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Abstract

The emerging communication networks generate a huge amount of data that need to be

aggregated/disseminated, processed, and responded to in a very short time. Major chal-

lenges associate with the need to handle such tremendous amount of data, including high

energy consumption, larger delay, and constrained computation capabilities. Consequently,

more efficient frameworks could be exploited for data aggregation, dissemination, and pro-

cessing. This work aims to design energy-efficient and age-optimum frameworks for data

aggregation/dissemination. Moreover, reliable and low latency offloading frameworks for

sequential and parallel mobile edge computing (MEC) offloading are also developed. A

device-role assignment framework is designed to optimize the role of each device in the

network and enable in-network data processing. More sophisticated scenarios with mobile

data aggregator/disseminator are explored as well. Mobile data aggregator(s)/disseminator(s)

for terrestrial and underwater scenarios are considered. Different metrics are studied in-

cluding the overall energy consumption in the data aggregation/ dissemination systems,

age-of-information (AoI) in the data aggregation systems, and the latency and offloading

error in the MEC systems. A novel metric referred to as the correlation-aware AoI is

also proposed to captures both the freshness and diversity in the aggregated data. Com-

putationally efficient solution approaches are developed to find solutions for the proposed

frameworks, including genetic algorithms, ant colony optimization, conflict graphs, and

deep reinforcement learning agents. To show the effectiveness of the developed solution

approaches, their performance is compared to baseline approaches. Extensive simulations

show that the proposed solution approaches provide performance close to the optimal solu-

tions, which are obtained through exhaustive search or computationally intensive methods.
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Chapter 1

Introduction

1.1 Background and Motivation

The emerging fifth-generation (5G) and the envisioned sixth-generation (6G) communi-

cation networks require full-fledged frameworks for connected things with stringent and

diverse requirements in terms of energy efficiency, information freshness, latency, and re-

liability. Smart objects, like mobile phones, vehicles, wearable devices, and sensors, are

expected to be connected and share information to each other in the future communica-

tion networks [1]. This associates with a wide range of applications that require a timely

information [2] and computation-intensive tasks [3]. This paradigm gave birth to a new

communication ecosystem, namely Internet-of-Things (IoT) which utilizes the ubiquity of

sensor-equipped devices to aggregation/dissemination information at low cost. Due to the

massive number of IoT devices and large volume of aggregated/disseminated information,

the traditional techniques of wireless sensor networks such as relaying and routing the data

across the nodes to the sink node are inefficient. The IoT devices are intelligent and capable

1



of sensing, interpreting and processing acquired data, and reacting to the environment due

to the powerful tracking technologies and embedded sensors and modems in these devices.

Unlike its terrestrial counterpart, the underwater communication environment is harsh; in

this context, the Internet-of-Underwater-Things (IoUT) is considered, which refers to a set

of interconnected underwater devices that provide low-cost and energy-efficient network

deployment [4].

Efficient data aggregation and dissemination represent primary goals of the IoT/IoUT

networks. Data aggregation refers to collecting data from various devices and integrates

them to minimize the traffic load in the network, which depends on the correlation among

the data. Data dissemination refers to distributing data to various devices, which depends

on the diversity among the devices’ requirements. Traditional metrics such as delay and

throughput can not fully characterize the information freshness. A performance metric,

namely age-of-information (AoI), was introduced to characterize the freshness of the in-

formation from the destination device perspective [5]. AoI is defined as the time elapsed

since the most recently received updated information at the destination was generated at the

source device [5]. Moreover, running computation-intensive applications consumes a sig-

nificant portion of the devices battery power. Mobile-edge computing (MEC) is considered

as a promising solution that avoids communication bottlenecks and provides cloud-like

computing at the network edge [6, 7]. The practical scenarios of MEC systems comprise:

(1) data aggregation, which includes task offloading to the MEC servers; (2) task com-

putation at the MEC server; and (3) data dissemination, which includes distributing the

computed results the the corresponding devices.

Motivated by what is mentioned above, this work aims to design frameworks for (1)

Energy-efficient data aggregation; (2) Energy-efficient data dissemination; (3) Age-optimum

2



data gathering; and (4) Reliable and low latency MEC offloading. In these frameworks,

different metrics are considered including the overall energy consumption in the data ag-

gregation/dissemination systems, AoI in the data aggregation systems, and the latency and

the offloading error in the MEC systems. Some of the proposed frameworks are appli-

cable for aerial, terrestrial, and underwater communication environments. Consequently,

in some scenarios I simulate aerial environments [8–10], terrestrial environments [11–13],

and underwater communication environments [14–16]. Each framework yields a combina-

torial or mixed integer optimization problem. Solving these optimization problems using

a brute-force complete enumeration procedure or traditional exact solution methods can

obtain solutions for relatively small search space; the complexity of such solution methods

increases exponentially as the search space increases.

Computational intelligence, which refers to a set of nature-inspired solution approaches,

such as genetic algorithms (GAs) [17] and ant colony optimization (ACO) [10], has been

adopted as computationally efficient approaches for solving complex optimization prob-

lems. In GAs, a population of candidate solutions (referred to as individuals) undergoes a

set of mutation operations and evolves towards the optimized solution. ACO is a probabilis-

tic approach that converges towards the optimized solution based on two parameters, i.e.,

attractiveness which represents a priori information that captures the structure of a promis-

ing solution and pheromone which is a posteriori information that captures the structure

of previously obtained good solutions; it is progressively updated by the ants to bias fu-

ture ants toward high quality solutions. Recently, significant progress has been made to

solve optimization problems by combining advances in deep learning with reinforcement

learning (RL), resulting in deep reinforcement learning (DRL) approaches, in which deep

neural network function approximators estimate the action-value function. However, while

3



DRL model solves problems with high-dimensional observation spaces, it cannot handle

optimization problem with continuous decision variables. The actor-critic DRL can solve

optimization problems with continuous action spaces [18].

1.2 Thesis Objective

In this thesis, I have identified and investigated the following research points:

1. Develop a device-role assignment framework, in which not only the optimum set of

active devices is selected, but also the role of each active device is optimally assigned

to maximize the total gathered information with minimal energy consumption [14,

15].

2. Develop a framework that optimizes both the active device selection and the itinerary

of a mobile data gathering center for energy-efficient data aggregation [8].

3. Develop a framework to maintain the information freshness about a set of physical

processes at a mobile data gathering center that gathers data from a set of linearly-

deployed devices [16].

4. Introduce a novel metric referred to as correlation-aware AoI (CAAoI) that not only

captures the information freshness at the receiver, but also reflects the diversity in

the gathered information. With this new metric, an information gathering system is

studied, in which a mobile data gathering center gathers information about a set of

physical processes; each process can be measured by one or more devices [9].

5. Develop a framework to optimize the itinerary of a data gathering center for energy-
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efficient data dissemination to spatially-distributed devices. A two-tiered data dis-

semination framework is considered, in which a subset of devices receive data from

the data gathering center and forward them to other devices [10].

6. Develop an energy-efficient data placement and delivery framework, in which a fleet

of mobile data gathering centers delivers a library of data files to a set of devices.

The framework optimizes both the file placement and itinerary of the data gathering

centers

7. Propose a collision-free sequential task offloading scheme to multiple MEC servers,

in which a a delay-sensitive and computationally-intensive task is allocated to a set

of MEC servers to minimize the latency and offloading failure probability [11].

8. Design a scheduling approach for inter-dependent sub-tasks offloading in MEC sys-

tem, in which a delay-sensitive and computationally-intensive task is offloaded to

multiple MEC servers. The task consists of a set of sub-tasks, and the general depen-

dency among sub-tasks is considered in the system model. Optimization problems

are formulated to jointly minimize the latency and offloading failure probability in

both parallel and sequential offloading schemes [12, 13].

1.3 Thesis Outline

In the remainder of this dissertation, each research point mentioned above is discussed as

follows. Chapter 2 introduces the concepts of spatial correlation and AoI, unmanned aerial

vehicle (UAV) communication and power dissipation models, and the acoustic channel

model. Chapter 3 introduces the proposed energy-efficient frameworks for data aggre-
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gation. Chapter 4 discusses the proposed age-optimum data aggregation framework and

introduces a novel metric to capture both freshness and diversity in the aggregated infor-

mation. Chapter 5 introduces the proposed energy-efficient frameworks for data dissemi-

nation. Chapter 6 presents the proposed frameworks for task offloading in MEC systems.

Finally, the thesis is concluded in Chapter 7.
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Chapter 2

Preliminaries

This chapter introduces an iterative approach to quantify the joint entropy of a set of spa-

tially distributed devices. This approach is utilized in Section 3.2, Section 3.3, and Section

4.3. The definition of the instantaneous AoI metric is provided along with the analysis of

the time-average AoI. This analysis is utilized in Section 4.2 and Section 4.3. The power

consumption and communication models of a UAV-enabled network are discussed. These

models are employed in Section 3.3, Section 4.3, Section 5.2.1, and Section 5.3. Finally,

the acoustic communication channel model is introduced, which is used in Section 3.2 and

Section 4.2.

2.1 Spatial Correlation

Naturally, data measured by devices located within close proximity of an event is expected

to be spatially correlated. The extent of such spatial correlation depends on the measured

event and the distances among the devices. In order to characterize the spatial correlation,

the joint entropy of the devices is considered to measure the total uncorrelated information.
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Based on the empirical study in [19], the joint entropy of a set ofN devices can be obtained

using a constructive iterative approach, as follows. Assuming that each device generates

H1 = L (bits) of raw data, the entropy of the first device is L. The joint entropy of the

first and second devices can be expressed as H2 = L +

[
1− 1

(d̄2/ρ+1)

]
L, where d̄2 is the

distance between the first and second devices and ρ is a constant parameter that represents

the spatial correlation extent in the data and its numerical value depends on the application.

The joint entropy of the first three devices can be expressed as

H3 = L+

[
1− 1(

d̄2/ρ+ 1
)]L+

[
1− 1(

d̄3/ρ+ 1
)]L, (2.1)

where d̄2 and d̄3 are obtained as shown in Fig. 2.1.

Figure 2.1: Illustration of obtaining d̄2 and d̄3.

Consequently, the amount of uncorrelated data that can be gathered by N devices can

be expressed as

H = L+ L
N∑
i=1

[
1− 1

d̄i/ρ+ 1

]
, (2.2)

where d̄i is the minimum distance between the device ni and all devices nk ∀k = 1, 2, . . . , i−

1.
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2.2 Age of Information

To assess the freshness of the received updates at the destination, Kaul et al. [5] define the

instantaneous AoI of the physical process pk at time instant t as

∆k(t) = t− uk(t), (2.3)

where ∆k(0) = 0 and uk(t) is the time instant at which the last update about pk was

generated (also referred to as the ”timestamp” of the last update). For a time interval T , the

time-average AoI can be expressed as

ET
[
∆k(t)

]
=

1

T

∫ T

0

∆k(t) dt. (2.4)

The time average AoI ET
[
∆k(t)

]
equals the area under the curve of ∆k(t) divided by

T . In case no update of pk is received, the area under the curve of ∆k(t) will be a triangle

(appears in blue color dashed-line in Fig. 2.2) and ET
[
∆k(t)

]
reaches its maximum value

of T
2

. Each update of pk received at time instant τ (k)ι reduces ET
[
∆k(t)

]
and this reduction

equals the area of a parallelogram; the lengths of adjacent sides of the parallelogram are
√
2(τ

(k)
ι+1 − τ

(k)
ι ) and (τ

(k)
ι − ℓkι ) and its small angle is 45◦. Consequently, the area the

parallelogram resulted from the ι-th update is
√
2(τ

(k)
ι+1−τ

(k)
ι )(τ

(k)
ι −ℓkι ) sin(45◦) = (τ

(k)
ι+1−

τ
(k)
ι )(τ

(k)
ι − ℓkι ). Consequently, the time-average AoI E

[
∆k(t)

]
can be expressed as

ET
[
∆k(t)

]
=
T

2
− 1

T

Uk(T )∑
ι=1

(
τ
(k)
ι+1 − τ (k)ι

)(
τ (k)ι − ℓkι

)
, (2.5)

where Uk(T ) is the total number of updates received during the time interval T .
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Figure 2.2: AoI of process pk with Uk(T ) = 3 updates.

2.3 UAV Power Dissipation Model

Power is consumed by the UAV to realize three primary functions: communication, hov-

ering, and traveling. The energy consumed by the UAV at location ψ̇j = {ẋj, ẏj, żj} to

receive L bits from device ni is PrL
Rij

, where Pr denotes the power consumed by the receiver

circuitry of the UAV and Rij is the data rate between device ni and the UAV at location ψ̇j ,

which can be obtained using (2.8). The hover power is the power consumed by the UAV

while it hovers at a fixed position, which can be expressed as [20]

Phov =

√
(Mg)3

2πr2pϑ
, (2.6)

where M is the mass of the UAV, r is the propellers’ radius, p is the number of propellers,

g is the acceleration of gravity on earth, and ϑ is the density of air.

The traveling power is the power consumed by the UAV moving from a position to
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another and can be written as

Pmov =
v

vmax

(
Pmax − Pstop

)
+ Pstop, (2.7)

where v and vmax are the traveling and maximum speed of the UAV, respectively [20, 21].

Pmax is the UAV’s consumed power when it moves at full speed, and Pstop is the UAV’s

consumed power when it is idle (i.e., v = 0).

2.4 UAV Communication Model

Assuming an additive white Gaussian noise channel, the average data rate between a device

ni and the UAV located at point ψ̇j is

Rij = B log2

(
1 +

PT
φijN0

)
, (2.8)

where B is the bandwidth of the channel, PT is the transmit power of the device, N0 is

the power of the noise, and φij is the average channel path-loss. Following the works

in [21], [22], and [23] a probabilistic ground-to-air communication model is considered,

in which the average path-loss between a device ni and the UAV located at point ψ̇j is

expressed as

φij = Prij (LoS)φij (LoS) +
[
1− Prij (LoS)

]
φij (NLoS) , (2.9)

where Prij (LoS) represents the probability of a line-of-sight (LoS) communication be-

tween ni and the UAV located at aggregation point ψ̇j . This probability can be expressed

as

Prij (LoS) =
1

1 + α exp(−β
[
θij − α

]
)
, (2.10)
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where θij is the elevation angle of the UAV at the aggregation point ψ̇j with regard to

the device ni located at ψi = {xi, yi, 0} which is expressed as θij = 180
π

tan−1(
żj
rij
), with

rij =
√
(xi − ẋj)2 + (yi − ẏj)2, while α and β are parameters depending on the carrier

frequency and environment type such as dense urban, urban, or rural. Finally, φij (LoS)

and φij (NLoS) are the path losses for LoS and non line-of-sight (NLoS) connections,

respectively, and can be expressed as

φij (LoS) = 10ϵ log10

(
4πfc
c
∥ψi − ψ̇j∥2

)
+ ζLoS, (2.11)

φij (NLoS) = 10ϵ log10

(
4πfc
c
∥ψi − ψ̇j∥2

)
+ ζNLoS, (2.12)

where fc is the carrier frequency, ϵ is the path loss exponent, c is the speed of light, and

ζLoS and ζNLoS represent the mean additional losses for LoS and NLoS, respectively.

2.5 Acoustic Channel Model

For a distance ℓ and a frequency f , the attenuation factor Λ(ℓ, f) of an underwater acoustic

channel is given by [24]:

10 log Λ(ℓ, f) = κ10 log ℓ+ ℓ10 log ϱ (f) , (2.13)

where κ = 1.5 for practical spreading, and ϱ (f) is the absorption coefficient which can be

obtained using the Thorp’s formula as follows [25]:

10 log ϱ (f) =
0.11f 2

1 + f 2
+

44f 2

4100 + f 2
+

2.75f 2

104
+ 0.003. (2.14)

The ambient noise in underwater acoustic channel is affected by four components: tur-

bulence Ωt, shipping Ωϖ, waves Ωw, and thermal noise Ωth. The following formulae give
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the power spectral density of these noise components in dB re µPa per Hz as a function of

frequency in kHz

10 log Ωt(f) =17− 30 log f

10 log Ωϖ(f) =40 + 20(ϖ − 0.5) + 26 log f − 60 log(f + 0.03)

10 log Ωw(f) =50 + 7.5w
1
2 + 20 log f − 40 log(f + 0.4)

10 log Ωth(f) =− 15 + 20 log f,

(2.15)

with 0 ≤ ϖ ≤ 1 as the shipping activity factor and w as the wind speed at the surface in

m/s. Consequently, the noise power spectral density of the ambient noise can be expressed

as

Ω(f) = Ωt(f) + Ωϖ(f) + Ωw(f) + Ωth(f). (2.16)

The usable bandwidth of the channel is defined asB (ℓ) = bℓ−β , where the parameters b and

β depend on the target signal-to-noise-ratio (SNR) [24]. The acoustic transmit power P aco
t

can be converted into electrical transmit power Pt using the following empirical relation

P aco
t = ζPt10

17.2, where ζ is the conversion efficiency and 10−17.2 is a conversion factor

[26]. Consequently, the SNR at a receiver distance ℓ from the transmitter can be expressed

as

γ(ℓ) =
ζPt10

17.2

B (ℓ) Ω
(
f0 (ℓ)

)
Λ
(
ℓ, f0 (ℓ)

) , (2.17)

where f0 (ℓ) is the optimal carrier frequency at a given distance ℓ [24].

The latency of transmitting I (bits) over distance ℓ (m) in the acoustic channel can be

calculated as [27]

L (I, ℓ) =
I

φB (ℓ)
+

ℓ

cs
, (2.18)

where φ is the modulation bandwidth efficiency in bps/Hz and cs is the underwater acoustic

propagation speed in m/s, which depends on the water depth, temperature, and salinity.
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The acoustic power Pt (ℓ) can be converted into electrical power using the following

empirical relation

P el
t (ℓ) = Pt (ℓ)× 10−17.2/ζ. (2.19)

Let Pr denote the power consumed by the receiver’s circuitry, the total energy consumed to

transmit one bit between two devices over a single hop of length ℓ can be calculated as [27]

Et (ℓ) =
P el
t (ℓ) + Pr
φB (ℓ)

, (2.20)

where φ is the modulation bandwidth efficiency in bps/Hz.
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Chapter 3

Energy-Efficient Data Aggregation

3.1 Background and Motivation

Data aggregation is one of the primary goals of IoT/IoUT networks. Two main data aggre-

gation policies can be found in the literature, namely mobile agent-based and client-server-

based. In the former, one/several mobile device/s travel and visit all (or a group of) the

devices to collect their sensed data. In the latter, devices deliver data to one (multiple) sink

device(s) in a multi-hop manner. The latter can be implemented in cluster, aggregation tree,

or centralized form. In the cluster aggregation form, all devices are grouped into various

clusters. Each cluster consists of a header device, which is known as a cluster-head. The

cluster-head receives data from its members and sends the resulting data to the sink. In the

aggregation tree form, all devices are organized to construct a hierarchical tree, in which

each device sends its sensed data to a parent device for the aggregation process. Accord-

ingly, the data aggregation process is performed from the leaf devices to the sink. In the

centralized aggregation form, all devices send their data to a most powerful one through
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the shortest route. The header aggregates the data, and sends the results to the sink [28].

Naturally, data measured by devices located within close proximity of an event is ex-

pected to be correlated. Transmission of redundant correlated data is not only unnecessary

but also costly, which degrades the network efficiency. The effect of such correlation is

more severe in the underwater environment which is characterized by limited bandwidth,

and communications costs in this environment are far greater than sensing and computa-

tional costs. In-network processing is a promising solution, in which raw data is processed

locally in intermediate devices to remove correlation and fused uncorrelated data is trans-

mitted to the data gathering center, which is more efficient than sending the raw data [29].

However, local processing device selection should be optimized to reduce data traffic, in-

crease the processing efficiency, and satisfy the network topology constraints. This chapter

introduces energy-efficient data aggregation frameworks from a set of devices. Two frame-

works are introduced, namely: (1) Multi-sink data aggregation, in which a set of data aggre-

gating stations with fixed-locations are aggregating the data; (2) A mobile data aggregation

center gathers the data from the devices.

3.1.1 Related Work

Recently, increased attention has been paid to developing efficient data aggregation algo-

rithms to minimize the use of energy and communication resources. Several studies have

proposed different algorithms and schemes to aggregate data in terrestrial communication

networks (e.g., [30–37]) and underwater networks (e.g., [38–40]). In [30], a delay-aware

and energy-efficient data aggregation method was proposed. The authors minimized the

data transmission delay by providing energy-efficient routing paths and intelligently se-
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lecting a direct-forwarding scheme for delay-sensitive data transmission to minimize end-

to-end delay; a wait-forwarding scheme was exploited for delay-tolerant data transmission

to reduce total energy consumption. In [31], the system efficiency for both minimal total

energy consumption and min-max per-device energy consumption was considered. The

authors developed throughput-efficient scheduling of transmissions in various data aggre-

gation scenarios and shortest-path routes from devices to the sink were planned. In [32], a

cluster-based data aggregation protocol based on the devices’ computing capabilities was

presented. A three-layer cluster-based mechanism for energy-efficient data aggregation was

proposed in [33]. In this mechanism, each device transmits its residual energy and loca-

tion coordination information to the sink for selecting the upper cluster-heads using fuzzy

c-means clustering. A power control-based protocol for IoUT was explored in [34]. This

protocol considers the link quality, neighborhood density, distance, and energy consump-

tion to select the suitable transmission power level at each device. In [35], a multi-phase

data aggregation algorithm was investigated to optimally select the set of active devices to

balance the energy load and maximize the data utility. A multiple mobile agents scenario

with multi-hop hierarchical clustering-based data aggregation was proposed in [36]. The

objective is to minimize the dissipated energy by incorporating clustering schemes and data

aggregation. A repositioning framework was proposed in [37] to relocate the devices from

their random initial locations to optimized positions such that the energy consumption is

reduced and the coverage area increased.

In the underwater networks, some studies (e.g., [38–40], and references therein) have

proposed marine data aggregation algorithms and schemes. In [38], autonomous under-

water vehicles (AUVs) and multi-hop transmission data aggregation approaches were pro-

posed. The objective is to balance the load and energy consumption of the devices and to
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reduce the transmission delay. A stratification-based data collection scheme for underwa-

ter networks was investigated in [39]. In this scheme, a set of devices is divided into two

groups: the first group employs a multi-hop forwarding approach for data collection; in

the second group, a neighbor density clustering-based AUV data aggregation approach is

applied. In [40], a sender-receiver role-based scheduling scheme was proposed to provide

computation-utilization and high energy-efficiency for smart underwater objects.

This chapter introduces two energy-efficient data aggregation frameworks, the first

framework assigns a role for each device in the network to maximize the total uncorre-

lated data and minimize the energy consumption. The second framework minimizes the

energy consumption in a UAV-enabled data aggregation scenario.

3.2 Role Assignment for Multi-Sink Data Aggregation

The following question is addressed: For a set of spatially distributed devices in an area

of interest, what is the role of each device in maximize the total gathered information with

minimal energy consumption? To answer this question, a device-role assignment frame-

work is proposed, in which not only the optimum set of active devices is selected, but

also the role of each active device is optimally assigned. The objective is to maximize the

aggregated information and minimize the total energy consumption.

3.2.1 System Model

A multi-sink data gathering scenario is considered, in which a set N = {ni}Ni=1 of N

devices randomly scattered in an area of interest to gather and send data to a set M =

{mj}Mj=1 of M data aggregation stations (sinks). The devices and data gathering stations
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are located at ψ = [ψi]N×3 and ψ̇ = [ψ̇j]M×3, respectively, where ψi = {xi, yi, zi} and

ψ̇j = {ẋj, ẏj, żj} denote the geographical coordinates of device ni and data gathering

station mj , respectively. Each device ni has a communication range ϑi. The inter-device

communication link matrix C = [cik]N×N is defined such that

cik =


1, if ϑi ≥ ℓik

0, otherwise,

(3.1)

where ℓik is the distance between device ni and device nk. The communication links

between the devices and data gathering stations are represented using the matrix Ċ =[
ċij
]
N×M such that

ċij =


1, if ϑi ≥ ℓ̇ij

0, otherwise,

(3.2)

where ℓ̇ij is the distance between device ni and data gathering stations mj . At each

decision-making time interval, a network management center assigns one of the follow-

ing roles to each device:

• Sensor type 1: which transmits its data to a data gathering station;

• Sensor type 2: which transmits its data to an aggregator device;

• An aggregator type 1: which aggregates its data and data from other devices and

transmits the result to a data gathering station;

• An aggregator type 2: which aggregates its data and data from other devices and

transmits the result to an aggregator device;

• Inactive device: which switches to sleep mode.
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Let us define a device-role assignment decision η = [ηil]N×5 such that ηir = 1 if r = 1

and device ni acts as a sensor of type 1; r = 2 and device ni acts as a sensor of type 2;

r = 3 and device ni acts as a data aggregator of type 1; r = 4 and device ni acts as a data

aggregator of type 2; r = 5 and device ni acts as an inactive device; and ηir = 0 otherwise.

It is clear that η assigns a role to each device; however, it fails to associate each sensor of

type 2 or aggregator of type 2 with one of the available aggregator devices. Consequently,

µ = [µik]N×N is defined such that µik = 1 if ni ∈ N is a sensor of type 2 or an aggregator

of type 2 and decides to send the data to aggregator nk ∈ N , and µik = 0 otherwise.

Furthermore, each sensor of type 1 and aggregator of type 1 should be associated with one

of the data gathering stations. Consequently, µ̇ =
[
µ̇ij
]
N×M is defined such that µ̇ij = 1

if ni ∈ N is a sensor of type 1 or an aggregator of type 1 and decides to send the data to

gathering station mj ∈M, and µ̇ij = 0 otherwise.

For a given η and µ, data of each sensor of type 2 and aggregator of type 2 reaches one

of the gathering stations via a sequence (one or more) of aggregator devices. Consequently,

to represent the data path from a sensor of type 2 or aggregator of type 2 to the gathering

station, T (η,µ) = [tik]N×N is defined such that

tik =


1, if ni contributes to forwarding data from nk,

0, otherwise.

(3.3)

A sequence of aggregator devices should contains an aggregator device type 1 to guarantee

that the data of all devices associated with this sequence reaches a gathering station and to

prevent aggregation loop, this can be guaranteed if
∏N

k=1(1 − ηk3tki) = 0 for each sensor

of type 2 and aggregator type 2.

For a given role assignment decision η, similar to (2.2), the joint entropy (in bits) of the
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active devices (devices with ηi5 = 0) can be expressed as

H (η) = ϖ

L+ L
N∑
i=1

(1− ηi5)
[
1− 1

di (η) /ρ+ 1

] , (3.4)

where ϖ = 1−
∏N

i=1 ηi5 and di (η) is the minimum distance between the device ni and all

devices nk with ηk5 = 0 ∀k = 1, 2, . . . , i − 1. The amount of data that is transmitted by a

device ni to another device or to one of the data gathering station can be expressed as

Hi (η,µ) = (1− ηi5)

L+ L
N∑
k=1

tik

[
1− 1

ℓik/ρ+ 1

] . (3.5)

The energy is consumed by devices to realize three primary functions: data acquisition,

data processing (aggregation) and data transmission. Ea
i is the energy consumed by device

ni to sense and obtain L bits of raw data. For a given η, µ, and µ̇, the energy consumption

of device ni can be expressed using (3.6).

Ei (η,µ, µ̇) = ηi1

Eai + M∑
j=1

µ̇ijE
t
(
ℓ̇ij

)
L

+ ηi2

Eai + N∑
k=1

µikE
t (ℓik)L

+ ηi5E
s
i

+ ηi3

Eai + Epi

L+

N∑
k=1

µkiHk (η,µ)

+

M∑
j=1

µ̇ijE
t
(
ℓ̇ij

)
Hi (η,µ)


+ ηi4

Eai + Epi

L+
N∑
k=1

µkiHk (η,µ)

+
N∑
k=1

µikE
t (ℓik)Hi (η,µ)

 .

(3.6)

In this equation, Ep
i = δεi is the energy consumed by device ni to process (aggregate)

one bit with δ depending on the computational complexity of the monitoring task and εi as

the energy value consumed by the central processing unit (CPU) of ni to perform one com-

putation cycle. Et (ℓ) is the energy consumed to transmit one bit between two devices over

a single hop of length ℓ. Et (ℓ) can be obtained using (2.20) for the acoustic underwater
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scenario or using first-order radio model (similar to Eq. (1) of [41] and references therein)

for the terrestrial scenario. Es
i is the energy consumed by device ni in the sleep mode.

3.2.2 Problem Formulation

The role of each device depends on its connectivity to the gathering stations, connectiv-

ity to other devices, distance to other devices, and preference of the decision-maker to

maximize the gathered information or minimize the consumed energy. Consequently, the

active devices set should be intelligently selected and a suitable role should be assigned to

each active device. The total consumed energy is E (η,µ, µ̇) =
∑N

i=1 Ei (η,µ, µ̇), where

Ei (η,µ, µ̇) is the energy consumed by device ni which can be calculated using (3.6). The

total gathered information can be obtained using (3.18). Our objective is to maximize the

gathered informationH (η) and minimize the total consumed energy E (η,µ, µ̇). Keeping

in mind the trade-off between H (η) and E (η,µ, µ̇), and the fact that they have different

orders of magnitude and ranges, they should be transformed such that they have similar

ranges [42]. Consequently, a multi-objective weighted sum objective function is defined as

follows

O (η,µ, µ̇) = λ

[
H (η)−H0

Hmax −H0

]
+ (1− λ)

[
1− E (η,µ, µ̇)− E0

Emax − E0

]
, (3.7)

where 0 ≤ λ ≤ 1 is a relative weight to give preference to maximize the information or

minimize the energy, Hmax is the maximum amount of information that can be generated

by N , Emax is the maximum energy consumption which can be calculated when all the

devices transmit their data to the stations directly, H0 is the minimum amount of infor-

mation which is zero (bits), and E0 is the minimum value of the energy consumption (the

energy consumption when all devices are switched to the sleep mode), which is expressed

22



as E0 =
∑N

i=1E
s
i . The optimization problem is formulated as shown in (3.8). Constraint

(3.8b) guarantees that a role is assigned to each device. Constraint (3.8c) guarantees that

each sensor of type 2 and aggregator of type 2 offloads its data to one aggregator device and

there is a communication link between them. Constraint (3.8d) guarantees that each sensor

of type 1 and aggregator of type 1 offloads its data to one aggregation station and there

is a communication link between them. Constraint (3.8e) guarantees that each aggregator

aggregates data from at least one device. Constraint (3.8f) guarantees that the data of each

sensor of type 2 or aggregator type 2 reaches a gathering station without aggregation loops.

P1 max
η,µ,µ̇

O (η,µ, µ̇) , (3.8a)

s.t.
5∑
r=1

ηir = 1,∀ ni ∈ N , (3.8b)

N∑
k=1

µikcik = ηi2 + ηi4,∀ ni ∈ N , (3.8c)

M∑
j=1

µ̇ij ċij = ηi1 + ηi3,∀ ni ∈ N , (3.8d)

N∑
i=1

µik ≥ ηk3 + ηk4,∀ nk ∈ N , (3.8e)

(ηk2 + ηk4)
N∏
i=1

(1− ηi3tik) = 0,∀ nk ∈ N , (3.8f)

ηir ∈ {0, 1},∀ ni ∈ N & 1 ≤ r ≤ 5, (3.8g)

µik, µ̇ij ∈ {0, 1},∀ ni, nk ∈ N ,mj ∈M. (3.8h)

It is worth noting that η, µ, and µ̇ are coupled variables and the search space of the

optimization problem in (5.20) is 2(5+N+M)N . Consequently, the optimum solution com-

plexity is prohibitive for a reasonable number of devices and stations. The next section
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presents a more efficient method to solve the problem using ACO approach.

3.2.3 Proposed Solution Approach

In the proposed ACO algorithm, a colony of A ants collaborate to solve (3.8). Each ant

a ∈ A travels through a two-stage tour, in which it assigns a role for each device in the first

stage and associates the sensors and aggregators with one of the gathering stations or with

aggregators in the second stage.

In the first stage, the probability that ant a assigns role r to device ni (i.e., the probability

to set η(a)ir = 1) is obtained as

π̄
(a)
ir =

(τ̄ir)
α (ϱ̄ir)

β∑5
r=1 (τ̄ir)

α (ϱ̄ir)
β
, (3.9)

where τ̄ir is the trail pheromone and ϱ̄ir is the attractiveness of assigning role r to device

ni.1 The latter is set to be

ϱ̄ir =



1−
M∏
j=1

(1− ċij), if r = 1, 3,

1−
N∏
k=1

(1− cik), if r = 2, 4,

1, if r = 5,

(3.10)

to provide similar attractiveness to assigning a role device ni. However, if the device ni

does not have a communication link with any gathering station (i.e.,
∏M

j=1(1 − ċij) = 1),

the attractiveness ϱ̄ir = 0 for r = 1 and r = 3. Consequently, ant a does not assign a sensor

type 1 or aggregator type 1 role to device ni. Similarly, if the device ni does not have a

communication link with any other device (i.e.,
∏N

k=1(1 − cik) = 1), the attractiveness

ϱ̄ir = 0 for r = 2 and r = 4. Consequently, ant a does not assign a sensor type 2 or
1α and β control the influence of the pheromone and attractiveness, respectively.
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aggregator type 2 role to device ni. It is worth noting that
∑N

k=1 cik(η
(a)
k3 + η

(a)
k4 ) = 0

indicates that device ni does not have a communication link to any aggregator device; in

such a case, if ni was assigned a role of sensor type 2 (or aggregator type 2), it will be

re-assigned a role of sensor type 1 (or aggregator type 1) if it has a communication link

with at least one aggregation station, respectively; otherwise, it switches to the sleep mode.

In the second stage, ant a associates the active devices with one of the gathering stations

or another device. The attractiveness of associating device ni with device nk is set to be

¯̄ϱik = cik
D

ℓik
, (3.11)

which suggests more attractiveness to associating device ni with the nearest device with

cik = 1, and D is a constant [43]. The inter-device association decision µ(a) is formed by

ant a such that the probability to set µ(a)
ik = 1 is

¯̄π
(a)
ik =

(
η
(a)
i2 + η

(a)
i4

)(
η
(a)
k3 + η

(a)
k4

)
(¯̄τik)

α (¯̄ϱik)
β∑N

l=1

(
η
(a)
l3 + η

(a)
l4

)
(¯̄τil)

α (¯̄ϱil)
β

, (3.12)

where ¯̄τik is the trail pheromone.1 Once µ(a) is obtained, ant a obtains T (η(a),µ(a)); in-

case a group of type 2 aggregators form an aggregation loop, any of these aggregators

is re-assigned the aggregation type 1 role and if none has a communication link with a

gathering station, all of these devices and devices connected to them are switched to the

sleep mode. If ant a assigns the role of aggregator type 1 (or type 2) to device ni and

no device is associated with ni, ni is re-assigned the sensor type 1 (or type 2) role. The

attractiveness of associating device ni with station mj is set to be

˙̄̄ϱij = ċij
D

ℓ̇ij
, (3.13)

which suggests more attractiveness to associating device ni with the nearest station with

ċij = 1. The device-station association decision µ̇(a) is formed by ant a such that the
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probability to set µ̇(a)
ij = 1 is

˙̄̄π
(a)
ij =

(
η
(a)
i1 + η

(a)
i3

)
( ˙̄̄τij)

α( ˙̄̄ϱij)
β∑M

q=1(
˙̄̄τiq)α( ˙̄̄ϱiq)β

, (3.14)

where ˙̄̄τij is the trail pheromone.1

It is worth noting that based on the above described procedure, η(a), µ(a), and µ̇(a)

represent a feasible solution to (3.8). The quality of this solution is reflected in its deposit

pheromone ∆τ (a), which is set to be

∆τ (a) = O(η(a),µ(a), µ̇(a))Q, (3.15)

where Q is a constant.

In the proposed ACO, a global updating rule is adopted in which the globally best and

second-best ants (i.e., ants which obtain the highest and second-highest O(η(a),µ(a), µ̇(a))

∀a ∈ A) are allowed to deposit their pheromone [44]. The pheromone in the first and

second stages are updated as follows:

τ̄ir ← (1− σ) τ̄ir + η
(a)
ir ∆τ (a), (3.16a)

¯̄τik ← (1− σ) ¯̄τik + µ
(a)
ik ∆τ

(a), (3.16b)

˙̄̄τij ← (1− σ) ˙̄̄τij + µ̇
(a)
ij ∆τ

(a), (3.16c)

where σ is the pheromone evaporation coefficient. The algorithm repeats I colonies and

returns the best solution found so far. The ACO algorithm is presented as Algorithm 8.

An ant a performs O(5NM) and O(N2M) operations in the first and second stages,

respectively. Evaluating the objective function requires O(N2 + N2) = O(N2) opera-

tions. Finally, deposing the pheromone requires O(5N + N2 + NM) = O(N2 + NM)

operations. Consequently, the computational complexity of the proposed ACO algorithm
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Algorithm 1 ACO algorithm for IoUT role assignment.

1: Input: N , M , C, Ċ, α, β, A, and I;

2: Initialize τ̄ir, ¯̄τik, and ˙̄̄τij , ∀1 ≤ i, k ≤ N , 1 ≤ j ≤M , 1 ≤ r ≤ 5;

3: O ← −∞;

4: for Iteration = 1 to I do

5: O1 ← −∞; O2 ← −∞;

6: for a = 1 to A do

7: Obtain η(a), µ(a), and µ̇(a) using (5.22), (3.12), and (3.14), respectively;

8: Evaluate O(η(a),µ(a), µ̇(a)) using (3.7);

9: if O < O(η(a),µ(a), µ̇(a))

10: η∗ ← η(a); µ∗ ← µ(a); µ̇∗ ← µ̇(a);

11: end if

12: if O1 < O(η(a),µ(a), µ̇(a))

13: η(a1) ← T (a); µ(a1) ← µ(a); µ̇(a1) ← µ̇(a);

14: else if O2 < O(η(a),µ(a), µ̇(a))

15: η(a2) ← T (a); µ(a2) ← µ(a); µ̇(a2) ← µ̇(a);

16: end if

17: end for

18: Deposit pheromone of a1 and a2 using (5.25);

19: end for

20: Return η∗, µ∗, and µ̇∗.
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is O([N2M + N2]AI + [N2 + NM ]I) = O(N2MAI). This computational complexity

is experienced by the network management center, and thus, it does not represent a severe

problem due to the high processing power and energy abilities of this center. On the other

hand, this computational complexity comes at a cost of reducing the energy consumption

of the devices, which is constrained by limited battery life-time. It is worth mentioning that

the computational complexity of the proposed ACO algorithm is significantly lower than

the complexity of exhaustive search, which is O(N22(5+N+M)N).

3.2.4 Simulation Results

To study and evaluate the effects of the main parameters on the performance of the pro-

posed role assignment framework, an underwater area of interest is considered. The per-

formance of the proposed framework is compared with a baseline approach, in which each

device transmits its data to the nearest gathering station and switches to the sleep mode

if no gathering station lies within its transmission range. In obtaining these results, a bi-

nary phase-shift-keying system is considered [27] and the usable bandwidth of the acoustic

communication channel is adapted according to the model in Section 2.5. The default sim-

ulation parameters summarized in Table 3.1 are considered in the results, unless otherwise

stated.

Figure 3.1 illustrates the objective function and the number of active devices of the

proposed framework versus the relative weight λ. This figure illustrates both ACO solution

and optimal solution, obtained through exhaustive search. It is seen that the proposed ACO

algorithm achieves near-optimum performance and as λ increases, the proposed framework

activates more devices to increase the gathered data.
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Table 3.1: Simulation parameters of the multi-sink data aggregation framework.

Parameter Value Parameter Value

UAoI dimensions 1× 1 km2 Water depth 300 m

L 2048 bits [27] φ 0.75 [27]

ρ 102 δ 1900 cycles per bit

χ 10 dB [27] ξ −10 dB [27]

γ̂ 10 dB [27] Es
i 10 nJ [45]

Ea
i 50 µJ [45] εi 10 nJ per bit [45]

ζ 0.25 [27] N 20 devices

ϑi 400 m M 3 stations

α 1 [44] A 100

β 1 [44] I 103
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Figure 3.1: The objective function in (3.7) and active devices versus the relative weight λ.

Figure 3.2 shows the total gathered information and energy expenditure of both pro-

posed framework and baseline approach with respect to the degree of correlation ρ. It is
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noticed that for low values of ρ, the proposed framework gathers more information with

less energy consumption. As ρ increases, the gathered information of both approaches de-

creases; this is due to the fact that increasing ρ reduces the joint entropy of the available

devices. However, it is worth noticing that the proposed framework preserves more energy

as ρ increases, whereas the devices in the baseline approach keep sending raw data with-

out exploring the correlation among data. Consequently, the energy consumption of the

baseline approach is not a function of ρ.
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Figure 3.2: Total gathered information and energy consumption versus the degree of correlation ρ.

Figure 3.3 shows the total gathered information and energy consumption of the pro-

posed framework and the baseline approach for different numbers of available devices N .

The gathered information of both proposed framework and baseline approach increases as

N increases. On the other hand, it is noticed that the energy consumption of the proposed

framework is less and flattens asN increases. This is due to the fact that asN increases, the
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correlation among the data of the devices increases; however, the baseline approach aggre-

gates this correlated data. On the other hand, increasing N gives the proposed framework

diversity to activate a subset of devices and to optimally assign a role to each active device.
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Figure 3.3: Total gathered information and energy consumption versus the number of available

devices N .

3.3 Energy-Efficient Data Aggregation Using a UAV

In the IoT data gathering scenario, UAVs can play the role of mobile aggregator nodes that

dynamically hover towards the IoT devices, gather their data, and return to a data aggrega-

tion center which is beyond the communication range of the IoT devices. If the UAV hovers

close to all devices, higher data rates can be achieved, and in turn, this reduces the com-
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munication time; however, it leads to higher energy consumption due to the long traveling

tour. On the other hand, stopping the UAV at far positions may reduce the traveling energy

but the data rates degrade, and thus, the hovering time to gather data at such far trajectories

increases. Moreover, gathering correlated data is cost-expensive, and it involves the UAV

hovering and gathering repeated data. Consequently, both the active devices and the UAV’s

path should be optimized to ensure that the required uncorrelated data has been gathered

with minimum energy consumption. In this work, unlike existing studies, a framework that

takes into account the spatial correlation among IoT devices’ data is proposed. Taking into

account the trade-off between the amount of aggregated data and the energy consumption,

the proposed framework minimizes the energy expenditure of the UAV and devices and

guarantees that an adequate amount of uncorrelated data is aggregated.

3.3.1 System Model

The considered system model consists of a setN = {ni}Ni=1 of N devices placed in an area

of interest. A UAV is responsible for aggregating data from the devices. The maximum

number of stop positions (data aggregation points or positions) where the UAV may stop to

aggregate data from devices equals N . These aggregation points are represented by ψ̃ =

[ψ̃j]N×3, with ψ̃j = {x̃j, ỹj, z̃j} as the 3D geographical coordinates. At each aggregation

point, the UAV aggregates data from a subset of devices using a time division multiple

access scheme. Each device obtains L bits of raw data and communicates with the UAV at

only one aggregation point.
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Let us define the device activation decision η̂ =
[
η̂ij
]
N×N such that

η̂ij =


1, if ni sends its data to the UAV at ψj,

0, otherwise.

(3.17)

It is worth mentioning that, for a given η̂, the UAV travels and stops only at each ag-

gregation point with
∑N

i=1 η̂ij ≥ 1. Initially, the UAV is placed at a docking station lo-

cated at ψ0 = {x0, y0, z0} to which it has to return after completing the data aggregation.

For a given η̂, the number of aggregation points is K ≤ N with
∑N

i=1 η̂ij ≥ 1. Conse-

quently, the UAV’s data aggregation trip ψ̄
(
η̂, ψ̃

)
is defined as a traveling path that starts

at ψ0, passes through all the K aggregation points, and returns to the docking station, i.e.,

ψ̄
(
η̂, ψ̃

)
=
[
ψ̄j
]
(K+2)×3, where ψ̄1 = ψ̄K+2 = ψ0 and ψ̄2, ψ̄3, . . . , ψ̄K+1 is an ordered

set of all aggregation points with
∑N

i=1 η̂ij ≥ 1. For a given device activation decision η,

similar to (2.2), the joint entropy of active devices can be expressed as

H (η̂) = τ (η̂)

L+ L
N∑
i=1

N∑
j=1

η̂ij

[
1− 1

di (η̂) /ρs + 1

] , (3.18)

where τ (η̂) = 1 −
∏N

i=1

∏N
j=1

[
1− η̂ij

]
and di (η̂) is the minimum distance between the

device ni and all devices nk with ηkj = 1 for ∀j and ∀k = 1, 2, . . . , i− 1.

3.3.2 Problem Formulation

Activating a large number of devices leads to a larger traveling tour for the UAV, and con-

sequently, to an increase in the total consumed energy. On the other hand, a fewer number

of participating devices decreases the aggregated information. Consequently, the number

of active devices should be intelligently selected and the UAV should stop at suitable ag-

gregation points such that an adequate amount of information is aggregated and the total
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consumed energy is decreased. For a given η̂, the total consumed energy by device ni can

be calculated as

Ei
(
η̂, ψ̄

)
=

N∑
j=1

η̂ij

(
Ea
i +

PTiL

Rij

)
+

1−
N∑
j=1

η̂ij

Es
i , (3.19)

where PTi is the transmit power of device ni and Rij is the data rate and can be obtained

using (2.8). The energy dissipated by the UAV during the data aggregation trip can be

calculated as

EUAV

(
η̂, ψ̄

)
=

K+1∑
j=1

(
Phov + Pmov

) ∥ψ̄j+1 − ψ̄j∥2
v︸ ︷︷ ︸

Path energy dissipation

+
N∑
i=1

N∑
j=1

η̂ij

(
Phov + Pr

)
L

Rij︸ ︷︷ ︸
Data aggregation energy dissipation

,
(3.20)

where Phov and Pmov represent the hovering and the moving power consumption of the

UAV, which can be obtained using (2.6) and (2.7), respectively. The objective function is

expressed as the sum of the energy dissipated by the UAV and devices as follows:

E
(
η̂, ψ̄

)
= λEUAV

(
η̂, ψ̄

)
+ (1− λ)

N∑
i=1

Ei
(
η̂, ψ̄

)
. (3.21)

where, 0 ≤ λ ≤ 1 is the relative weight.

Let I (in bits) be the minimum amount of information (uncorrelated data) required to

be aggregated2; the optimization problem can be formulated as follows:

P1 min
η̂,ψ̄
E
(
η̂, ψ̄

)
, (3.22a)

s.t.
N∑
j=1

η̂ij ≤ 1, ∀ 1 ≤ i ≤ N, (3.22b)

H (η̂) ≥ I, (3.22c)

[
N∑
i=1

η̂ij]
+
(
hmin ≤ z̃j ≤ hmax

)
, ∀ 1 ≤ j ≤ N, (3.22d)

η̂ij ∈ {0, 1}, ∀ 1 ≤ i, j ≤ N. (3.22e)

2I should be upper bounded by the joint entropy of the device set N (i.e., 0 ≤ Γ = I
H ≤ 1).
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Constraint (3.29b) guarantees that each device communicates with the UAV in at most one

data aggregation point. Constraint (3.22c) guarantees that the total aggregated information

(uncorrelated data) satisfies the requirement. Constraint (3.22d) guarantees that the UAV

hovers within the allowable altitude, where [ν]+ ≜ min{ν, 1}.

3.3.3 Proposed Solution Approach

A greedy algorithm is developed to solve (3.22). First, the algorithm aims to select an

optimum set of devices that can provide an adequate amount of information, and to the

extent possible, are located in close proximity to the docking station. Secondly, the algo-

rithm determines the aggregation points and the contributing devices associated with each

of these points. Finally, the optimized itinerary of the UAV between the aggregation points

to complete the aggregation tour is determined.

3.3.3.1 Device Activation Optimization Sub-Problem and the Proposed Genetic Al-

gorithm (GA)

Let us define a device activation indicator µ̂ = [µ̂i]N×1 such that

µ̂i =


1, if ni sends the data to the UAV,

0, otherwise.

(3.23)

For a given µ̂, similar to (2.2), the joint entropy of the active devices can be written as

H (µ̂) = τ (µ̂)

L+ L

N∑
i=1

µ̂i

[
1− 1

di (µ̂) /ρ+ 1

] , (3.24)

where τ (µ̂) = 1 −
∏N

i=1 [1− µ̂i] and di (µ̂) is the minimum distance between device ni

and all devices nk with µ̂k = 1 ∀k = 1, 2, . . . , i − 1. Therefore, with di0 as the distance
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between the docking station and device ni, the contributing devices selection sub-problem

can be formulated as

P2 min
µ̂

N∑
i=1

µidi0, (3.25a)

s.t. H (µ̂) ≥ I, (3.25b)

µ̂i ∈ {0, 1}, ∀ 1 ≤ i ≤ N. (3.25c)

The search space for (3.25) is 2N , which makes finding the optimum solution prohibitive

for a reasonable number of devices. Consequently, a GA is devised to solve (3.25). In the

proposed GA, a device activation indicator µ̂ is a chromosome, which consists of a set of

N binary genes. The raw fitness value of a chromosome µ̂(k) is expressed as

χ(k) =
1∑N

i=1 µ̂
(k)
i di0

. (3.26)

Each chromosome µ̂(k) is associated with a feasibility indicator which is obtained as fol-

lows:

ι(k) =


1, ifH(µ̂(k)) ≥ I,

0, otherwise.

(3.27)

Consequently, the fitness value of the chromosome µ̂(k) is expressed as

X (k) = ι(k)χ(k). (3.28)

The chromosome with the highest X (k) > 0 satisfies (3.25b) and (3.25c) and minimizes

(3.25a). The adopted GA to solve (3.25) consists of the following steps:

1. Generate an initial population as a set of Ξ randomly constructed chromosomes.

2. Calculate the fitness of each chromosome using (3.28).
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3. Choose the parent chromosomes. Two chromosomes are selected and the chromo-

some with the highest raw fitness value is chosen as the first parent. The process is

repeated to choose the second parent.

4. Obtain a child by performing crossover and mutation operations on the parent chro-

mosomes. The crossover operation is performed by selecting a crossover point 1 ≤

m ≤ N randomly such that the first m genes of the child chromosome are inherited

from the first parent while the remaining N −m genes are inherited from the second

parent. The mutation operation is performed by randomly exchanging two genes in

the children. After generating the child chromosome, its fitness value is evaluated

using (3.28).

5. Replace the chromosome with the lowest raw fitness value in the population by the

child chromosome.

6. Repeat steps 3 to 5 until M̄ offspring have been obtained without improving the best

solution found so far or a maximum number of offspring ¯̄M ( ¯̄M > M̄) has been

obtained.

7. Return µ̂∗, which is the chromosome with the highest X (k).

3.3.3.2 UAV’s Itinerary Optimization

For a given µ̂∗ = [µ̂∗i ]N×1 as a solution of (3.25), the optimization problem (3.22) can be

written as
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P3 min
η̂,ψ̄
E
(
η̂, ψ̄

)
, (3.29a)

s.t.
N∑
j=1

η̂ij = µ̂∗i , ∀ 1 ≤ i ≤ N, (3.29b)

 N∑
i=1

η̂ij

+ (
hmin ≤ z̃j ≤ hmax

)
, ∀ 1 ≤ j ≤ N, (3.29c)

η̂ij ∈ {0, 1}, ∀ 1 ≤ i, j ≤ N. (3.29d)

To solve (3.29), the optimal number of aggregation points K should be determined,

the location of each aggregation point should be optimally determined, the optimum set of

devices with µ̂∗i = 1 to contact the UAV, and finally, the optimum route that the UAV needs

to follow to visit the K aggregation points. Algorithm 2 is designed to find the solution of

(3.29), in which the main steps are implemented as follows. First, the algorithm obtains the

optimum set of active devices by solving (3.25) using the GA. The algorithm iterates and

varies the number of aggregation points from 1 to N∗, where N∗ =
∑N

i=1 µ̂
∗
i is the number

of active devices. At each iteration, the algorithm performs K-means clustering such that

each active device is assigned to the UAV at the closest aggregation point. The K-means

clustering converges and obtains K centroids, with each centroid representing x̃j and ỹj

coordinates of the data aggregation point ψ̃j .3 The optimum altitude of the aggregation

point z̃j depends on the distance between its centroid and the farthest active device that

transmits the data to the UAV at ψ̃j , and can be expressed as z̃j = r̂ij tan(θopt), where r̂ij =

max
1≤i≤N

{η̂ijrij}, with rij =
√

(xi − x̃j)2 + (yi − ỹj)2 and θopt = 75.52◦, 54.62◦, 42.44◦, and

3The instructions in lines 9 to 14 of Algorithm 1 iterate only a few iterations before clusters converge and

the condition in line 9 is dissatisfied.
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20.34◦ for the high-rise urban, dense urban, urban, and suburban environments, respectively

[23]. Consequently, the altitude of each aggregation point is obtained as follows:

z̃j =



hmax, if r̂ij tan(θopt) > hmax,

hmin, if r̂ij tan(θopt) < hmin,

r̂ij tan(θopt), otherwise.

(3.30)

Once the K aggregation points are obtained, the following question raises: what is the

shortest possible route that starts at ψ0 and visits each aggregation point exactly once and

returns to ψ0? This question has the same structure as a well known problem in the combi-

natorial optimization called traveling salesman problem (TSP). Here, the nearest neighbor

(NN) scheme is adopted which solves the TSP efficiently. In the adopted NN scheme, the

UAV’s tour starts at ψ0, and repeatedly chooses the next aggregation point as the unvisited

aggregation point closest to the current one. Once all aggregation points have been chosen,

it closes the tour by returning to ψ0. In other words, for a given set ofK aggregation points,

the data aggregation tour ψ̄
(
η̂, ψ̃

)
is obtained as

ψ̄ (η̂,ψ) = {ψ0, ψ̃ĵ1 , ψ̃ĵ2 , . . . , ψ̃ĵK , ψ0}, (3.31)

where ψ̃ĵ1 is the closest point to ψ0, ψ̃ĵ2 is the closest point to ψ̃ĵ1 , and so on. The algorithm

examines all the possible values of K and returns η̂∗ and ψ̃∗ as a solution for (3.22).

Solving (3.25) using the proposed GA requiresO(N [ ¯̄M+Ξ]) operations. Consequently,

the computational complexity of solving (3.22) using the proposed greedy algorithm is

O(N [ ¯̄M + Ξ] + N3). It is worth mentioning that this is reduced when compared with the

search space of (3.22), which is 2N2
N !.
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Algorithm 2 A greedy algorithm for data aggregation using a UAV.
1: Input: I , ψ0, ψ, N ;

2: Obtain µ̂∗ by solving (3.25); set N∗ ←
∑N

i=1 µ̂
∗
i ;

3: E∗ ←∞;

4: for K = 1 to N∗ do

5: η̂ ← [0]N×N ;

6: Selected a device with µ̂∗i = 1 ∀i = 1, 2, . . . N∗;

7: ηiĵ ← 1 if µ̂∗i = 1 with ĵ = arg min
1≤j≤K

{rij};

8: {ẋj , ẏj} = {x0, y0} ∀j = 1, 2, . . .K;

9: While ∃
√(

ẋj − x̃j
)2

+
(
ẏj − ỹj

)2
> δ ∀j = 1, 2, . . .K do

10: {ẋj , ẏj} ← {xj , yj};

11: x̃j =
∑N

i=1 η̂ijxi∑N
i=1 η̂ij

, ỹj =
∑N

i=1 η̂ijyi∑N
i=1 η̂ij

∀j = 1, 2, . . .K;

12: η̂ ← [0]N×N ;

13: η̂iĵ ← 1 if µ̂∗i = 1 with ĵ = arg min
1≤j≤K

{rij};

14: end While

15: Obtain z̃j using (3.30) ∀j = 1, 2, . . .K;

16: ψ̃j = {x̃j , ỹj , z̃j} ∀j = 1, 2, . . .K;

17: Obtain ψ̄
(
η̂, ψ̃

)
using (3.31);

18: Evaluate E
(
η̂, ψ̄

)
using (3.21);

19: if E∗ > E
(
η̂, ψ̄

)
20: E∗ ← E

(
η̂, ψ̄

)
; η̂∗ ← η̂; ψ̄∗ ← ψ̄;

21: end if

22: end for

23: Return E∗, η̂∗, and ψ̄∗.
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3.3.4 Simulation Results

The energy expenditure of the proposed algorithm is compared with the following baseline

approaches: (1) Baseline approach 1 in which all the available devices are active and the

UAV stops above each device to aggregate data; (2) Baseline approach 2 in which the

optimum set of devices are active and the UAV stops above each active device to aggregate

data; (3) Baseline approach 3 in which all the available devices are active and the UAV stops

at the optimum aggregation points. In obtaining these results, the N devices are placed at

random in an area-of-interest of dimensions 1× 1 km2. The default simulation parameters

summarized in Table 3.2 [20, 21] are considered in the results, unless otherwise stated.

Table 3.2: Simulation parameters of the data aggregation using a UAV framework.

Parameter Value Parameter Value Parameter Value

PT 21 dBm B 20 kHz fc 2 GHz

L 2048 bytes N0 −174 dBm/Hz ϵ 2

α 10 β 0.03 Pr 0.0126 W

ζNLoS 20 dB ζLoS 0 dB Pstop 0 W

Pmax 6 W v 15 m/s vmax 15 m/s

M 0.5 kg r 20 cm p 4

Ξ 10N M̄ 100 ¯̄M 104

Figure 3.4 shows the energy expenditure of the proposed algorithm and the baseline

approaches for different numbers of available devices N . It is noticed that the energy

expenditure of the proposed algorithm is less and flattens as N increases. This is due to the

fact that as N increases, the correlation among the data of the devices increases; however,

baseline approaches 1 and 3 aggregate this correlated data and baseline approach 3 has a
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longer UAV tour in comparison with the proposed algorithm.
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Baseline approach 3

Proposed greedy algorithm approach

Figure 3.4: Energy expenditure versus the number of available devices N .

Figure 3.5 illustrates the performance of the baseline approaches and proposed algo-

rithm versus the ratio Γ = I
H

. It is seen that for small values of Γ, the proposed algorithm

preserves more energy. As Γ (i.e., I) increases, the energy expenditure of the proposed

algorithm increases; however, it is upper-bounded by the energy expenditure of baseline

approach 3. This is not the case for baseline approach 2, whose energy expenditure in-

creases linearly with Γ. The energy expenditure of baseline approaches 1 and 3 is not a

function of Γ.
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Figure 3.5: Energy expenditure versus the ratio Γ = I
H with N = 50 and ρs = 103.

3.4 Concluding Remarks

In this chapter, two energy-efficient data aggregation frameworks have been proposed. The

first framework is a device-role assignment framework, in which an optimization problem

has been formulated with the objective of maximizing the gathered information with mini-

mal energy by activating a subset of the devices and assigning a role to each active device.

An ACO solution approach has been developed to solve the optimization problem. Simu-

lation results have illustrated that the proposed framework gathers more information with

less energy when compared with a baseline approach, under different scenarios and the

ACO algorithm achieves near-optimal performance.

The second framework considered spatially-correlated data aggregation from IoT de-

vices using a UAV. In this framework, an optimization problem has been formulated to

minimize the energy expenditure of the UAV and devices and to guarantee that an ade-
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quate amount of uncorrelated data is aggregated. A greedy algorithm has been developed

to optimize the contributing devices and the itinerary followed by the UAV in order to en-

sure energy-efficient data aggregation. Simulation results have revealed that the proposed

algorithm reduced the energy expenditure when compared with three baseline approaches.
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Chapter 4

Age-Aware Data Gathering

4.1 Background and Motivation

A wide range of applications (such as sensor networking, IoT, intelligent transportation

lines monitoring, and environment monitoring) requires a timely information about the

state of processes of interest. In order to have efficient decision making and control com-

mands in these applications, the data gathering centers need to maintain freshness of the

measurements of different devices. Accordingly, the key enabler for such applications is

the freshness of the information at the data gathering centers [2].

Traditional metrics such as delay and throughput can not fully characterize the infor-

mation freshness. A performance metric, namely AoI, was introduced to characterize the

freshness of the information from the destination device perspective. AoI is defined as the

time elapsed since the most recently received update information at the destination was

generated at the source device [5]. It is worth mentioning that under hardware limitations,

minimizing AoI is not guaranteed by maximizing other parameters such as the through-
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put or the contention window size [46]. Some techniques, such as power-domain non-

orthogonal multiple access, can be utilized to minimize the AoI and balance the consumed

power of the devices [47].

Wireless sensor networks (WSNs) and IoT constitute rapidly growing surveillance and

monitoring technologies, in which a set of tiny yet intelligent devices that monitor pro-

cesses of interest, transmit and forward data to a designated sink or data gathering cen-

ter. A fundamental design issues of WSN and IoT is the placement topology where the

nodes are located to effectively handle the application requirements and operations. In this

context, the linear network typology represents an interesting sub-class of WSNs and IoT

typologies, in which the devices are placed in a one-dimensional linear topology. Linear

networks play a crucial role in many monitoring occasions such as city drainage pipelines

monitoring, highways and railways security, power lines inspection, international border

surveillance, and oil and gas pipelines monitoring systems. The linear network topology

imposes additional communication challenges, such as the fact that the devices’ commu-

nication range cannot cover the entire linear network, and due to the distribution of the

devices along the network, the intuitive transmission mode is the multi-hop mode. In a

multi-hop transmission mode, the source device transmits the updates to the data gathering

centre via a sequence of devices [48]. This transmission mode leads to imbalance energy

consumption and high latency [14, 15]. Consequently, maintaining information freshness

in linear networks is a challenging issue which becomes more severe in communication

environment with relatively high transmission delay such as underwater communication

environment.

Underwater linear structures, such as underwater pipelines, have played a crucial role

to enable offshore exploration industry by providing a sustainable transportation of essen-
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tial resources such as oil, natural gas, and water. Underwater pipelines normally laid on

the seabed and in such harsh environments require regular inspection and monitoring. The

decision maker should be aware of the status of the pipeline and some physical processes

around it, such as temperature and sea currents vibrations, to guarantee the pipeline’s con-

tinuing and fluent integrity. Traditional data gathering methods in underwater linear net-

works such as divers or towfish need a highly trained personnel, and as the length of the

network extends for long distance, these methods become expensive and time consuming.

AUVs are utilized as a cost and time efficient method to collect data from the devices

in underwater linear networks. In this case, the AUV represents a mobile data collection

center that gathers the data, and if needed, reports any incidents to a surface center. More-

over, AUVs are embedded with large storage and computing capabilities, which enables

the AUVs to play the role of organizing and managing the underwater networks; this mini-

mizes the human interaction in the monitoring operation. Optimizing the AUV’s traveling

path and the locations at which it communicates with the devices improves the network

throughput, balances the energy consumption, and enables the AUV to maintain freshness

of the information about the monitored processes.

4.1.1 Related Work

Mobile data gathering centers are an emerging technology that can be harnessed for un-

derwater [49–54] and terrestrial [55–60] networks. In [49], a deep reinforcement learning

framework for AUV motion planning was proposed. In this framework, the sensors in-

formation is utilized to enable the AUV to reach multiple target points in a sequence while

avoiding obstacles. A cooperative trajectory estimation algorithm for a fleet of AUVs which
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minimizes the mission time by accurately localizing the payload data was proposed in [50].

A multi-modal data gathering from a set of sensors by employing a mobile AUV was pro-

posed in [51]. The authors studied a multi-modal hybrid transmission using both acoustic

and optical communications where the appropriate mode is chosen according to the quality

of transmissions that take place over time. A task-based underwater pipeline inspection

system, in which an AUV utilizes a set of underwater sensors to localize and inspect an

underwater pipeline was presented in [52]. In [53], an AUV path planning algorithm was

proposed to enable data gathering with maximum value of the received information. The

problem was formulated as a integer linear programming optimization problem, and the

proposed algorithm was compared with three baseline solutions. In [54], a linear underwa-

ter sensor network was deployed to monitor underwater pipelines and upload the data to

an AUV. The authors studied different AUV movement strategies to improve the average

data packet delay and delivery ratio. To the best of the authors’ knowledge, the information

freshness has not been studied in underwater networks scenario.

In [55], a UAV was considered as a mobile data gathering center in a terrestrial lin-

ear network. The authors’ objective was to optimize the UAV speed to minimize the total

flight time while gathering the data of a linearly placed devices. In [56], a UAV-assisted

data gathering network was considered, in which the UAV hovers above ground devices to

collect status updates about their observed processes. The objective was minimizing the

normalized weighted sum of AoI by jointly optimizing the UAV’s path and scheduling the

status updates. In [57], a UAV was considered as a mobile relay to minimize the average

peak AoI for a source–destination pair. Only one source-destination pair was considered,

in which the source device sends its measurements to the destination device via the UAV.

The problem was formulated to jointly optimize the UAV’s flight trajectory in a finite set
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of points and energy allocations for data transmissions. In [58–60], deep reinforcement

learning (DRL) networks with different settings were proposed to find an optimal AUV

trajectory and/or scheduling policy in order to minimize the AoI of ground devices. How-

ever, the authors of these works considered that both the time instants and UAV trajectory

are discretized. Moreover, in such discretized scenario, the AoI is described by a discrete

function which increases by one at each discrete time instate if no update is received from

the corresponding device. This discretization introduces approximation errors to the trajec-

tory planning as well as to obtained solutions and limits their implementation in real-world

scenarios.

This chapter introduces a framework to minimize the normalized weighted sum AoI of

a set of physical processes at a mobile data gathering center that gathers data from a set

of linearly-deployed devices. Each device senses one or more processes. A novel metric

referred to as correlation-aware AoI (CAAoI) is also introduced to capture both freshness

and diversity in the gathered information. The CAAoI of an information gathering system

is studied, in which a UAV gathers information about a set of physical processes; each

process can be measured by one or more ground devices.

4.2 Age-Optimal Information Gathering in Linear Net-

works

4.2.1 System Model

In this work, data gathering in a linear network scenario is considered, in which a mobile

data gathering center is given a mission of a finite horizon of time T seconds to monitor a
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set P = {pk}Pk=1 of P physical processes by gathering information from a setN = {ni}Ni=1

of N devices. The devices are located on a line, which is represented by ψ̂ = {ψ̂i}Ni=1 with

ψ̂i = {x̂i, 0, d̂} as the 3D geographical coordinates of device ni. Each device is able to

sense one or more processes. To represent the devices ability to observe the processes,

χ = [χik]N×P is defined such that

χik =


1, if ni is able to observe pk,

0, otherwise.

(4.1)

The mobile data gathering center needs to maintain freshness of its information status about

the processes P as it moves along a linear path that starts at initial point ψ0 and passes

through a set of M data gathering points ψ = {ψj}Mj=1, with ψj = {xj, 0, d}. The decision

variable T = {Tj}Mj=1 is defined such that Tj is the time allocated for the mobile data

gathering center to stop at ψj . For a given time allocation decision T , the device-center

association decision variable η =
[
ηijk
]
N×M×P is defined such that ηijk = 1 if ni sends

data of process pk to the mobile data gathering center at data gathering ψj , and ηijk = 0

otherwise. For a given decision variable η, the devices’ transmission ordering decision

µ =
[
µq
]
Q×3 with Q =

∑N
i=1

∑M
j=1

∑P
k=1 ηijk is defined such that each row contains 3

indices representing the index of gathering point, device, and process; the transmission

ordering follows the order of the rows in µ.

The traveling time of the mobile data gathering center between data gathering points

is represented by the decision variable T̄ = {T̄j}Mj=1, with T̄j as the traveling time from

ψj−1 to ψj . Consequently, the location of data gathering points ψ can be inferred from the

decision variable T̄ .

50



4.2.2 AUV Kinematics Model

Since the data gathering center travels in a straight path, its kinematic equations reduce

to the kinematic equations for linear motion. The maximum straight line velocity of the

data gathering center is Vmax, and its constant acceleration and deceleration are δ > 0 and

δ′ < 0, respectively. Consequently, the data gathering center accelerates from constancy

to Vmax in t0 = Vmax/δ (seconds) and over the distance d0 = V 2
max/2δ (m). Similarly,

it decelerates from Vmax to constancy in t′0 = Vmax/−δ′ (seconds) and over the distance

d′0 = V 2
max/−2δ′ (m).

For a given T̄j as the allocated time to the data gathering center to travel from point

ψj−1 to ψj in the observation line, if T̄j ≥ t0+ t
′
0, then the data gathering center accelerates

until it reaches Vmax, moves with Vmax for T̄j − t0 − t′0 seconds, and decelerates until

constancy. If T̄j < t0 + t′0, then the data gathering center accelerates in the first portion of

T̄j and decelerates in the second portion. Consequently, the location of the data gathering

point ψj can be obtained as ψj = {xj−1 + ∆j, 0, d}, where ∆j is the traveling distance of

the data gathering center in T̄j seconds and can be expressed as

∆j=



V 2max
2δ

+ Vmax(T̄j − t0 − t′0) +
V 2max
−2δ′ , if T̄j ≥ t0 + t′0,

1
2
δ
(
−δ′T̄j
−δ′+δ

)2
+ 1

2
(−δ′)

(
δT̄j
−δ′+δ

)2
, if T̄j ≤ t0 + t′0.

(4.2)

It is worth mentioning that the location of the initial point ψ0 is known and for a given

T̄j , the above described iterative procedure is able to determine the locations of the data

gathering points ψ.
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4.2.3 Problem Formulation

The objective is to maintain freshness of processes’ information at the mobile data gather-

ing center. The objective function is defined as a normalized weighted sum of time-average

AoI as follows

O
(
T , T̄ ,η,µ

)
=

1

0.5T

P∑
k=1

λkET
[
∆k(t)

]
, (4.3)

where ET
[
∆k(t)

]
is the time-average AoI and can be obtain using (2.5) and λk is the im-

portance weight of process pk, such that
∑P

k=1 λk = 1. Hence, the optimization problem is

formulated as

P1 min
T ,T̄ ,η,µ

O
(
T , T̄ ,η,µ

)
, (4.4a)

s.t. Tj ≥
N∑
i=1

P∑
k=1

ηijkL
(
Ik, ℓij

)
,∀ j ≤M, (4.4b)

M∑
j=1

Tj + T̄j ≤ T, (4.4c)

ηijk = χikηijk,∀ i ≤ N, j ≤M,k ≤ P, (4.4d)

γ(ℓij) ≥
[
ηijk
]+
γth,∀ i ≤ N, j ≤M,k ≤ P, (4.4e)

Tj, T̄j ≥ 0, ηijk ∈ {0, 1},∀ i ≤ N, j ≤M,k ≤ P. (4.4f)

Constraint (4.4b) guarantees that the assigned time for the AUV at each gathering point is

enough to gather the data scheduled at that point. Constraint (4.4c) guarantees that the en-

tire mission is performed within the time constraint. Constraint (4.4d) guarantees that each

device is able to sense the assigned processes. Constraint (4.4e) guarantees that the SNR at

the AUV is greater than its sensitivity γth, where [ν]+ ≜ min{ν, 1}. It is worth noting that

the optimization problem (4.4) is a non-convex mixed integer problem that constraints over

coupled variables, and thus, it cannot be solved by the standard optimization techniques.
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This motivates the proposed DRL based solution introduced in the next section.

Implementation Issues: The proposed framework can be applied in the terrestrial linear

networks as well, e.g., the system model in [55], in which an UAV gathers data from a

set of ground devices deployed in a linear model. In such a case, the kinematics model of

the UAV can be deduced based on its acceleration-deceleration and maximum speed. The

latency of transmitting the information from a device to the UAV at a given point can be

obtained using a probabilistic ground-to-air communication channel model.

4.2.4 Proposed Solution Approach

The first part of this section aims to give a brief overview of, and key notation for, RL,

DRL, and actor-critic DRL. The second part presents the proposed DRL-based solution

method.

4.2.5 Theoretical Preliminaries

RL refers to the process of learning of an agent by interacting with an environment in

discrete decision epochs. At each learning epoch l, the agent executes an action al ∈ A,

observes state sl ∈ S, receives a reward rl, and transits to the next state sl+1 ∈ S, whereA

is the set of all possible actions and S is the set of all possible states. The agent’s actions are

governed by a policy π(a | s), which represents the probability of taking action a at state s.

The goal of the learning process is to improve the policy to maximize the discounted reward

over the learning time horizon. A key metric of RL is the Q-function Qπ(s,a) which is the

expected return by taking action a at state s by following policy π. The learning process

based on Q-function is known as the Q-learning, in which the optimum Q-function can be
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obtained by solving the Bellman equation using iterative solution approaches. It has been

shown that Q-learning converges to the optimal solution if each state-action pair is visited

in sufficient learning iterations [61]. The Q-learning method, also known as table-based

learning, requires a table to store each state-action pair and the Q value of the pairing, such

that the Q value is updated only when that state-action pair is actually experienced during

the training. Consequently, this method becomes impractical in two common scenarios:

(1) The number of states/actions is very large; (2) The state space and/or action space are/is

continuous.

In DRL, the action-value function is approximated by deep neural network (DNN) such

that the Q-function becomes Q(s,a | θ), where θ is the weight vector of the DNN [62].

DRL has three main advantages: (1) There is no need to evaluate each state-action pair

and store all these pairs along with the updated; (2) A pioneer idea of using double deep

Q-learning namely actor-critic method is able to deal with system environments with con-

tinuous state/action spaces [18]. In the actor-critic method, the actor network π(sl | θπ)

is learned by updating the weight θπ to obtain the best action at a given state sl; while the

critic network Q(sl,al | θQ) is an ordinary DRL network that approximates the Q-value

of a state-action pair. The critic network is trained by updating its weight θQ to minimize

the following loss function [18]:

L(θQ) = E
[(
yl −Q(sl,al | θQ)

)2]
, (4.5)

where yl is a target value that can be obtained as follows

yl = r(sl,al) + ϕQ
(
sl+1, π

(
sl+1 | θπ

)
| θQ

)
, (4.6)

with 0 ≤ ϕ ≤ 1 as a discount factor [18]. The actor network is updated using a deep
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deterministic policy gradient (DDPG) [18] by maximizing the following function:

J(θπ) = E
[
Q(s,a | θQ)

∣∣
s=sl,a=π(sl|θπ)

]
, (4.7)

such that the weight θπ is updated using the gradient of (4.7):

∇J(θπ) = ∇aQ(s,a | θQ)
∣∣
s=sl,a=π(sl)

· ∇θππ(s | θπ)
∣∣
s=sl

. (4.8)

Finally, it has been noted that the direct application of the above descried actor-critic train-

ing procedure directly leads to oscillations and uneven divergence. A simple yet effective

method to stabilize the actor-critic training procedure was proposed in [62]. This learning

stabilization method consists of two techniques: (1) Experience replay buffer B, which is

replay memory that stores transition experiences (sl,al, rl, sl+1) such that the training is

performed based on a mini-batch of randomly-selected samples from the replay memory

to minimize correlations between the training samples; (2) Separate target networks, which

are copies of the actor and critic networks; the weight of these target networks can be

updated using the Polyak averaging method as follows

θπ
′
=(1− σ)θπ′

+ σθπ; θQ
′
=(1− σ)θQ′

+ σθQ, (4.9)

with 1 ≤ σ ≤ 0. This makes the training of the target networks stable and robust, and

hence, improves the convergence.

4.2.6 Proposed DRL-Based Solution Method

In the proposed DRL solution method, an agent is designed to find the optimum travelling

and stopping time allocation decisions T̄ and T , respectively. Based on T̄ , the locations

of the stopping points can be obtained using (4.2). Consequently, devices that are able to
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communicate with the AUV at each stopping point can be determined by testing constraint

(5.7d). Based on T , the device-process can be scheduled to minimize the objective function

in (4.3). For a given ψ̂, ψ, and γth, the device point communication matrix C =
[
cij
]
N×M

can be obtained such that

cij=


1, if γ(ℓij) ≥ γth,

0, otherwise.

(4.10)

In the proposed DRL, the state, action, and environment are defined as follows

• State: The state at the l-th training step sl = [sl]1×2M consists of two parts: The first

part represents the current locations of the AUV stopping points, referred to as ”the

data gathering points”. Since all the points are located on a line, the first part of the

state can be represented as sl = {x1, x2, . . . , xM}, where xj is the x-coordinate of

data gathering ψj . The second part of the state represents the number of devices that

can communicate with the AUV at each stopping point. Consequently, the (M+j)-th

element of the state equals
∑N

i=1Cij .

• Action: The action of the agent is defined as al = {a1, a2, a3, a4, . . . , a2M}, where

a1 represents the portion of the total time T , which is allocated for the AUV to move

from the initial point ψ0 to ψ1. Then a2 represents the portion of the total time T ,

which is allocated to the AUV to stop at ψ1. Similarly, a3 represents the portion of

the total time T , which is allocated to the AUV to move from point ψ1 to ψ2; while

a4 represents the portion of the total time T , which is allocated to the AUV to stop at

ψ2 and so on.

• Environment: Our environment is descried in Algorithm 3.
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The training steps of the proposed DRL algorithm are described in Algorithm 4, which

starts by initializing all neural networks as well as the replay buffer B (lines 1-1). The train-

ing iterates over E episodes; in each episode, the environment is initialize by distributing

the devices over the observation line.

Algorithm 3 System environment at the l-th learning iteration.
1: Receive action al;

2: Obtain T ,T̄ :Tj =
a2jT∑2M
l=1

al
, T̄j =

a2(j−1)+1T∑2M
l=1

al
, ∀1 ≤ j ≤M ;

3: Obtain data gathering points ψ using T̄ and (4.2);

4: Obtain device-point communication matrixC using (4.10);

5: η = 0 and µ← Ø;

6: For j = 1 to M do

7: If
∑N

i=1

∑P
k=1 cijχikλk ̸= 0;

8: temp = 0

9: While temp < Tj

10: k∗ = max
1≤k≤P

{cijχikλkΓk(t)}, ∀ni ∈ N ;

11: i∗ = max
1≤i≤N

{ cijχik∗

L(Ik∗ ,ℓij)
};

12: If L
(
Ik∗ , ℓi∗j

)
≤ (Tj − temp)

13: ηi∗jk∗ = 1;

14: Embed [j, i∗, k∗] into µ;

15: temp = temp +L
(
Ik∗ , ℓij

)
;

16: Else

17: temp = Tj ;

18: End If

19: End while

20: End If

21: End for

22: Evaluate the reward rl = 1/O
(
T , T̄ ,η,µ

)
;

23: sl+1 = [x1, x2, . . . , xM ,
∑N

i=1 ci1,
∑N

i=1 ci2, . . . ,
∑N

i=1 ciM ];

For each episode, Algorithm 1 performs L learning iterations; in each iteration it ob-

tains the action using the actor network (line 7), applies the action to the environment,
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and receives the immediate reward and the next state using Algorithm 1 (line 8). After

storing the transition tuple (sl,al, rl, sl+1) in the replay memory B (line 9), a randomly

selected samples of B̂ transition tuples are utilized to learn the critic and actor networks

(lines 10-12). The target networks are updated using (4.9) (line 13).

Algorithm 4 DRL algorithm for AoI data gathering.
1: Initialize the weights of the actor θπ and critic θQ networks;

2: Initialize target networks θπ
′

and θQ
′
;

3: Initialize replay buffer B;

4: For episode = 1 to E do

5: Initialize the environment and receive an initial state s1;

6: For l = 1 to L do

7: Select the time allocation action al = π(sl | θπ);

8: Execute action al using Algorithm 1 and receive the reward rl and next state sl+1;

9: Store transition (sl,al, rl, sl+1) in B;

10: Sample a random mini-batch of B̂ transitions from B;

11: Update the weight of the critic network by minimizing the loss L(θQ) = 1
B̂

∑B̂
l̂
(yl̂ −Q(sl̂,al̂ | θ

Q))2;

12: Update the weight of the actor network using the sampled policy gradient in (4.8);

13: Update the weights of target networks using (4.9);

14: End for

15: End for

4.2.7 Simulation Results

The proposed age-optimal information gathering framework is evaluated in an underwater

linear network. In the considered underwater network, the mobile data gathering center

is mounted on an AUV . The performance of the proposed solution approach is compared

with the following approaches:

• A baseline approach in which the AUV stops for each device and gathers its data.
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• A K-means clustering approach1 in which the AUV stops at M = K data gathering

points and each device communicates with the AUV at the closest aggregation point.

In this approach, the adopted value of M is obtained by varying K from 1 to N and

selecting the value that minimizes the objective function.

The default simulation parameters summarized in Table 4.1 are considered in the results,

unless otherwise stated.

Table 4.1: Simulation parameters of the information gathering in linear networks framework.

Parameter Value Parameter Value

Pipeline length 2 km ϖ 0.5 [24]

Pipeline depth 300 m w 5 m/s [24]

AUV depth 100 m χ/ξ 10 dB/−10 dB [27]

Vmax 0.8m/s [63] c 1500 m/s [24, 27]

δ/δ′ 0.2/− 0.2m/s2 [63] ζ 0.25 [27]

N 20 devices γth 10 dB [24]

M 5 points φ 1 bps/Hz [27]

T 30 mins Discount factor ϕ 0.99

P 4 processes Replay buffer size 104

Ik 2048 bits [27] mini-batch 32

λk
1
P

E/L 104episodes/200 steps

Figure 4.1 shows the normalized weighted sum AoI of the proposed framework, base-

line approach, and K-means clustering approach versus the pipeline length. It is clear

that the performance of the baseline approach and K-means clustering approach follow a

semi-convex behaviour. Such a behaviour is due to the fact that, for a constant observa-
1The K-means clustering algorithm converges to obtain K centroids, with each centroid representing the

location of a data gathering in the travelling path of the AUV.
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tion time and number of devices, the inter-device distance increases as the pipeline’s length

increases. For short pipeline lengths, the AUV collects the data from the close proximity

devices and stays idle the remaining time. For long pipeline lengths, the AUV collects the

data from the sparsely located devices and spends most of the observation time travelling

to receive data from as many devices as possible. This is not the case for the proposed

framework which provides less normalized weighted sum AoI over the considered range of

the pipeline length. This is a result of optimizing both the location and stopping time of the

data gathering points, which gives the proposed framework a robustness versus changing

the pipeline length.

500 1000 1500 2000 2500 3000
0.1

0.15

0.2

0.25

0.3

0.35
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0.45

0.5
Baseline approach

K-means clustering approach

Proposed framework

Figure 4.1: Normalized weighted sum AoI versus the pipeline length.

Figure 4.2 illustrates the performance of the three solution approaches versus the ob-

servation time T . It can be seen that the proposed framework outperforms the other two
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approaches. As the observation time T changes, the proposed framework optimizes the

travelling and stopping times which leads to reduced normalized weighted sum AoI. It is

noticed that for a small observation time, the K-means clustering approach achieves rela-

tively less normalized weighted sum AoI in comparison with the baseline approach. This

can be attributed to the fact that the AUV in the baseline approach cannot receive adequate

updates of all the processes. However, for large values of the observation time, the AUV

collects the data from the devices and stays idle the remaining time in both the baseline and

K-means clustering approaches.
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Figure 4.2: Normalized weighted sum AoI versus the observation time.

61



4.3 Age- and Correlation-Aware Information Gathering

Measurements from spatially proximal devices or successive measurements from the same

device are correlated. the following question is addressed: Can we usefully characterize

both the freshness and diversity of the received information in information gathering sys-

tems? To answer this question, a novel metric is introduced that not only captures the

information freshness at the receiver, but also reflects the diversity in the gathered informa-

tion.

To assess the freshness of the received updates at the destination, Kaul et al. [5] define

the instantaneous AoI of the physical process pk at time instant t as ∆k(t) = t − uk(t),

where ∆k(0) = 0 and uk(t) is the time instant at which the last update about pk was gen-

erated (also referred to as the ”timestamp” of the last update). An update with a timestamp

ukj reaches the destination at time instant τ kj , such that τ kj = ukj + ℓkj , with ℓkj as the la-

tency of transmitting the j-th update from the source to the destination. Fig. 4.3 illustrates

the AoI of pk with a total number of updates Uk(T ) = 3 over a time duration T . Note

Figure 4.3: AoI of the physical process pk with Uk(T ) = 3 updates.
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that the first update reduces the AoI by r1 ≜ τ k1 − ℓk1 = uk1, the second update reduces

the AoI by r2 ≜ τ k2 − ℓk2 − r1 = uk2 − uk1, while the third update reduces the AoI by

r3 ≜ τ k3 − ℓk3 − r1 − r2 = uk3 − uk2. Consequently, the instantaneous AoI of the physical

process pk can be expressed as

∆k(t) = t−
Uk(t)∑
j=1

(ukj − ukj−1), (4.11)

where uk0 = 0 and Uk(t) is the number of updates received before time instant t. Measure-

ments from spatially proximal devices or successive measurements from the same device

are correlated. To capture this, the instantaneous CAAoI of a physical process pk at time

instant t is defined as follows:

Γk(t) = t−
Uk(t)∑
j=1

αkj (u
k
j − ukj−1), (4.12)

where 0 ≤ αkj ≤ 1 reflects the novelty of the j-th update with respect of the previous (j−1)

updates of the physical process pk, such that αk1 = 1 and αkj is defined as

αkj = 1− ξs + ξt

ξsḋj/ρks + ξtṫj/ρkt + ξsξt + 1
, (4.13)

with ρks and ρkt as constant parameters that represent the spatial and temporal correlation

extent in the physical process pk, respectively, ḋj as the minimum distance between the

device that sends the j-th update and all the devices that have sent the (j − 1) updates of

the physical process pk, and ṫj as the time difference between the current update and the

last update about pk from the same device.2 Further, ξs and ξt are introduced to give the

decision maker the ability to consider either spatial correlation (ξs = 1, ξt = 0), temporal

correlation (ξs = 0, ξt = 1), or both spatial and temporal correlation (ξs = ξt = 1).

2The initial value of ṫj is set to be (1− ξs)ξ−1
s .
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4.3.1 System Model

In this work, a UAV-enabled data gathering scenario is considered, in which a UAV is

given the mission of monitoring a set P = {pk}Pk=1 of P physical processes by gathering

information from a set N = {ni}Ni=1 of N devices. Each device is able to sense one

physical process; to represent the devices ability to observe the processes, χ = [χik]N×P is

defined such that

χik =


1, if ni observes pk,

0, otherwise.

(4.14)

The UAV has a finite battery capacity and can only operate for a finite time interval. Con-

sequently, the total observation time is T seconds. Initially, the UAV is placed at a docking

station ψ0 and the updates from devices are scheduled to keep the UAV updated about the

status of the physical processes P during the observation time T . To gather information

from device ni, the UAV hovers at ψi = {xi, yi, h}, where (xi, yi) represents the coordi-

nates of device ni and h is the UAV’s altitude.

A scheduling policy is represented by (η̂, µ̂,u), such that η̂ = [η̂i]1×N with η̂i as the

number of updates from device ni, µ̂ = [µ̂ι]1×F with µ̂ι as the index of the device that

transmits the ι-th update and F =
∑N

i=1 η̂i as the total number of updates received at the

UAV about P from N , and u = [uι]1×F with uι as the timestamp of the ι-th update. The

time required for moving the UAV from the device that sends the (ι − 1)-th update to the

one that sends the ι-th update is Ῡι =
∥∥ψµ̂ι−1 − ψµ̂ι

∥∥/v, where v is the speed of the UAV

and∥·∥ is the second norm. The required time for the UAV to receive an update from device

ni is Υi =
∑P

k=1 χikIk
Ri

, where Ik (in bits) is the payload size of an update of pk. Device ni

has a finite capacity battery of Emax
i and each time it is scheduled to transmit an update to
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the UAV, its battery level shrinks by PiΥi.

4.3.2 Problem Formulation

The objective is to find a scheduling that minimizes the time-average CAAoI of the pro-

cesses of interest. The time-average CAAoI of the physical process pk over time interval T

can be expressed as

⟨Γk(t)⟩T ≜
1

T

∫ T

0

Γk(t) dt

=
T

2
− 1

T

Uk(T )∑
j=1

αkj (u
k
j − ukj−1)(T − τ kj ),

(4.15)

where Uk(T ) is the total number of updates about the physical process pk during the obser-

vation interval T . It is worth mentioning that the maximum value of ⟨Γk(t)⟩T is T/2 and∑P
k=1 U

k(T ) = F . The objective function is a normalized weighted sum of time-average

CAAoI of the processes of interest and the optimization problem is formulated as

P1 min
η̂,µ̂,u

O (µ̂,u) =
1

0.5T

P∑
k=1

λk⟨Γk(t)⟩T , (4.16a)

s.t.
F∑
ι=1

(Υι + Ῡι) ≤ T, (4.16b)

PiΥiη̂i ≤ Emax
i , ∀ni ∈ N , (4.16c)

η̂i ∈ Z+,∀ni ∈ N , (4.16d)

µ̂ι ∈ {1, 2, · · · , N}, (4.16e)

where λk is an importance weight for the physical process pk, such that
∑P

k=1 λk = 1

and Z+ represents the set of non-negative integers. Constraint (4.16b) guarantees that the

UAV has enough time to travel and receive all the scheduled updates. Constraint (4.16c)

guarantees that each device is able to transmit all its scheduled updates.

65



4.3.3 Proposed Solution Approaches

4.3.3.1 Proposed Ant Colony Optimization Algorithm

The proposed ACO algorithm is presented as Algorithm 5, in which a colony of A ants

collaborate to solve (4.16). The tour of each ant a ∈ A starts by setting the time indication

t(a) = 0 and s(a) = 0N×N , and the updates from the devices are embedded in the scheduling

policy (η̂(a), µ̂(a),u(a)) until there is no time to receive more updates or none of the devices

has sufficient transmission energy. The probability of scheduling the update from device nl

after the current device ni is

π
(a)
il =

ε
(a)
il ϵ

(a)
l (ϱ

(a)
il )

γ1 (δil)
γ2

N∑
n=1
n̸=l

ε
(a)
nl ϵ

(a)
n (ϱ

(a)
il )

γ1 (δil)
γ2

. (4.17)

The parameters in (4.17) are as follows:

• ϱ(a)il is the attractiveness of scheduling the update from device nl after the current

device ni; it is set to be3

ϱ
(a)
il =

D
∑P

k=1 χlkλk

(1 + η̂
(a)
l )ℓil

, (4.18)

where ℓil =∥ψi − ψl∥ is the distance between ni and nl, and D is a constant [43]. ϱil

in (4.18) suggests more attractiveness to devices that monitor physical processes with

higher λk, are in close proximity to ni to minimize the UAV’s traveling distances, and

have less already scheduled updates.

• δin is the trail pheromone.

3For the conventional AoI, ϱ(a)il =
D

∑P
k=1 χlkλk

ℓil
.
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• ε(a)il indicates that there is enough time to receive the update from nl; it is set to be

ε
(a)
il =


1, if t(a) +Υl + ℓil/v ≤ T,

0, otherwise.

(4.19)

• ϵ(a)l indicates that nl has enough transmission energy; it is set to be

ϵ
(a)
l =


1, if PlΥlη̂

(a)
l ≤ Emax

l ,

0, otherwise.

(4.20)

• γ1 and γ2 control the influence of the attractiveness and pheromone, respectively.

Once a device nl∗ is selected according to (4.17), the device index l∗ is embedded to µ̂(a),

t(a) = t(a) + Υl∗ + ℓil∗/v, the timestamp of the update is embedded to u(a), and F (a) and

the corresponding elements η̂(a)l∗ and s(a)il∗ ∈ s(a) increase by one. The quality of a solution

constructed by ant a is reflected in the deposited pheromone ϖ(a), which is set to be

ϖ(a) ≜
1

O
(
µ̂(a),u(a)

) =
0.5T∑P

k=1 λk⟨Γ
(a)
k (t)⟩T

. (4.21)

A global updating rule is considered in the proposed ACO, in which the algorithm

repeats I colonies and in each colony only two ants with highest and second-highest deposit

pheromone according to (4.21) are allowed to deposit their pheromone [44]. The trail

pheromone is updated as follows:

δil ← (1− σ) δil + s
(a)
il ϖ

(a), (4.22)

where σ is the pheromone evaporation coefficient.
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Algorithm 5 ACO algorithm for CAAoI information gathering.
1: Input: N , T , Emax

i , λk , ρs, ρt, A, and I;

2: Initialize δil; Calculate ℓil and Υi;

3: O ←∞;

4: For Iteration = 1 to I do

5: O1 ←∞; O2 ←∞;

6: For a = 1 to A do

7: η̂(a) = 01×N ; µ̂(a) ← Ø; u(a) ← Ø; t(a) = 0; s(a) = 0N×N ;

8: Set i = 0; Evaluate ε(a)il and ϵ(a)l ∀1 ≤ l ≤ N

9: While
N∏
l=1

(1− ε(a)il ) +
N∏
l=1

(1− ϵ(a)l ) = 0 do

10: Select a device nl∗ using (4.17); t(a) = t(a) +Υl∗ + ℓil∗/v;

11: s
(a)
il∗ = s

(a)
il∗ + 1; ; i = l∗;

12: η̂
(a)
i = η̂

(a)
i + 1; µ̂(a) = [µ̂(a) i]; F (a) = F (a) + 1;

13: Re-evaluate ϵ(a)i and ε(a)il 1 ≤ l ≤ N ;

14: End While

15: Evaluate O(µ̂(a),u(a)) using (4.15) and (4.3);

16: If O > O(η̂(a), µ̂(a), ˙̂µ
(a)

)

17: η̂∗ ← η̂(a); µ̂∗ ← µ̂(a); u∗ ← u(a);

18: End if

19: If O1 > O(µ̂(a),u(a))

20: η̂(a1) ← η̂(a); µ̂(a1) ← µ̂(a); u(a1) ← u(a); s(a1) ← s(a);

21: Else if O2 > O(µ̂(a),u(a))

22: η̂(a2) ← η̂(a); µ̂(a2) ← µ̂(a); u(a2) ← u(a); s(a2) ← s(a);

23: End if

24: End for

25: Deposit pheromone of a1 and a2 using (4.22);

26: End for

27: Return η̂∗, µ̂∗, and u∗.
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The total number of updates that can be gathered by the UAV over a time duration T is

upper bounded by

F̃ =


T

min
1≤i,l≤N
i ̸=l

{ℓil/v}+ min
1≤i≤N

{Υi}

. (4.23)

The denominator in (4.23) is the minimum required time to travel between two devices

plus the minimum required time to receive an update from a device. The search space of

the optimization problem (4.16) is O(N(N − 1)F̃−1). An ant a performs O(N2F̃ ) opera-

tions to construct a solution andO(NF̃ 2 log(F̃ )) operations to evaluate the objective func-

tion. Consequently, the computational complexity of the ACO algorithm is O(IA[N2F̃ +

NF̃ 2 log(F̃ )] + IN2) = O(IA[N2F̃ + NF̃ 2 log(F̃ )]); this is remarkably lower than the

complexity of the exhaustive search approach, which is O(N2(N − 1)F̃−1F̃ 2 log(F̃ )).

4.3.3.2 Proposed DRL Solution Method

The optimization problem in (4.16) can be solved using Q-learning, in which an agent

learns to maximize the Q-function Qπ(s,a) —the expected return— by taking action a in

state s while following policy π. The state, action, and reward are defined as follows:

• State: The state at the l-th step reflects three components: (1) the distance between

the UAV at the current state and all the devices; (2) the energy level at each device;

and (3) the time instant tl, which is the required time to move from the initial state up

to the l-th state i.e., tl =
∑l

q=1(Υq + Ῡq). Consequently, the l-th state is represented

as sl = [dl1, dl2, · · · , dlN , E1(l), E2(l), · · · , EN(l), tl], with dli = ∥ψl − ψi∥ as the

distance between the UAV at state l and device ni. Note that the initial state is

s0 = [d01, d02, · · · , d0N , Emax
1 , Emax

2 , · · · , Emax
N , 0].
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• Action: The action at the l-th step is an integer value in the action set al ∈ A =

{1, 2, · · · , N} such that al = i means that device ni is scheduled for transmission. In

other words, at each state, the UAV adds a device to the end of the scheduling policy.

• Reward: The reward for performing action al in state sl is defined as the reduc-

tion in the objective function in (4.3) due to implementing the action al, i.e., Rl =

O(µ̂l,ul) − O(µ̂l+1,ul+1), where O(µ̂l,ul) is the objective function for all the up-

dates from the initial state up to the l-th state while O(µ̂l+1,ul+1) is the objective

function for all updates from the initial state up to the l-th state including al. It is

worth mentioning that if no update has been scheduled (i.e., µ̂0 = u0 = Ø), then the

time-average CAAoI of each physical process will be T/2 and the objective function

reaches its maximum of 1 (i.e., O(µ̂0,u0) = 1).

It has been shown that Q-learning converges to the optimal solution if each state-action

pair is visited in a sufficient number of training iterations [61]. However, iterating over

all the state-action pairs becomes unattainable as the dimensionality of the state space in-

creases. Consequently, a DRL model is considered, in which the Q-function is approxi-

mated by a DNN such that the Q-function becomes Q(s,a | θ), where θ is the weight

vector of the DNN [64]. The training steps of the proposed DRL algorithm are described

in Algorithm 6, which starts by initializing the NN and the replay buffer B (lines 1). The

algorithm iterates over E episodes.

For each episode, the algorithm iterates such that the l-th training iteration is performed

by selecting the action (lines 6-8), applying the action to the environment (lines 9-14), and

receiving the immediate reward and the next state (lines 16-18). After storing the transition

tuple (sl,al, rl, sl+1) in the replay memory B (line 18), randomly selected samples of M
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Algorithm 6 DRL algorithm for CAAoI information gathering.
1: Initialize the DNN weights θ and the replay buffer B;

2: For episode = 1 to E do

3: Initialize the environment and receive the initial state s0;

4: Set l = 0; η̂ = 01×N ; µ̂0 ← Ø; u0 ← Ø;R(µ̂0,u0) = 1;

5: Repeat:

6: Select an action al

7: With probability ϵ, select a random action al ∈ A

8: Otherwise, select al = arg max
∀a∈A

Q(sl, a | θ);

9: Execute action al: i = al;

10: tl+1 = tl +Υi + Ῡi ;

11: If Ei(l) ≥ PiΥi and tl+1 ≤ T

12: Append i to µ̂l such that µ̂l+1 = [µ̂l, i]; η̂i = η̂i + 1;

13: Append the timestamp u = tl +Υi to ul+1 = [ul, u];

14: Ei(l + 1) = Ei(l)− PiΥi;

15: End If

16: Observe the rewardRl = O(µ̂l,ul)−O(µ̂l+1,ul+1);

17: Observe the next state sl+1;

18: Store the transition (sl, al,Rl, sl+1) in B;

19: l = l + 1;

20: Until sl+1 is a terminal state.

21: Sample a random mini-batch of M transitions from B;

22: For each transitions in M obtain ym such that

ym=


Rm, if sm+1 is a terminal state,

Rm+γ max
∀a∈A

Q(sl, a | θ), otherwise.

23: Update the weight of the DNN network by minimizing the loss L(θ) = 1
M

∑M
m=1(ym −Q(sm,am | θ))2;

24: End for

transition tuples are utilized to train the DNN network (lines 21-23).
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4.3.4 Simulation Results

The conventional AoI and CAAoI of the considered system model are evaluated. The

devices are distributed in a 1× 1 km2 area and the main parameters are listed in Table 4.2.

Table 4.2: Simulation parameters of the age- and correlation-aware information gathering frame-

work.

Parameter Value Parameter Value Parameter Value

Pi 20 dBm h 200 m B 200 kHz

Ik 2560 Bytes Pn −110 dBm vmax 12 m/s

fc 2 GHz ζLoS 0 dB ζNLoS 20 dB

T 30 min β1 10 β2 0.03

γ1/γ2 1 A 100 I 103

B 105 mini-batch 32 episodes 106

Figure 4.4 illustrates both the conventional AoI and CAAoI of the considered system

model with P = 3 physical processes that are monitored by spatially-correlated devices.

It is seen that as N increases, both the CAAoI and conventional AoI reduce and the gap

difference between them decreases as well. This is attributed to the fact that increasing

N increases the diversity. Device diversity augments the diversity in the gathered infor-

mation, which reduces the CAAoI. While increasing N , the inter-device distance also re-

duces, which enables the UAV to gather updates about the three physical processes more-

frequently. To gain a deeper insight into such behavior, the right-side y-axis of Fig. 4.4

illustrates the corresponding total uncorrelated information gathered at the UAV. It can

be seen that the uncorrelated information corresponding to the conventional AoI does not

change versus N . This can be explained, as in order to reduce the conventional AoI, the
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UAV gathers data from the closest subset of devices and keeps receiving replicas from the

same devices. On the other hand, such replicas do not reduce the CAAoI. Thus, the UAV

tries to gather data from all the available devices to minimize the CAAoI, which increases

the gathered uncorrelated information.
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Figure 4.4: CAAoI and conventional AoI of the considered system model versus N with P = 3

process, ξs = 1, ξt = 0, and ρks = 100.

Figure 4.5 portrays the CAAoI versus ρkt and ρkt . It is clear that as the correlation among

the data decreases (for small values of ρkt and ρkt ), the novelty of each update increases,

which reduces the CAAoI. The opposite is also valid, i.e., as the correlation in the data

increases, the novelty of the updates decreases and the CAAoI increases. It is known that

the online implementation time of the ACO is higher than that of the DRL. However, it is

worth noting that the latter does not involve offline training effort and as illustrated in Fig.

4.6, it provides a slightly better performance in comparison with the former.
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Figure 4.5: CAAoI of the considered system model versus ρs = ρks and ρt = ρkt with N = 20

devices, P = 3 process, ξs = 1, and ξt = 1.
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Figure 4.6: Performance of the ACO algorithm, DRL approach, and the exhaustive search approach.
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4.4 Concluding Remarks

In this chapter, an age-optimal information gathering framework for linear networks has

been proposed. In this framework, an AUV travels to collect data from a linearly-deployed

set of devices to maintain freshness of the status of a set of physical processes of interest.

An optimization problem has been formulated with the objective of minimizing the nor-

malized weighted sum AoI. A DRL solution based on the DDPG actor-critic method has

been developed. Simulation results have illustrated that the proposed framework maintains

freshness and fairness of the physical processes of interest and shows robustness under

different scenarios when compared with the baseline and K-means clustering approaches.

Results also have shown that the proposed DRL-based solution optimizes the location and

stopping time for each data gathering point, as well as the number of the data gathering

points.

Moreover, the AoI concept has been extended by introducing a new CAAoI metric to

capture both the freshness and diversity of gathered information. The CAAoI of an infor-

mation gathering scenario has been studied, in which a UAV monitors a set of physical

processes by gathering information from a set of devices. An ACO algorithm has been de-

veloped to minimize the CAAoI. Results have illustrated that the proposed CAAoI enables

the UAV to maintain the freshness and diversity of the gathered information.

75



Chapter 5

Energy-Efficient Data Dissemination

5.1 Background and Motivation

Recently, numerous practical applications, including online gaming and on-demand video

streaming, have driven communication networks to be more information-centric [65]. In-

formation-centric networking refers to a novel networking paradigm that handles the infor-

mation distribution in network rather than the host-to-host connectivity. In this paradigm,

based on the devices’ download requests and mobility, a decision-maker determines how

to manage the resources in the network to optimize several objectives, including network

load reduction, increased energy efficiency, and low dissemination latency. Placing the

information near devices at intermediate or edge servers is the most attractive technique

to eliminate redundant traffic and efficiently fulfill the device demands without duplicate

transmissions from remote servers [66]. Consequently, heavy traffic in the network’s back-

haul can be managed during off-peak times, thus alleviating the backhaul’s load during

peak times. It is noteworthy to mention that information placement has its own challenging
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issues, including determining which devices can be used as servers and determining the

information that should be placed at each server. These issues become more sophisticated

in mobile server scenarios and as the diversity of device requests increases.

Unmanned aerial vehicles (UAVs) have arisen as a favorable option for on-demand in-

formation aggregation/dissemination in current and future wireless networks [67]. Besides

being agile, flexible, and mobile, UAVs can achieve line-of-sight (LoS) communication

links with the ground devices, mitigating signal blockage and shadowing. Moreover, UAVs

can be steered towards potential ground devices that are located in a geographical area with

limited terrestrial infrastructure to establish reliable communication. The UAV role in com-

munication networks can be classified into four main categories: (1) Aerial base station,

in which a UAV is utilized to provide ubiquitous coverage when terrestrial base stations

are completely out of service or to supplement the existing terrestrial base stations [68];

(2) UAV-aided relaying, in which a UAV is utilized as a relaying node that provides LoS

connections between two or more distant devices [69]; (3) UAV-aided information aggre-

gation/dissemination, in which a UAV aggregates/disseminates information from/to ground

devices [10, 70]; (4) UAV-aided networks with caching, in which cache-enabled UAVs are

deployed to alleviate the congested traffic on the network backhaul at peak time [71–73].

Keeping in mind the energy and payload limitations, the coverage range and communi-

cation performance of a single UAV network scenario is limited, which makes utilizing

multiple UAVs a reasonable option to boost the UAV-enabled communication network per-

formance [74].

Trajectory planning for UAV-enabled communication networks with single/multiple

UAV(s) has recently attracted significant research interest to avail the additional degrees

of freedom gained by the mobility of UAV(s) [75]. To reduce the impact of the UAV’s
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movement on the air-to-ground communication channel, such as the Doppler shift, in many

scenarios, a UAV stops at a finite number of points to communicate with ground devices.

Consequently, formulating the trajectory as a discrete-domain (combinatorial) optimiza-

tion problem is a plausible approach. It is worth noting that computational intelligence,

which refers to a set of nature-inspired solution approaches, such as genetic algorithms

(GAs) [17] and ant colony optimization (ACO) [10], has been adopted as computationally

efficient trajectory planning approaches [76].

5.1.1 Related Work

Various UAV-enabled scenarios with energy consumption minimization objective have been

considered in the literature. In [77], the authors investigated the energy consumption min-

imization in a UAV-aided sensor network, where a set of devices act as cluster heads and

receive data from other devices. To optimize the energy dissipation of a single UAV sce-

nario, a combinatorial optimization problem was formulated to select the cluster heads from

devices and plan the UAV’s trajectory while visiting the selected cluster heads. In [78], an

energy minimization problem was formulated to plan the trajectory of a single UAV, allo-

cate time for the devices, and minimize the mission time. The scenario of a single UAV that

cooperates with the ground base station to disseminate information with the aim of max-

imizing the delivered information to a set of ground devices was considered in [79]. The

authors in [80] focused on optimizing a single UAV trajectory and the resource assignment

to maximize the delivered information to spatially distributed ground devices. In [81], a

UAV-aided multicasting scenario was considered, in which a single UAV delivers a com-

mon file to a group of ground users. The UAV’s trajectory was planned to minimize the
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trip time and guarantee that each device receives the file. In [10], the problem of optimiz-

ing the energy consumption of delivering a set of files to a set of ground devices using a

single UAV was investigated. The UAV’s trajectory was designed such that the UAV de-

livers the information to a subset of devices which forward the requested information to

other devices. To overcome the endurance issue in a single UAV network that dispatches

to serve a group of devices, the authors of [71] proposed a proactive caching scheme with

the objective of minimizing a weighted sum of the file retrieval and caching costs.

A multi-UAV deployment strategy in a UAV-aided mobile edge computing network

was considered in [82]. The location of each UAV along with the power control and user

association were optimized to minimize the energy consumption. In [83], an efficient UAV

placement to maximize the user coverage probability and reduce the inter-cell interference

was considered. The scenario of a group of UAVs acting as relays to deliver information

in a vehicular ad-hoc network was considered in [84]. The authors aimed to minimize the

total transmission delay and maximize the total throughput. In [85], the trajectory of a

set of UAVs was designed to maximize the sum-rate in uplink communication network.

In [75], a sense-and-send protocol for multi-UAV networks was developed, in which the

UAVs’ trajectories are determined for sensing and transmission. A user-centric information

framework UAV-enabled network was developed in [72]. In this framework, a set of cache

storage units are mounted on UAVs to act as flying cache servers that predict the mobility

pattern and information request distribution of users. In [73], the scenario of a UAV-enabled

cache-assisted transmission for scalable videos was considered. In their framework, UAVs

act as small-cell base stations that provide videos to mobile users.

This chapter addresses the problem of minimizing the energy expenditure of dissemi-

nating a library of files to a set of devices. Each device makes random requests from the
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files’ library. Two frameworks are proposed, the first framework is a two-tiered information

dissemination system using a UAV. The second framework aims to optimally place the data

in a fleet of UAVs and find the optimum traveling path of each UAV.

5.2 Energy-Efficient Data Dissemination Using a UAV

5.2.1 System Model

The considered system consists of a UAV which hovers at a fixed altitude h and is respon-

sible for disseminating a library F = {fj}Fj=1 of F files to a setN = {ni}Ni=1 ofN devices.

Each device is interested in downloading a sub-set of the files Fi ⊆ F . To represent the

files required by devices,W = [wij]N×F is defined such that

wij =


1, if ni wants to download fj,

0, otherwise.

(5.1)

A two-tiered data dissemination scenario is considered: the devices in the first tier T1 re-

ceive the data directly from the UAV, while each device in the second tier T2 receives the

data via one of the devices in the first tier, such that T1 ∪ T2 = N and T1 ∩ T2 = ∅. The

devices are located at ψ = [ψi]N×3, where ψi = {xi, yi, 0} represents the coordinates of

device ni. Assuming each device ni has a transmission range ri, the communication link

matrix C = [cik]N×N is defined such that cik = 1 if device nk is within the transmission

range of device ni (i.e., the distance between ni and nk, i.e., ℓik, is less than ri), and cik = 0

otherwise.

Furthermore, the device classification decision is denoted as T = [Ti1 Ti2]N×2, in which

Ti1 = 1 and Ti2 = 0 if ni is classified as T1 or Ti1 = 0 and Ti2 = 1 if ni is classified as T2.
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It is clear that T classifies each device; however, it fails to associate each device in T2

with one of the devices in T1. Consequently, µ = [µik]N×N is defined such that

µik =


1, if nk ∈ T2 and receives data via ni ∈ T1,

0, otherwise.

(5.2)

Initially, the UAV is placed at a docking station ψ0 which is the initial position to which

it has to return after completing the data dissemination. The UAV stops above each device

ni ∈ T1; each stop is referred to as dissemination point. At the dissemination point ψ̇i =

{xi + ei, yi + ei, h} (ei is the UAV’s positioning error when hovers above ni), the UAV

transmits files required by ni and all other devices in T2 which receive their data via ni. The

UAV’s data dissemination trip ψ̄ is defined as the traveling path that starts at ψ0, passed

through all dissemination points, and returns to the docking station, i.e., ψ̄ = [ψ̄i](V+2)×3,

where V =
∑N

i=1 Ti1, and ψ̄1 = ψ̄V+2 = ψ0, with ψ̄2, ψ̄3, . . . , ψ̄V+1 as an ordered set of all

dissemination points.

For the terrestrial communication link between device ni and device nk, the average

data rate is

R̄ik = B log2

(
1 +

PTi
φikN0

)
, (5.3)

where PTi is the transmit power of device ni and φik = 1/(γ0|ζik|2 ℓ−ϵik ) is the average

channel path-loss, with γ0 as the average reference channel power gain, ϵ as the path-loss

exponent, and ζik accounting for the small-scale channel fading from ni to nk [79, 86]. It

is worth mentioning that both the UAV to devices channel and the inter-device channel are

orthogonal. Additionally, it is assumed that the inter-device communication is performed

using a time division multiple access scheme.
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The energy consumed by the UAV at the location above the device ni depends on the

size of the files required by ni and other devices with µik = 1. For a given T and µ, the

data dissemination point above node ni is associated with a vector D(i) = [d
(i)
j ]1×F , such

that d(i)j = Ti1wij ∨ (∨Nk=1µikwkj), where X ∨ Y ∨ · · · ∨ Z = 0 if each of X, Y, . . . Z

equals 0, and X ∨ Y ∨ · · · ∨ Z = 1 otherwise. In other words, d(i)j = 1 if ni or any

other device with µik = 1 requires to download fj , and d(i)j = 0 otherwise. Consequently,

the energy consumed by the UAV to communicate with the device ni can be expressed as

Ti1PT

R

∑F
j=1 d

(i)
j Lj , where Lj is the size of file Fj in bits and PT is the transmitted power of

the UAV.

5.2.2 Problem Formulation

Classifying a large number of devices as T1 devices leads to a larger traveling time for the

UAV, and consequently, an increased total energy consumption. However, it may ensure

that the required files reach the corresponding devices either directly from the UAV or via

devices in T1. On the other hand, a fewer number of devices in T1 decreases the total

consumed energy. However, some devices may receive the required files neither from the

UAV nor via the small set of devices in T1. Consequently, device classification should be

intelligently implemented such that all required files are delivered and the total consumed

energy is reduced. Moreover, the association of devices in T2 with those in T1 should be

carefully performed such that the total number of files transmitted by the UAV at each data

dissemination point is minimum. For a given T andµ, the total consumed energy by device
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ni can be calculated as:

Ei (T ,µ) =Ti1

 F∑
j=1

d
(i)
j

PrLj
Rii

+
N∑
k=1

F∑
j=1

µikwkj
PTiLj
R̄ik

+ Ti2

 N∑
k=1

F∑
j=1

µkiwij
PrLj
R̄ki

 ,

(5.4)

where Pr denotes the power consumed by the receiver circuitry of the device and Rii is the

data rate between device ni and the UAV located at dissemination point ψ̇i, which can be

obtained using (2.8). The energy consumed by the UAV during the dissemination trip ψ̄

can be written as:

EUAV

(
T ,µ, ψ̄

)
=

V+1∑
l=1

(Phov + Pmov)
∥ψ̄l − ψ̄l+1∥2

v︸ ︷︷ ︸
Path energy dissipation

+

′
N∑
i=1

F∑
j=1

Ti1d
(i)
j

(Phov + PT )Lj
Rii︸ ︷︷ ︸

Data dissemination energy dissipation

(5.5)

where v is the traveling speed of the UAV and Phov and Pmov are the the UAV’s hovering and

moving power consumption and can be obtained using (2.6) and (2.7), respectively. The

objective function is written as a weighted sum of the energy consumed by the UAV and

devices as follows:

O
(
T ,µ, ψ̄

)
= λEUAV

(
T ,µ, ψ̄

)
+ (1− λ)

N∑
i=1

Ei (T ,µ) , (5.6)

where 0 ≤ λ ≤ 1 is the relative weigh. Consequently, the optimization problem is formu-

lated as

P1 min
T ,µ,ψ̄

O
(
T ,µ, ψ̄

)
(5.7a)

s.t. Ti1 + Ti2 = 1, ∀ 1 ≤ i ≤ N, (5.7b)

N∑
i=1

µikTi1 = Tk2, ∀ 1 ≤ k ≤ N, (5.7c)

µikcik = µik, ∀ 1 ≤ i, k ≤ N, (5.7d)

Ti1, Ti2, µik ∈ {0, 1}, ∀ 1 ≤ i, k ≤ N. (5.7e)
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Constraint (5.7b) guarantees that each device belongs either to T1 or T2. Constraints (5.7c)

guarantees that each device in T2 is associated with one device in T1. Constraint (5.7d)

guarantees that there is a communication link between each device in T2 and the associated

device in T1.

The optimum solution of (5.7) can be obtained by: searching over all possible classifi-

cation decisions; for each classification decision, searching over all possible device associa-

tion decisions and obtaining the optimum UAV’s itinerary. The complexity of finding such

a solution is prohibitive for a reasonable number of devices. Consequently, next section

presents an efficient algorithm to solve (5.7).

5.2.3 Proposed Solution Approach

In the proposed ACO algorithm, a colony of A ants collaborate to solve (5.7). Each ant

a ∈ A travels through a three-step tour, in which it obtains T (a) to classify the devices as

T (a)
1 or T (a)

2 , obtains µ(a) to associate devices in T (a)
2 with those in T (a)

1 , and determines

the corresponding UAV’s data dissemination trip ψ̄(a), respectively.

In the first step, the probability that ant a selects device ni to receive data from the UAV

(i.e., probability of T (a)
i1 = 1) is calculated as

π̇
(a)
i =

(τ̇i)
α (ϱ̇i)

β

(τ̇i)
α (ϱ̇i)

β + (τ̇0i)
α (ϱ̇0i)

β
, (5.8)

where τ̇0i and τ̇i represent the trail pheromone, and ϱ̇i and ϱ̇0i are the attractiveness of

classifying ni tier T1 and tier T2, respectively. These are set to ϱ̇i = ϱ̇0i = 1 to give similar

attractiveness of classifying ni in T1 or T2.1 Ant a obtains the device classification decision

T (a) = [T
(a)
i1 T

(a)
i2 ]N×2, with T (a)

i2 = 1− T (a)
i1 .

1α and β are parameters to control the influence of the pheromone and attractiveness, respectively.
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In the second step, ant a associates each device in T (a)
2 with one in T (a)

1 . It is worth

noting that
∑N

l=1 clkT
(a)
l1 = 0 indicates that there is no communication link between device

nk and any device in the first tier; in such a case, ant a reclassifies nk to receive the files

from the UAV directly by setting T (a)
k1 = 1 and T (a)

k2 = 0. The device association decision

µ(a) is obtained such that the probability to set µ(a)
ik = 1 is calculated as

π̈
(a)
ik =

cikT
(a)
i1 T

(a)
k2 (τ̈ik)

α (ϱ̈ik)
β∑N

l=1 clkT
(a)
l1 (τ̈lk)

α (ϱ̈lk)
β
, (5.9)

where τ̈ik is the trail pheromone and ϱ̈ik is the attractiveness of associating ni with nk. The

latter is set to be

ϱ̈ik = 1 +

∑F
j=1wijwkj

F
(5.10)

to provide more attractiveness to associating each device in T2 with the one in T1 that

requires a similar set of files, and ϱ̈ik = 0 if i = k.1

In the third step, the UAV’s dissemination trip corresponding to ant a, ψ̄(a), is obtained.

The probability with which ant a chooses ψk as the next dissemination point in the UAV’s

trip while being in dissemination point ψi, is calculated as

˙̈π
(a)
ik =

s
(a)
k T

(a)
k1 ( ˙̈τik)

α( ˙̈ϱik)
β∑N

l=1 s
(a)
l T

(a)
11 ( ˙̈τlk)α( ˙̈ϱlk)β

, (5.11)

where s(a)k is a variable introduced to prevent the selection of ψk more than once, such that

s
(a)
k = 1 if the dissemination point ψk has not been selected yet and s(a)k = 0 otherwise, ˙̈τik

is the trail pheromone, and ˙̈ϱij is the attractiveness of selecting ψk as the next dissemination

point. This is set to

˙̈ϱik =
ℓ

ℓik
, (5.12)
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which suggests the greedy heuristic of minimizing the UAV’s traveling distances between

dissemination points, with ℓ as a constant [43].1 It is worth noting that based on the above

described procedure, T (a), µ(a), and ψ̄(a), satisfy the constraints in (5.7). In the proposed

ACO, a global updating rule is adopted in which the globally best and second-best ants (i.e.,

ants which obtain the lowest and second-lowest O(T (a),µ(a), ψ̄(a)) ∀a ∈ A) are allowed to

deposit their pheromone [44]. The pheromone in each step is updated as follows:

τ̇i ← (1− σ) τ̇i + T
(a)
i1 ∆τ (a), ∀1 ≤ i ≤ N, (5.13a)

τ̇0i ← (1− σ) τ̇0i + T
(a)
i2 ∆τ (a), ∀1 ≤ i ≤ N, (5.13b)

τ̈ik ← (1− σ) τ̈ik + µ
(a)
ik ∆τ

(a∗), ∀1 ≤ i, k ≤ N, (5.13c)

˙̈τik ← (1− σ) ˙̈τik + u
(a)
ik ∆τ

(a), ∀1 ≤ i, k ≤ N, (5.13d)

where σ is the pheromone evaporation coefficient, and u(a)ik = 1 if the dissemination points

ψi and ψk are successive points in the trip ψ̄(a) and u(a)ik = 0 otherwise. Further, ∆τ (a) is

the incremental pheromone deposited by ant a, calculated as follows

∆τ (a) =
E

O(T (a),µ(a), ψ̄(a))
, (5.14)

where E is a constant. The proposed ACO algorithm iterates I iterations and returns the

best solution found so far. Algorithm 7 summarizes the proposed ACO approach.

5.2.4 Complexity Analysis

An ant a performs O(N), O(N2F ), and O(N2) operations to obtain T (a), µ(a), and ψ̄(a),

respectively. Evaluating the objective function requires O(N2F 2 + NF 2) = O(N2F 2)

operations. Consequently, the computational complexity of the proposed ACO algorithm
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Algorithm 7 ACO algorithm for data dissemination using a UAV.
1: Input: N , ψ0, ψ̇, h,W ,C, A, I , α, and β;

2: Initialize τ̇i, τ̇0i, τ̈ik , and ˙̈τik ∀1 ≤ i, k ≤ N ;

3: O ←∞;

4: for Iteration = 1 to I do

5: O1 ←∞; O2 ←∞;

6: for a = 1 to A do

7: Obtain T (a), µ(a), and ψ̄(a) using (5.8), (5.9), and (5.11), respectively;

8: Evaluate O(T (a),µ(a), ψ̄(a)) using (5.6);

9: if O > O(T (a),µ(a), ψ̄(a))

10: T ∗ ← T (a); µ∗ ← µ(a); ψ̄∗ ← ψ̄(a);

11: end if

12: if O1 > O(T (a),µ(a), ψ̄(a))

13: T (a1) ← T (a); µ(a1) ← µ(a); ψ̄(a1) ← ψ̄(a);

14: else if O2 > O(T (a),µ(a), ψ̄(a))

15: T (a2) ← T (a); µ(a2) ← µ(a); ψ̄(a2) ← ψ̄(a);

16: end if

17: Deposit pheromone of a1 and a2 using (5.13);

18: end for

19: end for

20: Return T ∗, µ∗, and ψ̄∗.

is O(N4F 3AI + N2I) = O(N4F 3AI); this is significantly lower than the complexity of

exhaustive search approach, which is O(2N [N(N−1)
2

+N !]N2F 2) = O(2NN !N2F 2).

5.2.5 Simulation Results

The energy expenditure of the proposed framework is compared with a baseline approach

in which the UAV stops above each device to disseminate data. In obtaining these results, it

is considered that the N devices are placed at random in a 1× 1 km2 area. The default sim-

ulation parameters summarized in Table 5.1 are considered in the results, unless otherwise

stated.
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Table 5.1: Simulation parameters of the data dissemination using a UAV framework.

Parameter Value Parameter Value Parameter Value

PT 30 dBm PTi 20 dBm B 200 kHz

Lj 3 kbytes N0 −110 dBm ϵ 3

α̂ 10 β̂ 0.03 ζNLoS 20 dB

ζLoS 0 dB ei ∼ U(0, 2) m fc 2 GHz

γ0 −60 dB ri 300 m Pr 0.0126 W

Pmax 5 W Pstop 0 W vmax =v 12 m/s

h 100 m M 0.5 kg r 20 cm

p 4 α 1 β 1

ℓ 103 E 103 |ζik|2 ∼ Exp(1)

σ 0.1 A 100 I 103

Figures 5.1 illustrates the objective function in (5.6) versus the number of devicesN , for

both baseline approach and proposed framework. It is seen that the total energy expenditure

of the proposed framework is less and flattens as N increases. This is due to the fact that

as N increases, the number of inter-device connections increases, which is advantageous

to the proposed framework.

In Fig. 5.2, it is seen that for small values of ri, the proposed framework consumes

more energy, while it preserves more energy as ri increases. The energy expenditure of the

baseline approach is not a function of ri.
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Figure 5.1: Energy expenditure versus the number of devices N with Fi = 20 files, F = 70 files,

and λ = 0.5.
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Figure 5.2: Energy expenditure versus the devices’ transmission range ri with N = 40, Fi = 20

files, F = 70 files, and λ = 0.5.
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5.3 Energy-Efficient Information Placement and Delivery

Using UAVs

5.3.1 System Model

The considered system consists of a fleet U = {uk}Kk=1 of K UAV-mounted servers, each

with storage capacity sk. The UAVs hover to deliver the files library F to a set of devices

N . Each device requires a subset of files, which is represented by (5.1). The UAVs collec-

tively have sufficient storage capacity for the entire files library, i.e.,
∑K

k=1 sk ≥
∑F

j=1 Lj .

The initial locations of the UAVs are given by ψ̇0 = [ψ̇k0 ]N×3, where ψ̇k0 = {xk0, yk0 , hk} rep-

resents the coordinates of the initial location of UAV uk. Let us define the file placement

decision η =
[
ηjk
]
K×F such that

ηjk =


1, if file fj is placed in UAV uk,

0, otherwise.

(5.15)

A placement decision η is feasible if
∑F

j=1 ηjkLj ≤ sk ∀ uk ∈ U . The devices are assigned

to the UAVs using a device-UAV association decision µ̂ = [µ̂ik]N×K such that

µ̂ik =


1, if UAV uk delivers files to device ni,

0, otherwise.

(5.16)

A feasible µ̂ should guarantee that each device receives the required files, i.e.,

F∑
j=1

wij ≤
F∑
j=1

K∑
k=1

wijµ̂ikηjk, ∀ni ∈ N . (5.17)

To deliver the files to devices, each UAV uk moves and hovers above each device with

µ̂ik = 1. To represent the path of each UAV, λ = {ψ̄(1), ψ̄(2), . . . , ψ̄(K)} is defined with

90



ψ̄k as the information delivery trip of UAV uk that starts at ψ̇k0 , passes above all associated

devices, and ends at ψ̇k0 .

For a given placement and delivery decision (η, µ̂,λ), the energy consumed by UAV

uk can be expressed as:

Ek (η, µ̂,λ) =
V (k)+1∑
l=1

(
P

(k)
hov + P (k)

mov

) ∥ψ̄(k)
l − ψ̄

(k)
l+1∥2

v(k)︸ ︷︷ ︸
Traveling path energy consumption

+
N∑
i=1

F∑
j=1

wijµ̂ikηjk

(
P

(k)
hov + PTk

)
Lj

Rki︸ ︷︷ ︸
Information transmission energy consumption

.

(5.18)

5.3.2 Problem Formulation

The devices dissipate energy during the information reception, which is negligible in com-

parision to the UAVs’ transmission, hovering, and travailing energy consumption. Based

on this, the objective function is written as

O (η, µ̂,λ) =
K∑
k=1

Ek (η, µ̂,λ) . (5.19)

Consequently, the formulated optimization problem is expressed as

P1 min
η,µ̂,λ

O (η, µ̂,λ) (5.20a)

s.t.
F∑
j=1

ηjkLj ≤ sk ∀ uk ∈ U , (5.20b)

F∑
j=1

wij ≤
F∑
j=1

K∑
k=1

wijµ̂ikηjk, ∀ni ∈ N , (5.20c)

ni ∈ λ(k), ∀ µ̂ik = 1 ∀ uk ∈ U , (5.20d)

ηjk, µ̂ik ∈ {0, 1}, ∀ni ∈ N , fj ∈ F , uk ∈ U . (5.20e)

Here, constraint (5.20b) guarantees that each UAV can accommodate the placed informa-

tion. Constraint (5.20c) guarantees that each device receives all required files. Finally,
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constraint (5.20d) guarantees that each UAV visits all associated devices.

5.3.3 Proposed Solution Approaches

5.3.3.1 Multi-Chromosome Genetic Algorithm Approach

In the proposed multi-chromosome genetic algorithm (MCGA), a potential solution is rep-

resented by an individual which consists of a set of 2K chromosomes. The chromosomes

are divided equally into two groups: Group 1 chromosomes C = {C1, C2, . . . , CK} and

group 2 chromosomes Ċ = {Ċ1, Ċ2, . . . , ĊK}. The unique genes of chromosomes in group

1 are devices’ indexes associated with the UAVs; while those in group 2 are files indices

placed at the UAVs. Figure 5.3 illustrates an individual that represents a prospective so-

lution for a system model of K = 4 UAVs, N = 14 devices, and a library of F = 10

files.

Figure 5.3: Example of an individual representation with K = 4 UAVs, N = 14 devices, and a

catalogue of C = 10 content items.

Two sets of mutation operators can be performed within each group of chromosomes

as follows:

• A cross-chromosome mutation operator modifies two chromosomes at once; this in-

92



cludes: (1) A swap operator, which is realized by transposing randomly selected

sequences of genes from two chromosomes. If one of the selected gene sequences

is empty, the operator becomes an insertion of the non-empty sequence to the other

chromosome; (2) Crossover operator which does a one-point crossover between two

chromosomes; and (3) Grouping operator which is realized by moving the genes

from one chromosome to another, such that the source chromosome becomes empty

and the destination chromosome contains a unique genes of the two chromosomes.

• In-chromosome mutation operator is performed on a single chromosome; this in-

cludes the gene sequence inversion or flip operator, the swapping two genes operator,

and the change of the location of a set of genes within the chromosome. It is worth

noting that the in-chromosome operators do not affect the solution quality when ap-

plied to the Ċ chromosomes; thus, in-chromosome operators are not applied to this

group of chromosomes.

Algorithm 8 illustrates the pseudocode of the proposed MCGA, which receives the sys-

tem model parameters and starts by initializing a population of P individuals and evaluates

the fitness of each individual in the population (lines 1 − 3). The fitness of a feasible

individual I is defined as

ΘI =
1

O(ηI , µ̂I ,λI)
, (5.21)

and ΘI = 0 if I does not satisfy the constraints in (5.20). The algorithm performs M

iterations; in each iteration, A individuals with the highest fitness values are selected from

P (line 6). Each selected individual undergoes s1 cross-chromosome operations and s2

in-chromosome operations (line 7). Each operation leads to a child individual, which is

evaluated using (5.21) and embedded to the population in lieu of the individual with lowest
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fitness value (lines 8− 12). The algorithm traces and returns the best solution yet obtained

(lines 13− 18).

Algorithm 8 MCGA algorithm for information placement and delivery using UAVs.
1: Input ψ, ψ̇,R, sk ∀ uk ∈ U , and Lj ∀ fj ∈ F

2: Generate an initial population of P individuals;

3: Obtain the corresponding ηI , µ̂I ,λI of each individual I in P and evaluate its fitness using (5.21);

4: O ←∞;

5: for Iteration= 1 to M do

6: Select A individuals for reproduction;

7: For each selected individual, generate S = s1 × s2 children individuals by applying s1 cross-chromosome operations to both C

and Ċ, and s2 in-chromosome operations to C;

8: for s = 1 to S do

9: Obtain the corresponding ηIs , µ̂Is ,λIs ;

10: Evaluate the fitness of the child individual Is;

11: Replace the individual with the lowest fitness value in the population by Is;

12: end for

13: I∗ = arg max
∀I∈P

{ΘI}

14: if O > O(ηI∗ , µ̂I∗ ,λI∗ )

15: η∗ ← ηI∗ ; µ̂∗ ← µ̂I∗ ; λ∗ ← λI∗ ;

16: end if

17: end for

18: Return η∗, µ̂∗, and λ∗.

5.3.3.2 Hybrid Multi-Chromosome Genetic Algorithm-Ant Colony Optimization

(MCGA-ACO) Solution Approach

Similar to the MCGA, in MCGA-ACO the group 1 chromosomes of an individual are

obtained using cross-chromosome and in-chromosome mutation operations. However, an

ACO agent utilizes both the group 1 chromosomes and the distributed memory (pheromone)

to obtain the group 2 chromosomes. The ACO agent places a gene j (index of file fj) in
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chromosome Ċk (in UAV uk) with probability

πjk =

(
τjk
)α (

ϱjk
)β∑K

l=1

(
τjl
)α (

ϱjl
)β , (5.22)

where τjk represents the trail pheromone and ϱjk represents the attractiveness of placing fj

in UAV uk; it is set to be

ϱjk= H

sk− F∑
ĵ=1

(1− ηI
ĵk
)Lĵ

 N∑
i=1

 ˆ̂µIikwij K∏
k̂=1

(1−µ̂I
ik̂
ηI
jk̂
)

 , (5.23)

where H (v) is a function whose value is zero for v < 0 and one for v ≥ 0. In (5.23), ϱjk

suggests more attractiveness to place the files requested by the devices served by the UAV

uk. Once an individual is obtained, the deposited pheromone ∆τ is set to

∆τ =
δ

O(ηI , µ̂I ,λI)
, (5.24)

where δ is a constant. The trail pheromone is updated as follows:

τjk ← (1− σ) τjk + ηIjk∆τ, (5.25)

where σ represents the pheromone evaporation parameter.

Algorithm 9 illustrates the pseudocode of the proposed MCGA-ACO solution, which

receives the system model parameters and starts by initializing the trail pheromone τjk and

generates the group 1 chromosomes of the individuals in the initial population (lines 1-3).

The group 2 chromosomes of the individuals are obtained using (5.22) and the fitness of

each individual is evaluated. The algorithm performs M iterations; in each iteration, A

individuals with the highest fitness values are selected from P (line 7). The group 1 chro-

mosomes of each selected individual undergoes S cross-chromosome and in-chromosome

operations (line 8). Each operation generates the group 1 chromosomes of a child indi-

vidual and the ACO agent generates the group 2 chromosomes using (5.22). The child
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individual is embedded to the population in lieu of the individual with lowest fitness value

(lines 9−15). The algorithm traces and returns the best solution yet obtained (lines 17−19).

Algorithm 9 Hybrid MCGA-ACO algorithm for information placement and delivery using UAVs.
1: Input ψ, ψ̇,R, sk ∀ uk ∈ U , and Lj ∀ fj ∈ F

2: τjk = 1 ∀1 ≤ j ≤ F, 1 ≤ k ≤ K;

3: Generate group 1 chromosomes of the initial population;

4: Obtain the group 2 chromosomes of each individual using (5.22);

5: Obtain the corresponding ηI , µ̂I ,λI of each individual I in P , evaluate its fitness using (5.21), and update τjk using (5.25);

6: for Iteration= 1 to M do

7: Select A individuals for reproduction;

8: For each selected individual, generate S children individuals by applying S cross-chromosome and in-chromosome operations to C;

9: for s = 1 to S do

10: Obtain the group 2 chromosomes of the child individual Is using (5.22);

11: Obtain the corresponding ηIs , µ̂Is ,λIs ;

12: Evaluate the fitness of the child individual Is;

13: Update τjk using (5.25);

14: Replace the individual with the lowest fitness value in the population by Is;

15: end for

16: end for

17: I∗ = arg max
∀I∈P

{ΘI}

18: η∗ ← ηI∗ ; µ̂∗ ← µ̂I∗ ; λ∗ ← λI∗ ;

19: Return η∗, µ̂∗, and λ∗.

5.3.3.3 Multi-Chromosome Genetic Algorithm with Heuristic File Placement Solu-

tion Approach

Similar to the MCGA, the group 1 chromosomes of the children individuals are obtained

using cross-chromosome and in-chromosome mutation operations. The files are placed

heuristically by sorting them in a descending order according to a weight. This weight is
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defined as follows

Θjk =
N∑
i=1

µ̂Iikwij K∏
k̂=1

(1− µ̂I
ik̂
ηI
jk̂
)

 , (5.26)

which suggests a higher priority to place files in UAV uk based on the requirements of

devices served by uk and have not been scheduled to be delivered by other UAVs.

Algorithm 10 illustrates the pseudocode of the proposed MCGA with heuristic file

placement solution, which receives the system model parameters and starts by generat-

ing the group 1 chromosomes of the individuals in the initial population (lines 1-2). The

group 2 chromosomes of each individual are obtained using (5.26) and the fitness of each

individual is evaluated. Similar to algorithm 2, the algorithm performsM iterations, where,

in each iteration, A individuals with the highest fitness values are selected from P (line 7).

The group 1 chromosomes of each selected individual undergoes S cross-chromosome and

in-chromosome operations (line 8). Each operation generates group 1 chromosomes of a

child individual while group 2 chromosomes is obtained using the weighting criteria in

(5.26). Similar to algorithms 1 and 2, the child individual is embedded to the population

in lieu of the individual with lowest fitness value (lines 9 − 15). The algorithm traces and

returns the best solution yet obtained (lines 17− 19).

5.3.4 Complexity Analysis

Generating an individual in the initial population of MCGA algorithm needsO
(
K[N + F ]

)
operations. A mutation operator leads to an offspring individual that requiresO

(
K[N + F ]

)
operations. Evaluating the fitness and feasibility of an individual requires O (6KNF ) and

O (3KNF ) operations, respectively. Consequently, the computational complexity of the

MCGA approach can be expressed as O
(
MSK2NF [N + F ]AP log(P )

)
.
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Algorithm 10 MCGA with heuristic file placement algorithm.
1: Input ψ, ψ̇,R, sk ∀ uk ∈ U , and Lj ∀ fj ∈ F

2: Generate group 1 chromosomes of the initial population;

3: Obtain the group 2 chromosomes of each individual using (5.26);

4: Obtain the corresponding ηI , µ̂I ,λI of each individual I in P and evaluate its fitness using (5.21);

5: for Iteration= 1 to M do

6: Select A individuals for reproduction;

7: For each selected individual, generate S children individuals by applying S cross-chromosome and in-chromosome operations to C;

8: for s = 1 to S do

9: Obtain the group 2 chromosomes of the child individual Is using (5.26);

10: Obtain the corresponding ηIs , µ̂Is ,λIs ;

11: Evaluate the fitness of the child individual Is;

12: Replace the individual with the lowest fitness value in the population by Is;

13: end for

14: end for

15: I∗ = arg max
∀I∈P

{ΘI}

16: η∗ ← ηI∗ ; µ̂∗ ← µ̂I∗ ; λ∗ ← λI∗

17: Return η∗, µ̂∗, and λ∗.

Generating group 1 chromosomes in an individual requires O (KN) operations while

obtaining group 2 chromosomes using the ACO agent requires O
(
K3NF

)
operations.

Deposing the pheromone requires O (FK) operations. Consequently, the complexity of

the MCGA-ACO solution approach can be expressed as O
(
K5N2F 3MSAP log(P )

)
.

On the other hand, obtaining group 2 chromosomes in MCGA with heuristic file place-

ment algorithm requires O
(
K2NF 2 log(F )

)
operations. Consequently, the computational

complexity of the MCGA with heuristic file placement algorithm can be expressed as

O
(
PK2NF 2 log(F ) +MSK2NF 2 log(F )AP log(P )

)
=O

(
MSK2NF 2 log(F )AP log(P )

)
.
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5.3.5 Simulation Results

This section introduces simulation results to evaluate the energy consumption of the con-

sidered system model with three solution approaches. It is considered that the N devices

are distributed randomly in a 1×1 km2 area. Unless otherwise stated, the default numerical

values of the system parameters are listed in Table 5.2.

Table 5.2: Simulation parameters of the information placement and delivery using UAVs framework.

Parameter Value Parameter Value Parameter Value

PTk 30 dBm σ 0.1 B 200 kHz

Lj 10 kbytes N0 −110 dBm α 1

α1 10 α2 0.03 ζNLoS 20 dB

ζLoS 0 dB eki ∼ U(0, 2) m fc 2 GHz

P max
k 5 W P stop

k 0 W vmax
k =vk 12 m/s

hk 100 m Mk 0.5 kg ρk 20 cm

pk 4 α 1 β 1

M 400 iteration A 10 individuals S 10

Figure 5.4 shows the energy consumption versus the average number of files required

by each device. The performance of the three solution approaches are compared with

the optimum solution, which is obtained through exhaustive search. It is clear that the

proposed solutions provide near optimum performance. Furthermore, it can be noticed that

the MCGA-ACO approach outperforms both the MCGA and the MCGA with heuristic file

placement approaches.

The energy consumption versus the number of IoT devices N is illustrated in Fig. 5.5.

It is noticed that the energy consumption increases linearly with the number of devices.

Similar to the results in Fig. 5.4, the MCGA-ACO approach outperforms both the MCGA
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Figure 5.4: Energy consumption versus the average number of required files |Ri| with N = 5

devices, K = 2 UAVs, and F = 15 files.

and the MCGA with heuristic file placement approaches, which indicates that the ACO

agent provides better file placement.
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Figure 5.5: Energy consumption versus the number of devices N with K = 5 UAVs, F = 20 files,

and each device requests|Ri| = 5 files.
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5.4 Concluding Remarks

In this chapter, two energy-efficient data dissemination frameworks have been developed.

In the first framework, the devices are classified as devices which receive data directly from

a UAV and via other devices. An optimization problem was formulated to minimize the

energy expenditure of the UAV and devices. An ACO algorithm was developed to solve

the optimization problem. Simulation results revealed that the proposed ACO algorithm

provides a near-optimum performance, and the proposed framework reduces the energy

expenditure when compared with a baseline approach.

The second framework has been developed for energy-efficient information placement

and delivery in a multi-UAV network. The storage capacity of the UAVs has been consid-

ered and a combinatorial optimization problem has been formulated to find the optimum

set of contributing UAVs, place the files, and plan the trajectory of each contributing UAV.

Three computationally efficient solutions have been developed to solve the optimization

problem. Simulation results have shown that the proposed framework preserves energy

and optimizes the number of contributing UAVs. Moreover, results have illustrated that the

developed solution approaches provide near-optimal performance.
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Chapter 6

Task Offloading for Mobile Edge

Computing

6.1 Background and Motivation

In recent years, there has been a tremendous growth of computationally-intensive mobile

applications, such as 3D modeling, online gaming, and mobile augmented reality. How-

ever, mobile devices (such as tablets and smartphones) are normally constrained by the

limited resources, e.g., computation capability of local CPUs and capacity-limited battery,

and thus, restrict the users to fully enjoy highly computational demanding applications on

their own devices. Mobile cloud computing (MCC) has emerged as a solution to provide

elastic computing power to resource-constrained devices via offloading the computational-

intensive tasks to powerful distant centralized servers [3,87]. However, locating servers far

away from the end-user has limitations, such as high transmission latency, communication

bottlenecks, and security issues (e.g., some data should not be offloaded to servers that are
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located outside of national territory) [88]. Thus, MCC is not appropriate for mobile ap-

plications that are latency or security critical [89]. This motivated the idea of moving the

function of clouds towards the network edges and gave birth to a new computing infras-

tructure, namely MEC [6,7]. MEC provides lower offloading latency and jitter when com-

pared to MCC. Moreover, while MCC is a centralized computation offloading approach,

MEC provides a distributed approach which makes it a suitable solution for offloading

computational-intensive and time-sensitive mobile applications [90, 91].

In MEC, based on local CPU availability or energy consumption consideration, mobile

devices perform task computations locally or offload them to MEC servers. This deci-

sion plays a critical role in determining the computation efficiency, especially as the task

offloading requires data transmission over the wireless channel. Two main computation

task offloading policies can be found in the literature, namely partial offloading and bi-

nary offloading. In the former, a portion of the computation is performed locally at the

mobile device and the other portion is offloaded to MEC servers [92]. In the latter, how-

ever, the mobile device determines whether a task should be computed locally or offloaded

to MEC servers [93]. From the user’s point of view, the most important requirements of

task offloading are low energy consumption, low offloading error and low latency, mandat-

ing ultra-reliable and low-latency task offloading [94]. In recent communication networks,

computing servers are deployed at the edge of the network to facilitate and accelerate con-

nection. These servers are deployed in high numbers and have limited capabilities when

compared to conventional, backbone cloud servers (which earned them the nickname of

cloudlets) [95, 96].

Such dense deployment of the MEC servers gives the leverage of diversity and the

ability of dividing a task into sub-tasks and offloading them to multiple MEC servers coop-
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eratively to further shorten the latency [97]. In this respect, two main offloading schemes

can be considered, namely sequential offloading and parallel offloading. For the former, the

sub-tasks are offloaded in a time-sequential manner to servers over a shared communication

channel [11, 98]. For the latter, the sub-tasks are offloaded simultaneously to servers over

orthogonal communication channels [99] or using non-orthogonal multiple access [100].

Moreover, two important aspects should be considered in such offloading schemes: (1)

The computational capabilities and channel qualities are different for the MEC servers. A

low computation latency can be provided by an MEC server with high computational ca-

pability; however, it might encounter a high communication latency and high offloading

failure probability due to a poor communication link between the mobile device and the

MEC server; (2) Dividing the task into sub-tasks yields a sophisticated scenario of de-

pendency among sub-tasks. In many applications, the inter-sub-tasks dependency cannot

be ignored, since it has a significant effect on the offloading and computation procedure.

There are three main models of dependency among the sub-tasks, namely sequential de-

pendency in which each sub-task depends on the output of the previous sub-task; parallel

dependency in which a set of sub-tasks depends on the output of a previous sub-task; and

general dependency in which a sub-task may depend on the output of one or more of the

previous sub-tasks [101, 102]. Therefore, finding efficient scheduling decisions to assign a

set of inter-dependent sub-tasks to a set of MEC servers is a challenging problem.

In the real world, the scheduling process is an approach through which a number of

tasks are assigned to resources (servers) in order to complete the task execution process.

Scheduling problems are typically formalized in terms of combinatorial optimization the-

ory. Due to the high complexity and exponential growth search space of the scheduling

problems, exhaustive search or random search methods are computationally demanding,
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thus rendering them impractical. In this context, the GA was introduced as a robust

global search method that searches for better solutions using a fitness score, which is

obtained by evaluating an objective function without other derivative or auxiliary infor-

mation [103, 104]. Other interesting scheduling methods, inherited from the graph theory,

have emerged in the literature. These methods provide near optimum solutions with re-

duced computational complexity by avoiding the direct evaluation of the objective function

in each iteration [105–107].

6.1.1 Related Work

Several research works (e.g., [99, 100, 108–113], and references therein) have proposed

task offloading frameworks and algorithms to prolong the battery lifetime of the mobile

devices. In [108], experimental results show that up to 50% of battery life can be preserved

through remote processing of tasks. In [109] and [110], a single mobile device and sin-

gle MEC server computation offloading problem was investigated. Wang et al. in [109]

proposed partial computation offloading by jointly optimizing the consumed energy at the

mobile device, offloading ratio, and computational delay. The authors in [110] investigated

the optimal partial computation offloading jointly with the selection of constellation size

and transmit power to optimize the consumed energy at mobile devices under latency con-

straint. A cooperative fog computing-based vehicular network architecture was proposed

in [114], for the Internet-of-vehicles big data in a smart city. A dynamic network vir-

tualization technique to achieve parallel computation in satellite-terrestrial networks was

proposed in [115]. This technique integrates network resources and provides a cooperative

parallel computation offloading model. In [116], a task scheduling approach with stochas-
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tic time cost for computation offloading was proposed to minimize the maximum tolerable

delay by considering both the average delay and delay jitter. In [117], a multi-layer edge

computing framework was proposed to assign tasks to each layer optimally. A heteroge-

neous multilayer MEC framework was proposed in [118], in which tasks that cannot be

timely processed at the edge are offloaded to upper layer MEC servers and cloud center.

The authors aimed at minimizing the offloading latency by jointly coordinating the task

assignment, computing, and transmission resources in each layer.

The scenario of multiple mobile devices sharing a single MEC server for computa-

tion offloading was investigated in [99, 100, 111–113]. You et al. in [99] studied the to-

tal energy consumption minimization problem by considering both orthogonal frequency-

division multiple access and time-division multiple access under latency constraint. An

optimal priority policy is provided, which gives priority to mobile devices according to

their local computing energy consumption and channel gains. In [100], a multiuser MEC

system with one server was studied, in which users can simultaneously offload their com-

putation tasks to a multi-antenna server over the same time/frequency resources based on

non-orthogonal multiple access. The authors assumed both constant computational delay

and downlink transmission delay, and focused their study on the energy consumption in

the uplink phase. A joint optimization of computational and radio resources, aimed at op-

timizing mobile devices’ energy consumption under power and latency constraints, was

proposed in [111]. A distributed game theoretic approach for decision making to offload

computation among multiple mobile devices was proposed in [112]. The authors showed

that the game always admits a Nash equilibrium, achieves superior computation offloading

performance, and scales well as the number of mobile devices increases. A cooperative

offloading framework in which multiple mobile devices cooperate with each other to im-
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prove the computation capability of an MEC system was proposed in [113]. In all these

works, a mobile device can be associated with one MEC server. However, in dense deploy-

ment of MEC servers, as envisioned in future networks, offloading a computational task

to multiple nearby MEC servers can potentially improve the offloading process. In [97], a

mobile device that offloads a set of independent tasks to a set of MEC servers in parallel

via orthogonal sub-channels was studied. The authors aimed to minimize both mobile de-

vice’s energy consumption and total tasks’ execution latency. A sequential task offloading

framework was proposed in [98]. In this framework, a mobile device segments a task into

sub-tasks and offloads them to multiple servers in sequence. From a practical point of view,

a task cannot be segmented arbitrarily and such a framework cannot handle the dependency

among the sub-tasks.

This chapter introduces two frameworks to minimize both the latency and the offloading

error probability. The first framework allocates a computationally-intensive to a set of MEC

servers in sequential offloading scheme. The second framework tackles a more realistic

scenario, in which the task consists of a set of inter-dependent sub-tasks. Parallel and

sequential offloading schemes are studied, and the general dependency among sub-tasks is

considered.

6.2 Task Allocation for Collision-free Sequential Offload-

ing in MEC

A more realistic sequential task offloading scenario is tackled, in which the feedback from

the servers to the device is considered. Including the feedback into the sequential task of-
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floading framework imposes the possibility of transmission collision between the feedback

of a given server and the uplink/downlink transmission to/of another server.

6.2.1 System Model

A delay-sensitive and computationally-intensive task (T ) is offloaded by a user equipment

(UE) to a set S = {si}Ii=1 of I MEC servers. Each server is equipped with a CPU that helps

offload and compute the UE’s task. The tuple T = {U,D,C} is introduced to represent

the task T in which U is the size of the input data (in bits), D is the output computed result

(in bits), and C is the required CPU cycles. The output computed result is modeled as

D = βU , where β (β > 0) is the output to input ratio of the task [119]. The number of CPU

cycles C is modeled as C = αU , where α (α > 0) depends on the task’s computational

complexity [109]. A server si is represented by a tuple si = {Rui, Rdi, fi}, where Rui is

the uplink data rate, Rdi is the downlink data rate, and fi is the computational speed of the

CPU in the i-th server.

To select the servers’ offloading sequence and obtain an ordered set of servers S∗, a

weight wi is assigned to each server and the servers are sorted in an ascending order of wi.

A weighting scheme is considered which reflects the computational capabilities and quality

of transmission links:

wi =
U

Rui
+
αU

fi
+
βU

Rdi
. (6.1)

The task T can be divided into M (M ≤ I) non-overlapping sub-tasks and distributed

to servers. The task allocation vector η = [η1, η2, . . . , ηN ]
T is defined such that

∑N
i=1 ηi = 1

and ηi ≥ 0 is the portion of the task that is offloaded to the i-th server. Task partitioning

causes overhead, and consequently, δ (δ ≥ 1) is introduced to represent the ratio of the

108



transmitted data size to the original task data size due to segmentation overhead. The tuple

τi = {ui (η) , ci (η) , di (η)} is introduced to represent the sub-task that is offloaded to

the i-th server in which ui (η) = ηiδU is the size of the sub-task’s input data (in bits),

ci (η) = ηiαU is the required CPU cycles, and di (η) = ηiβU is the output computed

result (in bits).

6.2.2 Communication Model

The UE offloads the sub-tasks using the entire channel bandwidth in a sequential tech-

nique. The end-to-end delay consists of two delay components: (1) Task transmission

delay: the uplink and downlink transmission delay of the i-th sub-task can be expressed

as Dui (η) = ui(η)
Rui

and Ddi (η) = di(η)
Rdi

, respectively. In sequential task offloading, the

uplink transmission of the i-th sub-task will not start until the uplink transmission of all the

previous (i− 1) sub-tasks is finished. In other words, the waiting time of the i-th sub-task

is Wi (η) =
∑i−1

j=1Duj (η) and W1 (η) = 0. (2) Computing delay: The CPU in the i-th

server computes the sub-task with a computational speed fi (in cycles per second). Conse-

quently, the computing delay in the i-th server isDci (η) = ci(η)
fi

. The delay for completing

the i-th sub-task can be expressed as

Di (η) =Wi (η) +Dui (η) +Dci (η) +Ddi (η) , (6.2)

and the total latency for completing the task is given by

L (η) = max
∀i∈S
{Di (η)}. (6.3)

The transmission failure probability of offloading the i-th sub-task can be written as
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Pi (η) = P u
i (η) +

[
1− P u

i (η)
]
P d
i (η) , (6.4)

where P u
i (η) is the uplink transmission error defined as [98]:

P u
i (η) = 1− (1− q)

ui(η)

ϱu
i , (6.5)

and P d
i (η) is the downlink transmission error, similarly defined as:

P d
i (η) = 1− (1− q)

di(η)

ϱd
i , (6.6)

with ϱui and ϱdi as the uplink and downlink transport block size, respectively, and q as

the target block error rate. Consequently, the task offloading failure probability can be

expressed as

P (η) = 1−
N∏
i=1

(
1− Pi (η)

)
= 1− (1− q)

U
∑N

i=1 ηi

(
δ
ϱu
i
+ β

ϱd
i

)
.

(6.7)

6.2.3 Problem Formulation

Offloading the task to fewer participating servers with better communication channels re-

duces the task offloading failure probability. On the other hand, a small number of partic-

ipating servers increases the latency. Moreover, the servers with good channel quality are

not always the best in terms of the computational speed. Our objective is to minimize L (η)

and P (η) simultaneously. Hence, the problem is a multi-objective optimization problem.

To tackle the trade-off between L (η) and P (η), the weighted sum method is considered.

Keeping in mind that L (η) and P (η) have different orders of magnitude and ranges, they

should be transformed such that they have similar ranges [42]. The latency-reliability cost
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function is defined as

Ψ(η) = λ
L (η)
L

+ (1− λ) P (η)

E
, (6.8)

where

L = max
∀i∈S
{ δU
Rui

+
αU

fi
+
βU

Rdi
}, (6.9)

and

E = max
∀i∈S
{1− (1− q)

δU
ϱu
i (1− q)

βU

ϱd
i } (6.10)

are the highest values of L (η) and P (η), respectively. L and E represent the latency

and error encountered in offloading the entire task to the server that causes the highest

latency and to the server that causes the highest offloading error, respectively. Furthermore,

0 ≤ λ ≤ 1 is the relative weight.

Let us assume that the first M servers in S∗ contribute to the task offloading; a trans-

mission collision occurs if at least one of the following two events happens: (1) One of the

contributing servers finishes its sub-task computational and sends back the results while the

task uplink offloading has not finished yet; (2) Two or more contributing servers send back

the results simultaneously. To avoid such events and guarantee non-overlapping transmis-

sions, the following constraints are introduced

Du1 (η) +Dc1 (η) ≥
M∑
j=1

Duj (η)⇒ Dc1 (η) ≥
M∑
j=2

Duj (η) (6.11)

and

Dui (η) +Dci (η) ≥ Dci−1 (η) +Ddi−1 (η) , ∀ 2 ≤ i ≤M. (6.12)
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Constraint (6.11) guarantees that the first contributing server sends the feedback after all

the other contributing servers finish their uplink transmissions. Constraint (6.12) guarantees

that any subsequent contributing server sends its feedback after the previous server finishes

the downlink transmission. A collision-free task allocation is shown in Fig. 6.1.

Figure 6.1: Sequential and collision-free task makespan of offloading the task to M servers.

The server contribution decision variable vector is introduced, γ = [γi]1×N , where the

binary decision variable γi is defined as

γi =


1, if si is contributing to the task offloading

0, otherwise.

(6.13)

Consequently, the number of contributing serversM =
N∑
i=1

γi and the optimization problem
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is formulated as

P1 min
η,γ

Ψ(η) , (6.14a)

s.t. Dc1 (η) ≥
N∑
j=2

Duj (η) , (6.14b)

Dui (η) +Dci (η) ≥ γi
(
Dui−1 (η) +Dci−1 (η)

)
, (6.14c)

∀ 2 ≤ i ≤ N,

ηi ≤ γi ≤ ηiU, ∀si ∈ S∗, (6.14d)

γi ≥ γi+1, ∀1 ≤ i ≤ N − 1, (6.14e)

N∑
i=1

ηi = 1, (6.14f)

ηi ≥ 0, γi ∈ {0, 1} ∀si ∈ S∗. (6.14g)

Constraints (6.14b) and (6.14c) guarantee collision-free task offloading. In (6.14c), if server

si is contributing to task offloading, i.e., γi = 1, the size of sub-task τi should be cho-

sen such that (6.12) is satisfied to guarantee non-overlapping transmissions. Constraint

(6.14d) ensures that if server si receives no sub-task, then it should not be selected as a

contributing server. It also guarantees that γi = 1 only if server si is contributing to the

task offloading. Constraint (6.14e) guarantees the offloading sequence and server priority

by ensuring that the allowable γ vectors can never have γi = 0 and γi+1 = 1 for any two

consecutive elements. Therefore, γ guarantees that the first M servers in S∗ contribute in

the offloading. Consequently, only N feasible possibilities of γ, i.e., γ1 = [1, 0, 0, ...0]T ,

γ2 = [1, 1, 0, 0, ...0]T up to γN = [1, 1, 1, 1, ...1]T . Constraints (6.14f) and (6.14g) guaran-

tee the offloading of the whole task. The optimization problem in (6.14) is a non-convex

mixed integer non-linear program which cannot be directly solved by the convex optimiza-
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tion techniques. The next section introduces an optimal solution to the problem (6.14).

6.2.4 Solution Approaches

6.2.4.1 Benchmark Optimal Solution Algorithm

In this section, an exact solution algorithm is introduced to find an optimal solution for

(6.14). For a given fixed γ = γ̂, it is important to note that:

L (η) = DM̂ (η) , (6.15)

where M̂ =
∑N

j=1 γ̂j , and hence, for iterations 1 ≤ i ≤ N , the following non-linear

program (NLP) is solved:

P2 min
η

λ
DM̂ (η)

L
+ (1− λ) P (η)

E
, (6.16a)

s.t. (6.14b), (6.14c), (6.14d), (6.14f) and (6.14g). (6.16b)

It is straightforward to show that P (η) in (6.16a) is concave, since it can be re-written

in the form 1 − exp
[
aTη

]
, where a = [ai]1×N with ai = ln (1− q)U

(
δ
ϱui

+ β
ϱdi

)
. Since

exp (.) is known to be a convex function, then a composition with an affine mapping is also

convex, i.e., exp
[
aTη

]
is convex [120, Section 3.2.2] and following this directly, P (η)

is concave. The linear term λ
DM̂ (η)

L
is both concave and convex, while (1− λ) P (η)

E
is

concave; hence, the sum of the two terms is concave in η.

The constraint sets (6.14b), (6.14c), (6.14d), (6.14f) and (6.14g) in (6.16) are linear and

yield a polyhedron feasible region. Consequently, the optimal solution lies in one of the

extreme points (vertices) of the polyhedron [121, Section 7.8]. Algorithm 11 is designed to

obtain the optimal solution of (6.14), in which the main steps are described as follows. The

decision vector γ is set in each iteration i to γi =
∑i

j=1 ej , where ej is anN -element vector
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whose j-th element is the only non-zero element, which equals 1. In the i-th iteration, the

feasible set of solutions for η is a polyhedron Pi whose set of vertices Vi are all enumerated

using primal-dual polytope method [122]. For each vertex vki ∈ Vi, k = 1, 2, . . . ,|Vi|

(where|.| is the cardinality of a set), the corresponding task allocation vector is obtained as

η =
[
vki

T
,01×(N−i)

]T
and the objective function is evaluated. The algorithm terminates

after examining the vertices of N polyhedrons and returns (η∗,γ∗) optimal for (6.14). It is

worth mentioning that identifying all vertices of a polyhedron is NP hard [123].

Algorithm 11 Optimum Solution Algorithm.
1: Input: U , N , S, δ, α, β, and λ;

2: Calculate L and E using (6.31) and (6.10), respectively;

3: Obtain S∗ by sorting si in S in an ascending order of corresponding wi;

4: Ψ∗ ← +∞; γ0 ←
[
01×N

]T
;

5: for i = 1 to N do

6: γi = γi−1 + ei;

7: Vi ← enumerates the vertices of polyhedron of constraints (6.14b), (6.14c), (6.14d), (6.14f) and (6.14g);

8: for k = 1 to|Vi| do

9: η =
[
vk
i ,01×(N−i)

]T
;

10: Evaluate Ψ(η);

11: if Ψ∗ > Ψ(η)

12: Ψ∗ ← Ψ(η); η∗ ← η; γ∗ ← γi;

13: end if

14: end for

15: end for

16: Return Ψ∗, η∗, and γ∗.

The next section introduces a more computationally-efficient heuristic solution to the

problem (6.14).
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6.2.4.2 Heuristic Solution

In this section, a sub-optimal solution is proposed to solve (6.14). Our strategy is described

as follows. For a given S∗ and M contributing servers, the collision-free task allocation

that provides minimum latency can be achieved by replacing the inequalities in (6.11) and

(6.12) by equalities. After simple algebraic manipulations, the following set of equations

can be obtained

η1
α

f1
= η2

δ

Ru2
+

M∑
j=3

ηj
δ

Ruj
,

η2
α

f2
=

M∑
j=3

ηj
δ

Ruj
+ η1

β

Rd1
,

· · ·

ηM

α

fM

=
M−1∑
j=1

ηj
β

Rdj
.

(6.17)

Further straightforward manipulations of (6.17) yield(
α

f1
+

β

Rd1

)
η1 =

(
δ

Ru2
+
α

f2

)
η2,(

α

f2
+

β

Rd2

)
η2 =

(
δ

Ru3
+
α

f3

)
η3,

. . . ,(
α

fM−1
+

β

RdM−1

)
ηM−1 =

(
δ

RuM

+
α

fM

)
ηM .

(6.18)
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Based on (6.18), (6.14f), and (6.14g), the sub-optimal collision-free task allocation results

as:

η∗i =



1 +
M∑
i=2

i−1∏
j=1

(
α
fj

+ β
Rdj

)
i∏

j=2

(
δ

Ruj
+ α

fj

)

−1

, i = 1

i−1∏
j=1

(
α
fj

+ β
Rdj

)
i∏

j=2

(
δ

Ruj
+ α

fj

)η∗1, 2 ≤ i ≤M

0, M < i ≤ N.

(6.19)

To tackle the latency-reliability trade-off, the number of contributing serversM varies from

1 to N . Using the sorted servers and (6.19), Algorithm 12 finds η that minimizes the

latency-reliability cost function heuristically.

Algorithm 12 Heuristic Solution Algorithm.
Input: U , N , S, δ, α, β, and λ;

Calculate L and E using (6.31) and (6.10), respectively;

Obtain S∗ by sorting si in S in an ascending order of corresponding wi;

Ψ∗ ← +∞;

γ0 ←
[
01×N

]T
;

for M = 2 to N do

γM = γM−1 + eM ;

Calculate η according to (6.19);

Evaluate Ψ(η);

if Ψ∗ > Ψ(η) and (6.14d) satisfied

Ψ∗ ← Ψ(η); η∗ ← η; γ∗ ← γM ;

end if

end for

Return Ψ∗, η∗ and γ∗.

Calculating η according to (6.19) requires O
(
N2
)

product operations and evaluating

the objective function requires O (N) product operations in (6.34) and O (N) max(.) op-
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erations in (6.3). Consequently, the computational complexity of finding a solution using

Algorithm 12 is O
(
N2
)

product and max(.) operations. Therefore, this algorithm is suit-

able for online implementation.

6.2.5 Simulation Results

In this section, the LTE system configuration is considered with 20 MHz channel bandwidth

and 100 resource blocks. It is assumed that the SNR at the servers and the UE is uniformly

distributed in the interval [0, 30] dB. The modulation and coding scheme (MCS) is adjusted

dynamically to guarantee that q does not exceed 10−7 and the transport block size in each

link is calculated based on the SNR-MCS mapping [98, 124]. The computational speed of

the servers is uniformly distributed in the interval
[
1× 109, 10× 109

]
cycles per second.

The task size U is set to 1 Mbits, δ = 1, α = 1900/8 cycles per bit, and β = 0.2. These

parameters and λ = 0.5 are considered in the following results, unless otherwise stated.
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Figure 6.2: The effect of the number of available servers N .
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Figure 6.2 illustrates the performance of the optimal and sub-optimal solutions ver-

sus the number of available servers N . It is seen that the latency-reliability cost function

decreases as N increases and the proposed sub-optimal solution achieves near-optimal per-

formance. It is clear that the number of the contributing servers increases as the the number

of available servers increases.

The latency and offloading failure probability of both weighted sum with λ = 0.5

and latency-reliability product cost functions are illustrated in Fig. 6.3. It is clear that for

λ = 0.5, the weighted sum achieves lower latency. On the other hand, the latency-reliability

product cost function achieves lower offloading failure probability.
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Figure 6.3: Latency and offloading failure probability of weighted sum with λ = 0.5 and latency-

reliability product cost functions.
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6.3 Scheduling for Mobile Edge Computing with Inter-

task Dependency

6.3.1 System Model and Offloading Schemes

A delay-sensitive and computationally-intensive task (T ) is offloaded by a mobile device

to a set S = {si}Ii=1 of I MEC servers. The packet error rate (PER) of the uplink and

downlink of server si are pi and qi, respectively. The size of the input data and output

computed result of T are U and D packets, respectively, each packet of Np bits. The

task T consists of J (J ≤ I) sub-tasks T = {τj}Jj=1. The tuple τj = {uj, cj, dj} is

introduced to represent the j-th sub-task in which uj is the input data size (in packets), cj

is the number of CPU cycles that is required to process the sub-task, and dj is the output

computed result (in packets). The number of CPU cycles cj is modeled as cj = αjNpuj ,

where αj (in cycles per bit) depends on the computational complexity of the sub-task. The

uplink transmission delay and the computation delay of offloading the sub-task τj to the i-th

server are duij =
ujNp

Rui
and dcij =

cj
fi

, respectively. The offloading decision µ =
[
µij
]
I×J

is defined such that:

µij =


1, if τj is assigned to si,

0, otherwise.

(6.20)

Based on the offloading decision µ, the uplink transmission delay and the computation

delay of the j−th sub-task τj can be expressed as Duj (µ) =
∑I

i=1 µijduij and Dcj (µ) =∑I
i=1 µijdcij , respectively.

The dependency among the sub-tasks cannot be ignored in many applications, as it has

significant effect on the offloading and computation procedure. the general dependency
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model is considered, in which the computation of a sub-task τl may depend on the out-

put computed result of one or more of the previous sub-tasks [101, 102]. To address the

inter-dependency among the sub-tasks, the sub-task dependency matrix x =
[
xlj
]
J×J is

introduced such that:

xlj =


1, if τj depends on the result of τl (l < j)

0, otherwise.

(6.21)

The backhaul links among the servers are considered identical, reliable, and very high

speed links. Accordingly, the transmission delay and failure probability of exchanging the

intermediate results among servers is negligible.

6.3.1.1 Parallel Offloading Scheme

In the parallel offloading scheme, the mobile device offloads the sub-tasks to servers simul-

taneously via orthogonal sub-channels. The scheduling problem of this offloading scheme

consists of assigning sub-tasks to servers under the following constraints:

• Each sub-task can be offloaded to only one server.

• Each server can handle only one sub-task.

• If xlj = 1, then the sub-task τj can be offloaded to a server; however, the server holds

the computing of τj until the computation of τl is finished.

A sub-task τj (j > 1) may depend on one or more of the previous (j−1) sub-tasks; as such,

the server holds the computing of τj until the computation of all sub-tasks with xlj = 1 in

x is finished. The holding delay of the j-th sub-task can be expressed as:

Dhpj (µ) = max
∀l<j

{
xlj

[(
Dul (µ) +Dhpl (µ) +Dcl (µ)

)
−Duj (µ)

]+ }
, (6.22)
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where [υ]+ ≜ max{υ, 0}. The downlink transmission delay of offloading the sub-task

τj to the i−th server is ddij =
djNp

Rdi
. Based on the scheduler decision µ, the downlink

transmission delay of the j−th sub-task τj can be expressed as Ddj (µ) =
∑I

i=1 µijddij .

The delay of the parallel offloading and computing the j-th sub-task can be expressed as

Dpj (µ) = Duj (µ) +Dcj (µ) +Dhpj (µ) +Ddj (µ) . (6.23)

The total latency of completing the task with parallel offloading is given by

Lp (µ) = max
j∈T
{Dpj (µ)}. (6.24)

The uplink transmission failure probability and downlink transmission failure probabil-

ity of offloading the j-th sub-task under the offloading decision µ can be written as

P u
j (µ) = 1−

I∏
i=1

(1− pi)µijuj , (6.25)

and

P d
j (µ) = 1−

I∏
i=1

(1− qi)µijdj , (6.26)

respectively. The failure probability of offloading the j-th sub-task can be written as

Pj (µ) = P u
j +

[
1− P u

j

]
P d
j . (6.27)

Consequently, the failure probability of offloading task T with the parallel offloading

scheme can be expressed as

Pp (µ) = 1−
J∏
j=1

(
1− Pj (µ)

)
. (6.28)

6.3.1.2 Sequential Offloading Scheme

In the sequential offloading scheme, the mobile device offloads the sub-tasks to the servers

in a time-sequential manner via a shared channel. The scheduling problem of this offload-

ing scheme consists of assigning sub-tasks to servers under the following constraints:
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• Each sub-task can be offloaded to only one server.

• Each server can handle (receive or compute) only one sub-task at any time instant.

• If xlj = 1, then the sub-task τj can be offloaded to a server; however, the server holds

the computing of τj until the computation of τl is finished.

In the sequential task offloading, the uplink transmission of the j-th sub-task will not start

until uplink offloading of all previous (j − 1) sub-tasks is finished. In other words, the

waiting time of the j-th sub-task before transmission isWj (µ) =
∑j−1

l=1 Dul (µ) , 2 ≤ j ≤

J , and W1 (µ) = 0. A sub-task τj (j > 1) may depend on one or more of the previous

(j − 1) sub-tasks. Since the server holds the computing of τj until the computation of all

sub-tasks with xlj = 1 in x is finished, the additional holding delay of the j-th sub-task

with sequential offloading can be expressed as:

Dhsj (µ) = max
∀l<j

{
xlj

Dhsl (µ) +Dcl (µ)− j∑
r=l+1

Dur (µ)

+ }
. (6.29)

The delay for offloading and computing the j-th sub-task can be expressed as

Dsj (µ) =Wj (µ) +Duj (µ) +Dcj (µ) +Dhsj (µ) . (6.30)

One server sk is selected as a sink server to collect and send back the results to the mobile

device. The total latency for completing the task is given by

Ls (µ) = max
j∈T
{Dsj (µ)}+DDk, (6.31)

where DDk = DNp

Rdk
is the downlink transmission delay of the resulted data D by the sink

server sk.
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The failure probability of the uplink transmission of task T can be written as

P u (µ) = 1−
J∏
j=1

(
1− P u

j (µ)
)
. (6.32)

The failure probability of the downlink transmission of task T can be written as

P d = 1− (1− qk)D , (6.33)

where the k−th server is selected as the sink server. Consequently, the task offloading

failure probability with sequential offloading scheme can be expressed as

Ps (µ) = P u (µ) +
[
1− P u (µ)

]
P d. (6.34)

6.3.2 Problem Formulations

6.3.2.1 Problem Formulation for Parallel Offloading Scheme

The objective is to minimize both the total latency for completing a task and the offloading

failure probability simultaneously. To tackle the trade-off between latency and reliability

and to give them a similar significance, the weighted product method is considered [125],

in which the latency-reliability cost function of the parallel offloading scheme can be for-

mulated as Ψp (µ) = Lp (µ)Pp (µ).1

Consequently, the optimization problem is formulated as shown in (6.35). Constraints

(6.35b) and (6.35c) guarantee that each sub-task is offloaded to only one server, and no

two sub-tasks are offloaded to the same server, respectively. In other words, at most one

sub-task is offloaded to each server.
1For error-free environment, the cost function is Ψp (µ) = Lp (µ).
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P1 min
µ

Ψp (µ) , (6.35a)

s.t.
I∑
i=1

µij = 1, ∀j ∈ T , (6.35b)

J∑
j=1

µij ≤ 1, ∀i ∈ S, (6.35c)

µij ∈ {0, 1}, ∀i ∈ S and j ∈ T . (6.35d)

6.3.2.2 Problem Formulation for Sequential Offloading Scheme

The latency-reliability cost function of the sequential offloading scheme can be formulated

as Ψs (µ) = Ls (µ)Ps (µ).2 The optimization problem is formulated as

P2 min
µ

Ψs (µ) , (6.36a)

s.t.
I∑
i=1

µij = 1, ∀j ∈ T , (6.36b)

µi(j−1) + µij ≤ 1, ∀i ∈ S, 2 ≤ j ≤ J, (6.36c)

µijµil

 l−1∑
r=j+1

Dur (µ)−
(
Dcj (µ) +Dhsj (µ)

) ≥ 0, (6.36d)

∀i ∈ S, 1 ≤ j ≤ J − 2, j + 2 ≤ l ≤ J,

µij ∈ {0, 1}, ∀i ∈ S and j ∈ T . (6.36e)

Constraint (6.36b) guarantees that each sub-task is offloaded to only one server. Further-

more, constraints (6.36c) and (6.36d) guarantee that no two successive sub-tasks are of-

floaded to the same server and no sub-task is offloaded to a server that still handles another
2For error-free environment, the cost function is Ψs (µ) = Ls (µ).

125



sub-task, respectively. For the sequential offloading scheme, the sink server sk can be

selected such that

sk = argmin
i∈S
{DDi

(
1− (1− qi)D

)
}, (6.37)

and for error free environment, sk = argmin
i∈S
{DDi}.

It is worth noting that the size of the search space for the optimization problems in

(6.35) and (6.36) is 2IJ . Consequently, the complexity of finding the optimum solution

using exhaustive search is prohibitive for a reasonable number of servers and sub-tasks.

The next two sections present more efficient methods to solve the problems using GA and

conflict graph models, respectively.

6.3.3 Proposed Solution Approaches

6.3.3.1 Genetic Algorithm Approach

In the proposed GA, a potential offloading decision is represented as a set of J parameters

known as genes gi, each gene representing an association of a sub-task and a server. These

genes are joined together to form a string of integers known as a chromosome g. A chro-

mosome (J-dimensional vector of integer numbers) identifies the servers, as assigned to

the vector elements represented by the sub-tasks.

For the parallel offloading scheme, the chromosome representation described above

ensures that constraints (6.35b) and (6.35d) are automatically satisfied since each sub-task

is associated with exactly one server. However, this representation does not guarantee that

constraint (6.35c) is fulfilled. A given chromosome is feasible for the parallel offloading

scheme if its genes (servers) are distinct. In other words, if the number of the contributing

servers is J . The feasibility indicator of a given chromosome for parallel offloading gk is
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defined as

ζpk =


1, if |

J⋃
i=1

gi |= J,

0, otherwise.

(6.38)

It is clear that ζpk = 0 if and only if the chromosome gk violates constraint (6.35c). The

raw fitness of a chromosome gk with parallel offloading scheme is defined as

θpk =
1

Ψp (µk)
, (6.39)

where µk is the offloading decision associated with the chromosome gk. The fitness of a

chromosome gk is then defined as

Θpk = ζpkθpk. (6.40)

Hence, the chromosome with the highest Θpk > 0 is feasible and minimizes the objective

function in (6.35).

For the sequential offloading scheme, the chromosome representation ensures that con-

straints (6.36b) and (6.36e) are automatically satisfied since each sub-task is associated

with exactly one server. However, this representation does not guarantee that constraints

(6.36c) and (6.36d) are fulfilled. Algorithm 13 returns the feasibility indicator for a given

chromosome gk in the sequential offloading scheme. In this algorithm, if ξ′ = 0 then gk

violates (6.36c). A given chromosome is feasible for the sequential offloading scheme if

Algorithm 13 returns ζsk = 1.

The raw fitness of a chromosome gk with sequential offloading scheme is defined as

θsk =
1

Ψs (µk)
, (6.41)

where µk is the offloading decision associated with the chromosome gk. The fitness of a
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Algorithm 13 Chromosome Feasibility for Sequential Offloading Scheme
1: input gk , duij , dcij , and x

2: ζsk = 1

3: ξ′ =∏J−1
j=1 | gj − gj+1 |

4: if ξ′ = 0 then

5: ζsk ← 0

6: Return ζsk

7: else

8: Obtain µk associates with gk

9: µ← µk .

10: if (6.36d) violated then

11: ζsk ← 0

12: Return ζsk

13: end if

14: end if

15: Return ζsk

chromosome gk is defined as

Θsk = ζskθsk. (6.42)

Hence, the chromosome with the highest Θsk > 0 is feasible and minimizes the objective

function in (6.36).

The adopted GA consists of the following steps:

1. Generate an initial population of Ξ randomly constructed chromosomes. Each chro-

mosome in the initial population is generated by randomly associating a server with

each sub-task.

2. Evaluate the fitness and the feasibility indicators of each chromosome. Two values

are associated with each chromosome, namely the raw fitness value and the feasibility

indicator [104].
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3. Select two chromosomes as parents for reproduction. The binary tournament selec-

tion is adopted, in which two chromosomes are chosen from the population randomly

and the one with the highest raw fitness value is selected as a parent [104]. The same

procedure is applied to select the other parent.

4. Generate a child chromosome from the parents by first applying a crossover opera-

tion. One-point crossover operation is adopted, in which a crossover point 1 ≤ j ≤ J

is randomly selected. The child is structured from the first j genes which are taken

from one of the parents, and from the remaining J−j genes which are taken from the

other parent. The crossover operation is followed by a mutation operation, in which

two randomly selected genes in the child are exchanged (i.e., exchanging assigned

servers between two randomly selected sub-tasks). After generating the child, the

fitness and the feasibility indicator of the child chromosome are evaluated.

5. Replace a chromosome in the population by the child chromosome. The adopted

replacement procedure is as follows. The chromosome with zero feasibility indicator

and lowest raw fitness value is replaced by the child. If all the chromosomes in the

population are feasible, the chromosome with the lowest raw fitness value is replaced

by the child.

6. Repeat steps 3 and 4 until N offspring chromosomes have been generated without

enhancing the best chromosome found so far or a maximum number of offspring

chromosomes M has been generated.
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6.3.3.2 Conflict Graphs Solution Approach

In this section, heuristic solutions to the formulated optimization problems using techniques

inherited from graph theory are introduced. To find an optimized offloading decision, a rep-

resentation of all feasible offloading schedules should be first design. Offloading conflict

graph models are proposed to represent the offloading conflicts. The offloading conflict

graph is an undirected graph in which each vertex has two indices representing an associa-

tion of a server and a sub-task. Each undirected edge between two vertices is an offloading

conflict between the two corresponding associations.

The proposed conflict graph of the parallel offloading scheme Gp is constructed as fol-

lows:

Vertex Set: The vertex set consists of IJ vertices in which each vertex vij represents the

offloading of sub-task τj to server si.

Scheduling Conflict Edges: Any two vertices vij and vkl in Gp are set adjacent by a

scheduling conflict edge if one of the following cases occurs:

1. j = l⇒ A sub-task cannot be handled by more than one server.

2. i = k⇒ A server cannot handle more than one sub-task.

Note that for the parallel offloading scheme, the holding time of a sub-task does not affect

the feasibility of a solution. Given this configuration of the parallel offloading conflict

graph, any independent set3 of size J in Gp will represent a candidate feasible decision for

the parallel offloading scheme. To select the offloading decision that provides minimum

latency and guarantees minimum failure probability, a weight wpij is assigned to each

3An independent set in a graph is a set of vertices such as no edge exists between any pair of vertices in

the set [126].
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vertex in Gp. This weight reflects both the latency and failure probability, being defined as

wpij =
(
duij + dcij + ddij

) (
1− (1− pi)uj (1− qi)dj

)
. (6.43)

For error-free environment, the weight simply becomes

wpij =
(
duij + dcij + ddij

)
. (6.44)

The proposed conflict graph of the sequential offloading scheme Gs is constructed as

follows:

Vertex Set: The vertex set consists of IJ vertices in which each vertex vij represents the

offloading of sub-task τj to server si.

Scheduling Conflict Edges: Any two vertices vij and vkl in Gs are set adjacent by a

scheduling conflict edge if one of the three cases below occurs:

1. j = l⇒ A sub-task or the feedback cannot be handled by more than one server.

2. i = k and | j − l |= 1. ⇒ Two successive sub-tasks cannot be offloaded to the same

server.

3. i = k and l > j + 1 and dcij + d̃hij >

l−1∑
r=j+1

Npur

max
∀ϱ∈S\{i}

{Ruϱ} ,

where d̃hij is an approximation of the holding time of sub-task τl in server si, which

can be expressed as

d̃hij = max
∀σ<j

{
xσj

d̃hiσ +Dciσ −


j−1∑
r=σ+1

Npur

max
∀ϱ∈S\{i}

{Ruϱ}
+
Npuj
Rui




+

}
. (6.45)

⇒ A server cannot handle a new sub-task if it still computes another sub-task.
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Given this configuration of the offloading conflicts, any independent set of size J in Gs will

represent a candidate offloading decision. To select the offloading decision that provides

minimum latency and guarantees minimum failure probability, a weight wsij is assigned

to each vertex in Gs. This weight reflects both the latency and failure probability, being

defined as

wsij =
(
duij + dcij

) (
1− (1− pi)uj

)
. (6.46)

For error-free environment, wsij =
(
duij + dcij

)
. The algorithm in the following sec-

tion is designed to select the independent set that represents the offloading decision which

provides minimum latency and guarantees minimum offloading failure probability.

In case of parallel or sequential offloading scheme, the following substitutions are per-

formed G = Gp and w′ij = wpij ∀vij ∈ Gp or G = Gs and w′ij = wsij ∀vij ∈ Gs, respec-

tively. For a given sub-task τj , the vertex with the minimum weight w′ij ∀i ∈ S represents

the association between τj and the server that provides low latency and offloading failure

error for offloading τj . Since each server has different channel state and computation speed

and the association of an arbitrarily chosen sub-task with the best available server may pre-

vent other highly demanding sub-tasks to be offloaded to the best available server, a given

sub-task τj prioritizes to be associated with the best available server if:

• The sub-task τj is highly demanding (i.e., it consists of large number of packets and it

requires a high number of CPU cycles). To sort the sub-tasks based on their demand,

a raw prioritization weight is assigned to each sub-task such that ∆j = w′ij ∀j ∈ T

and i is fixed. Note that sorting the sub-tasks based on a weight calculated with

respect to any i ∈ S leads to the same prioritized set of sub-tasks. This is because

in each case, all sub-tasks will experience the same communication conditions and
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undergo the same computation capabilities. The sub-task with the highest ∆j ∀j ∈ T

is the most demanding sub-task.

• A high number of sub-tasks depend on the output computed results of τj (i.e., τj has

the largest κj =
∑J

l=1 xjl∆l ∀j ∈ T ).

Using this sub-task prioritization and the definition of the vertices weights, Algorithm

14 executes iteratively a greedy minimum weighted vertex search approach to select J-

vertices independent set Γ, which represents the best offloading decision. The sub-tasks

are sorted in a descending order according to a prioritization weight of ∆j + κj . The index

of the sorted sub-tasks is j′(1), j′(2), j′(3), . . . , j′(J) and the sub-task with j′(1) has the

higher priority to be associated with the best available server. Each iteration is implemented

as follows: the vertex with the minimum weight in the vertices set v∗ij′(l) with l = 1 and

∀ 1 ≤ i ≤ I will be picked and added to Γ. The selected vertex v∗ij′(l) and all the vertices

that are adjacent to it (symbolized in the algorithm byNG
(
v∗ij′(l)

)
) are eliminated from the

graph G. This elimination is performed to guarantee that the next picked vertex in the next

iteration is not in scheduling conflict with the already selected ones in Γ. The algorithm

continues by increasing l by one until l = J .

6.3.3.3 Complexity Analysis

This section introduces the computational complexity of the GA and the conflict-graph

algorithms. The basic operations performed in the GA algorithm are selection operation,

crossover operation, mutation operation, chromosome replacement, and fitness evaluation.

The basic operations performed in the conflict-graph algorithm are generating the vertices

set, building the adjacency edges, and finding the independent set.
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Algorithm 14 Minimum Weighted Vertex Search Algorithm.
1: Input: Gp and wpij ∀vij ∈ Gp OR Gs and wsij ∀vij ∈ Gs. The sub-task dependency matrix x.

2: Initialization:

• G ← Gp OR Gs

• w′
ij ← wpij OR wsij

• Calculate ∆j = w′
1j and κj =

∑J
l=1 xjl∆l ∀j ∈ T

• Sort the sub-tasks in a descending order according to a prioritization weight of ∆j + κj

• The index of the sorted sub-tasks is j′(1), j′(2), j′(3) . . . , j′(J)

• Set the selected independent set Γ = Ø

3: for l = 1 to J do

4: v∗
ij′(l) ← min

i∈S
{wij′(l)}

5: Γ = Γ ∪ v∗
ij′(l)

6: G ← G \
(
v∗
ij′(l) ∪NG(v

∗
ij′(l))

)
7: end for

8: Return Γ.

In the GA algorithm, generating a child chromosome requires the following opera-

tions. The crossover process has a complexity of O (J), the mutation process has also a

complexity of O (J) [127], and chromosome replacement requires O (Ξ) operations. Con-

sequently, generating the offspring chromosomes requires O
(
[J + Ξ]M

)
operations. To

evaluate the fitness of a chromosome, the following operations are required. Calculating

the holding time of each sub-task requires O (J) operations. Consequently, calculating

the total latency requires O
(
J2
)

operations. Calculating the offloading failure probability

requires O (IJ) operations. The time complexity of finding the feasibility indicator ζpk is

O (J). Since J ≤ I , evaluating the fitness of a given chromosome has a time complexity of

O
(
J2 + IJ + J

)
= O (IJ). As the fitness of each chromosome in the initial population

and the offspring is evaluated, the computational complexity of the GA with the parallel

offloading scheme is O
(
IJ [Ξ +M ] + [J + Ξ]M

)
= O

(
IJ [Ξ +M ] + ΞM

)
.
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The vertex set size of the conflict-graph is O(IJ). To build the adjacency edges of the

conflict-graph for the parallel offloading, all the vertices representing a given sub-task are

connected to each other and all the vertices representing a given server are connected to

each other. This means that a total of O(IJ + IJ) = O(IJ) operations are needed to

build the adjacency edges. On the other hand, the complexity of the minimum weighted

vertex search algorithm can be computed as follows. Computing the weights of the vertices

requires O(IJ) operations. Sorting the sub-tasks has a time complexity of O(J log J).

The time complexity of selecting the minimum weighted vertex for each sub-task is O(I).

Consequently, the complexity of the minimum weighted vertex search algorithm isO(IJ+

J log J + IJ) = O(IJ) and the computational complexity of the conflict-graph algorithm

isO(IJ+ IJ) = O(IJ). It is worth mentioning that representing the offloading decisions

as vectors of integers reduces the search space toO
(
IJ
)
. Consequently, the computational

complexity of finding the optimal solution using the exhaustive search is O
(
IJIJ

)
=

O
(
JIJ+1

)
.

Similar to the parallel offloading case, calculating the total latency and offloading

failure probability for the sequential offloading scheme require O(J2) and O(IJ) opera-

tions, respectively. The time complexity of finding the feasibility indicator ζsk is O
(
IJ2
)
.

Consequently, evaluating the fitness of a given chromosome has a time complexity of

O
(
J2 + IJ + IJ2

)
= O

(
IJ2
)

and the computational complexity of the GA with the

parallel offloading scheme is O
(
IJ2 [Ξ +M ] + [J + Ξ]M

)
= O

(
IJ2 [Ξ +M ] + ΞM

)
.

The vertex set size of the conflict-graph is O(IJ). To build the adjacency edges of

the conflict-graph for sequential offloading, all the vertices representing a given sub-task

are connected to each other, which requires a total of O(IJ) operations. For all ver-

tices representing a server the following steps are performed: (1) Connect any two ver-
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tices representing two successive sub-tasks, which requires O(J) operations; (2) Calcu-

late d̃hij for each two vertices, which requires O(IJ) operations. This means that a

total of O(IJ + [J + IJ ]I) = O(I2J) operations are needed to build the adjacency

edges. Consequently, the computational complexity of the conflict-graph algorithm is

O(I2J + IJ) = O(I2J). It is worth mentioning that the computational complexity of

finding the optimal solution using the exhaustive search is O
(
IJ2IJ

)
= O

(
J2IJ+1

)
.

Table 6.1 summarizes the time complexity of the algorithms. To introduce a quantitative

measure of the complexity of the algorithms, Table 6.1 shows the average execution time

of each algorithm on a personal computer equipped with an Intel(R) Core(TM) i5-4570

CPU, working at a clock frequency of 3.2 GHz, and 8 GB of RAM. The algorithms have

been implemented in MATLAB. The system model consists of I = 10 servers, J = 10

sub-tasks, Ξ = 10IJ chromosomes [132], and N = 1000 chromosomes, and M = 105

chromosomes. It is clear that the conflict graph solution is more complexity-efficient than

that of the GA algorithm for both parallel and sequential offloading schemes.

Table 6.1: Time complexity of the MEC scheduling algorithms.

Algorithm Complexity Av. Execution Time

GA-parallel offloading O
(
IJ [Ξ +M ] + ΞM

)
4.4 ms

Graph-parallel offloading O(IJ) 1.3 ms

GA-sequential offloading O
(
IJ2 [Ξ +M ] + ΞM

)
6.5 ms

Graph-sequential offloading O(I2J) 1.8 ms
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6.3.4 Simulation Results

This section presents simulation results to evaluate the performance of the proposed algo-

rithms and studies the effect of the main parameters on the latency and offloading failure

probability. In obtaining these results, the servers are uniformly distributed with distances

from the mobile device as 200 m ∼ 400 m. The channel gain is hi = δ−εi , where δi is the

distance between the mobile device and the i-th server and ε = 4 is the path loss expo-

nent [112]. The channel bandwidth is 1 MHz and the spectral density of the additive noise

is N0 = −173 dBm/Hz. The transmit power of the mobile device and the servers is 100

mW [119]. For the parallel offloading scheme, orthogonal sub-channels are established

each with 1 MHz bandwidth. The remaining parameters are as follows. The computation

speed of the MEC server is generated randomly from a uniform distribution ranging from

2 × 109 to 8 × 109 cycles per second [97], the packet size is Np = 20 bytes [128], task

input and output data are U = 1000 packets [98, 129] and D = 200 packets [119], respec-

tively, and the computational complexity of a sub-task αj in cycles per bit follows a Gamma

distribution with shape and scale parameter of 4 and 200, respectively [130,131]. To repre-

sent the dependency among the sub-tasks, a given sub-task depends on any of the previous

sub-tasks with probability π. The initial population size is 10IJ chromosomes [132], and

N and M equal 103 and 105, respectively. The default simulation parameters, which are

summarized in Table 6.2, are considered in the results, unless otherwise stated.

Figure 6.4 illustrates the performance of the GA, conflict graph, and optimum solution

(obtained using exhaustive search) versus the task data size U . It is seen that the proposed

algorithms achieve near-optimum performance, and the latency-reliability cost function of

the sequential offloading is less than that of the parallel offloading scheme.
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Table 6.2: Simulation parameters of the MEC scheduling framework.

Parameter Value Parameter Value

Channel bandwidth 1 MHz Noise spectral density N0 −173 dBm/Hz

Server transmit power 100 mW Mobile device transmit power 100 mW

Packet size 20 bytes Computing speed of the servers [2; 8]× 109 cycles/s

Total task input data size U 1000 packets Total task output data size D 200 packets

Computational complexity parameter αj ∼ Gamma (4, 200) cycles/bit Sub-tasks dependency probability π 0.3

Initial population size Ξ 10IJ chromosomes N 103 chromosomes

M 105 chromosomes U 1000 packets
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Figure 6.4: Latency-reliability cost function versus the task data size U .

To gain deep insight into this result, Figs. 6.5 and 6.6 show the corresponding latency

and offloading failure probability, respectively. It is clear that the parallel offloading pro-

vides less latency; however, sequential offloading provides less offloading failure probabil-

ity. For parallel offloading, all servers contribute to offloading simultaneously, which leads

to less latency; however, not all of them have good channel quality, which yields higher

failure probability. On the other hand, in sequential offloading, the scheduler explores the
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best available servers and less servers are contributing.
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Figure 6.5: Latency versus the task data size U .
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Figure 6.6: Offloading failure probability versus the task data size U .

In Fig. 6.7, all servers are located at the same distance from the mobile device (i.e.,

δi = δ ∀si ∈ S). Such scenario is suitable for the case where servers are located in close
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proximity to each other or they are placed at the arc of a circle whose center is the mobile

device. It is noticed that as the distance between the servers and the mobile device increases

(i.e., the SNR decreases), the latency increases in both parallel and sequential offloading

schemes. However, for the sequential offloading, the latency grows more rapidly. This can

be attributed to the fact that reducing the SNR will increase the uplink transmission delay,

and consequently, the waiting time of the sub-tasks4 also increases. It is also noticed that as

the distance between the servers and the mobile device increases (i.e., uplink transmission

delay increases), the number of contributed servers in sequential offloading decreases. This

is because during the long time duration of uplink transmission of a sub-task, more servers

will complete the computation of their sub-task and get ready to contribute. Such avail-

ability of servers gives the scheduler the ability to offload more sub-tasks to less number of

servers (because it selects the best available servers).
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Figure 6.7: Latency versus distance with I = 10 servers and J = 10 sub-tasks.

4The waiting time of a sub-task is an accumulation of the uplink delay of all previous sub-tasks, i.e.,

Wj (µ) =
∑j−1

l=1 Dul (µ).
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6.4 Concluding Remarks

This chapter introduced a sequential task offloading scheme that guarantees collision-

free offloading to multiple MEC servers. The problem was formulated as a weighted-

sum multi-objective optimization problem of latency and offloading failure probability,

which enables to develop an exact technique that guarantees the optimal solution. A more

computationally-efficient heuristic algorithm was developed for online implementation.

Simulation results illustrated that the proposed offloading scheme can effectively reduce

both latency and offloading failure probability.

Task scheduling for parallel and sequential offloading of an inter-dependent set of tasks

has been consider as well. The problem has been formulated as the joint optimization of

latency and offloading failure probability. Heuristic solutions based on genetic algorithm

and conflict graph models were developed. Simulation results revealed that the proposed

solutions provide performance close to the optimal one, with reduced complexity. Also,

findings showed that sequential offloading provides less offloading failure probability and

requires a lower number of servers. On the other hand, parallel offloading provides less

latency. However, as the dependency among sub-tasks increases, the latency response gap

between sequential and parallel schemes decreases.
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Chapter 7

Conclusions and Potential Directions of

Future Work

This chapter summarizes the work carried out towards the PhD thesis and discusses poten-

tial future directions of investigation.

7.1 Summary

In this thesis work, energy-efficient and age-optimum frameworks have been designed for

data aggregation and dissemination. Moreover, reliable and low-latency offloading frame-

works for sequential and parallel MEC were developed. Both terrestrial and underwater

environments were investigated. In the conventional sensor networks, a small number of

devices are deployed to collect and upload the data to the reference devices. However,

with the exponential growth in both number and computing capability of devices, more ef-

ficient frameworks could be exploited for data aggregation, dissemination, and processing.
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This motivated me to design a device-role assignment framework, which optimizes the role

of each device in the network and enables in-network data processing. More sophisticated

scenarios with mobile data aggregator/disseminator scenarios were explored as well. UAVs

and AUVs have been considered as mobile data aggregator(s)/disseminator(s) for terrestrial

and underwater scenarios, respectively. Different metrics were studied including the overall

energy consumption in the data aggregation/ dissemination systems, AoI in the data aggre-

gation systems, and a weighted sum of the latency and offloading error in the MEC systems.

A novel metric referred to as the correlation-aware AoI was also proposed to captures both

the freshness and diversity in the aggregated data. Computationally efficient solution ap-

proaches were developed to find solutions for the proposed frameworks, including GAs,

ACO, DRL, and conflict graphs approaches. To show the effectiveness of the developed

solution approaches, their performance was compared to baseline approaches. Extensive

simulations illustrated that the proposed solution approaches provide performance close

to the optimal solutions, which are obtained through exhaustive search or computationally

intensive methods.

7.2 Potential Directions of Future Investigation

The work presented in this thesis opens the door for future investigations, such as:

• Optimizing mobile crowd sensing using machine learning (ML)-assisted solutions:

Mobile crowd sensing is a promising paradigm to enable massive sensing of the en-

vironment. It allows aggregation of a large amount of information by the devices

regarding local information, traffic conditions, and device data demands. Consider-

ing transmission energy and delay, incentives can be rewarded to devices in return
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of their support to improve the network’s performance. Therefore, devices have to

decide either to participate in the crowd sensing or not. On the other hand, network

management servers have to decide incentives for the participating devices based on

their partaking. The incentives of each participating device should be proportional to

the benefits of its contributions (including its data novelty and/or importance). The

intractability of such a problem could be tackled by developing ML-assisted solu-

tions.

• ML-assisted models for data integrity in IoT networks: The number of devices in

IoT networks increases exponentially and each device needs to be authenticated to

avoid threats and to secure the device’s profile that includes confidential and private

information. This rises the challenge of how data caching, transmission, scheduling,

and processing can be implemented without compromising the integrity. Moreover,

the device’s communication setup with the network requires important information

including the position of the device, social and proximity relationships, and data

viewing patterns. In case of lacking integrity features, the device may experience

critical problems. Furthermore, storage space should be optimized using efficient

method to store rarely accessed data files, or even deliberately delete such data for

reclaiming. As a result, effective protection of the correctness of outsourced data is

crucial and it is important to find efficient and periodic integrity verifications without

a local copy of data files over a prolonged period of time. ML-assisted models could

be developed to guarantee the integrity of the data in the IoT networks.

• Caching in aerial networks: Data caching represents a data storage approach such

that future requests can be served faster; this data could be the result of an earlier
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computation task or a copy of data stored in another place. Despite the high band-

width of millimeter wave (mmWave), devices’ mobility and high path loss restricts

the potentials of mmWave networks. The mmWave signals are heavily attenuated by

concrete buildings and road infrastructures. UAV-mounted storage servers with in-

telligent reflecting surface (IRS) capabilities represent a potential solution to provide

flexible and high speed data cashing. Moreover, duplication of content placement at

various cache resources is necessary to reduce the probability of cache hit misses.

Since content placement is based on the prediction of data popularity, it is important

to design accurate prediction models using various information such as data request,

user mobility, and device’s social information. Different optimization approaches

could be designed to optimize the UAV trajectory, phase shifts of the IRS’s elements,

and the spatial reuse and dynamics control of mmWave communications.
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[47] J. T. Gómez, M. Morales-Céspedes, A. G. Armada, and G. Hirtz, “Minimizing age

of information on NOMA communication schemes for vehicular communication ap-

plications,” in Proc. International Symposium on Communication Systems, Networks

and Digital Signal Processing, pp. 1–6, Porto, Portugal, 2020.

[48] R. Wang, A. Yadav, E. A. Makled, O. A. Dobre, R. Zhao, and P. K. Varshney, “Op-

timal power allocation for full-duplex underwater relay networks with energy har-

vesting: A reinforcement learning approach,” IEEE Wireless Commun. Lett., vol. 9,

pp. 223–227, Feb. 2020.

152



[49] Y. Sun, J. Cheng, G. Zhang, and H. Xu, “Mapless motion planning system for an au-

tonomous underwater vehicle using policy gradient-based deep reinforcement learn-

ing,” J. Intell. Robot. Syst., vol. 96, pp. 591–601, Dec. 2019.

[50] L. Paull, M. Seto, and J. J. Leonard, “Decentralized cooperative trajectory estimation

for autonomous underwater vehicles,” in Proc. IEEE/RSJ International Conference

on Intelligent Robots and Systems, pp. 184–191, Chicago, IL, USA, 2014.

[51] F. Campagnaro, F. Favaro, F. Guerra, V. S. Calzado, M. Zorzi, and P. Casari, “Simu-

lation of multimodal optical and acoustic communications in underwater networks,”

in Proc. IEEE/MTS OCEANS, pp. 1–7, 2015.

[52] M. Jacobi and D. Karimanzira, “Underwater pipeline and cable inspection using

autonomous underwater vehicles,” in Proc. IEEE/MTS OCEANS, pp. 1–6, 2013.

[53] P. Gjanci, C. Petrioli, S. Basagni, C. A. Phillips, L. Bölöni, and D. Turgut, “Path
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