

The Design of Class-EF2 Inverters using Multi-Objective

Optimization

By © Andrew Peddle

A Thesis submitted

to the School of Graduate Studies in partial fulfillment of the

requirements for the degree of

Master of Electrical Engineering

Memorial University of Newfoundland

May 2022

St. John’s Newfoundland and Labrador

ii

ABSTRACT

This thesis explores the use of multi-objective optimization algorithms for the design of high

frequency inverters. A state-space model of the ideal Class-EF2 inverter is derived and its accuracy

is validated by MATLAB and LTSpice simulation. The model is then applied to the Multi-

Objective Genetic Optimization (MOGO) and Multi-Objective Particle Swarm Optimization

(MOPSO) algorithms to design three inverters with varying output power, frequency, and load

requirements. The final designs are compared with analytical results to verify the optimization-

based design approach. The ideal state-space model is then extended to include the parasitic

elements of components, and further extended to consider the internal resistances and capacitances

of the switch. These new models are applied to the MOGO and MOPSO algorithms to design the

same three inverters as the ideal case. The final designs are simulated in LTSpice to evaluate their

performance, and comparisons are presented to demonstrate the effects of the parasitic elements

and switching dynamics on the component values and overall circuit operation. A design example

is also presented to demonstrate the design of a 6.78 MHz, 100W, 20 Ω Class-EF2 inverter, and

provide designers with insight on how to apply the proposed design approach to their own designs.

iii

ACKNOWLEDGEMENTS

I would like to thank my supervisor Dr. John Quaicoe for his patience, guidance, and financial

support which allowed me to perform this research. Without him, completion of this thesis would

not have been possible.

I would also like to thank Solace Power Inc. for providing me with a space to work and offering

their knowledge and expertise.

Finally, I would like to thank my parents and my partner for their love and support throughout my

studies. I couldn’t have done it without you.

iv

LIST OF TABLES

Table 2-1 Circuit Parameters for MATLAB and LTSpice Comparison 11

Table 2-2 Optimization Variables for the MOGO Based Design Approach 17

Table 2-3 Optimization Boundary Conditions 18

Table 2-4 Parameters for Tested Design Cases 21

Table 2-5 Optimal Design Factors for the Ideal Class-EF2 Inverter 22

Table 2-6 (a) Comparison of the Results of the Analytical and MOGO Design

Approaches: Design Case I

23

Table 2-6 (b) Comparison of the Results of the Analytical and MOGO Design

Approaches: Design Case II.

24

Table 2-6 (c) Comparison of the Results of the Analytical and MOGO Design

Approaches: Design Case III.

25

Table 2-7 MOGO Optimized Values for the Ideal Class-EF2 Inverter: Design

Case I

26

Table 2-8 MOGO Circuit Parameters for the Ideal Class-EF2 Inverter: Design

Case I

26

Table 2-9 MOGO Circuit Parameters for the Ideal Class-EF2 Inverter: Design

Case II and Design Case III

27

Table 2-10 (a) Comparison of the Results of the Analytical and MOPSO Design

Approaches: Design Case I

31

Table 2-10 (b) Comparison of the Results of the Analytical and MOPSO Design

Approaches: Design Case II.

32

Table 2-10 (c) Comparison of the Results of the Analytical and MOPSO Design

Approaches: Design Case III.

33

Table 2-11 MOPSO Optimized Circuit Parameters for the Ideal Class-EF2

Inverter: All Design Cases

34

Table 2-12 Comparison of the Results of the MOGO and MOPSO Design

Approaches

35

v

Table 3-1 Nominal Component Values and Parasitic Elements used for

LTSpice and MATLAB Simulation of the Parasitic Class-EF2

Inverter

46

Table 3-2 Comparison of the Results of the Ideal and Parasitic MOGO

Designs

49

Table 3-3 Comparison of the Component Values of the Ideal and Parasitic

MOGO Designs

50

Table 3-4 Demonstration of the Calculation of all Parasitic Elements for

Design Case I

51

Table 3-5 Values of all Parasitic Elements for Design Case II and Design Case

III

51

Table 3-6 Comparison of the Results of the Ideal and Parasitic MOPSO

Designs

52

Table 3-7 Comparison of the Component Values of the Ideal and Parasitic

MOPSO Designs

53

Table 3-8 Values of all Parasitic Elements for each Design Case: MOPSO 54

Table 3-9 Comparison of the Results of the MOGO and MOPSO Design

Approaches

55

Table 4-1 Internal Resistances of the EPC2019 Power MOSFET 65

Table 4-2 Averaged Internal Capacitance Values of the EPC2019 Using Ideal

MOGO Design Case II

66

Table 4-3 Internal Resistances and Capacitances for use with the MOGO and

MOPSO Design Approaches for the Complete Class-EF2 Inverter

69

Table 4-4 Comparison of the Results of the Parasitic and Practical MOGO

Designs

70

Table 4-5 Comparison of the Component Values of the Parasitic and Practical

MOGO Designs

71

Table 4-6 Values of all Parasitic Elements for each MOGO Design Case 72

Table 4-7 Comparison of the Results of the Parasitic and Practical MOPSO

Designs

73

Table 4-8 Comparison of the Component Values of the Parasitic and Practical

MOPSO Designs

74

vi

Table 4-9 Values of all Parasitic Elements for each MOPSO Design Case 74

Table 4-10 Comparison of the Results of the MOGO and MOPSO Design

Approaches

75

Table 5-1 Updated Optimization Boundary Conditions 81

Table 5-2 Optimized Values of Variables for the Ideal Design Example 81

Table 5-3 Component Values for the Ideal Design Example 82

Table 5-4 Internal Capacitances and Resistances for the Practical Design

Example

84

Table 5-5 Highest Scoring Variables for the Practical Design Example 84

Table 5-6 Component Values for the Practical Design Example 84

Table 5-7 LTSpice Simulation Results of the Practical Class-EF2 Inverter

Design Example

85

vii

LIST OF FIGURES

Figure 1-1 Class-E ZVS Inverter Circuit Diagram 2

Figure 1-2 Class-EFn (E/Fn) Inverter Circuit Diagram 3

Figure 2-1 Ideal Class-EF2 Inverter Circuit Diagram 8

Figure 2-2 (a)
Switch Voltage Comparison of the Ideal State-Space model with

LTSpice Simulation 12

Figure 2-2 (b)
Switch Current Comparison of the Ideal State-Space model with

LTSpice Simulation
13

Figure 2-2 (c)
Output Voltage Comparison of the Ideal State-Space model with

LTSpice Simulation
13

Figure 2-3 Flowchart of the MOGO Algorithm 16

Figure 2-4 Flowchart of the MOPSO Algorithm 30

Figure 2-5 (a)
Switch Voltage Waveform of the Parasitic Class-EF2 Inverter:

MOGO & MOPSO Design Case I
36

Figure 2-5 (b)
Switch Current Waveform of the Parasitic Class-EF2 Inverter:

MOGO & MOPSO Design Case I
36

Figure 2-5 (c)
Output Voltage Waveform of the Parasitic Class-EF2 Inverter:

MOGO & MOPSO Design Case I
36

Figure 2-6 (a)
Switch Voltage Waveform of the Parasitic Class-EF2 Inverter:

MOGO & MOPSO Design Case II
37

Figure 2-6 (b)
Switch Current Waveform of the Parasitic Class-EF2 Inverter:

MOGO & MOPSO Design Case II
37

Figure 2-6 (c)
Output Voltage Waveform of the Parasitic Class-EF2 Inverter:

MOGO & MOPSO Design Case II
37

Figure 2-7 (a)
Switch Voltage Waveform of the Parasitic Class-EF2 Inverter:

MOGO & MOPSO Design Case III
38

Figure 2-7 (b)
Switch Current Waveform of the Parasitic Class-EF2 Inverter:

MOGO & MOPSO Design Case III
38

Figure 2-7 (c)
Output Voltage Waveform of the Parasitic Class-EF2 Inverter:

MOGO & MOPSO Design Case III
38

viii

Figure 3-1
Model of Capacitor (Left) and Inductor (Right) with Parasitic

Elements
41

Figure 3-2 Circuit Diagram of the Class-EF2 Inverter with Parasitic Elements 41

Figure 3-3 (a)
Switch Voltage Waveform from the Parasitic State-Space Model vs.

LTSpice Simulation
47

Figure 3-3 (b)
Switch Current Waveform from the Parasitic State-Space Model vs.

LTSpice Simulation
47

Figure 3-3 (c)
Output Voltage Waveform from the Parasitic State-Space Model vs.

LTSpice Simulation
48

Figure 3-4 (a)
Switch Voltage Waveform of the Parasitic Class-EF2 Inverter:

MOGO & MOPSO Design Case I
56

Figure 3-4 (b)
Switch Current Waveform of the Parasitic Class-EF2 Inverter:

MOGO & MOPSO Design Case I
56

Figure 3-4 (c)
Output Voltage Waveform of the Parasitic Class-EF2 Inverter:

MOGO & MOPSO Design Case I
56

Figure 3-5 (a)
Switch Voltage Waveform of the Parasitic Class-EF2 Inverter:

MOGO & MOPSO Design Case II
57

Figure 3-5 (b)
Switch Current Waveform of the Parasitic Class-EF2 Inverter:

MOGO & MOPSO Design Case II
57

Figure 3-5 (c)
Output Voltage Waveform of the Parasitic Class-EF2 Inverter:

MOGO & MOPSO Design Case II
57

Figure 3-6 (a)
Switch Voltage Waveform of the Parasitic Class-EF2 Inverter:

MOGO & MOPSO Design Case III
58

Figure 3-6 (b)
Switch Current Waveform of the Parasitic Class-EF2 Inverter:

MOGO & MOPSO Design Case III
58

Figure 3-6 (c)
Output Voltage Waveform of the Parasitic Class-EF2 Inverter:

MOGO & MOPSO Design Case III
58

Figure 4-1 Switch Model for the Practical Class-EF2 Inverter 61

Figure 4-2 Circuit Model of the Practical Class-EF2 Inverter 61

Figure 4-3 Plots of Cds and Cgs Using Ideal MOGO Design Case II 66

ix

Figure 4-4 (a)
Switch Voltage Waveform of the Practical Class-EF2 Inverter State-

Space Model vs. LTSpice Simulation
67

Figure 4-4 (b)
Switch Current Waveform of the Practical Class-EF2 Inverter State-

Space Model vs. LTSpice Simulation
68

Figure 4-4 (c)
Output Voltage Waveform of the Practical Class-EF2 Inverter State-

Space Model vs. LTSpice Simulation
68

Figure 4-5 (a)
Switch Voltage Waveform of the Practical Class-EF2 Inverter:

MOGO & MOPSO Design Case I
76

Figure 4-5 (b)
Switch Current Waveform of the Practical Class-EF2 Inverter:

MOGO & MOPSO Design Case I
76

Figure 4-5 (c)
Output Voltage Waveform of the Practical Class-EF2 Inverter:

MOGO & MOPSO Design Case I
76

Figure 4-6 (a)
Switch Voltage Waveform of the Practical Class-EF2 Inverter:

MOGO & MOPSO Design Case II
77

Figure 4-6 (b)
Switch Current Waveform of the Practical Class-EF2 Inverter:

MOGO & MOPSO Design Case II
77

Figure 4-6 (c)
Output Voltage Waveform of the Practical Class-EF2 Inverter:

MOGO & MOPSO Design Case II
77

Figure 4-7 (a)
Switch Voltage Waveform of the Practical Class-EF2 Inverter:

MOGO & MOPSO Design Case III
78

Figure 4-7 (b)
Switch Current Waveform of the Practical Class-EF2 Inverter:

MOGO & MOPSO Design Case III
78

Figure 4-7 (c)
Output Voltage Waveform of the Practical Class-EF2 Inverter:

MOGO & MOPSO Design Case III
78

Figure 5-1
Switch Voltage and Switch Current Waveforms for the Ideal Design

Example
83

Figure 5-2 (a) Switch Voltage Waveform of the Practical Class-EF2 Design 85

Figure 5-2 (b) Switch Current Waveform of the Practical Class-EF2 Design 85

Figure 5-2 (c) Output Voltage Waveform of the Practical Class-EF2 Design 86

x

LIST OF ABBREVIATIONS AND SYMBOLS

AC – Alternating Current

DC – Direct Current

THD – Total Harmonic Distortion

GaN – Gallium Nitride

MOSFET – Metal-Oxide Semiconductor Field Effect Transistor

ZVS – Zero-Voltage Switching

ZDVS – Zero-Derivative Voltage Switching

MOGO – Multi-Objective Genetic Optimization

MOPSO – Multi-Objective Particle Swarm Optimization

MATLAB – Matrix Laboratory

WPT – Wireless Power Transmission

NSGA-II – Non-Dominated Sorting Genetic Algorithm II

ESR – Equivalent Series Resistance

ESL – Equivalent Series Inductance

R – Resistance

L – Inductance

C – Capacitance

τ – Temperature

Ts – Switching Period

t – Time

fs – Switching Frequency

η – Efficiency

xi

ℕ - Natural Numbers

ℝ - Real Numbers

A – Amperes

V – Volts

W – Watts

Ω – Ohms

H – Henrys

F – Farads

Hz – Hertz

xii

TABLE OF CONTENTS

Abstract ii

Acknowledgements iii

List of Tables iv

List of Figures vii

List of Abbreviations and Symbols x

Chapter 1: Introduction and Literature Review

 1.1 Background Information

 1.1.1 The Class-EF Inverter

 1.1.2 Multi-Objective Optimization

 1.2 Motivation

 1.3 Outline

1

1

3

5

6

6

Chapter 2: The Ideal Class-EF2 Inverter

 2.1 State-Space Modelling of the Ideal Class-EF2 Inverter

 2.2 Solving the model

 2.2.1 Simulation of the Ideal Class-EF2 Inverter

 2.2.2 Comparison of MATLAB and LTSpice Simulation Results

 2.3 Multi-Objective Genetic Optimization Algorithm

 2.3.1 Variables to be Optimized

 2.3.2 Boundary Conditions

 2.3.3 Objective and Constraint Functions

 2.3.4 Design Test Cases

 2.3.5 Optimal Design Factors Based on Analytical Design Procedure

 2.4 Design Results Using the MOGO Algorithm

 2.4.1 Determination of the Inverter Component Values from the MOGO

 Designs

 2.5 Multi-Objective Particle Swarm Optimization Algorithm

 2.5.1 Design Results Using the MOPSO Algorithm

 2.5.2 Determination of the Inverter Component Values from the MOPSO

 Designs

 2.6 Comparison of MOGO and MOPSO Design Approaches

 2.7 Summary

8

8

11

11

12

14

17

18

19

21

21

22

26

27

30

34

35

39

Chapter 3: The Parasitic Class-EF2 Inverter

 3.1 State-Space Model of the Class EF2 Inverter Including Parasitic Elements

 3.2 Solving the model

 3.2.1 Determination of the Parasitic Elements

 3.2.1.1 Parasitic Elements of Inductors

 3.2.1.2 Parasitic Elements of Capacitors

40

40

44

44

44

45

xiii

 3.2.2 Simulation of the Parasitic Class-EF2 Inverter

 3.2.3 Comparison of MATLAB and LTSpice Simulation Results

 3.3 Design Results Using the MOGO Algorithm

 3.3.1 Determination of the Inverter Component Values from the MOGO

 Designs

 3.3.1.1 Determination of the Parasitic Elements for the MOGO Designs

 3.4 Design Results Using the MOPSO Algorithm

 3.4.1 Determination of the Inverter Component Values from the MOPSO

 Designs

 3.4.1.1 Determination of the Parasitic Elements for the MOPSO Designs

 3.5 Comparison of MOGO and MOPSO Design Approaches

 3.6 Summary

46

46

48

50

50

52

53

54

54

59

Chapter 4: The Practical Class-EF2 Inverter

 4.1 State-Space model of the Parasitic Class-EF2 Inverter Including Switch

 Dynamics

 4.2 Solving the Model

 4.2.1 Determination of the Switching Dynamics

 4.2.1.1 Internal Resistances of the Switch

 4.2.1.2 Internal Capacitances of the Switch

 4.2.2 Simulation of the Practical Class-EF2 Inverter

 4.2.3 Internal Resistances and Capacitances for all Design Cases

 4.3 Design Results Using the MOGO Algorithm

 4.3.1 Determination of the Inverter Component Values from the MOGO

 Designs

 4.4 Results of the MOPSO Designs

 4.4.1 Determination of the Inverter Component Values from the MOGO

 Designs

 4.5 Comparison of MOGO and MOPSO Design Approaches

 4.6 Summary

60

60

64

64

64

65

67

69

70

71

72

73

75

79

Chapter 5: Multi-Objective Genetic Optimization Design Example

 5.1 Design Example Stage 1 – Setting up the Problem

 5.2 Design Example Stage 2 – Ideal Optimization

 5.3 Design Example Stage 3 – Determination of Suitable Switch

 5.4 Summary

80

80

81

83

86

Chapter 6: Conclusions and Future Work

 6.1 Contribution of the Thesis

 6.1.1 List of Publications

 6.2 Future Work

87

89

89

89

References 91

xiv

Appendices

 Appendix A

 Appendix B

 Appendix C

 Appendix D

 Appendix E

 Appendix F

94

94

101

112

124

128

131

1

CHAPTER 1

INTRODUCTION AND LITERATURE REVIEW

As wireless power transfer systems become more widely used, the need to quickly produce

efficient circuit designs has attracted attention. Class-E and Class-EF inverter topologies are often

used in these systems due to their high efficiency, low component count, minimal total harmonic

distortion (THD), and fast switching capabilities thanks to fast switching devices based on gallium

nitride (GaN) technology. Analysis of these topologies has been studied extensively in literature;

however, the design of the Class-EF inverter is often a tedious and iterative process, making it

challenging for designers to test their systems quickly and efficiently.

1.1 Background Information

The Class-E inverter has been the most efficient inverter for most megahertz frequency

applications ever since it was first proposed in 1975 [1] and has been studied extensively in the

literature [2]–[5]. The circuit diagram for the Class-E inverter is shown in Fig. 1-1.

The circuit contains a DC input voltage Vin, a choke inductor Lf, a shunt capacitor Cf, a power

MOSFET which acts as a switch, and a series resonant filter consisting of Ls, Cs, and a load

resistance RL. The choke inductor Lf is made high enough to ensure a DC input current, and the

loaded quality factor of the output filter QOut is made high enough to ensure the output voltage vo

is sinusoidal.

2

To ensure zero-voltage switching operation, the inverter switching frequency fs should be greater

than the resonant frequency fo of Ls and Cs [1]. It is useful to think of Ls as being the series

combination of two inductors L and Lres where L resonates with Cs as described in (1.2) and Lres is

the residual inductance needed to ensure zero-voltage switching (ZVS) operation. Some helpful

equations are shown in (1.1) to (1.3).

𝜔𝑜 = 2𝜋𝑓𝑜 =
1

√𝐿𝑠𝐶𝑠

 (1.1)

𝜔𝑠 = 2𝜋𝑓𝑠 =
1

√𝐿𝐶𝑠

 (1.2)

𝑄𝑂𝑢𝑡 =
𝜔𝑠𝐿𝑠

𝑅
=

𝜔𝑠(𝐿 + 𝐿𝑟𝑒𝑠)

𝑅
=

1

𝜔𝑠𝐶𝑠𝑅
+

𝜔𝑠𝐿𝑟𝑒𝑠

𝑅
 (1.3)

Despite its popularity in the field of power electronics, some of the main drawbacks of the Class-

E inverter are as follows:

• High voltage stress (>3.5),

• Strong second harmonic producing high switch and output voltage THD, and

Figure 1-1 – Class-E ZVS Inverter Circuit Diagram

3

• Sub-optimal operation when the load resistance is varied.

To improve the operation of the Class-E inverter, designs which maintain ZVS operation

regardless of the load resistance have been developed. The load independent Class-E inverter was

first proposed in 1990 [6] and has gathered much attention since then [7]–[9]. The prospect of

maintaining ZVS over a large range of load impedances is particularly useful in the field of

wireless power transfer, as the load is often variable in these systems.

1.1.1 The Class-EF Inverter

In 2002, a new topology of inverter was proposed which combined aspects of the Class-E amplifier

with the Class-F and F-1 amplifiers [10]. In some applications, this new family of inverters have

been shown to improve the efficiency, reduce the voltage stress, and lower the output voltage THD

of the Class-E inverter [10]–[15]. The circuit diagram of the Class-EFn (or E/Fn) inverter is shown

in Fig. 1-2.

Figure 1-2 – Class-EFn (E/Fn) Inverter Circuit Diagram

4

The new addition to the circuit is the series resonant branch containing Cmr and Lmr which are tuned

to resonate at nfs as described in eq. (1.14). The circuit is known as the Class-EFn inverter for even

values of n, and the Class-E/Fn inverter for odd values of n.

𝜔𝑚𝑟 = 𝑛 × 2𝜋𝑓𝑠 =
1

√𝐿𝑚𝑟𝐶𝑚𝑟

 ; 𝑛 ∈ ℕ, 𝑛 ≠ 1 (1.14)

In [11], a piecewise-linear state-space model was applied to determine relationships between

component values of the Class-E, Class-EF2 and Class-E/F3 inverters for ZVS and zero derivative

voltage switching (ZDVS) operation. This provided useful information about which duty cycles

maximized the output power capabilities of the Class-EF and Class-E/F family of inverters and

demonstrated the power of state-space modelling for switching converters.

In [12], the Class-Φ2 inverter was proposed which is a variation of the Class-EF2 inverter that uses

a finite choke in place of an infinite choke to increase the maximum frequency of the inverter. The

design process presented in the paper involves tuning the magnitude and phase of specific

impedances within the circuit to achieve the desired output power characteristics and ensure ZVS

operation.

In [14], closed form expressions for the Class-EF and Class-E/F inverters for any duty cycle and

any output filter quality factor were derived using circuit analysis. Design equations and

performance parameters were also presented for the Class-EF2 inverter which achieve maximum

power output capability and maximum frequency.

The Class-EF and Class-E/F family of inverters operate sub-optimally when the load resistance is

varied but like in the case of the Class-E inverter, load independent design methods were proposed

[7], [8]. However, the load-independent case is outside the scope of this thesis.

5

It has been shown that a higher throughput and a lower voltage stress can be achieved using the

Class-EF2 inverter over the traditional Class-E inverter [16]. However, the Class-EF2 inverter

requires a higher value of Vin, has a lower maximum frequency, and results in a more complex

design which is often a tedious, iterative process. All previous works have also considered the

circuit to be ideal, making it a challenge to implement in a practical setting.

1.1.2 Multi-Objective Optimization

Multi-objective optimization is often used to tackle complex engineering problems [17]–[20]. The

multi-objective genetic optimization (MOGO) algorithm and the multi-objective particle swarm

optimization (MOPSO) algorithm are commonly used and are accessible through MATLABs [21]

global optimization toolbox [22] or the MOPSO function [23].

In [17], the MOGO algorithm is implemented in combination with finite element analysis to aid

in the design of a permanent magnet synchronous motor. The MOGO algorithm successfully

improved the torque of the system while maintaining an acceptable level of efficiency thus

validating its use as a design method.

In [19], the MOPSO algorithm is implemented to determine the optimal operating frequency and

inductor size for a wireless power transfer system for car charging. The proposed design was

verified experimentally and provided helpful insight into the design of these systems.

In [20], two variations of the MOPSO algorithm are applied to the design of a water distribution

system and the results are compared. This work demonstrates the power of the MOPSO algorithm,

but also how widely the solutions can vary when modifications are made to the algorithm.

The MOGO and MOPSO algorithms both face similar challenges in their implementation. The

generation and population size will determine how quickly the solution converges but will also

6

have an impact on the optimization runtime. The choice of boundary conditions and constraint

functions, as well as genetic operators and particle swarm constants can also drastically change the

success of a design [20], [24]. Specific details on the MOGO and MOPSO algorithms will be

provided in Chapter 2.

1.2 Motivation

The design process of the ideal Class-EF2 inverter is often tedious, iterative, and complex. The

consideration of non-ideal components and switching elements is also lacking in the literature.

This makes it difficult for designers to test their circuit designs quickly and efficiently and requires

more tuning to implement the circuit in a practical setting.

In this thesis, a multi-objective optimization-based design approach is proposed for the Class-EF2

inverter. Three state-space models of varying complexity are derived and tested with both the

MOGO and the MOPSO algorithms. It is expected that the results will demonstrate the

effectiveness and versatility of the optimization-based design, which allows the parasitic elements

and switching dynamics of the circuit to be incorporated in the design of high frequency circuits.

1.3 Outline

Chapter 1 provides background information related to the thesis topic and provides an outline for

subsequent chapters.

In chapter 2, the state-space model of the ideal Class-EF2 inverter is derived and validated. Next,

details of the MOGO and MOPSO algorithms for the design of the inverter are provided. Both

algorithms are then used to design three circuits of varying frequency, power, and load

specifications. Each design is compared with published results to confirm their validity and

accuracy.

7

In chapter 3, the parasitic elements of the components in the Class-EF2 inverter are considered in

the derivation of the state-space model. Methods for estimating the value of each parasitic element

are described, and the state-space model is validated by comparison and LTSpice simulation [25].

The MOGO and MOPSO algorithms are then used to design the same three circuits presented in

the previous chapter with the new state-space model. The results demonstrate the importance of

considering the parasitic elements when designing high-frequency circuits.

In chapter 4, the state-space model is further extended to consider the dynamics of the switching

device. Methods for estimating the value of the internal resistances and capacitances are described,

and the state-space model is once again validated by comparison and LTSpice simulation. The

MOGO and MOPSO algorithms are then used to design the same three circuits as the previous

chapters once again demonstrating the importance of considering the switch during the design

process.

In chapter 5, a design example is presented which uses the MOGO algorithm to design a 6.78

MHz, 100W, 20Ω Class-EF2 inverter. This demonstrates the ease-of-use of the optimization-based

design approach and shows how the boundary conditions can be restricted to eliminate solutions

known to be inferior.

Chapter 6 concludes the thesis and highlights potential future work that can be undertaken to

improve and extend the optimization-based design approach to other circuit topologies.

8

CHAPTER 2

THE IDEAL CLASS-EF2 INVERTER

In this chapter, a state-space model of the ideal Class-EF2 inverter is derived. The validity of this

model is confirmed by comparison with LTSpice simulation. Details of the MOGO and MOPSO

algorithms for the design of the inverter are provided including the variables and boundary

conditions, as well as the objective and constraint functions.

Both algorithms are used to design three circuits with differing frequency, power, and load

specifications. Each design is tested and simulated in LTSpice, and comparisons are made with

published results to demonstrate their validity and accuracy.

2.1 State-Space Modelling of the Ideal Class-EF2 Inverter

To test and validate the optimization-based design approach, the state-space model of the ideal

Class-EF2 inverter was derived, the circuit model of which is shown in Fig. 2-1.

Figure 2-1 – Ideal Class-EF2 Inverter Circuit Diagram

9

State-space modelling is a powerful tool when analyzing complex systems since the dynamics are

represented as a system of linear equations. The Class-EF2 inverter contains multiple inductors and

capacitors, thus making state-space representation a desirable choice. Its solution can also be

obtained using trivial matrix operations, making it a good choice for the proposed optimization-

based design approach.

To analyze the circuit, the switch is replaced by a variable resistor rsw which acts as an approximate

short circuit during the ON-state, and an approximate open circuit during the OFF-state where Ts

is the switching period of the inverter.

𝑟𝑠𝑤(𝑡) = {
𝑟𝑜𝑛 = 10 𝑚Ω , 𝑛𝑇𝑠 ≤ 𝑡 < (𝑛 + 𝐷)𝑇𝑠

𝑟𝑜𝑓𝑓 = 1 𝑀Ω , (𝑛 + 𝐷)𝑇𝑠 ≤ 𝑡 < (𝑛 + 1)𝑇𝑠
 , 𝑡 ≥ 0 , 𝑡 ∈ ℝ , 𝑛 ∈ ℕ (2.1)

Standard state-space representation is used where the state vector X is made up of the capacitor

voltages and the inductor currents, and the input U is the source voltage as shown in (2.2) and

(2.3).

𝐗 = [𝑣𝐶𝑓
𝑣𝐶𝑚𝑟

𝑣𝐶𝑠
𝑖𝐿𝑓

𝑖𝐿𝑚𝑟
𝑖𝐿𝑠]

𝑇
 (2.2)

𝐔 = 𝑉𝑖𝑛 (2.3)

To create the state matrices, differential equations for each state variable must first be derived in

terms of the other state variables. This process is presented in (2.4) - (2.9).

𝑑𝑣𝐶𝑓

𝑑𝑡
=

𝑖𝐶𝑓

𝐶𝑓
=

𝑖𝐿𝑓
− 𝑖𝐿𝑚𝑟

− 𝑖𝐿𝑠
− 𝑖𝑆𝑤

𝐶𝑓
 (2.4)

𝑑𝑣𝐶𝑚𝑟

𝑑𝑡
=

𝑖𝐶𝑚𝑟

𝐶𝑚𝑟
=

𝑖𝐿𝑚𝑟

𝐶𝑚𝑟
 (2.5)

𝑑𝑣𝐶𝑠

𝑑𝑡
=

𝑖𝐶𝑠

𝐶𝑠
=

𝑖𝐿𝑠

𝐶𝑠
 (2.6)

10

𝑑𝑖𝐿𝑓

𝑑𝑡
=

𝑣𝐿𝑓

𝐿𝑓
=

𝑉𝑖𝑛 − 𝑣𝐶𝑓

𝐿𝑓
 (2.7)

𝑑𝑖𝐿𝑀𝑅

𝑑𝑡
=

𝑣𝐿𝑚𝑟

𝐿𝑚𝑟
=

𝑣𝐶𝑓
− 𝑣𝐶𝑚𝑟

𝐿𝑚𝑟
 (2.8)

𝑑𝑖𝐿𝑠

𝑑𝑡
=

𝑣𝐿𝑠

𝐿𝑠
=

𝑣𝐶𝑓
+ 𝑖𝐿𝑠

𝑅𝐿 − 𝑣𝐶𝑠

𝐿𝑠
 (2.9)

The final step is to represent (2.4) to (2.9) in the following form, where A, B, C, and D are the

state matrices, �̇� is the derivative of (2.2), and 𝐘 is the output vector.

�̇� = 𝐴(𝑡)𝐗 + 𝐵𝐔 (2.10)

𝐘 = 𝐶𝐗 + 𝐷𝐔 (2.11)

This circuit produces a 6th order single input multiple output (SIMO) system. The state vectors and

matrices are defined in (2.12) to (2.15).

𝐴(𝑡) =

[

−1 𝐶𝑓𝑟𝑠𝑤(𝑡)⁄ 0 0 1 𝐶𝑓⁄ −1 𝐶𝑓⁄ −1 𝐶𝑓⁄

0 0 0 0 1 𝐶𝑀𝑅⁄ 0

0 0 0 0 0 1 𝐶𝑠⁄

−1 𝐿𝑓⁄ 0 0 0 0 0

1 𝐿𝑀𝑅⁄ −1 𝐿𝑀𝑅⁄ 0 0 0 0

1 𝐿𝑠⁄ 0 −1 𝐿𝑠⁄ 0 0 𝑅𝐿 𝐿𝑠⁄]

 (2.12)

𝐵 = [0 0 0 1 𝐿𝑓⁄ 0 0]𝑇 (2.13)

𝐶 = 𝐼6 (2.14)

𝐷 = 0⃑ (2.15)

Equations (2.12) and (2.13) contain the circuit components of the ideal Class-EF2 inverter, I6 in

(2.14) represents the 6th order identity matrix, and 0⃑ in (2.15) represents the zero vector. As can

be seen, the system can also be classified as continuous time-varying due to the variable resistor

model of the switch which changes in time based on the switching period and the inverter duty

11

cycle. It is helpful to think of the system as having two separate state matrices – Aon and Aoff –

which represent the system during the switch on and off states as described in (2.16) and (2.17).

𝐴𝑜𝑛 = 𝐴(𝑡)|𝑟𝑠𝑤(𝑡)=𝑟𝑜𝑛
 (2.16)

𝐴𝑜𝑓𝑓 = 𝐴(𝑡)|𝑟𝑠𝑤(𝑡)=𝑟𝑜𝑓𝑓
 (2.17)

2.2 Solving the model

To determine the steady-state values of all state-variables, the system is simulated for roughly 20us

using the technique described above with Aon and Aoff to quickly generate solutions. After this, the

system is fully solved using a resolution of 300 samples/cycle for analysis. The calculations are

performed using equations (2.18) to (2.20) [16].

𝑋(𝑡) = 𝑋𝑛(𝑡) + 𝑋𝑓(𝑡) (2.18)

𝑋𝑛(𝑡) = 𝑒𝐴𝑡𝑋(0) (2.19)

𝑋𝑓(𝑡) = ∫ 𝑒𝐴(𝑡−𝜏)𝐵𝑈(𝜏) 𝑑𝜏
𝜏

𝑜

= 𝐴−1(𝑒𝐴𝑡 − 𝐼6)𝐵 (2.20)

Where Xn is the natural response matrix and Xf is the forced response matrix.

2.2.1 Simulation of the Ideal Class-EF2 Inverter

The state-space model is simulated using the component values from a previously completed

design, given in Table 2-1 [26]. The component values were substituted into the system equations

of (2.10) to (2.15) in MATLAB. The circuit was then constructed and simulated in LTSpice.

Table 2-1 – Circuit Parameters for MATLAB and LTSpice Comparison

Lf 54.40 uH Cf 147.94 pF

LMR 89.04 nH CMR 96.70 pF

Ls 501.43 nH Cs 80.30 pF

D 0.3637 Vin 32.33 V

fs 27.12 MHz RL 7 Ω

12

2.2.2 Comparison of MATLAB and LTSpice Simulation Results

A comparison of the resulting switch voltage, switch current, and output voltage waveforms from

both simulations is shown in Figs. 2.2 (a-c). The plots demonstrate the accuracy of the ideal state-

space model.

Figure 2-2 (a) – Switch Voltage Comparison of the Ideal State-Space model with LTSpice

Simulation

13

Figure 2-2 (b) – Switch Current Comparison of the Ideal State-Space model with LTSpice

Simulation

Figure 2-2 (c) – Output Voltage Comparison of the Ideal State-Space model with LTSpice

Simulation

14

The state-space model is a perfect representation of the behaviour of the Class-EF2 inverter and

can therefore be used to develop a design approach for the Class-EF2 inverter.

2.3 Multi-Objective Genetic Optimization (MOGO) Algorithm

For each design case, the gamultiobj function in MATLABs global optimization toolbox was used.

This is a controlled, elitist genetic algorithm which is a variant of the NSGA-II [27]. This type of

algorithm favors increased diversity in the population, not relying solely on fitness value which

helps avoid getting stuck in local minima. The general loop of the gamultiobj function for this

application is presented below [22], and an accompanying flowchart is shown in Figure 2-3.

Initialization

• Generate an initial population of component values: The population matrix is of

size 𝑛 × 𝑚 where n is the defined population size and m is the number of variables

which represent the duty cycle D, the input voltage Vin, the input inductance Lf, the

filter capacitance Cf, and various factors which relate to the other inductors and

capacitors in the circuit.

• Pass each member of the population to the fitness function: The member is a vector

of size 1 × 𝑚 and contains all the necessary information to solve the state-space model

of the Class-EF2 inverter. The fitness function will return a vector of size 1 × 𝑙 where

l is the number of objective and constraint functions which are described in detail in

Section 2.3.3.

• Evaluate the population based on the objective and constraint functions: The

gamultiobj function evaluates the population based on its objective and constraint

function performance and assigns each member a rank.

15

All Subsequent Iterations

• Select parents for the next generation: The selection process is done using binary

tournament and is based on the rank of each population member. Rank is directly linked

to dominance, meaning members that are non-dominated or that are dominated by a

small percentage of the population are ranked lower and members that are dominated

by a large percentage of the population are ranked higher. Members of lower rank have

a better chance of being selected as parents.

• Use the selected parents to create children: This process uses the mutation and

crossover genetic operators. Mutation will randomly change the value of a single

element in one of the parents (i.e., randomly change the value of a single inductor but

leave all other component values the same). Crossover will randomly swap some values

of two parent members resulting in two unique children (i.e., child 1 might have the

voltage and duty cycle of parent 1 and the inductor and capacitor values of parent 2,

and child 2 would have the opposite). Mutation is used to help maintain diversity in the

population, while crossover is used to improve searching [24].

• Evaluate the children based on the objective and constraint functions: The

gamultiobj function scores the children based on their objective and constraint function

performance.

• Create the extended population: This is done by combining the current population

and the children into a single matrix of size (𝑛 + 𝑐) × 𝑚 where c is the number of

children.

16

• Trim the extended population: The population is trimmed back to size 𝑛 × 𝑚 by

removing some members from each rank. This helps maintain diversity in the

population as opposed to keeping only the best solutions in each iteration.

To determine an appropriate generation and population size, it is useful to consider the

computational cost defined in (2.21).

𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝐶𝑜𝑠𝑡 = # 𝑜𝑓 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 × 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑆𝑖𝑧𝑒 (2.21)

A higher computational cost will increase the runtime of the optimization, but a lower

computational cost might not arrive at an acceptable solution. This presents the designer with a

trade-off between the time invested and the quality of the circuit design.

After experimenting with various combinations of population and generation size, and consulting

with experts in the field, a population size of 525 with 100 generations was found to be the most

suitable for this application. These values provided acceptable results while keeping runtimes

reasonably low across all design cases. Code for the ideal Class-EF2 fitness function and the

MOGO initialization function is provided in Appendix A and Appendix D respectively.

Figure 2-3 – Flowchart of the MOGO Algorithm

17

2.3.1 Variables to be Optimized

In the design of the Class-EF2 inverter, appropriate selection of key variables will lead to the

complete design of the inverter by the optimization algorithm. For the Class EF2 inverter, the

variables of interest are shown in Table 2-2.

Table 2-2 – Optimization Variables for the MOGO Based Design Approach

Variable Definition

D Duty Cycle

Lf Input choke inductance

Cf Switch filter capacitor

k Scalar multiple relating Cf and CMR

Qout Output filter quality factor

𝑥𝐿𝑆𝐶𝑆
 Resonant frequency factor for Ls and Cs

Vin Input voltage of the circuit

These variables fully define the Class-EF2 inverter. By using k, Qout and 𝑥𝐿𝑆𝐶𝑆
 rather than inductor

and capacitor values the overall search space is reduced and more insight is provided to the

designer. Cf, LMR, CMR, Ls and Cs are related by (2.22) to (2.25), where fs is the switching frequency

of the inverter:

𝑘 =
𝐶𝑓

𝐶𝑚𝑟
 (2.22)

2 × 2𝜋𝑓𝑠 =
1

√𝐿𝑀𝑅𝐶𝑀𝑅

 (2.23)

𝑄𝑜𝑢𝑡 =
√𝐿𝑠 𝐶𝑠⁄

𝑅
 (2.24)

𝑥𝐿𝑆𝐶𝑠
× 2𝜋𝑓𝑠 =

1

√𝐿𝑆𝐶𝑆

 (2.25)

As can be seen from (2.22), the resonant tank containing LMR and CMR is designed to resonate at

the 2nd harmonic of fs, hence the factor 2 in (2.22). This is a property of the Class-EF2 inverter.

18

Equation (2.24) defines the resonant frequency factor for the output filter containing Ls and Cs to

allow for a residual reactance, Xres.

2.3.2 Boundary Conditions

To ensure that the search space for the optimization process is limited to acceptable values,

boundary conditions are enforced on each variable. The boundary conditions are presented in

Table 2-3.

Table 2-3 – Optimization Boundary Conditions

Variables 𝑫 𝑳𝒇 [𝝁𝑯] 𝑪𝒇 [𝒑𝑭] 𝒌 𝑸𝑶𝒖𝒕 𝒙𝑳𝑺𝑪𝑺
 𝑽𝒊𝒏 [𝑽]

Upper

Boundary
0.8 100 5000 5 8 5 72

Lower

Boundary
0.2 0.01 0.5 0.2 2 0.2 12

The boundary conditions were chosen to ensure impractical solutions were avoided. Values of 𝑉𝑖𝑛

outside of this range would be impractical for the power requirements of the tested design cases,

and values of 𝑄𝑂𝑢𝑡 outside of this range would be ignored due to their effect on the THD and

efficiency of the circuit.

The other boundary conditions were selected with known optimal values in mind. For example,

since k is optimally between 0.8 and 1.6 [14] the upper and lower boundaries were selected to

ensure the search space wasn’t too restricting. This same logic was used for determining the upper

and lower boundaries of 𝑥𝐿𝑆𝐶𝑆
 and D.

The upper and lower boundaries of Lf and Cf can be tuned to meet the needs of the designer based

on the desired switching frequency and availability of components.

19

2.3.3 Objective and Constraint Functions

To ensure the best overall circuit design, five objective functions to be minimized were

implemented:

• The losses in the circuit to maximize efficiency,

• The voltage across the switch at 𝑡 = (𝑛𝑖 + 𝐷)𝑇𝑠,

• The current through the switch and capacitor Cf at 𝑡 = (𝑛𝑗 + 𝐷)𝑇𝑠,

• The Total Harmonic Distortion (THD) of the load voltage, and

• The error between the desired output power and the calculated output power.

These objective functions are implemented mathematically in (2.26) to (2.30) using the state-

variables where i represents the cycle which produced the worst-case switch voltage and j

represents the cycle which produced the worst-case switch current during switching transitions.

They are then normalized to values between 0 and 1 as this is a requirement for the gamultiobj

function.

𝑂𝑏𝑗1 =

(1 −
𝑖𝐿𝑠𝑅𝑀𝑆

2𝑅

𝑉𝑖𝑛𝑖𝐿𝑓𝐴𝑉𝐺

)

(1 − 𝜂𝑀𝑖𝑛)

(2.26)

𝑂𝑏𝑗2 =
𝑣𝐶𝑓

((𝑛𝑖 + 𝐷)𝑇𝑠)

𝑣𝐶𝑓𝑀𝑎𝑥

 (2.27)

𝑂𝑏𝑗3 =
𝑖𝐿𝑓

((𝑛𝑗 + 𝐷)𝑇𝑠) − 𝑖𝐿𝑀𝑅
((𝑛𝑗 + 𝐷)𝑇𝑠) − 𝑖𝐿𝑠

((𝑛𝑗 + 𝐷)𝑇𝑠)

(𝑖𝐿𝑓
− 𝑖𝐿𝑀𝑅

− 𝑖𝐿𝑠
)𝑀𝑎𝑥

 (2.28)

𝑂𝑏𝑗4 =
𝑇𝐻𝐷(𝑖𝐿𝑠

𝑅𝐿)

𝑇𝐻𝐷𝑀𝑎𝑥
 (2.29)

20

𝑂𝑏𝑗5 =
|𝑖𝐿𝑠𝑅𝑀𝑆

2𝑅𝐿 − 𝑃𝑂𝑢𝑡𝐷𝑒𝑠𝑖𝑟𝑒𝑑
|

𝑃𝑂𝑢𝑡𝐷𝑒𝑠𝑖𝑟𝑒𝑑

 (2.30)

To ensure the optimizer avoids undesirable solutions, constraint functions were implemented:

• Voltage across the switch should not drop below 0. Since (2.27) only checks the switch

voltage at a specific time, this constraint ensures a non-negative switch voltage for the

entire cycle.

• The ripple of the input current should not exceed 10% of its mean value. This constraint

ensures that the input current is relatively DC.

• Current through the switch and capacitor 𝐶𝑓 should not oscillate at high frequency. For

some combinations of component values the switch current looked like a decaying sinusoid

and produced a low score for (2.28). This constraint ensures that these types of solutions

are unacceptable and hence ignored.

• Efficiency should not drop below the defined minimum 𝜂𝑀𝑖𝑛. This ensures that (2.26) is

always in the range of 0 to 1. If the efficiency is less than 𝜂𝑀𝑖𝑛, objective function (2.26)

will automatically be given a score of 1.

• THD should not exceed the defined maximum 𝑇𝐻𝐷𝑀𝑎𝑥. This ensures that (2.29) is always

in the range of 0 to 1. If the THD is greater than 𝑇𝐻𝐷𝑀𝑎𝑥, objective function (2.29) will

automatically be given a score of 1.

• Output power should not exceed twice the desired output power. This ensures that (2.30)

is always in the range of 0 to 1. If the output power is greater than twice the desire output

power, objective function (2.30) will automatically be given a score of 1.

These constraint functions are trivial to check once the model has been solved and an FFT analysis

has been completed on the switch current waveform.

21

2.3.4 Design Test Cases

Three different design cases, each with varied power, frequency, and load requirements were used

throughout the thesis to test the optimization algorithms. The specific values of each case are

shown in Table 2-4.

Table 2-4 – Parameters for Tested Design Cases

Design 𝒇𝒔 [𝑴𝑯𝒛] 𝑹𝑳 [Ω] 𝑷𝑶𝒖𝒕 [𝑾]

I 6.78 5 23

II 13.56 10 40

III 27.12 7 25

2.3.5 Optimal Design Factors Based on Analytical Design Procedure

The published results of an analytical design procedure [14] is used as a basis for validating the

proposed optimization design approach presented in this chapter. In the published results, two

operating limits, namely maximum power-output capability (Max cp) and maximum switching

frequency capability (Max f) were determined for eight design factors for the Class-EF2 inverter.

It was shown in [14] that for lower switching frequencies (i.e., fs < 8 MHz), the inverter operated

efficiently at Max cp, while the inverter operated efficiently under Max f for higher frequencies.

These optimal design factors are listed in Table 2-5.

22

Table 2-5 – Optimal Design Factors for the Ideal Class-EF2 Inverter [14]

Factors 𝑴𝒂𝒙 𝒄𝒑 𝑴𝒂𝒙 𝒇

D 0.375 0.372

𝑘 =
𝐶𝑓

𝐶𝑀𝑅
 0.867 1.567

𝑞2 =
1

𝜔
√

𝐶𝑓 + 𝐶𝑀𝑅

𝐶𝑓𝐶𝑀𝑅𝐿𝑀𝑅
 2.935 2.560

1
𝜔𝑅𝐿𝐶𝑓

⁄ 7.585 5.686

1
𝜔𝑅𝐿𝐶𝑀𝑅

⁄ 6.576 8.910

𝑐𝑝 =
𝑃𝑂𝑢𝑡

𝑉𝑆𝑡𝑟𝑒𝑠𝑠 × 𝐼𝑆𝑡𝑟𝑒𝑠𝑠
 0.1323 0.120

𝑉𝑆𝑡𝑟𝑒𝑠𝑠 2.316 2.243

𝐼𝑆𝑡𝑟𝑒𝑠𝑠 3.263 3.719

2.4 Design Results Using the MOGO Algorithm

Using the procedure and information presented in Section 2.2, the results of the MOGO design are

obtained and compared with the analytical design approach. Tables 2-6 a-c show the comparative

values for the three design cases.

23

Table 2-6 (a) – Comparison of the Results of the Analytical and MOGO Design Approaches: Design

Case I

Factors

Design Case I

Max cp

Analytical Values MOGO Design Percentage Difference

𝐷 0.375 0.406 7.94%

𝑘 0.867 0.823 5.20%

𝑞2 2.935 2.977 1.41%

1

𝜔𝑅𝐿𝐶𝑓
 7.585 6.980 8.31%

1

𝜔𝑅𝐿𝐶𝑀𝑅
 6.576 5.745 13.49%

𝑐𝑝 0.132 0.128 3.58%

𝑉𝑆𝑡𝑟𝑒𝑠𝑠 2.316 2.540 9.22%

𝐼𝑆𝑡𝑟𝑒𝑠𝑠 3.263 3.136 3.96%

24

Table 2-6 (b) – Comparison of the Results of the Analytical and MOGO Design Approaches: Design

Case II.

Factors

Design Case II

Max f

Analytical Values MOGO Design Percentage Difference

𝐷 0.372 0.370 0.46%

𝑘 1.567 1.408 10.12%

𝑞2 2.560 2.615 2.17%

1

𝜔𝑅𝐿𝐶𝑓
 5.686 5.365 5.65%

1

𝜔𝑅𝐿𝐶𝑀𝑅
 8.910 7.556 15.19%

𝑐𝑝 0.120 0.125 4.43%

𝑉𝑆𝑡𝑟𝑒𝑠𝑠 2.243 2.241 0.10%

𝐼𝑆𝑡𝑟𝑒𝑠𝑠 3.719 3.523 5.27%

25

Table 2-6 (c) – Comparison of the Results of the Analytical and MOGO Design Approaches: Design

Case III.

Factors

Design Case III

Max f

Analytical Values MOGO Design Percentage Difference

𝐷 0.372 0.394 6.00%

𝑘 1.567 1.472 6.08%

𝑞2 2.560 2.592 1.25%

1

𝜔𝑅𝐿𝐶𝑓
 5.686 5.961 4.85%

1

𝜔𝑅𝐿𝐶𝑀𝑅
 8.910 8.774 1.52%

𝑐𝑝 0.120 0.122 1.90%

𝑉𝑆𝑡𝑟𝑒𝑠𝑠 2.243 2.337 4.16%

𝐼𝑆𝑡𝑟𝑒𝑠𝑠 3.719 3.484 6.33%

It is observed that for each design case the percentage differences between the analytical values

and the MOGO algorithm are at an acceptable level. Each design factor was within 10% of the

expected value, the main outlier being the 1 𝜔𝑅𝐿𝐶𝑚𝑟⁄ design factor for design case I and design

case II. The analytical design factors assume that the loaded quality factor of the output filter is

high enough to ensure a sinusoidal output waveform. However, since Qout is limited by the

optimizer this might not always be the case.

26

2.4.1 Determination of the Inverter Component Values from the MOGO Designs

To demonstrate how the Class-EF2 component values are determined, the optimized values obtained

for design case I (shown in Table 2.7) are substituted into (2.22) to (2.25). The process for

calculating the actual circuit parameters is presented in Table 2-8.

Table 2-7 – MOGO Optimized Values for the Ideal Class-EF2 Inverter: Design Case I

Variable 𝑫 𝑳𝒇 [𝝁𝑯] 𝑪𝒇 [𝒑𝑭] 𝒌 𝑸𝑶𝒖𝒕 𝒙𝑳𝑺𝑪𝑺
 𝑽𝒊𝒏 [𝑽]

Value 0.406 39.17 672.59 0.823 6.19 0.865 23.93

Table 2-8 – MOGO Circuit Parameters for the Ideal Class-EF2 Inverter: Design Case I

Parameter Calculation

𝐿𝑓 [𝜇𝐻] 𝐿𝑓 = 39.171

𝐿𝑚𝑟 [𝑛𝐻] 𝐿𝑚𝑟 =
1

22 × 4𝜋2𝑓𝑠2𝐶𝑚𝑟
= 168.57

𝐿𝑠 [𝑛𝐻] 𝐿𝑠 =
𝑄𝑂𝑢𝑡𝑅𝐿

𝑥𝐿𝑠𝐶𝑠
× 2𝜋𝑓𝑠

= 837.44

𝐶𝑓 [𝑝𝐹] 𝐶𝑓 = 672.591

𝐶𝑚𝑟 [𝑝𝐹] 𝐶𝑚𝑟 =
𝐶𝑓

𝑘
= 817.20

𝐶𝑠 [𝑝𝐹] 𝐶𝑠 =
1

𝑥𝐿𝑠𝐶𝑠

2 × 4𝜋2𝑓𝑠2𝐿𝑠

= 880.34

𝑉𝑖𝑛 [𝑉] 𝑉𝑖𝑛 = 23.931

𝐷 𝐷 = 0.4061

1 Directly obtained from the optimizer

27

The component values for Design Case II and Design Case III are presented in Table 2-9.

Table 2-9 – MOGO Circuit Parameters for the Ideal Class-EF2 Inverter: Design Case II and Design

Case III

Design Case II Design Case III

Parameter Value Parameter Value

𝐿𝑓 [𝜇𝐻] 55.19 𝐿𝑓 [𝜇𝐻] 49.36

𝐿𝑚𝑟 [𝑛𝐻] 221.71 𝐿𝑚𝑟 [𝑛𝐻] 90.11

𝐿𝑠 [𝑛𝐻] 934.94 𝐿𝑠 [𝑛𝐻] 245.77

𝐶𝑓 [𝑝𝐹] 218.79 𝐶𝑓 [𝑝𝐹] 140.63

𝐶𝑚𝑟 [𝑝𝐹] 155.34 𝐶𝑚𝑟 [𝑝𝐹] 95.55

𝐶𝑠 [𝑝𝐹] 174.40 𝐶𝑠 [𝑝𝐹] 166.98

𝑉𝑖𝑛 [𝑉] 35.37 𝑉𝑖𝑛 [𝑉] 21.12

𝐷 0.370 𝐷 0.394

2.5 Multi-Objective Particle Swarm Optimization (MOPSO) Algorithm

The MOPSO design approach uses the MOPSO function written by Victor Martinez-Cagigal [23]

which is based on the work done in [28], [29]. However, since this is a basic implementation of

the MOPSO algorithm a function for constraint handling as well as an equation for calculating the

inertia coefficient as described in [20] were also implemented. This significantly improved the

performance of the MOPSO algorithm as it encourages more exploration of the search space and

ensures that only feasible solutions are stored in the repository. The general process of the MOPSO

algorithm for this application is presented below along with an accompanying flowchart shown in

Figure 2-4.

28

Initialization

• Generate an initial population of particles with random position and zero velocity:

The initial population is a matrix of size 𝑛 × 𝑚 where n is the defined population size

and m is the number of variables which represent the duty cycle D, the input voltage

Vin, the input inductance Lf, the filter capacitance Cf, and various factors which relate

to the other inductors and capacitors in the circuit. The position of each particle is

equivalent to the value of each variable, and the velocity of each particle determines

how much the value of each variable will change every iteration.

• Pass the initial population to the fitness function: The initial population is passed to

an intermediate function which separates the matrix into a set of 1 × 𝑚 particle sets,

calls the fitness function n times, and stores the fitness values and constraint violations

in an 𝑛 × 𝑙 matrix where l is the number of objective and constraint functions. This

matrix is then returned to the MOPSO function for evaluation.

• Evaluate the initial population and check for constraint violations: The fitness

function values of each particle set are evaluated based on the domination and the

number of constraint violations.

• Save non-dominated solutions to the repository: The particle sets which are non-

dominated and which contain the lowest number of constraint violations are saved in

the repository as described in [20].

All Subsequent Iterations

• Select a leader: A leader is selected from the repository using a roulette wheel

selection.

29

• Update the velocities and positions of all particles in the population: The velocity

and position of each particle is updated per the following equation where s is the

velocity, w is the inertia coefficient, H1 and H2 are confidence factors, z1 and z2 are

randomly generated numbers between 0 and 1, pbest is the particle’s personal best

position, Gbest is the best position of the entire swarm, and p is the particles position.

𝑠𝑖+1 = 𝑤𝑖𝑠𝑖 + 𝐻1𝑧1(𝑝𝑏𝑒𝑠𝑡 − 𝑝𝑖) + 𝐻2𝑧2(𝐺𝑏𝑒𝑠𝑡 − 𝑝𝑖) (2.31)

Using this velocity vector, the position of each particle is updated using the following

equation.

𝑝𝑖+1 = 𝑝𝑖 + 𝑠𝑖+1 (2.32)

• Perform mutation on the population: The particle set undergoes mutation to

generate the next population.

• Enforce boundary conditions: Boundary conditions are enforced on the new

population so that any particle whose new position is outside the boundary will be

placed at the edge before being passed to the fitness function.

• Pass the new population to the fitness function: As above.

• Evaluate the new population and check for constraint violations: As above.

• Update the repository: As above.

30

In Section 2.6 a comparison between the MOGO and MOPSO design approaches is presented. To

ensure a fair comparison, a constant computational cost is used. The MOGO had a population size

of 525 with 100 generations resulting in a computational cost of 52,500.

In the case of the MOPSO algorithm, a population size of 150 with 350 generations was found to

yield the same computational cost of 52,500 and was the most suitable values for this application.

All other parameters (variables, objective functions, constraint functions, and boundary

conditions) remained the same as in the MOGO case presented in sections 2.3.1 to 2.3.5. The

MOPSO initialization function and associated functions are provided in Appendix E and Appendix

F.

2.5.1 Design Results Using the MOPSO Algorithm

Using the procedure and information presented in Sections 2.3.1 to 2.3.5, the results of the MOPSO

design are obtained and compared with the analytical design approach. Tables 2-10 (a-c) show the

comparative values for the three design cases.

Figure 2-4 – Flowchart of the MOPSO Algorithm

31

Table 2-10 (a) – Comparison of the Results of the Analytical and MOPSO Design Approaches:

Design Case I

Factors

Design Case I

Max f

Analytical Values MOPSO Design Percentage Difference

𝐷 0.372 0.361 2.99%

𝑘 1.567 2.349 49.88%

𝑞2 2.560 2.388 6.71%

1

𝜔𝑅𝐿𝐶𝑓
 5.686 4.937 13.16%

1

𝜔𝑅𝐿𝐶𝑀𝑅
 8.910 11.596 30.15%

𝑐𝑝 0.120 0.116 3.21%

𝑉𝑆𝑡𝑟𝑒𝑠𝑠 2.243 2.188 2.46%

𝐼𝑆𝑡𝑟𝑒𝑠𝑠 3.719 3.872 4.11%

32

Table 2-10 (b) – Comparison of the Results of the Analytical and MOPSO Design Approaches:

Design Case II.

Factors

Design Case II

Max f

Analytical Values MOPSO Design Percentage Difference

𝐷 0.372 0.392 5.54%

𝑘 1.567 2.468 57.49%

𝑞2 2.560 2.371 7.38%

1

𝜔𝑅𝐿𝐶𝑓
 5.686 5.529 2.76%

1

𝜔𝑅𝐿𝐶𝑀𝑅
 8.910 13.644 53.14%

𝑐𝑝 0.120 0.116 3.43%

𝑉𝑆𝑡𝑟𝑒𝑠𝑠 2.243 2.250 0.28%

𝐼𝑆𝑡𝑟𝑒𝑠𝑠 3.719 3.801 2.21%

33

Table 2-10 (c) – Comparison of the Results of the Analytical and MOPSO Design Approaches:

Design Case III.

Factors

Design Case III

Max f

Analytical Values MOPSO Design Percentage Difference

𝐷 0.372 0.3658 6.99%

𝑘 1.567 2.500 59.53%

𝑞2 2.560 2.366 7.56%

1

𝜔𝑅𝐿𝐶𝑓
 5.686 4.777 15.99%

1

𝜔𝑅𝐿𝐶𝑀𝑅
 8.910 11.941 34.02%

𝑐𝑝 0.120 0.117 2.38%

𝑉𝑆𝑡𝑟𝑒𝑠𝑠 2.243 2.166 3.45%

𝐼𝑆𝑡𝑟𝑒𝑠𝑠 3.719 3.900 4.87%

It is observed that for each design case the MOPSO method selected high values of k which

influenced the associated design factors. Since the THD of the output voltage waveform is

considered an optimization objective function, the algorithm favors higher values of k since it was

shown in [14] that this reduces the harmonic content of current 𝑖𝐿𝑚𝑟
.

Since k is directly proportional to Lmr and thus also directly proportional to the size of its equivalent

series resistance, it is believed that the MOPSO algorithm will perform better in future testing

where the parasitic elements of components are considered.

34

2.5.2 Determination of the Inverter Component Values from the MOPSO Designs

The component values for the three design cases are presented in Table 2-11 below. All parameters

were calculated using the process presented in Section 2.4.1.

Table 2-11 – MOPSO Optimized Circuit Parameters for the Ideal Class-EF2 Inverter: All Design

Cases

Design Case I Design Case II Design Case III

Parameter Value Parameter Value Parameter Value

𝐿𝑓 [𝜇𝐻] 34.18 𝐿𝑓 [𝜇𝐻] 46.30 𝐿𝑓 [𝜇𝐻] 43.01

𝐿𝑚𝑟 [𝑛𝐻] 340.26 𝐿𝑚𝑟 [𝑛𝐻] 400.37 𝐿𝑚𝑟 [𝑛𝐻] 122.64

𝐿𝑠 [𝑛𝐻] 857.93 𝐿𝑠 [𝑛𝐻] 997.29 𝐿𝑠 [𝑛𝐻] 352.27

𝐶𝑓 [𝑝𝐹] 950.88 𝐶𝑓 [𝑝𝐹] 212.29 𝐶𝑓 [𝑝𝐹] 175.51

𝐶𝑚𝑟 [𝑝𝐹] 404.87 𝐶𝑚𝑟 [𝑝𝐹] 86.02 𝐶𝑚𝑟 [𝑝𝐹] 70.21

𝐶𝑠 [𝑝𝐹] 765.04 𝐶𝑠 [𝑝𝐹] 155.83 𝐶𝑠 [𝑝𝐹] 112.33

𝑉𝑖𝑛 [𝑉] 19.21 𝑉𝑖𝑛 [𝑉] 30.37 𝑉𝑖𝑛 [𝑉] 22.65

𝐷 0.361 𝐷 0.392 𝐷 0.366

35

2.6 Comparison of MOGO and MOPSO Design Approaches

Each design was simulated in LTSpice using the component values listed in Tables 2-8, 2-9 and 2-

11. The results of the parameters of interest from the simulations are recorded in Table 2-12. The

output voltage THD is calculated using the first 7 harmonics, and the efficiency, voltage stress, and

current stress are defined in (2.31) to (2.33) where all values were taken directly from LTSpice. The

waveforms of the switch voltage, switch current, and output voltage from LTSpice simulations of

the MOGO (green) and MOPSO (blue) designs are shown in Figs. 2.3 (a-c), 2-4 (a-c), and 2-5 (a-

c).

𝜂 =
𝑃𝑂𝑢𝑡

𝑃𝐼𝑛

 (2.31)

𝑉𝑆𝑡𝑟𝑒𝑠𝑠 =
𝑉𝑆𝑤Max

𝑉𝑖𝑛
 (2.32)

𝐼𝑆𝑡𝑟𝑒𝑠𝑠 =
𝐼𝑆𝑤𝑀𝑎𝑥

𝐼𝐼𝑛
 (2.33)

Table 2-12 – Comparison of the Results of the MOGO and MOPSO Design Approaches

Parameter Design Case I Design Case II Design Case III

𝑃𝑂𝑢𝑡𝐷𝑒𝑠𝑖𝑟𝑒𝑑
 [𝑊] 23 23 40 40 25 25

𝑃𝑂𝑢𝑡𝐴𝑐𝑡𝑢𝑎𝑙
 [𝑊] 23.898 24.132 38.47 37.98 26.53 24.93

𝜂 99.87% 99.77% 99.84% 99.84% 99.70% 99.27%

𝑉𝑆𝑡𝑟𝑒𝑠𝑠 2.540 2.188 2.241 2.250 2.337 2.166

𝐼𝑆𝑡𝑟𝑒𝑠𝑠 3.136 3.872 3.523 3.801 3.484 3.900

𝑄𝑂𝑢𝑡 6.169 6.698 7.322 8.000 5.481 8.000

𝑇𝐻𝐷 4.43% 2.36% 2.32% 2.08% 3.23% 1.86%

Despite the variation in component values obtained from the MOGO and MOPSO design

algorithms, each circuit scored very well in the measured values of interest. The minimum

36

efficiency was 99.27% and occurred during MOPSO design case III, the THD of the output voltage

waveform never exceeded 5% with most of the designs maintaining a THD of less than 2.5%.

Figure 2-5 (a) – Switch Voltage Waveform of the Parasitic Class-EF2 Inverter: MOGO (Green)

& MOPSO (Blue) Design Case I

Figure 2-5 (b) – Switch Current Waveform of the Parasitic Class-EF2 Inverter: MOGO (Green)

& MOPSO (Blue) Design Case I

Figure 2-5 (c) – Output Voltage Waveform of the Parasitic Class-EF2 Inverter: MOGO (Green)

& MOPSO (Blue) Design Case I

37

Figure 2-6 (a) – Switch Voltage Waveform of the Parasitic Class-EF2 Inverter: MOGO (Green)

& MOPSO (Blue) Design Case II

Figure 2-6 (b) – Switch Current Waveform of the Parasitic Class-EF2 Inverter: MOGO (Green)

& MOPSO (Blue) Design Case II

Figure 2-6 (c) – Output Voltage Waveform of the Parasitic Class-EF2 Inverter: MOGO (Green)

& MOPSO (Blue) Design Case II

38

The above figures showcase the success of the optimization-based design approach for the ideal

case. In each design case, the circuit maintained ZVS and ZDVS operation to an acceptable level

of error and had relatively sinusoidal output voltage waveforms.

Figure 2-7 (a) – Switch Voltage Waveform of the Parasitic Class-EF2 Inverter: MOGO (Green)

& MOPSO (Blue) Design Case III

Figure 2-7 (b) – Switch Current Waveform of the Parasitic Class-EF2 Inverter: MOGO (Green)

& MOPSO (Blue) Design Case III

Figure 2-7 (c) – Output Voltage Waveform of the Parasitic Class-EF2 Inverter: MOGO (Green)

& MOPSO (Blue) Design Case III

39

2.7 Summary

In Chapter 2, the design of the ideal Class-EF2 inverter was investigated. A state-space model was

derived and tested using MATLAB, and it was shown to provide an accurate representation of the

operation of the circuit by comparison with LTSpice simulation.

The state-space model was then used with both the MOGO and MOPSO algorithms to design three

circuits with differing frequency, power, and load specifications. It was shown that the proposed

optimization-based design approaches provided comparable results with previously determined

analytical values and successfully designed each circuit to the stated specifications.

40

CHAPTER 3

THE PARASITIC CLASS-EF2 INVERTER

In this chapter, the proposed optimization design approaches introduced in Chapter 2 are extended

to the design of the Class-EF2 inverter which considers the parasitic elements of the components.

A state-space model that includes the parasitic elements of the Class-EF2 inverter is presented. The

validity of this model is confirmed by comparison with LTSpice simulation. First, an approach for

determining the parasitic elements is described. This is followed by a comparison of the switch

voltage waveforms from the solution of the state-space model in MATLAB and LTSpice

simulation.

The developed model with the parasitic elements is tested with the MOGO and MOPSO design

approaches for the three design cases presented in the previous chapter. The results demonstrate

the importance of considering parasitic elements in high frequency circuit designs and further

validate the optimization-based design approach.

3.1 State-Space Model of the Class EF2 Inverter Including Parasitic Elements

In the previous analysis and studies of the Class-EF2 inverter, the components in the circuit were

considered ideal. In this section, the parasitic elements of the components are accounted for in

developing the state-space model of the circuit. The inductors and capacitors are replaced with

their parasitic models as shown in Fig. 3-1. Each capacitor now has an added equivalent series

resistance (ESR), Rs and an equivalent series inductance (ESL), Ls. Each inductor now has an

added equivalent series resistance (ESR), Rx as well as a parallel winding capacitance, Cx.

41

The circuit model of the Class-EF2 inverter including the parasitic elements is shown in Fig. 3-2.

The switch is represented by its ON and OFF resistances as stated in (2.1).

Using the same procedure as outlined in Section 2.1, the state vector X is made up of the capacitor

voltages and the inductor currents, and the source voltage Vin is represented by the state vector U,

as shown in (3.1) and (3.2).

𝐗 = [𝑣𝐶𝑓
𝑣𝐶𝑚𝑟

𝑣𝐶𝑠
𝑣𝐶𝐿𝑓

𝑣𝐶𝐿𝑚𝑟
𝑣𝐶𝐿𝑠

𝑖𝐿𝑓
𝑖𝐿𝑚𝑟

𝑖𝐿𝑠
𝑖𝐿𝐶𝑓

𝑖𝐿𝐶𝑚𝑟
𝑖𝐿𝐶𝑠]

𝑇
 (3.1)

𝐔 = 𝑉𝑖𝑛 (3.2)

The differential equations for each state variable are derived in terms of the other state variables.

This process is presented in (3.3) to (3.14).

Figure 3-1 – Model of Capacitor (Left) and Inductor (Right) with Parasitic Elements

Figure 3-2 – Circuit Diagram of the Class-EF2 Inverter with Parasitic Elements

42

𝑑𝑣𝐶𝑓

𝑑𝑡
=

𝑖𝐶𝑓

𝐶𝑓
=

𝑖𝐿𝐶𝑓

𝐶𝑓

(3.3)

𝑑𝑣𝐶𝑀𝑅

𝑑𝑡
=

𝑖𝐶𝑚𝑟

𝐶𝑚𝑟
=

𝑖𝐿𝐶𝑚𝑟

𝐶𝑚𝑟

(3.4)

𝑑𝑣𝐶𝑠

𝑑𝑡
=

𝑖𝐶𝑠

𝐶𝑠
=

𝑖𝐿𝐶𝑠

𝐶𝑠

(3.5)

𝑑𝑣𝐶𝐿𝑓

𝑑𝑡
=

𝑖𝐶𝐿𝑓

𝐶𝐿𝑓

=
𝑉𝑖𝑛 − 𝑣𝐶𝐿𝑓

+ 𝑟𝑠𝑤(𝑖𝐿𝐶𝑓
+ 𝑖𝐿𝐶𝑚𝑟

+ 𝑖𝐿𝐶𝑠
− 𝑖𝐿𝑓

)

𝑟𝑠𝑤𝐶𝐿𝑓

(3.6)

𝑑𝑣𝐶𝐿𝑀𝑅

𝑑𝑡
=

𝑖𝐶 (
𝐿𝑀𝑅

𝑡)

𝐶𝐿𝑀𝑅

=
𝑖𝐿𝐶𝑚𝑟

− 𝑖𝐿𝑚𝑟

𝐶𝐿𝑚𝑟

(3.7)

𝑑𝑣𝐶𝐿𝑠

𝑑𝑡
=

𝑖𝐶𝐿
(

𝑠
𝑡)

𝐶𝐿𝑠

=
𝑖𝐿𝐶𝑠

− 𝑖𝐿𝑠

𝐶𝐿𝑠

(3.8)

𝑑𝑖𝐿𝑓

𝑑𝑡
=

𝑣𝐿𝑓
(𝑡)

𝐿𝑓
=

𝑣𝐶𝐿𝑓
− 𝑖𝐿𝑓

𝑟𝐿𝑓

𝐿𝑓

(3.9)

𝑑𝑖𝐿𝑀𝑅

𝑑𝑡
=

𝑣𝐿𝑀𝑅
(𝑡)

𝐿𝑀𝑅
=

𝑣𝐶𝐿𝑚𝑟
− 𝑖𝐿𝑚𝑟

𝑟𝐿𝑚𝑟

𝐿𝑚𝑟

(3.10)

𝑑𝑖𝐿𝑠

𝑑𝑡
=

𝑣𝐿𝑠
(𝑡)

𝐿𝑠
=

𝑣𝐶𝐿𝑠
− 𝑖𝐿𝑠

𝑟𝐿𝑠

𝐿𝑠

(3.11)

𝑑𝑖𝐿𝐶𝑓

𝑑𝑡
=

𝑣𝐿𝐶
(

𝑓
𝑡)

𝐿𝐶𝑓

=
𝑉𝑖𝑛 − 𝑣𝐶𝑓

− 𝑣𝐶𝐿𝑓
− 𝑖𝐿𝐶𝑓

𝑟𝐶𝑓

𝐿𝐶𝑓

(3.12)

𝑑𝑖𝐿𝐶𝑀𝑅

𝑑𝑡
=

𝑣𝐿𝐶
(

𝑀𝑅
𝑡)

𝐿𝐶𝑀𝑅

=
𝑉𝑖𝑛 − 𝑣𝐶𝑚𝑟

− 𝑣𝐶𝐿𝑓
− 𝑣𝐶𝐿𝑚𝑟

− 𝑖𝐿𝐶𝑚𝑟
𝑟𝐶𝑚𝑟

𝐿𝐶𝑚𝑟

(3.13)

𝑑𝑖𝐿𝐶𝑠

𝑑𝑡
=

𝑣𝐿𝐶
(

𝑠
𝑡)

𝐿𝐶𝑠

=
𝑉𝑖𝑛 − 𝑣𝐶𝑠

− 𝑣𝐶𝐿𝑓
− 𝑣𝐶𝐿𝑠

− 𝑖𝐿𝐶𝑠
(𝑅𝐿 + 𝑟𝐶𝑠

)

𝐿𝐶𝑠

(3.14)

Substituting (3.3) to (3.14) into (2.10) and (2.11) produces a 12th order SIMO system. The state

vectors and matrices are defined in (3.15) to (3.18).

43

𝐴 =

[

 0 0 0 0 0 0 0 0 0

1

𝐶𝑓

0 0

0 0 0 0 0 0 0 0 0 0
1

𝐶𝑀𝑅

0

0 0 0 0 0 0 0 0 0 0 0
1

𝐶𝑠

0 0 0
−1

𝑟𝑆𝑤𝐶𝐿𝑓

0 0
−1

𝐶𝐿𝑓

0 0
1

𝐶𝐿𝑓

1

𝐶𝐿𝑓

1

𝐶𝐿𝑓

0 0 0 0 0 0 0
−1

𝐶𝐿𝑀𝑅

0 0
1

𝐶𝐿𝑀𝑅

0

0 0 0 0 0 0 0 0
−1

𝐶𝐿𝑠

0 0
1

𝐶𝐿𝑠

0 0 0
1

𝐿𝑓

0 0
−𝑟𝐿𝑓

𝐿𝑓

0 0 0 0 0

0 0 0 0
1

𝐿𝑀𝑅

0 0
−𝑟𝐿𝑀𝑅

𝐿𝑀𝑅

0 0 0 0

0 0 0 0 0
1

𝐿𝑠

0 0
−𝑟𝐿𝑠

𝐿𝑠

0 0 0

−1

𝐿𝐶𝑓

0 0
−1

𝐿𝐶𝑓

0 0 0 0 0
−𝑟𝐶𝑓

𝐿𝐶𝑓

0 0

0
−1

𝐿𝐶𝑀𝑅

0
−1

𝐿𝐶𝑀𝑅

−1

𝐿𝐶𝑀𝑅

0 0 0 0 0
−𝑟𝐶𝑀𝑅

𝐿𝐶𝑀𝑅

0

0 0
−1

𝐿𝐶𝑠

−1

𝐿𝐶𝑠

0
−1

𝐿𝐶𝑠

0 0 0 0 0
−(𝑟𝐶𝑠

+ 𝑅)

𝐿𝐶𝑠]

 (3.15)

𝐵 = ቈ0 0 0
1

𝑟𝑆𝑤𝐶𝐿𝑓

0 0 0 0 0
1

𝐿𝐶𝑓

1

𝐿𝐶𝑀𝑅

1

𝐿𝐶𝑠

𝑇

 (3.16)

𝐶 = 𝐼12 (3.17)

𝐷 = 0⃑ (3.18)

Equations (3.15) and (3.16) contain the circuit components of the parasitic Class-EF2 Inverter, I12

in (3.17) represents the 12th order identity matrix, and 0⃑ in (3.18) represents the zero vector. The

order of the state-space system has doubled from the addition of the parasitic elements.

44

3.2 Solving the model

3.2.1 Determination of the Parasitic Elements

To determine the parasitic elements of the Class-EF2 inverter, the following assumptions are made:

• Inductor Lf has a constant ESR of 220 mΩ based on data sheet information of similar sized

inductors [30], [31] and contains at least 10 turns,

• Inductors Lmr and Ls have a quality factor of 150 and contain at least 10 turns,

• All capacitors have a constant ESR of 50 mΩ based on data sheet information of similar

sized capacitors [32].

3.2.1.1 Parasitic Elements of Inductors

The ESR of inductors Lmr and Ls were calculated using (3.7) by assuming a constant inductor

quality factor of 150 as recommended by experts in the field.

𝑟𝐿 =
𝜔𝐿

𝑄
=

2𝜋𝑓𝑠𝐿

150
 (3.7)

The parasitic capacitance (or stray capacitance) Cs was approximated using the process presented

in [33] with a combination of AWG 16 and AWG 18 wires, as well as T68-6 and T50-6 RF toroidal

cores. The turn-to-turn capacitance can be approximated using (3.8) where parameter 𝜃∗ is defined

in (3.9). If the inductor contains at least 10 turns, the overall parasitic capacitance converges as

shown in (3.10) [33].

𝐶𝑡𝑡 = 𝐶𝑡𝑡𝑐 + 𝐶𝑡𝑡𝑔 = 𝜀0𝑙𝑡 [
𝜀𝑟𝜃

∗

ln (
𝐷𝑜

𝐷𝑐
)
+ cot (

𝜃∗

2
) − cot (

𝜋

12
)]

(3.8)

𝜃∗ = arccos(1 −
𝑙𝑛 (

𝐷𝑜

𝐷𝑐
)

𝜀𝑟
)

(3.9)

45

𝐶𝑠 = 1.366𝐶𝑡𝑡 (3.10)

In the above equations, 𝑙𝑡, 𝐷𝑜, 𝐷𝑐, 𝜀0, 𝜀𝑟 are properties of the core and conductor, and 𝐶𝑡𝑡𝑐 and

𝐶𝑡𝑡𝑔 represent the capacitances of the middle and side parts of the proposed basic cell model [3].

Under this assumption, the value of Cx varied between 1.95 pF and 2.26 pF depending on the wire

and toroid combination. Due to the small variance of this value, inductors Lmr and Ls were assumed

to have an average 2.1 pF parasitic capacitance to reduce the number of calculations performed by

the optimizer during each iteration. The parasitic capacitance of inductor Lf was calculated using

the same method with a T106-2 toroidal core. This resulted in an average parasitic capacitance of

3.35 pF.

3.2.1.2 Parasitic Elements of Capacitors

The ESR for all capacitors was assumed to be 50 mΩ based on observations from RF capacitor

data sheets [32].

The parasitic inductance of each capacitor was approximated from manufacturer datasheets using

provided self-resonant frequency (SRF) plots. Equation (3.11) is used to calculate any parasitic

inductance Lc where L2 and C2 are constant points on the SRF plot, m is the estimated slope which

is assumed to be constant in all calculations, and C is the nominal capacitance value (Cf, Cmr, or

Cs) [32].

𝐿𝐶 = 10
(log(𝐿2)−(

log(𝐶2)−log (𝐶)
𝑚

))
≈ 10

(−9.897−(
−9.699−log (𝐶)

−7.213
))

(3.11)

Equation (3.11) produces parasitic inductance values in the range of 100 pH to 300 pH depending

on the size of capacitor C.

46

3.2.2 Simulation of the Parasitic Class-EF2 Inverter

To validate the state-space model of the parasitic Class-EF2 inverter, the results from ideal MOGO

Design Case II are used to solve the state-space model. The values of the parameters including the

parasitic elements are shown in Table 3-1. The circuit is then fully defined and simulated in

LTSpice for comparison.

Table 3-1 – Nominal Component Values and Parasitic Elements used for LTSpice and MATLAB

Simulation of the Parasitic Class-EF2 Inverter

Parameter Nominal Value ESR Parasitic Element

𝐿𝑓 49.37 220 mΩ 3.35 pF

𝐿𝑚𝑟 249.64 141.80 mΩ 2.1 pF

𝐿𝑠 723.25 410.80 mΩ 2.1 pF

𝐶𝑓 214.95 50 mΩ 125.44 pH

𝐶𝑚𝑟 137.96 50 mΩ 133.94 pH

𝐶𝑠 247.91 50 mΩ 123.00 pH

𝐷 0.3721 - -

𝑉𝑖𝑛 38.22 - -

3.2.3 Comparison of MATLAB and LTSpice Simulation Results

A comparison of the resulting switch voltage, switch current, and output voltage waveforms from

both simulations are shown in Fig. 3-3 (a-c). The plots demonstrate the accuracy of the parasitic

state-space model.

47

Figure 3-3 (a) – Switch Voltage Waveform from the Parasitic State-Space Model vs. LTSpice

Simulation

Figure 3-3 (b) – Switch Current Waveform from the Parasitic State-Space Model vs. LTSpice

Simulation

48

Figures 3-3 (a-c) validate the accuracy of the parasitic Class-EF2 inverter state-space model. They

also demonstrate the impact of the parasitic elements on the operation of the circuit as it no longer

exhibits ZVS or ZDVS operation, and there is significant ringing in the switch current waveform.

3.3 Design Results Using the MOGO Algorithm

The MOGO design method was tested using the three design cases presented in Table 2-4. The

results of the MOGO designs are obtained and compared with the ideal model. Table 3-2 shows

the comparative values for each design case. Code for the Parasitic Class-EF2 fitness function can

be found in Appendix B.

Figure 3-3 (c) – Output Voltage Waveform from the Parasitic State-Space Model vs. LTSpice

Simulation

49

Table 3-2 - Comparison of the Results of the Ideal and Parasitic MOGO Designs

Factors

Design Case I Design Case II Design Case III

Ideal Parasitic Ideal Parasitic Ideal Parasitic

𝐷 0.406 0.394 0.370 0.357 0.394 0.393

𝑘 0.823 1.133 1.408 1.712 1.472 1.128

𝑞2 2.977 2.744 2.615 2.517 2.592 2.747

1

𝜔𝑅𝐿𝐶𝑓
 6.980 6.587 5.365 5.390 5.961 6.503

1

𝜔𝑅𝐿𝐶𝑀𝑅
 5.745 7.463 7.556 9.230 8.774 7.336

𝑐𝑝 0.128 0.117 0.125 0.113 0.122 0.111

𝑉𝑆𝑡𝑟𝑒𝑠𝑠 2.540 2.280 2.241 2.210 2.337 2.314

𝐼𝑆𝑡𝑟𝑒𝑠𝑠 3.136 3.385 3.523 3.727 3.484 3.496

The factors for Design Case I and Design Case III are both very similar selecting values of k falling

roughly halfway between the max cp and max f design procedures. Design Case II was a near

perfect match with the max f case, however.

50

3.3.1 Determination of the Inverter Component Values from the MOGO Designs

The nominal values of all components were calculated as shown in 2.4.1, the values of which are

shown in Table 3-3.

Table 3-3 - Comparison of the Component Values of the Ideal and Parasitic MOGO

Designs

Parameter

Design Case I Design Case II Design Case III

Ideal Parasitic Ideal Parasitic Ideal Parasitic

𝐿𝑓 [𝜇𝐻] 39.17 38.05 55.19 74.75 49.36 42.57

𝐿𝑚𝑟 [𝑛𝐻] 168.57 218.99 221.71 270.83 90.11 75.34

𝐿𝑠 [𝑛𝐻] 837.44 890.74 934.94 545.32 245.77 203.08

𝐶𝑓 [𝑝𝐹] 672.59 712.79 218.79 217.75 140.63 128.91

𝐶𝑚𝑟 [𝑝𝐹] 817.20 629.08 155.34 127.16 95.55 114.28

𝐶𝑠 [𝑝𝐹] 880.34 766.33 174.40 347.8 166.98 225.20

𝑉𝑖𝑛 [𝑉] 23.93 21.88 35.37 37.41 21.12 25.66

𝐷 0.406 0.394 0.370 0.357 0.394 0.393

Notable differences occur in most component values showcasing the effect of the parasitic

elements on the design of the Class-EF2 inverter. Design Case II and Design Case III see a

significant reduction in the value of Ls likely due to its large impact on the circuit efficiency with

the added ESR. In each design case, the changes to Cf and Cmr can be attributed to the variance in

k.

3.3.1.1 Determination of the Parasitic Elements for the MOGO Designs

A demonstration of the calculation of all parasitic elements for Design Case I is presented in Table

3-4. The parasitic elements for Design Case II and Design Case III are presented in Table 3-5.

51

Table 3-4 – Demonstration of the Calculation of all Parasitic Elements for Design Case I

Parameter Calculation

𝐿𝐶𝑓
 [𝑝𝐻]

𝐿𝐶𝑓
= 10

(−9.897−(
−9.699−log (𝐶𝑓)

−7.213
))

= 106.23

𝐿𝐶𝑚𝑟
 [𝑝𝐻]

𝐿𝐶𝑚𝑟
= 10

(−9.897−(
−9.699−log (𝐶𝑚𝑟)

−7.213
))

= 108.09

𝐿𝐶𝑠
 [𝑝𝐻]

𝐿𝐶𝑠
= 10

(−9.897−(
−9.699−log (𝐶𝑠)

−7.213
))

= 105.17

𝑟𝐿𝑚𝑟
 [𝑚Ω] 𝑟𝐿𝑚𝑟

=
2𝜋𝑓𝑠𝐿𝑚𝑟

150
×

103𝑚Ω

Ω
= 62.2

𝑟𝐿𝑠
 [𝑚Ω] 𝑟𝐿𝑠

=
2𝜋𝑓𝑠𝐿𝑠

150
×

103𝑚Ω

Ω
= 253.0

Table 3-5 – Values of all Parasitic Elements for Design Case II and Design Case III

Parameter

Value

Design Case II Design Case III

𝐿𝐶𝑓
 [𝑝𝐻] 125.22 134.65

𝐿𝐶𝑚𝑟
 [𝑝𝐻] 134.91 136.92

𝐿𝐶𝑠
 [𝑝𝐻] 117.34 124.63

𝑟𝐿𝑚𝑟
 [𝑚Ω] 153.8 85.6

𝑟𝐿𝑠
 [𝑚Ω] 309.7 230.7

The parasitic capacitance 𝐶𝐿𝑓
 is assumed to be 3.35 pF, the parasitic capacitances 𝐶𝐿𝑚𝑟

 and 𝐶𝐿𝑠
 are

assumed to be 2.1 pF, the ESR of all capacitors is assumed to be 50 mΩ, and the ESR of inductor

𝐿𝑓 is assumed to be 220 mΩ as stated in 3.1.2.

52

3.4 Design Results Using the MOPSO Algorithm

The MOPSO design method was tested using the three design cases presented in Table 2-4. The

results of the MOPSO designs are obtained and compared with the ideal model. Table 3-6 show

the comparative values for each design case.

Table 3-6 - Comparison of the Results of the Ideal and Parasitic MOPSO Designs

Factors

Design Case I Design Case II Design Case III

Ideal Parasitic Ideal Parasitic Ideal Parasitic

𝐷 0.361 0.399 0.392 0.367 0.366 0.358

𝑘 2.349 1.154 2.468 1.438 2.500 1.562

𝑞2 2.388 2.733 2.371 2.604 2.366 2.561

1

𝜔𝑅𝐿𝐶𝑓
 4.937 6.563 5.529 5.673 4.777 5.491

1

𝜔𝑅𝐿𝐶𝑀𝑅
 11.596 7.571 13.644 8.160 11.941 8.577

𝑐𝑝 0.116 0.117 0.116 0.114 0.117 0.104

𝑉𝑆𝑡𝑟𝑒𝑠𝑠 2.188 2.333 2.250 2.172 2.166 2.172

𝐼𝑆𝑡𝑟𝑒𝑠𝑠 3.872 3.346 3.801 3.701 3.900 4.009

As was expected, the value of k was significantly decreased in all design cases due to the large loss incurred

by the ESR of Lmr. The factors proposed for Design Case I were nearly identical (within 2.5%) to the ones

from the MOGO design, where the value of k fell roughly halfway between the max cp and max f design

procedures from Table 3-5. However, Design Case II and Design Case III were both very close matches

with the max f design procedure.

The discrepancy between the design factors proposed by the MOGO and MOPSO design methods for

Design Case II and Design Case III are likely due to the arbitrary stopping condition placed on the

53

algorithms (i.e., computational cost). If the computational cost was increased, or a different stopping

condition was used, the MOGO and MOPSO factors would likely be in agreeance.

3.4.1 Determination of the Inverter Component Values from the MOPSO Designs

The component values for the three design cases are presented in Table 3-7 below. All nominal

parameters were calculated using the process shown in 2.2.5.

Table 3-7 - Comparison of the Component Values of the Ideal and Parasitic MOPSO

Designs

Parameter

Design Case I Design Case II Design Case III

Ideal Parasitic Ideal Parasitic Ideal Parasitic

𝐿𝑓 [𝜇𝐻] 34.18 41.45 46.30 73.86 43.01 77.34

𝐿𝑚𝑟 [𝑛𝐻] 340.26 222.17 400.37 239.45 122.64 88.08

𝐿𝑠 [𝑛𝐻] 857.93 636.22 997.29 749.49 352.27 146.19

𝐶𝑓 [𝑝𝐹] 950.88 715.31 212.29 206.89 175.51 152.68

𝐶𝑚𝑟 [𝑝𝐹] 404.87 620.07 86.02 143.83 70.21 97.75

𝐶𝑠 [𝑝𝐹] 765.04 1129.8 155.83 238.71 112.33 412.16

𝑉𝑖𝑛 [𝑉] 19.21 19.34 30.37 42.55 22.65 28.22

𝐷 0.361 0.399 0.392 0.367 0.366 0.358

Like the results in Table 3-5, many of the component values seen drastic changes between the ideal

and parasitic designs. The reduction in the value of k caused Cf, Cmr, and Lmr to change by upwards

of 50%. The value of Ls was reduced across the board due to the impact of its ESR on the efficiency

of the circuit. This caused the value of Cs to increase in each design case since it is inversely

proportional to Ls.

54

3.4.1.1 Determination of the Parasitic Elements for the MOPSO Designs

All parasitic elements were calculated using the process shown in 3.2.1 and are presented in Table

3-8.

Table 3-8 – Values of all Parasitic Elements for each Design Case: MOPSO

Parameter

Design Case I Design Case II Design Case III

Value Value Value

𝐿𝐶𝑓
 [𝑝𝐻] 106.18 126.11 131.53

𝐿𝐶𝑚𝑟
 [𝑝𝐻] 108.31 132.63 139.92

𝐿𝐶𝑠
 [𝑝𝐻] 99.66 123.63 114.61

𝑟𝐿𝑚𝑟
 [𝑚Ω] 63.1 136.0 100.1

𝑟𝐿𝑠
 [𝑚Ω] 180.7 425.7 166.1

The parasitic capacitance 𝐶𝐿𝑓
 is assumed to be 3.35 pF, the parasitic capacitances 𝐶𝐿𝑚𝑟

 and 𝐶𝐿𝑠
 are

assumed to be 2.1 pF, the ESR of all capacitors is assumed to be 50 mΩ, and the ESR of inductor

𝐿𝑓 is assumed to be 220 mΩ as stated in 3.1.2.

3.5 Comparison of MOGO and MOPSO Design Approaches

Each design was simulated in LTSpice using the component values listed in Tables 3-3 to 3-5, 3-7,

and 3-8. The results from the simulations are recorded in Table 3-9 using the process described in

2.6 and waveforms for the switch voltage, switch current, and output voltage are shown in Figs. 3-

4 (a-c), 3-5 (a-c), and 3-6 (a-c).

55

Table 3-9 – Comparison of the Results of the MOGO and MOPSO Design Approaches

Parameter
Design Case I Design Case II Design Case III

MOGO MOPSO MOGO MOPSO MOGO MOPSO

𝑃𝑂𝑢𝑡𝐷𝑒𝑠𝑖𝑟𝑒𝑑
 23 23 40 40 25 25

𝑃𝑂𝑢𝑡𝐴𝑐𝑡𝑢𝑎𝑙
 21.964 21.246 37.246 38.553 26.328 23.949

𝜂 91.72% 92.87% 95.11% 93.94% 93.80% 95.02%

𝑉𝑆𝑡𝑟𝑒𝑠𝑠 2.280 2.333 2.210 2.172 2.314 2.172

𝐼𝑆𝑡𝑟𝑒𝑠𝑠 3.385 3.346 3.727 3.701 3.496 4.009

𝑄𝑂𝑢𝑡 6.819 4.746 3.960 5.603 4.290 2.690

𝑇𝐻𝐷 3.23% 4.47% 3.76% 2.73% 4.15% 5.10%

As can be seen, the parasitic design cases for both the MOGO and MOPSO algorithms performed

well in all measured values of interest. The inclusion of the parasitic elements resulted in lower

efficiencies for all design cases, the minimum being 91.72% during MOGO design case I. The

parasitic elements also present a clear trade-off between the THD of the output voltage waveform

and the efficiency of the circuit. In all design cases, the circuit with the higher output voltage THD

also had the higher efficiency and the lower value of Qout. This is expected since as the value of

Qout increases, so to does the value of Ls and its ESR.

56

Figure 3-4 (a) – Switch Voltage Waveform of the Parasitic Class-EF2 Inverter: MOGO (Green)

& MOPSO (Blue) Design Case I

Figure 3-4 (b) – Switch Current Waveform of the Parasitic Class-EF2 Inverter: MOGO (Green)

& MOPSO (Blue) Design Case I

Figure 3-4 (c) – Output Voltage Waveform of the Parasitic Class-EF2 Inverter: MOGO (Green)

& MOPSO (Blue) Design Case I

57

Figure 3-5 (a) – Switch Voltage Waveform of the Parasitic Class-EF2 Inverter: MOGO (Green)

& MOPSO (Blue) Design Case II

Figure 3-5 (b) – Switch Current Waveform of the Parasitic Class-EF2 Inverter: MOGO (Green)

& MOPSO (Blue) Design Case II

Figure 3-5 (c) – Output Voltage Waveform of the Parasitic Class-EF2 Inverter: MOGO (Green)

& MOPSO (Blue) Design Case II

58

The above figures showcase the success of the optimization-based design approach for the parasitic

Class-EF2 Inverter. In each design case, the circuits maintained ZVS and ZDVS operation to an

acceptable level of error and had relatively sinusoidal output voltage waveforms. However, Fig.

3-5 (b) and Fig. 3-6 (b) show a noticeable amount of ringing in the switch current waveform of the

Figure 3-6 (a) – Switch Voltage Waveform of the Parasitic Class-EF2 Inverter: MOGO (Green)

& MOPSO (Blue) Design Case III

Figure 3-6 (b) – Switch Current Waveform of the Parasitic Class-EF2 Inverter: MOGO (Green)

& MOPSO (Blue) Design Case III

Figure 3-6 (c) – Output Voltage Waveform of the Parasitic Class-EF2 Inverter: MOGO (Green)

& MOPSO (Blue) Design Case III

59

MOPSO designs which shows how big of an impact even a small amount of hard switching can

have when parasitic elements are considered.

3.6 Summary

In Chapter 3, the design of the Parasitic Class-EF2 inverter was investigated. A 12th order state-

space model was proposed which considered the parasitic elements of all components in the circuit

and was validated through LTSpice simulation.

The new state-space model was then used with both the MOGO and MOPSO algorithms to design

three circuits with differing frequency, power, and load specifications. The proposed optimization-

based design approaches provided circuits which performed well in all measured values of interest

and successfully adhered to the design specifications.

The addition of the parasitic elements caused large variations in the component values from the

ideal designs in the previous chapter. It also demonstrated the negative effects they cause in high-

frequency circuits such as the loss of ZVS and ZDVS operation and ringing.

60

CHAPTER 4

THE PRACTICAL CLASS-EF2 INVERTER

In this chapter, the proposed optimization-based design approaches are further extended to the

design of the practical Class-EF2 inverter which considers the parasitic elements of all components

as well as the dynamics of the switch. A state-space model which includes the model of the switch

is presented. First, a method of estimating the internal capacitances and resistances of the switch

is described. Then the model is validated by a comparison of the switch and output waveforms

from the solution of the state-space model in MATLAB and by LTSpice simulation.

The developed model with the parasitic elements and switching dynamics is tested with the MOGO

and MOPSO design approaches for the three design cases presented in Chapter 2. The results

demonstrate the importance of considering the internal capacitances and resistances of the switch

when designing high frequency circuits and further validates the optimization-based design

approach.

4.1 State-Space model of the Parasitic Class-EF2 Inverter Including Switch

Dynamics

In the previous chapters, the switching element of the Class-EF2 inverter was represented as an

ON/OFF switch without considering the internal resistances and capacitances. In this section, the

parameters of the switch are accounted for in developing the state-space model of the circuit. The

switch model now includes the gate-to-source capacitor Cgs, the drain-to-source capacitance Cds,

61

the gate resistance rg, the source resistance rs and the on and off resistance rsw. The circuit diagram

of the new switch model with gate driver signal vg is shown in Fig. 4-1.

Inserting the switch model into the parasitic Class-EF2 inverter results in the complete and practical

Class-EF2 inverter model shown in Fig. 4-2.

Figure 4-2 – Circuit Model of the Practical Class-EF2 Inverter

Figure 4-1 – Switch Model for the Practical Class-EF2 Inverter

62

Using the same procedure as outlined in Section 2.1, the state vector X is made up of the capacitor

voltages and the inductor currents. However, U now contains the source voltage Vin as well as the

gate driver voltage vg as shown in (4.2).

𝐗 = [𝑣𝐶𝑓
𝑣𝐶𝑚𝑟

𝑣𝐶𝑠
𝑣𝐶𝐿𝑓

𝑣𝐶𝐿𝑚𝑟
𝑣𝐶𝐿𝑠

𝑣𝐶𝑑𝑠
𝑣𝐶𝑑𝑠

𝑖𝐿𝑓
𝑖𝐿𝑚𝑟

𝑖𝐿𝑠
𝑖𝐿𝐶𝑓

𝑖𝐿𝐶𝑚𝑟
𝑖𝐿𝐶𝑠]

𝑇
 (4.1)

𝐔 = [𝑉𝑖𝑛 𝑣𝑔]𝑇 (4.2)

The differential equations for each state variable are derived in terms of the other state variables.

The resulting differential equations which completely describe the circuit are presented in (4.3) to

(4.16).

𝑑𝑣𝐶𝑓

𝑑𝑡
=

𝑖𝐶𝑓

𝐶𝑓
=

𝑖𝐿𝐶𝑓

𝐶𝑓

(4.3)

𝑑𝑣𝐶𝑀𝑅

𝑑𝑡
=

𝑖𝐶𝑚𝑟

𝐶𝑚𝑟
=

𝑖𝐿𝐶𝑚𝑟

𝐶𝑚𝑟

(4.4)

𝑑𝑣𝐶𝑠

𝑑𝑡
=

𝑖𝐶𝑠

𝐶𝑠
=

𝑖𝐿𝐶𝑠

𝐶𝑠

(4.5)

𝑑𝑣𝐶𝐿𝑓

𝑑𝑡
=

𝑖𝐶𝐿𝑓

𝐶𝐿𝑓

=

(
𝑟𝑔 + 𝑟𝑠
𝑟𝑔𝑟𝑠

) (𝑉𝑖𝑛 − 𝑣𝐶𝐿𝑓
) − (

𝑟𝑔𝑟𝑆𝑤 + 𝑟𝑠𝑟𝑆𝑤
𝑟𝑔𝑟𝑠𝑟𝑆𝑤

) 𝑣𝐶𝑑𝑠
+

𝑣𝐶𝑔𝑠
− 𝑣𝑔

𝑟𝑔

𝐶𝐿𝑓

(4.6)

𝑑𝑣𝐶𝐿𝑀𝑅

𝑑𝑡
=

𝑖𝐶 (
𝐿𝑀𝑅

𝑡)

𝐶𝐿𝑀𝑅

=
𝑖𝐿𝐶𝑚𝑟

− 𝑖𝐿𝑚𝑟

𝐶𝐿𝑚𝑟

(4.7)

𝑑𝑣𝐶𝐿𝑠

𝑑𝑡
=

𝑖𝐶𝐿
(

𝑠
𝑡)

𝐶𝐿𝑠

=
𝑖𝐿𝐶𝑠

− 𝑖𝐿𝑠

𝐶𝐿𝑠

(4.8)

𝑑𝑣𝐶𝑑𝑠

𝑑𝑡
=

𝑖𝐶𝑑𝑠
(𝑡)

𝐶𝑑𝑠
=

(
𝑟𝑔 + 𝑟𝑠
𝑟𝑔𝑟𝑠

) (𝑉𝑖𝑛 − 𝑣𝐶𝐿𝑓
) − (

𝑟𝑔𝑟𝑠 + 𝑟𝑔𝑟𝑆𝑤 + 𝑟𝑠𝑟𝑆𝑤
𝑟𝑔𝑟𝑠𝑟𝑆𝑤

) 𝑣𝐶𝑑𝑠
+

𝑣𝐶𝑔𝑠
− 𝑣𝑔

𝑟𝑔

𝐶𝑑𝑠

(4.9)

𝑑𝑣𝐶𝑔𝑠

𝑑𝑡
=

𝑣𝐶𝐿𝑓
+ 𝑣𝐶𝑑𝑠

+ 𝑣𝑔 − 𝑣𝐶𝑔𝑠
− 𝑉𝑖𝑛

𝑟𝑔𝐶𝑑𝑠

(4.10)

63

𝑑𝑖𝐿𝑓

𝑑𝑡
=

𝑣𝐿𝑓
(𝑡)

𝐿𝑓
=

𝑣𝐶𝐿𝑓
− 𝑖𝐿𝑓

𝑟𝐿𝑓

𝐿𝑓

(4.11)

𝑑𝑖𝐿𝑀𝑅

𝑑𝑡
=

𝑣𝐿𝑀𝑅
(𝑡)

𝐿𝑀𝑅
=

𝑣𝐶𝐿𝑚𝑟
− 𝑖𝐿𝑚𝑟

𝑟𝐿𝑚𝑟

𝐿𝑚𝑟

(4.12)

𝑑𝑖𝐿𝑠

𝑑𝑡
=

𝑣𝐿𝑠
(𝑡)

𝐿𝑠
=

𝑣𝐶𝐿𝑠
− 𝑖𝐿𝑠

𝑟𝐿𝑠

𝐿𝑠

(4.13)

𝑑𝑖𝐿𝐶𝑓

𝑑𝑡
=

𝑣𝐿𝐶
(

𝑓
𝑡)

𝐿𝐶𝑓

=
𝑉𝑖𝑛 − 𝑣𝐶𝑓

− 𝑣𝐶𝐿𝑓
− 𝑖𝐿𝐶𝑓

𝑟𝐶𝑓

𝐿𝐶𝑓

(4.14)

𝑑𝑖𝐿𝐶𝑀𝑅

𝑑𝑡
=

𝑣𝐿𝐶
(

𝑀𝑅
𝑡)

𝐿𝐶𝑀𝑅

=
𝑉𝑖𝑛 − 𝑣𝐶𝑚𝑟

− 𝑣𝐶𝐿𝑓
− 𝑣𝐶𝐿𝑚𝑟

− 𝑖𝐿𝐶𝑚𝑟
𝑟𝐶𝑚𝑟

𝐿𝐶𝑚𝑟

(4.15)

𝑑𝑖𝐿𝐶𝑠

𝑑𝑡
=

𝑣𝐿𝐶
(

𝑠
𝑡)

𝐿𝐶𝑠

=
𝑉𝑖𝑛 − 𝑣𝐶𝑠

− 𝑣𝐶𝐿𝑓
− 𝑣𝐶𝐿𝑠

− 𝑖𝐿𝐶𝑠
(𝑅𝐿 + 𝑟𝐶𝑠

)

𝐿𝐶𝑠

(4.16)

Substituting (4.3) to (4.16) into (2.10) and (2.11) produces a 14th order multiple input multiple

output (MIMO) system. The state vectors and matrices are defined in (4.17) to (4.20).

𝐴 =

[

 0 0 0 0 0 0 0 0 0 0 0

1

𝐶𝑓
0 0

0 0 0 0 0 0 0 0 0 0 0 0
1

𝐶𝑀𝑅
0

0 0 0 0 0 0 0 0 0 0 0 0 0
1

𝐶𝑠

0 0 0
−(𝑟𝑔 + 𝑟𝑠)

𝑟𝑔𝑟𝑠𝐶𝐿𝑓

0 0
−(𝑟𝑠𝑟𝑆𝑤 + 𝑟𝑔𝑟𝑆𝑤)

𝑟𝑔𝑟𝑠𝑟𝑆𝑤𝐶𝐿𝑓

1

𝑟𝑔𝐶𝐿𝑓

−1

𝐶𝐿𝑓

0 0
1

𝐶𝐿𝑓

1

𝐶𝐿𝑓

1

𝐶𝐿𝑓

0 0 0 0 0 0 0 0 0
−1

𝐶𝐿𝑀𝑅

0 0
1

𝐶𝐿𝑀𝑅

0

0 0 0 0 0 0 0 0 0 0
−1

𝐶𝐿𝑠

0 0
1

𝐶𝐿𝑠

0 0 0
−(𝑟𝑔 + 𝑟𝑠)

𝑟𝑔𝑟𝑠𝐶𝑑𝑠
0 0

−(𝑟𝑠𝑟𝑔 + 𝑟𝑠𝑟𝑆𝑤 + 𝑟𝑔𝑟𝑆𝑤)

𝑟𝑔𝑟𝑠𝑟𝑆𝑤𝐶𝑑𝑠

1

𝐶𝑑𝑠𝑟𝑔
0 0 0 0 0 0

0 0 0
1

𝑟𝑔𝐶𝑔𝑠
0 0

1

𝑟𝑔𝐶𝑔𝑠

−1

𝑟𝑔𝐶𝑔𝑠
0 0 0 0 0 0

0 0 0
1

𝐿𝑓
0 0 0 0

−𝑟𝐿𝑓

𝐿𝑓
0 0 0 0 0

0 0 0 0
1

𝐿𝑀𝑅
0 0 0 0

−𝑟𝐿𝑀𝑅

𝐿𝑀𝑅
0 0 0 0

0 0 0 0 0
1

𝐿𝑠
0 0 0 0

−𝑟𝐿𝑠

𝐿𝑠
0 0 0

−1

𝐿𝐶𝑓

0 0
−1

𝐿𝐶𝑓

0 0 0 0 0 0 0
−𝑟𝐶𝑓

𝐿𝐶𝑓

0 0

0
−1

𝐿𝐶𝑀𝑅

0
−1

𝐿𝐶𝑀𝑅

−1

𝐿𝐶𝑀𝑅

0 0 0 0 0 0 0
−𝑟𝐶𝑀𝑅

𝐿𝐶𝑀𝑅

0

0 0
−1

𝐿𝐶𝑠

−1

𝐿𝐶𝑠

0
−1

𝐿𝐶𝑠

0 0 0 0 0 0 0
−(𝑟𝐶𝑠

+ 𝑅)

𝐿𝐶𝑠]

 (4.17)

64

𝐵 =

[

 0 0 0

𝑟𝑔 + 𝑟𝑠

𝑟𝑔𝑟𝑠𝐶𝐿𝑓

0 0
𝑟𝑔 + 𝑟𝑠

𝑟𝑔𝑟𝑠𝐶𝑑𝑠

−1

𝑟𝑔𝐶𝑔𝑠
0 0 0

1

𝐿𝐶𝑓

1

𝐿𝐶𝑀𝑅

1

𝐿𝐶𝑠

0 0 0
−1

𝑟𝑔𝐶𝐿𝑓
0 0

−1

𝑟𝑔𝐶𝑑𝑠

1

𝑟𝑔𝐶𝑔𝑠
0 0 0 0 0 0

]

𝑇

 (4.18)

𝐶 = 𝐼14 (4.19)

𝐷 = 0⃑ (4.20)

Equations (4.17) and (4.18) contain the circuit components of the practical Class-EF2 Inverter, I14

in (4.19) represents the 14th order identity matrix, and 0⃑ in (4.20) represents the zero vector. The

complexity of the system has been significantly increased by the addition of the switch model and

the second source.

4.2 Solving the Model

4.2.1 Determination of the Switching Dynamics

To simplify the solution of the state-space equations, the LMG1020 gate driver [34] is considered,

and the following assumptions are made:

• Gate voltage vg changes linearly, and has a rise and fall time of 400 ps,

• Resistance rsw changes logarithmically, and has a rise and fall time of 400 ps,

• The switch has a constant temperature of 85ْC, and

• All internal resistance and capacitance values remain constant throughout the optimization.

The 400 ps rise and fall time is based on the characteristics of the LMG1020 gate driver.

4.2.1.1 Internal Resistances of the Switch

Using the EPC2019 switch as an example, typical values for 𝑟𝑔 and 𝑟𝑆𝑤(𝑜𝑛) can be found in the

manufacturer provided datasheet. A typical value for 𝑟𝑠 is not provided, however an equation

describing the behavior of this resistor can be found within the LTSpice library file and is shown

in eq. (4.21) [35].

65

𝑟𝑠 = 0.02528 × (1 + 0.0065(𝜏 − 25°𝐶)) (4.21)

Substituting the assumed switch temperature of 85 ْC into eq. (4.21), all internal switch resistances

can be determined. Their values are provided in Table 4-1.

Table 4-1 – Internal Resistances of the EPC2019 Power MOSFET

Parameter Resistance [mΩ]

𝑟𝑆𝑤(𝑂𝑛) 36

𝑟𝑔 400

𝑟𝑠 6.2

4.2.1.2 Internal Capacitances of the Switch

Continuing to use the EPC2019 as an example, equations describing the behavior of Cgs and Cds

can be found within the LTSpice library file and are shown in eq. (4.22) to (4.25) where q is the

charge of the capacitor [35].

𝐶𝑑𝑠(𝑡) =
𝑞𝑑𝑠(𝑡)

𝑣𝑑𝑠(𝑡)
+ 69.15 𝑝𝐹 (4.22)

𝑞𝑑𝑠(𝑡) = {
824.54 × 10−12 × 𝑙𝑛 (1 + 𝑒

(
20.76−𝑣𝑑𝑠(𝑡)

4.72
)
) + 14.85 × 10−9 × 𝑙𝑛 (1 + 𝑒

(
0.202−𝑣𝑑𝑠(𝑡)

67.83
)
) , 𝑣𝑑𝑠 > 6

0 , 𝑒𝑙𝑠𝑒

 (4.23)

𝐶𝑔𝑠(𝑡) =
𝑞𝑔𝑠(𝑡)

𝑣𝑔𝑠̅̅ ̅̅
+ 200.42 𝑝𝐹 (4.24)

𝑞𝑔𝑠(𝑡) = {
8.39 × 10−12 × 𝑙𝑛 (1 + 𝑒

(
𝑣𝑔𝑠̅̅ ̅̅̅−1.845

0.174
)
) − 11.52 × 10−15 × 𝑙𝑛 (1 + 𝑒

(
𝑣𝑑𝑠(𝑡)+5.551

0.281
)
) , 𝑣𝑑𝑠 > 6

0 , 𝑒𝑙𝑠𝑒

 (4.25)

In (4.22) and (4.24) the voltages 𝑣𝑑𝑠 and 𝑣𝑔𝑠 are obtained from the MATLAB solution of the ideal

case. In (4.24) and (4.25), 𝑣𝑔𝑠 is averaged to avoid division by 0 and to better approximate the

provided capacitance plots in the datasheet. Substituting these voltage vectors into (4.22) to (4.25)

66

provides the designer with a vector of capacitance values which is averaged to determine the values

for use with the MOGO and MOPSO design approaches.

Using the ideal MOGO Design Case II solution as an example, plots of Cds and Cgs are obtained

and shown in Fig. 4-3.

These waveforms are averaged to obtain the final capacitor values shown in Table 5-2.

Table 4-2 – Averaged Internal Capacitance Values of the EPC2019 Using Ideal MOGO Design

Case II

Parameter Capacitance [pF]

𝐶𝑑𝑠 178.20

𝐶𝑔𝑠 201.49

Figure 4-3 – Plots of Cds and Cgs Using Ideal MOGO Design Case II

67

4.2.2 Simulation of the Practical Class-EF2 Inverter

To validate the state-space model of the practical Class-EF2 inverter, the component values

provided in Table 3-1, Table 4-1, and Table 4-2 are used to solve the state-space model. The circuit

is then fully defined in LTSpice using the manufacturer provided model for the switch. Plots of

the switch voltage, switch current, and output voltage waveforms obtained from both the

MATLAB solution of the state-space model and LTSpice simulation are shown in Figs. 4-4 (a-c).

Figure 4-4 (a) – Switch Voltage Waveform of the Practical Class-EF2 Inverter State-Space

Model vs. LTSpice Simulation

68

Figure 4-4 (b) – Switch Current Waveform of the Practical Class-EF2 Inverter State-Space

Model vs. LTSpice Simulation

Figure 4-4 (c) – Output Voltage Waveform of the Practical Class-EF2 Inverter State-Space

Model vs. LTSpice Simulation

69

Figures 4-4 (a-c) demonstrate the accuracy of the practical Class-EF2 inverter state-space model.

There are some discrepancies, but they are likely due to the capacitors being averaged rather than

recalculated during each sample, and the exclusion of Cgd and rd from the state-space model.

There is also significant hard switching occuring in both the MATLAB and LTSpice simulation

demonstrating how large of an impact is caused by the inclusion of a non-ideal switch.

4.2.3 Internal Resistances and Capacitances for all Design Cases

For Design Case I and Design Case II, the EPC2019 switch is selected due to its voltage, current,

and output capacitance characteristics. The EPC8010 [36] switch is selected for Design Case III

since the output capacitance of the EPC2019 is too high.

Following the process presented in 4.2.1.1 and 4.2.1.2, the internal resistances and capacitances to

be used with the MOGO and MOPSO design approaches of the Complete Class-EF2 inverter are

calculated. Their values are presented in Table 4-3.

Table 4-3 – Internal Resistances and Capacitances for use with the MOGO and MOPSO

Design Approaches for the Complete Class-EF2 Inverter

Parameter

MOGO MOPSO

Design

Case I

Design

Case II

Design

Case III

Design

Case I

Design

Case II

Design

Case III

𝑟𝑆𝑤(𝑜𝑛) [𝑚𝛺] 36 36 120 36 36 120

𝑟𝑔 [𝑚𝛺] 400 400 300 400 400 300

𝑟𝑠 [𝑚𝛺] 6.2 6.2 16.9 6.2 6.2 16.9

𝐶𝑑𝑠 [𝑝𝐹] 216.51 178.20 56.84 244.02 176.06 50.81

𝐶𝑔𝑠 [𝑝𝐹] 202.99 201.49 41.53 201.47 202.32 41.25

70

4.3 Design Results Using the MOGO Algorithm

The MOGO design method was tested using three different design cases presented in Table 2-4.

The results of the MOGO designs are obtained and compared with the parasitic model. For design

factors involving Cf the value is adjusted to include the value of Cds as described in eq. (4.26).

𝐶𝑓(𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑) = 𝐶𝑓 + 𝐶𝑑𝑠 (4.26)

Table 4-4 shows the comparative values for each design case. Code for the Practical Class-EF2

fitness function can be found in Appendix C.

Table 4-4 – Comparison of the Results of the Parasitic and Practical MOGO Designs

Factors

Design Case I Design Case II Design Case III

Parasitic Complete Parasitic Complete Parasitic Complete

𝐷 0.394 0.365 0.357 0.353 0.393 0.403

𝑘 1.133 1.479 1.712 1.600 1.128 1.033

𝑞2 2.744 2.589 2.517 2.550 2.747 2.806

1

𝜔𝑅𝐿𝐶𝑓
 6.587 5.513 5.390 5.090 6.503 6.507

1

𝜔𝑅𝐿𝐶𝑀𝑅
 7.463 8.156 9.230 8.145 7.336 6.721

𝑐𝑝 0.117 0.118 0.113 0.118 0.111 0.119

𝑉𝑆𝑡𝑟𝑒𝑠𝑠 2.280 2.190 2.210 2.192 2.314 2.309

𝐼𝑆𝑡𝑟𝑒𝑠𝑠 3.385 3.572 3.727 3.523 3.496 3.336

The factors for Design Case I and Design Case II are both very similar to the max f optimal design

factors. The value of k in design case III was reduced however making it a close match with the

max cp optimal design factors.

71

4.3.1 Determination of the Inverter Component Values from the MOGO Designs

The nominal values of all components were calculated as shown in 2.2.5 and the parasitic elements

were calculated as shown in 3.2.1. The parasitic capacitance 𝐶𝐿𝑓
 is assumed to be 3.35 pF, the

parasitic capacitances 𝐶𝐿𝑚𝑟
 and 𝐶𝐿𝑠

 are assumed to be 2.1 pF, the ESR of all capacitors is assumed

to be 50 mΩ, and the ESR of inductor 𝐿𝑓 is assumed to be 220 mΩ as stated in 3.1.2.

Values for all components are shown in Table 4-5 and Table 4-6.

Table 4-5 – Comparison of the Component Values of the Parasitic and Practical MOGO

Designs

Parameter

Design Case I Design Case II Design Case III

Parasitic Practical Parasitic Practical Parasitic Practical

𝐿𝑓 [𝜇𝐻] 38.05 49.85 74.75 51.42 42.57 58.19

𝐿𝑚𝑟 [𝑛𝐻] 218.99 239.32 270.83 238.99 75.34 69.03

𝐿𝑠 [𝑛𝐻] 890.74 636.51 545.32 472.35 203.08 293.88

𝐶𝑓 [𝑝𝐹] 712.79 635.11 217.75 52.37 128.91 72.01

𝐶𝑚𝑟 [𝑝𝐹] 629.08 575.63 127.16 144.10 114.28 124.74

𝐶𝑠 [𝑝𝐹] 766.33 1204.4 347.8 442.84 225.20 140.07

𝑉𝑖𝑛 [𝑉] 21.88 23.53 37.41 41.69 25.66 24.59

𝐷 0.394 0.365 0.357 0.353 0.393 0.403

72

Table 4-6 – Values of all Parasitic Elements for each MOGO Design Case

Parameter

Value

Design Case I Design Case II Design Case III

𝐿𝐶𝑓
 [𝑝𝐻] 107.95 152.57 145.98

𝐿𝐶𝑚𝑟
 [𝑝𝐻] 109.43 132.59 135.27

𝐿𝐶𝑠
 [𝑝𝐻] 98.78 113.48 133.11

𝑟𝐿𝑚𝑟
 [𝑚Ω] 67.97 135.75 78.41

𝑟𝐿𝑠
 [𝑚Ω] 180.77 268.29 333.85

The addition of Cds had a significant impact on the value of Cf. This is expected since the output

capacitance of the switch is in parallel with Cf so to maintain ZVS its value must be reduced. All

other parameters experienced small variations due to changes in k and Qout, but this is likely due

to the arbitrary stopping condition placed on the algorithm.

4.4 Results of the MOPSO Designs

The MOPSO design method was tested using three different design cases presented in Table 2-4.

The results of the MOPSO designs are obtained and compared with the parasitic model. For design

factors involving Cf the value is adjusted to include the value of Cds as described in eq. (4.26).

Table 4-7 shows the comparative values for each design case.

73

Table 4-7 – Comparison of the Results of the Parasitic and Practical MOPSO Designs

Factors

Design Case I Design Case II Design Case III

Parasitic Complete Parasitic Complete Parasitic Complete

𝐷 0.399 0.351 0.367 0.344 0.358 0.391

𝑘 1.154 1.564 1.438 1.880 1.562 1.444

𝑞2 2.733 2.561 2.604 2.475 2.561 2.602

1

𝜔𝑅𝐿𝐶𝑓
 6.563 6.129 5.673 5.029 5.491 5.959

1

𝜔𝑅𝐿𝐶𝑀𝑅
 7.571 9.587 8.160 9.457 8.577 8.605

𝑐𝑝 0.117 0.110 0.114 0.111 0.104 0.114

𝑉𝑆𝑡𝑟𝑒𝑠𝑠 2.333 2.151 2.172 2.316 2.172 2.235

𝐼𝑆𝑡𝑟𝑒𝑠𝑠 3.346 3.860 3.701 3.949 4.009 3.576

The factors for all design cases lean towards the max f optimal design procedure. Like in the case

of the MOGO designs, the algorithm favored a higher value of k when the practical switch was

added to the circuit.

4.4.1 Determination of the Inverter Component Values from the MOGO Designs

The nominal values of all components were calculated as shown in 2.2.5 and the parasitic elements

were calculated as shown in 3.2.1. The parasitic capacitance 𝐶𝐿𝑓
 is assumed to be 3.35 pF, the

parasitic capacitances 𝐶𝐿𝑚𝑟
 and 𝐶𝐿𝑠

 are assumed to be 2.1 pF, the ESR of all capacitors is assumed

to be 50 mΩ, and the ESR of inductor 𝐿𝑓 is assumed to be 220 mΩ as stated in 3.1.2. Values for all

components are shown in Table 4-8 and Table 4-9.

74

Table 4-8 – Comparison of the Component Values of the Parasitic and Practical MOPSO

Designs

Parameter

Design Case I Design Case II Design Case III

Parasitic Practical Parasitic Practical Parasitic Practical

𝐿𝑓 [𝜇𝐻] 41.45 45.03 73.86 89.88 77.34 100.00

𝐿𝑚𝑟 [𝑛𝐻] 222.17 281.31 239.45 277.49 88.08 88.37

𝐿𝑠 [𝑛𝐻] 636.22 812.28 749.49 708.51 146.19 228.80

𝐶𝑓 [𝑝𝐹] 715.31 522.00 206.89 57.31 152.68 89.88

𝐶𝑚𝑟 [𝑝𝐹] 620.07 489.71 143.83 124.11 97.75 97.43

𝐶𝑠 [𝑝𝐹] 112.98 947.17 238.71 252.90 412.16 179.81

𝑉𝑖𝑛 [𝑉] 19.34 28.02 42.55 40.73 28.22 22.61

𝐷 0.399 0.351 0.367 0.344 0.358 0.391

Table 4-9 – Values of all Parasitic Elements for each MOPSO Design Case

Parameter

Value

Design Case I Design Case II Design Case III

𝐿𝐶𝑓
 [𝑝𝐻] 110.92 150.67 141.56

𝐿𝐶𝑚𝑟
 [𝑝𝐻] 111.91 135.36 139.98

𝐿𝐶𝑠
 [𝑝𝐻] 102.13 122.66 128.58

𝑟𝐿𝑚𝑟
 [𝑚Ω] 79.89 157.62 100.39

𝑟𝐿𝑠
 [𝑚Ω] 230.69 402.43 259.92

Like in the case of the MOGO designs the addition of Cds had a significant impact on the value of

Cf. Once again, this is expected since the output capacitance of the switch is in parallel with Cf so

to maintain ZVS its value must be reduced. Like in the case of the MOGO designs, the changes in

75

component values between the parasitic and practical models are much less drastic and are mainly

due to variations in the values of k and Qout.

4.5 Comparison of MOGO and MOPSO Design Approaches

Each design was simulated in LTSpice using the component values listed in Table 4-5, Table 4-6,

Table 4-8, and Table 4-9. The results from the simulations are recorded in Table 4-10 using the

process presented in Section 2.6. Relevant waveforms from LTSpice simulations are presented in

Figures 4-5 (a-c), 4-6 (a-c), and 4-7 (a-c).

Table 4-10 - Comparison of the Results of the MOGO and MOPSO Design Approaches

Parameter
Design Case I Design Case II Design Case III

MOGO MOPSO MOGO MOPSO MOGO MOPSO

𝑃𝑂𝑢𝑡𝐷𝑒𝑠𝑖𝑟𝑒𝑑
 23 23 40 40 25 25

𝑃𝑂𝑢𝑡𝐴𝑐𝑡𝑢𝑎𝑙
 23.56 23.34 42.19 37.81 23.38 24.79

𝜂 93.10% 93.40% 96.06% 95.34% 92.93% 90.97%

𝑉𝑆𝑡𝑟𝑒𝑠𝑠 2.190 2.151 2.192 2.163 2.309 2.235

𝐼𝑆𝑡𝑟𝑒𝑠𝑠 3.572 3.860 3.523 3.949 3.366 3.576

𝑄𝑂𝑢𝑡 4.598 5.857 3.266 5.293 6.544 4.846

𝑇𝐻𝐷 3.60% 3.34% 4.06% 2.63% 2.62% 2.99%

As can be seen, the practical design cases for both the MOGO and MOPSO algorithms performed

well in all measured values of interest. The minimum efficiency was 90.97% and occurred during

MOPSO design case III, and the THD of the output voltage waveform in most design cases was

kept below 4%. The method of estimating the internal resistances and capacitances of the switch

based on the ideal case was successful.

76

Figure 4-5 (a) – Switch Voltage Waveform of the Practical Class-EF2 Inverter: MOGO (Green)

& MOPSO (Blue) Design Case I

Figure 4-5 (b) – Switch Current Waveform of the Practical Class-EF2 Inverter: MOGO (Green)

& MOPSO (Blue) Design Case I

Figure 4-5 (c) – Output Voltage Waveform of the Practical Class-EF2 Inverter: MOGO (Green)

& MOPSO (Blue) Design Case I

77

Figure 4-6 (a) – Switch Voltage Waveform of the Practical Class-EF2 Inverter: MOGO (Green)

& MOPSO (Blue) Design Case II

Figure 4-6 (b) – Switch Current Waveform of the Practical Class-EF2 Inverter: MOGO (Green)

& MOPSO (Blue) Design Case II

Figure 4-6 (c) – Output Voltage Waveform of the Practical Class-EF2 Inverter: MOGO (Green)

& MOPSO (Blue) Design Case II

78

The above figures demonstrate the success of the optimization-based design approach for the

practical Class-EF2. In each design case, the circuits maintained ZVS and ZDVS to an acceptable

level of error, had relatively sinusoidal output voltage waveforms, and avoided MOSFET diode

conduction. Like in the parasitic case, the switch current waveform exhibits ringing due to hard

switching, but it is relatively small outside of MOGO Design Case I.

Figure 4-7 (a) – Switch Voltage Waveform of the Practical Class-EF2 Inverter: MOGO (Green)

& MOPSO (Blue) Design Case III

Figure 4-7 (b) – Switch Current Waveform of the Practical Class-EF2 Inverter: MOGO (Green)

& MOPSO (Blue) Design Case III

Figure 4-7 (c) – Output Voltage Waveform of the Practical Class-EF2 Inverter: MOGO (Green)

& MOPSO (Blue) Design Case III

79

4.6 Summary

In Chapter 4, the design of the Practical Class-EF2 inverter was investigated. A 14th order state-

space model was proposed which considered the parasitic elements of all components in the circuit

as well as the internal resistances and capacitances of the switch. This model was validated through

LTSpice simulation by comparison with manufacturer provided models.

The new state-space model was then used with both the MOGO and MOPSO algorithms to design

three circuits with differing frequency, power, and load specifications. The proposed optimization-

based design approaches provided circuits which performed well in all measured values of interest,

successfully adhered to the design specifications, and maintained ZVS and ZDVS to an acceptable

level of error when tested in LTSpice.

The addition of the practical switch model caused small variations in all component values, but a

large change in the value of Cf. This is necessary to maintain ZVS and ZDVS operation since Cf is

in parallel with the output capacitance of the switch.

80

CHAPTER 5

Multi-Objective Genetic Optimization Design Example

In this chapter, a design example using the MOGO algorithm is presented for a 6.78 MHz, 100W,

20Ω Class-EF2 Inverter. First, the ideal state-space model from Chapter 2 is used to generate the

necessary information to select a switch and estimate the value of Cds. This information is then

used with the practical state-space model from Chapter 4 to complete the final design.

The final design was simulated in LTSpice and performed well in all measured values of interest

while maintaining ZVS operation to an acceptable level of error.

5.1 Design Example Stage 1 – Setting up the Problem

In the previous chapters, each state-space model was tested with the three design cases presented

in Table 2-4 with wide boundary conditions to prove the validity of the MOGO and MOPSO design

approaches. In this chapter, a design example using the MOGO algorithm is presented for a 6.78

MHz, 100W, 20Ω Class-EF2 Inverter. The goal of the design is to use the MOGO algorithm to

determine the component values and a suitable switch for the inverter to meet the specified

requirements.

For this test, the boundaries for 𝐷, 𝑘, and 𝑥𝐿𝑆𝐶𝑆
 are changed to remove solutions that were found

to be inferior in the tests presented in Chapter 2. The upper and lower boundary for Vin is also

increased since the output power is 2.5 times larger than any of the previous designs. Consequently,

the variable boundary conditions used in this design example are shown in Table 5-1.

81

Table 5-1 – Updated Optimization Boundary Conditions

Variables 𝑫 𝑳𝒇 [𝝁𝑯] 𝑪𝒇 [𝒑𝑭] 𝒌 𝑸𝑶𝒖𝒕 𝒙𝑳𝑺𝑪𝑺
 𝑽𝒊𝒏 [𝑽]

Upper

Boundary
0.4 100 5000 2 8 1.2 120

Lower

Boundary
0.35 0.01 0.5 0.5 2 0.8 24

5.2 Design Example Stage 2 – Ideal Optimization

Using the boundary conditions presented in Table 5-1, the MOGO algorithm is implemented for

the ideal Class-EF2 inverter state-space model. This will provide the designer with nominal

component values which can then be used to generate the switch voltage and current waveforms

in MATLAB and LTSpice. These waveforms are necessary for sizing the switch and

approximating the value of Cds and Cgs as described in Chapter 4.

The optimized values of the variables from the MOGO algorithm are presented in Table 5-2.

Table 5-2 – Optimized Values of Variables for the Ideal Design Example

Variable 𝑫 𝑳𝒇 [𝝁𝑯] 𝑪𝒇 [𝒑𝑭] 𝒌 𝑸𝑶𝒖𝒕 𝒙𝑳𝑺𝑪𝑺
 𝑽𝒊𝒏 [𝑽]

Value 0.3722 71.49 209.94 1.454 7.664 0.926 79.92

Using the process shown in section 2.4.1, the component values for this design are calculated and

presented in Table 5-3.

82

Table 5-3 – Component Values for the Ideal Design Example

Component Value

𝐿𝑓 [𝜇𝐻] 71.50

𝐿𝑚𝑟 [𝑛𝐻] 954.14

𝐿𝑠 [𝑛𝐻] 3886.21

𝐶𝑓 [𝑝𝐹] 209.94

𝐶𝑚𝑟 [𝑝𝐹] 144.38

𝐶𝑠 [𝑝𝐹] 165.39

𝑉𝑖𝑛 [𝑉] 79.92

𝐷 0.3722

The parameters are substituted into the ideal Class-EF2 inverter state-space model in MATLAB as

well as LTSpice to examine the performance of the circuit and select a switch.

83

5.3 Design Example Stage 3 – Determination of Suitable Switch

With the ideal design completed, the next step is to select a switch by examining the switch voltage

and current waveforms which are presented in Fig. 5-1.

The switch voltage waveform peaks at 181.71V and has an average value of 79.92V and the switch

current peaks at 4.77A with an average value of 1.33A. For this design example, the EPC2019

switch is selected as it is rated for 200V and 8.5A and has a fairly linear output capacitance for

values of vds above 30 V.

Following the process described in 4.2.1, the MATLAB generated switch voltage vector is

substituted into (4.21) to (4.25) giving the following values for the internal resistances and

capacitances.

Figure 5-1 – Switch Voltage and Switch Current Waveforms for the Ideal Design Example

84

Table 5-4 – Internal Capacitances and Resistances for the Practical Design Example

Internal Capacitances Internal Resistances

𝐶𝑑𝑠 [𝑝𝐹] 118.11 𝑟𝑔 [𝑚Ω] 400

𝐶𝑔𝑠 [𝑝𝐹] 201.86 𝑟𝑠 [𝑚Ω] 6.2

Now that the switch parameters have been determined, they can be substituted into the practical

Class-EF2 inverter state-space model in MATLAB and the optimizer can begin its design. The

parameters which had the lowest overall objective function scores are presented in Table 5-5.

Table 5-5 - Highest Scoring Variables for the Practical Design Example

Variable 𝑫 𝑳𝒇 [𝝁𝑯] 𝑪𝒇 [𝒑𝑭] 𝒌 𝑸𝑶𝒖𝒕 𝒙𝑳𝑺𝑪𝑺
 𝑽𝒊𝒏 [𝑽]

Value 0.3776 53.87 106.77 1.761 3.335 0.841 79.79

These values can now be used to calculate the nominal components and their parasitic elements as

described in sections 2.4.1 and 3.2.1. All component values are shown in Table 5-6.

Table 5-6 - Component Values for the Practical Design Example

Parameter Nominal Value ESR [mΩ] Parasitic Element

𝐿𝑓 53.87 μH 220 3.35 pF

𝐿𝑚𝑟 1079.1 nH 306.5 2.1 pF

𝐿𝑠 1860.8 nH 528.5 2.1 pF

𝐶𝑓 106.77 pF 50 138.22 pH

𝐶𝑚𝑟 127.66 pF 50 134.84 pH

𝐶𝑠 418.20 pF 50 114.38 pH

𝐷 0.3776 - -

𝑉𝑖𝑛 79.79 V - -

The parameters in Table 5-6 were then used to simulate the circuit in LTSpice and evaluate the

performance of the circuit using the process presented in Section 2.6. The specific values of interest

85

are presented in Table 5-7 and waveforms for the switch voltage, switch current, and output voltage

shown in Fig. 5-2 (a-c).

Table 5-7 – LTSpice Simulation Results of the Practical Class-EF2 Inverter Design Example

Parameter Value

𝑃𝑂𝑢𝑡𝐷𝑒𝑠𝑖𝑟𝑒𝑑
 100

𝑃𝑂𝑢𝑡𝐴𝑐𝑡𝑢𝑎𝑙
 97.862

𝜂 95.64%

𝑉𝑆𝑡𝑟𝑒𝑠𝑠 2.287

𝐼𝑆𝑡𝑟𝑒𝑠𝑠 3.593

𝑄𝑂𝑢𝑡 3.335

𝑇𝐻𝐷 4.40%

Figure 5-2 (a) – Switch Voltage Waveform of the Practical Class-EF2 Design

Figure 5-2 (b) – Switch Current Waveform of the Practical Class-EF2 Design

86

As can be seen, the practical Class-EF2 inverter achieved an efficiency of 95.64%, a 4.40% output

voltage waveform THD, a 2.14% error between the desired output power and the achieved output

power and maintained ZVS to an acceptable level of error.

5.4 Summary

In this chapter, a design example was presented for a 6.78 MHz, 100W, 20Ω Class-EF2 Inverter

using the MOGO algorithm. The final design had an efficiency of more than 95% and

demonstrated the ability to use the proposed optimization-based design approach for high power

designs.

Figure 5-2 (c) – Output Voltage Waveform of the Practical Class-EF2 Design

87

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

This thesis explored the use of multi-objective optimization algorithms for the design of high

frequency inverters. State-space models of the ideal, the parasitic, and the practical Class-EF2

inverter were derived and validated by MATLAB and LTSpice simulation. Each model was then

applied to the MOGO and MOPSO algorithms to design three inverters with varying output power,

frequency, and load requirements. The validity of the optimization-based design approach was

confirmed by comparison with analytical results, and the proposed circuits performed well in all

measured values of interest and adhered to the design specifications.

This thesis investigated the design of the ideal, parasitic, and practical Class-EF2 inverter using the

MOGO and MOPSO algorithms. Chapter 2 studied the ideal Class-EF2 inverter which was used

to validate the optimization-based design approach by comparing the results with analytical design

factors and equations. The proposed designs successfully maintained ZVS and ZDVS operation to

an acceptable level of error and adhered to the stated design specifications.

Chapter 3 introduced the parasitic Class-EF2 inverter and presented a state-space model which was

validated by MATLAB and LTSpice simulation. It was then applied to the MOGO and MOPSO

algorithms to design the same three circuits as the ideal case. The addition of the parasitic elements

caused large variations in component values and design factors. The added inductors, capacitors

and ESRs introduced more dynamics and sources of loss to the system which created a trade-off

between the inverter efficiency and the output voltage THD. When not accounted for in the design

88

phase, the parasitic elements may also cause a loss of ZVS and ZDVS operation and introduce

unwanted ringing in the switch current waveform.

Chapter 4 introduced the practical Class-EF2 inverter which included the parasitic elements from

Chapter 3 and a practical switch model. A state-space model of the practical Class-EF2 inverter was

derived, and a method for estimating the internal resistances and capacitances was presented. The

model was validated by MATLAB and LTSpice simulation using the manufacturer provided switch

model. It was then applied to the MOGO and MOPSO algorithms to design the same three circuits

as the ideal and parasitic cases. The addition of the practical switch model caused small variations

in all component values, but a large change in the value of Cf. This is necessary to maintain ZVS

and ZDVS operation since Cf is in parallel with the output capacitance of the switch. The

optimization-based design approach successfully designed circuits which performed well in all

measured values of interest, maintained ZVS and ZDVS operation to an acceptable level of error,

and adhered to the design specifications.

Finally, Chapter 6 presented a design example for a practical 6.78 MHz, 100W, 20Ω Class-EF2

inverter using the MOGO algorithm. This demonstrated the potential of the optimization-based

design approach for higher power inverters and provided insight into the tuning of the optimization

settings. The final design adhered to the design specifications and maintained an efficiency of more

than 95%.

The work described within this thesis is meant to be a proof of concept for the optimization-based

design of high-frequency inverters. However, more work is still required to address some of the

issues which arose throughout the work. This includes:

• The exploration of different generation and population sizes, as well as the implementation

of different variations of both the MOGO and MOPSO algorithms,

89

• Exploring the effects of non-constant internal switch resistances and capacitances,

• Confirming the parasitic element estimations using real world measurements, and

• Implementing physical prototypes of the designed circuits to confirm their validity.

6.1 Contribution of the Thesis

This thesis provides useful insight into the design of the Class-EF2 inverter with parasitic elements

and a non-ideal switch by drawing comparisons to the analytical design factors and equations of

the ideal case. It also serves as a proof of concept for the use of multi-obective optimization in

high-frequency circuit design and the provides the necessary tools for designers and researchers to

apply the design approach to other converters.

6.1.1 List of Publications

One publication has been made which included portions of the work presented in chapter 2 and

chapter 3.

[1] A. Peddle, B. Ryan, and J. E. Quaicoe, “Design of Class-EF Inverters using Multi-Objective

Genetic Optimization,” in the Thirtieth Annual Newfoundland Electrical and Computer

Engineering Conference (NECEC) 2021.

6.2 Future Work

Future work for the optimization-based design approach includes the investigation of the load-

independent case. This would be beneficial to designers as the load-independent Class-EF2 inverter

is more appropriate for use in wireless power transfer systems and considering the parasitic

elements and the switching dynamics in their design could provide useful insight. State-space

models of different inverter and rectifier topologies could also be applied to the optimization-based

90

design approach which would allow the design of resonant DC-DC converters. Finally, the

optimization initialization files could be updated such that only standard values of components are

proposed.

91

References

[1] M. K. Kazimierczuk and D. Czarkowski, Resonant Power Converters, 2nd ed. Hoboken,

New Jersey: John Wiley and Sons, LTD, 2011.

[2] F. H. Raab, “Idealized Operation of the Class E Tuned Power Amplifier,” IEEE Trans.

Circuits Syst., vol. 24, no. 12, pp. 725–735, 1977, doi: 10.1109/TCS.1977.1084296.

[3] R. E. Zulinski and J. W. Steadman, “Class E Power Amplifiers and Frequency Multipliers

with Finite DC-Feed Inductance,” IEEE Trans. Circuits Syst., vol. 34, no. 9, pp. 1074–

1087, 1987, doi: 10.1109/TCS.1987.1086268.

[4] M. K. Kazimierczuk and K. Puczko, “Power-Output Capability of Class E Amplifier at

Any Loaded Q and Switch Duty Cycle,” IEEE Trans. Circuits Syst., vol. 36, no. 8, pp.

1142–1143, 1989, doi: 10.1109/31.192430.

[5] H. Koizumi, M. Iwadare, and S. Mori, “Class E2 dc/dc Converter with Second Harmonic

Resonant Class E Inverter and Class E Rectifier,” Electr. Eng., 1994.

[6] R. E. Zulinski and K. J. Grady, “Load-Independent Class E Power Inverters: Part I -

Theoretical Development,” IEEE Trans. Circuits Syst., vol. 37, no. 8, pp. 1010–1018,

1990.

[7] L. Roslaniec, A. S. Jurkov, A. Al Bastami, and D. J. Perreault, “Design of single-switch

inverters for variable resistance/load modulation operation,” IEEE Trans. Power

Electron., vol. 30, no. 6, pp. 3200–3214, 2015, doi: 10.1109/TPEL.2014.2331494.

[8] S. Aldhaher, D. C. Yates, and P. D. Mitcheson, “Load-Independent Class E/EF Inverters

and Rectifiers for MHz-Switching Applications,” IEEE Trans. Power Electron., vol. 33,

no. 10, pp. 8270–8287, 2018, doi: 10.1109/TPEL.2018.2813760.

[9] N. Obinata, W. Luo, X. Wei, and H. Sekiya, “Analysis of Load-independent Class-E

Inverter at Any Duty Ratio,” IECON Proc. (Industrial Electron. Conf., vol. 2019-Octob,

pp. 1615–1620, 2019, doi: 10.1109/IECON.2019.8927599.

[10] S. D. Kee, I. Aoki, A. Hajimiri, and D. Rutledge, “The class-E/F family of ZVS switching

amplifiers,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 6, pp. 1677–1690, 2003, doi:

10.1109/TMTT.2003.812564.

[11] Z. Kaczmarczyk, “High-Efficiency Class E, EF2 , and E/F3 Inverters,” IEEE Trans. Ind.

Electron., vol. 53, no. 5, pp. 1584–1593, 2006.

[12] J. M. Rivas, Y. Han, O. Leitermann, A. D. Sagneri, and D. J. Perreault, “A high-frequency

resonant inverter topology with low-voltage stress,” IEEE Trans. Power Electron., vol.

23, no. 4, pp. 1759–1771, 2008, doi: 10.1109/TPEL.2008.924616.

[13] A. Mediano and N. O. Sokal, “A class-E RF power amplifier with a flat-top transistor-

voltage waveform,” IEEE Trans. Power Electron., vol. 28, no. 11, pp. 5215–5221, 2013,

doi: 10.1109/TPEL.2013.2242097.

[14] S. Aldhaher, D. C. Yates, and P. D. Mitcheson, “Modeling and Analysis of Class EF and

Class E/F Inverters with Series-Tuned Resonant Networks,” IEEE Trans. Power

Electron., vol. 31, no. 5, pp. 3415–3430, 2016, doi: 10.1109/TPEL.2015.2460997.

92

[15] A. Peddle, Y. Salami, M. Rahm, and J. E. Quaicoe, “Design and Comparative Analysis of

Variable Load Class-E and Class-EF Inverters at Multiple Megahertz Frequencies and

Power Levels,” 2020.

[16] S. Aldhaher, G. Kkelis, D. C. Yates, and P. D. Mitcheson, “Class EF2 inverters for

wireless power transfer applications,” 2015 IEEE Wirel. Power Transf. Conf. WPTC 2015,

pp. 2–5, 2015, doi: 10.1109/WPT.2015.7140141.

[17] X. Zhao, Z. Sun, and Y. Xu, “Multi-Objective Optimization Design of Permanent Magnet

Synchronous Motor Based on Genetic Algorithm,” Proc. - 2020 2nd Int. Conf. Mach.

Learn. Big Data Bus. Intell. MLBDBI 2020, pp. 405–409, 2020, doi:

10.1109/MLBDBI51377.2020.00086.

[18] R. Hans, S. C. Kaushik, and S. Manikandan, “Multi-objective optimization of two stage

series connected thermo-electric generator using genetic algorithm,” 2015 1st Int. Conf.

Futur. Trends Comput. Anal. Knowl. Manag. ABLAZE 2015, no. Ablaze, pp. 165–169,

2015, doi: 10.1109/ABLAZE.2015.7154977.

[19] N. Hasan, T. Yilmaz, R. Zane, and Z. Pantic, “Multi-objective particle swarm

optimization applied to the design of Wireless Power Transfer systems,” 2015 IEEE

Wirel. Power Transf. Conf. WPTC 2015, pp. 1–4, 2015, doi: 10.1109/WPT.2015.7139138.

[20] M. R. Torkomany, H. S. Hassan, A. Shoukry, A. M. Abdelrazek, and M. Elkholy, “An

enhanced multi-objective particle swarm optimization in water distribution systems

design,” Water (Switzerland), vol. 13, no. 10, pp. 1–21, 2021, doi: 10.3390/w13101334.

[21] MathWorks, “MATLAB,” 2022. https://www.mathworks.com/products/matlab.html.

[22] Mathworks, Global Optimization Toolbox: User’s Guide, R2021b ed. 2021.

[23] V. M. Cagigal, “Multi-Objective Particle Swarm Optimization (MOPSO).” MATLAB

Central File Exchange, 2021, [Online]. Available:

https://www.mathworks.com/matlabcentral/fileexchange/62074-multi-objective-particle-

swarm-optimization-mopso.

[24] K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms, 1st ed. John Wiley

and Sons, LTD, 2001.

[25] Analog Devices, “LTSpice,” 2022. https://www.analog.com/en/design-center/design-

tools-and-calculators/ltspice-simulator.html.

[26] A. Peddle, B. Ryan, and J. E. Quaicoe, “Design of Class-EF Inverters using Multi-

Objective Genetic Optimization,” 2021.

[27] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective

genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput., vol. 6, no. 2, pp. 182–197,

2002, doi: 10.1109/4235.996017.

[28] C. A. Coello Coello, G. T. Pulido, and M. S. Lechuga, “Handling Multiple Objectives

With Particle Swarm Optimization,” IEEE Trans. Evol. Comput., vol. 8, no. 3, pp. 256–

279, 2004, doi: 10.1002/9780470612163.

[29] M. R. Sierra and C. A. Coello Coello, “Improving PSO-based Multi-Objective

optimization using crowding, mutation and ε-dominance,” Lect. Notes Comput. Sci., vol.

93

3410, pp. 505–519, 2005, doi: 10.1007/978-3-540-31880-4_35.

[30] W. Elektronik, “WE-PD Performance SMT Shielded Power Inductor: 7447783100.”

2018.

[31] W. Elektronik, “WE-PD SMT Shielded Power Inductor: 74477020.” 2018.

[32] V. Vitramon, “Surface Mount Multilayer Ceramic Chip Capacitors for High Frequency:

VJ HIFREQ Series.” 2020.

[33] A. Massarini and M. K. Kazimierczuk, “Self-capacitance of inductors,” IEEE Trans.

Power Electron., vol. 12, no. 4, pp. 671–676, 1997, doi: 10.1109/63.602562.

[34] T. Instruments, “LMG1020 5-V, 7-A, 5-A Low-Side GaN and MOSFET Driver for 1-ns

Pulse Width Applications.” 2018.

[35] EPC, “EPC2019 - Enhancement Mode Power Transistor.” 2021.

[36] EPC, “EPC8010 - Enhancement Mode Power Transistor.” 2021.

94

Appendices

Appendix A

Fitness Function for the Ideal Class-EF2 Inverter

function Outcome =

EF_Ideal_Model(f_s,r_sw_on,r_sw_off,R_L,P_Out,minMaxValues,

inputParam)

%% Sort out parameters from optimizer

Outcome=zeros(1,6);

Cycles=3; % # Cycles to Fully Calculate

Resolution=300; % # of Samples/Cycle

P=1/f_s; % Switching Period

w=2*pi*f_s; % Angular Frequency

D=inputParam(1); % Extract values from optimzer for

calculations

Lf=inputParam(2);

Cf=inputParam(3);

Cmr=Cf/inputParam(4);

Lmr=1/(((2*w)^2)*Cmr);

Ls=(inputParam(5)*R_L)/(w*inputParam(6));

Cs=1/(((inputParam(6)*w)^2)*Ls);

U=inputParam(7);

t=P/Resolution; % State-Space evaluation time

t_on=D*P; % Transistor On time

t_off=(1-D)*P; % Transistor Off time

d_off=floor(Resolution*(1-D)); % # of samples in

Off-State

d_on=Resolution-d_off; % # of samples in

On-State

r_off=zeros(1,d_off)+r_sw_off; % Resistance

Vectors

r_on=zeros(1,d_on)+r_sw_on;

r_sw=[r_off , r_on];

%% Initialize State-Space Model

A_EFon=[-1/(Cf*r_sw_on) , 0 , 0 , 1/Cf , -1/Cf , -1/Cf;

95

 0 , 0 , 0 , 0 , 1/Cmr , 0;

 0 , 0 , 0 , 0 , 0 , 1/Cs;

 -1/Lf , 0 , 0 , 0 , 0 , 0;

 1/Lmr , -1/Lmr , 0 , 0 , 0 , 0;

 1/Ls , 0 , -1/Ls , 0 , 0 , -R_L/Ls];

A_EFoff=[-1/(Cf*r_sw_off) , 0 , 0 , 1/Cf , -1/Cf , -1/Cf;

 0 , 0 , 0 , 0 , 1/Cmr , 0;

 0 , 0 , 0 , 0 , 0 , 1/Cs;

 -1/Lf , 0 , 0 , 0 , 0 , 0;

 1/Lmr , -1/Lmr , 0 , 0 , 0 , 0;

 1/Ls , 0 , -1/Ls , 0 , 0 , -R_L/Ls];

B_EF=[0;

 0;

 0;

 1/Lf;

 0;

 0];

C_EF=[1 , 0 , 0 , 0 , 0 , 0; % V_Cf

 0 , 1 , 0 , 0 , 0 , 0; % V_Cmr

 0 , 0 , 1 , 0 , 0 , 0; % V_Cs

 0 , 0 , 0 , 1 , 0 , 0; % I_Lf

 0 , 0 , 0 , 0 , 1 , 0; % I_Lmr

 0 , 0 , 0 , 0 , 0 , 1]; % I_Ls

D_EF=zeros(6,1);

%% State vector calculations

SSCycles=550; % Number of Cycles to reach steady-

state

 % 300 for 6.78, 550 for 13.56, 1100 for

27.12

X_0=zeros(6,1); % Zero initial condition

for l=1:1:SSCycles

 if mod(l,2)==0

 X_n=(expm(A_EFon*t_on)*X_0);

 X_f=A_EFon\(expm(A_EFon*t_on)-eye(6))*(B_EF*U);

 X=X_n+X_f;

 else

 X_n=(expm(A_EFoff*t_off)*X_0);

 X_f=A_EFoff\(expm(A_EFoff*t_off)-eye(6))*(B_EF*U);

96

 X=X_n+X_f;

 end

 X_0=X;

end

%% Fully Calculate State Vectors for "Cycles" cycles

V_Cf=zeros(1,Resolution*Cycles); % Pre-allocate all

parameter vectors

V_Cmr=zeros(1,Resolution*Cycles);

V_Cs=zeros(1,Resolution*Cycles);

I_Lf=zeros(1,Resolution*Cycles);

I_Lmr=zeros(1,Resolution*Cycles);

I_Ls=zeros(1,Resolution*Cycles);

I_Cf=zeros(1,Resolution*Cycles);

I_Cmr=zeros(1,Resolution*Cycles);

I_Cs=zeros(1,Resolution*Cycles);

V_Lf=zeros(1,Resolution*Cycles);

V_Lmr=zeros(1,Resolution*Cycles);

V_Ls=zeros(1,Resolution*Cycles);

I_Sw=zeros(1,Resolution*Cycles);

V_ZVS=zeros(1,Cycles);

I_ZDVS=zeros(1,Cycles);

k=1;

for z=1:1:Cycles

 for l=1:1:Resolution

 % Define varying state matricies

 r=r_sw(l);

 A=[-1/(Cf*r) , 0 , 0 , 1/Cf , -1/Cf , -1/Cf;

 0 , 0 , 0 , 0 , 1/Cmr , 0;

 0 , 0 , 0 , 0 , 0 , 1/Cs;

 -1/Lf , 0 , 0 , 0 , 0 , 0;

 1/Lmr , -1/Lmr , 0 , 0 , 0 , 0;

 1/Ls , 0 , -1/Ls , 0 , 0 , -R_L/Ls];

 % Calculate next step using new model

 X_n=(expm(A*t)*X_0);

 X_f=A\(expm(A*t)-eye(6))*(B_EF*U);

 X=X_n+X_f;

 Xdot=(A*X)+(B_EF*U);

97

 Y=(C_EF*X)+(D_EF*U);

 % Save state-vectors to individual variables

 V_Cf(k)=Y(1,1);

 V_Cmr(k)=Y(2,1);

 V_Cs(k)=Y(3,1);

 I_Lf(k)=Y(4,1);

 I_Lmr(k)=Y(5,1);

 I_Ls(k)=Y(6,1);

 I_Cf(k)=Cf*Xdot(1,1);

 I_Cmr(k)=Cmr*Xdot(2,1);

 I_Cs(k)=Cs*Xdot(3,1);

 V_Lf(k)=Lf*Xdot(4,1);

 V_Lmr(k)=Lmr*Xdot(5,1);

 V_Ls(k)=Ls*Xdot(6,1);

 I_Sw(k)=I_Lf(k)-I_Cf(k)-I_Lmr(k)-I_Ls(k);

 if l==d_off

 V_ZVS(z)=V_Cf(k);

 I_ZDVS(z)=I_Sw(k)+I_Cf(k);

 end

 % Update initial conditions and counter variable(s)

 X_0=X;

 k=k+1;

 end

end

%% Post Processing

P_inCalc=U*mean(I_Lf); % Input Power

P_outCalc=(rms(I_Ls)^2)*R_L; % Output Power

Eff=abs(P_outCalc/P_inCalc); % Efficiency

I_Rip=max(abs(I_Lf))-min(abs(I_Lf)); % Input Current

Ripple

rf=I_Rip/mean(I_Lf);

V_start=[V_Cf(Resolution+1) , V_Cf(Resolution+2) ,

V_Cf(Resolution+3) , ...

 V_Cf(Resolution+4) , V_Cf(Resolution+5)];

LowV=min(V_start);

ZVS=max(abs(V_ZVS)); % Take worst case

ZVS and ZDVS

98

ZDVS=max(abs(I_ZDVS));

Location=find(abs(V_ZVS)==ZVS);

Value=floor(Resolution*(1-D))+(Resolution*(Location-1));

%% FFT/THD Calculations

Fs=Resolution*f_s; % Define Sampling Frequency

L=Resolution*Cycles; % Define Window Length

Harm_out=fft(I_Ls*R_L); % Calculate Output Voltage

FFT

P2 = abs(Harm_out/L); % Steps provided in MATLAB

documentation

P1 = P2(1:L/2+1);

P1(2:end-1) = 2*P1(2:end-1);

f = Fs*(0:(L/2))/L;

val=zeros(7,1);

for x=1:1:7 % Find positions of 1st

7 harmonics

 val(x)=find(f==f_s*x); % for THD calc

end

THD_top=sqrt(P1(val(2))^2+P1(val(3))^2+P1(val(4))^2+P1(val(

5))^2+P1(val(6))^2+P1(val(7))^2);

THD_bot=sqrt(P1(val(1))^2+P1(val(2))^2+P1(val(3))^2+P1(val(

4))^2+P1(val(5))^2+P1(val(6))^2+P1(val(7))^2);

THD=THD_top/THD_bot;

%% I_Cf Calc

I_check=I_Cf(1:d_off);

L1=d_off; % Define Window Length

Harm1=fft(I_check); % Calculate Output Voltage FFT

P2_I = abs(Harm1/L1); % Steps provided in MATLAB

documentation

P1_I = P2_I(1:floor(L1/2)+1);

P1_I(2:end-1) = 2*P1_I(2:end-1);

I_Num=find(max(P1_I)==P1_I);

%% MOPSO objective function calculations

if(THD>minMaxValues(1))

99

 Outcome(:,6)=Outcome(:,6)+1;

end

if(Eff<minMaxValues(2))

 Outcome(:,6)=Outcome(:,6)+1;

end

if(rf>minMaxValues(3))

 Outcome(:,6)=Outcome(:,6)+1;

end

if(I_Num>=minMaxValues(4))

 Outcome(:,6)=Outcome(:,6)+1;

end

if(V_Cf(Value)>V_Cf(Value-1))

 Outcome(:,6)=Outcome(:,6)+1;

end

if(LowV<0)

 Outcome(:,6)=Outcome(:,6)+1;

end

Outcome(:,1)=abs(1-Eff)/(1-minMaxValues(2));

Outcome(:,2)=ZVS/max(V_Cf);

Outcome(:,3)=ZDVS/max(abs(I_Sw+I_Cf));

Outcome(:,4)=THD/minMaxValues(1);

Outcome(:,5)=abs(P_Out-P_outCalc)/P_Out;

%% MOGO Objective function calculations

if(I_Num>=minMaxValues(1))

 Outcome(:,6)=1;

end

if(THD>=minMaxValues(2))

 Outcome(:,6)=1;

end

if(Eff<=minMaxValues(3))

 Outcome(:,6)=1;

end

if(rf>minMaxValues(4))

 Outcome(:,6)=1;

100

end

if(V_Cf(Value)>V_Cf(Value-1))

 Outcome(:,6)=1;

end

if(LowV<0)

 Outcome(:,6)=1;

end

Outcome(:,2)=ZVS/max(V_Cf);

Outcome(:,3)=ZDVS/max(abs(I_Cf+I_Sw));

Outcome(:,4)=THD;

if(P_outCalc<(0.667*P_Out) || P_outCalc>(1.333*P_Out))

 Outcome(:,5)=1;

else

 Outcome(:,5)=(3*abs(P_Out-P_outCalc))/P_Out;

end

101

Appendix B

Fitness Function for the Parasitic Class-EF2 Inverter

function Outcome =

EF_Parasitic_Model(f_s,r_sw_on,r_sw_off,R_L,P_Out,minMaxVal

ues,inputParam)

%% Sort out parameters from optimizer

Outcome=zeros(1,6);

Cycles=3; % # Cycles to Fully Calculate

Resolution=300; % # of Samples/Cycle

P=1/f_s; % Switching Period

w=2*pi*f_s; % Angular Frequency

% Parasitic Calculation Definitions

C2=200e-12; % Standard Values used for Parasitic

Inductance Calculation

L2=126.7e-12;

C_para=2.1e-12; % Average Parasitic Capacitance Value

R_para=50e-3; % Average Parasitic Resistance Value

QL=150; % Inductor Quality Factor

D=inputParam(1); % Extract values from optimzer for

calculations

Lf=inputParam(2);

Cf=inputParam(3);

Cmr=inputParam(4)*Cf;

Lmr=1/(((2*w)^2)*Cmr);

Ls=(inputParam(5)*R_L)/(w*inputParam(6));

Cs=1/(((inputParam(6)*w)^2)*Ls);

U=inputParam(7);

% Parasitic Calculations

C_Lf=3.35e-12;

C_Lmr=C_para;

C_Ls=C_para;

L_Cf=10^(log10(L2)-((log10(C2)-log10(Cf))/-7.213)); % -

7.213 is slope of

L_Cmr=10^(log10(L2)-((log10(C2)-log10(Cmr))/-7.213)); %

Capacitance SRF curve

102

L_Cs=10^(log10(L2)-((log10(C2)-log10(Cs))/-7.213)); %

from Data Sheet

r_Lf=220e-3;

r_Lmr=w*Lmr/QL;

r_Ls=w*Ls/QL;

r_Cf=R_para;

r_Cmr=R_para;

r_Cs=R_para;

t=P/Resolution; % State-Space evaluation time

t_on=D*P; % Transistor On time

t_off=(1-D)*P; % Transistor Off time

d_off=floor(Resolution*(1-D)); % # of samples in

Off-State

d_on=Resolution-d_off; % # of samples in

On-State

r_off=zeros(1,d_off)+r_sw_off; % Resistance

Vectors

r_on=zeros(1,d_on)+r_sw_on;

r_sw=[r_off , r_on];

%% Initialize State-Space Model

A_on=[0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1/Cf , 0 , 0;

 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1/Cmr , 0;

 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1/Cs;

 0 , 0 , 0 , -1/(r_sw_on*C_Lf) , 0 , 0 , -1/C_Lf , 0 ,

0 , 1/C_Lf , 1/C_Lf , 1/C_Lf;

 0 , 0 , 0 , 0 , 0 , 0 , 0 , -1/C_Lmr , 0 , 0 ,

1/C_Lmr , 0;

 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , -1/C_Ls , 0 , 0 ,

1/C_Ls;

 0 , 0 , 0 , 1/Lf , 0 , 0 , -r_Lf/Lf , 0 , 0 , 0 , 0 ,

0;

 0 , 0 , 0 , 0 , 1/Lmr , 0 , 0 , -r_Lmr/Lmr , 0 , 0 ,

0 , 0;

 0 , 0 , 0 , 0 , 0 , 1/Ls , 0 , 0 , -r_Ls/Ls , 0 , 0 ,

0;

 -1/L_Cf , 0 , 0 , -1/L_Cf , 0 , 0 , 0 , 0 , 0 , -

r_Cf/L_Cf , 0 , 0;

 0 , -1/L_Cmr , 0 , -1/L_Cmr , -1/L_Cmr , 0 , 0 , 0 ,

0 , 0 , -r_Cmr/L_Cmr , 0;

103

 0 , 0 , -1/L_Cs , -1/L_Cs , 0 , -1/L_Cs , 0 , 0 , 0 ,

0 , 0 , -(r_Cs+R_L)/L_Cs];

A_off=[0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1/Cf , 0 , 0;

 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1/Cmr , 0;

 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1/Cs;

 0 , 0 , 0 , -1/(r_sw_off*C_Lf) , 0 , 0 , -1/C_Lf , 0

, 0 , 1/C_Lf , 1/C_Lf , 1/C_Lf;

 0 , 0 , 0 , 0 , 0 , 0 , 0 , -1/C_Lmr , 0 , 0 ,

1/C_Lmr , 0;

 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , -1/C_Ls , 0 , 0 ,

1/C_Ls;

 0 , 0 , 0 , 1/Lf , 0 , 0 , -r_Lf/Lf , 0 , 0 , 0 , 0

, 0;

 0 , 0 , 0 , 0 , 1/Lmr , 0 , 0 , -r_Lmr/Lmr , 0 , 0 ,

0 , 0;

 0 , 0 , 0 , 0 , 0 , 1/Ls , 0 , 0 , -r_Ls/Ls , 0 , 0

, 0;

 -1/L_Cf , 0 , 0 , -1/L_Cf , 0 , 0 , 0 , 0 , 0 , -

r_Cf/L_Cf , 0 , 0;

 0 , -1/L_Cmr , 0 , -1/L_Cmr , -1/L_Cmr , 0 , 0 , 0 ,

0 , 0 , -r_Cmr/L_Cmr , 0;

 0 , 0 , -1/L_Cs , -1/L_Cs , 0 , -1/L_Cs , 0 , 0 , 0

, 0 , 0 , -(r_Cs+R_L)/L_Cs];

B_on=[0;

 0;

 0;

 1/(r_sw_on*C_Lf);

 0;

 0;

 0;

 0;

 0;

 1/L_Cf;

 1/L_Cmr;

 1/L_Cs];

B_off=[0;

 0;

 0;

 1/(r_sw_off*C_Lf);

 0;

 0;

104

 0;

 0;

 0;

 1/L_Cf;

 1/L_Cmr;

 1/L_Cs];

C=eye(12);

D_EF=zeros(12,1);

%% Steady-State Calculations

SSCycles=600; % Number of Cycles to reach steady-

state

X_0=zeros(12,1); % Zero initial condition

for l=1:1:SSCycles

 if mod(l,2)==0

 X_n=(expm(A_on*t_on)*X_0);

 X_f=A_on\(expm(A_on*t_on)-eye(12))*(B_on*U);

 X=X_n+X_f;

 else

 X_n=(expm(A_off*t_off)*X_0);

 X_f=A_off\(expm(A_off*t_off)-eye(12))*(B_off*U);

 X=X_n+X_f;

 end

 X_0=X;

end

%% Fully Calculate State Vectors for "Cycles" cycles

V_Cf=zeros(1,Resolution*Cycles); % Pre-allocate all

parameter vectors

V_Cmr=zeros(1,Resolution*Cycles);

V_Cs=zeros(1,Resolution*Cycles);

V_C_Lf=zeros(1,Resolution*Cycles);

V_C_Lmr=zeros(1,Resolution*Cycles);

V_C_Ls=zeros(1,Resolution*Cycles);

I_Lf=zeros(1,Resolution*Cycles);

I_Lmr=zeros(1,Resolution*Cycles);

I_Ls=zeros(1,Resolution*Cycles);

I_L_Cf=zeros(1,Resolution*Cycles);

I_L_Cmr=zeros(1,Resolution*Cycles);

I_L_Cs=zeros(1,Resolution*Cycles);

I_Cf=zeros(1,Resolution*Cycles);

105

I_Cmr=zeros(1,Resolution*Cycles);

I_Cs=zeros(1,Resolution*Cycles);

I_C_Lf=zeros(1,Resolution*Cycles);

I_C_Lmr=zeros(1,Resolution*Cycles);

I_C_Ls=zeros(1,Resolution*Cycles);

V_Lf=zeros(1,Resolution*Cycles);

V_Lmr=zeros(1,Resolution*Cycles);

V_Ls=zeros(1,Resolution*Cycles);

V_L_Cf=zeros(1,Resolution*Cycles);

V_L_Cmr=zeros(1,Resolution*Cycles);

V_L_Cs=zeros(1,Resolution*Cycles);

I_Sw=zeros(1,Resolution*Cycles);

V_Sw=zeros(1,Resolution*Cycles);

V_ZVS=zeros(1,Cycles);

I_ZDVS=zeros(1,Cycles);

j=1; % Initialize Counter Variable

for z=1:1:Cycles

 for l=1:1:Resolution

 % Define varying state-space matricies

 r=r_sw(l);

 A=[0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1/Cf , 0 , 0;

 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1/Cmr ,

0;

 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1/Cs;

 0 , 0 , 0 , -1/(r*C_Lf) , 0 , 0 , -1/C_Lf , 0 , 0

, 1/C_Lf , 1/C_Lf , 1/C_Lf;

 0 , 0 , 0 , 0 , 0 , 0 , 0 , -1/C_Lmr , 0 , 0 ,

1/C_Lmr , 0;

 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , -1/C_Ls , 0 , 0 ,

1/C_Ls;

 0 , 0 , 0 , 1/Lf , 0 , 0 , -r_Lf/Lf , 0 , 0 , 0 ,

0 , 0;

 0 , 0 , 0 , 0 , 1/Lmr , 0 , 0 , -r_Lmr/Lmr , 0 ,

0 , 0 , 0;

 0 , 0 , 0 , 0 , 0 , 1/Ls , 0 , 0 , -r_Ls/Ls , 0 ,

0 , 0;

 -1/L_Cf , 0 , 0 , -1/L_Cf , 0 , 0 , 0 , 0 , 0 , -

r_Cf/L_Cf , 0 , 0;

 0 , -1/L_Cmr , 0 , -1/L_Cmr , -1/L_Cmr , 0 , 0 ,

0 , 0 , 0 , -r_Cmr/L_Cmr , 0;

106

 0 , 0 , -1/L_Cs , -1/L_Cs , 0 , -1/L_Cs , 0 , 0 ,

0 , 0 , 0 , -(r_Cs+R_L)/L_Cs];

 B=[0;

 0;

 0;

 1/(r*C_Lf);

 0;

 0;

 0;

 0;

 0;

 1/L_Cf;

 1/L_Cmr;

 1/L_Cs];

 % Calculate next step using new model

 X_n=(expm(A*t)*X_0);

 X_f=A\(expm(A*t)-eye(12))*(B*U);

 X=X_n+X_f;

 Xdot=(A*X)+(B*U);

 Y=(C*X)+(D_EF*U);

 % Save state-vectors to individual variables

 V_Cf(j)=Y(1,1);

 V_Cmr(j)=Y(2,1);

 V_Cs(j)=Y(3,1);

 V_C_Lf(j)=Y(4,1);

 V_C_Lmr(j)=Y(5,1);

 V_C_Ls(j)=Y(6,1);

 I_Lf(j)=Y(7,1);

 I_Lmr(j)=Y(8,1);

 I_Ls(j)=Y(9,1);

 I_L_Cf(j)=Y(10,1);

 I_L_Cmr(j)=Y(11,1);

 I_L_Cs(j)=Y(12,1);

 I_Cf(j)=Cf*Xdot(1,1);

 I_Cmr(j)=Cmr*Xdot(2,1);

 I_Cs(j)=Cs*Xdot(3,1);

 I_C_Lf(j)=C_Lf*Xdot(4,1);

 I_C_Lmr(j)=C_Lmr*Xdot(5,1);

 I_C_Ls(j)=C_Ls*Xdot(6,1);

107

 V_Lf(j)=Lf*Xdot(7,1);

 V_Lmr(j)=Lmr*Xdot(8,1);

 V_Ls(j)=Ls*Xdot(9,1);

 V_L_Cf(j)=L_Cf*Xdot(10,1);

 V_L_Cmr(j)=L_Cmr*Xdot(11,1);

 V_L_Cs(j)=L_Cs*Xdot(12,1);

 V_Sw(j)=V_Cf(j)+V_L_Cf(j)+(r_Cf*I_L_Cf(j));

 I_Sw(j)=I_Lf(j)+I_C_Lf(j)-I_L_Cf(j)-I_L_Cmr(j)-

I_L_Cs(j);

 if l==d_off

 V_ZVS(z)=V_Sw(j);

 I_ZDVS(z)=I_L_Cf(j)+I_Sw(j);

 else

 end

 % Update initial conditions and counter variable(s)

 X_0=X;

 j=j+1;

 end

end

%% Post Processing

P_inCalc=U*mean(I_Lf+I_C_Lf); % Power Calc

P_outCalc=(rms(I_L_Cs)^2)*R_L;

Eff=abs(P_outCalc/P_inCalc); % Efficiency

Calc

i_rip=abs(max(I_Lf)-min(I_Lf));

rf=i_rip/mean(I_Lf);

V_start=[V_Sw(Resolution+1) , V_Sw(Resolution+2) ,

V_Sw(Resolution+3) , ...

 V_Sw(Resolution+4) , V_Sw(Resolution+5)];

LowV=min(V_start);

problem=find(LowV==V_start);

if(problem==1)

 if(V_start(problem+1)>0)

 LowV=1;

 else

 end

elseif(problem==5)

108

 if(V_start(problem-1)>0)

 LowV=1;

 else

 end

else

 if(V_start(problem+1)>0 && V_start(problem-1)>0)

 LowV=1;

 else

 end

end

ZVS=max(abs(V_ZVS)); % Worst Case ZVS &

ZDVS

ZDVS=max(abs(I_ZDVS));

Location=find(abs(V_ZVS)==ZVS);

Value=floor(Resolution*(1-D))+(Resolution*(Location-1));

%% FFT/THD Calculations

Fs=Resolution*f_s; % Define Sampling

Frequency

L=Resolution*Cycles; % Define Window

Length

Harm_out=fft(I_L_Cs*R_L); % Calculate

Output Voltage FFT

P2 = abs(Harm_out/L); % Steps provided in MATLAB

documentation

P1 = P2(1:L/2+1);

P1(2:end-1) = 2*P1(2:end-1);

f = Fs*(0:(L/2))/L;

val=zeros(7,1);

for x=1:1:7 % Find positions of 1st

7 harmonics

 val(x)=find(f==f_s*x); % for THD calc

end

THD_top=sqrt(P1(val(2))^2+P1(val(3))^2+P1(val(4))^2+P1(val(

5))^2+P1(val(6))^2+P1(val(7))^2);

THD_bot=sqrt(P1(val(1))^2+P1(val(2))^2+P1(val(2))^2+P1(val(

4))^2+P1(val(5))^2+P1(val(6))^2+P1(val(7))^2);

THD=THD_top/THD_bot;

109

%% I_Cf Calc

I_check=I_Cf(1:d_off);

L1=d_off; % Define Window Length

Harm1=fft(I_check); % Calculate Output Voltage FFT

P2_I = abs(Harm1/L1); % Steps provided in MATLAB

documentation

P1_I = P2_I(1:floor(L1/2)+1);

P1_I(2:end-1) = 2*P1_I(2:end-1);

I_Num=find(max(P1_I)==P1_I);

%% MOPSO Objective function values

if(THD>minMaxValues(1))

 Outcome(:,6)=Outcome(:,6)+1;

end

if(Eff<minMaxValues(2))

 Outcome(:,6)=Outcome(:,6)+1;

end

if(rf>minMaxValues(3))

 Outcome(:,6)=Outcome(:,6)+1;

end

if(I_Num>=minMaxValues(4))

 Outcome(:,6)=Outcome(:,6)+1;

end

if(V_Sw(Value)>V_Sw(Value-1))

 Outcome(:,6)=Outcome(:,6)+1;

end

if(LowV<0)

 Outcome(:,6)=Outcome(:,6)+1;

end

if(P_outCalc<(0.5*P_Out) || P_outCalc>(1.5*P_Out))

 Outcome(:,6)=Outcome(:,6)+1;

end

Outcome(:,1)=abs(1-Eff);

Outcome(:,2)=ZVS/max(V_Sw);

Outcome(:,3)=ZDVS/max(abs(I_Sw+I_Cf));

110

Outcome(:,4)=THD;

Outcome(:,5)=abs(P_Out-P_outCalc)/P_Out;

%% MOGO Objective function values

if(I_Num>=minMaxValues(1))

 Outcome(:,6)=1;

end

if(rf>minMaxValues(4))

 Outcome(:,6)=1;

end

if(V_Sw(Value)>V_Sw(Value-1))

 Outcome(:,6)=1;

end

if(LowV<0)

 Outcome(:,6)=1;

end

if(Eff<=minMaxValues(3))

 Outcome(:,1)=1;

else

 Outcome(:,1)=abs(1-Eff)/(1-minMaxValues(3));

end

if(ZVS>=((1/3)*max(V_Sw)))

 Outcome(:,2)=1;

else

 Outcome(:,2)=(3*ZVS)/max(V_Sw);

end

if(ZDVS>=((1/3)*max(abs(I_Cf+I_Sw))))

 Outcome(:,3)=1;

else

 Outcome(:,3)=(3*ZDVS)/max(abs(I_Cf+I_Sw));

end

if(THD>=minMaxValues(2))

 Outcome(:,4)=1;

else

 Outcome(:,4)=THD/minMaxValues(2);

end

111

if(P_outCalc<(0.667*P_Out) || P_outCalc>(1.333*P_Out))

 Outcome(:,5)=1;

else

 Outcome(:,5)=(3*abs(P_Out-P_outCalc))/P_Out;

end

112

Appendix C

Fitness Function for the Practical Class-EF2 Inverter

function Outcome =

EF_Practical_Model(f_s,r_sw_on,r_sw_off,rg,rs,R_L,P_Out,min

MaxValues,inputParam)

%% Sort out Parameters from Optimizer

Outcome=zeros(1,6);

Resolution=300; % # of samples/cycle

Cycles=6; % # of cycles

Adjustment=3; % # of adjustment cycles

P=1/f_s; % Switching Period

w=2*pi*f_s; % Angular Frequency

%% Component and Parasitic Calculations

C2=200e-12; % Standard Values used for

Parasitic Inductance Calculation

L2=126.7e-12;

C_para=2.1e-12; % Average Parasitic Capacitance

Value

R_para=50e-3; % Average Parasitic Resistance

Value

QL=150; % Inductor Quality Factor

D=inputParam(1); % Extract values from optimzer for

calculations

Lf=inputParam(2);

Cf=inputParam(3);

Cmr=(Cf+Cds)*inputParam(4);

Lmr=1/(((2*w)^2)*Cmr);

Ls=(inputParam(5)*R_L)/(w*inputParam(6));

Cs=1/(((inputParam(6)*w)^2)*Ls);

V_in=inputParam(7);

C_Lf=3.35e-12;

C_Lmr=C_para;

C_Ls=C_para;

L_Cf=10^(log10(L2)-((log10(C2)-log10(Cf))/-7.213)); % -

7.213 is slope of

L_Cmr=10^(log10(L2)-((log10(C2)-log10(Cmr))/-7.213)); %

Capacitance SRF curve

113

L_Cs=10^(log10(L2)-((log10(C2)-log10(Cs))/-7.213)); %

from Data Sheet

r_Lf=220e-3;

r_Lmr=w*Lmr/QL;

r_Ls=w*Ls/QL;

r_Cf=R_para;

r_Cmr=R_para;

r_Cs=R_para;

t=P/Resolution; % State-Space evaluation time

t_on=D*P; % Transistor On time

t_off=(1-D)*P; % Transistor Off time

%% Define Switch Parameters

d_trans=4; % # of samples

in transition - 3, 4, 6 for design cases

d_off=floor(Resolution*(1-D))-d_trans; % # of samples

in Off-State

d_on=(Resolution-d_off)-(2*d_trans); % # of samples

in On-State

Vg_off=zeros(1,d_off); % Gate Voltage

Vectors

Vg_trans_on=linspace(0,5,d_trans);

Vg_on=zeros(1,d_on)+5;

Vg_trans_off=linspace(5,0,d_trans);

Vg_total=[Vg_off , Vg_trans_on , Vg_on , Vg_trans_off];

r_off=zeros(1,d_off)+r_sw_off; % Resistance

Vectors

r_trans_on=logspace(6,-2,d_trans);

r_on=zeros(1,d_on)+r_sw_on;

r_trans_off=logspace(-2,6,d_trans);

r_sw=[r_off , r_trans_on , r_on , r_trans_off];

U1=V_in; % Pre-define U1 for initial

calc.

U2_on=Vg_on(1); % Pre-define U2 for initial

calc.

U2_off=Vg_off(1);

U2=Vg_total(1);

r=r_sw(1); % Pre-define r for initial

calc.

114

%% State-Space Model Initialization

A_new_on=[0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1/Cf

, 0 , 0; % V_Cf

 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

1/Cmr , 0; % V_Cmr

 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0

, 1/Cs; % V_Cs

 0 , 0 , 0 , -(rg+rs)/(C_Lf*rg*rs) , 0 , 0 , -

((rs*r_sw_on)+(rg*r_sw_on))/(C_Lf*rg*rs*r_sw_on) ,...

 1/(C_Lf*rg) , -1/C_Lf , 0 , 0 , 1/C_Lf , 1/C_Lf ,

1/C_Lf; % V_C_Lf

 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , -1/C_Lmr , 0

, 0 , 1/C_Lmr , 0; % V_C_Lmr

 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , -1/C_Ls ,

0 , 0 , 1/C_Ls; % V_C_Ls

 0 , 0 , 0 , -(rg+rs)/(Cds*rg*rs) , 0 , 0 , -

((rs*rg)+(rs*r_sw_on)+(rg*r_sw_on))/(Cds*rs*rg*r_sw_on)

,...

 1/(Cds*rg) , 0 , 0 , 0 , 0 , 0 , 0;

% V_Cds

 0 , 0 , 0 , 1/(Cgs*rg) , 0 , 0 , 1/(Cgs*rg) , -

1/(Cgs*rg) , 0 , 0 , 0 , 0 , 0 , 0; % V_Cgs

 0 , 0 , 0 , 1/Lf , 0 , 0 , 0 , 0 , -r_Lf/Lf , 0 ,

0 , 0 , 0 , 0; % I_Lf

 0 , 0 , 0 , 0 , 1/Lmr , 0 , 0 , 0 , 0 , -

r_Lmr/Lmr , 0 , 0 , 0 , 0; % I_Lmr

 0 , 0 , 0 , 0 , 0 , 1/Ls , 0 , 0 , 0 , 0 , -

r_Ls/Ls , 0 , 0 , 0; % I_Ls

 -1/L_Cf , 0 , 0 , -1/L_Cf , 0 , 0 , 0 , 0 , 0 , 0

, 0 , -r_Cf/L_Cf , 0 , 0; % I_L_Cf

 0 , -1/L_Cmr , 0 , -1/L_Cmr , -1/L_Cmr , 0 , 0 ,

0 , 0 , 0 , 0 , 0 , -r_Cmr/L_Cmr , 0; % I_L_Cmr

 0 , 0 , -1/L_Cs , -1/L_Cs , 0 , -1/L_Cs , 0 , 0 ,

0 , 0 , 0 , 0 , 0 , -(r_Cs+R_L)/L_Cs]; % I_L_Cs

A_new_off=[0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1/Cf

, 0 , 0; % V_Cf

 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

1/Cmr , 0; % V_Cmr

 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

0 , 1/Cs; % V_Cs

 0 , 0 , 0 , -(rg+rs)/(C_Lf*rg*rs) , 0 , 0 , -

((rs*r_sw_off)+(rg*r_sw_off))/(C_Lf*rg*rs*r_sw_off) ,...

115

 1/(C_Lf*rg) , -1/C_Lf , 0 , 0 , 1/C_Lf , 1/C_Lf

, 1/C_Lf; % V_C_Lf

 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , -1/C_Lmr , 0

, 0 , 1/C_Lmr , 0; % V_C_Lmr

 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , -1/C_Ls

, 0 , 0 , 1/C_Ls; % V_C_Ls

 0 , 0 , 0 , -(rg+rs)/(Cds*rg*rs) , 0 , 0 , -

((rs*rg)+(rs*r_sw_off)+(rg*r_sw_off))/(Cds*rs*rg*r_sw_off)

,...

 1/(Cds*rg) , 0 , 0 , 0 , 0 , 0 , 0;

% V_Cds

 0 , 0 , 0 , 1/(Cgs*rg) , 0 , 0 , 1/(Cgs*rg) , -

1/(Cgs*rg) , 0 , 0 , 0 , 0 , 0 , 0; % V_Cgs

 0 , 0 , 0 , 1/Lf , 0 , 0 , 0 , 0 , -r_Lf/Lf , 0

, 0 , 0 , 0 , 0; % I_Lf

 0 , 0 , 0 , 0 , 1/Lmr , 0 , 0 , 0 , 0 , -

r_Lmr/Lmr , 0 , 0 , 0 , 0; % I_Lmr

 0 , 0 , 0 , 0 , 0 , 1/Ls , 0 , 0 , 0 , 0 , -

r_Ls/Ls , 0 , 0 , 0; % I_Ls

 -1/L_Cf , 0 , 0 , -1/L_Cf , 0 , 0 , 0 , 0 , 0 ,

0 , 0 , -r_Cf/L_Cf , 0 , 0; % I_L_Cf

 0 , -1/L_Cmr , 0 , -1/L_Cmr , -1/L_Cmr , 0 , 0 ,

0 , 0 , 0 , 0 , 0 , -r_Cmr/L_Cmr , 0; % I_L_Cmr

 0 , 0 , -1/L_Cs , -1/L_Cs , 0 , -1/L_Cs , 0 , 0

, 0 , 0 , 0 , 0 , 0 , -(r_Cs+R_L)/L_Cs]; % I_L_Cs

B_new=[0 , 0;

 0 , 0;

 0 , 0;

 (rg+rs)/(C_Lf*rg*rs) , -1/(C_Lf*rg);

 0 , 0;

 0 , 0;

 (rg+rs)/(Cds*rg*rs) , -1/(Cds*rg);

 -1/(Cgs*rg) , 1/(Cgs*rg);

 0 , 0;

 0 , 0;

 0 , 0;

 1/L_Cf , 0;

 1/L_Cmr , 0;

 1/L_Cs , 0];

C_new=eye(14);

D_new=zeros(14,2);

116

%% Get to Steady-State

SSCycles=550; % Number of Cycles to reach steady-

state - 300, 550, 1100 for design cases

X_0=zeros(14,1); % Zero initial condition

U_on=[U1;U2_on]; % On-State Input

U_off=[U1;U2_off]; % Off-State Input

for l=1:1:SSCycles

 if mod(l,2)==0

 X_n=(expm(A_new_on*t_on)*X_0);

 X_f=A_new_on\(expm(A_new_on*t_on)-

eye(14))*(B_new*U_on);

 X=X_n+X_f;

 else

 X_n=(expm(A_new_off*t_off)*X_0);

 X_f=A_new_off\(expm(A_new_off*t_off)-

eye(14))*(B_new*U_off);

 X=X_n+X_f;

 end

 X_0=X;

end

%% Pre-allocate State Variables

V_Cf=zeros(1,Resolution*(Cycles-Adjustment));

V_Cmr=zeros(1,Resolution*(Cycles-Adjustment));

V_Cs=zeros(1,Resolution*(Cycles-Adjustment));

V_C_Lf=zeros(1,Resolution*(Cycles-Adjustment));

V_C_Lmr=zeros(1,Resolution*(Cycles-Adjustment));

V_C_Ls=zeros(1,Resolution*(Cycles-Adjustment));

V_ds=zeros(1,Resolution*(Cycles-Adjustment));

V_gs=zeros(1,Resolution*(Cycles-Adjustment));

I_Lf=zeros(1,Resolution*(Cycles-Adjustment));

I_Lmr=zeros(1,Resolution*(Cycles-Adjustment));

I_Ls=zeros(1,Resolution*(Cycles-Adjustment));

I_L_Cf=zeros(1,Resolution*(Cycles-Adjustment));

I_L_Cmr=zeros(1,Resolution*(Cycles-Adjustment));

I_L_Cs=zeros(1,Resolution*(Cycles-Adjustment));

I_Cf=zeros(1,Resolution*(Cycles-Adjustment));

I_Cmr=zeros(1,Resolution*(Cycles-Adjustment));

I_Cs=zeros(1,Resolution*(Cycles-Adjustment));

I_C_Lf=zeros(1,Resolution*(Cycles-Adjustment));

I_C_Lmr=zeros(1,Resolution*(Cycles-Adjustment));

117

I_C_Ls=zeros(1,Resolution*(Cycles-Adjustment));

I_ds=zeros(1,Resolution*(Cycles-Adjustment));

I_gs=zeros(1,Resolution*(Cycles-Adjustment));

V_Lf=zeros(1,Resolution*(Cycles-Adjustment));

V_Lmr=zeros(1,Resolution*(Cycles-Adjustment));

V_Ls=zeros(1,Resolution*(Cycles-Adjustment));

V_L_Cf=zeros(1,Resolution*(Cycles-Adjustment));

V_L_Cmr=zeros(1,Resolution*(Cycles-Adjustment));

V_L_Cs=zeros(1,Resolution*(Cycles-Adjustment));

I_Sw=zeros(1,Resolution*(Cycles-Adjustment));

V_Sw=zeros(1,Resolution*(Cycles-Adjustment));

V_ZVS=zeros(1,(Cycles-Adjustment));

I_ZDVS=zeros(1,(Cycles-Adjustment));

k=1; % Define counter variable for state-vectors

%% State-Space Test

for z=1:1:Cycles

 for l=1:1:Resolution

 % Define varying state-space matricies

 U=[U1;

 U2];

 A=[0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1/Cf

, 0 , 0; % V_Cf

 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

1/Cmr , 0; % V_Cmr

 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

0 , 1/Cs; % V_Cs

 0 , 0 , 0 , -(rg+rs)/(C_Lf*rg*rs) , 0 , 0 , -

((rs*r)+(rg*r))/(C_Lf*rg*rs*r) ,...

 1/(C_Lf*rg) , -1/C_Lf , 0 , 0 , 1/C_Lf , 1/C_Lf

, 1/C_Lf; % V_C_Lf

 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , -1/C_Lmr , 0

, 0 , 1/C_Lmr , 0; % V_C_Lmr

 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , -1/C_Ls

, 0 , 0 , 1/C_Ls; % V_C_Ls

 0 , 0 , 0 , -(rg+rs)/(Cds*rg*rs) , 0 , 0 , -

((rs*rg)+(rs*r)+(rg*r))/(Cds*rs*rg*r) ,...

 1/(Cds*rg) , 0 , 0 , 0 , 0 , 0 , 0;

% V_Cds

 0 , 0 , 0 , 1/(Cgs*rg) , 0 , 0 , 1/(Cgs*rg) , -

1/(Cgs*rg) , 0 , 0 , 0 , 0 , 0 , 0; % V_Cgs

118

 0 , 0 , 0 , 1/Lf , 0 , 0 , 0 , 0 , -r_Lf/Lf , 0

, 0 , 0 , 0 , 0; % I_Lf

 0 , 0 , 0 , 0 , 1/Lmr , 0 , 0 , 0 , 0 , -

r_Lmr/Lmr , 0 , 0 , 0 , 0; % I_Lmr

 0 , 0 , 0 , 0 , 0 , 1/Ls , 0 , 0 , 0 , 0 , -

r_Ls/Ls , 0 , 0 , 0; % I_Ls

 -1/L_Cf , 0 , 0 , -1/L_Cf , 0 , 0 , 0 , 0 , 0 ,

0 , 0 , -r_Cf/L_Cf , 0 , 0; % I_L_Cf

 0 , -1/L_Cmr , 0 , -1/L_Cmr , -1/L_Cmr , 0 , 0 ,

0 , 0 , 0 , 0 , 0 , -r_Cmr/L_Cmr , 0; % I_L_Cmr

 0 , 0 , -1/L_Cs , -1/L_Cs , 0 , -1/L_Cs , 0 , 0

, 0 , 0 , 0 , 0 , 0 , -(r_Cs+R_L)/L_Cs]; % I_L_Cs

 % Calculate next step using new model

 X_n=(expm(A*t)*X_0);

 X_f=A\(expm(A*t)-eye(14))*(B_new*U);

 X=X_n+X_f;

 Xdot=(A*X)+(B_new*U);

 Y=(C_new*X)+(D_new*U);

 if(z>Adjustment)

 % Save state-vectors to individual variables

 V_Cf(k)=Y(1,1);

 V_Cmr(k)=Y(2,1);

 V_Cs(k)=Y(3,1);

 V_C_Lf(k)=Y(4,1);

 V_C_Lmr(k)=Y(5,1);

 V_C_Ls(k)=Y(6,1);

 V_ds(k)=Y(7,1);

 V_gs(k)=Y(8,1);

 I_Lf(k)=Y(9,1);

 I_Lmr(k)=Y(10,1);

 I_Ls(k)=Y(11,1);

 I_L_Cf(k)=Y(12,1);

 I_L_Cmr(k)=Y(13,1);

 I_L_Cs(k)=Y(14,1);

 I_Cf(k)=Cf*Xdot(1,1);

 I_Cmr(k)=Cmr*Xdot(2,1);

 I_Cs(k)=Cs*Xdot(3,1);

 I_C_Lf(k)=C_Lf*Xdot(4,1);

 I_C_Lmr(k)=C_Lmr*Xdot(5,1);

 I_C_Ls(k)=C_Ls*Xdot(6,1);

119

 I_ds(k)=Cds*Xdot(7,1);

 I_gs(k)=Cgs*Xdot(8,1);

 V_Lf(k)=Lf*Xdot(9,1);

 V_Lmr(k)=Lmr*Xdot(10,1);

 V_Ls(k)=Ls*Xdot(11,1);

 V_L_Cf(k)=L_Cf*Xdot(12,1);

 V_L_Cmr(k)=L_Cmr*Xdot(13,1);

 V_L_Cs(k)=L_Cs*Xdot(14,1);

 V_Sw(k)=V_Cf(k)+V_L_Cf(k)+(r_Cf*I_L_Cf(k));

 I_Sw(k)=(U1-V_C_Lf(k)-V_ds(k))/rs;

 if l==(d_off+round(d_trans/2))

 V_ZVS(z-Adjustment)=V_Sw(k);

 I_ZDVS(z-Adjustment)=I_Sw(k)+I_L_Cf(k);

 else

 end

 k=k+1;

 end

 % Update varying parameters

 U2=Vg_total(l);

 r=r_sw(l);

 % Update initial conditions and counter variable(s)

 X_0=X;

 end

end

%% Post Processing

P_inCalc=V_in*mean(I_Lf+I_C_Lf); % Power

Calculations

P_outCalc=(rms(I_L_Cs)^2)*R_L;

Eff=P_outCalc/P_inCalc; % Efficiency

i_rip=abs(max(I_Lf)-min(I_Lf));

rf=i_rip/mean(I_Lf);

V_start=[V_Sw(Resolution+1) , V_Sw(Resolution+2) ,

V_Sw(Resolution+3) , ...

 V_Sw(Resolution+4) , V_Sw(Resolution+5)];

LowV=min(V_start);

problem=find(LowV==V_start);

120

if(problem==1)

 if(V_start(problem+1)>0)

 LowV=1;

 else

 end

elseif(problem==5)

 if(V_start(problem-1)>0)

 LowV=1;

 else

 end

else

 if(V_start(problem+1)>0 && V_start(problem-1)>0)

 LowV=1;

 else

 end

end

ZVS=max(abs(V_ZVS)); % Worst Case ZVS &

ZDVS

ZDVS=max(abs(I_ZDVS));

Location=find(abs(V_ZVS)==ZVS);

Value=floor(Resolution*(1-D))+(Resolution*(Location-1))-

round(d_trans/2);

%% FFT/THD Calculations

Fs=Resolution*f_s; % Define Sampling

Frequency

L=Resolution*(Cycles-Adjustment); % Define Window

Length

Harm_out=fft(I_L_Cs*R_L); % Calculate Output

Voltage FFT

P2 = abs(Harm_out/L); % Steps provided in

MATLAB documentation

P1 = P2(1:L/2+1);

P1(2:end-1) = 2*P1(2:end-1);

f = Fs*(0:(L/2))/L;

val=zeros(7,1);

for x=1:1:7 % Find positions of

1st 7 harmonics

 val(x)=find(f==f_s*x); % for THD calc

121

end

THD_top=sqrt(P1(val(2))^2+P1(val(3))^2+P1(val(4))^2+P1(val(

5))^2+P1(val(6))^2+P1(val(7))^2);

THD_bot=sqrt(P1(val(1))^2+P1(val(2))^2+P1(val(2))^2+P1(val(

4))^2+P1(val(5))^2+P1(val(6))^2+P1(val(7))^2);

THD=THD_top/THD_bot;

%% I_Cf Calc

I_check=I_Cf(1:d_off);

L1=d_off; % Define Window Length

Harm1=fft(I_check); % Calculate Output Voltage FFT

P2_I = abs(Harm1/L1); % Steps provided in MATLAB

documentation

P1_I = P2_I(1:floor(L1/2)+1);

P1_I(2:end-1) = 2*P1_I(2:end-1);

I_Num=find(max(P1_I)==P1_I);

%% MOPSO Objective function values

if(THD>minMaxValues(1))

 Outcome(:,6)=Outcome(:,6)+1;

end

if(Eff<minMaxValues(2))

 Outcome(:,6)=Outcome(:,6)+1;

end

if(rf>minMaxValues(3))

 Outcome(:,6)=Outcome(:,6)+1;

end

if(I_Num>=minMaxValues(4))

 Outcome(:,6)=Outcome(:,6)+1;

end

if(V_Sw(Value)>V_Sw(Value-1))

 Outcome(:,6)=Outcome(:,6)+1;

end

if(LowV<0)

 Outcome(:,6)=Outcome(:,6)+1;

end

122

if(P_outCalc<(0.5*P_Out) || P_outCalc>(1.5*P_Out))

 Outcome(:,6)=Outcome(:,6)+1;

end

Outcome(:,1)=abs(1-Eff);

Outcome(:,2)=ZVS/max(V_Sw);

Outcome(:,3)=ZDVS/max(abs(I_Sw+I_Cf));

Outcome(:,4)=THD;

Outcome(:,5)=abs(P_Out-P_outCalc)/P_Out;

%% MOGO Objective function values

if(I_Num>=minMaxValues(1))

 Outcome(:,6)=1;

end

if(THD>=minMaxValues(2))

 Outcome(:,6)=1;

end

if(Eff<=minMaxValues(3))

 Outcome(:,6)=1;

end

if(rf>minMaxValues(4))

 Outcome(:,6)=1;

end

if(V_Cf(Value)>V_Cf(Value-1))

 Outcome(:,6)=1;

end

if(LowV<0)

 Outcome(:,6)=1;

end

if(ZVS>(max(V_Cf)/5))

 Outcome(:,6)=1;

end

Outcome(:,1)=abs(1-Eff);

Outcome(:,2)=ZVS/max(V_Cf);

Outcome(:,3)=ZDVS/max(abs(I_Cf+I_Sw));

Outcome(:,4)=THD;

123

if(P_outCalc<(0.667*P_Out) || P_outCalc>(1.333*P_Out))

 Outcome(:,5)=1;

else

 Outcome(:,5)=(3*abs(P_Out-P_outCalc))/P_Out;

end

124

Appendix D

MOGO Initialization Function

%% Reset Button

clear variables

clc

%% Optimization Setup

%converterType="Ideal_EF"; % Select Converter type

%converterType="Parasitic_EF";

converterType="Practical_EF";

f_s=13.56e6; % Desired Switching Frequency

r_on=10e-3; % Transistor On Resistance (Ideal)

%r_on=36e-3; % Transistor On Resistance

(EPC2019)

%r_on=120e-3; % Transistor On Resistance

(EPC8010)

r_off=1e6; % Transistor Off Resistance (Ideal)

rg=400e-3; % Transistor Gate Resistance

(EPC2019)

%rg=300e-3; % Transistor Gate Resistance

(EPC8010)

rs=6.2e-3; % Transistor Source Resistance

(EPC2019)

%rs=16.9e-3; % Transistor Source Resistance

(EPC8010)

R_L=10; % System Load Resistance

P_out=40; % Desired Output Power

switch converterType

 case ('Ideal_EF')

 % Order is [Max harmonic on switch current , Max

THD , ...

 % Min Efficiency , Max ripple factor]

 minMaxValues=[6 , 0.1 , 0.9 , 0.1];

 nvars=7;

 % Order is [D , Lf , Cf , Cf-Cmr factor , Output

quality factor , ...

 % LsCs resonant factor , Vin]

 Lb=[0.2 , 10e-9 , 0.5e-12 , 0.5 , 2 , 0.5 , 12];

 Ub=[0.8 , 100e-6 , 5e-9 , 2 , 8 , 2 , 72];

125

 case ('Parasitic_EF')

 % Order is [Max harmonic on switch current , Max

THD , ...

 % Min Efficiency , Max ripple factor]

 minMaxValues=[6 , 0.1 , 0.8 , 0.1];

 nvars=7;

 % Order is [D , Lf , Cf , Cf-Cmr factor , Output

quality factor , ...

 % LsCs resonant factor , V_in]

 Lb=[0.2 , 10e-9 , 0.5e-12 , 0.5 , 2 , 0.5 , 12];

 Ub=[0.8 , 100e-6 , 5e-9 , 2 , 8 , 2 , 72];

 case ('Practical_EF')

 % Order is [Max harmonic on switch current , Max

THD , ...

 % Min Efficiency , Max ripple factor]

 minMaxValues=[6 , 0.1 , 0.8 , 0.1];

 nvars=7;

 % Order is [D , Lf , Cf , Cf-Cmr factor , Output

quality factor , ...

 %LsCs resonant factor , V_in]

 Lb=[0.2 , 10e-9 , 0.5e-12 , 0.5 , 2 , 0.5 , 12];

 Ub=[0.8 , 100e-6 , 5e-9 , 2 , 8 , 2 , 72];

end

%% Optimization Settings

numGen = 100; % Number of Generations, play with

this value

popSize = 525; % Population size, play with this

value

output = @(options,state,flag)

myOptOutput(options,state,flag);

options =

optimoptions('gamultiobj','UseVectorized',false,'MaxStallGe

nerations',10,'MaxGenerations',numGen,...

 'FunctionTolerance',1e-4,'PopulationSize',popSize,

'Display', 'iter', 'OutputFcn', output);

switch converterType

 case("EF_Inverter")

 fitnessFunc = @(inputParam) Ideal_EF(f_s, r_on,

r_off, R_L, P_out, minMaxValues, inputParam);

 tic;

126

 fitnessFunc([0.4 , 5e-8 , 250e-12 , 1 , 5 , 1 ,

36]);

 funcRuntime = toc();

 case("Parasitic_EF")

 fitnessFunc = @(inputParam) Parasitic_EF(f_s, r_on,

r_off, rg, rs, R_L, P_out, minMaxValues, inputParam);

 tic;

 fitnessFunc([0.4 , 5e-8 , 250e-12 , 1 , 5 , 1 ,

36]);

 funcRuntime = toc();

 case("Practical_EF")

 fitnessFunc = @(inputParam) Practical_EF(f_s, r_on,

r_off, rg, rs, R_L, P_out, minMaxValues, inputParam);

 tic;

 fitnessFunc([0.4 , 5e-8 , 250e-12 , 1 , 5 , 1 ,

36]);

 funcRuntime = toc();

end

seconds = funcRuntime*(popSize)*(numGen+1);

hours = floor(seconds/3600);

minutes = round((seconds - hours*3600)/60);

%% Optimizer

tic;

[x,fval,StopFlag,output,Population,Score] =

gamultiobj(fitnessFunc,nvars,[],[],[],[],Lb,Ub,[],options);

toc;

%% Output Function

function [state,options,optchanged] =

myOptOutput(options,state,flag)

averageScores=mean(state.Score,2);

bestScores = min(averageScores);

positionBest=find(averageScores==bestScores);

lengthBest=length(positionBest);

Check=zeros(1,6)+1;

if lengthBest<1

 winner_Values=state.Population(positionBest,:);

 winner_Scores=state.Score(positionBest,:);

else

 for l=1:1:lengthBest

127

 maybeWinner=state.Score(positionBest(l),:);

 if maybeWinner(1)<=Check(1)

 Check=maybeWinner;

winner_Values=state.Population(positionBest(l),:);

 winner_Scores=state.Score(positionBest(l),:);

 else

 end

 end

end

switch flag

 case 'init'

 disp('Starting the algorithm');

 fprintf('Best component values: %d.\n',

winner_Values)

 fprintf('Best scores: %d.\n', winner_Scores)

 case {'iter','interrupt'}

 disp('Iterating...')

 fprintf('Best component values: %d.\n',

winner_Values)

 fprintf('Best scores: %d.\n', winner_Scores)

 case 'done'

 disp('Performing final task');

end

optchanged = false;

end

128

Appendix E

MOPSO Initialization Function

%% Reset

clear variables

clc

%% Optimization Setup

%converterType="Ideal_EF"; % Select Converter

type

%converterType="Parasitic_EF";

converterType="Practical_EF";

f_s=13.56e6; % Desired Switching Frequency

r_on=10e-3; % Transistor On Resistance (Ideal)

%r_on=36e-3; % Transistor On Resistance

(EPC2019)

%r_on=120e-3; % Transistor On Resistance

(EPC8010)

r_off=1e6; % Transistor Off Resistance (Ideal)

rg=400e-3; % Transistor Gate Resistance

(EPC2019)

%rg=300e-3; % Transistor Gate Resistance

(EPC8010)

rs=6.2e-3; % Transistor Source Resistance

(EPC2019)

%rs=16.9e-3; % Transistor Source Resistance

(EPC8010)

R_L=10; % System Load Resistance

P_out=40; % Desired Output Power

switch converterType

 case ('Ideal_EF')

 % Order is [Max harmonics on switch current , Max

THD , ...

 % Min Efficiency , Max ripple factor]

 minMaxValues=[6 , 0.1 , 0.9 , 0.1];

 MultiObj.nVar=7;

 % Order is [D , Lf , Cf , Cf-Cmr factor , Output

quality factor , ...

 % LsCs resonant factor , V_in]

129

 MultiObj.var_min=[0.2 , 10e-9 , 0.25e-12 , 0.5 , 2

, 0.5 , 12];

 MultiObj.var_max=[0.8 , 100e-6 , 2.5e-9 , 2 , 8 , 2

, 72];

 case ('Parasitic_EF')

 % Order is [Max harmonics on switch current , Max

THD , ...

 % Min Efficiency , Max ripple factor]

 minMaxValues=[6 , 0.1 , 0.8 , 0.1];

 MultiObj.nVar=7;

 % Order is [D , Lf , Cf , Cf-Cmr factor , Output

quality factor , ...

 % LsCs resonant factor , V_in]

 MultiObj.var_min=[0.2 , 10e-9 , 0.25e-12 , 0.5 , 2

, 0.5 , 12];

 MultiObj.var_max=[0.8 , 100e-6 , 2.5e-9 , 2 , 8 , 2

, 72];

 case ('Practical_EF')

 % Order is [Max harmonics on switch current , Max

THD , ...

 % Min Efficiency , Max rippler factor]

 minMaxValues=[6 , 0.1 , 0.8 , 0.1];

 MultiObj.nVar=7;

 % Order is [D , Lf , Cf , Cf-Cmr factor , Output

quality factor , ...

 % LsCs resonant factor , V_in]

 MultiObj.var_min=[0.2 , 10e-9 , 0.25e-12 , 0.5 , 2

, 0.5 , 12];

 MultiObj.var_max=[0.8 , 100e-6 , 2.5e-9 , 2 , 8 , 2

, 72];

end

% Population size % play with these values depends on

the problem and

params.Np = 125; % using 100 for both is a good

general approach

% Repository size

params.Nr = 125;

params.maxgen = 320; % Maximum number of

generations,increasing this

 % value increases computational

cost

130

params.W = 0.5; % Initial inertia weight, varies

from 0.5 to 1 over

 % the course of the optimization

params.C1 = 2; % Individual confidence factor,

typically 0.2-4 but

 % use 2 to reduce complexity

params.C2 = 2; % Swarm confidence factor,

typically 0.2-4 but use 2

 % to reduce complexity

params.ngrid = 30; % Number of grids in each

dimension, typically 20-50

params.maxvel = 20; % Maxmium vel in percentage,

typically 10-100 %

params.u_mut = 0.5; % Uniform mutation percentage,

typically 0.5

switch converterType

 case("E_Inverter")

 MultiObj.fun = @(x) PSO_Intermediate(f_s, r_on,

r_off, R_L, P_out, minMaxValues, x, params.Np,

converterType);

 case("EF_Inverter")

 MultiObj.fun = @(x) PSO_Intermediate(f_s, r_on,

r_off, rg, rs, R_L, P_out, minMaxValues, x, params.Np,

converterType);

end

%% Optimization

tic;

REP=MOPSO(params,MultiObj);

toc;

131

Appendix F

MOPSO Intermediate Function

function Objectives =

PSO_Intermediate(f_s,r_on,r_off,rg,rs,R_L,P_Out,minMaxValue

s,inputParam,numPop,converterType)

Objectives=zeros(numPop,6);

switch converterType

 case('Ideal_EF')

 fitnessfunc = @(inputParam)

EF_Ideal_Model(f_s,r_on,r_off,R_L,P_Out,minMaxValues,inputP

aram);

 for k=1:1:numPop

 Objectives(k,:)=fitnessfunc(inputParam(k,:));

 end

 case('Parasitic_EF')

 fitnessfunc = @(inputParam)

EF_Parasitic_Model(f_s,r_on,r_off,rg,rs,R_L,P_Out,minMaxVal

ues,inputParam);

 for k=1:1:numPop

 Objectives(k,:)=fitnessfunc(inputParam(k,:));

 end

 case('Practical_EF')

 fitnessfunc = @(inputParam)

EF_Practical_Model(f_s,r_on,r_off,rg,rs,R_L,P_Out,minMaxVal

ues,inputParam);

 for k=1:1:numPop

 Objectives(k,:)=fitnessfunc(inputParam(k,:));

 end

end

