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Abstract

The field of nonlinear acousto-elastic behaviour in materials such as rocks is an area

of active research, applicable to phenomena such as earthquakes or material fatigue.

This nonlinearity arises from the rock microstructure, notably through cracks, and

appears in the form of a nonlinear relation between the stress and strain fields within

the rock. We study how this nonlinearity manifests when the sample is in either a

resonant or a transient state. To do this, we numerically model a sample including

a crack and broadcast a low frequency pump wave and a high frequency probe wave

through the sample. We use a fourth order finite difference scheme to model the

evolution of wave velocity, stress, and strain, then use a form of averaging to represent

the cracked, heterogeneous model with an effective homogeneous model. Calculating

the nonlinear interactions between the two waves allows us to compare the resonant

and transient behaviour. We demonstrate differences in the effective wave velocity,

and in the travel time delays between effective velocities with and without a pump

source.
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Lay summary

The science behind how seismic waves propagate in rock to cause earthquakes, or how

to predict damage in materials used in engineering, is still undergoing active research.

The current view is that the inner structure of rock contributes to these phenomena.

One way to study this is by sending sound waves through a sample of rock and

measuring how the wave changes. We can easily imagine dropping a pebble in a still

lake and seeing waves ripple outwards, and it is simple to imagine how those waves

will change as they travel through the water. In comparison, a sound wave traveling

through a rock will undergo much more complex behaviour. This complex behaviour

depends on the composition of the rock as well as an aspect called nonlinearity.

Previous researchers have used different methods to study nonlinearity which in-

volve using waves to analyze a sample. A wave called the pump wave is sent into the

sample for either a short period of time, comparable to poking the sample, or a much

longer period of time, comparable to pushing repeatedly on the sample. The complex

behaviour we see changes based on which of these types of waves is used, and little

research has been done to see if the two situations are comparable.

In this work, we use a programming code to model a rock with waves being broad-

cast into it, and change whether the pump wave is being broadcast for a long or short

period of time in order to match the two methods used in experiments. A second

wave, called the probe wave, is sent into the rock and interacts with the pump wave,

allowing us to measure wanted parameters. We study the nonlinearity by looking at

the speed at which the probe wave travels through the rock and the time this takes,

and compare our results between the two methods of broadcasting the pump wave

for short or long periods of time. We show that the method used does significantly

change the measured nonlinearity and conclude that our model can be applied to both

methods, but only when using a distinct model setup for each method.
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Chapter 1

Introduction

The field of nonlinear acousto-elastic behaviour in materials such as rocks is an area

of active research with many important applications. The micro-structure of a rock,

which may depend on fractures, cracks, density changes, or an external stress, can

cause large scale phenomena such as earthquakes or the movement of fluids [1]. One

of the intended goals of acousto-elastic testing is to characterize this micro-structure,

which may aid in earthquake prediction and prevention of material fatigue in engi-

neering.

The nonlinearity appears in the form of a nonlinear relation between the stress

and strain fields within the rock. In a linear relation, the stress and strain are directly

related by a tensor, as in Hooke’s law. In the nonlinear case, the stress also depends

on higher orders of the strain [1].

In nonlinear experiments, a strain field is set up within a sample, often by using

an elastic pump wave. An elastic probe wave is then broadcast into the sample.

The probe wave is perturbed by the strain fields due to the nonlinear nature of the

sample, and the measurement of this perturbation, combined with information about

background material parameters, may be used to determine some elements of the

micro-structure.

Numerous theories exist to describe this nonlinear behaviour. I focus on two exper-

imental configurations which involve both a probe wave and a pump wave; Dynamic

Acousto-Elastic Testing (DAET) [4] uses a resonant pump wave, while modified non-

resonant DAET uses a transient pump wave [1]. In this situation, transient means
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that the wave is only broadcast for a brief period of time. I numerically model a

sample including a crack, and observe how changing certain parameters affects how

the two waves interact within the sample. I aim to compare the two configurations

and determine if they are compatible with each other and with my model.

1.1 Theory

1.1.1 Background

Nonlinear acoustics has seen active study for decades, for as long as researchers have

been able to generate the needed acoustic waves. At its most basic, this nonlinearity

arises from an extension of the linear Hooke’s law, which relates the stress σ to the

strain ε as

εij = Sijklσkl, (1.1)

where Sijkl are the elements of the fourth-rank compliance tensor S, σkl are the ele-

ments of σ, and εij are the elements of ε, noting that the stress and strain are both

tensors. The nonlinearity involves expanding the stress in higher orders of the strain,

which represent the interactions between probe and pump waves due to this nonlinear

property of the material [1]. It has been found that materials such as rocks have

an intrinsic nonlinearity, and that the presence of cracks or fracture networks in the

sample significantly increases this nonlinearity [7].

Nonlinear acousto-elastic techniques in general have benefits over other methods

of determining the micro-structure and nonlinear elastic behaviour of rock samples.

A major benefit is that these techniques are non-destructive, requiring only external

sources and receivers, without needing to fragment or crush a sample as may be needed

when using a microscope to scan for fractures [2]. Relative variations in nonlinear

parameters tend to be much higher than those in linear parameters when a sample is

under stress, thus making them easier to detect.

There are numerous theories and experimental setups used to explore the nonlin-

earity of rocks. Quasi-static methods consist of applying a constant stress to a sample

and broadcasting a high frequency probe wave through it to determine how the ve-

locity, or speed of sound, varies throughout the medium as we change the applied

stress. The stress is increased in discrete steps, and generally consists of pure tension
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or pure compression. Since the applied stress is quasi-static, values are averaged over

an acoustic cycle in order to determine wanted parameters such as the elastic moduli

of the material [2]. A more recent technique uses dynamic stress instead of a static

applied stress. A low frequency pump wave is used to create a dynamic stress field in

the sample, with which the probe wave interacts. This has the benefit of being able

to measure parameters at all points in the acoustic cycle, giving more detailed results

without the need for averaging. We explore two dynamic theories in detail. The

first is Dynamic Acousto-Elastic Testing (DAET), using a resonant pump wave. The

second is non-resonant DAET [1], where only a few cycles of a pump wave are used.

The former is fairly well-studied, whereas the latter method has seen little research.

The use of nonlinear techniques has led to several observations of nonlinear be-

haviour. When a sample is stressed it often undergoes conditioning, with an elastic

softening as soon as a small dynamic strain is applied, as a result of changes in the

elastic moduli [4]. Another related behaviour is slow dynamics. When increasing

stresses are applied to a sample, it may obtain a metastable state, requiring progres-

sively longer periods of time to return to its original state [4]. Hysteresis is often

observed in the change of stress as a function of the strain [8] when slow dynamics oc-

cur in a sample. The nonlinearity is also observed at very low strains, making almost

all waves produce nonlinear effects in rocks.

1.1.2 Dynamic Acousto-Elastic Testing

Dynamic Acousto-Elastic Testing, or DAET, was developed and explored over the past

two decades by Renaud [3] and Rivière [4], among others. The experimental setup

is as follows, shown in Figure 1.1 [4]. A cylindrical sample with length larger than

diameter is stood on a low frequency source that can compress and produce a strain

field oriented along the length of the sample. A receiver is placed on the opposite

face of the sample to measure this signal. A high frequency source and receiver are

placed at a height just above the base of the sample, normal to the sample axis. The

high frequency probe sends out pulses, establishing a baseline from the stress and

strain within the sample. Next the low frequency pump is turned on and allowed to

broadcast until a resonant state or steady-state is reached. The probe continues to

send pulses, interacting with the established strain fields from the pump wave. These

interactions are studied over a region that is much shorter than the pump wavelength.
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Figure 1.1: A model setup for DAET experiments used by Renaud and Rivière.
(a) shows the low frequency pump source upon which the sample rests. The high
frequency probe source and receiver are supported on either side of the sample.
Reprinted from [4], with the permission of AIP Publishing.

To allow the use of DAET, two requirements must be met. The pump strain field must

be quasi-homogeneous in the region of interaction of the probe, and also quasi-static

relative to the travel time of the probe.

Two of the commonly measured parameters in DAET are the time of flight modu-

lation, which is the difference in travel time for the probe with and without the pump,

and from which the relative velocity change can be calculated; as well as the low fre-

quency acceleration, which measures the acceleration over time at a given point in a

sample due to a low frequency source, and is related to the strain [4]. In some situa-

tions such as monitoring material damage, a more sensitive parameter is needed. This

is the attenuation of the probe wave, reflected in the change in probe wave amplitude.

1.1.3 Non-Resonant DAET

Non-Resonant Dynamic Acousto-Elastic Testing was developed by Gallot [1] and also

used by TenCate [9]. This method may be a better option for field research, as it



5

does not require a standing wave to be produced within the sample; it instead relies

on studying transient behaviour. There are two major differences from the standard

resonant DAET and other similar theories. The setup still involves a high frequency

probe wave whose propagation is disturbed by a low frequency pump wave. Instead of

setting up a standing wave in the sample with the pump, only a few cycles are used, so

transient behaviour is observed [9]. Unlike in DAET, the pump wave in non-resonant

DAET is a transverse shear wave (S-wave), propagating orthogonally to the probe

wave, which is a compressional, longitudinal wave (P-wave). Due to these differences

and the lack of research using this method, it is uncertain if results found using this

method are comparable to results found using DAET.

The experimental setup is as follows [1]. A sample is placed upright on one of

its rectangular faces. An S-wave source is placed on the top face of the sample,

broadcasting down into the sample. A P-wave source and a receiver are placed on

opposite faces of the sample, with axes normal to that of the S-wave source. As before,

the S-wave pump has a low frequency and high amplitude, while the P-wave probe has

a high frequency and low amplitude. A transmission delay between the broadcast of

the P-wave and the broadcast of the S-wave is then used. Changing the transmission

delay changes the phase of the pump wave when the probe wave interacts with it,

which may cause changes in the velocity or time delay. I do not explore a change in

transmission delay in the current work.

The main parameter of interest is the propagation time delay of the probe as a

function of the transmission delay. This delay is found by a cross-correlation between

a measured pulse generated without a pump wave and a perturbed pulse generated

with a pump wave. The effect of fracture networks is also investigated by performing

the experiment with different orientations of the sample [9]. One useful observation is

that waves passing through a crack cause that crack to open and close in a continuous

manner, while the waves themselves are also perturbed by the crack [5].

1.1.4 Linear Slip Theory and Effective Medium Theory

In order to quantify the effects of the crack on my model, I use linear slip theory,

developed largely by Schoenberg [6] and chosen due to the relative ease in modeling

it. The theory applies to the case of an interface between two materials that are

imperfectly bonded, such as a crack or fracture inside of a rock. The displacement of
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a wave across this interface is discontinuous. This theory posits that the discontinuity

∆u is linearly dependent on the traction stress t, taken to be continuous across the

interface. That is, t = C∆u, where C is a stiffness tensor. For simplicity, the

compliance tensor S = C−1 is often used, giving ∆u = St [6]. Since our crack is

symmetric, the compliance tensor only depends on two values, the tangential and

normal compliances.

When used in conjunction with effective medium theory [7], linear slip theory

allows for the calculation of the average strain in a sample as depending on the

compliance tensor of the background material, the average stress, and an integral

over the displacement discontinuities of all cracks. The background material is the

part of the sample where there is no crack. The total effective compliance of the

material can also be calculated simply as the sum of the background compliance

and the compliances of the cracks. In comparison, using the stiffness would require

summing over reciprocals, justifying the use of compliance over stiffness tensors.

Using effective mean theory allows for a generalized linear Hooke’s law [5] to be

used as

〈εij〉 = 〈Sijkl〉〈σkl〉, (1.2)

where 〈〉 represents a spatial average. This follows the form of the usually linear

Hooke’s law as in equation 1.1, except now we use the effective stress, strain, and

compliance tensors as the averages of the stress, strain, and compliance. The volume

over which they are averaged is the yellow cube shown in Figure 2.1 at the start of

the next chapter, covering x = 0.05 m to x = 0.1 m, y = −0.025 m to y = 0.025 m,

and z = 0.05 m to z = 0.1 m. This is the region where the probe wave, pump wave,

and crack should interact most strongly, and is chosen so that the averaged stress and

strain are not zero [5]. The crack itself is centered at x = 0.05 m, y = 0 m, z = 0.07

m with radius 0.005 m and normal along the z-axis.



Chapter 2

Computational Methods

2.1 Model Initialization

I present my numerical model of nonlinear wave propagation, first making some com-

ments on its development. This model has been previously used by Rusmanugroho

et al [5], and is written in a mix of Matlab and C code. An NSERC Undergradu-

ate Student Research Award that I was granted allowed me, over the course of 16

weeks, to explore, expand, and refine the model. The work done includes locating

and minimizing sources of error in the code, ensuring it runs smoothly and efficiently

in a repeatable way, adding new ways of visualizing and storing the output data, and

reducing the likelihood of subtle user-induced error leading to discrepancies in the

data. More fundamentally, I explored how the model works and what it represents

physically, leading to a better understanding of both the theoretical and experimental

aspects of this field of research. For the purpose of this thesis, I use this model to

answer research questions about how the presence of cracks in a medium affects the

resonance and non-resonance behaviours.

I begin by creating a 3-dimensional lattice with equal spacing in each direction to

form our medium, shown in Figure 2.1. The default model has lengths of 0.15 m,0.05

m, and 0.15 m along the x-, y-, and z-directions respectively. I prescribe 6 independent

parameters to the medium to specify its properties, with their values listed in Table

2.1. These include its density of 2285 kg/m3, the P- and S- wave speeds, and the 3

nonlinear Landau-Lifshitz parameters as defined in [5]. All 9 components of the linear
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Parameter Value

P-wave speed 2954 m/s
S-wave speed 1829 m/s
Density 2285 kg/m3

A (Landau-Lifshitz) −8.725× 1011 N/m2

B (Landau-Lifshitz) −1.176 25× 1012 N/m2

C (Landau-Lifshitz) −6.7375× 1011 N/m2

Table 2.1: Initial parameters used to specify properties of the medium. These values
have also been used by Rusmanugroho [5].

stiffness tensor are calculated from the P- and S-wave speeds. This uniquely specifies

the properties of a nonlinear, homogeneous medium.

A circular crack with radius 5 mm is added with center at position (0.075,0,0.070)

m with normal along the z-direction. The density and P- and S-wave velocities of the

medium are used along with specified crack parameters to create a distinct stiffness

tensor for the crack itself.

Depending on which simulation is being done, sources are next added to the model

to produce the waves. All sources are circular with a radius of 1 cm. All simulations

have a P-wave probe source, by default centered at position (0.075,0,0) m with normal

in the z-direction. A sinusoidal wavelet is defined with a frequency of 5× 105 Hz and

amplitude of 1× 10−4 N/m3 with a single cycle. If needed, an S-wave pump source is

added, by default centered at position (0,0,0.075) m with normal in the x-direction. A

sinusoidal wavelet is defined with a frequency of 5× 104 Hz and amplitude of 1× 10−2

N/m3, and we use a range of 1 to 100 cycles. Examples of these source waves are

shown in Figure 2.2.

To record data during the simulation, I use 6 recording slices, all of which are

squares lying parallel to one of the sides of the medium. These 6 slices form a cube

centered at (0.075,0,0.075) m with a side length of 0.05 m, shown in Figure 2.1. When

averaging of the strain and stress is performed using effective medium theory, this is

the representative volume over which the averaging occurs. Parameters such as stress

and strain are recorded throughout the simulation on these slices. The data are also

recorded along a segment of the crack itself, from the center of the crack out to a

radius of 1 mm.
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Figure 2.1: The default model used with two sources, shown in black. The probe
source is on the top face along z = 0 m, and the pump source is on the face along
x = 0 m. The crack is shown in blue along z = 0.07 m. The yellow cube is the volume
over which averaging of the strain and stress is performed, with each face called a
recording slice.

A total simulation time is set, at 1.0× 10−3 s for most simulations. It is split into

time steps of 2.5× 10−8 s. The parameters of interested are recorded after every 100

time steps for most simulations to speed up the process, without losing any important

fine detail.
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Figure 2.2: A sample of the source waves for the probe and the pump when a trans-
mission delay of 4µs is used. Note that the amplitude of the probe wave has been
multiplied by a factor of 100 so that both waves are visible. This presents 5 cycles of
the pump wave, and the single cycle of the probe wave.

2.2 Computational Details

A 4th order time domain finite difference in Cartesian coordinates is used to model

the wave propagation. This is an iterative method in which the modelled parameters

are updated at alternating time steps, and the Cartesian coordinate system is used. A

displacement vector in a region around each point is used to estimate the directional

derivatives of the displacement at that point, which is then used to calculate the

updated strain. A similar calculation is used to find the directional derivatives of the

velocity, which along with the displacement derivatives allow the first Piola-Kirchhoff

stress to be updated. On alternating time steps, the stress derivatives are used to
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calculate the velocity and displacement. A free boundary condition at each surface is

maintained at each step. This finite difference portion of the code was written around

a decade ago and has been used and modified since by numerous researchers. Many

of the equations being modelled here have been presented by Rusmanugroho [5], who

previously worked with this finite difference code.

A note must be made on where the code itself is run. For efficiency, it has been

designed to run on remote nodes using parallel computation. These remote nodes

are run by ACENET in partnership with Compute Canada, who allowed me to run

my code on the Torngat server via the Siku regional system. I can connect to these

remote servers directly from my own computer. Access to this server is what made

my computations feasible. Instead of simulating and updating the entire model on

my computer, which would likely take days, the model itself is divided into slices

of constant z-coordinate. Parallel computation allows each section of the model to

be simulated on a given remote node, with all nodes working simultaneously. There

is some overlap for communication between the nodes. This reliably brings compu-

tational time down to a few hours, and using more nodes will increase the speed.

However, a subtle issue arises from the positions of the sources. Recall that the pump

source has normal along the x-direction. Depending on exactly how the model is

sliced for parallel computation, this source may be split over multiple nodes. Despite

the node overlap, changing how the source is split over nodes does affect the result-

ing calculated control effective velocity rather noticeably. After finding this source of

error, I modified the setup slightly to ensure that the source is always split the same

way for every simulation to be certain my results are all comparable to each other.

2.3 Effective Velocity Calculation

The data from the recording slices and receiver are used to calculate an effective ve-

locity. When only the probe is used I call this the control effective velocity, denoted

vcontrol, and when both probe and pump are used I call this the interaction effective

velocity, denoted vinteraction. Refer to Table 2.2 for a brief summary of the types of

velocities that occur in my work. All components of the stress in the z-direction are

multiplied by either a normal or tangential compliance. The background stiffness

tensor and nonlinear parameters are needed. The discontinuities in the displacement
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Notation Velocity Type Meaning

vprobe Probe velocity
For sinusoidal wave broadcast from
probe source, high frequency.

vpump Pump velocity
For sinusoidal wave broadcast from
pump source, low frequency.

vcontrol Control effective velocity
Spatially averaged from setup with
only probe.

vinteraction Interacting effective velocity
Spatially averaged from induced-
strain setup with probe and pump.

Table 2.2: Definitions of the four types of velocity examined in this work.

across the crack are integrated and summed to give the product of the average com-

pliance of the crack with spatially averaged stress [5]. The recording slices are used to

calculate the average or effective stress and strain, which allow for an effective stiffness

tensor to be found. Inverting this gives an effective compliance tensor, to which the

average compliances are added. Inverting once again gives the final effective stiffness

tensor. Dividing the appropriate component by the medium’s density [5] gives the

effective velocity.

2.4 Time Delay Calculation

With the effective velocities calculated, the next step is to calculate the travel time

delay between the two simulations, with and without a pump source. This is done

by simply adding the travel time through each lattice step along the x-direction as

the grid size divided by the velocity at that point. The travel time for the probe-only

simulation, with the control effective velocity, is subtracted from that of the probe and

pump simulation, with the interaction effective velocity. This gives the time delay,

which is induced by the strain fields set up by the pump wave.



Chapter 3

Results

3.1 Control Effective Velocity

For every simulation, I first used a setup with only the probe and no pump. This allows

for the calculation of a time delay when compared to a simulation with both sources.

The only parameter that changed is the initial transmission delay, which simply de-

termines at what time in the simulation the probe starts broadcasting. Changing this

delay does not affect the behaviour of the control effective velocity vcontrol, serving as

a verification that the code is working as intended.

I start with a brief explanation of what I mean here by control effective velocity,

vcontrol. The probe source broadcasts a single cycle force wave into the medium, con-

sisting of alternating compressions and rarefactions of particles within the medium.

As this initial sinusoidal wave propagates, the intrinsic nonlinearity of the medium

distorts the wave, and this effect is amplified as it interacts with the crack. The

propagating wave produces strain and stress fields in the medium. Reflections off

the far boundary may also add to this distortion. As described above, using linear

slip theory and effective medium theory, the stress and strain fields are averaged in

a way as to include the perturbations due to the crack, producing an effective ho-

mogeneous medium. From this, the probe velocity vprobe as it would occur in the

effective homogeneous medium is calculated and called the control effective velocity.

This is an example of a phase velocity, a measure of how fast any wave will travel

though the medium, and a property of the medium. The effective velocity is constant



14

Figure 3.1: The control effective velocity from a simulation with a probe source and
no pump, including a transmission delay of 4µs. The inset plot expands on a small
velocity range around the mean, showing the finer details.

throughout the representative volume. In comparison, the interaction effective veloc-

ity vinteraction is calculated through the same procedure, except I add the pump source

to the medium, which sets up strain fields throughout the sample which perturb the

probe wave. vinteraction is the probe velocity as it would occur in the effective homo-

geneous medium derived from this new setup. Both effective velocities measure the

same parameter, and I use ‘control’ or ‘interaction’ to distinguish between the setups

used before averaging.

Next, I describe the velocity as it changes in time. With the addition of the pump

wave, the stress and strain fields throughout the medium will be perturbed, and will

change as the pump and probe waves interact with each other and with the crack.

This will then cause the calculated effective velocity to vary from the control case

with no pump source. Thus, we will also see a delay in the travel time of the wave,
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which is another aspect of the nonlinearity I study in this work.

Figure 3.1 shows vcontrol when the simulation includes a probe and no pump. A

transmission delay of 4µs was used, resulting only in a shift along the horizontal axis.

Note that since the pump is not used, this velocity is the same for every simulation

with the same model geometry as the properties of the probe are fixed across all of

these simulations. The velocity is initially small for a short period after the probe

starts, quickly devolving into what appears to be noise with an amplitude range

of around 0.05 m/s on average, very small compared to what we later see for the

interaction effective simulation. There does not appear to be any underlying frequency

or oscillation. Two notable peaks occur in the form of a drop in velocity, of much

larger amplitude than for the rest of the simulation time. The first has an amplitude

of around 0.4 m/s while the second has a sharp decrease with an amplitude of 0.25

m/s, an order of magnitude larger than average. The time at which the peak occurs

suggests that it might be a result of reflections off the far boundary of the medium

interacting with the incoming waves at the crack. This represents linear behaviour of

the material for the probe.

3.2 Varying Number of Pump Cycles

The first major parameter I varied was the number of cycles for which the pump

broadcasts. Previous simulations used 3 cycles. I performed simulations for 1, 2, 3,

18, 20, 22, 24, 26, 50, and 100 cycles, observing how the velocity changes, and deciding

which choice best simulates a resonant condition.

For 1, 2, and 3 cycles, with vinteraction for 3 cycles shown in Figure 3.2, we see

no clear frequencies in the interaction effective velocities, resembling little more than

noise. Increasing the number of cycles gives behaviour similar to beats, with maximum

amplitude changing smoothly at a low frequency along with high frequency oscillations

of the velocity. The data for 18, 20, 22, 24, and 26 cycles are similar in amplitude and

frequencies, with that for 20 cycles shown in Figure 3.2. The maximum amplitude

relative to the mean is around 0.25 m/s, and the mean is constant for all simulations

and effectively constant throughout each simulation. Each of the five simulations have

an identical velocity for the first 350µs. After this point, each simulation begins to

diverge slightly from the simulations with more pump cycles. This is a trend that
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Figure 3.2: Interaction effective velocity, showing results for 3, 20, and 50 cycles of the
pump. The 20 cycle data have been shifted upwards by 0.5 m/s and the 50 cycle data
have been shifted upwards by 1.0 m/s for clarity. Note the appearance of a smooth
change in maximum amplitude.

continues up to 50 cycles, with the effective velocity data matching for more of the

simulation time as the cycles increase. I show results for 3, 20, and 50 cycles in detail

in Figure 3.2 as mentioned. I note that the range for vinteraction is on the order of 0.5

m/s, compared to the average range for the control effective velocity, which is on the

order of 0.05 m/s or an order of magnitude smaller. For fewer than 50 pump cycles,

the pump stops broadcasting before the end of the simulation, leading to potential

changes in effective velocity as the stress decreases. This effect is not seen for these

simulations, with no appreciable deviation from the oscillations.

Using 50 pump cycles corresponds to broadcasting the pump for the entire simula-

tion, 1000µs. We observe the trend from before again, which can be seen as vinteraction
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Figure 3.3: The Fast Fourier Transforms (FFT) for interaction effective velocities
using 3, 20, and 50 pump cycles in (a), (b), and (c) respectively. The vertical axis is
the normalized intensity in arbitrary units. The dashed red line at 5× 104 Hz is the
pump source frequency.

converging to that of a permanently broadcasting pump as the number of cycles in-

creases. While the maximum amplitude of the wave does not change from previous

simulations, it changes more gradually in time, more closely resembling the desired

resonant state. We have a minimum velocity of 2954.7 m/s, and a maximum of 2955.3
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m/s. I next perform a Fast Fourier Transform (FFT) on the data, recovering the un-

derlying frequencies, which I show in Figure 3.3. For 50 cycles, in Figure 3.3.c, we find

a single large frequency peak at 5× 104 Hz, which is the frequency of the pump wave.

This result is expected, as the pump wave has an amplitude two orders of magnitude

larger than that of the probe wave, and I find from the FFT of vcontrol that there

are no frequency peaks; in particular, the probe frequency does not contribute to the

effective velocity. Having a single well-defined frequency does not imply that this case

must be a resonant or steady state, but it does suggest that the main indicator of

whether a state is resonant is whether or not the maximum amplitude of the effective

velocity varies in time.

Looking now at 20 cycles of the pump source, which means the pump is broad-

casting for 40% as long as for 50 cycles, we see fairly similar behaviour to the 50

cycle case. As seen in Figure 3.2 and mentioned already, increasing the number of

pump cycles causes vinteraction to converge towards that of the 50 cycles case. We see

oscillations at a high frequency, as well as what appears to be beats, with a smoothly

changing maximum amplitude. Checking the FFT in Figure 3.3.b confirms that the

main frequency is that of the pump wave, with no other frequency having a significant

effect. The amplitude is less constant than in the 50 cycle case, implying that once

the pump stops broadcasting, the reflections of the pump wave are not sufficient to

preserve the maximum amplitude, which is expected. However, the amplitude does

not decrease constantly, nor does it approach the behaviour vcontrol. Then the pump

broadcasting for 20 cycles is sufficient to significantly perturb the amplitude of the

effective velocity for the entire simulation.

I now compare the transient case of 3 pump cycles, similar to non-resonant DAET

[9]. Looking at vinteraction in Figure 3.2, it differs significantly from the cases with 20

and 50 cycles. For the first 400µs, there is a slight oscillation, which then loses its

smooth shape, with numerous short drops in velocity and no clear frequency. The

amplitude of the velocity remains small, with no clear growth or decay as the simu-

lation progresses. Unlike the previous case, there is no smooth change in maximum

amplitude, and the instantaneous amplitude sees sudden disjoint changes over very

brief periods. The FFT in Figure 3.3.a shows that the main frequency is still the fre-

quency of the pump wave. However, the relative intensity of this peak has decreased

significantly, with a wide, non-negligible range of frequencies appearing in the data.

The pump wave still affects the effective velocity, but no longer overwhelms the probe
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wave completely.

Finally, I perform a simulation with 100 cycles of the pump wave, which also

requires doubling the simulation time to 2000µs. I find that vinteraction is identical to

that of 50 cycles for the time range for the first 1000µs of the simulation as expected

from the prior trend, and that the maximum amplitude itself begins to oscillate, with

the FFT showing peaks at 5× 102 Hz, 5× 104 Hz, 1× 105 Hz, and 2× 105 Hz. The

velocity appears much less smooth than for 50 cycles, with spikes where vinteraction

decreases rapidly. It is not clear to me what causes the additional frequencies, and

determining this could be something to explore in future work. Thus I decide to

focus on simulations of 50 cycles as optimal for a steady state. It is less simple to

determine if 50 cycles of the pump causes a resonant state, as that would also depend

on matching the frequency of the source waves to a characteristic frequency of the

medium. For the purpose of this work, I believe that the steady state is a sufficient

approximation to true resonance. From this point forward, I study the steady state

according to this understanding.

3.3 Varying Model Geometry

Having chosen 50 cycles of the pump wave, I compare three different model geometries

and their effect on vinteraction. Geometry 1 is the one shown in Figure 2.1 and previously

examined, with dimensions of 0.15 m, 0.05 m, and 0.15) m along the x−, y−, and

z−axis respectively. Geometry 2 consists of doubling the length of the side along the

x-axis, with dimensions of 0.30 m, 0.05 m, and 0.15 m. Geometry 3 similarly consists

of doubling the length of the side along the z-axis, with dimensions of 0.15 m, 0.05 m,

and 0.30m. Note that this means that the distance required for one of the sources to

travel the length of the medium is also doubled; this is the probe for geometry 3 and

the pump for geometry 2. The position of the crack does not change between any of

the geometries.

In comparison, the cylindrical sample used in the resonant DAET experiment by

Rivière [4] is approximated by a prism of with dimensions of 15 cm, 2.54 cm, and 2.54

cm, and so I expect that geometry 2 should best compare to this sample. This gives a

ratio x/y ≈ 6 in both cases, where my other two geometries have ratio x/y = 3. For

comparison, the sample used by Gallot for non-resonant DAET [1] has dimensions
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Figure 3.4: The interaction effective velocity when probe and pump are broadcast.
Comparing results for 3 model sizes, with 50 cycles. Each tuple (x, y, z) in the legend
refers to the dimensions of the model along the respective axes. Doubling the length
along z leads to a non-smooth, increasing amplitude.

of 15 cm, 3 cm, and 15 cm for a ratio x/y = 5. The results from the three model

geometries are seen in Figure 3.4.

We see that vinteraction does not change significantly between geometry 1 and geom-

etry 2. Note that this size variation corresponds to the direction in which the pump

wave propagates. The amplitude decreases slightly from geometry 1 to geometry 2,

and the two waves are slightly out of phase with each other, with peaks for the geom-

etry 2 velocity occurring slightly earlier in time, while maintaining the same shape as

the geometry 1 velocity. The phase shift may be caused by a slight shift in conditions

needed for steady state when the model length is increased. This suggests that I can

continue using my default, geometry 1, without needing to spare much consideration
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for the difference from the DAET sample sizes. This is useful, as the geometry 1

model takes less computational time to run, with only half as many lattice points as

the larger two models.

Unlike the first variation, the model with geometry 3 sees a drastic change in

vinteraction. With 50 pump wave cycles, the smooth amplitude changes in the velocity

are lost, with more abrupt increases and decreases in amplitude. The overall oscilla-

tion amplitude appears to increase in time, with the amplitude being at least three

times that of the amplitude for geometry 1, increasing to eight times at some points.

We see that this new wave is also out of phase with the geometry 1 wave, with its

peaks occurring at the same times as troughs for the latter wave. This size variation

corresponds to doubling the direction in which the probe wave propagates. The large

difference in velocity may be due to the pump wave no longer having a boundary from

which to reflect at z = 0.15 m while still having a short distance to the opposite face

at x = 0.15 m. This particular change may affect the pump wave reverberations in

such a way as to cause the velocity to increase more similarly to a driven oscillator

than a steady state.

3.4 Travel Time Delay

Once I get vinteraction from the probe and pump, and vcontrol from the probe alone, I

can calculate the time delay between the two at each point along the z-axis of the

medium by subtracting the travel time of the control wave from the travel time of the

interaction wave. The results do not seem to match similar ones from Rusmanugroho

[5], although I plot the time delay throughout a simulation for a single transmission

delay, instead of plotting the maximum time delay over increasing transmission delays.

This time delay is shown for 3, 20, and 50 cycles of the pump wave in Figure 3.5.

I start with 50 cycles, shown in Figure 3.5.c. Initially, the delay is zero, which is

expected due to the 4µs transmission delay. The time delay then takes on a sinusoidal

form with a distinct wavelength, about half the wavelength of the probe wave, but

with increasing amplitude and increasing mean. That is, the two waves are fairly close

in time to each other, but vcontrol is beginning to increase relative to vinteraction. Then,

around the middle of the model near the crack, the delay drops from a maximum

of 0.027 ns and oscillates near −0.05 ns while keeping the same period, and the
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Figure 3.5: Plotting the time delays for interaction effective velocities using 3, 20, and
50 pump cycles in (a), (b), and (c) respectively. Note that the time delay is measured
in nanoseconds.

interaction wave is now ahead of the control wave. After travelling slightly further

along the z-axis, there is a sharp drop in time delay, which still oscillates around a

negative time delay of −0.205 ns. This indicates that both waves are travelling at the

same velocity, but that something caused a large temporary increase in vinteraction.

Comparing Figure 3.5.c with Figure 2.1, we see that the position along the z-axis

at which the delay drops and becomes negative occurs very close to the position on

the circumference of the pump source which is furthest from the probe source. Since

the travel time for the probe does not involve the pump source at all, this implies that

there is sudden, temporary increase in vinteraction, causing the travel time to decrease

relative to the control effective wave. This shift is likely due to a change in the strain

field between the region from z = 0.06 m to z = 0.09 m in which the influence of the
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pump is greatest, and the region just beyond the edge of the pump. The probe wave

would be perturbed as it travels through the rapidly changing strain field, thus leading

to a change in vinteraction as well. It is somewhat surprising that the change isn’t more

gradual with the strain decaying away from the pump, and fully understanding this

would require further investigation.

Largely similar behaviour also occurs in the time delay for 20 cycles, shown in

Figure 3.5.b, as for 50 cycles. vcontrol and vinteraction are fairly similar, with the latter

being very slightly faster. We again see a sharp drop where vinteraction increases as the

wave passes outside of the region through which the pump wave propagates. Beyond

this point in the medium, the two wave velocities are roughly equal again. Through-

out, vinteraction is very slightly higher than vcontrol, leading to a minor decreasing trend

in the time delay, which is the opposite trend as in the 50 cycle case. Since vprobe

is identical in both cases, this means that increasing the time for which the pump is

broadcast actually causes vinteraction to decrease.

The time delay for 3 cycles, shown in Figure 3.5.a, is initially similar to that in

Figure 3.5.c for 50 cycles. The delay oscillates, though not smoothly, and gradually

becomes greater, with vcontrol being very slightly greater than vinteraction. The delay

drops and becomes negative as the interaction effective wave passes throughout the

region of the pump and briefly increases in velocity. Beyond this point, the behaviour

changes significantly from that of 50 cycles. The delay almost immediate starts to

rapidly increase, doing so throughout the rest of the medium. The oscillatory be-

haviour also disappears. vinteraction decreases sharply when not travelling through the

region of influence of the pump, becoming much slower than the control effective wave.

3.5 Hysteretic Behaviour

3.5.1 Observations for 50 Cycles

One of the commonly observed properties of a nonlinear resonant experiment is hys-

teretic behavior, seen when plotting relative velocity change [4] or time of flight mod-

ulation [3] as functions of strain. Hysteresis generally occurs due to the effects of slow

dynamics [8]. We see what appears to be a similar behaviour in my results, where I

plot vinteraction as a function of the effective strain, shown in Figure 3.6. I discuss this
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Figure 3.6: The interaction effective velocity for 50 cycles of the pump as a function
of the effective strain component ε33, in units of microstrain or µm/m. The data are
split over four plots, all representing 250µs of the total simulation time of 1000µs in
the order (a), (b), (c), (d). The horizontal dashed line marks the mean velocity, and
the vertical dashed line marks zero strain. The data in all four plots are traced out
counterclockwise.

figure and the data shown in detail.

For clarity, I plot the strain in units of microstrain (µm/m). The effective strain

itself is a tensor, and I am interested in the component ε33. This is the effective strain

acting in the z-direction on a plane parallel to the probe source. More simply, it is

the average strain acting normal to the plane containing the crack. For convenience,

I write effective strain to mean this component of the strain specifically. My plots

show how the effective velocity relates to the effective strain, both measured along

the z-direction, as the simulation progresses.

In order to better understand the data in this figure, it is split over four subplots,

each representing a quarter of the total simulation time. What is exhibited is well-

defined hysteretic behaviour. vinteraction can both increase and decrease as the effective

strain increases or decreases, giving shape to hysteresis loops. In all four subplots of

Figure 3.6, these loops have a fairly constant length and orientation relative to the

axis of mean effective velocity. The maximum and minimum vinteraction occur at the
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minimum and maximum effective strains respectively.

Starting with Figure 3.6.a, the loop is fairly short, and the width of each loop

appears to be increasing in time. A range of 0.29 microstrains is covered. This

indicates a steady state has not yet been attained in the medium.

In Figure 3.6.b, the length of the loop has increased significantly, covering a range

of 0.55 microstrains. The width of the loops does not change much, with the same

path being traced out repeatedly in time. This indicates that the medium is in a

temporary steady state.

Throughout Figure 3.6.c, the loop continues lengthening slightly to a range of 0.58

microstrains. The width of the loop increases in time on average, but not uniformly.

The behaviour appears to be moving slightly away from a steady state.

Finally, Figure 3.6.d shows that the loop length decreases to 0.4 microstrains, and

is still relatively wide compared to the first 500µs. A steady state has been reached

for intermediate strains, but vinteraction still varies at the maximum and minimum

effective strains.

3.5.2 Effect of Crack on Hysteresis Loops

I propose an explanation for the behaviour of the hysteresis loops between vinteraction

and the effective strain. Cracks and fracture networks are accepted to be one of the

main sources of nonlinearity in rocks. One reason for this is that cracks may open or

close with changing strain and changing strain rates including from waves traveling

through the cracks. It has been seen that the opening and closing of a crack can cause

a change in velocity of waves as they travel through the crack [5]. This phenomenon

may also contribute to the existence of hysteretic behaviour between the strain and

relative change in velocity as in Rivière [4], or between the strain and velocity as in

my data from Figure 3.6.

Haupert et al [2] provide useful observations, with Figure 3.7 taken with permission

from their paper for clarity. They look at an aluminum bar with a crack, caused by

fatigue damage due to a notch on its edge, running through it. They apply a strain

to the sample and measure the relative change in wave speed at three locations in

the sample. Two positions are along the crack, and the third is away from the crack.

Haupert found that for the position away from the crack, the velocity underwent
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Figure 3.7: Data collected by Haupert, taken from [2]. They measure dynamic re-
sponses at three positions in an aluminum bar, with fatigue damage from a notch in
the edge of the bar causing a crack, under an applied strain. (a) plots the data for
a position at a notch from which the crack extends. (b) is a position at the crack
tip, and (c) is a position outside of the crack. All three subplots display hysteretic
behaviour between the strain and the relative change in wave speed. The diagram
below the plots represents the sample and crack, with the three coloured bars showing
the exact positions used in the plots.
Reprinted by permission from Springer Nature: Dynamic Acousto-Elastic Testing by
Haupert et al. © Springer International Publishing AG (2019)

very little change as the strain varied, represented by a horizontal line or thin loop

on their hysteresis figure. For the two positions along the crack, Haupert found

that there was hysteresis in the form of loops, traced out clockwise with increasing

strain corresponding to increasing change in relative velocity. Their loops are tilted

counterclockwise away from the axis of mean velocity, with the maximum increase in

relative velocity occurring at the maximum strain.

I suggest that these observations match my data. The hysteresis loop in Figure

3.7.b, near the edge of Haupert’s crack, appears to be very similar to what we observe

in Figure 3.6. The main difference is that for Haupert, the maximum change in wave-

speed occurs for the maximum positive strain, whereas for my data the maximum

vinteraction occurs for the maximum negative strain.

This implies that for each time range shown in Figure 3.6, we can apply the
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Figure 3.8: The interaction effective velocity for 20 cycles of the pump as a function of
the effective strain component ε33, in units of microstrain. The data are split over four
plots, all representing 250µs of the total simulation time of 1000µs in the order (a), (b),
(c), (d). The horizontal dashed line marks the mean velocity, and the vertical dashed
line marks zero strain. The data in all four plots are traced out counterclockwise.

explanation provided by Haupert. In particular, I propose that this hysteresis between

vinteraction and the effective strain arises from the pump and probe waves interacting

with the crack. The fact that the maximum effective velocity here corresponds to

the maximum magnitude of the effective strain is consistent with previous research

by Rusmanugroho [5], which shows that opening and closing of cracks causes these

hysteresis loops, and that the opening or closing should be at a maximum for the

maximum strain or magnitude.

3.5.3 Observations for 3 and 20 Cycles

As shown in Figure 3.8, plotting vinteraction and the effective strain for 20 cycles does

show hysteresis behaviour, following very closely to the 50 cycle case in Figure 3.6.

Due to the similarity, I discuss the data shown in the figure as a whole, and do not

talk individually about the four subplots. The loops do have slightly less uniform

behaviour, but the shape, orientation, and range of effective strain are nevertheless

approximately the same as for 50 cycles. I believe that the crack is causing the
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Figure 3.9: The interaction effective velocity for 3 cycles of the pump as a function of
the effective strain component ε33, in units of microstrain. The data are split over four
plots, all representing 250µs of the total simulation time of 1000µs in the order (a), (b),
(c), (d). The horizontal dashed line marks the mean velocity, and the vertical dashed
line marks zero strain. The data in all four plots are traced out counterclockwise.

hysteresis in this case as well.

The hysteresis for the 3 cycle case, shown in Figure 3.9, is initially similar to that

for the 50 cycle case. In Figures 3.9.a and 3.9.b, there is again hysteretic behaviour

between vinteraction and the effective strain. However, the loops are far less uniform

than in the prior cases, with length and width of the loops varying within a brief time

frame. In Figures 3.9.c and 3.9.d, the hysteresis has mostly disappeared with noise and

many drops in the effective velocity. It seems that while the crack initially interacts

with the pump and probe waves, that interaction decreases with time. I believe this

indicates that the pump wave interacts with the crack much more strongly than the

probe wave does.
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Discussion

4.1 Summary of Steady State Data

I summarize the data for 50 cycles of the pump source as a whole, using a transmission

delay of 4µs for the probe source, and in geometry 1 as in Figure 2.1, and give a

description and explanation of how the relevant parameters evolve throughout the

simulation.

The pump begins broadcasting slightly before the probe, with the waves initially

interacting with each other but not with the crack. This interaction leads to a rel-

atively strong nonlinear response, with a steadily growing maximum vinteraction am-

plitude, with this effective wave having a frequency equal to that of the pump wave

as seen in an FFT of the velocity, shown in Figure 3.3.c. The growth is due to the

interacting waves, and their reflections off the boundaries, creating changing stress

and strain fields within the medium. In comparison, when only the probe wave is op-

erating, there is a relatively weak nonlinear response with no clear oscillations in the

vcontrol, and a small maximum amplitude. The sharp drops in vcontrol seen in Figure

3.1 are likely numerical artifacts due to the method of averaging over a representative

volume. This indicates that the stress and strain fields induced by the probe are

much smaller than those induced by the pump, as expected due to the amplitude of

the pump source being 100 times that of the probe source.

As discussed in the prior section, we see a hysteresis loop between the vinteraction

and the effective strain, which grows and shrinks slightly in length as the simulation
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time progresses. This arises from the pump wave interacting with the crack and

causing it to open and close, in turn perturbing the probe and pump waves. It is not

entirely clear what causes the loops to lengthen and compress. However, these time

frames do correspond to vinteraction increasing and decreasing in amplitude respectively,

and as discussed before, this is influenced by the reflections of the source waves off

the boundaries.

In general, while vinteraction does increase and then decrease as the simulation

progresses, it remains at a somewhat smooth, non-oscillatory maximum amplitude,

with no large shifts due to the crack, and roughly resembles a steady state.

Figure 3.5.c illustrates the time delay for 50 cycles of the pump. Throughout the

upper half of the model, along the range of z = 0 m to z = 0.85 m, the time delay

between vinteraction and vcontrol begins to increase, with the control effective wave having

a slightly higher velocity. As discussed previously, there is a large drop in time delay

around z = 0.85 m, after which the time delay is negative. Based on the location at

which this occurs, it is likely that the drop is due to the probe wave passing out of

the region of influence of the pump wave, leading to an increase in vinteraction in this

region. Note that the crack does not appear to have a noticeable effect on the time

delay.

4.2 Summary of Transient States

I briefly compare my steady state approximation of resonance with 50 cycles to the

non-resonance conditions of 20 cycles and 3 cycles. The important aspect, as men-

tioned in brief before, is that there is a fairly continuous, albeit gradual, transition

between them.

Taken as a whole, we see that the simulation for 20 cycles is comparable to the

simulation for 50 cycles. While the specific behaviour and trends do not match com-

pletely, the evolution of the stress and strains in the medium occur similarly. Either

case is sufficient to exhibit hysteresis between vinteraction and the effective strain by

perturbing the crack; to cause an increase in that velocity as it passes out of the

pump wave; and for the effective velocity to oscillate at the pump frequency. For the

simulation time and model geometry used, we do not need to be perfectly at a steady

state to observe this behaviour.
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The steady state case and the transient case of 3 cycles display very different

behaviour. The appearance of hysteresis and the opening and closing of the crack;

the oscillatory vinteraction with a defined underlying frequency; and the decreasing time

delay do not occur in this case, being dependent on the time for which the pump is

broadcast. Using this model, we cannot describe the same behaviour through both

the transient and steady state cases.

4.3 Comparison to Literature

4.3.1 DAET

I begin by comparing my steady state results to data found with resonance DAET.

As I have discussed before, the hysteresis we observe between the effective strain and

vinteraction matches with that seen by Haupert and shown in Figure 3.7. In particular,

their explanation that the crack is responsible for the hysteresis seems valid here as

well. This relation between the strain and relative velocity is a common observation

in DAET experiments, and not seen in non-resonant DAET. Haupert also notes that

the orientation of the loops in Figure 3.6, with higher effective velocities occurring

when the effective strain is negative than when it is positive, has also been observed

experimentally in samples of granite.

Haupert [2] further discusses the main underlying frequency of the effective velocity

being the pump frequency, which we observe in Figure 3.3. They also observe a second

frequency near zero, which is not evident in my steady state data, but is actually

present in my transient data. There is not enough evidence to say if this peak is

relevant, or simply coincidental.

As in Rivière [4], the simulation requires a fairly long period before the effec-

tive velocity reaches resonance, where changes in the amplitude are small, albeit less

uniformly in my data.

I make one final note. Renaud [3] plots the time delay for various samples in terms

of the pump pressure, presented in a different form than my time delay data. They

are not directly comparable, but the data taken by Renaud does show that the time

delay may be both positive and negative at different regions, as we have seen in Figure

3.5. This suggests that the negative time delays may arise from the actual dynamics
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in our medium, and not simply some numerical artifact.

As a whole, it is difficult to tell from my existing data if my model at steady state

can accurately represent all of the experimental results found with DAET. The work of

Rivière in particular is more in-depth and detailed than what is done with this model.

Further, few papers present the effective velocity as a function of simulation time,

choosing instead the pressure or stress and making comparisons more complicated to

perform. The model I use is much less complex than experimental samples. However,

we still see some major similarities to existing research, in particular the presence

of hysteresis loops between vinteraction and the effective strain, and the explanation

matches our observations. Therefore I believe that this numerical model can be used

as a valid, albeit very simple, application of DAET.

4.3.2 Non-Resonant DAET

I now compare my transient results to data found with non-resonant DAET. Gallot

[1] notes that when using only a few cycles of the pump wave, the probe wave does not

cause sufficient interactions to observe hysteresis, as we have seen. They also find that

the main source of the strain within the sample is the pump wave. My data shows

similar behaviour as in Figure 3.2, where vinteraction for 3 pump cycles has a much

smaller amplitude and less uniform shape compared to the other two simulations,

where the pump plays a larger role.

When modeling time delay, TenCate [9] showed that the mean of the time delay

increases as the pump wave interacts more with the probe wave, and that the os-

cillations in the time delay are related to the pump frequency. While this does not

exactly match my data for 3 cycles, this may account for the increasing time delay.

As the pump only broadcasts briefly, the amplitude and frequency of the pump wave

traveling in the medium may be disrupted more from their original sinusoidal form,

causing reflections to occur at varying phases instead of a more confined phase shift

when the pump broadcasts for longer. I note that for our data, the oscillations in

the time delay are actually slightly less than twice the frequency of the probe wave,

not the pump wave. Though not directly calculated there, the oscillations are shown

in Figure 3.5. This seems reasonable at the boundaries of the medium far from the

crack and pump source, as the pump is oriented to broadcast perpendicular to the

z-axis, and so we expect to see the effects due to the pump decrease towards the
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boundaries with the probe wave having more influence on the vinteraction, especially

when the pump is only broadcast for 3 cycles.

Rusmanugroho [5] has used a previous version of this model to study the effects

of cracks on nonlinear wave interactions. I briefly point out that their plot for time

delay across the z-axis of the medium is fairly similar in form to the one we see now,

which is expected. They do not see oscillations or a negative time delay, but they do

see the drop in time delay around the midpoint of the model as we observed, followed

by a rapid increase. However, Rusmanugroho suggests that the drop in time delay is

due to the pump wave opening and closing the cracks in their medium, and that the

subsequent increasing time delay is due to the pump wave holding the cracks open

and the probe wave then travelling through those open cracks. While this is a possible

explanation for why the time delay increases significantly in my transient case, I do

not think it accounts for the drop and still consider the cause to be the effective wave

passing out of the region of influence of the pump.

It is unsurprising that these results do not completely match those from the ex-

periments of Gallot and TenCate. My numerical medium is considerably simpler

than the rock they examine, only having a single crack instead of many possible frac-

ture networks; does not have exactly the same dimensions as their sample, although

I demonstrated that the differences should have fairly small qualitative effect; and

is idealized with well-defined background parameters. However, we do see enough

similarities for my model to be applicable to this method.



Chapter 5

Conclusions and Looking Forward

5.1 Future Work

The results of my work suggest many possible directions for future work. The most

logical next step would be to increase the number of cracks in the medium, perhaps

randomly distributed, in order to better approximate a real rock sample, which has

many cracks or fracture networks. It would be interesting to determine if the behaviour

we see here, with the hysteresis loops, the drop in time delay, and the smooth change in

maximum amplitude for vinteraction, would be preserved or significantly changed in this

scenario. Another simple test would be to significantly increase the total simulation

time while still using 50 pump cycles, to see if vinteraction does eventually decay back

to some mean after the pump stops broadcasting.

There are also two areas that I looked into briefly during my work for this thesis

that I have decided are not currently relevant, but certainly exhibit interesting be-

haviour for future work. The first is changing the geometry of the model, particularly

when doubling the length along the z-axis. As shown in Figure 3.4, this new geometry

causes a major change in vinteraction when 50 pump cycles are used. More simulations

could be done to determine what exactly causes this large increase in amplitude.

The second area involves hysteresis, but not between the effective strain and the

effective velocity. Instead, I have found that there is hysteretic behaviour between

the force broadcast by the pump source and the effective velocity. In particular,

the hysteresis loops begin to rotate in time. This is not mentioned in the literature
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for DAET, and thus is not within the purview of my thesis. Nevertheless it is an

interesting observation, and it may be worth determining if it is a numerical effect or

more meaningful.

5.2 Final Notes

I have used a finite difference scheme to model the interactions of a pump wave and

a probe wave within a cracked, nonlinear medium. By varying the number of cycles

for which the pump is broadcast, I obtained data for the two cases of a resonant state

approximated by a steady state, and for a transient state. My main results are shown

and discussed in terms of the effective velocity; a delay in travel time between the case

with a probe with no pump and the case with both probe and pump; and hysteretic

behaviour between the effective velocity and the effective strain. In particular, I found

that the resonant and transient cases do display notably different behaviour. Using

this model, we cannot describe the same behaviour through both the transient and

steady state cases.

These findings were then compared to experimental data using either Dynamic

Acousto-Elastic Testing (DAET) or modified non-resonant DAET. I discussed nu-

merous similarities between my data and those from the literature, and found that

some of the major aspects of each method and state are exhibited in my simulations.

There were differences as well, which may be accounted for by the simplicity of the

model relative to experimental samples. While more simulations may be helpful, I

have proposed that the model as a whole is applicable to both resonant DAET and

non-resonant DAET using the resonant state and the transient state respectively.
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