
sensors

Article

Automatic Super-Surface Removal in Complex 3D Indoor
Environments Using Iterative Region-Based RANSAC

Ali Ebrahimi 1,* and Stephen Czarnuch 1,2

����������
�������

Citation: Ebrahimi, A.; Czarnuch, S.

Automatic Super-Surface Removal in

Complex 3D Indoor Environments

Using Iterative Region-Based

RANSAC. Sensors 2021, 21, 3724.

https://doi.org/10.3390/s21113724

Academic Editors: Saeid

(Adam) Pirasteh and Marco Leo

Received: 30 March 2021

Accepted: 23 May 2021

Published: 27 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Electrical and Computer Engineering, Faculty of Engineering and Applied Science,
Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; sczarnuch@mun.ca

2 Discipline of Emergency Medicine, Faculty of Medicine, Memorial University of Newfoundland,
St. John’s, NL A1C 5S7, Canada

* Correspondence: aebrahimi@mun.ca

Abstract: Removing bounding surfaces such as walls, windows, curtains, and floor (i.e., super-
surfaces) from a point cloud is a common task in a wide variety of computer vision applications
(e.g., object recognition and human tracking). Popular plane segmentation methods such as Random
Sample Consensus (RANSAC), are widely used to segment and remove surfaces from a point
cloud. However, these estimators easily result in the incorrect association of foreground points to
background bounding surfaces because of the stochasticity of randomly sampling, and the limited
scene-specific knowledge used by these approaches. Additionally, identical approaches are generally
used to detect bounding surfaces and surfaces that belong to foreground objects. Detecting and
removing bounding surfaces in challenging (i.e., cluttered and dynamic) real-world scene can easily
result in the erroneous removal of points belonging to desired foreground objects such as human
bodies. To address these challenges, we introduce a novel super-surface removal technique for
3D complex indoor environments. Our method was developed to work with unorganized data
captured from commercial depth sensors and supports varied sensor perspectives. We begin with
preprocessing steps and dividing the input point cloud into four overlapped local regions. Then, we
apply an iterative surface removal approach to all four regions to segment and remove the bounding
surfaces. We evaluate the performance of our proposed method in terms of four conventional metrics:
specificity, precision, recall, and F1 score, on three generated datasets representing different indoor
environments. Our experimental results demonstrate that our proposed method is a robust super-
surface removal and size reduction approach for complex 3D indoor environments while scoring the
four evaluation metrics between 90% and 99%.

Keywords: RANSAC; point cloud; bounding surface removal; wall removal; 3D background sub-
traction; 3D plane segmentation; 3D preprocessing technique; 3D size reduction

1. Introduction

In image processing, background subtraction is widely used in object detection and
tracking approaches [1–3] with broad applications such as human tracking [4,5], face recog-
nition [6], traffic management [7], and surveillance systems [8,9]. Background subtraction
is typically a preprocessing phase used to identify and differentiate the foreground pixels
(representing objects of interest) from the background pixels (representing uninteresting
information). The background pixels can then be subtracted or removed from the original
image, leaving only the foreground pixels, which reduces the storage space requirements,
reduces the computational complexity, and improves the overall algorithm performance
of downstream image processing techniques. Established 2D background subtraction
approaches are based on static background segmentation methods [10], adaptive Gaussian
mixture models [11,12], real-time codebook models [13,14], and independent component
analysis-based techniques [15,16]. Although advanced 2D background subtraction tech-
niques can handle gradual illumination changes and repetitive movements in the back-

Sensors 2021, 21, 3724. https://doi.org/10.3390/s21113724 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-0374-3195
https://orcid.org/0000-0002-9192-4107
https://www.mdpi.com/article/10.3390/s21113724?type=check_update&version=1
https://doi.org/10.3390/s21113724
https://doi.org/10.3390/s21113724
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21113724
https://www.mdpi.com/journal/sensors

Sensors 2021, 21, 3724 2 of 20

ground, they perform poorly in the presence of shadows or foreground regions with colors
similar to the background [17]. The release of commercially available and inexpensive
depth sensors such as the Microsoft Kinect opened new doors for improved background
subtraction techniques because of the availability of additional depth data associated with
each pixel of color data. Depth sensor (RGB-D) systems are more robust for background
detection problems compared to classic color-based systems because depth data are largely
invariant to color, texture, shape, and lighting [18,19]. As /a result of the advantages of
combined depth and color information, data from RGB-D sensors have also been widely
used in background segmentation methods (e.g., [17,20,21]) which have been thoroughly
reviewed (see [22] for a comprehensive review of different 3D background subtraction
methods and their capabilities in solving common background segmentation challenges).

Background subtraction methods are generally used to analyze individual images
and identify the foreground by first estimating a reference background that is developed
from historical information obtained from videos or sequences of images. Therefore, the
classic application of 2D background subtraction is separating dynamic or moving objects
from a relatively static or slow-changing background scene. However, RGB images only
contain intensity information and spatial information that is largely restricted to the two
dimensions of the image that are perpendicular to the camera’s perspective. Accordingly,
identifying the boundaries between objects, or conversely identifying object interactions or
contact, is limited mainly to detectable intensity differences. In applications that utilize
RGB-D data, interactions or contact between objects and object spatial relationships can be
more directly measured.

Furthermore, registration between depth and RGB data allows traditional 2D back-
ground subtraction approaches to be supplemented with additional depth-based ap-
proaches (e.g., [23,24]), and further allows RGB-D data to be represented as 3D point
clouds [25]. For example, reliably identifying and removing static background components
such as roads and walls before modeling the background can result in both improved
background subtraction and improved foreground segmentation using both 2D and RGB-D
data; improvements that to our knowledge have only been realized through approaches
that require additional data and computation, such as motion estimation between consecu-
tive frames (e.g., [26]). Identifying static background components suffers from the same
limitations as modeling the entire background using 2D data, suggesting that little benefit
is afforded by first removing these background objects, then modeling the background.
However, with RGB-D data, parametrically modeled objects (e.g., planes, spheres, cones,
cylinders, and cubes) are far more reliably detectable. As a result, researchers have at-
tempted to segment or remove large planar surfaces (e.g., walls, ceiling, and floor surfaces)
as a preprocessing or fundamental step before all other algorithms (e.g., [27–29]).

In general, large planar surfaces comprise a large percentage of points within each
frame of RGB-D data captured in indoor environments. However, outside specific appli-
cations that seek to identify significant surfaces (e.g., ground plane detection [30]), large
planar surfaces are not often the objects of interest in 3D computer vision applications.
Notably, smaller planar surfaces (e.g., tabletops, chair seats and backs, desks) are more
likely to be of interest than larger surfaces at the boundaries of the scene. Furthermore,
the large bounding surfaces can decrease the performance of 3D computer vision algo-
rithms (e.g., object segmentation and tracking) by cluttering their search space. Therefore,
a robust removal technique for points that belong to surfaces at the outer boundaries of
the RGB-D data can significantly reduce the search space and bring three main benefits to
the computer vision systems: improving downstream results, speeding up downstream
processes, and reducing the overall size of the point clouds. We refer to these large surfaces,
which may include points from multiple planes or objects (e.g., points that represent a wall,
window, and curtains) at the extremes of the point clouds as super-surfaces in the context
of background subtraction applications. Our objective is to develop a robust technique
of removing super-surfaces from RGB-D data captured from indoor environments and
represented as point clouds. Our intention is that our super-surface removal technique

Sensors 2021, 21, 3724 3 of 20

will function as a pre-processing step, improving existing computer vision techniques, and
reducing storage requirements, without removing any foreground data.

1.1. Related Work

Point cloud data are classified as either organized or unorganized datasets. Orga-
nized datasets are represented by a matrix-like structure, where the data (i.e., voxels) are
accessible by index, usually according to their spatial or geometric relationship. Unlike
organized point clouds, the relationships between adjacent voxels of unorganized datasets
are unknown, and the data are simply stored as a one-dimensional, unsorted array. Data
from RGB-D sensors are typically stored as organized point clouds, where indexes are
referenced according to the spatial resolution of the sensor. However, point cloud pre-
processing steps such as down-sampling often produce unorganized point clouds. While
it is trivial to convert an organized to an unorganized point cloud, the converse is much
more complicated and costly. Since spatial relationships between voxels are preserved,
plane detection is less challenging for organized point clouds. However, computer vision
approaches designed for unorganized datasets are universal [31] (i.e., they can also be
used for organized datasets), so a robust plane detection approach must work with unor-
ganized datasets and not rely on the spatial relationship of voxels as derived from their
storage indices. In general, plane segmentation methods can be categorized into three
categories: model fitting-based methods, region growing-based methods, and clustering
feature-based methods.

1.1.1. Model Fitting-Based Methods

Random Sample Consensus (RANSAC) [32] and Hough transform [33] are the most
commonly used model fitting-based methods for plane segmentation. The Hough trans-
form is a voting technique for identifying objects that can be modeled parametrically, such
as lines, planes, and spheres. Every point is transformed into a unique function (e.g., a
sinusoid when modeling lines) in a discretized parameter space. Objects of interest can then
be extracted by selecting the maximal intersections between the functions in the discretized
parameter space, where the spatial tolerance for model fitting (e.g., to compensate for
sensor resolution, noise, and object surface variations) can be accommodated by changing
the resolution of the parameter space. The Hough transform has been successfully used
for 3D plane segmentation in several publications (e.g., [34,35]). Unfortunately, although
Hough transform-based methods can robustly segment 3D objects, they necessitate large
amounts of memory and significant computational time [36], and their results depend
significantly on the proper selection of segmentation parameters [37]. More importantly,
Hough transform is unable to discriminate between voxels that lie within a parameterized
model (i.e., inliers) and outside the model (i.e., outliers) since spatial relationships are not
preserved in the Hough parameter space. The result is that foreground points that belong
to objects that are spatially close to the parameterized background model will often be
associated with the model, and ultimately the background scene.

The RANSAC algorithm begins with a random selection of data points that estimate
the corresponding model parameters (e.g., three points for a plane). Then, the remaining
points are examined to determine how many of them are well-approximated by the model.
Terminally, the RANSAC algorithm returns the model with the highest percentage of inliers
that are within a fixed threshold (e.g., the orthogonal distance from the planar model).
Many researchers have proposed RANSAC-based algorithms for 3D plane segmentation,
such as [37–39].

Awwad et al. [37] proposed a RANSAC-based segmentation algorithm that first clus-
ters the data points into small sections based on their normal vectors and then segments the
planer surfaces. This implementation of RANSAC prevents the segmentation of spurious
surfaces in the presence of parallel-gradual planes such as stairs. Chen et al. [38] developed
an improved RANSAC algorithm through a novel localized sampling technique and a
region growing based approach. Their proposed method, intended to segment polyhedral

Sensors 2021, 21, 3724 4 of 20

rooftops from noisy Airborne Laser Scanning (ALS) point clouds, is based on the assump-
tion that rooftops comprise only planar primitives. Li et al. [39] proposed an enhanced
RANSAC algorithm based on Normal Distribution Transformation (NDT) cells to prevent
segmenting spurious planes. The algorithm considers each NDT cell rather than each point.
After dividing the data points into a grid of NDT cells, a combination of the RANSAC
algorithm and an iterative reweighted least-square approach fit a plane in each cell. Finally,
a connected-component approach extracts large planes and eliminates points that do not
belong to planes. Although the proposed method can detect 3D planes more reliable and
faster than the standard RANSAC, it requires cell size tuning for different datasets.

According to a performance comparison by Tarsha-Kurdi et al. [40], the RANSAC
algorithm outperforms the Hough transform approach for 3D roof plane segmentation
in terms of both speed and accuracy. However, RANSAC suffers from spurious plane
detection in complex 3D indoor environments [39].

1.1.2. Region Growing-Based Methods

In general, region growing-based methods have two main stages. First, they pick a
seed point and then merge the neighboring points or voxels that comply with the predefined
criteria (e.g., similar normal vector). Several researchers proposed point-based, voxel-
based, and hybrid region growing techniques for 3D point cloud segmentation. Tóvári
and Pfeifer [41] proposed a point-based region growing algorithm that merges adjacent
points to a seed region based on their normal vectors and distance to the adjusting plane.
Nurunnabi et al. [42] utilized the same criteria but with a different seed point selection
approach and a better normal vectors estimation.

Voxel-based region growing algorithms (e.g., [43,44]) improve the speed and robust-
ness of point-based methods by voxel-wise processing of the 3D point clouds. Xiao et al. [45]
proposed a 3D plane segmentation method based on a hybrid region growing approach
utilizing a subwindow and a single point as growth units. Although their technique is
significantly faster than the point-based region growing approach, it was intended for only
organized point clouds. Vo et al. [36] proposed a fast plane segmentation technique for
urban environments. The method consists of two main stages: first, a coarse segmentation
was achieved using an octree-based region growing approach, then a point-based process
refined the results by adding unassigned points into incomplete segments.

Region growing-based methods are easy to employ for 3D plane segmentation, pri-
marily for organized point clouds. However, their output results depend on the growing
criteria, the seed point selection, and the textures or roughness of planes [46]. Furthermore,
they are not robust to occlusion, point density variation, and noise [47].

1.1.3. Clustering Feature-Based Methods

Clustering feature-based methods adopt a data clustering approach based on char-
acteristics of planar surfaces, such as normal vector attributes. Filin [40] proposed a
clustering method based on an attribute vector comprising a point location, its tangent
plane’s parameters, and the height difference between the point and its adjacent points. In
another work, Filin and Pfeifer [41] computed the point features using a slope adaptive
neighborhood system and employed a mode-seeking algorithm to extract clusters. Then,
they extended or merged those clusters with their adjacent points or clusters if they share
analogous standard deviations and surface parameters. Czerniawski et al. [21] applied
a simple density-based clustering algorithm to a normal vector space (i.e., a Gaussian
sphere). The dense clusters on the Gaussian sphere represent the directions perpendicular
to large planes. Zhou et al. [42] proposed a clustering feature-based method for segmenting
planes in terrestrial point clouds. First, they created a 4D parameter space using planes’
normal vectors and their distance to the origin. Then, they segmented the planer surfaces
by applying the Iso cluster unsupervised classification method.

Despite the efficiency of clustering feature-based methods, employing multi-dimensional
features in large point clouds is computationally intensive [28]. Furthermore, they are

Sensors 2021, 21, 3724 5 of 20

sensitive to noise and outliers [43]. Moreover, the clustering segmentation approaches
cannot reliably segment the edge points as these points may have different feature vectors
compare to the surface points.

1.2. Contributions

Several 3D plane segmentation methods can satisfactorily detect different planar sur-
faces for various computer vision applications. However, to our knowledge, no approaches
have been developed specifically for bounding surface removal, particularly in complex
environments: environments that are cluttered, and where the placement of a depth sensor
is not ideal. Additionally, existing segmentation approaches generally segment foreground
points that belong to parametrically modeled objects of interest (e.g., planes, spheres,
cones, cylinders, and cubes), rather than with the intention of removing background points
belonging to the bounding surfaces. Therefore, existing approaches can easily remove
critical foreground objects (or portions of foreground objects), significantly impacting the
segmentation accuracy of semantic information. To overcome these limitations, we propose
a method of removing background bounding surfaces (i.e., super-surfaces, such as walls,
windows, curtains, and floor). Our novel method is particularly suited to more challenging
and cluttered indoor environments, where differentiating between foreground and back-
ground points is complicated. Accordingly, our objective is to develop a robust background
super-surface removal method that can support a wide range of sensor heights relative
to the ground (i.e., support varied sensor perspectives) for organized and unorganized
point clouds. Additionally, our approach must ensure that foreground objects, and points
belonging to those objects, are preserved during super-surface removal.

Our method significantly reduces the search space, and it can considerably reduce
the size of 3D datasets, depending on the number and size of the super-surfaces in each
point cloud. Furthermore, when used as a preprocessing step, our approach can improve
the results and the running time of different 3D computer vision methods such as object
recognition and tracking algorithms. The remainder of this paper is organized as follows. In
the next section, we describe our proposed 3D super-surface removal method. In Section 3,
we provide our experimental results and the evaluation of our proposed method. In
Section 4, we present our discussion and future work, followed by conclusions in Section 5.

2. The Iterative Region-Based RANSAC

Our Iterative Region-based RANSAC (IR-RANSAC) has five main steps, as illustrated
in Figure 1. We begin with two preprocessing techniques, first down-sampling the raw
point cloud and then removing noisy or outlying points in the depth map. Second, we
divide the point cloud space into four overlapped local regions based on the current view
of the sensor. Third, we segment a base plane in each of the four local regions. Fourth,
we implement an iterative plane removal technique to all four local regions, segmenting
and removing the super-surfaces. Finally, we cluster the remaining point cloud using the
geometric relationship between groups of points, resulting in a final point cloud comprised
only of clustered objects of interest.

Sensors 2021, 21, 3724 6 of 20Sensors 2021, 21, x FOR PEER REVIEW 6 of 22

Figure 1. The flowchart of IR‐RANSAC.

2.1. Downsampling and Denoising

Since input point clouds are generally large in size due to the significant number of

3D points and associated color information, a downsampling method with low computa‐

tional complexity can significantly reduce the running time of point cloud processing al‐

gorithms. Downsampling is typically achieved using either a random downsample

method [48] or a voxelized grid approach [49]. Although the former is more efficient, the

latter preserves the shape of the point cloud better and exploits the geometric relationship

of the underlying samples. Since we are predominantly concerned with preserving the

underlying points that represent the true geometry of objects in the scene, we utilize a

voxelized grid approach [49] that returns the centroid of all the points in each 3D voxel

grid with a leaf size of 0.1cm. In this way, the downsampled point clouds will still reflect

the structure and maintain the geometric properties of the original point cloud while re‐

ducing the total amount of points that will need to be processed and stored.

Removing noisy points is a critical point cloud preprocessing task. Noisy or spurious

points have two significant impacts on our approach. A noisy point cloud with false or

spurious data points, including points outside of a scene’s real boundaries (see Figure 2

for example) can lead to a wrong measurement of the overall bounding box containing

the point cloud, resulting in the definition of incorrect local regions in our subsequent

processing steps. Furthermore, noisy points within the point cloud itself will effectively

skew or change the geometry of the true objects. We utilize a statistical outlier removal

approach [50] by examining the k‐nearest neighbors (𝐾 ൌ 4) of each point, and removing

all points with a distance (σ) of more than one standard deviation of the mean distance to

the query point to remove outliers of each captured point cloud. If the average distance of

a point to its k‐nearest neighbors is above the threshold (σ), it is considered as an outlier.
In this way, we remove points that are dissimilar from other points in their neighborhood.

Together, these approaches decrease the number of points in the point cloud, reducing

downstream processing time and increasing the accuracy of our process.

Figure 1. The flowchart of IR-RANSAC.

2.1. Downsampling and Denoising

Since input point clouds are generally large in size due to the significant number of 3D
points and associated color information, a downsampling method with low computational
complexity can significantly reduce the running time of point cloud processing algorithms.
Downsampling is typically achieved using either a random downsample method [48] or a
voxelized grid approach [49]. Although the former is more efficient, the latter preserves the
shape of the point cloud better and exploits the geometric relationship of the underlying
samples. Since we are predominantly concerned with preserving the underlying points that
represent the true geometry of objects in the scene, we utilize a voxelized grid approach [49]
that returns the centroid of all the points in each 3D voxel grid with a leaf size of 0.1 cm. In
this way, the downsampled point clouds will still reflect the structure and maintain the
geometric properties of the original point cloud while reducing the total amount of points
that will need to be processed and stored.

Removing noisy points is a critical point cloud preprocessing task. Noisy or spurious
points have two significant impacts on our approach. A noisy point cloud with false or
spurious data points, including points outside of a scene’s real boundaries (see Figure 2
for example) can lead to a wrong measurement of the overall bounding box containing
the point cloud, resulting in the definition of incorrect local regions in our subsequent
processing steps. Furthermore, noisy points within the point cloud itself will effectively
skew or change the geometry of the true objects. We utilize a statistical outlier removal
approach [50] by examining the k-nearest neighbors (K = 4) of each point, and removing
all points with a distance (σ) of more than one standard deviation of the mean distance to
the query point to remove outliers of each captured point cloud. If the average distance of
a point to its k-nearest neighbors is above the threshold (σ), it is considered as an outlier.
In this way, we remove points that are dissimilar from other points in their neighborhood.
Together, these approaches decrease the number of points in the point cloud, reducing
downstream processing time and increasing the accuracy of our process.

Sensors 2021, 21, 3724 7 of 20
Sensors 2021, 21, x FOR PEER REVIEW 7 of 22

Figure 2. A sample point cloud with false data points (surrounded by a red rectangle), detected as

the noise outside the true boundaries of the room. These noise artifacts artificially expand the

overall outer dimensions of the point cloud.

2.2. Local Region Determination

Dividing our captured point clouds into four local regions of interests, based on the

properties of our indoor environments, reduces the possibility of detecting foreground

planes, increases computational efficiency, and leverages the likely spatial location of po‐

tential bounding surfaces. In this way, we exploit knowledge of the scene based on the

known sensor perspective, while allowing for surface locations to vary relative to each

other in different rooms. Further, these regions help ensure that foreground objects that

may appear planar in composition (e.g., tables, beds) are preserved and differentiated

from background bounding surfaces.

We partition the point cloud space into four overlapped local regions based on the

current view of the sensor. First, we find the bounding values of the downsampled and

denoised point cloud, where the values 𝑥, 𝑥௫,𝑦, 𝑦௫,𝑧 and 𝑧௫ are the Eu‐

clidean extrema of the bounding box enclosing the point cloud, and

൫𝑥, 𝑦, 𝑧൯ ൌ ሺ𝑥௫, 𝑦௫, 𝑧௫ሻ െ ሺ𝑥, 𝑦, 𝑧ሻ are the Euclidean dimen‐

sions of the bounding box. Using the ranges defined in Table 1, we then determine the

four local regions (see Figure 3 for a sample visualization of the local regions). We will use

these four regions to identify, segment, and remove potential super‐surfaces in each re‐

gion.

Figure 2. A sample point cloud with false data points (surrounded by a red rectangle), detected as
the noise outside the true boundaries of the room. These noise artifacts artificially expand the overall
outer dimensions of the point cloud.

2.2. Local Region Determination

Dividing our captured point clouds into four local regions of interests, based on the
properties of our indoor environments, reduces the possibility of detecting foreground
planes, increases computational efficiency, and leverages the likely spatial location of
potential bounding surfaces. In this way, we exploit knowledge of the scene based on the
known sensor perspective, while allowing for surface locations to vary relative to each
other in different rooms. Further, these regions help ensure that foreground objects that
may appear planar in composition (e.g., tables, beds) are preserved and differentiated from
background bounding surfaces.

We partition the point cloud space into four overlapped local regions based on the
current view of the sensor. First, we find the bounding values of the downsampled
and denoised point cloud, where the values xmin, xmax,ymin, ymax,zmin and zmax are the Eu-
clidean extrema of the bounding box enclosing the point cloud, and

(
xrange, yrange, zrange

)
=

(xmax, ymax, zmax)− (xmin, ymin, zmin) are the Euclidean dimensions of the bounding box.
Using the ranges defined in Table 1, we then determine the four local regions (see Figure 3
for a sample visualization of the local regions). We will use these four regions to identify,
segment, and remove potential super-surfaces in each region.

Table 1. Ranges for each local region.

Region Range

X-Axis Y-Axis Z-Axis

Back (−∞, ∞) (−∞, ∞)
[
zmax −

(
zrange

4

)
, zmax

]
Left

[
xmax −

(
xrange

4

)
, xmax

]
(−∞, ∞) (−∞, ∞)

Right
[

xmin, xmin +
(

xrange
4

)]
(−∞, ∞) (−∞, ∞)

Bottom (−∞, ∞)
[
ymin, ymin +

(
yrange

4

)]
(−∞, ∞)

Since our approach must be independent of any prior knowledge about the geometry
of the indoor environment and both the location and perspective of the sensor, the four
initial local regions may not include all the points that are actually part of the super-surfaces
(e.g., Figure 3d, where parts of the floor are not included in within the local region).

Sensors 2021, 21, 3724 8 of 20

Sensors 2021, 21, x FOR PEER REVIEW 8 of 22

Table 1. Ranges for each local region.

Region
Range

X‐Axis Y‐Axis Z‐Axis

Back ൫െ∞,∞൯ ൫െ∞,∞൯ ቂ𝑧௫ െ ቀ
𝑧

4
ቁ , 𝑧௫ቃ

Left ቂ𝑥௫ െ ቀ
𝑥

4
ቁ , 𝑥௫ቃ ൫െ∞,∞൯ ൫െ∞,∞൯

Right ቂ𝑥, 𝑥 ቀ
𝑥

4
ቁቃ ൫െ∞,∞൯ ൫െ∞,∞൯

Bottom ൫െ∞,∞൯ ቂ𝑦, 𝑦 ቀ
𝑦

4
ቁቃ ൫െ∞,∞൯

Since our approach must be independent of any prior knowledge about the geometry

of the indoor environment and both the location and perspective of the sensor, the four

initial local regions may not include all the points that are actually part of the super‐sur‐

faces (e.g., Figure 3d, where parts of the floor are not included in within the local region).

Figure 3. The boundaries of the four local regions highlighted in green: (a) the back, (b) left, (c)

right, and (d) bottom regions.

Selecting larger initial regions will increase the likelihood that all true points are

within the regions but will also increase the likelihood of including points belonging to

foreground objects near the super‐surfaces (e.g., beds and sofas). To resolve this issue, we

implement conservative local regions and extend these four regions after base plane seg‐

mentation (see Section 2.4).

Figure 3. The boundaries of the four local regions highlighted in green: (a) the back, (b) left, (c) right,
and (d) bottom regions.

Selecting larger initial regions will increase the likelihood that all true points are within
the regions but will also increase the likelihood of including points belonging to foreground
objects near the super-surfaces (e.g., beds and sofas). To resolve this issue, we implement
conservative local regions and extend these four regions after base plane segmentation
(see Section 2.4).

2.3. Base Plane Segmentation

We utilize the RANSAC algorithm [32] to segment the largest planes with a specific
orientation in each of the local regions. All segmented plane candidates with more points
than a learned value υ = 5% of the total number of points in the point cloud, are verified as
base planes and stored for use in the next step (Section 2.4). Planes containing fewer than υ
points may be associated with key objects or small bounding planes and are dealt with in
subsequent processing steps. Furthermore, υ is set as a proportion of the total points such
that it is adaptive to the size of the point cloud.

The RANSAC algorithm iteratively and randomly samples three voxels, A, B and C
as a minimum subset to generate a hypothesis plane. These three points represent two

vectors
→

AB and
→

AC, and their cross product is the normal vector
→
N = (a, b, c) to the

plane ax + by + cz + d = 0. Therefore, the three parameters of the plane (a, b, and c) are
computed, and d can be solved. In each iteration, the algorithm computes the distance
D = | ax+by+cz+d√

a2+b2+c2 | between all the remaining data points and the plane and then counts the
number of points within a distance threshold (δ = 4 cm) of the plane. Finally, RANSAC
returns the plane with the highest percentage of inliers.

We add an orientation constraint to the standard RANSAC (orientation-based RANSAC)
so that we assign priority to segmented planes with the highest percentage of inliers
that have an expected orientation relative to the local regions. To do this, we defined
an initial reference vector for each of the local regions, aligned with the sensor axes

Sensors 2021, 21, 3724 9 of 20

as [0, 0,−1], [−1, 0, 0], [1, 0, 0] and [0, 1, 0] for the back, left, right, and bottom regions,
respectively (Figure 4). Further, we define a maximum allowance angular variation
(ω = 45 degrees) between the normal vector of the planes and our reference vectors to
allow for sensor perspective variations.

Sensors 2021, 21, x FOR PEER REVIEW 9 of 22

2.3. Base Plane Segmentation

We utilize the RANSAC algorithm [32] to segment the largest planes with a specific

orientation in each of the local regions. All segmented plane candidates with more points

than a learned value υ ൌ 5% of the total number of points in the point cloud, are verified

as base planes and stored for use in the next step (Section 2.4). Planes containing fewer

than υ points may be associated with key objects or small bounding planes and are dealt

with in subsequent processing steps. Furthermore, υ is set as a proportion of the total
points such that it is adaptive to the size of the point cloud.

The RANSAC algorithm iteratively and randomly samples three voxels, 𝐴, 𝐵 and 𝐶
as a minimum subset to generate a hypothesis plane. These three points represent two

vectors 𝐴𝐵ሬሬሬሬሬ⃗ and 𝐴𝐶ሬሬሬሬሬ⃗ , and their cross product is the normal vector 𝑁ሬሬ⃗ ൌ ሺ𝑎, 𝑏, 𝑐ሻ to the
plane 𝑎𝑥 𝑏𝑦 𝑐𝑧 𝑑 ൌ 0. Therefore, the three parameters of the plane (𝑎, 𝑏, 𝑎𝑛𝑑 𝑐) are
computed, and 𝑑 can be solved. In each iteration, the algorithm computes the distance

𝐷 ൌ | 𝑎𝑥𝑏𝑦𝑐𝑧𝑑

ට𝑎2𝑏2𝑐2
| between all the remaining data points and the plane and then counts

the number of points within a distance threshold (δ ൌ 4 cmሻ of the plane. Finally, RAN‐
SAC returns the plane with the highest percentage of inliers.

We add an orientation constraint to the standard RANSAC (orientation‐based RAN‐

SAC) so that we assign priority to segmented planes with the highest percentage of inliers

that have an expected orientation relative to the local regions. To do this, we defined an

initial reference vector for each of the local regions, aligned with the sensor axes as
ሾ0,0, െ1ሿ, ሾെ1,0,0ሿ, ሾ1,0,0ሿ and ሾ0,1,0ሿ for the back, left, right, and bottom regions, respec‐
tively (Figure 4). Further, we define a maximum allowance angular variation (ω ൌ 45 de‐
grees) between the normal vector of the planes and our reference vectors to allow for sen‐

sor perspective variations.

Figure 4. The initial reference vectors.

The maximum number of iterations 𝑇 required for convergence by the RANSAC al‐

gorithm can be approximated as Equation (1) [51]. Convergence depends on the number

of samples 𝑠 (𝑠 ൌ 3 for the plane fitting), the target success probability 𝑝 (e.g., 𝑝 ൌ
 99%), and the outlier ratio 𝑒. Considering there is no prior knowledge about the under‐

lying outlier ratio, it is difficult to approximate the number of RANSAC iterations. Based

on our experimental results and due to the iterative design of IR‐RANSAC, the algorithm

works appropriately with the number of trials adhering to 1% 𝑇 2% of the data
points within each local region. In this study, we set 𝑇 to 2% of the data points (e.g., if the
back region contains 60,000 points, the maximum number of trials will be set to 1200).

Figure 4. The initial reference vectors.

The maximum number of iterations T required for convergence by the RANSAC
algorithm can be approximated as Equation (1) [51]. Convergence depends on the number
of samples s (s = 3 for the plane fitting), the target success probability p (e.g., p = 99%),
and the outlier ratio e. Considering there is no prior knowledge about the underlying
outlier ratio, it is difficult to approximate the number of RANSAC iterations. Based on our
experimental results and due to the iterative design of IR-RANSAC, the algorithm works
appropriately with the number of trials adhering to 1% ≤ T ≤ 2% of the data points within
each local region. In this study, we set T to 2% of the data points (e.g., if the back region
contains 60,000 points, the maximum number of trials will be set to 1200). Increasing p and
T improve the robustness of the output at the expense of additional computation:

T =
log(1− p)

log
(
1− (1− e)s) (1)

2.4. Iterative Plane Removal

In a complex indoor environment, bounding surfaces such as walls, windows, and
curtains are difficult to fit to a single plane. Increasing the distance threshold (δ) includes
more points near the bounding planes, but simultaneously increases the chance of includ-
ing data from important objects (e.g., the human body) within the extended threshold.
Furthermore, the input point cloud can be unorganized, which means the nearest neighbor
operations, such as region growing, are not very efficient for segmenting the rest of the
super-surfaces. We introduce a novel iterative plane removal technique to segment and
remove super-surfaces from a point cloud while minimizing the likelihood of including
points that belong to foreground objects.

First, we remove the verified base planes associated with each local region. Then, we
expand the local regions according to the ranges in Table 2 to completely encompass the
areas containing the super-surfaces. Next, we apply the orientation-based RANSAC in each
of the extended regions iteratively. The number of iterations depends on the complexity of
the indoor environment; based on our experimental results, three iterations are adequate
for a challenging indoor environment. In each iteration, segmented planes must be parallel
to the base plane of the current region. Hence, we utilize the normal vectors of the base
planes as the reference vectors, and we set the maximum allowance angular variation (θ) to

Sensors 2021, 21, 3724 10 of 20

5◦. Finally, because employing the orientation-based RANSAC in a larger region increases
the probability of a false segmentation, we validate the segmented planes in each iteration.

The segmented planes are validated based on their distances, D, from their base planes,
where a, b, c, and d are parameters of the base plane, and x, y and z are coordinates of a
point on the segmented plane. To make the technique robust to high levels of noise, we
substitute the distance of a point to the base plane with the mean of all the segmented
points’ distances from the base plane.

Table 2. Extended ranges for each local region.

Region Range

X-Axis Y-Axis Z-Axis

Back (−∞, ∞) (−∞, ∞)
[
zmax −

(
zrange×3

4

)
, zmax

]
Left

[
xmax −

(
xrange

2

)
, xmax

]
(−∞, ∞) (−∞, ∞)

Right
[

xmin, xmin +
(

xrange
2

)]
(−∞, ∞) (−∞, ∞)

Bottom (−∞, ∞)
[
ymin, ymin +

(
yrange

2

)]
(−∞, ∞)

If the distances are less than a threshold (e.g., α = 10 cm), those planes will be
removed from their regions. Otherwise, they are not part of the super-surfaces and will
be temporarily removed from the remaining point cloud. There are two advantages to
temporarily removing a false segmented plane. First, it prevents RANSAC from segmenting
the false plane once again. Second, it reduces the current region for the next iteration.
Figure 5 illustrates the output of the iterative plane removal in each iteration when applied
to the back region of a point cloud. The green planes are verified and eliminated from the
back region, as shown in Figure 5b,c,e. However, the segmented red plane is not verified
and temporarily removed from the point cloud, as shown in Figure 5d.

Sensors 2021, 21, x FOR PEER REVIEW 11 of 22

Figure 5. The iterative plane removal of the back region: (a) the sample point cloud, (b) the verified base plane, (c,e) the

verified segmented planes, (d) the invalid segmented plane, and (f) the remaining point cloud after the back wall removal.

2.5. Euclidean Clustering Removal

In this step, we cluster the remaining point cloud based on Euclidean distance to re‐

move the irrelevant small segments and keep the objects of interest. First, we compute the

Euclidean distance between each point and its neighbors. Then, we group neighboring

points as a cluster if the distance between any point in an object and an adjacent point is

less than a threshold ε ൌ 5 cm, finishing when all the clusters are determined. Finally, we

remove all small clusters with fewer than a threshold μ ൌ 500 points. Figure 6 illustrates
an example of Euclidean clustering removal following the iterative plane removal.

Figure 5. The iterative plane removal of the back region: (a) the sample point cloud, (b) the verified base plane, (c,e) the
verified segmented planes, (d) the invalid segmented plane, and (f) the remaining point cloud after the back wall removal.

Sensors 2021, 21, 3724 11 of 20

2.5. Euclidean Clustering Removal

In this step, we cluster the remaining point cloud based on Euclidean distance to
remove the irrelevant small segments and keep the objects of interest. First, we compute
the Euclidean distance between each point and its neighbors. Then, we group neighboring
points as a cluster if the distance between any point in an object and an adjacent point is
less than a threshold ε = 5 cm, finishing when all the clusters are determined. Finally, we
remove all small clusters with fewer than a threshold µ = 500 points. Figure 6 illustrates
an example of Euclidean clustering removal following the iterative plane removal.

Sensors 2021, 21, x FOR PEER REVIEW 12 of 22

Figure 6. Euclidean clustering on the sample point cloud (a) following the iterative plane removal (b) results in properly

segmented foreground object clusters as well as residual clusters (c). Removing object clusters with fewer than μ points

leaves only foreground objects (d) which can be visualized as colored objects (e).

3. Experiments and Evaluation

3.1. Experimental Setup

We evaluated our method on three generated datasets representing three different

complex indoor environments, Room‐1, Room‐2, and Room‐3, as shown in Figure 7a,c,e

respectively. Each dataset contains different objects, such as furniture, planar objects, and

human bodies. To measure the performance of IR‐RANSAC in our challenging environ‐

ments, we acquired each point cloud from an arbitrary oblique‐view location using the

Microsoft Kinect V2 sensor. The details of each dataset after the preprocessing steps are

listed in Table 3.

Table 3. Parameters of the datasets.

Description Width (m) Height (m) Depth (m) Number of Points

Room‐1 3.56 2.65 3.68 179,572

Room‐2 3.51 2.60 3.46 179,374

Room‐3 4.11 3.27 4.71 181,822

Figure 6. Euclidean clustering on the sample point cloud (a) following the iterative plane removal (b) results in properly
segmented foreground object clusters as well as residual clusters (c). Removing object clusters with fewer than µ points
leaves only foreground objects (d) which can be visualized as colored objects (e).

3. Experiments and Evaluation
3.1. Experimental Setup

We evaluated our method on three generated datasets representing three different
complex indoor environments, Room-1, Room-2, and Room-3, as shown in Figure 7a,c,e
respectively. Each dataset contains different objects, such as furniture, planar objects,
and human bodies. To measure the performance of IR-RANSAC in our challenging
environments, we acquired each point cloud from an arbitrary oblique-view location
using the Microsoft Kinect V2 sensor. The details of each dataset after the preprocessing
steps are listed in Table 3.

Table 3. Parameters of the datasets.

Description Width (m) Height (m) Depth (m) Number of Points

Room-1 3.56 2.65 3.68 179,572
Room-2 3.51 2.60 3.46 179,374
Room-3 4.11 3.27 4.71 181,822

Sensors 2021, 21, 3724 12 of 20
Sensors 2021, 21, x FOR PEER REVIEW 13 of 22

Figure 7. The generated datasets, Room‐1 (a), Room‐2 (c), and Room‐3 (e), and their manually labeled super‐surfaces in

blue color, (b), (d), and (f) respectively.

To define the ground truth, we manually labeled the points belonging to each super‐

surface in every dataset by deploying the MATLAB Data tips tool based on their coordi‐

nates, colors, and the super‐surface definition. We employed this lengthy and precise pro‐

cedure by first using a semi‐automated labeling approach using the orientation‐based

RANSAC and MATLAB Data tips tool. First, we segmented as many super‐surface points

as possible by running the orientation‐based RANSAC in manually selected local regions

Figure 7. The generated datasets, Room-1 (a), Room-2 (c), and Room-3 (e), and their manually labeled super-surfaces in
blue color, (b), (d), and (f) respectively.

To define the ground truth, we manually labeled the points belonging to each super-
surface in every dataset by deploying the MATLAB Data tips tool based on their coordinates,
colors, and the super-surface definition. We employed this lengthy and precise procedure
by first using a semi-automated labeling approach using the orientation-based RANSAC
and MATLAB Data tips tool. First, we segmented as many super-surface points as possible
by running the orientation-based RANSAC in manually selected local regions known

Sensors 2021, 21, 3724 13 of 20

to contain super-surfaces. Then, we modified and validated the previous labeled points
resulting in our final manually labeled super-surfaces shown in Figure 7b,d,f.

We evaluated the efficiency of our IR-RANSAC and RANSAC (as a baseline) in terms
of four pixel-based metrics, precision, recall, F1 score, and specificity. The first three pa-
rameters have been widely utilized for appraising the effectiveness of plane segmentation
(e.g., [36,52,53]). To compute these metrics, we defined true positive (TP) as bounding sur-
face points correctly identified, true negative (TN) as foreground points correctly identified,
false positive (FP) as foreground points incorrectly identified as bounding surface points,
and false negative (FN) as bounding surface points incorrectly identified as foreground
points. Precision, measured as TP

TP+FP , is the number of correctly removed points (i.e.,
true positives) with respect to the total number of removed points. Recall, measured as

TP
TP+FN , is the fraction of true positive among the manually labeled points (ground truth).

F1 score, measured as 2× precision×recall
precision+recall , or the harmonic mean of the precision and recall,

represents the overall performance of our proposed method. The specificity, measured as
TN

TN+FP , reflects the true negative rate of our algorithm, providing a measure of how well
our method distinguishes between foreground points and bounding surface points.

We computed the size reduction of IR-RANSAC as 1− SOUT
SIN

where SOUT and SIN are
the size (i.e., the number of points) of the output point cloud and the input point cloud,
respectively. We implemented our proposed algorithm running MATLAB on an Intel
i5-4300M CPU @ 2.60 GHz and with 6.00 GB RAM. The full parameters of IR-RANSAC,
determined through experimentation, are listed in Table 4 and used for all our experiments.

Table 4. Parameters of IR-RANSAC.

Procedure Descriptor Parameter Value

Denoising algorithm Nearest neighbors K 4
Outlier threshold σ 1 standard deviation

Base plane segmentation

RANSAC distance threshold δ 4 cm
Maximum allowance angular variation ω 45◦

RANSAC maximum iterations T 2% of region points
Verification threshold υ 5% of point cloud points

Iterative plane removal
Iterations I 3

Maximum allowance angular variation θ 5◦

Distance threshold between two planes α 10 cm

Euclidean clustering removal Euclidean clustering threshold µ 500 points
Euclidean distance threshold ε 5 cm

3.2. Experimental Results

Figure 8 shows the output results of our algorithm and erroneously classified points
for the three datasets.

Incorrectly classified points are almost always associated with the points belonging to
foreground objects that are contacting a super-surface (i.e., objects within the RANSAC
distance threshold), such as the baseboard heater, the bed headboard, and the desk legs
(Figure 8c,f,i respectively). Notably, as a result of our local region definitions and bounding
surface criteria, we successfully prevented consideration of foreground objects that could
be misidentified as bounding surfaces (e.g., beds, desks). Furthermore, foreground objects
comprised of fewer points than the Euclidean clustering threshold (µ = 500 points) were
erroneously removed from the point cloud (e.g., the cyan portion of the lamp in Figure 8c).

Sensors 2021, 21, 3724 14 of 20

Sensors 2021, 21, x FOR PEER REVIEW 15 of 22

3.2. Experimental Results

Figure 8 shows the output results of our algorithm and erroneously classified points

for the three datasets.

Figure 8. Output results of IR‐RANSAC. The original point clouds, Room‐1 (a), Room‐2 (d), and Room‐3 (g), are visualized

with all super‐surfaces removed (b), (e), and (h) respectively. The false positive (cyan) and false negative (magenta) points

are highlighted over the original point clouds for the Room‐1 (c), Room‐2 (f) and Room‐3 (i) datasets.

Incorrectly classified points are almost always associated with the points belonging

to foreground objects that are contacting a super‐surface (i.e., objects within the RANSAC

distance threshold), such as the baseboard heater, the bed headboard, and the desk legs

(Figure 8c,f,i respectively). Notably, as a result of our local region definitions and bound‐

ing surface criteria, we successfully prevented consideration of foreground objects that

could be misidentified as bounding surfaces (e.g., beds, desks). Furthermore, foreground

Figure 8. Output results of IR-RANSAC. The original point clouds, Room-1 (a), Room-2 (d), and Room-3 (g), are visualized
with all super-surfaces removed (b), (e), and (h) respectively. The false positive (cyan) and false negative (magenta) points
are highlighted over the original point clouds for the Room-1 (c), Room-2 (f) and Room-3 (i) datasets.

Our IR-RANSAC method eliminated nearly all points belonging to the super-surfaces
from the Room-1 and Room-3 datasets. However, IR-RANSAC failed to remove two
small challenging regions belonging to the back and left super-surfaces of Room-2 (the
magenta regions around the window and the bottom left corner of the point cloud in
Figure 8f). This is because the planes surrounding the window are perpendicular to the
back super-surface, and the other small plane in the bottom left corner is smaller than the
verification threshold (υ = 5% of the total number of points in the point cloud). Notably,
both of these two miss-classified regions are greater than the Euclidean clustering threshold
(µ = 500 points). Additionally, IR-RANSAC incorrectly assigned a small number of

Sensors 2021, 21, 3724 15 of 20

points belonging to foreground objects to a bounding surface. In all cases, these incorrect
assignment of foreground points to super-surfaces happened when clustered foreground
objects physically contacted super-surfaces (e.g., bed headboard in Figure 8f and desk legs
in Figure 8i).

Figure 9 shows the output results of the standard RANSAC plane removal for the
three datasets. The cyan and magenta colors represent the incorrectly removed regions
(i.e., false positive) and undetected regions (i.e., false negative), respectively. The standard
RANSAC approach failed to remove many points belonging to the super-surfaces (e.g.,
the back and right walls of Room-1 and the floors of the other two datasets). Moreover,
RANSAC erroneously removed some parts of the human body and the furniture (e.g.,
couch, bed, and desks). These false segmentations have three main reasons: RANSAC
sensitivity to clutter and occlusion, the uncertainty of RANSAC in randomly sampling
three points as a minimum subset, and the lack of an orientation constraint.

Sensors 2021, 21, x FOR PEER REVIEW 17 of 22

Figure 9. The output results of standard RANSAC plane removal and its false positives and false

negatives in cyan and magenta, respectively: (a) the Room‐1, (b) the Room‐2, and (c) the Room‐3.

Our experimental results suggest that IR‐RANSAC supports varied sensor locations

and removes background boundary surfaces more effectively without removing fore‐

ground data in complex 3D indoor environments.

3.3. Evaluation

Similar to RANSAC, our IR‐RANSAC is stochastic, and accordingly its results can

vary depending on the selection of the random subsample. To account for this stochastic‐

ity, we conducted 30 experiments on each dataset, similar to the work of Li et al. [39], and

computed our four evaluation metrics for IR‐RANSAC and standard RANSAC plane re‐

moval as a baseline comparator. We illustrate the evaluation results in Figure 10, with the

left column visualizing our IR‐RANSAC results and the right column representing our

standard RANSAC plane removal results, and the rows corresponding to the three rooms.

We implemented the standard RANSAC plane removal traditionally to segment and elim‐

inate the four largest planes in each dataset. We set the parameters of our benchmark

RANSAC method to be the same as those used in IR‐RANSAC. The mean (M) and stand‐

ard deviation (SD) of both approaches are shown in Table 5 for specificity, precision, re‐

call, and F1 score, along with execution times.

Figure 9. The output results of standard RANSAC plane removal and its false positives and false
negatives in cyan and magenta, respectively: (a) the Room-1, (b) the Room-2, and (c) the Room-3.

Our experimental results suggest that IR-RANSAC supports varied sensor locations
and removes background boundary surfaces more effectively without removing foreground
data in complex 3D indoor environments.

3.3. Evaluation

Similar to RANSAC, our IR-RANSAC is stochastic, and accordingly its results can
vary depending on the selection of the random subsample. To account for this stochasticity,

Sensors 2021, 21, 3724 16 of 20

we conducted 30 experiments on each dataset, similar to the work of Li et al. [39], and
computed our four evaluation metrics for IR-RANSAC and standard RANSAC plane
removal as a baseline comparator. We illustrate the evaluation results in Figure 10, with
the left column visualizing our IR-RANSAC results and the right column representing
our standard RANSAC plane removal results, and the rows corresponding to the three
rooms. We implemented the standard RANSAC plane removal traditionally to segment and
eliminate the four largest planes in each dataset. We set the parameters of our benchmark
RANSAC method to be the same as those used in IR-RANSAC. The mean (M) and standard
deviation (SD) of both approaches are shown in Table 5 for specificity, precision, recall, and
F1 score, along with execution times.

Sensors 2021, 21, x FOR PEER REVIEW 18 of 22

 IR-RANSAC The standard RANSAC

 (a) (b)

 (c) (d)

 (e) (f)

Figure 10. The evaluation results of IR‐RANSAC and the standard RANSAC plane removal for the three datasets: (a,b)

the Room‐1, (c,d) the Room‐2, (e,f) the Room‐3.

Table 5. Execution times, mean (M), and standard deviation (SD) of IR‐RANSAC and standard RANSAC for specificity,

precision, recall, and F1 score.

Dataset Method
Specificity Precision Recall F1

Runtime (s)
M (%) SD M (%) SD M (%) SD M (%) SD

Room‐1
IR‐RANSAC 92.60 0.0200 96.41 0.0097 97.42 0.0230 96.90 0.0142 8.83

Standard RANSAC 85.47 0.1210 92.56 0.0612 87.60 0.0484 90.00 0.0538 3.20

Room‐2
IR‐RANSAC 98.38 0.0135 99.06 0.0074 90.52 0.0193 94.59 0.0101 7.50

Standard RANSAC 42.37 0.0164 71.79 0.0067 78.10 0.0114 74.81 0.0077 2.80

Room‐3
IR‐RANSAC 97.39 0.0075 98.61 0.0038 97.47 0.0253 98.02 0.0126 6.37

Standard RANSAC 33.91 0.0644 72.72 0.0278 92.78 0.0419 81.53 0.0333 2.40

Figure 10. The evaluation results of IR-RANSAC and the standard RANSAC plane removal for the three datasets: (a,b) the
Room-1, (c,d) the Room-2, (e,f) the Room-3.

Sensors 2021, 21, 3724 17 of 20

Table 5. Execution times, mean (M), and standard deviation (SD) of IR-RANSAC and standard RANSAC for specificity,
precision, recall, and F1 score.

Dataset Method
Specificity Precision Recall F1

Runtime (s)
M (%) SD M (%) SD M (%) SD M (%) SD

Room-1
IR-RANSAC 92.60 0.0200 96.41 0.0097 97.42 0.0230 96.90 0.0142 8.83

Standard RANSAC 85.47 0.1210 92.56 0.0612 87.60 0.0484 90.00 0.0538 3.20

Room-2
IR-RANSAC 98.38 0.0135 99.06 0.0074 90.52 0.0193 94.59 0.0101 7.50

Standard RANSAC 42.37 0.0164 71.79 0.0067 78.10 0.0114 74.81 0.0077 2.80

Room-3
IR-RANSAC 97.39 0.0075 98.61 0.0038 97.47 0.0253 98.02 0.0126 6.37

Standard RANSAC 33.91 0.0644 72.72 0.0278 92.78 0.0419 81.53 0.0333 2.40

Given the original size of the point clouds (see Table 3), and the size of the output point
clouds for Room-1 (55,705 points), Room-2 (69,044 points), and Room-3 (66,149 points),
IR-RANSAC yielded a size reduction of 0.68, 0.62, and 0.64 for Room-1, Room-2, and
Room-3, respectively.

4. Discussion

Our evaluation results achieved with IR-RANSAC (the first column of Figure 10) are
higher and much more consistent in all the four evaluation metrics than those obtained
using standard RANSAC (the second column of Figure 10). Additionally, almost all four
scores have a lower standard deviation with IR-RANSAC compared to standard RANSAC.
Overall, all of our evaluation results were statistically significantly better (p < 0.05) with
IR-RANSAC than standard RANSAC using a two-sample t-test. Most notably, the F1 score,
which represents the overall performance of the approaches, was statistically higher with
IR-RANSAC than standard RANSAC.

In all experiments, our proposed IR-RANSAC method obtained average values above
92% for specificity, 96% for precision, 90% for recall, and 94% for F1 score. Comparably, the
standard RANSAC achieved average values between 33% and 85%, 71% and 92%, 78% and
92%, 74% and 90% for specificity, precision, recall, and F1 score, respectively. As illustrated
in the second column of Figure 10, there are also many sharp fluctuations in the standard
RANSAC evaluation results. The F1 score fluctuated from 82% to 95% and 76% to 86%
for Room-1 and Room-3, respectively. However, it almost remained steady at 74% for the
Room-2 dataset. The standard RANSAC approach demonstrated a very low specificity for
Room-2 and Room-3, containing many planer furniture.

IR-RANSAC takes about three times as long to execute when compared to the standard
RANSAC approach on the same datasets. This is expected though, since our IR-RANSAC
method invokes the RANSAC algorithm four times more than the standard RANSAC
plane removal. Theoretically, a faster version of IR-RANSAC, which has only one iteration
in each local region, can be implemented that would be faster than the standard RANSAC
approach because it runs the RANSAC algorithm in smaller regions.

Our evaluation results support that IR-RANSAC is a robust and reliable method for
removing the bounding super-surfaces of a complex 3D indoor environment with better
performance over traditional RANSAC in all ways except execution time. Our results
suggest that IR-RANSAC removes background boundary surfaces effectively without
removing foreground data, and can considerably reduce size of 3D point clouds.

The subjects of future research are speeding up the IR-RANSAC algorithm and improv-
ing its results in much more complex 3D indoor environments. To improve our algorithm
results, we need to reduce its reliance on the Euclidean clustering technique, eliminate
the small challenging regions belonging to a super-surface but with a different normal
vector (e.g., the highlighted regions around the window in Figure 8f), and implement
self-adaptive parameters to be robust to different indoor environments and sensor data.

Sensors 2021, 21, 3724 18 of 20

5. Conclusions

We have presented a 3D bounding surface removal technique, IR-RANSAC, that is
particularly suited to more challenging and cluttered indoor environments. IR-RANSAC
supports varied sensor perspectives for organized and unorganized point clouds, and
it considerably reduces the size of 3D datasets. Moreover, IR-RANSAC can improve
the results and the running time of different 3D computer vision methods by reducing
their search space. After downsampling and denoising a point cloud captured from
an oblique view, we divide the point cloud space into four overlapped local regions,
exploiting knowledge of the current view of the sensor, and segment a base plane in each
of the four regions. We then expand our search space around the base plane in each
region, and iteratively segment and remove the remaining points belonging to each super-
surface. Finally, we cluster the remaining point cloud using the geometric relationship
between groups of points, resulting in a final point cloud comprised only of clustered
objects of interest. We evaluated the performance of IR-RANSAC in terms of four metrics:
specificity, precision, recall, and F1 score, on the three generated datasets acquired from
an arbitrary oblique-view location and representing different indoor environments. Our
experiments demonstrated that our proposed method is a robust super-surface removal
and size reduction technique for complex 3D indoor environments. Experimentally, IR-
RANSAC outperformed traditional RANSAC segmentation in all categories, supporting
our efforts to prioritize the inclusion of all bounding points in each super-surface, while
minimizing inclusion of points that belong to foreground objects.

Our intention was to develop a robust method of bounding surface segmentation—
maximizing inclusion of bounding surface points and minimizing inclusion of foreground
points. Our experimental data suggest that by conceptualizing bounding surfaces (e.g.,
walls and floor) as unique and different than other large surfaces that belong to foreground
objects, it is possible to improve on methods of segmenting and removing these unwanted
bounding surfaces specifically. By removing these bounding surfaces and preserving
foreground objects, we considerably reduce the size of the resulting dataset, substantially
improving downstream storage and processing.

Author Contributions: A.E. developed the method, collected results, and drafted and revised the
paper. S.C. conceived of the study and contributed to the analysis and revisions. Both authors have
read and agreed to the published version of the manuscript.

Funding: This work was supported by the Natural Sciences and Engineering Research Council of
Canada under Grant RGPIN-2016-04165.

Institutional Review Board Statement: Ethical review and approval were not required for this study
because all data were collected from members of the research team.

Informed Consent Statement: Patient consent was waived because all data were collected from
members of the research team.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available at the time of publication due to insufficient
resources for making the data publicly accessible.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Shaikh, S.H.; Saeed, K.; Chaki, N. Moving object detection using background subtraction. In SpringerBriefs in Computer Science;

Springer: Berlin, Germany, 2014; pp. 15–23.
2. Kumar, S.; Yadav, J.S. Video object extraction and its tracking using background subtraction in complex environments. Perspect.

Sci. 2016, 8, 317–322. [CrossRef]

http://doi.org/10.1016/j.pisc.2016.04.064

Sensors 2021, 21, 3724 19 of 20

3. Aggarwal, A.; Biswas, S.; Singh, S.; Sural, S.; Majumdar, A.K. Object tracking using background subtraction and motion estimation
in MPEG videos. In Lecture Notes in Computer Science; (Including Subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics); Springer: Berlin, Germany, 2006; Volume 3852 LNCS, pp. 121–130. [CrossRef]

4. Manikandan, R.; Ramakrishnan, R.; Scholar, R. Human Object Detection and Tracking using Background Subtraction for Sports
Applications. Int. J. Adv. Res. Comput. Commun. Eng. 2013, 2, 4077–4080. Available online: https://www.researchgate.net/
publication/276903638 (accessed on 23 October 2020).

5. Czarnuch, S.; Cohen, S.; Parameswaran, V.; Mihailidis, A. A real-world deployment of the COACH prompting system. J. Ambient
Intell. Smart Environ. 2013, 5, 463–478. [CrossRef]

6. Zou, W.; Lu, Y.; Chen, M.; Lv, F. Rapid face detection in static video using background subtraction. In Proceedings of the 2014
10th International Conference on Computational Intelligence and Security, CIS 2014, Kunming, China, 15–16 November 2014;
pp. 252–255. [CrossRef]

7. Yang, H.; Qu, S. Real-time vehicle detection and counting in complex traffic scenes using background subtraction model with
low-rank decomposition. IET Intell. Transp. Syst. 2018, 12, 75–85. [CrossRef]

8. Sahu, A.K.; Choubey, A. Motion Detection Surveillance System Using Background Subtraction Algorithm. Int. J. Adv. Res. Comput.
Sci. Manag. Stud. 2013, 1, 58–65. Available online: www.ijarcsms.com (accessed on 23 October 2020).

9. Hargude, S.; Idate, S.R. I-Surveillance: Intelligent Surveillance System Using Background Subtraction Technique. In Proceedings
of the 2nd International Conference on Computing, Communication, Control and Automation, ICCUBEA 2016, Pune, India,
12–13 August 2016. [CrossRef]

10. Karaman, M.; Goldmann, L.P. Comparison of Static Background Segmentation Methods, spiedigitallibrary.org. 2005. Available
online: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/5960/596069/Comparison-of-static-background-
segmentation-methods/10.1117/12.633437.short (accessed on 23 October 2020).

11. Stauffer, C.; Grimson, W.E.L. Adaptive background mixture models for real-time tracking. Proc. IEEE Comput. Soc. Conf. Comput.
Vis. Pattern Recognit. 1999, 2, 246–252. [CrossRef]

12. Zivkovic, Z. Improved adaptive Gaussian mixture model for background subtraction. In Proceedings of the International
Conference on Pattern Recognition, Cambridge, UK, 26 August 2004; Volume 2, pp. 28–31. [CrossRef]

13. Kim, K.; Chalidabhongse, T.H.; Harwood, D.; Davis, L. Real-time foreground-background segmentation using codebook model.
Real-Time Imag. 2005, 11, 172–185. [CrossRef]

14. Guo, J.M.; Liu, Y.F.; Hsia, C.H.; Shih, M.H.; Hsu, C.S. Hierarchical method for foreground detection using codebook model. IEEE
Trans. Circuits Syst. Video Technol. 2011, 21, 804–815. [CrossRef]

15. Tsai, D.M.; Lai, S.C. Independent component analysis-based background subtraction for indoor surveillance. IEEE Trans. Image
Process. 2009, 18, 158–167. [CrossRef]

16. Jiménez-Hernández, H. Background Subtraction Approach Based on Independent Component Analysis. Sensors 2010, 10, 6092–6114.
[CrossRef]

17. Gordon, G.; Darrell, T.; Harville, M.; Woodfill, J. Background estimation and removal based on range and color. In Proceedings of
the 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Fort Collins, CO, USA, 23–25 June
1999; Volume 2, pp. 459–464. [CrossRef]

18. Czarnuch, S.; Mihailidis, A. Development and evaluation of a hand tracker using depth images captured from an overhead
perspective. In Disability and Rehabilitation: Assistive Technology; Taylor and Francis Ltd.: Abingdon, UK, 2016; Volume 11,
pp. 150–157. [CrossRef]

19. Shotton, J.; FitzGibbon, A.; Cook, M.; Sharp, T.; Finocchio, M.; Moore, R.; Kipman, A.; Blake, A. Real-time human pose recognition
in parts from single depth images. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, Washington, DC, USA, 20–25 June 2011; pp. 1297–1304. [CrossRef]

20. Kolmogorov, V.; Criminisi, A.; Blake, A.; Cross, G.; Rother, C. Bi-layer segmentation of binocular stereo video. In Proceedings of
the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, San Diego, CA, USA,
20–26 June 2005; Volume II; pp. 407–414. [CrossRef]

21. Fernandez-Sanchez, E.J.; Diaz, J.; Ros, E. Background subtraction based on color and depth using active sensors. Sensors 2013,
13, 8895–8915. [CrossRef] [PubMed]

22. Cristani, M.; Farenzena, M.; Bloisi, D.; Murino, V. Background subtraction for automated multisensor surveillance: A comprehen-
sive review. EURASIP J. Adv. Signal. Process. 2010, 2010. [CrossRef]

23. Zhou, W.; Yuan, J.; Lei, J.; Luo, T. TSNet: Three-stream Self-attention Network for RGB-D Indoor Semantic Segmentation. IEEE
Intell. Syst. 2020, 1672. [CrossRef]

24. Ottonelli, S.; Spagnolo, P.; Mazzeo, P.L.; Leo, M. Improved video segmentation with color and depth using a stereo camera. In
Proceedings of the 2013 IEEE International Conference on Industrial Technology (ICIT), Cape Town, South Africa, 25–28 February
2013; pp. 1134–1139. [CrossRef]

25. The Point Cloud Libraryle. Available online: https://pointclouds.org/ (accessed on 10 December 2020).
26. Muthu, S.; Tennakoon, R.; Rathnayake, T.; Hoseinnezhad, R.; Suter, D.; Bab-Hadiashar, A. Motion Segmentation of RGB-D Sequences:

Combining Semantic and Motion Information Using Statistical Inference. IEEE Trans. Image Process. 2020, 29, 5557–5570. [CrossRef]
[PubMed]

http://doi.org/10.1007/11612704_13
https://www.researchgate.net/publication/276903638
https://www.researchgate.net/publication/276903638
http://doi.org/10.3233/AIS-130221
http://doi.org/10.1109/CIS.2014.146
http://doi.org/10.1049/iet-its.2017.0047
www.ijarcsms.com
http://doi.org/10.1109/ICCUBEA.2016.7860046
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/5960/596069/Comparison-of-static-background-segmentation-methods/10.1117/12.633437.short
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/5960/596069/Comparison-of-static-background-segmentation-methods/10.1117/12.633437.short
http://doi.org/10.1109/cvpr.1999.784637
http://doi.org/10.1109/icpr.2004.1333992
http://doi.org/10.1016/j.rti.2004.12.004
http://doi.org/10.1109/TCSVT.2011.2133270
http://doi.org/10.1109/TIP.2008.2007558
http://doi.org/10.3390/s100606092
http://doi.org/10.1109/cvpr.1999.784721
http://doi.org/10.3109/17483107.2015.1027304
http://doi.org/10.1109/CVPR.2011.5995316
http://doi.org/10.1109/CVPR.2005.91
http://doi.org/10.3390/s130708895
http://www.ncbi.nlm.nih.gov/pubmed/23857259
http://doi.org/10.1155/2010/343057
http://doi.org/10.1109/MIS.2020.2999462
http://doi.org/10.1109/ICIT.2013.6505832
https://pointclouds.org/
http://doi.org/10.1109/TIP.2020.2984893
http://www.ncbi.nlm.nih.gov/pubmed/32275594

Sensors 2021, 21, 3724 20 of 20

27. Vaskevicius, N.; Birk, A.; Pathak, K.; Schwertfeger, S. Efficient representation in three-dimensional environment modeling for
planetary robotic exploration. Adv. Robot. 2010, 24, 1169–1197. [CrossRef]

28. Czerniawski, T.; Nahangi, M.; Walbridge, S.; Haas, C. Automated removal of planar clutter from 3D point clouds for improving
industrial object recognition. In Proceedings of the ISARC 2016—33rd International Symposium for Automation and Robotics,
Construction, Auburn, AL, USA, 18–21 July 2016; pp. 357–365. [CrossRef]

29. Kaushik, R.; Xiao, J. Accelerated patch-based planar clustering of noisy range images in indoor environments for robot mapping.
Rob. Auton. Syst. 2012, 60, 584–598. [CrossRef]

30. Zhang, C. Perspective Independent Ground Plane Estimation by 2D and 3D Data Analysis, ieeexplore.ieee.org. 2020. Available
online: https://ieeexplore.ieee.org/abstract/document/9081938/ (accessed on 19 January 2021).

31. Chen, S.; Tian, D.; Feng, C.; Vetro, A.; Kovačević, J. Fast resampling of three-dimensional point clouds via graphs. IEEE Trans.
Signal. Process. 2018, 66, 666–681. [CrossRef]

32. Fischler, M.A.; Bolles, R.C. Random sample consensus: A Paradigm for Model Fitting with Applications to Image Analysis and
Automated Cartography. Commun. ACM 1981. [CrossRef]

33. Ballard, D.H. Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognit. 1981, 13, 111–122. [CrossRef]
34. Vosselman, G.; Sithole, G.; Vosselman, G.; Gorte, B.G.H.; Sithole, G.; Rabbani, T. Recognising Structure in Laser Scanner Point

Clouds. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2004, 46, 33–38.
35. Borrmann, D.; Elseberg, J.; Lingemann, K.; Nüchter, A. The 3D Hough Transform for plane detection in point clouds: A review

and a new accumulator design. 3D Res. 2011, 2, 1–13. [CrossRef]
36. Vo, A.V.; Truong-Hong, L.; Laefer, D.F.; Bertolotto, M. Octree-based region growing for point cloud segmentation. ISPRS J.

Photogramm. Remote Sens. 2015, 104, 88–100. [CrossRef]
37. Awwad, T.M.; Zhu, Q.; Du, Z.; Zhang, Y. An improved segmentation approach for planar surfaces from unstructured 3D point

clouds. Photogramm. Rec. 2010, 25, 5–23. [CrossRef]
38. Chen, D.; Zhang, L.; Mathiopoulos, P.T.; Huang, X. A methodology for automated segmentation and reconstruction of urban 3-D

buildings from ALS point clouds. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 4199–4217. [CrossRef]
39. Li, L.; Yang, F.; Zhu, H.; Li, D.; Li, Y.; Tang, L. An improved RANSAC for 3D point cloud plane segmentation based on normal

distribution transformation cells. Remote Sens. 2017, 9, 433. [CrossRef]
40. Tarsha-Kurdi, F.; Landes, T.; Grussenmeyer, P. Hough-Transform and Extended Ransac Algorithms for Automatic Detection of

3D Building Roof Planes From Lidar Data. In Proceedings of the ISPRS Workshop Laser Scanning 2007 SilviLaser 2007, Espoo,
Finland, 12–14 September 2007; Volume XXXVI, pp. 407–412.

41. Tóvári, D.; Pfeifer, N. Segmentation based robust interpolation—A newapproach to laser data filtering. Int. Arch. Photogramm.
Remote Sens. Spat. Inf. Sci. ISPRS Arch. 2005, 36, 79–84.

42. Nurunnabi, A.; Belton, D.; West, G. Robust segmentation in laser scanning 3D point cloud data. In Proceedings of the 2012
International Conference on Digital Image Computing Techniques and Applications, DICTA 2012, Fremantle, WA, Australia, 3–5
December 2012; pp. 1–8. [CrossRef]

43. Deschaud, J.-E.; Goulette, F. A Fast and Accurate Plane Detection Algorithm for Large Noisy Point Clouds Using Filtered Normals
and Voxel Growing. 2010. Available online: https://hal-mines-paristech.archives-ouvertes.fr/hal-01097361 (accessed on 5
December 2020).

44. Huang, M.; Wei, P.; Liu, X. An Efficient Encoding Voxel-Based Segmentation (EVBS) Algorithm Based on Fast Adjacent Voxel
Search for Point Cloud Plane Segmentation. Remote Sens. 2019, 11, 2727. [CrossRef]

45. Xiao, J.; Zhang, J.; Adler, B.; Zhang, H.; Zhang, J. Three-dimensional point cloud plane segmentation in both structured and
unstructured environments. Rob. Auton. Syst. 2013, 61, 1641–1652. [CrossRef]

46. Leng, X.; Xiao, J.; Wang, Y. A multi-scale plane-detection method based on the Hough transform and region growing. Photogramm.
Rec. 2016, 31, 166–192. [CrossRef]

47. Teboul, O.; Simon, L.; Koutsourakis, P.; Paragios, N. Segmentation of building facades using procedural shape priors. In
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA,
13–18 June 2010; pp. 3105–3112. [CrossRef]

48. Pomerleau, F.; Colas, F.; Siegwart, R.; Magnenat, S. Comparing ICP variants on real-world data sets. Auton. Robot. 2013. [CrossRef]
49. Rusu, R.B.; Cousins, S. 3D is here: Point Cloud Library (PCL). In Proceedings of the IEEE International Conference on Robotics

and Automation, Shanghai, China, 9–13 May 2011. [CrossRef]
50. Rusu, R.B.; Marton, Z.C.; Blodow, N.; Dolha, M.; Beetz, M. Towards 3D Point cloud based object maps for household environments.

Rob. Auton. Syst. 2008, 56, 927–941. [CrossRef]
51. Förstner, W.; Wrobel, B.P. Photogrammetric Computer Vision; Springer: Berlin, Germany, 2016.
52. Yan, J.; Shan, J.; Jiang, W. A global optimization approach to roof segmentation from airborne lidar point clouds. ISPRS J.

Photogramm. Remote Sens. 2014, 94, 183–193. [CrossRef]
53. Dong, Z.; Yang, B.; Hu, P.; Scherer, S. An efficient global energy optimization approach for robust 3D plane segmentation of point

clouds. ISPRS J. Photogramm. Remote Sens. 2018, 137, 112–133. [CrossRef]

http://doi.org/10.1163/016918610X501291
http://doi.org/10.22260/isarc2016/0044
http://doi.org/10.1016/j.robot.2011.12.001
https://ieeexplore.ieee.org/abstract/document/9081938/
http://doi.org/10.1109/TSP.2017.2771730
http://doi.org/10.1145/358669.358692
http://doi.org/10.1016/0031-3203(81)90009-1
http://doi.org/10.1007/3DRes.02(2011)3
http://doi.org/10.1016/j.isprsjprs.2015.01.011
http://doi.org/10.1111/j.1477-9730.2009.00564.x
http://doi.org/10.1109/JSTARS.2014.2349003
http://doi.org/10.3390/rs9050433
http://doi.org/10.1109/DICTA.2012.6411672
https://hal-mines-paristech.archives-ouvertes.fr/hal-01097361
http://doi.org/10.3390/rs11232727
http://doi.org/10.1016/j.robot.2013.07.001
http://doi.org/10.1111/phor.12145
http://doi.org/10.1109/CVPR.2010.5540068
http://doi.org/10.1007/s10514-013-9327-2
http://doi.org/10.1109/ICRA.2011.5980567
http://doi.org/10.1016/j.robot.2008.08.005
http://doi.org/10.1016/j.isprsjprs.2014.04.022
http://doi.org/10.1016/j.isprsjprs.2018.01.013

	Introduction
	Related Work
	Model Fitting-Based Methods
	Region Growing-Based Methods
	Clustering Feature-Based Methods

	Contributions

	The Iterative Region-Based RANSAC
	Downsampling and Denoising
	Local Region Determination
	Base Plane Segmentation
	Iterative Plane Removal
	Euclidean Clustering Removal

	Experiments and Evaluation
	Experimental Setup
	Experimental Results
	Evaluation

	Discussion
	Conclusions
	References

