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ABSTRACT 

This thesis explores the use of multi-objective optimization algorithms for the design of high 

frequency inverters. A state-space model of the ideal Class-EF2 inverter is derived and its accuracy 

is validated by MATLAB and LTSpice simulation. The model is then applied to the Multi-

Objective Genetic Optimization (MOGO) and Multi-Objective Particle Swarm Optimization 

(MOPSO) algorithms to design three inverters with varying output power, frequency, and load 

requirements. The final designs are compared with analytical results to verify the optimization-

based design approach. The ideal state-space model is then extended to include the parasitic 

elements of components, and further extended to consider the internal resistances and capacitances 

of the switch. These new models are applied to the MOGO and MOPSO algorithms to design the 

same three inverters as the ideal case. The final designs are simulated in LTSpice to evaluate their 

performance, and comparisons are presented to demonstrate the effects of the parasitic elements 

and switching dynamics on the component values and overall circuit operation. A design example 

is also presented to demonstrate the design of a 6.78 MHz, 100W, 20 Ω Class-EF2 inverter, and 

provide designers with insight on how to apply the proposed design approach to their own designs. 
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CHAPTER 1 

 

INTRODUCTION AND LITERATURE REVIEW 

 

 

As wireless power transfer systems become more widely used, the need to quickly produce 

efficient circuit designs has attracted attention. Class-E and Class-EF inverter topologies are often 

used in these systems due to their high efficiency, low component count, minimal total harmonic 

distortion (THD), and fast switching capabilities thanks to fast switching devices based on gallium 

nitride (GaN) technology. Analysis of these topologies has been studied extensively in literature; 

however, the design of the Class-EF inverter is often a tedious and iterative process, making it 

challenging for designers to test their systems quickly and efficiently. 

1.1 Background Information 

The Class-E inverter has been the most efficient inverter for most megahertz frequency 

applications ever since it was first proposed in 1975 [1] and has been studied extensively in the 

literature [2]–[5]. The circuit diagram for the Class-E inverter is shown in Fig. 1-1. 

The circuit contains a DC input voltage Vin, a choke inductor Lf, a shunt capacitor Cf, a power 

MOSFET which acts as a switch, and a series resonant filter consisting of Ls, Cs, and a load 

resistance RL. The choke inductor Lf is made high enough to ensure a DC input current, and the 

loaded quality factor of the output filter QOut is made high enough to ensure the output voltage vo 

is sinusoidal.  
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To ensure zero-voltage switching operation, the inverter switching frequency fs should be greater 

than the resonant frequency fo of Ls and Cs [1]. It is useful to think of Ls as being the series 

combination of two inductors L and Lres where L resonates with Cs as described in (1.2) and Lres is 

the residual inductance needed to ensure zero-voltage switching (ZVS) operation. Some helpful 

equations are shown in (1.1) to (1.3). 

𝜔𝑜 = 2𝜋𝑓𝑜 =
1

√𝐿𝑠𝐶𝑠

 (1.1) 

𝜔𝑠 = 2𝜋𝑓𝑠 =
1

√𝐿𝐶𝑠

 (1.2) 

𝑄𝑂𝑢𝑡 =
𝜔𝑠𝐿𝑠

𝑅
=

𝜔𝑠(𝐿 + 𝐿𝑟𝑒𝑠)

𝑅
=

1

𝜔𝑠𝐶𝑠𝑅
+

𝜔𝑠𝐿𝑟𝑒𝑠

𝑅
 (1.3) 

Despite its popularity in the field of power electronics, some of the main drawbacks of the Class-

E inverter are as follows: 

• High voltage stress (>3.5), 

• Strong second harmonic producing high switch and output voltage THD, and 

 

Figure 1-1 – Class-E ZVS Inverter Circuit Diagram 
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• Sub-optimal operation when the load resistance is varied. 

To improve the operation of the Class-E inverter, designs which maintain ZVS operation 

regardless of the load resistance have been developed. The load independent Class-E inverter was 

first proposed in 1990 [6] and has gathered much attention since then [7]–[9]. The prospect of 

maintaining ZVS over a large range of load impedances is particularly useful in the field of 

wireless power transfer, as the load is often variable in these systems. 

1.1.1 The Class-EF Inverter 

In 2002, a new topology of inverter was proposed which combined aspects of the Class-E amplifier 

with the Class-F and F-1 amplifiers [10]. In some applications, this new family of inverters have 

been shown to improve the efficiency, reduce the voltage stress, and lower the output voltage THD 

of the Class-E inverter [10]–[15]. The circuit diagram of the Class-EFn (or E/Fn) inverter is shown 

in Fig. 1-2. 

 

Figure 1-2 – Class-EFn (E/Fn) Inverter Circuit Diagram 
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The new addition to the circuit is the series resonant branch containing Cmr and Lmr which are tuned 

to resonate at nfs as described in eq. (1.14). The circuit is known as the Class-EFn inverter for even 

values of n, and the Class-E/Fn inverter for odd values of n. 

𝜔𝑚𝑟 = 𝑛 × 2𝜋𝑓𝑠 =
1

√𝐿𝑚𝑟𝐶𝑚𝑟

 ; 𝑛 ∈ ℕ, 𝑛 ≠ 1 (1.14) 

In [11], a piecewise-linear state-space model was applied to determine relationships between 

component values of the Class-E, Class-EF2 and Class-E/F3 inverters for ZVS and zero derivative 

voltage switching (ZDVS) operation. This provided useful information about which duty cycles 

maximized the output power capabilities of the Class-EF and Class-E/F family of inverters and 

demonstrated the power of state-space modelling for switching converters. 

In [12], the Class-Φ2 inverter was proposed which is a variation of the Class-EF2 inverter that uses 

a finite choke in place of an infinite choke to increase the maximum frequency of the inverter. The 

design process presented in the paper involves tuning the magnitude and phase of specific 

impedances within the circuit to achieve the desired output power characteristics and ensure ZVS 

operation. 

In [14], closed form expressions for the Class-EF and Class-E/F inverters for any duty cycle and 

any output filter quality factor were derived using circuit analysis. Design equations and 

performance parameters were also presented for the Class-EF2 inverter which achieve maximum 

power output capability and maximum frequency. 

The Class-EF and Class-E/F family of inverters operate sub-optimally when the load resistance is 

varied but like in the case of the Class-E inverter, load independent design methods were proposed 

[7], [8]. However, the load-independent case is outside the scope of this thesis. 
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It has been shown that a higher throughput and a lower voltage stress can be achieved using the 

Class-EF2 inverter over the traditional Class-E inverter [16]. However, the Class-EF2 inverter 

requires a higher value of Vin, has a lower maximum frequency, and results in a more complex 

design which is often a tedious, iterative process. All previous works have also considered the 

circuit to be ideal, making it a challenge to implement in a practical setting. 

1.1.2 Multi-Objective Optimization 

Multi-objective optimization is often used to tackle complex engineering problems [17]–[20]. The 

multi-objective genetic optimization (MOGO) algorithm and the multi-objective particle swarm 

optimization (MOPSO) algorithm are commonly used and are accessible through MATLABs [21] 

global optimization toolbox [22] or the MOPSO function [23]. 

In [17], the MOGO algorithm is implemented in combination with finite element analysis to aid 

in the design of a permanent magnet synchronous motor. The MOGO algorithm successfully 

improved the torque of the system while maintaining an acceptable level of efficiency thus 

validating its use as a design method. 

In [19], the MOPSO algorithm is implemented to determine the optimal operating frequency and 

inductor size for a wireless power transfer system for car charging. The proposed design was 

verified experimentally and provided helpful insight into the design of these systems. 

In [20], two variations of the MOPSO algorithm are applied to the design of a water distribution 

system and the results are compared. This work demonstrates the power of the MOPSO algorithm, 

but also how widely the solutions can vary when modifications are made to the algorithm. 

The MOGO and MOPSO algorithms both face similar challenges in their implementation. The 

generation and population size will determine how quickly the solution converges but will also 
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have an impact on the optimization runtime. The choice of boundary conditions and constraint 

functions, as well as genetic operators and particle swarm constants can also drastically change the 

success of a design [20], [24]. Specific details on the MOGO and MOPSO algorithms will be 

provided in Chapter 2. 

1.2 Motivation 

The design process of the ideal Class-EF2 inverter is often tedious, iterative, and complex. The 

consideration of non-ideal components and switching elements is also lacking in the literature. 

This makes it difficult for designers to test their circuit designs quickly and efficiently and requires 

more tuning to implement the circuit in a practical setting. 

In this thesis, a multi-objective optimization-based design approach is proposed for the Class-EF2 

inverter. Three state-space models of varying complexity are derived and tested with both the 

MOGO and the MOPSO algorithms. It is expected that the results will demonstrate the 

effectiveness and versatility of the optimization-based design, which allows the parasitic elements 

and switching dynamics of the circuit to be incorporated in the design of high frequency circuits. 

1.3 Outline 

Chapter 1 provides background information related to the thesis topic and provides an outline for 

subsequent chapters. 

In chapter 2, the state-space model of the ideal Class-EF2 inverter is derived and validated. Next, 

details of the MOGO and MOPSO algorithms for the design of the inverter are provided. Both 

algorithms are then used to design three circuits of varying frequency, power, and load 

specifications. Each design is compared with published results to confirm their validity and 

accuracy. 
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In chapter 3, the parasitic elements of the components in the Class-EF2 inverter are considered in 

the derivation of the state-space model. Methods for estimating the value of each parasitic element 

are described, and the state-space model is validated by comparison and LTSpice simulation [25]. 

The MOGO and MOPSO algorithms are then used to design the same three circuits presented in 

the previous chapter with the new state-space model. The results demonstrate the importance of 

considering the parasitic elements when designing high-frequency circuits. 

In chapter 4, the state-space model is further extended to consider the dynamics of the switching 

device. Methods for estimating the value of the internal resistances and capacitances are described, 

and the state-space model is once again validated by comparison and LTSpice simulation. The 

MOGO and MOPSO algorithms are then used to design the same three circuits as the previous 

chapters once again demonstrating the importance of considering the switch during the design 

process. 

In chapter 5, a design example is presented which uses the MOGO algorithm to design a 6.78 

MHz, 100W, 20Ω Class-EF2 inverter. This demonstrates the ease-of-use of the optimization-based 

design approach and shows how the boundary conditions can be restricted to eliminate solutions 

known to be inferior. 

Chapter 6 concludes the thesis and highlights potential future work that can be undertaken to 

improve and extend the optimization-based design approach to other circuit topologies. 
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CHAPTER 2 

 

THE IDEAL CLASS-EF2 INVERTER 

 

 

In this chapter, a state-space model of the ideal Class-EF2 inverter is derived. The validity of this 

model is confirmed by comparison with LTSpice simulation. Details of the MOGO and MOPSO 

algorithms for the design of the inverter are provided including the variables and boundary 

conditions, as well as the objective and constraint functions. 

Both algorithms are used to design three circuits with differing frequency, power, and load 

specifications. Each design is tested and simulated in LTSpice, and comparisons are made with 

published results to demonstrate their validity and accuracy. 

2.1 State-Space Modelling of the Ideal Class-EF2 Inverter 

To test and validate the optimization-based design approach, the state-space model of the ideal 

Class-EF2 inverter was derived, the circuit model of which is shown in Fig. 2-1. 

 

Figure 2-1 – Ideal Class-EF2 Inverter Circuit Diagram 



9 
 

State-space modelling is a powerful tool when analyzing complex systems since the dynamics are 

represented as a system of linear equations. The Class-EF2 inverter contains multiple inductors and 

capacitors, thus making state-space representation a desirable choice. Its solution can also be 

obtained using trivial matrix operations, making it a good choice for the proposed optimization-

based design approach. 

To analyze the circuit, the switch is replaced by a variable resistor rsw which acts as an approximate 

short circuit during the ON-state, and an approximate open circuit during the OFF-state where Ts 

is the switching period of the inverter. 

𝑟𝑠𝑤(𝑡) = {
𝑟𝑜𝑛 = 10 𝑚Ω , 𝑛𝑇𝑠 ≤ 𝑡 < (𝑛 + 𝐷)𝑇𝑠         

𝑟𝑜𝑓𝑓 = 1 𝑀Ω , (𝑛 + 𝐷)𝑇𝑠 ≤ 𝑡 < (𝑛 + 1)𝑇𝑠
 , 𝑡 ≥ 0 , 𝑡 ∈ ℝ , 𝑛 ∈ ℕ (2.1) 

Standard state-space representation is used where the state vector X is made up of the capacitor 

voltages and the inductor currents, and the input U is the source voltage as shown in (2.2) and 

(2.3). 

𝐗 = [𝑣𝐶𝑓
𝑣𝐶𝑚𝑟

𝑣𝐶𝑠
𝑖𝐿𝑓

𝑖𝐿𝑚𝑟
𝑖𝐿𝑠]

𝑇
 (2.2) 

𝐔 = 𝑉𝑖𝑛 (2.3)  

To create the state matrices, differential equations for each state variable must first be derived in 

terms of the other state variables. This process is presented in (2.4) - (2.9). 

𝑑𝑣𝐶𝑓

𝑑𝑡
=

𝑖𝐶𝑓

𝐶𝑓
=

𝑖𝐿𝑓
− 𝑖𝐿𝑚𝑟

− 𝑖𝐿𝑠
− 𝑖𝑆𝑤

𝐶𝑓
 (2.4) 

𝑑𝑣𝐶𝑚𝑟

𝑑𝑡
=

𝑖𝐶𝑚𝑟

𝐶𝑚𝑟
=

𝑖𝐿𝑚𝑟

𝐶𝑚𝑟
 (2.5) 

𝑑𝑣𝐶𝑠

𝑑𝑡
=

𝑖𝐶𝑠

𝐶𝑠
=

𝑖𝐿𝑠

𝐶𝑠
 (2.6) 
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𝑑𝑖𝐿𝑓

𝑑𝑡
=

𝑣𝐿𝑓

𝐿𝑓
=

𝑉𝑖𝑛 − 𝑣𝐶𝑓

𝐿𝑓
 (2.7) 

𝑑𝑖𝐿𝑀𝑅

𝑑𝑡
=

𝑣𝐿𝑚𝑟

𝐿𝑚𝑟
=

𝑣𝐶𝑓
− 𝑣𝐶𝑚𝑟

𝐿𝑚𝑟
 (2.8) 

𝑑𝑖𝐿𝑠

𝑑𝑡
=

𝑣𝐿𝑠

𝐿𝑠
=

𝑣𝐶𝑓
+ 𝑖𝐿𝑠

𝑅𝐿 − 𝑣𝐶𝑠

𝐿𝑠
 (2.9) 

The final step is to represent (2.4) to (2.9) in the following form, where A, B, C, and D are the 

state matrices, �̇� is the derivative of (2.2), and 𝐘 is the output vector. 

�̇� = 𝐴(𝑡)𝐗 + 𝐵𝐔 (2.10) 

𝐘 = 𝐶𝐗 + 𝐷𝐔 (2.11) 

This circuit produces a 6th order single input multiple output (SIMO) system. The state vectors and 

matrices are defined in (2.12) to (2.15). 

𝐴(𝑡) =

[
 
 
 
 
 
 
−1 𝐶𝑓𝑟𝑠𝑤(𝑡)⁄ 0 0 1 𝐶𝑓⁄ −1 𝐶𝑓⁄ −1 𝐶𝑓⁄

0 0 0 0 1 𝐶𝑀𝑅⁄ 0

0 0 0 0 0 1 𝐶𝑠⁄

−1 𝐿𝑓⁄ 0 0 0 0 0

1 𝐿𝑀𝑅⁄ −1 𝐿𝑀𝑅⁄ 0 0 0 0

1 𝐿𝑠⁄ 0 −1 𝐿𝑠⁄ 0 0 𝑅𝐿 𝐿𝑠⁄ ]
 
 
 
 
 
 

 (2.12) 

𝐵 = [0 0 0 1 𝐿𝑓⁄ 0 0]𝑇 (2.13) 

𝐶 = 𝐼6 (2.14) 

𝐷 = 0⃑  (2.15)  

Equations (2.12) and (2.13) contain the circuit components of the ideal Class-EF2 inverter, I6 in 

(2.14) represents the 6th order identity matrix, and  0⃑   in (2.15) represents the zero vector. As can 

be seen, the system can also be classified as continuous time-varying due to the variable resistor 

model of the switch which changes in time based on the switching period and the inverter duty 
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cycle. It is helpful to think of the system as having two separate state matrices – Aon and Aoff – 

which represent the system during the switch on and off states as described in (2.16) and (2.17). 

𝐴𝑜𝑛 = 𝐴(𝑡)|𝑟𝑠𝑤(𝑡)=𝑟𝑜𝑛
 (2.16) 

𝐴𝑜𝑓𝑓 = 𝐴(𝑡)|𝑟𝑠𝑤(𝑡)=𝑟𝑜𝑓𝑓
 (2.17) 

2.2 Solving the model 

To determine the steady-state values of all state-variables, the system is simulated for roughly 20us 

using the technique described above with Aon and Aoff to quickly generate solutions. After this, the 

system is fully solved using a resolution of 300 samples/cycle for analysis. The calculations are 

performed using equations (2.18) to (2.20) [16]. 

𝑋(𝑡) = 𝑋𝑛(𝑡) + 𝑋𝑓(𝑡) (2.18) 

𝑋𝑛(𝑡) = 𝑒𝐴𝑡𝑋(0) (2.19) 

𝑋𝑓(𝑡) = ∫ 𝑒𝐴(𝑡−𝜏)𝐵𝑈(𝜏) 𝑑𝜏
𝜏

𝑜

= 𝐴−1(𝑒𝐴𝑡 − 𝐼6)𝐵 (2.20) 

Where Xn is the natural response matrix and Xf is the forced response matrix. 

2.2.1 Simulation of the Ideal Class-EF2 Inverter 

The state-space model is simulated using the component values from a previously completed 

design, given in Table 2-1 [26]. The component values were substituted into the system equations 

of (2.10) to (2.15) in MATLAB. The circuit was then constructed and simulated in LTSpice.  

Table 2-1 – Circuit Parameters for MATLAB and LTSpice Comparison 

Lf 54.40 uH Cf 147.94 pF 

LMR 89.04 nH CMR 96.70 pF 

Ls 501.43 nH Cs 80.30 pF 

D 0.3637 Vin 32.33 V 

fs 27.12 MHz RL 7 Ω 
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2.2.2 Comparison of MATLAB and LTSpice Simulation Results 

A comparison of the resulting switch voltage, switch current, and output voltage waveforms from 

both simulations is shown in Figs. 2.2 (a-c). The plots demonstrate the accuracy of the ideal state-

space model. 

 

 

 

 

 

 

 

Figure 2-2 (a) – Switch Voltage Comparison of the Ideal State-Space model with LTSpice 

Simulation 
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Figure 2-2 (b) – Switch Current Comparison of the Ideal State-Space model with LTSpice 

Simulation 

 

Figure 2-2 (c) – Output Voltage Comparison of the Ideal State-Space model with LTSpice 

Simulation 
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The state-space model is a perfect representation of the behaviour of the Class-EF2 inverter and 

can therefore be used to develop a design approach for the Class-EF2 inverter. 

2.3 Multi-Objective Genetic Optimization (MOGO) Algorithm 

For each design case, the gamultiobj function in MATLABs global optimization toolbox was used. 

This is a controlled, elitist genetic algorithm which is a variant of the NSGA-II [27]. This type of 

algorithm favors increased diversity in the population, not relying solely on fitness value which 

helps avoid getting stuck in local minima. The general loop of the gamultiobj function for this 

application is presented below [22], and an accompanying flowchart is shown in Figure 2-3. 

Initialization 

• Generate an initial population of component values: The population matrix is of 

size 𝑛 × 𝑚 where n is the defined population size and m is the number of variables 

which represent the duty cycle D, the input voltage Vin, the input inductance Lf, the 

filter capacitance Cf, and various factors which relate to the other inductors and 

capacitors in the circuit. 

• Pass each member of the population to the fitness function: The member is a vector 

of size 1 × 𝑚 and contains all the necessary information to solve the state-space model 

of the Class-EF2 inverter. The fitness function will return a vector of size 1 × 𝑙 where 

l is the number of objective and constraint functions which are described in detail in 

Section 2.3.3. 

• Evaluate the population based on the objective and constraint functions: The 

gamultiobj function evaluates the population based on its objective and constraint 

function performance and assigns each member a rank. 
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All Subsequent Iterations 

• Select parents for the next generation: The selection process is done using binary 

tournament and is based on the rank of each population member. Rank is directly linked 

to dominance, meaning members that are non-dominated or that are dominated by a 

small percentage of the population are ranked lower and members that are dominated 

by a large percentage of the population are ranked higher. Members of lower rank have 

a better chance of being selected as parents. 

• Use the selected parents to create children: This process uses the mutation and 

crossover genetic operators. Mutation will randomly change the value of a single 

element in one of the parents (i.e., randomly change the value of a single inductor but 

leave all other component values the same). Crossover will randomly swap some values 

of two parent members resulting in two unique children (i.e., child 1 might have the 

voltage and duty cycle of parent 1 and the inductor and capacitor values of parent 2, 

and child 2 would have the opposite). Mutation is used to help maintain diversity in the 

population, while crossover is used to improve searching [24]. 

• Evaluate the children based on the objective and constraint functions: The 

gamultiobj function scores the children based on their objective and constraint function 

performance. 

• Create the extended population: This is done by combining the current population 

and the children into a single matrix of size (𝑛 + 𝑐) × 𝑚 where c is the number of 

children. 
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• Trim the extended population: The population is trimmed back to size 𝑛 × 𝑚 by 

removing some members from each rank. This helps maintain diversity in the 

population as opposed to keeping only the best solutions in each iteration. 

To determine an appropriate generation and population size, it is useful to consider the 

computational cost defined in (2.21). 

𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝐶𝑜𝑠𝑡 = # 𝑜𝑓 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 × 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑆𝑖𝑧𝑒 (2.21) 

A higher computational cost will increase the runtime of the optimization, but a lower 

computational cost might not arrive at an acceptable solution. This presents the designer with a 

trade-off between the time invested and the quality of the circuit design. 

After experimenting with various combinations of population and generation size, and consulting 

with experts in the field, a population size of 525 with 100 generations was found to be the most 

suitable for this application. These values provided acceptable results while keeping runtimes 

reasonably low across all design cases. Code for the ideal Class-EF2 fitness function and the 

MOGO initialization function is provided in Appendix A and Appendix D respectively. 

 

 

 

Figure 2-3 – Flowchart of the MOGO Algorithm 
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2.3.1 Variables to be Optimized 

In the design of the Class-EF2 inverter, appropriate selection of key variables will lead to the 

complete design of the inverter by the optimization algorithm. For the Class EF2 inverter, the 

variables of interest are shown in Table 2-2. 

Table 2-2 – Optimization Variables for the MOGO Based Design Approach 

Variable Definition 

D Duty Cycle 

Lf Input choke inductance 

Cf Switch filter capacitor 

k Scalar multiple relating Cf and CMR 

Qout Output filter quality factor 

𝑥𝐿𝑆𝐶𝑆
 Resonant frequency factor for Ls and Cs 

Vin Input voltage of the circuit 

These variables fully define the Class-EF2 inverter. By using k, Qout and 𝑥𝐿𝑆𝐶𝑆
 rather than inductor 

and capacitor values the overall search space is reduced and more insight is provided to the 

designer. Cf, LMR, CMR, Ls and Cs are related by (2.22) to (2.25), where fs is the switching frequency 

of the inverter: 

𝑘 =
𝐶𝑓

𝐶𝑚𝑟
 (2.22) 

2 × 2𝜋𝑓𝑠 =
1

√𝐿𝑀𝑅𝐶𝑀𝑅

 (2.23) 

𝑄𝑜𝑢𝑡 =
√𝐿𝑠 𝐶𝑠⁄

𝑅
 (2.24) 

𝑥𝐿𝑆𝐶𝑠
× 2𝜋𝑓𝑠 =

1

√𝐿𝑆𝐶𝑆

 (2.25) 

As can be seen from (2.22), the resonant tank containing LMR and CMR is designed to resonate at 

the 2nd harmonic of fs, hence the factor 2 in (2.22). This is a property of the Class-EF2 inverter. 
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Equation (2.24) defines the resonant frequency factor for the output filter containing Ls and Cs to 

allow for a residual reactance, Xres. 

2.3.2 Boundary Conditions 

To ensure that the search space for the optimization process is limited to acceptable values, 

boundary conditions are enforced on each variable. The boundary conditions are presented in 

Table 2-3. 

Table 2-3 – Optimization Boundary Conditions 

Variables 𝑫 𝑳𝒇 [𝝁𝑯] 𝑪𝒇 [𝒑𝑭] 𝒌 𝑸𝑶𝒖𝒕 𝒙𝑳𝑺𝑪𝑺
 𝑽𝒊𝒏 [𝑽] 

Upper 

Boundary 
0.8 100 5000 5 8 5 72 

Lower 

Boundary 
0.2 0.01 0.5 0.2 2 0.2 12 

The boundary conditions were chosen to ensure impractical solutions were avoided. Values of 𝑉𝑖𝑛 

outside of this range would be impractical for the power requirements of the tested design cases, 

and values of 𝑄𝑂𝑢𝑡 outside of this range would be ignored due to their effect on the THD and 

efficiency of the circuit. 

The other boundary conditions were selected with known optimal values in mind. For example, 

since k is optimally between 0.8 and 1.6 [14] the upper and lower boundaries were selected to 

ensure the search space wasn’t too restricting. This same logic was used for determining the upper 

and lower boundaries of 𝑥𝐿𝑆𝐶𝑆
 and D. 

The upper and lower boundaries of Lf and Cf can be tuned to meet the needs of the designer based 

on the desired switching frequency and availability of components. 
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2.3.3 Objective and Constraint Functions 

To ensure the best overall circuit design, five objective functions to be minimized were 

implemented: 

• The losses in the circuit to maximize efficiency, 

• The voltage across the switch at 𝑡 = (𝑛𝑖 + 𝐷)𝑇𝑠, 

• The current through the switch and capacitor Cf at 𝑡 = (𝑛𝑗 + 𝐷)𝑇𝑠, 

• The Total Harmonic Distortion (THD) of the load voltage, and 

• The error between the desired output power and the calculated output power. 

These objective functions are implemented mathematically in (2.26) to (2.30) using the state-

variables where i represents the cycle which produced the worst-case switch voltage and j 

represents the cycle which produced the worst-case switch current during switching transitions. 

They are then normalized to values between 0 and 1 as this is a requirement for the gamultiobj 

function. 

𝑂𝑏𝑗1 =

(1 −
𝑖𝐿𝑠𝑅𝑀𝑆

2𝑅

𝑉𝑖𝑛𝑖𝐿𝑓𝐴𝑉𝐺

)

(1 − 𝜂𝑀𝑖𝑛)
 

(2.26) 

𝑂𝑏𝑗2 =
𝑣𝐶𝑓

((𝑛𝑖 + 𝐷)𝑇𝑠)

𝑣𝐶𝑓𝑀𝑎𝑥

 (2.27) 

𝑂𝑏𝑗3 =
𝑖𝐿𝑓

((𝑛𝑗 + 𝐷)𝑇𝑠) − 𝑖𝐿𝑀𝑅
((𝑛𝑗 + 𝐷)𝑇𝑠) − 𝑖𝐿𝑠

((𝑛𝑗 + 𝐷)𝑇𝑠)

(𝑖𝐿𝑓
− 𝑖𝐿𝑀𝑅

− 𝑖𝐿𝑠
)𝑀𝑎𝑥

 (2.28) 

𝑂𝑏𝑗4 =
𝑇𝐻𝐷(𝑖𝐿𝑠

𝑅𝐿)

𝑇𝐻𝐷𝑀𝑎𝑥
 (2.29) 
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𝑂𝑏𝑗5 =
|𝑖𝐿𝑠𝑅𝑀𝑆

2𝑅𝐿 − 𝑃𝑂𝑢𝑡𝐷𝑒𝑠𝑖𝑟𝑒𝑑
|

𝑃𝑂𝑢𝑡𝐷𝑒𝑠𝑖𝑟𝑒𝑑

 (2.30) 

To ensure the optimizer avoids undesirable solutions, constraint functions were implemented: 

• Voltage across the switch should not drop below 0. Since (2.27) only checks the switch 

voltage at a specific time, this constraint ensures a non-negative switch voltage for the 

entire cycle. 

• The ripple of the input current should not exceed 10% of its mean value. This constraint 

ensures that the input current is relatively DC. 

• Current through the switch and capacitor 𝐶𝑓 should not oscillate at high frequency. For 

some combinations of component values the switch current looked like a decaying sinusoid 

and produced a low score for (2.28). This constraint ensures that these types of solutions 

are unacceptable and hence ignored. 

• Efficiency should not drop below the defined minimum 𝜂𝑀𝑖𝑛. This ensures that (2.26) is 

always in the range of 0 to 1. If the efficiency is less than 𝜂𝑀𝑖𝑛, objective function (2.26) 

will automatically be given a score of 1. 

• THD should not exceed the defined maximum 𝑇𝐻𝐷𝑀𝑎𝑥. This ensures that (2.29) is always 

in the range of 0 to 1. If the THD is greater than 𝑇𝐻𝐷𝑀𝑎𝑥, objective function (2.29) will 

automatically be given a score of 1. 

• Output power should not exceed twice the desired output power. This ensures that (2.30) 

is always in the range of 0 to 1. If the output power is greater than twice the desire output 

power, objective function (2.30) will automatically be given a score of 1. 

These constraint functions are trivial to check once the model has been solved and an FFT analysis 

has been completed on the switch current waveform. 
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2.3.4 Design Test Cases 

Three different design cases, each with varied power, frequency, and load requirements were used 

throughout the thesis to test the optimization algorithms. The specific values of each case are 

shown in Table 2-4. 

Table 2-4 – Parameters for Tested Design Cases 

Design 𝒇𝒔 [𝑴𝑯𝒛] 𝑹𝑳 [Ω] 𝑷𝑶𝒖𝒕 [𝑾] 

I 6.78 5 23 

II 13.56 10 40 

III 27.12 7 25 

2.3.5 Optimal Design Factors Based on Analytical Design Procedure 

The published results of an analytical design procedure [14] is used as a basis for validating the 

proposed optimization design approach presented in this chapter. In the published results, two 

operating limits, namely maximum power-output capability (Max cp) and maximum switching 

frequency capability (Max f) were determined for eight design factors for the Class-EF2 inverter. 

It was shown in [14] that for lower switching frequencies (i.e., fs < 8 MHz), the inverter operated 

efficiently at Max cp, while the inverter operated efficiently under Max f for higher frequencies. 

These optimal design factors are listed in Table 2-5. 
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Table 2-5 – Optimal Design Factors for the Ideal Class-EF2 Inverter [14] 

Factors 𝑴𝒂𝒙 𝒄𝒑 𝑴𝒂𝒙 𝒇 

D 0.375 0.372 

𝑘 =
𝐶𝑓

𝐶𝑀𝑅
 0.867 1.567 

𝑞2 =
1

𝜔
√

𝐶𝑓 + 𝐶𝑀𝑅

𝐶𝑓𝐶𝑀𝑅𝐿𝑀𝑅
 2.935 2.560 

1
𝜔𝑅𝐿𝐶𝑓

⁄  7.585 5.686 

1
𝜔𝑅𝐿𝐶𝑀𝑅

⁄  6.576 8.910 

𝑐𝑝 =
𝑃𝑂𝑢𝑡

𝑉𝑆𝑡𝑟𝑒𝑠𝑠 × 𝐼𝑆𝑡𝑟𝑒𝑠𝑠
 0.1323 0.120 

𝑉𝑆𝑡𝑟𝑒𝑠𝑠 2.316 2.243 

𝐼𝑆𝑡𝑟𝑒𝑠𝑠 3.263 3.719 

 

2.4 Design Results Using the MOGO Algorithm 

Using the procedure and information presented in Section 2.2, the results of the MOGO design are 

obtained and compared with the analytical design approach. Tables 2-6 a-c show the comparative 

values for the three design cases. 
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Table 2-6 (a) – Comparison of the Results of the Analytical and MOGO Design Approaches: Design 

Case I 

Factors 

Design Case I 

Max cp 

Analytical Values MOGO Design Percentage Difference 

𝐷 0.375 0.406 7.94% 

𝑘 0.867 0.823 5.20% 

𝑞2 2.935 2.977 1.41% 

1

𝜔𝑅𝐿𝐶𝑓
 7.585 6.980 8.31% 

1

𝜔𝑅𝐿𝐶𝑀𝑅
 6.576 5.745 13.49% 

𝑐𝑝 0.132 0.128 3.58% 

𝑉𝑆𝑡𝑟𝑒𝑠𝑠 2.316 2.540 9.22% 

𝐼𝑆𝑡𝑟𝑒𝑠𝑠 3.263 3.136 3.96% 
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Table 2-6 (b) – Comparison of the Results of the Analytical and MOGO Design Approaches: Design 

Case II. 

Factors 

Design Case II 

Max f 

Analytical Values MOGO Design Percentage Difference 

𝐷 0.372 0.370 0.46% 

𝑘 1.567 1.408 10.12% 

𝑞2 2.560 2.615 2.17% 

1

𝜔𝑅𝐿𝐶𝑓
 5.686 5.365 5.65% 

1

𝜔𝑅𝐿𝐶𝑀𝑅
 8.910 7.556 15.19% 

𝑐𝑝 0.120 0.125 4.43% 

𝑉𝑆𝑡𝑟𝑒𝑠𝑠 2.243 2.241 0.10% 

𝐼𝑆𝑡𝑟𝑒𝑠𝑠 3.719 3.523 5.27% 
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Table 2-6 (c) – Comparison of the Results of the Analytical and MOGO Design Approaches: Design 

Case III. 

Factors 

Design Case III 

Max f 

Analytical Values MOGO Design Percentage Difference 

𝐷 0.372 0.394 6.00% 

𝑘 1.567 1.472 6.08% 

𝑞2 2.560 2.592 1.25% 

1

𝜔𝑅𝐿𝐶𝑓
 5.686 5.961 4.85% 

1

𝜔𝑅𝐿𝐶𝑀𝑅
 8.910 8.774 1.52% 

𝑐𝑝 0.120 0.122 1.90% 

𝑉𝑆𝑡𝑟𝑒𝑠𝑠 2.243 2.337 4.16% 

𝐼𝑆𝑡𝑟𝑒𝑠𝑠 3.719 3.484 6.33% 

 

It is observed that for each design case the percentage differences between the analytical values 

and the MOGO algorithm are at an acceptable level. Each design factor was within 10% of the 

expected value, the main outlier being the 1 𝜔𝑅𝐿𝐶𝑚𝑟⁄  design factor for design case I and design 

case II. The analytical design factors assume that the loaded quality factor of the output filter is 

high enough to ensure a sinusoidal output waveform. However, since Qout is limited by the 

optimizer this might not always be the case. 
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2.4.1 Determination of the Inverter Component Values from the MOGO Designs 

To demonstrate how the Class-EF2 component values are determined, the optimized values obtained 

for design case I (shown in Table 2.7) are substituted into (2.22) to (2.25). The process for 

calculating the actual circuit parameters is presented in Table 2-8. 

Table 2-7 – MOGO Optimized Values for the Ideal Class-EF2 Inverter: Design Case I 

Variable 𝑫 𝑳𝒇 [𝝁𝑯] 𝑪𝒇 [𝒑𝑭] 𝒌 𝑸𝑶𝒖𝒕 𝒙𝑳𝑺𝑪𝑺
 𝑽𝒊𝒏 [𝑽] 

Value 0.406 39.17 672.59 0.823 6.19 0.865 23.93 

 

Table 2-8 – MOGO Circuit Parameters for the Ideal Class-EF2 Inverter: Design Case I 

Parameter Calculation 

𝐿𝑓 [𝜇𝐻] 𝐿𝑓 = 39.171 

𝐿𝑚𝑟 [𝑛𝐻] 𝐿𝑚𝑟 =
1

22 × 4𝜋2𝑓𝑠2𝐶𝑚𝑟
= 168.57 

𝐿𝑠 [𝑛𝐻] 𝐿𝑠 =
𝑄𝑂𝑢𝑡𝑅𝐿

𝑥𝐿𝑠𝐶𝑠
× 2𝜋𝑓𝑠

= 837.44 

𝐶𝑓 [𝑝𝐹] 𝐶𝑓 = 672.591 

𝐶𝑚𝑟  [𝑝𝐹] 𝐶𝑚𝑟 = 
𝐶𝑓

𝑘
= 817.20 

𝐶𝑠 [𝑝𝐹] 𝐶𝑠 = 
1

𝑥𝐿𝑠𝐶𝑠

2 × 4𝜋2𝑓𝑠2𝐿𝑠

= 880.34 

𝑉𝑖𝑛 [𝑉] 𝑉𝑖𝑛 = 23.931 

𝐷 𝐷 =  0.4061 

1 Directly obtained from the optimizer 
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The component values for Design Case II and Design Case III are presented in Table 2-9. 

Table 2-9 – MOGO Circuit Parameters for the Ideal Class-EF2 Inverter: Design Case II and Design 

Case III 

Design Case II Design Case III 

Parameter Value Parameter Value 

𝐿𝑓 [𝜇𝐻] 55.19 𝐿𝑓 [𝜇𝐻] 49.36 

𝐿𝑚𝑟 [𝑛𝐻] 221.71 𝐿𝑚𝑟 [𝑛𝐻] 90.11 

𝐿𝑠 [𝑛𝐻] 934.94 𝐿𝑠 [𝑛𝐻] 245.77 

𝐶𝑓 [𝑝𝐹] 218.79 𝐶𝑓 [𝑝𝐹] 140.63 

𝐶𝑚𝑟 [𝑝𝐹] 155.34 𝐶𝑚𝑟 [𝑝𝐹] 95.55 

𝐶𝑠 [𝑝𝐹] 174.40 𝐶𝑠 [𝑝𝐹] 166.98 

𝑉𝑖𝑛 [𝑉] 35.37 𝑉𝑖𝑛 [𝑉] 21.12 

𝐷 0.370 𝐷 0.394 

 

2.5 Multi-Objective Particle Swarm Optimization (MOPSO) Algorithm 

The MOPSO design approach uses the MOPSO function written by Victor Martinez-Cagigal [23] 

which is based on the work done in [28], [29]. However, since this is a basic implementation of 

the MOPSO algorithm a function for constraint handling as well as an equation for calculating the 

inertia coefficient as described in [20] were also implemented. This significantly improved the 

performance of the MOPSO algorithm as it encourages more exploration of the search space and 

ensures that only feasible solutions are stored in the repository. The general process of the MOPSO 

algorithm for this application is presented below along with an accompanying flowchart shown in 

Figure 2-4. 
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Initialization 

• Generate an initial population of particles with random position and zero velocity: 

The initial population is a matrix of size 𝑛 × 𝑚 where n is the defined population size 

and m is the number of variables which represent the duty cycle D, the input voltage 

Vin, the input inductance Lf, the filter capacitance Cf, and various factors which relate 

to the other inductors and capacitors in the circuit. The position of each particle is 

equivalent to the value of each variable, and the velocity of each particle determines 

how much the value of each variable will change every iteration. 

• Pass the initial population to the fitness function: The initial population is passed to 

an intermediate function which separates the matrix into a set of 1 × 𝑚 particle sets, 

calls the fitness function n times, and stores the fitness values and constraint violations 

in an 𝑛 × 𝑙 matrix where l is the number of objective and constraint functions. This 

matrix is then returned to the MOPSO function for evaluation. 

• Evaluate the initial population and check for constraint violations: The fitness 

function values of each particle set are evaluated based on the domination and the 

number of constraint violations. 

• Save non-dominated solutions to the repository: The particle sets which are non-

dominated and which contain the lowest number of constraint violations are saved in 

the repository as described in [20]. 

All Subsequent Iterations 

• Select a leader: A leader is selected from the repository using a roulette wheel 

selection. 
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• Update the velocities and positions of all particles in the population: The velocity 

and position of each particle is updated per the following equation where s is the 

velocity, w is the inertia coefficient, H1 and H2 are confidence factors, z1 and z2 are 

randomly generated numbers between 0 and 1, pbest is the particle’s personal best 

position, Gbest is the best position of the entire swarm, and p is the particles position. 

𝑠𝑖+1 = 𝑤𝑖𝑠𝑖 + 𝐻1𝑧1(𝑝𝑏𝑒𝑠𝑡 − 𝑝𝑖) + 𝐻2𝑧2(𝐺𝑏𝑒𝑠𝑡 − 𝑝𝑖) (2.31) 

Using this velocity vector, the position of each particle is updated using the following 

equation. 

𝑝𝑖+1 = 𝑝𝑖 + 𝑠𝑖+1 (2.32) 

• Perform mutation on the population: The particle set undergoes mutation to 

generate the next population. 

• Enforce boundary conditions: Boundary conditions are enforced on the new 

population so that any particle whose new position is outside the boundary will be 

placed at the edge before being passed to the fitness function. 

• Pass the new population to the fitness function: As above. 

• Evaluate the new population and check for constraint violations: As above. 

• Update the repository: As above. 
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In Section 2.6 a comparison between the MOGO and MOPSO design approaches is presented. To 

ensure a fair comparison, a constant computational cost is used. The MOGO had a population size 

of 525 with 100 generations resulting in a computational cost of 52,500. 

In the case of the MOPSO algorithm, a population size of 150 with 350 generations was found to 

yield the same computational cost of 52,500 and was the most suitable values for this application. 

All other parameters (variables, objective functions, constraint functions, and boundary 

conditions) remained the same as in the MOGO case presented in sections 2.3.1 to 2.3.5. The 

MOPSO initialization function and associated functions are provided in Appendix E and Appendix 

F. 

2.5.1 Design Results Using the MOPSO Algorithm 

Using the procedure and information presented in Sections 2.3.1 to 2.3.5, the results of the MOPSO 

design are obtained and compared with the analytical design approach. Tables 2-10 (a-c) show the 

comparative values for the three design cases. 

 

 

 

Figure 2-4 – Flowchart of the MOPSO Algorithm 
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Table 2-10 (a) – Comparison of the Results of the Analytical and MOPSO Design Approaches: 

Design Case I 

Factors 

Design Case I 

Max f 

Analytical Values MOPSO Design Percentage Difference 

𝐷 0.372 0.361 2.99% 

𝑘 1.567 2.349 49.88% 

𝑞2 2.560 2.388 6.71% 

1

𝜔𝑅𝐿𝐶𝑓
 5.686 4.937 13.16% 

1

𝜔𝑅𝐿𝐶𝑀𝑅
 8.910 11.596 30.15% 

𝑐𝑝 0.120 0.116 3.21% 

𝑉𝑆𝑡𝑟𝑒𝑠𝑠 2.243 2.188 2.46% 

𝐼𝑆𝑡𝑟𝑒𝑠𝑠 3.719 3.872 4.11% 
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Table 2-10 (b) – Comparison of the Results of the Analytical and MOPSO Design Approaches: 

Design Case II. 

Factors 

Design Case II 

Max f 

Analytical Values MOPSO Design Percentage Difference 

𝐷 0.372 0.392 5.54% 

𝑘 1.567 2.468 57.49% 

𝑞2 2.560 2.371 7.38% 

1

𝜔𝑅𝐿𝐶𝑓
 5.686 5.529 2.76% 

1

𝜔𝑅𝐿𝐶𝑀𝑅
 8.910 13.644 53.14% 

𝑐𝑝 0.120 0.116 3.43% 

𝑉𝑆𝑡𝑟𝑒𝑠𝑠 2.243 2.250 0.28% 

𝐼𝑆𝑡𝑟𝑒𝑠𝑠 3.719 3.801 2.21% 
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Table 2-10 (c) – Comparison of the Results of the Analytical and MOPSO Design Approaches: 

Design Case III. 

Factors 

Design Case III 

Max f 

Analytical Values MOPSO Design Percentage Difference 

𝐷 0.372 0.3658 6.99% 

𝑘 1.567 2.500 59.53% 

𝑞2 2.560 2.366 7.56% 

1

𝜔𝑅𝐿𝐶𝑓
 5.686 4.777 15.99% 

1

𝜔𝑅𝐿𝐶𝑀𝑅
 8.910 11.941 34.02% 

𝑐𝑝 0.120 0.117 2.38% 

𝑉𝑆𝑡𝑟𝑒𝑠𝑠 2.243 2.166 3.45% 

𝐼𝑆𝑡𝑟𝑒𝑠𝑠 3.719 3.900 4.87% 

It is observed that for each design case the MOPSO method selected high values of k which 

influenced the associated design factors. Since the THD of the output voltage waveform is 

considered an optimization objective function, the algorithm favors higher values of k since it was 

shown in [14] that this reduces the harmonic content of current 𝑖𝐿𝑚𝑟
. 

Since k is directly proportional to Lmr and thus also directly proportional to the size of its equivalent 

series resistance, it is believed that the MOPSO algorithm will perform better in future testing 

where the parasitic elements of components are considered. 
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2.5.2 Determination of the Inverter Component Values from the MOPSO Designs 

The component values for the three design cases are presented in Table 2-11 below. All parameters 

were calculated using the process presented in Section 2.4.1. 

Table 2-11 – MOPSO Optimized Circuit Parameters for the Ideal Class-EF2 Inverter: All Design 

Cases 

Design Case I Design Case II Design Case III 

Parameter Value Parameter Value Parameter Value 

𝐿𝑓 [𝜇𝐻] 34.18 𝐿𝑓 [𝜇𝐻] 46.30 𝐿𝑓 [𝜇𝐻] 43.01 

𝐿𝑚𝑟 [𝑛𝐻] 340.26 𝐿𝑚𝑟 [𝑛𝐻] 400.37 𝐿𝑚𝑟 [𝑛𝐻] 122.64 

𝐿𝑠 [𝑛𝐻] 857.93 𝐿𝑠 [𝑛𝐻] 997.29 𝐿𝑠 [𝑛𝐻] 352.27 

𝐶𝑓 [𝑝𝐹] 950.88 𝐶𝑓 [𝑝𝐹] 212.29 𝐶𝑓 [𝑝𝐹] 175.51 

𝐶𝑚𝑟 [𝑝𝐹] 404.87 𝐶𝑚𝑟 [𝑝𝐹] 86.02 𝐶𝑚𝑟 [𝑝𝐹] 70.21 

𝐶𝑠 [𝑝𝐹] 765.04 𝐶𝑠 [𝑝𝐹] 155.83 𝐶𝑠 [𝑝𝐹] 112.33 

𝑉𝑖𝑛 [𝑉] 19.21 𝑉𝑖𝑛 [𝑉] 30.37 𝑉𝑖𝑛 [𝑉] 22.65 

𝐷 0.361 𝐷 0.392 𝐷 0.366 
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2.6 Comparison of MOGO and MOPSO Design Approaches 

Each design was simulated in LTSpice using the component values listed in Tables 2-8, 2-9 and 2-

11. The results of the parameters of interest from the simulations are recorded in Table 2-12. The 

output voltage THD is calculated using the first 7 harmonics, and the efficiency, voltage stress, and 

current stress are defined in (2.31) to (2.33) where all values were taken directly from LTSpice. The 

waveforms of the switch voltage, switch current, and output voltage from LTSpice simulations of 

the MOGO (green) and MOPSO (blue) designs are shown in Figs. 2.3 (a-c), 2-4 (a-c), and 2-5 (a-

c). 

𝜂 =
𝑃𝑂𝑢𝑡

𝑃𝐼𝑛

 (2.31) 

𝑉𝑆𝑡𝑟𝑒𝑠𝑠 =
𝑉𝑆𝑤Max

𝑉𝑖𝑛
 (2.32) 

𝐼𝑆𝑡𝑟𝑒𝑠𝑠 =
𝐼𝑆𝑤𝑀𝑎𝑥

𝐼𝐼𝑛
 (2.33) 

Table 2-12 – Comparison of the Results of the MOGO and MOPSO Design Approaches 

Parameter Design Case I Design Case II Design Case III 

𝑃𝑂𝑢𝑡𝐷𝑒𝑠𝑖𝑟𝑒𝑑
 [𝑊] 23 23 40 40 25 25 

𝑃𝑂𝑢𝑡𝐴𝑐𝑡𝑢𝑎𝑙
 [𝑊] 23.898 24.132 38.47 37.98 26.53 24.93 

𝜂 99.87% 99.77% 99.84% 99.84% 99.70% 99.27% 

𝑉𝑆𝑡𝑟𝑒𝑠𝑠 2.540 2.188 2.241 2.250 2.337 2.166 

𝐼𝑆𝑡𝑟𝑒𝑠𝑠 3.136 3.872 3.523 3.801 3.484 3.900 

𝑄𝑂𝑢𝑡 6.169 6.698 7.322 8.000 5.481 8.000 

𝑇𝐻𝐷 4.43% 2.36% 2.32% 2.08% 3.23% 1.86% 

Despite the variation in component values obtained from the MOGO and MOPSO design 

algorithms, each circuit scored very well in the measured values of interest. The minimum 
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efficiency was 99.27% and occurred during MOPSO design case III, the THD of the output voltage 

waveform never exceeded 5% with most of the designs maintaining a THD of less than 2.5%. 

 

 

 

 

 

 

 

Figure 2-5 (a) – Switch Voltage Waveform of the Parasitic Class-EF2 Inverter: MOGO (Green) 

& MOPSO (Blue) Design Case I 

 

Figure 2-5 (b) – Switch Current Waveform of the Parasitic Class-EF2 Inverter: MOGO (Green) 

& MOPSO (Blue) Design Case I 

 

Figure 2-5 (c) – Output Voltage Waveform of the Parasitic Class-EF2 Inverter: MOGO (Green) 

& MOPSO (Blue) Design Case I 
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Figure 2-6 (a) – Switch Voltage Waveform of the Parasitic Class-EF2 Inverter: MOGO (Green) 

& MOPSO (Blue) Design Case II 

 

Figure 2-6 (b) – Switch Current Waveform of the Parasitic Class-EF2 Inverter: MOGO (Green) 

& MOPSO (Blue) Design Case II 

 

Figure 2-6 (c) – Output Voltage Waveform of the Parasitic Class-EF2 Inverter: MOGO (Green) 

& MOPSO (Blue) Design Case II 



38 
 

 

 

The above figures showcase the success of the optimization-based design approach for the ideal 

case. In each design case, the circuit maintained ZVS and ZDVS operation to an acceptable level 

of error and had relatively sinusoidal output voltage waveforms. 

 

 

 

Figure 2-7 (a) – Switch Voltage Waveform of the Parasitic Class-EF2 Inverter: MOGO (Green) 

& MOPSO (Blue) Design Case III 

 

Figure 2-7 (b) – Switch Current Waveform of the Parasitic Class-EF2 Inverter: MOGO (Green) 

& MOPSO (Blue) Design Case III 

 

Figure 2-7 (c) – Output Voltage Waveform of the Parasitic Class-EF2 Inverter: MOGO (Green) 

& MOPSO (Blue) Design Case III 
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2.7 Summary 

In Chapter 2, the design of the ideal Class-EF2 inverter was investigated. A state-space model was 

derived and tested using MATLAB, and it was shown to provide an accurate representation of the 

operation of the circuit by comparison with LTSpice simulation. 

The state-space model was then used with both the MOGO and MOPSO algorithms to design three 

circuits with differing frequency, power, and load specifications. It was shown that the proposed 

optimization-based design approaches provided comparable results with previously determined 

analytical values and successfully designed each circuit to the stated specifications. 
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CHAPTER 3 

 

THE PARASITIC CLASS-EF2 INVERTER 

 

 

In this chapter, the proposed optimization design approaches introduced in Chapter 2 are extended 

to the design of the Class-EF2 inverter which considers the parasitic elements of the components. 

A state-space model that includes the parasitic elements of the Class-EF2 inverter is presented. The 

validity of this model is confirmed by comparison with LTSpice simulation. First, an approach for 

determining the parasitic elements is described. This is followed by a comparison of the switch 

voltage waveforms from the solution of the state-space model in MATLAB and LTSpice 

simulation. 

The developed model with the parasitic elements is tested with the MOGO and MOPSO design 

approaches for the three design cases presented in the previous chapter. The results demonstrate 

the importance of considering parasitic elements in high frequency circuit designs and further 

validate the optimization-based design approach. 

3.1 State-Space Model of the Class EF2 Inverter Including Parasitic Elements 

In the previous analysis and studies of the Class-EF2 inverter, the components in the circuit were 

considered ideal. In this section, the parasitic elements of the components are accounted for in 

developing the state-space model of the circuit. The inductors and capacitors are replaced with 

their parasitic models as shown in Fig. 3-1. Each capacitor now has an added equivalent series 

resistance (ESR), Rs and an equivalent series inductance (ESL), Ls. Each inductor now has an 

added equivalent series resistance (ESR), Rx as well as a parallel winding capacitance, Cx.  
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The circuit model of the Class-EF2 inverter including the parasitic elements is shown in Fig. 3-2. 

The switch is represented by its ON and OFF resistances as stated in (2.1). 

 

Using the same procedure as outlined in Section 2.1, the state vector X is made up of the capacitor 

voltages and the inductor currents, and the source voltage Vin is represented by the state vector U, 

as shown in (3.1) and (3.2). 

𝐗 = [𝑣𝐶𝑓
𝑣𝐶𝑚𝑟

𝑣𝐶𝑠
𝑣𝐶𝐿𝑓

𝑣𝐶𝐿𝑚𝑟
𝑣𝐶𝐿𝑠

𝑖𝐿𝑓
𝑖𝐿𝑚𝑟

𝑖𝐿𝑠
𝑖𝐿𝐶𝑓

𝑖𝐿𝐶𝑚𝑟
𝑖𝐿𝐶𝑠]

𝑇
 (3.1) 

𝐔 = 𝑉𝑖𝑛 (3.2) 

The differential equations for each state variable are derived in terms of the other state variables. 

This process is presented in (3.3) to (3.14). 

 

Figure 3-1 – Model of Capacitor (Left) and Inductor (Right) with Parasitic Elements 

 

 

Figure 3-2 – Circuit Diagram of the Class-EF2 Inverter with Parasitic Elements 

 



42 
 

𝑑𝑣𝐶𝑓

𝑑𝑡
=

𝑖𝐶𝑓

𝐶𝑓
=

𝑖𝐿𝐶𝑓

𝐶𝑓
 

(3.3) 

𝑑𝑣𝐶𝑀𝑅

𝑑𝑡
=

𝑖𝐶𝑚𝑟

𝐶𝑚𝑟
=

𝑖𝐿𝐶𝑚𝑟

𝐶𝑚𝑟
 

(3.4) 

𝑑𝑣𝐶𝑠

𝑑𝑡
=

𝑖𝐶𝑠

𝐶𝑠
=

𝑖𝐿𝐶𝑠

𝐶𝑠
 

(3.5) 

𝑑𝑣𝐶𝐿𝑓

𝑑𝑡
=

𝑖𝐶𝐿𝑓

𝐶𝐿𝑓

=
𝑉𝑖𝑛 − 𝑣𝐶𝐿𝑓

+ 𝑟𝑠𝑤(𝑖𝐿𝐶𝑓
+ 𝑖𝐿𝐶𝑚𝑟

+ 𝑖𝐿𝐶𝑠
− 𝑖𝐿𝑓

)

𝑟𝑠𝑤𝐶𝐿𝑓

 
(3.6) 

𝑑𝑣𝐶𝐿𝑀𝑅

𝑑𝑡
=

𝑖𝐶 (
𝐿𝑀𝑅

𝑡)

𝐶𝐿𝑀𝑅

=
𝑖𝐿𝐶𝑚𝑟

− 𝑖𝐿𝑚𝑟

𝐶𝐿𝑚𝑟

 
(3.7) 

𝑑𝑣𝐶𝐿𝑠

𝑑𝑡
=

𝑖𝐶𝐿
(

𝑠
𝑡)

𝐶𝐿𝑠

=
𝑖𝐿𝐶𝑠

− 𝑖𝐿𝑠

𝐶𝐿𝑠

 
(3.8) 

𝑑𝑖𝐿𝑓

𝑑𝑡
=

𝑣𝐿𝑓
(𝑡)

𝐿𝑓
=

𝑣𝐶𝐿𝑓
− 𝑖𝐿𝑓

𝑟𝐿𝑓

𝐿𝑓
 

(3.9) 

𝑑𝑖𝐿𝑀𝑅

𝑑𝑡
=

𝑣𝐿𝑀𝑅
(𝑡)

𝐿𝑀𝑅
=

𝑣𝐶𝐿𝑚𝑟
− 𝑖𝐿𝑚𝑟

𝑟𝐿𝑚𝑟

𝐿𝑚𝑟
 

(3.10) 

𝑑𝑖𝐿𝑠

𝑑𝑡
=

𝑣𝐿𝑠
(𝑡)

𝐿𝑠
=

𝑣𝐶𝐿𝑠
− 𝑖𝐿𝑠

𝑟𝐿𝑠

𝐿𝑠
 

(3.11) 

𝑑𝑖𝐿𝐶𝑓

𝑑𝑡
=

𝑣𝐿𝐶
(

𝑓
𝑡)

𝐿𝐶𝑓

=
𝑉𝑖𝑛 − 𝑣𝐶𝑓

− 𝑣𝐶𝐿𝑓
− 𝑖𝐿𝐶𝑓

𝑟𝐶𝑓

𝐿𝐶𝑓

 
(3.12) 

𝑑𝑖𝐿𝐶𝑀𝑅

𝑑𝑡
=

𝑣𝐿𝐶
(

𝑀𝑅
𝑡)

𝐿𝐶𝑀𝑅

=
𝑉𝑖𝑛 − 𝑣𝐶𝑚𝑟

− 𝑣𝐶𝐿𝑓
− 𝑣𝐶𝐿𝑚𝑟

− 𝑖𝐿𝐶𝑚𝑟
𝑟𝐶𝑚𝑟

𝐿𝐶𝑚𝑟

 
(3.13) 

𝑑𝑖𝐿𝐶𝑠

𝑑𝑡
=

𝑣𝐿𝐶
(

𝑠
𝑡)

𝐿𝐶𝑠

=
𝑉𝑖𝑛 − 𝑣𝐶𝑠

− 𝑣𝐶𝐿𝑓
− 𝑣𝐶𝐿𝑠

− 𝑖𝐿𝐶𝑠
(𝑅𝐿 + 𝑟𝐶𝑠

)

𝐿𝐶𝑠

 

(3.14) 

Substituting (3.3) to (3.14) into (2.10) and (2.11) produces a 12th order SIMO system. The state 

vectors and matrices are defined in (3.15) to (3.18). 
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𝐴 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 0 0 0 0 0 0 0 0 0

1

𝐶𝑓

0 0

0 0 0 0 0 0 0 0 0 0
1

𝐶𝑀𝑅

0

0 0 0 0 0 0 0 0 0 0 0
1

𝐶𝑠

0 0 0
−1

𝑟𝑆𝑤𝐶𝐿𝑓

0 0
−1

𝐶𝐿𝑓

0 0
1

𝐶𝐿𝑓

1

𝐶𝐿𝑓

1

𝐶𝐿𝑓

0 0 0 0 0 0 0
−1

𝐶𝐿𝑀𝑅

0 0
1

𝐶𝐿𝑀𝑅

0

0 0 0 0 0 0 0 0
−1

𝐶𝐿𝑠

0 0
1

𝐶𝐿𝑠

0 0 0
1

𝐿𝑓

0 0
−𝑟𝐿𝑓

𝐿𝑓

0 0 0 0 0

0 0 0 0
1

𝐿𝑀𝑅

0 0
−𝑟𝐿𝑀𝑅

𝐿𝑀𝑅

0 0 0 0

0 0 0 0 0
1

𝐿𝑠

0 0
−𝑟𝐿𝑠

𝐿𝑠

0 0 0

−1

𝐿𝐶𝑓

0 0
−1

𝐿𝐶𝑓

0 0 0 0 0
−𝑟𝐶𝑓

𝐿𝐶𝑓

0 0

0
−1

𝐿𝐶𝑀𝑅

0
−1

𝐿𝐶𝑀𝑅

−1

𝐿𝐶𝑀𝑅

0 0 0 0 0
−𝑟𝐶𝑀𝑅

𝐿𝐶𝑀𝑅

0

0 0
−1

𝐿𝐶𝑠

−1

𝐿𝐶𝑠

0
−1

𝐿𝐶𝑠

0 0 0 0 0
−(𝑟𝐶𝑠

+ 𝑅)

𝐿𝐶𝑠 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (3.15) 

𝐵 = ቈ0 0 0
1

𝑟𝑆𝑤𝐶𝐿𝑓

0 0 0 0 0
1

𝐿𝐶𝑓

1

𝐿𝐶𝑀𝑅

1

𝐿𝐶𝑠



𝑇

 (3.16) 

𝐶 = 𝐼12 (3.17) 

𝐷 = 0⃑  (3.18) 

Equations (3.15) and (3.16) contain the circuit components of the parasitic Class-EF2 Inverter, I12 

in (3.17) represents the 12th order identity matrix, and 0⃑  in (3.18) represents the zero vector. The 

order of the state-space system has doubled from the addition of the parasitic elements. 
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3.2   Solving the model 

3.2.1 Determination of the Parasitic Elements 

To determine the parasitic elements of the Class-EF2 inverter, the following assumptions are made: 

• Inductor Lf has a constant ESR of 220 mΩ based on data sheet information of similar sized 

inductors [30], [31] and contains at least 10 turns, 

• Inductors Lmr and Ls have a quality factor of 150 and contain at least 10 turns, 

• All capacitors have a constant ESR of 50 mΩ based on data sheet information of similar 

sized capacitors [32]. 

3.2.1.1 Parasitic Elements of Inductors 

The ESR of inductors Lmr and Ls were calculated using (3.7) by assuming a constant inductor 

quality factor of 150 as recommended by experts in the field. 

𝑟𝐿 =
𝜔𝐿

𝑄
=

2𝜋𝑓𝑠𝐿

150
 (3.7) 

The parasitic capacitance (or stray capacitance) Cs was approximated using the process presented 

in [33] with a combination of AWG 16 and AWG 18 wires, as well as T68-6 and T50-6 RF toroidal 

cores. The turn-to-turn capacitance can be approximated using (3.8) where parameter 𝜃∗ is defined 

in (3.9). If the inductor contains at least 10 turns, the overall parasitic capacitance converges as 

shown in (3.10) [33]. 

𝐶𝑡𝑡 = 𝐶𝑡𝑡𝑐 + 𝐶𝑡𝑡𝑔 = 𝜀0𝑙𝑡 [
𝜀𝑟𝜃

∗

ln (
𝐷𝑜

𝐷𝑐
)
+ cot (

𝜃∗

2
) − cot (

𝜋

12
)] 

(3.8) 

𝜃∗ = arccos(1 −
𝑙𝑛 (

𝐷𝑜

𝐷𝑐
)

𝜀𝑟
) 

(3.9) 
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𝐶𝑠 = 1.366𝐶𝑡𝑡 (3.10) 

In the above equations,  𝑙𝑡, 𝐷𝑜, 𝐷𝑐, 𝜀0, 𝜀𝑟 are properties of the core and conductor, and 𝐶𝑡𝑡𝑐 and 

𝐶𝑡𝑡𝑔 represent the capacitances of the middle and side parts of the proposed basic cell model [3]. 

Under this assumption, the value of Cx varied between 1.95 pF and 2.26 pF depending on the wire 

and toroid combination. Due to the small variance of this value, inductors Lmr and Ls were assumed 

to have an average 2.1 pF parasitic capacitance to reduce the number of calculations performed by 

the optimizer during each iteration. The parasitic capacitance of inductor Lf was calculated using 

the same method with a T106-2 toroidal core. This resulted in an average parasitic capacitance of 

3.35 pF. 

3.2.1.2 Parasitic Elements of Capacitors 

The ESR for all capacitors was assumed to be 50 mΩ based on observations from RF capacitor 

data sheets [32]. 

The parasitic inductance of each capacitor was approximated from manufacturer datasheets using 

provided self-resonant frequency (SRF) plots. Equation (3.11) is used to calculate any parasitic 

inductance Lc where L2 and C2 are constant points on the SRF plot, m is the estimated slope which 

is assumed to be constant in all calculations, and C is the nominal capacitance value (Cf, Cmr, or 

Cs) [32]. 

𝐿𝐶 = 10
(log(𝐿2)−(

log(𝐶2)−log (𝐶)
𝑚

))
≈ 10

(−9.897−(
−9.699−log (𝐶)

−7.213
))

 
(3.11) 

Equation (3.11) produces parasitic inductance values in the range of 100 pH to 300 pH depending 

on the size of capacitor C. 
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3.2.2 Simulation of the Parasitic Class-EF2 Inverter 

To validate the state-space model of the parasitic Class-EF2 inverter, the results from ideal MOGO 

Design Case II are used to solve the state-space model. The values of the parameters including the 

parasitic elements are shown in Table 3-1. The circuit is then fully defined and simulated in 

LTSpice for comparison. 

Table 3-1 – Nominal Component Values and Parasitic Elements used for LTSpice and MATLAB 

Simulation of the Parasitic Class-EF2 Inverter 

Parameter Nominal Value ESR Parasitic Element 

𝐿𝑓 49.37 220 mΩ 3.35 pF 

𝐿𝑚𝑟 249.64 141.80 mΩ 2.1 pF 

𝐿𝑠 723.25 410.80 mΩ 2.1 pF 

𝐶𝑓 214.95 50 mΩ 125.44 pH 

𝐶𝑚𝑟 137.96 50 mΩ 133.94 pH 

𝐶𝑠 247.91 50 mΩ 123.00 pH 

𝐷 0.3721 - - 

𝑉𝑖𝑛 38.22 - - 

 

3.2.3 Comparison of MATLAB and LTSpice Simulation Results 

A comparison of the resulting switch voltage, switch current, and output voltage waveforms from 

both simulations are shown in Fig. 3-3 (a-c). The plots demonstrate the accuracy of the parasitic 

state-space model. 
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Figure 3-3 (a) – Switch Voltage Waveform from the Parasitic State-Space Model vs. LTSpice 

Simulation 

 

 

 

Figure 3-3 (b) – Switch Current Waveform from the Parasitic State-Space Model vs. LTSpice 

Simulation 
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Figures 3-3 (a-c) validate the accuracy of the parasitic Class-EF2 inverter state-space model. They 

also demonstrate the impact of the parasitic elements on the operation of the circuit as it no longer 

exhibits ZVS or ZDVS operation, and there is significant ringing in the switch current waveform. 

3.3 Design Results Using the MOGO Algorithm 

The MOGO design method was tested using the three design cases presented in Table 2-4. The 

results of the MOGO designs are obtained and compared with the ideal model. Table 3-2 shows 

the comparative values for each design case. Code for the Parasitic Class-EF2 fitness function can 

be found in Appendix B. 

 

 

 

 

Figure 3-3 (c) – Output Voltage Waveform from the Parasitic State-Space Model vs. LTSpice 

Simulation 
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Table 3-2 - Comparison of the Results of the Ideal and Parasitic MOGO Designs 

Factors 

Design Case I Design Case II Design Case III 

Ideal Parasitic Ideal Parasitic Ideal Parasitic 

𝐷 0.406 0.394 0.370 0.357 0.394 0.393 

𝑘 0.823 1.133 1.408 1.712 1.472 1.128 

𝑞2 2.977 2.744 2.615 2.517 2.592 2.747 

1

𝜔𝑅𝐿𝐶𝑓
 6.980 6.587 5.365 5.390 5.961 6.503 

1

𝜔𝑅𝐿𝐶𝑀𝑅
 5.745 7.463 7.556 9.230 8.774 7.336 

𝑐𝑝 0.128 0.117 0.125 0.113 0.122 0.111 

𝑉𝑆𝑡𝑟𝑒𝑠𝑠 2.540 2.280 2.241 2.210 2.337 2.314 

𝐼𝑆𝑡𝑟𝑒𝑠𝑠 3.136 3.385 3.523 3.727 3.484 3.496 

 

The factors for Design Case I and Design Case III are both very similar selecting values of k falling 

roughly halfway between the max cp and max f design procedures. Design Case II was a near 

perfect match with the max f case, however. 
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3.3.1 Determination of the Inverter Component Values from the MOGO Designs 

The nominal values of all components were calculated as shown in 2.4.1, the values of which are 

shown in Table 3-3. 

Table 3-3 - Comparison of the Component Values of the Ideal and Parasitic MOGO 

Designs 

Parameter 

Design Case I Design Case II Design Case III 

Ideal Parasitic Ideal Parasitic Ideal Parasitic 

𝐿𝑓 [𝜇𝐻] 39.17 38.05 55.19 74.75 49.36 42.57 

𝐿𝑚𝑟 [𝑛𝐻] 168.57 218.99 221.71 270.83 90.11 75.34 

𝐿𝑠 [𝑛𝐻] 837.44 890.74 934.94 545.32 245.77 203.08 

𝐶𝑓 [𝑝𝐹] 672.59 712.79 218.79 217.75 140.63 128.91 

𝐶𝑚𝑟 [𝑝𝐹] 817.20 629.08 155.34 127.16 95.55 114.28 

𝐶𝑠 [𝑝𝐹] 880.34 766.33 174.40 347.8 166.98 225.20 

𝑉𝑖𝑛 [𝑉] 23.93 21.88 35.37 37.41 21.12 25.66 

𝐷 0.406 0.394 0.370 0.357 0.394 0.393 

 

Notable differences occur in most component values showcasing the effect of the parasitic 

elements on the design of the Class-EF2 inverter. Design Case II and Design Case III see a 

significant reduction in the value of Ls likely due to its large impact on the circuit efficiency with 

the added ESR. In each design case, the changes to Cf and Cmr can be attributed to the variance in 

k. 

3.3.1.1 Determination of the Parasitic Elements for the MOGO Designs 

A demonstration of the calculation of all parasitic elements for Design Case I is presented in Table 

3-4. The parasitic elements for Design Case II and Design Case III are presented in Table 3-5. 
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Table 3-4 – Demonstration of the Calculation of all Parasitic Elements for Design Case I 

Parameter Calculation 

𝐿𝐶𝑓
 [𝑝𝐻] 

𝐿𝐶𝑓
= 10

(−9.897−(
−9.699−log (𝐶𝑓)

−7.213
))

= 106.23 

𝐿𝐶𝑚𝑟
 [𝑝𝐻] 

𝐿𝐶𝑚𝑟
= 10

(−9.897−(
−9.699−log (𝐶𝑚𝑟)

−7.213
))

= 108.09 

𝐿𝐶𝑠
 [𝑝𝐻] 

𝐿𝐶𝑠
= 10

(−9.897−(
−9.699−log (𝐶𝑠)

−7.213
))

= 105.17 

𝑟𝐿𝑚𝑟
 [𝑚Ω] 𝑟𝐿𝑚𝑟

=
2𝜋𝑓𝑠𝐿𝑚𝑟

150
×

103𝑚Ω

Ω
= 62.2 

𝑟𝐿𝑠
 [𝑚Ω] 𝑟𝐿𝑠

=
2𝜋𝑓𝑠𝐿𝑠

150
×

103𝑚Ω

Ω
= 253.0 

 

Table 3-5 – Values of all Parasitic Elements for Design Case II and Design Case III 

Parameter 

Value 

Design Case II Design Case III 

𝐿𝐶𝑓
 [𝑝𝐻] 125.22 134.65 

𝐿𝐶𝑚𝑟
 [𝑝𝐻] 134.91 136.92 

𝐿𝐶𝑠
 [𝑝𝐻] 117.34 124.63 

𝑟𝐿𝑚𝑟
 [𝑚Ω] 153.8 85.6 

𝑟𝐿𝑠
 [𝑚Ω] 309.7 230.7 

 

The parasitic capacitance 𝐶𝐿𝑓
 is assumed to be 3.35 pF, the parasitic capacitances 𝐶𝐿𝑚𝑟

 and 𝐶𝐿𝑠
 are 

assumed to be 2.1 pF, the ESR of all capacitors is assumed to be 50 mΩ, and the ESR of inductor 

𝐿𝑓 is assumed to be 220 mΩ as stated in 3.1.2. 
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3.4 Design Results Using the MOPSO Algorithm 

The MOPSO design method was tested using the three design cases presented in Table 2-4. The 

results of the MOPSO designs are obtained and compared with the ideal model. Table 3-6 show 

the comparative values for each design case. 

Table 3-6 - Comparison of the Results of the Ideal and Parasitic MOPSO Designs 

Factors 

Design Case I Design Case II Design Case III 

Ideal Parasitic Ideal Parasitic Ideal Parasitic 

𝐷 0.361 0.399 0.392 0.367 0.366 0.358 

𝑘 2.349 1.154 2.468 1.438 2.500 1.562 

𝑞2 2.388 2.733 2.371 2.604 2.366 2.561 

1

𝜔𝑅𝐿𝐶𝑓
 4.937 6.563 5.529 5.673 4.777 5.491 

1

𝜔𝑅𝐿𝐶𝑀𝑅
 11.596 7.571 13.644 8.160 11.941 8.577 

𝑐𝑝 0.116 0.117 0.116 0.114 0.117 0.104 

𝑉𝑆𝑡𝑟𝑒𝑠𝑠 2.188 2.333 2.250 2.172 2.166 2.172 

𝐼𝑆𝑡𝑟𝑒𝑠𝑠 3.872 3.346 3.801 3.701 3.900 4.009 

 

As was expected, the value of k was significantly decreased in all design cases due to the large loss incurred 

by the ESR of Lmr. The factors proposed for Design Case I were nearly identical (within 2.5%) to the ones 

from the MOGO design, where the value of k fell roughly halfway between the max cp and max f design 

procedures from Table 3-5. However, Design Case II and Design Case III were both very close matches 

with the max f design procedure. 

The discrepancy between the design factors proposed by the MOGO and MOPSO design methods for 

Design Case II and Design Case III are likely due to the arbitrary stopping condition placed on the 
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algorithms (i.e., computational cost). If the computational cost was increased, or a different stopping 

condition was used, the MOGO and MOPSO factors would likely be in agreeance. 

3.4.1 Determination of the Inverter Component Values from the MOPSO Designs 

The component values for the three design cases are presented in Table 3-7 below. All nominal 

parameters were calculated using the process shown in 2.2.5. 

Table 3-7 - Comparison of the Component Values of the Ideal and Parasitic MOPSO 

Designs 

Parameter 

Design Case I Design Case II Design Case III 

Ideal Parasitic Ideal Parasitic Ideal Parasitic 

𝐿𝑓 [𝜇𝐻] 34.18 41.45 46.30 73.86 43.01 77.34 

𝐿𝑚𝑟 [𝑛𝐻] 340.26 222.17 400.37 239.45 122.64 88.08 

𝐿𝑠 [𝑛𝐻] 857.93 636.22 997.29 749.49 352.27 146.19 

𝐶𝑓 [𝑝𝐹] 950.88 715.31 212.29 206.89 175.51 152.68 

𝐶𝑚𝑟 [𝑝𝐹] 404.87 620.07 86.02 143.83 70.21 97.75 

𝐶𝑠 [𝑝𝐹] 765.04 1129.8 155.83 238.71 112.33 412.16 

𝑉𝑖𝑛 [𝑉] 19.21 19.34 30.37 42.55 22.65 28.22 

𝐷 0.361 0.399 0.392 0.367 0.366 0.358 

 

Like the results in Table 3-5, many of the component values seen drastic changes between the ideal 

and parasitic designs. The reduction in the value of k caused Cf, Cmr, and Lmr to change by upwards 

of 50%. The value of Ls was reduced across the board due to the impact of its ESR on the efficiency 

of the circuit. This caused the value of Cs to increase in each design case since it is inversely 

proportional to Ls. 
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3.4.1.1 Determination of the Parasitic Elements for the MOPSO Designs 

All parasitic elements were calculated using the process shown in 3.2.1 and are presented in Table 

3-8. 

Table 3-8 – Values of all Parasitic Elements for each Design Case: MOPSO 

Parameter 

Design Case I Design Case II Design Case III 

Value Value Value 

𝐿𝐶𝑓
 [𝑝𝐻] 106.18 126.11 131.53 

𝐿𝐶𝑚𝑟
 [𝑝𝐻] 108.31 132.63 139.92 

𝐿𝐶𝑠
 [𝑝𝐻] 99.66 123.63 114.61 

𝑟𝐿𝑚𝑟
 [𝑚Ω] 63.1 136.0 100.1 

𝑟𝐿𝑠
 [𝑚Ω] 180.7 425.7 166.1 

 

The parasitic capacitance 𝐶𝐿𝑓
 is assumed to be 3.35 pF, the parasitic capacitances 𝐶𝐿𝑚𝑟

 and 𝐶𝐿𝑠
 are 

assumed to be 2.1 pF, the ESR of all capacitors is assumed to be 50 mΩ, and the ESR of inductor 

𝐿𝑓 is assumed to be 220 mΩ as stated in 3.1.2. 

3.5 Comparison of MOGO and MOPSO Design Approaches 

Each design was simulated in LTSpice using the component values listed in Tables 3-3 to 3-5, 3-7, 

and 3-8. The results from the simulations are recorded in Table 3-9 using the process described in 

2.6 and waveforms for the switch voltage, switch current, and output voltage are shown in Figs. 3-

4 (a-c), 3-5 (a-c), and 3-6 (a-c). 
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Table 3-9 – Comparison of the Results of the MOGO and MOPSO Design Approaches 

Parameter 
Design Case I Design Case II Design Case III 

MOGO MOPSO MOGO MOPSO MOGO MOPSO 

𝑃𝑂𝑢𝑡𝐷𝑒𝑠𝑖𝑟𝑒𝑑
 23 23 40 40 25 25 

𝑃𝑂𝑢𝑡𝐴𝑐𝑡𝑢𝑎𝑙
 21.964 21.246 37.246 38.553 26.328 23.949 

𝜂 91.72% 92.87% 95.11% 93.94% 93.80% 95.02% 

𝑉𝑆𝑡𝑟𝑒𝑠𝑠 2.280 2.333 2.210 2.172 2.314 2.172 

𝐼𝑆𝑡𝑟𝑒𝑠𝑠 3.385 3.346 3.727 3.701 3.496 4.009 

𝑄𝑂𝑢𝑡 6.819 4.746 3.960 5.603 4.290 2.690 

𝑇𝐻𝐷 3.23% 4.47% 3.76% 2.73% 4.15% 5.10% 

 

As can be seen, the parasitic design cases for both the MOGO and MOPSO algorithms performed 

well in all measured values of interest. The inclusion of the parasitic elements resulted in lower 

efficiencies for all design cases, the minimum being 91.72% during MOGO design case I. The 

parasitic elements also present a clear trade-off between the THD of the output voltage waveform 

and the efficiency of the circuit. In all design cases, the circuit with the higher output voltage THD 

also had the higher efficiency and the lower value of Qout. This is expected since as the value of 

Qout increases, so to does the value of Ls and its ESR. 
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Figure 3-4 (a) – Switch Voltage Waveform of the Parasitic Class-EF2 Inverter: MOGO (Green) 

& MOPSO (Blue) Design Case I 

 

Figure 3-4 (b) – Switch Current Waveform of the Parasitic Class-EF2 Inverter: MOGO (Green) 

& MOPSO (Blue) Design Case I 

 

Figure 3-4 (c) – Output Voltage Waveform of the Parasitic Class-EF2 Inverter: MOGO (Green) 

& MOPSO (Blue) Design Case I 
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Figure 3-5 (a) – Switch Voltage Waveform of the Parasitic Class-EF2 Inverter: MOGO (Green) 

& MOPSO (Blue) Design Case II 

 

Figure 3-5 (b) – Switch Current Waveform of the Parasitic Class-EF2 Inverter: MOGO (Green) 

& MOPSO (Blue) Design Case II 

 

Figure 3-5 (c) – Output Voltage Waveform of the Parasitic Class-EF2 Inverter: MOGO (Green) 

& MOPSO (Blue) Design Case II 
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The above figures showcase the success of the optimization-based design approach for the parasitic 

Class-EF2 Inverter. In each design case, the circuits maintained ZVS and ZDVS operation to an 

acceptable level of error and had relatively sinusoidal output voltage waveforms. However, Fig. 

3-5 (b) and Fig. 3-6 (b) show a noticeable amount of ringing in the switch current waveform of the 

 

Figure 3-6 (a) – Switch Voltage Waveform of the Parasitic Class-EF2 Inverter: MOGO (Green) 

& MOPSO (Blue) Design Case III 

 

Figure 3-6 (b) – Switch Current Waveform of the Parasitic Class-EF2 Inverter: MOGO (Green) 

& MOPSO (Blue) Design Case III 

 

Figure 3-6 (c) – Output Voltage Waveform of the Parasitic Class-EF2 Inverter: MOGO (Green) 

& MOPSO (Blue) Design Case III 
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MOPSO designs which shows how big of an impact even a small amount of hard switching can 

have when parasitic elements are considered. 

3.6 Summary 

In Chapter 3, the design of the Parasitic Class-EF2 inverter was investigated. A 12th order state-

space model was proposed which considered the parasitic elements of all components in the circuit 

and was validated through LTSpice simulation. 

The new state-space model was then used with both the MOGO and MOPSO algorithms to design 

three circuits with differing frequency, power, and load specifications. The proposed optimization-

based design approaches provided circuits which performed well in all measured values of interest 

and successfully adhered to the design specifications. 

The addition of the parasitic elements caused large variations in the component values from the 

ideal designs in the previous chapter. It also demonstrated the negative effects they cause in high-

frequency circuits such as the loss of ZVS and ZDVS operation and ringing. 
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CHAPTER 4 

 

THE PRACTICAL CLASS-EF2 INVERTER 

 

 

In this chapter, the proposed optimization-based design approaches are further extended to the 

design of the practical Class-EF2 inverter which considers the parasitic elements of all components 

as well as the dynamics of the switch. A state-space model which includes the model of the switch 

is presented. First, a method of estimating the internal capacitances and resistances of the switch 

is described. Then the model is validated by a comparison of the switch and output waveforms 

from the solution of the state-space model in MATLAB and by LTSpice simulation. 

The developed model with the parasitic elements and switching dynamics is tested with the MOGO 

and MOPSO design approaches for the three design cases presented in Chapter 2. The results 

demonstrate the importance of considering the internal capacitances and resistances of the switch 

when designing high frequency circuits and further validates the optimization-based design 

approach. 

4.1 State-Space model of the Parasitic Class-EF2 Inverter Including Switch 

Dynamics 

In the previous chapters, the switching element of the Class-EF2 inverter was represented as an 

ON/OFF switch without considering the internal resistances and capacitances.  In this section, the 

parameters of the switch are accounted for in developing the state-space model of the circuit. The 

switch model now includes the gate-to-source capacitor Cgs, the drain-to-source capacitance Cds, 
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the gate resistance rg, the source resistance rs and the on and off resistance rsw. The circuit diagram 

of the new switch model with gate driver signal vg is shown in Fig. 4-1.  

Inserting the switch model into the parasitic Class-EF2 inverter results in the complete and practical 

Class-EF2 inverter model shown in Fig. 4-2. 

 

Figure 4-2 – Circuit Model of the Practical Class-EF2 Inverter 

 

Figure 4-1 – Switch Model for the Practical Class-EF2 Inverter 
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Using the same procedure as outlined in Section 2.1, the state vector X is made up of the capacitor 

voltages and the inductor currents. However, U now contains the source voltage Vin as well as the 

gate driver voltage vg as shown in (4.2). 

𝐗 = [𝑣𝐶𝑓
𝑣𝐶𝑚𝑟

𝑣𝐶𝑠
𝑣𝐶𝐿𝑓

𝑣𝐶𝐿𝑚𝑟
𝑣𝐶𝐿𝑠

𝑣𝐶𝑑𝑠
𝑣𝐶𝑑𝑠

𝑖𝐿𝑓
𝑖𝐿𝑚𝑟

𝑖𝐿𝑠
𝑖𝐿𝐶𝑓

𝑖𝐿𝐶𝑚𝑟
𝑖𝐿𝐶𝑠]

𝑇
 (4.1) 

𝐔 = [𝑉𝑖𝑛 𝑣𝑔]𝑇 (4.2) 

The differential equations for each state variable are derived in terms of the other state variables. 

The resulting differential equations which completely describe the circuit are presented in (4.3) to 

(4.16). 

𝑑𝑣𝐶𝑓

𝑑𝑡
=

𝑖𝐶𝑓

𝐶𝑓
=

𝑖𝐿𝐶𝑓

𝐶𝑓
 

(4.3) 

𝑑𝑣𝐶𝑀𝑅

𝑑𝑡
=

𝑖𝐶𝑚𝑟

𝐶𝑚𝑟
=

𝑖𝐿𝐶𝑚𝑟

𝐶𝑚𝑟
 

(4.4) 

𝑑𝑣𝐶𝑠

𝑑𝑡
=

𝑖𝐶𝑠

𝐶𝑠
=

𝑖𝐿𝐶𝑠

𝐶𝑠
 

(4.5) 

𝑑𝑣𝐶𝐿𝑓

𝑑𝑡
=

𝑖𝐶𝐿𝑓

𝐶𝐿𝑓

=

(
𝑟𝑔 + 𝑟𝑠
𝑟𝑔𝑟𝑠

) (𝑉𝑖𝑛 − 𝑣𝐶𝐿𝑓
) − (

𝑟𝑔𝑟𝑆𝑤 + 𝑟𝑠𝑟𝑆𝑤
𝑟𝑔𝑟𝑠𝑟𝑆𝑤

) 𝑣𝐶𝑑𝑠
+

𝑣𝐶𝑔𝑠
− 𝑣𝑔

𝑟𝑔

𝐶𝐿𝑓

 

(4.6) 

𝑑𝑣𝐶𝐿𝑀𝑅

𝑑𝑡
=

𝑖𝐶 (
𝐿𝑀𝑅

𝑡)

𝐶𝐿𝑀𝑅

=
𝑖𝐿𝐶𝑚𝑟

− 𝑖𝐿𝑚𝑟

𝐶𝐿𝑚𝑟

 
(4.7) 

𝑑𝑣𝐶𝐿𝑠

𝑑𝑡
=

𝑖𝐶𝐿
(

𝑠
𝑡)

𝐶𝐿𝑠

=
𝑖𝐿𝐶𝑠

− 𝑖𝐿𝑠

𝐶𝐿𝑠

 
(4.8) 

𝑑𝑣𝐶𝑑𝑠

𝑑𝑡
=

𝑖𝐶𝑑𝑠
(𝑡)

𝐶𝑑𝑠
=

(
𝑟𝑔 + 𝑟𝑠
𝑟𝑔𝑟𝑠

) (𝑉𝑖𝑛 − 𝑣𝐶𝐿𝑓
) − (

𝑟𝑔𝑟𝑠 + 𝑟𝑔𝑟𝑆𝑤 + 𝑟𝑠𝑟𝑆𝑤
𝑟𝑔𝑟𝑠𝑟𝑆𝑤

) 𝑣𝐶𝑑𝑠
+

𝑣𝐶𝑔𝑠
− 𝑣𝑔

𝑟𝑔

𝐶𝑑𝑠
 

(4.9) 

𝑑𝑣𝐶𝑔𝑠

𝑑𝑡
=

𝑣𝐶𝐿𝑓
+ 𝑣𝐶𝑑𝑠

+ 𝑣𝑔 − 𝑣𝐶𝑔𝑠
− 𝑉𝑖𝑛

𝑟𝑔𝐶𝑑𝑠
 

(4.10) 
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𝑑𝑖𝐿𝑓

𝑑𝑡
=

𝑣𝐿𝑓
(𝑡)

𝐿𝑓
=

𝑣𝐶𝐿𝑓
− 𝑖𝐿𝑓

𝑟𝐿𝑓

𝐿𝑓
 

(4.11) 

𝑑𝑖𝐿𝑀𝑅

𝑑𝑡
=

𝑣𝐿𝑀𝑅
(𝑡)

𝐿𝑀𝑅
=

𝑣𝐶𝐿𝑚𝑟
− 𝑖𝐿𝑚𝑟

𝑟𝐿𝑚𝑟

𝐿𝑚𝑟
 

(4.12) 

𝑑𝑖𝐿𝑠

𝑑𝑡
=

𝑣𝐿𝑠
(𝑡)

𝐿𝑠
=

𝑣𝐶𝐿𝑠
− 𝑖𝐿𝑠

𝑟𝐿𝑠

𝐿𝑠
 

(4.13) 

𝑑𝑖𝐿𝐶𝑓

𝑑𝑡
=

𝑣𝐿𝐶
(

𝑓
𝑡)

𝐿𝐶𝑓

=
𝑉𝑖𝑛 − 𝑣𝐶𝑓

− 𝑣𝐶𝐿𝑓
− 𝑖𝐿𝐶𝑓

𝑟𝐶𝑓

𝐿𝐶𝑓

 
(4.14) 

𝑑𝑖𝐿𝐶𝑀𝑅

𝑑𝑡
=

𝑣𝐿𝐶
(

𝑀𝑅
𝑡)

𝐿𝐶𝑀𝑅

=
𝑉𝑖𝑛 − 𝑣𝐶𝑚𝑟

− 𝑣𝐶𝐿𝑓
− 𝑣𝐶𝐿𝑚𝑟

− 𝑖𝐿𝐶𝑚𝑟
𝑟𝐶𝑚𝑟

𝐿𝐶𝑚𝑟

 
(4.15) 

𝑑𝑖𝐿𝐶𝑠

𝑑𝑡
=

𝑣𝐿𝐶
(

𝑠
𝑡)

𝐿𝐶𝑠

=
𝑉𝑖𝑛 − 𝑣𝐶𝑠

− 𝑣𝐶𝐿𝑓
− 𝑣𝐶𝐿𝑠

− 𝑖𝐿𝐶𝑠
(𝑅𝐿 + 𝑟𝐶𝑠

)

𝐿𝐶𝑠

 

(4.16) 

Substituting (4.3) to (4.16) into (2.10) and (2.11) produces a 14th order multiple input multiple 

output (MIMO) system. The state vectors and matrices are defined in (4.17) to (4.20). 

𝐴 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 0 0 0 0 0 0 0 0 0 0 0

1

𝐶𝑓
0 0

0 0 0 0 0 0 0 0 0 0 0 0
1

𝐶𝑀𝑅
0

0 0 0 0 0 0 0 0 0 0 0 0 0
1

𝐶𝑠

0 0 0
−(𝑟𝑔 + 𝑟𝑠)

𝑟𝑔𝑟𝑠𝐶𝐿𝑓

0 0
−(𝑟𝑠𝑟𝑆𝑤 + 𝑟𝑔𝑟𝑆𝑤)

𝑟𝑔𝑟𝑠𝑟𝑆𝑤𝐶𝐿𝑓

1

𝑟𝑔𝐶𝐿𝑓

−1

𝐶𝐿𝑓

0 0
1

𝐶𝐿𝑓

1

𝐶𝐿𝑓

1

𝐶𝐿𝑓

0 0 0 0 0 0 0 0 0
−1

𝐶𝐿𝑀𝑅

0 0
1

𝐶𝐿𝑀𝑅

0

0 0 0 0 0 0 0 0 0 0
−1

𝐶𝐿𝑠

0 0
1

𝐶𝐿𝑠

0 0 0
−(𝑟𝑔 + 𝑟𝑠)

𝑟𝑔𝑟𝑠𝐶𝑑𝑠
0 0

−(𝑟𝑠𝑟𝑔 + 𝑟𝑠𝑟𝑆𝑤 + 𝑟𝑔𝑟𝑆𝑤)

𝑟𝑔𝑟𝑠𝑟𝑆𝑤𝐶𝑑𝑠

1

𝐶𝑑𝑠𝑟𝑔
0 0 0 0 0 0

0 0 0
1

𝑟𝑔𝐶𝑔𝑠
0 0

1

𝑟𝑔𝐶𝑔𝑠

−1

𝑟𝑔𝐶𝑔𝑠
0 0 0 0 0 0

0 0 0
1

𝐿𝑓
0 0 0 0

−𝑟𝐿𝑓

𝐿𝑓
0 0 0 0 0

0 0 0 0
1

𝐿𝑀𝑅
0 0 0 0

−𝑟𝐿𝑀𝑅

𝐿𝑀𝑅
0 0 0 0

0 0 0 0 0
1

𝐿𝑠
0 0 0 0

−𝑟𝐿𝑠

𝐿𝑠
0 0 0

−1

𝐿𝐶𝑓

0 0
−1

𝐿𝐶𝑓

0 0 0 0 0 0 0
−𝑟𝐶𝑓

𝐿𝐶𝑓

0 0

0
−1

𝐿𝐶𝑀𝑅

0
−1

𝐿𝐶𝑀𝑅

−1

𝐿𝐶𝑀𝑅

0 0 0 0 0 0 0
−𝑟𝐶𝑀𝑅

𝐿𝐶𝑀𝑅

0

0 0
−1

𝐿𝐶𝑠

−1

𝐿𝐶𝑠

0
−1

𝐿𝐶𝑠

0 0 0 0 0 0 0
−(𝑟𝐶𝑠

+ 𝑅)

𝐿𝐶𝑠 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (4.17) 
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𝐵 =

[
 
 
 
 0 0 0

𝑟𝑔 + 𝑟𝑠

𝑟𝑔𝑟𝑠𝐶𝐿𝑓

0 0
𝑟𝑔 + 𝑟𝑠

𝑟𝑔𝑟𝑠𝐶𝑑𝑠

−1

𝑟𝑔𝐶𝑔𝑠
0 0 0

1

𝐿𝐶𝑓

1

𝐿𝐶𝑀𝑅

1

𝐿𝐶𝑠

0 0 0
−1

𝑟𝑔𝐶𝐿𝑓
0 0

−1

𝑟𝑔𝐶𝑑𝑠

1

𝑟𝑔𝐶𝑔𝑠
0 0 0 0 0 0

]
 
 
 
 
𝑇

 (4.18) 

𝐶 = 𝐼14 (4.19) 

𝐷 = 0⃑  (4.20) 

Equations (4.17) and (4.18) contain the circuit components of the practical Class-EF2 Inverter, I14 

in (4.19) represents the 14th order identity matrix, and 0⃑  in (4.20) represents the zero vector. The 

complexity of the system has been significantly increased by the addition of the switch model and 

the second source. 

4.2 Solving the Model 

4.2.1 Determination of the Switching Dynamics 

To simplify the solution of the state-space equations, the LMG1020 gate driver [34] is considered, 

and the following assumptions are made: 

• Gate voltage vg changes linearly, and has a rise and fall time of 400 ps, 

• Resistance rsw changes logarithmically, and has a rise and fall time of 400 ps, 

• The switch has a constant temperature of 85ْC, and 

• All internal resistance and capacitance values remain constant throughout the optimization. 

The 400 ps rise and fall time is based on the characteristics of the LMG1020 gate driver. 

4.2.1.1 Internal Resistances of the Switch 

Using the EPC2019 switch as an example, typical values for 𝑟𝑔 and 𝑟𝑆𝑤(𝑜𝑛) can be found in the 

manufacturer provided datasheet. A typical value for 𝑟𝑠 is not provided, however an equation 

describing the behavior of this resistor can be found within the LTSpice library file and is shown 

in eq. (4.21) [35]. 
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𝑟𝑠 = 0.02528 × (1 + 0.0065(𝜏 − 25°𝐶)) (4.21) 

Substituting the assumed switch temperature of 85 ْC into eq. (4.21), all internal switch resistances 

can be determined. Their values are provided in Table 4-1. 

Table 4-1 – Internal Resistances of the EPC2019 Power MOSFET 

Parameter Resistance [mΩ] 

𝑟𝑆𝑤(𝑂𝑛) 36 

𝑟𝑔 400 

𝑟𝑠 6.2 

 

4.2.1.2 Internal Capacitances of the Switch 

Continuing to use the EPC2019 as an example, equations describing the behavior of Cgs and Cds 

can be found within the LTSpice library file and are shown in eq. (4.22) to (4.25) where q is the 

charge of the capacitor [35].  

𝐶𝑑𝑠(𝑡) =
𝑞𝑑𝑠(𝑡)

𝑣𝑑𝑠(𝑡)
+ 69.15 𝑝𝐹 (4.22) 

𝑞𝑑𝑠(𝑡) = {
824.54 × 10−12 × 𝑙𝑛 (1 + 𝑒

(
20.76−𝑣𝑑𝑠(𝑡)

4.72
)
) + 14.85 × 10−9 × 𝑙𝑛 (1 + 𝑒

(
0.202−𝑣𝑑𝑠(𝑡)

67.83
)
) , 𝑣𝑑𝑠 > 6

0 , 𝑒𝑙𝑠𝑒

 (4.23) 

𝐶𝑔𝑠(𝑡) =
𝑞𝑔𝑠(𝑡)

𝑣𝑔𝑠̅̅ ̅̅
+ 200.42 𝑝𝐹 (4.24) 

𝑞𝑔𝑠(𝑡) = {
8.39 × 10−12 × 𝑙𝑛 (1 + 𝑒

(
𝑣𝑔𝑠̅̅ ̅̅̅−1.845

0.174
)
) − 11.52 × 10−15 × 𝑙𝑛 (1 + 𝑒

(
𝑣𝑑𝑠(𝑡)+5.551

0.281
)
) , 𝑣𝑑𝑠 > 6

0 , 𝑒𝑙𝑠𝑒

 (4.25) 

 

In (4.22) and (4.24) the voltages 𝑣𝑑𝑠 and 𝑣𝑔𝑠 are obtained from the MATLAB solution of the ideal 

case. In (4.24) and (4.25), 𝑣𝑔𝑠 is averaged to avoid division by 0 and to better approximate the 

provided capacitance plots in the datasheet. Substituting these voltage vectors into (4.22) to (4.25) 
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provides the designer with a vector of capacitance values which is averaged to determine the values 

for use with the MOGO and MOPSO design approaches. 

Using the ideal MOGO Design Case II solution as an example, plots of Cds and Cgs are obtained 

and shown in Fig. 4-3. 

These waveforms are averaged to obtain the final capacitor values shown in Table 5-2. 

Table 4-2 – Averaged Internal Capacitance Values of the EPC2019 Using Ideal MOGO Design 

Case II 

Parameter Capacitance [pF] 

𝐶𝑑𝑠 178.20 

𝐶𝑔𝑠 201.49 

 

 

 

Figure 4-3 – Plots of Cds and Cgs Using Ideal MOGO Design Case II 
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4.2.2 Simulation of the Practical Class-EF2 Inverter 

To validate the state-space model of the practical Class-EF2 inverter, the component values 

provided in Table 3-1, Table 4-1, and Table 4-2 are used to solve the state-space model. The circuit 

is then fully defined in LTSpice using the manufacturer provided model for the switch. Plots of 

the switch voltage, switch current, and output voltage waveforms obtained from both the 

MATLAB solution of the state-space model and LTSpice simulation are shown in Figs. 4-4 (a-c). 

 

 

 

 

 

 

 

 

 

Figure 4-4 (a) – Switch Voltage Waveform of the Practical Class-EF2 Inverter State-Space 

Model vs. LTSpice Simulation 
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Figure 4-4 (b) – Switch Current Waveform of the Practical Class-EF2 Inverter State-Space 

Model vs. LTSpice Simulation 

 

 

Figure 4-4 (c) – Output Voltage Waveform of the Practical Class-EF2 Inverter State-Space 

Model vs. LTSpice Simulation 
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Figures 4-4 (a-c) demonstrate the accuracy of the practical Class-EF2 inverter state-space model. 

There are some discrepancies, but they are likely due to the capacitors being averaged rather than 

recalculated during each sample, and the exclusion of Cgd and rd from the state-space model. 

There is also significant hard switching occuring in both the MATLAB and LTSpice simulation 

demonstrating how large of an impact is caused by the inclusion of a non-ideal switch. 

4.2.3 Internal Resistances and Capacitances for all Design Cases 

For Design Case I and Design Case II, the EPC2019 switch is selected due to its voltage, current, 

and output capacitance characteristics. The EPC8010 [36] switch is selected for Design Case III 

since the output capacitance of the EPC2019 is too high. 

Following the process presented in 4.2.1.1 and 4.2.1.2, the internal resistances and capacitances to 

be used with the MOGO and MOPSO design approaches of the Complete Class-EF2 inverter are 

calculated. Their values are presented in Table 4-3. 

Table 4-3 – Internal Resistances and Capacitances for use with the MOGO and MOPSO 

Design Approaches for the Complete Class-EF2 Inverter 

Parameter 

MOGO MOPSO 

Design 

Case I 

Design 

Case II 

Design 

Case III 

Design 

Case I 

Design 

Case II 

Design 

Case III 

𝑟𝑆𝑤(𝑜𝑛) [𝑚𝛺] 36 36 120 36 36 120 

𝑟𝑔 [𝑚𝛺] 400 400 300 400 400 300 

𝑟𝑠 [𝑚𝛺] 6.2 6.2 16.9 6.2 6.2 16.9 

𝐶𝑑𝑠 [𝑝𝐹] 216.51 178.20 56.84 244.02 176.06 50.81 

𝐶𝑔𝑠 [𝑝𝐹] 202.99 201.49 41.53 201.47 202.32 41.25 
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4.3 Design Results Using the MOGO Algorithm 

The MOGO design method was tested using three different design cases presented in Table 2-4. 

The results of the MOGO designs are obtained and compared with the parasitic model. For design 

factors involving Cf the value is adjusted to include the value of Cds as described in eq. (4.26). 

𝐶𝑓(𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑) = 𝐶𝑓 + 𝐶𝑑𝑠 (4.26) 

Table 4-4 shows the comparative values for each design case. Code for the Practical Class-EF2 

fitness function can be found in Appendix C. 

Table 4-4 – Comparison of the Results of the Parasitic and Practical MOGO Designs 

Factors 

Design Case I Design Case II Design Case III 

Parasitic Complete Parasitic Complete Parasitic Complete 

𝐷 0.394 0.365 0.357 0.353 0.393 0.403 

𝑘 1.133 1.479 1.712 1.600 1.128 1.033 

𝑞2 2.744 2.589 2.517 2.550 2.747 2.806 

1

𝜔𝑅𝐿𝐶𝑓
 6.587 5.513 5.390 5.090 6.503 6.507 

1

𝜔𝑅𝐿𝐶𝑀𝑅
 7.463 8.156 9.230 8.145 7.336 6.721 

𝑐𝑝 0.117 0.118 0.113 0.118 0.111 0.119 

𝑉𝑆𝑡𝑟𝑒𝑠𝑠 2.280 2.190 2.210 2.192 2.314 2.309 

𝐼𝑆𝑡𝑟𝑒𝑠𝑠 3.385 3.572 3.727 3.523 3.496 3.336 

 

The factors for Design Case I and Design Case II are both very similar to the max f optimal design 

factors. The value of k in design case III was reduced however making it a close match with the 

max cp optimal design factors. 
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4.3.1 Determination of the Inverter Component Values from the MOGO Designs 

The nominal values of all components were calculated as shown in 2.2.5 and the parasitic elements 

were calculated as shown in 3.2.1. The parasitic capacitance 𝐶𝐿𝑓
 is assumed to be 3.35 pF, the 

parasitic capacitances 𝐶𝐿𝑚𝑟
 and 𝐶𝐿𝑠

 are assumed to be 2.1 pF, the ESR of all capacitors is assumed 

to be 50 mΩ, and the ESR of inductor 𝐿𝑓 is assumed to be 220 mΩ as stated in 3.1.2. 

Values for all components are shown in Table 4-5 and Table 4-6. 

Table 4-5 – Comparison of the Component Values of the Parasitic and Practical MOGO 

Designs 

Parameter 

Design Case I Design Case II Design Case III 

Parasitic Practical Parasitic Practical Parasitic Practical 

𝐿𝑓 [𝜇𝐻] 38.05 49.85 74.75 51.42 42.57 58.19 

𝐿𝑚𝑟 [𝑛𝐻] 218.99 239.32 270.83 238.99 75.34 69.03 

𝐿𝑠 [𝑛𝐻] 890.74 636.51 545.32 472.35 203.08 293.88 

𝐶𝑓 [𝑝𝐹] 712.79 635.11 217.75 52.37 128.91 72.01 

𝐶𝑚𝑟 [𝑝𝐹] 629.08 575.63 127.16 144.10 114.28 124.74 

𝐶𝑠 [𝑝𝐹] 766.33 1204.4 347.8 442.84 225.20 140.07 

𝑉𝑖𝑛 [𝑉] 21.88 23.53 37.41 41.69 25.66 24.59 

𝐷 0.394 0.365 0.357 0.353 0.393 0.403 
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Table 4-6 – Values of all Parasitic Elements for each MOGO Design Case 

Parameter 

Value 

Design Case I Design Case II Design Case III 

𝐿𝐶𝑓
 [𝑝𝐻] 107.95 152.57 145.98 

𝐿𝐶𝑚𝑟
 [𝑝𝐻] 109.43 132.59 135.27 

𝐿𝐶𝑠
 [𝑝𝐻] 98.78 113.48 133.11 

𝑟𝐿𝑚𝑟
 [𝑚Ω] 67.97 135.75 78.41 

𝑟𝐿𝑠
 [𝑚Ω] 180.77 268.29 333.85 

The addition of Cds had a significant impact on the value of Cf. This is expected since the output 

capacitance of the switch is in parallel with Cf so to maintain ZVS its value must be reduced. All 

other parameters experienced small variations due to changes in k and Qout, but this is likely due 

to the arbitrary stopping condition placed on the algorithm. 

4.4 Results of the MOPSO Designs 

The MOPSO design method was tested using three different design cases presented in Table 2-4. 

The results of the MOPSO designs are obtained and compared with the parasitic model. For design 

factors involving Cf the value is adjusted to include the value of Cds as described in eq. (4.26). 

Table 4-7 shows the comparative values for each design case. 
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Table 4-7 – Comparison of the Results of the Parasitic and Practical MOPSO Designs 

Factors 

Design Case I Design Case II Design Case III 

Parasitic Complete Parasitic Complete Parasitic Complete 

𝐷 0.399 0.351 0.367 0.344 0.358 0.391 

𝑘 1.154 1.564 1.438 1.880 1.562 1.444 

𝑞2 2.733 2.561 2.604 2.475 2.561 2.602 

1

𝜔𝑅𝐿𝐶𝑓
 6.563 6.129 5.673 5.029 5.491 5.959 

1

𝜔𝑅𝐿𝐶𝑀𝑅
 7.571 9.587 8.160 9.457 8.577 8.605 

𝑐𝑝 0.117 0.110 0.114 0.111 0.104 0.114 

𝑉𝑆𝑡𝑟𝑒𝑠𝑠 2.333 2.151 2.172 2.316 2.172 2.235 

𝐼𝑆𝑡𝑟𝑒𝑠𝑠 3.346 3.860 3.701 3.949 4.009 3.576 

The factors for all design cases lean towards the max f optimal design procedure. Like in the case 

of the MOGO designs, the algorithm favored a higher value of k when the practical switch was 

added to the circuit. 

4.4.1 Determination of the Inverter Component Values from the MOGO Designs 

The nominal values of all components were calculated as shown in 2.2.5 and the parasitic elements 

were calculated as shown in 3.2.1. The parasitic capacitance 𝐶𝐿𝑓
 is assumed to be 3.35 pF, the 

parasitic capacitances 𝐶𝐿𝑚𝑟
 and 𝐶𝐿𝑠

 are assumed to be 2.1 pF, the ESR of all capacitors is assumed 

to be 50 mΩ, and the ESR of inductor 𝐿𝑓 is assumed to be 220 mΩ as stated in 3.1.2. Values for all 

components are shown in Table 4-8 and Table 4-9. 
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Table 4-8 – Comparison of the Component Values of the Parasitic and Practical MOPSO 

Designs 

Parameter 

Design Case I Design Case II Design Case III 

Parasitic Practical Parasitic Practical Parasitic Practical 

𝐿𝑓 [𝜇𝐻] 41.45 45.03 73.86 89.88 77.34 100.00 

𝐿𝑚𝑟 [𝑛𝐻] 222.17 281.31 239.45 277.49 88.08 88.37 

𝐿𝑠 [𝑛𝐻] 636.22 812.28 749.49 708.51 146.19 228.80 

𝐶𝑓 [𝑝𝐹] 715.31 522.00 206.89 57.31 152.68 89.88 

𝐶𝑚𝑟 [𝑝𝐹] 620.07 489.71 143.83 124.11 97.75 97.43 

𝐶𝑠 [𝑝𝐹] 112.98 947.17 238.71 252.90 412.16 179.81 

𝑉𝑖𝑛 [𝑉] 19.34 28.02 42.55 40.73 28.22 22.61 

𝐷 0.399 0.351 0.367 0.344 0.358 0.391 

 

Table 4-9 – Values of all Parasitic Elements for each MOPSO Design Case 

Parameter 

Value 

Design Case I Design Case II Design Case III 

𝐿𝐶𝑓
 [𝑝𝐻] 110.92 150.67 141.56 

𝐿𝐶𝑚𝑟
 [𝑝𝐻] 111.91 135.36 139.98 

𝐿𝐶𝑠
 [𝑝𝐻] 102.13 122.66 128.58 

𝑟𝐿𝑚𝑟
 [𝑚Ω] 79.89 157.62 100.39 

𝑟𝐿𝑠
 [𝑚Ω] 230.69 402.43 259.92 

Like in the case of the MOGO designs the addition of Cds had a significant impact on the value of 

Cf. Once again, this is expected since the output capacitance of the switch is in parallel with Cf so 

to maintain ZVS its value must be reduced. Like in the case of the MOGO designs, the changes in 
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component values between the parasitic and practical models are much less drastic and are mainly 

due to variations in the values of k and Qout. 

4.5 Comparison of MOGO and MOPSO Design Approaches 

Each design was simulated in LTSpice using the component values listed in Table 4-5, Table 4-6, 

Table 4-8, and Table 4-9. The results from the simulations are recorded in Table 4-10 using the 

process presented in Section 2.6. Relevant waveforms from LTSpice simulations are presented in 

Figures 4-5 (a-c), 4-6 (a-c), and 4-7 (a-c). 

Table 4-10 - Comparison of the Results of the MOGO and MOPSO Design Approaches 

Parameter 
Design Case I Design Case II Design Case III 

MOGO MOPSO MOGO MOPSO MOGO MOPSO 

𝑃𝑂𝑢𝑡𝐷𝑒𝑠𝑖𝑟𝑒𝑑
 23 23 40 40 25 25 

𝑃𝑂𝑢𝑡𝐴𝑐𝑡𝑢𝑎𝑙
 23.56 23.34 42.19 37.81 23.38 24.79 

𝜂 93.10% 93.40% 96.06% 95.34% 92.93% 90.97% 

𝑉𝑆𝑡𝑟𝑒𝑠𝑠 2.190 2.151 2.192 2.163 2.309 2.235 

𝐼𝑆𝑡𝑟𝑒𝑠𝑠 3.572 3.860 3.523 3.949 3.366 3.576 

𝑄𝑂𝑢𝑡 4.598 5.857 3.266 5.293 6.544 4.846 

𝑇𝐻𝐷 3.60% 3.34% 4.06% 2.63% 2.62% 2.99% 

As can be seen, the practical design cases for both the MOGO and MOPSO algorithms performed 

well in all measured values of interest. The minimum efficiency was 90.97% and occurred during 

MOPSO design case III, and the THD of the output voltage waveform in most design cases was 

kept below 4%. The method of estimating the internal resistances and capacitances of the switch 

based on the ideal case was successful. 
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Figure 4-5 (a) – Switch Voltage Waveform of the Practical Class-EF2 Inverter: MOGO (Green) 

& MOPSO (Blue) Design Case I 

 

Figure 4-5 (b) – Switch Current Waveform of the Practical Class-EF2 Inverter: MOGO (Green) 

& MOPSO (Blue) Design Case I 

 

Figure 4-5 (c) – Output Voltage Waveform of the Practical Class-EF2 Inverter: MOGO (Green) 

& MOPSO (Blue) Design Case I 
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Figure 4-6 (a) – Switch Voltage Waveform of the Practical Class-EF2 Inverter: MOGO (Green) 

& MOPSO (Blue) Design Case II 

 

Figure 4-6 (b) – Switch Current Waveform of the Practical Class-EF2 Inverter: MOGO (Green) 

& MOPSO (Blue) Design Case II 

 

Figure 4-6 (c) – Output Voltage Waveform of the Practical Class-EF2 Inverter: MOGO (Green) 

& MOPSO (Blue) Design Case II 
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The above figures demonstrate the success of the optimization-based design approach for the 

practical Class-EF2. In each design case, the circuits maintained ZVS and ZDVS to an acceptable 

level of error, had relatively sinusoidal output voltage waveforms, and avoided MOSFET diode 

conduction. Like in the parasitic case, the switch current waveform exhibits ringing due to hard 

switching, but it is relatively small outside of MOGO Design Case I. 

 

Figure 4-7 (a) – Switch Voltage Waveform of the Practical Class-EF2 Inverter: MOGO (Green) 

& MOPSO (Blue) Design Case III 

 

Figure 4-7 (b) – Switch Current Waveform of the Practical Class-EF2 Inverter: MOGO (Green) 

& MOPSO (Blue) Design Case III 

 

Figure 4-7 (c) – Output Voltage Waveform of the Practical Class-EF2 Inverter: MOGO (Green) 

& MOPSO (Blue) Design Case III 
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4.6 Summary 

In Chapter 4, the design of the Practical Class-EF2 inverter was investigated. A 14th order state-

space model was proposed which considered the parasitic elements of all components in the circuit 

as well as the internal resistances and capacitances of the switch. This model was validated through 

LTSpice simulation by comparison with manufacturer provided models. 

The new state-space model was then used with both the MOGO and MOPSO algorithms to design 

three circuits with differing frequency, power, and load specifications. The proposed optimization-

based design approaches provided circuits which performed well in all measured values of interest, 

successfully adhered to the design specifications, and maintained ZVS and ZDVS to an acceptable 

level of error when tested in LTSpice. 

The addition of the practical switch model caused small variations in all component values, but a 

large change in the value of Cf. This is necessary to maintain ZVS and ZDVS operation since Cf is 

in parallel with the output capacitance of the switch. 
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CHAPTER 5 

 

Multi-Objective Genetic Optimization Design Example 

 

 

In this chapter, a design example using the MOGO algorithm is presented for a 6.78 MHz, 100W, 

20Ω Class-EF2 Inverter. First, the ideal state-space model from Chapter 2 is used to generate the 

necessary information to select a switch and estimate the value of Cds. This information is then 

used with the practical state-space model from Chapter 4 to complete the final design. 

The final design was simulated in LTSpice and performed well in all measured values of interest 

while maintaining ZVS operation to an acceptable level of error. 

5.1 Design Example Stage 1 – Setting up the Problem 

In the previous chapters, each state-space model was tested with the three design cases presented 

in Table 2-4 with wide boundary conditions to prove the validity of the MOGO and MOPSO design 

approaches. In this chapter, a design example using the MOGO algorithm is presented for a 6.78 

MHz, 100W, 20Ω Class-EF2 Inverter. The goal of the design is to use the MOGO algorithm to 

determine the component values and a suitable switch for the inverter to meet the specified 

requirements. 

For this test, the boundaries for 𝐷, 𝑘, and 𝑥𝐿𝑆𝐶𝑆
 are changed to remove solutions that were found 

to be inferior in the tests presented in Chapter 2. The upper and lower boundary for Vin is also 

increased since the output power is 2.5 times larger than any of the previous designs. Consequently, 

the variable boundary conditions used in this design example are shown in Table 5-1. 
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Table 5-1 – Updated Optimization Boundary Conditions 

Variables 𝑫 𝑳𝒇 [𝝁𝑯] 𝑪𝒇 [𝒑𝑭] 𝒌 𝑸𝑶𝒖𝒕 𝒙𝑳𝑺𝑪𝑺
 𝑽𝒊𝒏 [𝑽] 

Upper 

Boundary 
0.4 100 5000 2 8 1.2 120 

Lower 

Boundary 
0.35 0.01 0.5 0.5 2 0.8 24 

 

5.2 Design Example Stage 2 – Ideal Optimization 

Using the boundary conditions presented in Table 5-1, the MOGO algorithm is implemented for 

the ideal Class-EF2 inverter state-space model. This will provide the designer with nominal 

component values which can then be used to generate the switch voltage and current waveforms 

in MATLAB and LTSpice. These waveforms are necessary for sizing the switch and 

approximating the value of Cds and Cgs as described in Chapter 4. 

The optimized values of the variables from the MOGO algorithm are presented in Table 5-2. 

Table 5-2 – Optimized Values of Variables for the Ideal Design Example 

Variable 𝑫 𝑳𝒇 [𝝁𝑯] 𝑪𝒇 [𝒑𝑭] 𝒌 𝑸𝑶𝒖𝒕 𝒙𝑳𝑺𝑪𝑺
 𝑽𝒊𝒏 [𝑽] 

Value 0.3722 71.49 209.94 1.454 7.664 0.926 79.92 

Using the process shown in section 2.4.1, the component values for this design are calculated and 

presented in Table 5-3. 
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Table 5-3 – Component Values for the Ideal Design Example 

Component Value 

𝐿𝑓 [𝜇𝐻] 71.50 

𝐿𝑚𝑟 [𝑛𝐻] 954.14 

𝐿𝑠 [𝑛𝐻] 3886.21 

𝐶𝑓 [𝑝𝐹] 209.94 

𝐶𝑚𝑟 [𝑝𝐹] 144.38 

𝐶𝑠 [𝑝𝐹] 165.39 

𝑉𝑖𝑛 [𝑉] 79.92 

𝐷 0.3722 

The parameters are substituted into the ideal Class-EF2 inverter state-space model in MATLAB as 

well as LTSpice to examine the performance of the circuit and select a switch. 
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5.3 Design Example Stage 3 – Determination of Suitable Switch 

With the ideal design completed, the next step is to select a switch by examining the switch voltage 

and current waveforms which are presented in Fig. 5-1. 

The switch voltage waveform peaks at 181.71V and has an average value of 79.92V and the switch 

current peaks at 4.77A with an average value of 1.33A. For this design example, the EPC2019 

switch is selected as it is rated for 200V and 8.5A and has a fairly linear output capacitance for 

values of vds above 30 V. 

Following the process described in 4.2.1, the MATLAB generated switch voltage vector is 

substituted into (4.21) to (4.25) giving the following values for the internal resistances and 

capacitances. 

 

 

 

Figure 5-1 – Switch Voltage and Switch Current Waveforms for the Ideal Design Example 
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Table 5-4 – Internal Capacitances and Resistances for the Practical Design Example 

Internal Capacitances Internal Resistances 

𝐶𝑑𝑠 [𝑝𝐹] 118.11 𝑟𝑔 [𝑚Ω] 400 

𝐶𝑔𝑠 [𝑝𝐹] 201.86 𝑟𝑠 [𝑚Ω] 6.2 

Now that the switch parameters have been determined, they can be substituted into the practical 

Class-EF2 inverter state-space model in MATLAB and the optimizer can begin its design. The 

parameters which had the lowest overall objective function scores are presented in Table 5-5. 

Table 5-5 - Highest Scoring Variables for the Practical Design Example 

Variable 𝑫 𝑳𝒇 [𝝁𝑯] 𝑪𝒇 [𝒑𝑭] 𝒌 𝑸𝑶𝒖𝒕 𝒙𝑳𝑺𝑪𝑺
 𝑽𝒊𝒏 [𝑽] 

Value 0.3776 53.87 106.77 1.761 3.335 0.841 79.79 

These values can now be used to calculate the nominal components and their parasitic elements as 

described in sections 2.4.1 and 3.2.1. All component values are shown in Table 5-6. 

Table 5-6 - Component Values for the Practical Design Example 

Parameter Nominal Value ESR [mΩ]  Parasitic Element 

𝐿𝑓 53.87 μH 220 3.35 pF 

𝐿𝑚𝑟 1079.1 nH 306.5 2.1 pF 

𝐿𝑠 1860.8 nH 528.5 2.1 pF 

𝐶𝑓 106.77 pF 50 138.22 pH 

𝐶𝑚𝑟 127.66 pF 50 134.84 pH 

𝐶𝑠 418.20 pF 50 114.38 pH 

𝐷 0.3776 - - 

𝑉𝑖𝑛 79.79 V - - 

The parameters in Table 5-6 were then used to simulate the circuit in LTSpice and evaluate the 

performance of the circuit using the process presented in Section 2.6. The specific values of interest 
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are presented in Table 5-7 and waveforms for the switch voltage, switch current, and output voltage 

shown in Fig. 5-2 (a-c). 

Table 5-7 – LTSpice Simulation Results of the Practical Class-EF2 Inverter Design Example 

Parameter Value 

𝑃𝑂𝑢𝑡𝐷𝑒𝑠𝑖𝑟𝑒𝑑
 100 

𝑃𝑂𝑢𝑡𝐴𝑐𝑡𝑢𝑎𝑙
 97.862 

𝜂 95.64% 

𝑉𝑆𝑡𝑟𝑒𝑠𝑠 2.287 

𝐼𝑆𝑡𝑟𝑒𝑠𝑠 3.593 

𝑄𝑂𝑢𝑡 3.335 

𝑇𝐻𝐷 4.40% 

 

 

Figure 5-2 (a) – Switch Voltage Waveform of the Practical Class-EF2 Design 

 

Figure 5-2 (b) – Switch Current Waveform of the Practical Class-EF2 Design 
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As can be seen, the practical Class-EF2 inverter achieved an efficiency of 95.64%, a 4.40% output 

voltage waveform THD, a 2.14% error between the desired output power and the achieved output 

power and maintained ZVS to an acceptable level of error. 

5.4 Summary 

In this chapter, a design example was presented for a 6.78 MHz, 100W, 20Ω Class-EF2 Inverter 

using the MOGO algorithm. The final design had an efficiency of more than 95% and 

demonstrated the ability to use the proposed optimization-based design approach for high power 

designs. 

 

 

 

 

 

 

 

 

 

Figure 5-2 (c) – Output Voltage Waveform of the Practical Class-EF2 Design 
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CHAPTER 6 

 

CONCLUSIONS AND FUTURE WORK 

 

 

This thesis explored the use of multi-objective optimization algorithms for the design of high 

frequency inverters. State-space models of the ideal, the parasitic, and the practical Class-EF2 

inverter were derived and validated by MATLAB and LTSpice simulation. Each model was then 

applied to the MOGO and MOPSO algorithms to design three inverters with varying output power, 

frequency, and load requirements. The validity of the optimization-based design approach was 

confirmed by comparison with analytical results, and the proposed circuits performed well in all 

measured values of interest and adhered to the design specifications. 

This thesis investigated the design of the ideal, parasitic, and practical Class-EF2 inverter using the 

MOGO and MOPSO algorithms. Chapter 2 studied the ideal Class-EF2 inverter which was used 

to validate the optimization-based design approach by comparing the results with analytical design 

factors and equations. The proposed designs successfully maintained ZVS and ZDVS operation to 

an acceptable level of error and adhered to the stated design specifications. 

Chapter 3 introduced the parasitic Class-EF2 inverter and presented a state-space model which was 

validated by MATLAB and LTSpice simulation. It was then applied to the MOGO and MOPSO 

algorithms to design the same three circuits as the ideal case. The addition of the parasitic elements 

caused large variations in component values and design factors. The added inductors, capacitors 

and ESRs introduced more dynamics and sources of loss to the system which created a trade-off 

between the inverter efficiency and the output voltage THD. When not accounted for in the design 
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phase, the parasitic elements may also cause a loss of ZVS and ZDVS operation and introduce 

unwanted ringing in the switch current waveform. 

Chapter 4 introduced the practical Class-EF2 inverter which included the parasitic elements from 

Chapter 3 and a practical switch model. A state-space model of the practical Class-EF2 inverter was 

derived, and a method for estimating the internal resistances and capacitances was presented. The 

model was validated by MATLAB and LTSpice simulation using the manufacturer provided switch 

model. It was then applied to the MOGO and MOPSO algorithms to design the same three circuits 

as the ideal and parasitic cases. The addition of the practical switch model caused small variations 

in all component values, but a large change in the value of Cf. This is necessary to maintain ZVS 

and ZDVS operation since Cf is in parallel with the output capacitance of the switch. The 

optimization-based design approach successfully designed circuits which performed well in all 

measured values of interest, maintained ZVS and ZDVS operation to an acceptable level of error, 

and adhered to the design specifications. 

Finally, Chapter 6 presented a design example for a practical 6.78 MHz, 100W, 20Ω Class-EF2 

inverter using the MOGO algorithm. This demonstrated the potential of the optimization-based 

design approach for higher power inverters and provided insight into the tuning of the optimization 

settings. The final design adhered to the design specifications and maintained an efficiency of more 

than 95%. 

The work described within this thesis is meant to be a proof of concept for the optimization-based 

design of high-frequency inverters. However, more work is still required to address some of the 

issues which arose throughout the work. This includes: 

• The exploration of different generation and population sizes, as well as the implementation 

of different variations of both the MOGO and MOPSO algorithms, 
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• Exploring the effects of non-constant internal switch resistances and capacitances, 

• Confirming the parasitic element estimations using real world measurements, and 

• Implementing physical prototypes of the designed circuits to confirm their validity. 

6.1 Contribution of the Thesis 

This thesis provides useful insight into the design of the Class-EF2 inverter with parasitic elements 

and a non-ideal switch by drawing comparisons to the analytical design factors and equations of 

the ideal case. It also serves as a proof of concept for the use of multi-obective optimization in 

high-frequency circuit design and the provides the necessary tools for designers and researchers to 

apply the design approach to other converters. 

6.1.1 List of Publications 

One publication has been made which included portions of the work presented in chapter 2 and 

chapter 3. 

[1]  A. Peddle, B. Ryan, and J. E. Quaicoe, “Design of Class-EF Inverters using Multi-Objective 

Genetic Optimization,” in the Thirtieth Annual Newfoundland Electrical and Computer 

Engineering Conference (NECEC) 2021. 

6.2 Future Work 

Future work for the optimization-based design approach includes the investigation of the load-

independent case. This would be beneficial to designers as the load-independent Class-EF2 inverter 

is more appropriate for use in wireless power transfer systems and considering the parasitic 

elements and the switching dynamics in their design could provide useful insight. State-space 

models of different inverter and rectifier topologies could also be applied to the optimization-based 
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design approach which would allow the design of resonant DC-DC converters. Finally, the 

optimization initialization files could be updated such that only standard values of components are 

proposed. 
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Appendices 

Appendix A 

Fitness Function for the Ideal Class-EF2 Inverter 

function Outcome = 

EF_Ideal_Model(f_s,r_sw_on,r_sw_off,R_L,P_Out,minMaxValues,

inputParam) 

%% Sort out parameters from optimizer 

Outcome=zeros(1,6); 

  

Cycles=3;               % # Cycles to Fully Calculate 

Resolution=300;         % # of Samples/Cycle 

P=1/f_s;                % Switching Period 

w=2*pi*f_s;             % Angular Frequency 

  

D=inputParam(1);        % Extract values from optimzer for 

calculations 

Lf=inputParam(2); 

Cf=inputParam(3); 

Cmr=Cf/inputParam(4); 

Lmr=1/(((2*w)^2)*Cmr); 

Ls=(inputParam(5)*R_L)/(w*inputParam(6)); 

Cs=1/(((inputParam(6)*w)^2)*Ls); 

U=inputParam(7); 

  

t=P/Resolution;         % State-Space evaluation time 

t_on=D*P;               % Transistor On time 

t_off=(1-D)*P;          % Transistor Off time 

  

d_off=floor(Resolution*(1-D));          % # of samples in 

Off-State 

d_on=Resolution-d_off;                  % # of samples in 

On-State 

  

r_off=zeros(1,d_off)+r_sw_off;          % Resistance 

Vectors 

r_on=zeros(1,d_on)+r_sw_on; 

r_sw=[r_off , r_on]; 

  

%% Initialize State-Space Model 

A_EFon=[-1/(Cf*r_sw_on) , 0 , 0 , 1/Cf , -1/Cf , -1/Cf; 
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        0 , 0 , 0 , 0 , 1/Cmr , 0; 

        0 , 0 , 0 , 0 , 0 , 1/Cs; 

        -1/Lf , 0 , 0 , 0 , 0 , 0; 

        1/Lmr , -1/Lmr , 0 , 0 , 0 , 0; 

        1/Ls , 0 , -1/Ls , 0 , 0 , -R_L/Ls]; 

  

A_EFoff=[-1/(Cf*r_sw_off) , 0 , 0 , 1/Cf , -1/Cf , -1/Cf; 

         0 , 0 , 0 , 0 , 1/Cmr , 0; 

         0 , 0 , 0 , 0 , 0 , 1/Cs; 

         -1/Lf , 0 , 0 , 0 , 0 , 0; 

         1/Lmr , -1/Lmr , 0 , 0 , 0 , 0; 

         1/Ls , 0 , -1/Ls , 0 , 0 , -R_L/Ls]; 

  

B_EF=[0; 

      0; 

      0; 

      1/Lf; 

      0; 

      0]; 

  

C_EF=[1 , 0 , 0 , 0 , 0 , 0;        % V_Cf 

      0 , 1 , 0 , 0 , 0 , 0;        % V_Cmr 

      0 , 0 , 1 , 0 , 0 , 0;        % V_Cs 

      0 , 0 , 0 , 1 , 0 , 0;        % I_Lf 

      0 , 0 , 0 , 0 , 1 , 0;        % I_Lmr 

      0 , 0 , 0 , 0 , 0 , 1];       % I_Ls 

  

D_EF=zeros(6,1); 

  

%% State vector calculations 

SSCycles=550;       % Number of Cycles to reach steady-

state 

                    % 300 for 6.78, 550 for 13.56, 1100 for 

27.12 

X_0=zeros(6,1);     % Zero initial condition 

  

for l=1:1:SSCycles 

    if mod(l,2)==0 

       X_n=(expm(A_EFon*t_on)*X_0); 

       X_f=A_EFon\(expm(A_EFon*t_on)-eye(6))*(B_EF*U); 

       X=X_n+X_f; 

    else 

       X_n=(expm(A_EFoff*t_off)*X_0); 

       X_f=A_EFoff\(expm(A_EFoff*t_off)-eye(6))*(B_EF*U); 
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       X=X_n+X_f; 

    end 

       X_0=X; 

end 

  

%% Fully Calculate State Vectors for "Cycles" cycles 

V_Cf=zeros(1,Resolution*Cycles);   % Pre-allocate all 

parameter vectors 

V_Cmr=zeros(1,Resolution*Cycles); 

V_Cs=zeros(1,Resolution*Cycles); 

I_Lf=zeros(1,Resolution*Cycles); 

I_Lmr=zeros(1,Resolution*Cycles); 

I_Ls=zeros(1,Resolution*Cycles); 

I_Cf=zeros(1,Resolution*Cycles); 

I_Cmr=zeros(1,Resolution*Cycles); 

I_Cs=zeros(1,Resolution*Cycles); 

V_Lf=zeros(1,Resolution*Cycles); 

V_Lmr=zeros(1,Resolution*Cycles); 

V_Ls=zeros(1,Resolution*Cycles); 

I_Sw=zeros(1,Resolution*Cycles); 

  

V_ZVS=zeros(1,Cycles); 

I_ZDVS=zeros(1,Cycles); 

  

k=1; 

  

for z=1:1:Cycles 

   for l=1:1:Resolution 

       % Define varying state matricies 

       r=r_sw(l); 

        

       A=[-1/(Cf*r) , 0 , 0 , 1/Cf , -1/Cf , -1/Cf; 

          0 , 0 , 0 , 0 , 1/Cmr , 0; 

          0 , 0 , 0 , 0 , 0 , 1/Cs; 

          -1/Lf , 0 , 0 , 0 , 0 , 0; 

          1/Lmr , -1/Lmr , 0 , 0 , 0 , 0; 

          1/Ls , 0 , -1/Ls , 0 , 0 , -R_L/Ls]; 

  

       % Calculate next step using new model 

       X_n=(expm(A*t)*X_0); 

       X_f=A\(expm(A*t)-eye(6))*(B_EF*U); 

       X=X_n+X_f;           

  

       Xdot=(A*X)+(B_EF*U); 
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       Y=(C_EF*X)+(D_EF*U); 

        

       % Save state-vectors to individual variables 

       V_Cf(k)=Y(1,1); 

       V_Cmr(k)=Y(2,1); 

       V_Cs(k)=Y(3,1); 

       I_Lf(k)=Y(4,1); 

       I_Lmr(k)=Y(5,1); 

       I_Ls(k)=Y(6,1); 

       I_Cf(k)=Cf*Xdot(1,1); 

       I_Cmr(k)=Cmr*Xdot(2,1); 

       I_Cs(k)=Cs*Xdot(3,1); 

       V_Lf(k)=Lf*Xdot(4,1); 

       V_Lmr(k)=Lmr*Xdot(5,1); 

       V_Ls(k)=Ls*Xdot(6,1); 

       I_Sw(k)=I_Lf(k)-I_Cf(k)-I_Lmr(k)-I_Ls(k); 

        

       if l==d_off 

           V_ZVS(z)=V_Cf(k); 

           I_ZDVS(z)=I_Sw(k)+I_Cf(k); 

       end 

        

       % Update initial conditions and counter variable(s) 

       X_0=X;       

       k=k+1; 

   end 

end 

  

%% Post Processing 

P_inCalc=U*mean(I_Lf);                  % Input Power 

P_outCalc=(rms(I_Ls)^2)*R_L;            % Output Power 

Eff=abs(P_outCalc/P_inCalc);            % Efficiency 

  

I_Rip=max(abs(I_Lf))-min(abs(I_Lf));    % Input Current 

Ripple 

rf=I_Rip/mean(I_Lf); 

  

V_start=[V_Cf(Resolution+1) , V_Cf(Resolution+2) , 

V_Cf(Resolution+3) , ... 

         V_Cf(Resolution+4) , V_Cf(Resolution+5)];      

LowV=min(V_start); 

  

ZVS=max(abs(V_ZVS));                    % Take worst case 

ZVS and ZDVS 
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ZDVS=max(abs(I_ZDVS)); 

Location=find(abs(V_ZVS)==ZVS); 

Value=floor(Resolution*(1-D))+(Resolution*(Location-1)); 

  

%% FFT/THD Calculations 

Fs=Resolution*f_s;              % Define Sampling Frequency 

L=Resolution*Cycles;            % Define Window Length 

Harm_out=fft(I_Ls*R_L);         % Calculate Output Voltage 

FFT 

  

P2 = abs(Harm_out/L);           % Steps provided in MATLAB 

documentation 

P1 = P2(1:L/2+1); 

P1(2:end-1) = 2*P1(2:end-1); 

f = Fs*(0:(L/2))/L; 

  

val=zeros(7,1); 

  

for x=1:1:7                         % Find positions of 1st 

7 harmonics 

    val(x)=find(f==f_s*x);          % for THD calc 

end 

  

THD_top=sqrt(P1(val(2))^2+P1(val(3))^2+P1(val(4))^2+P1(val(

5))^2+P1(val(6))^2+P1(val(7))^2); 

THD_bot=sqrt(P1(val(1))^2+P1(val(2))^2+P1(val(3))^2+P1(val(

4))^2+P1(val(5))^2+P1(val(6))^2+P1(val(7))^2); 

THD=THD_top/THD_bot; 

  

%% I_Cf Calc 

I_check=I_Cf(1:d_off); 

L1=d_off;                   % Define Window Length 

Harm1=fft(I_check);         % Calculate Output Voltage FFT 

  

P2_I = abs(Harm1/L1);       % Steps provided in MATLAB 

documentation 

P1_I = P2_I(1:floor(L1/2)+1); 

P1_I(2:end-1) = 2*P1_I(2:end-1); 

  

I_Num=find(max(P1_I)==P1_I); 

 

  

%% MOPSO objective function calculations 

if(THD>minMaxValues(1)) 
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    Outcome(:,6)=Outcome(:,6)+1; 

end 

  

if(Eff<minMaxValues(2)) 

    Outcome(:,6)=Outcome(:,6)+1; 

end 

  

if(rf>minMaxValues(3)) 

    Outcome(:,6)=Outcome(:,6)+1; 

end 

     

if(I_Num>=minMaxValues(4)) 

    Outcome(:,6)=Outcome(:,6)+1; 

end 

     

if(V_Cf(Value)>V_Cf(Value-1)) 

    Outcome(:,6)=Outcome(:,6)+1; 

end 

  

if(LowV<0) 

    Outcome(:,6)=Outcome(:,6)+1; 

end 

  

Outcome(:,1)=abs(1-Eff)/(1-minMaxValues(2)); 

Outcome(:,2)=ZVS/max(V_Cf); 

Outcome(:,3)=ZDVS/max(abs(I_Sw+I_Cf)); 

Outcome(:,4)=THD/minMaxValues(1); 

Outcome(:,5)=abs(P_Out-P_outCalc)/P_Out; 

  

%% MOGO Objective function calculations 

if(I_Num>=minMaxValues(1)) 

    Outcome(:,6)=1; 

end 

  

if(THD>=minMaxValues(2)) 

    Outcome(:,6)=1; 

end 

     

if(Eff<=minMaxValues(3)) 

    Outcome(:,6)=1; 

end 

  

if(rf>minMaxValues(4)) 

    Outcome(:,6)=1; 
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end 

  

if(V_Cf(Value)>V_Cf(Value-1)) 

    Outcome(:,6)=1; 

end 

  

if(LowV<0) 

    Outcome(:,6)=1; 

end 

  

Outcome(:,2)=ZVS/max(V_Cf); 

Outcome(:,3)=ZDVS/max(abs(I_Cf+I_Sw)); 

Outcome(:,4)=THD; 

  

if(P_outCalc<(0.667*P_Out) || P_outCalc>(1.333*P_Out)) 

    Outcome(:,5)=1; 

else 

    Outcome(:,5)=(3*abs(P_Out-P_outCalc))/P_Out; 

end 
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Appendix B 

Fitness Function for the Parasitic Class-EF2 Inverter 

function Outcome = 

EF_Parasitic_Model(f_s,r_sw_on,r_sw_off,R_L,P_Out,minMaxVal

ues,inputParam) 

%% Sort out parameters from optimizer 

Outcome=zeros(1,6); 

  

Cycles=3;               % # Cycles to Fully Calculate 

Resolution=300;         % # of Samples/Cycle 

P=1/f_s;                % Switching Period 

w=2*pi*f_s;             % Angular Frequency 

  

% Parasitic Calculation Definitions 

C2=200e-12;         % Standard Values used for Parasitic 

Inductance Calculation 

L2=126.7e-12; 

C_para=2.1e-12;     % Average Parasitic Capacitance Value 

R_para=50e-3;       % Average Parasitic Resistance Value 

QL=150;             % Inductor Quality Factor 

  

D=inputParam(1);        % Extract values from optimzer for 

calculations 

Lf=inputParam(2); 

Cf=inputParam(3); 

Cmr=inputParam(4)*Cf; 

Lmr=1/(((2*w)^2)*Cmr); 

Ls=(inputParam(5)*R_L)/(w*inputParam(6)); 

Cs=1/(((inputParam(6)*w)^2)*Ls); 

U=inputParam(7); 

  

 

% Parasitic Calculations 

C_Lf=3.35e-12; 

C_Lmr=C_para; 

C_Ls=C_para; 

L_Cf=10^(log10(L2)-((log10(C2)-log10(Cf))/-7.213));     % -

7.213 is slope of  

L_Cmr=10^(log10(L2)-((log10(C2)-log10(Cmr))/-7.213));   % 

Capacitance SRF curve 
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L_Cs=10^(log10(L2)-((log10(C2)-log10(Cs))/-7.213));     % 

from Data Sheet 

  

r_Lf=220e-3; 

r_Lmr=w*Lmr/QL; 

r_Ls=w*Ls/QL; 

r_Cf=R_para; 

r_Cmr=R_para; 

r_Cs=R_para; 

  

t=P/Resolution;     % State-Space evaluation time 

t_on=D*P;               % Transistor On time 

t_off=(1-D)*P;          % Transistor Off time 

  

d_off=floor(Resolution*(1-D));          % # of samples in 

Off-State 

d_on=Resolution-d_off;                  % # of samples in 

On-State 

  

r_off=zeros(1,d_off)+r_sw_off;          % Resistance 

Vectors 

r_on=zeros(1,d_on)+r_sw_on; 

r_sw=[r_off , r_on]; 

  

%% Initialize State-Space Model 

A_on=[0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1/Cf , 0 , 0; 

      0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1/Cmr , 0; 

      0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1/Cs; 

      0 , 0 , 0 , -1/(r_sw_on*C_Lf) , 0 , 0 , -1/C_Lf , 0 , 

0 , 1/C_Lf , 1/C_Lf , 1/C_Lf; 

      0 , 0 , 0 , 0 , 0 , 0 , 0 , -1/C_Lmr , 0 , 0 , 

1/C_Lmr , 0; 

      0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , -1/C_Ls , 0 , 0 , 

1/C_Ls; 

      0 , 0 , 0 , 1/Lf , 0 , 0 , -r_Lf/Lf , 0 , 0 , 0 , 0 , 

0; 

      0 , 0 , 0 , 0 , 1/Lmr , 0 , 0 , -r_Lmr/Lmr , 0 , 0 , 

0 , 0; 

      0 , 0 , 0 , 0 , 0 , 1/Ls , 0 , 0 , -r_Ls/Ls , 0 , 0 , 

0; 

      -1/L_Cf , 0 , 0 , -1/L_Cf , 0 , 0 , 0 , 0 , 0 , -

r_Cf/L_Cf , 0 , 0; 

      0 , -1/L_Cmr , 0 , -1/L_Cmr , -1/L_Cmr , 0 , 0 , 0 , 

0 , 0 , -r_Cmr/L_Cmr , 0; 
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      0 , 0 , -1/L_Cs , -1/L_Cs , 0 , -1/L_Cs , 0 , 0 , 0 , 

0 , 0 , -(r_Cs+R_L)/L_Cs]; 

  

A_off=[0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1/Cf , 0 , 0; 

       0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1/Cmr , 0; 

       0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1/Cs; 

       0 , 0 , 0 , -1/(r_sw_off*C_Lf) , 0 , 0 , -1/C_Lf , 0 

, 0 , 1/C_Lf , 1/C_Lf , 1/C_Lf; 

       0 , 0 , 0 , 0 , 0 , 0 , 0 , -1/C_Lmr , 0 , 0 , 

1/C_Lmr , 0; 

       0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , -1/C_Ls , 0 , 0 , 

1/C_Ls; 

       0 , 0 , 0 , 1/Lf , 0 , 0 , -r_Lf/Lf , 0 , 0 , 0 , 0 

, 0; 

       0 , 0 , 0 , 0 , 1/Lmr , 0 , 0 , -r_Lmr/Lmr , 0 , 0 , 

0 , 0; 

       0 , 0 , 0 , 0 , 0 , 1/Ls , 0 , 0 , -r_Ls/Ls , 0 , 0 

, 0; 

       -1/L_Cf , 0 , 0 , -1/L_Cf , 0 , 0 , 0 , 0 , 0 , -

r_Cf/L_Cf , 0 , 0; 

       0 , -1/L_Cmr , 0 , -1/L_Cmr , -1/L_Cmr , 0 , 0 , 0 , 

0 , 0 , -r_Cmr/L_Cmr , 0; 

       0 , 0 , -1/L_Cs , -1/L_Cs , 0 , -1/L_Cs , 0 , 0 , 0 

, 0 , 0 , -(r_Cs+R_L)/L_Cs]; 

  

B_on=[0; 

      0; 

      0; 

      1/(r_sw_on*C_Lf); 

      0; 

      0; 

      0; 

      0; 

      0; 

      1/L_Cf; 

      1/L_Cmr; 

      1/L_Cs]; 

   

B_off=[0; 

       0; 

       0; 

       1/(r_sw_off*C_Lf); 

       0; 

       0; 
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       0; 

       0; 

       0; 

       1/L_Cf; 

       1/L_Cmr; 

       1/L_Cs]; 

  

C=eye(12); 

D_EF=zeros(12,1); 

  

%% Steady-State Calculations 

SSCycles=600;       % Number of Cycles to reach steady-

state 

X_0=zeros(12,1);    % Zero initial condition 

  

for l=1:1:SSCycles 

    if mod(l,2)==0 

       X_n=(expm(A_on*t_on)*X_0); 

       X_f=A_on\(expm(A_on*t_on)-eye(12))*(B_on*U); 

       X=X_n+X_f; 

    else 

       X_n=(expm(A_off*t_off)*X_0); 

       X_f=A_off\(expm(A_off*t_off)-eye(12))*(B_off*U); 

       X=X_n+X_f; 

    end 

       X_0=X; 

end 

  

%% Fully Calculate State Vectors for "Cycles" cycles 

V_Cf=zeros(1,Resolution*Cycles);        % Pre-allocate all 

parameter vectors 

V_Cmr=zeros(1,Resolution*Cycles); 

V_Cs=zeros(1,Resolution*Cycles); 

V_C_Lf=zeros(1,Resolution*Cycles); 

V_C_Lmr=zeros(1,Resolution*Cycles); 

V_C_Ls=zeros(1,Resolution*Cycles); 

I_Lf=zeros(1,Resolution*Cycles); 

I_Lmr=zeros(1,Resolution*Cycles); 

I_Ls=zeros(1,Resolution*Cycles); 

I_L_Cf=zeros(1,Resolution*Cycles); 

I_L_Cmr=zeros(1,Resolution*Cycles); 

I_L_Cs=zeros(1,Resolution*Cycles); 

  

I_Cf=zeros(1,Resolution*Cycles); 
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I_Cmr=zeros(1,Resolution*Cycles); 

I_Cs=zeros(1,Resolution*Cycles); 

I_C_Lf=zeros(1,Resolution*Cycles); 

I_C_Lmr=zeros(1,Resolution*Cycles); 

I_C_Ls=zeros(1,Resolution*Cycles); 

V_Lf=zeros(1,Resolution*Cycles); 

V_Lmr=zeros(1,Resolution*Cycles); 

V_Ls=zeros(1,Resolution*Cycles); 

V_L_Cf=zeros(1,Resolution*Cycles); 

V_L_Cmr=zeros(1,Resolution*Cycles); 

V_L_Cs=zeros(1,Resolution*Cycles); 

  

I_Sw=zeros(1,Resolution*Cycles); 

V_Sw=zeros(1,Resolution*Cycles); 

V_ZVS=zeros(1,Cycles); 

I_ZDVS=zeros(1,Cycles); 

  

j=1;        % Initialize Counter Variable 

  

for z=1:1:Cycles 

   for l=1:1:Resolution 

       % Define varying state-space matricies 

       r=r_sw(l); 

        

       A=[0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1/Cf , 0 , 0; 

          0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1/Cmr , 

0; 

          0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1/Cs; 

          0 , 0 , 0 , -1/(r*C_Lf) , 0 , 0 , -1/C_Lf , 0 , 0 

, 1/C_Lf , 1/C_Lf , 1/C_Lf; 

          0 , 0 , 0 , 0 , 0 , 0 , 0 , -1/C_Lmr , 0 , 0 , 

1/C_Lmr , 0; 

          0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , -1/C_Ls , 0 , 0 , 

1/C_Ls; 

          0 , 0 , 0 , 1/Lf , 0 , 0 , -r_Lf/Lf , 0 , 0 , 0 , 

0 , 0; 

          0 , 0 , 0 , 0 , 1/Lmr , 0 , 0 , -r_Lmr/Lmr , 0 , 

0 , 0 , 0; 

          0 , 0 , 0 , 0 , 0 , 1/Ls , 0 , 0 , -r_Ls/Ls , 0 , 

0 , 0; 

          -1/L_Cf , 0 , 0 , -1/L_Cf , 0 , 0 , 0 , 0 , 0 , -

r_Cf/L_Cf , 0 , 0; 

          0 , -1/L_Cmr , 0 , -1/L_Cmr , -1/L_Cmr , 0 , 0 , 

0 , 0 , 0 , -r_Cmr/L_Cmr , 0; 
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          0 , 0 , -1/L_Cs , -1/L_Cs , 0 , -1/L_Cs , 0 , 0 , 

0 , 0 , 0 , -(r_Cs+R_L)/L_Cs]; 

  

       B=[0; 

          0; 

          0; 

          1/(r*C_Lf); 

          0; 

          0; 

          0; 

          0; 

          0; 

          1/L_Cf; 

          1/L_Cmr; 

          1/L_Cs]; 

  

       % Calculate next step using new model 

       X_n=(expm(A*t)*X_0); 

       X_f=A\(expm(A*t)-eye(12))*(B*U); 

       X=X_n+X_f;           

  

       Xdot=(A*X)+(B*U); 

       Y=(C*X)+(D_EF*U); 

        

       % Save state-vectors to individual variables 

        V_Cf(j)=Y(1,1); 

        V_Cmr(j)=Y(2,1); 

        V_Cs(j)=Y(3,1); 

        V_C_Lf(j)=Y(4,1); 

        V_C_Lmr(j)=Y(5,1); 

        V_C_Ls(j)=Y(6,1); 

        I_Lf(j)=Y(7,1); 

        I_Lmr(j)=Y(8,1); 

        I_Ls(j)=Y(9,1); 

        I_L_Cf(j)=Y(10,1); 

        I_L_Cmr(j)=Y(11,1); 

        I_L_Cs(j)=Y(12,1); 

         

        I_Cf(j)=Cf*Xdot(1,1); 

        I_Cmr(j)=Cmr*Xdot(2,1); 

        I_Cs(j)=Cs*Xdot(3,1); 

        I_C_Lf(j)=C_Lf*Xdot(4,1); 

        I_C_Lmr(j)=C_Lmr*Xdot(5,1); 

        I_C_Ls(j)=C_Ls*Xdot(6,1); 
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        V_Lf(j)=Lf*Xdot(7,1); 

        V_Lmr(j)=Lmr*Xdot(8,1); 

        V_Ls(j)=Ls*Xdot(9,1); 

        V_L_Cf(j)=L_Cf*Xdot(10,1); 

        V_L_Cmr(j)=L_Cmr*Xdot(11,1); 

        V_L_Cs(j)=L_Cs*Xdot(12,1); 

         

        V_Sw(j)=V_Cf(j)+V_L_Cf(j)+(r_Cf*I_L_Cf(j)); 

        I_Sw(j)=I_Lf(j)+I_C_Lf(j)-I_L_Cf(j)-I_L_Cmr(j)-

I_L_Cs(j); 

                 

       if l==d_off 

           V_ZVS(z)=V_Sw(j); 

           I_ZDVS(z)=I_L_Cf(j)+I_Sw(j); 

       else 

       end 

        

       % Update initial conditions and counter variable(s) 

       X_0=X;       

       j=j+1; 

   end 

end 

  

%% Post Processing 

P_inCalc=U*mean(I_Lf+I_C_Lf);                % Power Calc 

P_outCalc=(rms(I_L_Cs)^2)*R_L; 

Eff=abs(P_outCalc/P_inCalc);                 % Efficiency 

Calc 

  

i_rip=abs(max(I_Lf)-min(I_Lf)); 

rf=i_rip/mean(I_Lf); 

  

V_start=[V_Sw(Resolution+1) , V_Sw(Resolution+2) , 

V_Sw(Resolution+3) , ... 

         V_Sw(Resolution+4) , V_Sw(Resolution+5)];      

LowV=min(V_start); 

problem=find(LowV==V_start); 

  

if(problem==1) 

    if(V_start(problem+1)>0) 

        LowV=1; 

    else 

    end 

elseif(problem==5) 
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    if(V_start(problem-1)>0) 

        LowV=1; 

    else 

    end 

else 

    if(V_start(problem+1)>0 && V_start(problem-1)>0) 

        LowV=1; 

    else 

    end 

end 

  

ZVS=max(abs(V_ZVS));                    % Worst Case ZVS & 

ZDVS 

ZDVS=max(abs(I_ZDVS)); 

Location=find(abs(V_ZVS)==ZVS); 

Value=floor(Resolution*(1-D))+(Resolution*(Location-1)); 

  

%% FFT/THD Calculations 

Fs=Resolution*f_s;                      % Define Sampling 

Frequency 

L=Resolution*Cycles;                    % Define Window 

Length 

Harm_out=fft(I_L_Cs*R_L);                   % Calculate 

Output Voltage FFT 

  

P2 = abs(Harm_out/L);           % Steps provided in MATLAB 

documentation 

P1 = P2(1:L/2+1); 

P1(2:end-1) = 2*P1(2:end-1); 

f = Fs*(0:(L/2))/L; 

  

val=zeros(7,1); 

  

for x=1:1:7                         % Find positions of 1st 

7 harmonics 

    val(x)=find(f==f_s*x);          % for THD calc 

end 

  

THD_top=sqrt(P1(val(2))^2+P1(val(3))^2+P1(val(4))^2+P1(val(

5))^2+P1(val(6))^2+P1(val(7))^2); 

THD_bot=sqrt(P1(val(1))^2+P1(val(2))^2+P1(val(2))^2+P1(val(

4))^2+P1(val(5))^2+P1(val(6))^2+P1(val(7))^2); 

THD=THD_top/THD_bot; 
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%% I_Cf Calc 

I_check=I_Cf(1:d_off); 

L1=d_off;                   % Define Window Length 

Harm1=fft(I_check);         % Calculate Output Voltage FFT 

  

P2_I = abs(Harm1/L1);       % Steps provided in MATLAB 

documentation 

P1_I = P2_I(1:floor(L1/2)+1); 

P1_I(2:end-1) = 2*P1_I(2:end-1); 

  

I_Num=find(max(P1_I)==P1_I); 

  

%% MOPSO Objective function values 

if(THD>minMaxValues(1)) 

    Outcome(:,6)=Outcome(:,6)+1; 

end 

  

if(Eff<minMaxValues(2)) 

    Outcome(:,6)=Outcome(:,6)+1; 

end 

  

if(rf>minMaxValues(3)) 

    Outcome(:,6)=Outcome(:,6)+1; 

end 

     

if(I_Num>=minMaxValues(4)) 

    Outcome(:,6)=Outcome(:,6)+1; 

end 

     

if(V_Sw(Value)>V_Sw(Value-1)) 

    Outcome(:,6)=Outcome(:,6)+1; 

end 

  

if(LowV<0) 

    Outcome(:,6)=Outcome(:,6)+1; 

end 

  

if(P_outCalc<(0.5*P_Out) || P_outCalc>(1.5*P_Out)) 

    Outcome(:,6)=Outcome(:,6)+1; 

end 

  

Outcome(:,1)=abs(1-Eff); 

Outcome(:,2)=ZVS/max(V_Sw); 

Outcome(:,3)=ZDVS/max(abs(I_Sw+I_Cf)); 
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Outcome(:,4)=THD; 

Outcome(:,5)=abs(P_Out-P_outCalc)/P_Out; 

  

%% MOGO Objective function values 

if(I_Num>=minMaxValues(1)) 

    Outcome(:,6)=1; 

end 

  

if(rf>minMaxValues(4)) 

    Outcome(:,6)=1; 

end 

  

if(V_Sw(Value)>V_Sw(Value-1)) 

    Outcome(:,6)=1; 

end 

  

if(LowV<0) 

    Outcome(:,6)=1; 

end 

  

if(Eff<=minMaxValues(3)) 

    Outcome(:,1)=1; 

else 

    Outcome(:,1)=abs(1-Eff)/(1-minMaxValues(3)); 

end 

  

if(ZVS>=((1/3)*max(V_Sw))) 

    Outcome(:,2)=1; 

else 

    Outcome(:,2)=(3*ZVS)/max(V_Sw); 

end 

  

if(ZDVS>=((1/3)*max(abs(I_Cf+I_Sw)))) 

    Outcome(:,3)=1; 

else 

    Outcome(:,3)=(3*ZDVS)/max(abs(I_Cf+I_Sw)); 

end 

  

if(THD>=minMaxValues(2)) 

    Outcome(:,4)=1; 

else 

    Outcome(:,4)=THD/minMaxValues(2); 

end 

  



111 
 

 

 

if(P_outCalc<(0.667*P_Out) || P_outCalc>(1.333*P_Out)) 

    Outcome(:,5)=1; 

else 

    Outcome(:,5)=(3*abs(P_Out-P_outCalc))/P_Out; 

end 
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Appendix C 

Fitness Function for the Practical Class-EF2 Inverter 

function Outcome = 

EF_Practical_Model(f_s,r_sw_on,r_sw_off,rg,rs,R_L,P_Out,min

MaxValues,inputParam) 

%% Sort out Parameters from Optimizer 

Outcome=zeros(1,6); 

  

Resolution=300;         % # of samples/cycle 

Cycles=6;              % # of cycles 

Adjustment=3;           % # of adjustment cycles 

P=1/f_s;                % Switching Period 

w=2*pi*f_s;             % Angular Frequency 

  

%% Component and Parasitic Calculations 

C2=200e-12;             % Standard Values used for 

Parasitic Inductance Calculation 

L2=126.7e-12; 

C_para=2.1e-12;         % Average Parasitic Capacitance 

Value 

R_para=50e-3;           % Average Parasitic Resistance 

Value 

QL=150;                 % Inductor Quality Factor 

  

D=inputParam(1);        % Extract values from optimzer for 

calculations 

Lf=inputParam(2); 

Cf=inputParam(3); 

Cmr=(Cf+Cds)*inputParam(4); 

Lmr=1/(((2*w)^2)*Cmr); 

Ls=(inputParam(5)*R_L)/(w*inputParam(6)); 

Cs=1/(((inputParam(6)*w)^2)*Ls); 

V_in=inputParam(7); 

  

C_Lf=3.35e-12; 

C_Lmr=C_para; 

C_Ls=C_para; 

L_Cf=10^(log10(L2)-((log10(C2)-log10(Cf))/-7.213));     % -

7.213 is slope of  

L_Cmr=10^(log10(L2)-((log10(C2)-log10(Cmr))/-7.213));   % 

Capacitance SRF curve 
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L_Cs=10^(log10(L2)-((log10(C2)-log10(Cs))/-7.213));     % 

from Data Sheet 

  

r_Lf=220e-3; 

r_Lmr=w*Lmr/QL; 

r_Ls=w*Ls/QL; 

r_Cf=R_para; 

r_Cmr=R_para; 

r_Cs=R_para; 

  

t=P/Resolution;         % State-Space evaluation time 

t_on=D*P;               % Transistor On time 

t_off=(1-D)*P;          % Transistor Off time 

  

%% Define Switch Parameters 

d_trans=4;                                  % # of samples 

in transition - 3, 4, 6 for design cases 

d_off=floor(Resolution*(1-D))-d_trans;      % # of samples 

in Off-State 

d_on=(Resolution-d_off)-(2*d_trans);        % # of samples 

in On-State 

  

Vg_off=zeros(1,d_off);                  % Gate Voltage 

Vectors 

Vg_trans_on=linspace(0,5,d_trans); 

Vg_on=zeros(1,d_on)+5; 

Vg_trans_off=linspace(5,0,d_trans); 

Vg_total=[Vg_off , Vg_trans_on , Vg_on , Vg_trans_off]; 

  

r_off=zeros(1,d_off)+r_sw_off;          % Resistance 

Vectors 

r_trans_on=logspace(6,-2,d_trans); 

r_on=zeros(1,d_on)+r_sw_on; 

r_trans_off=logspace(-2,6,d_trans); 

r_sw=[r_off , r_trans_on , r_on , r_trans_off]; 

  

U1=V_in;                    % Pre-define U1 for initial 

calc. 

U2_on=Vg_on(1);             % Pre-define U2 for initial 

calc. 

U2_off=Vg_off(1); 

U2=Vg_total(1); 

r=r_sw(1);                  % Pre-define r for initial 

calc. 
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%% State-Space Model Initialization 

A_new_on=[0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1/Cf 

, 0 , 0;                                    % V_Cf 

          0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 

1/Cmr , 0;                                   % V_Cmr 

          0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 

, 1/Cs;                                    % V_Cs 

          0 , 0 , 0 , -(rg+rs)/(C_Lf*rg*rs) , 0 , 0 , -

((rs*r_sw_on)+(rg*r_sw_on))/(C_Lf*rg*rs*r_sw_on) ,... 

          1/(C_Lf*rg) , -1/C_Lf , 0 , 0 , 1/C_Lf , 1/C_Lf , 

1/C_Lf;                                    % V_C_Lf 

          0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , -1/C_Lmr , 0 

, 0 , 1/C_Lmr , 0;                          % V_C_Lmr 

          0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , -1/C_Ls , 

0 , 0 , 1/C_Ls;                            % V_C_Ls 

          0 , 0 , 0 , -(rg+rs)/(Cds*rg*rs) , 0 , 0 , -

((rs*rg)+(rs*r_sw_on)+(rg*r_sw_on))/(Cds*rs*rg*r_sw_on) 

,... 

          1/(Cds*rg) , 0 , 0 , 0 , 0 , 0 , 0;                                                          

% V_Cds 

          0 , 0 , 0 , 1/(Cgs*rg) , 0 , 0 , 1/(Cgs*rg) , -

1/(Cgs*rg) , 0 , 0 , 0 , 0 , 0 , 0;           % V_Cgs 

          0 , 0 , 0 , 1/Lf , 0 , 0 , 0 , 0 , -r_Lf/Lf , 0 , 

0 , 0 , 0 , 0;                             % I_Lf 

          0 , 0 , 0 , 0 , 1/Lmr , 0 , 0 , 0 , 0 , -

r_Lmr/Lmr , 0 , 0 , 0 , 0;                          % I_Lmr 

          0 , 0 , 0 , 0 , 0 , 1/Ls , 0 , 0 , 0 , 0 , -

r_Ls/Ls , 0 , 0 , 0;                             % I_Ls 

          -1/L_Cf , 0 , 0 , -1/L_Cf , 0 , 0 , 0 , 0 , 0 , 0 

, 0 , -r_Cf/L_Cf , 0 , 0;                  % I_L_Cf 

          0 , -1/L_Cmr , 0 , -1/L_Cmr , -1/L_Cmr , 0 , 0 , 

0 , 0 , 0 , 0 , 0 , -r_Cmr/L_Cmr , 0;       % I_L_Cmr 

          0 , 0 , -1/L_Cs , -1/L_Cs , 0 , -1/L_Cs , 0 , 0 , 

0 , 0 , 0 , 0 , 0 , -(r_Cs+R_L)/L_Cs];     % I_L_Cs 

    

A_new_off=[0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1/Cf 

, 0 , 0;                                    % V_Cf 

           0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 

1/Cmr , 0;                                   % V_Cmr 

           0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 

0 , 1/Cs;                                    % V_Cs 

           0 , 0 , 0 , -(rg+rs)/(C_Lf*rg*rs) , 0 , 0 , -

((rs*r_sw_off)+(rg*r_sw_off))/(C_Lf*rg*rs*r_sw_off) ,... 
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           1/(C_Lf*rg) , -1/C_Lf , 0 , 0 , 1/C_Lf , 1/C_Lf 

, 1/C_Lf;                                    % V_C_Lf 

           0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , -1/C_Lmr , 0 

, 0 , 1/C_Lmr , 0;                          % V_C_Lmr 

           0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , -1/C_Ls 

, 0 , 0 , 1/C_Ls;                            % V_C_Ls 

           0 , 0 , 0 , -(rg+rs)/(Cds*rg*rs) , 0 , 0 , -

((rs*rg)+(rs*r_sw_off)+(rg*r_sw_off))/(Cds*rs*rg*r_sw_off) 

,... 

           1/(Cds*rg) , 0 , 0 , 0 , 0 , 0 , 0;                                                          

% V_Cds 

           0 , 0 , 0 , 1/(Cgs*rg) , 0 , 0 , 1/(Cgs*rg) , -

1/(Cgs*rg) , 0 , 0 , 0 , 0 , 0 , 0;           % V_Cgs 

           0 , 0 , 0 , 1/Lf , 0 , 0 , 0 , 0 , -r_Lf/Lf , 0 

, 0 , 0 , 0 , 0;                             % I_Lf 

           0 , 0 , 0 , 0 , 1/Lmr , 0 , 0 , 0 , 0 , -

r_Lmr/Lmr , 0 , 0 , 0 , 0;                          % I_Lmr 

           0 , 0 , 0 , 0 , 0 , 1/Ls , 0 , 0 , 0 , 0 , -

r_Ls/Ls , 0 , 0 , 0;                             % I_Ls 

           -1/L_Cf , 0 , 0 , -1/L_Cf , 0 , 0 , 0 , 0 , 0 , 

0 , 0 , -r_Cf/L_Cf , 0 , 0;                  % I_L_Cf 

           0 , -1/L_Cmr , 0 , -1/L_Cmr , -1/L_Cmr , 0 , 0 , 

0 , 0 , 0 , 0 , 0 , -r_Cmr/L_Cmr , 0;       % I_L_Cmr 

           0 , 0 , -1/L_Cs , -1/L_Cs , 0 , -1/L_Cs , 0 , 0 

, 0 , 0 , 0 , 0 , 0 , -(r_Cs+R_L)/L_Cs];     % I_L_Cs 

    

B_new=[0 , 0; 

       0 , 0; 

       0 , 0; 

       (rg+rs)/(C_Lf*rg*rs) , -1/(C_Lf*rg); 

       0 , 0; 

       0 , 0; 

       (rg+rs)/(Cds*rg*rs) , -1/(Cds*rg); 

       -1/(Cgs*rg) , 1/(Cgs*rg); 

       0 , 0; 

       0 , 0; 

       0 , 0; 

       1/L_Cf , 0; 

       1/L_Cmr , 0; 

       1/L_Cs , 0]; 

    

C_new=eye(14); 

  

D_new=zeros(14,2); 
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%% Get to Steady-State 

SSCycles=550;           % Number of Cycles to reach steady-

state - 300, 550, 1100 for design cases 

X_0=zeros(14,1);        % Zero initial condition 

U_on=[U1;U2_on];        % On-State Input  

U_off=[U1;U2_off];      % Off-State Input 

  

for l=1:1:SSCycles 

    if mod(l,2)==0 

       X_n=(expm(A_new_on*t_on)*X_0); 

       X_f=A_new_on\(expm(A_new_on*t_on)-

eye(14))*(B_new*U_on); 

       X=X_n+X_f; 

    else 

       X_n=(expm(A_new_off*t_off)*X_0); 

       X_f=A_new_off\(expm(A_new_off*t_off)-

eye(14))*(B_new*U_off); 

       X=X_n+X_f; 

    end 

       X_0=X; 

end 

  

%% Pre-allocate State Variables 

V_Cf=zeros(1,Resolution*(Cycles-Adjustment)); 

V_Cmr=zeros(1,Resolution*(Cycles-Adjustment)); 

V_Cs=zeros(1,Resolution*(Cycles-Adjustment)); 

V_C_Lf=zeros(1,Resolution*(Cycles-Adjustment)); 

V_C_Lmr=zeros(1,Resolution*(Cycles-Adjustment)); 

V_C_Ls=zeros(1,Resolution*(Cycles-Adjustment)); 

V_ds=zeros(1,Resolution*(Cycles-Adjustment)); 

V_gs=zeros(1,Resolution*(Cycles-Adjustment)); 

I_Lf=zeros(1,Resolution*(Cycles-Adjustment)); 

I_Lmr=zeros(1,Resolution*(Cycles-Adjustment)); 

I_Ls=zeros(1,Resolution*(Cycles-Adjustment)); 

I_L_Cf=zeros(1,Resolution*(Cycles-Adjustment)); 

I_L_Cmr=zeros(1,Resolution*(Cycles-Adjustment)); 

I_L_Cs=zeros(1,Resolution*(Cycles-Adjustment)); 

  

I_Cf=zeros(1,Resolution*(Cycles-Adjustment)); 

I_Cmr=zeros(1,Resolution*(Cycles-Adjustment)); 

I_Cs=zeros(1,Resolution*(Cycles-Adjustment)); 

I_C_Lf=zeros(1,Resolution*(Cycles-Adjustment)); 

I_C_Lmr=zeros(1,Resolution*(Cycles-Adjustment)); 
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I_C_Ls=zeros(1,Resolution*(Cycles-Adjustment)); 

I_ds=zeros(1,Resolution*(Cycles-Adjustment)); 

I_gs=zeros(1,Resolution*(Cycles-Adjustment)); 

V_Lf=zeros(1,Resolution*(Cycles-Adjustment)); 

V_Lmr=zeros(1,Resolution*(Cycles-Adjustment)); 

V_Ls=zeros(1,Resolution*(Cycles-Adjustment)); 

V_L_Cf=zeros(1,Resolution*(Cycles-Adjustment)); 

V_L_Cmr=zeros(1,Resolution*(Cycles-Adjustment)); 

V_L_Cs=zeros(1,Resolution*(Cycles-Adjustment)); 

  

I_Sw=zeros(1,Resolution*(Cycles-Adjustment)); 

V_Sw=zeros(1,Resolution*(Cycles-Adjustment)); 

V_ZVS=zeros(1,(Cycles-Adjustment)); 

I_ZDVS=zeros(1,(Cycles-Adjustment)); 

  

k=1;            % Define counter variable for state-vectors 

  

%% State-Space Test 

for z=1:1:Cycles 

   for l=1:1:Resolution 

       % Define varying state-space matricies 

       U=[U1; 

          U2]; 

  

        A=[0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1/Cf 

, 0 , 0;                                    % V_Cf 

           0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 

1/Cmr , 0;                                   % V_Cmr 

           0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 

0 , 1/Cs;                                    % V_Cs 

           0 , 0 , 0 , -(rg+rs)/(C_Lf*rg*rs) , 0 , 0 , -

((rs*r)+(rg*r))/(C_Lf*rg*rs*r) ,... 

           1/(C_Lf*rg) , -1/C_Lf , 0 , 0 , 1/C_Lf , 1/C_Lf 

, 1/C_Lf;                                    % V_C_Lf 

           0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , -1/C_Lmr , 0 

, 0 , 1/C_Lmr , 0;                          % V_C_Lmr 

           0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , -1/C_Ls 

, 0 , 0 , 1/C_Ls;                            % V_C_Ls 

           0 , 0 , 0 , -(rg+rs)/(Cds*rg*rs) , 0 , 0 , -

((rs*rg)+(rs*r)+(rg*r))/(Cds*rs*rg*r) ,... 

           1/(Cds*rg) , 0 , 0 , 0 , 0 , 0 , 0;                                                          

% V_Cds 

           0 , 0 , 0 , 1/(Cgs*rg) , 0 , 0 , 1/(Cgs*rg) , -

1/(Cgs*rg) , 0 , 0 , 0 , 0 , 0 , 0;           % V_Cgs 
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           0 , 0 , 0 , 1/Lf , 0 , 0 , 0 , 0 , -r_Lf/Lf , 0 

, 0 , 0 , 0 , 0;                             % I_Lf 

           0 , 0 , 0 , 0 , 1/Lmr , 0 , 0 , 0 , 0 , -

r_Lmr/Lmr , 0 , 0 , 0 , 0;                          % I_Lmr 

           0 , 0 , 0 , 0 , 0 , 1/Ls , 0 , 0 , 0 , 0 , -

r_Ls/Ls , 0 , 0 , 0;                             % I_Ls 

           -1/L_Cf , 0 , 0 , -1/L_Cf , 0 , 0 , 0 , 0 , 0 , 

0 , 0 , -r_Cf/L_Cf , 0 , 0;                  % I_L_Cf 

           0 , -1/L_Cmr , 0 , -1/L_Cmr , -1/L_Cmr , 0 , 0 , 

0 , 0 , 0 , 0 , 0 , -r_Cmr/L_Cmr , 0;       % I_L_Cmr 

           0 , 0 , -1/L_Cs , -1/L_Cs , 0 , -1/L_Cs , 0 , 0 

, 0 , 0 , 0 , 0 , 0 , -(r_Cs+R_L)/L_Cs];     % I_L_Cs 

  

       % Calculate next step using new model 

       X_n=(expm(A*t)*X_0); 

       X_f=A\(expm(A*t)-eye(14))*(B_new*U); 

       X=X_n+X_f;           

  

       Xdot=(A*X)+(B_new*U); 

       Y=(C_new*X)+(D_new*U); 

        

       if(z>Adjustment) 

           % Save state-vectors to individual variables 

           V_Cf(k)=Y(1,1); 

           V_Cmr(k)=Y(2,1); 

           V_Cs(k)=Y(3,1); 

           V_C_Lf(k)=Y(4,1); 

           V_C_Lmr(k)=Y(5,1); 

           V_C_Ls(k)=Y(6,1); 

           V_ds(k)=Y(7,1);        

           V_gs(k)=Y(8,1); 

           I_Lf(k)=Y(9,1); 

           I_Lmr(k)=Y(10,1); 

           I_Ls(k)=Y(11,1); 

           I_L_Cf(k)=Y(12,1); 

           I_L_Cmr(k)=Y(13,1); 

           I_L_Cs(k)=Y(14,1); 

  

           I_Cf(k)=Cf*Xdot(1,1); 

           I_Cmr(k)=Cmr*Xdot(2,1); 

           I_Cs(k)=Cs*Xdot(3,1); 

           I_C_Lf(k)=C_Lf*Xdot(4,1); 

           I_C_Lmr(k)=C_Lmr*Xdot(5,1); 

           I_C_Ls(k)=C_Ls*Xdot(6,1); 
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           I_ds(k)=Cds*Xdot(7,1); 

           I_gs(k)=Cgs*Xdot(8,1); 

           V_Lf(k)=Lf*Xdot(9,1); 

           V_Lmr(k)=Lmr*Xdot(10,1); 

           V_Ls(k)=Ls*Xdot(11,1); 

           V_L_Cf(k)=L_Cf*Xdot(12,1); 

           V_L_Cmr(k)=L_Cmr*Xdot(13,1); 

           V_L_Cs(k)=L_Cs*Xdot(14,1); 

  

           V_Sw(k)=V_Cf(k)+V_L_Cf(k)+(r_Cf*I_L_Cf(k)); 

           I_Sw(k)=(U1-V_C_Lf(k)-V_ds(k))/rs; 

  

           if l==(d_off+round(d_trans/2)) 

               V_ZVS(z-Adjustment)=V_Sw(k); 

               I_ZDVS(z-Adjustment)=I_Sw(k)+I_L_Cf(k); 

           else 

           end 

           k=k+1; 

       end 

  

       % Update varying parameters 

       U2=Vg_total(l); 

       r=r_sw(l); 

        

       % Update initial conditions and counter variable(s) 

       X_0=X;       

   end 

end 

  

%% Post Processing 

P_inCalc=V_in*mean(I_Lf+I_C_Lf);        % Power 

Calculations 

P_outCalc=(rms(I_L_Cs)^2)*R_L; 

Eff=P_outCalc/P_inCalc;                 % Efficiency 

  

i_rip=abs(max(I_Lf)-min(I_Lf)); 

rf=i_rip/mean(I_Lf); 

  

V_start=[V_Sw(Resolution+1) , V_Sw(Resolution+2) , 

V_Sw(Resolution+3) , ... 

         V_Sw(Resolution+4) , V_Sw(Resolution+5)]; 

      

LowV=min(V_start); 

problem=find(LowV==V_start); 
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if(problem==1) 

    if(V_start(problem+1)>0) 

        LowV=1; 

    else 

    end 

elseif(problem==5) 

    if(V_start(problem-1)>0) 

        LowV=1; 

    else 

    end 

else 

    if(V_start(problem+1)>0 && V_start(problem-1)>0) 

        LowV=1; 

    else 

    end 

end 

  

ZVS=max(abs(V_ZVS));                    % Worst Case ZVS & 

ZDVS 

ZDVS=max(abs(I_ZDVS)); 

Location=find(abs(V_ZVS)==ZVS); 

Value=floor(Resolution*(1-D))+(Resolution*(Location-1))-

round(d_trans/2); 

  

%% FFT/THD Calculations 

Fs=Resolution*f_s;                      % Define Sampling 

Frequency 

L=Resolution*(Cycles-Adjustment);       % Define Window 

Length 

Harm_out=fft(I_L_Cs*R_L);               % Calculate Output 

Voltage FFT 

  

P2 = abs(Harm_out/L);                   % Steps provided in 

MATLAB documentation 

P1 = P2(1:L/2+1); 

P1(2:end-1) = 2*P1(2:end-1); 

f = Fs*(0:(L/2))/L; 

  

val=zeros(7,1); 

  

for x=1:1:7                             % Find positions of 

1st 7 harmonics 

    val(x)=find(f==f_s*x);              % for THD calc 
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end 

  

THD_top=sqrt(P1(val(2))^2+P1(val(3))^2+P1(val(4))^2+P1(val(

5))^2+P1(val(6))^2+P1(val(7))^2); 

THD_bot=sqrt(P1(val(1))^2+P1(val(2))^2+P1(val(2))^2+P1(val(

4))^2+P1(val(5))^2+P1(val(6))^2+P1(val(7))^2); 

THD=THD_top/THD_bot; 

  

%% I_Cf Calc 

I_check=I_Cf(1:d_off); 

L1=d_off;                   % Define Window Length 

Harm1=fft(I_check);         % Calculate Output Voltage FFT 

  

P2_I = abs(Harm1/L1);       % Steps provided in MATLAB 

documentation 

P1_I = P2_I(1:floor(L1/2)+1); 

P1_I(2:end-1) = 2*P1_I(2:end-1); 

  

I_Num=find(max(P1_I)==P1_I); 

  

%% MOPSO Objective function values 

if(THD>minMaxValues(1)) 

    Outcome(:,6)=Outcome(:,6)+1; 

end 

  

if(Eff<minMaxValues(2)) 

    Outcome(:,6)=Outcome(:,6)+1; 

end 

  

if(rf>minMaxValues(3)) 

    Outcome(:,6)=Outcome(:,6)+1; 

end 

     

if(I_Num>=minMaxValues(4)) 

    Outcome(:,6)=Outcome(:,6)+1; 

end 

     

if(V_Sw(Value)>V_Sw(Value-1)) 

    Outcome(:,6)=Outcome(:,6)+1; 

end 

  

if(LowV<0) 

    Outcome(:,6)=Outcome(:,6)+1; 

end 
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if(P_outCalc<(0.5*P_Out) || P_outCalc>(1.5*P_Out)) 

    Outcome(:,6)=Outcome(:,6)+1; 

end 

  

Outcome(:,1)=abs(1-Eff); 

Outcome(:,2)=ZVS/max(V_Sw); 

Outcome(:,3)=ZDVS/max(abs(I_Sw+I_Cf)); 

Outcome(:,4)=THD; 

Outcome(:,5)=abs(P_Out-P_outCalc)/P_Out; 

  

%% MOGO Objective function values 

if(I_Num>=minMaxValues(1)) 

    Outcome(:,6)=1; 

end 

  

if(THD>=minMaxValues(2)) 

    Outcome(:,6)=1; 

end 

     

if(Eff<=minMaxValues(3)) 

    Outcome(:,6)=1; 

end 

  

if(rf>minMaxValues(4)) 

    Outcome(:,6)=1; 

end 

  

if(V_Cf(Value)>V_Cf(Value-1)) 

    Outcome(:,6)=1; 

end 

  

if(LowV<0) 

    Outcome(:,6)=1; 

end 

  

if(ZVS>(max(V_Cf)/5)) 

    Outcome(:,6)=1; 

end 

  

Outcome(:,1)=abs(1-Eff); 

Outcome(:,2)=ZVS/max(V_Cf); 

Outcome(:,3)=ZDVS/max(abs(I_Cf+I_Sw)); 

Outcome(:,4)=THD; 



123 
 

  

if(P_outCalc<(0.667*P_Out) || P_outCalc>(1.333*P_Out)) 

    Outcome(:,5)=1; 

else 

    Outcome(:,5)=(3*abs(P_Out-P_outCalc))/P_Out; 

end 
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Appendix D 

MOGO Initialization Function 

%% Reset Button 

clear variables 

clc 

  

%% Optimization Setup 

%converterType="Ideal_EF";        % Select Converter type 

%converterType="Parasitic_EF"; 

converterType="Practical_EF"; 

  

f_s=13.56e6;            % Desired Switching Frequency 

r_on=10e-3;             % Transistor On Resistance (Ideal) 

%r_on=36e-3;            % Transistor On Resistance 

(EPC2019) 

%r_on=120e-3;           % Transistor On Resistance 

(EPC8010) 

r_off=1e6;              % Transistor Off Resistance (Ideal) 

rg=400e-3;              % Transistor Gate Resistance 

(EPC2019) 

%rg=300e-3;             % Transistor Gate Resistance 

(EPC8010) 

rs=6.2e-3;              % Transistor Source Resistance 

(EPC2019) 

%rs=16.9e-3;            % Transistor Source Resistance 

(EPC8010) 

R_L=10;                 % System Load Resistance 

P_out=40;               % Desired Output Power 

  

switch converterType 

    case ('Ideal_EF') 

        % Order is [Max harmonic on switch current , Max 

THD , ... 

        % Min Efficiency , Max ripple factor] 

        minMaxValues=[6 , 0.1 , 0.9 , 0.1]; 

        nvars=7;         

        % Order is [D , Lf , Cf , Cf-Cmr factor , Output 

quality factor , ... 

        % LsCs resonant factor , Vin] 

        Lb=[0.2 , 10e-9 , 0.5e-12 , 0.5 , 2 , 0.5 , 12]; 

        Ub=[0.8 , 100e-6 , 5e-9 , 2 , 8 , 2 , 72]; 
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    case ('Parasitic_EF') 

        % Order is [Max harmonic on switch current , Max 

THD , ... 

        % Min Efficiency , Max ripple factor] 

        minMaxValues=[6 , 0.1 , 0.8 , 0.1]; 

        nvars=7;         

        % Order is [D , Lf , Cf , Cf-Cmr factor , Output 

quality factor , ... 

        % LsCs resonant factor , V_in] 

        Lb=[0.2 , 10e-9 , 0.5e-12 , 0.5 , 2 , 0.5 , 12]; 

        Ub=[0.8 , 100e-6 , 5e-9 , 2 , 8 , 2 , 72]; 

    case ('Practical_EF') 

        % Order is [Max harmonic on switch current , Max 

THD , ... 

        % Min Efficiency , Max ripple factor] 

        minMaxValues=[6 , 0.1 , 0.8 , 0.1]; 

        nvars=7;        

        % Order is [D , Lf , Cf , Cf-Cmr factor , Output 

quality factor , ... 

        %LsCs resonant factor , V_in] 

        Lb=[0.2 , 10e-9 , 0.5e-12 , 0.5 , 2 , 0.5 , 12]; 

        Ub=[0.8 , 100e-6 , 5e-9 , 2 , 8 , 2 , 72]; 

end 

  

%% Optimization Settings 

numGen = 100;           % Number of Generations, play with 

this value 

popSize = 525;          % Population size, play with this 

value 

  

output = @(options,state,flag) 

myOptOutput(options,state,flag); 

options = 

optimoptions('gamultiobj','UseVectorized',false,'MaxStallGe

nerations',10,'MaxGenerations',numGen,... 

    'FunctionTolerance',1e-4,'PopulationSize',popSize, 

'Display', 'iter', 'OutputFcn', output); 

  

switch converterType      

    case("EF_Inverter") 

        fitnessFunc = @(inputParam) Ideal_EF(f_s, r_on, 

r_off, R_L, P_out, minMaxValues, inputParam); 

        tic; 
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        fitnessFunc([0.4 , 5e-8 , 250e-12 , 1 , 5 , 1 , 

36]); 

        funcRuntime = toc(); 

    case("Parasitic_EF") 

        fitnessFunc = @(inputParam) Parasitic_EF(f_s, r_on, 

r_off, rg, rs, R_L, P_out, minMaxValues, inputParam); 

        tic; 

        fitnessFunc([0.4 , 5e-8 , 250e-12 , 1 , 5 , 1 , 

36]); 

        funcRuntime = toc(); 

    case("Practical_EF") 

        fitnessFunc = @(inputParam) Practical_EF(f_s, r_on, 

r_off, rg, rs, R_L, P_out, minMaxValues, inputParam); 

        tic; 

        fitnessFunc([0.4 , 5e-8 , 250e-12 , 1 , 5 , 1 , 

36]); 

        funcRuntime = toc();  

end 

  

seconds = funcRuntime*(popSize)*(numGen+1); 

hours = floor(seconds/3600); 

minutes = round((seconds - hours*3600)/60); 

  

%% Optimizer 

tic; 

[x,fval,StopFlag,output,Population,Score] = 

gamultiobj(fitnessFunc,nvars,[],[],[],[],Lb,Ub,[],options); 

toc; 

  

%% Output Function 

function [state,options,optchanged] = 

myOptOutput(options,state,flag) 

  

averageScores=mean(state.Score,2); 

bestScores = min(averageScores); 

positionBest=find(averageScores==bestScores); 

lengthBest=length(positionBest); 

Check=zeros(1,6)+1; 

  

if lengthBest<1 

    winner_Values=state.Population(positionBest,:); 

    winner_Scores=state.Score(positionBest,:); 

else 

    for l=1:1:lengthBest 
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        maybeWinner=state.Score(positionBest(l),:); 

        if maybeWinner(1)<=Check(1) 

            Check=maybeWinner; 

            

winner_Values=state.Population(positionBest(l),:); 

            winner_Scores=state.Score(positionBest(l),:); 

        else 

        end 

    end 

end 

  

switch flag 

    case 'init' 

        disp('Starting the algorithm'); 

        fprintf('Best component values: %d.\n', 

winner_Values) 

        fprintf('Best scores: %d.\n', winner_Scores) 

    case {'iter','interrupt'} 

        disp('Iterating...') 

        fprintf('Best component values: %d.\n', 

winner_Values) 

        fprintf('Best scores: %d.\n', winner_Scores) 

    case 'done' 

        disp('Performing final task'); 

end 

  

optchanged = false; 

end 
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Appendix E 

MOPSO Initialization Function 

%% Reset 

clear variables 

clc 

  

%% Optimization Setup 

%converterType="Ideal_EF";           % Select Converter 

type 

%converterType="Parasitic_EF"; 

converterType="Practical_EF"; 

  

f_s=13.56e6;            % Desired Switching Frequency 

r_on=10e-3;             % Transistor On Resistance (Ideal) 

%r_on=36e-3;            % Transistor On Resistance 

(EPC2019) 

%r_on=120e-3;           % Transistor On Resistance 

(EPC8010) 

r_off=1e6;              % Transistor Off Resistance (Ideal) 

rg=400e-3;              % Transistor Gate Resistance 

(EPC2019) 

%rg=300e-3;             % Transistor Gate Resistance 

(EPC8010) 

rs=6.2e-3;              % Transistor Source Resistance 

(EPC2019) 

%rs=16.9e-3;            % Transistor Source Resistance 

(EPC8010) 

R_L=10;                 % System Load Resistance 

P_out=40;               % Desired Output Power 

  

switch converterType 

    case ('Ideal_EF') 

        % Order is [Max harmonics on switch current , Max 

THD , ... 

        % Min Efficiency , Max ripple factor] 

        minMaxValues=[6 , 0.1 , 0.9 , 0.1]; 

        MultiObj.nVar=7; 

        % Order is [D , Lf , Cf , Cf-Cmr factor , Output 

quality factor , ... 

        % LsCs resonant factor , V_in] 
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        MultiObj.var_min=[0.2 , 10e-9 , 0.25e-12 , 0.5 , 2 

, 0.5 , 12]; 

        MultiObj.var_max=[0.8 , 100e-6 , 2.5e-9 , 2 , 8 , 2 

, 72]; 

    case ('Parasitic_EF') 

        % Order is [Max harmonics on switch current , Max 

THD , ... 

        % Min Efficiency , Max ripple factor] 

        minMaxValues=[6 , 0.1 , 0.8 , 0.1]; 

        MultiObj.nVar=7; 

        % Order is [D , Lf , Cf , Cf-Cmr factor , Output 

quality factor , ... 

        % LsCs resonant factor , V_in] 

        MultiObj.var_min=[0.2 , 10e-9 , 0.25e-12 , 0.5 , 2 

, 0.5 , 12]; 

        MultiObj.var_max=[0.8 , 100e-6 , 2.5e-9 , 2 , 8 , 2 

, 72]; 

    case ('Practical_EF') 

        % Order is [Max harmonics on switch current , Max 

THD , ... 

        % Min Efficiency , Max rippler factor] 

        minMaxValues=[6 , 0.1 , 0.8 , 0.1]; 

        MultiObj.nVar=7;       

        % Order is [D , Lf , Cf , Cf-Cmr factor , Output 

quality factor , ... 

        % LsCs resonant factor , V_in] 

        MultiObj.var_min=[0.2 , 10e-9 , 0.25e-12 , 0.5 , 2 

, 0.5 , 12]; 

        MultiObj.var_max=[0.8 , 100e-6 , 2.5e-9 , 2 , 8 , 2 

, 72]; 

end 

  

% Population size       % play with these values depends on 

the problem and  

params.Np = 125;        % using 100 for both is a good 

general approach 

% Repository size        

params.Nr = 125; 

  

params.maxgen = 320;    % Maximum number of 

generations,increasing this  

                        % value increases computational 

cost 
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params.W = 0.5;         % Initial inertia weight, varies 

from 0.5 to 1 over  

                        % the course of the optimization  

                         

params.C1 = 2;          % Individual confidence factor, 

typically 0.2-4 but  

                        % use 2 to reduce complexity 

params.C2 = 2;          % Swarm confidence factor, 

typically 0.2-4 but use 2  

                        % to reduce complexity 

                         

params.ngrid = 30;      % Number of grids in each 

dimension, typically 20-50 

params.maxvel = 20;     % Maxmium vel in percentage, 

typically 10-100 % 

params.u_mut = 0.5;     % Uniform mutation percentage, 

typically 0.5 

  

switch converterType   

    case("E_Inverter") 

        MultiObj.fun = @(x) PSO_Intermediate(f_s, r_on, 

r_off, R_L, P_out, minMaxValues, x, params.Np, 

converterType);     

    case("EF_Inverter") 

        MultiObj.fun = @(x) PSO_Intermediate(f_s, r_on, 

r_off, rg, rs, R_L, P_out, minMaxValues, x, params.Np, 

converterType);      

end 

  

%% Optimization 

tic; 

REP=MOPSO(params,MultiObj); 

toc; 
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Appendix F 

MOPSO Intermediate Function 

function Objectives = 

PSO_Intermediate(f_s,r_on,r_off,rg,rs,R_L,P_Out,minMaxValue

s,inputParam,numPop,converterType) 

  

Objectives=zeros(numPop,6); 

  

switch converterType 

    case('Ideal_EF') 

        fitnessfunc = @(inputParam) 

EF_Ideal_Model(f_s,r_on,r_off,R_L,P_Out,minMaxValues,inputP

aram); 

        for k=1:1:numPop 

            Objectives(k,:)=fitnessfunc(inputParam(k,:)); 

        end 

    case('Parasitic_EF') 

        fitnessfunc = @(inputParam) 

EF_Parasitic_Model(f_s,r_on,r_off,rg,rs,R_L,P_Out,minMaxVal

ues,inputParam); 

        for k=1:1:numPop 

            Objectives(k,:)=fitnessfunc(inputParam(k,:)); 

        end 

    case('Practical_EF') 

        fitnessfunc = @(inputParam) 

EF_Practical_Model(f_s,r_on,r_off,rg,rs,R_L,P_Out,minMaxVal

ues,inputParam); 

        for k=1:1:numPop 

            Objectives(k,:)=fitnessfunc(inputParam(k,:)); 

        end 

end 


