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Abstract 

The genetic relationship, if one exists, between magnetite-(apatite) (MtAp) and iron oxide-

copper-gold (IOCG) deposits has been debated for many years, and to this day, few 

representative places have been found where both types of mineralization occur. The Jurassic age 

Montecristo district in northern Chile is one of a few places in the world where both MtAp and 

IOCG mineralization occur with vertical and crosscutting relationships. Consequently, this is one 

of the best sites to better understand the possible relationship between these two types of 

mineralization and their formation, and is the main objective of this thesis project. For this 

project, the samples studied were selected from: (1) a MtAp vein (the San Juan vein), comprising 

magnetite, and pegmatite-like fluorapatite, and actinolite; (2) a vein with MtAp mineralization in 

the deeper parts of the system, and an overprinting IOCG assemblage of chalcopyrite, pyrite, 

magnetite, actinolite, quartz, gold, and molybdenite, in the shallower parts of the system (the 

Abundancia vein); and (3) the host rock that contains both types of mineralization. 

The results of this study reveal that the host diorite, the MtAp mineralization in the 

Abundancia and San Juan veins, and the IOCG mineralization, are all coeval within error, and 

that their genetic relationship cannot be discriminated by geochronology alone. However, 

intermediate εNdi values of the IOCG event suggest a mixing of Nd from the MtAp rocks and a 

deep magmatic-hydrothermal source. Hf, Sr–Nd, and sulfur isotopes support a model in which 

the IOCG mineralization was derived from magmatic-hydrothermal fluids. We propose that an 

ascending, immiscible iron-rich melt utilized structures of the Atacama fault system as pathways 

for the deposition of the MtAp mineralization, followed by precipitation of the IOCG sulfide-

magnetite-actinolite-quartz-gold assemblage from magmatic-hydrothermal fluids that used the 

earlier MtAp rocks as a trap. 
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General Summary 

The iron oxide-copper-gold (IOCG) mineral deposits clan includes magnetite-(apatite) 

(MtAp) deposits (an iron-rich mineral deposit that also contains variable amounts of rare earth 

elements), and IOCG deposits (that are commonly mined for copper and gold, but can also 

contain variable amounts of cobalt, molybdenum, rare earth elements, or uranium, among others). 

Although formation of the MtAp deposits is a controversial topic, the possible existence of a 

genetic relationship between both types has been discussed for many years. The Montecristo 

district in northern Chile is among the best locations in the world to study this relationship 

because it is one of the few places where both types of mineralization occur in the same location. 

This district hosts MtAp and IOCG deposits with mutual vertical and crosscutting relationships. 

In this study we conclude, based on data from radiogenic isotopes, geochronology, mineral 

chemistry, and stable isotopes, that these two types of deposits at this location are not genetically 

related. We interpret the MtAp mineralization as having formed by an iron-rich melt that 

crystallized along the structures of the Atacama fault system, followed by crystallization from 

magmatic-hydrothermal fluids containing copper, gold, and molybdenum. The IOCG 

mineralization shows mixed εNdi values, both from the MtAp rocks and a deep magmatic-

hydrothermal source, probably an intrusion compositionally similar to the host diorite. 
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Chapter 1 

1.1. Introduction and Overview 
 

The genetic relationship between iron oxide-copper-gold (IOCG) and magnetite-(apatite) 

(MtAp) deposits has been discussed and vigorously debated for several years. Due to their shared 

characteristics, such as the presence of iron oxides and the associated alkali-calcic-iron alteration 

zones, it has been suggested that these two deposit types are part of the same group (Williams et 

al., 2005), or are endmembers of a continuous spectrum of mineralization (Hitzman et al., 1992; 

Vivallo and Henríquez, 1997; Hitzman, 2000; Gandhi, 2003; Sillitoe, 2003; Knipping et al., 

2015a, b; Corriveau et al., 2016; Simon et al., 2018).  

The IOCG deposits sensu stricto contain Cu and Au minerals and low-Ti iron oxides 

(magnetite/hematite, or both), and have been attributed to two different hydrothermal processes: 

(a) a magmatic-hydrothermal origin associated with fluids derived from crystallizing intrusions 

(Vila et al., 1996; Vivallo and Henríquez, 1997, 1998; Pollard, 2000; Haynes 2000; Marschik and 

Fontboté, 2001; Trista and Kojima, 2003; Sillitoe, 2003; Williams et al., 2005; Pollard, 2006; 

Groves et al., 2010; Barton et al., 2011; Richards and Mumin, 2013; Tornos et al., 2010); and (b) 

a brine derived from the interaction of connate fluids with evaporitic deposits or fluids derived 

from them along with a heat source (magmatic or metamorphic) to provide the elevated 

temperatures to leach the metals (Hitzman, 2000; Barton and Johnson, 1996, 2000).  

Alternatively, MtAp deposits are low-Ti magnetite deposits with variable amounts of 

apatite (commonly fluorapatite), actinolite/clinopyroxene, scapolite, and anhydrite (Nyström and 

Henríquez, 1994; Naslund et al., 2002; Valley et al., 2010; Day et al., 2016; Tornos et al., 2017; 

Liu et al., 2018; Heidarian et al., 2018). Some deposits contain anomalously high concentrations 

of rare earth elements (REE) and U (Hitzman, 2000; Naslund et al., 2000). They are also called 
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iron oxide-apatite (IOA), or Kiruna-type deposits (Geijer, 1931), which received its name from 

the type locality, the massive Kiirunavaara deposit in the Norrbotten region of northern Sweden. 

The origin of MtAp deposits has been controversial for decades, involving different proposed 

origins for this type of deposit: (a) a sedimentary-exhalative model involving deposition on the 

paleo seafloor (Parák, 1975); (b) direct crystallization from an immiscible Fe-rich melt 

(Henríquez and Martin, 1978; Frietsch, 1978; Philpotts, 1981, 1982; Nyström and Henríquez, 

1994; Naslund et al., 2002; Lledó and Jenkins, 2008; Velasco et al., 2016; Nyström et al., 2016; 

Hou et al., 2018; Lledó et al., 2020), which follows with the exsolution of hydrothermal fluids 

(Tornos et al., 2016, 2017); (c) a hydrothermal model that involves the complete replacement of 

pre-existing rocks by dissolution of the contained minerals and precipitation of magnetite ± 

apatite from hydrothermal fluids of magmatic origin (Hildebrand, 1986; Ménard, 1995; Rhodes et 

al., 1999; Sillitoe and Burrows, 2002; Gandhi, 2003; Corriveau et al., 2016); (d) fluids of non-

magmatic origin (e.g., basinal brines; non-magmatic fluids equilibrated with evaporites) 

(Hitzman, 2000; Barton and Johnson, 1996, 2000; Rhodes and Oreskes, 1999); (e) crystallization 

of magnetite microlites from a silicate melt, followed by buoyant segregation and flotation of 

these early formed magmatic magnetite-bubble pairs then deposition of massive magnetite in 

regional-scale transcurrent faults, and eventual growth of hydrothermal magnetite during cooling 

(Knipping et al., 2015a, b; 2019); and (f) crystallization from an Fe-rich magma containing 

sulfate, the latter derived from the melting of marine sediments by andesite intrusion (Bain et al., 

2020, 2021). 

Despite the disagreements regarding the formation of MtAp deposits, the genetic 

relationship, if one exists, between MtAp and IOCG deposits remains unclear. To the author’s 

knowledge, there are very few areas where both MtAp and IOCG mineralization occur in the 

same place. The Montecristo district in northern Chile hosts a vein-like mineralization with 
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IOCG deposits that transitions to MtAp mineralization at depth, showing vertical and 

crosscutting relationships between them. The district is located in the Chilean iron belt (CIB) 

(Espinoza, 1990), which hosts most of the MtAp and IOCG deposits in northern Chile (Vivallo et 

al., 2000; Maksaev et al., 2007). The district contains diorites of the Matancilla intrusive complex 

(MIC) (Middle Jurassic-Late Jurassic; ca. 168-154 Ma; Alvarez et al., 2016), which were 

produced through subduction-related volcanism and plutonism that formed the La Negra 

magmatic arc during the Early Jurassic to the Early Cretaceous. Deposits in the district are 

spatially controlled by secondary faults of the Atacama fault system (AFS) (Brown et al., 1993).  

For this research project, two veins from the Montecristo district were selected: (1) the San 

Juan MtAp vein that contains magnetite, coarse-grained fluorapatite, and actinolite with 

pegmatitic textures; and (2) the Abundancia vein, which consists of MtAp mineralization at depth 

and IOCG mineralization in the shallower parts of the system. In order to understand the 

relationship between these two types of mineralization, isotopic, mineralogical, petrographic, 

geochemical, and geochronological analyses were done on the MtAp mineralization in the San 

Juan and Abundancia veins, and on the IOCG mineralization in the Abundancia vein.  

 

1.2. Research Problem Statement 
 
This study was undertaken to provide a better understanding of the relationship, if in fact 

one exists, between IOCG and MtAp deposits, with a focus on the Jurassic Montecristo district in 

northern Chile.  

In the Coastal Cordillera of Chile several IOCG and MtAp deposits have been proposed to 

have temporal and spatial relationships (e.g., Naguayán district, Boric et al., 1990; Mantoverde 

deposit in the Los Pozos district, Vila et al., 1996; Dominga district, Arredondo et al., 2017), and 

elsewhere with different geological settings and formational ages (e.g., Norrbotten district in 
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Sweden, Martinsson et al., 2016; Missouri iron province in USA, Day et al., 2016; Great Bear 

Magmatic Zone in Canada, Ootes et al., 2017). Furthermore, several authors have proposed a 

continuum between both types of mineralization, involving the evolution from a deep magnetite-

rich system towards a Cu-Au-rich mineralization higher in the system (Hitzman et al., 1992; 

Sillitoe, 2003; Knipping et al., 2015a, b; Corriveau et al., 2016; Apukhtina et al, 2017; Simon et 

al., 2018; Verdugo-Ihl 2020). However, there is no clear evidence of a genetic relationship since 

this connection has been merely inferred. In a recent study by Rodriguez-Mustafa (2020), a 

continuum between both types of deposits was proposed, although the deposits are ~100 km apart 

with no direct geologic relationship. A set of geological, geochronological, mineralogical, and 

geochemical analyses done on each type of mineralization located spatially close to each other 

would help to better evaluate this possible link.  

The Montecristo district in northern Chile is one of the best places to study the relationship 

between MtAp and IOCG mineralization, due to the occurrence of both mineralization types in 

close proximity and with crosscutting relationships. Findings of this study will be useful for 

future exploration programs in Chile and elsewhere in the world, as these will help address 

geological issues present within such deposit types and hopefully lead to the discovery of new 

deposits elsewhere.   

 

1.3. Objectives of the research 
 
This research project was undertaken in order to achieve the following two objectives: 

(1) to determine if a genetic relationship exists between the IOCG and MtAp 

mineralization;  

(2) to constrain the origin and formation of the IOCG and MtAp mineralization in the 

Montecristo district, and their relationship with the host rocks.  
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To address these research objectives, several types of analyses were done that include: (a) 

chemical analyses of fluorapatite, magnetite, and actinolite from the IOCG and MtAp 

mineralization in the Abundancia and San Juan veins;( b) Rb–Sr and Sm–Nd whole-rock 

radiogenic tracer isotopes targeted on the IOCG mineralization, in order to compare these with 

previously published values for the MtAp mineralization and the host rocks; (c) 40Ar–39Ar 

geochronology of actinolite from the MtAp mineralization in the Abundancia and San Juan veins 

to date the MtAp event; (d) Re–Os geochronology of molybdenite to date the IOCG event; (e) U–

Pb geochronology of zircon from the host rock in order to constrain its timing of emplacement; 

(f) Hf tracer isotopes on zircon from the host rock to better understand its origin; and (g) sulfur 

stable isotopes on sulfide minerals from the IOCG event to characterize the source of the fluids. 

 

1.4. Project Overview 
 
The findings of this research (Chapter 2) are presented as a manuscript that has been 

submitted to the journal Mineralium Deposita, followed by Chapter 3 that includes a summary of 

the conclusions of this research project. 
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2.1. Abstract 

The Montecristo district, in the Atacama Desert region of northern Chile, is one of the few 

places worldwide where an obvious spatial relationship exists between magnetite-(apatite) 

(MtAp) mineralization and iron oxide-copper-gold (IOCG) mineralization. However, few 

geological studies have been done in this district. New field, geochronological, geochemical, and 

mineralogical data reported in this study provide insights about these types of mineralization and 

their mutual relationship. The deep MtAp mineralization at Montecristo comprises magnetite, 

fluorapatite, and actinolite with pegmatite-like textures that are cut and partially replaced by 

younger IOCG mineralization that includes a second generation of actinolite and magnetite 

together with chalcopyrite, pyrite, and molybdenite; this paragenetically later event is 

characterized by quartz inclusions in the magnetite and higher amounts of Cu. The MtAp stage is 

interpreted to be the product of immiscible iron-rich melts that used pre-existing structures of the 

Atacama fault system as conduits in which the magnetite-fluorapatite-actinolite mineralization 

crystallized, and the MtAp ore later acted as a trap for the magmatic-hydrothermal fluids that 

equilibrated with diorite and produced the IOCG mineralization. Geochronological data for 

Montecristo indicate that emplacement of the host diorite (U–Pb zircon 153.3 ± 1.8 Ma, 2-sigma) 

and formation of MtAp mineralization in the Abundancia vein (40Ar–39Ar on actinolite, 154 ± 2 

Ma, 2-sigma), and in the San Juan vein (40Ar–39Ar on actinolite, 153 ± 4 Ma, 2-sigma), and 

formation of the IOCG event (Re–Os on molybdenite, 151.8 ± 0.6 Ma, 2-sigma), are coeval 

within error and occurred within a time span of less than 8.0 m.y. The εHfi and εNdi values of the 

host diorite are +5.03 to +6.71 and +2.3 to +3.4, respectively. Whole-rock 87Sr/86Sri values of the 

IOCG mineralization (0.70425-0.70442) are similar to those of the MtAp mineralization (0.70426 

and 0.70629; previous studies), whereas εNdi values of the IOCG mineralization (+5.4 and +5.7) 

fall between those of the MtAp mineralization (+6.6 to +7.2) and the host diorite, suggesting that 
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the IOCG event was produced by the circulation of hydrothermal fluids having a more crustal Nd 

composition (εNdi<+5.7) than the MtAp mineralization. This result likely reflects the mixing of 

Nd from the MtAp protolith and a deep magmatic-hydrothermal source, very likely an unexposed 

intrusion compositionally equivalent to the host diorite. Sulfur isotope compositions (d34S = +0.3 

to +3.4‰) are consistent with the IOCG mineralization being derived from a magmatic source. 

Although a spatial and temporal relationship between both mineralization types clearly exists, our 

data indicate that these formed from distinct, separate systems. The model presented herein 

provides a new framework for exploration purposes in targeting MtAp and IOCG deposits 

elsewhere.  

 

Keywords: MtAp deposits, IOCG deposits, mineral chemistry, isotope geochemistry, 

geochronology, Montecristo district 

 

2.2. Introduction 

Iron oxide-copper-gold (IOCG) and magnetite-(apatite) (MtAp) mineralization are included 

in a controversial group of ore deposits that share some common characteristics, such as 

abundance of iron oxide minerals and associated calcic-iron-alkali alteration zones. The largest 

discovered deposit is the world-class Olympic Dam orebody, which is thought to be 

representative of the IOCG-MtAp system as a whole (Hitzman et al., 1992). IOCG sensu stricto 

mineralization consists of magnetite and/or hematite and chalcopyrite, with subordinate pyrite, 

pyrrhotite, and bornite, typically accompanied by actinolite and alkali feldspar. Ages of IOCG 

deposits range from the Late Archean (Carajás district in Brazil) to the Mesozoic (Chilean and 

Peruvian belts) (Hitzman et al., 1992; Williams et al., 2005); most deposits are replacive showing 

a space-time association with igneous rocks, from intrusions to volcanic rocks (Williams et al., 
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2005). The IOCG sensu stricto mineralization is hydrothermal and has been explained by two 

contrasting models: (1) a magmatic-hydrothermal origin related to the exsolution of fluids 

derived from crystallizing intrusions (Vila et al., 1996; Vivallo and Henríquez 1997, 1998; 

Pollard, 2000; Haynes, 2000; Marschik and Fontboté 2001; Trista and Kojima 2003; Sillitoe, 

2003; Williams et al., 2005; Pollard, 2006; Groves et al., 2010; Barton et al., 2011; Richards and 

Mumin 2013; Tornos et al., 2010); or (2) a brine derived from the interaction of connate fluids 

with evaporite deposits or fluids derived from them (Hitzman, 2000; Barton and Johnson 1996, 

2000; Kirkham, 2001).  

MtAp mineralization, sometimes referred to as Kiruna-type (Geijer, 1931), or iron oxide 

apatite (IOA), consist of massive, low-Ti magnetite ores with variable amounts of apatite 

(commonly fluorapatite), actinolite, or clinopyroxene (i.e., diopside), scapolite, and anhydrite 

(Nyström and Henríquez, 1994; Naslund et al., 2002; Valley et al., 2010; Day et al., 2016; Tornos 

et al., 2017; Liu et al., 2018; Heidarian et al., 2018); many contain anomalously high 

concentrations of REEs and U within the apatite (Hitzman, 2000; Naslund et al., 2000). The 

diagnostic feature is the presence of coarse-grained apatite and actinolite, which together locally 

show pegmatitic textures (Tornos et al., 2021). MtAp deposits are known to occur from the Early 

Proterozoic (e.g., Kiruna, Sweden; Geijer, 1931) to the Pliocene (El Laco, Chile; Park, 1961). 

These deposits are principally associated with calc-alkaline to alkaline volcanic or plutonic rocks 

(Naslund et al., 2000), and commonly have pervasive metasomatic alteration zones developed in 

the host rocks, characterized by calcic-iron-alkali zones (Hitzman, 2000) that may grade upward 

into hydrolytic altered zones (Hitzman et al., 1992).  

Different hypotheses have been proposed for the origin of MtAp deposits including: (1) 

crystallization from an immiscible Fe-rich melt (Henríquez and Martin, 1978; Frietsch, 1978; 

Philpotts, 1981, 1982; Nyström and Henríquez, 1994; Naslund et al., 2002; Lledó and Jenkins, 
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2008; Velasco et al., 2016; Nyström et al., 2016; Hou et al., 2018; Lledó et al., 2020), coeval with 

the exsolution of large amounts of hydrothermal fluids equilibrated with these melts (Tornos et 

al., 2016, 2017); (2) hydrothermal fluids of magmatic derivation that completely replaced pre-

existing rocks by massive magnetite (Hildebrand, 1986; Ménard, 1995; Rhodes et al., 1999; 

Sillitoe and Burrows, 2002; Gandhi, 2003; Corriveau et al., 2016); (3) replacement of pre-

existing rocks by fluids of non-magmatic origin such as basinal brines, or by non-magmatic 

fluids that had equilibrated with evaporites (Hitzman, 2000; Barton and Johnson, 1996, 2000; 

Rhodes and Oreskes, 1999); (4) crystallization of magnetite microlites from a silicate melt 

followed by buoyant segregation and flotation of magmatic magnetite-bubble pairs, deposition of 

massive magnetite along faults, and posterior growth of hydrothermal magnetite (Knipping et al., 

2015a, b; Ovalle et al., 2018; Salazar et al., 2019; Knipping et al., 2019); and (5) crystallization 

from a sulfate- and iron-rich magma, reflecting the product of melting and assimilation of 

shallow marine sediments by intruding andesite (Bain et al., 2020, 2021). 

The relationship between both styles of mineralization is a controversial topic. Despite a 

wide range of interpretations, shared characteristics have led several authors to propose that these 

deposits are part of the same clan (Williams et al., 2005), or that they represent end members on a 

continuous spectrum of mineralization (Hitzman et al., 1992; Vivallo and Henríquez 1997; 

Hitzman, 2000; Gandhi, 2003; Sillitoe, 2003; Knipping et al., 2015a, b; Corriveau et al., 2016; 

Simon et al., 2018), evolving from a deep magnetite-rich system towards a more Cu-Au-rich 

shallow one. Several arguments have been discussed to support the incorporation of MtAp 

deposits as end members of the IOCG group (Hitzman et al., 1992), including a similar mineral 

association (i.e., iron oxides), hydrothermal alteration zones dominated by actinolite or 

clinopyroxene, and alkali feldspars, and their mutual spatial and temporal relationships.  
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This relationship is reinforced by the local occurrence of sparse, hydrothermal, late-stage 

Cu-Fe sulfides and gold overprinting some MtAp deposits or in the vicinity (e.g., Marcona in 

Peru, Chen et al., 2010a; Cerro Negro Norte in Chile, Vivallo et al., 1995, Salazar et al., 2019), or 

by the presence of mineralization ascribed to the IOCG group occurring near clusters of MtAp 

deposits (Norrbotten district in Sweden, Martinsson et al., 2016, Bauer et al., 2021; Missouri iron 

province in USA, Day et al., 2016; Great Bear Magmatic Zone in Canada, Ootes et al., 2017). 

The characteristics of both styles of mineralization, however, are by some authors confused 

and intermixed despite the work of Groves et al. (2010) who emphasized that these are two 

separate types of mineralization. On a global scale, MtAp systems are much more abundant than 

IOCG systems and both only locally coexist, such as in the Carajás district in Brazil (Xavier et 

al., 2012; Schutesky and de Oliveira, 2020), at the Olympic Dam deposit in Australia (Ehrig et 

al., 2012; Apukhtina et al., 2017), and the Coastal Cordillera of the Andes (Espinoza, 1990; 

Sillitoe, 2003). The detailed structural studies of Bauer et al. (2018, 2021) in the Norrbotten 

region suggest that in many cases IOCG mineralization can be significantly younger and 

unrelated to the MtAp mineralization, and that the massive magnetite produced by the MtAp 

event acts as a trap for the later Cu-Au-rich event. 

In the Coastal Cordillera, MtAp systems are dominantly vein-like with a few extrusive tops 

despite that locally hydrothermal replacive mineralization occurs where the subvertical veins, up 

to several tens of meters thick, cut rocks that are favorable for fluid-rock interactions (Espinoza, 

1990; Henríquez et al., 1994; Travisany et al., 1995; Tornos et al., 2021). Most well-known 

IOCG deposits formed by replacement within favorable rocks such as andesite or carbonates 

(Mina Justa, Peru, Chen et al., 2010b; Punta del Cobre district, Chile, Marschik and Fontbote, 

2001, Arevalo et al., 2006; Dominga, Chile, Arredondo et al., 2017). However, some smaller 

deposits occur within discordant veins in the basement or in the plutonic rocks that underlie the 
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Jurassic-Cretaceous mafic volcanic rocks (Boric et al., 1990; Sillitoe, 2003), and these are the 

few veins where the relationship between unambiguous MtAp and IOCG mineralization can be 

demonstrated. For these plutonic-hosted veins, Espinoza (1990) and Sillitoe (2003) proposed a 

vertical evolution from deep MtAp to shallower IOCG mineralization. This vertical zonation 

model has been expanded by Simon et al. (2018) to the giant IOCG deposits of Mantoverde and 

Punta del Cobre in Chile. At Mantoverde, the hematite-rich mineralization caps magnetite ore 

with no evidence of apatite (A. Sanguinetti, pers. commun., 2018) and in the similar and nearby 

mineralization at Carmen de Cobre; at the latter deposit, U–Pb dating of hematite suggests that 

the IOCG mineralization is ca. 10 m.y. younger than the MtAp of the nearby Carmen de Fierro 

deposit (Gelcich et al., 2005; Verdugo-Ihl et al., in press.). At the stratabound and discordant, 

magnetite-rich deposits in the Punta del Cobre district, there are no rocks with the pegmatitic 

magnetite-apatite-actinolite textures that can be assigned to a MtAp system (see Arevalo et al., 

2006; Marschik et al., 2001; Del Real et al., 2018; J. Carriedo, pers. commun., 2020); thus, the 

link proposed by Simon et al. (2018) is based on the coexistence but unknown affiliation of 

massive magnetite with IOCG mineralization. 

One of the best places for elucidating the genetic relationship between MtAp and IOCG 

systems is the group of vein-type deposits in the Montecristo and Tocopilla districts, where the 

veins display both styles of mineralization. These veins are representative of a large group of 

veins that extend from northern Chile into southern Peru (Sillitoe, 2003; Tornos et al., 2021). The 

absence of stratabound or shear-controlled replacive mineralization in the Montecristo and 

Tocopilla districts limits arguments for fluid-rock interactions. In the present study, new results 

from a detailed mineralogical, geochemical, and geochronological investigation of the 

Montecristo district reveal that although the IOCG and MtAp deposits are in close proximity, and 



 19 

the radiometric ages are coeval within error, the data overall suggest that these deposits are not 

part of the same mineralizing system. 

 

2.3. Geological Background 

The Chilean iron belt (CIB) is situated along the Coastal Cordillera between 26º and 31ºS 

and includes most of the IOCG and MtAp deposits in northern Chile, and other deposit types 

such as large porphyry copper deposits, Cu- and Au-bearing veins, and “manto-type” or 

stratabound Cu deposits (Vivallo et al., 2000; Maksaev et al., 2007). The CIB is underlain by up 

to a 10-km-thick sequence of Jurassic and Lower Cretaceous subaerial basaltic andesite to 

andesite of the La Negra Formation, and its stratigraphically equivalent subaqueous Punta del 

Cobre Formation to the south. Rocks of the La Negra Formation have predominantly high-K to 

calc-alkaline geochemical affinities (Buchelt and Tellez, 1988); however, rocks of tholeiitic 

compositions that formed during the initial stages of the magmatic arc also exist (Pichowiak et 

al., 1990; Lucassen and Franz, 1994). Plutonic rocks of Late Jurassic and Early Cretaceous age 

with similar geochemistry intrude these volcanic rocks (Espinoza, 1990), and together they 

represent the magmatism that marks the onset of the Andean arc. 

The Andean magmatic arc formed in the Jurassic after the breakup of Gondwana as a 

consequence of the subduction of oceanic lithosphere under the South American plate in 

westernmost Chile, extending along the present-day Coastal Cordillera (Dalziel et al., 1987; 

Mpodozis and Ramos 1990; Charrier et al., 2007). Oblique subduction led to the formation of a 

large strike-slip structure, the Atacama fault system (AFS), which has a dominant sinistral 

component and extends along the Coastal Cordillera from ~20º30ʹ to ~29º45ʹS (Hervé, 1987; 

Mpodozis and Ramos, 1990; Scheuber and Reutter, 1992; Brown et al., 1993; Cembrano et al., 

2005).  
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During the Late Jurassic-Early Cretaceous, the AFS experienced both transtensional and 

transpressional movement (Cembrano et al., 1997, 2005; Grocott and Wilson, 1997). The main 

structure, and subsidiary faults, of the AFS also played an important role in the location of the 

IOCG and MtAp deposits (Boric et al., 1990; Freraut and Cuadra, 1994; Vila et al., 1996; Gelcich 

et al., 1998, Sillitoe, 2003; Vivallo et al., 2008; Tornos et al., 2021). Most of the mineralization is 

related to N-S and NW-SE structures, both having sinistral strike-slip and normal dip-slip 

extensional movements (Dallmeyer et al., 1996; Cembrano et al., 2005). These structures also 

controlled the emplacement of the plutonic rocks in the area (Grocott and Wilson, 1997).  

Initial K–Ar, and later 40Ar–39Ar, dating of hydrothermal silicates (e.g., actinolite, K-

feldspar, biotite, white mica) indicate that most of the IOCG and MtAp deposits in the CIB 

formed during the Middle to Late Jurassic (~170-150 Ma) and Early Cretaceous (~130-110 Ma), 

but there are also some deposits that have Late Cretaceous or Paleocene ages (e.g., Dulcinea, La 

Africana, El Espino; Boric et al., 1990; Vila et al., 1996; Vivallo and Henríquez, 1998; Gelcich et 

al., 1998; Gelcich et al., 2003; Sillitoe, 2003; Vivallo et al., 2008; Arredondo et al., 2017). These 

diverse ages support the existence of discrete metallogenic sub-belts within the CIB. 

The Montecristo district, the focus of the present study, is located in the Middle to Late 

Jurassic sub-belt (22-26ºS) between Taltal and Antofagasta, Chile (Boric et al., 1990; Espinoza et 

al., 1996; Vivallo and Henríquez, 1998). Mineralized veins in this district are hosted by diorite of 

Middle to Late Jurassic age of the Matancilla intrusive complex (MIC) (~168-154 Ma; Naranjo 

and Puig, 1984; Escribano et al., 2013; Álvarez et al., 2016) (Fig. 1a). Overall, the plutonic rocks 

in this area have tholeiitic, to calc-alkaline, to high-K geochemical affinities, and are 

metaluminous (Álvarez et al., 2016). The host diorite contains amphibole and is phaneritic, 

hypidiomorphic, and inequigranular. This host rock has been pervasively metasomatically altered 

by hydrothermal fluids; original plagioclase has been replaced from the center to the edge of the 
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grains by potassium feldspar, followed by low-temperature replacement by adularia, albite, or 

white mica, and a late calcite replacement; the amphiboles have been strongly chloritized (ESM 

Fig. 1, a-c).  

The Montecristo district contains at least 12 mineralized veins that strike roughly NE-SW, 

are ~500 to ~5000 m long, and ~3 to ~30 m wide (Fig. 1b). The IOCG mineralization includes 

dominant magnetite, actinolite, chalcopyrite, pyrite, bornite, molybdenite, and minor titanite and 

quartz, plus small quantities of gold; some mineralized veins show a geochemical anomaly in Ag, 

Pb, Zn, and V (Espinoza et al., 1996). The oxidized zones contain atacamite, chrysocolla, 

antlerite, minor stringhamite [(CaCuSiO4•2(H2O)] and chenevixite [Cu2Fe3+2(AsO4)2(OH)4], 

whereas the underlying supergene cementation is primarily composed of covellite and chalcocite 

(Espinoza et al., 1996). The veins show a restricted halo of calcic-iron-alkali alteration with 

albite, quartz, magnetite, chlorite, actinolite and sericite (Vivallo and Henríquez, 1998). 

Structural control of the veins is by tensional faults oblique to the main trend of the AFS (Tornos 

et al., 2021) in the Paposo segment, one of the three segments of the AFS between Antofagasta 

and Paposo (Brown et al., 1993).  

The most well-known deposit in this district, the Montecristo vein, is a magnetite-rich vein 

striking N45-50ºE and dipping 75-80ºNW, with an average width of ~10 m but in places up to 

~30 m in width, with a total vertical extent of ~400 m. This vein was discovered in 1850, and 

since then ~10 Mt or ore have been mined. However, the focus of this study is on the Abundancia 

and San Juan veins, due to their proximity and key geological characteristics. The Abundancia 

vein contains both MtAp and IOCG mineralization and despite its historic importance as a copper 

source in the region, this vein has not been studied comprehensively. The San Juan vein is part of 

the same vein system as Abundancia but differs from the others, being a classical MtAp vein 

composed of magnetite, fluorapatite, and actinolite. 
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2.3.1. The Abundancia MtAp-IOCG vein 

The Abundancia vein trends N40ºE and is ~4 m-wide with 1.4% Cu plus subordinate gold 

(0.4-0.5 g/t) and molybdenum (0.03%), and small concentrations of Co and Ni. The vein has been 

mined down to 940 m below the land surface. Several hypogene mineral assemblages are 

recognized,  which are part of the following parageneses (Fig. 2): (1) an early MtAp stage that 

includes magnetite, fluorapatite, and actinolite predominantly arranged in parallel bands with cm-

sized crystals of fluorapatite that are perpendicular to the edge of the veins (Fig. 3a,b); (2) a 

second MtAp event having the same mineral assemblage but with decreasing grain size and more 

abundant magnetite occurring as crosscutting veins (Fig. 3a); (3) an IOCG stage that seems to 

dominate in the upper parts of the vein and clearly cuts the MtAp assemblages (Fig. 3a, b); 

Minerals of this stage include magnetite, actinolite, chalcopyrite, pyrite, quartz, titanite, gold, and 

pyrite that is replaced by later chalcopyrite; (4) a copper-rich event that produced massive 

chalcopyrite up to ~20 cm thick in quartz veins (Fig. 3c); and (5) a late stage that formed small 

veinlets of calcite and laminar molybdenite, which cut the earlier MtAp and IOCG 

mineralization. The halo of the calcic-iron-alkali metasomatic alteration zone is weak and seems 

to increase in size and intensity downwards.  

In the deepest levels of the system (~940 to ~915 m) there is an altered and brecciated 

monzogabbro that is replaced by an andradite-diopside-magnetite assemblage. This Fe-rich 

silicate assemblage is coeval with albitization and shows replacement of pyroxene by actinolite 

and veinlets of actinolite and hydroxyapatite, together with minor biotite, quartz, chalcopyrite, 

and pyrite (Díaz et al., 2018). 

 

2.3.2. The San Juan MtAp vein 
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The San Juan MtAp vein has a NE-SW strike, width of ~4 m, and ~600 m of inferred 

length. It contains massive magnetite in which subvertical bands are enriched in coarse-grained 

fluorapatite and actinolite (Fig. 2) that form pegmatite-like textures similar to those found in the 

Abundancia vein (Fig. 3d, e). Outcrops of this vein show a strong supergene alteration with 

replacement of the magnetite by hematite and late, cross-cutting calcite veinlets. 

 

2.4. Analytical Methods 

2.4.1. Petrography 

Samples for petrographic studies were selected from the IOCG and MtAp mineralization in 

the Abundancia and San Juan veins. Back-scattered electron (BSE) images were obtained on two 

25-mm diameter x 6-mm tall, epoxy mounts containing several rock billets after polishing and 

carbon coating. The billets were examined with a JEOL 7100F field emission gun scanning 

electron microscope (FEG-SEM) at Memorial University of Newfoundland equipped with 

energy-dispersive spectroscopy (EDS) at 15 kV and 50 nA. The same epoxy mounts were used 

for further analysis by electron probe microanalysis (EPMA) and by laser ablation-inductively 

coupled plasma mass spectrometry (LA-ICPMS). Thin sections from the mineralized zones and 

the host rocks were used for reflected light microscopy, and for cathodoluminescence (CL) 

imaging on fluorapatite to reveal the distribution of metasomatic alteration. 

 

2.4.2. Electron Probe Micro Analysis (EPMA) of minerals 

EPMA traverses and spot analyses were done for major and minor elements on 

representative grains of actinolite, magnetite, and fluorapatite in the epoxy mounts (Fig. 4). 

Analyses were done for each type of mineralization in both deposits. Analyses include Ti, Mn, K, 

Ca, S, Na, Al, Si, Mg, Fe, F, and Cl for the actinolite samples. Special attention was devoted to 
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the analysis of potassium because it is critical for 40Ar–39Ar geochronology that was done later 

(see below). Magnetite analyses include Cu, Ni, Mn, Ti, V, K, Ca, S, P, Na, Al, Si, Mg, Zn, Co, 

Fe, Cr, and Ba; fluorapatite was analyzed for F, Fe, Mn, As, Ca, Sr, S, Na, Si, Mg, Cl, Y, and P. 

EPMA traverses were done across mineral grains avoiding inclusions, cracks, and obvious altered 

zones.  

The analyses were done using a JEOL JXA-8230 SuperProbe electron probe 

microanalyzer at Memorial University of Newfoundland. Details of the EPMA analyses are 

summarized in ESM Table 2A for actinolite, ESM Table 2C for magnetite, and ESM Table 2E 

for fluorapatite. 

X-ray maps of actinolite were created by the EPMA in the same areas as the traverses and 

are based on analyses for Ti, Ca, Fe, Mg and K using the previous determinations of the actinolite 

compositions. Potassium was included in order to determine its distribution for later 40Ar–39Ar 

dating. For each X-ray map, an accelerating voltage of 15 kV, sample current of 200 nA, and a 

pixel dwell time of 100 ms were used. Each map took an average of 12 hr. 

 

2.4.3. LA-ICPMS trace elements of actinolite 

The same epoxy mounts containing actinolite from the Abundancia and San Juan veins 

were used for in situ LA-ICPMS trace-element analyses (Fig. 4a, c, d, f, g). The analyses were 

done on either the traverse or the spots where the EPMA analyses were acquired previously. Data 

for 43 trace elements were obtained by LA-ICPMS and are listed in ESM Table 2A. 

The actinolite trace-element analyses were done at the Micro Analysis Facility (MAF) at 

Memorial University of Newfoundland, using a Thermo Finnigan Element XR high-resolution 

(HR), double-focusing magnetic sector-inductively coupled plasma mass spectrometer (HR-

ICPMS), coupled to a GeoLas 193-nm Excimer laser system. Details of the LA-ICPMS analyses 
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are summarized in ESM Table 2A. The Ca concentration in the actinolite determined by EPMA 

was used as the internal standard for calibration of each LA-ICPMS analysis. Analyses were done 

using a pulse frequency of 10 Hz, energy density of 4 J/cm2, and with a 40 µm diameter spot size. 

For each analysis, the background was measured for around 30 sec followed by 60 sec of laser 

ablation. NIST 610 was used as the primary standard, and USGS BCR-2G and NIST 612 were 

used as secondary standards, interspersed during the trace element analyses.  

 

2.4.4. 40Ar/39Ar geochronology of actinolite 

The study includes two 40Ar/39Ar dates on actinolite, one a fine-grained actinolite 

associated with the MtAp event in the Abundancia vein (MOC-18-09), and one coarse-grained 

actinolite with moderate chloritization from the San Juan vein (MOC-18-05). Actinolite grains 

were crushed using a steel Plattner mortar and pestle. Individual fragments were handpicked 

under a binocular microscope using tweezers, avoiding altered fragments and impurities, such as 

calcite in the San Juan actinolite. Both samples were crushed again using a Plattner mortar and 

pestle and sieved to a size of 90-150 µm, to obtain a concentrate of visually pure actinolite. The 

amount of actinolite needed for each analysis was calculated based on the total K content of each 

sample, previously determined by the EPMA, in order to have >0.20 g total K present. The 

actinolite amount required for the Abundancia vein was 350 mg, and for the San Juan vein 880 

mg.  

Mineral separates were irradiated in the McMaster University nuclear reactor (Ontario, 

Canada) for 30 MWh, carefully avoiding Cd shielding. The age monitor was hornblende MMhb1 

with an assumed age of 523.98 Ma (Schoene and Bowring, 2006). 40Ar/39Ar analyses by step-

heating following the procedures described by Bosio et al. (2020) were done on the Nu 

Instruments Noblesse noble gas mass spectrometer at the University of Milano-Bicocca, Milan, 
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Italy, equipped with one Faraday cup having a 1011 W resistor and two ion counters. Before each 

sample was analyzed, a blank measurement was followed by two successive measurements of 

atmospheric Ar delivered by a pipette system. The analytical protocol consisted of four 

measurement cycles to allow an in-run cross-calibration of the relative collector gains, F/IC0 and 

IC0/IC1, for each individual run under the (variable) mass spectrometer conditions. The four 

cycles were: (1) 40Ar (F), 38Ar (IC0), 36Ar (IC1); (2) 39Ar (F), 37Ar (IC0), 35Cl (IC1); (3) 41C3H5 

(F), 39Ar (IC0), 37Ar (IC1); and (4) 38Ar (F), 36Ar (IC0). Each measurement consisted of 25 

repetitions of the four cycles, so as to avoid artefacts due to ion counter nonlinearities (Barberini 

and Villa, 2015). The ion counter gains are similar, but not necessarily equal, to those determined 

from the atmospheric pipettes (which also independently quantify the mass fractionation 

originating in the source). The raw data from the mass spectrometer zero-time extrapolation were 

processed with an in-house Excel spreadsheet by correcting for mass spectrometer background, 

ion counter gains, blank measurements, source fractionation, and decay of 37Ar since irradiation, 

as well as propagating all associated uncertainties. The total concentrations of 39Ar, 38Ar, and 

37Ar were converted to absolute concentrations of K, Cl, and Ca, respectively, so as to control 

stoichiometry, and to provide Ca/K and Cl/K ratios. Because the stoichiometry of the present 

samples was determined by EPMA, for the age calculation we consider only “isochemical steps” 

(Villa et al., 2006) with constant Ca/K and Cl/K ratios matching the EPMA measurements. The 

40K decay constant used for the age calculation was 5.543 x 10-4 Ma-1 (Steiger and Jäger, 1977), 

even if this constant is very probably slightly inaccurate (Min et al., 2000; Naumenko-Dèzes et 

al., 2018); it was used, by convention, in order to facilitate inter-comparisons with literature data. 

Different levels of uncertainty must also be considered. The internal concordance/discordance of 

step ages is assessed based on in-run uncertainties only. The inter-comparison of samples 

analyzed in the same laboratory requires compounding the in-run uncertainty with that for the 
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neutron flux gradient. Finally, the inter-comparison of the present samples with those reported in 

the literature requires inclusion of the systematic uncertainties on the age of the irradiation 

monitor (if the information is provided at all) and of the uncertainty of the 40K decay constant, 

where necessary. 

 

2.4.5. LASS U–Pb geochronology and Hf tracer isotopes of zircon 

Representative zircon crystals from the Abundancia host diorite (sample MOC-18-02) were 

analyzed in situ for U, Pb, and Lu–Hf isotopes. The diorite was processed using a jaw crusher, 

and a disc mill afterwards, retaining >90% of the crushed material between <500 µm and >63 

µm. Magnetic separation and heavy liquids, bromoform and methylene iodide, were used to 

separate the zircon from the other minerals. The zircon grains were handpicked under a binocular 

microscope and mounted in epoxy. The mounts were polished to expose the crystal centers and 

carbon coated. Cathodoluminescence images were obtained at Memorial University of 

Newfoundland using a JEOL 7100F field emission gun scanning electron microscope (FEG-

SEM) equipped with energy-dispersive spectroscopy (EDS) at operating conditions of 15 kV and 

50 nA. The images were acquired in order to select the best zircon grains, and regions within 

zircon grains, for the in situ analyses, avoiding inclusions of other minerals, inherited cores, or 

cracks. 

Lu–Hf isotopes, paired with U–Pb isotopes, were analyzed by laser ablation split stream 

(LASS) methods at the Micro Analysis Facility at Memorial University of Newfoundland. We 

followed the instrument configuration, operating parameters, and data reduction methods outlined 

by Fisher et al. (2011, 2014a, b), with the exception that N2 was added to the Ar carrier gas 

introduced into both mass spectrometers for increased sensitivity. 
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The Lu–Hf analyses were done using a Thermo Finnigan Neptune multicollector-

inductively coupled plasma mass spectrometer (MC-ICPMS). The U–Pb analyses were acquired 

using a Thermo Finnigan Element XR high resolution-magnetic-sector inductively coupled 

plasma mass spectrometer (HR-ICPMS). Both mass spectrometers were interfaced to a GeoLas 

Pro 193 nm Ar–F excimer laser, operated at 10Hz, 5 J/cm2, and a 40 μm diameter spot size. After 

collecting background counts for 30 sec, the samples were ablated for 60 sec. The data were 

reduced using Iolite software (Paton et al., 2011). 

The Lu–Hf analyses done on the Montecristo MOC-18-02 zircon crystals were interspersed 

with analyses of several zircon reference materials in order to assess accuracy, mass bias 

corrections, and external reproducibility. Whereas all of these reference materials listed below 

were analyzed during the LASS method, not all reference materials were used for both Hf–Lu 

and U–Pb data reduction schemes. 

The zircon reference materials used in this study for the Lu–Hf LASS analyses (determined 

in previous studies by solution MC-ICP-MS), which covered the range of (Lu+Yb)/Hf of the 

MOC-18-02 zircon crystals, included MUNZirc-1 (B-140) (176Hf/177Hf = 0.282135 ± 7; Fisher et 

al., 2011), MUNZirc-4 (B-144) (176Hf/177Hf = 0.282135 ± 7; Fisher et al., 2011), Plešovice 

(176Hf/177Hf = 0.282482 ± 13; Sláma et al., 2008), FC-1 (176Hf/177Hf = 0.282182 ± 14; Fisher et 

al., 2014); and R33 (176Hf/177Hf = 0.282767 ± 18; Fisher et al., 2014). 

The zircon reference materials used in this study for the U–Pb LASS analyses included 

91500 (1065 Ma; Wiedenbeck et al., 2004) that was the primary U–Pb reference material, and 

Plešovice (337.13 Ma; Sláma et al., 2008); FC-1 (1099 Ma; Paces and Miller, 1993), R-33 (419 

Ma; Black et al., 2004); Temora 2 (417 Ma; Black et al., 2004), and 02123 (295 Ma; Ketchum et 

al., 2001) were used as secondary reference materials. 
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Initial εHfi values were calculated using a present-day CHUR value of 176Hf/177Hf = 

0.282785, 176Lu/177Hf = 0.0336, as reported by Bouvier et al. (2008) and the 176Lu decay constant 

of 1.867 x10-11 yr–1 from Söderlund et al. (2004). 

The 238U counts acquired on the zircon grains from sample MOC-18-02 were anomalously 

high in the first batch of analyses (n = 41, individual analyses per grain) due to the anomalously 

high U concentrations in the zircon grains (920-7330 ppm). The in situ U–Pb analyses showed 

significant discordance caused by Pb loss, or radiation damage, or a combination of these two 

factors. A second batch of zircon grains (n = 27, analyses per grain) from sample MOC-18-02 

were chemically abraded following, in general, the method in Mattinson (2005) prior to the 

LASS analyses for U–Pb and Hf isotopes. The zircon grains were annealed for 48 hr at 1100°C in 

air in a fused silica crucible. This annealing was followed by partial dissolution in concentrated 

HF (49%) sealed in a Parr bomb in an oven at 190°C for 2 hr (the Parr bomb was put into an oven 

at pre-set at 190°C, and then after two hr at 190°C the Parr bomb was removed from the oven and 

allowed to cool for 1 h to room temperature before opening). This procedure removes radiation-

damaged, altered or metamict, zones in zircon that cannot be restored by annealing, thus virtually 

eliminating secondary lead loss; for simple grains of one age, concordant or near-concordant 

analyses are generally obtained.  

Preliminary U–Pb data after the annealing process, however, produced similar results to the 

first batch of LASS analyses, likely because the uranium content in the zircon grains was still 

anomalously high (e.g., 560-5320 ppm). Thus, the accumulated radiation damage dose (i.e., alpha 

decay events per milligram) was calculated for each zircon using the equation from Murakami et 

al. (1991), in order to eliminate extensively radiation-damaged zircon grains in an attempt to 

obtain a concordant age. After the radiation damage calculations, zircon grains showing radiation 

damage in stages 2 and 3 (Nasdala et al., 2004; modified the damage stages initially reported by 
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Murakami et al., 1991) were removed, keeping 12 zircon grains in stage 1 for the final age 

calculation and those used for the εHfi calculation. 

 

2.4.6. Re–Os geochronology of molybdenite  

Molybdenite has very high Re/Os ratios because during crystallization this mineral takes in 

almost no Os (Stein et al., 2001). Therefore, 187Re–187Os dating of molybdenite uses the 

following simplified equation: 187Osmeasured = 187Remeasured × (eλt - 1), where λ is the decay constant 

for 187Re (1.666 × 10–11 yr–1; Smoliar et al., 1996).  

Re–Os isotopic analyses were acquired on two molybdenite (MoS2) samples from level 940 

(m) of the Abundancia vein. Here, there is no evidence of supergene alteration; petrography 

shows that the molybdenite is pure and lacks mineral intergrowths. However, the samples belong 

to a zone of intense slickensides and shearing. Molybdenite separates were obtained using a 

small, hand-held drill that produced a molybdenite powder.   

Re and Os isotopic concentrations were determined by isotope dilution using a Thermo 

Triton NTIMS (Negative Thermal Ionization Mass Spectrometry) machine at the AIRIE 

Program, Colorado State University, Fort Collins, Colorado. Precisely weighed samples were 

loaded into a Carius tube with 8 mL inverse aqua regia and Re–Os spikes for sample dissolution 

and sample-spike equilibration. A mixed Re-double Os spike (185Re–188Os–190Os) permits a mass 

fractionation correction for Os and assessment of any common Os present in the molybdenite. 

Both samples had negligible common Os. All uncertainties are reported at 2-sigma (ESM Table 

7), including the 187Re decay constant uncertainty (λ). Re and Os blanks (Re blank = 11.77 ± 0.03 

pg, Os blank = 0.130 ± 0.003 pg with 187Os/188Os = 0.350 ± 0.007) do not affect the calculated 

ages. 
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2.4.7. Whole-rock Rb–Sr and Sm–Nd radiogenic isotopes 

Three whole-rock samples of the IOCG mineralization enriched in actinolite from the 

Abundancia vein were analyzed for bulk rock Sr and Nd radiogenic isotopic compositions. 

Samples were initially crushed using a Plattner mortar and pestle, then reduced to powder with an 

agate mortar and pestle. The samples might contain some minor contamination from the MtAp 

stage, as the fine-grained nature of the veinlets makes it difficult to physically separate the IOCG 

mineralization from the older MtAp event that was replaced.  

Rb–Sr and Sm–Nd whole rock analyses were done at the Unidad de Geocronología (CAI 

de Ciencias de la Tierra y Arqueometría) of the Universidad Complutense de Madrid using 

isotope dilution-thermal ionization mass spectrometry (ID-TIMS) and an Isotopx Phoenix TIMS 

instrument. The samples were spiked with 84Sr, 87Rb, and a mix of 149Sm–150Nd, and digested 

using ultra-clean reagents. Samples were then processed using chromatography, where Rb, Sr, 

and rare earth elements (REEs), were separated in DOWEX AG (50W x 12 Resin, 200–400 

mesh) columns. In order to isolate the Sm and Nd, REE fractions were separated in HDEHP-

impregnated Teflon-powder columns. Instrumental fractionation effects were corrected using a 

normalization of 86Sr/88Sr = 0.1194 and 146Nd/144Nd = 0.7219. The procedural blank was 0.5 ng 

for Sr and 0.1 ng for Nd. Standard materials used during the analyses were the following: Sr 

standard NBS-987 (0.710245 ± 0.000004; n = 58), and Nd standards La Jolla (0.511850 ± 

0.000004, n = 36) and JNdi-1 (0.512108 ± 0.000003, n = 33). 

 

2.4.8. d34S stable isotopes in sulfide minerals 

Sulfur isotopic compositions were measured in fourteen samples of chalcopyrite and pyrite 

from the Abundancia vein. In four, two aliquots were taken for quality control to assess 
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repeatability. The sulfides were crushed in a stainless-steel mortar and handpicked under a 

binocular microscope using titanium tweezers, followed by magnetic separation to remove the 

magnetite. Visually pure sulfide grains were ground to ~1 μm size in an agate mortar and pestle, 

obtaining a powder of ~0.5 g. Sulfides having other minerals attached to the surface were ground 

and sieved and retained to 63 μms, magnetite was removed with a magnet, and the sample was 

processed using heavy liquids, bromoform, and methylene iodide, in order to separate the sulfides 

from the other minerals. 

The sulfur isotope measurements were done at the Stable Isotope Laboratory of the 

Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR, Granada, Spain). Samples were analyzed 

by combustion with V2O5 and O2 at 1030°C in a Carlo Elba NC1500 elemental analyzer online 

with a Delta Plus XL mass spectrometer (EA-IRMS). The stable isotope compositions are 

reported as conventional δ per mil values, calculated using the δ = (Rsample/Rstandard – 1)*1000 

equation, where R= 34S/32S for δ34S. Commercial SO2 was used as the internal standard for the 

sulfur isotopic analyses. For sulfur, five internal (organic and inorganic standards range in 

composition from –6.38 ‰ to +23.25 ‰, CDT), together with the IAEA international references 

IAEA-S1, IAEA-S2, IAEA-S3, NBS-127, and CP-1 were analyzed. For this study, three internal 

standards of +23.25 ‰, +6.03, and -6.38 ‰ (CDT) were used. The precision calculated, after 

correction of mass spectrometer daily drift, from standards systematically interspersed in 

analytical batches was better than ± 0.2‰. The standard material used for normalizing the sulfur 

isotope values is V-CDT (Vienna-Canyon Diablo Troilite). 

 

2.5. Results 

2.5.1. Mineral textures and chemical compositions 

2.5.1.1. Actinolite 



 33 

As mentioned above, two types of actinolite occur in the Montecristo system: (1) actinolite 

I, related to the MtAp event; and (2) actinolite II, associated with the later IOCG event. 

Early actinolite I within the Abundancia vein forms unaltered, fine-grained (<500 µm long) 

euhedral crystals, arranged in thin aggregate bands hosted by magnetite. This actinolite also 

occurs disseminated in the magnetite or is enclosed by fluorapatite crystals in a “poikilitic” type 

texture (see ESM Fig. 1d, g, p) that is similar to those within cumulate rocks (Wager et al., 1960; 

McBirney and Noyes, 1979), and in chilled margins of mafic and ultramafic intrusions (Wager, 

1961). Later crosscutting magnetite-rich mineralization also contains actinolite I with the same 

composition and characteristics but as smaller grains. Actinolite I in the San Juan MtAp vein is 

coarse-grained (up to 7 mm) and forms massive aggregates, some moderately altered to chlorite; 

it hosts magnetite as disseminated crystals or in fractures. BSE images show that the 

disseminated magnetite is made up of grains smaller than 100 µm and includes abundant 

exsolution of titanite (ESM Fig. 1v). 

Actinolite II is fine-grained (<200 µm) and occurs in veinlets paragenetically related to 

chalcopyrite, pyrite, quartz, and minor magnetite and titanite as part of the IOCG event. There are 

also abundant remnants of actinolite I within the IOCG zone (see ESM Fig. 1). 

The chemical composition of the actinolite samples are available in ESM Table 2B and a 

representative oxide composition is shown in Figure 5b. All samples analyzed (I and II) are 

classified as actinolite (Fig. 5a) (Leake et al., 1997), with Mg# [molar (Mg/(Mg+Fe)] ranging 

from 0.67 to 0.79, and Si atoms per formula unit (a.p.f.u.) between 7.796 and 7.910. In general, 

the actinolite samples show the following compositional ranges for major elements: MgO (15.20-

18.70 wt.%), CaO (12.20-12.60 wt.%) FeO (8.70-13.10 wt.%), Al2O3 (0.90-1.70 wt.%), Na2O 

(0.10-0.20 wt.%), MnO (0.10-0.30 wt.%), TiO2 (0.01-0.04 wt.%), SO3 (0.01-0.02 wt.%), and 
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K2O (0.02-0.10 wt.%). Concentrations of minor and trace elements are: Cl (190-940 ppm) and F 

(below LOD of 252 ppm). 

The EPMA analyses show that actinolite I and II from Abundancia are more depleted in 

FeO (range of 8.70-9.10 wt.%), whereas actinolite I from San Juan is enriched in FeO (avg 13.05 

wt.%).  Actinolite I from San Juan is enriched in Mn (avg 2562 ppm) relative to actinolite I and II 

from Abundacia (range of Mn 430-525 ppm). Actinolite II in Abundancia has low average Cl 

(188 ± 40 ppm), and K (197 ± 40 ppm) compared to Actinolite I, which has on average 658 ± 48 

ppm, and 697 ± 45 ppm, respectively. These average compositional differences are reinforced by 

Fe, Ca, Mg, K, and Ti X-ray maps (ESM Fig. 3). In contrast, San Juan actinolite I is enriched 

throughout all grains in Ti (253 ± 90 ppm) relative to the other actinolite samples from 

Abundancia (I and II); X-ray maps show the presence of disseminated titanite crystals (ESM Fig. 

3). The actinolite compositional data obtained in this study generally agree with other results 

published previously for actinolite in MtAp deposits of the Coastal Cordillera (Rojas et al., 

2018). 

LA-ICPMS trace element data for actinolite are presented in ESM Table 2B and are shown 

in Figure 5c normalized to continental crust (Rudnick and Gao, 2003). The data indicate that 

MtAp and IOCG-related actinolite, types I and II respectively, from Abundancia generally have 

the same trace element pattern. However, actinolite II has slightly higher Ba, Sr, and REE 

concentrations and lower Rb, K, and Ti. Actinolite I from the San Juan vein, on the other hand, 

shows a different trace element composition that is depleted in Nb, La, Ce, Nd, Sm, and Y, and 

slightly enriched in Hf, Zr, and Ti, relative to actinolite I and II from Abundancia. 

 

2.5.1.2. Magnetite 
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Magnetite of the MtAp stage in the Abundancia and San Juan veins has similar textures and 

in both deposits is classified as magnetite type I. Magnetite I is massive, intergrown with 

actinolite and fluorapatite, inclusion-free, and lacks exsolution textures. Magnetite I from the 

Abundancia vein also hosts abundant acicular inclusions of actinolite. Magnetite II, only present 

as a product of the IOCG event, is relatively homogeneous and has quartz inclusions (See ESM 

Fig. 1). Major, minor, and trace elements data for both types I and II of magnetite are presented 

in ESM Table 2D; comparative plots of average oxide compositions are shown in Figure 5d.  

All magnetite I samples have a nearly identical chemical composition, within analytical 

error. Ranges of concentrations for the most representative elements include: Ti (100-190 ppm), 

Cu (50-60 ppm), Ni (200-240 ppm), V (1420-3010 ppm), Cr (30-60 ppm), S (10-50 ppm), Si 

(1570-3510 ppm), Al (650-940 ppm), Mn (100-180 ppm), Mg (340-1610 ppm), Ca (710-1320 

ppm), and Zn (130-160 ppm).  

Magnetite II displays a similar composition but with an increase in Cu that is constant 

throughout the crystals. The average element composition for magnetite II include: Ti (282 ± 33 

ppm), Cu (406 ± 46 ppm), Ni (150 ± 37 ppm), V (6,193 ± 56 ppm), Cr (81 ± 10 ppm), S (162 ± 

12 ppm), Si (871 ± 18 ppm), Al (730 ± 16 ppm), Mn (149 ± 33 ppm), Mg (211 ± 18 ppm), Ca 

(251 ± 11 ppm), and Zn (106 ± 62 ppm). Chemical compositions similar to magnetite I are 

reported in magnetite crystals from other MtAp deposits in the Coastal Cordillera of Chile (e.g., 

Knipping et al., 2015b, Los Colorados; Salazar et al., 2019, Cerro Negro). 

 

2.5.1.3. Fluorapatite 

Fluorapatite is abundant in the MtAp stage but has not been found fluorapatite in the IOCG 

stage. Fluorapatite crystals in MtAp mineralization of the Abundancia vein are generally 

euhedral, coarse-grained (up to 1 cm), and lack evidence in BSE or CL of superimposed 
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metasomatic alteration. The fluorapatite commonly encloses small (<250 µm) actinolite crystals 

in a “poikilitic-like” texture and displays a yellow CL emission (caused by Mn2+) (see ESM Fig. 

1e, h, n, t). Fluorapatite in the San Juan vein is also euhedral and coarse-grained (up to 2 cm). 

These fluorapatite crystals grew perpendicular to the actinolite-magnetite bands, in comb-like or 

unidirectional solidification growth textures (UST; Fig. 3a, b, e) that are identical to those 

described in the Carmen de Fierro and Fresia MtAp deposits (Tornos et al., 2021). 

EPMA analyses of fluorapatite are provided in ESM Table 2F, and the average chemical 

composition for each crystal are plotted in Figure 5e. Our results are similar to published apatite 

compositional data for other MtAp deposits in the Coastal Cordillera (Treloar and Colley, 1996; 

La Cruz et al., 2019). All samples from Abundancia and San Juan correspond to fluorapatite 

(2.10-2.50 wt.% F) with a minor chlorapatite component (0.40-0.80 wt.% Cl) and includes Na 

(160-330 ppm), Mn (180-360 ppm), Mg (40-3,010 ppm), Fe (470-3,980 ppm), As (570-1,020 

ppm), Sr (170-280 ppm), Y (140-200 ppm), Si (85-5,890 ppm), and S (50-110 ppm); however, 

there are some differences with respect to Fe, Si, and Mg. The greater variability in Fe, Si, and 

Mg concentrations relative to those of other elements is likely due to the presence of micro or 

nano inclusions of actinolite within the fluorapatite that were not visible with BSE or CL as 

imaged via SEM and EPMA. 

 

2.5.2. Actinolite 40Ar/39Ar geochronology 

40Ar/39Ar data and related plots for the two actinolite samples are reported in Figure 6. The 

full data set is available in ESM Table 4. Actinolite MOC-18-09 from the Abundancia vein 

yielded a well-constrained plateau age of 154 ± 2 Ma (2-sigma), which represents 92.3 % of the 

39Ar released. This plateau age is indistinguishable from the 40Ar/39Ar isochron age (159 ± 17 

Ma, 2-sigma). The three plateau steps show a constant Ca/K ratio, whereas the Ar-poor low-
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temperature steps display lower ratios, indicating the presence of a contaminant phase with a 

higher amount of K or lower Ca content. Also shown are broadly constant Cl/K ratios, meaning 

that the sample is homogeneous and likely contains little if any hydrothermal component such as 

fluid inclusions. Coarse-grained actinolite MOC-18-05 from the San Juan vein yielded a plateau 

age of 153 ± 4 Ma (2-sigma), representing 76.2 % of the 39Ar released, and has homogeneous 

Ca/K and Cl/K ratios within the plateau steps. The plateau age is indistinguishable at the 2-sigma 

level from the 40Ar/39Ar isochron age (160 ± 4 Ma). 

A literature K–Ar age of actinolite associated with the alteration halo in the Mantos deposit 

in the Montecristo district yielded an age of 164 ± 11 Ma (JICA-MMAJ 1986). This age is 

consistent at the 1-sigma level with the present results. 

 

2.5.3. Zircon U–Pb geochronology and Hf tracer isotopes from the host rock 

The U–Pb data for zircon from the diorite host rock are reported in the ESM Table 5, and in 

Figures 7b to d. The Lu–Hf data are plotted in Figure 7e and all of the data and calculations are 

listed in ESM Table 6. Zircon grains are relatively small (≤100 μm long), euhedral to subhedral, 

and inclusion-free; some show regular growth zoning, a characteristic of igneous zircon (Fig. 7a). 

No inherited cores were identified in any of the zircon analyses via the CL imaging and 

subsequent U-Pb analyses. 

The Concordia diagram for sample MOC-18-02 shown in Figure 7b yields an age of 153.3 

± 1.8 Ma (2-sigma; MSWD = 2.6; n = 12). This age overlaps with the weighted mean 206Pb/238U 

age of 152.1 ± 2.6 Ma (2-sigma; MSWD = 1.3; n = 12), and with the inverse isochron age of 

153.5 ± 3.0 Ma (2-sigma; MSWD =15; n =12) obtained in this study. The Concordia age agrees 

with previously reported U–Pb dates for the latest crystallization stages of the Matancilla 

intrusive complex (Álvarez et al., 2016 and references therein). In situ initial Hf values obtained 
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from the above-mentioned 12 individual zircon grains, and calculated using the Concordia age, 

range from εHfi of +5.0 (analysis 11a) to +6.7 (analysis 37a). These values together suggest a 

dominantly juvenile source, i.e., one produced in the primitive mantle but with some 

incorporation of less-radiogenic Hf inherited from continental crust through assimilation during 

emplacement (εHfi = +10.6 to +16.6 for Mesozoic rocks of the Canadian Cordillera; Vervoort and 

Blichert-Toft, 1999). 

 

2.5.4. Molybdenite Re–Os dates 

The Re–Os dates for two molybdenite samples belonging to the IOCG stage are presented 

in ESM Table 7. The data show a significant age difference between the two samples: 162.4 ± 0.6 

Ma (2-sigma) for MOC-18-07A, and 151.8 ± 0.6 Ma (2-sigma) for MOC-18-07G. Re 

concentrations are very different with sample 07A having 23.14 ppm whereas 07G has 369.7 

ppm. The difference in the two Re–Os ages, with an unexpectedly older age obtained for sample 

MOC-18-07A, could reflect multiple molybdenite mineralizing events, or within-molybdenite 

mobility and redistribution of Re and Os associated with slickenside development, as proposed 

elsewhere (Stein et al., 2003). In an earlier study of a Chilean IOCG deposit at Raúl-Condestable 

(De Haller et al., 2006), two Re–Os ages several million years older than the associated intrusion 

were explained by Re loss. At Raúl-Condestable, however, molybdenite is markedly early in the 

paragenesis, preceding chalcopyrite and pyrite. In contrast, in our study molybdenite is 

paragenetically late (Fig. 2) and follows chalcopyrite ore mineralization, thus making direct 

analogy between these two deposits difficult. Given the association of our dated samples with a 

zone of intense slickenside and shearing, we suggest that redistribution of Re and of radiogenic 

Os within the molybdenite is a possibility.    
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2.5.5. Sr and Nd radiogenic isotopes 

Whole rock Rb–Sr and Sm–Nd data are shown in Figure 8 and listed in Table 1. The 

approximate deposit formational age of 154 Ma determined by 40Ar/39Ar geochronology was 

used to calculate the initial 87Sr/86Sr and εNdi values. For the IOCG event these calculations yield 

εNdi values of +5.4 to +7.0 and 87Sr/86Sri compositions of 0.70425 to 0.70442, together suggesting 

a dominantly juvenile source. Other studies done on calcite in the Montecristo 

(87Sr/86Sri=~0.7058), Julia (87Sr/86Sri = ~0.7046 to ~0.7048), and Toldo-Velarde deposit in the 

Gatico district (87Sr/86Sri = ~0.7041 to ~0.7043) show similar 87Sr/86Sri values (Vivallo and 

Henríquez, 1998).  

The εNdi value of +7.0 is interpreted as inherited from the MtAp stage during the 

replacement of the MtAp assemblage by the IOCG mineralization, due to the higher εNdi values 

of the MtAp stage (Tornos et al., 2021). One MtAp sample with a relatively low εNdi value of 

+5.1 and high 87Sr/86Sri ratios (0.70629), from Tornos et al. (2021), is here interpreted as having 

been partially re-equilibrated with late IOCG-related fluids (see below). 

 

2.5.6. d34S isotopes in sulfides 

d34S values of sulfides from the IOCG event are listed in Table 2 and plotted in Figure 9. 

Sulfur isotopes for 15 chalcopyrite and pyrite aliquots show a very restricted range between +0.3 

to +3.4 per mil, with a mean of +1.8 ± 0.91 per mil. d34S values for the Abundancia IOCG event 

agree with previously published sulfur isotopic studies in the Montecristo deposit (0 to +5‰; 

Vivallo and Henríquez, 1998) and are similar to other sulfur isotopic compositions determined 

for IOCG deposits in the Coastal Cordillera of Chile (Tocopilla, –0.2 to +0.6‰, unpub. data, F. 

Tornos; Gatico district, 0 to +5‰, Vivallo and Henríquez, 1998; Naguayán-Desesperado, –1 to 
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+1‰, Vivallo and Henríquez, 1998; Candelaria, 0.3 to +3.1‰, Marschik and Fontboté, 2001; 

Julia, –4 to +4‰, Vivallo and Henríquez, 1998) and to those reported for sparse sulfides in the 

MtAp mineralization such as at Los Colorados (−3.2 to +2‰; Tornos et al., 2021) (Fig. 9). 

Collectively, these data suggest that the sulfur is dominantly of juvenile magmatic derivation 

(d34S = –3 to +2‰; Ohmoto and Rye, 1979; Ohmoto and Goldhaber, 1997), with a minor 

contribution from either crustally contaminated igneous rocks or a sedimentary source (Poulson 

et al., 2001).  

However, hematite-rich IOCG deposits show a wider range of d34S values with a systematic 

displacement towards positive values, indicating a likely input of sulfur derived from abiogenic 

reduction of seawater sulfate or microbial reduction in a closed system but external to a 

magmatic-hydrothermal system, such as in Raul-Condestable (+1.0 to +26.3‰ main ore stage; 

De Haller and Fontboté, 2009), Teresa de Colmo (–5.5 to 18.2‰; Ledlie, 1998), and Mantoverde 

(–6.8 to +11.2 main ore stage, and +26.4 to +36.2 in later stages; Benavides et al., 2007; Rieger et 

al., 2010). This interpretation is consistent with the previous study of Chen (2013) that suggested 

external sulfur with d34S values > +10‰ was important in the ore-forming processes of hematite-

rich IOCG systems. 

 

2.6. Discussion 

2.6.1. Timing of mineralization 

The U–Pb zircon crystallization age of 153.3 ± 1.8 Ma (2-sigma) obtained for the host 

diorite is consistent within error with the 40Ar/39Ar dates of the MtAp event (153 ± 4 Ma and 154 

± 2 Ma, 2-sigma) and the Re–Os molybdenite age of 151.8 ± 0.6 Ma (2-sigma), which suggests 

that the ore-forming events took place in a short time span that cannot be temporally resolved 
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with geochronology. The new dates obtained in the present study indicate that the MtAp and 

IOCG events, and crystallization of the host diorite, are coeval within error in a time span of ~3.4 

m.y. The results further suggest, however, that the mineralization formed soon after the 

crystallization of the host diorite, especially given that the Ar cooling ages are younger than 

zircon dates (Renne et al., 1998; Min et al., 2000; Kuiper et al., 2008; Simon et al., 2008) and that 

on the basis of crosscutting relationships the IOCG mineralization is definitely younger than the 

MtAp event. 

 

2.6.2. Evolution of the Montecristo system 

The Montecristo vein system consists of multi-stage mineralization (Fig. 2) with an early 

MtAp stage (Events I and II) followed by an IOCG stage (Events III and IV). The magnetite, 

fluorapatite, and actinolite of the early MtAp stage show similar compositions (Figs. 5b, d, e), 

suggesting crystallization from a homogenous source. Textures of this stage are like those of the 

intrusive part of the El Laco MtAp deposit in Chile (Naslund et al., 2002), and the MtAp deposits 

of the Coastal Cordillera that include diagnostic, pegmatitic features including local banded, 

coarse-grained fluorapatite with UST textures coexisting with diopside or actinolite and 

magnetite (Tornos et al., 2017, 2021). The yellow CL emission of the fluorapatite (caused by 

Mn2+) is typical of magmatic apatite (Dempster et al., 2003), thus suggesting a magmatic origin 

(Bouzari et al., 2016). In the case of Abundancia, textures also include “poikilitic” fluorapatite 

enclosing well-formed acicular, mostly euhedral actinolite crystals. Some of these mineralized 

rocks likely represent the magmatic to hydrothermal transition in MtAp systems within a 

pulsating regime similar to that of granite-related pegmatite (Tornos et al., 2021).  

Formation of the MtAp mineralization can be explained by the direct crystallization of 

immiscible melts. Geological (Chen et al., 2010a; Mungall et al.,, 2018), isotopic (Tornos et al., 
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2016, 2017, 2021; Troll et al.,, 2019; Weis et al, 2021), experimental (e.g., Lledó 2005; Veksler 

et al., 2007; Hou et al., 2018; Mungall et al., 2018; Lledó et al., 2020), and melt inclusion data 

(Jacobsen et al., 2005; Naslund et al., 2009; Velasco et al., 2016; Bain et al., 2020, 2021) provide 

overwhelming evidence—often  neglected by supporters of alternative models—that these rocks 

crystallized from iron-rich and silica-poor melts.  

Overall, the compositions of magnetite and actinolite of the IOCG stage (Event III) are 

similar to that of the MtAp stage. The actinolite EPMA X-ray maps (ESM Fig. 3) show only 

slight chemical differences, suggesting that perhaps magnetite and actinolite compositions are not 

useful tracers for discriminating such types of mineralization within these vein-like systems. It is 

also possible that some actinolite and magnetite were assimilated and thus, they are 

geochemically equivalent. However, magnetite II is distinctive in containing abundant quartz 

inclusions that are not present in magnetite I. Furthermore, the higher amount of Cu present 

throughout magnetite type II crystals (406 ± 46 ppm) compared to magnetite type I (50-64 ppm) 

is consistent with the presence of higher Cu contents during the IOCG event. 

 

2.6.3. Different sources for the IOCG and MtAp mineralization 

The 87Sr/86Sri values of the IOCG mineralization at Abundancia (0.70425 to 0.70442) are 

indistinguishable from those of the MtAp event at San Juan (0.70466 and 0.70629) and the 

Abundancia veins (0.70422 and 0.70457; Tornos et al., 2021). These similarities suggest that in 

both cases the Sr was derived from reservoirs having a significant crustal inheritance and not 

wholly from primitive magmas produced during subduction-related melting of the mantle wedge. 

Sr isotope ratios as a whole likely reflect the interaction of these primitive melts either with 

continental crust of the hosting Antofalla terrane (see Ramos and Aleman, 2000; Lucassen et al., 

2006; Parada et al., 2007), or an increase in 87Sr/86Sri ratios due to contamination of the mantle 
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wedge by fluids derived from dehydration of sediments or serpentinite within the subducted 

oceanic crust (Tornos et al., 2021). The fact that a similar Sr isotopic signature is present in most 

of the MtAp systems of the Coastal Cordillera, regardless of the primitive or continental nature of 

the underlying crust, supports the second alternative.  

Nd isotopes are more robust and more difficult to reset than Sr isotopes and thus perhaps 

are a more reliable tracer of fluid sources. At Montecristo, the εNdi values obtained for the IOCG 

event are significantly lower than those of the MtAp stage. Recalculated initial εNd values of the 

MtAp mineralization at Montecristo for 154 Ma yield εNdi of +6.7 and +7.5, which are similar to 

the values of +7.5, and +6.6 to +6.8, for nearby MtAp mineralization such as at the Jurassic Julia 

and Tocopilla vein deposits, respectively (Tornos et al., 2021). εNdi values of the IOCG 

mineralized rocks at Abundancia are +5.4 to +5.7, implying that the Cu-Au mineralization cannot 

solely be derived from the same source as the MtAp mineralization or from fluids that had 

equilibrated with it. More negative εNdi values of the IOCG mineralization record a significantly 

larger contribution of continental crust that do the values for the associated MtAp rocks.  

εNdi values of the host diorite calculated from εHfi of the zircon are between +2.3 and +3.4 

(see ESM Table 8). These values were determined following the method of Vervoort et al. 

(2011), assuming no inheritance exists and that the zircon Hf value is representative of the bulk 

rock. Thus, the εNdi values of the IOCG event likely track mixing between the replaced MtAp 

mineralization and the Nd inherited from the host diorite, or an unexposed underlying intrusion 

of equivalent isotopic composition.  

The relatively low εNdi values of the IOCG mineralization at Montecristo are broadly 

similar to those of the MtAp deposits located south of Taltal, as well as to the εNdi values of 

several intrusions in the Coastal Batholith (Lucassen et al., 2006). In particular, the εNdi values are 

like those of the Copiapó Plutonic Complex (CPC) of Early Cretaceous age (+4.7 to +5.8; 
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Marschik et al., 2003) that is thought to be the source of the ore-forming fluids of the IOCG 

mineralization in the Punta del Cobre deposits (Marschik and Fontboté, 2001; Arévalo et al., 

2006). 

Sulfur isotope values obtained in this study for both IOCG events III and IV are consistent 

with sulfur being derived from a H2S-bearing, magmatic-hydrothermal fluid that transported the 

Cu, Mo, and Au (i.e., Rusk et al., 2004; Audetat et al., 2008, 2019; Kamenetsky and Kamenetsky, 

2010). This fluid also likely precipitated magnetite II, actinolite II, and small amounts of quartz 

and sulfides by cooling and interaction with the older MtAp mineralized rocks. Thus, the MtAp 

rocks only acted as structural and geochemical traps for the later IOCG mineralizing fluids, due 

to the brittle and oxidized nature of the magnetite. Such fluid-rock interactions would also create 

the calcic-iron-alkali alteration observed in the deeper parts of the system. 

In the Coastal Cordillera, the formation of iron-rich melts during the Middle-Late Jurassic 

appears to be controlled by contamination of the mantle wedge via slab-derived dehydration 

fluids. This process would promote partial melting of the mantle wedge, triggering in the most 

contaminated zones the separation of iron-rich melts from a parental mafic melt (Tornos et al., 

2021). In this model, after emplacement and crystallization of the MIC, iron-rich melts ascended 

along the transcrustal faults of the AFS due to a drop in pressure, followed by crystallization of 

magnetite I, actinolite I, and fluorapatite (Fig. 10); this event was accompanied by the 

crystallization at ca. 800-1200°C (Bain et al., 2021 and references therein) of the pegmatite in a 

pulsating regime of dewatering. High temperatures and the oxidized nature of these iron-rich 

melts—uniformly enriched in anhydrite (Tornos et al., 2017; Tornos et al., 2021) —together with 

the likely low Cu contents of the magnetite, inhibited the formation of significant sulfides. The 

small amounts of available reduced sulfur allowed precipitation below ca. 700°C of the sparse 

sulfides typically found in MtAp systems. The homogeneous structures found within the MtAp 
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veins of the study area, and the lack of explosion breccias, suggest that these veins crystallized 

below the two-phase boundary surface, at ca. 0.2 GPa fluid pressure.   

Geologic features, Hf, Sr–Nd, and S isotopic signatures are consistent with the IOCG 

mineralization at Montecristo being deposited from magmatic-hydrothermal fluids derived from 

crustally contaminated primitive intrusions of likely dioritic composition. In this model, 

upwelling fluids derived from the crystallization of the diorite react with the earlier MtAp 

mineralization, promoting the neoformation of large amounts of magnetite II together with minor 

actinolite and sulfides. Chalcopyrite and pyrite precipitate due to increases in pH and oxidation 

state of the fluids owing to reaction with magnetite I, a classical mechanism for destabilizing the 

chloride complexes that transport Cu at high temperatures (Liu and McPhail, 2005). Decrease in 

aH2Saq due to sulfide precipitation in turn destabilize the HS- complexes that control gold 

solubility (Shenberger and Barnes, 1989; Loucks and Mavrovenges, 1999; Zezin et al., 2007; 

Pokrovski et al., 2014), leading to its precipitation. Later collapse of the hydrothermal system 

should promote quartz saturation and precipitation of the observed quartz-chalcopyrite 

assemblage and later calcite veins.  Again, we have not found any evidence suggesting that the 

IOCG mineralization precipitated above the two-phase boundary, hence these veins also probably 

formed at relatively deep levels.  

In this scenario, the brecciated monzogabbro beneath the Abundancia vein as recorded by 

Díaz et al. (2018) may represent the upper part of a crystallizing subvolcanic cupola that served 

as the deep magmatic-hydrothermal root of the IOCG mineralizing system. Equivalent related 

breccias with Cu-Mo-(Au) mineralization hosted by diorite have previously been described by 

Tornos et al. (2010) a few kilometers from the Montecristo district, in the Tropezón IOCG 

deposit; there, breccia pipes containing tourmaline or quartz grade into IOCG-type mineralization 

containing magnetite, sulfides, and actinolite that replace mafic plutonic rocks. A direct link 
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between the IOCG mineralization and the nearby silicate intrusions has been proposed previously 

for other IOCG deposits in the Coastal Cordillera (Boric et al., 1990; Vila et al., 1996; Hopper 

and Correa, 2000; Marschik and Fontboté, 2001; Ray and Dick, 2002; Gelcich et al., 2003; 

Sillitoe, 2003). 

Erosion prevents our knowledge of mineralization that may have originally overlain these 

vein-like deposits. However, despite the difference in ages, these veins probably represent the 

roots of the abundant stratabound IOCG deposits in the Coastal Cordillera such as in the Punta 

del Cobre district. There, the IOCG mineralization replaces favorable horizons within Late 

Jurassic-Early Cretaceous andesite (Marschik and Fontboté, 2001), but is rooted in large NNW-

SSE to WNW-ESE tensional, sub-vertical structures that are infilled with an assemblage very 

similar to that of the IOCG stage at Montecristo. In fact, the late calcite veins at Montecristo are 

texturally identical to the uppermost part of the feeder structures in the Punta del Cobre district 

(N. Pop, pers. commun., 2015). 

In summary, our data provide evidence of the superposition of genetically unrelated MtAp 

and IOCG systems that were channelized along deep-rooted tensional structures. The isotopic 

data presented herein for independent sources of components within these MtAp and IOCG 

systems probably explains why, on a global scale, they are only rarely juxtaposed. Whereas 

MtAp systems are rather abundant, only a very few host superimposed Cu-Au IOCG 

mineralization. Importantly, however, the large size of some IOCG deposits is likely due to the 

fact that magnetite is an excellent geochemical trap, and that the Cu-rich event can be several 

m.y. younger than the host magnetite-rich rock (Rotherham, 1997; Bauer et al., 2018). 

 

2.7. Conclusions 
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Mineralization in the Montecristo vein system involved the formation at ca. 154 Ma of a 

MtAp assemblage of magnetite, fluorapatite, and actinolite having rather high εNdi values and 

initial 87Sr/86Sr ratios, emplaced within secondary structures of the transcrustal Atacama fault 

system. This early event was followed by the circulation of magmatic-hydrothermal fluids along 

the same secondary structures, and by partial replacement of the earlier MtAp mineralization by 

an IOCG assemblage derived from a more crustally contaminated source likely equivalent to the 

host Jurassic diorite. All mineralizing events took place within a relatively short time span of less 

than ~8.0 m.y. 

Although the genetic relationship between MtAp and IOCG deposits remains debatable, 

geochemical, mineralogical, geochronological, and field data presented in this study suggest that 

the IOCG and MtAp mineralization in the Montecristo district are genetically independent and 

formed at different times. The MtAp mineralization derived via the crystallization of an iron-rich 

melt, whereas the IOCG mineralization has a magmatic-hydrothermal origin most likely related 

to the crystallization of an underlying diorite. 
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Figure 1. (a) Location map and simplified regional geological formations in Montecristo mining district 
(modified from Escribano et al., 2013; Alvarez et al., 2016). (b) Location of IOCG and MtAp veins and 
simplified geological map of Montecristo district (modified from Álvarez et al., 2016). 
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Figure 2. Mineral assemblages of MtAp and IOCG mineralization stages in San Juan and Abundancia 
veins. Mineral textures and structures: b: banded; d: disseminated; i: inclusions; m: massive; mv: massive 

veins; peg: pegmatite; v: veinlets 
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Figure 3. (a) Mineralized sample from Abundancia vein showing MtAp and IOCG events (MOC-18-09). 
(b) Banded MtAp actinolite with perpendicular grows of coarse-grained fluorapatite and magnetite at 
Abundancia (MOC-18-09), overprinted by IOCG event. (c) Massive chalcopyrite vein with quartz at 
Abundancia (MOC-18-11a). (d) San Juan MtAp vein, with coarse-grained actinolite rock as shown. (e) 
Magnetite from San Juan vein with banded coarse-grained fluorapatite. 
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Figure 4. BSE images showing EPMA analysis traverses on actinolite (red), magnetite (green), and 
fluorapatite (blue), and spots of LA-ICPMS trace element analyses of actinolite (yellow; crosses are failed 

analyses). (a), (b) MtAp mineralization in Abundancia vein. (c) Mt-rich mineralization in Abundancia 
vein. (d), (e) IOCG mineralization in Abundancia vein. (f) MtAp mineralization remnants in IOCG zone. 
(g), (h) Coarse-grained actinolite and magnetite and fluorapatite in San Juan vein. act: actinolite; ap: 
apatite; cal: calcite; ccp: chalcopyrite; ilm: ilmenite; mt: magnetite; py: pyrite; qz: quartz
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(Previous pages) Figure 5. Results and error bars of all the traverses analyzed and spots of actinolite, 
magnetite, and fluorapatite from Abundancia and San Juan deposits. Plots show average composition of 
each mineral. (a) Classification chart for calcic amphiboles (after Leake et al., 1997) for actinolite 
analyzed in this study. (b) EPMA actinolite data. (c) LA-ICPMS trace element data on actinolite, 
normalized to continental crust (Rudnick and Gao, 2003). (d) EPMA magnetite data. (e) EPMA 
fluorapatite data. 
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Figure 6. 40Ar/39Ar dating results. (a) Plateau age, isochron age, and Ca/K ratios for sample MOC-18-09. (b) Plateau age, isochron age, and Ca/K 
ratios for sample MOC-18-05. 
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Figure 7. U–Pb and Hf isotope results on zircon from sample MOC-18-02. (a) CL images of 
representative zircon grains from host rock diorite after annealing process. (b) Concordia diagram. (c) 
Tera-Wasserburg diagram. (d) Weighted mean age plot. (e) εHfi vs age plot. 
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Figure 8. Initial Sr and Nd isotope compositions of Cretaceous and Jurassic MtAp deposits in Coastal 
Cordillera, including for MtAp mineralization in Abundancia and San Juan deposits recalculated for 154 
Ma, compared to those of volcanic and plutonic rocks of La Negra Formation, together with isotopic data 
from this study for IOCG event in Abundancia IOCG deposit (diagram modified from Tornos et al., 
2021). N zone: vein-like MtAp deposits hosted by Jurassic diorite; S zone: MtAp ore lenses hosted by 
coeval (sub-)volcanic intermediate rocks 
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Figure 9. d34S sulfide mineral compositions for MtAp and IOCG deposits in Chile and Peru.
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Figure 10. Genetic model for formation of San Juan-Abundancia system in Montecristo district. (a) 
Immiscible iron-rich melts ascend after separating from silicate melt and crystallize within tensional faults 
related to the Atacama fault system, after emplacement and crystallization of Matancilla intrusive 
complex. (b) Younger magmatic-hydrothermal fluids channelize along the structures and equilibrate with 
silicate igneous intrusions of Coastal Batholith and react with previous MtAp rocks, promoting the 
precipitation of an IOCG-like assemblage. (c) Replacement of favorable units by IOCG mineralization, 
forming stratabound deposits. Note that thicknesses shown are estimates.
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Table 1. Whole-rock Rb–Sr and Sm–Nd isotopic data for Abundancia IOCG mineralization. 

                  

Sample Description Rb Sr 87Sr/86Sr 
StdErr*10-6 

(2σ) 87Sr/86Sri  Sm Nd 143Nd/144Nd 
StdErr*10-6 

(2σ) εNdi 
MOC-18-06b Magnetite-

actinolite-sulfides 
0.6 12.4 0.704556 2.8 0.704249294 2.17 14.9 0.512822 1.5 5.7 

MOC-18-09b Magnetite-
actinolite-sulfides 

0.6 6.7 0.704935 3.8 0.704367326 0.54 5.2 0.512781 3.6 5.4 

MOC-18-12 Magnetite-
actinolite-sulfides 

0.5 5 0.705051 6.5 0.704417625 0.42 4.5 0.512858 1.9 7.0 
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Table 2. δ34S results for Abundancia IOCG mineralization.   
Sample Mineral Sample description δ34S ‰ (CDT) 

MOC-18-6-1 Ccp Magnetite, sulfides disseminated and in veinlets (ccp, py), fine-grained actinolite, 
fluorapatite (915m) 

1.9 

MOC-18-6-2 Ccp Magnetite, sulfides disseminated and in veinlets (ccp, py), fine-grained actinolite, 
fluorapatite (915m) 

2.0 

MOC-18-9-1 Ccp Magnetite, fluorapatite, fine-grained actinolite, sulfides, disseminated and in veinlets 
(py, ccp) (940m) 

0.6 

MOC-18-9-2 Py Magnetite, fluorapatite, fine-grained actinolite, sulfides, disseminated and in veinlets 
(py, ccp) (940m) 

0.3 

MOC-18-11-a-1 Ccp Late massive chalcopyrite vein with quartz (940m) 3.1 
MOC-18-11-a-2 Ccp Late massive chalcopyrite vein with quartz (940m) 3.1 
MOC-18-11-b-1 Ccp Magnetite, sulfides disseminated and in veinlets (ccp, py) (940m) 1.2 
MOC-18-11-b-2 Ccp Magnetite, sulfides disseminated and in veinlets (ccp, py) (940m) 1.2 
ABU-3 Py Magnetite, sulfides disseminated and in veinlets (ccp, py), fine-grained actinolite, 

fluorapatite (915m) 
3.4 

ABU-4 Py Magnetite, sulfides disseminated and in veinlets (ccp, py), fine-grained actinolite, 
fluorapatite (915m) 

1.8 

ABU-5 Py Magnetite, sulfides disseminated and in veinlets (ccp, py), fine-grained actinolite, 
fluorapatite (915m) 

0.5 

MOC-18-12 Ccp Magnetite, fine-grained actinolite, and sulfides (ccp, py) 2.0 
MOC-18-12 Ccp Magnetite, fine-grained actinolite, and sulfides (ccp, py) 1.6 
MOC-18-06b Ccp Magnetite, fluorapatite, fine-grained actinolite, and sulfides (ccp, py) 2.0 
MOC-18-06c Ccp Magnetite, fluorapatite, fine-grained actinolite, and sulfides (ccp, py) 2.4 

CDT: Canyon Diablo Troilite (CDT) standard  
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Chapter 3 

3.1. Conclusions 
 

The genetic relationship between MtAp and IOCG mineralization has been a controversial 

topic for many years. The key question has been whether these two types are end-members of the 

same mineralizing system, or form independently with no genetic relationship.  

The results from this research project contribute to a better understanding of the 

relationship, or lack thereof, between these two types of mineralization in a magmatic arc 

environment within the Chilean iron belt of northern Chile. The Montecristo district hosts IOCG 

veins that in the deepest parts are rich in magnetite, and coarse-grained pegmatitic fluorapatite 

and actinolite, and thus are classified as MtAp mineralization. These veins are hosted by a 

Jurassic diorite (U–Pb zircon date of 153.3 ± 1.8 Ma) and are spatially controlled by secondary 

structures of the Atacama fault system.  

The following conclusions are drawn from this study: 

1) Field data, such as the presence of massive magnetite bodies, coarse-grained pegmatitic 

fluorapatite and actinolite, and fluorapatite with comb-like textures or UST within the 

MtAp mineralization, strongly suggest that MtAp mineralization in the Montecristo 

district is of magmatic origin.  

2) Mineralogical studies of both the MtAp and IOCG mineralization show differences 

between minerals in both systems. Yellow CL emission of fluorapatite crystals, together 

with “poikilitic” fluorapatite hosting acicular actinolite crystals in the MtAp 

mineralization, are consistent with being crystallized from a melt. The fact that magnetite 

from the IOCG stage hosts quartz inclusions indicates deposition from hydrothermal 

fluids. 
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3) Mineral chemical data show that actinolite from both events is compositionally similar 

within error, suggesting that actinolite chemistry is not a successful tool for differentiating 

the two types of mineralization. However, magnetite from the IOCG event is enriched in 

Cu compared to that from the MtAp event, indicating a higher amount of Cu in the system 

during the IOCG event. 

4) The geochronological results suggest an early formation at ca. 154 Ma of the MtAp 

assemblage in the Montecristo district that includes magnetite, fluorapatite, and actinolite. 

This mineralization is characterized by higher εNdi values (+6.6 to +7.2) relative to the 

IOCG mineralization, and variable initial 87Sr/86Sr ratios (0.70426 and 0.70629). 

Formation of the MtAp mineralization is explained by ascending, immiscible iron-rich 

melts that intruded along secondary structures of the transcrustal Atacama fault system. 

5) At ~154-152 Ma, magmatic-hydrothermal fluids partially replaced the early MtAp 

mineralization by an IOCG assemblage that comprises chalcopyrite, pyrite, magnetite, 

actinolite, quartz, and gold, with the latest molybdenite crystallization at 151.8 ± 0.6 Ma. 

The IOCG mineralization has εNdi values of +5.4 and +5.7, and whole rock 87Sr/86Sri 

values of 0.70425 to 0.70442; the MtAp mineralization has similar 87Sr/86Sri ratios but 

higher εNdi values. Hf (εHfi = 5.0 to 6.7), Sr–Nd, and S isotopes (+0.3 to +3.4‰) support a 

magmatic-hydrothermal source of components in the IOCG mineralization. Fluids that 

deposited this mineralization were derived from a source having a more crustal signature 

than the MtAp mineralization, equivalent to the host Jurassic diorite. These magmatic-

hydrothermal fluids used the MtAp rocks as a trap, owing to their oxidizing and brittle 

characteristics, as a means to deposit the Cu-Au IOCG mineralization. 

6) εNdi values of the host diorite vary from +2.3 to +3.4, which are significantly lower than 

those of either the MtAp or the IOCG mineralizations.  
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7) Differences in the εNdi values can be explained by the magmatic-hydrothermal fluids of the 

IOCG system being a mixture of the higher εNdi values of the MtAp rocks, and the lower 

values of the host diorite, or of an unexposed and unidentified intrusion compositionally 

similar to the host diorite. These fluids likely were exsolved from the monzogabbro 

magma at deeper levels of the system. 

In summary, geochemical, mineralogical, geochronological, and field data obtained in 

this study suggest that the IOCG and the MtAp mineralization events in the Montecristo 

district are genetically independent, each having formed from fluids with different sources. 
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(Previous page) Figure 1. Photomicrographs of Abundancia and San Juan veins. (a) Dioritic host rock; 

XPL. (b) Plagioclase crystal in diorite; XPL. (c) CL image of plagioclase in diorite replaced by potassic 

feldspar and late calcite veinlets. (d) MtAp mineralization in Abundancia, with poikilitic euhedral 

fluorapatite and acicular fine-grained actinolite crystals, also disseminated in surrounding magnetite; XPL. 

(e) CL image of (d) showing yellowish color of fluorapatite. (f) Contact between MtAp and Mt-rich zones 

in Abundancia vein, the Mt-rich event being later; XPL. (g) Mt-rich mineralization with poikilitic 

fluorapatite and acicular fine-grained actinolite, surrounded by magnetite; XPL. (h) CL image of (g). (i), 

(j) IOCG event in Abundancia, with MtAp mineralization cut by ccp-py-qt-act-mt veinlets; XPL. (k), (l) 

BSE images of ccp-py-qz-act-mt IOCG veinlets. (m) Remnants of MtAp mineralization in IOCG zone, 

with coarse-grained poikilitic fluorapatite enclosing acicular actinolite crystals. (n) CL image of previous 

fluorapatite. (o) Bands of acicular, fine-grained actinolite within magnetite from MtAp mineralization in 

Abundancia. (p) BSE image of remnants of MtAp mineralization in IOCG zone. (q) Secondary electron 

image of laminar molybdenite with minor calcite. (r) BSE image of molybdenite crystals encrusted in 

open spaces of magnetite. (s) Coarse-grained fluorapatite and massive magnetite in San Juan vein; XPL. 

(t) CL image showing magmatic fluorapatite and late calcite veinlets in San Juan vein. (u) Coarse-grained 

actinolite with weak to moderate chloritization, and late calcite veinlets in San Juan vein; XPL. (v) BSE 

images showing crystals of magnetite and titanite with exsolution textures disseminated in actinolite in 

San Juan vein. Act: actinolite; amp: amphibole; ap: apatite; cal: calcite; chl: chlorite; ccp: chalcopyrite; 

kfs: potassic feldspar; mol: molybdenite, mt: magnetite; pl: plagioclase; qt: quartz; ttn: titanite. 
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APPENDIX 2 

Table 2A. Summary methods for EPMA analyses and LA-ICPMS trace element analyses of actinolite. 
           
EPMA                         
Model JEOL JXA-8230 Superprobe           
Voltage 15 kV            
Current 20 nA            
Spot size 3μm            
Secondary standard Kaersutite              

            
F Ti Mn Cl K Ca S Na Al Si Mg Fe 

Peak counting time (s) 10 40 40 20 20 40 40 20 20 20 20 40 
Background counting 
time (s) 5 20 20 10 10 20 20 10 10 10 10 20 
Element X-ray line Kα Kα Kα Kα Kα Kα Kα Kα Kα Kα Kα Kα 
Analyzing crystal LDE1 LIFL LIFL PETL PETL PETL PETL TAP TAP TAP TAP LIFH 
Primary Standard JMH_fluorapatite_319 rutile rhodenite tugtupite orthoclase diopside sphalerite albite albite diopside diopside almandine_garnet 
Avg limit of detection 
(ppm) 

252 63 47 18 21 18 31 48 40 77 41 54 

LA-ICP-MS                         
Model Thermo-Finnigan ELEMENT XR coupled with a GeoLas 193 nm Excimer laser system       
Pulse frequency 10 Hz            
Energy density 4 J/cm2            
Spot size 40 μm            
Gas blank 30s            
Signal 60s            
Internal standard Ca (from EPMA)           
Primary reference 
material 

NIST-610 
           

Secondary reference 
material NIST-612; BCR-2G           

Elements/isotopes 
7Li, 25Mg, 27Al, 29Si, 31P, 39K, 45Sc, 49Ti, 51V, 53Cr, 55Mn, 57Fe, 59Co, 60Ni, 65Cu, 66Zn, 71Ga, 75As, 77Se, 85Rb, 88Sr, 89Y, 90Zr, 93Nb, 95Mo, 
107Ag, 111Cd, 118Sn, 121Sb, 137Ba,  

 

  
139La, 140Ce, 141Pr, 146Nd, 147Sm, 153Eu, 157Gd, 159Tb, 163Dy, 165Ho, 166Er, 169Tm, 172Yb, 175Lu, 178Hf, 181Ta, 195Pt, 
197Au, 205Tl, 208Pb, 209Bi, 232Th, 238U       
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Table 2B. Actinolite average results for oxides (EPMA; wt. %) and trace elements (LA-ICP-MS; ppm) in Abundancia and San Juan 
veins. Minimum limits of detection (LOD) calculated by Iolite. 
 MOC-18-05 sd MOC-18-09C1 sd MOC-18-09C2 sd MOC-18-09C3_1 sd MOC-18-09C3_2 sd 

  
San Juan MtAp 

vein 
n = 40 Abundancia 

MtAp zone 
n = 10 Abundancia mt-

rich zone 
n = 20 Abundancia IOCG 

zone 

n = 
15 

Abundancia MtAp 

remnants in IOCG 

zone 

n = 3 

EPMA (wt. %)                     

F <LOD  <LOD  <LOD  <LOD  <LOD  

TiO2 0.04 0.01 0.02 0.01 0.02 0.01 0.01 0.01 0.02 0.01 

MnO 0.33 0.01 0.07 0.01 0.06 0.01 0.06 0.01 0.06 0.01 

Cl 0.04 0.00 0.05 0.00 0.05 0.00 0.02 0.00 0.09 0.01 

K2O 0.04 0.00 0.10 0.01 0.06 0.01 0.02 0.00 0.09 0.01 

CaO 12.48 0.03 12.43 0.03 12.15 0.03 12.34 0.03 12.64 0.03 

SO3 0.02 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01 

Na2O 0.11 0.01 0.24 0.02 0.22 0.02 0.24 0.02 0.22 0.02 

Al2O3 0.86 0.02 1.66 0.02 1.63 0.02 1.66 0.02 1.50 0.02 

SiO2 53.91 0.12 54.42 0.12 54.08 0.12 55.14 0.12 54.97 0.12 

MgO 15.20 0.08 18.63 0.08 18.01 0.08 18.70 0.08 18.59 0.08 

FeO 13.05 0.06 8.73 0.05 9.05 0.05 9.09 0.05 9.04 0.05 

Total recalculated 96.08 - 96.35 - 95.33 - 97.30 - 97.24 - 

Total(Mass%) 95.75 - 96.09 - 95.05 - 97.03 - 96.96 - 

LA-ICPMS (ppm) n = 3   n = 3   n = 4   n = 3   n = 3   
7
Li 

<LOD _ 
1.36 0.62 

2.11 0.74 2.17 0.66 3.80 1.40 

25
Mg 101,700 2,600 

118,733 1,833 115,450 2,725 120,067 2,700 117,300 6,467 

27
Al 3,832 122 

9,557 193 9,545 380 15,323 690 10,807 990 

29
Si 293,567 10,600 

293,300 8,167 285,000 11,475 290,967 9,467 252,333 15,000 

31
P 11.07 3.33 

21.83 4.67 13.90 4.28 16.63 4.50 <LOD _ 

39
K 218 7.30 

1054 50.00 612 34.75 282 13.67 896 43.33 

45
Sc 292 11.13 

2.67 0.27 3.99 0.32 1.42 0.17 1.32 0.31 

49
Ti 194 11.17 

68.73 7.00 77.35 11.25 19.33 2.57 106 15.37 
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51
V 188 6.47 

282 12.30 213 10.70 81.57 7.23 327 31.67 

53
Cr 327 15.00 

<LOD _ <LOD _ <LOD _ <LOD _ 

55
Mn 3308 111 

524 20.33 570 31.00 715 40.33 532 46.33 

57
Fe 121,967 3,667 

77,433 1,700 83,900 3,025 88,067 3,033 84,167 12,000 

59
Co 86.53 4.97 

60.00 1.73 64.63 2.25 78.40 2.50 65.57 9.33 

60
Ni 55.87 2.20 

201 8.87 232 11.83 177 10.17 259 35.00 

65
Cu 81.00 14.00 

2.11 0.68 34.41 36.57 74.48 17.04 1.45 1.15 

66
Zn 102 4.80 

30.47 2.47 33.00 3.58 33.40 2.40 38.17 6.40 

71
Ga 4.22 0.22 

8.13 0.41 7.97 0.81 6.33 0.42 10.20 1.77 

75
As 4.58 0.49 

5.89 0.62 3.66 0.66 6.90 0.75 3.56 1.32 

77
Se 

<LOD _ <LOD _ <LOD _ <LOD _ <LOD _ 

85
Rb 0.14 0.05 

0.39 0.09 0.19 0.05 0.08 0.04 0.32 0.13 

88
Sr 3.31 0.27 

5.16 0.29 4.91 0.43 10.16 1.80 4.90 0.70 

89
Y 1.75 0.16 

9.39 0.33 10.24 0.82 28.43 1.93 7.37 1.03 

90
Zr 1.81 0.19 

0.73 0.18 1.00 0.20 0.73 0.15 0.34 0.13 

93
Nb 0.01 0.01 

0.94 0.13 0.46 0.10 0.59 0.10 0.60 0.17 

95
Mo 0.08 0.05 

0.01 0.02 0.05 0.06 0.05 0.04 0.26 0.52 

107
Ag 

<LOD _ <LOD _ <LOD _ <LOD _ <LOD _ 

111
Cd 

<LOD _ 0.16 0.13 <LOD _ 0.12 0.11 <LOD _ 

118
Sn 0.31 0.12 1.34 0.22 1.19 0.25 0.73 0.18 1.25 0.25 

121
Sb 0.66 0.11 0.10 0.04 0.10 0.05 0.11 0.05 0.09 0.01 

137
Ba 0.34 0.17 0.41 0.15 0.40 0.18 1.00 0.48 0.45 0.53 

139
La 0.03 0.01 1.14 0.11 0.89 0.12 3.72 0.34 0.95 0.24 

140
Ce 0.12 0.03 4.46 0.24 3.43 0.28 14.06 1.00 3.54 0.49 

141
Pr 0.03 0.01 0.66 0.06 0.54 0.07 2.26 0.18 0.57 0.16 

146
Nd 0.19 0.07 4.00 0.42 3.49 0.53 13.50 1.07 3.56 1.78 

147
Sm 0.12 0.07 1.17 0.21 1.19 0.23 4.13 0.48 0.82 0.33 

153
Eu 0.03 0.02 0.18 0.04 0.19 0.06 0.57 0.09 0.16 0.15 

157
Gd 0.18 0.09 1.35 0.24 1.58 0.33 5.63 0.66 1.15 0.52 
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159
Tb 0.03 0.01 0.21 0.02 0.24 0.04 0.75 0.07 0.20 0.08 

163
Dy 0.21 0.06 1.48 0.18 1.74 0.29 4.96 0.39 1.42 0.37 

165
Ho 0.05 0.01 0.30 0.04 0.35 0.06 1.05 0.10 0.20 0.08 

166
Er 0.18 0.04 0.90 0.12 1.02 0.15 3.06 0.30 0.81 0.50 

169
Tm 0.02 0.01 0.13 0.02 0.13 0.03 0.42 0.05 0.09 0.06 

172
Yb 0.28 0.06 1.00 0.16 1.02 0.22 3.28 0.35 0.96 0.50 

175
Lu 0.09 0.02 0.15 0.02 0.16 0.03 0.64 0.07 0.17 0.05 

178
Hf 0.06 0.03 0.02 0.02 0.03 0.03 0.03 0.02 0.03 0.06 

181
Ta 0.00 0.00 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.02 

195
Pt <LOD _ <LOD _ <LOD _ <LOD _ <LOD _ 

197
Au <LOD _ <LOD _ <LOD _ <LOD _ <LOD _ 

205
Tl <LOD _ 0.01 0.02 <LOD _ <LOD _ <LOD _ 

208
Pb 0.40 0.08 0.29 0.06 0.23 0.08 0.30 0.07 0.14 0.07 

209
Bi 0.01 0.00 0.01 0.01 0.02 0.01 0.02 0.01 <LOD _ 

232
Th 0.25 0.06 0.31 0.08 0.42 0.08 0.11 0.03 0.20 0.10 

238
U 0.11 0.03 0.03 0.01 0.07 0.02 0.04 0.02 0.17 0.09 

 

          
Note: n = number of analyses; sd = standard deviation; <LOD = below limit of detection 
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Table 2C. Summary methods for EPMA magnetite analyses. 

               

EPMA                     
Model JEOL JXA-8230 

Superprobe          
Voltage 15 kV 

         
Current 100 nA 

         
Spot size 1μm 

         
Secondary standard KRN-10-02 

           

          
Cu Ni Mn Ti V K Ca S P Na 

Peak counting time (s) 60 60 60 60 60 60 60 60 60 20 
Background counting time (s) 30 30 30 30 30 30 30 30 30 10 

Element X-ray line Kα Kα Kα Kα Kα Kα Kα Kα Kα Kα 

Analyzing crystal LIFL LIFL LIFL LIFL LIFL PETL PETL PETL PETL TAP 

Primary Standard cuprite pentlandite rhodenite rutile V metal orthoclase diopside pyrite 
JMH_fluorap
atite_319 Albite 

Avg limit of detection (ppm) 26 23 23 30 22 10 8 13 14 42 

 

              
Al Si Mg Zn Co Fe Cr Ba 

60 60 60 60 60 20 60 60 
30 30 30 30 30 10 30 30 
Kα Kα Kα Kα Kα Kα Kα Lα 
TAP TAP TAP LIFH LIFH LIFH LIFH LIFH 

albite diopside diopside willemite Co metal magnetite chromium_oxide barite 
10 16 11  54    26             232                23       45 
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Table 2D. Magnetite average results from EPMA (wt. % oxide) for oxides in the Abundancia and San Juan veins. 

          
 MOC-18-03 sd MOC-18-09C1 sd MOC-18-09C2 sd MOC-18-09C3_1 sd MOC-18-09C3_2 sd 

  

San Juan MtAp 
vein 

n = 
20 

Abundancia 
MtAp zone 

n = 
20 

Abundancia mt-
rich zone 

n = 
20 

Abundancia 
IOCG zone n = 10 

Abundancia MtAp 
remnants in IOCG 

zone 
n = 20 

EPMA (wt. % oxide)                     
SiO2 0.56 0.00 0.75 0.00 0.34 0.00 0.19 0.00 0.74 0.00 
TiO2 0.03 0.01 0.02 0.01 0.03 0.01 0.05 0.01 0.02 0.01 
Al2O3 0.15 0.00 0.18 0.00 0.12 0.00 0.14 0.00 0.16 0.00 
Cr2O3 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.00 0.00 
V2O3 0.21 0.01 0.35 0.01 0.44 0.01 0.91 0.01 0.26 0.01 
CaO 0.11 0.00 0.18 0.00 0.10 0.00 0.04 0.00 0.18 0.00 
FeO 90.16 0.09 90.73 0.09 91.42 0.09 90.19 0.09 89.34 0.09 
Na2O 0.05 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.04 0.01 
P2O5 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.02 0.00 
K2O 0.02 0.00 0.07 0.00 0.01 0.00 0.06 0.00 0.02 0.00 
CuO 0.01 0.00 0.01 0.00 0.01 0.01 0.05 0.01 0.01 0.01 
MnO 0.02 0.00 0.02 0.00 0.02 0.00 0.02 0.00 0.01 0.00 
MgO 0.06 0.00 0.27 0.00 0.14 0.00 0.03 0.00 0.32 0.00 
ZnO 0.02 0.01 0.02 0.01 0.02 0.01 0.01 0.01 0.02 0.01 
NiO 0.03 0.00 0.03 0.00 0.03 0.00 0.02 0.00 0.03 0.00 
BaO 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 
CoO 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 
SO3 0.01 0.00 0.01 0.00 0.00 0.00 0.04 0.00 0.01 0.00 
Total recalculated 91.46 - 92.70 - 92.75 -  - 91.20 - 
Total(Mass%) 91.41 - 92.66 - 92.71 - 91.75 - 91.14 - 
           
Note: n = number of analyses, sd = standard deviation 
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Table 2E. Summary methods for EPMA fluorapatite analyses. 

                       

EPMA                           

Model JEOL JXA-8230 

Superprobe            
Voltage 15 kV 

            
Current 20 nA 

            
Spot size 20 μm 

            
Secondary standard JMH 

fluorapatite 

347               

            

 F Fe Mn As Ca Sr S Na Si Mg Cl Y P 

Peak counting time (s) 
20 40 40 40 20 40 40 20 20 40 20 40 20 

Background counting time (s) 
10 20 20 20 10 20 20 10 10 20 10 20 10 

Element X-ray line Kα Kα Kα Kα Kα Lα Kα Kα Kα Kα Kα Lα Kα 

Analyzing crystal LDE1 LIFL LIFL LIFL PETL PETL PETL TAP TAP TAP PETH PETH PETH 

Primary Standard 

JMH_fluor

apatite_319 

arseno

pyrite rhodenite 

arseno

pyrite 

JMH_fluor

apatite_319 celestite sphalerite albite albite diopside 

JMH_chlor

apatite_346 YP5O14 

JMH_fluor

apatite_319 

Avg limit of detection (ppm) 114 41 49 273 30 71 34 43 51 30 19 69 55 
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Table 2F. Fluorapatite average results from EPMA (wt. %) for oxides in Abundancia and San Juan veins. 

       
 MOC-18-03 sd MOC-18-09C1 sd MOC-18-09C2 sd MOC-18-09C3_2 sd 

 San Juan 
MtAp vein n = 20 Abundancia 

MtAp zone n = 20 Abundancia mt-
rich zone n = 20 

Abundancia 
MtAp remnants in 
IOCG zone 

n = 20 

EPMA (wt. %)         

F 2.49 0.04 2.26 0.04 2.14 0.04 2.19 0.04 

FeO 0.06 0.01 0.12 0.01 0.26 0.01 0.51 0.02 

MnO 0.02 0.01 0.04 0.01 0.04 0.01 0.05 0.01 

As2O5 0.09 0.06 0.10 0.06 0.16 0.06 0.13 0.07 

CaO 55.41 0.08 55.18 0.08 55.14 0.08 54.14 0.08 

SrO 0.02 0.01 0.03 0.02 0.03 0.02 0.03 0.02 

SO3 0.01 0.01 0.01 0.01 0.01 0.01 0.03 0.01 

Na2O 0.02 0.01 0.02 0.01 0.03 0.01 0.04 0.01 

SiO2 0.02 0.01 0.30 0.01 0.07 0.01 1.26 0.02 

MgO 0.01 0.01 0.18 0.01 0.03 0.01 0.50 0.01 

Cl 0.58 0.01 0.76 0.01 0.79 0.01 0.44 0.01 

Y2O3 0.03 0.01 0.02 0.01 0.02 0.01 0.02 0.01 

P2O5 42.32 0.16 41.99 0.16 42.01 0.16 41.09 0.16 
Total recalculated 101.08 - 101.02 - 100.74 - 100.44 - 

Total(Mass%) 99.80 - 99.63 - 99.57 - 99.35 - 

Note: n = number of analyses, sd = standard deviation
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APPENDIX 3 
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(previous pages) Figure 3. EPMA X-ray maps of actinolite from samples from Abundancia and San Juan 
deposits. (a) Sample MOC-18-09C1. (b) Sample MOC-18-09C2. (c) Sample MOC-18-09C3_1. (d) 
Sample MOC-18-09C3_2. (e) Sample MOC-18-05. 
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APPENDIX 4 

Table 4. 40Ar–39Ar results. 

                       

40Ar Total Err.40Ar 40Ar* 
Err.40Ar

* 
39Ar Err.39Ar %39Ar 38Ar Err.38Ar 38ArCl Err.38Cl 37Ar Err.37Ar 

MOC 18-05             

Concentrations (g/g) K= 3.19 E-04 Cl= 2.86 E-04 Ca= 1.02 E-01       

wt (g) 0.01467            

J 0.0011642            

3.745 E-08 8.51E-12 4.005 E-10 1.11 E-10 3.219 E-12 2.66E-14 7.61 3.252 E-11 5.47 E-14 8.802 E-12 8.66 E-14 1.088 E-09 2.52E-12 

1.166 E-08 2.10E-12 3.409 E-10 3.44 E-11 5.195 E-12 1.97E-14 12.28 2.600 E-11 4.35 E-14 1.863 E-11 5.53 E-14 6.335 E-10 1.53E-12 

4.535 E-09 1.01E-12 1.248 E-09 1.11 E-11 1.720 E-11 2.08E-14 40.64 9.293 E-11 1.47 E-13 9.011 E-11 4.86 E-14 2.143 E-09 4.86E-12 

3.722 E-09 8.85E-13 6.877 E-10 9.90 E-12 9.838 E-12 1.69E-14 23.25 4.942 E-11 7.82 E-14 4.702 E-11 4.85 E-14 1.460 E-09 3.34E-12 

3.725 E-09 7.94E-13 2.274 E-10 1.12 E-11 4.692 E-12 1.27E-14 11.09 2.103 E-11 3.60 E-14 1.861 E-11 5.25 E-14 6.372 E-10 1.54E-12 

1.073 E-08 2.46E-12 1.649 E-10 3.20 E-11 2.174 E-12 1.34E-14 5.14 1.517 E-11 2.79 E-14 8.397 E-12 5.95 E-14 3.040 E-10 8.64E-13 

 

36Ar Err.36Ar Age 
1 sigma 
Err 
Age 

Age 
+2sigma 

Age -
2sigma 

Ca/K 
Error 
Ca/K 

Cl/K 
Error 
Cl/K 

39/40 error 39/40 36/40 error 36/40 

1.244 E-10 3.71E-13 309.65 85.90 481.44  137.86  847.789 9.992 0.48667 0.00739 6.650 E-05 7.687 E-07 3.314 E-03 9.929 E-06 

3.806 E-11 1.15E-13 144.15 14.57 173.30  115.01  257.614 1.279 0.63841 0.00336 4.093 E-04 1.779 E-06 3.251 E-03 9.893 E-06 

1.156 E-11 3.59E-14 159.07 1.44 161.95  156.19  263.755 0.783 0.93266 0.00185 3.475 E-03 6.692 E-06 2.428 E-03 8.150 E-06 

1.053 E-11 3.25E-14 156.08 2.28 160.65  151.52  319.793 1.093 0.85079 0.00233 2.380 E-03 6.067 E-06 2.731 E-03 8.900 E-06 

1.188 E-11 3.74E-14 108.63 5.37 119.38  97.88  289.834 1.198 0.70583 0.00309 1.145 E-03 3.848 E-06 3.145 E-03 1.009 E-05 

3.545 E-11 1.07E-13 167.74 32.54 232.83  102.65  299.330 2.252 0.68764 0.00683 1.837 E-04 1.280 E-06 3.298 E-03 9.982 E-06 
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(continued) 

40Ar Total Err.40Ar 40Ar* Err.40Ar* 39Ar Err.39Ar %39Ar 38Ar Err.38Ar 38ArCl Err.38Cl 37Ar Err.37Ar 

MOC 18-09             

Concentrations (g/g) K= 5.57 E-04 Cl= 4.31 E-04 Ca= 6.17 E-02       

wt (g) 0.01794            

J 0.0011644            

2.552 E-08 5.80E-12 3.904 E-10 7.53 E-11 1.426 E-12 1.72E-14 1.69 2.115 E-11 3.76 E-14 5.253 E-12 7.01 E-14 3.691 E-11 3.78E-13 

4.006 E-09 6.13E-13 1.138 E-10 1.21 E-11 7.948 E-13 1.20E-14 0.94 4.890 E-12 1.22 E-14 2.415 E-12 7.28 E-14 3.203 E-11 3.75E-13 

3.610 E-09 8.44E-13 4.126 E-10 1.03 E-11 4.298 E-12 1.27E-14 5.09 2.612 E-11 4.55 E-14 2.398 E-11 5.09 E-14 2.771 E-10 7.53E-13 

1.836 E-08 4.64E-12 3.457 E-09 4.55 E-11 4.501 E-11 4.47E-14 53.32 2.000 E-10 3.16 E-13 1.895 E-10 5.40 E-14 2.352 E-09 5.28E-12 

6.985 E-09 1.45E-12 1.981 E-09 1.61 E-11 2.703 E-11 2.98E-14 32.01 1.106 E-10 1.72 E-13 1.068 E-10 4.63 E-14 1.561 E-09 3.53E-12 

5.381 E-09 1.28E-12 3.706 E-10 1.56 E-11 5.868 E-12 1.43E-14 6.95 2.886 E-11 4.88 E-14 2.553 E-11 5.00 E-14 3.882 E-10 9.61E-13 

 

36Ar Err.36Ar Age 
1 sigma 
Err Age 

Age 
+2sigma 

Age -
2sigma 

Ca/K 
Error 
Ca/K 

Cl/K 
Error 
Cl/K 

39/40 error 39/40 36/40 error 36/40 

8.419 E-11 2.51E-13 506.97 97.98 702.93  311.01  51.105 0.817 0.65580 0.01188 5.489 E-05 6.729 E-07 3.298 E-03 9.881 E-06 

1.304 E-11 4.06E-14 285.22 30.77 346.77  223.68  80.350 1.566 0.54096 0.01836 1.930 E-04 3.008 E-06 3.254 E-03 1.015 E-05 

1.078 E-11 3.43E-14 199.34 5.01 209.36  189.31  130.721 0.546 0.99324 0.00379 1.139 E-03 3.624 E-06 2.967 E-03 9.539 E-06 

5.050 E-11 1.51E-13 159.88 2.11 164.10  155.66  105.043 0.266 0.74934 0.00090 2.366 E-03 2.824 E-06 2.719 E-03 8.283 E-06 

1.716 E-11 5.34E-14 153.43 1.26 155.96  150.90  116.523 0.304 0.70308 0.00096 3.719 E-03 4.897 E-06 2.400 E-03 7.711 E-06 

1.688 E-11 5.21E-14 133.75 5.65 145.04  122.46  134.297 0.486 0.77450 0.00255 1.042 E-03 2.764 E-06 3.119 E-03 9.715 E-06 
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APPENDIX 5 

Table 5. Geochronology results for zircon from host diorite (MOC-18-02): U–Pb–Th LA-ICPMS analytical data. Zircon grains from stages 
2 and 3 with radiation damage were ignored for final age calculations. 
    Isotopic ratios 

Sample MOC-18-02 U approx. Th approx.  

U/th 

 207Pb 

2SE 

206Pb 

2SE rho 

238U 

2SE 

207Pb 

2SE rho 

208Pb 

2SE 
spot # [ppm] [ppm]  235U 238U 206Pb 206Pb 232Th 

01a 3080 5400 0.938  0.1533 0.009 0.02297 0.0014 0.43549 43.53505 2.65342 0.0496 0.0024 0.33989 0.00592 0.00053 

03a 2200 4630 0.848  0.1615 0.0064 0.0234 0.0012 0.39051 42.73504 2.191541 0.05 0.0016 0.16524 0.00641 0.00047 

06a 5720 26300 0.4904  0.1582 0.0042 0.02332 0.0011 0.53561 42.88165 2.022719 0.04931 0.00063 0.22631 0.00643 0.00042 

07a 3470 11060 0.836  0.1592 0.0049 0.02331 0.0011 0.27556 42.90004 2.024455 0.0496 0.0011 0.34411 0.00646 0.00044 

08a 1484 6090 0.801  0.1601 0.0053 0.02363 0.0011 0.35949 42.31909 1.969996 0.0495 0.0012 0.16461 0.00634 0.00044 

11a 2583 1060 4.66  0.167 0.0048 0.02421 0.0012 0.46667 41.30525 2.047348 0.05049 0.0009 0.19352 0.00667 0.0005 

12a 3380 19700 0.412  0.1459 0.0045 0.02147 0.001 0.40153 46.57662 2.169381 0.0496 0.001 0.20506 0.00583 0.00039 

18a 2664 22370 0.5327  0.1609 0.0052 0.02339 0.0011 0.45802 42.75331 2.01063 0.0505 0.0011 0.14338 0.00635 0.00043 

19a 2083 20320 0.592  0.1689 0.0069 0.02245 0.0011 0.21911 44.54343 2.182529 0.0551 0.0021 0.36546 0.00612 0.00044 

21a 1747 19410 0.709  0.1494 0.005 0.02221 0.0011 0.12929 45.02476 2.229952 0.0491 0.0012 0.16562 0.00583 0.0004 

22a 5320 118000 0.448  0.1502 0.0056 0.02209 0.0011 0.44179 45.26935 2.254246 0.0497 0.0014 0.1861 0.00576 0.00042 

23a 562 11350 0.547  0.1739 0.0096 0.02503 0.0013 0.33742 39.95206 2.075017 0.0514 0.0025 0.16474 0.00576 0.00056 

28a 1197 697 2.93  0.1609 0.0053 0.0237 0.0011 0.37217 42.19409 1.958376 0.0496 0.0012 0.16404 0.00666 0.00049 

30a 1427 1179 1.191  0.1612 0.0058 0.02422 0.0012 0.2985 41.28819 2.045658 0.0486 0.0014 0.23245 0.00664 0.00045 

31a 1750 1795 0.861  0.1608 0.0054 0.02388 0.0012 0.46649 41.87605 2.104324 0.0487 0.0011 0.09649 0.00653 0.00045 

32a 3590 1478 2.011  0.1664 0.0053 0.0239 0.0012 0.62178 41.841 2.100804 0.05047 0.00095 -0.015 0.00627 0.00043 

33a 1773 1940 0.817  0.1603 0.0071 0.02295 0.0012 0.43364 43.57298 2.278326 0.0507 0.0018 0.1331 0.00609 0.00045 

35a 5000 7550 0.5963  0.1577 0.0043 0.02325 0.0011 0.58177 43.01075 2.034917 0.04942 0.0007 0.10043 0.00644 0.00042 

36a 1930 1360 1.442  0.1548 0.006 0.02247 0.0012 0.41036 44.50378 2.376704 0.0505 0.0015 0.26325 0.00634 0.00048 

37a 1690 1460 1.101  0.173 0.0075 0.02483 0.0013 0.46883 40.27386 2.108579 0.051 0.0017 0.11887 0.00634 0.00049 

38a 3200 3210 0.92  0.1602 0.0045 0.02362 0.0011 0.42706 42.337 1.971664 0.04974 0.00079 0.19957 0.00635 0.00042 

41a 1463 1270 1.228  0.1687 0.0054 0.02416 0.0012 0.43084 41.39073 2.055831 0.0504 0.0011 0.09644 0.00643 0.00045 

42a 462 523.7 0.962  0.1663 0.0076 0.02472 0.0012 0.19023 40.45307 1.963741 0.0486 0.0018 0.07031 0.00678 0.0005 

43a 1352 1291 1.16  0.1644 0.0052 0.02402 0.0011 0.27313 41.63197 1.906543 0.0499 0.0012 0.28616 0.00646 0.00045 

44a 1118 802 3.61  0.1649 0.0057 0.02387 0.0011 0.3096 41.89359 1.93058 0.0502 0.0013 0.16209 0.00698 0.00055 

45a 4360 7690 0.606  0.1582 0.0044 0.02265 0.0011 0.52757 44.15011 2.144155 0.05045 0.00078 0.15947 0.00627 0.00041 

47a 3852 5890 0.705   0.1579 0.0043 0.02275 0.0011 0.53644 43.95604 2.125347 0.0501 0.00071 0.19161 0.0064 0.00042 
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(cont.) 

 

 Ages (Ma)  Zircon radiation damage 
 207Pb 

2SE 

206Pb 

2SE 

207Pb 

2SE 

208Pb 

2SE 

 D Radiation damage stage 

spot # 
235U 238U 206Pb 232Th  (Murakami et al., 1991)  (Nasdala et al., 2004) 

01a 145 8 146 9 160 110 119 11  2.08854E+15 2 

03a 152 6 149 8 179 69 129 10  1.61186E+15 2 

06a 149 4 149 7 155 29 130 9  5.83405E+15 3 

07a 150 4 149 7 176 49 130 9  2.97523E+15 2 

08a 150 5 151 7 153 52 128 9  1.44846E+15 1 

11a 157 4 154 7 200 39 134 10  1.4355E+15 1 

12a 138 4 137 7 163 46 118 8  3.60799E+15 2 

18a 151 5 149 7 203 48 128 9  3.88325E+15 2 

19a 159 6 143 7 377 82 123 9  3.22597E+15 2 

21a 141 4 142 7 130 52 118 8  2.9465E+15 2 

22a 142 5 141 7 186 67 116 9  1.5329E+16 3 

23a 162 8 159 8 220 110 116 11  1.69008E+15 2 

28a 151 5 151 7 154 49 134 10  6.76127E+14 1 

30a 152 5 154 7 110 59 134 9  8.63726E+14 1 

31a 151 5 152 7 121 49 132 9  1.08634E+15 1 

32a 156 5 152 7 201 41 126 9  1.96944E+15 2 

33a 151 6 146 7 202 76 123 9  1.07036E+15 1 

35a 149 4 148 7 158 31 130 9  3.29826E+15 2 

36a 146 5 143 7 216 70 128 10  1.0578E+15 1 

37a 162 7 158 8 224 74 128 10  1.05872E+15 1 

38a 151 4 151 7 171 35 128 9  1.96477E+15 2 

41a 158 5 154 7 199 47 130 9  8.92812E+14 1 

42a 155 7 157 8 95 76 137 10  3.02398E+14 1 

43a 154 5 153 7 168 51 130 9  8.33532E+14 1 

44a 155 5 152 7 177 56 141 11  6.5349E+14 1 

45a 149 4 144 7 202 35 126 8  2.92067E+15 2 

47a 149 4 145 7 195 33 129 9  2.49714E+15 2 
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APPENDIX 6 

Table 6. Hf results for zircon grains from LASS, and calculation of εNdi for host diorite. 

 Lu-Hf Parameters (Bouvier et al., 2008)     (Vervoort et al., 2017)    CHUR today      

1.867E-11   Lu 176 decay constant*  Depleted Mantle Parameters    
176Hf/177Hf 0.282785    

0.0336   176Lu/177Hf CHUR present day  0.039760 176Lu/177Hf    
176Lu/177Hf 0.0336    

0.282785   176Hf/177Hf CHUR present day  0.283238 176Hf/177Hf    decay* 1.867E-11    

*Söderlund et al., 2004            

 

eHf(t) = 1.50 * eNd(t) + 1.57 (Vervoort et al., 2011).  
Rearranged for εNd(t)  
eNd(t) = (eHf(t) - 1.57) / 1.50 (Vervoort et al., 2011).  

 

MOC-18-02 zircon crystals @ ~153 Ma                       

Analysis #   Today Age (Ma) Sample Age (a) 176Lu/177Hf 176Hf/177Hf 

CHUR at 

age m 

Sample at 

age m 

εHf 

today 

εHf @ 

153 Ma  

εNd 

today 

εNd @ 153 

Ma 

8a  0 150.5 0.15050 1.505E+07 0.000631 0.282924 0.282776 0.282924 4.92 5.24  2.23 2.44 

11a  0 154.2 0.15420 1.542E+07 0.001109 0.282918 0.282775 0.282918 4.70 5.03  2.09 2.30 

28a  0 151 0.15100 1.510E+07 0.000546 0.282930 0.282776 0.282930 5.13 5.46  2.37 2.58 

30a  0 154.2 0.15420 1.542E+07 0.000886 0.282949 0.282775 0.282949 5.80 6.13  2.82 3.03 

31a  0 152.1 0.15210 1.521E+07 0.001189 0.282935 0.282775 0.282935 5.30 5.63  2.49 2.70 

37a  0 158.1 0.15810 1.581E+07 0.000927 0.282965 0.282775 0.282965 6.37 6.71  3.20 3.41 

41a  0 153.9 0.15390 1.539E+07 0.000694 0.282923 0.282775 0.282923 4.88 5.21  2.21 2.42 

42a  0 157.4 0.15740 1.574E+07 0.000928 0.282929 0.282775 0.282929 5.09 5.43  2.35 2.56 

43a  0 153 0.15300 1.530E+07 0.000696 0.282944 0.282775 0.282944 5.62 5.96  2.70 2.91 

44a  0 152.1 0.15210 1.521E+07 0.000768 0.282928 0.282775 0.282928 5.06 5.39  2.32 2.53 
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(cont.) 

 

 

 
 

 εHf  εHf 
Time Time (Ga) DM DM CHUR CHUR 
0 0 0.283238 16.01924 0.282785 0.000000 
100 0.1 0.283164 15.61563 0.282722 0.000000 
200 0.2 0.283089 15.21109 0.282659 0.000000 
300 0.3 0.283015 14.80561 0.282596 0.000000 
400 0.4 0.282940 14.39919 0.282533 0.000000 
500 0.5 0.282865 13.99183 0.282470 0.000000 
600 0.6 0.282790 13.58353 0.282406 0.000000 
700 0.7 0.282715 13.17428 0.282343 0.000000 
800 0.8 0.282640 12.76408 0.282279 0.000000 
900 0.9 0.282564 12.35293 0.282216 0.000000 
1000 1 0.282489 11.94082 0.282152 0.000000 
1100 1.1 0.282413 11.52776 0.282088 0.000000 
1200 1.2 0.282337 11.11374 0.282024 0.000000 
1300 1.3 0.282261 10.69875 0.281960 0.000000 
1400 1.4 0.282185 10.28280 0.281895 0.000000 
1500 1.5 0.282109 9.86588 0.281831 0.000000 
1600 1.6 0.282032 9.44799 0.281766 0.000000 
1700 1.7 0.281956 9.02913 0.281701 0.000000 
1800 1.8 0.281879 8.60930 0.281637 0.000000 
1900 1.9 0.281802 8.18848 0.281572 0.000000 
2000 2 0.281725 7.76668 0.281507 0.000000 
2100 2.1 0.281648 7.34390 0.281441 0.000000 
2200 2.2 0.281571 6.92013 0.281376 0.000000 
2300 2.3 0.281493 6.49538 0.281311 0.000000 
2400 2.4 0.281416 6.06963 0.281245 0.000000 
2500 2.5 0.281338 5.64289 0.281180 0.000000 
2600 2.6 0.281260 5.21515 0.281114 0.000000 
2700 2.7 0.281182 4.78641 0.281048 0.000000 
2800 2.8 0.281104 4.35666 0.280982 0.000000 
2900 2.9 0.281026 3.92591 0.280916 0.000000 
3000 3 0.280947 3.49415 0.280849 0.000000 
3100 3.1 0.280869 3.06139 0.280783 0.000000 
3200 3.2 0.280790 2.62760 0.280716 0.000000 
3300 3.3 0.280711 2.19280 0.280650 0.000000 
3400 3.4 0.280632 1.75698 0.280583 0.000000 
3500 3.5 0.280553 1.32014 0.280516 0.000000 
3600 3.6 0.280474 0.88227 0.280449 0.000000 
3700 3.7 0.280394 0.44338 0.280382 0.000000 
3800 3.8 0.280315 0.00345 0.280315 0.000000 
3900 3.9 0.280247 0.00000 0.280247 0.000000 
4000 4 0.280180 0.00000 0.280180 0.000000 
4100 4.1 0.280112 0.00000 0.280112 0.000000 
4200 4.2 0.280044 0.00000 0.280044 0.000000 
4300 4.3 0.279976 0.00000 0.279976 0.000000 
4400 4.4 0.279908 0.00000 0.279908 0.000000 
4500 4.5 0.279840 0.00000 0.279840 0.000000 
4560 4.56 0.279799 0.00000 0.279799 0.000000 



 102 

APPENDIX 7 

 

Table 7. Re–Os dates for two samples with slickenside fractures coated with molybdenite from Abundancia vein. 

           

AIRIE 
Run # Sample Name Re, 

ppm 
Re err, 
abs (ppm) 

187Os, 
ppb 

187Os err, 
abs 
(ppb) 

OsCommon, 
ppb 

OsCommon, err, 
abs (ppb) 

Age, 
Ma 

abs err, ± 
in Ma, with λ  

Sample 
weight, 
g 

MD-1869 MOC 18-07G 316 926 559.8 3.1 0.03542 0.00051 169 494 0.1062 
MD-1870 MOC 18-07A 19.85 0.63 34.01 0.19 0.00238 0.00031 163.4 5.3 0.1596 
MD-1886 MOC 18-07A (b, same sep) 23.138 0.042 39.395 0.015 0.00000 0.00040 162.38 0.60 0.0533 
MD-1887 MOC 18-07G (b, same sep) 369.72 0.60 588.38 0.20 0.02151 0.00506 151.79 0.55 0.0217 
       
Re–Os determinations used Carius tube dissolution with mixed double-Os spike (Markey et al., 2003). 
Isotopic measurements were made using Triton TIMS instrument, AIRIE Program, Colorado State University. 
Designation of (b, same sep) indicates that same mineral separate was used for second analysis.   
Runs MD-1869 and MD-1870 were both underspiked, and data should not be used except for illustrative purposes. 
Runs MD-1886 and MD-1887 should be used because spiking was corrected for these runs, as seen in normal uncertainties for molybdenite ages. 
All data reported at 2-sigma uncertainty, inclusive of 187Re decay constant uncertainty (l); decay constant of Smoliar et al. (1996) was used for age calculations; 
assumed Os initial ratio = 0.2. 
  
For MD-1869 and MD-1870, Re blank = 2.13 ± 0.06 pg, Os blank = 0.099 ± 0.008 pg with 187Os/188Os = 0.350 ± 0.023  
For MD-1886 and MD-1887, Re blank = 11.77 ± 0.03 pg, Os blank = 0.130 ± 0.003 pg with 187Os/188Os = 0.350 ± 0.007  
Blanks and common Os present are both insignificant to Re–Os age calculations. 


