlaiu boel.\·
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Fi~ure 3.1: Calculated polymer profiles for the lo-·W PDM,S..PS polym~r at I: =-HI
nm2 . which corresponds to (T" = :.t2. The profile of the PDi\'!S blot.:k is repre;eu[ed
by <p ..dx), which decreases from unity at tbe surface to zero over a distau<"t' of I um.
according to Eq. (3.1). All the PDM5-PS joints are located in this layer. The prulilt'
of the dangling PS block is represented by 4JB(X). Its ma.·dmum vulume fractiou.
which is located at x"', is denoted by ¢"'.

of the profile. the den!>ity decreases monotonically. qualitati ...·e!y 'L"> a parabola. ,mel

then evolves into an exponential-like: tail Ul'ar the tip.

The free energy of the brush is also of interest. To dett'rtI1iw' this qllilutiry

Eq. (2.62) is used. This expression however. contains some terms which arE' tudt'pt'u-

dent of the configuration of the system, as well as, the terms which can be attributed

to the adsorbed A~block. Thus to calculate the free energy of the hrush, these terms
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have to be subtracted from tbe Eq. (2.62). The result. expressed lL'i [lit' lmlsh fr..t'

energy per unit area, can be written

/.
- dz {lJ's{r) ln41s(r) + dis (I) - X4lt(x) - Pos":(I)OH(I)}

o Pas

-E:"'lnQ. (HOI

Each term. appearing here can be interpreted physically. It can readily be shown that

the calculated density distribution for the dangling block remains unchanged upon

addition of a constant, wm , to tbe self-consistent potential of Eq. (:3.12). so chi.lt OD.e

can set

(:l.l;1

With this choice, the free energy per unit area can be written

t:sing t.he incoll1pressibilit)' l:onmtiou. tbe logarithmic tenn In os{r) ["au 1"It-' ~xpalitlt"ll

in powers of I!JA(r) + 08(:r:). Part of the remit depend.. unly OIl o.-t{xl wbil:h i...

subtracted from Eo since, it is not the part of tbe brush ener~'. ~egl~tiu", temlS tlu..

to the very small A·8 overlap, the result can be .."ritten as

E(D) /.- [' , 1,) 1-- = dx -(I - 2X)¢s(.:r) + -IP8(x) - -In Q.
PuskaT I) 2 6 ~Po.'i

(3.19)

If th~ term with Q is interprf'ted as the eJa.stk l;trf't('hiI.l.~. tht·n [!.H' u'rlm; app,'arillJ,:"

in tbe integral are C<luivalent to tbe interaction energy in tht' lIl~ml tit'lll pit"[HrP

was discussed. in the Introduction, and Eq. (3.19) is the fr~ enerKY of tbe brush.
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3.3 Polymer Brush in a Good Solvent

in this section, numerical results for PDMs..PS at the EB/air interface all! pre

sented and analyzed. 10 order to make a comparison with the experimental data of

Kent et ai. (1. 21 cakulatious were perfonned fur five polymers. with Z rau~ frum

280 to 3.100. for each Z. up to 22 different sllrfac.."t' dt'usitit"S \Wtt-' t'x;UlliUt"i1. TIlt"

overall range in E was from on the order of 10 to 1000 nni.! ~r rhaiu ....,rr''SI''lIIdin~

to aO r.mgi.ng from 0.4 to almost 12. These data are included in Tabl.. :.u. Tt.ll'

calculations reported here were performed for all these data. .-\S nott"cl. tht' mudd

is not expected to be reliable for 11" :s 1. and this will be discussed ill what follows.

The other system chunu.:tcristics which enter tbe fornuilism are Po/f = (j.:W um -:, fur

PS (125J and Pos = 4.21 nm-:J for EB [1261. Since tbe ob~rvt'cl. radius of J.:yratiuu

of PS in EB is very similar to that in toluene (TOL) [1271, the measured PS-TOL

interaction parameter. i.e.. XSA = 0.44 was used. For the same reason. b = 0.71 Dm

was chosen for the statistical se)Onent leu/(tl.t. lu the e:qwrimeutal aualysb. Kl'ut .'t

aL [1. 21 """'[128)

p.:!lI)

for the radius of gyration l4 of an isolated PS. where .W", is the (weiv;bt l\wrav;ed)

molecular weight. aDd so the same expression was used to obtain fT" for cad E, It i..;

important to recognize, however. that the use of this expression is oat fUlld;unental

to tbe results presented here, but it does provide a useful way of aualyziuJ.( tll.l:~m ami

comparing them directly with tbe presentation of tbe e:"peritnents.
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Table :l.l: Polymers, free radii of gyration. R" and reduced surface covew/{t'. ff"

u..<;ed in tbe calcwatioILS. The po!rmers are labeled by the block mole<.~ltlar weiKh[J:;.
in kR/mol, of the PDMS and PS blocks respectively. The values of 0" were derived
from parabolic density profiles fitted to tbe neutron reflectivity curvel; (1, :21.

Alw 4 30 10-40 4.5-60 21-169 28-3aO
R 5.40 nm 6.4Qnm 8.15 nm 15.01 n.m 22..18 Dill

ff" ff" "" "" ""
3.18 1.:30 1.30 0.65 1.00
3.:32 1.70 l.T.J 2.24 L!7
3.49 2.60 1.96 2.71 :J.17
:3.67 2.80 2.28 5.51 :.t97
3.78 3.00 2.52 6.10 ').10
3.99 3.40 2.73 8.27 5.71
4.03 :3.60 3.08 8.48 0.86
4.18 4.00 :3.44 9.79 8.21
·(.:20 -1.10 ·L·t:J 10...11 8.28
-1.52 4.:W 4.44 10..19 11.0:3

·1.66 10.67 11.:J9
5.32 10.76
6.11
7.05
7.15
7.26
7.42
7.84
8.10
8.19
8.36
8.79
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The numerical results in this thesis are often presented in the form of the approxi-

mate power law dependences on the surface coverage and the degree of polym~rization

or the radius of gyration. Rg, of the dangling B-hlock of the copolymer. In the Illost

of eilSes the calculated uncertainties in the V'.uue:; of ~xpolitmts Wt't"t' dPtI'l"lIlilll'<! r"

be on the order of ±O.02.

Fib'1ll'e 3.2 shows the profiles for the B-block for a particular polymer. 10--10 PD;-'IS-

P5, for different CQverages. There is no qualitative change with coverU,I!;e: qllantita-

tively, both the ma..xinuUD volume fraction and the brush thickness inr[eUSt>. Tht'sl'

profiles are typical of all our ca.kulations; the main Lody of ell", prufill-' is qmL"ii-

parabolic, but there are also depletion and tail·like reKiolls.

3.3.1 Thickness of the Brush

1n tbe analytk theories of .-\DG [i. 281 and ~lvV(' [:WJ. rhf> thit-kIlt'ss of [h,· hrllsh

is defined as the distance from the surface to the poiu[ at which tht· dl'llsity "f til"

polymer becomes zero. However. because of the smooth V'".l.llishiuj.{ of thl' 1I11m"ril:al

profile in the tail region (see figures :3.1 and :3.2). its total thicknetiS is difficult to

define. and it is more convenient to use its root-mean-squared thickness. x rms . It is

defined as

In both the ADC and MWC theories. X rm • ex. h' in the asymptotic limit. so X rrn $

would a.l.so scale as ZUI/".
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fihrure 3.2: Calculated proliJes for the PS block uf the 10-·10 PDMS-PS polymer. a...
in figure 3.1, for different values of fT".

The calculated. values of X TflU are shown in figure :3.3. from this li,.,'llre. ou<'

can conclude tbat Xnn~ increases with increasinp; molecular weight and surface I:OV-

t~rage. fT". In fact. all the reslll~ faU very dUSt' to a ~ilJj.dt· O'llt\V. whidl i... iIl'ill'I,'" <I

straight line on this log-tul< plot for 1'1" Z: 2. This implit'S au appnL'cill1atl' I',)\\"\'r law

dependence for tbis range of fT" . The best fit to these pointS Kives

x,.,.,.... ex ~A7 fT" 0.24

(:3.22)

where t'1 = E-l and the UDl.:ertamties in the values of powers are ±O.O1. The fit-
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Figure 3.3: All the calculated values of the T711S thidmess of PS block. x~"'~.

function of R g and J". The straight line and the powers of R'l and (1"" represent the
best fit to the points satisfying a· ;::: 2. The units are nanometers for In". and Rg •

and kg/mole for the PS molecular weights.

ted dependences of Eq. (;3.22) are sih"Uifkautly weaker Thall rhost' pn'dil"tt>d for chI'

asymptotic limit, especially tbe dependence on Z.

Although there is no qualitative difference in the gencr,J su.q.ll' of till' protill's fOI

low and high coverage, the cases corresponding to a" ;S 2 are dearly ill a diff~rellt

regime. The calculated values of Inn. deviate from the scalin~ found for larp;er (1".

and the deviation becomes more pronounced with decreasing fT". In tbe limit of v"ry

small q' . the brush thickness tends to be independent of fT'. This is expet:ted for [he
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mushroom regime. but these SCF predictions for this re~ime tihould !lot hI-' l:ull:'iidl'rl'd

Uti qmwtitative. I,Vhat is of interest. however. b tLat tht' <!l:'viatiulI fWIII P,,\\'('r law

behavior begins around o' ::::: 2 for all molecular wei~hts, Thb b tht' rt'<Isun r L,u

in all subsequent fits. results for low coverage are not induded in analysb. <Iud unly

results for u' ?: 2 are considered.

The results shown in figure :3.3 fall dose to the power law of Eq. (:l.n). Thert'

is. however, some variation in these powers which can he extraetoo hy littin,!;!; tLem

to different ranges of a·. As just discussed, the behavior at very low covemj.{e;

approaches that of the mushroom reboime. For o· E !2,41 the scalinJt stretl~tLeLL<;

to X rm8 :x 20.7G::0.02,.,.' 0.:.11::0.02. reaching X nn• :x ZO·87::0.02".0.:l'J=O.lrl for fT· E [10. 121.

This variation iu the extracted powers is cunsisteI.lt with OJ pinun' of a nJllriliHOll~

evolntion from the mushroom regime towards the asymptotic hr\i~h rt'J-,01ull'.

3.3.2 Shape of the Density Profiles

To characterize the shape of the profiles near the surface, the ma.'{imllm polymer

V()hlillC fraction. dim. lwd its distance from the surface. :em, are cOllsidef(."<l. As W~L"

the t.:ase for X nns , all the t.:alculated values of ¢m fall very dose to a siu;{ll' nlr\tt'. ~L<;

is illustrated in figure 3.-1. For,.,.' .(; 2, results fall on a straight line. dl"snilwd by

tilm :x R;I.'lOo·O.68

:x ZO·I0t1 0.fiS
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Figure 3.4; All the calculated values of the ma.ximum volume fraction of tLt> PS
blode. d>"u as a function of ~ and fT'. The straight Lin~ and the pUWt!fS of R'J and
IT' represent the best fit to the points satisfyin,l!; 11' 2: 2. Tul' units an' cUP s,un,' as
in figure :3.3.

The values of O.1O±O.01 and. in particular. O.68±O.01 art' IpLitt· d.,sl' ['I rlll' n,rf('·

spunding values of 0 and 2/3 predicted by the ADC and .\I\YC theories.

As is qualitatively apparent from figure :3.2. the location of the nULximnlll . .1:",. is

a slowly varying function of fT. Figure :3.5 quantifies this dependence. III all C<1..';!;'S.

X m is on the order of Rg and is weakly dependent on (]' . and these depeud('ncl~s fall

very dose to a single relation. Once again, fitting all the results for fT" 2: 2 results in
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oM",=30
'" -0""°:>:' "__0---° M", = 40

OM",=60
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'V M", =330

-0'*-".....
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Reduced Surface Concentration. cr*

Figure 3.5: All the calculated values of the position of the ma.'\imulll in the \'ol1\nlt~

fraction of the PS block, x .." as a function of Rg and (T'. The strai~t lint' and the
powers of R, and (T" represent the best fit to the points satisfying fT' ~ 2. The units
are the same as in fiKW'e :].3.

(:j.:!·I)

with the uncertainties of ±O.02 in the values of powers. This cannot be cum pared

with the theory of MWC [29J which neglects the depletion layer. It Call be cumpan'd

with the theory of _-\DG {7. 281 in which X rn corresponds to the disUtnee at which tIlt'

plateau V"d.!ue is reached. which scales as iT- 1!"I.. Thus then' art' two quitl' diff"n'u[

pictures here: the numerical SCf theory predicts that the locarion of [h,> U1<LXillllllll

is controlled by R..J and is almo.'it independenr of a, whereas the ADC theory prt-'dil'[s
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figure 3.6: All the calculated values of the position of the half-maximum iu rut'
volume fraction of the PS block. d. as a function of R, and fT" . The stmi~hf IiUt' 1IUoI

tbe powers of 14 and n° repr~nt tbe best tit to thp. pointS satisfywJ.; fT" 2::!. TIll'
units are the same as in figure 3.3.

the oppO!>'ite. The numerical results are Qualitatively consistent with tht' UbscI"\iUiollS

of Cos.e;ro\."e [1291 and the ~Ionte Carlo studies of Cbakrabarti i.U1d Toml j9:lJ.

Although the 10<:8otio[l, of the ma...'Cirnum. I m , is out! characterizatiun ,,(tht> tbit-kul'S....

of the depletion layer. it is Dot the only one. One can also define thf' di<;tanc:e from

tbe surface at which the volume fraction reaches one half of its ma.'<imum value hefure

reaching its peak value. This distance is denoted by d, and exhibited in lip;llrP :1.6.

Once aKain, the r~sults can be approximated by a single curve which net;ume- a



straight line on this plot for all a- z: 2. Tbe best fit for this line (with tbe ull(..ertainti~

of ±O.02) is

d oc: ~.T5(T"-O.VJ

oc ZO·12a -0.28.

This scaling is closer to the ADC prediction of zGa-0.5. and quite different from

that for x..., Eq. (3.24). This latter different."e re8ects the chaDJ.,res in the shape of

tbe density profiles in tu"" depletion region, and indicates [uat tht' behavior <If tu..

thickness of the depletion layer depends on how it hi dt-'liued.

3.3.3 Detailed Experimental Comparison

Kent et at.!l, 21 carried out neutron re8ectivity e.'(perimetlts for the system d~

scribed in section 3.2 u~ing two sets of apparatus. the DESIR and SPEAR reHt>t:

tometets at Saclay and Los Alamos. respectively. .-\ larj(e rauJ(t' of Wll\'CVI't:tur Wi\''';

available at SPEAR (q =4.. sin(9JA) up to 0.11 A -I). aIlO\...inK for a detailed stitely

of the density profiles, by fitting the reHectivity data to a variety of functional fonn..,;.

They examined plUe parabolas. parabolas with depletion layers and expont-'utial tails.

different Gaussian furm.'i. the ettor function and vtuinhlp t:x].Jonl'lI[ forms. TIIl'~· ,'uu

eluded that a depletion layer and smooth tail we.re rf!quirt>d to fir dll' l·urn'S. aud thaI

tbe best-fit profiles were very similar for all the functional fonus with th(~sl' indudl!11.

A detailed analysis was exhibited for the 4.5-60 polymer at a pressure of 2."

dynJcm. conesponding to q" = 5.3, determined by fitting a variahle expouent model
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of the profile. They found that the density rose from a very [ow value at the ~l1rface

to a ma.'\imum, after which it decreased smoothly to zero. The value of the ml.Lx.lmllIll

PS volume fraction depended very weakly on the function lLSed in thf' fit. with 0",

ran/"rinK from about 0.115 to 0.125. Its location varied somewhat mort'. frolJJ aiIOlL! I. I

n.m to 7 nnl. This Kreuter variation may be due to fact that the diffcrem f1ll.J('titJual

forms had. different shapes in the depletion regions; as implied by the abovf' anal~'sis.

the thickness of this layer is sensitive to its detailed description. They performed a

!>imilar analysis for coverages at (1" = 3.7 to 5A, and (:oncluded that the thickness

of the depletion layer was independent of the surfu(:e density in this ranKf'. abo in

a§O'eement with result of Eq. (:J.24).

For fT' = 5.3, the SCF profile peaks at x", = 6.6 urn with a valut' of 0,,, = o. U.

and is shown in figure a. 7. Both of these are within the rang-es of the l"xp.·rinwfltal

fit.s. The re5t of the profile, indudinp; the body of the profilt" and tht' smoodl tail. an'

in good agreement with the fits: at any position x. th.· calculatt'd iUld ....xlH'riull·utal

profiles agreed to within l..ll.!l(x)I :s 0.00.1, and tht'y both vanished at abom ..oj UUl.

In determining the brush thiclrness, Kent et al. [IJ found that the value of the

bmsh thickness was the same for a simple parabola as for the more complex shapes.

and they also concluded that the scaling dependences on fT were virtually thl' S<U1U~.

For L'onsistency. therefore. they llsed fitted parabolas to determine the depeudefll: ....s

of the thickness on molecular weight and stU"face density. They titted all data to tht'
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FiKtlre 3.7: Calculated density profile for the danglinp; block of 4.5-60 PD.\IS-PS
copolymer with. E = :39.4 nm2. which corresponds to fr' ::::: ·').:3.

Conn

(:].26)

with ¢m and h' being the fitting parameters and presented rno:>t of their results in

terms of It', In urder to compare those results with the SCF calcnlariuu. ill t!le [\lUllW-

in~ analysis tUt! experimeutally obtained "'alaes ar~ ("OIJVI~rt"d [u rhl' 1"I11.~ rhicklll'''''''''''

which, for parabolas, are related to h' by

'"XMn~="'J5'

in tbe rest of this section the experimental results obtained llsin~ Eq. (a.:!") an"

compared with the ca!c.:ulated theoretical values.
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The analysis of the results by Kent et at. showed that the brush thickllt'S.'> was

constallt to within expt'rimeDtal error for small (1' with tUt· <Jus~t of stCl'tdlill).:; ,w

enrring at (f' ::::: 1. This is the same threshold at which uur ~uw(-'r laws I,l~~ill til I",

applicable, as seen in figures 3.3 - 3.G. For fT' ,<: 2, the measured hnlSu tui,:kuP:'i."it":';

could all be described reasonably by a simple linear function of /j" .

X;; =.4+8a". (:3.18)

with.-I. = L:38 and 8 = 0.076. In fiK1tre3.8. the experimental data (open symhols) amI

this linear fit to them (solid line) are shown. as well as correspondw:.;" calculated \'UhlL-'S

(filled symbols). These theoretical results exhibit a similar quasi-liucar dependence

on fT' , although they do not aU fall a.s close to one line as the experimental poillts duo

Taken indhidually. however. the theoretical results for ei:uJ.l polymt-'f arp V.·C.\' dCJSl'

to linear in (T'. In Table :}.2. the results of fits to the strai1!;ht Iilll". Eq. (:.L~8). an'

presented for each polymer and for n' 2: 2. In aU cases. tue .....tInt'S of the iut1~rn'pt .-1.

determined with the uncertainty of the order on ±O.OOl, are very dose to tht> valut' for

the e.xperimental data, but the slopes B. determined with the nncenainry of the ordt!r

on ±O.OOO·5 vary over a factor of about 2. For (1' ~ 2. the experimental ...<tines tend to

a common vdille of about 1..5 R g • Our calculated valnes iH fT' ='2 an' all ill tbf' ran,lW

of 1.47 R, to 1.67 R." in agreement with the e:...penments. They are sliJ,(hrIy hi1!;her

than the values of about 1.4:3 obtained by Sonmsen and Kovacs ill .\Ie sinmlatious

of chains with up to 73 units. For smaller fT' . the lateral a"~ra~n/-{ inhen'lI( ill [hI'

SCF calculation causes the polymer-polymer interactions to Ill' lIuden:oHntt'<l aull.
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Figure 3.8: Comparison of the measured and calculated rms thicknesses. as defined
by Eqs. (3.21) and (3.27), for the theoretical (filled symbols) and experimental values
(open s:!,wbols). respectively. For fT" ~ 2. aU the experimental point:> GUl Iw wdl
represented by a single linear dependence on (T • • which is shown hy thl' :-;olid liUt"

furthermore. there should be sweUin~ effec::ts that art' not illdndt'd Lpn', For r1u'~('

reasons, aod as is tbe case for the fit to the experimental points. [hI' lilleal" 1't'latlolJ

cannat be extrapolated to smaller cr" , and the values of the intercept ....L art-' not to

be interpreted as applicable to very low CQverap;e.

AltboUKb botb the e.xperimental and theoretical results can h~ reasonably tit>-

scribed by linear functioILS of 0° , they can be better described by power laws. Kent
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Table :J.2: Coefficients. .-l ± 0.001 and B ± 0.0005. uf the liw-'ar fit. Ell. p.:.!~). 'I'll"
first line is for tbe fit to all tbe e:,<perimental points. ami tin· utben; an' dll' firs to rill'
theoretical values for each polymer. All fittings wen~ done for fT' ;?: 1. auu sh<J1\ld llll!

be extrapolated to sma.U~e'c.:a:..·-,-. ~

I PDMS-PS Polymer~
I Experiment all I 1 38 I 0 076 I

4.-30 1.44 0.113
10--10 lAO 0.110
4.5-60 1...10 0.093
21-169 1.32 0.076
28--330 1.36 0.062

et al.[2] found tbe best fit to their results to be

for all fT" ;::: 2. The values of these powers. 0.86 ±O.02 and (J.n ±lUI:!. "OW'SI"Jlul

direetly to the theoretical values of 0.81 and 0.24. re!>1Jeccively. disp1<lYf'd iu Eq. (:.1.12).

Figure 3.9 shows all tbe e."i:perimeutal and the corresponding theoretical \ra1tLes plottt'd

according co Eq. (3.29). The theoretical values are scattered <thom this liut'. as

""lJ~:"cred dll!' to rhf' smaH differeun'S in tbe p,wiers. For east' of t.:omparisoll. [ht·

theoretical values are shown in this format according to Eq. (:L!1) iLL fi,,'llrf' :i.lO. It

can be recalled from section 3.3.1 that. in spite of the minimal scatter un ti,,'11H' :.1.10.

small variations in tbe values of the exponents with IT' could be extracted frolll

the theoretical vrllues. Experimentally, changes were observeci .It small IT' • hilT 110

streoA"theninp; relative tu the overall dependenc..'e was detected fur fT' ~ 10.

In order to determine if the small differences between tht" experilllent,J aud [111"'-
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figure 3.9: Measured (open symbols) and calculated (filled symbols) rm.~ hrush thick
nesses, plotted according to the power law fit to the experimental data. Eq. (:3.:19).
which is shown as the solid line. The units are the same as in nj-,'ure :L3.

oretical re!>ults discussed throughout this section are due to thp trpatllll'U[ uf f.h.-

depletion layer and tail regions in the experiments. Kent analyzed si.x of till' SCF

profiles, three for each of the 4-30 and the 28-330 polymers. He first calculated

the cOITespondin~ reflectivity CHrves and then fitted parabolas in the same m,UUler

as was done with the experimental reflectivity curves. The resultin,l( valuf's of tlw

brush thickn~ for the 4-30 polymer fell ....ery dose to the sing-Ie lin!;' ohtaitwd px-

perimentally, shown on figure 3.8, but the values for the 28-330 polymer were moved

somewhat further below. Together, these imply that the existence of separate liuear
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Figure 3.10: Calculated T1TtS brush thicknes'ies for all the points satisf~inK fT· :::: :.L
plotted according to the best fit to them, Eq. (3.22), which is shown 11.<; the solid line.
This relation provides a very good description of all these points. The units arE' thp
same as in tiKI-Ire 3.3.

relations. Eq. (:3.28). for each pol~mer in the theoretical results. bur a sin~lt' oHt' for

the c.'"(perimental results, as well as the small diffE'rences in the values uf the tined

powers, cannot be explained by the treatment of the data.

3.3.4 Numerical and Analytic SCF Theory

The experimental brush thicknesses of Kent d at. were i.walyzt'<[ ill tl'l'lWi of rlil'

parabolic profiles of MWC. so it is interesting to make a direct wmparisut.L IWtwPP.H
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the nmnerical results and the analytic theory. As discussed in section LL2. for hig:hly

stretched polymer bnlshes in good solvent, the analytic SCF theory of ),iW(' prffiicts

a parabolic profile described by Eg. (1.18) with the thiclcness of the bmsh ,l.,';veu by

Eq. (1.19). The parameter u appearing in these equations is rdated to tht> statl.-;tic.d

seg;ment length via [361

where R is end-to-end distance of a free chain. Since. in the nmariuu ILWd iIi this

thesis.

(R')=Zb'. IJ·Jl)

where b is statistical segment lell~h. one has the correspondence '" = :3/1/-. Thus

usinl!: Eqs. (3.30) and (3.31) and expressinJ.{ the thickness of the parabolic prolill' ill

tenns of tbe root-mean-squared thickness. 11.rm~. the profile of ~[WC' l:all hI:' wrint'li

m(x)

Once u/o{ain IlSWP; Eqs. (:3.:30) and (:$.:31). the free enerJ.{y per chain ill tilt' illlalytk

SCF theory can be written as

9 ( ') 'I'F. = - ~ w"l/:1 Z"f:.-"l/:1
c 10 41?

The e.xc1uded volume parameter, w, can be expressed in terms oftbe Flory interaction

parameter as

W = ....!.-(l - 2.:d '
Po8

(:U5)
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In order to probe these scaling relations, model calculations with Z ranginK from

200 to 1000 were performed. .-\11 the pure component densities were choseD. so /Jux =

PoB = 1 nm-J
. Furthennore, the seb'lllent statisticallenKth wa.... sec to b = I nm ilwl

the value of the solvent-polymer interaction parameter X Wa.<; 0.·1.. which curresponds

to w = 0.2. Since these are model calculations for polymer in good solvent. cht~

reduced surface concentration 0'" , was calculated using

R; = ~Z2".

where v = ;j/5 [39J. All parameters are sWllumrized in Tablt' :.L.l.

The parabolic and numerical profiles for Z = 600 and ~ = lOU Ulll~ ,U't' pr"S('II["d

in Figure 3.11. The maximum volume fraction is significantly lower in thp nUInt'rkal

profile chan in the theoretical one and the n.umerical profile extends farther from the

surface. The depletion region alone does not a(:count for che difference.

.-\S is apparent from Eq. (:3.32), the .\-lWe theory predicts that the maximlllu

polymer volume fraction, <Pm, is independent of the degret.> of polymt;!rizaciou IJf tilt'

grafted block. For the choice of parameters used here. it would satisfy

By comparison. tht, bt.'st power law tit to the UlIUH'rit:al It'snlts is

with the unc:ertainties ±O.OOI in the constant and ±O.02 in the values of powers. The

quantitative comparison of the two approaches is presented in fi""lue 3.12. First. tht>.
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Table a.:J: DeF;l'e€ of polymerization of danKlinK block Z. !: aud redn",'d smfal'"
coverage, ('I" llsed in the model caklliations. good solvent.

I z lEi 1'1 . Iurn d

200 100.0 3.02
50.0 6.04
25.0 12.09
15.0 20.14

400 250.0 2.78
125.0 5.55
62.5 U.ll

31.25 22.:H
600 400.0 2.82

200.0 5.65
100.0 11.29
50.0 22.58

800 550.0 2.90
275.0 ,5.80
1:3" ..j 11.60
68.i.) 23.:!O

1000 720.0 2.90
360.0 5.79
180.0 11.58
90.0 'J3.16
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Figure 3.11: Parabolic and numerical profiles for Z = 600 and ~ = 100 nm2 .

powers of 0.06 ± 0.02 for Z and -0.63 ± 0.0"2 for r: are I..-onsistent with tbt> fc:m..lts

for the PD~·Ig..PS/EBsystem. Eq. (3.2:}). The scalin~ relation:> are abo ill W['Y :'::I)od

a~mel1t with tbe prediction uf tbe analytic tht'ury. llllWt'Wf ell!" IUluu'rkal mh\t~ ar"

about 10% smaller than those proposed by .\HVC theory. Tlw UHIllt"cit"ill vahuo:. ac..

closer to tbe analytic prediction for bigher dCb'Tee of polymerization .wd the deviatiou

from analytic picture becomes more pronounced for shorter chaws.

TurninJ!; to the bnlsh thickness, the direct comparison of the numericl.ll results

with the analytic prediction of Eq. (3.33) is presented in figJuc J.13. The hest tit to
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figur~ :.L12; .-\11 the calculated values of th~ IU'L'Cimum vo!unu' frat'tiuu "f 1'l)1~'Illt'r

as a function of E and Z Cor numerical SCF theory. ~ood sol ....em. Opt'U syulll.,b
show D.IUDcrical values and the solid line is the predktion of ~IW(' thl"ury Eq. (:J.:fT).
Closed circles are the numerical values scaled by ZO·06. The dashed lim' i..... tlJI' I)l'st
fit. Eq. (3.38).

the numerical results gives

FUg)

with the UDI.:ertainties ±O.OOI in the constant and ±O.O'l iLl tbe valul'S of pO\wrs.

The filled circles are llumerical results and the dashed line represellts the lint' uf hl~st

fit. The opell squares show the numerical results scaled by ZI ,lIltt the solid lint-' is

the prediction of MWC. OnCf: again, these numerical results axe in a ~ood i\~t>t'lllt'ut
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Figure 3.13; All the calculated values of the X~Tn" as a function of ~ and Z fUf

numerical SCF tbeory, good solvent. Open symbols show numerical values St:aled by
Zl. The solid line is the prediction of .V!\rVC theory Eq. (3.37). Clused l:irdes an' tut>

numerical value:; scaled by ZO.86. The dashed line is tbe best fit. Eq. (:.t:mj.

with the corresponding results for the PO),IS-PSjEB system. Eq. (:L!:.!1. TI", slightl~·

b'Ieater power of E is consistent with the picture of a continuous e\'ollaiotl froUi rht·

mnshroom towards the asymptotic brush reKime, since in this case larJ.(cr Hllnt'S of IT"

have been included..-\Ithough the linear scaling (open symbobJ r!t'!iI;ribP:i till' clata

reasonably welL it is clear that the significantly weaker scalin,l!; of Eq. (:t:J9) prm;des

a better fit. All important conclusion which can be drawn from this eumparisou is

that a careful analysis of data is needed to extract scaling powers. in urder [u see if
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the data really support Zl sca!inj{.

Finally the free energy per chain is directly compared with the a.uaJytk tut'or.... of

MWC. To calculate the free energy per chain, the values obtained throuJ,\"h Eq. (:}.18)

have to be multiplied by L. Calculating the free energy per chain u.sinj{ Eq. (:3.18)

and looking for the best fit. it was found

Fe = O.789Zo.92E-o.6G • i'J.40)

with the uncertainties ±O.OOI in the constant and ±O.02 ill the values of power:>. Tut'

Mwe theory predicts

n.1l1

The power of 0.92 ± 0.02 is approachinp; the ,\I\\'C valut' of lillie..... aud rlll' \,tln.'

0.66 ± 0.02 is essentially in perfect agreement. The quantitative compart.'iUll .,f tlit>

two approaches is presented in figure 3.14. Again, the fit to the power 0.92 ± 0.02 i.-;

noticeably better than the linear Z dependence. As welL the numerical SCF remits

are about 10% larger than [he analytic predictions.

In summary, the nwnerical SCF [heory predic[s brushes in whkh [ht~ llliLXimnIll

polymer density is abom 20% tess. the T1nS thickness is about 50% j.(reatcl' aud [hc

energy is about 25% greater. tban those predicted by analytic SCf thf'or~·. The

scaling relations reveal that R, remains an important length scalf' [801.
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Fip;ure 3.14: Free Energy per chain as a function of deKree of polymerization Z. and
surface coverage E in a good solvent. Open squares are tlit> numerical \'llllt~:-; sndl-'d
by Zl. The dashed line ~eprescDts Eq. (:3.-11). Filled cirde:; <It" till' ("aklllatpd \'alill's
scaled accordin~ to Eq. (3AO). dotted Iioe represents tlit' liIlt' of eh.' I)('st tir.

3.4 Polymer Brush in a e Solvent

in this section. diret:t eomparison of numerical SCF theory with thr' awtlytil"

theory of polymer brushes in e solvent developed by Shim and Catt~s [-10) awl hy

Zhulina et al. [42, 43) is presented. As in the previous section. rht· sha~)C' of till'

density profile, thickness of the brush and the free energy are analyzed. TllI~ vain€:>

of parameters which enter the formalism are the same as in section 3.3.-1. except that

the Flory interaction parameter is X = 0.5. and tbe radius of j..,ryratiou uf tht' ffl°t'



Table 3.4: Degree of polymerization of dangling block Z. !: aud redUl:t'd surfacl'
coverage. fTO used in the model calculations, e solvent.

Z. E [nml u·

200 25.0 4.19
15.0 6.98
10.0 10.47

4oo 62.5 :3.35
:31.25 6.70
15.625 13.40

600 100.0 3.14
50.0 6.28
25.0 12.57

BOO 137.5 3.05
68.75 6.09

:34.;J7.'j 12.19
1000 180.0 2.91

90.0 ·).82
45.0 11.64

chain is determined according to Eq. (3.36) with v = 1/2 [:391. .-\11 parameters art>

smnruarized in Table :3....

3.4.1 Characteristics of the Density Profile

Typical dew,ity profiles are shown in figure a.15. Similar to the case of a ~ood

solvent, d.l(x) rises from zero at the surface to its ma..ximum value. (!'.lilt. and [hen

decrea:;es smoothly to zero. but [es."i rapidly than in cast' of It v;ood sulwtlt. Till' [;li!

reKion is not as extended, and the body of the profile is UlOfI' <"ompa("[. (h·l·mll. till'

chains in a bmsh tend to be less stretched than in a ,I1;ood solvent conditions.

In the formalism presented by Shim and Cates [40], the density profiles are calcu-



0.40 ~~-~--~-----~----~

0.30

--.,.-3
-- .,.-6
---- ~ -[2

0.10

"o
j
Q) 0.20
E
.2
,g

..............

..........,.,\,

0.00 L ~=___"~_~'.:::-~ _.J

0.0 50.0 100.0 150.0
Distance from the Surface [nm]

FiKure 3.15; Calculated profiles for the danglinp; block with Z = 800 fUf ditft~rt'Uf

values of a" . e solvent.

lated llumerically while ill tbe' work of Zhulina ct at. (42. I;jl tll.t' dU~'d fOl"m l'xprt>s...;iull

is presented for 8 solvent. The density profiles of Zhulina et al. satisfy

d.l(x)

h =

(:.t·1:!)

where b is tbe statistical segment lellKth and third vicial coefficient was t'xplicitly St-'[

to unity. For tbe e solvent tbe excluded volume parameter. Eq. Fi,:ii)) ,l.,>1VI>S Ie = O.

The formal compari<;aD between the nUIllerical and elliptic profitt' of Ell_ f)..I:!) is



94

---- SCF
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Distance from the Surface (nm]

FiKUr~ :l.16: Fonnal comparison of tbe elliptic (sulid Litl.. \ and lllllw'rind pt"otik
(dashed line) for Z=lOOO and rr.= -t5 nrn:.! (17· ~ 12).

presented in figure :3.16. The overall agreemenr U; very satisf,u-tory. 1I"WI'\"('f. olin'

again there is small depletion layer and smooth tail region.

.-\s in the case ofgood solvent, a direct comparison of the analytic theory prerlietioD.

with the munerical SCF calculation for the maximum volume uauiou uf J.IU!YlUCr. "',,,.

is possible. According to tbe analytic theory <tim does not depend 011 the dc,!.!;rt.'t' "f

polymerization and scales as E-l/2. The best fit to the munerical SC'F value.s givp;>;

(:J.«)

with tbe uncertainties ±O.OOI in the constant and ±O.02 iu till' vahws of pow.. r,.;
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Figure 3.17: All the calculated values of the ma..ximum volwne fraction of polymer
as a function of E and Z for nwnerical SCF theory, e solvent. Open symbols show
nwnerical values: solid line is the prediction of theory Eq. (:.L42). Closed I:irdes are
tbe nwnerical values scaled by ZO.02. The dashed line is tbe best lit Eq. (:.LH).

The quantitative comparison of the twO i.~pproacbes is presented ill 1i/o,'"!lre :.L1'. Tl.n'

a/o,rreement in powers is very good and the tlumeri(:al values {upeu squares} art' VPI'\'

dose to tbe analytic prediction specially for higb values of Z and ~. It u<\:; to ilt, nott:,d.

however, that witb tbe increasin.e; E the reduced :mrface cOQ(:entratiun delTl-'<L'it'S anI!

the chains become more isolated and are no (on)!;er obli,l.!;ed to stretcb away from the

f;{fafting surface. Furthermore, even for stretched chains the grafting density has tu

be high enough to suppress the lateral instability due to Ructuations tang-ential to
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the grafting plane [481. Thus. it is important to determint' the IOWt'f limiT of r.Ill'

brush regime for the collection of end-grafted chains in a B solvent. in un(t'r ttl dt) suo

some additional calculations were performed for all five values of Z. with (1' \<l.ryin~

between range [L5. 2.5J and the functional dependence of the XJ7"~ was investiKated.

t.:sing only those values of Z and E for which the reduced sllIface conceutratitlt.L

G' .2: 3 and looking for the best lit, it was found that

O.543ZO·9:IL-O..H

1.678~·92t7'0.4T .

with the uncertainties ±O.OOI in the t:oustauts and ±O.02 in tllt' valllt,s of powt'rs. TIll'

calculated value; of ;emu plotted accordiuK co Eq. (:i.46) an' suowu ill ti~Hr,' :tl~..b

in the case of the polymer brush in a good .solvent. the l:aklllatt~d nun.':'> <If f r ""

deviate from the scaling found for larger values of a' . and this deviatiuu IWl4"ius m

about a' ~ 3.

For the elliptic profile, the :I:rnu thickness is simply Xrt/u = hi'!. which. usiIlg:

Eq. (3.43), leads to

x~ = O.342ZE- I /'2 . 1:U'J

The direct comparison of the numerical results, Eq. (3.45). wi.th the prediction of

Eq. (3.47) is presented in figure ;3.19. The filled circles are numerical results and

a dashed line represents the line of best fit. The opeu sqniltl~S shuw till' IIllllu'ri'·al

remits sealed by Zl (linear in Z) and the solid Hne is the prp.<lictiun of rill-' auaLytil·
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Reduced Surface Concentration cr.

Figure 3.18: .-\1.1 the calculated values of the rms thiclc.ness as a fllDctiou uf R, lwd
ft'. The straight line is tbe best fit to the points satisr~in~ fT" ~:1 Eq. (:JAG).

tbeory. The scaling relation obtained from the best fit is very dose tu [ut" ;malytil-

predktion. but tbe numerical prefaceor is larger. TIlis lacgt't V"""hw i... 1'Ull....is[.>1U with

tbe dem.ity profiles of figure 3.16: the numerical profil~ p_'\.hibit a deplt>tiou lil~l'r 1Iwl

tail region. (!1m is !>UlaUer. and these lead to a tacKer vahlt' of the rlfl:< thkkut'SS.

3.4.2 Free Energy of the Brush

in the work of Zhulina et ai. [42, 431 and Halperin [4L] the equilibriwn stcm:tnre

of tbe grafted polymer layer is determined by the minimization of its eOnfOml1\tiunal
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Fih'11Ie 3.19: All the calculated values of the Xrm~ as a function of ~ and Z for
numerical SCF theory, e solvent. The dashed line is the best fit Eq. r:i.·15). ()~lI'U

symbols show numerkal values seated by Zl. The solid line is the lJrrtlictiuu .)f [lw
analytic theory Eq. (3A7).

free energy, which includes tbe contribution of elastic stretching in tbe layer. aIld

volume (ternary) interactions

(:US)

Halperin [-ll] a$Sumed a uniform distrihution thronguollt till' "lyl'\" \\"hich b "qlli\'aJoom

to the step function model of Ale.xander and de Ceuul$ {•. 18). lu the ill'Proadl of

Zbulina et al. [42, 431 this energetic balance is done locally and tbe model is t'S...;entially

an extension of the analytic tbeory of MWC [29J. The free energy per chain in
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Zhulina's approach can be expressed as

where once again, the third vitial coefficient was set explicitly to unity. This can be

directly compared with chI' nnmerica.! SCF calculations. CalculatiuK tbe frt't' t'Dt't";.,'y

per chain using Eq. (3.18). aDd lookiu/;!; for the best fit. it wa.-; fOlind

with the uneertainties ±O.OOI in the constant and ±O.02 in the V'dlues of powers. The

numerical prefaceor in Eq. (3.49) is equal 0.866. The numerical calculation are in

excellent agreement with the analytic prediction. The scalinK exponents are "qHal

to within the uncertainty of ±O.02. but numerical prefactors differ by It"S.'i thll.ll Hl'k

Comparison of the two approaches is presented in figure :3.:m.

3.5 Summary

In this chapter, uumerical SCF calculations wefe di:-;clIssl,~d aud nJmpar,'d wirll

recent e.xperimental data of h:ent et at. [1. 2]. as well with till-' prcdktious uf tilt'

scaling theory of Alexander (28] and de Gennes [7), tbe asymptotic SCf theory of

Milner, Witten and Cates [291 for polymer bmsbes in a good solvent. and the ;.malytir.::

tbeory of Zhulina et al. [42, 43] for tbe e solvent case.

ln keeping with the experimental situation. it was assumed that oue of th~ copoly

mer blocks lies flat on tbe surfaL-e and tbe otber danKles into the solution. Thf' in-
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Fihoure 3.20: Free Energy per chain as a function of de~ee of polymerizatiotl Z. awl
surface coverage E in a e solvent. Filled circles are the calculated vahll's st:alt!<1
according to Eq. (3.50), dashed Hne represents the line of the belit fir. nlt~ sulid liut,
is the analytic prediction of Eq. (3.49).

terpbase region was assumed to contain all the A-B joints was takcu to he I om

thick (130J for the comparison with tbe experiments and 2 Dm thick for the model

calculations. This model can be applied to tbe d'UlKlinl-\" block of mborlwd ("Opol.nllNs

or to end-grafted polymers through the choke of cht' thickw-'ss of till' lmefl'hHsl'. awl

thl' modeling of tbe B block.

In the good solvent case, calculated density profiles all contain depletiou layers.

which are analyzed in terms of the location of the maximum and the half-miLximuIll.
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In all cases, the scaling of the ma:rimum volume fraction with Z and q was similar to

the predictions for the a5-ymptotic limit. However. the pm:;ition of the ma."<imum was

on tbe order of Rg and only weakly dependent on the sur[act' dt'nsi[~-. This '·Ollt[;L...;ls

with the predktion of the scaling theory that it would he illdt.'l't'lH!t·U[ of !lI"j,o"ldal"

weight and vary as q_I/'l, but it is in accord with the experimerHalohSt'n':ltiulls for

this regime. The position of the hal/maximum did vary with tbe surface dell..'iity. hut

not as strongly as predicted by the scalinF; theory. These qualitative differences in

tbe dependences of tbe location of the full and half ma."ima reflect cban~~ in the

detailed shapes of the profiles in this region. which suggests tbat tbe experimental

characterizations of tbe depletion layer may need to include a careful specifkatioll of

how the thickness is defined. This is consistent with the findinw-; of Kent d ut. (21

who found values of from ·1.4 to ., nm for the location of the ma..\":imnm. (It-'peudiuK

011 the assumed sbap!' of the depiction layer. The SCF ndcnlations ~·iddl·d " \-;dll"

of 6.6 llDl for this case, which is within this raug-c.

The existence of a depletion layer ill these results contrasts \\'ith S(JtIlt> otht>r (";I.";I'S

in which there is no such layer. This can be explained by differences in the poty

mer/!>1.lrface affinities. In the first cases, the chains are end-brrafted or the :o1.lrface is

covered by the other block of the copolymer. so that the .surface is sttollg-ly tepulsivt->.

there is no adsorption of the monomers alonF; the chain and 11 depletion layer forUls.

In tbe others, the monomers along the chain can adsorb at the interface. tiUiuj.\" ill

the depletion layer. Thus the interactioIUi between the monomers and the surface call
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lead to different forms of tbe dem.ity profiles {12:9J. This effect will be disclls.'it'd tll

chapter 5.

Beyond tbe ma:cimum. the dew:>ity decreases &IDoothly and reaches zero in an

extended tail. This is consistent with the neutron reflectivity data. whkh I:onld bl~

fitted only if both depletion and tail reKions are tllcludl~d. ()ue miv;ht haw t>xpt't·tt'tl

tbat fluctuation effects and inhomogeneities parallel to the surfa(:!:'. both of whid.L

are ignored in the calculations. would have introduced discrepancies at [hI' tip 'Jf thl'

brush where the polymer densities are very low and vanishiuJ{. ill f<let. the calcHlared

and fitted profiles agreed vet:'· well everywhere. even in the tail.

The numerical results were analyzed in terms of tue approximate pi.LWl'r law dt'

pendences, and for all cases tbe uncertainties in the ..'alnes of powers wert> ou tht>

order of ±O.02.

It was found tbat the thickness of tbe brusb could be deseribed well by a sin

gle fi.mction for all polymers. which could be described by a simple power law owr

the range "2 ;S rr" ;S 12. The lower cutoff in this ranw~ is l:oIlsisteI.Lt with tlU' t'xlwri

mentally observed onset of strE'tcbinx, altboug-h the SCF call-nlation dops w)r appl~'

below this limit. Over this range, a best fit for this SCaHIll-!; was fOHnd tll 1)1' .1',,,,., ').

Z.-t°.81
(10.24, which compares weU with the e.xperimental result of X ..n~ Q( Z.-tu-~r,rru.:!:!.

The experimental results for this range could also be described by ~'r",~/R, = A+ Brr' .

a form rather different from a power law. .-\ similar result for each polynwr was fonnd.

with nearly equal values of A. and !>itnilar but V"arying slopes. B.
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One Il;eneral conclusion that can be drawn from the first p'.lrt of tlit-' stndy prt-'

sented above is tbat there are. roughly speakiuK. thrt't' reh'lUWS of strN,'hillg, 'I'll"

first is cbaracterized by a" .:S 2, and ie corre;ponds to the mushroom rl'!JJ;illl", FtJr

:2 ~ a" .:S 20, tbe polymers begin to stretch away from the surface. This sw~tch·

lug approacbes the asymptotic limit beyond abom u· .?: 20, the third reJ.,'lrue. It u;

important to note tbat. except for brushes formed by graftw/!: from semi-dilute .wd

concentrated solutions. virtually all experiments in a good solvent fall in tLt' re,l!;ilUt'

u" .:S 15, so do not correspond to the asymptotic re~e.

Tbe good agreement of numerical SCF calculations with tbe experimental dat'l and

some discrepancies with the analytic predictions of ylWC motiY-dted the next part of

thE> study in whicb detailed quantitative l:omparisol.l betweell <lnaly([(' awl lJlllJll'rl1-al

SCF theories was performed. ..\.Ithough many experimental data \\'t-'n' auaJ,\'z"d itl

terms of the parabolic profile. it was found that numerically generated prutiles l'xtt'1l11

farther than tbose predicted by the ,"lWe theory, and the tbickne~""; of the w-afted

la~-er is about 50% thicker and tbe ma.ximum volume fraction of polymer is ahOllt

20% lower than in the parabolic profile, The power law dependence of the str('(chil1~

on the degree of polymerization is significantly weaker. although it tenUs toward tht->

asymptotic values predicted by analytic theory as (1' reaches ..... 20, The fret' t'llerj.(y uf

the bmsh obtained through numerical calculations is about 25% hi~her than predi(:ted

by the analytic theory.

The numerical SCf theory was also compared with tIlt-' analytk pn'dictiou:oi [or tIll'
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polymer brush in e solvent. The agreement between analytic and numerical theory

is significantly better than in the case of a good solvent. The main reasou for rue

very good agreement between the numerical and analytic.J approach is that in tUt> H

solvent tbe binary interaction disappears and only the ternary interaccion fort:~ tUe

c.hains to stretch away from the surface. The nwnerical calculation SUAAests that tUP

threshold for stretching is slightly bigger tban for the brush in a ~oud SOIVPllt. ami

appears at (7' .::: 3.



Chapter 4

Compression of the Polymer Brushes

4.1 Introduction

In this chapter the properties of polymer brushes imrnt'fsed ('idler in a ;.!;uod or

a e solvent and compressed Donna! to the grafting surface are cli.sc~d. For each

case, the density profile, root mean squared thickness and free enerh~' of dw com

pressed brush. as CunctiollS of the dewee of polymerization and surface cuwra,l!;t-'. an'

cuh.:ulated <Ulel presented in the Conn of approximate power law dependences.

In most e.."<perimental studies on the compression of tb,~ polymer hrushes. tilt'

lsraelachvili technique is used [131, 132) in which two opposing brushes are hrOll,l!;bt

together in an orthogonal cross-cylinder configuration. This is dODe to avoid the

diftklllt~.. of achievinp; parallel alib'llmellt of two f:l.at places scparatl'c! hy 11 dis[alll"!' Ill!

tht! order of a hundred nanometers. Therefore, as rnentiOlwd illl:hil~t(>r 1. r.U(, f'lrt,t,. 1".

as a function of separation is e.xpre&<;ed in terms of F(D)jR when' R is tht-' g:e<J1Ilt'rrit,

mean of the radii of curvature of cylinders used in the IsraelachviUi force apparatus,
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and D is the distance of the closest approach. Within the Oeryagllw approximation

[651, this is directly related to the free energy per unit area via Eq. (1.28). which is

F,%) ~ 2rr ( £(D) _ £(001) .

where E(D) is the free energy per unit area uf thE' systt'm at st']llU"arillll U a\l<[

£(00) = Eo is tbe free energy per unit area when the brllshc:'i attached to till' OPPOSiTt'

surfaces do not overlap. The free energy per unit urf'<l is a v;(>omt~try indepeudt'lit

quantity, bence in the theoretical description of compression. tbe flat parallel plates

immersed in a solvent are considered.

In the analytk theOries for polymer brushes in a Kood solvent. the frel' l'nerh'Y of

the brush during compres.<.ion can be expressed in terms of a frt>e eDec.l0" of [h.. llll

compressed brush, and some universal function of the reduced distance. 1/ = DJI2h).

where D is the distance between the plates \\ith end-b'Tafted chaim; and Ii is tilt'

thickness of the uncompressed polymer brush. Thus, the lonp; nlll~t-' for('I' 1lt'[\w'j'lI

the plates can be described in terms of reduced variables by a siu~lt, nniversal flltll'tlull.

In this chapter tbis property will be examined in detaiL

As mentioned in chapter 1, in tbe analytic theories no distinction is madt' het\\'t>ClI

the compression ofone polymer brush by a second identical brush alit! tht~ eompressiou

by a impenetrable surface [11, 40, 1331_ Whitmore and Noolandi {641 perfomled

comprehensive analysis of the compression forces in good. e 'llld pour SOIWlltS. hut

only compression of the polymer brush by a ::iecond identil:al brnsh was discllssed.

To e.'Canllne the quantitative effects of different waYti of compression, thr~ IlIotll·s an~
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considered in this chapter:

L compression by se(,"Ond identical bnmh;

.) compression by a bare, repulsive surface, i.e. a "Hard Wall";

:3. compression by a second surface which is neutral for adsorption.

The compr~ion of the polymer brush by a second bmsh aud by a second surfa<:t' is

schematically presented in figure 4.1.

Figtue 4.1: Compression of the polymer nmsh by a second brlL';h (a) amI st'l'Uud
surface (b). The second ~urface l.:an be either repulsive or neutral for adsorption

The other important l.:ondusion of the analytic models is that dllrill~ ('Utllpt'l'S-

sian of t\\lO opposing brushes, they do not interpenetrate and retain their ori/-,riual
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shape. The step like profile remains Bat [ll}, and parabolic and elliptic profiles ff'

main parabolic or elliptic up to the midpoint between tbe plates. wh~re tbert' is a

discominuitr in the slope. However recent numerical calculations [9;j-llll] LUtHI"aft'

that there is interpenetratioD.. and this motivates some of tbe ff;'sults pn'sPlItpd iu

this chapter. The effect of interpenetration of opposing layers is quantified iwd rht'

results are compared with these recent numerical studies.

The chapter is divided into two main parts. In the first. compressiuu of pulymer

brushes immersed in good solvent is discussed. The .second part deals \\"ith chp sat!W

subject but the polymer bmsh is assumed to be under e solvent conditions. In both

parts, tbe main focus is detailed compari<;on with the analy"tic SCF theories.

4.2 Numerical SCF Approach

The numerical SCF theory used in this chapter is t'SSt-'utially thl' ";.11111' a:> rllar

presented in chapter 3. In this section, the main points of thf' SCF ttll'ory and its

modificlltions to treat the three cases introduced in section 4.1 are discllssed.

Two infinite. parallel surfaces immersed in a solvent and located at :L' = 0 aIHI

x = D. are considered. Diblock copolymer or end·grafted homopolyllwr is attm:ht:'d

either to both surfaces or just to the one at x = O. In the case of eopolymer. the

A·block is a5SlUUed to be adsorbed tightly to the surface while the B-block t'xtends

into the solution and forms a polymer brush. As previously, tbe system is assmllt'd to

be invariant with respect to translation parallel to the surface and this implies that
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the problem becomes one dimensional.

The tightly adsorbed A-block is modeled by the same density distribution. Eq. (:3.1).

with an equivalent expression for the second surface at the dhmw.ce D in the ca.se

of two brushes. It is again as&umed that there is a narrow interpha.se, thi."i time of

width a = 2 urn which is typical of copolymer system.<;. A.... noted previously. the

SCF results are not sensitive to this choice. The parameter l in Eq. (3.1) is chosen so

tbat ¢.4. = 0.01 i.lt the edRe of the interphase at x "'" a. The .'1 .. 8 joillts ilIf' randomly

distributed throuJ/;hout the interphase.

In order to calculate the density profile and free eneCKY of the dauV;liu,L!; blucks. :.! or

:5 propagators, for the case of 1 or 2 adsorbed layers respectively. haw tu lw calrlllatt'l:1.

These propagators satisfy tbe modified diffusion equation (J...l), with appropriatt'

initial and boundary conditions. The first propagator. l}o(x. 7'"). is proportional to the

probability that a chain of length T ends at x. given that it starts some\\'hert> berwpen

the two surfaces. As in chapter 3, its initial condition is simply

qo(x,O) = 1, for 0 < x < D . (·l.1l

The second propagator. ql (x. T), is proportional to the probability that a l:haiu of

len,L,'1:h ., ends at x. ~ven that it starts in the first ilHPrfaf'ia! rp~ioll. Its iuttial

condition is

{

L forO<x<a
ql(X,O) = .

0, for a < x < D .

If chains are also attached to the se<.ocnd surface, a third propagator, q2(X. 0) is I1eed~.
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It describes a chain starting at the second interface. and its LllitialwuditilJll is

{

0, forO<x<D-a
qz(x,O) =

1, for D - a < x < D .

(1.:1)

Once tbe tbe seU-consistent solution is obtained. thl' deILSity uf the dauKIiI1~ lJjwk

is constntcted via

4ls(x) = 4>sdx) + rDtn(x) .

where ¢'B;(X} is tbe volume fraction of the dangling block attached to layer i and is

given by Eq. (3.10), which is

(.l.::ij

with

(H!

In the case of a sin~le hmsb and its compression. only fJO and fit all:'' {H'(·(led. alll!

!Pe(r) = ¢m(x). However. the se<:ond surface (;QuId be repulsive. attranivt'. or

neutral. As mentioned before. two possibilities are considered. The fin;t. sonwtillws

labeled a repulsive surface, is one in which the polymer density falls smoothly to zero

at the surface. This is described by tbe same boundary conditions as in the previolls

chapter (Eq. (3.6)) given by

qi(O, r) = q;(D. ,j = 0 for i = O. 1 (-I.'!

The second possibility ~ a surface which is neutral for adsorption. Tht:' apprupriatl'
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boundary conditions for this case are

.,(O,T)

-!xq;(X, T)I"'=D

o for i =0.1

o for i =0,1.

«.8)

(4.9)

which allows for a finite deIll>it~· at the x = 0 !>urface. The potential which app(~an;

in the diffu~io[l equatioD. for chi:; part of calculatioI.l is chu.s~u a...;

w(x) = Pos {In (_1_) + XSB [¢s(x) - rV/1{x) - lJ} + ....Q.. (.1.10)
Poe ¢s(x)

where .;,)0 is an arbitrary additive eonstant chosen to satisfy

(HI)

To determine tbe solvent volume fral:tion at x. Eq. (:J.l.:i). which follows direl:t1y froUl

the incompressibility condition, is used.

For a given surfaee separation. D, the system isspecitied by tbe width of £ill:' Luter·

facial r%';on. a, dej1;ree of polymerization of the dan,l1;linR block. Z. and its statistin\!

per end-grafted chain E. For each value of D. the diffu.sioll t'ljUiuiuu.-; all' soj\"l'd ill

a self-consistent manner. Then, as in tbe previons chapter. the fret' ('Ilcrg-y pt'r nnit

area of the brush can be detennined as

1° dx { iPs(x)lnq)s(x) + lPe(x) - \1P1(X)}

-~lnQ
LAJs

(Hl)
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The free energy per chain, in the same units, can be calculated from this via

(-l.1:jJ

for either the twO brushes or bare surface compression. The munber of brush-coated

surfaces, 1tb is defined as

{

1 twO brushes compression11,,= .
2. bare surface compression

«.H)

4.2.1 Formal Comparison: One And Two Brush Systems

vVhen one brush is compressed by a second one. they CiU!. in prindplt·. intl'qwue-

trate. This contrasts with the compression by a bare, repttlsh.-e surface. in whi<.:h ca.";t'

the polymer density falls to zero at tbe surface. However it is straij.{htforward to slu)\\'

that the compression by a seeond brush attaehed to a s1\rfal:t' a (UstalU~t· D mvay t';llJ

be described by the same total density and the free eDcr~y as durinK the compres."ioll

by a surface which is neutral for adsorption a distance D/2 away. Whether or LLO[

the opposing brushes interpenetrate, if the density of the brush is not zero at the

midpoint, tben these two ways of compression produce the same free ener.l!:ies per

chain and the total density profile.

To see this. eonsider the two brush system. The propa~aror qo(;r. T) and rflf'

density distribution tPB(X) are both symmetrie about the midpoint. In additiou.

(-1..15)



Instead of solving this problem by calculating all tbese quantities in tbe full interval

(0. D], a new quantity can be defined

(·1.16)

which is symmetric in the il!terval [0. D] with respt'(:t W J' = D/"2. lu pani'·ltlar. iT....

!:;patial derivative is zero at the center of the interval. i.e..

f'IT(X,TI[ =0
x .£=D/2

(""J

The propagator qr(x, T) is still zero at x = 0, and obeys the same initial t.:Uuditious

in the interval (0. D/2l. Because of these symmetry propertie;. tht' sdf-..uusi...;tl'ut

problem has to be solved in the half-interval [0, D/2], the polymerdeusity cau tht'ulw

calculated by convolving Qo and lJT and, in the second interval. it is obtained trivially

from symmetry. Since qr obeys e..'Cuctly the same initial and boundary conditions iu

this interval as (j1(X, r) does for the compression by a uentral surfacl' locaH'I! at O/:!..

the equivalel!ce of these tWO cases is established. Ho\\'t'vt'l'. rill' ll\lplisill).!. hl"ll:.h,~ ,'au

interpenetrate and it is important to address this problem.

4.3 Compressed Polymer Brush - Good Solvent

In this section tbe properties of a polymer brush immersed in a ?;00<! solvent and

compressed either by a second identical brush or one of the two types uf the hilrt>

surfaces are investigated. Since tbe main focus is the comparison of numerical SCF

theory with the analytic predictions given by MWC, model calculations for the same
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polymer systems described in section 3.3.4 were performed. The v.uues of dt'/-.;It!l· of

polymerization, Z, and surface coverages used are summarized in Table 3.3.

As mentioned in chapter 1, the scaling theory of ADC as well as the SCF model

of ;'vIwe assume that during the I.:ompression the opposing brushes do not interpen~

etrate, and the free energy of the I.:ompressed brush can be described by the product

of the free energy of uncompressed brush and some universal funl:tlon of tht' reduced

distance. For compression by a bare surface, the reduced distance is defined simply

as u. = 0/11, where 0 is the distance between the surfaces. For eompIt"!ssitJI! hy a

seeond brush, u. = D/(211). The two cases can be treated in combinatioll n:,iuJ.!: rut'

number of brush~coatedsurfaces, /16, so that the reduced distance ill e1.\('U f'lL.';~· is

(·!.l8)

For u ;:: 1, each brush is unperturbed and the free ener~y per unit area of a siu/o!;lc'

bntsh is just

EO=!i-, 14.19)

where Fe is the free energy per chain of the uncompressed polymer brush, lUld ~ is [hI'

average area per adsorbed diblock molecule, As the brushes arl' (:ornpr~st-'d. It < 1.

the free energy per chain increases. This change can be expressed as

ilE ~ E,/(_).

and usitlg Eq. (1.21), the universal function l(u) for ~l\.ve theory is

5(1 "')l(u) = - - + U
Z

- -=- - 1 ,
9" 0

(.t.:W)

(-(.21)
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As already noted, in the earlier theory of Alexander and de Cennes the scaliuJ;!; relation

for the free enerKY and the brush beiJ;!;ht. obtained in a mean field approximatiou. an'

the same. but the numerical prefactors differ slightly in value. Fur tht· hrnsh hd;.:hr..

the numerical prefactor is (1/2)1/3, and for Eo it is (:3/2-51:1). The l:hUllJ;!;t-' ill tht·

free energy of a compressed brush can be expressed in the SUllle functioual furm <t."

Eq. (4.20). but with f(u) given b,J.'

2(I u')flu) = - - + - - 1 .
3 u :2

(-1.22)

For small compressions, 'U ;S L less energy is required to compress tbe \IWC brnsh

than tbe ADC bnlSb, Le., it is softer. For large compressions, the theories predict

the same functional dependence on u, although the numerical prefactors, Eo. diffN.

L"sin~ tbe Derya/-,'Uin approximation. Eq. (1.28). for each of tht' al.ml.... ril' tlwori!'S. tll"

force is given by

In order to compare directly tbe analytic predictions witb numerical SCF ci.\kn-

lation, the reduced distance between the surfaces is expressed in a mauner uUalOI-\"OIlS

to u defined. through Eq. (4.18). but \Ising the rms thickuess of tbe uncompressed

brnsh x~.. , instead of It

_ D
u=7lt.~m•.

(-1.2,1)

During the compression the density distribution can be characterized hy its rm.<;
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thickness defined by

x ....... =
foO' ... dx X~¢8(X)

foD;~. dx ¢B(X)

If the opposing brushes do not overlap, or if the bare surface does not compress

the brush, Eq. (4.25) defines tht! r1n'-; thickness of uncompressed bmsh. l..~",~. and is

equivalent to Eq. (3.21). For compression by the repulsive surfa.<.:e or the neutral for

surface, Eq. (4.25) describes the single brush. For the compression of two brushes.

Eq. (4.25) describes tbe total polymer distribution up to the midpoint between tht'

surfaces.

Experimentally, force (F) versus separation D data i.U"e presentt'd <I..."; F(D)/ H. awl

are detectable on tbe order of a few p..N/m {391. and so the calculations t'xtt'1H1 (0

!>urface separations corresponding to this order of magnitude in the force.

As discussed above, there are three modes of compression that can occur witbout

incurring tbe complications of bridging. In section '1.2 .. 1 tbe eqlliv-alence of the two

cases corresponding to two brushes or a surface which is nt'lltral for adsorptiou ha....;

been shown. In the following section tbe compression of polynwf hmsh hy fl!pnbi\'t,

and neutral surfaces will be discussed. Next the problem of the iuterpeLlt'[ratiol1 \\·ill

be addressed.

4.3.1 Compression by a Repulsive Surface

As long as tbe repulsive surface is far from the tip of the bmsb. the density profih'

remains tmchanged and tbere is no force between tbe surfaces. 'vVhen tbe repulsiw
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fi~e 4.2: Compression of tbe polymer bntsb by a repulsi·..e surface. forL't' Cl1rvl' for
polymer characterized by Z = LOoo. and!: = LBO nm2 as a funnioll <If tl.1t' Sf>1l<~mtitlll

be[\\-een tbe plates (al. Density profile of the polymer bnL..;h clmin)! th.' ,·ulllpr,-:-....iull
(b).

surface reaches tbe tip of tbe brusb. the density profile :o'tarts to be altl'rt.,.l. A typi.·i.d

fon.-e curve, as weU as tbe pol)"mer density distribution. are shown as functions of tbe

separation between the surfaces in figure 4.2. At tbe initial stage of tbe comp~iol1

0111y the tail reJPoll is compressed and the body of the profile remain... ~lltially

ILnchanged. The density profile still has all the features of the lI11comprc:..."'it!d brnsh.

Le., a depletion layer. tbe main body throughout whicll the density del:relL..;es mono-

tonically, and an exponential-like tail region. Witb decreasing separation. the profile
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becomes more L-ompact. the tail region vanishes. the depletiuu layer startS to dillLil.l·

ish, and the profile becomes flatter. For a polymer with Z = 1000 and I: = 180 nm"l

the rms thickness of the uncompressed brush, z'l...... is approximately -l5 nm and at

approximately this separation tbe profile bec..-omes ste~like and the force between the

surfal:es starts to increase rapidly.

The (on.-e curves for all cases studied are shown in finure -1.3. .-\.-; is apparf'l1t from

this figure, with the increase of reduL-ed surfaL'e COllcentratioIl the force curv~ ht"I'uuw

steeper. Similarly as the degree of polymerization of the danldin.l?; bluck tlt-I'ceIL"""',

the force required to compress the brush by unit lenKth becomes p;reater. {n p;etll'raL

the brushes comprised of shorter chains and higher reduced surfal:t' Cutlct:utmciuu an'

harder to compress.

To e.xtract scaling dependem:es of the (orce as a function of the de;...'l'et' uf poly~

merization and surfaA.:e concentration. the data (;oUapse technique was u:;ed. In thb

method one assumes that aU the force cun'es can be described in terms uf a st,:altrl

distanl:e and fon.-e. and tbat tbese sc;alerl V"d-riables obey power law depc.ndl~nl."'t$ un Z

and Eo i.e.. one looks for tbe PO\\"Cl"S n. 8. -, and e sucb tbat

l·I.:!(jj

Kives the best description of aU the force curves. Equation (-1.26) can tben he writu:!Il

F.,(D) = g(D,,) . «.'7)
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figure 4.3: Compression of the polymer brushes by a repulsive surface. Fon:e curves
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(1' "" 23. The symbols are the same as in figure 4.3 (uJ.
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where

(..L!8)

is a scaled force, and

14,29}

is a scaled distance. Each force l:urve can be labeled by the corrcspondiuJ;!; dep;ree of

polymerization, Zi, and surface concentration E j . If one defines

J. .., ., _ J dX[F~~{x) - F~l(XW
',).- oJ - t I dx[F~~(x) + F~'J (xlF .

and

Ilo,P,7,C) ~ L I;J,;'J"
'J,i'J'

(·I.:.stJj

14.:]1)

then minimizing 1(((,.8,1',<:) determines the scaled variables. To find th~ minimulIl

of 1(n,li. "f, <:), the force was e..,,<pressed in 1-lN1m and the values greater t!Jan 1 J.l:\ / III

were used as an input to tbe minimization routine E04.JAF supplied in the :\.-\G

library [1341 (tbe details are discussed in .-\ppendi"{ A). it was found tbat the best

description of force curves is given by 0' = 0.64 ± 0.0:2. ;i == -1..17 ± U.U:'!'

0.87 ± 0.02, c = -0.:32 ± 0.02 and the result is presented in fih"Ure -tAo

The important conclusion, which can be drawn from the fih'ure -tAo is that if tUI'

force curve can be described in teI'Il15 of scaled variables. then all tht' forn' l·1trVt,:,>

should collapse to a single curve. This is the case for moderate and hig-h compres-

sian. At the initial stage of t'Ompression, there is considerable dispersion from tilt'

universal behavior, but interestingly, data sets which corre!>-pond to differeD[ deJ;!;rccs
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Figure 4.4: Compression of the polymer brush by a repulsive surface. The scaled
force, g. as a function of scaled distance. as defined in Eq. (4.26) for all dev;rPl-' of
pol:~,.merization.Z. and reduced sllrface concentration. fT" Tht-' fun'/;,. FIR ill IUllrs
of J1.Njm is scaled by znr;d. and distance between the plates t'xpr~st.·d iu [iIll i:-. ~';d"d
by Zl1:'. The values of exponents are ("r = 0.64. J = -1.;J7. -, = 0.87. : = -lJ.:j:,!

with uncertainties ±0.02.

of polymerization but the same value of u' are well de>cribed by single functions.

_-\ccording to the MWC theory, if the distance between the plates is expressed in

terms of reduced distance. ii, given by Eq. (4.24) and the free enerv;y ditferf'llI.:e. ~E.

given by Eq. (.1.20) is scaled by the free energy of the uncompressed brush. Eo. then

aU the numerical results should once again collapse to a single curve. which would be

given by Eq. (4.21) with 'U replaced by u = ujV5. The result ofthi:; procedure. along
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with the MWe curve, is presented in figure 4,5. In scalinl( the munerical and )'I\\"('

energy curves, the numerical and MWe values for Eo were used respectively.

The numerical results follow the general form of the universal function predicted

by MWe tbeory, but they all fall above that prediction, and as in the case of scaled

variables, there is considerable dispersion. Bearing in mind that the normaliziul{ cou

stant Eo is about 25% higber for the numerical values tban for the analytk prediction.

the overall dilferenc:e between the numerical and analytic curves is ahom a factllr of

2 to 2.5, depending on which data sets characterized by the same value of fT' art'

chosen for comparison, As in the C<l.se of scaled variables, data sets correspolldillK

to different values of the degree of polymerization but the same vallie of (1' an· \\'t·11

described by a single f\mction.

The tesults presented in fi/,'lUes 4.4 and 4.5 suggest that for finite (1'. [he force. or

correspondingly the free energy difference, can not be described in terms of a lwiversal

function of the scaled or reduced distance between the plates. Data sets character

ized by tbe same value of a' . however. can be described by a ~ill,l!;le fuw:tioll of thesp

variables. This sup;p;ests that the radius of K}'Tution of tbe fn'!f' molecule. R.r i:-; a rplt'

vant length scale during the compression of tbe polymer brlL'.b by a n']Julsin' "urfal'"

Furthermore, these results indicate tbat, during tbe initial stage of compres,-;ioll. [ht'

main body of tbe profile is essentially unchanged and tbe force is due to the dt'for·

mation of the tail rep;ion. since the overall characteristics of tht' density distribntion

withb the brush depend primarily on the reduced surface concentration. (1'
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figure 4.5: Compression of tbe polymer brush by a repulsive surface. Fn't' f'u ..r~y
difference per unit area in J.l.t:-</rn scaled by free enen,'}' of nncornpre:-"'>l'd brush iL";

a function of the reduced distance given by Eq. (..(.24). Symbols are the ruunerkal
results corre..ponding to different values of (I" • and solid line is the analytic predktioll
of MWC theory, Eq. (4.21).

There is, however. another way to look for the universal behavior of the polymer

bmsb during tbe compression. If a simple measure of the brush deformatiou is defim·d

(·I.:rl)

the dependence of the force on this variable caD be examined.

For the MWe profiles, the density profile remains parabolic durin,!!; tilt' compres-
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sian, with non zero den&i.ty at the outer edge of the protile, and simple algebra yields

(4.33)

The calculated values of~, and the curve of Eq. (4.33) are illustrated in fih'Uce ·1.6. For

small it, i.e., very large compression. ~ is a linear functiou of separatiuu lit,twl-'l-'U til"

plates, D, and the numerical results all reduce to the analytic fUllctiuu uf Eq. (.I.:.s:j).

However, for finite (1"", the initial deformation commences at lar~er values of u. wLI~n'

most of the deformation is occurring in tbe tail region. Once aj.(ain. tbt, h'TNltest

difference occurs for the smallest 17'. which is consistent with the fact. that relatiw

to the entire brush, the tail region i:; largest for smallest 17'. For darity. the "'alnes

corresponding to (1"' "'- 6 and 17" ...... 12 are DOt shown in the D/-"llre -1.6. they lie ill

between the values corresponding to the minimum and ma.ximum values of fT"

Figure 4.7 shows the same results as in figure 4.5. but plotted versu~ f.. Even

at small deformations. the free energy differences aU rt!ducc mach more closely to a

~ingle function, which is similar in shape to the analytic predic·tiou.•uthull).!;h ditft'n'ur

in magnitude by the same factor as in figure 4.5.
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Figure 4.6: Compression of the polymer brush by a repulsive surface. The parameter
{ plotted as a function of the reduced distance tl. good. solvent. Symbols correspond
to the numerical values, and the solid line is the analytic fu.nction of Eq. {«.33).

4.3.2 Compression by a Neutral Surface

In this section. compression of the polymer bnLSb by a :<turfal:e wbid..l is [It'utral

for adsorption is discussed. As discussed earlier. such a system l~haral·t~rizcd hy a

separation D can be described in the same terms as nvo brushes attached to surfan~s

separated by tbe distance 2D. However, since the force between the plates is n'latt><!

to the me energy difference per unit area, the force in tbe case of comprcssioll of 11

single brush by a neutral surface is one half of the force netween two brushes.
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Figure 4.7: Compression of the polymer brush by a repulsivE' surface. good SOh-ellt.
Free energy difference per unit area scaled by free energy of uncompr~ed bmsh a..<;

a function of tbe parameter <given by Eq. (4.32). Symbols are the uum~rkal remits
corresponding to all values of (1' • and solid line is the analytic prediction of :\I1WC
theory, Eq. (4.21) with u replaced by ( through Eq. (4.33).

:\ typical forc.:e ('urve and the density profiles of cht' <Iallg-Iifl~ hlock tlmiu!-\ ,",'[l/-

pression of tbe polymer brush by a surface which is neutral for utborpciou art' shuwll

in figure 4.8. As in the case of compression by a repulsive surface. at the initial st<l).\"t'

of compression only the tail region is affected, and the body of tbe profile remains

almost unchanged. In this case. however. there is an increase in the density in tilt'

neutral surface. and as the separation decreases the long range force het\welJ ch.-

surfaces increases gradually.
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Fignre 4.8: Compression of the polymer brush by a neutral surfiil.-e. ~ood sulwut.
Foree curve for polymer characterized by Z = 1000, and ~ = 180 nm:l a.... It fuucriull
of the separation between the plates (a). DeIb;,ty profile of th~ polymer brush dHrin~

tbe compression (b).

The comparison between c.:ompression by repu.Jsin~ and neutral ~1.trral.'L'" b IJrt'-

sellted in figure 4.9. The repulsi\-""e interaction between tbe ::."Ulfa(;es Iwt.:orues ill'-

tectable for compression by a repulsive surface at a larger distance than for compres-

sion of the polymer brusb by a neutral one. This indicates that during the initial

compression by a repulsive surface the deformation of the tail re~oD affects [lit' el.l-

tire profile, while during compression by a neutral for adsorption snrfact' only [he

outer regions of [be bnlsh are affec[ed. Thus, for the ini[ial compression hy a uputral
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FiK\lre 4.9: Force between the surfaL-es as function of separation for tbe pol),u~r brush
characterized. by Z = 1000 and u· ::: 12. good sobrent. Filled eirdes corr0-polld to

the compression by a repulsive surface. open squares are the numerical re..u.Its for tht>
compression by a neutral for adsorption surfaL"e.

surface the body of the profile maintains its original shape and starts to deform at

~>maUer separations.

.-\s in the <:ase of compre~ion by a repulsive :mrfact!. thl' forn' ("'lll 1)(' iluaJyzl'tl ill

terms of scaled variables and a universal function of the ~lJaratiul1. L"siuJ,{ j'xat'rly

tbe same technique of data collapse, Eqs. (4.26)-(4.29), it was fonnd that till' llt'st

description of all the force curves is giv-eD for

loU")



for 0' = 0.92 ± 0.02 and 13 = - 1.72 ± 0.02 with scaled d.istaDl.~

D..,.,= Z~E:!'

l29

(.I.a;'1

for "'1 = 0.89 ± 0.02 and £ = -0.35 ± 0.02. In (:bapter 3 it was slLowu tbat rbl' frl't·

energy of the uncompressed brush scales as £0 tX ZO.92=O.O'l!:-IJi6=OJrl. an,1 tb.. rm.o<

thickness of uncompressed brush XO......... ex ZOM=o·ll'2E-G.xl:O..0'2.

Since the values of tbe e.'<poDents 0' and fJ are essentially the same 3.<; tlLoSf' for

the free energy, the scaled forr.'"e is equivalent to the Cree energy differem.:e per uuit

area for a given distaor.'e between the surfaces scaled by the free en~rKY per lIuit area

of the uncompressed brush. Similarly, the values of tbe exponents l' iwd ;: art~ vcry

similar to those for the rms thickness, and tbe scaled distance is equivalent to tlLe

redur.-ecl distance. u. given by Eq. (4.24). As W'dS discussed before. i.lCcordiIl).:" to thl'

~IWC tbeory. if the Cree energy difference. .J,.E. is sca.led by Eo. and rb,' di-.tallt"t·

between the plates is expressed in terms of u. all the fon.-e cltn~ shunld ,·ullal-J."if'

to a single curve given by Eq. (4.21) with u replaced by u. Fiwue ·!.LO shows the

numerical results for the free energy difference, aE, as a function ofu for compression

by a neutral surface together with the analytic prediction of ~lWC. Comparin~ tbe

figure 4.10 with figure 4.5, tbe results are much less dispersed and in better aKCeemt>Dt

with the analytic function of ~lWC. However. the normalization t.;OllSti.lltt Et L-; about

25% larger for the numerical results and this implies an overall differem:t' of abour

a factor of 1.5 to 2 depending on which set of data, i.e. which vahu~ IJf n° . is lISt'li

for comparison. This result is consistent witb Watanabe and Tirrell's comparL';<)ll of
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Figure 4.10: Compression of tbe polymer brusb by a neutral for adsorption surfact'.
good solvent. See tbe caption to fi~e 4.5 for more details.

their ob..'iervations witb tbe MvVC theory [521.

Fiwue 4.11 shows tbe brush deformation (a~ a fUIH:tioll uf till' t"t'dul"l"[ distalUT

ii: for the compression of the polymer bntsb by a neutral surfact'. FruUl ti~lU"t' LIt.

it is apparent that tbe brush would encounter tbe neutral surface beyond Ii :::: ..,;5.

especially for small IT· • Since (remains essentiall:!o' unity in this case. it means tuat.

initially, only tbe density at tbe outer region of the brush is cbanging, with virtually lIU

brush compression or detectable force developing until smaller distances he[wetm [lit'

surfaees (see fig. 4.8b). Since it was shown that the compression by a neUtral surface is
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2.5 3.0 3.5

Figure 4.11: Compression of the polymer brush by a Deuttal surface. good SUIVl~llr.

The parameter ( as a function of the reduced Wstan<:e ii. Symbols mrrespolld to the
numerical values, solid line is the analytic function of Eq. (,\,.:3;3).

equivalent to tbe compression of two identical brushes. it can he also condudt·d frolll

figure -1.11 that, for initial compression. tWO OPPOSillJ{ hrushes GUl illtt~l·pt-'u('[ra[t·.

The interpenetration of tbe bmsbes will be the subjel:t of the next section.

Finally, figure 4.12 shows the equivalenee of all three ca:;es. when exprt'~d in

tenns of the parameter {, introduced in Eq. (4.32). All the calculations of the free

energy differences per unit area of a single brush compressed by a repulsive slLrface. a

surface which is neutral for adsorption or by a second brush, are all ind\ld~d ill thi:-;

graph. This indicates that the results of the numerical SCF theory. wht!11 exprl'S.'ied
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Figure 4.12: The equivalence of the three modes of compression. I-;"uod soln-tH.. TIll'
free energy difference scaled by the free energy of um.:ompressed sys[l~m ru; a functioll
of (parameter defined in Eq. (4.32).

in terms of a suitable brush deformation characteristic. caD be dest:rihed hy a .sin~le

!tweeiOD.

4.3.3 Interpenetration of the Polymer Brushes

The analytic theories assume that, when two identical bntshes are eompressed.

they do not interpenetrate. Experiments do not provide a dear measure of any

interpenetration. as none have been performed on the density profill' of rill' Ilrllsh



originating from each surface in this case. As was mentioned in chapter L an arKUment

for tbe noninterpenetration assumption is that the stretching which OC(:urs in the

single brush is caused by swelling into the pure solvent bath in order to min:mizl"

the interactions within the brush. When the two brushes are brought together. this

tendency is removed [391. This argument, however can be only applied to tht:' scaling

picture of tbe ADG tbeory, in which it is asstuned. that all the wain:; are uuiformly

stretched. In tbe analytic SeF theory of MWC, the span: available to relit'vl' t:ro\\'ILillg

increases witb increasing distance from tbe sllrfa(."e. and the free end of l'vt>ry {:haill

has zero stretching energy. If one assumes that the density" profile remains paraholic

with a cusp at the midpoint, then the non·interpenetration follows, since a neritiolls

classical particle will always travel to the nearer of the two surfaces [29]. In the presel.lt

formalism, none of these assumptions are made and, in general. the opposiuJ.,!; brushes

can interpenetrate. Furthermore the formalism outlined in secriun 4.2 alluw:; for cht'

dctennination of tbe density profile of each brush. Eqs. (-IA)-{·1.6). and tlw qllt'Stiuli

whether the opposing brushes interpenetrate during compre:;sion can Iw pro!ll'([ ill

detail.

Evidence for bmsb interpenetration in the numerical calt.:ulatious has aln:ady a~

peared, i.e .. in comparison of figure 4.6 and figure 4.1L For comprf;'SSiUll of twu

bmshes the Tms thickness of tbe total density distribution IPB(X) for 0 :S .J: :5 0/2

remains virtually unchanged beyond ii. '::::: v'5 , especially for small (1'. During the

compression of a polymer bmsh by a bare, repulsive surface, the bmsh ch,u,wterized



by small values of u- is deformed first for it .;;: ,;s. The chaius in a bmsh char;wu'r-

ized by the smallest (1" are stretched the least, but when they are compressed by it

repubive surfa(.-e they retract the most. This is not the case durin/-{ the cumpressiun

of two brushes which means that a finite chain density remains in the middle betWftOD

tbe surfaces, so tbe opposing brushes do interpenetrate. This situation can be under-

stood on tbe basis of configurational entropy, since restricting all of each chain in tbe

volume described by x < D/2 would lower the entropy (135].

In Figure 4.13 tal, the rotal density profile for the polymer char..wtt>rizt'd hy

z = 1000 aud !: = 180 DOl:.!, which correspollds to fT" =::: 11. cOlllprt'S.~·d to tIll'

distance which corresponds to U. = 1..,15, is shoWtl. Tht' solid liUt.. n~lJrt'St'l..Lts rilt'l["IJ-

sity profile predicted by the analytical theory. Figure 4.13 (b) shows r.ht' eOlltrihmiulJ

of each brush to tbe total. The numerically generated profiles are flatter thaLL thosp

of ;"lWC, and the individual brushes interpenetrate up to a distance 1;:3 of their total

extension.

The interpenetration of tbe opposing brushes for surfaces separated by a distiU.ll:e

D, can be quantified by the quantity I{D) defined as (101)

ltD)
fopndx¢En(X)
foP/; dx q,8(X)

(4.:36)

This expression. Eq. (4.;36) is equal to the fraction of mOllomer:-; from each brush that

penetrate beyond the midpoint. It can easily be shown to be equivalent to

(4.:J7)
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Figure 4.1:3: Compression of the polymer brush by a second identical hrush. ).(<1od
.::iolvent. Total deusity profile for tbe polymer with Z = 1000. ~ = 180 lllll:':. llllllll'ri"a[
and analytic profile of .:\HrVC theory (a). Contributioll of t'<\ch IJrnsh to tilt' t"t.d
density (b).

Witten, Leibler and Pincus [1361 estimated the depth, c). to which the opposinK layers

interpenetrate to be

. (Z') 'I-'
Orx. D/2

As shown by Murat and Crest (101], one can obtain <\ scaling prediction for tl.u-

overlap by assuming tbat the density associated witb eacb bntsb at tbe center i:; oue

balf of tbe total, and that the profile of each brusb decays exponentially beyond the



midpoint with characteristic length 6. Integration yields

(4.391

where ¢lh (~) is the analytical value of the polymer volume fractiol1 in a brush

compressed to D/2 < h. Using the MWC prediction for the polymer density at thi"

midpoint and Eq. (4.38) for 6, gives

liD) '" z-'I'r;<I'u-<I' [1 - (?oJ] (HO)

The quantity, I(D), is defined for distances between the surfa<:es fur it :5 A. for

il ~ J5 the interpenetration I(D) = O. Since 11' is au important and rt"l~\"allt

quantity in the theoretical description of the polymer bmshes, it L<; useful to exprpss

I(D) in terms of this quantity. Doing so, Eq. (4.40) transforms into

I(D) or: Z- 2/ 15q , -~/9 i(u) .

with

(HI)

H-·I:.!)

Figure 4.14 shows the result of fitting functional forms of Eq. (-l..1O) to chi' ullIlU'ril"al

SCF results. For this fit, all results which satisfyii ;:: 0.6 were indudl..·d. i (It) a.'i ill

Eq. (4..1.2) was used, but tbe powers of Z and (Y' were determined by the tit It was

found that

l(D) (X Z-o.OJa , -0.015 i(ii) .

with the uncertainties ±0.02 in the values of exponents. The analysis performed here
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Figure 4.14: Interpenetration of two opposing brushes. I(D). as a function of the
reduced distance u, good solvent. The open symbols represent the lltuuerical values.
solid liue is the line of the best fit w the fum~tiona.l form of Eq. (-1..12) for all unt.wrl'·it!
values which satisfy fT" '"'" 2:3 and It ,;:: 6. The inset shows d.w dl·taib for tit,· iuitial
st<\ge of the compressioll.

is very similar to that described by Eqs. (-I.26)-(4.:31), but instead of four exponents

only two have to be determined.. Overall, the fit describes the curves very well and

the fitted values of 0.03 ± 0.02 and 0.45 ± 0.02 can be compared directly with values

fOlmd by Murat and Crest, which are 2/15 ::::: 0.133 and 4/9 ::::: OA·L The sli/-{htiy

weaker dependence on Z for the numerical results is consisteut with the weaker than

linear scaling of the brush thickness with Z.

As is apparent from the inset in figure 4.14, there are interesting effects where the
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brushes first overlap. Those with lower values of a' start to interpent'trate for hij.{hl'r

values of the reduced distance, This is consistent with the picture that, relativt' tu

the entire brush, the tail region is the largest for smallest a' For small values of

the reduced distance, U < 0.6, and q" ..... 3 the numerical results start to deviate

from the universal format. This occurs as soon as the tail of the individual brush

approaches the opposing surface. This deviation must occur since the functional form

of i(ii) diverges as ii -oj. O. On the other hand, a reasonable upper bound of ltD) can

be calculated from the e..''(treme case of each brush profile beinv; fiat ,md exteudiu).(

fully to the opposite surface. In this case, l(D) -oj. 1/2., so the data lb plotted UII

figure 4.14 must be bounded by (ZO·03 a • 0.~5/2. ::: fT" 1/2/2). The [l>sults shuwlI dl"[l'

are consistent \vith this result, with the greatest deviation occurriulo!; for smaller fT'

The onset of the deviation is at larger u for smaller a' , occurring near u ::: lJ.6 for

q" = 3, U ::: 0.4 for u" = 6, and ii ::: 0.4 for u· ;?: 12..

In summary the numerical results presented in this section confirm tbe intcr-

penetration of tbe opposing brushes during compression and art> in the V/'ry g"Ood

agreement with the numerical results of Crest and :\huat [101]. HO\wvt'r. lll1l~ <lv;aill

one can see the importan<:e of the tail rew-ons and releV'dlH:e of the rt>dncl'd surfat'l'

concentration, a' during the compression, effects neKJected in the :\[0 stltdi..s uf

Crest and Murat [1011.
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4.4 Compressed Polymer Brush - e Solvent

In this section the properties of the polymer brush immersed in a A so(venr uud

compressed either by the second identical brush or the two t:ypt>;>; of bar.' sllrf;It',~

are investigated. As in the previous section, the main focus is the comparisun "f

numerical SCF theory with the analytic predictions given by Shim illld Cates [.WJ in

their extension of the MWC analytic model of polymer bntshes in a good solvelU [:,19.

30J.

Once again, model calculations for five different values of the deJ;!;ree of poly

merization and three different surface coverages for each Z have been performed. a.s

summarized in Table 3.4. As before, the free energy of the uncompressed brush is

used a scaling variable, hence. the parameters used in the numeric.J calculation an'

the same as in chapter :t i.e.. the solvent pulymt'r interactiolJ paramNI'1" i:-; \ = lJ ..'j.

the statistical segments are chosen to have unit length. and tilt' solvt'lit and pol.\·,

mer pure component densities are set to unity. The reduced surface coul:pntratioll is

calculated by means of Eq. (3.36) with v = 1/2.

Before analyzing the results of the numerical SCF calculations. a short uvervit·\\·

of the anal}'l:ic theory of Shim and Cates for the Gaussian chaiu.." will bf' prest-'llted.

As discussed in chapter 3, they predict an elliptic density profile for the brush in t-)

solvent, given by Eqs. (3.42) and (3.43). Under compression. of two brushes, there

is no interpenetration of the opposing brushes, and the density profile of each brush



1..0

retains its elliptic shape. It is given by'

(4.4-1)

for 0 ~ x :::; D/Ub < h, where h is the thiclmess of the uncompressed hrush. Eq. (:J, ..n).

and the quantity .4 (-:;) == .-l has to be determined so that

(-U5)

(.. ..IG]

This leads to

[
rr/2 ] '"

.-l ~ {Jt- ({j' + a""in ('i)

For Rb = 2 the second brush in the interval [D/nb, D] is described by the same

functional fonn as Eq, (4.44) with x replaced by D - x. and Eq, (4.46) has to be

solved numerically.

Ifone follows the formalism outlined in the work of ShiOl and Cares. 'LOd takes t111'

self-consistent potentia12 to be proportional to <Pk(X), then the ratio of the fret" enerKY

per unit area of the compressed brush to the free enerlQ" of the tlllcompreSM'd brnsh is

independent of the degree of polymerization and surface coveraKe and depends only

all the reduced dista.nt:e, -il, as in Eq, (4,18). Hence, the free eller!O'" diffcrt"llt'l' ll ..tWl'l'lI

the compressed and uncompressed brushes would be des:ribed by a siOK11:' llLliversal

curve, The free energy of the compressed brush can be calculated as ill the :'.1\0\'('

lAs i1nroduced in Eq, (4.14), nb = 1 far asingle brush comptessiau and n~ = :! fut the cmnpressiull
of the two brushes.

~UsiDg Flory.Huggins expressian far the Cree energy of mixing F... ..., [51 and relating the effective
potential to the F... ..., via the functioual derivative V = -6F(t/I(xJ/6dJ (40J. III good solvem. the
~IWC theory predicts the self·cansistent potential to be proportional to dJs(x).
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theory by selecting a chain near the surface and prof:,'Tessively adding dmius. first

the brush is built up to the equilibrium height. Dint>, correspondiuK to suw!"' surfan'

coverage E l , then the brush height is fixed and the (:overage increased from ~I w

E. The numerical procedure is described in the work of Shim and Cat~s [-tol .wl!

J\-I\rVC [29]. and the result is given by

where A. I satisfies

1·1.<8)

In section 4.3.1. a simple measure of tbe deformation of tht~ po[ynwr brnsu. (. Wit.";

introduced in Eq. (4.32). Since x~m. = h/2 for the p.l1iptic profilf' of tht' IlUl·uUlpn·s.";I<t!

brush, it can be shown that t: is related to u by

"

JK(A.")
{~ - .

:1 1(..l, u)

with

/1·4,") ~ [~Jl- (~)' + ",csin m]
[ u~ (")" ( "')""]K(.4,u)= AvI-Ai+arcsin A -2"A I-Ai

and the quantity A has to be determined via the solution of Eq. (-I.-Hi).

(·1"'{9)

(·1.50)

(4.51)

Finally, in order to characterize the interpenetration. oue can n"Glll dmt w"'ordiug:

to Witten, Leibler and Pincus [1361, the interpenetration depth. J. dues !Iut dl'pt-'ud
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on the solvent quality and is given by Eq. (4.:l8). Thus, the analysis performed in sec~

tion 4.3.3 is also applicable to the polymer layers in e solvent. Using Eqs. (4.J9).(--i.H)

and (4.46), it follows that l(D), defined by Eq. (4.36). would satisfy

(-t.51)

wbere ia(u) is tbe function of reduced distance only. and (:a1l he t'xpress\·d as

[
'(I "') ]'"ie(u) = u-l/J '2 - A'l" •

;i~+arcSin(;i)

where om:e again the quantity A bas to be determined via the solution of Eq. (·1.-16).

In order to e.'Xpress Eqs. (4.46)-(4.53) in terms of ii, the relation u. = iij2 bas to be

used.

L'sing a", rather than~, Eq. (4.52) transforms into

ltD) xa·- 2/ J i a ('u). (.1..54)

which is a very interesting result: the interpenetratioll. /(0) expressed ill terms of

reduced distance. u. and reduced surface eoncentration. ,,' dUI's !I.lt dl'lJl'nd Ol! rill'

degree of polymerization.

4.4.1 Compression by a Repulsive Surface

In figure 4.15, a typical force curve and the corresponding density distributions are

shown as a function of the separation between the surface with a brush and a bare

repulsive surface. Qualitatively. the force and the density distributions are similar
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Figure 4.15: Compression of the polymer brush by a repulsive surface, H solvent.
For<."e curve for polymer charactelized by Z = 1000, and E = 45 flm2 as a fnnction
of the separation between the plates (a). Density profile of th~ polymer brush duriu~

the compression (b).

to those for compression of the brush by a repulsive surfacf' ill a Kood sohreut: cht'

long-range force between surfaces is purely repulsive. and monotonically iW:[t>ases

with decreasing separation. The density profiles, however. heeome motl:' compact

with deformation and. even for the moderate deformations. are step-like. In ).(f'n~ra1.

since the brush in a 8 solvent is more compact and th~ free ~l1er},"Y is slIIalll'f thall ill

a good solvent (the binary interactions, described by a exduded volUllle iutt-'fiU'tioli

parameter, vanish), less force is required to compress such a brush.
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Looking for qniversal behavior of all tbe force curves describiug" tbe cumpres-

sian of the brush in these systems, the analysis described in the prl:!viuus section.

Eqs. (4.26)-(4.31) was performed. The best description of all the points wh.id.l satisf~'

FIR 2: t 1J.N/m and 17' 2: 3 is given by

F(D) =Z." (---.!!.-)
R .... 9 Z-'E! .

where (t = 0.92 ± 0.02. tJ = -2.04 ± 0.02. "y =0.88 ± 0.02 and: = -0.-12 ± 0.02. In

chapter 3, it was found that the thickness oftbe uncompressed brush in a e solvent can

be described by an approximate power law dependence x~m~ (X 20.9.11:-U.47. Eq. (:3.-15).

which is very similar to the scaled distance determined through values of ~.- and :

respectively. Similarly, in chapter 3 tbe free energy per unit area of tbe llU(·omprt's."et!

brush Wl\S found to satisfy Eo :x ZE- 2 , and the::;e powers are virtually the SaIlLt' as

V'dlu~ of (t and tJ.

These results imply that if the free energy difference per unit area lWtWt't'Ll th..

compressed and uncompressed brush is scaled by Eo. and the distance between tht'

plates is expressed in terms of tbe rl:!duced distance, U. Eq. (4.2-1.). theLl all the forn·

curves should collapse to a single curve. The results of the numerical SCF cakula-

tions togetber with the theoretical curve calculated according to the Shim anti Cates

formalism [40J are shown in figure 4.16. For darity, only extreme values of 17' are

shown. Once again, the points which correspond to different value::; of reduced surface

concentration, U' , are dispersed from each other for weak compression. but overall

are reasonably well described by a single curve. This effect SUAAcsts. ,I.'> itl thl-' (';1."1·



l45

10' ~--~--~--~--~-----,

10'

0.0

o cr* - 3
• cr* - 12

-- analytic prediction

1.0 2.0
Reduced Distance

3.0

Fi~ue 4.16: Compression of the polymer bmsh by a repnlsiw sunace. (-J solvt'nt.
Free energy difference per unit area scaled by free energy of \lllcompres.sed brnsh as
a function of the reduced distance given by Eq. (4.24). Symbols are the numerkal
results corresponding to different V'dlues of u" . and solid line is tile analytic prediction
of Shim and Cates [40).

of good solvent, tbat mainly tbe tail region of tbe profile is affected during the initial

compr~ion. In a e solvent tbe brush is more comp,u:r and the rail rt'holOll i:-; Il'SS

pronounced tban in a good solvent. thus there is less scattt~r of rho' clara. Silllilarh· rho'

numerical results fall above the analytical prediction and the ra.u~e and thl' lllah'1.litlldt,

of the force are underestimated by a factor of 2.

The scatter of the numerical results at the threshold of the repulsive force suggests

that. as in the good solvent case, the parameter. {, describinJ,"\" the deformation. might
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he a better length scale. The dependence of ( on the reduced distance ii is presented

in figure 4.17. The symbols correspond to the numerical values and the .solid line

is the analytical prediction of Eq. (4A9). The data sets un onh~r of fT' ..... :j starr

to be deformed for larger separation and approach the ellipci(: profile Iwhaviur at

high compression. The data sets characterized by J" - 12 are well describf'J hy

tbe analytic curve, although tbe profiles start to deform for ii slightly greater than

2, which is the value predicted by the ana1yt;ic curve. Once again. tbe discrepancies

between the numerical and analytic results reflect the fact that the latter neglects

the tail region. For the larger values of (1'" the tail region is relatively short ilud.

with increasing fT· , tbe munerical results for the initial compression are in hettl'f

agreement with tbe analytic prediction.

Considering the parameter t: as a universal length scale, and free eneII0- per unit

area as the scaling variable for the free energy differenl:e. aU numerical data ,.;Pt,.;

do collapse to a single cllrve and show reasonably ~ood a~rf'ement with t!Lt' <llmlyti('

prediction. However the numerical results are above the line of the analytic prediction.

This is shown in figure 4.18.

4.4.2 Compression by a Neutral Surface

Figure 4.19 shows a typical force curve and the correspondinK density profilt's for

a brush characterized by Z = 1000. and E = 45 nm~ compressed hy a ban' snrfac('

which is neutral for adsorption.
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fiKUCe 4.17: Compression of the polymer bnash by a replllsi ...... :mrfao'. H SUIWIlL

The parameter { as a fuoction of the redm:ed distau(y u. Symhul... "urrt'SI}OlUci r" rh,'
c.u.merical values. solid line is the analytic' function of Eq. (-1...1.9).

The introductory remarks in the first paragraph of section 4.3.1 for a cOUlpr~ion

of a polymer brush in a good. solvent by a such surCa.<:e are appli':able for this solvenr.

This can be seen through l:omparison of figure 4.19 with fiKure ·US.

Turning attention to the universal behavior and lookin~ for the flw(:tiun H and

corresponding powers 0, {J, "Y and E which give the best description of the Coree curves.

it was found that, for the regime 3 ;S o· .:s 13, the best values of the exponents are

0: = 0.92 ± 0.02,.8 = -2.04 ± 0.02. "Y = 0.94 ± 0.02 and E = -0..18 ± 0.02. These

values are essentially tbe same as for compression of the polymer brush in 11 H solvent
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figure 4.18: Compression of tbe polymer brush by a repulsive :,mrlal.:e. t:) sul~l1t. fret'
energy difference per unit area in pN1m scaled by free energy of ulll:ompresstrl hrush
as a function of the parameter ( given by Eq. (4.32). Symbols are th~ numerical
results corresponding to all values of a·, and solid line is the analytil' prediction
obtained usi.ng the formalism of Shim and Cates I.aO].

by a repulsive surface. and 1.:'Orrespond to tbe free energy and nn.'j thickness of tht>

uncompressed brush. Thus, this is equivalent to the universal behavior proposed

by analytic theory and presented in figu.re 4.20. The numerical results reasonahly

well collapse to a single curve. even at the threshold of the force. This cuntrasts

\vith tbe case of compression by a repnlsive surface. in which this was till' n\sp "nly

for tbe highest coverage. (TO ....., 12, and for moderate values of (·ulI1pn'S....iuu. TIlt'

numerical y-aJues of the free energy difference are in a good agreement witb tbl' analytit·
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Figure 4.19: Compression of the polymer brush by a neutral surface. 8 solvent. F'on:e
curve for polymer characterized by Z = 1000, and !: = 45 nm2 as a function of the
separation between the plates (a). Density profile of the polymer brush during the
compression (b).

prediction for small and moderate compression.

Finally in figure ..1.21 the equivalence of three modes of the (·orupn's.siol! is sll<l\\'!l

if the parameter {is llsed as the ltniversallength scale. The Ulllllt'riral \"ahll'h of rill'

free energy difference scaled by the free energy of the uncompressed brush pluttt'd

as a function of the parameter { are well described by a single cttrve. thus ill thi..:;

representation all three modes of eompression can be considered as {><jui"lliellt.
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Figure 4.20: Compression of the polymer brush by a uell[ral surfact'. (-l soIVl~ur. FnT
energy difference per unit area in pN/m scaled by free energy of ltul:onq.lCt·sst'([ hnL-;!J
as a function of the reduced distance given by Eq. (4.2-1). Symbols ac~ the uHflwrit'al
results corresponding to different values of (T' • and solid line is the analytic pct'l.licrioll
of Shim and Cates HO}.

4.4.3 Interpenetration of the Polymer Brushes

In section 4.3.3 the interpenetration of two polymer brushes dnrinl{ compression

was investigated. Since the numerical SCF r~ults and molecular d:-'llamics studies

indicate that the opposing brushes do interpenetrate in good solvent. this should also

be anticipated in 8 solvent. The brushes in 8 solvent are not as stretched as in a

~ood solvenr, nor do the chains avoid contaer to as great an extent.



151

10'

o Repulsive Surface
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Fi~e 4.21: The equivalence of tbe three modes of compression. H solvent. Th.. frt'P
ener~ry difference scaled by the free coerf:,')" of uncompresscd system as a fUlll:tiuu of
{ parameter defined in Eq. (4.32).

in figure 4.22 the density profile of polymer Z =1000, L = -15 nru~ compressed to

the reduced distance ii = 0.89 is shown. The total calculated volume fraction is almost

Bat without a minimum at the midpoint, and the opposing brushes interpenetrate up

to 1/2 of their total thickness. Pursuing tbe analysis further and lookin.ll: for eLl'

powers (\' and (J for which the numerical results collapse to a sin~lt' nlCVt>

(-1.5(;)

where feu) is some universal function of the reduced distance only. it was found
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FiKUre 4.22: Compression of the polymer brush by a second idemit.::al brush. (-) suln--m.
Total density profile for the polymer with Z = 1000. !: = ·t5 lUll:!, IlHIlI('rind ;lIld
analytic profile (al. Contribution of each brush to the total density (h).

(\' = -0.59 ± 0.02 and ;3 = 0.63 ± 0.02. If the redul.:ed surfacf> cooceoW.Hi'm, fT'

instead of E is used Eq. (4.56) can be written as

(-1.5T)

with the uncertainties ±0.02 in the values of powers. This result is in a very /.!;ood

agreement with the exponents of Eq. (4.52) or Eq. (4.54). The numerical results

plotted according to Eq. (4.57) are shown in figure 4.23. For the numerical values of

ltD) characterized by d' ...... 12. which satisfy it'::: 0.6 and are scaled by Z<>~d. the
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Figure 4.23: Interpenetration of two opposing brushes, f(D), n.s a function of the
reduced distance U, e solvent. The open symbols represent the numerical values.
solid line is the Line of the best fit to the functional form of Eq. (4.5:3) for aU numerical
values which satisfy ii. .(: 0.6 and fT" ...... 12. The inset shows the details fur tllt' initial
stage of the compression.

best lit to tbe functional form of Eq. (4.53) bas been detenniIl~d and 1.-; prpst·lIT''I1

as a thick solid line in figure 4.23. As is apparent from tbe inset in ns..'1tre ·1.2:.t the

bmshes characterized by (j" ,.... 3 start to interpenetrate for separations larger than

those predicted by the analytic fonn, which, similar to the good solvent case. is (,aused

by the fact that the tail region is the largest for smallest (T" • and is nelo!;leeted in till:

analytic description.
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4.5 Summary

In this chapter the compression of polymer brushes in good and e so!v~ut~ was

studied. The prime interest was devoted to the compression of the brush in three

different ways, first by a repulsive surface, then by a bare surface which is neutral for

adsorption, and finally by a 5ei.:ond, identical brush. The formal equivalence of two

latter modes was established, i.e., it was shown that the den.sity profile fur a sin~le

brush compressed by a neutral for adsorption surface and the total density profile

lip to the midpoint between two surfaces for the compression of two bru.shes are the

same. Similarly for a given separation, D. between the surfaee with tht> hrH:-ih awl

the neutral surface the free energy is 1/2 of the total free ener)!;y for curupn'ssiuu

of two brushes with the surfac.:es separated by a distaDl.:e "1.D. Extem;ive nunu'rkal

calculations for model values of the bulk densities of solvent and danglinv; b!m:k for

wide ranges of degree of polymerization, Z, and average area per end-/;7afted chain.

!:. were performed and the results were compared with the analytical predictions

of Milner, Witten and Cates {J6, 1331 for good solvent conditions. and with the

generalization of this approach to e solvent, done by Shim aud Cates [401.

For the compression of brushes in good solvent, the analytic.: theory uf .\1\\"('

lmderestimates tbe force and its range by a factor of ahollt "1.. and this tlumerin\l

result is consistent with the recent experimental studies of \Vatanabe atHI Tirrell [521.

The numerical analysis shows the importance of the tail reKions in the iuitial sti.L~t'

of the compression especially for low and the moderate surface <:overav;es. With
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increasing coverage, the numerical results tend to be closer to the analytic prediction.

but still the force and its range are larger than in the analytic picture. Satisfa("tor~'

agreement with the analytic extension of the M'vVC theory proposed by Shim and

Cates [401 was found. However for both good and e solvents. the colllprf'ssilJu lJf [hI'

polymer brush by the second brush is not equivalent to the compression by a replllsiw

surface. Instead, a properly defined deformation parameter should be considered as

a universal lenbrth scale. In this representation all the modes of cornpressiou nw Iw

reasonably well described by a single curve.

The interpenetration of the polymer brushes during the compression in both J;!;uud

and e solvents was quantified and the results were in good agreement with the molec

ular dynamics simulations of ~lurat and Crest [1011 for the interpenetration of bmshes

in ~ood solvent.



Chapter 5

Lateral Compression - Excess Surface Pressure

5.1 Introduction

In this chapter the surface pressure effects in tbe adsorbed POlYlllt'f [aYl"r~ art-'

examined. First, the e.xperimental results of Kent et at. (1, 21, as weU as the recent

numerical studies of Crest 1821 and Carignano and Szleifer [90. IIJ..l! will be presented.

)iext, tbe theoretical approach and the details of the numerical caku.latiuns will he

discussed. The foUowing sections will be devoted to a homopolymer/poor soh""t!t1t ~~"S

tern with an attractive ~1Uface interaction and then to the copolymer{solwur ::'}"Stem

in which the anchoring block is the same as the homopolymer and the solvent is )!;ood

for the dangling block. The results for the excess sur[a<.-e pressure for this Systt'lll will

be discussed and compared with tbe experimentaL numerical and illl1tlytit:al smdips.

The surface of a liquid comprised of smaU molecules is ill a condition uf tellsiuli.

the most prominent evidence of which is its tendency to minimize the arCil of the

surface of the liquid. The surface tension of a liquid can be traced to the forc..:e of
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attraction between its molecules. A molet,:ule in the bulk of a liquid is sutfuunded b~·

the maximum number of neighboring molecules so that its potential ~ut:rK.'" 11I't"l11ll1·:'

minimum. The same molecule at the surface of the liquid is in contact with f""·,'r

molecules, since there are fewer neighboring molecules in the ga:oeous reKion just at

the top of the interface. The energy of the molecule in the interfacial phast- thILl>

become greater than that in the bulk phase. The surfat:e tew.ion l' can ht! defined

through Eq. (1.2) which is

(OF)
1~ 8A .

r,V.N~

(5.1)

where F is the Helmholtz free energy of the system with the interface. A is the total

area of the interface, T is the temperature, V is the volume of the systpm. and .'Ii.. ltr..

the numbers of the molecules present in the System. Thus if tbt' systt'Ol is C'lJlllpri.";('l1

of pure solvent in (:ontact with the air surface. it can be fully specified h~· th,' surfan'

tension, "'5-
Properties of tbe air-liquid interface of polymer solurioILS in ,e;ood aud H sul-

vents havp hP.f!D P.Xten.<;ivply stllrlif><l. expt>rimpntally and rhffiretically. In tbt' rt't·eut

experiments of Kent et al. [13iJ the adsorption from solution of PD~IS iu l.\ Kood

(btomoheptane) and e (bromocycloh~e) solvents at the air-liquid interfal.'e was

investigated. In this study, the effects of the molecular weight, bulk l.'ODL'eutrations.

and the solvent quality on the details of the density distribution of the polyrnt!r n~ar

the interface were explored. In both solvents. it was found tbat the pol~·mt'r adsorbs

at the surface and lowers the surface tensiofl. The surface tensiun of pnrt' I'O).IS is
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lower than the surface tension of either solvent used in the study. This differeUl.:e

provides the driving force for the adsorption, Thus, effectively oue can think of lUI

attractive interaction exerted by the surface on the polymer in solution. Similarly, in

the study of Ober et al. [1381, adsorption from solution of PDMS in toluene and of

PS in toluene at the air-liquid interface was studied. Toluene is a good solvent for

both polymers. It was found that PS adsorbs at the free surfal:e a1.ld a concpmratiol1

eXl:ess develops there, By contrast. the dellsity of PD.\IS at dlt-' surra/·.' was 10\\"'[

than in the bulk. Similarly the surf3l:e tension of PDMS-TOL solntiou was lo\\'p!' than

that of pure solvent, while it was b'teater for PS-TOL system. Onl:p. aKain the fn~e

suna<:e of a solvent can be considered as a repulsive interfal:e for one and attractivE'

for the other polymer. Si.ulllar experiments were also performed in H soh'~nts (251,

The difference between the surfal:e tem.ion of a dean interface (pure solvent) and of

a surfal:e with an adsorbed layer is often referred to as the surfa<.--e pressure. n. and

is defined through Eq. (1.3).

As was mentioned in chapter 1. in most of the experimental and theoretical studies

the chanKe in the interfacial tension in the adsorbed polYIller layers wa.'; ill\'t'Sti~;.tl'd

However. the dependence of the surface pressure. n. ou thl' s1\rfa('~ ('OIH'PlU.ratioll Hud

molecular weight for copolymer systems. although very interestin~, hav(A not hl'(-'II

studied e.xtensively. Most of the studies on lateral compression deal with Lanh'Tllllir

monolayers of amphiphilic molecules comprised of a hydrophilic head group and hy

drophobic tail at the air-water or oil interface [102, 1391.
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The details of the structure of the density profiles for polymer chains tt~rmitHilly

attached to the interface and under the infiuen<:e of external potentials were inves

tigated theoretically using the strong-stretching limit of the SCF theory by :\larku

et al. [1061, and using the Me approach by Chakrabarti et al. [99J. The idea:; intru

duced there, that the interfacial phenomena can be modeled using simple mudds of

the external potential, are also employed in this thesis.

5.1.1 Experimental Studies on the Lateral Compression of

Copolymers at the Air-Liquid Interfaces

To investigate the properties of the copolymet s~'Stems at the air-liquid i!ltt'rfan'

Kent et ai. [1, 2J performed a series of the experiments in which tue surfuct:' pre~'>\Ir...

IT, and its dependence on the surface concentration and molecular weiKht of hotb

blocks was carefully examined. In most of the experiments. the [ayers of ('opolYllwr

were formed by deposi ting onto the surface of ethyl- benzoate (EB) a small dry I,'lain uf

PO~IS-PScopol:rmer, from wwch the molecules spread spontaneously. The 111lllll1t~rof

copolymer molecules per unit area, i.e., the surface density, was increased by uddin)!;

further grains of copolymer to the surface and decreased by aspiratill~ the surface

with a movable barrier. Virtually all the chains were adsorbed to the illterface: clIP

total volume fraction of copolymer in the sul?phase (bulk solvent) \\"a.,> f'stimatl'd

to be always less than ...... 10-6 . and this was due co a spreading dficiem:y les.'i [hall

100%. In addition, the spreading behavior of each homopolymer (PS and P01IS)
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was carefully examined. If the grain of pure PS homopolymer was deposited onto the

EB surface, tbe PS molecules dissolved into the solvent after a :;uan period of tinH'.

and there was no change in surface tension throughout the process. This indicates

that PS is not active at the surface. Conversely, if the PO~IS homopolymer was

deposited onto the free surface of EB, the surface tension irnmt=Ji~tdy started to

drop. The POMS homopolymer forms a stable Lan~uirmonolayer OIl rut> surfan' of

thi:; solvent, and this indica(cs that the surfau' i:; i.lttrill"tiw [Uward rl1!' f'O\IS. Til"

system under investigation is schematically presented in figure 5.1.

Air

Solvent (EB)

A-block (PDMS)

B-Block (PS)

Fi,l(lU'e 5.1: lllustration of the monolayer system formed by PDMS-PS diblock copoty·
mer on EB.

Surface pressure-area isotherms were obtained for two different PD~IS btJuil)p<JI~"

mers, i.e., Mw = 25,000 and 100,000 (g/mol), and 7 different copolymers. fivt' of them

being tbe same as those investigated in chapter 3 and listed in Table :1.1. The addi-

tional copolymers were 1.5-102 POMS-PS and 10.5-40 POMS-PS, where the polymers

are labeled by the block molecular weights, in kg/mol, of the PO,vIS and PS blocks
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respectively, A rapid increase of the surface pressure-area isotherms for cOpol~'lll-'r

system in comparison to the pressure-area isotherm of pure PDMS homopolymer was

observed in almost aI.1 the cases studied. The surface pressure exc~. decw'd il..'-; the

difference between the pressure of the copolymer/solvent aud hornopolymer/solv~ut

!>-ystems for the same surface concentration of homopolymer. was found to \'tL0' rda

tively slowly for low surface coverage of the PS block of copolymer. However for large

surface concentrations, it increased more quickly, approximately as IT ex (TY. with .'I

in the range of 4.2-6.6 (see Table 5.2). This effect cannot Iw explained on the nasis

of the analytical models and is the prime subject of this chapter.

5.1.2 Previous Numerical Studies on the Lateral Compres

sion of the Polym.er Layers

The surface pressure, n, and its dependence on the df~,I(ret' of polymerization.

surface concentration and solvent quality were investigated numerically. t1sin,l!; :-'LD

silllulatiollS, by Crest [82J, lUlU, usiug SC.\·lF model. by Carigullllo alld Szldfer [DO.

l04J. In the analytic pictures the surface pressure of the polymer brush in a ,l{ood

solvent is given by Eqs. (1.22) and (1.23) and predict a sinJ;!;le scalinJ.{ rdation iu the

entire ranJ.{e of the surface concentrations.

Crest 1821 carried out MD simulations of -l chains iu ,l!;ood aud H stJlVI'uts with Z

ranging from 25 to 200 and surface coverages of (T' ;;:;: 20. The caklllat~1 dt'Jl!'lId"lw,'

of surface pressure on the grafting density was somewhat stronger than predi(:tcd



L62

by analytic theories. In a good solvent, for chain lengths and graftinK densities

where the thickness of the brush, h, scaled as expected, Le., It oc. Za 1/3 . the surface

pressure scaled as flex; tr·5 . Crest e.'Cplained this effect assuming that IT is much more

sensitive to the finite monomer density than the brush height. This finite and hi/;l;h

density in the center of the brush W:ves rise to pnrely sterk etft>(·bi wLidl limir rlw

interpenetration of the chains and is not included in eitLer scalinl-{ or auaIytir SCF

theories. To verify this hypothesis, simulations for much longer challis have to !w

carried out, and at the present this is not feasible [821. Similarly. in e solvent Crest

found that IT :x tr. while both analytic theories predict n 0( f1"2.

Carignano and Szieifer {L04J performed numerical calculations appl~inl{ the sin/;l;h.:

chain mean-field theory (SCMF) [89J for end-grafted polymer in good. 8 aud poor

solvents with Z = 50 and surface coverages of a" ;S 40. They found that tbe lat

eral pressure as a function of surface coverage in a Kood solvent caD be described

approximately by a power law with the exponent varyin/;l; from LO fur wry tu\\" SIlC

face eoverage (f1' « I). to 1.9 for low surfa(~{' covcrag:e (fT" ;;: IS). aut! It ":\. fT~·1

for intermediate surface coverage (a" ~ 40). They found Kuurl a/{reemem IwnW't'u

their calculated lateral pressure a:J.d tbe analytic SCF theory only wben the paraholit·

density profile was used in the full virial expansion. In their later study [901 they

extended the calculations for .,l different chains with Z ranWn~ from ;jQ to LOO and

surface coverages of (TO ;S 20. In this work, they presented direct comparison with

the experimental results of Kent [2]. They found that the lateral pressure call be
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results were in good agreement with the experimental data up to rrO ..... 8. For hiKlu'r

surface concentrations, the theoretical results deviated from tbe universal format .U1d

from the €.'Xperimental values. They suggested that the experimental ubsenrdtions at

large snrface (;Overages were performed in a system that had not reachoo full equilib-

rium.

5.2 Numerical SCF Approach

The general numerical SCF formalism form wa:; presented in chapter 2. awl SlJIIll'

other details which are relevant to the experiments of Kent et at. [I. 21 were prt'sl'lltt'd

in chapter 3. However. in chapter 3 it was assumed that the adsorbed A-block (f'0:\15)

can be modeled by the simple, standard form of Eq. (:3.1). 5inl't' ill this I"baptf'f

the effects of the surface pressure of polymer at the air-liquid interface are of tbe

prime interest, this assumption is now eliminated, and tbe density distrib1ltion of

the adsorbed A.-block is determined self-consistently. Furthermore. two dbtinet ease.s

have to be considered. The first is the pure homopolymer at the interfat.:e. Tue

second is diblock copolymer with properties of the A-block identit:al to tuest' of tut'

homopolymer, and the B-block dangling into the solution. In both ca:s<-~. tin' dt'u:-iit.\·

distributions and the free energy of tbe system have to be calculated. In t!.lt' fuUuwil1~

sections the numerical SCF formalism for these two t.:ases will be presented.
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5.2.1 The Homopolymer Spread as a Monolayer

The system under consideration is comprised of iiiHA identical homopolymer

chains (PDMS) characterized by the density of the pure material. Po.~. statistkal

segment length, bA , and degree of polymerization, Z.~. and 5/..; solveut mo!t>t'liI."':'i

(EB) characterized by Pas. The partition function. Eq. (1.14). has the smm' form.

except that Fvc has to be replaced by NHA' and the summation is restricted to the

A type mole(.ules. Similarly, since the polymer consists of Olle type of monomer ouly.

the a{· .... ) functional which assures the connectivity has to be dropped. Followin)! th~

formalism of Eqs. (2.15H2.26). the integral of tbe distribution function. Eq. (1.17)

can be written as

(5.2)

The den~ity distribution of the homopolymer given by Eq. (2.-18) has the form

p...t{r) = -~~-t foZ,," d, {J dr' dr"Q._dr. ,!r".O)9(r"(O))Q.-t(r'.lZ-t - .. lir. 71} .
(.j.:})

.-\S before, it is assumed that the system is translationally in..-ari<U1t parallel tu the

interface, and the problem is considered as one dimensional. Introducing- th~ intell;"l"<t1

representation of the propagators in the same manner as in Eqs. (:3.2) lwd (:j.:jj. thl'

propagator qOA corresponds to Eq. (3.2) and the initial condition for this propaKatur

satisfies Eq. (3.8). The second propagator qlA is expressed ~

(H)
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and the initial condition for this propagator is

.,.(x,O) = I dr'.(r - r'}9(r'} = 9«). (.:;.5)

&tb propagators satisfy tbe diffusion equation. Eq. (3.4). In the experinumL<i of "ent.

tbe bomopolymer forms a monolayer. Thus. one can assume that oue eud of every

chain starts in the vit:i..nity of the surf3(."e. Making use of Eq. (2.15) tbe propaxator

qIA(X,O) is assumed to satisfy

lij.l»

where al is chosen so for a = 1 urn ql.-l(I, OJ = 0.01. This choice uf tlll:' probability

distribution for the free ends of the homopolymer limits the range of validity of thl'

calculations to the cases in which the thickness of tbe .-I.-block layer is on tbe order of

1 nm. This is consistent with tbe estimate that the thickness of tbe interphase is on

the order of 1 nm [1301, and with the e.-q>erimental obserVluioDS of Lee et ai. [1-101 "'ho

determined the thickness of a PDMS monolayer on water from neutron reHt'Cti\;ty til

be roughly 0.8 am at full monolayer coverage. In terms of ~.-t(I.1") and ql.-l(x.OI the

quantity QH is expressed as

f drdr'QH(r, Zjr')Q(r')

f dxdyd=ql(X,Z) =.A 10"'" dxql(X. Z)

AQ~ .

(.;.7)



166

where A is the total area of the adsorbing surface and the toea! volum~ fral:tiUll uf

the homopolymer is given br

where again T was mapped onto [0,1) and .V.~ = iiH:iZ.... ,

To determine the problem L-ompletely. the boundiU1- (:ouditions ba~ to be sVt~.:i·

Sed. For a repulsive surface, the interface prefers solvent to the polymer. tbt' chaiu....

avoid the interfac.:e, and this results in the depletion layer ne-elf the sllrface. If the

surface prefers tbe polymer to tbe solvent there is an adsorption. Thus in the vicinity

of the surface. the concentration profile is very sensitive to the details of the polymer-

surface interaction. Therefore. it can be assumed that at x = 0 tbe dcusity prolile

exhibits a loca! extremum (minimum or ffii.L'Ximllm) which implit'S

!;q;A(Z. • )1 =O.". (:i.!.I1

for i = O. 1. These boundary conditions also e:'<pres> tbe fact that there is nu fiux

of probabili~' a<.TOSS the surface and have the effect of removin~ all l.."Oufi~ratioI1S

which cross the surface. These boundary conditions l.."Oincidt" with the idea of "I..'uu-

figurational ~...Yap" introduced by Silberberg 11-111 and were Ilsed in tht' ~K: study of

Bitsanis and Brinke [1421. Similarly, for the other boundary in a pure solvent it is set

(5.10)

which assures the t:ontinuity of tbe solution. In practlcp-. howt''ier. tbe:->t' hOlludary

l.."Onditions are applied at some finite distance L. The Iiuear sizl' "f till" s~"Srt'llI. L. 1:-.
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large enough so that, at :r = L there is no spatial variation in the densities of any of

the components and tbe density is that of pure solvent.

The potential which modifies the diffusion equation Eq. (3.4) for this part of

calculation is given by

w.... (x) !!E§.XAS [¢s(:r) - 1- ¢A(:r)] + ~ln-,_1_ + u.-\.(x) _ Pos U.s (x)
Po" Po" tils(x) Po.-\.

...,;rt(x) + u.,,(x) - ~us(x) . (;':i.11)

which was obtaiued in the 5alIle manner as Eq. (3.lt) and thp liui(t' nUlg;l' nf tlw

potential Eq. (2.56) was, for simplicity. set to zero.

5.2,2 Diblock Copolymer at the Air-Liquid Interface

In this section the fonnalism for dibIock copolymer (PDMS-PS) at thp air-liquid

interface of solvent (E8) is pre.ented. DibIock copolyTlwf consists of a block A. (:har~

actenzed by degree of polymerization. ZA, statistical segment lpul!;th. UA. and tue

density of pure material, PaA' Similarly, block 8 can be characterized hy ZlI. 1111 awl

P08' and the solvent by its density, Po:!. Further. it is assumed that aU the chains

which are present in the system are adsorbed at the interface. This is l"OtiSistl'llt

with the experiments of Kent et at. [1. 2J in which, a.<; already Hlp.lltioU!·d. th,· tutal

concentration of the copolymer in the sub-phase was neKlif.,oible. The total 1J.1Im[wr of

copolymer chains adsorbed at the interface is l"otc and lois is tbe tOta! numher of sol-

vent molecules in the system. Further, it is assumed that one block (A) has a higher

affinity to the surface and the second block (8) extends into the solUtion and forms
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a polymer brush. The adsorbed A-block is the same as the humopulymer c·ol.l:-;idpT!·d

in the previous section. The formalism outlined in chapter 2 result~1 in tht> dpu:-;ity

distribution for the A-block of copolymer given by Eq. (2.'18) and the del.lsity of tht>

other, B-block is Kiven by Eq. (2.-19).

Once again it is useful to introduce the integral representatiun of the prulJagmur:-;

in which one integrates over all starting positions, In the copolymer/:-;ol ....ent :-;ystem,

four propagators are needed, Tbe first one, denoted q,-\(x, r) is defined as

q.-\(r, r) = q...l(x, T) = Jdr'Q...I(R, Tlr', O)9(r'(O)) , (5.12}

Since it is assumed that the free end of the A block is loeated near tht' snrfa('t'.

Eq. (5.12) is identical to Eq, (i).-Ij and satL.,fies tbe smne initial couditiolls. Eq (:; ..j)

The second propagator, Q8(X, r) is defined as

and satisfies tbe initial condition Eq. (3.8). This propap;ator. qH(X, T) rf>tif'l:ts rhl' [al't

that the free end of a B block could, in prindple. be found anywhere in solntion. Two

other propagators are needed, and are defined as follows;

q.-\(r, r) =q.-\(x, r) =Jdr'Q.-\(r, rlr')qB(r'. 2 B) . (5.14)

and

qB(r. T) = ifB(X, T) = Jdr'QlJ(r. Tlr', O)qA(r'. Z.~) (5.15)

The initial conditions for any point in the semi-infinite T!~h';'Ull, J' > 0, ar"

if...l(x,O) =qs(x,Zs). (5.16)
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for q,-t and

(5.171

for the propa~ator iiB. As in the case of homopolymer spread as a monolayer. it is

assumed that all the propagators satisfy tbe same boundary conditions as pre...iously.

Eqs. (5.9) and (5.10). In terms of tbe propuj!;utors fJ and rio th.. dt'llsiti..:-; l:au Ill'

expressed as

,pAx) = QNCA
II d-rfJ..dx, T)tlA(l.", 1 - 'J . (.':dS)

CPoA 10

¢B(X) = Q:VCB rl
dTqB(X, r)iiB(x, 1 - r) . (.j.l0)

cPos in

where NCA = :VcZ.~ and NCB = 51cZ 8 are the total number of monomers of typt'

.4. and B respectively. The integral of tbe distribution fullt:tions. Qr.. Eq. (2.27).

becomes

(;J,20)

The self consistent potentials which modify tbe diffusion equations for dihloek

copolymer/solvent system are ,l{ivcn by

f!!!'- {X'4.S [415(X) - 1- ¢l.-t(X)] + Cj)b'(x) [(XAl>' - ~11.~;)1'" Ill_I_}
PoA ~(r)

+UA(X) - PoSus(x) (5.21)
PoA

w.~L(X) + UA(X) - ::us(r) .

and corresponding expression for ~B(X).
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5.2.3 The Model of the Interaction with the Surface

The terms which remain to be specified are the interacdon.."i of the uomopolym~r.

solvent illld copolymer molecules with the surface, u",(:c). In general. the mOlllJIIINS

and solvent molecules interact through some intermolecular potential which can be de-

scribed by Lennard-Jones or Morse type potentials [143J. In the mean-field approach

to polymer/solvent systems, however, the interactions are described by a sin~Ie pa-

rameter x....,. In the theoretical model presented. in this thesis. the po1)TI1er chains

and solvent molecules are confined in the x-direction by a planar surface which lade.'i

the molt.'cular roughness of real surfaces. As a r!:.'Sult of this. any ordt'rill~ uf thl> sys-

tern in the directions parallel to the interface is neglected. and it is usslUllt'd that [h~

potential energy due to the presence of the surface depends on the distance :.I: from

the surface and can be described in the mean-field fashion thrOllj.{U euerl0' 'llid lt~I1l{th

parameters.

The interactioDS of the homopolymer or one block of copolymer with th~ !'Inrfact'

appear in the formalism only in the self-consistent potentials which modify the diffu-

sian equation, together with the solvent-surface potential energy. from [q. (5.:21). it

follows that an effective surface~polymer potential can be introduced as

If the homopolymer molecules show a tendency to locate near snrfaec or if then> is

adsorption of one block of the copolymer. the effective potential is attractive and this
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attraction e.xtends over a distance at least on the order of a few statistical sel(ruenr

lengths. On the other hand, when the density profile of the homopolymer exhibits a

depletion region or the diblock copolymer chains remain in solution. the surface call

be considered a.<; repulsive.

if u~1I (x) is attractive and arises from L-J type interiLl.:tiollS betwt'etl tLp surfan'

and the molecules in solution then chis long-range potential is of chI;' form [:3. H.lj

Thus, the repulsive surface can be modeled as

'ff {ts for xS; I
Uk (x)=

o for x > I

and the attractive surface as

(:).2-1)

for:.r:::: 1

for.r > I

where XS is the energy (in units of kBT) and l tLf' lpngth parampt.-r.

5.2.4 Free Energy of the System, Interfacial Tension and Sur-

face Pressure

The general expression for the free energy for the copol}'nwr/solvent system at tht'

air-liquid interface was derived in chapter 2, and is given by Eq. (2.62). Substitution of

Eq. (2.53) for the potential energy, ~V, and Eq. (5.21) for the self-consistent potentials.
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.:.Jk(X), into Eq. (2.62) yields

F = 1 - (""S ) - ( eVe )- L WkkPokN,I:+Ns In--l +Nc In---l
2 k=S,.-I.,8 Zs QcZc:

+APos / dx {~LXkk'¢k(X)4'k'(X)+ ¢'s(x) In41s(x)
- k,k'

- L ~wlnt(x)¢,;,{x) + U.s-(X)} .
k:A,B Pos

{5.:!6)

where tbe relation :'IsIQs = Pos was used and the reference den.sity was explicitly

set to tbe density of tbe pure solvent. For a pure solvent system of .Vs molecules .U1d

the surface. this free energy expression has the simple form

Fs = ~H"uPosNs + ,Vs (Ln~ - 1) + A/loSJd:rll .... (x}. (.).:!')

Using this. the free energy Eq. (5.26) can be written as

F ~ 1 - ( Vc )Fs + - E WkkAlkNk + Nc In n·-z - 1
2 k:A,B ...:.<: C

+APos / dx {~L Xkk'¢k(X)tPl;'(X} + 4ls(x) Inms(x)-,-'"
- L ~ ....{nl(X)<Ok(X.l} .

1;=.-1.8 !'os

Since tbe densities and potentials depend on tbe distance.:E. from the interface. Ulle

can divide Eq. (5.28) by tbe total area of the interface to ontain the frt'e t'1Il'f~y pt'r

unit area, f = FlA. In units of kaT, 1 can be written as

/ = Is + ~~ L WkkPokZI; + ~ (In "Q~ z .. - I)
-~k:.-I.8 - - c (

+""sl dx {! LXkk'¢k(X)¢1c'(x} + q;s(x)ln41...·(x)2 H ,
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(5.29)

where. as before. E = UVc/A)-'.

The free energy of the multicomponent system with a slIrfac.. can lit' \\'rirr.'tl ;L.... a

Legendre transform of the internal energy with respect to entropy. and can Iw writtt~lJ

and its tota! differential as

dF = -PdF - SrII'+ LP"dN" +~fdA. (".:HI

In this representation, the interfacial tension, "f. is defined as the chan,l!;e in the total

free energy when the interfacial area. A. is increased at constant tetnperatur.. T. tor'll

volume of the system. F. and constant numbers of pal'tid!'!; ill th.. !;rS!t'lll. S •.

The free energy per unit area depends explicitly on E. similarly the ([t'lisitil';'i of

homopol)'lller and every block of copolymer depend e..xplidtly on E rarher rhall on

total area of the interface, A. Taking this into account. the interfacial tension . ..,. has

to be expressed in a more convenient form

, = (8F)
8A N~,r,V

f+A(~)
N~,T.v

f + -VeE (~) (~). oE ...I,ry oA N~.ry .

(.').J2)
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Since A = iii'£. (i can be homopolymer, H.4., or diblock copolymer, C). the r~u1t

for constant T and V is

For a pur~ solvent

7~f+Y;(~) .
a~ AT,I'"

"Y. =Pas Jdxus(x) .

(.s.:n)

(;j.:HJ

Furthermore, as is apparent from Eq. (5.33), all terms in f which are linear in 1/'::. do

not contribute to 7. Finally tbe expression for tbe interfacial telJsiull ntH Ill' writr"u

where C. is given by

c. = iln(E~cJ+posJ dx{~~Xkk'dJdX)riJk'(X)+riJ$(x)ln<!J:;(r.)

- L ~...{n~(x}¢r(X)} (:j,:jfj)
k",.-I.BPo:i

As was mentioned in t:b.apter 1 and in tbe introduction [Q tbis chapt~r. tbl" l:hau,.;'t'

in the surface tension "Y. - ,. can be interpreted as a two-dimensional pres.'mrt>. CUtu-

manly referred to as tbe surface pressure

IT =:-f. - -....

which in the formalism presented above has the fonn

(5.:38)
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in order to analyze this result in detail. it is useful to transform Eq. (5.36) so tLut

all tbe tenns can be interpreted. physically. As already noted in cl1apten;: J .wd -I.

a constant value can be added to the self-consistent potentials without afftlCtiug any

re.wts. 1£ the potentials for the A and B-b!ocks are chosen so that

f drwk(X) q)k(r) = O. k = A.B.

then Eq. (5.36) becomes

C = Posj dx {PoAq>..dX)U.-I(.X) + PoB4Iu(x)ue(x) + (¢s(x) -l)US(X)}
Pos Pus

+Pos / dx { X.-IB0A(x)<l1B(rJ + ~A.)·0A(r)(!)S(x) + ~8S(!)11{r)os(J:)}

+~In (E~) +Pos Jdr41s(:c) lu(!).s(r) (·jAtJ)

Tbe first line can be interpreted. as the contribution due to the e,.xterual !>l,tl·mial.

tbe second line is the interdetlOn energy within tbe components, and the third line

can be interpreted as the eotropic contribution to the free energy. Php.;cally tLi"l

entropic contribution includes effects due to chain conformations. chain IOI:alizatiou

and soh-ent distribution. Equation (5.40) can be written as

(J.-Il)

Using the condition o£oo volume change upon mi'\i.n~ (incompressibility). and settillA'

uif' (x) = O. tLe first I:uutrihntion call be written 1.\.<;

(.j ..I:!)
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Equations (5.40) and (5.41) are applicable to both the homopolymer/solvent and

copolymer/solvent systems with appropriate modifications. Namely. for th.. h~

mopolymerjsolvent system, QC in tbe entropic part bas to be replaceU fly QH. aDd

in Cint tbere are no terms for AS and 85 interactions. The Cert is tbe same fur both

systems. and can be interpreted as tbe anchoring energy.

5.3 Results and Discussion

As already mentioned, in the following sections the numerical results for hu

mopolymers and diblock copolymers at tbe air-liquid interface of solvent will be

presented and discussed. In order to make the comparison with the experimental

observations, tbe den::.ities of pure materials. statistkal sel1;rrumt lenJ(ths and 0101('(:

ular weights of homopolymer and copolymer used in the calculations were c!Jo."t'li to

agree, as closely as possible with the e.xperirnental values. The material d.lafactt'rts

tics for PS and EB are listed in chapter 3. For the homopolymer and tut' .-t-hIOt:k

of tbe dibtock copolymer. which both correspond to PD~IS. tut' fulluwing- mow'rial

characteristics were chosen: PoA = 7.89 nmJ and bll = 0.5, urn [12:'). 1.1:')1.

The PDMS·EB interaction parameter has not heen mea.<;ured. ttl tht' lI11tutJr·s

knowledge. Hence, a reasonable value needed. to be chosen. Given that EB is ,l UUll

solvent for PDMS (1, 127], X.-ts = 0.7 was used. The PD~IS and PS polymers are

not compatible and again, a reasonable interaction parameter was chosen. For this

XA8 = 0.1 was used, which is typical of diblock copolymers systems [14.6. l--ti]. The
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A-block of copolymer is restricted to the narrow interface, and there is a little l.lverlap

between A and 8 blocks, thus the results should not be sensitive [U th~e choLees of

\.-tS and \.-18 parameters. Since the PS is not active at the :mrfact;' it was as.-;nllled

that uti' is negligible and it was zero everywhere.

The PDMS homopolymer, when spread onto the surface of EB. forms a stable

monolayer on the surface and the ~-urface tensioo 7 starts ro drop, indicating that the

surface is attractive toward the PDMS. To model this effect. the followin~ effective

potential was chosen

{

-0'<5
u1'(x) =

-0.45(;';r'

forx:S;O.luHl

forx>O.lnm

These choices of the energy, \s =-0.45, and length, l = 0.7, parameters were based

on many numerical calculations. with the final values chosen to produce a reasonahh-

description of the surface pressure isothenn for the homopolyml~rdi..'icnssl'd in ill t.ht·

next section.

For a given system, which is specified by the values of the del-,'Tce of polymerization

of the homopolymer or the two blocks of the copolymer. the material chanu;teristics

discussed ahove. and the average number of chains per unit area. 1{2.-. th", :.elf-

cOD.sistent solution is found. The frel- enerj;{y of the system. ).,r1.Vt'1l hy Eq. 1').·101. b

then calculated. The surface pressure isotherms as a funetioll of tht· snrfan' I·OVI·ra~,·

are obtained by numerical evaluation of Eq. (5.38) [1341; the numerical prOl:edurf> is

outlined in Appendi.x A.
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5.3.1 Surface Pressure Isotherms - Homopolymer

To investigate the properties of the homopolymer at the air-liquid interface. nu

merical calculations for two PDMS homopolymers characterized by .H., = 25.000 and

50,000 ~lmol (ZA = :j37 and 675 respectively) at the surfact' of EB \\·t'n' w'rfOrIlil'd.

For each homopolym.er, the adsorbed amount. r.~ = Z.~/~. was varil,tJ fnJlII jll"r

above 0 to almost 20 PDMS monomers/nm~. The adsorbed amount. r.~. can abo 1Jl'

defined as tbe total number of monomers per unit area which belong to the adsorbed

layer

and !>ince 4l~ = 0, r.-l. can be determined through the ince/-,'Tation of the numerically

generated profile. The difference between the value r.-\ = Z.-\/Y:. and the ~-a.lue ob

tained by Eq. (5.44) is the measure of the accuracy of numerical calculatious, In all

tbe calculations discussed bere this difference was alwa:,<"S le:..... then 1 x 10 -';';{.

FiWlre 5.2 sbows the surface pressure isotherms for two PD\IS hO!llllp<JI~·lIl('rs.

i.'H", =15, 000 and AI", = 50, ODD, as a function of the number of adsorbl~d dH\iu.~ pl'l"

unit area. For large values of Y:. the surface pressure remains constant and esseutially

zero which means that the surface tension for small concentrations is the same as

that of the pure solvent. The chains are isolated and only very weakly intera('[iuy;.

In the numerical studies of Carignano and Szteifer [104] it was fonnd tbat for chains

end-grafted to tbe surface and immersed in a poor solvent, the surface pressure is

negative in some range of surface coverage which suggests that homopolymer cha.in:;
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Figure 5.2: Surface pressure n as a function of the number of adsorbed chaitls per
unit area for PDMS homopolymers. ;ltlw = 25. 000 and Jl", = ·')0. 000. (Tbe dottt'd
lines are guides to the eye) The inset shows the behavior of the surface pressure IT
for large values of E for .:.\tI", = 15.000.

prefer to form larger aggregates rather than replenish onto the surface. Tht-' iuset iu

the figure 5.:2 shows the stuface pressure for large values of Eo Thpn· is it narro\\' rt'holllll

where the surfal.."e pressure is nep;ative. However. the surfact' prt>S.-mrt' was "btaiut'll

by the numerical differentiation of the functional C, Eq. P.-IO). and tht> iUTHf<ll"y ill

these and all subsequent calculations was estimated to be (6n)m<U" .:s 0.01 kuT 10m:!.

Taking into account this accuracy. these negative values are too small. to counnu.

As the area per adsorbed molecule decreases the surface pre~..,ure rises. hut thl'u it
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fit"rure 5.3: Surface pressure IT as a functioll of the ulIlillwr of ad,slJrl,,'" 1ll<JtlOUu'r:

per unit area for two PDMS homopolymer with Jlw = :!0, OLln and .jO.O(JU.

begins to to level off. This occurs at II"£:. = 0.04 nm-:.! and 1/:[ = O.O:! lilll ~ for

.!.\tIw = 25,000 and lHw = 50,000 homopolymer, respectively.

In figure 5.3 the numerical results of the surface pressure isotherms for two PDMS

homopolymers as a function of the adsorbed amollllt. fA are shown. [n this r~p-

resentation, the isotherms collapse to a single curve. independent of the molecular

weight of homopolymer. This is in perfect agreement with the observations of h:t'llt

et al. [1. 2J.

This leveling off of the surface pressure at higber concentrations l;an ht! explaiup<1
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by the fact that for a given depth of tbe well, XS, characterizing the external potential.

there is a maximum in the surface concentration for which all the chains in tbe

system are tightly adsorbed onto tbe surface. Experimentally, beyond this mi.L"{imum

the sterle repulsion among the chains becomes greater thun the attraction toward

the surface and the monolayer eollapses, or the chains desorb [lJ. The SCF rnodt'l

presented in this chapter lacks the desorption mechanism since tbe a ....eruJ.{f' <t[ell jJE'r

adsorbed molecule is specified. However, as figure 5.4. shows. the deusity protiJ~

exhibit a qualitative change at about this level of coverag"e. This fi;"'1t[p shtJw:-; [!It'

density profiles for the 25 PD,\;IS homopolymer for sbc ....alut'S of~. For n'ry !,IW

coverage, the maximum density cODcentratioD at tbe surface is relatively luw llin tlit·

thickness of the profile is on the order of the width of the attractive well. .-\s the

coverage increases, i.e., as E decreases, the thickness of the profile remains almost

constant but the average density within the layer increases. Beyom! ~ :::. 50 111l1~. ([.IP

maximum density saturates but the thickness of the layer be~iIlS to illnl;'i~. Thl;'

effect of the leveling off of the surface pressure o{:cun; for coVt'rag;t' /-,'Tpatpr dml.l 11 full

monolayer so a significant fraction of the polymer falls beyond the attr;wtin~wdl. Thi:-;

leveling off of the surface pressure is in very good agreement with the experimeutal

observations of Kent et at [1. 21. At full monolayer coverage. E ....... :i3 .llm~. must of tht-'

polymer can be found in a region on the order of 1 nm from the surfact', cOl1sisrel.lt

with the e.,<perimental data of Kent. Beyond a full monolayer cuverap;e. the thicknL~

of the layer becomes greater than the width of the region where the chain ends were
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Figure 5.4: Density profiles for PDMS homopolymer with :\4., = 25.000 for dilfereu(
values of the surface (:overages. Surface coverage E expressed in units arum:.!. adsorbed
amount r in numbers of adsorbed monomers ~r Dml

assumed to start. This Limits the calculatiuns [U r." ~ 10 II1UU<JIiII'n./UIlI:!. lu all

subsequent calculations r A "'- 10 POMS monomers/n.m1 was chosen its tbt· limit for

which tbe PONtS homopolymer or the A~blockof tbe dibLock copoLymer can he treated

as forming the monolayer.

in summary. tbe surface pressure isotherms for tbe homopolymer adsorht!d at

the air-liquid interfal.:e depend on tbe total number of adsorbed monom~rs pt!r nuit

area and are independent of the molecular weight of the adsorbed chains. at l~<lst for

relatively high molecular weights. This can be understood. sinc..:e the stroDJ!; attraction



toward the surface and poor solvent conditions lead to a. <.:ollapsed layer .U1d th~rt' b

no stretching of the chains in the direction perpendicular to the surface. for small

values of the surface concentration, a region of negative surface pressure can t:..'cist.

which can be understood in a similar way to tbe attractive region observed during

tbe compression of polymer brushes in the direction perpendi<.:ular to tbe :mrfat:t' ill

poor solvent conditions. where for the initial compression the opposllill; brushes reach

out [641.

5.3.2 Surface Pressure Isotherms - Copolymer

In this section the numerical results for the lateral compression of tilt' dilllu('k

copolymer/solvent s}'stem corresponding to the experiments of Kent d (tl. [i. 1] an'

discussed. The numerical calculation of the surface pressure isotherms as a rune·

tion of surface coverage were perfonned for tbe six PDMS-PS copolymers studi~ in

chapter :}. The degrees of polymerization of every block are listed in Table 5.1.

Table .').1: Polymers used. in the calculatioD£. The polymers art~ labdro h~' tbt' blUt:k
molecular weights, in kg/mol. of the PDMS and PS blocks respcnil."ely.

Copolymer M", 4-30 4.5-60 10-40 21-169
ZA 54 61 135 283
Zg 290 576 384 1625

In fi~lte 5.5 the surface pressure isotherms are shown as functions of snrfat:l'

coverage for all the asymmetric copolymers. In each case. n varie; slowly fur sUllJI

concentration and increases rapidly for larger values of lIE. The interest in)!; part of
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all the curves is above the mushroom regime of the dangling block (PS). but e\o"l:::n for

fT' _ I the surface pressure is always positive. This <:an be understood since the PS

block is in a good :;olvent and chains e.xtend into tbe solution on tin' unh'r tlf H..,. aUlI

neighboring ehams efft'Cti...-ely repel one another.

In order to compare the surface pressure isotherms for the diblot:k l:upulynlt~r wit I!

tbat for the homopolymer, the surface pressure bas to expressed as a function of chfO

surface (:oncentration of the A-block (POMS). This comparison is presented in 6g-

ure 5.6. For the 25-35 POMS-PS copolymer. Z", ~ Zs and the isotherm falls very
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of the PDMS and PS blocks, respectively. T=300h': as the ambient tempf>raturf> \\,,\."';
used to express the pressure in the units of [mN/ml.

close to the homopolymer curve. This indicates that the surface pressure is mainly due

to the interactions among the A chains and that the contribution from the tbwv;linv;

B-block is negligible up to tne surface concentration. r ::::: 9 POMS monomers/nm:'!.

where the deviation from the homopolymer isotherm bev;ins. In v;ent·ral. <I.... tht· 'L..ym-

metry in the copolyYller degrees of polymerization incre~L"t'S. tht' dl'\iatltll! fWlll Till'

homopolymer isotherm occurs at lower surface homopolymer concentratiun ' , Sinel',

IThe asymmetry can be defined as ZPS/ZPDM~;' and for all the studied case; Z,_,-.; > Z""M>o.
so the asymmetry is always larger than unity.
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the surface pressure IT as a function of the adsorbed amount of A-block or PD,\lS

homopolymer is independent of homopolymer molecular weight, and the A·block mHl

its interaction with tbe surface are the same as the homopolymer. tbe;e de.... iatious

are due to the presence of the B-block.

As already mentioned. the surface pressure isotherm for the hUlllOpulyllwt i.... ill

good quantitative agreement with the e.xperimemal curve (with the approprintt' ("!Jilin'

of parameters, XS = - 0.45, I = 0.7 for the e..xtemaI potential and XAS = 0.7 for the

solvent quality). There is also qualitative agreement between the e..xperimeutally mea

!>"Ured surface pressure isotherms and the numerical remIts. The copolymer isotherms

rise more rapidly tban the homopolymer isothenn and the order of tht~ I:HrVes is

tbe same as in tbe e..xperiments. The isotherm for 4.5-60 PD~IS-PS copolymer rises

the most in this representation and is followed by the 4-:30. ~8-:j;jO. ~1-1{j9 and W

40 PDMS-PS isotherms. The calculated surface pressure isotherms for I:opolyuwr

are shifted toward larger values of adsorbed amount of PD~-(S <:ompared with tIll'S!'

obtained experimentally. In the experimental studies the isotherms for a.-;ylllllwrrk

copolymers were confined to concentrations smaller than 0.6 ml-{ PDMS/lIl~. which

corresponds to approximately 5 PDMS monomers/nm~. Numerical isotherms for

these copolymers were calculated in the region r :5 10 POMS monomers/nm2 •

The fact that the numerically calculated surface pressure isotherms de....iate from

the homopolymer isotherm for surfa<'"e concentrations. r A' approximately 2 [inws

targer than observed experimentally might be accounted for by the specific modet of
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the external potential employed in the numerical work. For the asymmetric copoly

mer, the dangling PS block is large compared to the adsorbed PDMS block. alJd

the PDMS forms a discontinuous layer on the surface. In the theoretical modd it

is asswned that the adsorbed block forms a continuous and unifonn layer. This is

a limitation of the theory, since these discontinuities cannot be described by a one

dimensional model. On the other hand, as pointed by Carib'llano and Szldfer [901 it

is possible that the experimental obsermtioDS of l"':ent d al. [21 Wt-'ft' l-lerfofIlwd ,m a

system that had not reached full equilibrium due to the lOll,!!; titnt' :;c;I1(':o; lH"·t':'i.'iitry

for lateral interpenetration in highly stretched polymer layers.

5,3,3 Surface Pressure Excess

To investigate the functional dependence of surface pressure due to tht' dau/-!;Iiuv;

blocks of copolymer. the surface pressure excess is defined as the difference betwet'D

the pressure for copolymer/solvent and homopolymcr/solvcut systems for che :;ame

number of A-blade and homopolymer monomers adsorbed at the surface. i.e..

where r.-l = Z.-l/Y:..

The surface pressure excess, ~rr, as a function of the Dlunber of chains per lIuit

area I/Y:., is presented in the figure 5.7. In this figure only results for the most asym

metric copolymers, for which the surface pressure e.xcess reached beyond 4. m~/m.

are shown. The analysis for the lO-,lO PDM$-PS is not included, beeallse for chis t.:<\Sl:'
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Figure 5.7; Surface pressure excess. .lIT as a function of the uumhcr of l'halH:; p..r
tuilt area.

the surface pressure excess exceeded -1 mN/rn only for the concemratiow; lar~f;'r [hall

r.-\ ~ 10 PDMS monomerjnm2
, where the approximation tmderlying the treatlllt'tlr

of this block ma)' be invalid. as discussed. in section 5.3.t.

There are two distinct regimes for every curve. lnitially. ..lIT increases relatively

slowly but beyond some point it increases rapidly. To inve:stigarf;' this behavior. and

in the spirit of searching for a power law dependence, tbe excess surfact' pres.'.;urt-'

curves were replated on a log-log scale. A q ..pical e.'<arnple is shown in fif;{llH' .'j.8 for

the 28PDMS-330PS copolymer. In the first regime, the surface pressmt' ex(~t!ss 1·1Ul
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Figure 5.8: Two regimes for surface pressure excess, !lIT as a function of the nmnber
of chains per unit area for 28-330 PDMS-PS copolymer. The solid line is fitted to the
calculatioos. The dashed line is the line of the best fit usinK an assumed .5/3 power
law dependence.

be described reasonably well by the power law dependew:t' I-Jrl·dic·tt'd by rllt' allal~'ric'

theory of :\OlWC,

(I)'"~n(X E . (;j.-lGl

In the second regime. beYOD.d about Ll = 65 nm2 for thi:;; case. the remits fall on

another straight line, again implying a power law dependem:e. However. the va.hl\'

of the e.."ponent is much larger, 0 = 7.2 ± 0.1 for this polymer. This rapid iucre.a.st'

cannot be explained by the analytic theory. All four curves have similar heha\oior.
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The values of the e.xponents and the approximate V'dlues of tht:' ~I aut! (1" I ..Ie which

the second regime begins are listed in Table 5.2 for each case.

Table 5.2: E.'Cperimental and theoretical power law e..xponents obtained from tittiuJ.:
.lIT ex (l/E)"', in the region where the deviation from analytic predktion is observed.
Approximate theoretical values of the surface concentration, E

"
and reduced sur

face concentration u· I where the deviation begins. Polymers are labeled by block
molecular weights, in kg/mol, of the PDMS and PS blocks respectivdy.

Copolymer Power law Power law E,
lvlv; exponent-Experiment exponent-Theory [nm'l "" ,

±O.l
4 - 30 4.2 ±l.O 5.3 10 9
4.5-60 4.4 ±O.4. 5.2 15 1:3
21-169 6.6 ±O.6 8.2 ~8 16.;)
28-:330 5.6 ±O.9 7.2 65 24

In general, the larger tbe degree of polymerization of the tlall,!!;lill,L!; IJllwk. tllt"

larger is the reduced surface concentration. q' I, at which the deviation froUl .jj:j

scaling OCCUIS. The values of the exponents are much higher than the valll~ of 5;:3

predicted by analytic theory. and are in semi-quantitative agre€ment with the values

obtained in the experiments [21. As already mentioned. in the numerical smdy of

Crest [82J a value of 2.5 was obtained for all polymers and IT" :s 20. while Cari).(uauu

and Szleifer (104J obtained a value of 2,4 for the scaling expoueut over a similar raIl)!;t'

of Z and (1"'. The numerical values of the exponents obtained by Grest and C'aril{nano

and Szleifer are higher than 5/3 but still much lO....'er than these obtained here aud in

the e),,--perimental studies of Kent et at [2].

To pursue the analysis further. the contribution of the particular terms in Eq. (ii..t1)
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to the total surface pressure isotherm can be analyzed. U&ing thi.:;; equatiol!. tht> sur

face pressure expression, Eq. (5.38), can be written as

where each term corresponds to I.:ontribution to the L in Eqs. (5.40) aud (.j..lI). amI

has tbe same physical origin.

In figure ·5.9. the contribution. OUI as a function of f.<t is shown. All the uUlIwrit"i.d

vcllues collapse reasonably well to a single curve obtained for botb homupolymers.

This implies tbat. although the e..xternal potential acting un the A-type monomt-'r.;

determines the overall dependence of the pressure on the surface concentration, it has

a oegligible effect on the rapid increase of the e.xcess pressure for the copolymer.

:"Ie..xc, tbe contribution of the interactions between aU the wmponents in tht' sys

tem, Oint, is considered and the results are prcscDted in fiA"tIrc ;).10. E='ur tLw hUlIlopol.v.

mer, the interaction energy L;nl consists only of onl:! u~rm. Ll' .. tilt' 11OlUOpolyu\I'l"

solvent interaction. Initially an increase in the surface concentration leads to an in·

crease in the surface tension due to the interaction between homopolymer chains and

the solvent molecules. This results in a negative contribution to tbe surface pres.';nn'.

For higher values of tbe surface concentration, r ;(: 5 monomers/nm:.!. tue interac

tions per unit area saturate and then increase more than linearly in l/r:.. Similar

behavior is observed for the symmetric copolymer, which once again indicates that

the interaction between the dangling block and the solvent starts to contribute at

higher surface concentrations. For the asymmetric copolymers. the snrface preSSl!rI'
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Figure 5.9: The contribution ITezt to the surface pressure n as a funnion of tht'
number of PDMS monomers per unit area adsorbed outo tLp surface.

curves deviate from the homopolymer curve because the interaction bctwct'u sulvellt

and the dangling block contributes. As tbe surface concentration increi.\.';t's the tutal

amount of the B-block increases and, since the dangling block i.s similar to an eud-

KJ"afted polymer in a good solvent. interactions hetween the solvent ami dais b[o..k

result in an increase of the surface tension. For big-her sllrfan' C·UII('c'ufratioll:-. rill'

surface pressure due to the interactions tends to be indepclluclit of fA (tilt' ('urn'S

become Batter, in the same order as the surface pressure isotherms deviate fwm t!Lilt

of homopolymer).
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Figure 5.11 shows fIc.t, tbe entropic roDtribution to the !'-lll'face pressure. AU the

curves in this 6gure are controlled by tbe !>ize of the .-I.-blod: and tbt' 'L"i~"lllDlf'(ry

ratio. B~' comparing this figure with figures 'J.9 and 5.10. one Sf'eS that tut' t'utrupil"

eontribution is the main factor causing the rapid increase in tbe e..'(L"eSS sllrfan' I-m~

sure found in tbe second regime. In the first regime, the interactions ami entropy

contributions lead to the relatively weak 5/3 scaling behavior. However. for cbt' sur-

face concentrations where the interaction contribution co the pressure, n",t, teucls

to le..'el off, or the rate of decrease becomes smaller, there b a rapid incrt!ase in the
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Figure 5.11: The contribution ITt:n1 to the surface pres:sure IT as a fIlU(~tiuli of till'
number of PDM$ monomers per unit area adsorbed onto chI:' surface.

encropic contribution. llt:nt, to the total ~urface pressure. IT. The rapid illcn~a•..;t" III

the surface pressure originatinK from the entropic illteractions is in aJ.,'Tf't'IlH'lIt \\·it!l

the conclusions drawn by Kent et al [21 and Grest [8:2). They SUAAested tbat lateml

interpenetration among neighboring chains is limited and may e..'(plain why tbe sur·

face pres:sure rises more rapidly than predicted by analytic theories. .\-lore analysis

of exactly wby the numerical SCf produces this rapid increase. whereas tbl! aoalytk

SCF does not. is needed.
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5.4 Summary

In this chapter the lateral compression of polymer layers at the air-liquid iut~r

face was investigated. A self~consistent formalism for the calculation of the surface

pres~ure was introduced. and the results of numerical calculations for different poly·

mer/solvent systems at the air~liQuid interface were presented.

First, the homopolymer/solvent system was studied. The solvent wa...; a.SSHIlII·d

to be poor for the polymer. Furthermore. an attractive slIrface·monoult'r pot"lItial

was introduced. to simulate tbe adsorption of tbe cbains at the surfaee. It wa...; als"

assumed that all the homopolymer chains start at tbe surface. which corresponds to

tbe formation of monolayer. Tbe surface pressure ~otbenn as a fUIIl:tiOD of Cue avera~t'

number of cbains per unit area was calculated for two hornopolymers characCeriZl-!d by

different degrees of polymerization. It was found that tbe surface pressure isotherm

does Dot depend on ZA if e.xpressed as a function of tbe number of monomers adsorb~d

onto tbe surface. Good quantitative and qualitative agreement was found with the

surface pressure isotherms obtained experimentally (i. 2) .

.'iext. the diblock ('opolyrner/solvenc system at tut' air-liquirL iutl'rfan' with 'Ill"

block equivalent to tbe homopolymer in the homopolymer/sui vent system \\'as l'I)[lsid

ered.. The second, B-block was assumed to be in a good solvent. The surface pres:'mrp

isotherms as a function of surface coverage were obtained for si.x copolymers with

different asymmetries. For tbe symmetric copolymer, the surface pressure isotherm

was essentially tbe same as for the bomopolymer system, and the contribution of the
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dangling block started to affect the isotherm for large values of tbe a.<borb~d affioUllt

of A type monomers. For the asymmetric copolymers tue eorrespolldill~~·;urfan" pws

sure isotherms deviated from that obtained for the homopolY1ucr. The ~'xn's.'i snrfan'

pressure for the:::e copolymers was calculated and tbe results showed that this (~X(·t'S."

pressure can be divided into two distinct regions. In the first. the t'_"«(.~'i surfan'

pressure can be well described by the analytic theories which predict a .5/:3 power law

dependence of the pr~1.ue on the surface coverage. In tbe second region. however.

the power law dependence is much stronger than this predicted by uualytk pktUft>:>.

The calculated power law dependences in the second rebrime are in semi-quantitative

agreement with these obtained in the experimental studies of l,ent d at. [2] and

much higher than the values predicted by analytic theories and some recl-'ut UlUIlI'r·

ical sttldies [82. 104]. It was found that this rapid inerease in tLl-' stlrfat'l' pn'S."iHn·

can be explained on the bahis of the entropic interao.:tious nt'twftOn tl.lt' (·ha.ius, Thi:-.

entropic contribution to the surfaee pressure depends on both thl-' asymmetry ratio

and the molecular weight of the adsorbed A-block and is different from the entropic

interaetions in the homopolymer/solvent s)-'stem. The numerical studies of Crest [82]

and Carignano and Szleifer [104] consider only the dangling B-block. which tI1ilY be

why their surface pressure isotherms are deseribed by a lower values of thl-' expuueuts.
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Chapter 6

Conclusions

The main goal of all tbe studies discussed in this thesis was to ~aiu a better

understanding of the physical properties of polymer/solvent systems near surfaces

and interfaces. In particular, a major focus was on understanding the structure of

polymer layers, the effects of solvent quality, the interactions amollK the polymer

chains during compres-ion and the behavior of polymer/solvent systems at the air4

liquid interface. In all tbe studies, tbe result:> obtained turoll,L\"h till;"' t111meril:al SCF

theory were compared to the analytic predktioIl."i. as well lIS to p.xperillwlHal STlldi..s

on similar systems. This chapter summarizes and concludes tLt-' work pn'~t'l1tt'd ill

this tbesis. Extensions and prospective studies are also outlined.

6.1 Summary of the Results

The studies presented in this thesis are based on the numerical self consistent

field approach. The polymer configurations are idealized. as space curves and the
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partition function is written as a. functional wte/;(ral owr thl! domain uf "uuol{nratj,m

space. The introduction of the mean field approximation results in a ~et of t:OHpkd

equations for the density profiles of every <:omponenc, self-con~istent potentials uud

a free energy expression written in terms of tbe densities and interaction parameters.

The polymer. either homopolymer or each block of copolymer. is d.laractl'rized by chI-'

degree of polymerization, Z"" segment statistical length. b", and the density of pure

material Po,.. The profiles for the polymers are calculated by solving tbe diffusion

equations for the polymer distribution functions, qi(r,')' subject to geometry and

the surface dependent initial and boundary conditions. The fum:tioDs qj(r. T) all'

proportional to the probability that a scctiOli of h~llA"tu T t'uds ar r j.{iWIl filar ir

starts in the interface or somewhere in the solution. The potentials _·p(r) wuit-Ii

modify the diffusion equation include enthaipic interactions between tl.lt' fIlo1t'(·tt!es.

written in terms of the Flory interaction parameters. as well as interactions with tht'

lm.rface. plus terms arising from the condition that there is no volume change UpOn

mixing.

In chapter :3, the properties of uncompressed polymer brushes formed by rill-'

selective adsorption of the diblock copolymer or end-grafting and immersed pither ill

a good or e solvent ,vere discussed. In the case of a brush in good soh-ent. turce

regimes of stretching can be defined. The first is characterized by 17" ;S 1. ill wlikh

the chains extend from the surface a distance on the order of R'J of rhe frt'(' ['Ilil

in a solution. In this case neighboring chains do [lot overlap. This conespouds [0
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the mushroom regime, in which the SCF theory and the lateral averaKwK parallel

to the surface are not suitable approximations. For ~ ~ (1' ;:: 10 the neighlJurinK

chains Start to overlap and begin to stretch away from the surface. Thi.." Ieg;iml' is

characteristic of many e.,,<penmenrs in good solvent. To date the sysu'llIs SIllIli...d

by Auray et a1. [62, 56l and by Karim et al. [58/ appear to be the ouly OUt'S woid.!

fall into tbe third, asymptotic regime, (T' .c 20. The scalinlo!; dependew:t-s uf tht'

thickness of the polymer brush on tbe degree of polymerization a.ud surface euwmKt>

predicted by the analytic theories caD be applied only in tLe third rel-,';me. III the

regime 2 .::s q' ;S 20 the scaling dependences found in this thesis are much weaker

than predicted by analytical pictures, but are in very good agreement with the recent

experimental studies of Kent et at. [1, 2J.

This agreement motivated the next part of the study. in which a detailed (:olllpar

ison between the numerical SCF theory and the anaJytic pktltt'l~ uf pUlylllt·(' hrush!'S

in good and e solvent conditions was carried out. In good solvent OH1ditiollS it.

was found that the numerically generated profiles extend further than thosp of tilt'

parabola. All the profiles have a depletion layer and an exponential-like tail reJ.(ioli.

The thickness of the end-b'iafted layer is about .')0% thicker. and tile nUL'Ximltlll v"l·

ume fraction is about 20% lower thaD in parabolic profile. The scalin!!; rdation of thl-'

thickness of the brush with the surface coverage and the degree of polymerization is

significantly lower than that predicted analytically, but the difference becomes smaller

with increasing reduced surface concentration. fT' The free energy of [h", hrn:;h oh-
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tained in tbe numerical theory is about 25% higher than predicted by analytil; theory.

The numerical results for the polymer brush in e solvent are in sibrnificantly better

agreement with the analytic predictions. However. the numerically obtained density

distributions still have characteristic depletion layers and tail rel{ions, features wllkh

are absent in the elliptic type of the profile proposed by the analytic pictures. The free

energy of the brush in a a solvent is in good agreement with the analytic predictions.

The onset of stretching for the polymer brush in a e solvent appears at (1' ~ :3-

Different modes of comptession of polymer hrushes either ill j..!;ood "r H "'lln'ut

in the direction perpendicular to the grafting surface were the suhjeu uf l'haptl'r .1.

The main goals of these studies were to find a universal description of the lou).(~rall~p

force between the surfaces during the compression, and to analyze some very strou~

assumptions made in the analytic theories. The analytic pictures assume that. dllr~

in~ the compression of the two identical polymer brushes. they du not interpenetrate:

thus this mode of compression would be equivalent to the compression of the sin~lp

polymer brush by a wall which is impenetrable for the chains and neutral for adwrp

tion. Furtbennore, the long range force between the surfaces can be described by the

product of tbe free encrJQ-' of the uncompressoo brush and some universal fuw'riull

of the reduced distance which is defined a:; the ratio betwep.u rht> :-iHr(;u't>:-; Sl'parariull

and the thickness of uncompressed polymer layer.

The numerical results differ from most of these assertions. For the couwressioll of

the polymer brush in a good solvent by a bare repulsive surface, they are dispersed if



201

plotted according to the UDiversai fonnat proposed by the analytic picture of .\l\·VC.

espeeially in the initial stage of compression, However. if only one V'dlue of fT' is

considered, the numerical results collapse reasonably well to a single c.;urve. TO,l1;etu~r.

these results imply that in this mode of t:ompression it is mainly th~ tail regiuu.

neKlected in the analytic picture. which is deformed. However. all the fn·t' t'w'r~y

difference curves do collapse to a single curve if plotted as a function of a simple

measure of the deformation, Le., the ratio of the Tm.s thicknesses of the compressed

and uncompressed tota! polymer density profiles. In this representation all three

modes of compression become equivalent. For a pol}'lIler brush in a ~ood solveD[.

the analytic theory twderestimates the range of the force and its m<lh'1litllde hy a

factor of 2 in comparison with the numerical results. in ~ood aJ.:"r~meut wirh rlw

recent experimental observations. For the compression of two polymer hrHslll-'s. tlll'

numerical results predict the interpenetration of the opposing pol},ner layers dmin).!;

compression. and are in very good agreement with :\·ID simulations of :\·Iurat and Gn'St

[101]. For the compression of a polymer bnlsh in a e solvent the ah'Teen!eut bet\\'l'ell

the numerical results and the extension of tbe MWC picture to different solwtlt

conditions (40] was satisfactor:-'. However, the advantage of the analytic theory o....er

the numerical studies is lost since, even for the e solvent, there is DO dosed analytit:

form and the results have to be obtained through the numeri<.:al evaluatiuns. As in 11

good solvent, the numerical results confirm the interpenetration etfet.:ts nt-'~It'I·tl·d b~'

Shim and Cates [401.
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The final aspect of this thesis was a study of the lateral compression of poly

mer layers. Both blocks of the diblock copolymer were incorporated within tbe SCF

treatment, and an effective external potential W"dS introduced to model the adsorp

tion of the polymer chains at the air-liquid interface. First a homopolymer/solvent

system was studied. Surface pressure isotherms were calculated as a function of the

stmaL"e coverage and L"Ompared. with experimental obseIV'd.tiollS. Tb.. isotl.wrtll.... fur

this system were found to be independent of the deKJ"et: of J.XlI~'1nerizatiuli"e tL" ad

sorbed homopolymer if the surface coverage was expressed in terms of tbe adsurtwd

amOUDt, r.-l, at least in the range of the molecular weights used in tbe ulllIH~rical

studies,

:-Je.'t:t, the diblock copolymer/solvent system was investigated. The <uisorhiu/!:

block of copolymer and the solvent \\'ere the same as in the homopol~..mer/solvent

system. The calculated surface pressure isothenns as a function of tbe llIuliher of

A-type monomers adsorbed. at the interface depended strongly on the asymmetry

of copolymer and also on the molecuiar weight of the A.-block. For tht" symmetrit'

copolymer the isothenn was e.sentially the saDie as for (L.. hUllltJpul~'1ll1"r illth"H~h

differences OL"CtlITed. for large values of the snrfaL'e L'ODcentratiou. Tht' ~urf1l('1' l,rl'S,'illfl'

isotherms for the asymmetric copolymers deviated strongly from the homopolymer

isotherm. As the asymmetry in block length increases the deviation from tbe uo

mopolymer isotherm occurs at a lower surfaL'e concentration of the A-block.

The excess surface pressure for these copolymers was calculated. The analytic
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pictures predict that the surface pressure for such a system should scale as (1/~1·~';1.

The MD and SCMF studies predict a slightly higher V"o:l.hle for tht" t"x t)<J11I'UL Two

distinct regimes were found in the numerical results in this th~is. Tht-' exce:;s :mrfan'

pressure W'.lS described reasonably well by this scaling in the first reKime. hut {1t"v1atl'd

strongly from it in the second regime. A detailed analysis of the surface pn~ssurf:'

isotherms showed that the entropic contributions result in the rapid increase of the

surfa(.'e pressure. The numerical calculations presented in this chapter are in semi

quantitative agreement with the experimental results of Kent et ai. [2]. which art-' thl'

only ones known to the author in which the rapid increase in _HI was obst'[\.,t'(!.

6.2 Future Work

Polymer/solvent systems near surfaces and interfaces aft' far frolll IwiuJ.:" fl\U~·

understood. \oVhile the theoretical studies presented in this tbe:;is w{~re able to ausw!;'r

a number of questions, there are many which remain to be addressed and resolved.

The SeF theory used throughout this dissertation can be e.'\:tended and imprO\.ed

in many different directions. More detailed modeling of interactions among all the

constituents, as well as interactions with the surface. can be investigated. Tht' iUf"or

poration of fluctuations. especially at the tip of the brtllih where the polymer deusity

is (ow, will provide a more detail picture of the polymer layers duriu/-( {·ompn>sstuli.

Finally, extensions of the model which aUow for a non-unifornl polympr density at rlu'

free surface of the solvent, as weU as the inclusion of a desorption mechanism. wonkl
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lead to a better understanding of tbe systems studied in chapter 5. .\tlore detailed

and comprehensive studies are needed in order to reveal the scaling dependenees of

tbe excess surface pressure on tbe asymmetry ratio and del{rees of polymerization of

botb blocks,

The structure and properties of the polymer layers <'au ht! srndit~d ill a \·ari"T.\·

of different geometries and under tbe influence of different t'xternal fields. .\lotl

complicated architectures than linear diblock copolymers and polydisperse brusht'S

can be considered, These are only some examples of pos.o;ible cballenhtin~ fllttJr('

projects.
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Appendix A

Computational Aspects of Calculations

In order to eV"d.luate the density distributions of all the components of tIlt' S~'S-

tern, as well as the free energy for a given system. a self-consistent solmioll has to

be found. To do so, the original numerical program was written usin~ fortran .7.

modified further to the F9a standard, and optimized to minimize the time needed

to obtain the converged solution. The numerical calculations were performed on a

number of platforms. At .v[emorial University of Xewfoundland tbe code was run on

Silicon Graphics R4DaD Crimson workstations. a number of DEC .-\lpha s~'stems awl a

Digital .·\.lphaServer -UOO. Tbrongh a scholarsbip provided by T!.J(' Hig-b [>1't·fOnllillw,·

Computing Centere in Calgary, access was granted to the Fnjitsu \·PX2-1ll. which i~

a vector supercomputer.

for a given system, which is specified by the values for Z.~, ZB. E. PoB. {JOA. fJo.~·.

b.~, bfl, and tbe Flory interaction parameters X.H, and }(flS. as well as tht' external

potentiaL u1'(x), an iterative procedure is used to obtain a self-cow;istent solution.
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To start the iterations. initial potentials, wtnt(x) = O. are chosen. The next step

is the solution of the diffusion equations for all thc propa~aton;. (1,(£. 'J. which art'

used in a particular problem. Thcn the l:orresponding density prol:iles ar... l'lJllstrllt'T,"<!

through the proper convolution of propagators. The density profile for thl:' sulvt'LlT

is determined by means of the incompressibility, which implies that the local volmne

fractions of all components l>UUl locally to unity everywhere. From all tbe protil~. new

potentials ..J;(x) are determined and a linear combination of the new and old potentials

is used to initiate the next iteration. As the convergem:e criterion. I....,i(x)- ....·i- ' (:1:)1 :s

6 = 10-1 for all x, and i is used, where wi(x) is the self-consistent poteutial for i =.-1.8

obtained at the nth iteration.

The diffusion equation is solved via tbe Crank-Nicholson method (1-1.81 wbil:h is

um:onditionally stable and is accurate to second order in both tilt' "tillll," !7! aud

spatial steps. The procedure is particularly effident and ,:an easily hI" j,{... w'mlizt'11 tu

different boundary conditions used in this thesis.

In order to obtain the scaling relations, the non-linear least squares fitting routine

E04GEF provided by NAG (1341 was used. E04GEF is applicable to problems of the

form

Minimi,. F(x) ~ ~ [/;(xl/' . 1.-\.11

where x = (Xl, X2, •• , Xn) and m 2: n. where n is the number of fitted p,U'ameters.

and m is the number of points a given quantity has be determined. The functiuns
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/;(x) are referred to as residuals, and if one looks for tbe fit of the form

(A.2)

then these residuals are defined as

(A·:11

This routine can be used if the functional form of tbe Sl.-alinJ( relation is kuuwlt. ;ulll

tbe Jacobian matrix of first derivatives ~ at any point r can be determined.

For tbe data (."()Uapse when the functional dcpendeoce of a ~vt'u quantity was !lot

a priori assumed, a similar method was used. However. in thest' cases tht' routilit·

E04JAF, which does not require the Jacobian matri.x. was used in fittiu)(. Tbis was

used. for the long range force as a function of scaled. distance in chapter 4.

To evaluate the surface pressure as a function of the surface (.·"(wer3)(p. tht> deri\1.l+

tive of the C functional. £q. (5.40). with respet:t to!: is reqllUt.'t1. In alll·a.~'S. [u."

functional C was evaluated. for equally spaced valut'S of ~ aud tui... dt>ri\'iHiw l"ullld

be approximated lJy

ac.1 ~ qE.-d - L:(E._d .
8E .... L._I - Li_1

(.\AI

However. in order to take into account the fact that the functional C. ha..... ht't"u 1· ...<1.111+

ated with finite accuracy and to include more thllD only two poiuts in du" ~,'a.1l1a[iutl

of the derivative, the routines E02BCF, E02BEF supplied by ~:\C [1:3-11 were used.

The routine E02BEF computes a cubic spline approximation, in tht> B-splille rep-

resentation, to an arbitrary set of data points. The knots of the ~"plinc are located
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automatically, but a single parameter must be spccifit!d to cuntrol the tradp-off hI-

tween doseness of fit and smoothness of fit. The values of the functional C art! on

order of 0.1 kB T/nm2 for small values of IlL to an order of 10 kBT/nm~ for tht!

highest values of liE. Performing many simulations with different Ktids in both

Cartesian and "time" space and using; REAL *8 and REAL·16 representations for thp

vdriables, the accuracy of calculations for the functional L was estimated to he on

order of ±0.0005 k8T/nm2. The value of the smoothness parameter. S, in all the

calculations was chosen to be on this order (usually 5......0.0001). On successful exit

from the routine, the approximation returned is such that thp sum of tht, sqllarptl

residuals is equal to the smoothinJ.;: parameter. The output of tli<' Eo:!BEF rlllltilH'

was used as an input to the E02BCF routine which evaluates the rpquirt><1 dpri\·ativl'.
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