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Abstract

In this thesis. a comprehensive study of the structure and physical properties of

is presented.

polymer layers, carried out using numerical self-consistent field theory.
Diblock copolymer with one of the blocks adsorbed at the surface and the second
block dangling into solution, and forming the polymer brush is considered. For many
properties, the results are compared with experimental data. therefore realistic values
of the statistical segment lengths, interaction parameters. densities of pure materials
and molecular weights are used throughout the calculations. In other cases. model
calculations are performed and the results are compared with the analytical predic-
tions.

The properties of the uncompressed polymer brush are examined first. The thick-
ness. the free energy and density profile. and the dependence of these properties on
surface density, molecular weight and solvent quality are examined. The densiry pro-
file is discussed in terms of its general shape. maximum polymer concentration and
its location, and the depletion and tail regions.

Next, the compression of polymer brushes in good and © solvents is considered.

For each case. the density profile. root mean squared thickness and free energy of

the 1 brush, as fi i of the lecular weight and surface coverage.
are calculated and presented in the form of power law dependences. Three modes
of compression are considered: by a second brush adsorbed on a second surface.

by a bare. repulsive surface and by a surface which is neutral for adsorption. The



iii
interpenetration of opposing layers is quantified and the results are compared with
recent numerical studies.

Finally. surface pressure effects in the adsorbed layers are examined. First. a
homopolymer/poor solvent system with an attractive surface interaction is consid-
ered. The surface pressure as a function of coverage is calculated. Then the copoly-
mer/solvent system is considered in which the anchoring block is the same as the
homopolymer and the solvent is good for the dangling block. Both blocks are in-
corporated within the self-consistent formalism. The excess surface pressure for this
system is calculated and compared with recent experimental work in which rapid

increases were observed.
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Chapter 1

Introduction

1.1 Polymers at Surfaces - General Remarks

Structures formed by polymers constitute a field of very diverse and interdisci-

plinary studies. The variety and complexity of polymer systems arising from a few

simple building blocks inspire much experimental and theoretical work. and phys
cists. chemists and material scientists are all active contributors.

One of the aspects of polymer science which. in recent vears. has attracted con-
siderable interest is the structure and the properties of polymer systems near surfaces
and interfaces. These interfaces are very important in many commercial applications
such as blends. composite materials. adhesives and coatings. The adsorption or grafr-
ing of polymers onto surfaces is of importance in a number of other areas. A favored
current application is the coating of medical devices with polymer surfaces that form

strong repulsion layers; this technology is used in the manufacture of bioimplants.

A more comprehensive understanding of how different types of polymers organize atr



W

the surface may provide further advances in the design of such biomedical devices.
There is also strong interest in the lubricating properties of these layers in contact
with the tissue and other biomatter. Furthermore. diblock copolymers are the high-
molecular-weight analog of short-chain amphiphilic molecules. They may be surface
active and may form a variety of phases (micellar. lamellar and cylindrical among
many others). Thus. they can be used in the prevention of protein adsorbtion to
biosurfaces and in the design of new drug delivery systems. The successful design
of these polymeric materials depends on the physical and chemical properties of all
the constituent elements and this. in turn. requires a fundamental understanding of
the relationship between the molecular architecture and thermodynamic properties
of such polymer systems.

Polymers are large molecules consisting of repeated chemical units (monomers)
bonded together. The simplest architecture is a linear homopolymer: idenrical unirs
are joined in a line. much as a chain is built up from its links. In other cases. the
chains are branched or interconnected to form three-dimensional structures. Further
complexity can arise from the fact that polymer chains can be built from two or more
kinds of monomers and assembled into distinct blocks. first one species and then
another. The resulting structure is referred to as a block copolymer.

When polymer molecules are immersed in a solvent. their behavior depends strongly
on the interaction between the solvent and polymer molecules. One can distinguish

between good, poor and © solvents. A good solvent is one in which a polymer of



infinite molecular weight would dissolve. A poor one is one in which it would not.
Finally, a © solvent corresponds to the cross-over between good and bad solvent.
Diblock copolymer/solvent systems are the primary focus of this thesis.

Near a surface, large molecules experience constraints on their configurations and
experience interactions that differ from those in bulk. When a solution comprised of
different polymers and solvent is in contact with a surface or air-liquid interface. the
constituents of the polymer solution which can best accommodate the constraints and
interactions tend to concentrate near surface. Furthermore. the molecular connectiv-
ity of the polymers can effectively link the surface to the interior of the system. or in
other words, a long chain located near the surface can also extend relatively deeply

into the bulk of the system. It is convenient to consider three types of surfaces. In

general, one can think of the surface exerting attractive. neutral or repulsive for
on the polymer in solution. The range of this interaction is also important: it can be
short or long-range. All these effects can be enhanced or diminished by the quality
of the solvent.

The interfacial properties of h lymer chains in a solution depend strougly

on their affinity towards the surface. If the surface is attractive. then an adsorbed
layer forms. Repulsive interactions between the surface and the monomers result
in a rednuction of the amount of homopolymer near the surface. often referred to
as depletion. When one end of every polymer chain is attached to the surface by

functionalized end-groups, the interfacial properties of such a structure depend not



only on the properties of the surface but also on the grafting density. If the grafting
density is high enough such that the chains stretch away from the surface. a strneture
referred to as a polymer brush is formed. For end-grafted homopolymers. an attractive
monomer-surface interaction can also lead to adsorption of the polymer chain at the
surface. Conversely. if only the grafted end is attracted to the surface. a depletion
layer is formed and the density of polymer near the surface is lowered. Polyvmer
brushes can also be formed by a selective adsorption of diblock copolymers. The
block with the higher surface affinity (anchoring block) adsorbs onto the surface and
the second block (buoy) extends to at least some degree into the solution. When the
density of adsorbed chains in the vicinity of the surface is high enongh such that the

dangling chains stretch away from the surface. a polymer brush is formed.

This variety of possible situations. as well as the complexity of each system. make

the study of pol, at surfaces i ing and challenging. Prediction of the struc-

ture and physical properties of copolymer/solvent systems near surfaces and inter-
faces is the objective of this work. Polymers at an air-liquid interface are present in a
number of systems including composite materials and colloidal dispersions. thus such

h taal ficti can be ically important [3]. Additional motivation

for this work is provided by the possibility of coupling the results presented in this
work to a number of experimental studies [1, 2].
The picture of homopolymer adsorbed at the surface can be described as a con-

tinuous succession of “loops™ and “trains™ as well as “tails”. A train is a series of
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consecutive segments. all in contact with the surface. A loop consists of segments.

it is bound by a train on each side. A tail is termi-

all extending into the solvent;
nally bound to a train; the outer end dangles into the solution [4]. The adsorption of
homopolymers, when each monomer can adsorb at the surface. is rather well under-
stood at present. At low surface concentrations when neighboring adsorbed chains
do not overlap, the conformation of macromolecules is determined primarily by the
value of the adsorption energy of each monomer [5]. At high surface coverage. the
structure of the adsorption layer depends also on the concentration. chain Hexibility.
adsorption energy and polymer-solvent interaction as well as the molecular weight
of the adsorbing chains. The physical description of the adsorbed layer contains the
details of the density distribution profile. thickness of the adsorbed layer. as well as
the adsorbed amount. I'. which is defined as the total number of monomers per nnit
area which belong to the adsorbed layer.

A different structure is formed by end-grafting technique. Homopolymer chains are
terminally attached to the surface or interface and. depending on the grafting densiry.
different regimes are considered. The main factors which determine the properties of
these polymer layers are the degree of polymerization of the chain. Z. the quality of
the solvent. and the average area per adsorbed molecule. £. As is commonly done. it

is useful to introduce the reduced surface concentration, o* . defined by

(L1)

where R, is the radius of gyration of an isolated polymer in the solvent. with R, x Z.



where » &~ 0.5 or 0.6 in © or good solvent. respectively. In worse than © solvent
v~ 1/3 [6]. To within a numerical factor. o is the ratio of the cross sectional area

of a molecule in solution to the average area associated with it in the grafted state.

Two limits are ly identified and sch ically { in figure 1.1. In

2
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Figure L.1: Polymer chains attached by one end to nonadsorbing surface. MMushroom
(a) and brush (b) regimes. The brush thickness is /..

the first, o* < L, the distance between the grafting points is greater than R,. The
chains are isolated from one another, and extend a distance which is proportional
to R, from the surface. This limit is known as the “mushroom regime™ [7]. In the
other limit. which corresponds to @* >> 1. the average area per grafted chain is much

smaller than the cross sectional area of a chain in a solution. and they are obliged to



stretch away from the surface. This limit is frequently referred to as the brush limir
and will be counsidered in this thesis.

The adsorption of diblock copolymers depends very strongly on the quality of sol-
vent for each block of the copolymer. One can distinguish between non-selective and
selective solvents. If the interaction parameters between the solvent molecules and
both blocks of the copolymer are similar. the solvent is called non-selective. The ad-
sorbed block can be interpreted in terms of a self-similar. “Huffy carpet™ structure [8].
In the case of a selective solvent the solvent is poor for one block and good for the
other. The block for which the solvent is poor can then adsorb onto the surface.
and the second dangles into solution. The adsorbed block is interpreted in terms of
molten and swollen by solvent layer [9]. In either selective or non-selective solvent the
dangling block is similar to the end-grafted homopolymer and is treated as a polymer
brush.

In order to fully describe the adsorption layer, both the details of the density
distribution profile and the free energy of the system have to be determined. Most

of the other thermodynamic quantities can be derived or calculated from the free

energy. In most analytical and ical hes the Helmholtz free energy. F.

of the system is specified. Usually it is expressed as a sum of two contributions - the
interaction energy, which involves all components of the system and the interaction

with the surface, plus the entropic contribution. Then the surface tension ~ can be



calculated using
v= (E) ¢ (L2)

where A is the total area of the interface. T is the temperature. V" is the volume of the

system,and .V, are the numbers of the molecules of species & present in the system.

In the case of the air-liquid interface the change in the surface tension can be

interpreted as a two-dimensional pressure. This change is called the surface pressure
Mo=7%-7v- (L.3)

where v is the surface tension of the pure solvent and 7 is the value with an adsorbed
polymer.

Polymer layers at surfaces or interfaces have been extensively studied theoretically
and experimentally. and in the following sections some important and relevant results

will be discussed in detail.

1.2 Analytic Theories of Polymers at Surfaces

The ultimate goal of every polymer adsorption theory is to provide a description
of the polymer concentration in the vicinity of the surface as well the physical prop-
erties of the adsorbed layer. One can categorize each theoretical method as either
an analytical or a simulation technique. In this section. analytic descriptions of ho-

mopolymer adsorption will be discussed first. Next. analytic models of end-grafted

h i

lymers and bing surfaces will be considered. Finally some models



for diblock copolymer adsorption will be presented.

1.2.1 Homopolymer Adsorption

There are two major analytic approaches to the description of homopolymer ad-
sorption. i.e., scaling [10-16], and mean field descriptions [17-19].

The scaling description of homopolymer adsorption from good and © solvents was
developed by de Gennes [10, 12]. It is based on the concept of the correlation length.
£, introduced by scaling theory in the description of dilute and semidilute polymer
solutions [5]. The central result of this theory is that this correlation length. €. is
proportional to the concentration of polymer in solution. . which scales as

€ ®™%*  good solvent
a

LSS g (L)
o' O solvent

where a is the monomer length. This result was used to derive power law dependences

for different parts of the polymer density profile in the vicinity of the surface. The
adsorbed layer is divided into three regions:

L. The prozimal regime, z < D, close to the surface where the profile is very

sensitive to the details of the segment-surface interaction. The parameter D

is approximately the thickness of an isolated adsorbed polymer chain and is

determined by the adsorption energy parameter .

. The central regime, D < z < &. where the profile follows a universal scaling

law, and for the adsorbing wall is independent of the bulk concentration. &, is



the bulk correlation length and it is assumed that D and &, satisfv [10]

e« D<LE. (L.3)

3. The distal regime. z > &, where the density profile. o(z). approaches the bulk

concentration. ¢,. exponentially.

In general. the adsorbed amount [ is obtained by integrating (o(x) — o) over
the distance from the surface and depends on the adsorption energy and the number
of segments per chain as well as the quality of the solvent. Similarly. one can also
obtain the expression for the free energy or the interfacial tension. 7. The detailed
discussion of these quantities and their dependences on relevant parameters goes
bevond the scope of this thesis but can be found in the literature [13. [4. 16. 20].

The scaling theory provides only global information on the properties of adsorbed
homopolymers. Furthermore, it is valid over rather limited range of conditions. There
are several analytic treatments of homopolymer adsorption based on the mean field

approach. Joues and Richmond {18] considered adsorption from solution onto a pla-

nar surface using the self-consistent field theory (SCF) of Edwards and Dolan |
They discussed adsorption from © and good solvents. Their approach is based on
the ground state approximation for the solution of a diffusion equation. The prob-

ability distribution function for a polymer of Z segments starting at = and ending

at v which satisfies the diffusion equation is expanded in terms of eigenfunctions

with corresponding eigenvalues. and only the lowest eigenvalue and corresponding



eigenfunction is assumed to contribute to the solution.
Another approach is based on the square gradient theory introduced by Cahn and
Hilliard [17]. and developed for polymer adsorption by Poser and Sanchez {19] and by

de Gennes [10]. In this method the local contribution to the surface tension or free

energy excess is di d into a ion gradient term and a concentration
d dent term. The interfacial tension can be written as
2
o do
= dr [L(w) (—) + F(o)] . (1.6)
o dr

The stiffniess function L(¢) represents the energy cost of making local changes in rhe

polymer concentration [10] and, for low polymer concentration. can be written {23]

3 2 \2
L(¢)=‘:;f(;‘—¢) . (w7

where o is the local volume fraction of h and a is the size. The

second term in Eq. (1.6) represents the free energy density difference associated with

the transfer of molecules from bulk to the adsorbed layer

o) _1(e Lol
5l @ Zlog¢+2up +6wq>+ ¥ (1.8)

where Z is the degree of polymerization and r and w are the exclnded volume and
ternary interaction coefficients respectively. Equation (1.8) was first introduced by
Flory [24]. By minimizing v. the equilibrium profile and free energy excess can be
obtained. For some cases analytic solutions for adsorption from good [10. 23] and ©

solvents [23, 25, and for worse than © solvents [26], have been found.
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The interesting and very detailed discussion of these aspects of homopolymer

adsorption is also presented in a comprehensive book by Fleer et al. [27].

1.2.2 End Grafted Homopolymer

There are two main analytical approaches to highly stretched polymer brushes.
the scaling [7, 11, 28], and mean field [29, 30]. The scaling theory of polymer brushes.
formed by end-grafting, in a good solvent was developed by Alexander and de Gennes
(ADG) (7. 28]. They consider a flat. nonadsorbing surface bearing monodisperse
chains of Z monomers characterized by mean statistical segment length. b. such that
Z b gives the full contour length of the chain. The theory is based on the concept
of “blobs”™ of linear size d. where d is the average distance between grafted sites on
the surface (see Fig.1.1 b). Introduction of this characteristic length scale leads to a
density profile which, except for a small depletion zone and a tail region. is a step-
like function. ie.. the polymer volume fraction within the laver. o ~ Zb*/d*h. is
constant and A is the equilibrium layer thickness. The grafting density of chains can
be expressed in dimensionless terms as o = b%/d?. Furthermore. the model assumes
that all the chains are uniformly stretched, so the free end of every chain is located in
the tail region of the brush. Dense grafting results in strong overlap among the chains

and this increases the number of contacts and the corres; ling

interaction energy. This effect is reduced by stretching the chains along the normal to

the grafting surface, but results in an increase of the layer thickness. /. The interplay
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between the interaction energy and the entropy loss due to stretching. or in other
words. the increase of elastic energy. determines the equilibrium value of /.

There are two ways to obtain an explicit expression for the free energy per chain.
The first is based on a simple Flory type mean-field argument [24], and the free energy

per chain (in the units of kgT) is written as

&*h I
Fomvo'—— +—=. LYy
RN Y 7 i
where v is a di it volume para (a measure of binary monomer

contacts) and Z'/%b = Ry is the rms end-to-end distance of an unperturbed. ideal
chain. In the above Eq. (1.9) the symbol = means that every term should be multi-
plied by some numerical factor of order one. The first term represents interactions (o
is h dependent) and the second one is the elastic contribution. In terms of grafting
deunsity, o, and the degree of polymerization. Z. Eq. (1.9) can be expressed as

2, 2
thuZ/r 15

" tE (1.10)

The second way to estimate the free energy per chain in a brush is based on scaling
arguments. A polymer chain in this picture is considered to satisfv ideal Ganssian
behavior on the scale of blob size d. The correlations of the monomers inside cach blob
result in an interaction energy of order kgT. Since the number of blobs per chain is
(Z/g). where g = (d/b)*/® is the number of segments per blob. the interaction energy
can be written as

z e &)
F},.,::—::Z(E) :&‘/*b—“‘, (1.11)



14

The elastic free energy is modified in the terms of blob picture by recognizing thar

the chain can be considered as ideal at larger scale and
h?
= 112
Fu =z (L.12)

where R & (Z/g)"/*d is the radius gyration of an unperturbed chain of (Z/g) blobs.
each of size d [31]. In contrast to the first approach. the elastic contribution here
is concentration dependent. The total free energy per chain (in k5T units) can be
written in terms very similar to Eq. (1.9), but now the term describing the elastic

contribution has become explicitly ¢ dependent:

&*h h*
9/4 1/4 y
F.=o w Tl Tm (1.13)

Expressing the volume fraction of the polymer in terms of the grafting density and

the degree of polymerization results in

e 74
W (%) + Za'H (—Zh—b) . (1.14)

The equilibrium state of the brush is obtained by minimizing the free energy with
respect to h. The two approaches result in the same scaling for the thickness of the
brush, ie..

hox Za'l (1.15)
but slightly different dependence of the equilibrium free energy per chain. £..
Zg*3  Flory - type argument

Frox . (L.16)
Za%%  Scaling - type argument
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The difference in the power of o between the Flory type approach and scaling picture
reflects differences in the elastic and interaction terms in the free energy, which can be
seen by a direct comparison of Eqs. (1.9) and (1.13). Both terms of Eq. (1.9) differ by

. This difference can

a factor of ©'/* from the corresponding terms in Eq. (1.13) [5
be accounted for the fact that in the Flory - type argnment the correlations within
each blob are neglected. A difficulty in both approaches. however. is the assumption
of a uniform density profile.

A more detailed picture of the density distribution within the polymer brush was

proposed in the analytic SCF model di e 1y and simmlta sly by

two research groups: Milner. Witten and Cates (hereafter referred to as MWC) [29.
33], and Zhulina, Borisov, Pryamitsyn and Birshtein [34]. The key point of this
analytical model is based on the analogy drawn by Semenov [35], that a configuration
of weakly stretched or unstretched chain is analogous to the possible trajectories of a
quantuni-mechanical particle. whereas in the limit of complete stretehing. the chain
configuration is reminiscent of the trajectory of a classical particle. Consequently. for

strongly stretched chains. the analytic SCF model looks for the dominant trajectory

between the two given endpoints for which the classical action is at a minimum [:
Furthermore, in this model the assumption that all the chains have their free end
in the periphery of the layer is relaxed and. instead. chains can have their free ends
anywhere within the brush. If one begins the trajectory at the free end of each chain.

no matter what the conformation, it takes Z steps (monodisperse chains) to arrive at
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the surface, beginning with zero s ching (mechanical equilibrium condition). ln the

mechanical analogue, the chain path, z(r), is the particle trajectory: the monomer
number 7 corresponds to time; the chain length Z is the total time of flight of the

particle; the local chain stretching dz/d7 is the particle velocity: and the condition

that the free end of the chain is unstretched corresponds to a particle starting from

rest [30]. The next step is the self- i d ination of the mean-field potential.

A harmonic field has these properties; the period of an oscillator in a harmonic field
is not dependent on the amplitude of oscillation. Since in mean field and for low
polymer density the effective potential is proportional to the monomner density the
composition profile is parabolic. Using the notation of MWC. this parabolic profile
is expressed as

o(z) = w'(A(h) — Bz?) . (L17)
where w is an excluded volume parameter with dimensions of length? [36]. r is the
distance from the grafting surface and h is the thickness of the brush. The constant
A(h) is fixed by requiring that the number of monomers per unit area equal Zeo.
The constant B is obtained by the equal “time” requirement [29]. Again using their

notation. the result is

_ 7 2_ 2
olz) = goo(h -2 (1.18)
s
Ji i (%) (ow)'PZ . (L19)

where v has dimensions of length™ and can be related to statistical segment length



discussed in the next chapter.

The free energy per chain in the MWC model is obtained by progressively adding
chains; the change in system free energy upon adding a chain is s() for that chain.
The s(o) is independent of the location of the chain's free end. and the free energy
can be calculated by considering the chain which starts very near the surface [29]. It
results in

2y

9 /3
Fe=15 (F) (wa)?PZ . (1.20)

These solutions are strictly correct in the limit of infinite molecular weight. highly
stretched molecules and low to moderate polymer density. In this limit the deple-
tion region near the surface and the extended tail can be neglected because the total
thickness of the layer scales linearly with the degree of polvmerization. Similarly. for
the long stretched chains the Huctuations around the most probable trajectory are
negligible in the high molecular weight limit. In later work. Milner. Wang. and Wir-
ten formally considered finite molecular weight corrections [37]. and MWC included
polydispersity [38]. Each of these corrections is most important at the tip of the
brush.

An important conclusion of the MWC model is that the simpler Alexander-de
Gennes picture based on the step profile gives the same scaling relationships for the
thickness of the brush, Eqgs. (1.15) and (1.19). but with different numerical prefac-
tors. The scaling relationships for the free energy per chain are also essentially the

same in both models. except for a slight difference in the case when one applies the
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blob picture in determining the elastic and interaction contributions. Eqs. (1.16) and
(1.20). The analytical SCF treatment of MWC includes the same physics as the ADG
model. namely. it balances the osmotic type interactions with the elastic resistance to
stretching, but does it locally at every point along the chain rather than globally over
the entire chain. The difference arises physically from the reduction in stretching with
increased distance from the surface, since the decreasing density means that there is

more space to relieve crowding.

ss the compression of polv-

Both the scaling and analytical SCEF models also dis

mer brushes, which is one of the earliest experimental techniques used to investi
their properties and structure. Both models assume that the opposing brushes do not
interpenetrate, at least at the initial stage of compression. An argument for the non-
interpenetration assumption is that the stretching which occurs in the single layer is
caused by swelling into the pure solvent bath in order to reduce osmotic interactions
within the brush. When the two layers are brought into contact. this tendency is
removed, so the layers retract to reduce their stretching energy {39]. Hence. the com-
pression of the two brushes becomes equivalent to compression of two non-interacting
brushes by a nonadsorbing surfaces. Furthermore. the profiles are assumed to retain
their original shapes. with suitable increase in densities. Thus. the ADG profiles re-
main flat, and the MWC profiles remain parabolic up to the midpoint between the
surfaces, where there is a discontinuity in the slope. Both theories predict that the

free energy per unit area of the compressed brush, E, can be expressed in terms of a
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free energy per unit area of the uncompressed brush, £y, and some universal function
of the reduced distance, u = D/(2h), where D is the distance between the surfaces
with terminally attached chains and h is the thickness of the uncompressed polymer
brush

Eo(t+4%) ADG

E~ (L.21)

Eo(L+u+£) MWC
The lateral compression of the polymer brush formed at the air-liquid interface
results in a change in the grafting density and, according to Eq. (1.3). the MWC or
Flory mean field models predict that the surface pressure scales as
[, x Zo** . (1.22)
and the scaling picture of ADG. which takes into account the correlations of the

monomers inside the blob predicts
o o Za''/® (L.23)

The details of the structure and scaling relations for the polymer brush under
good solvent conditions and detailed comparison with analytic theories as well as
comparison with the experiments will be discussed in chapter 3. Interpenetration
of the brushes. and the functional dependence of the free energy of the compressed

brush, will be examined in chapter 4. The surface pressure effects and the scaling

relation of Eq. (1.22) will be examined and discussed in chapter 5.
The structure of end-grafted chains in © and worse than © solvent has been the

subject of several analytical studies [40-47]. In the laterally homogeneous laver in
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© and worse than © solvent, inhomogeneities can develop leading to the “dimpled”
structure [45. 48], but as long as the density of grafting points is large enough that
the neighboring chains overlap. polymer brushes still form with the chains stretching
away from the surface [45]. The essential idea of the ADG model. a global balance
of interaction and stretching energies. was applied by Halperin [41] for monodisperse
chains irreversibly bonded to a flat, solid surface, and Zhulina et al. [42] who extended
this type of analysis to cylindrical and spherical surfaces. In these studies the scaliny
relations for the thickness of the brush and the equilibrinm free energy in © and
worse than © solvents were obtained. and for the planar surface. thickness of the
brush scales as

Za'? @ solvent

hx - (L.24)
Zao worse than © solvent

and the equilibrium free energy per chain

Zo  © solvent
F.x s (L.25)
Z  worse than © solvent
It is worth noting that. for worse than © solvent. the free energy per chain is inde-
pendent of surface concentration. In this model. as in the ADG picture. the densiry
distribution is assumed to be constant within the layer. I[n order to obtain these
asymptotic relations, only the leading terms were kept during the minimization of

the free energy expression with respect to the height of the brush. For © solvent.

these were the elastic stretching and the ternary type interactions. Eq. (L.8) with
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v = 0, approximated through F},, o ¢*. while for worse than © solvent only binary
and ternary interactions were considered as dominant and the stretching of the chains
was neglected.

A more detailed and complete theory of the structure of a planar layer in other
than good solvent conditions was presented by Zhulina et al. [42. 43]. and by Shim
and Cates [40]. The approach proposed by Zhulina is essentially the same as MWC:
the interaction and stretching energies are balanced locally. The scaling relations for
the thickness and equilibrium free energy are recovered as in the simpler Flory type
picture but the density profile obtained in © solvent conditions is described by an
elliptic function. Shim and Cates [40] exploited the “equal time” requirement of the
self-consistent potential and derived a set of coupled integral equations for the density
profile of the end-grafted chains and the free energy of the system in equilibrinm as
well as during the compression of two polymer layers. The result for the density
profile in © solvent is elliptic and the same as was obtained by Zhulina et al. [42. 43].
The assumption of noninterpenetration is still a key point in calculations of the free
energy of the system during compression. In this picture. the compression of the
polymer layer by the second brush is assumed to be equivalent to a compression by
an impenetrable wall. The analytic solution can be obtained only for a very simple

case (athermal solvent. x = 0).



1.2.3 Diblock Copolymer Adsorption

In the previous section the properties of the polymer brushes were discussed and
this discussion can be applied to the dangling block of the adsorbed diblock copolymer.
This section is meant as a short description of the adsorption of diblock copolymers.

Scaling and mean field descriptions of diblock copolymer adsorption from non-
selective and selective solvents were originally proposed by Marques et al. (8. 9]. In
non-selective solvent, they considered an A — B diblock copolymer. adsorbing from a
dilute solution onto a solid surface which strongly attracts the 4 block and strongly
repels the B block. The solvent was considered to be good for both blocks. The
structure of the adsorbed layer was described as coumsisting of a swollen anchoring
layer and a more dilute and extended buoy layer. The key parameter in determining
the layer structure is the relative length of the blocks expressed in terms of the

asymmetry ratio, 8. which is
(1.26)

where R, and Rpg are the radii of gyration of the anchored (strongly attracted) and
buoy (strongly repelled) block respectively. and Z, and Zp are the correspouding
degrees of polymerization. When the asymmetry is small. the adsorbing block forms

a self-similar layer which corresponds to the same type of profile as in homopolymer

1 ion. and the block forms a brush-like structure. When the

nonadsorbing block is much larger than the adsorbing one, the anchored block forms
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a discontinuous “pancake” structure and the B block remains stretched and forms a

brush structure. The scaling relations for the thickness of the adsorbed and dangling
layer as well as the average surface concentration are obtained through minimization
of the free energy functional.

In a highly selective solvent. the A4 block is in a poor solvent environment. This
leads to its collapse on the surface and it forms a molten layer on the solid wall where
the solvent does not penetrate. The B block is considered to be in a good solvent
environment and forms a brush grafted on this molten layer. The structure of the
adsorbed layer is governed by the chemical potential of the soluble block in solution.
fter- An important issue of this work is the role of the van der Waals interaction
between the wall and the adsorbed A layer. The asymmetry between the two parts
of the copolymer is measnred by

ze
Z+",2 . (L27)
El

If the copolymer asymmetry is large enough, the thickness of the molten layer results
from a balance between the van der Waals energy and the stretching energy of the
brush. Various other adsorption regimes occur when the asymmetry of the copolymer

is decreased [8].



1.3 Summary of Relevant Experimental Work

The present rapid growth in the experimental activity in the field was initiated
with the surface force measurements on layers of adsorbed copolymers by Hadzi-
ioannou et al. [49], and Patel et al. [31]. and on end-grafted polymers by Marra ot
al. [50], and Taunton et al [51]. Subsequent and current experimental work includes
force balance measurements [52-54] , small angle neutron scattering (SANS) [55. 56].
and neutron reflectivity measurements (L, 57, 58]. Excellent reviews of experimental
techniques are presented by Stamm [59]. Tirrell and Parsonage [60]. and Garbassi.
Morra and Occhiello [3]. In this section representative experimental results which are
relevant to this thesis will be discussed. More extensive descriptions will be provided
in later chapters, when the results obtained in this thesis are discussed.

The polymer density profiles can be directly probed by neutron scattering and re-
Hectivity experiments. Field et al. [61] used nentron reflectometry to measure the deu-
sity profile of four PS-PEO copolymers adsorbed on quartz from denterated rolnene.
The protiles of the dangling PS could be well described by a parabolic or error function
with maximum at the surface and an exponential-like tail. Using SANS. Cosgrove
et al. [55] studied one deuterated PS-PVP copolymer adsorbed onto mica with the
d-PS dangling into good solvent. The data suggested the presence of a depletion layer
and a maximum in the polymer density about 3 nm from the surface. followed by
a decrease which is similar to the parabolic form. Auroy et al. [56. 62] used SANS

to study PDMS polymer grafted onto porous silica, with Zppyrs ranging from about



350 to 8,000. They found that a consistent density profile of the ADG form could
not be constructed, and concluded that a parabola with a smooth tail was indicated.
However, in contrast to the results of Cosgrove et al. [55], they detected no depletion
layer near the surface for the good solvent case, which they suggested could be due to
a surface-monomer attraction. Overall. therefore. a picture of the profiles is emerging
which indicates a maximum at or near the surface (depletion layer). beyond which the
density monotonically decreases. smoothly reaching zero at the tips. The SCF theory
of MWC however. predicts a profile for monodisperse polymer with no depletion layer
and an abrupt drop to zero density at the outer edge of the brush.

Many of the experimental and numerical results have been analyzed iu terms of
the scaling relations given by the scaling picture of ADG (Eq. (1.13)). and the analytic
SCF theory of MWC (Eq. (1.19)). and the results have often been claimed to support
them. The actual degree of this support is dependent on assumptions made in the
analyses. and limited by the fact that. until the recent work of Kent et al. [1. 2| there
have been no experiments in which the molecular weights and surface densities were
independently varied.

Hadziioannou, Patel and coworkers [31. 49] carried out surface force measure-
ments on PS brushes in toluene. with PS degrees of polymerization. Zpy. of abont
600 and 1.500. On the basis of the surface separations at which the forces began.
these experiments were said to support the scaling of Egs. (1.15) and (1.19). How-

ever, Ansarifar and Luckham [63] later studied poly(t-butylstyrene) (PBS) brushes
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in toluene, with Zpgs ~ 50. 200 and 400, and were able to incorporate their results
and those of Patel et al. [31] within one, much weaker. scaling law. £* x Z°7. Marra
and Hair [50] also studied PS/TOL. A comparison of the cases with Apy = 850 and
2,400, which had nearly equal values of T, suggests that the range of the force scaled
faster than linearly with Zps. This can be explained by the additional complication
that the interpretation of these experiments depends on the definition of the range of
the force [64]. If it is defined by the surface separation at which the force reaches a
given value, e.g. the threshold for measurement, then its scaling differs from that of
the brush height: if the brush height scales as h* o< Z®, then this range of the force
would scale approximately as Z°792.

As another illustration of the difficulties in data interpretation. Field et al. [61]
found that. by assuming /* x o'/, then the best fit for the molecular weighr depen-
dence was h* &< Z%97. However. if no a priori assumptions are made. then the best
fit to their published data gives 2* o Z%™¢%", in sharp contrast with Eq. (1.15) and

similar to the Ansarifar and Luckham result (63].

The point to be 1 is that d ining the itative d ! of

the brush thickness on both molecular weight and surface coverage has been prob-
lematic, and these results do not, necessarily, indicate that the systems are in the
asymptotic scaling regime. In particular, until very recently, there has been only
one surface coverage for a given molecular weight in each experiment. This situation

changed with the work of Kent et al. [1. 2] who studied seven copolymers. with the
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PS molecular weight ranging over a factor of about 10. By applying lateral pressure.
the surface density was independently varied for each copolymer. also over factors
of about 10. Hence, they were able to extract quantitative functional dependences
of the brush thickness, and to fully compare them with the scaling predictions of
the asymptotic theories. The experiments of Kent et al. 1. 2] also provide detailed
information on the density profiles. including the depletion layer.

One general conclusion that can be drawn from these experiments is that. excepr
for the experiments by Auroy et al. [36. 62] and Karim et al. [38] on systews at very
high o, the coverage in real experiments is limited to o* < 5. and they do not
correspond to the asymptotic regime of analytic theories.

The properties of compressed brushes can be probed by measuring the long range
forces between the surfaces with adsorbed polymer. The results are conveniently
expressed in terms of F(D)/R where R is the geometric mean of the radii of curvature
of cylinders used in the Israelachvilli force apparatus and D is the distance of closest
approach. With the Deryaguin approximation [63]. this is directly related to the free
energy per unit area for fat. parallel plates via

E(E'l):zn(s(u)—s(ocl) ; (128)
where E(D) is the free energy per unit area of the system at separation D and

E(o0) = Ej is the free energy per unit area of the system when the brushes attached

the analytic

to the opposite surfaces do not overlap. As discussed in section

theories predict that these forces can be expressed as universal functions of D/h.



where h is the height of the uncompressed brush.

Most of the experiments on compressed brushes have been analyzed in terms of
analytic theories, and they tend to support universal behavior predicted by analytic
theories [31, 36, 51, 66]. However. Watanabe and Tirell [52]. and Dhoot et al. [53].

made using highly disperse brushes in a good solvent and found

that the force and its range were unpredicted by a factor of about 2 in analytic

theories.

The experimental studies performed by Kent et al. [1. 2. are of great impor-
tance in this thesis. First. as noted already. in these experiments both molecular
weight and surface coverage for layers of chains tethered to the air-liquid inrerface
were varied independently, each over an order of magnitude. The results presented
there contain detail and careful examinations of the density profiles and the scaling
relations. Second. in these experiments the maximum attainable surface densities
were limited by a sharp rise in pressure. with the result that #* varied from abont
1 to 12 and is typical of experiments in which the chains have been tethered to the
surface from dilute solutions in a good solvent. To date, the systems studied by Au-
roy et al. [56, 62] and Karim et al. [58] appear to be the only ones which exceed this
coverage. Furthermore, this rapid increase of surface pressure cannot be explained
on the basis of analytic theories. The experimental work of Kent ¢t al is the focal
point of numerical studies presented in chapter 3 and chapter 5 and in many ways

motivates this thesis.
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In summary, many questions addressed by experimental studies cannot be ex-
plained in terms of analytic theories and more detailed numerical work which is not
limited to the asymptotic limits or sharply defined regimes is needed. The relevant
numerical results and some theoretical predictions drawn from these studies will be

discussed below.

1.4 Numerical Approaches to Brushes and Adsorbed Layers

A system comprised of a large number of interacting macromolecules and solvent
molecules is suitable for description in the language of statistical physics. In general.

the description of the system proceeds in three steps:

Characterization of the various microscopic configurations of the system which

=

are compatible with its macroscopic state and. for every configuration. deter-

mination of its energy.

2. Evaluation of the partition function Z

. Determination of the Helmholtz free energy

F=—ksTn Z (L.29)

Most other quantities of physical interest can be directly obtained from the free energy
expression, Eq. (1.29). The way the particular approach addresses points (1) and (2)

can be used to classify it to a given type of theory. The methods used to study the
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polymer system near the surfaces and interfaces vary from the models in which all
the properties of the interfacial layer are expressed in the local concentrations and

conc ions gradients, self- i mean field (SCF) type approaches to Monte

Carlo (MC) and molecular dynamics (MD) simulations.

Polymer configurations are modeled as walks in continuous space or on a lattice;
thus one can distinguish between continuous and discrete, lattice type models. In the
models which start from the density profile. individual conformations of chains are
not considered. but only their overall effect on the concentration profile is taken into
account. The lattice models of Roe [67], and the square gradient theory of Cahu and
Hilliard [17] which describe homopolymer adsorption. are examples of this type of
approach. In many mean field approaches. fluctuations of the polymer chains about

their equilibrium positions are neglected and the free energy of the system is evaluated

for the cc ion which cor ds to the sharp maximum in the Boltzmann
distribution. The numerical self-consistent field theory presented in chapter 2 and
used throughout this thesis is another example of a mean field approach realized
in the continuous space and applied to diblock copolymers in the presence of the
interface. A slightly different approach is presented by Ploehn [68].

Lattice models, exemplified by the Scheutjens and Fleer theory applied o ho-
mopolymer [4, 69, 70, 71], and copolymer [72-74] adsorption. represent space as a
discrete lattice with cells of constant volume. The total potential energy is assumed

to be the sum of pair interactions, and the surface-monomer interactions are restricted
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to those lattice sites in direct contact with the surface. In the Scheutjens-Fleer theory.
the polymer chains are described as walks on a lattice. and each step is weighted with
two factors. a local entropy of mixing and an energy factor describing the nearest
neighbor interactions. The lattice sites are occupied by either monomer or a solvent

molecule. The space adjoining the surface is divided into parallel lattice layers. At

equilibrium, there is a certain ation profile for and for solvent. The

tep in this concentration profile depends on the lat-

entropic weighting factor for any
tice type and on the local concentration in the nearest layers. A set of self-consistent
equations are derived and solutions have to be found numerically.

In the MC method, states of the system are generated randomly. and the task

lies in the selection of the most probable configurations followed by the averaging of

various characteristics over them [75. 76]. Monte Carlo simulations of copolymer at

surfaces were reported by Zhan et al. [77-79] .

The essential principle of the MD method is to numerically solve the classical

Newtonian equation of motion. assuming the potential energies of interactions to be
known [76]. MD studies on grafted polymer brushes were reported by Murat and
Grest [80-82].

Finally polymers near the surfaces can be also studied by means of the cluster
variational method CVM [83] and renormalization group (RG) caleulations [84].

C hensive reviews of ical hes which include SCF caleulations

in continuum and on lattice, square gradient approaches, MC and MD simulations
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applied to homopolymer and copolymer adsorption as well as to end-grafted polymers

are given by Fleer et al. [27], and Sanchez [85]. Many aspects of polymers near surfaces

are also di in an earlier h by Napper [86].

The main focus of chapter 3 of this thesis is the structure of the polymer brush
in a good solvent. Numerical SCF calculations have been reported by Whitmore and
Noolandi [64], Evers et al. [73], Milner (87]. Wijmans et al. [88]. and Carignano and
Szleifer [89]. These calculations covered the cases of good, © and poor solvents with
realistic interaction parameters [64. 73, 87] extremely good solvent with y = —1 [88].
and athermal solvents (88, 89]. All density profiles showed a depletion layer and
a maximum, followed by a decrease which terminated in a smooth tail. with some
variation in the location of the maximum and extent of the tail. The values of o,
generally depended only weakly on Z. The profile shapes become more parabolic
with increasing Z. o* and solvent quality, with the depletion layer and tail sizes
diminishing relative to the overall size of the profile. As well. for a given degree
of polymerization. the degree of stretching increases with solvent quality [64. 88].
Recently. Carignano and Szleifer performed numerical calculation using the single-
chain mean field theory (SCMF) on tethered polymer layers in a good solvent [90].
They studied chains consisting of up to 100 segments and surface coverage a* < 20
and found that, in a good solvent. the mushroom to brush regime is broad and the
thickness of the brush scales as h ~ ¢'/4Z% throughout the brush regime. In the

study of Shull [91], the numerical Scheutjens-Fleer SCF theory was used and good



agreement with the parabolic type profile proposed by MWC was reported.

Murat and Grest [80-82] carried out MD simulations of 7 chains in good solvents
with Z ranging from 10 to 200 and surface coverages of 6* < 20. Their density profiles
contained a depletion layer near the surface, followed by a quasi-parabolic decrease
ending in a smooth tail.

Chakrabarti and Toral [92]. and Lai and Binder [93] carried out detailed Monte
Carlo calculations, including only hard core repulsions between monomers for the
interactions. Together, they treated chain lengths up to Z = 100 and surface cover-
ages up to, approximately, 0* =~ 15. All the density profiles showed a depletion layer
and maximum. beyond which they could be approximated by parabolas evolving into
tails. The distance from the surface to the maximum was on the order of. but slightly
smaller than, the radius of gyration. and decreased weakly with increasing o.

The properties of tethered polymers in a mushroom regime were investigated by
Adamuti-Trache et al. [84] using RG calculations. They considered excluded volume
and variable surface-polymer interactions for the tethered chains in a good solvent
and reported qualitative agreement with the experimental results of Kent et al. [2]

The compression of polymer brushes and formal comparison with the analytical
theories is the subject of the chapter 4. Numerical calculations based on SCF theory
were reported by Muthukumar [94] who investigated the compression of polymer
brushes by a second brush as well as a hard wall in good. © and worse than @

solvents. The conclusions drawn from this work. however. are only qualitative.
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The compression of two polymer brushes and detailed comparison with the ana-
lytic theories and the experimental studies was reported by Whitmore and Noolandi [64].
They determined the thickness and shape of the polymer density profiles. obtained ap-

- studied finite molec-

proximate scaling relations and the ranges of their applicabili
ular weights effects, as well as the extent of the interdigitation of layers adsorbed on
opposite surfaces.

The calculations performed by Dan and Tirrel [95]. and Martin and Wang [96]
£

support the analytical SCF model of ¢ ssion. except they i [ interpenetra-

tion of the opposing brushes during compression. The effect of the interpenetration
was also emphasized in the numerical SCF study of Wijmans et al. [97]. The numer-
ical two dimensional SCF study on compression of polymer brushes in © and poor
solvents were also reported by Singh and Balazs [98].

The interactions between grafted polymer brushes in good solvent were also stnd-
ied by means of MC [99, 100]. and MD [101] methods. Chakrabarti ef al. [99] ad-
dressed the interpenetration of polymer brushes and made a direct comparison ro
the results of Shim and Cates [40]. Their results showed that both compression and
interpenetration effects are present as the plate separation is decreased. in contrast

with the analytical picture, which predicts no interpenetration of the brushes in such

They i 1 this di: 'y to the fact that the simulations corre-

sponded to the “non-classical” regime of short chains. Dickman and Anderson [100]

performed extensive MC si. of brush compression in athermal (good) solvent
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and found that the force between the brushes as well as the structure of the density
profiles are in overall agreement with the prediction of the analytic SCF theory of
MWC. At high surface coverages. the density profiles of strongly compressed brushes

brained through the simulations bled the step-function profiles 1 in the

scaling theory. The main disagreements between MWC theory and the simulations

d at large i and were il i to the tails in the density profiles
for finite-length brushes.

Murat and Grest [101] performed an MD study of the system of two parallel
surfaces with end-grafted polymers in a good solvent. They found thar the interaction
was purely repulsive and the onset of the force starts as soon as the opposing brushes
touch each other before any interpenetration. They also found that. for intermediate
values of surface coverage, the force profiles were satisfactorily described by both the
scaling and SCF theories. and the interpenetration of the brushes can be described
by a simple scaling form.

There have been only a very few numerical studies which have as their subject
the rapid increase in excess surface pressure in experiments on diblock copolymer
layers at the air-liquid interface [1. 2]. Most of the work deals with the homopolymer
adsorbed at the interface and the related reduction of the interfacial tension [23. 102.
103]. An increase of surface pressure was reported by Carignano and Szleifer [90].
who performed SCMF (single chain mean field) calculations and fonnd thar lateral

pressures in the brush regime (good solvent) can be described by an approximate
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power law dependence, [1 ~ o**. Grest [82] has reported MD simulations for end-
grafted chains in good solvent in which the surface pressure was found to increase
slightly more rapidly than predicted by scaling and analytic SCF models. [T ~ o3,
This was also confirmed in SCMF simulations by Carignano and Szleifer [104] who
found that surface pressure shows good agreement with analytic SCF theory ounly
when the parabolic density profile is used in the full virial equation. The values
of the exponent on order of 2.5 are significantly higher than the values of 5/3 or
11/6 predicted by Egs. (1.22) and (1.23), but still much lower than the results of

experimental observations, in which the values in the range (4.2-6.6) were obtained.

1.5 Outline of the Thesis

This thesis uses numerical SCF theory to study the problems of the structure and
properties of the polymer/solvent systems at surfaces that are not addressed fully by
other calculations. The general theory for numerical self-consistent field calenlations
is introduced in chapter 2. The approach is then used to study uncompressed brushes.
compressed brushes. and lateral surface pressure effects.

Following de Gennes early work on brushes a great deal of emphasis. in both
experimental and theoretical studies, has been placed on the strongly stretched chain
regime. Recently, de Gennes [L05] noted that many interesting effects can take place
in mushroom and intermediate regimes. The numerical SCF calculations presented

in this thesis are in the intermediate and mushroom regime. It is also interesting
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to explore the limits of applicability of the mean field approximation. via detailed

comparison with experiment.

Chapter 3 provid itative and ive descriptions of the polymer brush

in a good solvent and formed by selective adsorption of one block of copolymer.
The thickness of the brush, the maximum polymer concentration, the location of the
maximum, the depletion layer, and the dependence of these properties on surface
density and molecular weight are discussed. The results are compared in detail with
the recent experiments of Kent et al. [1, 2] performed on poly(dimethylsiloxane-block-
styrene) copolymer spread as a monolayer at the free surface of ethylbenzonate. They
are also analyzed in terms of the scaling (7. 11. 28], and analytic SCF theories [29.
106]. The results presented in this chapter have appeared in a previously pnblished
article [107]. The structure of the brush in © solvent is also analyzed and compared
with the predictions of the analytic theories.

Chapter 4 deals with the compression of a polymer brush in good and € solvents.
Three modes of compression are considered. The first is the compression of a polymer
brush by a second identical brush: the second corresponds to compression of the poly-
mer brush by a bare repulsive surface; and. finally. the third mode is the compression
of the brush by a surface which is neutral for adsorption. These model calenlatious
are directly compared with analytic theories of polymer brushes nnder different sol-
vent conditions. The density profiles, as well as the free energy under compression.

are calculated for each type of deformation and the results are presented in terms of
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effective power laws and universal functions of the simple measure of the degree of
compression of a brush. The questions raised there address the problem of equivalence
of different modes of the compression and the interpenetration of polymer brushes.
The range of force and its magnitude is also of interest in this chapter.

The lateral compression of the polymer layers is the subject of chapter 5. First.
a homopolymer/poor solvent system with an attractive surface interaction is consid-
ered. The surface pressure as a function of coverage is calculated. Then. a copoly-
mer/solvent system is considered in which the anchoring block is the same as the
homopolymer and the solvent is good for the dangling block. Both blocks are in-
corporated within the self-consistent formalism. The excess surface pressure. defined
as a difference between the surface pressure for the diblock copolymer system and
the system when only homopolymer is present. is calculated and compared with the
rapid rise observed in recent experimental work [2]. Interesting questions raised in

in the adsorbed polymer la and the equi-

that chapter are about the steric effec
librium of the system under consideration.
Chapter 6 summarizes and concludes with some general comments on the results

drawn from all studies presented in this dissertation.
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Chapter 2

Numerical Self-Consistent Field Theory

2.1 Introductory Remarks

In the following section the general self-consistent theory for polymer/solvent sys-
tems near surfaces will be discussed. The formalism presented here was introduced
by Hong and Noolandi [108-110] . and Helfand and coworkers [111-113]. and devel-
oped by Ohta and Kawasaki [114]. Whitmore and Noolandi [115. 64]. as well as by
Banaszak [116] and is based on the SCF theory of Edwards and Dolan [21. 22. 117].

As discussed in section L. the statistical mechanical description of a polyvmer
system proceeds in three steps. In order to characterize the various wmicroscopic
configurations of the system, models for linear flexible polymer chains and the inter-
actions between segments within the chain are needed. The interactions are divided
into two parts. The interactions among the polymer segments limited to within a few
neighbors along the chain, are usually called “short range interactions”. and those

between the segments which are far apart along the chain are referred to as “long
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1. effective interactions [24. 32. 118].

range”, or solvent

The conditions under which the effective. “two body”. long range interactions vauish

define the © point at which the chain is considered as an “ideal polymer” [32]. The ©
point can be also defined considering a dilute solution of polymer chains in a solvent.

The osmotic pressure can be expressed in the form of a virial expansion
Merese = NaksaTep (.4. + gy + Ay e ) . (@1
where V; is the Avogadro number. ¢, is the polymer concentration and the 4; are
the virial coefficients. A, is called the second virial coefficient or excluded volume
parameter. For the polymer/solvent system. 4, = 0 defines the © solvent.
The simplest quantity which characterizes the spatial size of a polymer chain is

scopically different models

the root-mean-squared (r7ns) end-to-end distance. Mic

cription in terms of the rmns

of polymer chains produce the same general universal de:
end-to-end distance [32]

<R*>~2Z. (2.

If one introduces the effective bond length b [118] Eq. (2.2) becomes < R* >= Zl*.
In addition to < R? > of the chain. there is a more specific quantity describing the
chain. Thisis ¥z (R), the probability distribution function that the end-to-end vector
of Z segments equals R. For the freely jointed and freely rotating chain models [32].
as well as for other ideal chain models in which the orientational correlations diminish
rapidly with distance, ¥z(R) has a Gaussian distribution for Z > 1. Furthermore.

the local structure of the chain appears in these models only throngh the effective
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bond length b. The simplest model which satisfies these criteria but is still very useful
and powerful, is a Gaussian chain. The Gaussian chain is defined as a chain in which

every bond has a Gaussian distribution, ¥(r). and

3/2 3 2
) exp (—ZLIF) = (2.3)

so that the mean squared bond length is

y(r) = (

<ri>=§. (2.1)

The effective bond length b is referred to as the statistical segment length. The other
quantity of interest here is the probability that a chain consisting of Z segments will
follow a particular spatial conformation, ¥(ro,7y..... rz-1) = Yz{r.}. Yz{r.}is
conditioned by “linear memory” and can be written as

z-1

Wz{r.} = ][ vlreoi—ro) - (2.3)

k=0
An important property of the Gaussian chain is that the distribution of the vecror
T — 7, between any two units & and j is Gaussian [118]. Hence. the flexible polviner
chain, without loss of generality. can be modeled via an equivalent Gaussian chain
[32]. which has n segments and the same rimns end-to-end distance as for the real
macromolecule. The segment length in the equivalent chain. denoted As. is chosen
such that

nds=2b, (2.6)

where Z is the degree of polymerization of the molecule, and < R* >= Z{*. Using



Eq. (2.3), the probability distribution for any link can be written as

g e 3r2
=(——) ep|-——-]. 2T
v =(mm) o (- 27
It is convenient to consider a polymer chain whose two terminal segments are fixed
in space. The chain’s segments are indexed from 0 to n. This sitnation is schematically

presented in figure 2.1. The probability distribution function that the chain starts at

space

0 1 2§ 4 m N geps

Figure 2.1: Polymer chain configuration which starts at position 7o and after n steps
ends at r,, with the intermediate positions specified by {ry}

position 7o and ends at 7y, is called the Green's function of the polymer chain. or the

chain “propagator”. For the equivalent Gaussian chain. it can be expressed as

Q(rn,niro.0) = / W {rl}o(ry — 1o)d (1) — ™) f[ dr), (2.8)
k=0

3 o2
= (ZvrbAs) /e‘“’[

d(r = ro)d(ry, —rw) [ dri .
faur)
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In cthe limit that n — oo and As — 0 so that Eq. (2.6) is satisfied. one can pass to

the continuous limit [119, 120] which defines the Wiener Measure

o

Plr() = exp [-T

and the polymer chain is modeled as a space curve r(7) with 7 varying from 0 to Z.

The Green’s function or chain propagator becomes
Qrz,2Iro,0) = [ 67() 8(r(0) = ro)d(r(Z) = r2) Plr()] - (2.10)
and it can be shown that it satisfies the ordinary diffusion equation
ij"’Q(r Tir'.0) = iQ(r 7Ir'.0) (2.11)
5 S > . Elr 2.
with the initial conditions
Q(r.0|r.0) =d(r—1'). (2.12)

The more rigorous definition of the Wiener Measure and the correspondence of the
Wiener integral. Eq. (2.10), to the diffusion and Schrédinger equations can be found

in Refs. [119, 121. 122] and references therein.

2.2 Partition Function

In this section the general theory for the diblock copolymer spread as a monolayer
at the air-liquid interface will be introduced. The modifications and simplifications

of this formalism for the analysis of the properties of the dangling block only will be
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discussed in the chapter 3. The details of the formalism for compression of a polymer
brush by two kinds of surfaces and by a second identical brush will be discussed in

detail in chapter 4. Finally the details of the theory and simplifications to the case

of a h lymer spread as a L will be 5 1 in the chapter 5.

The system under investigation can be described by N¢ diblock copolymer chains
and N solvent molecules in some volume Q. The interface is located at = 0. and
is characterized by its total area. A. A diblock copolymer consists of a block .

characterized by its degree of polymerization. Z4. statistical segment length. by. and

the density of pure material, py4. in monomers per unit volume. Similarly. block 5

can be characterized by Zg, bg, and pog. For solvent molecules. the density of pure
material, gos. has to be specified. Since the system consists of N¢ chains the total

cZs. £=A.B

number of monomers of type « is

It is useful to introduce at this point the concept of conservation of volume on

mixing. The condition of no volume change associated with mixing is equivalent to

the local volume fractions adding up to unity everywhere

< px(r) >
> Shlr)> (2.13)
) Pox
where g.(r) is the local density of species & for a given configuration. and < ... >

denotes the ensemble average. Equation (2.13) is often referred to as incompressibiliry
condition [108].
Having the model for the polymer chains and assuming that there is no volume

change upon mixing, the configurational partition function can be written using func-



tional integrals over all possible chain ions and ions of solvent molecul
= &
= /(des.') x
! =1

S
[ TL6r )Pl sy (1G (0 0)) 7y () Pl ] x @1
J

5 (ras(Za) - rai(20) x

msfi- » &0)

2 =485 Pox

exp [— ﬂV] .
In this expression P[r,;(-)] denotes any configuration of the j — th chain of type
K. 0T;(-) denotes the Wiener Measure. and the kinetic contribution of the solvent
molecule or polymer chain is denoted by Z,. The function G(r4;(0)) is introduced

here for the i It describes the a priori probability distribution for the free

end of a A type chain. In most cases. it is simply G = 1 evervwhere. However. in
those cases where. for physical reasons. the chain is localized to a partienlar interfacial

region. it is convenient to use G(r4;(0)) in the form

G(r;(0)) =0 if r;(0) € interface (2.15)

0< G(r;(0)) < L if r;(0) € interface

Thus from all possible conformations of chains. only these which have the A type
end of every chain in the interface contribute. This explicit form is used only in the
calculations of chapter 5 of this thesis. d(rg;(Zp) —T.4;(Z.)) assures the connectivity

of A and B biocks and the condition that there is no local volume change on mixing
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is imposed by the expression §(1 — 3 5) [114]. The potential 4V which appears

in Eq. (2.14) is due to the int ot between all present in the system

and int i with the b dari It is a function of the microscopic particle

densities which are modeled as

Ay
ps(r) =3 o(r —rs) (2.16)
=
=3 [ btr - i) 1)
pu(r) = 6 = Ty (7)) - (217
gt 1=t L

where r,;(7) describes the position of monomer 7 of type x in j chain.

In general the interactions between all molecules present in the system are not
pairwise additive. However in most of the theoretical models in which the chains are
modeled as the equivalent Gaussian chains it is assumed that the binary interactions
are sufficient to describe the real polymers in a solution [32]. The two-body interaction
potential can be written

o 2 1 S T,
=W o= 5 % -/dr/dr'ﬁ,((r)w,mr(r~r)/1,.rlr)+ (2.18)

KR! =AB.S

drp, < (T) -
. ZB»V/ 7 pr(T) (T

where W (r —r') defines the potential acting on a particle of type x at the position
7 due to a particle of type &’ at the position 7', and u,(r) is the potential experienced
by component « due to the surface.

Equations (2.16) and (2.17) express the microscopic particle densities in terms

of the individual solvent molecules and chain segments. Since the polymer chains
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are modelec by continuous Gaussian chains it is essential to transform the micro-

scopic. point-like densities to i functions. This can be done through the
duction, for each ind dent function j,(r), of a Dirac delta function

1;[5 (1— s M) etp[ ] (2.19)

x=ABs Pox

/{ I dn()s pn()—pn()}g ( > ”‘(r)) [ W({ )})]

=A.8. x=AB.5 Pox

where W ({px(-)}) is defined as in Eq. (2.18) but for continuous {p.(r)}. The physical
meaning of the Eq. (2.19) is that with every conformation of the polymer/solvent
system there is associated a set of smooth functions which describes the distribution
of V¢ diblock copolymer chains and Vs solvent molecules present in the svstem. The

next step is the use of the Fourier transform for each Dirac delta functiou.

8lpx() = pe()] = M/O'un(-)exp [/viw‘(r)[ux(rl —;ix(r)}] L(220)

s (1 = > ”"—(')) = N [on) exp [ drn(r) (1 - M)] L (221)
T ~ Pox ~ Pox
where the limits of integration for the fields w«(-) and #(-) are fixc.
Transformations of the microscopic densities into continuous functions pi(:). and

introduction of the integral ion of the & functionals leads to the foll

form of the partition function [115. 116]:

z = (0 Z)x[[ I Boaorsantn] ont) x
- r=A.B.S

=cs Vet




48

(H Qf") xexp[ dr n(r)(L = ”*(”)] x o 222)
K=C.S k=A,B.5 Pok
axp[ >/ dwmm(w} x exp [~ W [{p()}] -
k=A.BS
where, for solvent
Qs = / dr expl—ws(r)] . (223)

and for copolymer

Q= [ora()ora)PIraC)Plra()IGtra0)) x
Zs Zs
exp [-fo dr u/_.\[r[r)]] exp [—/ﬂ dr .Jg["’(r‘)]] x (2.29)

&(rp(Zp) —Ta(Z4)) -
One can introduce, in a similar way as in Eq. (2.11). the propagators

Qurrir.0) = [ 6ra()lralr) - rldlra(0) - '] x

exp{—[; d’ ( +‘.‘,‘[r,\(r')])} L(2:25)

which satisfy the modified diffusion equation [32]
b o2 . 9 . 5 4
EV —wi(r)| Qulr.7r'.0) = E)_TQ"(T'T‘T .0). (2.26)

with the initial condition given by Eq. (2.12). With these assumptions the integral

of the distribution function, Eq. (2.24) can be written as

<
o
=

Qc = [ drdr' dr'Qu(r. Zolr', 0)Qu(r. Zulr". 0G("(0) . (2
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Finally, using the Stirling approximation. the partition function can be written as
Z = N[ I SoCowel)ént)esp = Fri{onh fon)h Ol - (2:28)
B,S

K=A,B,!

where Fr[{px()}: {wx()}, n(-)] is the free energy functional given by

Fri{ox()} {wx() b n0)] = Fl{pc()} {wx ()} + Glps ()} n()] - (2.29)

with
Fli{pe(} fn ()] = [wupx(-m - far wmm] +
K=AB.S
- A N
;sv {ln Zo " 1} (2.30)
GllpeCItntl] = [ drutr) [ y e LJ : s
r=A.B5 P
To 1 the i the sions for the average density distribution of

each component are needed. Using the partition function Eq. (2.14). the density of

component & can be expressed as

ey = 5 (H ZVV) [ érsi =
/ 'ﬁsra,(»P[r.{,(»]g(r,h(o»o'rgj(-JP[rlf,(-)l x ()
8 (rai(Ze) — ras(2a))
ulr) x

1;[5(1- > M)x

r=ABs Pox

exp [— /}i}'] 3
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Performing the same transformations of variables for this expression as were done for

the partition function, it can be shown [L16] that, for solvent. the density is

W so.
s = Z JUIL dmOsent it g

exp [_]:T[(ﬂx(')}- [CHOIRIO)IIN (2.33)

and for each block of copolymer (k = A.B)

Ne 6Qc

bt = G [ TL oo 03205
exp [~ Fr{{pw ()} {ww ()} n ()] - (2.34)
2.3 Mean Field Approximation

To obtain the free energy of the system and the spatial distribution of the densiries.

3), and (2.34). Since the equilibrinm state is the

one has to evaluate Eqs.

3).

state with the minimum of free energy. these functionals can be approximated by

the saddle point technique [123, 124]. Let the cor ling fields whicl
the free energy functional, or in other words contribute the most to the partition
function. be denoted by p(-). Then the free energy. partition function and density

distributions reduce to

Fr = Fri{al()} {20} 7°0)] (2.35)
Z - Z° <exp {(~Frl{p()} {«2C) 10Ol (2.36)
{asl)) = o200 (2.37)

" Qs dws(r)),



e sac
Qc dw(r) |,

(Be(r)) — k=A,B. (2.38)

To find the saddle point, Fr has to be minimized with respect to each p. (7). wx(7) and
7(r) subject to the constraint of conservation of particle number for each component
in the system

/dr(p,((r)) =N, k=54,B. (2.39)

where for solvent Ns = Ns. = N¢Z,4 for the A block. and Ng = Ne-Zp for the B

block. Proceeding with the minimization. the only part of Fr which depends on the

field n(r), is G and this minimization gives

=1. (2.40)
and hence
G=0. (2.41)
so that
FL=F. (2.42)

Minimization with respect to to the field w(r) yields

Al + o

= =0. 2.1
o) (2.43)

Comparison of Eq. (2.43) with Egs. (2.37) and (2.38) gives the very importaur result

that the saddle point values of p°(r), which are what can be calculated. are equal to

the equilibrium density distributions (i(r)) in this imation. and the
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of Eq. (2.39) can be applied as
/drpg(r) =N, k=S.4.8. (2.44)

Minimization gives a set of equations for every component. connecting the interaction

energy. densities and self-consistent potentials

N, 50, o
FK(T)+§5uK(r] = 0. (2.45)
W o)+ 5, < 0, (2.46)

where A, are the Lagrange multipliers associated with Eq. (2.44). and the superscripts

can be dropped. Equations (2.45) and (2.23) yield
N, i
ps(r) = 5F expl-ws(r)] - (2.47)
s

In order to obtain expressions for the densities of each block. the functional deriva-

tives 29 and 295 have to be evaluated. Following the derivation prescuted in

Ref. [116]. it can be shown that

Ve [Za
palr) = QL‘C/O ar{ [ ar' ar" dr"Q (. rir 0)G(r)
Q" (Za -7, T]Qg(r".Zylr”CO)} . (2.48)

Similarly, the B-block density distribution is given by

Ne rz
polr) = 35 /u "d,—{ / dr' dr" dr"Q (v Z4 | 0)G(r)

Qulr. 7Ir". 0)Q (" (Zs — T){r.y—]} . (2.19)
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The potential energy, Eq. (2.18). is very general. It is useful to express it in terms
of Flory interaction parameters (24] and the volume fractions of the components. To
do so, a symmetric form of the potential energy [108], which vanishes for interaction
between like molecules, is introduced

" . 1 5 - 9 =
Unwr (1) = Wi (7) = 5 (Woaw (1) B3+ Wi (TR ) - (2.50)
Equation (2.18) can be written as
" 1 2
W o= 5 ¥ WeepneNe+
2, 58s
éz [ dr dr'on(r) s e = r)per') +

Y [drpdriusr) . (251)
K=4,8B,5

where

Wew = [ drtWue(r)
and is measure of the overall strength of each interaction. Now assuming Uy (r —7')
to be of short range and performing a gradient expansion [108]. the potential can be

written in the following form

; 1 ;
W= S 5 WapVet
“ Kk=ABS

301 [ dr (810w (r) = F o)Vt +

> /drpn,cd),((r)u,((r) .
K=AB,S
Flory parameters [24] are defined as [116]

BoxPo' ) . (2.34)
Pres

Xewt =



where
Ve = / AU (7). (2.35)
g2 = LAl PUe(r) (2.56)
Ui

The reference density used to define Flory interaction parameters is usually taken to
be the density of pure solvent present in the system. pps. The parameter o is the
effective range of the interaction and. in most calculations. is taken to be 6% =~ b2
where b is the average of the statistical segment lengths. o.(r) is the local volume

fraction and is defined as
px(r)
Pox

ox(r) =
The self-consistent potentials can be evaluated through Eq. (2.46). using the expres-

sion for the potential energy. Eq. (2.53). The result is

wn(r) = %’"—) ¥ _)%*‘ 3 Xwr |(r) — %vzw(r) @ p—:—u,,(r) — A (238)

The field n(r) and unknown Lagrange multipliers can be eliminated. To eliminate
the Lagrange multipliers A, one can require that w,(r) = 0 in a pure solvent region.
Eq. (2.47) yields
Ny )
ws(r) =In | ———]| . 2.59
) =0 (e 220
Now. in a bulk phase, only solvent is present. p = pgs and the self-cousistent potential

for solvent has to be constant. which can be set zero. This in turn gives

1 -
ws(r) =In (¢5(r)) (2.60)
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Because of the incompressibility assumption. Eq. (2.40), only w4(r) and wg(r) are

needed and the density distribution of the solvent can be obtain through
9s(r) =1 —ga(r) — &5(r) . (2.61)

Thus, Eq. (2.58) evaluated for solvent, and Eq. (2.59) are sufficient to determine the
field n(r).

Finally the free energy in the mean field approximation can be written as
FloOb At} = Wiad = 3 [drwamionr) +
LB.S

where W[{pc(-)}] is given by Eq. (2.33).

The details of the calculations, as well as the model of the interactions with the

surface. will be di d in the following cl

2.4 Summary - Self Consistent Mean Field Theory
To summarize. the theoretical approach. presented above. is based ou the following
assumptions:
o Polymer chains in bulk are described by continuous Gaussian random walks [32.
118, 119].

o The local volume fractions of all components sum locally to unity everywhere.

This dition is i duced ing no volume change upon mixing; it is




equivalent to assuming incompressibility [108].

e Effective interactions between the components are two-body. can be expressed
in terms of Flory parameters and a finite range of interactions which is on order

of a statistical segment length of a polymer [24. 108].

e Mean field approximation - the density fluctuations about the most probable

conformation are neglected.

These general assumptions result in equations for the density profiles of every com-
ponent present in the system and a free energy expression written in terms of the
densities and interaction parameters.

The profiles for both copolymer blocks are calculated using Eqs. (2.48) and (2.49).
and the density distribution of solvent is determined using Eq. (2.61). To obtaiu the

density distributions for copolymer, one has to solve the modified diffusion equation
[ , 9 . .
EV —we(r)| Qe(r.7ir'.0) = a—_QK(r 7[r'.0) . (2.63)

for the propagators Q. (7. 7ir'.0) subject to geometry-dependent initial and bound-
ary conditions. The potentials wy(r) which modify the diffusion equations include
enthalpic interactions between the molecules, written in terms of Flory parameters.
as well as interactions with the surface and terms arising from the condition that
there is no volume change npon mixing.

The problem has to be solved self-consistently. To solve the diffusion equations.

potentials are needed which depend on the densities, and the densities are determined



through solution of the diffusion equations.

o



Chapter 3

Properties of Uncompressed Polymer Brushes

3.1 Introduction

In this chapter the properties of polymer brushes in good and © solvents are in-
vestigated (the system is schematically presented in figure 1.1b). The brush height.
general shape of the density profile. including depletion layer. location of the maxi-
mum and tail region are investigated. The free energy of the brush and its dependence
on the degree of polymerization of the dangling block and surface concentration are
also probed. One of the purposes of this chapter is to provide a quantitative compar-
ison of the numerical. SCF theory with the experiments of Kent et al. [1. 2]. In these

experiments the properties of the polyvmer brush in a good solvent were investigared.

For this c s prehensi ical caleulations were performed. For the
calculations, the statistical segment length of the dangling block. b. the densities of
pure materials gos and pog, the degrees of polymerization. Z. and the surface cover-

ages, X, were chosen to agree as closely as possible with the experimental values. To
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investigate the free energy of the brush in a good solvent and make a comparison of the
numerical SCF theory with the analytic picture of MWC [29. 33]. model calculations
for a polymer brush in a good solvent were performed. Similarly. model calculations

were performed in order to compare the properties of the polymer brush in a € sol-

vent with the analytic pictures of Shim and Cates [40] and Zhulina et al. [42.
Similar calculations to those presented in this chapter were performed by Whitmore
and Noolandi [64], however in the work presented here more detailed analysis of the
numerical results and comparison with the experimental data are presented. The free
energy and its dependence on the degree of polymerization and surface coverage as

well as the quality of the solvent are also probed.

3.2 Details of the Numerical SCF formalism

The experiments of Kent et al. [1. 2] were performed on poly(dimethylsiloxane-
block-styrene) copolymer (PDMS-PS) spread as a monolayer at the free surface of
ethyl benzoate (EB). In this system the PDMS (A-block) lies flat on top of the EB.
with the PS (B-block) dangling into the EB which is a good solvent for PS. All the
A-B joints lie in a very narrow interphase region of width a. estimated by Kent [1] to
be on the order of 1 nm for all samples. For the calculations. therefore. it has been
and assumed that all the joints are randomly distributed throughout this interphase
of width @ = 1 nm. As well. the system is assumed to be translationally invariant

parallel to the surface, and the problem becomes one dimensional.
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There are three density profiles to determine, for the solvent and for the A and

B blocks. The surface, z = 0. is defined as the plane at which the solvent and B-
block densities reach zero. The interphase is thus the layer through which the volume
fraction of the solvent and B-block together, ¢p(z) + ¢s(z), rises from zero to unity.
and ¢.4(z) falls from unity to zero. In this chapter the dangling. B-block is of prime
interest. and the SCF theory is not used to determine the density of A-block. Insread.

the volume fraction ¢4(z) is represented by a simple. standard form
64(z) = 1 — tanh? G) . z20. 3.1

with the parameter { chosen so that ¢(z) falls effectively to zero over the interphase
width of 1 nm: it has been chosen [™' = 3 nm~'. so that 4, = 0.0l at r =a = | nm.

To determine the density of dangling B block it is useful to introduce the inte-

gral ion of the given by Eq. (2.25). where the integration is

performed over all starting positions [108]. The first propagator is defined as

qo(r.7) = qo(x.7) / dr' Qulr.7Ir'.0) . (3.2)
and the second propagator is defined as
alrr) =) = [ dr'dr QuUr. Zur 06 () Qp(r. I 0) . (33)

In this calculation, the role of the A-block is to anchor the dangling block to the
interface, and there is no need to calculate Q4. Since the dependences on 7 and 7

appear only in a single or Q,, the ators q; also satisfy the diffusion
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equation

[ bﬁ :21 +“/(I)] @z 7) = ——-—q.(r ™). (3.4)
with the variable 7 having been mapped onto interval [0. 1]. These propagators have
a simple physical interpretation. The first, qo(z, 7). is proportional to the probability
that a B chain of length 7 ends at z given that it starts somewhere in the system.
while ¢(z, 7) is proportional to the probability that a B chain of length  ends at z

given that it starts in the interface.

In addition to satisfying the diffusi; ion, the agators satisfy appropriate
boundary and initial conditions. Since ¢,(x) = 0 at the upper edge of the interphase

region. one boundary condition is

(0.7) =0. (3.3)

As well, the chains can extend only a finite distance into the solvent. which implies

qi(oe. ) =0. (3.6)

for the other boundary condition. In practice. this condition is applied at a finite
distance, which is chosen to be large enough as to have no effect on the brush.
The initial condition for ¢; follows from the assumption that the A-8 joints are

randomly distributed throughout the interphase of width a. This implies

l. 0<z<a
@(z.0) = (3.7)
0, z>a.
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Since the free end of the dangling block is not localized. the initial condition for qq is
@(z,0) =1, z>0. (3.8)

With this choice of propagators. the integral of distribution function Eq. (2.27)
becomes

Q:/ﬂmdqu(l’.l). (39)

and the density of the dangling B block. Eq. (2.49). can be written
) Zs L
i dre CE Z—T). 3.10
0slx) = 5 [ dray( (. 2 ) (3.10)

where the average area per grafted chain, £. was introduced. For large values of &
the lateral averaging introduced in the one dimensional model causes the polymer-
polymer interactions to be undercounted. Thus. if the average area per grafted chain
is large and the chains are in the mushroom regime the model is not expected to be
a good description of the real system.

The potential w(z) which modifies the diffusion equation in a general form is given
by Eq. (2.58), and includes enthalpic interactions and terms arising from the coudirion
that there is no volume change upon mixing, Eq. (2.61). After determination of the
field #(r) and the Lagrange multiplier A, w(x) can be written for the one dimensional
case as

Pref
Pos

(xa8 — xas) [¢A(I) —o% + %ZV2¢A(1)]} + (3.11)

2
w(@) = {m [¢s(r) - % = (#6(z) = 6) + TV (ps(x) - oula))| +
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Pos %
—In
po 9s(z)

+ug(z) — %us(z) .

where an additive constant has been chosen so that w(z) — 0 far away from the
surface, where ¢% = 1. Since the experiments suggested there was little evidence
of any particular affinity of the B-block for the surface. both x.z and x4 should
be positive and of comparable magnitude. For convenience. yig = ysg has been
used. Similarly the effective external potential acting on the B-block of copolymer.

up(z) — [pos/poslus(z), is negligible. With this choice. the potential can be written

(o) = 222 {lnﬁ(z) +xs [ﬂ’s(-’fl - oaa) — 1+ % (o) - oj(s) ] } (312)

where ysp has been defined using the solvent for the reference density. The paramerer
a? characterizes the effective range of the interactions. and was chosen to be equal to
b2, where b is the statistical segment length of the B-block. The direct contact with
the analytic SCF theory can be made by assuming that ¢g(r) is small everywhere
and the gradient corrections can be neglected. Expanding the logarithm appearing
in the expression for the potential. Eq. (3.12). and ignoring the cross terms of the
form ¢.4(z)¢p(z) because there is very little overlap of A and B polymer densities.

the potential has the form

ate) = o+ 28 i (Ths) — xsmonta) + (- 20)oute)+

1
5@3(1)2 +} . (3.13)

This w(x) diverges logarithmically at the surface, so the polymer density goes to zero

there. The analytic SCF theory, which ignores the depletion region. does not have
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such terms in the potential and the density remains finite. in fact a maximum. Hence.
to obtain the analytic limit. these terms are dropped from this expression. The widch
of the anchoring region is also set to zero. The resulting potential

@(z) = wo+ % {(1 — 2xsg)%s(z) + %wa(r)" Hiwe } . (3.11)

is equivalent to the analytic potential if pys/pos(l — 2xsg) is identified as a binary
polymer-polymer interaction (excluded volume parameter).
Finally, to determine the density profile of the solvent. Eq. (2.61) is nsed and

¢s(x) at any point is given by

0s(z) =1 = 64(z) — ¢s(z) - (3.15)

For a given system. which is specified by the values for a. Z. £. pog. poa- pos. b
and xsg. a self-consistent solution has to be obtained for the problem specified by
Eqgs. (3.1) to (3.15). This is done via an iterative procedure discussed in more detail
in Appendix A.

Typical density profiles of both blocks are shown in figure 3.1. For the 4 block.
@.4(z) decreases smoothly from unity at the surface to zero over the thickness of the
interface region. according to Eq. (3.1). For the B block. og(x) rises from zero at
the surface to its maximum value ¢, and then decreases smoothly to zero in the
extended region. In all calculations, the maximum is located well beyond the point
at which the density of the A-block vanishes, and so this initial region between the

surface and the o, can be identified as a depletion layer. Thronghout the main body
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Figure 3.1: Calculated polymer profiles for the 10-40 PDMS-PS polymer at ¥ = 40
nm?, which corresponds to o* = 3.2. The profile of the PDMS block is represented
by ¢.a(z). which decreases from unity at the surface to zero over a distance of 1 nm.
according to Eq. (3.1). All the PDMS-PS joints are located in this layer. The profile
of the dangling PS block is represented by ¢g(x). Its maximum volume fraction.
which is located at z,,, is denoted by ¢,,.

of the profile, the density decreases monotonically. qualitatively as a parabola. and
then evolves into an exponential-like tail near the tip.

The free energy of the brush is also of interest. To determine this quantity
Eq. (2.62) is used. This expression however, contains some terms which are indepen-
dent of the configuration of the system, as well as, the terms which can be attributed

to the adsorbed A-block. Thus to calculate the free energy of the brush. these terms
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have to be subtracted from the Eq. (2.62). The result. expressed as the brush free

energy per unit area, can be written

L= [ {05(1)11105(1') + ou(e) = x6hte) — BEtzjouto) |
—ﬁs- Q. (3.16)
Each term ing here can be i d physically. It can readily be shown that
the calculated density distribution for the dangling block remains unchanged upon

addition of a constant, w™, to the self-consistent potential of Eq. (3.12). so that one
can set

/:‘ drw(z) op(z) =0 . (3.17)

With this choice, the free energy per unit area can be written
e b)) - o 4
P /: dz {d’s(z) Inos(z) + o5(z) — xPa(z) T nQ. (3.18)

Using rhe incompressibility condition. the logarithmic term In o5(x) can be expanded
in powers of 64(z) + 0g(z). Part of the result depends only on o4(x) which iy
subtracted from Ej since, it is not the part of the brush energy. Neglecting terms due
to the very small A-B overlap. the result can be written as

V-0 W ¢ R SO [ .
ir = [ = [5U- 200 + gobe)] - gome. @19

If the term with @ is interpreted as the elastic stretching. then the terms appearing
in the integral are equivalent to the interaction energy in the mean field picture as

was discussed in the Introduction, and Eq. (3.19) is the free energy of the brush.
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3.3 Polymer Brush in a Good Solvent

In this section, numerical results for PDMS-PS at the EB/air interface are pre-

sented and analyzed. In order to make a is with the ! I data of

Kent et al. [1. 2] calculations were performed for five polymers. with Z ranging from
280 to 3.100. For each Z. up to 22 different surface densities were examined. The
overall range in ¥ was from on the order of 10 to 1000 nm? per chain. corresponding
to 0" ranging from 0.4 to almost 12. These data are included in Table 3.1. The
calculations reported here were performed for all these data. As noted. the model
is not expected to be reliable for #* < L. and this will be discussed in what follows.
The other system characteristics which enter the formalism are pog = 6.20 um ™ for
PS [125] and pos = 4.21 nm™ for EB [126]. Since the observed radius of gyration
of PS in EB is very similar to that in toluene (TOL) [127]. the measured PS-TOL
interaction parameter. i.e.. xs4 = 0.44 was used. For the same reason. b = 0.71 nm
was chosen for the statistical segment length. In the experimental analysis. Kenr o#
al. {1. 2] used{128]

R, =0.0117M2™% | (3.20)
for the radius of gyration R, of an isolated PS. where M, is the (weight averaged)
molecular weight. and so the same expression was used to obtain o for each L. It is
important to recognize. however, that the use of this expression is not fundamental
to the results presented here, but it does provide a useful way of analyzing them and

comparing them directly with the presentation of the experiments.
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Table 3.1: Polymers, free radii of gyration. R,, and reduced surface coverage. 7*
used in the calculations. The polymers are labeled by the block molecular weights.
in kg/mol, of the PDMS and PS blocks respectively. The values of 6* were derived
from parabolic density profiles fitted to the neutron reflectivity curves [1, 2].

M, 4-30 10-40 4.5-60 21-169

R, 540 nm | 6.40 nm | 8.15 nm | 15.01 nm
a’ at
3.18
3.32
3.49
3.67
3.78
3.99
4.03
4.18

A

130
173
1.96
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The numerical results in this thesis are often presented in the form of the approxi-
mate power law dependences on the surface coverage and the degree of polymerization
or the radius of gyration, R,. of the dangling B-block of the copolymer. [u the most
of cases the calculated uncertainties in the values of exponents were determined ro
be on the order of +0.02.

Figure 3.2 shows the profiles for the B-block for a particular polymer. 10-40 PD)IS-
PS. for different coverages. There is no qualitative change with coverage: quantita-
tively. both the maximum volume fraction and the brush thickness increase. These
profiles are typical of all our calculations; the main body of the profile is quasi-

parabolic, but there are also depletion and tail-like regions.

3.3.1 Thickness of the Brush

In the analytic theories of ADG [7. 28] and MWC' [29]. the thickness of the brush
is defined as the distance from the surface to the point at which the density of the
polymer becomes zero. However. because of the smooth vanishing of the numerical
profile in the tail region (see figures 3.1 and 3.2). its total thickness is difficult to

define. and it is more ¢ i to use its root- an-squared ] S8, Trms. LU IS

defined as

(3.21)

Trms =

In both the ADG and MWC theories, Zrms x A" in the asymptotic limit. S0 Zrms

would also scale as Zo!'/3.
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Figure 3.2: Calculated profiles for the PS block of the 10-40 PDMS-PS polymer. as
in figure 3.1, for different values of o* .

The calculated values of z,,s; are shown in figure 3.3. From this fignre. one

can -lude that z,, i with i lecular weight and surface cov-

erage. o°. In fact. all the results fall very close to a single curve. which is nearly a
straight line on this log-log plot for * X 2. This implies an approximate power law
dependence for this range of #*. The best fit to these points gives

Toms o ROMgr 02

) 20 (3.22)

where & = £7! and the uncertainties in the values of powers are +0.02. The fit-
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Figure 3.3: All the calculated values of the rms thickness of PS block. yp,s. as a
function of R, and ¢* . The straight line and the powers of R, and " represent the
best fit to the points satisfying ¢* > 2. The units are nanometers for z,,,, and R,.
and kg/mole for the PS molecular weights.

ted dependences of Eq. (: ) are significantly weaker than those predicted for the
asymptotic limit, especially the dependence on Z.

Although there is no qualitative difference in the general shape of the profiles for
low and high coverage, the cases corresponding to ¢* < 2 are clearly in a different
regime. The calculated values of z,ms deviate from the scaling found for larger o= .

and the deviation becomes more pronounced with decreasing #*. In the limit of very

small o* . the brush thickness tends to be independent of o*. This is expected for the
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mushroom regime. but these SCF predictions for this regime should not be considered
as quantitative. What is of interest. however. is that the deviation from power law

behavior begins around ¢* = 2 for all molecular weights. This is the reason that

in all subsequent fits. results for low coverage are not included in analysis. and only
results for o* > 2 are considered.
The results shown in figure 3.3 fall close to the power law of Eq. (3.22). There

is, however, some variation in these powers which can be extracted by fitting them
to different ranges of o*. As just discussed. the behavior at very low coverages

approaches that of the mushroom regime. For o* € [2,4] the scaling strengthens

10 Ty X Z0T0700257 0212002 reyching 3, oc Z087200252 0292002 for 5+ ¢ [10.12].

This variation in the extracted powers is consistent with a picture of a conrinnons

evolution from the mushroom regime towards the asymptotic brush regime.

3.3.2 Shape of the Density Profiles

To characterize the shape of the profiles near the surface, the maximum polymer

Im, are cousidered. As was

volume fraction, @,,. and its distance from the surfa
the case for Zyms. all the calculated values of ¢,, fall very close to a single curve. as

is illustrated in figure 3.4. For o* 2 2, results fall on a straight line. described by

bm X Rg—x,zu(r- 0.68

Z0-10,0.68

x
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Figure 3.4: All the calculated values of the maximum volume fraction of the PS
block. &, as a function of R, and o*. The straight line and the powers of R, and
a* represent the best fit to the points satisfving o* > 2. The units are the same as
in figure 3.3.
The values of 0.10+0.02 and, in particular. 0.68+0.02 are quite close to rhe corre-
sponding values of 0 and 2/3 predicted by the ADG and MWC theories.

As is qualitatively apparent from figure 3.2. the location of the maximum. r,,. is
a slowly varying function of . Figure 3.5 quantifies this dependence. In all cases.
T, is on the order of Ry and is weakly dependent on o*. and these dependences fall

very close to a single relation. Once again, fitting all the results for ° > 2 results in

Im Rt;,sxa-fu.m
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Figure 3.5: All the calculated values of the position of the maximum in the volume
fraction of the PS block, z,,, as a function of R, and ¢*. The straight line and the

powers of Ry and o represent the best fit to the points satisfying o* > 2. The units
are the same as in figure 3.3.

x ZMPam0, (3.24)

with the uncertainties of +0.02 in the values of powers. This cannot be compared
with the theory of MWC [29] which neglects the depletion laver. It can be compared
with the theory of ADG (7. 28] in which z,, corresponds to the distance at which the
plateau value is reached. which scales as a~'/2. Thus there are two quite different

pictures here: the numerical SCF theory predicts that the location of the maximmm

is controlled by R, and is almost independent of &, whereas the ADG theory predicts
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Figure 3.6: All the calculated values of the position of the half-maximum iu the
volume fraction of the PS block. d. as a function of R, aud 7~ . The straigh line aud
the powers of R, and o represent the best fit to the points satisfying 7* > 2. The
units are the same as in figure 3.3.

the ite. The ical results are litatively i with the observations

of Cosgrove [129] and the Monte Carlo studies of Chakrabarti and Toral {92].

Although the location of the i I, isone ch ization of the thickuess
of the depletion layer, it is not the only one. One can also define the distance from
the surface at which the volume fraction reaches one half of its maximum value before
reaching its peak value. This distance is denoted by d, and exhibited in figure 3.6.

Once again, the results can be approximated by a single curve which becomes a



straight line on this plot forallo* 2 2. The best fit for this line (with the uncertainties
of £0.02) is
d x }ﬁﬂ o -0.28
oc Z¥25~08 (3.25)
This scaling is closer to the ADG prediction of Z% ~°3. and quite different from
that for z,,, Eq. (3.24). This latter difference reflects the changes in the shape of

the density profiles in the depletion region. and indicates that the behavior of the

hick s of the depletion layer depends on how it is defined.

3.3.3 Detailed Experimental Comparison

Kent et al[l, 2] carried out neutron reflectivity experiments for the system de-
scribed in section 3.2 using two sets of apparatus. the DESIR and SPEAR reflec-
tometers at Saclay and Los Alamos. respectively. A large range of wavevector was
available at SPEAR (g = 4w sin(8/A) up to 0.12 A™'). allowing for a detailed study
of the density profiles, by fitting the reflectivity data to a variety of functional forms.

They ined pure bol. bolas with depletion lavers and exponential tails.

different Gaussian forms. the error function and variable expouent forms. They cou-
cluded that a depletion layer and smooth tail were required to fit the curves. and rhar
the best-fit profiles were very similar for all the functional forms with these included.

A detailed analysis was exhibited for the 4.5-60 polymer at a pressure of 2.7

dyn/cm. corresponding to o* = 5.3, determined by fitting a variable exponent model



of the profile. They found that the density rose from a very low value at the surface
to a maximum, after which it decreased smoothly to zero. The value of the maximum
PS volume fraction depended very weakly on the function used in the fit. with o,,
ranging from about 0.115 to 0.125. Its location varied somewhat more. from abonr 1.1
nm to 7 nm. This greater variation may be due to fact that the different functional
forms had different shapes in the depletion regions; as implied by the above analysis.
the thickness of this layer is sensitive to its detailed description. They performed a
similar analysis for coverages at o* = 3.7 to 5.4, and concluded that the thickness
of the depletion layer was independent of the surface density in this range. also in
agreement with result of Eq. (3.24).

For a* = 5.3, the SCF profile peaks at z,, = 6.6 nm with a value of o,, = 0.12.
and is shown in figure 3.7. Both of these are within the ranges of the experimental
fits. The rest of the profile, including the body of the profile and the smooth tail. are
in good agreement with the fits: at any position z, the caleulated and experimental
profiles agreed to within [A@(x)| < 0.005. and they both vanished at about 45 n.

[n determining the brush thickness, Kent et al [1] found that the value of the

brush thickness was the same for a simple parabola as for the more complex shapes.
and they also concluded that the scaling dependences on o were virtually the same.
For consistency. therefore, they used fitted parabolas to determine the dependences

of the thickness on molecular weight and surface density. They fitted all data to the
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Figure 3.7: Calculated density profile for the dangling block of 4.5-60 PDMS-PS
copolymer with £ = 39.4 nm?. which corresponds to 7 =~ 5.

form
) EAY
&(z) = |1 — (/T) . (3.26)
with ¢, and A" being the fitting parameters and presented most of their results in
terms of /i*. In order to compare those results with the SCF caleulation. in the follow-
ing analysis the experimentally obtained valnes are couverted to rhe rins thickuesses

which, for parabolas, are related to A" by

(3.27)

In the rest of this section the experimental results obtained using Eq. (3.27) are

compared with the calculated theoretical values.
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The analysis of the results by Kent et al. showed that the brush thickness was

constant to within experimental error for small o°. with the onset of stretching oc-

curring at 0° = 2. This is the same threshold at which our power laws begin to be
applicable, as seen in figures 3.3 - 3.6. For 0 2 2. the measured brush thicknesses
could all be described reasonably by a simple linear function of o* .

Zrms _ . 39
R = A+ B, (3.28)

with A = 1.38 and B = 0.076. In figure 3.8. the experimental data (open symbols) and
this linear fit to them (solid line) are shown. as well as corresponding calculated values
(filled symbols). These theoretical results exhibit a similar quasi-linear dependence
on o, although they do not all fall as close to one line as the experimental points do.

Taken individually. however. the theoretical results for each polymer are verv close

to linear in o*. In Table 3.2, the results of fits to the straight line. Eq. (3.28). are

presented for each polymer and for o* > 2. In all cases. the values of the intercept .
determined with the uncertainty of the order on +0.001. are very close to the value for
the experimental data, but the slopes B. determined with the uncertainty of the order

on +0.0005 vary over a factor of about 2. For o* < 2. the experimental values tend to

a common value of about 1.5 R,. Our calculated values at #* = 2 are all in the range

of 147 R, to L.67 Ry, in with the experiments. They are slightly higher

simulations

than the values of about 1.43 obtained by Sorensen and Kovacs in MC
of chains with up to 73 units. For smaller o*. the lateral averaging inherent in the

SCF calculation causes the polymer-polymer interactions to be undercounted and.
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: C ison of the and calculated rms thicl as defined
21) and (3.27), for the theoretical (filled symbols) and experimental values
(open symbols). respectively. For o* > 2. all the experimental points can be well
represented by a single linear dependence on °. which is shown by the solid line.

furthermore. there should be swelling effects that are not inclnded here. For these
reasons, and as is the case for the fit to the experimental points. the linear relatiou
cannot be extrapolated to smaller o*, and the values of the intercept. 4. are not to
be interpreted as applicable to very low coverage.

Although both the experimental and theoretical results can be reasonably de-

scribed by linear functions of o* , they can be better described by power laws. Kent
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Coefficients. A & 0.001 and B £ 0.0005. of the linear fit. Eq. (3.28). The
first line is for the fit to all the experimental points. and the others are the fits to the
theoretical values for each polymer. All fittings were done for 6* > 2. and should not
be extrapolated to smaller o*.

PDMS-PS Polymer | 4 B
Experiment, all 1.38 | 0.076
4-30 1.44 | 0.113
10-40 1.40 { 0.110
5-60 1.40 | 0.093

1.32 [ 0.076
1.36 | 0.062
et al.[2] found the best fit to their results to be
Tosos MY (3.29)

for all * > 2. The values of these powers. 0.86 +0.02 and 0.22 +0.02. correspond

directly to the theoretical values of 0.81 and 0.24. respectively, displayed in Eq. (3.22).

Figure 3.9 shows all the e: i ] and the ding theoretical values plotted

according to Eq. (3.29). The theoretical values are scattered about this line. as

expected due to the small differences in the powers. For ease of comparison. the

theoretical values are shown in this format according to Eq. (3

©

) in figure 3.10. It
can be recalled from section 3.3.1 that. in spite of the minimal scatter on figure 3.10.
small variations in the values of the exponents with * could be extracted from
the theoretical values. Experimentally, changes were observed at small #°. bur no
strengthening relative to the overall dependence was detected for a* > 10,

In order to determine if the small differences between the experimental and the-
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Figure 3.9: Measured (open symbols) and calculated (filled symbols) r7ns brush thick-
nesses. plotted according to the power law fit to the experimental data. Eq. (3.29).
which is shown as the solid line. The units are the same as in figure 3.3.

oretical results discussed throughout this section are due to the treatment of the
depletion layer and tail regions in the experiments. Kent analyzed six of the SCF
profiles, three for each of the 4-30 and the 28-330 polymers. He first calculated
the corresponding reflectivity curves and then fitted parabolas in the same manner
as was done with the experimental reflectivity curves. The resulting values of the
brush thickness for the 4-30 polymer fell very close to the single line obtained ex-
perimentally, shown on figure 3.8, but the values for the 28-330 polymer were moved

somewhat further below. Together, these imply that the existence of separate linear
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Figure 3.10: Calculated rmns brush thicknesses for all the points satis
plotted according to the best fit to them, Eq. (3.22), which is shown as the solid line.
This relation provides a very good description of all these points. The units are the
same as in figure 3.3.

relations. Eq. (3.28). for each polymer in the theoretical results. but a single one for
the experimental results, as well as the small differences in the values of the firted

powers, cannot be explained by the treatment of the data.

3.3.4 Numerical and Analytic SCF Theory

The experimental brush thicknesses of Kent et al. were analyzed in terms of the

parabolic profiles of MWC. so it is interesting to make a direct comparison between
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the numerical results and the analytic theory. As discussed in section 1.2.2. for highly
stretched polymer brushes in good solvent, the analytic SCF theory of MWC' predicts
a parabolic profile described by Eq. (1.18) with the thickness of the brush given by
Eq. (1.19). The parameter v appearing in these equations is related to the statistical
segment length via [36]

(R*) = ? i (3.30)
where R is end-to-end distance of a free chain. Since. in the notation used in this
thesis,

(R?) = Zb* , (3.31)
where b is statistical segment length. one has the correspondence v = 3/b*. Thus
using Egs. (3.30) and (3.31) and expressing the thickness of the parabolic profile in

terms of the root-mean-squared thickness. fi,m,. the profile of MWC' can be written

oz) = : ? oo l‘i(;)l] (3.32)

5 \fermny

)

(3.33)

hrms

Once again using Eqs. (3.30) and (3.31). the free energy per chain in the analytic
SCF theory can be written as

a\ 13
F,= 1_5:) (1’%2-) W7 (3.34)

The excluded volume parameter. w, can be expressed in terms of the Flory interaction
parameter as

1
w=o -2 (3.35)
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In order to probe these scaling relations. model calculations with Z ranging from
200 to 1000 were performed. All the pure component densities were chosen so pys =
pop = L nm~*. Furthermore, the segment statistical length was set to b = | nm and
the value of the solvent-polymer interaction parameter x was 0.4. which corresponds
to w = 0.2. Since these are model calculations for polymer in good solvent. the
reduced surface concentration o* , was calculated using

Lo .
6Z S {3

where v = 3/5 [39]. All parameters are summarized in Table
The parabolic and numerical profiles for Z = 600 and £ = 100 um? are presented
in Figure 3.11. The maximum volume fraction is significantly lower in the numerical
profile than in the theoretical one and the numerical profile extends farther from the
surface. The depletion region alone does not account for the difference.
As is apparent from Eq. (3.32), the MWC theory predicts that the maximum
polymer volume fraction, @m, is independent of the degree of polymerization of the

grafted block. For the choice of parameters used here. it would satisfy
O = 3466 2% . (3.37)
By comparison. the best power law fit to the numerical results is
O = 1.709Z°06£ 7053 (3.38)

with the uncertainties 0.001 in the constant and =+0.02 in the values of powers. The

quantitative comparison of the two approaches is presented in figure 3.12. First. the
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Table 3.3: Degree of polymerization of dangling block Z. £ and reduced surface
coverage, o* used in the model calculations, good solvent.

Z [ omP] o

200 100.0
50.0
25.0
15.0
400

600

800

1000
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Figure 3.11: Parabolic and numerical profiles for Z = 600 and £ = 100 nm®.

powers of 0.06 = 0.02 for Z and —0.63 £ 0.02 for £ are consistent with the results
for the PDMS-PS/EB system. Eq. (3.23). The scaling relations are also in verv good
agreement with the prediction of the analytic theory. however the mumerical values are
about 20% smaller than those proposed by MWC theory. The numerical valunes are
closer to the analytic prediction for higher degree of polymerization and the deviation
from analytic picture becomes more pronounced for shorter chains.

Turning to the brush thickness, the direct comparison of the numerical results

with the analytic prediction of Eq. (3.33) is presented in figure 3.13. The best fit to
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Figure 3.12: All the calculated values of the maximum volume fraction of polyer
as a function of £ and Z for numerical SCF theory. good solvent. Open symbols
show numerical values and the solid line is the prediction of MWC' theory Eqj. 7).
Closed circles are the numerical values scaled by Z°%. The dashed line is the hest
fit, Eq. (3.38).

the numerical results gives

Trma =10.5262°022 799, (3.39)
with the uncertainties +0.001 in the constant and +0.02 in the values of powers.
The filled circles are numerical results and the dashed line represents the line of best

fit. The open squares show the numerical results scaled by Z' aud the solid line is

the prediction of MWC. Once again, these numerical results are in a good agreement
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Figure 3.13: All the calculated values of the Z,ms as a function of £ and Z for
numerical SCF theory, good solvent. Open symbols show numerical values scaled by
Z'. The solid line is the prediction of MWC theory Eq. (3.37). Closed circles are the
numerical values scaled by Z%3%. The dashed line is the best fit. Eq. (3.39).

with the corresponding results for the PDMS-PS/EB system. Eq. (3.22). The slightly

greater power of ¥ is consistent with the picture of a continuous evolution from the

h towards the asymptotic brush regime, since in this case larger values of 7*

have been included. Although the linear scaling (open symbols) describes the data
reasonably well, it is clear that the significantly weaker scaling of Eq. (3.39) provides
a better fit. An important conclusion which can be drawn from this comparison is

that a careful analysis of data is needed to extract scaling powers. in order to see if
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the data really support Z' scaling.

Finally the free energy per chain is directly compared with the analytic theory of
MWC. To calculate the free energy per chain, the values obtained through Eq. (3.18)
have to be multiplied by £. Calculating the free energy per chain using Eq. (3.18)

and looking for the best fit. it was found
F, = 0.7892%925 7066 | (3.40)

with the uncertainties +0.001 in the constant and +0.02 in the values of powers. The
MWC theory predicts

F. = 041625724 (3.11)

The power of 0.92 + 0.02 is approaching the MWC value of unity. and the value
0.66 =+ 0.02 is essentially in perfect agreement. The quantitative comparison of the
two approaches is presented in figure 3.14. Again, the fit to the power 0.92 +0.02 is
noticeably better than the linear Z dependence. As well. the numerical SCF results
are about 10% larger than the analytic predictions.

In summary, the numerical SCF theory predicts brushes in which the maximum
polymer density is about 20% less. the rns thickness is about 50% greater and the
energy is about 25% greater. than those predicted by analytic SCF theory. The

scaling relations reveal that R, remains an important length scale [80].
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Figure 3.14: Free Energy per chain as a function of degree of polymerization Z. and
surface coverage £ in a good solvent. Open squares are the numerical values scaled
by Z'. The dashed line represents Eq. (3.41). Filled circles are the calculated values
scaled according to Eq. (3.40). dotted line represents the line of the best fir.

3.4 Polymer Brush in a © Solvent

In this section, direct comparison of numerical SCF theory with the analytic
theory of polymer brushes in © solvent developed by Shim and Cates (0] and by
Zhulina et al. [42, 43] is presented. As in the previous section. the shape of the
density profile, thickness of the brush and the free energy are analyzed. The values
of parameters which enter the formalism are the same as in section 3.3.4. except that

the Flory interaction parameter is x = 0.3. and the radius of gyration of the free
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Table 3.4: Degree of polymerization of dangling block Z. ¥ and reduced surface
coverage, o* used in the model calculations, © solvent.

Zy
200

400

600

800

1000

chain is determined according to Eq. (3.36) with » = 1/2 [39]. All parameters are

summarized in Table 3.4.

3.4.1 Characteristics of the Density Profile

Typical density profiles are shown in figure 3.15. Similar to the case of a good
solvent. @(z) rises from zero at the surface to its maximum value. o,,. and then
decreases smoothly to zero. but less rapidly than in case of a good solvent. The rail
region is not as extended, and the body of the profile is more compact. Overall. the
chains in a brush tend to be less stretched than in a good solvent conditions.

In the formalism presented by Shim and Cates [40]. the density profiles are calcu-
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Figure 3.15: Calculated profiles for the dangling block with Z = 800 for different
values of o* . © solvent.

lated numerically while in the work of Zhulina et al. [42. 43] the closed form expression
is presented for © solvent. The density profiles of Zhulina et al. satisfv

o
o(z) = (12)V4ps-12 [1 = (,f) ] (3.42)
A
TVINNLe
i o= (~) etz 343
m \12 ( )
where b is the statistical segment length and third virial coefficient was explicitly set

to unity. For the © solvent the excluded volume parameter. Eq. (3.35) gives w = 0.

The formal comparison between the numerical and elliptic profile of Eq. (3.42) is
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Figure 3.16: Formal comparison of the elliptic (solid line) and mumerical profile
(dashed line) for Z=1000 and 7 = 45 nm* (7* = 12).

presented in figure 3.16. The overall agreement is very satisfactory. however. once
again there is small depletion layer and smooth tail region.

As in the case of good solvent, a direct comparison of the analytic theory prediction
with the numerical SCF calculation for the maximum volume fraction of polymer. o,,,.
is possible. According to the analytic theory o,, does not depend ou the degree of

polymerization and scales as £~'/2. The best fit to the numerical SCF values gives
P = 14482002508 (3.44)

with the uncertainties +0.001 in the constant and +0.02 in the values of powers.



1
® SCF
o 0002
L ---- 1.448%
\\\ T SCF
% N ot =0
S

0,2

10 100
= (am’|
Figure 3.17: All the calculated values of the maximum volume fraction of polymer
as a function of ¥ and Z for numerical SCF theory, © solvent. Open symbols show
numerical values, solid line is the prediction of theory Eq. (3.42). Closed circles are
the numerical values scaled by Z%%2. The dashed line is the best fit Eq. (3.44).

The quantitative comparison of the two approaches is presented in figure 3.17. The
agreement in powers is very good and the numerical values (open squares) are very
close to the analytic prediction specially for high values of Z and ¥. It has to be noted.
however, that with the increasing & the reduced surface concentration decreases and
the chains become more isolated and are no longer obliged to stretch away from the
grafting surface. Furthermore, even for stretched chains the grafting density has to

sential to

be high enough to suppress the lateral i bility due to
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the grafting plane [48]. Thus. it is important to determine the lower limit of the
brush regime for the collection of end-grafted chains in a © solvent. In order to do so.
some additional calculations were performed for all five values of Z. with o varying
between range [1.5. 2.5] and the functional dependence of the Z,.,, was investigated.
Using only those values of Z and T for which the reduced surface concentration

o* > 3 and looking for the best fit, it was found that

Tems = 0.343Z0995-047 (3.45)

Trms = L6TBRY%g* 04T, (3.46)

with the uncertainties £0.001 in the constants and +0.02 in the values of powers. The
calculated values of x,qs plotted according to Eq. (3.46) are shown in figure 3.18. As
in the case of the polymer brush in a good solvent. the calenlated values of r,,.
deviate from the scaling found for larger values of . and this deviation begins at
about 0" =~ 3.
For the elliptic profile, the Iy, thickness is simply Zrmg = /i/2 which. using
Eq. (3.43), leads to
28, =0.342Z51/2 (3.47)
The direct comparison of the numerical results. Eq. (3.45). with the prediction of
Eq. (3.47) is presented in figure 3.19. The filled circles are numerical results and
a dashed line represents the line of best fit. The open squares show the munerical

results scaled by Z' (linear in Z) and the solid line is the prediction of the analytic
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Figure 3.18: All the calculated values of the rms thickness as a function of R, and
o . The straight line is the best fit to the points satisfying * 2 3. Eq. (3.46).

theory. The scaling relation obtained from the best fit is very close to the analyric

but the ical pref:

is larger. This larger value is consistent with
the density profiles of figure 3.16: the numerical profiles exhibit a depletion laver and

tail region. @, is smaller. and these lead to a larger value of the rms thickuess.

3.4.2 Free Energy of the Brush

In the work of Zhulina et al. [42, 43] and Halperin [41] the equilibrium structure

of the grafted polymer layer is determined by the of its ¢ ational

97
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Figure 3.19: All the calculated values of the Z,ms as a function of £ and Z for
numerical SCF theory, © solvent. The dashed line is the best fit Eq. (3 . Open
symbols show numerical values scaled by Z'. The solid line is the prediction of the
analytic theory Eq. (3.47).

free energy. which includes the contribution of elastic stretching in the layer. and
volume (ternary) interactions

Fo=Fuy+Fin - (3.48)
Halperin [11] assumed a uniform distribution throughont the layer which is equivalenr
to the step function model of Alexander and de Gennes [7. 28]. In the approach of
Zhulina et al. [42, 43] this energetic balance is done locally and the model is essentially

an extension of the analytic theory of MWC [29]. The free energy per chain in
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Zhulina’s approach can be expressed as
Fo= @) zs (3.49)

where once again, the third virial coefficient was set explicitly to unity. This can be
directly compared with the numerical SCF calculations. Calculating the free eneryy
per chain using Eq. (3.18). and looking for the best fit. it was found

F.=093520g-102 (3.50)

with the uncertainties £0.001 in the constant and £0.02 in the values of powers. The

numerical prefactor in Eq. (3.49) is equal 0.866. The numerical calculation are in

excellent agreement with the analytic licti The scaling s are equal

to within the uncertainty of £0.02. but numerical prefactors differ by less than 10%.

C i of the two is | in figure 3.20.

3.5 Summary

In this chapter, numerical SCF calculations were discussed and compared with
recent experimental data of Kent et al. [1. 2]. as well with the predictions of the
scaling theory of Alexander [28] and de Gennes [7], the asymptotic SCF theory of
Milner, Witten and Cates [29] for polymer brushes in a good solvent. and the analytic
theory of Zhulina et al. [42, 43] for the © solvent case.

In keeping with the experimental situation. it was assumed that one of the copoly-

mer blocks lies flat on the surface and the other dangles into the solution. The in-
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Figure 3.20: Free Energy per chain as a function of degree of polymerization Z. and
surface coverage ¥ in a © solvent. Filled circles are the calculated values scaled
according to Eq. (3.50), dashed line represents the line of the best fit. The solid line
is the analytic prediction of Eq. (3.49).

terphase region was assumed to contain all the A-B joints was taken to be | nm
thick [130] for the comparison with the experiments and 2 nm thick for the model
calculations. This model can be applied to the dangling block of adsorbed copolymers
or to end-grafted polymers through the choice of the thickness of the interphase. and
the modeling of the B block.

In the good solvent case, calculated density profiles all contain depletion layers.

which are analyzed in terms of the location of the i and the half-
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In all cases, the scaling of the maximum volume fraction with Z and o was similar to
the predictions for the asymptotic limit. However. the position of the maximum was
on the order of R, and only weakly dependent on the surface density. This contrasts
with the prediction of the scaling theory that it would be indepeudent of molecilar
weight and vary as ¢~'/2, but it is in accord with the experimental observations for
this regime. The position of the halfmaximum did vary with the surface density. but
not as strongly as predicted by the scaling theory. These qualitative differences in
the dependences of the location of the full and half maxima reflect changes in the
detailed shapes of the profiles in this region. which suggests that the experimental
characterizations of the depletion layer may need to include a careful specification of
how the thickness is defined. This is consistent with the findings of Kent et al. [2]
who found values of from 4.4 to 7 nm for the location of the maximum. depending
on the assumed shape of the depletion layer. The SCF calenlations yvielded a valne
of 6.6 nm for this case, which is within this range.

The existence of a depletion layer in these results contrasts with some other cases
in which there is no such layer. This can be explained by differences in the poly-
mer/surface affinities. In the first cases, the chains are end-grafted or the surface is
covered by the other block of the copolymer. so that the surface is strongly repulsive.
there is no adsorption of the monomers along the chain and a depletion layer forms.
In the others, the monomers along the chain can adsorb at the interface. filling in

the depletion layer. Thus the i i between the and the surface can
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lead to different forms of the density profiles [129]. This effect will be discussed in
chapter 5.
Beyond the maximum, the density decreases smoothly and reaches zero in an

ded tail. This is consi with the neutron reflectivity data. which could be

fitted only if both depletion and tail regions are included. One might have expected

that fl effects and inh ities parallel to the surface. both of which

are ignored in the calculations, would have introduced discrepancies at the tip of the
brush where the polymer densities are very low and vanishing. In fact. the calenlated
and fitted profiles agreed very well everywhere. even in the tail.

The numerical results were analyzed in terms of the approximate power law de-
pendences, and for all cases the uncertainties in the values of powers were on the
order of £0.02.

It was found that the thickness of the brush could be described well by a sin-
gle function for all polymers. which could be described by a simple power law over
the range 2 < 0* < 12. The lower cutoff in this range is consistent with the experi-
mentally observed onset of stretching, althongh the SCF caleulation does nor apply
below this limit. Over this range. a best fit for this scaling was found to be s, x
Z4°%'5%2 which compares well with the experimental result of Zym, x Z4"¥a022
The experimental results for this range could also be described by Zpyus/R, = A+Ba* .
a form rather different from a power law. A similar result for each polymer was found.

with nearly equal values of A, and similar but varying slopes, B.
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One general conclusion that can be drawn from the first part of the study pre-
sented above is that there are. roughly speaking. three regimes of stretching. The

first is characterized by o* < 2, and it corresponds to the mushroom regime. For

2

1

a* < 20, the polymers begin to stretch away from the surface. This stretch-
ing approaches the asymptotic limit beyond about ¢* 2 20, the third regime. It is
important to note that. except for brushes formed by grafting from semi-dilute and
concentrated solutions, virtually all experiments in a good solvent fall in the regime
o* < 15, so do not correspond to the asymptotic regime.

The good agreement of numerical SCF calculations with the i al data and

some discrepancies with the analytic predictions of MWC motivated the next part of
the study in which detailed quantitative comparison between analytic and munerical
SCF theories was performed. Although many experimental data were analvzed in
terms of the parabolic profile. it was found that numerically generated profiles extend
farther than those predicted by the MWC theory, and the thickness of the grafted
layer is about 50% thicker and the maximum volume fraction of polymer is abont
20% lower than in the parabolic profile. The power law dependence of the stretching
on the degree of polymerization is significantly weaker. although it tends toward the
asymptotic values predicted by analytic theory as o* reaches ~ 20. The free energy of
the brush obtained through numerical calculations is about 25% higher than predicted
by the analytic theory.

The numerical SCF theory was also compared with the analytic predictious for the
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polymer brush in © solvent. The agreement between analytic and numerical theory
is significantly better than in the case of a good solvent. The main reason for the
very good agreement between the numerical and analytical approach is that in the ©
solvent the binary interaction disappears and only the ternary interaction forces the
chains to stretch away from the surface. The numerical calenlation suggests that the
threshold for stretching is slightly bigger than for the brush in a good solvent and

appears at 7* 2 3.
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Chapter 4

Compression of the Polymer Brushes

4.1 Introduction

In this chapter the properties of polymer brushes immersed either in a good or
a © solvent and compressed normal to the grafting surface are discussed. For each
case, the density profile, root mean squared thickness and free energy of the com-

pressed brush, as functions of the degree of polymerization and surface coverage. are

calculated and presented in the form of i power law depe
In most experimental studies on the compression of the polymer brushes. the
Israelachvili technique is used [131, 132] in which two opposing brushes are brought

together in an orthogonal cross-cylinder configuration. This is done to avoid the

diffienlty of achieving parallel alignment of two flat plates separated by a ance on
the order of a hundred nanometers. Therefore, as mentioned iu chapter L. the foree. £,

as a function of separation is expressed in terms of F(D)/R where R is the geometric

mean of the radii of curvature of cylinders used in the Israelachvilli force apparatus.
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and D is the distance of the closest approach. Within the Deryaguin approximation

[65], this is directly related to the free energy per unit area via Eq. (1.28). which is
i[fl =or (E(D) - E(oa)) .

where E(D) is the free energy per unit area of the system at separation D and

E(oc) = Ey is the free energy per unit area when the brushes attached to the opposire

surfaces do not overlap. The free energy per unit area is a geometry independent

hence in the th ical description of compression. the flat parallel plates

immersed in a solvent are considered.

In the analytic theories for polymer brushes in a good solvent. the free energy of
the brush during compression can be expressed in terms of a free energy of the un-
compressed brush, and some universal function of the reduced distance. u = D/(2h).
where D is the distance between the plates with end-grafted chains and /£ is the
thickness of the uncompressed polymer brush. Thus, the long range force between

single universal function.

the plates can be described in terms of reduced variables by
In this chapter this property will be examined in detail.
As mentioned in chapter 1, in the analytic theories no distinction is made between
the compression of one polymer brush by a second identical brush and the compression
by a impenetrable surface [11. 40, 133]. Whitmore and Noolandi [64] performed
comprehensive analysis of the compression forces in good. © and poor solvents. but

only compression of the polymer brush by a second identical brush was discussed.

To ine the itative effects of diffe ways of compression, three modes are



107
considered in this chapter:
1. compression by second identical brush;

2z ion by a bare, ive surface, i.e. a “Hard Wall”;

3. compression by a second surface which is neutral for adsorption.
The compression of the polymer brush by a second brush and by a second surface is

schematically presented in figure 4.1.

T

)

Figure 4.1: Compression of the polymer brush by a second brush (a) and secoud
surface (b). The second surface can be either repulsive or neutral for adsorption

The other important conclusion of the analytic models is that during compres-

sion of two opposing brushes, they do not interpenetrate and retain their original
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shape. The step like profile remains flat [11], and parabolic and elliptic profiles re-
main parabolic or elliptic up to the midpoint between the plates. where there is a
discontinuity in the slope. However recent numerical calculations [95-101] indicate
that there is interpenetration, and this motivates some of the results presented in

this chapter. The effect of i ion of ing layers is g and the

results are compared with these recent numerical studies.

The chapter is divided into two main parts. In the first. compression of polymer
brushes immersed in good solvent is discussed. The second part deals with the same
subject but the polymer brush is assumed to be under © solvent conditions. In both

parts, the main focus is detailed comparison with the analytic SCF theories.

4.2 Numerical SCF Approach

The numerical SCF theory used in this chapter is essentially the same as rhar
presented in chapter 3. In this section. the main points of the SCF theory and its
modifications to treat the three cases introduced in section 4.1 are discussed.

Two infinite, parallel surfaces immersed in a solvent and located at x = 0 and
z = D. are considered. Diblock copolymer or end-grafted homopolymer is attached
either to both surfaces or just to the one at z = 0. In the case of copolymer. the
A-block is assumed to be adsorbed tightly to the surface while the B-block extends
into the solution and forms a polymer brush. As previously, the system is assumed to

be invariant with respect to translation parallel to the surface and this implies that
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the problem becomes one dimensional.

The tightly adsorbed A-block is modeled by the same density distribution. Eq. (3.1).
with an equivalent expression for the second surface at the distance D in the case
of two brushes. It is again assumed that there is a narrow interphase, this time of
width @ = 2 nm which is typical of copolymer systems. As noted previously. the
SCF results are not sensitive to this choice. The parameter [ in Eq. (3.1) is chosen so
that ¢4 = 0.01 at the edge of the interphase at = = a. The A-B joints are randomly
distributed throughout the interphase.

In order to calculate the density profile and free energy of the dangling blocks. 2 or
3 propagators, for the case of 1 or 2 adsorbed layers respectively. have to be caleulated.

These satisfy the dified diffusion equation (3.4). with appropriate

initial and boundary diti The first prc ator, go(z. 7). is proportional to the
probability that a chain of length 7 ends at z. given that it starts somewhere between

the two surfaces. As in chapter 3, its initial condition is simply
q@(z.0)=1, for0<z<D. (4.1)

The second propagator. q;(z.7). is proportional to the probability that a chain of
length 7 ends at z. given that it starts in the first interfacial region. Its inirtial

condition is

I, for0<z<a
a(z,0) = (42)
0, fora<z<D.

If chains are also attached to the second surface, a third propagator, gz(z, 0) is needed.
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It describes a chain starting at the second interface. and its initial condition is

0, for0<z<D-a
@(z,0) = (43)
1, forD—a<z<D.
Once the the self-consistent solution is obtained. the density of the dangling block
is constructed via
98(z) = ¢p1(x) + dpa(z) . (44)
where ¢gi(z) is the volume fraction of the dangling block attached to layer i and is
given by Eq. (3.10), which is
dsi(z) = f,%/: drqi(z.7)q(z. Z - 7) . (43)
with
D
o= [Tdra). (16)
In the case of a single brush and its compression. only ¢ and g, are needed. and
og(z) = opi(z). However, the second surface could be repulsive. attractive. or
neutral. As mentioned before. two possibilities are considered. The first. sometimes
labeled a repulsive surface, is one in which the polymer density falls smoothly to zero
at the surface. This is described by the same boundary conditions as in the previous

chapter (Eq. (3.6)) given by
6(0.7) = q:(D.7) =0for i =0.1 (0]

The second possibility is a surface which is neutral for adsorption. The appropriate
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boundary conditions for this case are

@(0,7) = Ofori=0.1 (4.8)

= Ofori=0,1, (4.9)

iq(z
o,

which allows for a finite density at the z = D surface. The potential which appears

in the diffusion equation for this part of calculation is chosen as

wt) =22 fin (ﬁm) +xsolos(@) —opte) = I} a0

where wq is an arbitrary additive constant chosen to satisfy

/Dndr.d(r) 65(z) (1.11)

To determine the solvent volume fraction at z. Eq. (3.15). which follows directly from
the incompressibility condition, is used.

For a given surface separation. D, the system is specified by the width of the iuter-
facial region. a, degree of polymerization of the dangling block. Z. and its statistical
segment length b. the densities of pure components pos and pyg. and the average area
per end-grafted chain £. For each value of D, the diffusion equations are solved in
a self-consistent manner. Then, as in the previous chapter. the free energy per unit

area of the brush can be determined as

£y
posksT

[ ds {s()m0s(a) + 0a(a) - xohtx
ng .

Saoing. (4.12)
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The free energy per chain, in the same units, can be calculated from this via

s B
ny, poskpT

(4.13)

F(D) =

for either the two brushes or bare surface compression. The number of brush-coated
surfaces, n, is defined as
1. two brushes compression
= . (4.14)
2, bare surface compression

4.2.1 Formal Comparison: One And Two Brush Systems

When one brush is compressed by a second one. they can. in principle. interpene-
trate. This contrasts with the compression by a bare, repulsive surface. in which case
the polymer density falls to zero at the surface. However it is straightforward to show
that the compression by a second brush attached to a surface a distance D away can
be described by the same total density and the free energy as during the compression
by a surface which is neutral for adsorption a distance D/2 away. Whether or not

the ing brushes int ate, if the density of the brush is not zero at the

midpoint, then these two ways of compression produce the same free energies per
chain and the total density profile.
To see this. consider the two brush system. The propagator qo(s.7) and the

density distribution @g(z) are both symmetric about the midpoint. [n addition.

qlz.7) = q@(D-=z.r7) (4.15)

om(z) = om(D-z).
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Instead of solving this problem by calculating all these quantities in the full interval

[0, D], a new quantity can be defined
ar(c.7) = q(z.7) + qalz.7) . (4.16)

which is symmetric in the interval [0. D] with respect to = D/2. In partienlar. its

spatial derivative is zero at the center of the interval. i.e..

3
Zar(z,7) =0. (4.17)
oz z=D/2

The propagator qr(z. 7) is still zero at z = 0. and obeys the same initial conditions
in the interval [0. D/2]. Because of these symmetry properties. the self-consistent
problem has to be solved in the half-interval [0. D/2], the polymer density can then be
calculated by convolving g and gr and, in the second interval. it is obtained trivially
from symmetry. Since gr obeys exactly the same initial and boundary conditions in
this interval as q,(z. 7) does for the compression by a nentral surface located at D/2.

s is established. However. the opposing brushes can

the equivalence of these two ca

interpenetrate and it is important to address this problem.

4.3 Compressed Polymer Brush - Good Solvent

In this section the properties of a polymer brush immersed in a good solvent and
compressed either by a second identical brush or one of the two types of the bare
surfaces are investigated. Since the main focus is the comparison of numerical SCF

theory with the analytic predictions given by MWC, model calculations for the same
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polymer systems described in section 3.3.4 were performed. The values of degree of
polymerization, Z, and surface coverages used are summarized in Table 3.3.

As mentioned in chapter 1, the scaling theory of ADG as well as the SCF model
of MWC assume that during the compression the opposing brushes do not interpen-
etrate. and the free energy of the compressed brush can be described by the product
of the free energy of uncompressed brush and some universal function of the reduced
distance. For compression by a bare surface, the reduced distance is defined simply
as u = D/h, where D is the distance between the surfaces. For compression by a
second brush, u = D/(2h). The two cases can be treated in combination using the

is

number of brush-coated surfaces, 1. so that the reduced distance in each c:

D

u= (1.18)

For u > 1, each brush is unperturbed and the free energy per unit area of a single
brush is just

(4.19)
where £ is the free energy per chain of the uncompressed polymer brush. and ¥ is the
average area per adsorbed diblock molecule. As the brushes are compressed. u < 1.
the free energy per chain increases. This change can be expressed as

AE = Eof(u) . (-1.20)
and using Eq. (1.21), the universal function f(u) for MWC theory is

(4.21)
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As already noted, in the earlier theory of Alexander and de Gennes the scaling relation
for the free energy and the brush height, obtained in a mean field approximation. arc
the same. but the numerical prefactors differ slightly in value. For the brush heighr.

%

the numerical prefactor is (1/2)'/?, and for Eq it is (3/2 The change in the
free energy of a compressed brush can be expressed in the same functional form as

Eq. (4.20), but with f(u) given by
f(u):; (é#‘?) =, (4.22)

For small compressions, u < 1, less energy is required to compress the MWC brush
than the ADG brush, i.e.. it is softer. For large compressions, the theories predict

the same | d ! on u. although the numerical prefactors. Eq. differ.

Using the Deryaguin approximation. Eq. (1.28). for each of the analytic theories. the
force is given by

F
5 = 2mEof(u). (4.23)

In order to compare directly the analytic predictions with numerical SCF caleu-
lation, the reduced distance between the surfaces is expressed in a manner analogous
to u defined through Eq. (4.18). but using the rms thickness of the uncompressed
brush z%,,,, instead of A

D

A, 424
[T (2

During the compression the density distribution can be characterized by its rns
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thickness defined by

(4.25)

If the opposing brushes do not overlap. or if the bare surface does not compress
the brush, Eq. (4.25) defines the rmns thickness of uncompressed brush. z2,,. and is
equivalent to Eq. (3.21). For compression by the repulsive surface or the neutral for
surface, Eq. (4.25) describes the single brush. For the compression of two brushes.
Eq. (4.25) describes the total polymer distribution up to the midpoint between the
surfaces.

Experimentally. force (F) versus separation D data are presented as £(D)/R and
are detectable on the order of a few uN/m [39]. and so the calculations extend to
surface separations corresponding to this order of magnitude in the force.

As discussed above, there are three modes of compression that can oceur without
incurring the complications of bridging. In section 4.2.1 the equivalence of the two
cases corresponding to two brushes or a surface which is neutral for adsorption has
been shown. In the following section the compression of polymer brush by repulsive
and neutral surfaces will be discussed. Next the problem of the interpenetration will

be addressed.

4.3.1 Compression by a Repulsive Surface

As long as the repulsive surface is far from the tip of the brush. the density profile

remains unchanged and there is no force between the surfaces. When the repulsive
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Figure 4.2: Compression of the polymer brush by a repulsive surface. Force curve fur
polymer characterized by Z = 1000. and £ = 180 nm? as a function of the separs
between the plates (a). Density profile of the polymer brush during the compres

(b).

surface reaches the tip of the brush. the density profile starts to be altered. A typical
force curve, as well as the polymer density distribution, are shown as functions of the
separation between the surfaces in figure 4.2. At the initial stage of the compression
only the tail region is compressed and the body of the profile remains essentially
unchanged. The density profile still has all the features of the uncompressed brush.
i.e., a depletion layer, the main body throughout which the density decreases mono-

tonically, and an exponential-like tail region. With decreasing separation. the profile
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layer starts to dimin-

b more the tail region ishes. the

ish. and the profile becomes flatter. For a polymer with Z = 1000 and £ = 180 nm*

the rms thick of the d brush, 22, is ly 45 om and at

ly this ion the profile b step-like and the force between the

surfaces starts to increase rapidly.

The force curves for all cases studied are shown in figure 4.3. As is apparent from
this figure, with the increase of reduced surface concentration the force curves become
steeper. Similarly as the degree of polymerization of the dangling block decreases.
the force required to compress the brush by unit length becomes greater. [n general.
the brushes comprised of shorter chains and higher reduced surface concentratiou are
harder to compress.

To extract scaling dependences of the force as a function of the degree of poly-
merization and surface concentration. the data collapse technique was used. In this
method one assumes that all the force curves can be described in terms of a scaled
distance and force. and that these scaled variables obey power law dependences on Z
and X. i.e.. one looks for the powers . 3.~ and = such that

FD) _ jags, (_D -
= (5s) - (1:26)

gives the best description of all the force curves. Equation (4.26) can then be written
as

Fos(D) = g(Dse) - (4.27)
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Figure 4.3: Compression of the polymer brushes by a repulsive surface. Force curves
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a® ~ 23. The symbols are the same as in figure 4.3 (a).



where
Foy(D) = Zﬂl\:d% : (4.28)
is a scaled force, and
Dy = % 3 (4.29)

is a scaled distance. Each force curve can be labeled by the corresponding degree of
polymerization, Z;, and surface concentration £;. If one defines

I delF(z) - Fog (=)

it T &l AW g
and
e, B.v.6) = X Ligig - (431)

Ty
then minimizing /(cr, 3. 7.€) determines the scaled variables. To find the minimum
of [(e. 3, 7.¢€), the force was expressed in zN/m and the values greater than | zN/m
were used as an input to the minimization routine EO4JAF supplied in the NAG
library [134] (the details are discussed in Appendix A). It was found that the best
description of force curves is given by o = 0.64 £ 0.02. J = —1.57 £ 0.02. ~ =
0.87 £ 0.02, £ = —0.32 £ 0.02 and the result is presented in figure -L.4.

is that if the

The important conclusion. which can be drawn from the figure 4
force curve can be described in terms of scaled variables. then all the force curves
should collapse to a single curve. This is the case for moderate and high compres-

sion. At the initial stage of i there is considerable di ion from the

universal behavior, but interestingly, data sets which correspond to different degrees
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Figure 4.4: Compression of the polymer brush by a repulsive surface. The scaled
force, g. as a function of scaled distance. as defined in Eq. (4.26) for all degree of
polymerization. Z. and reduced surface concentration. #*. The force. F/R in nnits
of uN/m is scaled by Z*E”. and distance between the plates expressed in nm is scaled
by ZYZ¢. The values of exponents are o = 0.64. 3 = —1.57 = 0.87. : = —0.32
with uncertainties £0.02.

of polymerization but the same value of 0* are well described by single functions.
According to the MWC theory, if the distance between the plates is expressed in
terms of reduced distance. i. given by Eq. (4.24) and the free energy difference. AE.
given by Eq. (4.20) is scaled by the free energy of the uncompressed brush. Ey. then
all the numerical results should once again collapse to a single curve. which would be

given by Eq. (4.21) with u replaced by @ = u/v/3. The result of this procedure. along
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with the MWC curve. is presented in figure 4.5. In scaling the numerical and MWC
energy curves, the numerical and MWC values for £, were used respectively.

The numerical results follow the general form of the universal function predicted
by MWC theory, but they all fall above that prediction, and as in the case of scaled

there is iderable di: ion. Bearing in mind that the normalizing con-

stant Ej is about 25% higher for the numerical values than for the analytic prediction.
the overall difference between the numerical and analytic curves is abourt a factor of
0 2.5, depending on which data sets characterized by the same value of a* are
chosen for comparison. As in the case of scaled variables, data sets corresponding
to different values of the degree of polymerization but the same valne of * are well
described by a single function.

The results presented in figures 4.4 and 4.5 suggest that for finite o~. the force. or
correspondingly the free energy difference, can not be described in terms of a universal
function of the scaled or reduced distance between the plates. Data sets character-
ized by the same value of o* . however. can be described by a single function of these
variables. This suggests that the radius of gyration of the free molecule. R,. is a rele-
vant length scale during the compression of the polymer brush by a repulsive surface.
Furthermore, these results indicate that, during the initial stage of compression. the
main body of the profile is essentially unchanged and the force is due to the defor-
mation of the tail region. since the overall characteristics of the density distribution

withia the brush depend primarily on the reduced surface concentration. a* .



0.0 0.5 1.0 15 2.0 25 3.0
Reduced Distance

Figure 4.5: Compression of the polymer brush by a repulsive surface. Free energy

difference per unit area in uN/m scaled by free energy of uncompressed brush as

a function of the reduced distance given by Eq. (4.24). Symbols are the numerical

results corresponding to different values of * . and solid line is the analytic prediction

of MWC theory, Eq. (4.21).

There is, however. another way to look for the universal behavior of the polymer
brush during the compression. If a simple measure of the brush deformation is defined
as

_ Zrms 4
i e (432)

the dependence of the force on this variable can be examined.

For the MWC profiles, the density profile remains parabolic during the compres-



124

sion, with non zero density at the outer edge of the profile, and simple algebra yields

(4.33)

The calculated values of £, and the curve of Eq. (4.33) are illustrated in figure 1.6. For
small @, i.e., very large compression. £ is a linear function of separation between the
plates, D, and the numerical results all reduce to the analytic function of Eq. (-1.33).
However, for finite o*, the initial deformation commences at larger values of i. where
most of the deformation is occurring in the tail region. Once again. the greatest
difference occurs for the smallest o*, which is consistent with the fact. that relative
to the entire brush, the tail region is largest for smallest o*. For clarity. the values
corresponding to ¢ ~ 6 and 6* ~ 12 are not shown in the figure -1.6. they lie in

between the values corr to the mini: and i values of 7* .

Figure 4.7 shows the same results as in figure 4.5. but plotted versus £. Even
at small deformations. the free energy differences all reduce much more closely to a
single function, which is similar in shape to the analytic prediction. although different

in magnitude by the same factor as in figure 4.5.
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Figure 4.6: Compression of the polymer brush by a repulsive surface. The
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4.3.2 Compression by a Neutral Surface

In this section, compression of the polymer brush by a surface which is neutral
for adsorption is discussed. As discussed earlier. such a system characterized by a
separation D can be described in the same terms as two brushes attached to surfaces
separated by the distance 20. However, since the force between the plates is related
to the free energy difference per unit area, the force in the case of compression of a

single brush by a neutral surface is one half of the force between two brushes.
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Figure 4.7: Compression of the polymer brush by a repulsive surface. good solvent.
Free energy difference per unit area scaled by free energy of uncompressed brush as
a function of the parameter £ given by Eq. (4.32). Symbols are the numerical results
corresponding to all values of ¢*. and solid line is the analytic prediction of MWC
theory, Eq. (4.21) with u replaced by £ through Eq. (4.33).

A typical force curve and the density profiles of the dangling block during com-
pression of the polymer brush by a surface which is neutral for adsorption are shown
in figure 4.8. As in the case of compression by a repulsive surface. at the initial stage
of compression only the tail region is affected, and the body of the profile remains
almost unchanged. In this case, however. there is an increase in the density at the
neutral surface, and as the separation decreases the long range force between the

surfaces increases gradually.
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Figure 4.8: Compression of the polvmer brush by a neutral surface. good solvent.
Force curve for polymer characterized by Z = 1000, and £ = 180 nm? as a fuuction
of the separation between the plates (a). Density profile of the polvmer brush during
the compression (b).

The comparison between compression by repulsive and neurtral surfaces is pre-
sented in figure 4.9. The repulsive interaction between the surfaces becomes de-
tectable for compression by a repulsive surface at a larger distance than for compres-

sion of the polymer brush by a neutral one. This indicates that during the initial

by a repulsive surface the defc ion of the tail region affects the en-
tire profile, while during compression by a neutral for adsorption surface only the

outer regions of the brush are affected. Thus, for the initial compression by a neutral
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characterized by Z = 1000 and o =~ 12. good solvent. Filled circles correspond to
the compression by a repulsive surface. open squares are the numerical results for the
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surface the body of the profile maintains its original shape and starts to deform at

smaller separations.

As in the case of compression by a repulsive surface. the force can be aualy:
terms of scaled variables and a universal function of the separation. Using exactly
the same technique of data collapse, Eqs. (4.26)-(4.29). it was found that the best

description of all the force curves is given for

L_F(D) (@9

Fas(D) = gamg i -



for ¢ = 0.92 + 0.02 and 8 = —1.72 £ 0.02 with scaled distance

D

Dy =7z - (1.35)

for v = 0.89 £ 0.02 and £ = —0.35 £0.02. In chapter 3 it was shown that the frec
energy of the uncompressed brush scales as £y x Z%%=0025-186=002 ap( the rins
thickness of uncompressed brush z2,,, oc Z086=0.02y-030=002

Since the values of the exponents o and 3 are essentially the same as those for
the free energy. the scaled force is equivalent to the free energy difference per unit
area for a given distance between the surfaces scaled by the free energy per nnit area
of the uncompressed brush. Similarly, the values of the exponents v and = are very
similar to those for the rms thickness, and the scaled distance is equivalent to the
reduced distance. @. given by Eq. (4.24). As was discussed before. according to the
MWC theory. if the free energy difference. AE. is scaled by Ey. and the distance
between the plates is expressed in terms of . all the force enrves shonld collapse
to a single curve given by Eq. (4.21) with u replaced by @. Figure .10 shows the

numerical results for the free energy diffe AE, as a function of @ for

by a neutral surface together with the analytic prediction of MWC. Comparing the
figure 4.10 with figure 4.5, the results are much less dispersed and in better agreement
with the analytic function of MWC. However. the normalization constant £ is about
25% larger for the numerical results and this implies an overall difference of about
a factor of 1.5 to 2 depending on which set of data, i.e. which value of a*. is nsed

for comparison. This result is consistent with Watanabe and Tirrell’s comparison of
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Figure 4.10: Compression of the polymer brush by a neutral for adsorption surface.
good solvent. See the caption to figure 4.5 for more details.

their observations with the MWC theory [52].
Figure 4.11 shows the brush deformation £ as a function of the reduced distance

i for the compression of the polymer brush by a neutral surface. From fignre L1L.

it is apparent that the brush would encounter the neutral surface beyond @ ~
especially for small 5" . Since € remains essentially unity in this case. it means that.
initially, only the density at the outer region of the brush is changing, with virtually no
brush compression or detectable force developing until smaller distances between the

surfaces (see fig. 4.8b). Since it was shown that the compression by a neutral surface is
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Figure 4.11: Compression of the polymer brush by a neutral surface. good solvent.
The parameter £ as a function of the reduced distance @. Symbols correspond to the
numerical values, solid line is the analytic function of Eq. (1.33).

equivalent to the compression of two identical brushes. it can be also concluded from
figure 4.11 that, for initial compression. two opposing brushes can interpenetrate.
The interpenetration of the brushes will be the subject of the next section.

Finally, figure 4.12 shows the equivalence of all three cases. when expressed in
terms of the parameter &, introduced in Eq. (4.32). All the calculations of the free
energy differences per unit area of a single brush compressed by a repulsive surface. a
surface which is neutral for adsorption or by a second brush. are all included in this

graph. This indicates that the results of the numerical SCF theory. when expressed
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Figure 4.12: The equivalence of the three modes of compression. good solvenr. The
free energy difference scaled by the free energy of uncompressed system as a function
of £ parameter defined in Eq. (4.32).

in terms of a suitable brush deformation characteristic. can be described by a single

function.

4.3.3 Interpenetration of the Polymer Brushes

The analytic theories assume that, when two identical brushes are compressed.
they do not interpenetrate. Experiments do not provide a clear measure of any

interpenetration. as none have been performed on the density profile of rhe brush
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originating from each surface in this case. As was mentioned in chapter 1. an argument
for the noninterpenetration assumption is that the stretching which occurs in the
single brush is caused by swelling into the pure solvent bath in order to minimize
the interactions within the brush. When the two brushes are brought together. this
tendency is removed [39]. This argument, however can be only applied to the scaling
picture of the ADG theory, in which it is assumed that all the chains are uniformly
stretched. In the analytic SCF theory of MWC, the space available to relieve crowding
increases with increasing distance from the surface. and the free end of every chain
has zero stretching energy. If one assumes that the density profile remains parabolic

with a cusp at the midpoint, then the i ion follows, since a fictitious

classical particle will always travel to the nearer of the two surfaces [29]. In the present
formalism, none of these assumptions are made and. in general. the opposing brushes
can interpenetrate. Furthermore the formalism outlined in section 4.2 allows for the
determination of the density profile of each brush. Egs. (4.4)-(4.6). and the question
whether the opposing brushes interpenetrate during compression can be probed in
detail.

Evidence for brush interpenetration in the numerical calculations has already ap-
peared, ie.. in comparison of figure 4.6 and figure 4.11. For compression of two
brushes the rms thickness of the total density distribution ég(z) for 0 < r < D/2
remains virtually unchanged beyond @ =~ V5, especially for small o*. During the

compression of a polymer brush by a bare, repulsive surface, the brush characterized
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by small values of o* is deformed first for @ 2 /5. The chains in a brush character-
ized by the smallest o* are stretched the least, but when they are compressed by a
repulsive surface they retract the most. This is not the case during the compression

of two brushes which means that a finite chain density remains in the middle between

the surfaces, so the opposing brushes do int e. This si ion can be under-
stood on the basis of configurational entropy, since restricting all of each chain in the
volume described by z < D/2 would lower the entropy [135].

In Figure 4.13 (a), the total density profile for the polymer characterized by
Z =1000 and £ = 180 nm?, which corresponds to o* =~ 12. compressed to the
distance which corresponds to & = 1.45, is shown. The solid line represeuts the den-
sity profile predicted by the analytical theory. Figure 4.13 (b) shows the contribution
of each brush to the total. The numerically generated profiles are flatter than those
of MWC, and the individual brushes interpenetrate up to a distance 1/3 of their total
extension.

The interpenetration of the opposing brushes for surfaces separated by a distance

D, can be quantified by the quantity /(D) defined as [101]

I8 dz dpa(z) (4.36)

(D)= Az os(z)

This expression. Eq. (4.36) is equal to the fraction of monomers from each brush that

penetrate beyond the midpoint. It can easily be shown to be equivalent to

— s o
w)=% [ " 4z bm(z) 3 /., drom(@) . (4.37)



numerical calculation
c —_— M
=
g
fing
o
E
=
o
2
a

c
B o, ]
g s 3
g '] b
o ! \
g [ &
5 4 |
> | 1

4 N b 4
0.00 =7 3 L =

0.0 20.0 40.0 60.0 80.0 100.0 120.0

Distance between Surfaces [nm]
Figure 4.13: Compression of the polymer brush by a second identical brush. good
solvent. Total density profile for the polymer with Z = 1000. £ = 180 nm?*. mnumerical
and analytic profile of MWC theory (a). Contribution of each brush to the rtoal
density (b).
Witten, Leibler and Pincus [136] estimated the depth, 4. to which the opposing layers

interpenetrate to be
o 2\
9 e E 4.3
<[ .
As shown by Murat and Grest [101]. one can obtain a scaling prediction for the

overlap by assuming that the density associated with each brush at the center is one

half of the total, and that the profile of each brush decays exponentially beyond the
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idpoint with ch istic length 4. I ion yields

1(D) x %m (?) 5. (4.39)

where @y (%) is the analytical value of the polymer volume fraction in a brush

compressed to D/2 < h. Using the MWC prediction for the polymer density at the

¥
] . (4440)

The quantity, [(D), is defined for distances between the surfaces for i < /3. for

midpoint and Eq. (4.38) for 4, gives

I(D) x Z 3540543 [l _ (\/5

@ > \/5 the interpenetration /(D) = 0. Since ¢° is an important and relevant
quantity in the theoretical description of the polymer brushes, it is useful to express

I(D) in terms of this quantity. Doing so, Eq. (4.40) transforms into

(D) x Z™4%g* /%[ (q) . (4.41)

f(@)=a» [1 - (

Figure 4.14 shows the result of fitting functional forms of Eq. (4.40) to the numerical

with

(4.42)

SCF results. For this fit, all results which satisfy @ X 0.6 were included. /(i) as in
Eq. (4.42) was used, but the powers of Z and o* were determined by the fit. It was
found that

I(D) x Z™%%g -0 () , (4.43)

with the uncertainties +0.02 in the values of exponents. The analysis performed here



137

I(D)/[ZAMG*'M

Figure 4.14: Interpenetration of two opposing brushes. /(D), as a function of the
reduced distance @, good solvent. The open symbols represent the numerical values.
solid line is the line of the best fit to the functional form of Eq. (4.42) for all numerical
values which satisfy o* ~ 23 and & X 6. The inset shows the details for the initial
stage of the compression.

is very similar to that described by Egs. (4.26)-(4.31). but instead of fonr exponents
only two have to be determined. Overall, the fit describes the curves very well and
the fitted values of 0.03 £ 0.02 and 0.45 & 0.02 can be compared directly with values
found by Murat and Grest, which are 2/15 = 0.133 and 4/9 =~ 0.44. The slightly

weaker d ! on Z for the ical results is i with the weaker than

linear scaling of the brush thickness with Z.

As is apparent from the inset in figure 4.14, there are interesting effects where the
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brushes first overlap. Those with lower values of ¢* start to interpenetrate for higher
values of the reduced distance. This is consistent with the picture that. relative to
the entire brush, the tail region is the largest for smallest o*. For small values of
the reduced distance, & < 0.6, and 6* ~ 3 the numerical results start to deviate
from the universal format. This occurs as soon as the tail of the individual brush
approaches the opposing surface. This deviation must occur since the functional form
of [-(ii) diverges as & — 0. On the other hand, a reasonable upper bound of /(D) can
be calculated from the extreme case of each brush profile being flat and extending
fully to the opposite surface. In this case, /(D) — 1/2. so the data as plotted on
figure 4.14 must be bounded by (Z%%g* %43/2 ~ 5*1/2/2). The results shown there
are consistent with this result, with the greatest deviation occurring for smaller 7* .
The onset of the deviation is at larger @ for smaller ¢ . occurring near i ~ 0.6 for
o* =3,4~04forc* =6, and @~ 0.4 for o* > 12.

In summary the numerical results presented in this section confirm the inter-
penetration of the opposing brushes during compression and are in the very good
agreement with the numerical results of Grest and Murat [101]. However. once again
one can see the importance of the tail regions and relevance of the reduced surface
concentration, ¢* during the compression, effects neglected in the MD studies of

Grest and Murat [101].
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4.4 Compressed Polymer Brush - © Solvent

In this section the properties of the polymer brush immersed in a © solvent and
compressed either by the second identical brush or the two types of bare surfaces

are i i d. As in the previ section, the main focus is the comparison of

numerical SCF theory with the analytic predictions given by Shim and Cates [40] in
their extension of the MWC analytic model of polymer brushes in a good solvent [29.
30].

Once again, model calculations for five different values of the degree of poly-
merization and three different surface coverages for each Z have been performed. as
summarized in Table 3.4. As before, the free energy of the uncompressed brush is
used a scaling variable, hence. the parameters used in the numerical calculation are
the same as in chapter 3. i.e.. the solvent polymer interaction parameter is \ = 0.5.
the statistical segments are chosen to have unit length. and the solvent and poly-
mer pure component densities are set to unity. The reduced surface concentration is
caleulated by means of Eq. (3.36) with v = 1/2.

Before analyzing the results of the numerical SCF calculations. a short overview
of the analytic theory of Shim and Cates for the Gaussian chains will be presented.
As discussed in chapter 3, they predict an elliptic density profile for the brush in ©
solvent, given by Egs. (3.42) and (3.43). Under compression of two brushes. there

is no interpenetration of the opposing brushes, and the density profile of each brush
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retains its elliptic shape. It is given by'
212
b5(z) = (12)44 (2) RS P - . (4.44)
ny hA(2)
for 0 < z < D/ny < h, where h is the thickness of the uncompressed brush. Eq. (3.43).

and the quantity 4 (£) = A has to be determined so that
e

D/ 3
/n ™ (z) dr = 22 (1.45)
This leads to .
/2
Y R . N— (4.46)
21— ('—;) +ar<sin(§)
For n; = 2 the second brush in the interval [D/n,, D] is described by the same

functional form as Eq. (4.44) with z replaced by D — z. and Eq. (4.46) has to be
solved numerically.

If one follows the formalism outlined in the work of Shim and Cates. and takes the
self-consistent potential® to be proportional to &%(z). then the ratio of the free energy
per unit area of the compressed brush to the free energy of the uncompressed brush is
independent of the degree of polymerization and surface coverage and depends only
on the reduced distance, , as in Eq. (4.18). Hence, the free energy difference between
the compressed and uncompressed brushes would be described by a single nniversal

curve. The free energy of the compressed brush can be calculated as in the MWC

' As introduced in Eq. (4.14), ny = 1 for a single brush compression and ny = 2 for the compression
of the two brushes.

2Using Flory-Huggins expression for the free energy of mixing Fini [5] and relating the effective
potential to the Fp; via the functional derivative V = —6F(¢(z)/d6 (40]. In good solveut. the
MWC theory predicts the self-consistent potential to be proportional to ¢p(z).
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theory by selecting a chain near the surface and progressively adding chains. First
the brush is built up to the equilibrium height. D/n,, corresponding to some surface

coverage £, then the brush height is fixed and the coverage increased from I, to

L. The ical d is described in the work of Shim and Cates [40] and

MWC [29]. and the result is given by
'
Folw) =u? + /"2 A%z 1, (447

where 4, satisfies

%.-l? [ﬁ = (ﬁ)z + arcsin (ﬁ)] =1. (148)

In section 4.3.1. a simple measure of the deformation of the polymer brush. & was
introduced in Eq. (4.32). Since 2%, = h/2 for the elliptic profile of the uncompressed

brush, it can be shown that £ is related to u by

\/—V[‘H 9 (1.19)

14, u)

with

I(Au) = [ 1- (4) +a.usm(_l)] (4.50)
K(Au)= [ 1—-¥+a.rcsm(‘:)— A

and the quantity A has to be determined via the solution of Eq. (4.46).

Finally, in order to characterize the interpenetration. one can recall that according

to Witten, Leibler and Pincus [136], the interpenetration depth. d. does not depend
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on the solvent quality and is given by Eq. (4.38). Thus, the analysis performed in sec-
tion 4.3.3 is also applicable to the polymer layers in © solvent. Using Eqs. (4.39).(4.44)

and (4.46), it follows that I(D), defined by Eq. (4.36), would satisfy
1(D) x Z7352 R [g(u) . (4.52)

where [o(u) is the function of reduced distance only. and can be expressed as
3 1z
; £0-%)
To(w) =u™® | —=2 20 (1.53)
4vi- £ + arcsin ('—;)

where once again the quantity 4 has to be determined via the solution of Eq. (1.46).
In order to express Egs. (4.46)-(4.53) in terms of #, the relation u = %/2 has to be
used.

Using o*, rather than £, Eq. (4.52) transforms into
(D) x 0" "Rlg(a) . (4.54)
which is a very interesting result: the interpenetration. /(D) expressed in terms of

reduced distance, 4. and reduced surface concentration. a* . does not depend ou the

degree of polymerization.

4.4.1 Compression by a Repulsive Surface

In figure 4.15, a typical force curve and the corresponding density distributions are
shown as a function of the separation between the surface with a brush and a bare

repulsive surface. Qualitatively, the force and the density distributions are similar
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Figure 4.15: Compression of the polymer brush by a repulsive surface, © solvent.
Force curve for polymer characterized by Z = 1000, and £ = 45 nm? as a function
of the separation between the plates (a). Density profile of the polymer brush during
the compression (b).

to those for compression of the brush by a repulsive surface in a good solvent: the
long-range force between surfaces is purely repulsive, and monotonically increases
with decreasing separation. The density profiles, however. become more compact
with deformation and. even for the moderate deformations. are step-like. In general.
since the brush in a © solvent is more compact and the free energy is smaller than in
a good solvent (the binary interactions, described by a excluded volume interaction

parameter, vanish), less force is required to compress such a brush.
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Looking for universal behavior of all the force curves describing the compres-
sion of the brush in these systems, the analysis described in the previous section.
Egs. (4.26)-(4.31) was performed. The best description of all the points which satisfy

F/R> 1 puN/m and ¢° > 3 is given by

% =zox (4.35)
where = 0.92 £ 0.02. § = —2.04 £ 0.02. v = 0.88 £ 0.02 and z = —0.42 £ 0.02. In

chapter 3, it was found that the thickness of the uncompressed brush in a © solvent can

be described by an t power law d d 20, & Z09y-U47 Ey. (3.45),

which is very similar to the scaled distance determined through values of ~ and =
respectively. Similarly, in chapter 3 the free energy per unit area of the uncompressed
brush was found to satisfy Ey & ZL~2. and these powers are virtually the same as
values of o and J.

These results imply that if the free energy difference per unit area between the
compressed and uncompressed brush is scaled by Eqg. and the distance between the
plates is expressed in terms of the reduced distance, i. Eq. (4.24). then all the force
curves should collapse to a single curve. The results of the numerical SCF caleula-
tions together with the theoretical curve calculated according to the Shim and Cates
formalism [40] are shown in figure 4.16. For clarity, only extreme values of o* are
shown. Once again, the points which correspond to different values of reduced surface
concentration, o*, are dispersed from each other for weak compression. but overall

are reasonably well described by a single curve. This effect suggests. as in the case
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Figure 4.16: Compression of the polymer brush by a repulsive surface. © solvent.
Free energy difference per unit area scaled by free energy of uncompressed brush as
a function of the reduced distance given by Eq. (4.24). Symbols are the numerical
results corresponding to different values of o*, and solid line is the analytic prediction
of Shim and Cates [40].

of good solvent, that mainly the tail region of the profile is affected during the initial
compression. In a © solvent the brush is more compact and the tail region is less
pronounced than in a good solvent. thus there is less scatter of the data. Similarly rhe
numerical results fall above the analytical prediction and the range and the magnitude
of the force are underestimated by a factor of 2.

The scatter of the numerical resuits at the threshold of the repulsive force suggests

that. as in the good solvent case. the parameter. £, describing the deformation. might
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be a better length scale. The dependence of £ on the reduced distance & is presented
in figure 4.17. The symbols correspond to the numerical values and the solid line

is the analytical prediction of Eq. (4.49). The data sets on order of #* ~ 3 starr

to be deformed for larger s fon and h the elliptic profile behavior at

high compression. The data sets characterized by 0" ~ 12 are well described by
the analytic curve, although the profiles start to deform for @ slightly greater than
2, which is the value predicted by the analytic curve. Once again. the discrepancies
between the numerical and analytic results reflect the fact that the latter neglects
the tail region. For the larger values of o* the tail region is relatively short and.
with increasing ¢*, the numerical results for the initial compression are in better
agreement with the analytic prediction.

Considering the parameter £ as a universal length scale, and free energy per unit
area as the scaling variable for the free energy difference. all numerical data sets
do collapse to a single curve and show reasonably good agreement with the analytic
prediction. However the numerical results are above the line of the analytic prediction.

This is shown in figure 4.18.

4.4.2 Compression by a Neutral Surface
Figure 4.19 shows a typical force curve and the corresponding density profiles for
a brush characterized by Z = 1000, and £ = 45 nm? compressed by a bare surface

which is neutral for adsorption.
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Figure 4.17: Compression of the polymer brush by a repulsive surface. © solvent.
The parameter £ as a function of the reduced distance &. Symbols correspond to rhe
numerical values. solid line is the analytic function of Eq. (4.49).

The introductory remarks in the first paragraph of section 4.3.2 for a compression
of a polymer brush in a good solvent by a such surface are applicable for this solvent.
This can be seen through comparison of figure 4.19 with figure 4.15.

Turning attention to the universal behavior and looking for the function g and
corresponding powers c, 3,y and € which give the best description of the force curves.
it was found that, for the regime 3 < o* < 13, the best values of the exponents are
a=092£002,8 = —2.04 £0.02.v = 0.94 £0.02 and € = —0.48 £ 0.02. These

values are essentially the same as for compression of the polymer brush in a © solvent
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Figure 4.18: Compression of the polymer brush by a repulsive surface. © solvent. Free
energy difference per unit area in uN/m scaled by free energy of uncompressed brush
as a function of the parameter £ given by Eq. (4. Symbols are the numerical
results corresponding to all values of o*, and solid line is the analytic prediction
obtained using the formalism of Shim and Cates [40].

by a repulsive surface. and correspond to the free energy and rms thickness of the
uncompressed brush. Thus, this is equivalent to the universal behavior proposed
by analytic theory and presented in figure 4.20. The numerical results reasonably
well collapse to a single curve. even at the threshold of the force. This contrasts
with the case of compression by a repulsive surface. in which this was the case only
for the highest coverage. * ~ 12, and for moderate values of compression. The

numerical values of the free energy difference are in a good agreement with the analytic
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Figure 4.19: Compression of the polymer brush by a neutral surface, © solvent. Force
curve for polymer characterized by Z = 1000, and £ = 45 nm? as a function of the
separation between the plates (a). Density profile of the polymer brush during the
compression (b).

prediction for small and moderate compression.

Finally in figure 4.21 the equivalence of three modes of the compression is shown
if the parameter § is used as the universal length scale. The numerical values of the
free energy difference scaled by the free energy of the uncompressed brush plotred
as a function of the parameter £ are well described by a single curve. thus in this

representation all three modes of compression can be considered as equivalent.



150

10 T T T T
Oo*~-3
10" F ooc*~-6 4
mox~ 12
analytic prediction
o 440
& 100 1
<
107" -
0.0 0.5 1.0 15 2.0 25 3.0

Reduced Distance

Figure : Compression of the polymer brush by a neutral surface. @ solvent. Free
energy difference per unit area in uN/m scaled by free energy of uncompressed brush
as a function of the reduced distance given by Eq. (4.24). Symbols are the numerical
results corresponding to different values of 4* . and solid line is the analytic prediction
of Shim and Cates [40].

4.4.3 Interpenetration of the Polymer Brushes

In section 4.3.3 the interpenetration of two polymer brushes during compression

Since the ical SCF results and molecular dynamics studies

was i
indicate that the opposing brushes do interpenetrate in good solvent. this should also
be anticipated in © solvent. The brushes in © solvent are not as stretched as in a

good solvent, nor do the chains avoid contact to as great an extent.
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Figure 4.21: The equivalence of the three modes of compression. © solvent. The free
energy difference scaled by the free energy of uncompressed system as a function of
£ parameter defined in Eq. (4.32).

In figure 4.22 the density profile of polymer Z = 1000. £ = 15 nm® compressed to
the reduced distance % = 0.89 is shown. The total calculated volume fraction is almost
flat without a minimum at the midpoint, and the opposing brushes interpenetrate up
to 1/2 of their total thickness. Pursuing the analysis further and looking for the

powers « and 3 for which the numerical results collapse to a single enrve
I(D) x Z°T° g (a) . (4.56)

where f(4) is some universal function of the reduced distance only, it was found
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Figure 4.22: Compression of the polymer brush by a second identical brush. © solvent.
Total density profile for the polymer with Z = 1000. £ = 45 mu®. numerical and
analytic profile (a). Contribution of each brush to the total density (b).

a = —0.59 £ 0.02 and 8 = 0.63 & 0.02. If the reduced surface concentration. .
instead of X is used Eq. (4.56) can be written as

(D) x 2°%g* ~8 [y () . (4.57)

with the uncertainties £0.02 in the values of powers. This result is in a very good
agreement with the exponents of Eq. (4.52) or Eq. (4.54). The numerical results
plotted according to Eq. (4.57) are shown in figure 4.23. For the numerical values of

1(D) characterized by o* ~ 12, which satisfy @ 2 0.6 and are scaled by Z*SY. the
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Figure 4.23: Interpenetration of two opposing brushes, /(D), as a function of the
reduced distance %, © solvent. The open symbols represent the numerical values.
solid line is the line of the best fit to the functional form of Eq. (4.53) for all numerical
values which satisfy & 2 0.6 and o° ~ 12. The inset shows the details for the initial
stage of the compression.

best fit to the functional form of Eq. (4.53) has been determined and is presented
as a thick solid line in figure 4.23. As is apparent from the inset in figure 1.23. the
brushes characterized by ¢* ~ 3 start to interpenetrate for separations larger than
those predicted by the analytic form, which, similar to the good solvent case. is caused
by the fact that the tail region is the largest for smallest o* . and is neglected in the

analytic description.
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4.5 Summary

In this chapter the compression of polymer brushes in good and © solveuts was
studied. The prime interest was devoted to the compression of the brush in three
different ways. first by a repulsive surface, then by a bare surface which is neutral for
adsorption, and finally by a second. identical brush. The formal equivalence of two
latter modes was established, i.e., it was shown that the density profile for a single
brush compressed by a neutral for adsorption surface and the total density profile
up to the midpoint between two surfaces for the compression of two brushes are the
same. Similarly for a given separation, D, between the surface with the brush and
the neutral surface the free energy is 1/2 of the total free energy for compression
of two brushes with the surfaces separated by a distance 2D. Extensive numerical
calculations for model values of the bulk densities of solvent and dangling block for
wide ranges of degree of polymerization, Z, and average area per end-grafted chain.
T, were performed and the results were compared with the analytical predictions
of Milner, Witten and Cates [36, 133] for good solvent conditions. and with the
generalization of this approach to © solvent. done by Shim and Cates [40].

For the compression of brushes in good solvent. the analytic theory of MWC'

underestimates the force and its range by a factor of about 2. and this numerical

result is consistent with the recent experimental studies of Watanabe and Tirrell [52].
The numerical analysis shows the importance of the tail regions in the initial stage

of the compression especially for low and the moderate surface coverages. With
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the ical results tend to be closer to the analytic prediction.

but still the force and its range are larger than in the analytic picture. Satisfactory
agreement with the analytic extension of the MWC theory proposed by Shim and
Cates [40] was found. However for both good and © solvents. the compression of the
polymer brush by the second brush is not equivalent to the compression by a repulsive
surface. Instead, a properly defined deformation parameter should be considered as
a universal length scale. In this representation all the modes of compression can be
reasonably well described by a single curve.

The interpenetration of the polymer brushes during the compression in both good
and © solvents was quantified and the results were in good agreement with the molec-
ular dynamics simulations of Murat and Grest [101] for the interpenetration of brushes

in good solvent.
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Chapter 5

Lateral Compression - Excess Surface Pressure

5.1 Introduction

In this chapter the surface pressure effects in the adsorbed polymer layers are
examined. First, the experimental results of Kent et al. [1. 2], as well as the recent
numerical studies of Grest [82] and Carignano and Szleifer [90. 104] will be presented.
Next. the theoretical approach and the details of the numerical calculations will be
discussed. The following sections will be devoted to a homopolymer/poor solvent sys-
tem with an attractive surface interaction and then to the copolymer/solvent system
in which the anchoring block is the same as the homopolymer and the solvent is good

for the dangling block. The results for the excess surface pressure for this system will

be di i and ¢ 4 with the experi I. numerical and analytical studies.
The surface of a liquid comprised of small molecules is in a condition of tension.
the most prominent evidence of which is its tendency to minimize the area of the

surface of the liquid. The surface tension of a liquid can be traced to the force of
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between its molecules. A molecule in the bulk of a liquid is surrounded by

the maximum number of neighboring molecules so that its potential energy becomes
minimum. The same molecule at the surface of the liquid is in contact with fewer
molecules, since there are fewer neighboring molecules in the gaseons region just at
the top of the interface. The energy of the molecule in the interfacial phase thns
become greater than that in the bulk phase. The surface tension ~ can be defined
through Eq. (1.2) which is
oF =
y= (H) - § (5.1)
where F is the Helmholtz free energy of the system with the interface. A is the total
area of the interface, T is the temperature. V’ is the volume of the system. and .V, are
the numbers of the molecules present in the system. Thus if the system is comprised
of pure solvent in contact with the air surface. it can be fully specified by the surface
tension, vs-
Properties of the air-liquid interface of polymer solutions in good and € sol-
vents have been extensively stndied experimentally and rheoretically. In the recent

experiments of Kent et al. [137] the adsorption from solution of PDMS in a good

(b h ) and © (b; -yelok ) solvents at the air-liquid interface was
investigated. In this study, the effects of the molecular weight, bulk concentrations.
and the solvent quality on the details of the density distribution of the polymer near

the interface were explored. In both solvents. it was found that the polymer adsorbs

at the surface and lowers the surface tension. The surface tension of pure PDMS is
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lower than the surface tension of either solvent used in the study. This difference
provides the driving force for the adsorption. Thus, effectively one can think of an
attractive interaction exerted by the surface on the polymer in solution. Similarly. in
the study of Ober et al. [138], adsorption from solution of PDMS in toluene and of
PS in toluene at the air-liquid interface was studied. Toluene is a good solvent for
both polymers. It was found that PS adsorbs at the free surface and a concentration
excess develops there. By contrast. the density of PDMS at the surface was lower
than in the bulk. Similarly the surface tension of PDMS-TOL solution was lower than
that of pure solvent. while it was greater for PS-TOL system. Once again the free
surface of a solvent can be considered as a repulsive interface for one and attractive
for the other polymer. Similar experiments were also performed in © solvents [25].
The difference between the surface tension of a clean interface (pure solvent) and of
a surface with an adsorbed layer is often referred to as the surface pressure. [1. and
is defined through Eq. (1.3).

As was mentioned in chapter 1. in most of the experimental and theoretical studies
the change in the interfacial tension in the adsorbed polymer layers was investigared.
However. the dependence of the surface pressure. [1. on the surface concenrration and
molecular weight for copolymer systems. although very interesting. have uot been
studied extensively. Most of the studies on lateral compression deal with Langmuir

L of hiphilic molecules comprised of a hydrophilic head group and hy-

drophobic tail at the air-water or oil interface [102, 139].
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The details of the structure of the density profiles for polymer chains terminally
attached to the interface and under the influence of external potentials were inves-
tigated theoretically using the strong-stretching limit of the SCF theory by Marko
et al. [106], and using the MC approach by Chakrabarti et al. [99]. The ideas intro-

del

1 using simple models of

duced there, that the interfacial ph can be

the external potential, are also employed in this thesis.

5.1.1 Experimental Studies on the Lateral Compression of
Copolymers at the Air-Liquid Interfaces

To investigate the properties of the copolymer systems at the air-liquid interface
Kent et al. [1, 2] performed a series of the experiments in which the surface pressure.
II, and its dependence on the surface concentration and molecular weight of both
blocks was carefully examined. In most of the experiments. the layers of copolymer
were formed by depositing onto the surface of ethyl-benzoate (EB) a small dry grain of
PDMS-PS copolymer, from which the molecules spread spontaneously. The number of
copolymer molecules per unit area, i.e., the surface density, was increased by adding
further grains of copolymer to the surface and decreased by aspirating the surface
with a movable barrier. Virtually all the chains were adsorbed to the interface: the
total volume fraction of copolymer in the sub-phase (bulk solvent) was estimated

to be always less than ~ 10~%, and this was due to a spreading efficiency less than

100%. In addition, the ding behavior of each h polymer (PS and PDMS)
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was carefully examined. If the grain of pure PS homopolymer was deposited onto the
EB surface. the PS molecules dissolved into the solvent after a short period of time.
and there was no change in surface tension throughout the process. This indicates
that PS is not active at the surface. Conversely, if the PDMS homopolymer was
deposited onto the free surface of EB, the surface tension immediately started to
drop. The PDMS homopolymer forms a stable Langmuir monolaver on the surface of
this solvent, and this indicates that the surface is attractive toward the PDMS. The

system under investigation is schematically presented in figure 5.1.

Air

Solvent (EB)

= A-block (PDMS)
—— B-Block (PS)

Figure 5.1: Illustration of the monolayer system formed by PDMS-PS diblock copoly-
mer on EB.

Surface pressure-area isotherms were obtained for two different PDMS homopoly-
mers, i.e.. M,, = 25,000 and 100, 000 (g/mol), and 7 different copolymers. five of them
being the same as those investigated in chapter 3 and listed in Table 3.1. The addi-
tional copolymers were 1.5-102 PDMS-PS and 10.5-40 PDMS-PS, where the polymers

are labeled by the block molecular weights, in kg/mol, of the PDMS and PS blocks
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respectively. A rapid increase of the surface pressure-area isotherms for copolyvmer
system in comparison to the pressure-area isotherm of pure PDMS homopolymer was
observed in almost all the cases studied. The surface pressure excess. defined as the
difference between the pressure of the copolymer/solvent and homopolymer/solvent
systems for the same surface concentration of homopolymer. was found to vary rela-
tively slowly for low surface coverage of the PS block of copolymer. However for large

surface concentrations, it increased more quickly. approximately as [1 o o¥. with y

in the range of 4.2-6.6 (see Table 5.2). This effect cannot be explained on the basis

of the analytical models and is the prime subject of this chapter.

5.1.2 Previous Numerical Studies on the Lateral Compres-
sion of the Polymer Layers

The surface pressure, [I. and its dependence on the degree of polymerization.
surface concentration and solvent quality were investigated numerically. using MD
simulations, by Grest [82], aud, using SCMF model, by Carignano and Szleifer [90.
104]. In the analytic pictures the surface pressure of the polymer brush in a good
solvent is given by Egs. (1.22) and (1.23) and predict a single scaling relation in the
entire range of the surface concentrations.

Grest [82] carried out MD simulations of 4 chains in good and © solvents with Z
ranging from 25 to 200 and surface coverages of #* < 20. The calculated dependence

of surface pressure on the grafting density was somewhat stronger than predicted
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by analytic theories. In a good solvent, for chain lengths and grafting densities
where the thickness of the brush, f, scaled as expected, i.e., h & Zo'/®. the surface
pressure scaled as [T « 0®°. Grest explained this effect assuming that II is much more
sensitive to the finite monomer density than the brush height. This finite and high
density in the center of the brush gives rise to purely steric effects which limir che
interpenetration of the chains and is not included in either scaling or analytic SCF
theories. To verify this hypothesis, simulations for much longer chains have to be
carried out, and at the present this is not feasible [82]. Similarly. in © solvent Grest
found that IT x o®. while both analytic theories predict IT x o

Carignano and Szleifer [104] performed numerical calculations applying the single-
chain mean-field theory (SCMF) [89] for end-grafted polymer in good. © and poor
solvents with Z = 50 and surface coverages of o* < 40. They found that the lat-
eral pressure as a function of surface coverage in a good solvent can be described
approximately by a power law with the exponent varying from 2.0 for very low sur-
face coverage (¢° < 1). to 1.9 for low surface coverage (o° < 18). and II x o*!
for intermediate surface coverage (¢ < 40). They found good agreement berween
their calculated lateral pressure and the analytic SCF theory only when the parabolic
density profile was used in the full virial expansion. In their later study [90] they

ded the calculations for 4 diffe chains with Z ranging from 30 to 100 and

surface coverages of ¢* < 20. In this work. they presented direct comparison with

the experimental results of Kent [2]. They found that the lateral pressure can be
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described by a universal function of the reduced surface concentration o* . and their

results were in good with the experi: al data up to a* ~ 8. For higher
surface concentrations, the theoretical results deviated from the universal format and

from the experimental values. They 1 that the i al observations at

large surface coverages were performed in a system that had not reached full equilib-

rium.

5.2 Numerical SCF Approach

The general numerical SCF formalism form was presented in chapter 2. and some
other details which are relevant to the experiments of Kent et al. [L. 2] were preseuted
in chapter 3. However. in chapter 3 it was assumed that the adsorbed A-block (PDMS)
can be modeled by the simple, standard form of Eq. (3.1). Since in this chapter
the effects of the surface pressure of polymer at the air-liquid interface are of the
prime interest, this assumption is now eliminated. and the density distribution of
the adsorbed A-block is determined self-consistently. Furthermore. two distinct cases
have to be considered. The first is the pure homopolymer at the interface. The
second is diblock copolymer with properties of the A-block identical to these of the
homopolymer, and the B-block dangling into the solution. In both cases. the density
distributions and the free energy of the system have to be calculated. In the following

sections the numerical SCF formalism for these two cases will be presented.



5.2.1 The Homopolymer Spread as a Monolayer

The system under consideration is comprised of Ny identical homopolymer
chains (PDMS) characterized by the density of the pure material. po4. statistical
segment length, b,. and degree of polymerization. Z4. and Ny solvent molecules
(EB) characterized by pgs. The partition function, Eq. (2.14). has the same form.
except that Ne has to be replaced by N4, and the summation is restricted to the
A type molecules. Similarly, since the polymer consists of one type of monomer only.
the §(- - -) functional which assures the connectivity has to be dropped. Following the
formalism of Eqgs. (2.15)-(2.26). the integral of the distribution function. Eq. (2.27)
can be written as

Qu= /dr dr'Q (1. Zalr', 0)G(r'(0)) - 2)

The density distribution of the homopolymer given by Eq. (2.48) has the form

pa(r) =

Za ~
Q—H*A i {/dr dr"Q (r. 7" 0)G(r"(0))Q(r' . (Z4 — 77 7 } .

(5.3)

As before, it is assumed that the system is translationally invariant parallel to the

interface, and the problem is ¢ d as one di ional. [ntroducing the integral

ion of the in the same manner as in Eqs. (3.2) and (3.3). the

propagator qo, corresponds to Eq. (3.2) and the initial condition for this propagator

satisfies Eq. (3.8). The second propagator g, is expressed as

aalr ) = () = [ dr' Qulr. i 006(r) (5:4)



and the initial condition for this propagator is
@a(z,0) = / dr's(r - r)G(r') = G(z) . (53)

Both propagators satisfy the diffusion equation. Eq. (3.4). In the experiments of Kent.

the h 1 forms a layer. Thus. one can assume that one end of every

chain starts in the vicinity of the surface. Making use of Eq. (2.15) the propagator

qu.4(z. 0) is assumed to satisfy
Qalz.0) = exp( - a.z'*) . (5.6)

where a, is chosen so for @ = 1 nm ¢;4(1.0) = 0.01. This choice of the probability
distribution for the free ends of the homopolymer limits the range of validity of the
calculations to the cases in which the thickness of the i-block layer is on the order of
1 nm. This is consistent with the estimate that the thickness of the interphase is on
the order of 1 nm [130]. and with the experimental observations of Lee et al. [140] who
determined the thickness of a PDMS monolayer on water from neutron reflectivity to
be roughly 0.8 nm at full monolayer coverage. [n terms of go.1(x.7) and gy a(£.0) the

quantity Qp is expressed as

oy = / drdr'Qy(r. ZIr)G(r')

[ drdydza\(z. 2) =A/:¢rq.(z.2) (3.7)

AQE .
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where A is the total area of the adsorbing surface and the local volume fraction of
the homopolymer is given by

Na

oale) = PoACn

f dr qoalz. T)qualz. 1 — 7) . (5.8)

where again  was mapped onto [0, 1] and Ny = Vg4Zs.

To ine the problem the b dary conditions have to be speci-

fied. For a repulsive surface, the interface prefers solvent to the polymer. the chains
avoid the interface, and this results in the depletion layer near the surface. If the
surface prefers the polymer to the solvent there is an adsorption. Thus in the vicinity
of the surface, the concentration profile is very sensitive to the details of the polymer-

surface interaction. Therefore. it can be assumed that at z = 0 the density profile

exhibits a local (mini. or i ) which implies

] -
%Al =0. (5.9)

for ¢ = 0, 1. These boundary conditions also express the fact that there is no flux
of probability across the surface and have the effect of removing all configurations
which cross the surface. These boundary conditions coincide with the idea of “con-
figurational swap” introduced by Silberberg [141] and were used in the MC study of

Bitsanis and Brinke [142]. Similarly, for the other boundary in a pure solvent it is set
a &
aq‘-,‘(a:, 7) . =0, (5.10)

which assures the continuity of the solution. In practice. however. these boundary

conditions are applied at some finite distance L. The linear size of the system. L. is
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large enough so that, at z = L there is no spatial variation in the densities of any of
the components and the density is that of pure solvent.

The potential which modifies the diffusion equation Eq. (3.4) for this part of

caleulation is given by

wa® = By [05(e) = 1= 6a@)] + B2 in s+ us(e) - Pus(e)
= wi'z) +ualx) - %us(r) . (5.11)

which was obtained in the same manner as Eq. (3.11) and the finite range of the

potential Eq. (2.56) was, for simplicity. set to zero.

5.2.2 Diblock Copolymer at the Air-Liquid Interface

In this section the formalism for diblock copolymer (PDMS-PS) at the air-liquid
interface of solvent (EB) is presented. Diblock copolymer consists of a block A char-
acterized by degree of polymerization. Z,. statistical segment length. by. and the
density of pure material, p,. Similarly, block B can be characterized by Zg. bg and
Pos: and the solvent by its density, p,s. Further, it is assumed that all the chains
which are present in the system are adsorbed at the interface. This is consistent
with the experiments of Kent et al. [L. 2] in which. as already mentioned. the total
concentration of the copolymer in the sub-phase was negligible. The total number of
copolymer chains adsorbed at the interface is N¢ and Ns is the total number of sol-
vent molecules in the system. Further, it is assumed that one block (A4) has a higher

affinity to the surface and the second block (B) extends into the solution and forms
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a polymer brush. The adsorbed A-block is the same as the homopolymer considered
in the previous section. The formalism outlined in chapter 2 resulted in the density
distribution for the A-block of copolymer given by Eq. (2.48) and the density of the
other. B-block is given by Eq. (2.49).

Once again it is useful to introduce the integral representation of the propagators
in which one integrates over all starting positions. In the copolymer/solvent system.
four propagators are needed. The first one, denoted g.4(z.7) is defined as

2a(r.7) = qa(=.7) =f dr'Q 4 (R.7|r'.0)G(r'(0)) . (5.12)

Since it is assumed that the free end of the A block is located near the surface.

Eq. (5.12) is identical to Eq. (5.4) and satisfies the same initial conditions. Eq. (5.5)
The second propagator, qg(z, ) is defined as

qg(r.7) = qp(z.7) = / dr' Qg(r.7|r'.0) . (5.13)

and satisfies the initial condition Eq. (3.8). This propagator. gg(x. 7) reflects the fact

that the free end of a B block could, in principle. be found anywhere in solution. Two

other propagators are needed, and are defined as follows:
dalr7) = @az.7) = [ drQulr. i as(r’. Za) (5.14)
and
Ga(r.7) = Gp(x.7) =/ Ar'Qg(r. Tl 0)qa(r'. Z4) . (5.15)
The initial conditions for any point in the semi-infinite region. r > 0. are

Ga(z,0) = g8(z. Z8) . (5.16)
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for ¢4 and

Gn(z.0) = qa(z. Za) . (5.17)
for the propagator gg. As in the case of homopolymer spread as a momnolayer. it is
assumed that all the propagators satisfy the same boundary conditions as previously.
Egs. (5.9) and (5.10). In terms of the propagators ¢ and q. the densities can be

expressed as

balz) = "“ fdw(l Pialz 1= 7). (5.18)

vala) = ot [ draute Tale 1~ ) (5.19)

where Ney = NeZy and Neg = NeZpg are the total number of monomers of wpe

4 and B respectively. The integral of the distribution functions. Q. Eq. (2.27).
becomes

Qe = A [ dega(z, Zaasls. Zn) = AQE - (5.20)

The self consistent potentials which modify the diffusion equations for diblock

copolymer/solvent system are given by

aate) = 22 L [oste) - 1= 04(0)] + 00(2) [ (110 = va)] +1 5}

+ua(z) — j::—“‘us(z) (5.21)

[

wit(z) + ua(z) — ;us(r)

and corresponding expression for wg(z).



5.2.3 The Model of the Interaction with the Surface

The terms which remain to be specified are the interactions of the homopolymer.
solvent and copolymer molecules with the surface, u.(z). In general. the monomers

and solvent molecules interact through some intermolecular potential which can be de-

feld 2 _—

scribed by Lennard-Jones or Morse type ials (143]. In the
to polymer/solvent systems, however, the interactions are described by a single pa-
rameter Yy In the theoretical model presented in this thesis. the polymer chains
and solvent molecules are confined in the z-direction by a planar surface which lacks
the molecular roughness of real surfaces. As a result of this. any ordering of the sys-
tem in the directions parallel to the interface is neglected and it is assumed that the
potential energy due to the presence of the surface depends on the distance r from
the surface and can be described in the mean-field fashion through energy and length
parameters.

The interactions of the homopolymer or one block of copolymer with the surface
appear in the formalism only in the self-consistent potentials which modify the diffu-
sion equation, together with the solvent-surface potential energy. From Eq. (5.21). it

follows that an effective surface-polymer potential can be introduced as

u (z) = w(z) - B ug() .
i i(z) prs s(x)

If the h lymer molecules show a tendency to locate near surface or if there is

adsorption of one block of the copolymer. the effective potential is attractive and this
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attraction extends over a distance at least on the order of a few statistical segment
lengths. On the other hand, when the density profile of the homopolymer exhibits a
depletion region or the diblock copolymer chains remain in solution. the surface can
be considered as repulsive.

If u! () is attractive and arises from L-J type interactions between the surface

and the molecules in solution then this long-range potential is of the form [3. L44]

1
ufll(z) —
Thus, the repulsive surface can be modeled as
xs forz <l
wl@={ " g (5.24)
0 forr>1{

and the attractive surface as

—xs forx <1

u(z) = »
—\_,-(f) T oforr >t

where s is the energy (in units of kgT) and [ the length parameter.

5.2.4 Free Energy of the System, Interfacial Tension and Sur-
face Pressure

The general expression for the free energy for the copolymer/solvent system at the
air-liquid interface was derived in chapter 2, and is given by Eq. (2.62). Substitution of

Eq. (2.53) for the potential energy, W, and Eq. (5.21) for the self-consistent potentials.



wi(z), into Eq. (2.62) yields

F=3 3 Wknpuk’vk‘i-’vs(l-ﬂ—p;—::—l)i-.\-fc( QZ( 1)

2, Sis

s [ 422 xudu()oe (2) + 05 os(z)
22

-y P @ont) + u,(z)} (5.26)

k=18 Po:
where the relation Ns/Qs = pos was used and the reference density was explicitly
set to the density of the pure solvent. For a pure solvent system of .Vs molecules and
the surface, this free energy expression has the simple form

L .
Fs = <W,yposNs + Ns (Ln L 1) +Ap05/ druy() . (5.27)
2 2%

Using this. the free energy Eq. (5.26) can be written as

i . -
F = Fs+- Wipor Nk + NV -1
s+3 k;ﬂ kkpor Nk + Ne ( Q Z(_ )

+Aps [ dz { 53 Xewou(z) e (2) + 05(z) lnos(z)
2%

- Z P E o) | -

4.8 P
Since the densities and potentials depend on the distance. r. from the interface. one
can divide Eq. (5.28) by the total area of the interface to obtain the free energy per

unit area, f = F/A. In units of kT, f can be written as
1
= + = Wi Z In o= -
P fs Z ol + = ( STz 1)

s [ dz{ 35" xawtu(@)ow () + 65(z) mos(x)
2 k&



173

-3 %u:;"‘(rm(z)} . (5.29)
k=A.B

where. as before. £ = (N¢/A)~".

The free energy of the multicomponent system with a surface can be wrirten as a
Legendre transform of the internal energy with respect to entropy. and can be written
as

F=3 pNe— PV +7A. (5.30)
3
and its total differential as

dF = —PdV — SdT + Y ped Ny + vdA . (5.31)

In chis representation, the interfacial tension, v. is defined as the change in the total
free energy when the interfacial area. A. is increased at constant temperature 7. total

volume of the system. V. and constant numbers of particles in the system. .\,

The free energy per unit area depends explicitly on E. similarly the densities of
homopolymer and every block of copolymer depend explicitly on T rather than on
total area of the interface. A. Taking this into account. the interfacial tension. . has
to be expressed in a more convenient form

- @
OA) noy

3f) = 35
+A| =5 5.32
g (BA N TV ©

> (58)..., (52)
+NcZ | == _— .
f ¢ (a): ATV a'A N TV
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Since A = N;E (i can be homopolymer, H A, or diblock copolymer, C), the result

for constant T and V' is

y=f+% (%) E (5-33)
ATV
For a pure solvent
7 = s [ drus(z) (3:34)

Furthermore, as is apparent from Eq. (5.33). all terms in f which are linear in 1/ do
not contribute to 7. Finally the expression for the interfacial tension can be writren

o

oL
7=7’+L+EE' (5.35)
where £ is given by

1 1 1
c = gm(g—%) + s | dz{;k‘;xwak(z)w(z) +05(2) lnos(z)

- %u;."‘(rwr)} : (5.36)

As was mentioned in chapter 1 and in the introduction to this chapter. the change
in the surface tension 7, — v can be interpreted as a two-dimensional pressure. com-

monly referred to as the surface pressure
O=vy-7v. (5.37)

which in the formalism presented above has the form

oL -,
M=-£-S3. (5.38)
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In order to analyze this result in detail. it is useful to transform Eq. (5.36) so that
all the terms can be interpreted physically. As already noted in chapters 3 and 1.
a constant value can be added to the self-consistent potentials without affecting any

results. If the potentials for the A and B-blocks are chosen so that
=
/ drwi(z) ou(z) =0. k= A.B . (5.39)
0
then Eq. (5.36) becomes

L= m/ &{%¢A(:)M(I) +%¢g(z)us(z] + (os(z) — l)us(z)}
s [ dr { xan0a(2)08(2) + xas0a()0s(z) + xasou(z)os(x) |

1 ] "
+5ln (Ee_f-) +pu5/ dzos(r) lnos(z) . (5.10)

The first line can be interpreted as the contribution due to the external potential.
the second line is the interaction energy within the components. and the third line

can be interpreted as the entropic contribution to the free energy. Physically this

entropic contribution includes effects due to chain fc ions. chain locali:

and solvent distribution. Equation (5.40) can be written as
L= Lext(T) + Lint(T) + Lene(T) - (5.41)

Using the condition of no volume change upon mixing (incompressibility). and setting

ugf! () = 0. the first contribution can be written as

Loe / dzpoadalz)ul! (z) . (5.12)
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Equations (5.40) and (5.41) are applicable to both the homopolymer/solvent and
copolymer/solvent systems with appropriate modifications. Namely. for the ho-
mopolymer/solvent system, QF in the entropic part has to be replaced by Qf. and
in Ly there are no terms for AB and BS interactions. The L., is the same for both

systems. and can be interpreted as the anchoring energy.

5.3 Results and Discussion

As already mentioned, in the following sections the numerical results for ho-

mopolymers and diblock Ly at the air-liquid interface of solvent will be
presented and discussed. In order to make the comparison with the experimental
observations, the densities of pure materials, statistical segment lengths and molec-
ular weights of homopolymer and copolymer used in the calculations were chosen to
agree, as closely as possible with the experimental values. The material characteris-
tics for PS and EB are listed in chapter 3. For the homopolymer and the A-block

of the diblock copolymer. which both correspond to PDMS. the following martcrial

characteristics were chosen: poa = 7.89 nm® and bg = 0.57 nm [125. L

The PDMS-EB interaction parameter has not been measured. to the author’s
knowledge. Hence, a reasonable value needed to be chosen. Given that EB is a non-
solvent for PDMS [1, 127], x4s = 0.7 was used. The PDMS and PS polymers are
not compatible and again, a reasonable interaction parameter was chosen. For this

XAg = 0.1 was used, which is typical of diblock copolymers systems [146. 147). The



jineg
A-block of copolymer is restricted to the narrow interface, and there is a lictle overlap
between A and B blocks, thus the results should not be sensitive to these choices of
Xxas and x4p parameters. Since the PS is not active at the surface it was assumed
that v/ is negligible and it was zero everywhere.
The PDMS homopolymer, when spread onto the surface of EB. forms a stable
monolayer on the surface and the surface tension 7 starts to drop, indicating that the
surface is attractive toward the PDMS. To model this effect. the following effective

potential was chosen

—-0.45 for r < 0.7 nm
ufl(z) = . . (5.13)

~0.45 (. for z > 0.7 nm

These choices of the energy, xs = - 0.45, and length. [ = 0.7, parameters were based
on many numerical calculations. with the final values chosen to produce a reasonable
description of the surface pressure isotherm for the hormopolymer discussed in in the
next section.

For a given system, which is specified by the values of the degree of polymerization
of the homopolymer or the two blocks of the copolymer. the material characteristics
discussed above, and the average number of chains per umnit area. 1/E. the self-

consistent solution is found. The free energy of the system. given by Eq. (5.10). is

then calculated. The surface pressure isotherms as a function of the surface cover

are i by ical luation of Eq. (5.38) [134]; the numerical procedure is

outlined in Appendix A.
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5.3.1 Surface Pressure Isotherms - Homopolymer
To investigate the properties of the homopolymer at the air-liquid interface. nu-

merical calculations for two PDMS homopolymers characterized by M,, = 25.000 and

50,000 g/mol (Z4 = 337 and 675 respectively) at the surface of EB were performed.

For each homopolymer, the adsorbed amount. [y = Z4/E. was varied from just
above 0 to almost 20 PDMS monomers/nm?. The adsorbed amount. ;. can also be
defined as the total number of monomers per unit area which belong to the adsorbed
layer
3

Fa=pua [ defos(@) - o). Ge4)
and since 0% = 0, [y can be determined through the integration of the numerically
generated profile. The difference between the value [y = Z,/T and the value ob-
tained by Eq. (5.44) is the measure of the accuracy of numerical calculations. In all
the calculations discussed here this difference was always less then 1x1073%.

Figure 5.2 shows the surface pressure isotherms for two PDMIS homopolymers.
M, = 25,000 and M,, = 50,000, as a function of the number of adsorbed chains per
unit area. For large values of ¥ the surface pressure remains constant and essentially
zero which means that the surface tension for small concentrations is the same as
that of the pure solvent. The chains are isolated and only very weakly interacting.
In the numerical studies of Carignano and Szleifer [104] it was found that for chains
end-grafted to the surface and immersed in a poor solvent. the surface pressure is

negative in some range of surface coverage which suggests that homopolymer chains



179

3.0 T ——— — T
. M, = 25,000
25 oo = 50,000
M, o i
" 20} 1
H
=
E 15 J
e
2 .
o 10 P 4
a 0.00 .
% o . Cq co®
g os5p
5
7] -0.05
0.00 0.01 001
-0.5 : g
0.01 0.02 0.03 0.04 0.05
1/Z [am™]

Figure 5.2: Surface pressure Il as a function of the number of adsorbed chains per
unit area for PDMS homopolymers. M, = 25,000 and M,, = 50.000. (The dotted
lines are guides to the eye) The inset shows the behavior of the surface pressure I1
for large values of ¥ for M, = 25.000.

prefer to form larger a rather than onto the surface. The inset in

the figure 5.2 shows the surface pressure for large values of £. There is a narrow region
where the surface pressure is negative. However. the surface pressure was obtained

by the numerical differentiation of the functional £, Eq. (5.40). and the acenracy in

these and all sut alculations was esti d to be (6I1)mar < 0.01 kgT/nm?.

Taking into account this accuracy. these negative values are too small. to confirm.

As the area per adsorbed molecule decreases the surface pressure rises. but then it
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Figure 5.3: Surface pressure [1 as a function of the number of adsorbed mounomers
per unit area for two PDMS homopolymer with M, = 25.000 and 50.000.

begins to to level off. This occurs at 1/~ = 0.04 nm™ and 1/¥ = 0.02 nm * for
My, = 25,000 and M, = 50,000 homopolymer, respectively.

In figure 5.3 the numerical results of the surface pressure isotherms for two PDMS
homopolymers as a function of the adsorbed amount. [y are shown. In this rep-
resentation, the isotherms collapse to a single curve, independent of the molecular
weight of homopolymer. This is in perfect agreement with the observations of Kent
etal [l,2].

This leveling off of the surface pressure at higher concentrations can be explained
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by the fact that for a given depth of the well, xs, characterizing the external potential.
there is a maximum in the surface concentration for which all the chains in the
system are tightly adsorbed onto the surface. Experimentally. beyond this maximum
the steric repulsion among the chains becomes greater than the attraction toward
the surface and the monolayer collapses, or the chains desorb [1]. The SCF model
presented in this chapter lacks the desorption mechanism since the average area per
adsorbed molecule is specified. However, as figure 5.4 shows. the density profiles
exhibit a qualitative change at about this level of coverage. This fignre shows the
density profiles for the 25 PDMS homopolymer for six values of £. For very low
coverage, the maximum density concentration at the surface is relatively low but the
thickness of the profile is on the order of the width of the attractive well. As the

coverage i ases, i.e., as T d the thick of the profile remains almost

constant but the average density within the layer increases. Beyond T < 50 nm?. the
maximum density saturates but the thickness of the layer begins to increase. The

effect of the leveling off of the surface pressure occurs for coverage greater than a full

monolayer so a significant fraction of the polymer falls beyond the attractive well. This
leveling off of the surface pressure is in very good agreement with the experimental
observations of Kent et al[1. 2]. At full monolayer coverage. £ ~ 33 nm®. most of the
polymer can be found in a region on the order of 1 nm from the surface. consistent

with the experimental data of Kent. Beyond a full monolayer coverage. the thickness

of the layer becomes greater than the width of the region where the chain ends were
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Figure 5.4: Density profiles for PDMS homopolymer with M,, = 25.000 for different
values of the surface coverages. Surface coverage T expressed in units of um?*. adsorbed
amount [ in numbers of adsorbed monomers per nm*

assumed to start. This limits the calculations to [y < 10 monomers/nm®. lu all
subsequent calculations [y ~ 10 PDMS monomers/nm?* was chosen as the limir for
which the PDMS homopolymer or the A-block of the diblock copolymer can be treated
as forming the monolayer.

In summary. the surface pressure isotherms for the homopolymer adsorbed at
the air-liquid interface depend on the total number of adsorbed monomers per unit
area and are independent of the molecular weight of the adsorbed chains. at least for

relatively high molecular weights. This can be understood, since the strong attraction
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toward the surface and poor solvent conditions lead to a collapsed laver and there is
no stretching of the chains in the direction perpendicular to the surface. For small
values of the surface concentration. a region of negative surface pressure can exist.
which can be understood in a similar way to the attractive region observed during
the compression of polymer brushes in the direction perpendicular to the surface in
poor solvent conditions. where for the initial compression the opposing brushes reach

out [64].

5.3.2 Surface Pressure Isotherms - Copolymer

In this section the numerical results for the lateral compression of the diblock

copolymer /solvent system cor ding to the i of Kent et al. [1. 2] are

di i. The ical calculation of the surface pressure isotherms as a func-

tion of surface coverage were performed for the six PDMS-PS copolymers studied in

chapter 3. The degrees of polymerization of every block are listed in Table 5.1.

Table 5.1: Polymers used in the calculations. The polymers are labeled by the block
molecular weights, in kg/mol. of the PDMS and PS blocks respectively.

Copolymer M, | 4-30 | 4.5-60

Za S 6t
Zs 290|516

In figure 5.5 the surface pressure isotherms are shown as functions of surface
coverage for all the asymmetric copolymers. In each case. [ varies slowly for small

concentration and increases rapidly for larger values of 1/E. The interesting part of
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Figure 5.5: Surface pressure II as a function of the surface concentration 1/E. The
polymers are labeled by the block molecular weights in kg/mol. of the PDMS and PS
blocks, respectively.

all the curves is above the mushroom regime of the dangling block (PS). but even for
a* ~ 1 the surface pressure is always positive. This can be understood since the PS
block is in a good solvent and chains extend into the solution on the order of R,. and
neighboring chains effectively repel one another.

In order to compare the surface pressure isotherms for the diblock copolymer with
that for the homopolymer, the surface pressure has to expressed as a function of the
surface concentration of the A-block (PDMS). This comparison is presented in fig-

ure 5.6. For the 25-35 PDMS-PS copolymer. Z4 ~ Zp and the isotherm falls very
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Figure 5.6: Comparison of the surface pressure, II, for the diblock copolymer with

homopolymer. The polymers are labeled by the block molecular weights in kg/mol.
of the PDMS and PS blocks, respectively. T=300K as the ambient temperature was
used to express the pressure in the units of [mN/m)].

close to the homopolymer curve. This indicates that the surface pressure is mainly due
to the interactions among the A chains and that the contribution from the dangling
B-block is negligible up to the surface concentration. I = 9 PDMS monomers/nm?.
where the deviation from the homopolymer isotherm begins. In general. as the asym-
metry in the copolymer degrees of polymerization increases. the deviation from the

homopolymer isotherm occurs at lower surface homopolymer concentration'. Siuce.

!The asymmetry can be defined as Zps/Zppars, and for all the studied cases Zps > Zppars.
so the asymmetry is always larger than unity.
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the surface pressure I as a function of the adsorbed amount of A-block or PDMS

b Ly is ind dent of h lymer molecular weight. and the A-block and
its interaction with the surface are the same as the homopolymer. these deviations
are due to the presence of the B-block.

As already mentioned. the surface pressure isotherm for the homopolymer is in
good quantitative agreement with the experimental curve (with the appropriate choice
of parameters, xs = - 0.45, [ = 0.7 for the external potential and x.1s = 0.7 for the
solvent quality). There is also qualitative agreement between the experimentally mea-
sured surface pressure isotherms and the numerical results. The copolymer isotherms
rise more rapidly than the homopolymer isotherm and the order of the curves is
the same as in the experiments. The isotherm for 4.5-60 PDMS-PS copolymer rises
the most in this representation and is followed by the 4-30. 28-330. 21-169 and 10-
40 PDMS-PS isotherms. The calculated surface pressure isotherms for copolymer
are shifted toward larger values of adsorbed amount of PDMS compared with these
obtained experimentally. In the experimental studies the isotherms for asvmmerric

copolymers were confined to concentrations smaller than 0.6 mg PDMS/m?. which

2

cor. ds to approxi ly 5 PDMS nm?. Numerical isotherms for
these copolymers were calculated in the region ' < 10 PDMS monomers/um?.
The fact that the numerically calculated surface pressure isotherms deviate from

the homopolymer isotherm for surface concentrations, [4. approximately 2 times

larger than observed experimentally might be accounted for by the specific model of
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the external potential employed in the numerical work. For the asymmetric copoly-
mer, the dangling PS block is large compared to the adsorbed PDMS block. and
the PDMS forms a discontinuous layer on the surface. In the theoretical model it
is assumed that the adsorbed block forms a continuous and uniform layer. This is

a limitation of the theory, since these di inuities cannot be described by a one-

dimensional model. On the other hand, as pointed by Carignano and Szleifer [90] it
is possible that the experimental observations of Kent et al. 2] were performed on a
system that had not reached full equilibrium due to the long time scales necessary

for lateral interpenetration in highly stretched polymer layers.

5.3.3 Surface Pressure Excess

To investigate the functional dependence of surface pressure due to the dangling
blocks of copolymer. the surface pressure excess is defined as the difference between
the pressure for copolymer/solvent and homopolymer/solvent systems for the same

number of A-block and homopolymer monomers adsorbed at the surface. i.e..
AIl = 09(C4) - 07(Cy) . (5.45)

where [y = Z4/%.

The surface pressure excess, All as a function of the number of chains per unit
area 1/X, is presented in the figure 5.7. In this figure only results for the most asym-
metric copolymers, for which the surface pressure excess reached beyond 4 mN/m.

are shown. The analysis for the 10-40 PDMS-PS is not included, because for this case
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Figure 5.7: Surface pressure excess. AIl as a function of the number of chains per
unit area.

the surface pressure excess exceeded 4 mN/m only for the concentrations larger than
[4 ~ 10 PDMS monomer/nm?, where the approximation underlying the treatment
of this block may be invalid, as discussed in section 5.3.1.

There are two distinct regimes for every curve. Initially. AIl increases relatively
slowly but beyond some point it increases rapidly. To investigate this behavior. and
in the spirit of searching for a power law dependence, the excess surface pressure
curves were reploted on a log-log scale. A typical example is shown in figure 5.8 for

the 28PDMS-330PS copolymer. In the first regime, the surface pressure excess can
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Figure 5.8: Two regimes for surface pressure excess, All as a function of the number
of chains per unit area for 28-330 PDMS-PS copolymer. The solid line is fitted to the
calculations. The dashed line is the line of the best fit using an assumed 35/3 power
law dependence.

be described reasonably well by the power law dependence predicted by the analyric
theory of MWC,
1

All (E)m . (5.46)

In the second regime, beyond about £, = 65 nm? for this case, the results fall on
another straight line, again implying a power law dependence. However. the value
of the exponent is much larger, &« = 7.2 + 0.1 for this polymer. This rapid increase

cannot be explained by the analytic theory. All four curves have similar behavior.
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The values of the exponents and the approximate values of the £, and #° | at which

the second regime begins are listed in Table 5.2 for each case.

Table 5.2: Experimental and tk ical power law obtained from fitting
AIl  (1/%), in the region where the deviation from analytic prediction is observed.
Approximate theoretical values of the surface concentration, ¥, and reduced sur-
face concentration o*, where the deviation begins. Polymers are labeled by biock
molecular weights, in kg/mol. of the PDMS and PS blocks respectively.

Copolymer Power law Power law b2
M, -Experiment | exp a
4-30 4.2 £1.0 9
4.5-60 4.4 £0.4 13
21-169 6.6 0.6 16.5
28-330 5.6 £0.9 24

In general, the larger the degree of polymerization of the dangling block. the
larger is the reduced surface concentration. ¢ . at which the deviation from 5/3
scaling occurs. The values of the exponents are much higher than the value of 5/3
predicted by analytic theory, and are in semi-quantitative agreement with the values
obtained in the experiments [2]. As alreadv mentioned. in the numerical study of
Grest [82] a value of 2.5 was obtained for all polymers and #* < 20. while Carignano
and Szleifer [104] obtained a value of 2.4 for the scaling exponent over a similar range
of Z and ¢* . The numerical values of the exponents obtained by Grest and Carignano
and Szleifer are higher than 5/3 but still much lower than these obtained here and in
the experimental studies of Kent et al [2].

To pursue the analysis further. the contribution of the particular terms in Eq. (5.41)
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to the total surface pressure isotherm can be analyzed. Using this equation. the sur-

face pressure expression, Eq. (5.38), can be written as

I = eze + Mine + Hene

where each term corresponds to contribution to the £ in Egs 40) and (5.11). and
has the same physical origin.

In figure 5.9. the contribution. [L.; as a function of [ is shown. All the numerical
values collapse reasonably well to a single curve obtained for both homopolymers.
This implies that, although the external potential acting on the 4-tvpe monomers
determines the overall dependence of the pressure on the surface concentration, it has
a negligible effect on the rapid increase of the excess pressure for the copolymer.

Next, the contribution of the interactions between all the components in the sys-
tem, [Tin,, is considered and the results are presented in figure 5.10. For the homopoly-
mer, the interaction energy Lin, comsists only of one term. i.e.. the homopolyier-
solvent interaction. Initially an increase in the surface concentration leads to an in-
crease in the surface tension due to the interaction between homopolymer chains and
the solvent molecules. This results in a negative contribution to the surface pressure.
For higher values of the surface concentration, I' 2 5 monomers/nm?. the interac-
tions per unit area saturate and then increase more than linearly in 1/E. Similar
behavior is observed for the symmetric copolymer, which once again indicates that
the interaction between the dangling block and the solvent starts to contribute at

higher surface concentrations. For the asymmetric copolymers. the surface pressure
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Figure 5.9: The contribution [, to the surface pressure [I as a function of the
number of PDMS monomers per unit area adsorbed onto the surface.

curves deviate from the homopolymer curve because the interaction between solvent
and the dangling block contributes. As the surface concentration increases the total
amount of the B-block increases and, since the dangling block is similar to an end-
grafted polymer in a good solvent. interactions between the solvent and this block
result in an increase of the surface tension. For higher surface concentrations. the
surface pressure due to the interactions tends to be independent of [y (the curves
become flatter, in the same order as the surface pressure isotherms deviate from that

of homopolymer).
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Figure 5.10: The contribution [ to the surface pressure [I as a function of the
number of PDMS monomers per unit area adsorbed onto the surface.

Figure 5.11 shows IL.,,. the entropic contribution to the surface pressure. All the
curves in this figure are controlled by the size of the A-block and the asymmetry
ratio. By comparing this figure with figures 5.9 and 5.10. one sees thart the eutropic
contribution is the main factor causing the rapid increase in the excess surface pres-
sure found in the second regime. In the first regime, the interactions and entropy
contributions lead to the relatively weak 5/3 scaling behavior. However. for the sur-
face concentrations where the interaction contribution to the pressure. [1,,.. tends

to level off, or the rate of decrease becomes smaller. there is a rapid increase in the
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Figure 5.11: The contribution [I., to the surface pressure [l as a function of the
number of PDMS monomers per unit area adsorbed onto the surface.

entropic contribution. [Le,, to the total surface pressure. [1. The rapid increase in
the surface pressure originating from the entropic interactions is in agreement with
the conclusions drawn by Kent et al [2] and Grest [82]. They suggested that lateral
interpenetration among neighboring chains is limited and may explain why the sur-
face pressure rises more rapidly than predicted by analytic theories. More analysis
of exactly why the numerical SCF produces this rapid increase. whereas the analytic

SCF does not, is needed.



5.4 Summary

In this chapter the lateral compression of polymer layers at the air-liquid inter-
face was investigated. A self-consistent formalism for the calculation of the surface
pressure was introduced and the results of numerical calculations for different poly-
mer/solvent systems at the air-liquid interface were presented.

First, the homopolymer/solvent system was studied. The solvent was assumed
to be poor for the polymer. Furthermore. an attractive surface-monomer potential
was introduced to simulate the adsorption of the chains at the surface. [t was also
assumed that all the homopolymer chains start at the surface, which corresponds to
the formation of monolayer. The surface pressure isotherm as a function of the average
number of chains per unit area was calculated for two homopolymers characterized by
different degrees of polymerization. It was found that the surface pressure isotherm
does not depend on Z, if expressed as a function of the number of monomers adsorbed
onto the surface. Good quantitative and qualitative agreement was found with the

surface pressure isotherms obrtained experimentally (1. 2].

Next. the diblock copolymer/solvent system at the air-liquid interface with one

block equivalent to the homopolymer in the homopolymer/solvent system was consid-
ered. The second, B-block was assumed to be in a good solvent. The surface pressure
isotherms as a function of surface coverage were obtained for six copolymers with
different asymmetries. For the symmetric copolymer, the surface pressure isotherm

was essentially the same as for the homopolymer system, and the contribution of the



196

dangling block started to affect the isotherm for large values of the adsorbed amount

of A type monomers. For the asymmetric copolymers the corresponding surface pres-

sure isotherms deviated from that obtained for the h lymer. The excess surface
pressure for these copolymers was calculated and the results showed that this excess
pressure can be divided into two distinct regions. In the first. the excess surface
pressure can be well described by the analytic theories which predict a 5/3 power law
dependence of the pressure on the surface coverage. In the second region. however.
the power law dependence is much stronger than this predicted by analytic pictures.

The calculated power law d in the second regime are in semi-quantitative

with these obtained in the experi | studies of Kent et al [2] and
much higher than the values predicted by analytic theories and some recent numer-
ical studies [82. 104]. It was found that this rapid increase in the surface pressure
can be explained on the basis of the entropic interactions between the chains. This
entropic contribution to the surface pressure depends on both the asymmertry ratio
and the molecular weight of the adsorbed .4-block and is different from the entropic
interactions in the homopolymer/solvent system. The numerical studies of Grest [82]
and Carignano and Szleifer [104] consider only the dangling B-block. which may be

why their surface pressure isotherms are described by a lower values of the exponents.
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Chapter 6

Conclusions

The main goal of all the studies discussed in this thesis was to gain a better
understanding of the physical properties of polymer/solvent systems near surfaces
and interfaces. In particular, a major focus was on understanding the structure of
polymer layers, the effects of solvent quality, the interactions among the polymer
chains during compression and the behavior of polymer/solvent systems at the air-
liquid interface. In all the studies, the results obtained throngh the numerical SCF
theory were compared to the analytic predictions. as well as to experimental studies
on similar systems. This chapter summarizes and concludes the work presented in

this thesis. Extensions and prospective studies are also outlined.

6.1 Summary of the Results

The studies presented in this thesis are based on the numerical self consistent

field approach. The polymer configurations are idealized as space curves and the
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partition function is written as a functional integral over the domain of confignration
space. The introduction of the mean field approximation results in a set of conpled

equations for the density profiles of every If-consistent p and

a free energy expression written in terms of the densities and interaction parameters.

The polymer. either homopolymer or each block of copolymer. is characterized by the

degree of poly ization, Z, segment statistical length. by and the density of pure
material pox. The profiles for the polymers are calculated by solving the diffusion
equations for the polymer distribution functions, gi(r.7), subject to geometry and
the surface dependent initial and boundary conditions. The functions ¢;(r.7) are
proportional to the probability that a section of length 7 ends at r given thar ir
starts in the interface or somewhere in the solution. The potentials wp(r) which
modify the diffusion equation include enthalpic interactions between the molecules.
written in terms of the Flory interaction parameters, as well as interactions with the
surface, plus terms arising from the condition that there is no volume change upon
mixing.

In chapter 3, the properties of uncompressed polymer brushes formed by the
selective adsorption of the diblock copolymer or end-grafting and immersed either in
a good or O solvent were discussed. In the case of a brush in good solvent. three
regimes of stretching can be defined. The first is characterized by o* < 2. in which
the chains extend from the surface a distance on the order of R, of the free coil

in a solution. In this case neighboring chains do not overlap. This corresponds to
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the mushroom regime, in which the SCF theory and the lateral averaging parallel
to the surface are not suitable approximations. For 2 < o* < 20 the neighboring
chains start to overlap and begin to stretch away from the surface. This regime is
characteristic of many experiments in good solvent. To date the systems sticlied
by Auroy et al. [62. 56] and by Karim et al. [58] appear to be the only ones which
fall into the third, asymptotic regime, o* 2 20. The scaling dependences of the
thickness of the polymer brush on the degree of polymerization and surface coverage
predicted by the analytic theories can be applied only in the third regime. In the
regime 2 < o* < 20 the scaling dependences found in this thesis are much weaker
than predicted by analytical pictures, but are in very good agreement with the recent
experimental studies of Kent et al. [1. 2].

This agreement motivated the next part of the study. in which a detailed compar-
ison between the numerical SCF theory and the analytic pictures of polymer brushes
in good and © solvent conditions was carried out. In good solvent conditions it
was found that the numerically generated profiles extend further than those of the
parabola. All the profiles have a depletion layer and an exponential-like tail region.
The thickness of the end-grafted layer is about 50% thicker. and the maximum vol-
ume fraction is about 20% lower than in parabolic profile. The scaling relation of the
thickness of the brush with the surface coverage and the degree of polymerization is
significantly lower than that predicted analytically, but the difference becomes smaller

with increasing reduced surface concentration. o°. The free energy of the brush ob-
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tained in the numerical theory is about 25% higher than predicted by analytic theory.
The numerical results for the polymer brush in © solvent are in significantly better
agreement with the analytic predictions. However, the numerically obtained density
distributions still have characteristic depletion layers and tail regions, features which
are absent in the elliptic type of the profile proposed by the analytic pictures. The free
energy of the brush in a © solvent is in good agreement with the analytic predictions.
The onset of stretching for the polymer brush in a © solvent appears at a* 2 3.
Different modes of compression of polymer brushes either in good or © solvenr
in the direction perpendicular to the grafting surface were the subject of chaprer -L.
The main goals of these studies were to find a universal description of the long-range
force between the surfaces during the compression, and to analyze some very strong
assumptions made in the analytic theories. The analytic pictures assume that. dur-
ing the compression of the two identical polymer brushes. they do not interpenetrate:

thus this mode of ion would be equival to the c ssion of the single

polymer brush by a wall which is impenetrable for the chains and neutral for adsorp-
tion. Furthermore, the long range force between the surfaces can be described by the
product of the free energy of the uncompressed brush and some universal function
of the reduced distance which is defined as the ratio between the surfaces separarion
and the thickness of uncompressed polymer layer.

The numerical results differ from most of these assertions. For the compression of

the polymer brush in a good solvent by a bare repulsive surface, they are dispersed if
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plotted ding to the universal format by the analytic picture of MWC.

especially in the initial stage of compression. However. if only one value of o° is
considered, the numerical results collapse reasonably well to a single curve. Together.
these results imply that in this mode of compression it is mainly the tail region.
neglected in the analytic picture. which is deformed. However. all the free energy
difference curves do collapse to a single curve if plotted as a function of a simple
measure of the deformation, i.e., the ratio of the rms thicknesses of the compressed
and uncompressed total polymer density profiles. In this representation all three
modes of compression become equivalent. For a polymer brush in a good solvent.
the analytic theory underestimates the range of the force and its magunitude by a
factor of 2 in comparison with the numerical results. in good agreement with the
recent experimental observations. For the compression of two polymer brushes. the
numerical results predict the interpenetration of the opposing polymer layers during
compression. and are in very good agreement with MD simulations of Murat and Grest
[101]. For the compression of a polymer brush in a @ solvent the agreement berween
the numerical results and the extension of the MWC picture to different solvent
conditions [40] was satisfactory. However, the advantage of the analytic theory over

the numerical studies is lost since, even for the © solvent, there is no closed analytic

form and the results have to be obtained through the ical evaluati Asina

good solvent, the numerical results confirm the interpenetration effects neglected by

Shim and Cates [40].
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The final aspect of this thesis was a study of the lateral compression of poly-
mer layers. Both blocks of the diblock copolymer were incorporated within the SCF
treatment, and an effective external potential was introduced to model the adsorp-
tion of the polymer chains at the air-liquid interface. First a homopolymer/solvent
system was studied. Surface pressure isotherms were calculated as a function of the

surface and with i al observations. The isotherms for

this system were found to be independent of the degree of polvmerization of the ad-
sorbed homopolymer if the surface coverage was expressed in terms of the adsorbed
amount, 4, at least in the range of the molecular weights used in the numerical
studies.

Next, the diblock copolymer/solvent system was investigated. The adsorbing
block of copolymer and the solvent were the same as in the homopolymer/solvent
system. The calculated surface pressure isotherms as a function of the number of

A-type dsorbed at the i strongly on the asymmetry

of copolymer and also on the molecular weight of the A-block. For the symmetric
copolymer the isotherm was essentially the same as for the homopolymer althongh

differences occurred for large values of the surface concentration. The surface pressure

herms for the ic copol deviated strongly from the homopolymer

isotherm. As the asymmetry in block length increases the deviation from the ho-
mopolymer isotherm occurs at a lower surface concentration of the A-block.

The excess surface pressure for these copolymers was calculated. The analytic
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pictures predict that the surface pressure for such a system should scale as (1/5)**.
The MD and SCMF studies predict a slightly higher value for the exponent. Two
distinct regimes were found in the numerical results in this thesis. The excess surface
pressure was described reasonably well by this scaling in the first regime. but deviated
strongly from it in the second regime. A detailed analysis of the surface pressure
isotherms showed that the entropic contributions result in the rapid increase of the

surface pressure. The numerical calculations presented in this chapter are in semi-

ive with the i 1 results of Kent et al. [2]. which are the

only ones known to the author in which the rapid increase in AIl was observed.

6.2 Future Work

Polymer/solvent systems near surfaces and interfaces are far from being fully
understood. While the theoretical studies presented in this thesis were able to answer
a number of questions, there are many which remain to be addressed and resolved.

The SCF theory used throughout this dissertation can be extended and improved
in many different directions. More detailed modeling of interactions among all the
constituents, as well as interactions with the surface. can be investigated. The incor-

of fluc i ially at the tip of the brush where the polymer density

is low, will provide a more detail picture of the polymer layers during compression.
Finally, extensions of the model which allow for a non-uniform polymer density at the

free surface of the solvent, as well as the inclusion of a desorption mechanism. would
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lead to a better understanding of the systems studied in chapter 5. More detailed
and comprehensive studies are needed in order to reveal the scaling dependences of
the excess surface pressure on the asymmetry ratio and degrees of polymerization of
both blocks.

The structure and properties of the polymer layers can be studied in a variery
of different geometries and under the influence of different external fields. More
complicated architectures than linear diblock copolymers and polydisperse brushes
can be considered. These are only some examples of possible challenging future

projects.
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Appendix A

Computational Aspects of Calculations

In order to evaluate the density distributions of all the components of the sys-
tem, as well as the free energy for a given system. a self-consistent solution has to
be found. To do so, the original numerical program was written using Fortran 77.
modified further to the F90 standard, and optimized to minimize the time needed
to obtain the converged solution. The numerical calculations were performed on a
number of platforms. At Memorial University of Newfoundland the code was run on
Silicon Graphics R4000 Crimson workstations. a number of DEC' Alpha systems and a
Digital AlphaServer 4100. Through a scholarship provided by The High Performance
Computing Centere in Calgary, access was granted to the Fujitsu VPX240. which is
a vector supercomputer.

For a given system, which is specified by the values for Z,. Zp. . pog. poa. pos-
b, bp, and the Flory interaction parameters y.is. and xgs. as well as the external

potential. u//(z), an iterative procedure is used to obtain a self-consistent solution.
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To start the iterations, initial potentials, w™(z) = 0. are chosen. The next step

is the solution of the diffusion i for all the pra 2 5. qu(x. 7). which are

used in a particular problem. Then the corresponding density profiles are constrieted
through the proper convolution of propagators. The density profile for the solvenr
is determined by means of the incompressibility, which implies that the local volume
fractions of all components sum locally to unity everywhere. From all the profiles. new
potentials w;(z) are determined and a linear combination of the new and old potentials
is used to initiate the next iteration. As the convergence criterion. |w?(z)—w™'(x)] <
6 = 1077 for all z, and i is used, where w?*(z) is the self-consistent potential for i =4.8
obtained at the n** iteration.

The diffusion equation is solved via the Crank-Nicholson method [148] which is
unconditionally stable and is accurate to second order in both the “time” (7) and
spatial steps. The procedure is particularly efficient and can easily be generalized to
different boundary conditions used in this thesis.

In order to obtain the scaling relations, the non-linear least squares fitting routine
E04GEF provided by NAG [134] was used. E04GEF is applicable to problems of the
form

Minimize F(z) = i‘ Fa)? . (A1)
i=
where z = (zy,Za, ..., Z,) and m > n. where n is the number of fitted parameters.

and mn is the number of points a given quantity has be determined. The functions
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fi(z) are referred to as residuals, and if one looks for the fit of the form
G=a;2"%™, (A2)
then these residuals are defined as
filZ:.5:) =Gi — ) Z°EP . (A3)

This routine can be used if the functional form of the scaling relation is known. and
the Jacobian matrix of first derivatives gf:- at any point r can be determined.

For the data collapse when the functional dependence of a given quantity was not
a priori assumed, a similar method was used. However. in these cases the routine
EO04JAF, which does not require the Jacobian matrix. was used in fitting. This was

used for the long range force as a function of scaled distance in chapter 4.

To I the surface asa fi ion of the surface coverage. the deriva-
tive of the £ functional. Eq. (5.40). with respect to T is required. In all cases. the
functional £ was evaluated for equally spaced values of £ and this derivative could

be approximated by
Ll L) - L(E)
g, T LT

(Ad)
However. in order to take into account the fact that the functional £ has been evalu-
ated with finite accuracy and to include more than only two points in the evaluation
of the derivative, the routines EO2BCF, E02BEF supplied by NAG [134] were used.

The routine EO2BEF computes a cubic spline approximation, in the B-spline rep-

resentation, to an arbitrary set of data points. The knots of the spline are located
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automatically, but a single parameter must be specified to control the trade-off be-
tween closeness of fit and smoothness of fit. The values of the functional £ are on
order of 0.1 kgT/nm? for small values of 1/% to an order of 10 kgT/nm? for the
highest values of 1/¥. Performing many simulations with different grids in both

Cartesian and “time” space and using REAL*8 and REAL*16 representations for the

variables, the 'y of lations for the functional £ was estimated to be on
order of +0.0005 kgT/nm?. The value of the smoothness parameter. S, in all the
calculations was chosen to be on this order (usually S~0.0001). On successful exit
from the routine, the approximation returned is such that the sum of the squared
residuals is equal to the smoothing parameter. The output of the EO2BEF rourine

was used as an input to the E02BCF routine which evaluates the required derivarive.
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