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Abstract 

Looping marginally outer trapped surfaces, MOTS, have been found and seem to be a key 

phenomenon in black hole interiors during binary black hole mergers. These looping 

surfaces have also been found in the much simpler (and static) Schwarzschild black holes. 

The results presented in this thesis include observations of looping MOTS in charged, 

Reissner-Nordström black holes, where we find looping, cusping, and wiggling MOTS 

behavior depending on the charge of the black hole and stability of its inner horizon. 
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Chapter 1 

Introduction 

One of the most exciting predictions of general relativity is the existence of black holes. 

Much is known about the region outside these objects, but less is known of the 

mechanisms within. Understanding how such objects merge is of importance and there 

have already been some observations of such events using gravitational waves [1].  

Two key structures that are tracked to help understand mergers are event horizons 

and apparent horizons. The behavior of the event horizons in these mergers has long been 

understood [2]. Apparent horizons, the focus of this thesis, have been much less 

understood. These are surfaces from which light nether expands nor contracts, and these 

are known to form and annihilate throughout the course of the merger [3]. 

Single black holes, like the charged one that is the core of this work, have proven 

to be a way to examine a simpler case than the mergers but they still give some insight 

into how horizons evolve. This is because small, singular black holes, have quite a strong 

gravitational field near the horizons, while larger black holes have a weaker field at the 

horizons. So, when we consider a merger between a very large black hole and a very 

small black hole, the most important thing is the small one, meaning we can examine 

singular cases of small black holes to gain insight into how the mergers may behave [4]. 
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The charged black hole is also important for another reason. The most common 

black holes in our universe are rotating black holes, meaning rotating black holes are 

important to study, but they are quite complicated. Charged black holes, however, while 

not nearly as complicated, share some characteristics with the rotating case. Most notably 

they also contain an inner horizon that is characterized by a region with gravitational 

repulsion. Thus, the charged black hole is perfect for a simpler intensive examination. 

1.1 Marginally Outer Trapped Surfaces Explained 

A large stride was made in the study of mergers when it was found that they contain 

horizon-like structures that self-intersect [3][5]. These self-intersecting surfaces are given 

the name Looping Marginally Outer Trapped Surfaces or Looping MOTS for short.  

To understand a regular (not necessarily looping) MOTS, imagine a surface in any 

spacetime you like, perhaps just a sphere, resting in an ordinary Minkowski spacetime. 

Now imagine placing light bulbs all over this surface and then flicking them on. Light 

rays will head both radially inwards and outwards, just flying off as they please. However 

if we introduce a strong enough gravitational field somewhere inside our constructed 

surface, then when we flicked on the bulbs, even the “outward” moving light rays will be 

pulled back in if the escape velocity exceeds the speed of light. Turning to black holes, it 

is known that light that has gone past the event horizon of a black hole, does not leave. In 

our mental concoction this corresponds to the outward oriented light falling back down 

toward the source of the gravitational force. Finally, imagine that the force is only just 

strong enough to hold the light rays constant on our surface, meaning that when we flick 
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our bulbs on, the light rays remain stationary. This is precisely a MOTS. A looping 

MOTS is a MOTS that intersects itself. 

 

FIG. 1.1. Depiction of a “regular” surface, from which the light rays would expand freely. 

 

FIG. 1.2. Depiction of an outer trapped surface, from which the light rays are drawn 

inward. 
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FIG. 1.3. The Marginally Outer Trapped Surface (MOTS). Surface in which light rays 

positioned on top of the surface remain stationary on the surface. 

1.2 Apparent Horizons and MOTSs 

For all these surfaces, something akin to a second derivative test for maxima/minima tells 

us about the stability of the surface. This is referred to as the stability operator, and the 

number of negative eigenvalues to this operator will be the indicator of the stability. 

Stability in this sense does not mean what it does when talking about, say, orbits in a 

Newtonian sense. In this context stability indicates two major things about surfaces. First 

if a surface is stable (the stability operator has no negative eigenvalues), then it forms a 

boundary between outer and inner trapped regions. Second, a stable surface cannot be 

smooth(ly) deformed [6]. The derivation of this operator is beyond the scope of this 

thesis, so the interested reader is directed to work by my collaborators [6]. 
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1.3 Roadmap 

Shortly after the discovery of self-intersecting MOTSs within black hole mergers, they 

were also found within singular black holes [3]. The simplest case is the black hole in the 

Schwarzschild spacetime, a black hole with no charge or spin. Large numbers of self-

intersecting MOTSs were found within the Schwarzschild black hole. In this work, I will 

be examining the Reissner-Nordström, RN for short, black hole, which has a charge, and 

will be examined in a new coordinate system which spans the inside and outside of the 

black hole with spacelike “instants” of time. 

 I will begin by re-examining the Schwarzschild black hole to demonstrate the 

basic ideas and inner workings of the simulations used to produce images of MOTS. This 

will be done through examining the generalized Painlevé-Gullstrand (PG for short) metric 

and setting the charge to zero, effectively giving the Schwarzschild black hole we desire. 

This practice also proves useful in ensuring that the code is working as intended. 

Proceeding on, I remove restrictions from the code and sift through slices in time for set 

charge values. This will be the main work, and I will present a few important 

observations made throughout the course of this research. 
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Chapter 2 

Methods 

2.1 Metrics 

First, an understanding of metrics is required, specifically the metric in question, the 

generalized PG metric. From this understanding, I can construct a framework of how we 

will find the MOTS of interest. Initially though, I will begin by giving a general 

explanation of metrics and related topics by using the Schwarzschild metric. 

 The Schwarzschild metric is, 

𝑑𝑠ଶ = − ൬1 −
2𝑀

𝑟
൰ 𝑑𝑡ଶ +

1

1 −
2𝑀

𝑟

𝑑𝑟ଶ + 𝑟ଶ(𝑑𝜃ଶ + sinଶ 𝜃 𝑑𝜙ଶ). (1) 

Intuitively this so-called line element describes how to calculate arclengths in the given 

coordinate system. The Schwarzschild metric describes a spherical, uncharged black hole 

and is an exact solution to Einstein’s equations. There are a few things to notice here with 

the major one being that the 𝑑𝑟ଶ component of the metric diverges at 𝑟 = 2𝑀 and is 

degenerate at 𝑟 = 0. Thus, this coordinate system is not good for understanding the 

physics near or inside the horizon. This can be remedied through altering our coordinate 

system. A common set of coordinates to examine the Schwarzschild black hole without 

the limitations are the PG coordinates, which have the following line element [7], 
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𝑑𝑠ଶ = −𝑓𝑑𝑡ଶ + 2ඥ1 − 𝑓𝑑𝑡𝑑𝑟 + 𝑑𝑟ଶ + 𝑟ଶ𝑑𝜃ଶ + 𝑟ଶ sinଶ 𝜃 𝑑𝜙ଶ. (2) 

While standard Schwarzschild coordinates are tied to stationary observers (and hence fail 

at the horizon where no such observers can exist), these are tied to infalling observers and 

so are good both inside and outside the black hole. In this coordinate system,  

𝑓 = 1 −
2𝑀

𝑟
. (3) 

If you examine the components of the PG metric with this function, you will see that 

there is no longer a divergence at 𝑟 = 2𝑀, yet there still is one for the point 𝑟 = 0.  

2.2 Penrose Diagrams 

These coordinate systems can be quite well described by what is known as Penrose 

diagrams, or portions of them. In these diagrams we see light rays follow along 45-degree 

angles either from the positive or negative horizontal axis. The axes are spacelike and 

timelike for the x and y respectfully. 

 

FIG. 2.1. Penrose diagram illustrating our universe (I), and the black hole interior (II).  

In Figure 2.1, I aim to show the general idea of a Schwarzschild black hole in a basic 

Schwarzschild coordinate system. The observer here is stationary along the 𝑟 = ∞ line 
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and cannot see things inside the horizon (no light rays can cross out of the horizon). Note 

too that the 𝑟 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 obsrevers must approach the speed of light as 𝑟 → 2𝑀. There 

are no such observers inside the black hole. 

 

FIG. 2.2. Second Penrose diagram illustrating a PG observers’ penetration of the outer 

horizon. 

By contrast, in Figure 2.2 we see that PG observers fall through the outer horizon and so 

give us the ability to map the interior of the Schwarzschild type black hole.  

2.3 Reissner-Nordström Described 

We now move onto the main black hole type considered in this work, which is the RN 

black hole. This black hole has a charge as mentioned previously, and this does 

complicate things slightly. Due to the charge, an inner horizon is formed, and the interior 

of this region has repulsive gravity. This means that observers entering this region will 

not be able to reach all the way in before being repulsed outward. It is worth noting that 

this inner horizon is not a stable surface like the outer horizon is. Mathematically this is 

because the surface has negative eigenvalues associated with it, but more simply that is 
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has trapped surfaces outside and untrapped ones inside. This inner horizon is then a 

problem because if we cannot enter the region deeply enough, we cannot map it in its 

entirety. Thus, we require an acceleration of our coordinate system, strong enough to push 

through the charged region of the black hole. This is achieved by the generalized PG 

coordinates. 

 

FIG. 2.3. An illustration of the RN black hole, where we see the inner horizon with lines 

indicating the repulsive gravity at 𝑟 = 𝑀 − ඥ𝑀ଶ − 𝑄ଶ. The 𝑟 =
ொమ

ଶெ
 indicates the region 

in which basic PG coordinates cannot penetrate. Finally, 𝑟 = 𝑀 + ඥ𝑀ଶ − 𝑄ଶ is the outer 

horizon of the black hole. 

As you can see from Figure 2.3, we have a region that cannot be penetrated by the 

original PG coordinates. We can see this by examining the PG metric, which is equation 

(2), if we consider the metric function for the RN black hole, 
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𝑓(𝑟) = 1 −
2𝑀

𝑟
+

𝑄ଶ

𝑟ଶ
. (4) 

When you place this in equation (2), you will see that under the square root you will have 

an undefined zone, due to the argument needing to be positive or zero, at, 

𝑟 =
𝑄ଶ

2𝑀
. (5) 

Standard PG coordinates are constructed by setting them to free-fall into the black hole. 

However, the repulsive gravity prevents them from reaching the singularity. To solve this 

problem, we instead consider coordinates that accelerate into the black hole [6]. These 

take the form, 

𝑑𝑠ଶ = − ቆ1 −
2𝑀

𝑟
+

𝑄ଶ

𝑟ଶ
ቇ 𝑑𝑡ଶ + 2ඨ

2𝑀𝑟

𝑟ଶ + 𝑄ଶ
𝑑𝑡𝑑𝑟 +

𝑟ଶ

𝑟ଶ + 𝑄ଶ
𝑑𝑟ଶ + 𝑟ଶ𝑑𝜃ଶ 

+𝑟ଶ sinଶ 𝜃 𝑑𝜙ଶ (5) 

which is our generalized PG coordinate system. As you can see, this has already been 

fitted with the RN metric function, and there are no longer any singularities to worry 

about other than 𝑟 = 0. Previously, I said it was beneficial to examine the Schwarzschild 

case to test if the results I obtain are what I’d expect, as well as to see if the code was 

running as intended. If you examine equation (5), and set 𝑄 = 0, you will notice that the 

metric reduces back to the PG metric with the Schwarzschild metric function. This way of 

testing the validity of my code proved quite useful since I could compare the reduced case 

to previous work [3]. 
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2.4 Finding MOTSs Through Numerical Solving 

As mentioned previously, MOTSs are surfaces in which the outward expansion of light is 

zero. Thus, we can find equations that describe this expansion, and set them to zero to 

determine where MOTSs are in a system. I shall go through this process in a simplified 

manner to give some slight insight into how the code for finding MOTSs works. First, we 

recognize that we are finding two dimensional spacelike surfaces which are axisymmetric 

about the 𝑧 axis within our preferred spacetime. This means that surfaces must cross that 

axis at a 90-degree angle. We consider two null vectors, one that points outward from the 

surface and another that points inward, both of which are future directed [6]. Using this 

and a few other considerations, including that we hold time constant, looking at slices of 

time, we arrive at a pair of two non-linear 2nd order ordinary differential equations. I solve 

the equations for 𝑟 and 𝜃 using Mathematica’s NDSolve and then plot 𝜌 = 𝑟Cos(𝜃) vs 

𝑧 = 𝑟Sin(𝜃). 

�̈� = −
𝑝ᇱ�̇�ଶ − 2𝑟�̇�ଶ

2𝑝
+

𝑟�̇�𝜅

ඥ𝑝
, (6) 

�̈� = −
2�̇��̇�

𝑟
−

ඥ𝑝�̇�𝜅

𝑟
. (7) 

Where 𝜅 and 𝑝 are given by, 

𝜅 = −
1

𝑟ඥ𝑝
ൣ𝑝�̇� Cot(𝜃) − 𝑟�̇�൧ 
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+
1

2𝑟ඥ𝑝(1 − 𝑝𝑓)
ൣ𝑟𝑝ଶ�̇�ଶ𝑓ᇱ + 𝑟�̇�ଶ𝑝ᇱ − 2൫𝑟ଶ�̇�ଶ + 1൯(1 − 𝑝𝑓)൧, (8) 

and, 

𝑝(𝑟) =
𝑟ଶ

(𝑟 + 𝑄)ଶ
. (9) 

For details of the derivation of these equations, see [6]. 

2.5 Shooting Method 

I have described how to find equations for MOTSs, so now I will touch on the process of 

using the code to produce a MOTS. First, recall that I said these are surfaces that are 

axisymmetric about the 𝑧 axis. Thus, any surface must leave and touch the axis at a 90-

degree angle. What we do is shoot from certain values of 𝑟, the (coordinate) distance 

from the singularity of the black hole, which will actually be a value laying on the 𝑧 axis, 

and we require for something to truly be a MOTS, it must close, that is, it should return to 

the z-axis at a right angle. Generally, we begin by looking for the outer horizon of the 

black hole and work our way inward. This is because the value for the outer horizon is 

known for the black hole, so it is a good way to test and see if everything is working. 

Then, as we move toward the center of the black hole, we will see the surface shoot off 

and curl inward, until eventually wrapping around again until it once again curls. This 

process continues on, but we are looking for the point right between the curling inward, 

and curling outward moments, this is where we will find a closed MOTS. As an example, 

I show some plots of finding a MOTS in the Schwarzschild case while testing the code. 
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FIG. 2.4. Depiction of the shooting method used to find MOTSs by hand. In this case, 

finding a two looping MOTS for the Schwarzschild black hole. 

As you can see from Figure 2.4, we shoot off at 𝑧 = 0.768, we see that the curve curls 

out and will continue to diverge. We then shoot off from a little bit of a smaller value, 

𝑧 = 0.762, we see that the surface is now curling inward. Thus, the point in which the 

surface touches back down and becomes closed in between those two values. We 

eventually find the closed MOTS at 𝑧 = 0.764. This shooting method is all performed by 

hand, as it does not take long to find these surfaces. There is a possibility for automation 

but because the act of finding these looping surfaces takes such little time, I decided to 

continue finding the surfaces by hand. 
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Chapter 3 

Results 

3.1 Schwarzschild Case 

Here I will present the MOTSs found when reducing the charge value to zero. These are 

the MOTSs for the Schwarzschild case in the Generalized PG metric. I have plotted the 

first three MOTSs that I found along with the outer horizon. 

   

FIG. 3.1. One, two, and three looping MOTSs for the Schwarzschild case. 
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FIG. 3.2. One, two, and three looping MOTSs for Schwarzschild plotted together, along 

with outer horizon, which is depicted by the black line, to show scale. 

Figure 3.2 depicts the results obtained through the methods stated above. To ensure that 

these are what I would expect, I examine results from a previous paper [3]. The results 

match, so all is working as hoped. It is known from previous work [3], that there are 

likely an infinite number of these surfaces within the Schwarzschild black hole; one for 

each integer number of intersections. 
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3.2 Reissner-Nordström Results 

This is the main work of the research conducted. Ultimately, I make three important 

observations from the simulations. The first was found when examining the inner horizon 

of the black hole, which is where the gravitational force flips. When shooting off from the 

𝑧 axis near the inner horizon, we see a sort of “wiggling”. The line moves in and out 

wiggling about the inner horizon. Doing this for some small deviations from the 𝑧 value 

of the inner horizon will give us quite a pretty thing to look at, which is akin to geodesic 

deviation [8]. 

 

FIG. 3.3. MOTSodesic deviation about the inner horizon for L = 16, shown to have 16 

intersections. 



17 
 

17 
 

 

FIG. 3.4. MOTSodesic deviation about inner horizon at 𝐿 = 8. Seen here again that we 

have number of intersections equal to 𝐿 value. 

We see in Figure 3.3 and Figure 3.4 this sort of geodesic deviation [8], which I’ll refer to 

as “MOTSodesic deviation”, with sixteen and eight intersections respectively. These 

intersections can be related to a value denoted as 𝐿. This value has a connection to the 

stability operator mentioned in section 1.2 and is proportional to the charge of the black 

hole.  

𝑄 =
2√𝐿ଶ + 𝐿 + 1

𝐿ଶ + 𝐿 + 2
(6) 
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Knowing that there is a relation between the charge of the black hole and this 𝐿 value, I 

thought it proper to categorize my work by it. Doing so, along with examining these 

MOTSodesic deviations about the inner horizon, lead to the understanding that at positive 

integer values of 𝐿, we have intersections equal to 𝐿. One thing to note is that when 𝐿 is 

not an integer, say 𝐿 = 3.5 we will have 4 intersections, meaning the 4th intersection 

always begins just after 𝐿 = 3. 

This is not only a phenomenon found around the inner horizon. While examining 

looping MOTSs for certain values of 𝐿, I also found that as you find increasing numbers 

of loops, the number of intersections increases, until the maximum number which is equal 

to 𝐿. 

                    

FIG. 3.5. MOTSodesic deviation about the one-looping and two-looping MOTSs for the 

value 𝐿 = 8. 
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As you can see from Figure 3.5, the one-looping has 2 intersections, while the two-

looping has 4 intersections. This example is for the 𝐿 = 8 case. If you continue to do this 

for the rest of the self-intersecting MOTS, until they no longer appear, and you hit the 

inner horizon, you will see the intersections increase until their maximum value. 

Ultimately, this is just a nice connection to make but it does bring us to our next point, 

which is the annihilation/emission of MOTSs. 

3.3 Annihilation and Emission of MOTSs 

As stated previously, there are annihilation/emission events within the charged black 

hole. When examining the charged black hole for a certain value of charge, we will find a 

finite number of MOTSs. If we then lower the charge, which will decrease the size of the 

inner horizon, we will be able to identify more MOTSs. In turn, if we increase the charge 

from its original value, increasing the size of the inner horizon, we will find fewer 

MOTSs. This is due to annihilation/emission events from the inner horizon. I say 

annihilation/emission because how this is perceived depends on if you examine the events 

from the view of decreasing charge or increasing charge. 
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FIG. 3.6. Progression of charged black hole as charge goes from high values to low. 

Beginning has black outer horizon. As progression continues, semi-circle indicated where 

inner horizon lies, MOTSs are seen to be emitted as charge decreases. 

As you can see from Figure 3.6, we see the blue, red, and green traces being emitted as 

the charts progress. This is an example of the charge going from quite high values to the 

point where the inner horizon and the outer horizon nearly touch, down to very low 
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values of charge. The colored traces are then the MOTSs that are emitted as the inner 

horizon shrinks. Looking through these values of charge is akin to a quasistatic process 

within thermodynamics in which we are looking at equilibrium states of the system. That 

is, we change the charge in a manner such that when we stop, we are looking at an 

equilibrium state.  

3.4 Transition from Looping to Wiggling 

When closely examining the annihilation/emission events shown in section 3.3, I find that 

the MOTSs proceed interestingly. As the MOTSs are approached by the inner horizon 

whilst charge is increasing, we will see the MOTSs lose their looping characteristics, in 

favor for something more like wiggles, as shown in Figure 3.7. Even more so, as the 

charge progresses upward, these wiggles will become ever more apparent, until the 

MOTS eventually merges with the inner horizon, as shown in Figure 3.8. When 

examining these MOTSs further, the surfaces are being emitted from within the inner 

horizon as charge decreases in the black hole [6].  
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FIG. 3.7. MOTS that has lost the looping characteristic. This is referred to a wiggling 

MOTS that has intersected with the inner horizon. 

 

FIG. 3.8. Example of MOTS at Q = 0.3794. This MOTS is near the point of merging with 

the inner horizon. 
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Chapter 4 

Conclusion 

Through extensive examination of the Reissner-Nordström black hole I found a few key 

results. The first is that there is a connection between the stability operator and the 

number of intersections that MOTSodesics deviations make with the inner horizon. The 

second is that for finite values of charge there will be a finite number of MOTSs present, 

where in the limit of charge going to zero there will be an infinite number of MOTSs. 

Third, we see events of annihilation/emission during the increasing or decreasing of 

charge in the Reissner-Nordström black hole. Lastly, there is a transition of looping 

MOTSs to wiggling MOTSs as the charge of the black hole increases and the inner 

horizon approaches the MOTSs. These observations can provide grounds for further 

research, especially for the surfaces’ behaviour within and near the inner horizon, as well 

as bolster the idea that studying these systems will allow us to not only understand the 

merging of black holes more, but the general internal geometries of black holes as well. 
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