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Abstract

Microcantilever sensors are highly sensitive detectors capable of detecting target

chemicals in solutions with concentrations in the parts per billion. Commercial and

custom built sensor-based instruments make use of one or more probes consisting of

eight cantilevers each. Until now the cantilevers have been treated equally, however,

since they are in different locations with respect to the flow of input target chemicals

this might not be the case. It is important to understand the concentration of targets

in the vicinity of each cantilever to see what concentration each cantilever actually

experiences. In this work we developed a model to simulate fluid motion throughout

the cantilever sensor cell. It was found that there is a lot of variability in the flow across

the cantilevers, which is suspected to impact the absorption rate. In accordance with

the flow, there are regions of high and low pressure on the surface of the cantilevers,

which could result in misleading deflection readings. Understanding the fluid motion

is the first step towards properly understanding the deflection signal of each cantilever.

ii
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Chapter 1

Introduction & Background

1.1 Microcantilever Sensors

Microcantilever sensors are chemically activated micromachined beams fixed at

one end and free at the other that can be used to perform ultra-sensitive measurements

of various physical and chemical phenomena. They are typically fabricated from

silicon and are hundreds of micrometers long, around 30-50 micrometers wide, and

less than 1 µm thick. A thin film of gold, approximately 20 nm thick, is applied to

the top of the microcantilever which provides a better interface for attaching chemical

functional groups. This surface is then rendered chemically active by coating it with

a receptive layer that is capable of binding with target molecules in the solution. A

simplified schematic of the microcantilever sensor viewed from the side is shown in

Figure 1.1.

Figure 1.1: Schematic drawing of a single microcantilever viewed from the side. It consists
of three layers: a silicon cantilever of precise geometry, a thin gold film, and a functional
group that was synthesized to react with desired target molecules.
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Microantilever sensors are now more commonly fabricated in arrays of eight can-

tilevers on a single chip (Figure 1.2). This allows for the simultaneous execution of

eight sensing experiments. Depending on the nature of the target, one type of recep-

tive layer may be more suitable than another; it is common to include a variety of

cantilevers, each seeking a specific target, to broaden the applicability of the setup.

Furthermore, to increase the reliability of each measurement, it is sometimes desirable

to include several cantilevers each coated with the same receptors thereby decreasing

the likelihood of false positives.

Figure 1.2: Scanning electron micrograph of a microcantilever sensor array. Image used
with permission from [9]. Credit: Viola Barwich, University of Basel, Switzerland.

1.1.1 Method of Operation

Microcantilever sensors provide quantitative measurements of the concentration

of target chemicals in a gas or liquid environment. They operate in either static

mode, or dynamic mode [8]. In static mode, target molecules in solution bind with

the receptive layer of the cantilever inducing a surface stress causing the cantilever to

bend. The extent by which it deflects is measured using an optical beam deflection

system[6] (Figure 1.4) and quantitative measurements are drawn. In dynamic mode,

the cantilever is made to oscillate at one of its resonant frequencies using a piezoelectric

actuator. As the chemical receptors on the cantilever adsorb target species it deposits

mass which in turn changes the resonant frequency, which is sufficient information to

calculate the added mass.
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1.2 Experimental

Figure 1.3: Idealized schematic of the experimental setup.

A schematic of the 16-cantilever setup used in our research group is illustrated in

Figure 1.3. The cantilevers operate in static mode, and the extent of their deflection

is measured using a laser and a Position Sensitive Detector (PSD) as in Figure 1.4. To

minimize the amount of noise in the readings, the deflection is reported relative to one

of the eight cantilevers per array (the reference cantilever). This cantilever is similar

to the rest but is non-receptive to the target chemicals in the solution. Prior to the

experimentation, the system is brought to thermal equilibrium by flowing research-

grade distilled water through it. After a few minutes a chemical analyte is injected at

the inlet, allowing it to run through the system, and the response of each cantilever

is monitored and recorded over time.

Figure 1.4: Diagram of the optical beam deflection system used in our research group.
The position at which the beam hits the PSD is used to measure the extent of the cantilever
deflection. Drawing courtesy of Dr. Luc Beaulieu, Memorial University of Newfoundland.
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1.3 Motivation

Chemicals are introduced to the cantilevers by means of fluid transport. With

reference to Figure 1.3, the chemicals move up the inlet pipe, to the right over the

cantilevers, and down through the outlet pipe where they exit the cell. Considering the

geometry of the system, it is expected that the fluid motion will be very complex with

preferential pathways for bulk transport. Consequently, this means that chemicals

will be advected unevenly through the cell, and the concentration of target species

could vary considerably across the cantilevers. Additionally, the adsorption of target

species onto the cantilever surface will decrease the concentration of the surrounding

solution, which could potentially effect neighbouring cantilevers. The aim of this work

is to investigate the flow using the methods of computational fluid dynamics. This

provides the foundation needed to model more sophisticated problems such as the

transport of chemicals by advection and diffusion or the bending and twisting of the

cantilevers due to fluid motion.

Questions

In general, the long term objective is to gain a better understanding of cantilever

sensor measurements which can be used to further optimize the setup by increasing

detection limits, reproducibility, and reliability. This work was conducted with the

following questions in mind:

1. What happens to the solution as it flows across the cantilevers? Does the flow

of the solution remain laminar or does it become turbulent?

2. What is the relative detection of each of the cantilevers on the chip based on

their position relative to the solution stream? Do cantilevers upstream detect

more particles then the cantilevers downstream due to depletion? How is this

relationship affected by the concentration of the target?

3. What is the relationship between the solution flow rate and the detection of the

targets? If the flow is too high the detection rate presumably decreases because

the attractive force between the cantilever and the targets is not strong enough

to alter the path of the targets in the solution.
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Although it is not explored in this thesis, there are many questions surrounding

chemical absorption by the microcantilevers. None of which can be answered with-

out first understanding the complex flow of particles inside the setup. This will be

the primary objective of the thesis—to fully elucidate the dynamics of fluid in the

experimental setup.

Assumptions

The real physical system is very complicated. In order to make any progress with

a numerical model, the following simplifications are made:

1. The system is isothermal.

2. The fluid is well behaved and incompressible; properties such as viscosity are

constant and do not depend on applied forces (Exemplar of a Newtonian fluid).

3. The cantilevers are rigid and do not bend. This restraint was made simply in

the interest of saving computing time. This assumption can be removed later

when resources permit, allowing for the dynamic simulation of fluid flow coupled

with the bending and twisting of the cantilevers.

1.4 Objective & Methodology

In this thesis Computational Fluid Dynamics (CFD) is employed to study the flow

responsible for transporting target molecules in solution across the arrays of micro-

cantilevers. The method of Finite Element Analysis (FEA) (section 3.2) is used to

solve the Navier-Stokes (NS) equations (section 2.6) numerically. This method dis-

cretizes the entire fluid volume (the domain) into many small elements (tetrahedrons

in this case) constructing what is known as the mesh (section 3.4). Just like the

domain, the equations must also be discretized. There are a number of methods for

discretizing the Navier-Stokes equation. The one used here is a modified version of

Chorin’s method (section 3.3.1) known as the Incremental Pressure Correction Scheme

(IPCS). It serves as an alternative to directly solving a nonlinear Partial Differential

Equation (PDE), and it allows for the pressure and velocity to be decoupled and

solved independently.
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1.5 Scope & Outline

The focus of this thesis will be on the fluid dynamics. The objective and ques-

tions to be answered have already been discussed. In Chapter 2, the theoryI and

mathematics necessary to approach this problem is formalized. Starting from the

general conservation laws, and making a number of arguments valid for this problem,

we arrive at a simplified variant of the well known NS equations. Chapter 3 provides

a technique of utilizing these equations by discretizing them both spatially and tem-

porally, and solving them numerically using the method of FEA. In Chapter 4, the

general equations and methods developed previously are consolidated and readdressed

with all the information necessary to solve for the flow through the cantilever setup.

In this chapter all of the results are presented and critiqued, and the validity of the

numerical solution is justified. Finally, in Chapter 5, the thesis is summarized and

conclusions are drawn, leaving off with a short word on intentions for future work.

IWhile the intention was to make this a standalone document, the breadth of knowledge required
to cover the theory of fluid dynamics and finite element methods is far too substantial for a thesis.
The reader is directed to the bibliography for supplementary material. It is also advised that the
reader familiarize themselves with the appendix material, especially when it is referenced in-text.



Chapter 2

Theory & Mathematics

The fundamental principles governing fluid dynamics are the conservation laws

for mass, momentum, and energy. They may be defined in either differential form,

useful in the particle description, or extended into integral form which applies to

larger bodies. Both are valid, although one may be more favourable in some situ-

ations. In this thesis, the equations are derived from an intuitive control-volumeI

approach, which is most naturally written in integral form. The result is later cast

into differential form with help from the divergence theorem.

Before attempting to derive the equations governing fluid motion it is necessary

to choose a reference frame II. There are two choices: either a Lagrangian frame,

which traces the trajectory of fluid particles, or an Eulerian frame that observes

fluid passing through a fixed location. In practice, the Eulerian specification is more

suitable, however it is far more complicated mathematically. The approach presented

in this chapter develops the mathematics from the simpler Lagrangian reference frame

and then applies the adjustments needed to change frames. Fortunately, converting

between reference frames is not such a daunting task with an understanding of the

Material Derivative (Section: A.2).

IA control-volume is a fictitious volume that is used to study fluid motion in a particular region.
Depending on the choice of reference frame (see section A.1) this volume could move with a parcel
of fluid, tracing its motion, or remain fixed in space and observe how fluid passes through it.

IIIt is recommended to read Appendix section A.1 before proceeding in this discussion.
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2.1 Continuum Hypothesis

Fluid dynamics is the macroscopic study of fluid in motion. Properties such as

density, pressure, and velocity that are normally defined on the basis of interacting

molecules are now averaged quantities which vary smoothly over the domainIII. These

averaged properties are now referred to as fields, which are simply functions of space

and time. The advantage of describing properties using fields is that it can be evalu-

ated at every single point in the domain; before averaging, the density (mass/volume)

at a point of zero volume would be undefined. In the continuum sense, a point is just

a very small element of finite volume with constant (averaged) fluid properties. This

can be mathematically well-defined in terms of a limit as the fluid elements can be

made infinitesimally small. Physically, the continuum hypothesis assumes that these

fluid elements, even though they can be very small, are still much larger the size of

the individual molecules that make up the fluid. The idea of a fluid element is very

meaningful in fluid dynamics, especially when it comes to numerical simulation. This

will be discussed more in Chapter 3.

IIIThe domain is entire space where fluid exists.
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2.2 Reynolds Transport Theorem

The equations of fluid dynamics can be derived from conservation laws for mass,

momentum, and energy. All of which are unified by one generalized equation—the

Reynolds Transport Theorem. This theorem describes how functions change in the

presence of a dynamic fluid medium. It is instrumental in answering questions like:

how does fluid motion effect the transport of mass, momentum, and energy? A

useful attribute of this theorem is that it automatically takes care of the adjustments

needed in converting between reference frames. Mathematically, this theorem provides

a means of bringing the differential operator inside the integral using the relation,

d

dt

∫
Ω(t)

F (x⃗, t) dV =

∫
Ω(t)

∂F (x⃗, t)

∂t
dV +

∫
∂Ω(t)

F (x⃗, t) b⃗ · n̂ dA. (2.1)

The Reynolds Transport Theorem is most easily understood from a graphical perspec-

tive. Suppose we wish to study a property such a mass, enthalpy, or kinetic energy

represented by the scalar function F (x⃗, t). Following the Lagrangian specification, a

parcelIV of fluid, with volume Ω(t), is enclosed by the surface ∂Ω(t). Note that the

volume is dynamically changing with time. Therefore, bringing the derivative inside

of the integral requires knowledge of how the volume is transforming. The resolu-

tion comes from the realization that any change in volume ∆Ω originates from the

displacement of the boundary, resulting in the surface integral on the RHS of the

equation (Eq. 2.1). In an infinitesimal amount of time ∆t an element of the surface

dA, moving with velocity b⃗, sweeps out the volume (b⃗∆t) · n̂ dA.

IVIt is common language in fluid dynamics to refer to a small amount of fluid, that is identified
from the rest, as a parcel. It is allowed to distort its shape with the flow, but its mass must remain
constant.
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2.3 Conservation of Mass

Mass can be neither created nor destroyed. As with many equations in fluid dy-

namics this statement is written in terms of an intensive variable that is characteristic

of the type of fluid, in this case the density ρ. The conservation of mass is stated as,

d

dt

∫
Ω(t)

ρ(x⃗, t) dV = 0. (2.2)

A volume element within a fluid moves and deforms so that it always contains

the same mass. This implies that the boundary of the volume must move with the

local velocity u⃗ of the fluid. Following from the Reynolds Transport Theorem (2.2)

with b⃗ = u⃗ and F = ρ,∫
Ω(t)

∂ρ (x⃗, t)

∂t
dV +

∫
∂Ω(t)

ρ (x⃗, t) u⃗ (x⃗, t) · n̂ dA = 0. (2.3)

Together the volume and surface integral above explain how the mass moves and

deforms with the fluid motion u⃗. Applying the divergence theorem to the second term

allows this expression to be written under one integral. In order to vanish for all Ω(t),

the integrand must be zero, leading to the continuity equation:

∂ρ(x, t)

∂t
+∇ · (ρ(x, t) u⃗(x, t)) = 0 (2.4)

Observe that when ρ is constant in space and time, then (Eq. 2.4) reduces to

reduces to ∇ · u⃗ = 0. This is well known in fluid dynamics as the incompressibility

condition. While ρ was assumed to be constant to get this result, in reverse, the

incompressibility condition says that density does not change with pressure. This

condition is paramount in solving some PDE’s both analytically and numerically.

This simplification is justifiable for most liquids which are nearly incompressible under

standard conditions V, and even some gases for low flow speeds [7, p. 113].

Making use of the material vector identity ∇ · (ρu) = ρ∇ · u+ (u · ∇)ρ and the

material derivative (Eq. A.1), the continuity equation (Eq. 2.4) can be rewritten as

∂ρ

∂t
+ u⃗ · ∇ρ+ ρ∇ · u⃗ =

Dρ

Dt
+ ρ∇ · u⃗ = 0 (2.5)

VAtmospheric temperature and pressure.
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2.4 Conservation of Momentum

Consider a volume Ω(t) enclosed by the surface ∂Ω(t) moving with the fluid. The

forces applied to the mass are governed by Newtons 2nd law F = m(t)a(t). Where

mass is constant in the Lagrangian reference and F = mdu
dt
. Dividing by the volume of

the parcel Ω(t) so that only the intensive variable, density ρ, is involved, and replacing

the differential with the material derivative (Eq. A.1) required in the Eulerian frame

gives the force per unit volume, fVI:

ρ
Dv

Dt
= fNet = f + fsurface.

Body forces f are due to external agents such a magnetic or gravitational fields,

and can be written as f = ρg, where g is the body force per unit mass. Surface forces

(stresses) are applied directionally on the boundary ∂Ω and are ascribable to viscous

forces. The total vector surface force is derived from the stress tensor
↔
σ (Eq. A.2) as

fsurface = ∇ · ↔
σ. The stress tensor is given a more elaborate review in section A.3. In

summary, Newton’s 2nd law can be written as

ρ
Dv

Dt
= ρg +∇ · ↔

σ. (2.6)

It is insightful to write the stress tensor
↔
σ so that normal stresses σ and shearing

stresses τ are labelled explicitly. Effectively, the tensor can be separated into staticVII

and dynamic parts. The first of which comes from the thermodynamic pressure p.

The dynamic part, corresponding to off-diagonal components of the stress tensor, is

commonly known as the stress deviator tensor T. It is responsible for the motion and

deformation of the fluid body. In this application the stress tensor is symmetric [7,

p. 126] so that
↔
σij =

↔
σji, and angular momentum is conserved.

↔
σij =

σxx τxy τxz

τyx σyy τyz

τzx τzy σzz

 = −pI+

σxx + p τxy τxz

τyx σyy + p τyz

τzx τzy σzz + p

 = −pI+
↔

T (2.7)

VIIt is common practice to work with intensive variables when possible. To indicate that the
equations have been divided by Ω(t), they are usually denoted with lower-cased letters.
VIIOf course, there is nothing static about fluid in motion, however the timescale of molecular

collisions are sufficiently small so that the fluid is always in local thermodynamic equilibrium [7,
p. 16].
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2.5 Conservation of Energy

Thermodynamics is a fundamental player in the kinematics of fluid. Heat flow

drives fluid motion, just as fluid motion generates heat; the two are reciprocally

interrelated. The utility of the conservation of energy becomes readily apparent in

problems involving chemical reactions, and the mixing of heterogeneous species.

The equations governing the conservation of energy are resolved using the same

techniques put forth in the development of the aforementioned conservation laws.

Consider a fluid parcel with volume Ω(t) enclosed by the surface ∂Ω(t). The conser-

vation of internal energy per unit mass e and kinetic energy per unit mass |u|2/2 is

stated in integral form as:

d

dt

∫
Ω(t)

ρ

(
e+

|u|2

2

)
dV =

∫
Ω(t)

ρg ·u dV +

∫
∂Ω(t)

fsurface ·u dA−
∫
∂Ω(t)

q · n̂ dA (2.8)

The first two terms on the right are the work done by body forces and surface

forces respectively. The last term represents heat transfer through the surface and is

associated with the heat flux vector q. As before, this equation is put into differential

form by uniting all the terms under one integral for an arbitrary volume. To to this

requires a number of tactics: the time differential is brought inside the integral using

Reynolds theorem and the surface integrals are converted to volume integrals using

the divergence theorem.

Thus far, the conservation of energy equation involves both mechanical and ther-

mal terms. Fortunately, these terms may be separated since it is possible to derive an

expression for kinetic energy directly from the conservation of momentumVIII. The

final result is

De

Dt
= −p

D(1/ρ)

Dt
+

1

ρ
(τ · ∇u)− 1

ρ
∇ · q. (2.9)

VIIIA complete derivation is shown in section 4.8 of Kundu’s Fluid Mechanics [7]
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In many aspects of chemistry and physics it is more convenient to work with

enthalpy h (a measurable quantity) rather than internal energy. The conversion is

simple noting that h = e+ p/ρ. Additionally, Fourier’s law of heat conduction states

that q = −k∇T . Finally, the general form of the energy conservation equation in

differential form may be written as

ρ
Dh

Dt
=

Dp

Dt
+ (τ · ∇u) +∇ · (k ∇T ) (2.10)

The terms on the right stand for pressure workIX, viscous work, and heat transfer

respectively. The viscous term is a form of irreversible work because the deformed

fluid body does not return to its original shape in the absence of viscous stress[7,

p. 140]. Note that τij is symmetric and can be further simplified with knowledge of

the fluids viscosity using the constitutive relation (see section 2.6.1) to write it in

terms of the velocity field.

IXActually, the time derivative gives units of power not energy!
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Uniting the Conservation Equations

At this point it is clear that the equations governing the general dynamics of

fluids (Eq. 2.5, 2.6, 2.10) involve a complicated set of non-linear coupled equations.

The system is not yet even closed; we would also need to specify and equation of

state. Simultaneously preserving mass, momentum, and energy is task burdensome

for even the most powerful computers. Fortuitously, there are scenarios which make

the system of equations much more manageable, like for a fluid subject to isothermal

conditions. In such an environment energy does not leave the system, and the tem-

perature T can be considered to be constant throughout. A second scenario is the

appealing simplification of an incompressible fluid (section 2.6.2). This approximation

is justifiable for a large class of liquids and provides informative results even when

applied to the gas phase[7, p. 113]. The advantage of studying such a fluid is that the

conservation of energy equations become decoupled from the dynamics of the fluid,

so that only the equations for the conservation of mass and momentum need to be

solved simultaneously.

2.6 Navier-Stokes Equations

In the most general form, the Navier-Stokes equation comes from substituting

(Eq. 2.7) into (Eq. 2.6) to give

ρ
Du

Dt
= ρg −∇p+∇ ·

↔

T. (2.11)

On its own, this is equation is not sufficient to solve for the motion of a fluid.

To make progress, one would need to know how to determine
↔

T. Essentially, we need

to assume a relationship between the stress and the rate of deformation (strain rate).

This is known as a constitutive equation. If we know how the velocity is changing

in the direction of the stress we can write
↔

T in terms of velocity gradients. This

effectively reduces the number of unknowns in the equation; instead of solving for a

tensor we are solving for vectors and scalars. Recall that the deviatoric stress is a

function of velocity, pressure, and temperature
↔

T(u, p, T ). One way of modelling
↔

T

is to assume we are dealing with a Newtonian fluid.
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2.6.1 Newtonian Fluid

A Newtonian fluid obeys Newton’s law of viscosity ([7, p. 9]). There is a linear

relation between the stress σij and the strain rate Sij (G.G. Stokes, 1845), which

consequently, means that the rank four (3×3×3×3) viscosity tensor µ is independent

of velocity. Moreover, a Newtonian fluid is considered to be isotropic, meaning that

its intrinsic properties have no preferred direction, or that the stress does not depend

on the orientation of the surface [7].

Collectively, these properties, in conjunction with the approximation that the

fluid is incompressible ∇ · u = 0, leads to some radical simplifications:

• The viscosity tensor reduces to a constant. Note that if the state variables vis-

cosity µ(T, p) and density ρ(T, p) are constants then the Navier-Stokes equation

is decoupled from conservation of energy equations. Effectively, this reduces

the number of variables that need to be solved simultaneously. Still, the pres-

sure and velocity must be solved concurrently, however the temperature can be

solved independently at another time.

• The constitutive equation relating the stress to the velocity is linear. It is

expressed as

↔

T = µ

(
∂ui

∂xj

+
∂uj

∂xi

)
= µ

(
∇u+ (∇u)T

)
. (2.12)

Taking the divergence of this, noting that ∇· (∇u)T = ∇(∇·u) allows the term
in parentheses to become.

∇2u+∇ · (∇u)T = ∇2u+∇(∇ · u)

Employing the incompressibility condition ∇ · u = 0 reduces the constitutive

equation to

∇ ·
↔

T = µ∇2u. (2.13)
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2.6.2 Incompressible Navier-Stokes Equations

Working with an incompressible Newtonian fluid has a number of benefits as

seen in section 2.6.1. As mentioned previously, this specialization of the Navier-

Stokes equation is completely decoupled from the temperature. This means that the

conservation of energy equations can be solved independently, reducing the complex-

ity of the problem. Inserting the relation (Eq. 2.13) into (Eq. 2.11) results in the

incompressible Navier-Stokes equation

ρ
Du

Dt
= ρg −∇p+ µ∇2u (2.14)

which is a statement of the conservation of momentum. The incompressible form for

the continuity equation ∇·u = 0 is a statement of the conservation of mass. Together,

these two equations form a system of PDE’s with just two unknowns—velocity and

pressure.

2.6.3 Physical Interpretation of Navier-Stokes Equations

In deriving the Navier-Stokes equation it was useful to have some physical ana-

logue such as the control volume with which to draw connections. Now that we have

the completed equation it is helpful to reinterpret it in a physical sense.

ρ

Inertia︷ ︸︸ ︷ ∂u

∂t︸︷︷︸
V ariation

+ u · ∇u︸ ︷︷ ︸
Advection

 =

Body︷ ︸︸ ︷
ρg︸︷︷︸

ExternalSource

−
Surface︷ ︸︸ ︷

∇p︸︷︷︸
InternalWork

+ µ∇2u︸ ︷︷ ︸
Diffusion

(2.15)

The terms on the LHS (see Section A.2: Material Derivative) represent the motion

of the fluid due to the combined effect of the external, hydrostatic, and viscous forces

that are summarized on the RHS. External sources such as gravity act on the entire

body, whereas internal forces such as those associated with −∇p and µ∇2v act on

the surfaceX. The −∇p term prevents the volume from compressing due to normal

stresses; instead it deforms and moves the fluid body. The advection and diffusion

terms are defined below:

XKeep in mind that the surface referred to here is part of an artificial volume inside the fluid.
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� Advection: the movement of a fluid parcel due to the velocity field. One way

of thinking about this might be to realize that the dot product in u · ∇u is

projected along the velocity vector, and is largest when the velocity is changing

in the direction of the flow (∇u ∥ u). In other words, local areas of flow tend

to align towards the bulk stream.

� Diffusion: The diffusivity term µ∇2u takes advantage of resistive forces (in-

flicted by the shearing stresses between viscous fluid layers) to propagate mo-

mentum; basically, fluid in motion will drag surrounding fluid with it. The

Greek letter µ stands for the dynamic viscosity with units of (Force·Time/Area). It

is common to divide through by ρ, where ratio µ/ρ is defined as the kinematic

viscosity and is often referred to as “momentum diffusivity”. A high viscosity

fluid is not as miscible as a low viscosity one.

2.7 Boundary Conditions

Formulating a mathematical problem such as the Navier-Stokes equations re-

quires, in addition to the governing equations, two things: a detailed depiction of the

geometry (the domain in space where the equations are being solved), and boundary

conditions.

Boundary conditions provide indispensable information concerning the unknowns

in the equation. The two main types of boundary conditions are the Dirichlet and

Neumann conditions:

� Dirichlet: Specifies the value of the function on a surface, u(x, t) = f(x, t) on

ΓD ⊂ ∂Ω.

� Neumann: Specifies the normal derivative of the function on a surface, ∂u
∂n

=

∇u· n̂ = f(x, t) on ΓN ⊂ ∂Ω. It is common to set f(x, t) = 0, in which case it

is referred to as a natural or “do nothing” boundary condition; it say that the

velocity will not change beyond that point in the direction of the normal.
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Typically, for viscous flows, a Dirichlet noslip condition of of u = 0 is employed

everywhere on the boundary. This ensures that the fluids velocity is zero at the solid

interface, and is justifiable when fluid-fluid cohesive forces are surpassed by fluid-solid

forces.

In this thesis, we consider closed boundary everywhere except an inlet and outlet

for the geometry. One way of driving the flow is to setup a pressure gradient using

Dirichlet pressure conditions of unique value at the inlet and outlet of the geometry.

Alternatively, an unchanging velocity profile can be defined using a Dirichlet velocity

condition at the inlet and a Neumann “do nothing” boundary condition at the out-

let. This second method will not work in the absence of a pressure condition; it is

mandatory to specify the pressure somewhere within the domain!

In addition to boundary conditions it is also necessary to supply initial conditions.

In this thesis, the goal is to find a steady state solution to the fluid flow. The approach

used here is to start with an initial condition of zero velocity everywhere and let the

system spin up to equilibrium as the initial transients decay. Although, an educated

guess at the solution could speed up its convergenceXI.

2.7.1 The Boundary ∂Ω

The boundary can be defined as the union of the boundaries associated with the

three types of boundary conditions: the Dirichlet, Neumann, and Robin Condition.

The latter will not be considered in this thesis.

∂Ω = ΓD ∪ ΓN ∪ ΓR (2.16)

XISome experimentation was done with various boundary and initial conditions and it was discov-
ered that some of them brought the system to steady state faster than others (See Section 4.2).



Chapter 3

Discretization of PDE’s

The majority of PDEs in fluid dynamics are unsolvable by current analytical

methods. Instead, approximate solutions must be derived numerically. Although

a variety of numerical schemes exist, the approach taken in this thesis begins with

writing the differential equation in weak form (Section: 3.1). In short, this involves

multiplying a PDE by a so-called test function then integrating over the entire fluid

domain. The advantage of integrating is that it makes it easier to specify boundary

conditions (Section: 2.7) over complex geometries.

The next step is the temporal discretization. As with many time-dependent nu-

merical problems, the equations must be written in an iterative form, progressing

with some time step. This can be achieved using finite difference methods for nu-

merical differentiation. Here, we use a predictor-corrector numerical schemes that is

appropriate to solve the Navier-Stokes equations. This scheme, called the Incremental

Pressure Correction Scheme, is described in Section 3.3.1.

The final step involves spatially discretizing the domain into elements with a

process called meshing (Section: 3.4.1). The PDE is solved in each substituent ele-

ment making up the domain and a total field is interpolated by uniting each of these

solutions. This idea is known as the Finite Element method (Section: 3.2).
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3.1 Variational Formulation

The first step in solving a PDE is to reformulate it as a variational problem.

The term stems from calculus of variations: the field of mathematics concerned with

minimizing or maximizing a functional. One can cast the problem into a weak form by

multiplying the PDE by a special test function v and integrating over the domain Ω.

It is the presence of the test function that weakens the requirement for the solution u

to be defined at all points, so that discontinuous derivatives are allowable. In general,

it is much easier to solve a differential (strong) equation in its integral (weak) form.

It also makes the task of enforcing boundary conditions much more natural, as they

are now carried out over an integral relatable to the geometry. While the weak form

is clearly different from the differential equation, it can be shown that a solution to

the weak equation is also a solution to the strong equation. Variational methods lay

the groundwork for FEA.

3.2 Finite Element Method

The variational form of a PDE is a continuous problem with an infinite number

of unknownsI. We can approximate the solution of some field u(x) by solving a similar

discrete problem with a finite number of unknowns. We introduce the approximate

solution uh(x) which differs from the true solution by some error u(x) = uh(x) + e(x).

The idea of Finite Element Analysis is to describe a general function using simple

functions, called the basis. This technique subdivides the problem into smaller ele-

ments which are easier to work with. The advantage of this is that the equation is now

separable. In practice, PDEs are solved over individual elements, then accumulated

to form the complete solution.

IThe unknowns are the undetermined coefficients of (Eq. 3.1), Uj . In the limit as j goes to
infinity, the approximation uh(x) approaches the true solution u(x).
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The function uh(x) can be expanded in terms of the basis φj, which is part of the

N -dimensional trial spaceII Vh, as

uh(x) =
N∑
j=1

Ujφj(x). (3.1)

In essence, Uj is the weight of a particular function used to manufacture uh(x).

In Finite Element Analysis, the basis is chosen but their respective weights are to be

determined. As an example, consider Figure 3.1, where the wave Ψ = αφ1 + βφ2 is

decomposed into two sinusoidal basis functions φ each weighed by some undetermined

coefficient α and β.

0.0 0.2 0.4 0.6 0.8 1.0

1.0

0.5

0.0

0.5

1.0
1
2

2 1 + 2/3 2

Figure 3.1: An example of sinusodial basis functions that are being superimposed to create
the function Ψ (colored green).

In keeping with the variational methods it is necessary to redefine the test func-

tion ν in terms of basis functions as well. Indeed, this basis does not have to be the

same as for uh(x). To avoid loss in generality a separate function space, the test space

V̂h, is defined. Within this space is a class of functions {φ̂i} which form the basis.

That is,

vi = φ̂i(x). (3.2)

IIFunction space is discussed more rigorously in Section 3.2.1. Until then, it suffices to think of it
as a restrictive environment housing very particular functions.
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With a convenient basis at hand, the next step is to substitute (Eq. 3.1) and

(Eq. 3.2) into the variational formulation. The great deal with this is that it turns the

system of PDEs into a simple algebraic problem, Au = b. To exemplify this consider

the following exercise.

A Simple Example: Poisson’s Equation

Suppose we wish to solve the familiar Poisson’s equation (elliptic) for u, where f

and uD are known functions on the domain Ω or its boundary ∂Ω.

−∇2u(x) = f(x), x in Ω,

u(x) = u
D
(x), x on ∂Ω.

The variational form is actualized using integration by parts, acknowledging that

the test function v is zero on the surface due to the Dirichlet condition [11]:∫
Ω

fv dx =

∫
Ω

∇u· ∇v dx ∀ v ∈ V̂

Substituting equations 3.1 & 3.2 into this yields a system of linear equations

(AijUj = bi)

N∑
j=1

Uj

∫
Ω

∇φj· ∇φ̂i dx =

∫
Ω

fφ̂i dx,

Which can be inverted to solve for the coefficient matrix U . Notice that

Aij =

∫
Ω

∇φj· ∇φ̂i dx , bi =

∫
Ω

fφ̂i dx.
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3.2.1 Basis Functions & Vector Space

Function Space

We have made use of the trial and test function spaces but they have not yet been

properly defined. A function space is an abstract vector space. The important thing

about them, in the context of fluid dynamics, is that they constrain the solution to

functions of a particular form. One example used in a number of physics applications

is the Lagrange L2 function space, which requires functions to be square integrable so

that ⟨f |f⟩ is finite. Despite being an infinite dimensional space, it retains a geometrical

significance comparable to the Euclidean frame R3, and is therefore a Hilbert space.

Basis Functions

The choice of basis is pivotal when it comes to accurately representing a function.

Ordinarily, the basis is restricted to a particular class of functions whose properties are

sought after. This limitation is naturally ensued by the selection of a specific function

space. A highly versatile option is the polynomial basis of the Lagrange L2 function

space, which is usually restricted to a particular order (linear, quadratic, etc.). The

degree elected is paramount when it comes to the success of the fitIII. Figure 3.2

illustrates both linear and quadratic L2 basis elements. One can imagine that any

continuous function can broken into a series of infinitesimally small line segments

(linear basis elements). However, since we are dealing with a finite number of nodes

(points along x) we may need to increase the order of the basis to fit the function.

(a) Linear Basis (b) Quadratic Basis

Figure 3.2: L2 Basis Functions.

IIISelecting the wrong basis could lead to oscillations that prevent the functions from ever converg-
ing [10, p. 62].
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In problems involving multiple variables, it is standard to define a unique func-

tion space for each unknown; the basis representing one function may not be good

at representing another, therefore two independent sets of basis are used. In fact,

when solving Navier-Stokes equations it is common to search for velocity solutions

of quadratic form (Figure 3.2b), whereas the pressure solution is sufficiently detailed

using linear functions[11] (Figure 3.2a).

3.3 Variational Form of Navier-Stokes

Consider the incompressible Navier-Stokes equations below. For steadyIV viscous

flows this PDE is smooth with a continuous derivative. For convenience, the terms

containing the unknowns, u and p, have been written on the LHS, as in

ρ
∂u

∂t
+ ρ(u · ∇u)− µ∇2u+∇p = f (3.3a)

∇ · u = 0. (3.3b)

To write this in its weak form multiply (Eq. 3.3a) by a test function ν, and integrate

over the domain Ω, giving∫
Ω

ρ
∂u

∂t
· ν dx+

∫
Ω

ρ(u · ∇u) · ν dx−
∫
Ω

µ∇2u · ν dx+

∫
Ω

∇p · ν =

∫
Ω

f · ν dx. (3.4)

A standard approach in breaking equations like these down is to lower the order

of the derivatives. This is done using integration by parts,∫
f

(
dg

dx

)
dx =

∫
d

dx
(fg)dx−

∫
g

(
df

dx

)
dx.

The diffusive term can then be expressed as

−
∫
Ω

µ
(
∇2u

)
· ν dx = −

∫
∂Ω

µ
∂u

∂n
· ν ds+

∫
Ω

µ(∇u · ∇ν) dx.

IVSurprisingly, it is easier to solve for unsteady viscous flows as the PDE is parabolic rather than
elliptic. In practice, a steady flow can be converted to unsteady using a time-marching scheme [3].
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The surface integral comes from the realization that the limits of integration lie on

the boundary of the volume, and the sign correlates with the direction of the surface

normal. The pressure gradient term is found to be∫
Ω

(∇p · ν) dx =

∫
∂Ω

pν · n̂ ds−
∫
Ω

p∇ · ν dx.

The resulting equation, as well as the one preceding it, can be further simplified

using the fact that the test function v is required to vanish on the (Dirichlet) boundary

ΓD [11], where the solution is known, leaving only only the portion of the surface with

Neumann boundary conditions, ΓN . Equivalently, ∂Ω = ΓD ∪ ΓN → ΓN so that∫
Ω

ρ
∂u

∂t
· ν dx+

∫
Ω

ρ(u · ∇u) · ν dx+

∫
Ω

µ(∇u · ∇ν) dx

−
∫
Ω

p∇ · ν dx+

∫
ΓN

pν · n̂ ds−
∫
ΓN

µ
∂u

∂n
· ν ds =

∫
Ω

f · ν dx.

Similarly, the incompressiblity condition gets put into a weak form using its own

test function q, and integrating over Ω as in
∫
Ω
q ∇ · u = 0. Compiling everything so

far completes the variational formulation, which is presented as∫
Ω

{ρ∂u
∂t

· ν + ρ(u · ∇u) · ν + µ(∇u · ∇ν)− p∇ · ν} dx

=

∫
Ω

f · ν dx+

∫
ΓN

{µ∂u
∂n

· ν − pν · n̂} ds, ∀ν ∈ V̂ V (3.5a)∫
Ω

q ∇ · u = 0, ∀q ∈ Q̂ (3.5b)

VThis says the test function ν belongs to the function space V̂ . The idea of a function space will
be introduced in Section 3.2.1
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3.3.1 Chorins Method & IPCS

The idea of temporal discretization is to cast the problem into an iterative form

which can be implemented in a computer program. When translating a differential

equation to a computer it is customary to approximate the derivatives with finite

differences. In this work, it suffices to use simple difference quotients to approximate

time derivatives. For example, a first order derivative may be approximated using one

of the following methods:(
∂u

∂t

)
i

≈ ui+1 − ui

∆t
Forward Difference (3.6)(

∂u

∂t

)
i

≈ ui − ui−1

∆t
Backward Difference (3.7)(

∂u

∂t

)
i

≈ ui+1 − ui−1

2∆t
Central Difference. (3.8)

In application to the NS equations, these methods result in a nonlinear problem

which is not very straightforward to solve. The task is especially cumbersome due

to the fact that the velocity and the pressure are coupled by the incompressibility

constraint (Eq. 3.3b). A more efficient approach was brought forth by Chorin (1968)

as the so called projection method. One of the many variations of the scheme is known

as the Incremental Pressure Correction Scheme (IPCS) [4]. As the name suggests, it

is an iterative algorithm. The majority of its success comes from the fact that it

decouples the velocity and pressure and solves them independently as a set of elliptic

equations ([5]). It is therefore classified as a splitting method. The routine involves

calculating a tentativeVI velocity u⋆ using an estimate for the pressure (obtained

from the previous time step if there is one), using this velocity to obtain a better

representation of the pressure, and finally using the adjusted pressure to compute the

corrected velocity. As a result, the variational formulation assumes three steps as

presented below, where the time derivative is approximated using a central difference

scheme.

VIA tentative velocity is a temporary guess at the solution based on the given pressure. Its purpose
is to essentially find agreement between the pressure and velocity.
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IPCS Scheme

The Incremental Pressure Correction Scheme is not derived or explained in detail

in this thesis. For more information see the originating article by Goda [4] and Section

3.4 of the FEniCS tutorial [10, p. 56-73]. The scheme is presented as follows:

⟨ ρ

∆t
(u⋆ − un), v⟩+ ⟨ρun · ∇un, v⟩+ ⟨σ(un+ 1

2 , pn), ϵ(v)⟩ (3.9)

+ ⟨pnn, v⟩∂Ω − ⟨µ∇un+ 1
2 · n, v⟩∂Ω = ⟨fn+1, v⟩.

⟨∇pn+1,∇q⟩ = ⟨∇pn,∇q⟩ − 1

∆t
⟨∇ · u⋆, q⟩. (3.10)

⟨un+1, v⟩ = ⟨u⋆, v⟩ − 1

∆t
⟨∇(pn+1 − pn), v⟩. (3.11)

Where ϵ(u) = 1
2

↔

T and σ(u, p) = 2µϵ(u) − pI as seen in Chapter 2, v and q are well

chosen test functions and all of the remaining variables are as previously defined. The

notation un+ 1
2 refers to the arithmetic mean un+ 1

2 ≈ (un+un+1)
2

and ⟨v, w⟩ =
∫
Ω
vw dx.

Implementation of the IPCS into the finite element software FEniCS may be found

in [12, p. 402]

3.4 Spatial Discretization: Mesh

It can be enormously difficult to solve a PDE over a complex geometry. The

standard approach is to discretize the domain into elements of primitive geometry

such as triangles or tetrahedrons. Collectively, these elements form the mesh, which

is an approximate depiction of the geometry. A single element of the mesh is called a

cell. Figure 3.3 shows Lagrangian elements of order 1, denoted by P1.

Increasing the order of the element increases the number of nodes within the cell.

These nodes, indicated by the black dots, serve as evaluation points. Referring back

to Figure 3.2, a greater number of nodes corresponds to a better fit of the solution

using appropriate basis functions. Figure 3.4 shows Lagrangian elements of order 2,

denoted by P2.
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Figure 3.3: P1 Lagrange elements in 1-3 dimensions. There is a node at every vertex.
Taken with permission from the FEniCS book [12].

Figure 3.4: P2 Lagrange elements in 1-3 dimensions. There is a node at every vertex and
one at middle of each edge. Taken with permission from [12].

In addition to systemically detailing the geometry, the mesh retains information

regarding boundary conditions. Selected cells, or rather their facets, might be assigned

Dirichlet or Neumann conditions, in which case they are referred to as the ΓD and ΓN

parts of the boundary ∂Ω (Section 2.7.1).

The usefulness of the mesh elements is that they provide a simple geometry for

solving PDEs. Keep in mind the objective of discretization is to divide a complicated

problem into many simple ones, which can later be assembled to approximate the

complete solution. Each individual cell in the mesh accommodates a fairly simple

function which must satisfy the governing equations with appreciation for the other

cells in its local environment. Recall that the form of these functions depends on the

type and order of the element (Figures 3.3 and 3.4). Consequently, the accuracy of

the solution depends on the size of the cells; to resolve finer detail demands smaller

cells, or more evaluation points. Dividing the mesh into smaller elements dramati-

cally increases the complexity of the problem, and therefore the computational time

required to solve it.
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3.4.1 Meshing

In general a mesh is built by first defining a geometry, then dividing it into

many small elements using some triangulation technique. Typically, the geometry is

outlined by either parameterizing a surface enclosing the volume, or constructively

adding together simple shapes such as rectangular prisms and cylinders. The latter

approach is known as Constructive Solid Geometry (CSG). There are several existing

software programs, both commercial and open source, that can be used for meshing.

The program used in this thesis is called mshr : a tetrahedral mesh generator that

uses CSG and supports a number of meshing algorithms. This will be explored in

Section 4.1.

CFD is known for its struggle with large data sets and long computation time.

Although the first instinct might be to provide compensation with more powerful

computers, there are more effective approaches. One improvement is to optimize the

size of the mesh cells. It is known that smaller cells yield more accurate results, but

create a much more computationally demanding problem. Therefore, it is wise to

look for a balance between cell size and time requirements. Even better would be to

increase mesh resolution only where it is needed. This method is called local mesh

refinement. An example of a locally refined mesh is shown in Figure 3.5.

Figure 3.5: Artistic representation of a tetrahedral mesh. Part of the mesh has been
removed to show the inside. Notice how the elements vary in size; this mesh has been
refined locally to optimize the quality of the solution only where it is needed.



Chapter 4

Cantilever Specific Problem

In this chapter, we make use of the methods and ideas developed in previous

sections to study fluid flow through the cantilever cell. The problem introduced in

Chapter 1 is established mathematically in rigorous detail. We begin by specifying the

domain of the fluid, which is used to manufacture a mesh. Then proceed by concisely

stating all the equations and boundary conditions that are involved. The results of

the CFD simulation are presented in this chapter, along with some experiments that

justify whether or not the solution appears to be valid. One of the most significant

studies used in the development of the program is of the flow development at the inlet.

In this region the geometry is very simple and can be compared with the analytical

solution for pipeflow; if the numerical solution is in agreement with the analytical

result, then there is some assurance that the problem has been defined correctly. The

results of the CFD analysis in the long-time limit are carefully examined with a clear

focus on the flow around the cantilevers.
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4.1 Domain of Interest

A tetrahedral mesh was created using CSG with primitive shapes such as rectan-

gular prisms and cylinders to replicate the domain seen in Figure 4.1, using the exact

measurements exhibited in Listing 4.1. This was accomplished with the open source

software, mshr I, which was interfaced using code written in Python. The Python

interface is preferred over a graphical one because it is more reproducible and can be

easily modified.

Figure 4.1: The fluid domain. It represents everywhere that fluid exists in the cantilever
cell, and is the environment where simulation is done—the mesh. Although the cantilevers,
and the block to which they are attached appear to be part of the domain, they are actually
excluded from the fluid volume. The only reason these features are apparently visible is
because of the shading used on the interior surface to make it that way. The origin is placed
at the center of the inlet orifice: X is directed to the right, Y along the axis of the pipe,
and Z, with righthandedness, in the plane of the top surface. Edges cropped to fit page.

Ihttps://bitbucket.org/fenics-project/mshr/src/master/

https://bitbucket.org/fenics-project/mshr/src/master/
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Listing 4.1: Domain Measurements✞ ☎
1 "#========================= System Dimensions (Millimeters )=========================#"

2 #Cell Block to which the Cantilevers Attach.

3 f(0) = Block_Length = 3.1 mm # Cell Block Length

4 f(1) = Block_Thickness = 0.4 mm # Cell Block Thickness

5 f(2) = Block_Width = 2.4 mm # Cell Block Width

6

7 #Cantilever Dimensions

8 f(3) = Cantilever_Length = 0.75 mm # Cantilever Length (750± 3 µm)

9 f(4) = Cantilever_Separation = 0.1 mm # Space between Cantilevers

10 f(5) = Cantilever_Thickness = 0.001 mm # Cantilever Thickness (1± 0.1 µm)

11 f(6) = Cantilever_Width = 0.1 mm # Cantilever_Width

12

13 #Indentation (Section under the glass plate)

14 f(7) = Groove_Depth_y = 1.016 mm # GrooveII Depth

15 f(8) = Groove_Length_x = 19.05 mm # Groove Length Center to Center Hole

16 f(9) = Groove_Offset_X = 0.767 mm # Groove Offset

17 f(10) = Groove_Offset_Z = 1.235 mm # Groove Offset

18 f(19) = Window_Depth_y = 1.0 mm # Window Depth (Estimated 1mm)

19 f(20) = Window_Width_z = 8.89 mm # Window Width

20

21 #Cantilever Holder

22 f(11) = Holder_CircleDiameter = 1.588 mm # Circular Extrusion behind Cell Block

23 f(12) = Holder_Depth_y = 0.508 mm # Cantilever Holder Depth

24 f(13) = Holder_Length_z = 3.175 mm # Cantilever Holder Length

25 f(14) = Holder_Separation_x = 1.667 mm # Cantilever Holder Width

26 f(15) = Holder_Width_x = 2.54 mm # Holder Separation

27

28 #Pipe

29 f(16) = Pipe_Length_Left_y = 9.296 mm # Length of Left Pipe (Axis along y)

30 f(17) = Pipe_Length_Right_y = 9.296 mm # Length of Right Pipe

31 f(18) = Pipe_Radius = 1.588 mm # Radius of Inlet/Outlet Pipe✝ ✆
Table 4.1: Mesh Specification

Property Value
Volume 0.436 ml
Surface Area 750.4 mm2

Number of Cells 373907
Number of Vertices 73541

IIGroove is small channel where cantilevers are situated
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The mesh generator mshr supports a number of different triangulation algo-

rithms, including CGALIII and Tetgen[15]. Due to the complexity of the geometry,

and the tiny scale of the microcantilevers in comparison with the rest of the domain,

many of the meshing algorithms failed to draw any tessellationsIV. Figure 4.2a illus-

trates an attempted meshing of a single cantilever (0.001 mm thick) mounted to the

cell block (0.4 mm thick). Clearly, CGAL is having problems around sharp edges and

small features. Although the holes in the mesh appear most strikingly, the regions

of dense nodes (dark areas) are equally problematic. These issues come from trying

to create a flat surface using tetrahedrons. This is where another software, Tetgen

succeeds over its competitors—it preserves the surface of the mesh and can adapt to

extreme size differences by varying the size of its cells (Figure 4.2b). Notice that the

number of grid points is much more dense on the cantilever then anywhere else. This

is desirable as the cantilevers are the interest of this experiment, so the more data

points the better. The mesh used in this work (Figure 4.1) is characterized in Table

4.1.

(a) CGAL (b) Tetgen

Figure 4.2: Triangulation Algorithms: CGAL vs. Tetgen.

IIIhttps://www.cgal.org/index.html
IVA tessellation defines how points connect together. In this mesh they form tetrahedrals that fit

together perfectly so that there are no holes in the interior.

https://www.cgal.org/index.html
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4.2 Restatement of the Problem

The goal of this problem is to solve for the velocity and pressure fields in the

system using the Navier-Stokes equation for incompressible flows (Eq. 2.14). When

implementing this as a computer program it is actually preferable to use a slightly

more rudimentary form that externalizes the incompressibility condition. This is to

avoid the second order derivatives that arise when trying to simplify equation 2.12.

The final form of the incompressible Navier-Stokes equation is summarized by the

following equation:

ρ (∂u/∂t+ u · ∇u) = ∇ · σ(u, p) + f (4.1a)

σ(u, p) = µ
[
∇u+ (∇u)T

]
− pI (4.1b)

∇ · u = 0, (4.1c)

where σ(u, p) is the stress tensor, and f is the body force. The remaining characters

follow standard symbolism (see prefatory for Nomenclature). In this model, it is

logical to presume that body forces such as gravity will have very little impact on the

overall fluid motion. Therefore, f is set to zero.

Boundary Conditions

Inlet Outlet

Cantilevers

Figure 4.3: A simple sketch of the complete 3D fluid domain highlighting boundary parts.

Figure 4.3 shows a simple schematic representation of the fluid domain. The

different parts of the boundary are identified as: the inlet, outlet, and the cantilevers.

The remainder of the surface is referred to as the walls. Recall from section 2.7.1 that

the boundary may be defined mathematically using a combination of Dirichlet and

Neumann conditions. Those that are essential in solving this problem are discussed

below.
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• Walls:

The walls of the domain are rigid and impenetrable. To ensure that no fluid

passes through these walls the velocity normal to the surface is required to

vanish in this region. Supposing that the fluid-solid adhesive forces are stronger

than fluid-fluid cohesive forces near the boundary, then the tangential velocity

will be small enough that it can be reasonably approximated as zero as well.

This is known as the “no-slip” condition:

Γwall : u⃗ = 0

It reads: “for the wall part of the boundary (denoted by Γwall) the velocity

(normal and tangential) is zero”.

• Cantilevers:

In the current study the cantilevers are rigid. They adopt the same no-slip

condition as the walls and, therefore, act only as an obstruction to the flow in

the cell.

Γcantilevers : u⃗ = 0

• Outlet:

At the outlet, fluid must be able to leave the system. This can be accomplished

with a Neumann condition, ∇u⃗ · n̂ = 0, which says that the normal component

of the velocity is constant beyond the outlet. Effectively, once the fluid leaves

the outlet it moves freely out of the way, having nothing more to do with the

system.

In addition to the condition of the velocity, there must also be one for pressure.

It is necessary to set the pressure somewhere in the system. The choice of

pressure is arbitrary since it is really a pressure difference that drives the flow.

For convenience the pressure at the outlet is set to zero.

ΓOulet : ∇u⃗ · n̂ = 0, P = 0
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• Inlet:

The flow can be driven in one of two ways:

I. A pressure gradient is set up that will accelerate the fluid in the direction

of low pressure. This effect is easily administrated using conditions similar

to the outlet, except for a nonzero constant pressure P0 at the inlet:

ΓInlet : ∇u⃗ · n̂ = 0, P = P0.

II. A velocity profile is prescribed at the inlet that forces fluid through the cell

by transferring its momentum:

ΓInlet : u⃗ = f(x⃗, t).

Since the form of the inlet velocity profile is not known, the first method (I)

is used. This method is especially good for analyzing developing flows in a

time-dependent manner, and is able to establish a flow profile without any

wrongful conjectures to its form. Unfortunately, however, it might not be

the most efficient choice when it comes to computer modelling. Following

the discussion of Chapter 3: the velocity was chosen to be represented with

a L2 quadratic basis using P2 Lagrange elements, whereas the pressure is

represented using a linear basis and P1 elements. Presumably, a boundary

condition on the velocity will be much stronger than the pressure simply

because there are more evaluation points. In this study the IPCS was found

to be much more stable when prescribing the inlet velocity rather than an

inlet pressure! The solution reached convergence much faster using this

method, saving a lot of simulation time.

In this study both methods are explored, however the latter is only used in place

of steady state profiles where u⃗ = f(x⃗, t) → f(x⃗). The general procedure is as

follows. Using an inlet boundary condition in the form of (I) generate a solution

for the velocity in the long-time limit. Using numerical surface fitting techniques

find an approximate expression ue for the inlet velocity profile. Finally, redefine

the problem using method (II) now with ue enforced as a Dirichlet condition.

This routine helped save many days worth of simulation time for the work

presented in this thesis.
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Initial Conditions

Initially the velocity is zero everywhere within the system: u⃗(x⃗, t0) = 0. Although

these initial conditions are sufficient for FEA they do not match with the boundary

conditions; initially the velocity is zero everywhere within the domain, however at

the very first time step the velocity on the boundary of the inlet is largely nonzero.

For the velocity at the orifice to drastically change from zero to a large number in a

infinitesimal amount of time there must be a very large force (acceleration). Physically,

this discontinuity sends a pressure shock wave through the volume. Fortunately, the

iterative correction scheme quickly loses track of the initial conditions so this problem

is not catastrophic in long time limits.

4.2.1 Validity of Numerical Solution

When it comes to simulating fluid, the success of the solver is heavily reliant

on the quality of the mesh—the credibility of the numerical approximation increases

with the resolution of the mesh. Of course, such detailed approximations come at a

cost of computing time. Somewhere in the balance between quality and time there

exists a mesh that is fine enough to yield reasonable results, but not so fine that

it consumes unnecessary computing resources. In other words, the error attributed

to the numerical approximation should decay as the solver progresses, or it should

converge to a particular result. Whether or not the result is correct requires further

interpretation, which may be accomplished in a number of ways, such as: through

direct comparison with the analytical solution, or by studying the convergence of the

solution.

Since a problem such as this does not have an analytical solution it is very

important to study the convergence of the approximation. An extraordinary amount

of research has gone into studying the convergence of such numerical solvers. Usually,

in time marching problems such as this, one is interested in convergence rates, or how

fast the error approach zero when the mesh resolution is increased. In the limits of

computing time and power, the formal study of convergence rates was exempt from

this thesis, however it was explored using other avenues.

If the same experiment is repeated multiple times and it approaches the same

solution, the solver is said to converge. Multiple simulations of the same experiment
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were set up and allowed to run for successively longer times. The solution was plotted

and visualized intermittently and the results were consistent.

4.3 Results

Given the complexity of the domain shown in Figure 4.1, one could expect an

equally complex solution. Fortunately, current efforts suggest that there is an equi-

librium solution, which is presented in section 4.3.2. Before this, the development of

the flow is discussed with focalized interest on the inlet pipe. An attempt is made to

verify the numerical solution in the inlet region with theoretical predictions, namely

the analytical solution for flow through a cylindrical pipe (see Section A.4). The

properties of the liquid used in the simulation are arranged in Table 4.2

Table 4.2: Liquid Properties

Property Value Unit

Dynamic Viscosity (µ) 1.00× 10−3 kg m−1 s−1

Density (ρ) 1.0 kg/L
Analyte Mass Diffusivity (D) 1.0× 10−9 m2/s
Inlet Volumetric Flow Rate (Q) 0.1 ml/min

4.3.1 Inlet Flow Development

As mentioned in section 4.2, the boundary conditions chosen will send a shock

wave through the volume. For this reason it is interesting to study the inlet pipe as

the flow normalizes. As seen in Figure 4.4, the velocity starts out with a nearly flat

front commonly referred to as “plug flow”. Notice that velocity at the edges is zero

in agreement with the no-slip condition. As time goes on the flow profile approaches

a parabolic shape (Figures 4.5, 4.6). This is exactly the anticipated result. In Section

A.4 a viscous fluid is accelerated just like the one in this simulation. Due to opposing

shearing forces between “layers” of the fluid, the profile will not stay flat faced, but

will reshape to maximize volume transport. For laminar flows, this is a parabola.
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Figure 4.4: Velocity Profile at the Inlet Orifice. T = 30 s

X

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

Z

2.0
1.5

1.0
0.5

0.0
0.5

1.0
1.5

2.0

Y

0.02
0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16

Data

X

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

Z

2.0
1.5

1.0
0.5

0.0
0.5

1.0
1.5

2.0

Y

0.05

0.00

0.05

0.10

0.15

0.20

Fit

Figure 4.5: Velocity Profile at the Inlet Orifice. T = 60 s
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Figure 4.6: Velocity Profile at the Inlet Orifice. T = 120 s
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Verification of Conservation of Mass

The velocity profile at the outlet is not the same as the inlet, however the volu-

metric flux at the inlet and outlet is identical at all times due to the incompressibility

condition. This was verified by direct integration over the respective surfaces using

Q =

∫
u(R) dA, (4.2)

however the results are not shown here.

Inlet Velocity Profile

The velocity profile at the inlet is supposedly of the form (Eq. A.6), with a

volumetric flow rate given by (Eq. A.7). For convenience the constant A = − 1
4µ

dp
dz

is

introduced as a fitting parameter for the parabolic expression,

u(R) = A(a2 −R2). (4.3)

The flow rate used during typical experiments is 0.1 ml/min orQ = 100 mm3/min.

For a pipe of radius a = 1.587 mm (Listing 4.1), the parameter A is then:

Q =
πa4

2
A =⇒ A = 0.17 mm−1 s−1.

Since the numerical simulation was carefully manufactured to have the same flow

rate, its velocity profile should identically match (Eq. 4.3) with the value of A just

calculated. To test the numerical solution, a line was drawn parameterizing R in 1D.

The velocity was evaluated and it was indeed parabolic with a fit of A = 0.18 mm−1 s−1

(Figure 4.7). A second exercise, this time parameterizing R in 2D, exploited methods

of surface fitting (Figure 4.8) to find that A = 0.18 mm−1 s−1 as well.
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Figure 4.7: The subplot on the left shows a cross section of the velocity profile at the inlet
orifice. The color corresponds to velociity magnitude and increases with lightness. The
velocity is evaluated at all points on the line bisecting the circle resulting in the profile see
in the right subplot. This profile was fit with equation 4.3, and the parameter A was found
to be in good agreement with the theoretic result.

Figure 4.8: The subplot on the left shows a cross section of the velocity profile at the inlet
orifice that has been extruded along the pipes axis according to the velocity magnitude.
This resulting surface resembles a paraboloid, which was fit with equation 4.3 using surface
fittin techniques and the results are in good agreement with theoretical predictions. The
subplot on the right show where in the mesh the slice was taken. Both plots use the same
colormap, increasing in lightness with velocity magnitude.
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4.3.2 Steady State

The velocity and pressure solutions to the Navier-Stokes equations were analyzed

throughout the simulation. Eventually, after a 240 s equilibration, the system reached

steady state, and all variables became invariant in time. The remainder of this chapter

is dedicated to examining the equilibrium solution. This result is very important in

understanding actual experimental data. Since detection experiments normally last

for a duration much longer than the equilibration time it is reasonable to truncate

the early part of the simulation and assume the flow always exists in its stabilized

state. This will make things very easy when we later want to introduce chemicals in

the system—since the flow is unchanging it is possible to advect chemicals through

the medium without needing to simultaneously solve the NS equations.

Figure 4.9 illustrates the velocity profile on a cross section that divides both the

inlet and outlet pipe axially through their centres (the Z = 0 plane, Figure 4.10). The

magnitude of the velocity is indicated by the colorbar, with light areas signifying high

velocity. Recall that a fluid will flow through the container in a way that maximizes

flow rate. That is, the majority of fluid will flow through light coloured pathways.

Vectors are drawn to show the directionality of the flow. The flow appears to follow

the general procedure: it starts out moving through the inlet pipe with parabolic

velocity profile. Once it reaches the top, the fluid is forced out in all directions.

Of course, fluid moving leftwards will not make it very far before colliding with the

wall of the container, resulting in a stagnation point— the velocity is nearly zero

in this region. The bulk of the fluid moves to the right with an interesting velocity

profile (in the region x ∈ [2, 8] mm). Eventually, the profile becomes uniform (x ∈
[10, 17] mm) in the vertical direction and resembles the flow between two parallel

plates. In order to evacuate the outlet pipe, the fluid must undergo another change in

direction, consequently, creating a region of high velocity in the outlet pipe. Unlike the

inlet, this profile is not parabolic. For a while, the flow retains a horizontal component

to the velocity which causes it to crash into the right side of the pipe. Certain regions

of interest will be highlighted later in this chapter.
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Figure 4.9: Velocity cross section. (Z = 0.0 mm, T = 300.0 s)
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Figure 4.10: 3-dimensional view of the velocity profile showing where the slice was taken.
(Z = 0.0 mm, T = 300.0 s)

The velocity and pressure solutions are complimentary to each other. Notice in

Figure 4.11 that the pressure at the inlet and outlet are roughly 0.1 and 0.0 respec-

tively, which was the pressure difference set by boundary conditions to drive the flow.

The resulting pressure field has two peculiarities: the high pressure region at the top

of the inlet, and the low pressure region at the intersection of the groove with the

outlet pipe. Remembering that fluid tends to flow from areas of high pressure to low,

helps make sense of Figure 4.9. At the top of the inlet the pressure difference pushes

fluid away from the top plate. A top down view of this region is plotted in Figure

4.12.
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Figure 4.11: Frontal view of the pressure field. (Z = 0.0 mm, T = 300.0 s)

Figure 4.12: Top view of the pressure field. (T = 300.0 s)
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The velocity profile in the inlet pipe is much different than that of the outlet.

Figures 4.13 and 4.14 show magnified views of these regions. Notice in the lower

portion of Figure 4.13 that the velocity is directed vertically which maximum at

x = 0. As it rises in the column it accelerates to the right to make its way around the

edge. In doing so, a stagnation point is created in the region between 1 ≤ x ≤ 2 and

9.3 ≤ y ≤ 9.6.

Figure 4.13: Magnified view of the inlet velocity profile. (Z = 0 mm, T = 300 s)

In contrast to the inlet, the flow in the outlet does not have an axisymmetric

velocity profile. Furthermore, the vectors still have a visible horizontal component at

y = 6 mm (they do at the outlet y = 0 mm as well). Much like the inlet pipe, there

is a dark region near the edge, indicative of a stagnation point.
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Figure 4.14: Magnified view of the outlet velocity profile. (Z = 0 mm, T = 300 s)

While there appears to be points of stagnation in the previous figures, a closer

examination reveals that there is some fluid motion. Figure 4.15 verifies that the

majority of the fluid is moving to the right. However for a small section near the

top the fluid is forced to the left. A fluid parcel in this region will follow the vectors

which, at least for this particular slice, resembles a circle. In effect, the fluid in this

region is trapped, or stagnant.
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Figure 4.15: Magnified view of the inlet velocity profile near the top of the pipe.
(Z = 0 mm, T = 300 s)

Fluid Flow Around the Cantilevers

The whole purpose of this study was to describe the fluid dynamics around the

cantilevers. This would not have been possible without identifying their environment

in exhaustive detail. Only now, after considering the domain as a whole, is it possible

to observe the impact that the geometry of the setup has on individual cantiilevers.

Recall that one of the of the objectives identified in section 1.3 concerned with the

relative detection of the cantilevers. While the chemical advection problem is not

studied in this thesis, a look at the velocity profile (Figure 4.16) gives reason to believe

that the relative detection of the cantilevers will be highly dependent on positioning in

the cell. In this figure, it is apparent from light coloured regions that the majority of

the fluid flows above the cantilevers. At this magnification each individual cantilever

is hardly distinguishable. As a whole, each array appears to divert the fluid smoothly

around it in the way of stokes flow—no turbulence or vorticies are created.
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Figure 4.16: Flow around both cantilever arrays. (Z = −1.2 mm, T = 300.0 s)

A closer inspection of the upstream and downstream cantilever arrays are pre-

sented in Figures 4.17 and 4.18 respectively. The main difference between them is the

downward velocity over the upstream array. This could have been noticed as early

as Figure 4.9, where the fluid is violently forced away from the top of the inlet and

down over the cantilevers. Notice that the flow profile is asymmetric across a plane

housing the cantilevers (Y ∼ 10.2 mm) in the upstream array; the dark region on the

bottom is not as large on top. On the contrary, the downstream array is nearly a

mirror image, confirming that the flow profile is uniform in this region.
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Figure 4.17: Velocity profile in the vicinity of the upstream cantilever array.
(Z = −1.2 mm, T = 300.0 s)

Figure 4.18: Velocity profile in the vicinity of the downstream cantilever array.
(Z = −1.2 mm, T = 300.0 s)
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Figure 4.19: Slice of the velocity field showing both cantilever arrays (Y = 10.204 mm,
T = 300.0 s). The 3D velocity magnitude is coloured with light area representing high
velocity. The vectors represent the 2D velocity in the plane of the slice, their velocity is
indicated by the colorbar.

Figure 4.19 is a cross section of the velocity field with a top down perspective

on the cantilevers. The most obvious feature of this picture is the large bright area

signifying high velocity magnitude. Realizing that this profile would carry the bulk of

the fluid away from the cantilevers (into the bottom stream) and might have adverse

effects of the performance of the system- it could inhibit the detection of target parti-

cles. While this hypothesis looks clear from the image given, remember that this is a

three dimensional problem, and that is just one of the many slice of the data. To tackle

this problem correctly requires solving the chemical advection-diffusion equations in

3D.

For the sake of completeness, a slice of the velocity and pressure field in the

yz-plane is drawn in Figures 4.20 and 4.21 respectively. This slice was taken at

x = 6.72 mm, which lies directly over the first cantilever in the upstream array (Figure

4.22). In support of the previous speculation, it appears that the velocity is maximum

away from the cantilevers in x ∈ [1, 2]. A slice at second array of cantilevers is not

shown here, but it is nearly featureless; the bright area fade away and the vectors

reduce in length. The flow gets surprisingly uniform just a few millimetres past the

upstream array.
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Figure 4.20: Velocity Slice. (X = 6.72 mm, T = 300.0 s)

Figure 4.21: Pressure slice. (X = 6.72 mm, T = 300.0 s)

Figure 4.22: 3D view showing where the pressure slice was taken.
(X = 6.72 mm, T = 300.0 s)



Chapter 5

Conclusion

5.1 Summary

Microcantilever sensors are a promising technology for many real life applica-

tions. They are able to detect particles in dilute solutions at concentrations as low

as 10−12 M. While it is possible to obtain a quantitative estimate of the number of

target particles adsorbing onto the cantilever’s surface based on deflection readings,

these numbers have yet to be explained from a theoretical perspective. In this thesis,

an attempt was made to model fluid flowing through a microcantilever cell to better

understand experimental deflection readings. Initial results show that the flow even-

tually comes to steady state, with no signs of turbulence, and all of the fluid properties

reach an equilibrium. However, the fluids velocity field was not the same around each

cantilever. In particular, the array closest to the inlet experienced much more vari-

ability in velocity across its top layer. This will likely translate to different deflection

readings during actual cantilever sensor experiments. Considering the variations in

the fluid flow, it is expected that the concentration of the analyte in solution will vary

non-uniformly as well, which could have ramifications on the detection of particles.

This model will undoubtedly be a useful asset in future technological developments.
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5.2 Future Work

As mentioned on numerous occasions throughout this thesis, solving the Navier-

Stokes (NS) equations is only the first step in modelling the experimental setup. The

main questions revolve around the adsorption of chemicals onto the cantilever surface.

While it was not possible to answer all of the questions listed in the first chapter, the

results presented in chapter 4 give them some substantive insight. Now that the

fluid motion through the system is known, it can be used to facilitate the much more

elaborate chemical advection-diffusion problem. That is, we are in the position to

add chemicals to the system, allowing them to advect and diffuse through the fluid,

while observing how they distribute throughout the volume. Ideally, the model should

be able to monitor exactly how many particles are binding to the cantilevers, thus

differentiating the cantilevers from each other. It would be interesting to explore

a variety of adsorption models, such as those proposed by Langmuir (I. Langmuir,

1916), to see how well each compliments actual experimental data. There are also

many questions surrounding the relative rates of reaction of each cantilever, and the

saturation of their receptive layer.

In addition to the chemical problem, it would be nice to see how the fluid itself

interacts with the cantilever. Surely, its motion imparts some sort of stress on them.

Whether or not this is a significant contributor to the overall deflection remains to

be seen. Modelling the elasticity of the silicon cantilevers, taking into account the

dynamically changing reactive layer, would be an important problem to tackle.



Appendix A

Supplementary Material

A.1 Lagrangian & Eulerian Reference Frames

There are two ways to describe the kinematics of fluid. First is the Lagrangian

description, which monitors a particle of fluid as it travels through the flow field. As in

classical mechanics, the Lagrangian is defined to be a scalar function of position and

velocity, f(x(t),v(t)), which is independent of a coordinate system. The advantage of

this method is that Newtons laws of motion(and therefore conservation laws) apply

directly. However, in order to make use of them one must be able to trace each

individual particle in flow, which even for simple geometries, is an exhaustive or

impossible task.

Given that fluid is a continuum phenomena, a natural extension would be to

study it in larger volumes. This idea effectively gives rise to the second method of

describing fluid kinematics: the Eulerian desciption. In this method a control volume

is fixed in space, and through it the properties of the fluid are expressed as fields,

which are functions of space and time, f(x, t).

In order to fully describe the trajectory of fluid particles (assuming incompress-

ibility) one needs the pressure p(x, t) and velocity fields v⃗(x, t), which are the solutions

to Navier-Stokes equations. Note that, while the solutions exist at all points in space,

they do not represent the pressure and velocity of individual molecules.
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CV

Figure A.1: Control Volume

In many lab experiments, such as the one described in this thesis, fluid is most

commonly observed from a stationary reference as in the Eulerian frame, although the

mathematics are more conveniently formulated in the Lagrangian frame. Translating

between these frames must be done carefully to ensure the validity of Newton’s laws.

An understanding of both as well as knowledge of the material derivative (section:

A.2) is critical in its success.

A.2 Material Derivative

When studying macroscopic material properties, such as temperature or density,

one is often interested in how that variable is changing with time. What would

be a normal time derivative in a Lagrangian reference frame is more complex from

the viewpoint of a stationary Eulerian frame. In addition to monitoring the local

changes of the property, one must account for the changing spatial arrangement of

the coordinate system. This space-time variation is expressed as a material derivative.

Consider a flow-field property f(x1, x2, x3, t) on a path described by the vector

function x = ⟨X1(t), X2(t), X3(t)⟩. The material derivative is:

D

Dt
f(x1, x2, x3, t) =

∂f

∂t
+

∂f

∂x1

dX1

dt
+

∂f

∂x2

dX2

dt
+

∂f

∂x3

dX3

dt

=
∂f

∂t
+ u1

∂f

∂x1

+ u2
∂f

∂x2

+ u3
∂f

∂x3

=
∂f

∂t
+ u · ∇f

(A.1)
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where u is the velocity of the flow at the fixed position x = (x1, x2, x3). In an Eulerian

description, the material derivative makes it explicit that changes in the variable f are

due both to changes in time (as given by the partial derivative) and also the advection

of the fluid itself (as given by the dot product with the gradient).

A.3 Surface Forces: Stress Tensor

The stress at any point on a surface can be determined from the stress tensor

τij. The first index denotes the normal to the surface of interest and the second index

is the direction to which it acts. The concept is portrayed pictorially in Figure A.2,

where the component vectors of the stress tensor are identified explicitly.

txy

txz

tyx
tyy

tzx

tzy

tzz

txx

tyz

x

y

z

Figure A.2: Stress Tensor Components

τij =

τxx τxy τxz

τyx τyy τyz

τzx τzy τzz

 (A.2)

The stress tensor is symmetric, so that τij = τji [17, p. 63]. This can be justified

by considering a infinitesimal volume element (dV → 0) in rotational equilibrium that

must conserve angular momentum[7, p. 126].

Consider a cubic volume dV = dxdydx with total area dA. The x-component of

the force on the entire surface is

dFx = τxx dydz + τyx dxdz + τzx dxdy,
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which can be generalized using dAi = n̂idA, for surface normal n̂. Dividing by dA

gives the force per unit area (traction on a plane)

fi =
∑

τjinj or f = n̂ · ↔
τ . (A.3)

An element which is accelerating (changing momentum) will experience a net

force on its surface. Provided that the force is reasonably small, and the fluid is

Newtonian in nature, then the stress Tij and the strain rate Sij are linearly related.

In this regime the imparting stress on opposing sides (±) of the volume vary by

differential amounts. That is, τ+xx = τ−xx +
∂τxx
∂x

dx. The net force in the x-direction is

dFx =

(
∂τxx
∂x

dx

)
dydz +

(
∂τyx
∂x

dx

)
dxdz +

(
∂τzx
∂x

dx

)
dxdy.

Dividing by the volume dV = dxdydz reveals that this is just the divergence of τij.

The total surface force per unit volume is

fsurface = ∇ · τij =
∂τij
∂xj

. (A.4)

A.4 Analytical Solution: Laminar Pipeflow

A closed form analytical solution to the Navier-Stokes equation is known only to

exist for a few elementary cases. Among those is the celebrated solution for the flow

of an incompressible Newtonian fluid through a cylindrical pipe (Figure A.3). In this

problem the flow is driven by an externally applied pressure gradient. The fluid is

accelerated until it reaches equilibrium with its resistive viscous forces, at which point

the flow profile is said to be fully developed.

Figure A.3: Cylindrical Pipeflow

Based on the geometry of the problem it is natural to work within the cylindrical

coordinate system. Presumably, the velocity profile will be axisymmetric so that
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u⃗ = ⟨0, 0, uz(R)⟩. Since the components normal to the cylinder axis are zero, the

continuity equations ∇ · u = 0 is automatically satisfied, and the flow is declared

irrotational. The momentum equation (Eq. 2.14), omitting body forces, is restated:

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ µ∇2u.

This equation is reduced under the following considerations: u is unchanging along

the ẑ and φ̂ directions so that ∂u
∂z

= 0 and ∂u
∂φ

= 0, and the time derivative vanishes

for steady state. Consequently, the differential operators

u · ∇ = uR
∂

∂R
+

uφ

R

∂

∂φ
+ uz

∂

∂z
and ∇2 =

1

R

∂

∂R

(
R

∂

∂R

)
+

1

R2

∂2

∂φ2
+

∂2

∂z2
,

simplify the momentum equation in the z-direction to the following:

0 = −dp

dz
+

µ

R

d

dR

(
R
duz

dR

)
(A.5)

The conditions mentioned above (∂u
∂z

= 0 and ∂u
∂φ

= 0) reveal that u is a function

of R alone. According to (Eq. A.5) p must be a function of z only, therefore the two

terms in the equation must be constant to equate. Integrating over R gives:

uz(R) =
R2

4µ

dp

dz
+ C1 lnR + C2.

Logically the velocity cannot be infinite, therefore to avoid the problem at R = 0

it must be that C1 = 0. C2 is found from the no-slip boundary condition uz = 0 at

the walls R = a. The resulting parabolic velocity distribution is known as Poiseuille

flow:

uz(R) =
R2 − a2

4µ

dp

dz
. (A.6)

The volumetric flow rate (SI unit: m3/s) of fluid passing through an area is

found by integrating the velocity profile u(R) over that area. For a circular pipe the

volumetric flow rate is:

Q =

∫ a

0

uz(R)2πR dR =
−πa4

8µ

dp

dz
. (A.7)
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Flow Development

To elaborate, the understanding of flow development is focalized in Figure A.4.

Initially, the velocity is constant across the inlet of the pipe due to the immediate

action of the pressure gradient. Subsequent motion is opposed by a viscous shearing

force. The magnitude of the viscous force varies along the radius of the pipe as

a consequence of the no-slip condition. Eventually the velocity profile achieves its

optimal volumetric flow rate configuration—a parabola for laminar flows.

Figure A.4: Developing Flow Profile

Although it is fairly intuitive that the shear stress depends on the radius, the

idea can be justified with help of the constitutive relation (Eq. 2.12):

τzR = µ

(
∂uR

∂z
+

∂uz

∂R

)
.

Using the velocity solution for flow through a cylinder (Eq. A.6) this simplifies to the

following, which is a linear function with minimum at R = 0 and maximum at R = a.

τ = µ
∂uz

∂R
=

R

2

dp

dz
. (A.8)



Glossary

Dirichlet Condition Specifies the value of the function on a surface, u(x, t) =

f(x, t) on ΓD ⊂ ∂Ω.

Eulerian Specification The understanding of fluid motion from the perspective of

a stationary observer who studies how fluid travels through a particular region.

A fixed control volume is useful here. See section A.1.

FEniCS A popular open-source computing platform for solving partial differential

equations. FEniCS enables users to quickly translate scientific models into effi-

cient finite element code.

GMRES The Generalized Minimal Residual method (GMRES) is an iterative

method for the numerical solution of a non-symmetric system of linear equa-

tions.

Lagrangian Specification The understanding of fluid motion from observing the

trajectory of particles in the flow. A moving control volume is useful in this

case. See section A.1.

Neumann Condition Specifies the normal derivative of the function on a surface,
∂u
∂n

= ∇u· n̂ = f(x, t) on ΓN ⊂ ∂Ω. It is often referred to as a natural boundary

condition.

Newtonian Fluid A Newtonian fluid obeys Newton’s law of viscosity. There is a

linear relation between the stress Tij and the strain rate Sij, which consequently,

means that the viscosity is not influenced by forces applied to it. Moreover, a

Newtonian fluid is considered to be isotropic, meaning that its intrinsic proper-

ties have no preferred direction.
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