THE SYNTHESIS OF AN ELECTRON DEFICIENT DIENE AND PROGRESS TOWARDS THE FIRST TOTAL SYNTHESIS OF JATRORRHIZINE

CENTRE FOR NEWFOUNDLAND STUDIES

TOTAL OF 10 PAGES ONLY MAY BE XEROXED

(Without Author’s Permission)

ALAN SWINAMER
The author has granted a non-exclusive licence allowing the National Library of Canada to reproduce, loan, distribute or sell copies of this thesis in microform, paper or electronic formats.

The author retains ownership of the copyright in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author’s permission.

L’auteur a accordé une licence non exclusive permettant à la Bibliothèque nationale du Canada de reproduire, prêter, distribuer ou vendre des copies de cette thèse sous la forme de microfiche/film, de reproduction sur papier ou sur format électronique.

L’auteur conserve la propriété du droit d’auteur qui protège cette thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.
THE SYNTHESIS OF AN ELECTRON DEFICIENT DIENE

and

PROGRESS TOWARDS THE FIRST TOTAL SYNTHESIS OF JATRORRHIZINE

by

ALAN SWINAMER

B. Sc. (1993), Dalhousie University
Halifax, Nova Scotia, CANADA

A thesis submitted to the School of Graduate Studies
in partial fulfillment of the requirements
for the degree of Master of Science

Department of Chemistry
Memorial University of Newfoundland
St. John's, Newfoundland, Canada

DECEMBER 1997
Abstract

The methodology for the synthesis of a new electron deficient 1,3-diene 44 was developed utilizing readily available starting materials. Generation of the diene was accomplished by introducing α,β-unsaturation to an ester group via a sulfoxide elimination reaction. The diene itself polymerized readily, thus it was not isolated but was generated in situ in the presence of dienophiles with which the diene could react. The Diels-Alder properties of the diene have not as yet been studied but preliminary work on appropriate conditions for its generation was accomplished. This work suggested that the generation of the diene can be accomplished under sufficiently mild conditions that Diels-Alder reactions of the diene may occur before polymerization. Related work on similar electron deficient 1,3-dienes which are not generated in situ indicated that Diels-Alder reactions were occurring between these types of dienes and a variety of dienophiles, including electron rich, electron neutral and electron deficient dienes.

A new approach to the first total synthesis of the protoberberine alkaloid, jatrorrhizine 154, was investigated using readily available starting materials. This convergent synthesis featured a Suzuki-type biaryl cross-coupling reaction between a triflate 308 and a boronic acid 342 which proceeded in good yield. The present synthesis is the first known case of the synthesis of a protoberberine alkaloid using the biaryl cross-coupling methodology. The synthesis was accomplished on a small scale only as the isoquinolinol 318 was available in limited quantities. This synthetic route can be readily applied to the synthesis of other members of the protoberberine family of alkaloids, many of which have shown potential medicinal uses.
Acknowledgments

I am deeply grateful to my supervisor, Dr. Graham Bodwell, for his enthusiastic supervision, attitude and encouragement. Generous financial support is also sincerely appreciated.

I would like to thank Dr. C. Jablonski, Ms. Nathalie Brunet, Mr. David Miller and Mr. Ed Vessey for excellent NMR services and Ms. Marion Baggs and Dr. B. Gregory for exceptional Mass Spectral Analyses. The support of the Chemistry Department and the School of Graduate Studies is also appreciated. Special thanks go to Dr. J. Burnell and Dr. P. Golding for valued discussions. Thanks to the General Office and Stores Staff for providing their respective invaluable services.

Many thanks and best wishes to my fellow graduate students for helpful discussions, both professional and social. Special recognition is extended to Heather Davis, Chris Sheppard, Steve Copp, Colin Cameron, Zulan Pi, Murray Park, Yvette Favaro, Sue Budge, Jim Farrell, Shuguang Zhu, Sheldon Crane, Ron Buckle and Lori Burry for being a happening bunch of Chem Geeks. Thanks to the undergraduate society, especially Jane, Neale, Mark, Jeff and Ian, for keeping the Horse running.

All the best to Krista Blundell, Gerry MacDonald, Don Hodder, Kathleen Murphy, Michelle Young and Lisa Gillis for helping to distract me from the lab.

My most heartfelt appreciation goes to Leigh Bishop for being there through everything. Take good care of Sam!
CALVIN ON RESEARCH...

CALVIN AND HOBBES © 1995 Watterson. Reprinted with permission of UNIVERSAL PRESS SYNDICATE. All rights reserved.
Table of Contents

Title ... i

Abstract .. ii

Acknowledgement .. iii

Table of Contents .. v

List of Figures .. vi

List of Schemes .. vii

List of Abbreviations ... xii

Dedication ... xv

Chapter 1. Introduction to Diels-Alder Chemistry .. 1

Chapter 2. Synthesis of the Electron-Deficient Diene ... 16

Chapter 3. Conclusions of Diels-Alder Work .. 32

Chapter 4. Experimental for Diels-Alder Work ... 36

Chapter 5. Introduction to Protoberberines Synthesis .. 49

Chapter 6. Progress Towards the Total Synthesis of Jatrorrhizine ... 79

Chapter 7. Conclusions of Jatrorrhizine Synthesis .. 111

Chapter 8. Experimental of Jatrorrhizine Synthesis .. 116

References .. 135

Appendix ... 152
List of Figures

Figure 1.1 HOMO-LUMO orbital arrangements for the Diels-Alder reaction 3
Figure 1.2 Representation of substituent effects on orbital energies 4
List of Schemes

Scheme 1.1 Diels-Alder reaction of butadiene with ethylene ... 2
Scheme 1.2 Typical reaction of Danishefsky's diene .. 4
Scheme 1.3 Frontier orbital coefficients of Danishefsky's diene and an electron-deficient dienophile ... 5
Scheme 1.4 Synthesis of dl-vernolepin ... 6
Scheme 1.5 Typical acyclic heteroatomic dienes and dienophiles .. 7
Scheme 1.6 Examples of heteroatomic Diels-Alder reactions ... 7
Scheme 1.7 Examples of carbon containing electron-deficient 1,3-dienes 8
Scheme 1.8 Frontier orbital coefficients of an electron-deficient diene and an electron-rich dienophile ... 9
Scheme 1.9 Potential synthetic transformations of Diels-Alder adducts of 44 10
Scheme 1.10 Electron-deficient 1,3-butadienes ... 10
Scheme 1.11 First synthesis of compounds 44, 59-61 .. 11
Scheme 1.12 Isomerization of diene 41 to 69 .. 13
Scheme 1.13 In situ generation of diene 69 ... 13
Scheme 1.14 Diels-Alder reactions of diene 69 ... 14
Scheme 1.15 Further Diels-Alder reaction of compound 80 ... 15
Scheme 2.1 Mechanism of sulfoxide elimination ... 17
Scheme 2.2 Potential products of sulfoxide elimination from 91 .. 18
Scheme 2.3 Transition states of sulfoxide elimination from ethyl 2-
(methylsulfinyl)decanoate ... 18
Scheme 2.4 Electron deficient dienes related to 44 .. 19
Scheme 2.5 Effect of sulfoxide substituent on elimination reaction 19
Scheme 2.6 Synthesis of diene precursor 91
Scheme 2.7 Attempted synthesis of 91 via 111
Scheme 2.8 Possible reactions of enolate 112
Scheme 2.9 Byproduct of the synthesis of 111
Scheme 2.10 Byproduct of synthesis of compound 91
Scheme 2.11 Dienophiles attempted in Diels-Alder reactions with 91
Scheme 2.12 Attempted reaction of 91 with ethyl vinyl ether
Scheme 2.13 Possible reactions of 91 in ethyl vinyl ether
Scheme 2.14 Synthesis of second diene precursor 130
Scheme 2.15 Synthesis of enol tosylate 134
Scheme 2.16 Synthesis of (Z)-methyl 3-iodopropenoate 137
Scheme 2.17 Rationalization of stereoselectivity of hydroiodination reaction
Scheme 2.18 Rationalization of stereoselectivity of hydroiodination reaction
Scheme 3.1 Two direct precursors to diene 44
Scheme 3.2 Possible electron deficient 1,3-butadienes
Scheme 3.3 Alternate precursors to the electron deficient dienes
Scheme 5.1 Natural products of pharmaceutical interest
Scheme 5.2 Characteristic skeleton of the protoberberine alkaloids
Scheme 5.3 Interconversion of quaternary protoberberine salts with
tetrahydroprotoberberines
Scheme 5.4 Pictet-Spengler reaction in protoberberine synthesis
Scheme 5.5 Effect of phenol substituent on Pictet-Spengler reaction
Scheme 5.6 Synthesis of compound 167
Scheme 5.7 Bromine as a protecting group in the Pictet-Spengler reaction
Scheme 5.8 Failure of bromine directed Pictet-Spengler reaction
Scheme 5.9 Closure of the C-ring by a Bischler-Napieralski reaction
Scheme 5.10 Attempted bromine protection in Bischler-Napieralski reaction 58
Scheme 5.11 Failure of the bromine-directed Bischler-Napieralski reaction 59
Scheme 5.12 Failure of bromine protection ... 60
Scheme 5.13 Bischler-Napieralski reaction in closure of B-ring 60
Scheme 5.14 Synthesis of 1,2,3,4 tetrasubstituted compound for
Bischler-Napieralski reaction ... 61
Scheme 5.15 Synthesis of 1,2,3,4 tetrasubstituted compound for
Bischler-Napieralski reaction ... 62
Scheme 5.16 Use of homophthalic anhydride 197 in protoberberine synthesis 62
Scheme 5.17 Classical approach to 1,2,3,4-tetrasubstituted lactones 63
Scheme 5.18 Use of lactone 202 in tetrahydroprotoberberine synthesis 64
Scheme 5.19 Synthesis of 1,2,3,4-tetrasubstituted lactones via bromine protection ... 64
Scheme 5.20 Improved approach to 1,2,3,4-tetrasubstituted lactones 65
Scheme 5.21 Use of bromoester 212 in tetrahydroprotoberberine synthesis 66
Scheme 5.22 Synthesis of 3-hydroxy-4-methoxyphenylacetic acid 189 67
Scheme 5.23 Protoberberine synthesis via dihydroisoquinoline intermediate 218 67
Scheme 5.24 Synthesis of isoquinoline 215 via Pomerantz-Fritsch reaction 68
Scheme 5.25 Use of Pomerantz-Fritsch reaction in protoberberine synthesis 69
Scheme 5.26 Conversion of 5-hydroxyprotoberberine to tetrahydroprotoberberine ... 70
Scheme 5.27 Synthesis of protoberberines via Pomerantz-Fritsch type reaction 70
Scheme 5.28 Protoberberine synthesis via isoquinoline-1-carboxaldehyde oxime 71
Scheme 5.29 Synthesis of isoquinoline-1-carboxaldehyde oxime 235 72
Scheme 5.30 Ortho-lithiation approach to protoberberine alkaloids 73
Scheme 5.31 Cyclodehydration of 245 to protoberberine 219 74
Scheme 5.32 Synthesis of chiral formamidine for ortho-lithiation reaction 75
Scheme 5.33 Chiral ortho-lithiation approach to protoberberine synthesis 76
Scheme 5.34 Synthesis of protoberberines via carbon monoxide insertion 77
Scheme 5.35 Synthesis of protoberberines via photolysis 77
Scheme 5.36 Synthesis of protoberberines via benzyne intermediate 77
Scheme 5.37 Synthesis of protoberberines via benzocyclobutene intermediate 78
Scheme 6.1 Retrosynthetic analysis of jatrorrhizine ... 80
Scheme 6.2 Potential syntheses of other protoberberines 82
Scheme 6.3 Benzylation of isovanillin ... 82
Scheme 6.4 Wittig reaction of 278 .. 83
Scheme 6.5 Synthesis of compound 282 ... 83
Scheme 6.6 Catalytic hydrogenolysis of benzyl ethers ... 84
Scheme 6.7 Generation of diimide ... 85
Scheme 6.8 Reduction of 281 by diimide ... 86
Scheme 6.8 Transition states of diimide reduction for E and Z alkenes 86
Scheme 6.9 Schlosser modification of Wittig reaction ... 87
Scheme 6.10 Hydrogenation of the alkene 281 .. 88
Scheme 6.11 Reduction and debenzylation of 281 by hydrogenation 88
Scheme 6.12 Expected site of Friedel-Crafts acylation of 282 89
Scheme 6.13 An unexpected compound isolated from attempted acylation of 282 ... 89
Scheme 6.14 Acylation of 302 and selective demethylation 90
Scheme 6.15 Biaryl coupling methodology approach to jatrorrhizine 91
Scheme 6.16 Classical approaches to the synthesis of isoquinolines 93
Scheme 6.17 Bischler-Napieralski approach to substituted isoquinolines 93
Scheme 6.18 Pictet-Spengler approach to substituted isoquinolines 94
Scheme 6.19 Pomerantz-Fritsch approach to substituted isoquinolines 95
Scheme 6.20 Retrosynthetic analysis of 308 ... 95
Scheme 6.21 Potential precursors to 318 ... 96
Scheme 6.22	Synthesis of amides 321 and 322	96
Scheme 6.23	Complexation of mercury (II) with 321 and 322	97
Scheme 6.24	Products of mercury (II) salt reactions with 321 and 322	98
Scheme 6.25	Directed ortho-metallation methodology	98
Scheme 6.26	DoM methodology applied to 331	99
Scheme 6.27	DoM approach to synthesis of 318	100
Scheme 6.28	Alternate synthesis of 307 using 334	100
Scheme 6.29	Product isolated from attempted lithiation of 331	101
Scheme 6.30	Synthesis of 318	101
Scheme 6.31	Tautomerization between 318 and 339	102
Scheme 6.32	Triflation of 318	102
Scheme 6.33	Coupling of Grignard reagent with triflate	103
Scheme 6.34	Iodination of 282	103
Scheme 6.35	Attempted formation of Grignard reagent 341	104
Scheme 6.36	Conversion of iodide 340 to boronic acid 347	104
Scheme 6.37	Potential coupling products of boronic acid 342	105
Scheme 6.38	Biaryl coupling of 308 with 342	106
Scheme 6.39	Byproduct of biaryl coupling reaction	107
Scheme 6.40	Byproduct of biaryl coupling reaction	107
Scheme 6.41	Hydrogenolysis of 307	108
Scheme 6.42	Completion of B-ring of jatrorrhizine	108
Scheme 6.43	Jatrorrhizine 154 and the primary chloride 345	109
Scheme 7.1	Conformations of amides 319-322	112
Scheme 7.2	Aromatic lithiation and quench of 331	113
Scheme 7.3	Use of 269 in ortho-metallation reaction	113
Scheme 7.4	Reformatsky reaction approach to isoquinolines	114
List of abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ac</td>
<td>acetyl</td>
</tr>
<tr>
<td>acetac</td>
<td>acetylacetone</td>
</tr>
<tr>
<td>APT</td>
<td>attached proton test</td>
</tr>
<tr>
<td>Bn</td>
<td>benzyl (CH$_2$Ph)</td>
</tr>
<tr>
<td>t-Boc</td>
<td>tert-butoxycarbonyl</td>
</tr>
<tr>
<td>b.p.</td>
<td>boiling point</td>
</tr>
<tr>
<td>Bu</td>
<td>n-butyl</td>
</tr>
<tr>
<td>BuLi</td>
<td>n-butyllithium</td>
</tr>
<tr>
<td>COSY</td>
<td>1H-1H correlation spectroscopy</td>
</tr>
<tr>
<td>d</td>
<td>doublet</td>
</tr>
<tr>
<td>D-A</td>
<td>Diels-Alder</td>
</tr>
<tr>
<td>dd</td>
<td>doublet of doublets</td>
</tr>
<tr>
<td>DDQ</td>
<td>2,3-dichloro-5,6-dicyano-1,4-benzoquinone</td>
</tr>
<tr>
<td>DME</td>
<td>1,2-dimethoxyethane</td>
</tr>
<tr>
<td>DMF</td>
<td>N,N-dimethylformamide</td>
</tr>
<tr>
<td>DMG</td>
<td>directed metalation group</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>DoM</td>
<td>directed ortho metalation</td>
</tr>
<tr>
<td>ee</td>
<td>enantiomeric excess</td>
</tr>
<tr>
<td>eq.</td>
<td>equivalents</td>
</tr>
<tr>
<td>ERG</td>
<td>electron releasing group</td>
</tr>
<tr>
<td>Et</td>
<td>ethyl</td>
</tr>
<tr>
<td>EtOAc</td>
<td>ethyl acetate</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>eV</td>
<td>electron Volt</td>
</tr>
<tr>
<td>EWG</td>
<td>electron withdrawing group</td>
</tr>
<tr>
<td>FMO</td>
<td>Frontier Molecular Orbital</td>
</tr>
<tr>
<td>HETCOR</td>
<td>(^{13})C-(^{1})H heteronuclear correlation</td>
</tr>
<tr>
<td>HOMO</td>
<td>highest occupied molecular orbital</td>
</tr>
<tr>
<td>h</td>
<td>hour</td>
</tr>
<tr>
<td>HRMS</td>
<td>high resolution mass spectrometry</td>
</tr>
<tr>
<td>hv</td>
<td>light</td>
</tr>
<tr>
<td>Hz</td>
<td>Hertz</td>
</tr>
<tr>
<td>IED</td>
<td>inverse electron demand</td>
</tr>
<tr>
<td>IR</td>
<td>infrared</td>
</tr>
<tr>
<td>LDA</td>
<td>lithium diisopropylamide</td>
</tr>
<tr>
<td>lit.</td>
<td>literature</td>
</tr>
<tr>
<td>LRMS</td>
<td>low resolution mass spectrometry</td>
</tr>
<tr>
<td>LUMO</td>
<td>lowest unoccupied molecular orbital</td>
</tr>
<tr>
<td>m</td>
<td>multiplet</td>
</tr>
<tr>
<td>m</td>
<td>meta</td>
</tr>
<tr>
<td>Me</td>
<td>methyl</td>
</tr>
<tr>
<td>mes</td>
<td>methanesulfonyl (mesyl)</td>
</tr>
<tr>
<td>MHz</td>
<td>Megahertz</td>
</tr>
<tr>
<td>mm</td>
<td>millimetres</td>
</tr>
<tr>
<td>MMTS</td>
<td>methyl methylthiomethylsulfoxide</td>
</tr>
<tr>
<td>m.p.</td>
<td>melting point</td>
</tr>
<tr>
<td>MS</td>
<td>mass spectrometry</td>
</tr>
<tr>
<td>m/z</td>
<td>mass/charge ratio</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Meaning</td>
</tr>
<tr>
<td>--------------</td>
<td>---------</td>
</tr>
<tr>
<td>NBS</td>
<td>N-bromosuccinimide</td>
</tr>
<tr>
<td>NMR</td>
<td>nuclear magnetic resonance</td>
</tr>
<tr>
<td>nOe</td>
<td>nuclear Overhauser effect</td>
</tr>
<tr>
<td>o</td>
<td>ortho</td>
</tr>
<tr>
<td>OTf</td>
<td>trifluoromethanesulfonyl (trilate)</td>
</tr>
<tr>
<td>p</td>
<td>para</td>
</tr>
<tr>
<td>Ph</td>
<td>phenyl</td>
</tr>
<tr>
<td>PPA</td>
<td>polyphosphoric acid</td>
</tr>
<tr>
<td>ppm</td>
<td>parts per million</td>
</tr>
<tr>
<td>i-Pr</td>
<td>isopropyl</td>
</tr>
<tr>
<td>R</td>
<td>alkyl</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonucleic acid</td>
</tr>
<tr>
<td>r.t.</td>
<td>room temperature</td>
</tr>
<tr>
<td>s</td>
<td>singlet</td>
</tr>
<tr>
<td>TBDMS</td>
<td>tert-butyldimethylsilyl</td>
</tr>
<tr>
<td>t</td>
<td>triplet</td>
</tr>
<tr>
<td>THF</td>
<td>tetrahydrofuran</td>
</tr>
<tr>
<td>TLC</td>
<td>thin layer chromatography</td>
</tr>
<tr>
<td>TMS</td>
<td>trimethylsilyl</td>
</tr>
<tr>
<td>Ts</td>
<td>toluenesulfonyl (tosyl)</td>
</tr>
<tr>
<td>p-TsOH</td>
<td>para-toluenesulfonic acid</td>
</tr>
<tr>
<td>UV</td>
<td>ultraviolet</td>
</tr>
</tbody>
</table>
To my parents
Chapter 1

Introduction to Diels-Alder Chemistry
The Diels-Alder reaction\(^1\) is widely used in organic synthesis for the formation of 6-membered rings.\(^2\) The reaction is a \([\pi_4 + \pi_2]\) cycloaddition which occurs between a conjugated diene 1 and another multiple bond 2, called a dienophile, to give a cyclohexene 4 as the Diels-Alder adduct (Scheme 1.1).\(^3\) The example shown proceeds only under very vigorous conditions\(^3b\) and, as described below, functionalized dienes and dienophiles are normally used. Both the diene and the dienophile can be carbon-based to provide a carbocyclic adduct or may contain a heteroatom to provide a heterocyclic adduct. Normally, the reaction proceeds by a concerted mechanism\(^4\) (Scheme 1.1) and the regiochemical and stereochemical outcome can often be predicted and controlled.\(^5\) Frontier Molecular Orbital (FMO) theory has been successfully used to explain the reactivity and the selectivity of a cycloaddition between a diene-dienophile pair.\(^6\) Another theory based on complementary reactivity surfaces of the diene and the dienophile has been put forward\(^7\) to explain experimental results inconsistent with FMO predictions, although this theory has been disputed.\(^8\) FMO theory continues to be the more effective and widely used method of explaining Diels-Alder reactions.

There are three types of Diels-Alder reactions (Figure 1.1)\(^2d\) and the classifications are based on the electronic nature of the diene and dienophile and the resulting interactions of the molecular orbitals involved.\(^9\) The three types of reaction are the normal electron demand, the inverse electron demand and the neutral electron demand.
Diels-Alder reactions. According to FMO theory, a normal electron demand reaction occurs between the Highest Occupied Molecular Orbital (HOMO) of the diene and the Lowest Unoccupied Molecular Orbital (LUMO) of the dienophile. By contrast, the inverse electron demand reaction is the result of interaction between the diene LUMO and the dienophile HOMO. In a neutral electron demand reaction, neither interaction dominates.

The degree of reactivity between any diene-dienophile pair depends on the HOMO-LUMO energy difference. Any factor that decreases this energy difference will cause a Diels-Alder reaction proceed more rapidly. The extent of this energy difference is based largely on the type of substituent(s) present on the two reacting partners. Electron-withdrawing groups lower both the HOMO and the LUMO energy of both the diene and the dienophile while electron-donating groups raise both the HOMO and the LUMO energy (Figure 1.2).
The most common Diels-Alder reaction is the normal electron demand reaction in which an electron-rich diene reacts with an electron-deficient dienophile. In Figure 1.2, it can be seen that this involves a low energy dienophile LUMO and a high energy diene HOMO giving a small LUMO-HOMO energy difference. A typical example of a normal electron demand Diels-Alder reaction is shown in Scheme 1.1, with "Danishefsky's diene" 5, (E-1-methoxy-3-trimethylsilyloxy-1,3-butadiene),10-13 a commonly used electron-rich diene (Scheme 1.2). Danishefsky's diene was first reported in 197410a and has found

Scheme 1.2 Typical reaction of Danishefsky's diene
widespread utility in organic synthesis.10 It is easily prepared in large quantities11 and has become commercially available.12 It exhibits good reactivity with a variety of typical electron-deficient dienophiles. The regiochemistry of the adducts is predictable and this has been well rationalized by FMO theory. The two electron donating groups in Danishefsky's diene increase the orbital coefficient at C-4 and decrease that at C-1 relative to butadiene 1 (Scheme 1.3). The molecular orbitals for a monosubstituted electron-deficient dienophile are also unequal due to the substitution. Thus, the diene-dienophile pair approach each other as in Scheme 1.3.a., there would be more effective orbital overlap than if the dienophile approaches as in Scheme 1.3.b. The energetic difference between these two modes of approach results in good to complete regiochemical control. The stereochemistry of the products has been explained to result from secondary orbital interactions between the diene-dienophile pair. One of the biggest advantages of Danishefsky's diene is that the functionality in the products can be easily transformed into a variety of other functional groups and this has been used advantageously in a number of natural product syntheses.13 For example, its first use was in the total synthesis of \textit{dl}-vernolepin 12,13b a known tumor inhibitor (Scheme 1.4). The diene 5 was reacted with 9 to afford the bicyclic adduct 10, which was not isolated. Instead the crude product was treated with \textit{p}-toluenesulfonic acid, which hydrolysed the
trimethylsilyl ether and eliminated the methoxy group to give 11 in fair yield (60%). This compound was then converted to dl-vernolepin in 17 steps.

![Scheme 1.4 Synthesis of dl-vernolepin.](image)

While normal electron demand Diels-Alder reactions have been well studied and have demonstrated great synthetic utility, inverse electron demand reactions are less common. A typical inverse electron demand reaction involves an electron-deficient diene which reacts with an electron-rich dienophile. It can be seen in Figure 1.2 that there is a small dienophile-HOMO diene-LUMO energy difference in this situation. The majority of the known reactions of this type are, in fact, hetero-Diels-Alder reactions14-24 and the heteroatomic addend can be the diene (13-17) or the dienophile (18-22). Some examples are shown in Scheme 1.5. Some reactions of this type of system are outlined in Scheme 1.6.
Scheme 1.5 Common acyclic heteroatomic dienes and dienophiles

Scheme 1.6 Examples of heteroatomic Diels-Alder reactions

The focus of this work is to develop electron-deficient dienes which can be used in the synthesis of carbocyclic adducts. Many of the known purely carbon containing
dienes that have been used in inverse electron demand Diels-Alder reactions result in products which, as yet, have not found broad synthetic utility. Some known examples of electron-deficient dienes are shown in Scheme 1.6, and of these, 2-pyrone 42 and its substituted derivatives appear to be synthetically the most useful.29g

![Scheme 1.7 Examples of carbon containing electron-deficient 1,3-dienes](image)

The first class of dienes that was chosen to be studied was those bearing electron withdrawing groups in the 1 and 3 positions, \textit{i.e.}, 43. These dienes might be expected to be quite reactive in the inverse electron demand Diels-Alder reaction by virtue of the position of the substituents. As in the case of Danishefsky's diene, the two electron withdrawing groups might be expected to work in tandem to electronically bias the two ends of the diene. This would be in an opposite sense to Danishefsky's diene (Scheme 1.8) by withdrawing electron density rather than donating it into the diene. A monosubstituted, electron-rich dienophile might be expected to approach this formal electronic complement to Danishefsky's diene in a selective orientation and should result in predictable regiochemical outcomes in its Diels-Alder reactions. The expected
products would incorporate functionality different in nature from an adduct of Danishefsky's diene. These different functional groups could then be synthetically transformed in a number of ways. Possible synthetic transformations of the anticipated Diels-Alder adducts of diene 44 and a monosubstituted electron-rich dienophile 45 are shown in Scheme 1.8. For example, the unsaturated ester in 46 could be attacked by a nucleophile in a Michael addition to give a 1,2,3,4-tetrasubstituted cyclohexane derivative 47. Alternatively, the saturated ester could be deprotonated, and then it could act as a nucleophile 48 to give 49 and/or 50. The stabilized anion 48 could also undergo elimination to afford diene 51. Diene 51 might also be accessible by acid catalyzed elimination of HX from 46. This diene may be an interesting objective because, like 44, it is a diene with electron withdrawing groups at the 1 and 3 positions thus regenerating an electron-deficient diene moiety. Since diene 51 is cyclic, it must be in the reactive s-cis form and may be able to undergo further inverse electron demand Diels-Alder reactions, providing bicyclic adducts such as 52. Alternatively, aromatization of the new diene would yield an isophthalate ester 53. Hydrolysis, reduction and oxidative cleavage reactions of adduct 46 to give products 54-58 are also possible.
The first report of 1,3-electron-deficient-1,3-butadienes was in 1981 by Ahn and Hall,30a polymer chemists, who reported the synthesis of compounds 44, 59-61 (Scheme 1.10) by the general method outlined in Scheme 1.11. The synthesis involves a Diels-
Alder reaction between cyclopentadiene and methyl acrylate or acrylonitrile, formylation of the adduct 63 by a lithium amide base and ethyl formate, followed by a Wittig reaction at the aldehyde. The products 65 were subjected to flash vacuum thermolysis, which brought about a retro-Diels-Alder reaction to give the starting

\[\text{EWG}^1 \]

\[\text{EWG}^1 = \text{CO}_2\text{Me}, \text{CN} \]

\[\text{85\% - 95\%} \]

\[1. \text{LiNR}_2 \]
\[2. \text{HCO}_2\text{Et} \]

\[58 - 80\% \]

\[\text{EWG}^2 \]

\[\text{EWG}^2 = \text{CO}_2\text{Me}, \text{CN} \]

\[\text{59 - 64\%} \]

\[400-600 \degree \text{C} \]
\[0.1 - 1.0 \text{ mm Hg} \]

\[\text{EWG}^1 \]
\[\text{EWG}^2 \]

\[\text{1,4-linked polymer} \]

Scheme 1.11 First synthesis of compounds 44, 59-61.

Cyclopentadiene and the desired electron-deficient butadienes. Compounds 59 and 61 were isolated in their pure form but were stable only as solutions in. Compounds 44 and 60 polymerized on thermolysis and could not be isolated in their pure form. The investigators reasoned that these compounds may be liquids under the reaction conditions and would therefore oligomerize and polymerize easily in the liquid state. Since the focus
of this research was on the properties of the resulting polymers, the potential Diels-Alder properties of 44, 59-61 were not investigated and no report on these systems has since appeared. It was concluded on the basis of NMR experiments that the polymerizations occurred in a 1,4 fashion. The diagnostic resonance in the 1H NMR (CDCl$_3$) of the polymers was a doublet observed between δ 6.6-6.2 and was due to the proton attached to the double bond of the polymer. This type of polymerization indicates that the dienes may be reactive in a Diels-Alder fashion in that the 1 and 4 positions are the reactive sites in the molecules. An important implication of Hall's findings is that the dienes of interest are not particularly stable and cannot be readily isolated in their pure form. Therefore, approaches to the synthesis of these compounds should be designed to involve their generation in the presence of appropriate dienophiles for the Diels-Alder reaction to take place.

The problem of instability/high reactivity was encountered in the synthesis of another electron-deficient 1,3-diene in work published by Padwa in the late eighties and early nineties. Padwa's interest in this area was the use of 2,3-bis(phenylsulfonyl)-1,3-butadiene 41 (Scheme 1.7) in the Diels-Alder reaction. His calculations indicated that the s-trans conformer of this diene is energetically preferred. Consequently, it does not undergo Diels-Alder reactions readily. Conditions required to convert this to the higher energy s-cis conformer resulted in cycloaddition reaction products that had the two sulfone functional groups positioned 1,3 to one another. The authors rationalized this by invoking an isomerization of 41 to the more stable 1,3-bis(phenylsulfonyl)-1,3-butadiene 69 via the following mechanism (Scheme 1.12). This rearrangement requires the
presence of the benzene sulfinate anion which was postulated to be present under the reaction conditions.

Molecular modeling28a of the 1,3-bis(sulfone) indicated that the \textit{s-cis} form is lower in energy than the \textit{s-trans} form and that the LUMO is considerably lower in energy (-1.39 eV) than that of the 2,3-isomer (-0.29 eV). The \textit{s-cis} form is required for any Diels-Alder reaction to occur so its greater stability over the \textit{s-trans} form and the lower LUMO energy make the 1,3-bis(sulfone) \textit{69} a very reactive diene. This is indeed the case, but it is so reactive that it was found to dimerize readily in its pure form. It was therefore necessary to generate it in the presence of a series of dienophiles by the peroxide oxidation of \textit{70} followed by elimination of benzene sulfinate (Scheme 1.13).

The diene \textit{69} was found to be reactive towards a variety of electron-rich dienophiles to give cycloaddition products in good yields (Scheme 1.14).28b,c However, the direct cycloaddition products were not isolated due to subsequent isomerization and/or elimination reactions. Nevertheless, Diels-Alder reactions with a variety of electron-rich dienophiles were strongly indicated.
Scheme 1.14 Diels-Alder reactions of diene 69

An interesting result was obtained with compound 80 when it was subjected to a second Diels-Alder reaction as outlined in Scheme 1.15. It acted for a second time as an electron-deficient diene demonstrating the potentially iterative nature of these systems.
Scheme 1.15 Further Diels-Alder reaction of compound 8028b

Padwa has not pursued this work further in the recent literature, but the results appear to be promising and may prove to be applicable to the 1,3-electron-deficient-1,3-butadiene systems currently under investigation and, eventually, a broad range of related electron-deficient dienes.
Chapter 2

Synthesis of the Electron-Deficient Diene
Diene 44 was selected for initial study. The first obstacle to the synthesis of 44 was the report\(^{30a}\) that it could not be isolated in its pure form. Therefore, methods of generating 44 in situ were considered. The ideal masked diene should be easily prepared, and the diene should be generated under fairly mild conditions to avoid decomposition of either the starting materials or of any products. Since the diene contains two ester groups, introduction of \(\alpha,\beta\)-unsaturation to a carbonyl group was considered. Traditionally, this type of oxidation has been achieved by a bromination-dehydrobromination approach\(^{31}\) or the use of dehydrogenation reagents such as 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ),\(^{32}\) selenium dioxide,\(^{32b,33}\) palladium (II),\(^{34}\) pyridine-N-oxide-acetic anhydride,\(^{35}\) periodic acid,\(^{36}\) palladium on carbon\(^{37}\) and sulfur.\(^{38}\) These approaches often require the use of rather harsh conditions, the yields are often poor and reproducibility is frequently difficult. The use of sulfoxide eliminations has proven to be an effective, mild method for the synthesis of \(\alpha,\beta\)-unsaturated carbonyl compounds when the sulfoxide group is present \(\alpha\) to the carbonyl.\(^{39-42}\) Thermolysis of the sulfoxide gives a stereospecific syn elimination of a sulfenic acid as in Scheme 2.1.\(^{39}\)

![Scheme 2.1 Mechanism of sulfoxide elimination](image)

An analogous procedure using a selenoxide instead of a sulfoxide has also shown synthetic utility.\(^{43}\) However, the toxicity and expense of selenium compounds made this route a less attractive option than the sulfoxide.
The sulfoxide 91 that was chosen for this study is an open chain compound and there is a possibility that the elimination can result in an E or Z alkene as the product to give 44 and/or 92 (Scheme 2.2). It has been demonstrated, however, that for compounds with only one substituent β to the sulfoxide, as in compound 91, the E isomer is formed exclusively.39 For example, thermolysis of ethyl 2-(methylsulfinyl)decanoate 93 resulted in exclusive formation of the E alkene.39a Comparison of the possible transition states that lead to the E and Z isomers explains this selectivity (Scheme 2.3). The steric interactions in the transition state 93, which leads to the Z isomer 94, are greater than for the E transition state 95, and the desired E isomer 96 is preferentially obtained. This is

\begin{center}
\textbf{Scheme 2.2} Potential products of sulfoxide elimination from 91
\end{center}

\begin{center}
\textbf{Scheme 2.3} Transition states of sulfoxide elimination from ethyl 2-(methylsulfinyl)decanoate
\end{center}
advantageous for this study because the Z isomer 92 will likely be less reactive in a Diels-Alder manner due to unfavourable intramolecular steric interactions. This has been demonstrated by results obtained in a related project in this laboratory.\(^4^4\) Compounds 97 and 98 are obtained by a Horner-Wadsworth-Emmons reaction and it was found that 97 is more reactive than 98 in Diels-Alder cycloadditions. The decreased reactivity of the Z isomer may be due to an intramolecular steric interaction in the planar \(s\)-cis conformer of 98 between the nitrile and the hydrogen of the ring double bond. This interaction may be twisting the molecule out of the planar \(s\)-cis conformation required for a Diels-Alder reaction to occur.

Previous studies have shown that when the substituent on the sulfoxide is a phenyl group, the temperature of elimination is significantly lower than for the corresponding alkyl sulfoxide.\(^3^9-4^0\) For example, thermolysis of ethyl 2-(methylsulfinyl)bicyclo[2.2.2]oct-5-ene-2-carboxylate 99 at 120 °C resulted in elimination of the sulfoxide and a
retro-Diels-Alder reaction to give ethene and ethyl benzoate (Scheme 2.5). However, the use of the phenylsulfinyl group in 103 lowered the elimination temperature to 50 °C to give the desired ethyl bicyclo[2.2.2]octa-2,5-diene-2-carboxylate 100. This effect has been explained by a number of related factors including greater stability of a phenylsulfinyl anion than an alkylsulfinyl anion, the increased basicity of the sulfoxide oxygen in the phenyl sulfoxide and that the carbon-sulfur bond which must be broken in the phenyl sulfoxide is weaker than in the corresponding alkyl sulfoxide. Thus, the phenylsulfinyl group was chosen to be incorporated into the diene precursor 91.

The convergent synthesis of the diene precursor is outlined in Scheme 2.6. Treatment of diethyl malonate with potassium bicarbonate and two equivalents of aqueous formaldehyde afforded diethyl bis(hydroxymethyl)malonate 105 in 62% yield. Refluxing this compound in concentrated hydrobromic acid resulted in bromination of both alcohols, two-fold ester hydrolysis and a single decarboxylation to give 3-bromo-2-(bromomethyl)propanoic acid in fair yield (65%). Subsequent reesterification was accomplished upon treatment with methanol and methanesulfonic acid to give 106 in 58% yield. Dehydrobromination of the resultant ester with triethylamine provided the required methyl 2-(bromomethyl)propenoate 107 in 75% yield. The observed yields for these reactions were found to be equal to or slightly better (within 5%) than the reported literature yields.
Scheme 2.6 Synthesis of diene precursor 91

The other fragment of the diene precursor containing the sulfoxide functionality was synthesized by deprotonation of thiophenol with sodium hydride and nucleophilic attack on methyl bromoacetate providing the thioether 108 in excellent yield (93%), similar to the literature value. An initial approach to the synthesis of the diene precursor (Scheme 2.7) was to deprotonate the ester 108 with sodium hydride and to add the enolate
to a solution of the electrophile 107. Unfortunately, this approach resulted in a complex mixture. Michael addition to the conjugated ester of 107 by the stabilized enolate may have competed with the desired substitution. Although the new enolate 112 resulting from Michael addition can eliminate bromine to give the desired product, it could also react with the electrophile 107 in another Michael addition or an S_N2 reaction to displace bromine (Scheme 2.8). Inverse addition of the enolate of 110 to a solution of the electrophile 107 gave the diene precursor 111 in only fair yield (63%). The main byproduct was the result of the addition of two molecules of electrophile to the sulfide
108 to give 114 in 10% yield. Compound 111 must be deprotonated in the reaction mixture by excess sodium hydride or by the enolate 110. This new enolate 113 can then react with another molecule of electrophile 107 to give the byproduct 114. In addition, the subsequent oxidation of the thioether 111 to the corresponding sulfoxide was not adequately achieved due to solubility problems. This approach was not pursued further. Instead the oxidation of 108 with sodium periodate to the sulfoxide 109 was accomplished in excellent yield (96%) before incorporation into the diene precursor. This yield also matched that reported in the literature. An inverse addition was used again in this case to give the desired product 91 in 50% yield. Again, a byproduct 115 derived from two-fold addition of the electrophile was isolated in 16% yield.
With a small amount of the diene precursor in hand, it was essential to determine the temperature at which the sulfoxide elimination occurred. The first evidence that the desired diene 44 is produced from 91 was observed in the mass spectrum of 91. A peak at m/z 296 for the sulfoxide 91 was not present in the mass spectrum. This peak was not expected to be present in the spectrum considering the rather harsh ionization conditions typically employed in mass spectral analysis. However, a peak corresponding to the diene 44 was observed (m/z 178) and the fragmentation pattern of this compound can be traced in the mass spectrum. More evidence for the generation of the diene was obtained with an NMR tube experiment with a sample of the sulfoxide in deuterated benzene. The sample was heated in a thermostated bath for thirty minutes and analyzed by NMR to determine if a reaction was taking place. If no elimination had occurred, the temperature of the bath was increased by ~10 °C with NMR monitoring after thirty minutes until a reaction was observed. The reaction was followed by the disappearance of the doublet of doublets at δ 3.9 in the NMR spectrum corresponding to the proton α to the sulfoxide of one of the two diastereoisomers. The elimination appeared to occur very slowly at 40 °C, but rapidly at 78 °C. The crude NMR spectrum was very complex but there was evidence that 44 was present and observable in the spectrum. A number of pairs of doublets appeared in the double bond region with coupling constants in the range of 15-17 Hz, which is typical for an E 1,2-disubstituted double bond. As the sulfoxide elimination selectively produces the E isomer of the double bond, that range of coupling constants was expected to be observed in the NMR spectrum of 44. In addition, two new singlets were present at δ 5.4 and δ 5.7 which could be attributed to the CH₂ of the terminal alkene of 44.

Subsequent NMR tube reactions with the sulfoxide in the presence of sulfenic acid traps, i.e., trimethylphosphite,⁴¹b,c pyridine,⁴¹a and calcium carbonate,³⁹a were performed to determine if any difference in the sulfoxide elimination could be observed.
The temperature of elimination did not appear to be affected and the same rate of elimination appeared to be occurring in each case. Proton signals in the double bond region, which were observed in the NMR spectrum with no sulfinic acid trap were consistently observed in each of these spectra as well. It did appear, however, that the NMR spectra of the calcium carbonate and trimethylphosphite cases were cleaner than in the case of the sulfoxide alone or with the addition of pyridine. TLC analysis also indicated that the added trimethylphosphite gave a cleaner reaction mixture. These sulfinic acid traps, especially calcium carbonate and trimethylphosphite, must be investigated more thoroughly for use in actual Diels-Alder reactions.

Preliminary investigations of Diels-Alder reactions with some common dienophiles, e.g. *N*-phenylmaleimide 116, *N*-methylindole 117, vinylene carbonate 118 and thiourea 119, were performed in NMR tubes with deuterated benzene as the solvent.

![Scheme 2.11 Dienophiles attempted in Diels-Alder reactions with 91](image)

These reactions were done in the absence of sulfinic acid traps. The results from these experiments appeared to be promising with some changes occurring in the °H NMR spectra. In each of these experiments, the signals corresponding to the carbon chain of the sulfoxide disappeared within one hour at 78 °C. Some of the pairs of doublets that were observed in the previous NMR tube experiments that may be attributed to 44 were also observed. In addition, multiplets appeared at 2.3 ppm and 2.0 ppm which may have been due to cycloaddition reactions with the dienophiles. However, these signals were also observed in the earlier NMR tube experiments with the sulfoxide alone and with
CaCO₃ indicating that they may have been due to dimerization or polymerization of the diene itself. Complete or partial consumption of the dienophiles was not observed in the NMR spectra because each was used in excess of the diene precursor. Since the scale was so small in these experiments, no products were isolated or characterized.

Another experiment was attempted based on work on a similar project in our laboratory⁴⁴ with the diene precursor heated to 130 °C overnight in a sealed tube with ethyl vinyl ether as the solvent, again in the absence of acid traps. The crude mixture was analyzed by TLC and NMR after removal of the excess ethyl vinyl ether under vacuum.

Scheme 2.12 Attempted reaction of 91 with ethyl vinyl ether

A complex mixture was obtained but the presence of triplets at 1.0-1.3 ppm and quartets at 3.4-3.7 ppm in the NMR spectrum indicated some form of incorporation of the ethoxy group of the ethyl vinyl ether. This may have been the result of Diels-Alder reactions. However, several products were produced in the reaction and none of these compounds could be isolated and characterized to determine their structures. It is suspected that the conditions employed were much too harsh since the earlier NMR tube experiments indicated that the elimination occurs at a much lower temperature than was used here. The sulfenic acid produced by the reaction may have been affecting the products to give a complex mixture particularly at this high temperature. The potential products of the Diels-Alder reactions attempted to this point contain functionality which can readily react with the acid generated and result in a mixture of products. For example, as outlined in Scheme 2.13, the ethoxy group could be protonated by the acid and eliminate ethanol to
give another form of the 1,3-electron deficient diene 121. This could conceivably
aromatize to give 122, or it could react with another molecule of dienophile to give the
bicyclic compound 123. As with Padwa's work on the bis(sulfone) (Scheme 1.14)28, this
may prove to be a useful reaction sequence in the future, providing entry into novel
bicyclic compounds. However, milder conditions must be investigated first to determine

Scheme 2.13 Possible reactions of 91 in ethyl vinyl ether

the minimum requirements for the desired reaction. In addition, benzenesulfenic acid has
also been shown to react with vinyl ethers in an electrophilic addition to the double
bond42 and this side-reaction may explain the incorporation of the ethoxy group in the
 crude mixture. The variety of potential products and the difficult chromatographic
separation of the mixture made characterization of the reaction impossible and the
presence of these potential products could not be determined.

Preliminary studies of a second diene precursor were also performed and the
synthesis is outlined in Scheme 2.14. Since a major byproduct of the earlier precursor
syntheses was the two-fold alkylation of sulfoxide 109, the use of the isomeric sulfoxides
128 (R=Me) and 129 (R=Et) which cannot undergo this side reaction were investigated.
Similar methodology to that developed for 91 was employed for these compounds. Deprotonation of thiophenol and addition to methyl or ethyl 2-bromopropanoate resulted in the corresponding sulfides in excellent yield (88% and 90% respectively). This was followed by periodate oxidation, which proceeded in good yield (79% for both) with some starting material recovered (16% for methyl and 19% for ethyl). The sulfoxide must be handled with some caution due to the possibility that the sulfenic acid may eliminate in this compound before it is incorporated into the diene precursor. Not surprisingly, attempts to purify these compounds by distillation under vacuum resulted in rapid decomposition at approximately 80 °C. However, column chromatography led to facile separation of the sulfide from the much more polar sulfoxide. The sulfoxides 128/129 were obtained as a ~1:1 mixture of two diastereomers and no attempt was made to separate these isomers.

The electrophilic portion of the second diene precursor was synthesized in two ways. The first involved the sodium ethoxide induced condensation of ethyl formate with ethyl acetate to give the sodium salt of ethyl 3-oxopropanoate 133 in 21% yield. The ethyl esters were used in this case because attempts to utilize the methyl esters resulted in
none of the desired product. Addition of p-toluenesulfonyl chloride to a suspension of the salt resulted in only the (Z)-enol tosylate 134 in good yield (82%). This selectivity may be rationalized by a template effect of the sodium cation with both the ester and the oxygen of the enol maintaining the salt in the Z form 133.

![Scheme 2.15 Synthesis of enol tosylate 134](image)

The other form of the electrophile synthesized was obtained starting from the esterification of propynoic acid49 and treatment of the resultant ester with sodium iodide in acetic acid to give selectively the (Z) isomer of methyl 3-iodopropenoate 13750a in good yield (83%) from methyl propynoate. In a related literature study on hydrohalogenations,50b it was reasoned that this selectivity may result from a transition state in which the halogen and the acetic acid are on opposite sides of the triple bond to diminish steric interactions (Scheme 2.17). The authors also argue that the vinyl anion electron pair, which results from addition of the halide to the triple bond, may exert a
stereoelectronic effect (Scheme 2.18). The halide and the electron pair will repel one another if on the same side as in the intermediate 141 (which will give the E isomer) but not if on opposite sides 142 (which will give the Z isomer). Since the more stable form of the intermediate is 142, the Z isomer is obtained selectively.

As shown in Scheme 2.14, the second diene precursor may be generated by the deprotonation of the sulfoxide by sodium hydride followed by addition to the appropriate electrophile 134 or 137. This reaction has been attempted but has not been successfully accomplished and starting materials were recovered. The problem with this conjugate addition reaction may be the steric bulk of the tertiary nucleophiles derived from 128/129.
Further investigation involving different reaction conditions will be required to determine if this is indeed the case.

At this point, a decision was made to suspend investigation in this area. Although none of the desired inverse electron demand Diels-Alder reactions were accomplished, the synthetic methodology to two direct precursors of diene 44 was established and there are clear indications that 44 is indeed formed under relatively mild conditions. The optimization of reaction conditions, modification of the synthetic approach and the achievement of some inverse electron demand Diels-Alder reactions will be the objectives of future investigation.
Chapter 3

Conclusions of Diels-Alder Work
The synthesis of a sulfoxide precursor 91 to diene 44 has been developed from readily available starting materials. This compound must be further studied to optimize the synthesis and to determine the ideal conditions required to generate the diene. Generation of the diene in the presence of dienophiles must be performed to determine if it is reactive in a Diels-Alder manner. Sulfenic acid traps, especially trimethyl phosphite and calcium carbonate, may prove to be useful in maintaining neutral reaction conditions and preventing unwanted side reactions.

The synthesis of the second sulfoxide precursor 130 must be completed and this compound studied. It may prove to be a more useful precursor to the diene if it can be synthesized in a yield greater than that achieved with compound 91. However, in sulfoxide eliminations removal of the methyl proton in 130 proceeds more slowly than removal of the allyl proton as in 91.\(^{39f}\) This may require a higher temperature for the elimination to take place, but may make the sulfoxide more stable during isolation and storage. In addition, the rate of diene reaction may also be more controlled by an adjustment in the rate of generation. This will be investigated when the synthesis has been completed.

The methodology developed for compounds 91 and 130 may be applied to diene precursors substituted with other electron withdrawing groups. A series of these types of
dienes can be envisioned by replacing one or both of the methyl esters with nitrile, aldehyde, ketone and ortho- or para-nitrophenyl functional groups.

\[X_1 = \text{CO}_2 \text{R, CN, COR, p-PhNO}_2 \]
\[X_2 = \text{CO}_2 \text{R, CN, COR, p-PhNO}_2 \]

Scheme 3.2 Possible electron deficient 1,3-butadienes

Alternative methods of *in situ* generation of the diene are also under consideration including via the N-*p*-toluenesulfonylsulfilimines 142, the tosylate 144 and the tertiary amine 146. The sulfonimido compound 142 is analogous to the sulfoxide and benefits from a lower temperature of elimination to the unsaturated compound.\(^{54a}\) Although this

\[\text{EWG} \]

is closely related to the sulfoxide elimination, it has not been as widely used and very little discussion has appeared in the literature. It is known that the elimination goes
through a similar transition state as the sulfoxide elimination and is as stereoselective, giving the E alkene.54b The more labile nature of the sulfonimido group to elimination may prove to be useful in this case. These compounds are typically prepared from oxidation of the corresponding sulfide with Chloramine T (TsNCINa).54c For 144 and 146, deprotonation α to the ester may lead to elimination of the tosylate or the trialkyl amine and generation of the diene under more desirable conditions than the sulfoxide elimination provides. However, it is not known if the elimination in these cases will be stereoselective to result in the desired E double bonds.

The possible Diels-Alder reactions of this family of butadienes will be studied with electron rich, electron neutral and electron deficient dienophiles to determine the extent to which Diels-Alder methodology may be applied to these electron deficient dienes. A related project44 has revealed that these types of electron deficient dienes are reactive with a variety of dienophiles, and the study of those particular dienes is ongoing. The results to this point have been very encouraging and may prove to be applicable to this project as well. Further study of this potentially important class of dienes may reveal reactivity and adducts that have previously been unavailable and thereby broaden the scope of the Diels-Alder reaction in total synthesis.
Chapter 4

Experimental for Diels-Alder Work
General procedures. Reactions were performed under ambient atmosphere, unless otherwise stated. All commercial chemicals were obtained from Aldrich and used as obtained without further purification. Tetrahydrofuran was freshly distilled over sodium/benzophenone. Thin layer chromatography was performed on E. Merck 60 F254 precoated silica plates. Flash column chromatography was performed according to the procedure of Still51 using silica gel 60 (E. Merck, 230-400 mesh). Melting points (m.p.) were obtained on a Fisher-Johns apparatus and are uncorrected. 1H and 13C nuclear magnetic resonance (NMR) spectra were recorded on a GE GN-300NB spectrometer at 300.117 MHz and 75.475 MHz, respectively, in CDCl\textsubscript{3} unless otherwise specified. Chemical shifts are in ppm relative to internal standards: TMS (tetramethylsilane) for 1H and CDCl\textsubscript{3} (\textdelta 77.0 ppm) for 13C NMR. Individual peaks are reported as chemical shift, multiplicity (s=singlet, d=doublet, dd=doublet of doublets, dt=doublet of triplets, t=triplet, q=quartet, m=multiplet), number of hydrogens and coupling constant. Reported multiplicities are apparent multiplicities. The assignments are based on 1H-13C HETCOR (2-D heteronuclear), APT (attached proton test) and nOe (nuclear Overhauser effect) experiments. The nOe measurements were made from sets of interleaved 1H experiments (16k) of 8 transients cycled 12 to 16 times through the list of frequencies to be saturated. The decoupler was gated on in CW mode for 6 seconds with sufficient attenuation to give a 70-90\% reduction in intensity of the irradiated peak. Frequency changes were preceded by a 60 second delay. Four scans were used to equilibrate spins before data acquisition, but a relaxation delay was not applied between scans at the same frequency. The nOe difference spectra were obtained from zero-filled 32k data tables to which a 1-2 Hz exponential line-broadening function had been applied. The nOe data are reported as follows: irradiated signal (enhanced signal, enhancement). Infrared spectra (IR) were recorded on a Mattson Polaris FT instrument. Peaks are reported in cm-1 with the following intensities: s=strong, m=medium, w=weak, br=broad. Low resolution (LRMS) and high resolution mass spectra (HRMS) were measured on a V. G. Micromass 7070HS instrument. MS data are reported as m/z and intensity (% of base peak).
Diethyl 2,2-bis(hydroxymethyl)propanedioate 105:45

Potassium bicarbonate (8.00 g, 79.9 mmol) and aqueous formaldehyde solution (166 g of 37% solution, 2 mol) were stirred in a 500 mL round bottomed flask at 20 °C in a water bath and diethyl 1,3-propanedioate (160 g, 1 mol) was added dropwise while maintaining the reaction temperature between 25-30 °C. Stirring was continued for one hour and the mixture was transferred to a separatory funnel. Saturated (NH₄)₂SO₄ solution (300 mL) was added, and the mixture extracted with diethyl ether (300 mL). The organic portion was dried with Na₂SO₄, filtered into a 1 L three-necked flask, and the solvent was removed by distillation until the temperature of the solution reached 45-50 °C. The distillation apparatus was removed and replaced with a thermometer adapter equipped with a piece of glass tubing that reached below the surface of the oily residue and closed by a piece of rubber tubing and a screw clamp. Air was then drawn through another neck of the flask by means of an aspirator and the screw clamp was adjusted such that the pressure was maintained at 20-30 mm Hg and the viscous liquid splattered on the upper part of the flask (This sped the crystallization process). The flask was then warmed to 40 °C until crystallization began and for an additional 30 minutes. Isopropyl ether (500 mL) was added and the mixture was warmed to 50 °C to dissolve the product. The solution was then transferred to a 1L Erlenmeyer flask and stirred in an ice water bath until the product precipitated. The suspension was refrigerated, filtered by suction and the product dried at room temperature for 24 hours then in a vacuum desiccator over sulfuric acid for a further 24 hours to yield 136 g (616 mmol, 62%) of a colourless solid that was suitable for use in the next step. The product could be recrystallized from isopropyl ether to give colourless needles: m.p. 48-49 °C (lit.45 m.p. 50-52 °C); IR 3558 cm⁻¹ (br), 2989 cm⁻¹
(m), 2942 cm\(^{-1}\) (m), 2910 cm\(^{-1}\) (w), 1722 cm\(^{-1}\) (s), 1300 cm\(^{-1}\) (s), 1266 cm\(^{-1}\) (s); \(^1\)H NMR \(\delta\) 4.26 (q, 2H, \(J=7.1\) Hz), 4.11 (s, 2H), 2.80 (br s, 1H), 1.29 (t, 3H, \(J=7.1\) Hz); \(^1\)C NMR \(\delta\) 169.5, 64.2, 61.9, 60.9, 14.0; LRMS \(m/z\) 221 (0.12, M\(^+\)), 127 (49), 99 (36).

3-Bromo-2-(bromomethyl)propanoic acid 143: \(^46\)

\[
\begin{array}{c}
\text{Br} \\
\text{Br} \\
\text{H} \\
\text{CO}_2\text{H}
\end{array}
\]

Diethyl 2,2-bis(hydroxymethyl)propanedioate 105 (110 g, 500 mmol) and concentrated hydrobromic acid (900 mL) were combined in a 2 L round bottomed flask and a portion of the aqueous acid was distilled by vigorously refluxing the mixture for six hours. The residue was then cooled at -15 °C overnight, and the precipitated crystals were removed by suction filtration. The product was dried by suction for six hours and then in a vacuum desiccator over active Drierite for six days to give 58.3 g (237 mmol, 47%) of a tan solid. Further concentration of the filtrate followed by cooling and filtration of the precipitate resulted in a second crop of the product (22.23 g, 90.42 mmol, 18%). The crude product (combined yield 65%) was suitable for use in the next step without further purification. The product could be recrystallized from water to give colourless needles: m.p. 101-102 °C (lit. \(^46\) m.p. 98-101 °C); IR 1726 cm\(^{-1}\) (s); \(^1\)H NMR \(\delta\) 3.78 (AA'BB' portion of AA'BB'X system, 4H), 3.26 (X portion of AA'BB'X system, 1H); \(^1\)C NMR \(\delta\) 175.3, 48.3, 29.8; LRMS \(m/z\) 248 (1.8, [\(^{81}\)Br\(^{81}\)Br]M\(^+\)), 246 (3.6, [\(^{81}\)Br\(^{79}\)Br]M\(^+\)), 244 (1.8, [\(^{79}\)Br\(^{79}\)Br]M\(^+\)), 167 (28), 165 (28), 153 (21), 151 (21), 85 (26).
Methyl 3-bromo-2-(bromomethyl)propanoate 106:46

\[
\text{Br} \quad \text{Br} \\
\text{H} \quad \text{CO}_2\text{Me}
\]

A solution of 3-bromo-2-(bromomethyl)propanoic acid 143 (61.50 g, 250.0 mmol), methanol (32 mL, 0.78 mol), and methanesulfonic acid (0.2 mL) in 1,2-dichloroethane (75 mL) were heated at reflux for 24 hours. The reflux condenser was equipped with a CaCl₂ drying tube to exclude atmospheric water. The mixture was cooled to room temperature, diluted with dichloromethane (200 mL) and neutralized with cold 1M NaHCO₃ solution. The organic portion was dried with Na₂SO₄, the solvent was removed and the residue distilled under vacuum (77-77 °C/1.0 mm Hg, lit. 46 b.p. 60-62 °C/0.4 mm Hg) to give a colourless oil (38.92 g, 149.8 mmol, 58%): IR 2956 cm⁻¹ (s), 2847 cm⁻¹ (w), 1738 cm⁻¹ (s), 1441 cm⁻¹ (s), 1355 cm⁻¹ (s), 1307 cm⁻¹ (s), 1169 cm⁻¹ (s); ¹H NMR δ 3.78 (s, 3H), 3.75 (AA'BB' portion of AA'BB'X system, 4H), 3.20 (X portion of AA'BB'X system, 1H); ¹³C NMR δ 169.7, 52.4, 48.3, 30.4; LRMS m/z 262 (1.5, ⁸¹Br⁸¹Br-M⁺), 260 (2.97, ⁸¹Br⁷⁹Br-M⁺), 258 (1.63, ⁷⁹Br⁷⁹Br-M⁺), 229 (3), 201 (10), 181 (29), 179 (33), 167 (38), 165 (39), 121 (25), 119 (26), 99 (18), 95 (10), 93 (12).

Methyl 2-(bromomethyl)propenoate 107:46

\[
\text{Br} \quad \text{CO}_2\text{Me}
\]

Methyl 3-bromo-2-(bromomethyl)propanoate 106 (10.80 g, 41.56 mmol) was stirred vigorously in anhydrous benzene (25 mL) at room temperature while triethylamine (3.92 g, 38.8 mmol) in benzene (25 mL) was added dropwise. The dropping funnel was equipped with a CaCl₂ drying tube to exclude atmospheric water. The mixture was
stirred for one hour at room temperature, refluxed for one hour and then allowed to cool. The precipitated solid was removed by filtration, extracted twice with anhydrous benzene (10 mL) and the combined filtrates were concentrated by rotary evaporation. Vacuum distillation (50-55 °C/2 mm Hg, lit. 46 b.p. 35-37 °C/1.3 mm Hg) of the residue yielded 5.23 g (29.2 mmol, 75%) of a colourless oil: IR 3022 cm⁻¹ (s), 2955 cm⁻¹ (m), 1726 cm⁻¹ (s), 1633 cm⁻¹ (m); ¹H NMR δ 6.34 (d, 1H, J=0.6 Hz), 5.96 (dt, 1H, J=0.6, 0.9 Hz), 4.18 (d, 2H, J=0.9 Hz), 3.82 (s, 3H); ¹³C NMR δ 165.0, 137.1, 129.0, 52.1, 29.1; LRMS m/z 180 (35, 81Br-M⁺), 178 (34, 79Br-M⁺), 149 (25), 147 (25), 121 (23), 119 (24), 99 (100).

Methyl 2-(phenylthio)acetate 108:

\[
\text{Ph-S} \rightleftharpoons \text{CO₂Me}
\]

Thiophenol (27.54 g, 250.0 mmol) was added to a suspension of sodium hydride (7.50 g of 80% dispersion, 250 mmol) in THF (500 mL) under nitrogen at -78 °C, then the mixture was warmed to room temperature and stirred for one hour. The resultant white slurry was then cooled to -78 °C, and methyl bromoacetate (38.24 g, 250.0 mmol) was added dropwise. The reaction mixture was warmed to room temperature and stirred for two hours. Water (100 mL) was added, and the product was extracted into CH₂Cl₂ (2 x 200 mL). The organic extracts were washed with brine, dried (Na₂SO₄) and the solvent removed to give a pale brown oil. Vacuum distillation (99-102 °C/1.0 mm Hg, lit. 52 b.p. 93-95 °C/0.6 mm) yielded 42.35 g (232.4 mmol, 93%) of a colourless oil: IR 3002 cm⁻¹ (m), 2956 cm⁻¹ (m), 1737 cm⁻¹ (s), 1584 cm⁻¹ (m), 1292 cm⁻¹ (s); ¹H NMR δ 7.41-7.22 (m, 5H), 3.69 (s, 3H), 3.64 (s, 2H); ¹³C NMR δ 170.0, 134.8, 129.7, 128.9, 126.8, 61.3, 52.4, 36.3; LRMS m/z 182 (47, M⁺), 123 (100), 109 (13).
Methyl 2-(phenylthio)propanoate 126:

\[
\begin{align*}
\text{Ph} & \quad \text{S} \quad \text{CO}_2\text{Me} \\
\end{align*}
\]

Thiophenol (13.20 g, 120.0 mmol), sodium hydride (4.80 g of 60% dispersion, 120 mmol) and methyl 2-bromopropanoate (20.00 g, 120.0 mol) were reacted as described for 108. Vacuum distillation (118 - 120 °C/1.0 mm Hg) yielded 20.62 g (105.1 mmol, 88%) of a colourless oil: IR 3003 cm\(^{-1}\) (s), 2955 cm\(^{-1}\) (s), 2950 cm\(^{-1}\) (m), 1730 cm\(^{-1}\) (s), 1583 cm\(^{-1}\) (w); \(^1\)H NMR \(\delta\) 7.47-7.28 (m, 5H), 3.80 (q, 1H, \(J=7.1\) Hz), 3.67 (s, 3H), 1.48 (d, 3H, \(J=7.1\) Hz); \(^13\)C NMR \(\delta\) 173.0, 144.9, 133.0, 128.9, 128.0, 52.2, 45.2, 17.4; LRMS \(m/z\) 196 (36, \(M^+\)), 137 (100), 109 (41).

Ethyl 2-(phenylthio)propanoate 127:

\[
\begin{align*}
\text{Ph} & \quad \text{S} \quad \text{CO}_2\text{Et} \\
\end{align*}
\]

Thiophenol (12.17 g, 110.0 mmol), sodium hydride (4.42 g of 60% dispersion, 110 mmol) and ethyl 2-bromopropanoate (20.00 g, 110.0 mmol) were reacted as described for 108. Vacuum distillation (84-87 °C/1.0 mm Hg, lit.\(^5\) b.p. 159-161 °C/23.5 mm Hg) yielded 20.95 g (99.62 mmol, 90%) of a colourless oil: IR 2989 cm\(^{-1}\) (s), 2935 cm\(^{-1}\) (m), 1726 cm\(^{-1}\) (s), 1584 cm\(^{-1}\) (w); \(^1\)H NMR \(\delta\) 7.48-7.28 (m, 5H), 4.11 (q, 2H, \(J=7.2\) Hz), 3.79 (q, 1H, \(J=7.1\) Hz), 1.48 (d, 3H, \(J=7.1\) Hz), 1.18 (t, 3H, \(J=7.2\) Hz); \(^13\)C NMR \(\delta\) 172.6, 133.2, 133.0, 128.8, 127.9, 61.2, 45.3, 17.4, 14.0; LRMS \(m/z\) 210 (30, \(M^+\)), 137 (100), 109 (25).
Methyl 2-(phenylthio)acetate-S-oxide 109:

\[
\text{Sodium periodate (12.33 g, 57.64 mmol, 1.05 eq.) was dissolved in distilled water (150 mL), methyl 2-(phenylthio)acetate 108 (10.00 g, 54.90 mmol) was added and the emulsion was stirred vigorously for 15 hours at room temperature. The product was then extracted into CH}_2\text{Cl}_2 (3 \times 100 \text{ mL}), dried (Na}_2\text{SO}_4), and the solvent removed to give a pale yellow oil which solidified on standing. Vacuum distillation (142-143 °C/1 mm Hg) yielded 10.46 g (52.79 mmol, 96%) of a colourless oil which solidified in the distillation flask. Recrystallization from diethyl ether gave colourless plates: m.p. 54-55 °C (lit. 52 m.p. 53-55 °C, lit. b.p. 130-131 °C/0.5 mm Hg); IR 3061 cm\(^{-1}\) (m), 2995 cm\(^{-1}\) (s), 2957 cm\(^{-1}\) (s), 2900 cm\(^{-1}\) (w), 1742 cm\(^{-1}\) (s), 1287 cm\(^{-1}\) (s), 1087 cm\(^{-1}\) (s); \text{^1H NMR} \delta 7.64-7.52 (m, 5H), 3.85 (d, 1H, J=13.7 Hz), 3.71 (s, 3H), 3.69 (d, 1H, J=13.7 Hz); \text{^13C NMR} \delta 165.1, 142.9, 131.7, 129.3, 123.9, 61.4, 52.6; LRMS \text{ m/z} 198 (27, M^+) , 125 (100), 97 (28).}

Methyl (RR,SS)- and (RS,SR)-2-(phenylthio)propanoate-S-oxide 128:

\[
\text{Sodium periodate (22.89 g, 107.0 mmol, 1.05 eq.) and methyl 2-(phenylthio)propanoate 126 (20.00 g, 102.0 mmol) in 250 mL water were reacted as described for 109. Column chromatography of the resultant pale yellow oil (6:1 CH}_2\text{Cl}_2: \text{EtOAc}) gave starting material (3.14 g, 16.0 mmol, 16%) and the product (18.19 g, 88.00 mmol, 79%) as a colourless oil: IR 3065 cm\(^{-1}\) (w), 2994 cm\(^{-1}\) (s), 2925 cm\(^{-1}\) (s), 2855 cm\(^{-1}\) (s), 1737 cm\(^{-1}\) (s), 1086 cm\(^{-1}\) (s); \text{^1H NMR} \delta 7.70-7.52 (m, 5H), 3.68, 3.67 (2s, 3H), 3.84, 3.51 (q, 1H,}
$J=7.1$ Hz), 1.47, 1.32 (d, 3H, $J=7.1$ Hz); 13C NMR δ 168.9, 168.2, 141.8, 140.3, 131.8, 131.6, 129.1, 129.0, 125.0, 124.5, 65.47, 63.6, 52.6, 52.4, 9.3, 8.7; LRMS m/z 212 (12, M$^+$), 126 (43), 125 (73), 110 (62), 109 (38), 97 (21), 87 (18).

Ethyl (RR,SS)- and (RS,SR)-2-(phenylthio)propanoate-S-oxide 129:

\[
\begin{array}{c}
\text{Ph} \\
\text{S} \\
\text{O} \\
\text{CO}_2\text{Et}
\end{array}
\]

Sodium periodate (10.68 g, 49.93 mmol, 1.05 eq.) and ethyl 2-(phenylthio)propanoate 127 (10.00 g, 47.55 mmol) in 200 ml of water were reacted as described for 109. Column chromatography of the resultant pale yellow oil (6:1 CH$_2$Cl$_2$:EtOAc) gave starting material (1.87 g, 8.89 mmol, 19%) and the product (8.45 g, 37.34 mmol, 79%) as a colourless oil: IR 3069 cm$^{-1}$ (w), 2992 cm$^{-1}$ (s), 2939 cm$^{-1}$ (m), 1738 cm$^{-1}$ (s), 1088 cm$^{-1}$ (s); 1H NMR δ 7.66-7.50 (m, 5H), 4.12 (m, 2H), 3.81, 3.49 (q, 1H, $J=7.2$ Hz), 1.32, 1.49 (d, 3H, $J=7.2$ Hz), 1.201, 1.198 (t, 3H, $J=6.8$ Hz); 13C NMR δ 167.7, 140.4, 131.7, 131.6, 129.1, 128.9, 125.1, 124.6, 65.7, 63.6, 61.7, 61.7, 14.0, 9.6, 8.8; LRMS m/z 226 (10, M$^+$), 126 (49), 125 (64), 110 (21), 109 (17), 101 (38), 97 (17).

Z Sodium salt of ethyl 3-oxopropanoate 133:

\[
\begin{array}{c}
\text{CO}_2\text{Et} \\
\text{ONa}
\end{array}
\]

Sodium (11.5 g, 0.500 mol) was suspended in diethyl ether (150 mL) in a 250 mL three-necked flask equipped with a CaCl$_2$ drying tube, and absolute ethanol (25 g, 0.50 mol) was added dropwise. The resultant mixture was refluxed overnight and then cooled to -15 °C. Ethyl formate (90 g, 1.2 mol) was added followed by ethyl acetate (44 g, 0.50 mol) and the suspension was diluted with 100 mL of diethyl ether. The mixture was
allowed to warm to room temperature and stirring was continued for six hours. The suspension was cooled to 0 °C, the precipitate was filtered off, and the filter cake eluted several times with diethyl ether. The salt was dried under vacuum (1.0 mm Hg) at 75 °C for three hours to yield a white powder (14.59 g, 105.6 mmol, 21%).

Ethyl (Z)-3-[(4-methylphenylsulfonyl)oxy]propenoate 134:

![Chemical Structure](image)

The sodium salt of ethyl 3-oxopropanoate 133 (5.00 g, 36.2 mmol) was suspended in THF (100 mL) at 0 °C as p-toluenesulfonyl chloride (6.90 g, 36.2 mmol) in THF (30 mL) was added dropwise over one hour. The dropping funnel was equipped with a CaCl₂ drying tube to exclude atmospheric water. The reaction was stirred for an additional hour then diluted with diethyl ether (100 mL), washed with water (2x20 mL), dried over MgSO₄, and the solvent was removed to give 8.07 g (29.8 mmol, 82%) of a colourless solid. Recrystallization from petroleum ether gave colourless crystals: m.p. 76.5-77.5 °C (lit. 48b m.p. 78-78.5 °C); IR 3065 cm⁻¹ (w), 3039 cm⁻¹ (m), 2987 cm⁻¹ (m), 1721 cm⁻¹ (s), 1659 cm⁻¹ (s), 1598 cm⁻¹ (m), 1388 cm⁻¹ (s), 1265 cm⁻¹ (s), 1170 cm⁻¹ (s); ¹H NMR δ 7.84 (d, 2H, J=8.3 Hz), 7.37 (d, 2H, J=8.3 Hz), 6.94 (d, 1H, J=7.0 Hz), 5.31 (d, 1H, J=7.0 Hz), 4.13 (q, 2H, J=7.1 Hz), 2.46 (s, 3H), 1.23 (t, 3H, J=7.1 Hz); ¹³C NMR δ 162.7, 145.9, 144.4, 132.2, 130.0, 127.9, 106.3, 60.5, 21.7, 14.1; LRMS m/z M⁺ peak not observed, 225 (4), 155 (64), 91 (100); HRMS calcd. for C₁₂H₁₄SO₅ 270.0561, found 270.0564.
Methyl propynoate 136: 49

\[
\text{H} \equiv \equiv \text{CO}_2\text{Me}
\]

A chilled mixture of methanol (33.0 g, 1.03 mol) and concentrated sulfuric acid (6 g) was added portionwise to chilled propynoic acid (20.0 g, 0.286 mol). After sitting for four days at room temperature the solution was refluxed for thirty minutes and cooled. The mixture was poured portionwise into saturated \((\text{NH}_4)_2\text{SO}_4\) solution, which was then extracted with diethyl ether (4x150 mL). The combined organic extracts were washed with 10% \(\text{KHCO}_3\), water, dried with \(\text{Na}_2\text{SO}_4\), and the solvent removed to give a pale brown oil (13.11 g). Distillation (95-105 °C/760 mm Hg, lit. 49 b.p. 103-105 °C) of this residue yielded 11.55 g (13.74 mmol, 48%) of a colourless oil which was sufficiently pure for the next step. IR 3298 cm\(^{-1}\) (s), 3039 cm\(^{-1}\) (s), 2957 cm\(^{-1}\) (s), 2844 cm\(^{-1}\) (w), 2126 cm\(^{-1}\) (s), 1711 cm\(^{-1}\) (s), 1271 cm\(^{-1}\) (s); \(^1\)H NMR \(\delta\) 3.81 (s, 3H), 2.95 (s, 1H); \(^13\)C NMR \(\delta\) 153.1, 74.9, 74.3, 52.9; LRMS \(m/z\) this sample boils at such a low point that LRMS could not be obtained

Methyl (Z)-3-iodopropenoate 137: 50a

\[
\begin{align*}
\text{CO}_2\text{Me} \\
\text{I}
\end{align*}
\]

Methyl propynoate 136 (5.17 g, 61.5 mmol), sodium iodide (14.75 g, 98.40 mmol, 1.6 eq.), and acetic acid (23.64 g, 393.6 mmol, 6.4 eq.) were combined, and the suspension was stirred at 115 °C for one hour under nitrogen. The hot mixture was then poured into 200 mL of water in a separatory funnel. The reaction flask was washed with 10 mL of water and 60 mL of diethyl ether, which were added to the separatory funnel. The layers were separated, the aqueous portion was extracted with diethyl ether (60 mL) and the combined organic phases were washed with saturated \(\text{NaHCO}_3\) solution, 1M \(\text{Na}_2\text{S}_2\text{O}_3\)
solution, brine (20 mL of each) and were then dried with MgSO₄. Removal of the solvent at reduced pressure followed by vacuum distillation (71-73 °C/1.0 mm Hg, lit.50a b.p. 30-40 °C/0.03 mm Hg) yielded a colourless oil (10.82 g, 51.04 mmol, 83%): IR 3000 cm⁻¹ (w), 2954 cm⁻¹ (m), 2844 cm⁻¹ (w), 1726 cm⁻¹ (s), 1599 cm⁻¹ (s), 1166 cm⁻¹ (s); ¹H NMR δ 7.49 (d, 1H, J=8.9 Hz), 6.92 (d, 1H, J=8.9 Hz), 3.79 (s, 3H); ¹³C NMR δ 164.9, 129.4, 95.2, 51.6; LRMS m/z 212 (98, M⁺), 181 (100), 153 (38), 127 (90), 85 (46).

Dimethyl 2-methylene-4-(phenylthio)-1,5-pentanedioate 111:

![Chemical Structure](image)

Methyl 2-(phenylthio)acetate 108 (2.03 g, 11.1 mmol) was added to a stirred suspension of sodium hydride (0.45 g of 60% dispersion, 11 mmol) in THF under nitrogen at -78 °C, and the resultant slurry was warmed to room temperature and stirred for one hour. The cloudy, yellow reaction mixture was then cooled to 0 °C and was added to a THF solution of methyl 2-(bromomethyl)-2-propenoate 107 (3.00 g, 16.8 mmol, 1.5 eq.) at 0 °C dropwise via cannula. The mixture was allowed to warm to room temperature and stir for one hour. Cold saturated NH₄Cl solution was then added dropwise, and the product was extracted into CH₂Cl₂. The organic portion was washed with water and brine, dried over Na₂SO₄, and the solvent was removed to give a yellow oil. Column chromatography on silica gel with CH₂Cl₂ as the eluent provided 1.97 g (7.03 mmol, 63%) of the desired product as a colourless oil: IR 3017 cm⁻¹ (s), 2954 cm⁻¹ (m), 1729 cm⁻¹ (s), 1631 cm⁻¹ (w), 1440 cm⁻¹ (s), 1163 cm⁻¹ (s); ¹H NMR δ 7.50-7.20 (m, 5H), 6.26 (s, 1H), 5.66 (d, 1H, J=0.8 Hz), 4.00 (dd, X portion of ABX system, 1H), 3.74 (s, 3H), 3.64 (s, 3H), 2.83 (2 x dd, AB portion of ABX system, 2H); ¹³C NMR δ 171.9, 166.7, 136.1, 132.9, 128.9,
Dimethyl 2-methylene-4-(phenylthio)-1,5-pentanedioate-S-oxide 91:

\[
\text{Dimethyl 2-(phenylthio)acetate-S-oxide 109 (2.21 g, 11.2 mmol) was added to a stirred suspension of sodium hydride (0.45 g of 60% dispersion, 11 mmol) in THF under nitrogen at -78 °C and the resultant slurry was allowed to warm to room temperature and stir for one hour. The clear, yellow reaction mixture was then cooled to 0 °C and was added dropwise via cannula to a THF solution of methyl 2-(bromomethyl)-2-propenoate 107 (3.00 g, 16.8 mmol, 1.5 eq.) at 0 °C. The mixture was allowed to warm to room temperature and stir for one hour. Saturated NH}_4\text{Cl solution was added dropwise and the product was extracted into CH}_2\text{Cl}_2 (3x50 mL). The combined organic layers were washed with brine, dried over Na}_2\text{SO}_4 and the solvent removed to give a pale yellow oil. Column chromatography on silica gel using 4:1 CH}_2\text{Cl}_2:EtOAc as the eluent afforded 1.66 g (5.60 mmol, 50%) of a colourless oil: IR 3063 cm\(^{-1}\) (w), 3019 cm\(^{-1}\) (m), 2955 cm\(^{-1}\) (s), 2846 cm\(^{-1}\) (w), 1726 cm\(^{-1}\) (s), 1656 cm\(^{-1}\) (m), 1440 cm\(^{-1}\) (s), 1173 cm\(^{-1}\) (s), 1088 cm\(^{-1}\) (s); \(^1\)H NMR \(\delta\) 7.65-7.53 (m, 5H), 6.28, 6.24 (s, 1H), 5.76, 5.70 (d, 1H, J=0.9 Hz), 4.90, 4.75 (m, 1H), 2.90 (m, 2H); \(^13\)C NMR \(\delta\) 167.7, 166.5, 166.4, 141.6, 140.9, 135.4, 135.0, 131.8, 131.7, 129.4, 129.1, 129.0, 128.9, 124.7, 124.6, 69.7, 67.1, 52.4, 52.2, 52.1, 52.0, 28.7, 28.4; LRMS \(m/\mathbf{z}\) M\(^+\) not observed, 221 (1.5), 219 (1.4), 218 (7), 171 (24), 170 (12), 139 (40), 126 (18), 125 (33), 111 (100), 110 (39), 109 (29), 97 (11), 83 (16), 79 (15), 78 (36), 77 (50), 69 (12), 68 (12), 66 (15), 65 (19), 59 (34), 53 (21), 52 (22), 51 (59), 50 (27), 45 (14), 41 (12), 39 (28).}
Chapter 5
Introduction to Protoberberine Synthesis
The synthesis of natural products is one of the greatest challenges to the synthetic organic chemist. The attraction for many to this field has been the intellectual challenge of the multistep synthesis and the prospect of making a compound better than Nature is able to produce it. Natural product synthesis has become a much more practical endeavor rather than mainly an intellectual pursuit. These compounds are becoming increasingly important as the pharmaceutical industry searches for more efficacious drugs for a variety of medicinal applications. Some examples of natural products that are of pharmaceutical interest are the penicillins (antibiotics) 148, Δ⁹-tetrahydrocannabinol (antiemetic) 149, papaverine (smooth muscle relaxant) 150, theophylline 151, artemisinin (antimalarial) 152 and taxol (anticancer) 153. Many natural products, such as the penicillins 148, are isolated from their natural sources because the total synthesis is not as efficient or as inexpensive as the isolation procedure. Other compounds, such as 149-151, are commercially
synthesized out of convenience or necessity. For example, theophylline 151 is readily synthesized from dimethylurea and ethyl cyanoacetate more efficiently than it is extracted from its natural source. Tetrahydrocannabinol 149 and papaverine 150, on the other hand are synthesized because they are not found in their natural sources in large quantities. For some compounds which have more recently been found to be clinically useful, particularly those which are as structurally complex as artemisinin 152 and taxol 153, the total synthesis has not yet been accomplished efficiently. Artemisinin is still isolated from its natural source and taxol has been isolated from natural sources but is now more efficiently obtained by semisynthesis from a compound found in greater quantities in the same plants. These are not viable long term options for widespread use because 152 and 153 are not found in sufficiently large quantities. In these cases, total synthesis must be accomplished in order to obtain enough of the compound to study and use clinically. In fact, a number of different approaches to the synthesis of artemisinin and taxol have recently been reported but none of these methods have as yet been used commercially.

Another compound which is isolated in very small quantities from natural sources is jatrorrhizine 154, a member of the protoberberine alkaloids. The protoberberine alkaloids are characterized by the skeleton and over one hundred of these alkaloids have been isolated, mainly from plants found in China and India. Substitution at nearly
every position around the skeleton has been observed for different members of the protoberberine family. The vast majority of naturally occurring protoberberines have four O-substituents (usually OH, OMe, OCH2O) and these are typically present at the 2 and 3 positions and either the 9 and 10 or the 10 and 11 positions.*

Jatrorrhizine is highly coloured (for example, the natural form is the chloride salt which is deep yellow) and has been found as a minor constituent in one of the dyes used in an ancient publication of the Diamond Sutra, a scripture of the Buddhist religion. That printing of the Diamond Sutra is the oldest known printed text, dating back to the year 868,72 and jatrorrhizine appears to be acting as a preservative of the paper in the text. Jatrorrhizine has been found in a variety of traditional medicine preparations used as analgesics, sedatives, antiseptics and as cures for bleeding disorders and eye diseases.73 More stringent research in laboratories has demonstrated anti-malarial activity,74b,c uterine tissue stimulation74d and intercalation into DNA and RNA,74e suggesting potential use against cancer.

No total synthesis of jatrorrhizine has appeared in the literature to date, and it is currently isolated from its natural sources especially from plant cell culture.75 This procedure affords only milligram quantities after an exhaustive extraction and separation

* Compounds of the protoberberine series with the 10,11-substitution pattern have in a few instances been referred to generically as pseudoberberines. It appears to be an older term that is currently not in widespread use except in the names of a few of these alkaloids, for example, see compound 158. In this discussion, the term protoberberine will apply to both the 9,10- and the 10,11-substitution patterns.
procedure74b,75 so the total synthesis of jatrorrhizine from readily available starting materials was undertaken.

Other members of this family of alkaloids have been synthesized,71 but each approach appears to be inadequate for jatrorrhizine for different reasons (\textit{vide infra}).

Prior approaches to the synthesis of the protoberberine skeleton have most often been directed to the tetrahydroprotoberberines in which the B- and C-rings are saturated as in structure 155. These are readily converted to the analogous quaternary protoberberine salts 156 upon oxidation by I\textsubscript{2}, Hg(OAc)\textsubscript{2}, or in air (Scheme 5.3).76 The reverse reaction is readily accomplished by NaBH\textsubscript{4} in alcoholic solvents, hydrogenation over platinum catalysts or reduction by zinc in hydrochloric acid.77 Bearing these commonly performed conversions in mind, the following discussion of the previous syntheses of these alkaloids will, for most cases, be limited to the syntheses of the tetrahydroprotoberberines 155.

The classical approach to the synthesis of protoberberine alkaloids has been the closure of the C-ring via a Mannich condensation of 157 with formaldehyde in acid as in Scheme 5.4.78 This reaction is more specifically referred to as the Pictet-Spengler reaction79 when used to synthesize isoquinoline systems. In the example shown in Scheme 5.4, this approach gave tetrahydropseudoberberine 158 as the product and not "tetrahydroberberine" 159 (\textit{i.e.}, canadine).78a Compound 158 is the isomer which was
expected to be produced in this reaction because compound 159, canadine, is more sterically crowded about the D-ring than is 158. However, when the D-ring was a phenol as in 160 (Scheme 5.5), a more equal mixture was obtained due to the increased activation of the position ortho to the hydroxyl group. Thus, the unexpected and more sterically crowded isomer 161 was more readily produced. The hydroxyl group in the A-ring had no effect on the reaction because the same substitution pattern in the products was
obtained when an alkoxy rather than a hydroxyl group was present. The ratio of products depends on the acidity of the reaction mixture. At pH 6.3, the ratio of scoulerine 161 to coreximine 162 is 2:1,80a but at pH 7, in the presence of formaldehyde and no acid, only 162 was reported.80b To apply this methodology to jatrorrhizine, a separation of isomers would be required and the phenol required in the D-ring to obtain the 9,10-substitution pattern would need to be methylated in the desired product by diazomethane or by base followed by MeI. In addition, compounds 157 and 160 were obtained by the process outlined in Scheme 5.6.81 The acid chloride 163 and the amine 164 were reacted to give the amide 165. Alternatively, the analogous carboxylic acid or ester have been fused with the amines to give the required amides. The amide was then subjected to a Bischler-Napieralski reaction (165 \rightarrow 166) followed by catalytic hydrogenation of the resultant dihydroisoquinoline salt 166 and hydrogenolysis of the benzyl ethers.81a Although the sequence depicted in Scheme 5.6 proceeded with good yields, a number of dehydrating
agents other than POCl₃ have been used for the Bischler-Napieralski step,⁸⁴ and determining the optimum reagent and reaction conditions can be difficult.⁸⁴ These factors made this approach less than appealing for the synthesis of jatrorrhizine.

A more regiospecific approach to the synthesis of the desired 9,10-D-ring substitution pattern via the Pictet-Spengler reaction is to block one of the two possible sites of ring closure with a bromine atom.⁸² In this way, 12-bromonandinine 16⁹ was synthesized from 16⁸ as outlined in Scheme 5.7.⁸² The bromine atom is then removed by standard methods, such as LiAlH₄, hydrogenolysis with palladium on carbon or by zinc metal and hydroxide, as in this case, to give the tetrahydroprotoberberine nandinine 17⁰. The presence of the bromine atom tends to lower the yields for the Pictet-Spengler reaction as bromine deactivates the aromatic ring. As in the Pictet-Spengler reaction depicted in Scheme 5.5, this reaction occurs by the contribution of the hydroxyl group ortho to the site of cyclization. Therefore, subsequent methylation of the phenolic

![Scheme 5.7 Bromine as a protecting group in the Pictet-Spengler reaction]
product would be required if this approach was taken towards jatrorrhizine. In addition, the use of bromine as a protecting group has failed in at least one case, and the expected ring closure of 171 to 172 (Scheme 5.8) did not occur. Instead, the benzoazepinoisoquinoline 173 was confirmed as the product by x-ray crystallography. The failure of this reaction to give the desired compound may in part have been due to the absence of an hydroxyl activating group as in Schemes 5.5 and 5.7. However, the methodology has been shown to fail and furthermore it was hoped that the use of bromine as a protecting group could be avoided as this would add two steps to the total synthesis (bromination and subsequent debromination). Therefore, this approach was not pursued for the synthesis of jatrorrhizine.

The C-ring of the protoberberines has also been closed by the Bischler-Napieralski reaction, as outlined in Scheme 5.9, to give the aromatic protoberberine 175 directly. This reaction is highly regioselective but results in the exclusive formation of

Scheme 5.8 Failure of bromine directed Pictet-Spengler reaction
the 10,11-substituted protoberberines not the 9,10 substitution pattern required for jatrorrhizine. Bromine protection was attempted in the Bischler-Napieralski reaction to direct the regiochemical outcome as outlined in Scheme 5.10 for the synthesis of cheilanthifoline 180. In this case, the enamine double bond present in 174 is not present in 176 but the aromatic product is still obtained under the reaction conditions.
These unsaturated protoberberines 177/178 were then individually reduced to the tetrahydroprotoberberines by borohydride reduction. The bromine atom has proven to be less effective as a directing group here than in the Pictet-Spengler methods. The ring closure is directed to give the 10,11-substitution pattern 177 in the product so strongly that the bromine atom used as a directing group tends to be eliminated. This approach has resulted in more extensive removal of the bromine atom to provide a mixture of the expected 12-bromocanadine 182 and the 10,11-substituted tetrahydro-ψ-berberine 183 in a 1:3 mixture as in Scheme 5.11. Complete replacement of the bromine atom has also been observed with a different dehydrating agent. The reaction outlined in Scheme 5.12 was first reported to give only the debrominated compound 185. Reinvestigation of this reaction by another group indicated, as outlined in Scheme 5.12, that the debrominated 185 was obtained as well as 186 in which the bromine atom was
replaced by a chlorine atom. All attempts to replace this chlorine atom with hydrogen failed, further demonstrating the difficulties that can be encountered with these types of reactions. Again, to avoid the possibilities that a separation of isomers may be required and that a stalwart chlorine may become incorporated in the product as in 186, this approach was not pursued for the synthesis of jatrorrhizine.

Variants of the Bischler-Napieralski reaction have most often been used to close the B-ring of the protoberberine skeleton as in Scheme 5.13.80a This sequence does indeed provide the substitution pattern required for jatrorrhizine by fixing the D-ring.

![Scheme 5.12 Failure of bromine protection86b](image1)

![Scheme 5.13 Bischler-Napieralski reaction in closure of B-ring80a](image2)
substitution pattern early in the synthesis but in poor yield (26%) based on 187. Although this yield is considerably lower than the typical yields for this reaction, it serves to demonstrate the variation in results that is often observed in the Bischler-Napieralski reaction. The synthesis of 187 itself is an additional weakness of this methodology. Obtaining this 1,2,3,4-tetrasubstituted pattern required for the D-ring of the protoberberine by classical methods is typically inefficient for compounds used in all of the variants of the Bischler-Napieralski methodology. For example, compound 190 was obtained via a Reimer-Tiemann reaction in low yield (15%) followed by protection of the phenolic hydroxyl (Scheme 5.14). The aldehyde 191 was then condensed with the amine 192 to give an imine, which was reduced with borohydride resulting in the tricyclic lactam 187 in only 11% yield in three steps from 189. This overall yield is very low for three steps so was not considered efficient for the present synthesis.

Another approach to this substitution pattern involves the use of bromine as a protecting group to direct the site of reaction as outlined in Scheme 5.15 to give the
Scheme 5.15 Synthesis of 1,2,3,4 tetrasubstituted compound for Bischler-Napieralski reaction

homophthalic anhydride 197. This material was then used in a Bischler-Napieralski reaction as outlined in Scheme 5.16 to give the oxyprotoberberine 201. These compounds can then be reduced by standard methods, such as LiAlH₄, to the tetrahydroprotoberberines. Few yields were reported for the series of reactions in Schemes 5.15
and 5.16, but the synthesis of 197 involves far too many steps for it to be useful synthetically.

Alternatively, a lactone (such as 8-benzoxy-7-methoxyisochroman-3-one 202) can be used instead of the homophthalic anhydrides 197 to give the tetrahydroprotoberberines directly.\(^{80a, 89-91}\) However, the classical approaches to these 1,2,3,4-tetrasubstituted lactones offer no significant advantage as these are almost as inefficiently synthesized as the homophthalic anhydrides. In the first case (Scheme 5.17),\(^{80a}\) the same low yield (15%) Reimer-Tiemann reaction described in Scheme 5.14 was used to formylate the aromatic ring \textit{ortho} to the phenolic hydroxyl group, and the phenol 190 was subsequently benzylated as described in Scheme 5.14. The formyl substituent was then converted to a hydroxymethyl group by borohydride reduction with simultaneous lactone 202 formation. Because of the low yield obtained in the first step, the overall yield for this sequence is only 12%. Lactone 202 was then used in the synthesis of 188 by the sequence outlined in Scheme 5.18.\(^{80a}\) The lactone 202 was heated with amine 203 to give the amide 204.
which was treated with phosphorus oxychloride to close the B-ring to the dihydro­
isoquinoline salt 205. Borohydride reduction of the dihydroisoquinoline ring resulted in
an intramolecular ring closure between the nitrogen and the chloromethyl group, which
was produced by the action of phosphorus oxychloride.

An alternative approach to the 1,2,3,4-tetrasubstituted lactones is once again the
use of bromine as a protecting group as shown in Scheme 5.19.89b 3,4-Dimethoxy­
phenylacetic acid 206 was brominated and then converted to 5-bromo-7,8-dimethoxy­
isochroman-3-one 208 by the introduction of an hydroxymethyl group in the required

Scheme 5.19 Synthesis of 1,2,3,4-tetrasubstituted lactones \textit{via} bromine protection89b
position of the aromatic ring. Although the isochromanone 208 was obtained in good yield from 206 (69% overall), we hoped that the use of bromine as a protecting group would not be required because, as previously mentioned, this would add two steps to the total synthesis (bromination with subsequent debromination).

The synthesis of these tetrasubstituted lactones was greatly improved by the use of phenylboronic acid and paraformaldehyde to introduce a hydroxymethyl group adjacent to the phenolic hydroxyl in much better yield (Scheme 5.20). The hydroxyl group is required for the formation of the intermediate boronate 209, which is not isolated, and the isochromanone 210 is obtained directly from 189 in excellent yield (93%). This has been followed by methylation or benzylation of the phenol to obtain the desired substitution pattern for the protoberberines. The resultant lactones can then be used in total syntheses as in Scheme 5.18.

A modification of the lactone approach to the protoberberine alkaloids has also been developed. The lactones have been converted to so-called "bromoesters" 212 by the action of ethanolic hydrobromic acid (Scheme 5.21). The bromoesters are then
reacted with the appropriate amine to give a tricyclic amide 187 which, as in Scheme 5.13, is treated with phosphorus oxychloride to complete the B-ring followed by

![Chemical structure]

Scheme 5.21 Use of bromoester 212 in tetrahydroprotoberberine synthesis91a,b

... continues...
followed by hydrolysis of the cyanohydrin 214 to the corresponding carboxylic acid 189. The toxicity of the cyanide was not the primary concern, but the subsequent problems that have been encountered with the lactone routes outlined here did not justify its use.

An alternative route to the 9,10-substituted protoberberines has been to start with an isoquinoline with the required substitution pattern. Perhaps the simplest approach to the protoberberine alkaloids uses such an intermediate and involves the closure of the B-ring via a dihydroisoquinoline intermediate 218 (Scheme 5.23). This reaction is accomplished with a mineral acid, such as concentrated HCl, or a mixture of phosphoric and formic acids in moderate yield from 218, but it is the synthesis of the
isoquinoline 215 that is the inefficient step. Compound 215 is obtained by the Pomerantz-Fritsch reaction (Scheme 5.24), which is a ring closure reaction of the acetal 220 in acid to give the 7,8-dimethoxyisoquinoline 215. This reaction is regiospecific for the required substitution pattern because there is only one site at which the ring closure may occur. Although this compound is obtained in moderate overall yield (45%) from readily available starting materials (2,3-dimethoxybenzaldehyde and aminoacetaldehyde dimethyl acetal followed by hydrogenation of the resultant imine), we hoped that the isoquinoline portion could be synthesized more efficiently and in better yield than in this procedure.

The Pomerantz-Fritsch reaction has also been used as the final step in the synthesis of the protoberberine skeleton (Scheme 5.25). The 9,10-substitution pattern of the protoberberine is obtained by the ortho-hydroxyl activated Mannich condensation of 223 to 225 (as previously discussed) which, in this synthesis, gives a mixture of the 10,11- and the 9,10-substitution pattern in a ratio of 1.3:1 (224:225). In this report, the Pomerantz-Fritsch reaction results in the 5-hydroxytetrahydroprotoberberine 227, which can be converted to berberastine iodide 228 by treating with iodine to aromatize the C-ring. These compounds have been reacted with acid to eliminate water and give the fully aromatic dehydroprotoberberine 229 followed by reduction with sodium borohydride or catalytic hydrogenation (Scheme 5.26) to the tetrahydroprotoberberine 219. The lack
Scheme 5.25 Use of Pomerantz-Fritsch reaction in protoberberine synthesis95a

of selectivity of the Mannich reaction for the 9,10-substitution pattern (223 \(\rightarrow\) 225) and the steps required to convert the 5-hydroxyprotoberberine to the protoberberine (Scheme 5.26) made this sequence seem inadequate for jatrorrhizine.
Scheme 5.26 Conversion of 5-hydroxyprotoberberine to tetrahydroprotoberberine95b

One approach to the protoberberine alkaloids that can be considered as the sulfur analog of the Pomerantz-Fritsch reaction is outlined in Scheme 5.27.96 This reaction results in the 9,10-substitution pattern because, as in Scheme 5.24, there is only one site

Scheme 5.27 Synthesis of protoberberines via Pomerantz-Fritsch type reaction96
available for the ring closure to occur. Carbon 13 of the protoberberine skeleton was introduced to the dihydroisoquinoline portion of 230 via the lithium salt of methyl methylthiomethylsulfoxide (MMTS). The ring closures were accomplished by heating in concentrated HCl, and compounds 232 and 233 were individually reduced by NaBH₄ to the tetrahydroprotoberberines. The C-ring of each of these compounds could also be oxidized directly to the aromatic protoberberine as in Scheme 5.3 rather than reduced. In this report, one of the tetrahydroprotoberberines was aromatized in the C-ring by iodine in 95% yield.

Another strategy that is very similar to this involves the use of an isoquinoline-1-carboxaldehyde oxime 235 as in Scheme 5.28. The substitution pattern in the D-ring is again specific for the 9,10-substitution pattern based on a readily available starting material 234, which gives rise to only one site available for the final ring closure. Quaternization of the isoquinoline 235 and the bromide 234 gives a salt 236, which is cyclised in acid to the dehydroprotoberberine 237. This is then reduced by a standard

Scheme 5.28 Protoberberine synthesis via isoquinoline-1-carboxaldehyde oxime⁹⁷a
method to the tetrahydroprotoberberine. The 53% yield reported for the catalytic hydrogenation is very low compared to other reactions of this type and no explanation was given for this result. The drawback of this approach is the synthesis of the isoquinoline-1-carboxaldehyde (Scheme 5.29), which is obtained in poor yield (35%) by selenium dioxide oxidation of the 1-methylisoquinoline. The aldehyde is then converted to the oxime by hydroxylamine hydrochloride for use in the protoberberine synthesis. Initially, the aldehyde was used in the total synthesis, but the yields were greatly improved from 30% to 80% by the use of the oxime.

The syntheses discussed to this point have, for the most part, been classical approaches to the protoberberine alkaloids, and many of the key reactions have been accomplished in low and/or variable yield under the same experimental conditions. The required 1,2,3,4-tetrasubstituted starting materials that have proven to be the inadequacy of past attempts at protoberberine syntheses may be more readily obtained by more modern synthetic strategies. Aromatic lithiation reactions have provided entry into a number of these sterically crowded aromatic compounds, which have either not been synthesized or are synthesized by lengthy routes (for example see Scheme 5.13).
approach that utilizes this metalation methodology is outlined in Scheme 5.30.100 Ortho-lithiation of the readily available \(N,N\)-dimethyl-3,4-dimethoxybenzylamine 241 occurred exclusively at the 2-position, and addition of paraformaldehyde to the anion resulted in the hydroxymethyl compound 242. The next three steps were done without isolation of the intermediates. Treatment of the dimethylamino compound 242 with ethyl chloroformate resulted in the chloride 243, which was converted to the nitrile 244 by the addition of potassium cyanide. Basic hydrolysis to the corresponding acid followed by acidic workup gave the isochroman-3-one 211 in fair overall yield. As outlined in

\[\text{Scheme 5.30 Ortho-lithiation approach to protoberberine alkaloids}^{100} \]

Schemes 5.30 and 5.31, this compound was then used in the same manner as previously synthesized lactones (Scheme 5.18). Addition of the 3,4-dimethoxyphenethylamine resulted in the amide 245. This was subjected to cyclodehydration, in this case by
phosphorus pentachloride, followed by borohydride reduction to the tetrahydroprotoberberine 219. Although the tetrahydroprotoberberines are obtained in acceptable overall yield (in this example, 28% from the amine 241), the route to the isochroman 211 is not particularly efficient.

Another aromatic lithiation approach is outlined in Scheme 5.33, and it utilizes the chiral formamidine synthesized in Scheme 5.32. Condensation of 3,4-dimethoxybenzaldehyde (veratraldehyde) 246 with nitromethane and LiAlH₄ reduction of the resultant nitrostyrene gave the phenethylamine 247 in fair overall yield. A Pictet-Spengler reaction gave the expected 6,7-dimethoxytetrahydroisoquinoline 248 in good yield. The chiral auxiliary 249 was introduced into the strategy to give compound 250. The chiral formamidine introduced in compound 250 was used to direct the deprotonation of the isoquinoline ring and provide the anion 251 selectively. The other portion of the protoberberine was synthesized by a similar method to that outlined in Scheme 5.30.
Scheme 5.32 Synthesis of chiral formamidine for ortho-lithiation reaction101,102

Ortho-lithiation of 241 and introduction of the hydroxymethyl group via paraformaldehyde were accomplished in the same manner. However, in this case the final goal was not a lactone, so the alcohol was protected as the \(t \)-butyldimethylsilyl ether followed by conversion of the dimethylamine group to the chloride 253. This was attacked by the anion 251 and then the chiral auxiliary was removed by hydrazine hydrate to give 254 stereoselectively. The tetrahydroprotoberberine 219 was completed by conversion of the silyl ether to the bromide, intramolecular closure of the C-ring and
neutralization of the HBr produced in the reaction. Thus, the total asymmetric synthesis of (-)-tetrahydropalmatine \(219\) was accomplished in 22% yield and 88% enantiomeric excess (94:6 mixture of enantiomers). As jatrorrhizine is aromatic in the C-ring, this chiral approach is not necessary for the purpose of our study. However, this synthesis of \(219\) demonstrates the utility of aromatic lithiation reactions in the synthesis of 1,2,3,4-tetrasubstituted compounds and their potential for use in the synthesis of a number of the protoberberine alkaloids.

Other approaches to the protoberberine alkaloids that have appeared include palladium catalysed insertion of carbon monoxide (Scheme 5.34),\(^{103}\) cycloaddition reactions by photolysis (Scheme 5.35)\(^{104}\) and \textit{via} benzyne (Scheme 5.36)\(^{105}\) or benzocyclobutene (Scheme 5.37)\(^{106}\) intermediates.
Scheme 5.34 Synthesis of protoberberines via carbon monoxide insertion103

Scheme 5.35 Synthesis of protoberberines via photolysis104b

Scheme 5.36 Synthesis of protoberberines via benzyne intermediate105
These do not appear to be generally applicable to the synthesis of other protoberberines as they often demonstrate an inherent lack of selectivity for the substitution pattern desired for jatroprhize. They therefore remain rather specific approaches to only certain members of this large family of alkaloids. Faced with the limitations of previous approaches to the syntheses of these alkaloids a new approach was considered for the first total synthesis of jatroprhize.
Chapter 6

Progress Towards the Total Synthesis of Jatrorrhizine
The first retrosynthetic analysis of jatrorrhizine that was considered is outlined in Scheme 6.1. Completion of the B ring by intramolecular ammonium salt formation between the isoquinoline portion of the molecule and a chloroethyl group on the A ring.
could be accomplished upon chlorination of the parent alcohol 265. The hydroxyl protons of the primary alcohol and the phenol in 265 may adversely affect some of the prerequisite reactions, so must be protected, i.e., 266. It was felt that compound 266 could be obtained from the imine 267 by an electrophilic substitution reaction where X is an appropriate leaving group. The aromatic ring in 267 that will become the D-ring of the final product is substituted with three electron-donating groups and should be quite activated to electrophilic substitution. The ring closure may require a subsequent aromatization reaction if the oxidation to the fully aromatic 266 does not occur under the reaction conditions. The imine 267 could potentially be derived from condensation of the ketone 268 with 2,3-dimethoxybenzylamine 269, a commercially available compound. The ketone 268 may be obtained by a Friedel-Crafts acetylation of 270 using an X-substituted acyl halide, e.g. bromoacetyl bromide. Alternatively, acetyl chloride itself could be used followed by incorporation of the leaving group X. This aromatic ring is also very electron rich so should be quite activated towards Friedel-Crafts reactions. We felt that this ring would be more activated than the arenes of the two benzyl protecting groups. Compound 270 may be synthesized via saturation of compound 271 obtained by a Wittig or some other olefination reaction of aldehyde 272. The aldehyde 272 can be acquired by the protection of commercially available 3-hydroxy-4-methoxybenzaldehyde 273, commonly known as isovanillin. The benzyl ether protecting group was selected as these are formed readily with alcohols and are very stable to the majority of reaction conditions.

This retrosynthetic analysis can readily be applied to the synthesis of other protoberberine alkaloids. For example, substitution of 3-methoxy-4-hydroxy-benzaldehyde (vanillin) 274 for 3-hydroxy-4-methoxybenzaldehyde 273 would provide the substitution pattern required on the A ring for columbamine 275. Berberine 277 could be synthesized by the use of 3,4-methylenedioxybenzaldehyde (piperonal) 276. More
variations in the substitution pattern of the A and D rings can be readily made with other commercially and synthetically available compounds. Berberine 277 is commercially available because it is found in greater quantities in its natural source than other protoberberine alkaloids. Therefore, the synthesis of berberine will not be considered here. Discussion here will be limited to the synthesis of jatrohizine.

3-Hydroxy-4-methoxybenzaldehyde 273 was deprotonated by sodium hydride and benzylated with benzyl bromide in 84% yield. The resulting aldehyde 278 was then reacted with the ylid derived from the phosphonium salt 280, which was prepared by
the reaction of benzyl chloromethyl ether 279^{109} and triphenylphosphine. A 2:1 mixture of alkenes (E)-281 and (Z)-281 was obtained from the Wittig reaction110 in 82% combined yield. This ratio, which was determined by integration of the olefinic signals in the ^1H NMR spectrum of 281, is typical for reactions with this type of unstabilized ylid under these conditions.110 This type of Wittig reaction has been used to obtain a single carbon homologation of an aldehyde after hydrolysis of the enol ether 281 with acid to give 283 as outlined in Scheme 6.5.111 In our work, reduction of the enol ether provided the required protected alcohol more efficiently than a single carbon homologation of the

![Scheme 6.4 Wittig reaction of 278](image)

![Scheme 6.5 Synthesis of compound 282](image)
aldehyde to give 283, followed by reduction to the alcohol 284 and benzylation of the resultant primary alcohol.

The reduction of the enol ether had the potential to be troublesome if a catalytic hydrogenation approach was utilized. Catalytic hydrogenation of an alkene is typically performed in the presence of palladium on carbon under an atmosphere of hydrogen gas. These conditions will also cleave benzyl ethers to give the parent alcohol and toluene Scheme 6.6.112-113 Since the compound being studied contains two benzyl ethers as well

\[
\text{ROCH}_2\text{Ph} \xrightarrow{\text{H}_2, \text{Pd/C}} \text{ROH} + \text{PhCH}_3
\]

\(R = \text{alkyl, aryl}\)

Scheme 6.6 Catalytic hydrogenolysis of benzyl ether

as the alkene, there are seven potential products resulting from reduction of the alkene and/or removal of one or both of the benzyl groups. Reduction of the alkene should proceed at a rate faster than removal of the benzyl groups and a certain degree of selectivity was expected.112 Initial experiments with palladium on carbon did not appear to be promising and mixtures of products were observed by NMR and TLC analysis of the reactions. Various palladium catalysts have been developed that show greater selectivity for particular functional groups.113 These were considered, most notably palladium on barium sulfate or on strontium carbonate, which mediate preferential hydrogenation of enol ethers.113 Rhodium and ruthenium catalysts are also known to preferentially hydrogenate double bonds rather than hydrogenolyse benzyl ethers.113 Nevertheless, all hydrogenation catalysts do have the potential to cause debenzylation so at this point experimental study of this hydrogenation moved away from a catalytic approach and instead focused on the use of diimide, a hydrogen donor.114-117
Diimide 285 is a neutral, transient species most commonly generated by the oxidation of hydrazine 286, the decomposition of potassium azodicarboxylate 287 or the base-catalyzed thermal cleavage of p-toluenesulfonylhydrazide 288 as outlined in Scheme 6.7. Diimide has found synthetic use in cases in which catalytic hydrogenation proved to be unsatisfactory. These include situations where the molecule contains a sulfide, as this functional group poisons hydrogenation catalysts and renders them ineffective. Diimide also has greater steric demands than palladium catalyzed hydrogenation, and this has been used to provide hydrogenations with greater stereocontrol. The other situation in which diimide has been used effectively is in the presence of other functional groups that may be reduced by hydrogenation, such as carbonyls, nitriles, halogens or benzyl ethers as in the reduction to be studied. A wide variety of conditions to generate diimide were investigated, in particular the alkaline catalyzed decomposition of p-toluenesulfonylhydrazide 288 and the oxidation of hydrazine 286 as outlined in Scheme 6.8. However, in no case did the conversion exceed 34% even in the presence of
a large excess of diimide. Previous studies have shown that the mechanism of the reduction proceeds through a six-membered cyclic transition state with "synchronous hydrogen transport" from the diimide to the alkene. Inspection of the structure of the transition state as in Scheme 6.7 indicates that for the Z isomer 290, there are greater steric interactions than in the transition state for the E isomer 292. This results in a greater rate of reduction for E alkenes than for Z alkenes. Since the product of the Wittig reaction is a 2:1 mixture of the E:Z isomers of 281, reduction by diimide will proceed slowly on one third of the mixture. This was, in fact, demonstrated in one set of experiments where an alkene mixture was subjected to three successive diimide reductions. It was found that the E isomer was more selectively reduced than the Z.
isomer until no E isomer remained after the third reaction. One approach at this stage could be to convert the Z isomer to the more readily reduced E isomer. A number of methods exist for the conversion of Z alkenes to the more stable E alkenes. Attempts to achieve this with iodine resulted in a complex mixture of products, so this approach was not pursued further. Another approach could be to alter the Wittig reaction to give enhanced selectivity for the E alkenes and many such modifications are known. These include replacement of triphenylphosphine with a trialkylphosphine or P-phenyl-dibenzophosphole, the use of an alkyl lithium base and the addition of lithium salts. Perhaps the most popular method is the Schlosser modification in which the ylid is formed as a lithium halide complex and reacted with the aldehyde at low temperature. Addition of base followed by stereoselective reprotonation of the anion generates the *threo*-betaine. Warming the solution then causes the cleavage of the betaine intermediate to triphenylphosphine oxide and the E-alkene selectively.

While the use of such modifications was considered, another aspect of the diimide reduction indicated that this still might not be the most effective strategy. Previous studies have shown that hydrogenation by diimide is not particularly effective on polarized double bonds. Since alkene is an enol ether, this does not bode well for the diimide reduction. Although the starting alkene is separable from the alkane
282 by chromatography, this option was deemed to be unsatisfactory and the hydrogenation over palladium catalysts was reinvestigated. It was found that in very carefully performed reactions using palladium on carbon and precisely one equivalent of hydrogen, the enol ether 281 was selectively reduced providing 282 in excellent yield (95%). There was no evidence of hydrogenolysis of either of the benzyl ethers. The use of three equivalents of hydrogen resulted in complete hydrogenation of the double bond and hydrogenolysis of both benzyl ethers to give 297 (Scheme 6.11). Benzyl ethers can occasionally be resistant to cleavage,107 but are relatively labile to hydrogenolysis in this compound. This suggested that removal in the final stages of the synthesis may proceed without significant difficulty.

The next step of the synthetic scheme was a Friedel-Crafts acylation of the central aromatic ring. Acylation should occur at the 5-position because this is the most reactive
position of the ring.108 Although each of the positions available for substitution can be viewed as activated, formation of the 1,2,4,5-substituted compound is more favourable

\[
\begin{array}{c}
\text{H}_3\text{COCI} \\
\text{catalyst}
\end{array}
\]

\begin{align*}
\text{Scheme 6.12 Expected site of Friedel-Crafts acylation of 282}
\end{align*}

than any other possible substitution pattern based on steric grounds. Friedel-Crafts reactions using AlCl\textsubscript{3} or FeCl\textsubscript{3} in CH\textsubscript{2}Cl\textsubscript{2} or CS\textsubscript{2} with bromoacetyl bromide or acetyl chloride were attempted under a variety of conditions. Unfortunately, the desired acylation did not occur as expected. Either no reaction occurred or multiple acylations took place to give an intractable mixture. An interesting product that was isolated from one experiment with FeCl\textsubscript{3} in CS\textsubscript{2} resulted from replacement of both benzyl groups by acetyl groups giving compound 299 in 12\% yield. Friedel-Crafts catalysts readily cleave methyl ethers,

\[
\begin{array}{c}
\text{MeAc} \\
\text{FeCl}_3, \text{CH}_3\text{COCl}
\end{array}
\]

\begin{align*}
\text{Scheme 6.13 An unexpected compound isolated from attempted acylation of 282}
\end{align*}

especially those ortho to the position of acylation,124 but benzyl ether cleavage is not as commonly observed. FeCl\textsubscript{3} has been used to selectively remove benzyl ethers in the

89
presence of methyl ethers, but in this case the presence of acetyl chloride results in the diacetate derivative 299. This benzyl ether cleavage with FeCl₃ was kept in mind in case hydrogenolytic deprotection of the benzyl groups in the planned penultimate step of the total synthesis should prove troublesome.

In an attempt to limit the number of aromatic sites available in the substrate, 302 was investigated as a potential intermediate. Compound 302 was synthesized in the same manner as 282, via the enol ether 301 but the starting material was 3,4-dimethoxybenzaldehyde (veratraldehyde) 300 rather than benzylated isovanillin 278. Introduction of an acetyl group at position 5 of 302 would afford 303 as in Scheme 6.14. This type of compound has been shown to be suitable for the selective removal of the methyl ether para to the acetyl group with EtSNa in DMF. Subsequent benzylation of the phenol would again provide the desired dibenzyl-protected intermediate 298. Friedel-Crafts reactions with this compound also resulted in mixtures of products. A different alcohol protecting group, such as a t-butyldimethylsilyl ether (TBDMS) or o-nitrobenzyl ether,
could have simplified the Friedel-Crafts reaction by limiting the number of sites available for acylation. The TBDMS ether is relatively stable to mild Friedel-Crafts reaction conditions, and the nitrobenzyl ether is less activated to electrophilic substitution by virtue of the electron withdrawing nitro group. However, it was felt that the benzyl protecting groups should remain since it was not known exactly what conditions would be required in the remaining reactions, and benzyl ethers are highly stable to a very wide variety of reaction conditions.127

At this point the synthetic strategy was reexamined. The initial retrosynthetic analysis incorporates the critical isoquinoline ring closure (267 → 266) fairly late in the synthesis so it was decided that the new strategy should include completion of this reaction at an earlier stage. Synthesis of an isoquinoline substituted at the 3-position 305 with an appropriate group would afford a substrate suitable for a biaryl coupling reaction.

Biaryl coupling methodology has become a very powerful and widespread synthetic tool, and a variety of coupling partners and catalysts have been developed.128-133 Thus, the other fragment 282 of the final compound that had been synthesized could still be useful

Scheme 6.15 Biaryl coupling methodology approach to jatrorrhizine
and the total synthesis would be more convergent. The isoquinoline that was chosen to be pursued is substituted in the 3-position with the trifluoromethanesulfonyl (triflate, OTf) group, which has recently been shown to be a very effective leaving group in a variety of biaryl coupling reactions. Other phenol derivatives, such as mesylates, phosphates, carbamates, alkoxyl and tetrazolyls, have been used in these reactions, but the triflate has demonstrated greater utility than these types of compounds. A similar heteroatomic moiety had been shown to be stable and useful in biaryl coupling reactions. It is not known if 308 has been used in biaryl coupling reactions but 1-trifluoromethanesulfonylisoquinoline and 2-trifluoromethanesulfonylisoquinoline have been used previously in cross coupling reactions.

Classically, isoquinoline syntheses have been performed in one of three ways: the Bischler-Napieralski, the Pictet-Spengler and the Pomerantz-Fritsch reactions, which are outlined in Scheme 6.16. Each of these reactions is facilitated by an activated aromatic ring system, especially an electron-donating substituent para to the desired site of ring closure. Such a substituent is indeed present in the case being studied. The Bischler-Napieralski reaction is the most frequently used method of isoquinoline synthesis and involves the cyclodehydration of N-acyl β-phenethlamines 313 to 3,4-dihydroisoquinolines. The most commonly used reagents to affect this transformation are
phosphorus pentoxide and phosphorus oxychloride in dry, inert solvents, such as chloroform, benzene or xylene. Reduction or dehydrogenation of these partially saturated heterocyclic systems gives the 1,2,3,4-tetrahydroisoquinoline or the isoquinoline, respectively. However, the desired compound is a 7,8-dimethoxy substituted isoquinoline and this substitution pattern is difficult to obtain with the Bischler-Napieralski reaction.

Scheme 6.17 Bischler-Napieralski approach to substituted isoquinolines
The favoured product for this type of reaction is the 6,7-dimethoxy substituted isoquinoline 314 as outlined in Scheme 6.17.

The Pictet-Spengler reaction consists of the condensation of β-phenethylamines with carbonyl compounds in acid to give 1,2,3,4-tetrahydroisoquinolines (Scheme 6.18). This transformation is most commonly achieved by the action of hydrochloric acid or sulfuric acid and the fully aromatic compound can be obtained by dehydrogenation.

However, the desired substitution pattern is difficult to obtain with this type of reaction as well and the product obtained is the same 6,7-dimethoxyisoquinoline ring as in the Bischler-Napieralski reaction.

The Pomerantz-Fritsch reaction involves the cyclization of benzalaminoacetals 317 in acid to give fully aromatic isoquinolines directly (Scheme 6.19). This reaction is commonly performed in different concentrations of sulfuric acid or in mixtures of sulfuric acid with reagents such as hydrogen chloride, phosphorus pentoxide or phosphorus oxychloride. The Pomerantz-Fritsch reaction is generally better than the Bischler-Napieralski or the Pictet-Spengler reactions for preparing 7,8-disubstituted isoquinolines, such as 315. This is because there is only one site of cyclization, and it results in the
desired 1,2,3,4-tetrasubstituted product. Unfortunately, the desired product is usually obtained in lower than 50% yield.

With these limitations to the classical methods of isoquinoline synthesis, other methods of effecting the ring closure were investigated. The target heteroatomic portion at this stage was the isoquinolinol 318, and it was anticipated that this structure could result from the closure of the heteroatomic ring by an electrophilic substitution reaction as in Scheme 6.20. The aromatic ring of 319 possesses two methoxy groups and the alkyl group so it is very electron rich and should be very reactive to aromatic substitution reactions. Substitution at the desired position would result in a sterically hindered 1,2,3,4-substituted aromatic ring, which may not be obtained via an intermolecular reaction since every position on the ring is very activated. To ensure the correct
regiochemistry, an intramolecular approach was utilized. A series of amides 319 - 322 (Scheme 6.21) were synthesized139 with different leaving groups (X and Y) for the aromatic substitution reaction. The halogenated amides 319 and 320 were synthesized

\[
\begin{align*}
319 & \quad X=\text{Br}, \ Y=\text{H} \\
320 & \quad X=\text{Cl}, \ Y=\text{Cl} \\
321 & \quad X=\text{SPh}, \ Y=\text{H} \\
322 & \quad X=\text{SPh}, \ Y=\text{SPh}
\end{align*}
\]

Scheme 6.21 Potential precursors to 318

from the amine 269 and commercially available acid chlorides. As outlined in Scheme 6.22, amide 321 was synthesized by the basic hydrolysis of 323 and conversion of the resulting acid salt to the acid chloride with thionyl chloride. The acid chloride was then added to the amine 269 and pyridine without purification. Amide 322 was

\[
\begin{align*}
\text{PhSCH}_2\text{CO}_2\text{Et} & \xrightarrow{\text{SO}_2\text{Cl}_2} \text{PhSCH(Cl)CO}_2\text{Et} & \xrightarrow{\text{Al}_2\text{O}_3, \Delta} (\text{PhS})_2\text{CHCO}_2\text{Et} \\
\text{1. KOH} & \xrightarrow{\text{2. SOCl}_2} \text{SPh} & \xrightarrow{\text{3. 269, pyridine, 71\%}} \text{321} \\
\text{323} & \text{324} & \text{325} \\
\end{align*}
\]

Scheme 6.22 Synthesis of amides 321 and 322

similarly synthesized via compound 325 as outlined in Scheme 6.22.

96
The halogenated amides 319 and 320 were subjected to a variety of Friedel-Crafts type reactions, utilizing polyphosphoric acid at different temperatures and AlCl₃ or FeCl₃ in a number of typical solvents (e.g. ether, dichloromethane, hexanes, heptane, decalin, nitrobenzene). The desired reaction did not appear to be occurring, and starting material was recovered quantitatively or intractable tars were obtained.

The phenylthio substituted amides 321 and 322 were utilized in a novel attempt to accomplish the desired ring closure via an as yet unknown sulfur analog of the Pomerantz-Fritsch reaction. It was felt that complexation of the soft sulfur atoms with soft metal salts such as those of mercury or silver (Scheme 6.23) would make the carbon alpha to the amide carbonyl sufficiently electrophilic to be attacked by the highly activated aromatic ring. Reactions were attempted with mercury (II) acetate in refluxing ethanol or acetonitrile, and, although each attempt resulted in a complex mixture, curious results were obtained in each reaction performed. As outlined in Scheme 6.24, precipitates of mercury(II) thiophenolate were observed, liquid mercury was produced, and some substitution of acetate for the phenylthio group was observed in every case.

![Scheme 6.23 Complexation of mercury (II) with 321 and 322](image-url)
Scheme 6.24 Products of mercury (II) salt reactions with 321 and 322

None of the desired bicyclic compound was obtained from any of these reaction mixtures, and the work on these reactions was not pursued further.

Another approach to the synthesis of the isoquinoline is the use of a directed ortho metalation (DoM) outlined in Scheme 6.25. This methodology has become particularly useful for the regiospecific synthesis of 1,2-, 1,2,3- and 1,2,3,4-substituted aromatics, which often can not be obtained by traditional electrophilic substitution reactions. A variety of directed metalation groups (DMG's) have been investigated that direct alkylithium bases to deprotonate at the aromatic position adjacent to that group. A good
coordinating site for the alkyllithium base is required for regiospecific deprotonation, and the substituent must be resistant to nucleophilic attack by the base. A heteroatom must be present to satisfy these requirements and confer DMG character to an aromatic substituent. Some DMG's that have shown synthetic utility include NH-t-Boc, CONR₂, CH₂NR₂ and OR, where R is usually CH₃. Compound 331 was synthesized from amine 269 in excellent yield (89%) as in Scheme 6.26 to determine its usefulness as a DoM substrate. If the protected benzylamine is a useful DMG, the addition of two equivalents of butyllithium would remove the carbamate proton and the aromatic proton adjacent to the alkyllamine to give the dianion 332. Metalation could be directed by the NH-t-Boc or the methoxy group, but the NH-t-Boc has been shown to direct the metalation selectively in the presence of methoxy groups. The NH-t-Boc group is not attacked by the base in a nucleophilic manner due to the presence of the negative charge on the nitrogen and the bulky nature of the t-Boc group. Upon lithiation, quenching the aromatic anion with ethyl bromoacetate could then introduce the functionality required to obtain the cyclic amide 334. This lactam may form under the reaction conditions or a further elaboration may be required to effect the ring closure. The fully aromatic structure 318 could then be
obtained by removal of the t-Boc group141 followed by an aromatization reaction.

Alternatively, this amide 334 may be a suitable substrate for a nucleophilic attack by an organometallic compound 335 derived from 282 as in Scheme 6.28. However, all attempts at performing ortho-metalations on 331 showed that the desired reaction did not
take place. Starting material 331 and small quantities of the N-alkylated compound 337 were isolated. The aromatic lithiation may simply not have occurred or any aromatic anion that was formed may have been re-protonated by the acidic α-protons of ethyl bromoacetate.

During these investigations, a previous synthesis of the desired compound 318 by a Pomerantz-Fritsch reaction of the diethoxyamide 338 in polyphosphoric acid was found.142a Virtually no experimental details were described, but the reaction was said to give the required compound 318 in "modest yield." This method was used and the desired isoquinolinol was obtained in 15% yield after extensive extraction of the polyphosphoric acid mixture.

Previous research has shown that this type of isoquinolinol exists as two different tautomers, the lactim 318 and the lactam 339 (Scheme 6.31), depending upon the solvent
and temperature. Neither the lactim nor the lactam proton is observed in the NMR spectrum at room temperature. Variable temperature NMR in CDCl₃ demonstrated that the lactim form 318 is predominant at low temperature, with a broad singlet appearing at 14.5 ppm when cooled to -60 °C. Therefore, triflation of 318 was performed in CH₂Cl₂ at -78 °C (Scheme 6.32) similar to work done previously to afford 308.

With the desired triflate in hand, the other portion of the final product was required in a form that could be used in a biaryl coupling reaction. The most common types of compounds used in biaryl coupling reactions with triflates are organometallic reagents, based on metals such as tin, magnesium and zinc, as well as organoboron and organosilicon reagents. Organotin compounds (Stille coupling) and zinc compounds have been well studied and have received widespread use in synthesis, but the first of these to be chosen for study was a magnesium based approach. Organomagnesium (Grignard) reagents have recently been shown to couple to triflates with catalysis by Ni(acac)₂ as outlined in Scheme 6.33, so a halogen was
required in the 5-position of the central aromatic ring of 282. The dibenzyl protected compound 282 was converted to the 5-iodo derivative 340, as in Scheme 6.34, by the action of iodine monochloride, a mild aromatic iodination reagent.145 In contrast to the attempted acylations discussed earlier, this reaction occurred selectively at the expected location in good yield (72\%) with no evidence of iodination at any other positions on the aromatic rings. The position of iodination was determined by a nuclear Overhauser effect (nOe) NMR experiment. Minor byproducts of the reaction appeared to result from debenzylation of the product and the starting material.

In the Grignard reaction, formation of the organomagnesium reagents from alkyl and aryl iodides generally occur readily due to the higher reactivity of these compounds over the corresponding bromides, chlorides or fluorides.146 Treatment of compound 340 with magnesium, however, resulted in no reaction (Scheme 6.35), presumably due to the commonly observed problem of inhibited Grignard formation in the presence of methoxy groups. The alkoxy groups, as well as hydroxy and amino groups, coat and inactivate the
magnesium metal to prevent reaction.147 The use of catalytic iodine148a-c and entrainment reagents148d,e in an effort to activate the magnesium to react with the substrate were not effective at generating the Grignard reagent so other biaryl couplings were considered.

Results in another project in the laboratory149 using an aryl triflate - aryl boronic acid coupling methodology (Suzuki-type coupling)135,136 have given favorable results, and this approach was studied next. Boronic acids and boronate esters have recently become useful in these coupling reactions for a number of reasons. The coupling reaction is compatible with a number of electrophilic functional groups, the boron compounds are relatively stable, and the inorganic byproduct of the reaction is readily eliminated in water. The aryl boronic acids are most often synthesized via the corresponding aryl lithium,135f which should form readily with the iodinated compound 340 due to the ease of metallating iodides with butyllithium. This metal-halogen exchange reaction was
achieved and quenching with trimethyl borate followed by an acidic workup gave the crude boronic acid (Scheme 6.36). Boronic acids decompose during column chromatography so rigorous purification is typically not performed.150 For this synthesis, a slight excess of the crude compound was used in the biaryl coupling reactions. Complete conversion of the iodide to the boronic acid must be ensured prior to the coupling reaction because boronic acid - iodide couplings proceed at a faster rate than boronic acid - triflate couplings.136a Since the crude boronic acid is used in the coupling reaction any iodide that remains will compete with the triflate in the reaction, and, as outlined in Scheme 6.37, the product will be a mixture of the homocoupled compound 343 and the desired heterocoupled compound 307. However, consumption of the iodide was readily followed by TLC analysis of the lithiation reaction mixture so this byproduct was easily avoided.

\begin{center}
\includegraphics[width=\textwidth]{Scheme_6.37.png}
\end{center}

Scheme 6.37 Potential coupling products of boronic acid 342
Coupling of the aryl triflate - aryl boronic acid is generally done with palladium catalysts and a variety have been shown to be effective in different cases.135,136 The most commonly used catalyst is tetrakis(triphenylphosphine)palladium(0) (Pd(PPh\textsubscript{3})\textsubscript{4}),151 and this was chosen to be investigated first. The desired triflate - crude boronic acid coupling was accomplished in refluxing 1,2-dimethoxyethane (DME) in the presence of aqueous Na\textsubscript{2}CO\textsubscript{3}136a,b to give a 65% yield of 307. Although this reaction was accomplished once on a small scale, attempts to repeat the biaryl coupling reaction were not successful. Possible reasons for this are unanticipated problems with performing the reaction on a larger scale or decomposition of the catalyst. The tetrakis(triphenylphosphine)palladium(0) catalyst is known to decompose on exposure to oxygen. An unfortunate result of these attempts was the consumption of the required starting materials 342 and 308. The boronic acid 342 was found to be converted to the phenol 344, (Scheme 6.39) and the triflate 308 underwent reductive elimination of the trifluoromethylsulfonyl group to the deoxygenated compound 315 (Scheme 6.40). The reaction
of boronic acid to phenol has been reported to occur\(^{152}\) when the cross-coupling reaction is very slow, and it has been shown that varying degrees of homocoupling occur as well.\(^{152}\) The formation of the homocoupled compound \(336\) could not be confirmed in this case, but the phenol \(344\) was isolated and characterized. Triflate homocoupling has also been reported,\(^{153}\) but this product could not be detected in the reaction mixture.

Reductive elimination of triflates has been used as an approach to the removal of a phenol group\(^{154}\) but, in this case, results in the loss of the functionality required in the isoquinoline ring for the biaryl coupling reaction. Because compound \(308\) was the limiting reagent, the loss of this isoquinoline moiety proved to be a significant setback to the synthesis of greater quantities of \(307\). However, a small quantity of \(307\) was obtained from the successful biaryl coupling reaction and this was utilized for the remaining reactions.

Cleavage of the benzyl protecting groups of \(307\) was required to afford the alcohol functionalities of \(265\). This reaction can be accomplished by hydrogenolysis under an
atmosphere of hydrogen in the presence of palladium on carbon but this can proceed with
difficulty depending on the substrate. Although the hydrogenolysis of 282 with Pd/C
mentioned previously suggested that the debenzylation at this stage might proceed with a
minimum of difficulty, a more effective and reliable catalyst for benzyl ether cleavage is
palladium hydroxide on carbon, known as Pearlman's catalyst. The use of this catalyst
did result in the clean removal of both benzyl groups of 307, as illustrated in Scheme
6.41. This reaction was performed on a small scale only (20 mg), and it was not possible
to determine an accurate yield for the product.

The final step in the synthetic sequence is the conversion of the primary alcohol
group in 265 to a chloride. It was hoped that the required ring closure reaction would
occur under the reaction conditions. As described in Scheme 6.42, compound 265 was
dissolved in CH₂Cl₂, and an excess of thionyl chloride was added. The solution instantly
turned from a very pale yellow colour to a bright yellow. This suggested that the
conversion to the quaternary jatrorrhizine chloride, which is bright yellow, had been accomplished. TLC analysis (EtOAc) indicated that the starting material 265 (Rf = 0.47) was consumed, and the product of the reaction appeared as a baseline spot on the TLC plate, as would be expected in this solvent system for a quaternary ammonium salt. This spot fluoresced a bright yellow colour under long wave UV light (365 nm), as previously reported for jatrorrhizine. Again, this reaction was done on a very small scale (~2 mg), and the amount of product was insufficient to characterize unequivocally as jatrorrhizine. An attempt was made to measure IR and 1H NMR spectra. Comparison of the IR spectrum with that reported for authentic jatrorrhizine75d suggested that jatrorrhizine was present in the sample. The major signals in both spectra correlate well but the sample was not sufficiently pure to confirm complete correlation. Comparison of the 1H NMR spectrum with the reported proton NMR spectrum70 also suggested that jatrorrhizine is indeed present in the sample, but the quantity was so small that the signals are somewhat obscured by impurities (water, grease), non-deuterated NMR solvent and baseline noise.

In addition, the product appears to be a mixture perhaps of the quaternary ammonium salt and the corresponding primary chloride 345. Evidence for the latter was a second proton signal corresponding to the 1-position of an isoquinoline ring in the 1H NMR. The presence of a mixture may be explained by an equilibrium between 154 and 345 but no

![Scheme 6.43 Jatrorrhizine 154 and the primary chloride 345](image-url)
precedent has been found for this type of equilibrium. The proton shifts are slightly
different than those reported in the paper originally quoting 1H NMR data,70 but that
spectrum was performed in 2:1 DMSO-d$_6$:CD$_3$OD whereas the present spectrum was
taken in CDCl$_3$. The lower boiling CDCl$_3$ was used for this sample to ease retrieval of
the sample if this became necessary. However, the IR data and the NMR data for one
component corresponds to the data previously reported for jatrorrhizine suggesting the
total synthesis may have been accomplished, albeit in very low yield.
Chapter 7

Conclusions of Jatrorrhizine Synthesis
Although not complete, significant progress has been made towards the first total synthesis of jatrorrhizine from readily available starting materials. The critical steps in this approach are the Pomerantz-Fritsch reaction to obtain the isoquinolinol 308 and the Suzuki-type biaryl cross coupling reaction to obtain 307. Although the isoquinolinol has been obtained and used in the synthesis, the yield is unacceptably low to be considered synthetically practical. This step of the synthesis must be improved. Of particular interest will be the amides 319-322, especially the sulfur containing amides 321 and 322 as well as the aromatic lithiation reactions. The curious results obtained with 321 and 322 (Scheme 6.24) will be analyzed more closely with a focus on variations in temperature, solvent and the mercury salt. In addition, the halogenated amides 319 and 320 will be reinvestigated. It is possible that the problem with these aromatic substitution reactions is the conformation of the amides themselves. The cisoid form A is required for the desired reaction to occur, but these amides may be in the transoid form B and therefore may not react intramolecularly but intermolecularly. The use of a bulky group on the nitrogen of the amide may force these compounds into the A form thus permitting the desired reaction to occur. Instead of amides 319-322, the analogous series of Boc substituted amides 346-349 may prove to be more useful in these aromatic substitution reactions.

Scheme 7.1 Conformations of amides 319-322
The aromatic lithiation reactions will also be studied, particularly a closer examination of the Boc protected amine 331 and the use of the free amine 269 (Scheme 7.1). Reinvestigation of the Boc amine 331 must be performed to determine if the aromatic lithiation is occurring. This can be accomplished by adding two equivalents of butyllithium then quenching the reaction mixture with deuterium oxide or bromine. If an aromatic proton is removed, the quench will replace the proton with a deuterium or bromine atom. A simple 1H NMR spectrum will show if aromatic substitution has occurred, and the position of substitution could be easily determined. The amine 269 itself may be an adequate directed metalating group and the use of two equivalents of

Scheme 7.2 Aromatic lithiation and quench of 331

Scheme 7.3 Use of 269 in ortho-metallation reaction
butyllithium may generate the desired dianion required for 1,2,3,4-tetrasubstitution. The quench described for the Boc amine in Scheme 7.2 will also be investigated for this compound. As outlined in Scheme 6.27, the ring closure to the lactam may occur under the reaction conditions or a further elaboration may be required. However, the protons of the bromoacetate may prove to be too acidic for this purpose and may simply reprotonate the dianion. This may require a new approach, such as the Reformatsky reaction outlined in Scheme 7.4. Ortho-lithiation of the amine 269 (or the Boc amine 331) followed by bromination would afford 352, a suitable substrate for a Reformatsky reaction. The

![Scheme 7.4 Reformatsky reaction approach to isoquinolines](image)

Reformatsky reagent 353 is generated by the addition of activated zinc metal to the corresponding bromoester. This organozinc reagent displaces the halide of the aromatic ring under the catalysis of zerovalent nickel or palladium catalysts. The success of this reaction will rely on the completion of the desired aromatic lithiation. Again the formation of the lactam ring may or may not occur under these reaction conditions.

The biaryl coupling reaction must also be further investigated to determine the reason that this reaction could not be successfully repeated. Since subsequent attempts to repeat the experiment were scaled up from the first reaction, variations in the temperature of the reaction may have occurred in the failed attempts. This will be investigated as well as the choice of catalyst.
Although the total synthesis of jatrorrhizine has not been accomplished, a direct precursor 265 has been synthesized. Further study is required to improve on this new method of synthesizing this important class of alkaloids.
Chapter 8

Experimental for Jatrorrhizine Synthesis
For general experimental information, see the General procedures section of Chapter 4, page 37.

3-Benzylxy-4-methoxybenzaldehyde 278:

3-Hydroxy-4-methoxybenzaldehyde (isovanillin) 273 (10.00 g, 65.72 mmol) was stirred with sodium hydride (2.62 g of 60% dispersion in mineral oil, 65.7 mmol) at -78 °C in THF. The resultant slurry was allowed to warm to room temperature to allow complete deprotonation of the starting material. The reaction was then returned to the acetone-dry ice bath and tetrabutylammonium iodide (0.24 g, 0.66 mmol, 0.01 eq.) was added, followed by benzyl bromide (13.55 g, 78.86 mmol, 1.2 eq.). Stirring was continued at -78 °C for one hour. The mixture was warmed to room temperature and then heated at reflux for four hours. The reaction was cooled to room temperature. Water (50 mL) was added, and the product was extracted into dichloromethane (2×100 mL). The combined organic fractions were washed with brine (50 mL) and dried over Na₂SO₄, and the solvent was removed to give a brown solid. Column chromatography (CH₂Cl₂) gave the product as a colourless solid (13.37 g, 55.20 mmol, 84%), which could be recrystallized from a 4:1 mixture of pentane/hexanes to yield colourless needles: m.p. 61-62 °C (lit. m.p. 62-63 °C); IR 3057 cm⁻¹ (s), 3030 cm⁻¹ (s), 2990 cm⁻¹ (s), 1687 cm⁻¹ (s), 1586 cm⁻¹ (s), 1510 cm⁻¹ (s), 1435 cm⁻¹ (s), 1269 cm⁻¹ (s); ¹H NMR δ 9.82 (s, 1H), 7.48-7.00 (m, 8H), 5.19 (s, 2H), 3.96 (s, 3H); ¹³C NMR δ 190.8, 155.0, 148.6, 136.2, 129.9, 128.6, 128.1, 127.4, 126.9, 111.3, 110.7, 70.8, 56.2; LRMS m/z 242 (M⁺), 92 (7), 91 (100), 65 (12), 51 (7), 39 (7).
Benzyloxychloromethane 279:55a

A suspension of paraformaldehyde (16.51 g, 550.0 mmol as CH2O) in benzyl alcohol (54.07 g, 500.0 mmol) was stirred with a mechanical stirrer in a 250 mL three-necked flask cooled with a water bath. A Claisen adapter equipped with a thermometer and a CaCl2 drying tube was placed in one neck of the flask, and a thermometer adapter holding a Pasteur pipette was placed in another. Anhydrous HCl gas was introduced through the pipette under the surface of the mixture as a fine stream of bubbles for two hours. The flow of gas was regulated such that the temperature of the reaction mixture was maintained between 20-25 °C. The resultant cloudy white mixture was transferred to a separatory funnel, and the layers were allowed to separate overnight. The lower layer was drawn off, and the upper layer was diluted with pentane (200 mL) and dried over MgSO4 with stirring for three hours at 0 °C. The drying agent was removed by filtration, calcium chloride (~0.5 g) was added to prevent decomposition, and the solvent was removed. The colourless, residual oil (77.55 g, 495.2 mmol, 99%) was sufficiently pure to be suitable for use in the next step. Vacuum distillation (62-64 °C/2 mm Hg, lit.55a b.p. 70-71 °C/3 mm Hg) of the oil from fresh calcium chloride gave a colourless oil: IR 3041 cm⁻¹ (s), 2953 cm⁻¹ (m), 2887 cm⁻¹ (m), 1497 cm⁻¹ (m), 1455 cm⁻¹ (m), 1386 cm⁻¹ (m), 1316 cm⁻¹ (m), 1242 cm⁻¹ (m), 1117 cm⁻¹ (s); ¹H NMR δ 7.40-7.25 (m, 5H), 5.52 (s, 2H), 4.75 (s, 2H); ¹³C NMR δ 135.5, 128.6, 128.4, 127.9, 81.7, 71.3; LRMS m/z 158 (2, ³⁷Cl-M⁺), 156 (5, ³⁵Cl-M⁺), 128 (3), 126 (8), 91 (100), 65 (12), 39 (11).
(Benzoxymethyl)triphenylphosphonium chloride 280:

\[
\text{\begin{tikzpicture}
\node at (0,0) {\text{+Cl}};
\node at (0.5,0.5) {\text{PPh}_3};
\node at (-1.5,0) {\text{O};;};
\node at (1.75,0) {\text{O}};
\end{tikzpicture}}
\]

A solution of benzoxychloromethane 279 (10.0 g, 63.85 mmol) in 100 mL of benzene was added to triphenylphosphine (16.75 g, 63.85 mmol) in 100 mL of benzene and the mixture was refluxed for twelve hours. The reaction was cooled to room temperature. The colourless solid that formed (14.32 g, 34.18 mmol, 54%) was filtered off and washed with a minimum of chilled benzene. Concentration of the filtrate to ~100 mL yielded a second crop of crystals which was identical with the first crop by NMR (11.02 g, 26.31 mmol, 41%, combined yield 95%): IR 2936 cm\(^{-1}\) (s), 1601 cm\(^{-1}\) (s), 1455 cm\(^{-1}\) (s), 1099 cm\(^{-1}\) (s); \(^1\)H NMR \(\delta\) 7.85-7.27 (m, 20H), 6.06 (d, \(^2J_{\text{H,p}}=4.28\) Hz, 2H), 5.02 (s, 2H); \(^{13}\)C NMR \(\delta\) 135.6, 135.0, 133.8 (d, \(^2J_{\text{C,p}}=10.4\) Hz), 130.1 (d, \(^3J_{\text{C,p}}=2.4\) Hz), 128.6, 128.2, 128.0, 116.2 (d, \(^1J_{\text{C,p}}=86.1\) Hz), 75.9 (d, \(^3J_{\text{C,p}}=12.8\) Hz), 62.8 (d, \(^1J_{\text{C,p}}=69.6\) Hz); \(^{31}\)P NMR \(\delta\) 18.85; LRMS \(m/z\) (M\(^+\) peak not observed), 263 (20), 262 (100), 261 (15), 185 (11), 184 (15), 183 (66), 126 (10), 108 (38), 107 (15), 91 (78).

1-Benzoxyl-5-(2-benzoxyethenyl)-2-methoxybenzene 281:

\[
\text{\begin{tikzpicture}
\node at (0,0) {\text{O}};
\node at (0.5,0.5) {\text{O}};
\node at (-1.5,0) {\text{O}};
\node at (1.75,0) {\text{O}};
\end{tikzpicture}}
\]

A suspension of the phosphonium salt 280 (17.29 g, 41.28 mmol, 2 eq.) in THF (300 mL) was stirred at -78 °C as butyllithium (25.8 mL of a 1.6 M solution in hexanes, 41 mmol, 2 eq.) was added dropwise by syringe. The solution immediately turned a deep maroon colour, and was to stirred for 15 minutes at -78 °C. A solution of 278 (5.00 g, 20.6 mmol) in THF (100 mL) at -78 °C was added to the deprotonated Wittig salt by cannula. The
mixture was stirred for one hour, warmed to room temperature and stirred overnight.
Water was added to the reaction mixture, and the products were extracted into
dichloromethane (2x150 mL). The combined organic fractions were washed with water
(50 mL) and brine (50 mL) and dried over Na₂SO₄. The solvent was removed to give a
brown oily solid. Column chromatography (8:1 hexanes:ethyl acetate) yielded a
colourless solid (5.85 g, 16.9 mmol, 82%), which could be recrystallized from
CH₂Cl₂:hexanes to give colourless needles. Recrystallization from diisopropyl ether
afforded nearly pure (E)-281: m.p. 123-125 °C; IR (E/Z mixture) 3029 cm⁻¹ (s), 2976
cm⁻¹ (s), 1640 cm⁻¹ (s), 1513 cm⁻¹ (s), 1262 cm⁻¹ (s), 1136 cm⁻¹ (s), 1024 cm⁻¹ (s); (E)-
281 ¹H NMR δ 7.46-6.79 (m, 13H), 6.88 (d, 1H, J=12.9 Hz), 5.87 (d, 1H, J=12.9 Hz),
5.12 (s, 2H), 4.83 (s, 2H), 3.86 (s, 3H); ¹³C NMR δ 148.2, 148.1, 146.5, 137.2, 136.7,
129.1, 128.5, 128.5 128.0, 127.8, 127.5, 127.2, 118.3, 112.1, 111.2, 106.5, 71.8, 71.1,
56.1; (Z)-281 ¹H NMR δ 7.46-6.79 (m, 13H), 6.18 (d, 1H, J=7.0 Hz), 5.17 (d, 1H, J=7.0
Hz), 5.09 (s, 2H), 4.93 (s, 2H), 3.87 (s, 3H); ¹³C NMR δ 147.8, 147.6, 146.5, 144.9,
137.3, 137.2, 128.9, 128.5, 128.4, 127.8, 127.6, 127.2, 121.4, 114.1, 111.5, 106.0, 74.7,
70.7, 56.0; LRMS (E/Z mixture) m/z 346 (9, M⁺), 255 (8), 227 (4), 195 (3), 167 (2), 121
(3), 92, (12), 91 (100), 65 (21).

1-Benzoxyl-5-(2-benzoyl)ethyl-2-methoxybenzene 282:

A solution of 281 (2.50 g, 7.22 mmol) in ethyl acetate (250 mL) was stirred under an
atmosphere of hydrogen in the presence of a catalytic amount of palladium on carbon for
12 hours at room temperature until the appropriate amount of H₂ (162 mL, 7.22 mmol)
was taken up. The suspension was then filtered through a plug of Celite® and the filter cake was washed several times with ethyl acetate. The combined solutions were dried with MgSO₄, and the solvent was removed to give 2.47 g (7.09 mmol, 95%) of a colourless solid, which could be recrystallized from hexanes to give colourless needles: m.p. 57-58 °C; IR 3034 cm⁻¹ (s), 2974 cm⁻¹ (m), 2935 cm⁻¹ (w), 1515 cm⁻¹ (m), 1263 cm⁻¹ (m), 1228 cm⁻¹ (m), 1205 cm⁻¹ (s), 1156 cm⁻¹ (m), 1028 cm⁻¹ (m); ¹H NMR δ 7.44-6.77 (m, 13H), 5.10 (s, 2H), 4.48 (s, 2H), 3.85 (s, 3H), 3.61 (t, 2H, J=7.0 Hz), 2.82 (t, 2H, J=7.0 Hz); ¹³C NMR δ 148.1, 147.9, 138.4, 137.2, 131.6, 128.4, 128.3, 127.7, 127.6, 127.5, 127.3, 121.5, 115.1, 111.8, 72.9, 71.3, 71.0, 56.1, 35.8; LRMS m/z 348 (4, M⁺), 227 (2), 180 (2), 167 (2), 151 (4), 137 (2), 135 (2), 123 (2), 108 (2), 107 (2), 92 (8), 91 (100), 77 (2), 65 (8), 51 (2), 39 (3).

1-Hydroxy-5-(2-hydroxyethyl)-2-methoxybenzene 297:

![Chemical Structure](image)

Compound 281 (0.50 g, 1.4 mmol) in EtOAc (50 mL) with catalytic Pd/C and H₂ (94 mL, 4.2 mmol, 3 eq.) were reacted as described for the synthesis of 281 for 24 hours to give 0.20 g (1.2 mmol, 85%) of a colourless solid: m.p. 65-66 °C; IR 3688 cm⁻¹ (s), 3615 cm⁻¹ (s), 3550 cm⁻¹ (m), 3030 cm⁻¹ (m), 2940 cm⁻¹ (s), 1575 cm⁻¹ (s), 1516 cm⁻¹ (s), 1422 cm⁻¹ (m), 1272 cm⁻¹ (m), 1202 cm⁻¹ (s); ¹H NMR δ 6.81-6.69 (m, 3H), 5.62 (s, 1H), 3.87 (s, 3H), 3.82 (br t, 2H), 2.78 (t, J=6.5 Hz, 2H), 1.41 (br s, 1H); ¹³C NMR δ 145.7, 145.2, 131.6, 120.4, 115.1, 110.8, 63.7, 56.0, 38.6; LRMS m/z 168 (22, M⁺), 138 (11), 137 (100), 122 (23), 94 (37), 78 (10), 77 (22), 66 (21), 65 (23), 55 (14), 52 (13), 51 (23), 41 (11), 39 (36), 31 (21).
4-(2-Benzoyloxyethyl)-1,2-dimethoxybenzene 301:

\[
\text{OMe} \quad \text{OMe} \quad \text{OBn}
\]

The phosphonium salt 280 (30.99 g, 73.98 mmol, 2 eq.), butyllithium (46.2 mL of a 1.6 M solution in hexanes, 74 mmol, 2 eq.), and 3,4-dimethoxybenzaldehyde (6.15 g, 37.0 mmol) were reacted as described for compound 281. Column chromatography with 6:1 hexanes:EtOAc gave the product as a colourless oil that solidified on refrigeration (6.02 g, 22.3 mmol, 60%). The product could be recrystallized from hexanes to give colourless plates of nearly pure (E)-301: m.p. 42-43 °C; IR (E/Z mixture) 3027 cm\(^{-1}\) (s), 2939 cm\(^{-1}\) (m), 2840 cm\(^{-1}\) (m), 1723 cm\(^{-1}\) (s), 1682 cm\(^{-1}\) (s), 1589 cm\(^{-1}\) (s), 1512 cm\(^{-1}\) (s), 1465 cm\(^{-1}\) (s), 1271 cm\(^{-1}\) (s), 1157 cm\(^{-1}\) (s), 1010 cm\(^{-1}\) (m); (E)-301 \(^1\)H NMR \(\delta 7.39-6.22\) (m, 8H), 6.97 (d, J=12.9 Hz, 1H), 5.93 (d, J=12.9 Hz, 1H), 4.88 (s, 2H), 3.87 (s, 3H), 3.85 (s, 3H); \(^13\)C NMR \(\delta 149.0, 147.4, 146.5, 136.8, 129.1, 128.5, 128.0, 127.5, 117.6, 111.4, 108.3, 106.7, 71.8, 55.9, 55.8;\) (Z)-301 \(^1\)H NMR \(\delta 7.39-6.22\) (m, 8H), 6.23 (d, J=7.0 Hz, 1H), 5.23 (d, J=7.0 Hz, 1H), 4.96 (s, 3H), 3.86 (s, 3H), 3.81 (s, 3H); \(^13\)C NMR \(\delta 148.4, 147.1, 146.5, 144.8, 137.1, 129.0, 128.5, 127.2, 120.8, 111.5, 110.9, 106.1, 74.7, 55.7, 55.6); LRMS (E/Z mixture) m/z 270 (12, M\(^{+}\)), 180 (11), 179 (90), 151 (52), 148 (24), 137 (12), 136 (10), 107 (13), 91 (100), 77 (19), 65 (35), 63 (10), 51 (17), 39 (23).
4-(2-Benzoyethyl)-1,2-dimethoxybenzene 302:

\[
\begin{align*}
\text{OMe} & \quad \text{OMe} \\
\text{O} & \quad \text{Bn} \\
\end{align*}
\]

Compound 301 (3.00 g, 11.1 mmol) in EtOAc (250 mL) with catalytic Pd/C and H\(_2\) (249 mL, 11.1 mmol) was reacted as described for compound 282 to give 2.87 g (10.5 mmol, 95%) of a colourless oil: IR 2939 cm\(^{-1}\) (s), 2863 cm\(^{-1}\) (s), 1703 cm\(^{-1}\) (s), 1592 cm\(^{-1}\) (s), 1511 cm\(^{-1}\) (s), 1465 cm\(^{-1}\) (s), 1267 cm\(^{-1}\) (s), 1215 cm\(^{-1}\) (s), 1096 cm\(^{-1}\) (s); \(^1\)H NMR \(\delta\) 7.33-6.77 (m, 8H), 4.53 (s, 2H), 3.86 (s, 3H), 3.85 (s, 3H), 3.68 (t, 2H, \(J=7.0\) Hz), 2.88 (t, 2H, \(J=7.0\) Hz); \(^13\)C NMR \(\delta\) 148.7, 147.4, 138.4, 131.6, 128.3, 127.6, 127.5, 120.7, 112.2, 111.1, 73.0, 71.4, 55.9, 55.8, 35.9; LRMS \(m/z\) 272 (14, M\(^+\)), 152 (10), 151 (100), 91 (56), 65 (14).

1-Benzoy-5-(2-benzoyethyl)-4-iodo-2-methoxybenzene 340:

\[
\begin{align*}
\text{OMe} & \quad \text{O} \\
\text{I} & \quad \text{O} \\
\text{OMe} & \quad \text{Bn} \\
\text{O} & \quad \text{Bn} \\
\end{align*}
\]

Compound 282 (1.16 g, 3.33 mmol) was dissolved in glacial acetic acid (100 mL) and a solution of iodine monochloride (0.54 g, 3.3 mmol) in glacial acetic acid (15 mL) was added dropwise. The resultant dark brown solution was stirred overnight then diluted with CH\(_2\)Cl\(_2\) (200 mL), extracted with 2M NaOH (100 mL), 1M Na\(_2\)S\(_2\)O\(_5\) (2x50 mL) then brine (50 mL). The organic portion was dried with Na\(_2\)SO\(_4\), and the solvent was removed to give a pale brown oil. Column chromatography (CH\(_2\)Cl\(_2\)) afforded 1.14 g (2.40 mmol, 72%) of a pale yellow oil, which solidified on standing and could be
recrystallized from hexanes to give colourless needles: m.p. 67-68 °C; IR 3036 cm⁻¹ (s), 2977 cm⁻¹ (m), 1504 cm⁻¹ (w), 1227 cm⁻¹ (s), 1206 cm⁻¹ (s); ¹H NMR δ 7.40-7.24 (m, 11H), 6.83 (s, 1H), 5.02 (s, 2H), 4.45 (s, 2H), 3.76 (s, 3H), 3.56 (t, 2H, J=6.9 Hz), 2.91 (t, 2H, J=6.9 Hz); ¹³C NMR δ 148.7, 148.3, 138.3, 136.7, 133.9, 128.5, 128.3, 122.1, 115.7, 89.0, 72.9, 71.0, 69.8, 56.2, 40.5; nOe data δ 6.83 (5.02, 5.4%; 3.56, 1.0%; 2.91, 2.0%), 3.56 (6.83, 2.8%; 4.45, 3.5%; 2.91, 2.3%), 2.91 (6.83, 8.2%; 3.56, 3.3%); LRMS m/z 474 (46, M⁺), 256 (12), 165 (63), 92 (33), 91 (100), 77, (10), 65 (34), 63 (11), 51 (11), 39 (16).

N-(2,3-Dimethoxybenzyl)-2-bromoacetamide 319:

A solution of bromoacetyl bromide (2.61 g, 12.0 mmol) in benzene (50 mL) was stirred at room temperature as a solution of 2,3-dimethoxybenzylamine (2.00 g, 12.0 mmol) and triethylamine (1.21 g, 12.0 mmol) in benzene (20 mL) was added dropwise. The cloudy, white suspension was stirred for two hours, and it was diluted with CH₂Cl₂ (100 mL), washed with 2M HCl, water, and brine (30 mL each). The organic portion was dried with Na₂SO₄, and the solvent was removed to give a beige solid. The crude product was passed through a short plug of silica gel eluted with 1:1 EtOAc:petroleum ether to give a colourless solid (2.91 g, 10.1 mmol, 84%), which was recrystallized from water to give colourless, silky needles: m.p. 101-102 °C; IR 3423 cm⁻¹ (w), 3040 cm⁻¹ (w), 3016 cm⁻¹ (s), 1666 cm⁻¹ (s), 1484 cm⁻¹ (s), 1210 cm⁻¹ (s), 1088 cm⁻¹ (w); ¹H NMR δ 7.06-6.83 (m, 4H, 3 ArH and one NH), 4.49 (d, 2H, J=5.8 Hz), 3.90 (s, 3H), 3.89 (s, 2H), 3.88 (s, 3H); ¹³C NMR δ 165.0, 152.6, 147.3, 130.8, 124.2, 121.4, 112.3, 60.8, 55.8, 39.9, 29.2;
LRMS m/z 289 (81Br-M$^+$), 287 (79Br-M$^+$), 209 (12), 208 (100), 191 (12), 176 (11), 167 (11), 166 (22), 150 (14), 137 (10), 136 (11), 91 (13), 65 (11).

2,2-dichloro-N-(2,3-Dimethoxybenzyl)acetamide 320:

Dichloroacetyl chloride (0.88 g, 6.0 mmol), 2,3-dimethoxybenzylamine (1.00 g, 5.98 mmol) and triethylamine (0.61 g, 6.0 mmol) were reacted and purified as described for 319 to give a colourless solid (1.46 g, 5.25 mmol, 88%), which was recrystallized from water to give colourless, silky needles: m.p. 126.5-127.5 °C; IR 3425 cm$^{-1}$ (s), 3022 cm$^{-1}$ (s), 2978 cm$^{-1}$ (w), 1692 cm$^{-1}$ (s), 1524 cm$^{-1}$ (w), 1484 cm$^{-1}$ (m), 1237 cm$^{-1}$ (m), 1207 cm$^{-1}$ (m), 1088 cm$^{-1}$ (w); 1H NMR δ 7.07-6.86 (m, 4H, 3 ArH and one NH), 5.93 (s, 1H), 4.51 (d, 2H, J=5.8 Hz), 3.91 (s, 3H), 3.88 (s, 3H); 13C NMR δ 163.7, 152.6, 147.2, 130.1, 124.3, 121.2, 112.4, 66.4, 60.8, 55.7, 40.1; LRMS m/z 281 (2.5, 37Cl37Cl-M$^+$), 279 (14.5, 37Cl35Cl-M$^+$), 277 (21.3, 35Cl35Cl-M$^+$), 244 (32), 243 (13), 242 (100), 206 (24), 166 (18), 151 (18), 137 (11), 136 (34), 106 (11), 91 (31), 77 (12), 65 (20), 51 (10), 39 (11), 32(13), 28 (61); HRMS calcd. for C$_{11}$H$_{13}$Cl$_2$NO$_3$ 277.0272, found 277.0272.

Ethyl 2-(phenylthio)acetate 323:

Sodium hydride (6.00 g of 60% dispersion in mineral oil, 250 mmol) was stirred at -78 °C in THF and thiophenol (27.54 g, 250.0 mmol) was added. The gray suspension was allowed to warm to room temperature and stirred for one hour. The resultant white slurry was returned to -78 °C. Ethyl bromoacetate (41.75 g, 250.0 mol) was added, and the mixture was warmed to room temperature and stirred for 2 hours. Saturated aqueous
NH₄Cl (50 mL) was added and the minimum amount of water needed to dissolve the remaining salts was added. The product was extracted into CH₂Cl₂ (2x100 mL), and the combined organic extracts were washed with brine and dried with Na₂SO₄. The solvent was removed, and vacuum distillation (114-115 °C/1 mm Hg, lit. b.p. 118 °C/1 mm Hg) afforded the product (44.13 g, 224.8 mmol, 90%) as a colourless liquid: IR 3012 cm⁻¹ (m), 2968 cm⁻¹ (m), 1732 cm⁻¹ (s), 1579 cm⁻¹ (m), 1289 cm⁻¹ (s); ¹H NMR δ 7.42-7.22 (m, 5H), 4.16 (q, 2H, J=7.1 Hz), 3.63 (, 2H), 1.21 (t, 3H, J=7.1 Hz); ¹³C NMR δ 169.6, 135.0, 129.9, 128.9, 126.9, 61.5, 36.7, 14.0; LRMS m/z 196 (45, M⁺), 123 (100), 109 (13), 77 (15), 65 (13), 51 (16), 45 (55).

Ethyl 2-chloro-2-(phenylthio)acetate 324:

![Chemical Structure](image)

Ethyl 2-(phenylthio)acetate (10.00 g, 50.95 mmol) in CH₂Cl₂ (150 mL) was stirred at reflux as a solution of sulfuryl chloride (7.22 g, 53.5 mmol) in CH₂Cl₂ (50 mL) was added dropwise over two hours. The resultant yellow solution was refluxed for another hour then cooled to room temperature. The reaction was allowed to stand overnight. The solvent was removed and vacuum distillation (112-114 °C/1 mm Hg) of the residue gave the product as a pale yellow oil (11.04 g, 47.85 mmol, 94%): IR 3011 cm⁻¹ (s), 1745 cm⁻¹ (s), 1474 cm⁻¹ (w), 1441 cm⁻¹ (w), 1243 cm⁻¹ (s), 1174 cm⁻¹ (s), 1023 cm⁻¹ (m); ¹H NMR δ 7.61-7.38 (m, 5H), 5.53 (s, 1H), 4.24 (q, 2H, J=7.1 Hz), 1.28 (t, 3H, J=7.1 Hz); ¹³C NMR δ 165.8, 137.3, 134.1, 129.2, 129.6, 64.8, 62.9, 13.9; LRMS m/z 232 (11, ³⁷Cl-M⁺), 230 (33, ³⁵Cl-M⁺), 159 (35), 157 (100), 123 (11), 122 (14), 121 (58), 109 (27), 78 (14), 77 (41), 69 (10), 65 (22), 51 (34), 50 (11), 45 (38), 29 (58).
Ethyl 2,2-bis(phenylthio)acetate 325:

\[
\text{PhS} - \text{CO}_2\text{Et}
\]

Ethyl 2-chloro-2-(phenylthio)acetate (11.04 g, 47.85 mmol) was adsorbed onto neutral Al₂O₃ (40 g) and heated at 80 °C for 24 hours under an atmosphere of nitrogen. The product was then eluted from the alumina by washing with CH₂Cl₂ (4 x 100 mL). The solvent was removed, and vacuum distillation (178-180 °C/1 mm Hg, lit. b.p. 165-167 °C/1 mm Hg) of the residue yielded the product (3.72 g, 23.9 mmol, 51%) as a yellow oil. Slight decomposition was observed in the NMR spectrum at this high temperature so an analytically pure sample was obtained by column chromatography (1:1 petroleum ether:CH₂Cl₂) to give the product as a colourless oil: IR 3069 cm⁻¹ (s), 2979 cm⁻¹ (m), 1730 cm⁻¹ (s), 1583 cm⁻¹ (w), 1481 cm⁻¹ (m), 1440 cm⁻¹ (m), 1283 cm⁻¹ (s), 1143 cm⁻¹ (m), 1025 cm⁻¹ (m); ¹H NMR δ 7.51-7.30 (m, 10 H), 4.85 (s, 1H), 4.14 (q, 2H, J=7.1 Hz), 1.17 (t, 3H, J=7.1 Hz); ¹³C NMR δ 168.5, 133.3, 132.7, 129.0, 128.6, 62.1, 58.3, 13.9; LRMS m/z 304 (8, M⁺), 195 (34), 149 (32), 121 (100), 109 (24), 77 (40), 51 (26), 45 (30).

N-(2,3-Dimethoxybenzyl)-2-(phenylthio)acetamide 321:

\[
\text{MeO} \quad \text{MeO} \\
\text{N} \quad \text{O}
\]

Ethyl 2-(phenylthio)acetate (3.12 g, 15.9 mmol) was suspended in 40 mL of water as KOH (0.89 g, 16 mmol) in water (40 mL) was added dropwise. The mixture rapidly became one phase, and it was allowed to stir at room temperature for two hours. The solvent was removed to give a colourless solid, which was dried at 50 °C under vacuum for three hours. The solid was suspended in ether (30 mL), and the mixture was maintained at 10 °C as thionyl chloride (1.42 g, 12.0 mmol) in ether (15 mL) was added
dropwise. The resultant cloudy suspension was refluxed for thirty minutes, cooled to room temperature, then poured into a vigorously stirred solution of 2,3-dimethoxybenzylamine (2.00 g, 12.0 mmol) in triethylamine (1.21 g, 12.0 mmol) and benzene (20 mL) at room temperature. The yellow suspension was refluxed for thirty minutes, allowed to cool then poured onto ice and extracted with benzene (2x150 mL). The combined organic extracts were washed with water and brine (50 mL each) then dried with Na₂SO₄. Removal of the solvent and chromatography (4:1 CH₂Cl₂:EtOAc) yielded the product as a colourless solid (2.68 g, 8.44 mmol, 71%), which could be recrystallized from EtOAc:hexanes to give colourless needles: m.p. 107-108 °C; IR 3398 cm⁻¹ (w), 3032 cm⁻¹ (s), 2967 cm⁻¹ (w), 1665 cm⁻¹ (s), 1482 cm⁻¹ (s), 1278 cm⁻¹ (m), 1086 cm⁻¹ (m); ¹H NMR δ 7.26-6.68 (m, 9H, 8 ArH and one NH), 4.44 (d, 2H, J=5.9 Hz), 3.83 (s, 3H), 3.78 (s, 3H), 3.62 (s, 2H); ¹³C NMR δ 167.5, 152.4, 147.0, 134.5, 131.1, 129.1, 128.2, 126.5, 124.0, 120.9, 111.9, 60.5, 39.0, 37.4; LRMS m/z 317 (12, M⁺), 209 (11), 208 (100), 166 (11), 151 (18), 136 (26), 123 (13), 91 (23), 45 (13).

N-(2,3-Dimethoxybenzyl)-2,2-bis(phenylthio)acetamide 322:

![Chemical structure](image)

Ethyl 2,2-bis(phenylthio)acetate (4.76 g, 15.7 mmol), KOH (0.88 g, 16 mmol), thionyl chloride (1.42 g, 12.0 mmol), 2,3-dimethoxybenzylamine (2.00 g, 12.0 mmol) and triethylamine (1.21 g, 12.0 mmol) were reacted as for compound 321. Column chromatography (2:1 petroleum ether:EtOAc) yielded the product as a colourless solid (4.03 g, 9.47 mmol, 79%) which was recrystallized from EtOAc to give colourless needles: m.p. 116-116.5 °C; IR 3391 cm⁻¹ (w), 3029 cm⁻¹ (s), 2940 cm⁻¹ (w), 1672 cm⁻¹ (s), 1514 cm⁻¹ (m), 1482 cm⁻¹ (s), 1279 cm⁻¹ (m), 1086 cm⁻¹ (m); ¹H NMR δ 7.42-7.23
N-(2,3-Dimethoxybenzyl)-2,2-diethoxyacetamide 338:

Ethyl diethoxyacetate (5.00 g, 28.4 mmol), KOH (1.59 g, 28.4 mmol), thionyl chloride (3.38 g, 28.4 mmol), 2,3-dimethoxybenzylamine (4.00 g, 23.9 mmol) and triethylamine (2.42 g, 23.9 mmol) were reacted as for 321. Column chromatography (2:1 EtOAc:petroleum ether) of the residual oil afforded 5.01 g (16.8 mmol, 70%) of the product as a pale yellow oil: IR 3424 cm\(^{-1}\) (m), 3030 cm\(^{-1}\) (s), 2940 cm\(^{-1}\) (m), 1688 cm\(^{-1}\) (s), 1516 cm\(^{-1}\) (s), 1484 cm\(^{-1}\) (s), 1279 cm\(^{-1}\) (s), 1088 cm\(^{-1}\) (s); \(^1\)H NMR \(\delta\) 7.05-6.86 (m, 4H, 3 ArH and one NH), 4.82 (s, 1H), 4.49 (d, 2H, \(J=6.0\) Hz), 3.87 (s, 3H), 3.87 (s, 3H), 3.65 (m, 4H), 1.23 (t, 6H, \(J=7.0\) Hz); \(^1\)C NMR \(\delta\) 167.6, 152.6, 147.2, 131.4, 124.2, 121.3, 112.0, 98.5, 62.4, 60.7, 55.8, 38.3, 15.1; LRMS \(m/z\) 297 (2, \(M^+\)), 136 (10), 103 (100), 91 (11), 75 (60), 47 (59), 29 (13), 28 (16).

N-(tert-Butoxycarbonyl)-2,3-dimethoxybenzylamine 331:

A solution of 2,3-dimethoxybenzylamine (1.47 g, 8.79 mmol) in CHCl\(_3\) (50 mL) was stirred at room temperature under an atmosphere of nitrogen as a solution of di-tert-
butyldicarbonate (2.11 g, 9.66 mmol, 1.1 eq) in CHCl₃ (20 mL) was added dropwise. The resultant pale yellow solution was stirred for two hours at room temperature, and the solvent was removed to give a yellow solid, which was recrystallized from hexanes to afford colourless needles (2.10 g, 7.85 mmol, 89%): m.p. 64-65 °C; IR 3454 cm⁻¹ (w), 3028 cm⁻¹ (s), 2937 cm⁻¹ (w), 1707 cm⁻¹ (s), 1513 cm⁻¹ (m), 1483 cm⁻¹ (s), 1244 cm⁻¹ (s), 1168 cm⁻¹ (s), 1080 cm⁻¹ (m); ¹H NMR δ 6.84-7.04 (m, 3H), 4.99 (broad s, 1H), 4.33 (d, 2H, J=6.0 Hz), 3.86 (s, 3H), 3.85 (s, 3H), 1.44 (s, 9H); ¹³C NMR δ 155.8, 152.5, 147.0, 132.6, 124.1, 121.0, 111.7, 79.2, 60.6, 55.7, 40.0, 28.4; LRMS m/z 267 (10, M⁺), 210 (28), 166 (79), 152 (26), 151 (33), 136 (27), 57 (100), 41 (42).

7,8-Dimethoxy-3-hydroxyisoquinoline 318:⁸⁸ᵃ

Polyphosphoric acid (100 mL) was prepared in a 250 mL three-necked round-bottomed flask equipped with a mechanical stirrer and heated at 100 °C. Compound 338 (1.00 g, 3.36 mmol) was added dropwise, and the resultant brown mixture was stirred for 30 minutes. The hot reaction mixture was then poured onto ice (200 mL). The dark brown solution was saturated with NaCl and extracted with CH₂Cl₂ (8x500 mL). The combined extracts were dried with Na₂SO₄, and the solvent removed to give an orange solid. Column chromatography (4:1 EtOAc:MeOH) gave the desired product as a yellow solid (0.10 g, 0.49 mmol, 15%), which could be recrystallized from ethanol to give yellow needles: 128-129 °C (lit.⁸⁸ᵃ m.p. 130-132 °C); IR 3376 cm⁻¹ (w), 2930 cm⁻¹ (s), 2855 cm⁻¹ (w), 1693 cm⁻¹ (s), 1592 cm⁻¹ (m), 1500 cm⁻¹ (m), 1460 cm⁻¹ (m), 1264 cm⁻¹ (s), 1247 cm⁻¹ (m), 1047 cm⁻¹ (w); ¹H NMR δ 8.97 (s, 1H), 7.37 (d, 1H, J=9.2 Hz), 7.31 (d, 1H, J=9.2 Hz), 6.93 (s, 1H), 4.05 (s, 3H), 3.94 (s, 3H); ¹³C NMR δ 161.0, 145.0, 144.9, 144.0, 140.8, 138.2, 123.9, 121.2, 118.3, 104, 61.4, 57.7; LRMS m/z 205 (100, M⁺), 190
Compound 318 (0.20 g, 0.97 mmol) was stirred in CH₂Cl₂ at -78 °C as diisopropylamine (0.25 mL, 1.9 mmol, 2 eq.) was added. The solution was stirred at -78 °C for 30 minutes, triflic anhydride (0.32 mL, 1.9 mmol, 2 eq.) was added dropwise by syringe, and the mixture was stirred for one hour and then allowed to warm to room temperature. The mixture was diluted with CH₂Cl₂ and extracted with water until the washings were neutral. The organic portion was then washed with brine and dried (Na₂SO₄), and the solvent was removed to give a brown solid. Column chromatography (CH₂Cl₂) afforded an orange solid (0.27 g, 0.80 mmol, 82%), which is very nearly pure triflate: m.p. 83-84 °C; IR 2992 cm⁻¹ (s), 2936 cm⁻¹ (w), 2847 cm⁻¹ (w), 1596 cm⁻¹ (s), 1563 cm⁻¹ (s), 1421 cm⁻¹ (s), 1278 cm⁻¹ (s), 1140 cm⁻¹ (s); ¹H NMR δ 9.33 (s, 1H), 7.62 (d, 1H, J=9.1 Hz), 7.59 (d, 1H, J=9.1 Hz), 7.50 (s, 1H), 4.09 (s, 3H), 4.03 (s, 3H); ¹³C NMR δ 151.6, 149.4, 147.3, 144.0, 133.6, 124.3, 122.6, 121.7, 118.7 (q, ¹J_C,F=320 Hz), 110.18, 61.69, 57.02; LRMS m/z 337 (69, M⁺), 204 (73), 177 (13), 176 (100), 161 (26), 116 (47), 89 (14), 69 (16), 63 (15).
3-(4-Benzoyl-2-(2-benzoxyethyl)-5-methoxyphenyl)-7,8-dimethoxyisoquinoline 307:

Compound 340 (0.11 g, 0.23 mmol, 1.5 eq.) was stirred in THF at -78 °C as butyllithium (0.19 mL of 1.6 M soln. in hexanes, 0.30 mmol, 2 eq.) was added dropwise by syringe. The solution was stirred at -78 °C for 15 minutes then trimethyl borate (0.05 mL, 0.45 mmol, 3 eq.) was added dropwise via syringe. The solution was warmed to room temperature and stirred for twenty minutes, then 100 mL each of 10% HCl and ether were added. The organic layer containing the boronic acid was washed with water, then the solution was dried with MgSO4. The solvent was then removed to give a black solid, which was used without further purification.

The triflate 308 (0.050 g, 0.15 mmol) was dissolved in ~4 mL dimethoxyethane (DME), Pd(PPh3)4 was added, followed by 2M Na2CO3 (1 mL). The mixture was brought to reflux, and the crude boronic acid in DME (1 mL) was added. The black colour instantly disappeared, and the orange solution was refluxed for 18 hr. The mixture was then treated with ethyl acetate (5 mL) and extracted with 1 M NaOH (10 mL) then brine (10 mL). The organic portion was dried with MgSO4. The solvent was removed, and column chromatography (6:1 CH2Cl2:EtOAc) afforded the product as a colourless solid (0.051 g, 0.095 mmol, 65%): IR 3033 cm⁻¹ (s), 2941 cm⁻¹ (m), 2862 cm⁻¹ (w), 1606 cm⁻¹ (m), 1514 cm⁻¹ (m), 1465 cm⁻¹ (m), 1373 cm⁻¹ (m), 1264 cm⁻¹ (m), 1138 cm⁻¹ (m), 1108 cm⁻¹ (m), 1069 cm⁻¹ (m), 1026 cm⁻¹ (m); ¹H NMR δ 9.56 (s, 1H), 7.61-6.91 (m, 15 H), 5.18 (s, 2H), 4.37 (s, 2H), 4.10 (s, 3H), 4.02 (s, 3H), 3.90 (s, 3H), 3.55 (t, 2H, J=7.2 Hz), 2.97 (t, 2H, J=7.2 Hz); LRMS m/z 535 (0.8, M⁺), 444 (9), 428 (23), 427 (28), 426
Isolation of 4-Benzoyl-2-(2-benzoxyethyl)-1-hydroxy-5-methoxybenzene 344 from failed coupling procedure:

After the usual workup procedure for coupling reactions (vide supra), column chromatography (CH$_2$Cl$_2$) afforded the phenol 344 in ~40% yield as a pale yellow solid: m.p. 42-43 °C; IR 3290 cm$^{-1}$ (br), 3034 cm$^{-1}$ (s), 2929 cm$^{-1}$ (w), 2868 cm$^{-1}$ (w), 1640 cm$^{-1}$ (w), 1510 cm$^{-1}$ (s), 1454 cm$^{-1}$ (w), 1366 cm$^{-1}$ (w), 1251 cm$^{-1}$ (m), 1214 cm$^{-1}$ (s), 1119 cm$^{-1}$ (w), 1049 cm$^{-1}$ (w); 1H NMR δ 7.89 (s, 1H), 7.41-7.25 (m, 10H), 6.58 (s, 1H), 6.56 (s, 1H), 5.03 (s, 2H), 4.57 (s, 2H), 3.84 (s, 3H), 3.72 (t, 2H), 2.78 (t, 2H); 13C NMR δ 150.60, 149.98, 141.39, 137.69, 136.76, 128.57, 128.37, 128.07, 127.81, 127.67, 127.50, 118.48, 117.48, 102.30, 73.72, 72.61, 72.51, 55.93, 32.57; nOe data δ 7.89 (6.56, 1.3%; 2.78, 1.5%), 3.84 (7.89, 7%; 6.56, 22%; 5.03, 8%; 4.57, 7%; 3.72, 7%; 2.78, 8%), 3.72 (7.89, 9%; 5.03, 8%; 4.57, 13%; 3.84, 7%; 2.78, 13%), 2.78 (7.89, 13%; 6.58, 14%; 5.03, 7%; 4.57, 8%; 3.84, 8%; 3.72, 14%); LRMS m/z 364 (0.45, M$^+$), 273 (4), 181 (2), 166 (3), 165 (5), 137 (2), 92 (8), 91 (100), 77 (2), 69 (3), 65 (8), 51 (2), 39 (3).
3-(2-(2-Benzoyethyl)-4-hydroxy-5-methoxyphenyl)-7,8-dimethoxyisoquinoline 265:

![Chemical structure](image)

Compound 307 (0.02 g) was dissolved in EtOAc (10 mL), and a catalytic amount of Pd(OH)$_2$ on carbon was added. The suspension was stirred under an atmosphere of H$_2$ for 24 hr. The suspension was then filtered through a plug of Celite®, and the filter plug was reextracted several times with EtOAc. The solution was then dried with MgSO$_4$ and the solvent was removed. Column chromatography (EtOAc) of the residue afforded the product as a pale yellow solid: m.p. 173-174 °C; 1H NMR δ 9.54 (s, 1H), 7.74 (s, 1H), 7.62 (d, 1H, J=9.0 Hz), 7.55 (d, 1H, J=9.0 Hz), 6.97 (s, 1H), 6.94 (s, 1H), 5.68 (s, 1H), 4.10 (s, 3H), 4.03 (s, 3H), 3.99 (t, 2H, J=5.5 Hz), 3.93 (s, 3H), 2.83 (t, 2H, J=5.5 Hz), primary OH not observed; LRMS m/z 355 (29, M$^+$), 338 (59), 337 (64), 336 (96), 326 (21), 325 (100), 324 (24), 323 (50), 322 (28), 310 (37), 308 (34), 294 (23), 280 (18), 266 (24), 251 (21), 222 (20), 206 (12), 168 (13), 147 (13), 139 (12), 131 (12), 126 (14), 124 (11), 117 (12), 44 (16), 32 (25), 31 (12).
Diels-Alder References

12. Danishefsky’s diene is commercially available from the Aldrich Chemical Company, Inc. at a cost of $100.30 CDN for 5 grams (1996 catalogue).

14. For reviews of the inverse electron demand Diels-Alder reaction of hetero dienes:

44. Pi, Zulan, Master's Thesis, 1996, Memorial University of Newfoundland.

Jatrorrhizine References

67. Chemical Abstracts name 5,6-dihydro-3-hydroxy-2,9,10-trimethoxydibenzo[a,g]-quinolizinium chloride [3621-38-3]

(d) For a review of the chemistry of triflates, see Stang, P. J.; Hanack, M.; Subramanian, L. R. *Synthesis* 1982, 85-126.

(b) Quesnelle, C.; Familoni, O. B.; Snieckus, V. *Synlett* 1994, 349-350.
(c) Koch, K.; Chambers, R. J.; Biggers, M. S. *Synlett* 1994, 347-348.

Boronic acids were prepared by essentially this procedure.

149. Bala, Y. and Bodwell, G., unpublished results.

Appendix

The 1H and 13C spectra of new compounds are arranged in the order in which the compounds appear in the text. For instrumental details, see General Procedures of Chapter 4 - Diene Experimental, page 38.