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ABSTRACT Estimating ankle joint power can be used to identify gait abnormalities, which is usually
achieved by employing a complicated biomechanical model using heavy equipment settings. This paper
demonstrates deep learning approaches to estimate ankle joint power from two Inertial Measurement
Unit (IMU) sensors attached at foot and shank. The purpose of this study was to investigate deep learning
models in estimating ankle joint power in practical scenarios, in terms of variance in walking speeds,
reduced number of extracted features and inter-subject model adaption. IMU data was collected from nine
healthy participants during five walking trials at different speeds on a force-plate-instrumented treadmill
while an optical motion tracker was used as ground truth. Three state-of-the-art deep neural architectures,
namely Long Short-Term Memory (LSTM), Convolutional Neural Network (CNN) and, fusion of CNN and
LSTM (CNN-LSTM), were developed, trained, and evaluated in predicting ankle joint power by extracting
few simple, meaningful features. The proposed architectures were found efficient and promising with
higher estimation accuracies (correlation coefficient, R > 0.92 and adjusted R-squared value > 83%) and
lower errors (mean squared error < 0.06, and mean absolute error < 0.13) in inter-participant evaluations.
Performance evaluations among the three deep regressors showed that LSTM performed comparatively
better. Lower standard deviations in mean squared error (0.029) and adjusted R-squared value (5.5%) proved
the proposed model’s efficiency for all participants.

INDEX TERMS Ankle joint power, InertialMeasurement Units, deep neural regressor, LSTM, CNN, feature
extraction.

I. INTRODUCTION
Human locomotion during walking or running requires full-
body musculoskeletal coordination with the nervous sys-
tem. Muscles and tendons associated with different joints
such as the hip, knee, and ankle are considered to produce
mechanical power for propulsion [1], [2]. Especially, ankle
power generated at the ankle joint complex to control the
lower limb for mobility is a major contributor to human gait.
Reduced joint power happens in abnormal gait or impairment,
an indication of muscle weakness, deteriorating health, and
disease. Therefore, gait analysis has been studied since the
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1960s in the clinical diagnosis of the physiological disorder
in the elderly population, neurological disorder in cerebral
palsy (CP), Parkinson’s disease (PD), rehabilitation training
for stroke people, and limb prosthesis [3]–[6]. It is also
studied in sports for athletes to observe performance and
prevent injuries [7]. So, monitoring ankle joint power can
be a good indicator for gait abnormality analysis and helps
to recover normal, active life. Usually, in physical model-
ing, the foot is represented as a rigid body and requires
inverse kinematics to estimate joint power [8], [9]. This
becomes difficult and time-consuming to generate and tune
the parameters of the biomechanical model outside of a
clinical environment. Modern machine learning algorithms
are proven data-driven approaches and more acceptable for
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FIGURE 1. Pictorial view of the overall process followed in this study.

real-world applications. Monitoring gait using a variety of
sensory [surface electromyography (sEMG), force myogra-
phy (FMG), inertia measurement unit (IMU)], motion track-
ing, radar, Wi-Fi, or visionary systems have become easier
and doable [10]–[16]. Most of these approaches rely on
machine learning algorithms to estimate gait cycles or joint
power. Furthermore, using wearable devices would be advan-
tageous in detecting gait events [17]–[19] than the traditional
approach of a controlled environment with instrumented
walkways, cameras, and treadmills [20], [21]. Such a wear-
able device using inertia and measurement using (IMUs) to
analyze the gait cycle has gained growing interest [22]–[24].

Recent advances in deep learning have intriguingly shifted
researchers from conventional machine learning approaches
towards deep learning techniques. Most recently, gait anal-
ysis is conducted using wearable IMUs, magnetometer, 3D
marker, skeleton data, sEMG with convolutional neural net-
work (CNN), long-short-term memory (LSTM), recurrent
neural network (RNN) [25]–[31]. As a state-of-the-art tech-
nology, our focus is to investigate deep learning algorithms
to analyze gait and estimate ankle joint power using wear-
able IMUs. For sports or rehabilitation, a wearable ankle
joint power monitoring system in outdoor with no clinical
setup would be effective for real-time assessment. Using
conventional ML algorithms, this is a bit constraint because
of extensive feature extraction requirements and longer data
preprocessing. Using deep learning would reduce this process
and could perform better and faster, which is essential in
real-time estimations. In our previous study, measuring ankle

joint power using two IMUs was found effective using a
random forest algorithm (RF) [32]. But RF required huge
feature extraction (256 features) and could not perform well
in peak power.

In this paper, we propose IMU-based deep learning (DL)
techniques with the added novelty of reduced features
(8 features) extraction process and estimating ankle joint
power even in peak power strikes during stance. In this study,
two wearable IMUs on the shank and foot of 9 participants
are used for ankle joint power monitoring. We investigate
three deep learning techniques: LSTM, CNN, and a hybrid-
CNN-LSTM model for estimating ankle joint power, and
their performances are promising with higher accuracies
(correlation coefficient, R > 0.92). Hence, a wearable IMU
monitoring system based on a deep learning algorithm would
reduce the gap in faster and better ankle power estimations
during practical gait cycles in real-world scenarios.

II. MATERIALS AND METHODS
A pictorial view of the overall procedure we followed in con-
ducting this study is portrayed in Fig. 1. Detailed explanation
about the steps is provided in following sections.

A. DATA ACCUMULATION
In this study, data was collected from nine healthy partic-
ipants wearing two IMUs during walking on a treadmill,
as mentioned in [32]. All young, healthy adult males [avg.
height: 176±7 cm, avg. weight: 72±9 kg, avg. age: 27±8]
participated voluntarily with their written consents approved
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FIGURE 2. Smoothness of values of all 12 sensor axes (a) before, and (b) after median filtering.

by the Office of Research Ethics at Simon Fraser Uni-
versity. No female participants voluntarily participated in
this study at the time of data collection before global pan-
demic (COVID-19), and data accumulation from any more
participants was hardly possible afterward till the time of
paper submission. Each participant performed 5-walking tri-
als with divergent speeds of 0.4m/s, 0.7m/s, 1.0m/s,1.3 m/s
and 1.6m/s. During the experiment, two wireless IMU units
(MTwAwinda, Xsens, Enschede, TheNetherlands) and seven
motion tracker markers were mounted on the shank and foot
of the left limb of a participant. Acceleration and angular
velocity data were accumulated from these IMUs, and refer-
ence values were collected from the force-plate-instrumented
treadmill and a Vicon motion capture system (Vicon, Oxford,
UK). The reference ankle joint power was determined by
channeling data from these two different set-ups through a

biomechanical model developed for the individual partici-
pants. All data were collected synchronously at a sampling
rate of 100Hz. Detailed participants’ demographic data,
experimental setup and protocol followed for data accumu-
lation can be further read in [32].

B. DATA DISCIPLINING
Six-axis data (tri-axial accelerometer data and tri-axial gyro-
scope data) from each IMUs for estimating ankle joint power
were utilized in this study. A total of 12 independent variables
were generated from the two IMUs, as shown in Fig. 2.
Several data preprocessing steps were taken to expand the
ability of the deep learning model to learn more efficiently,
as described below.

i Displaced Rolling Mean Filter: We commenced by
directing the unrefined values of 12 independent features into
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FIGURE 3. Procedure of extracting 8 features from 12 raw features.

a displaced (shifted to left by 15 instances) rolling mean
filter with a window size of 15 with 14 overlapping [Fig. 2].
It has been observed that in terms of time series data, rolling
mean can be beneficial to eliminate momentary fluctuations
and bring out continual long-term patterns. In general, for a
conventional rolling mean filter or trailing mean filter with
a window size of 15, the average values of the predictors
calculated from each window would correspond to the ankle
joint power that corresponded to the last row (15th row)
of the window. However, the implemented displaced rolling
mean filter shifted left by 15 instances did the opposite.
It meant that the row generated by averaging the 15 rows
in a window corresponding to the ankle joint power, which
actually corresponded to the first row of each window. This
was done to replicate the trend of the original raw data more
accurately.

ii Feature Extraction: As mentioned earlier, we con-
ducted this study with data collected using two IMUs. Each
IMU contained two sensors, a tri-axial accelerometer, and
a tri-axial gyroscope. So, for each IMU, we got 6 raw fea-
tures (Accelerometer X, Accelerometer Y, Accelerometer Z,
Gyroscope X, Gyroscope Y, and Gyroscope Z). In total,
we attained 12 raw features from the two IMUs. For practical
reasons, the wearable IMUs and other functional compo-
nents were put off and worn again by a participant [32].
Ensuring similar positioning of the device could hardly be
achievable. Consequently, in [32], it became difficult for
the machine learning models to generalize inter-participant
testing due to differing acquired data from position shifts.
To resolve this issue, in this paper, we used 8 extracted
features from the 12 raw features as a favorable alternative.
The feature extraction was performed in a row-wise manner.
Each row contained values for 12 raw features. From these
12 values of a row, we extracted 8 values that corresponded to

8 extracted features. For feature engineering, we considered
the L2 norm and average of three axes of each accelerometer
and gyroscope sensor. Two features (L2 norm and average)
were extracted from each accelerometer and gyroscope sen-
sor (three axes combinedly), obtaining 4 features from one
IMU. Consequently, for 4 sensors (2 accelerometers and
2 gyroscopes) we computed 8 features from the two IMUs.
Fig. 3. demonstrates the feature extraction procedure with a
pictorial view.

iii Principal Component Analysis (PCA): After extrac-
tion of these 8 significant features, values of these 8 extracted
features were further transformed using Principal Component
Analysis [33] to reduce association and expand variance
among the dimensions. This helped each dimension to be
more influential for the learningmodels. By applying PCA on
the 8 extracted features, we acquired 8 principal components,
and we considered all 8 principal components as ultimate
features in model training.

iv Min-Max Normalization: In the next step, predictors
were normalized to a range between 0 and 1 to eliminate
domination of any dimension when training the deep learning
models. In addition, we also narrowed the scale of the target
variable to a range between −1 and 1. It has been observed
that, when using deep neural networks, lowering the scale of
the target variable, assist to shrink the size of gradient descent,
hence helping the network to update weights and result in
a steadier model. However, lowering the scale of the target
variable diminishes its resemblance to a real-world scenario
and affects the metrics such as Mean Squared Error (MSE)
to assess the performance of a regressor. To overcome this
issue, an inverse transformation scheme was applied that
converted the target variable to its original form after any
type of prediction and before computing any evaluation
metrics.
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TABLE 1. Structural arrangement of all three deep regressors.

C. PROPOSED ARCHITECTURES OF DEEP
NEURAL REGRESSORS
Due to the time-series nature of the Gait cycles dataset,
we preferred Long Short-Term Memory (LSTM), Convolu-
tional Neural Network (CNN), and a fusion of CNN and
LSTM (CNN-LSTM Fusion) among commonly used regres-
sors. LSTM and CNN algorithms are particularly designed
for working with data containing time-series properties and
patterns in data, respectively. The presence of gait cycles
preserved both properties which influenced to consider these
regressors. Long Short-Term Memory (LSTM) is considered
as an upgraded variant of Recurrent Neural Network (RNN)
which can remember long sequences of time series data.
Using LSTM as a supervised learning approach requires it to
have both features and a dependent variable. Convolutional
Neural Network (CNN) is genuinely designed to aid image
analysis, however, the emergence of 1D-CNN allowed it to
work with time-series data. CNN-LSTM Fusion enables a
model to utilize the ability to extract features and preserve
long-term dependencies.

A brief description of these models’ architectures is
described below and provided in Table 1. We used 8 fea-
tures derived from the IMUs [Section 2.B] as predictors
and the dependent variable was ankle joint power. It should
be mentioned that, for each training iteration, we used an
early-stopping technique with a maximum epoch of 30.
Moreover, for all three models, we used ‘Adam’ optimizer
with a learning rate of 0.01 and ‘Mean Squared Error (MSE)’
as the loss function.

LSTM: We initiated our proposed LSTM architecture by
adding an LSTM layer containing 1024 LSTM cells followed
by three dense layers containing 256,128 and 64 neurons
respectively. Finally, we added an output layer containing
1 neuron with a linear activation function to predict the
ankle joint power. For the LSTM layer, we used tanh as the
activation function and ReLu for all three dense layers.

CNN: In our proposed CNN architecture, firstly a convolu-
tion layer with 1024 filters and kernel of size 7was introduced
which was followed by a dropout layer with a dropout rate
of 0.3 to penalize the previous layer to avoid overfitting.
Two convolution layers were added after the first one with
512 filters and 256 filters, respectively. The size of kernels
for these two convolutions layers was 5 and 3 respectively.

Following, we added a pooling layer that performed average
pooling operation and then flattened the pooled feature map
into a single column to feed it into a dense layer with 100
neurons. Finally, an output layer with the same configuration
as the proposed LSTM architecture was used to generate the
forecasted version of ankle joint power. For the first convolu-
tion layer tanh activation was used, and all other layers used
ReLu activation function except for the output layer.

CNN-LSTM: In the proposed CNN-LSTM architecture,
we used two convolution layers having 1024 and 512 fil-
ters respectively and 1 pooling layer to perform the average
pooling operation in the CNN part. For the LSTM portion,
1 LSTM layer with 512 cells followed by two dense layers
containing 256 and 128 neurons respectively was employed.
The final layer was configured in the same manner as LSTM
and CNN. The sizes of the kernel for the first and second
convolution layer were 7 and 5 respectively. A dropout layer
was stacked on the first convolution layer with a dropout rate
of 0.3. The first convolution layer used tanh as its activation
function whereas, for all other layers, the activation function
was ReLu.

D. PERFORMANCE METRICS
To evaluate the models’ performance, we used conventional
metrics and graphical representation which can demonstrate
a model’s power of prediction distinctly. As the evaluation
metrics, we considered the four listed metrics given below,

Mean Squared Error (MSE): MSE is a negatively ori-
ented metric defined by the average of the squared difference
between true values and predicted values. For a negatively
oriented value like MSE, a smaller value is always preferable
for any regressor. MSE can be calculated using the following
formula,

MSE =
1
n

∑
(true response− predicted response)2

MeanAbsolute Error (MAE):MAE is another negatively
oriented metric that considers the average of absolute residu-
als of predictions. The following formula is used to compute
MAE,

MAE =
1
n

∑
|true response− predicted response|

AdjustedR-Squared:R-squared value explains the power
of a model’s independent variables to explain the variations
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FIGURE 4. 1 of 27 train-test iterations (Leave-one-out cross validation technique).

that exist into the dependent variable, however with the
increment in the number of input variables R-square remains
the same or expands even if the increased number of vari-
ables have not significant association with the target variable.
At this point, an upgraded version of the R-squared value
which is known as the Adjusted R-squared value works better.
It can penalize the addition of insignificant input variables.
We usually expect a high value of adjusted R-square from a
model.

Correlation Coefficient (R-value): The correlation coef-
ficient also known as R-value is a statistical measurement
that explains the measurement of closeness between the
true response and estimated response. A desired model’s
responses tend to generate a greater R-value. It usually ranges
between −1 and +1.

E. MODELS TRAINING AND TESTING
Feeding data to LSTM, CNN, and CNN-LSTM required
the dataset to be shaped in multiple overlapped windows.
In general, the dataset was in a 2-dimensional shape (number
of rows∗ number of predictor columns). For the deep learning
architectures, the dataset was reshaped into a 3-dimensional
structure (number of windows × window length × number
of features). These windows contained past instances from
which the models tried to remember (LSTM) or identify pat-
terns (CNN) or both (CNN-LSTM). For our study, a window
size of 7 with 6 overlapping was used for all models where
each window contained 56 points (7 rows × 8 features). The
label data (ankle joint power) was also arranged according
to the selected window size. Each window was utilized to
learn one value of ankle joint power, which belonged to the
last instance of that window. After reshaping the dataset,
we adapted the leave one out cross-validation (LOOCV) pro-
cedure for the inter-participant test [Fig. 4]. We had to train
and test each type of model nine times (total participants =
9), wherein each iteration data from one participant of all
speeds were used to test, and data from all other participants
were used to train. Thus, the final input dimension of training
sets and test sets became (412000× 7 × 8) and (51500×
7 × 8), respectively. The varying number of windows was

experienced due to the variations of participants in the train-
ing set and test set. We followed this iterative process and
observed the regressors’ performances for divergent partic-
ipants to evaluate the models for generality and practical
usability. Performance matrices generated from all LOOCV
iterations were averaged to obtain an overall performance of
each deep neural regressor.

In addition, every time a deep model was trained and eval-
uated using corresponding test dataset, we plotted a learning
curve exhibiting mean squared error for training and test set
for each epoch. Such a learning curve could show whether
the model suffered from overfitting; we observed that there
was no overfitting of these trained models. Cross-validation
itself ensured that the model did not overfit while fine-tuning
the parameters and adding dropout layers in the model’s
architecture actually helped reducing overfitting too. Fig. 5.
shows an example of learning curve plotted while data from
participant 8 was used as the test set.

Implementation of the all-pre-processing steps as well
as deep neural architectures was performed using Python
3.7.10 in Google Colabotory environment [34]. We used
modules from libraries named Keras 2.4.3 and TensorFlow
2.4.1 to implement the deep neural regressors.

III. RESULTS
All the evaluation metrics were computed by averaging the
value of those metrics generated by each type of regressor
for all participants. Table 2 exhibits a cumulative evaluation
for all participants. Reported results in Table 2 reveals that
LSTM exhibited superior performance among the three mod-
els [MSE:0.059, MAE:0.131, Adjusted R-Squared: 84.75%,
and Correlation Coefficient (R): 92.69%] compared to CNN
(R = 92.27%) and CNN-LSTM (R = 92.07%). Although,
for all four metrics, the difference between the outcome of
LSTM and CNN was not that significant with a standard
deviation of 0.13% inMSE, 0.38% inMAE, 0.6% in adjusted
R-squared value, and 0.42% in R-value [Table 3]. In the
case of CNN-LSTM, it also performed positively but could
not outperform CNN and LSTM. Although LSTM exhibited
relatively better scores in the other three metrics, it had a
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FIGURE 5. Learning curve representing training MSE and test MSE for each epoch.

TABLE 2. The averaged value of evaluation metrics for each deep neural framework and random forest.

higher MAE value than others. In contrary to MSE, MAE is
not that sensitive to outliers in data which makes MSE a more
significant metric in comparison with MAE.

In this study, we emphasized elaborating deep regressors’
performances in estimating ankle joint power with a lower
number of features. For a fair comparison, we included
the performance of a canonical machine learning algo-
rithm, namely Random Forest (RF), as shown in Table 2.
Scikit-Learn 0.22.2.post1 library was used to implement
RF. The hyper-parameter (number of trees) was tuned to
100 to get the best performance. All other hyper-parameters
had their default values set by Scikit-Learn. Using RF,
we achieved an MSE value of 0.138, which was ∼7% higher
than MSE values achieved by deep regressors. RF exhibited
an MAE value of 0.184, which also indicated low perfor-
mance by exhibiting ∼6% higher MAE values than the deep
regressors. Consequently, similar trends were seen regarding
adjusted R-squared (64.08%) and R-value (81.75%), which
were lower by ∼19% and ∼10%, respectively, than the deep
regressors. As the overall performance of the RF was not

satisfactory, we did not consider evaluating its performance
for subject-wise and speed-wise evaluation.

i Subject-wise Evaluation:Amodel’s effectiveness for an
individual participant was retrieved by considering boxplots
of MSE, MAE, and adjusted R-squared value, as shown
in Fig. 6 (Median values). From the right-skewed box-
plot of LSTM (MSE), it was deduced that 50% of total
participants had MSE values lower than 0.05 whereas for
the other two models the value was a little bit higher
than 0.06. In terms of MAE, for all participants, the dis-
tribution seemed normal and identical for all the models
although LSTM showed a little positive skewness. For
adjusted R-squared values, almost all boxplots were posi-
tively skewed with a median value of 82.5% which indicated
that 50% of participants rendered adjusted R-squared values
less than the median value. However, the adjusted R-squared
values for CNN and CNN-LSTM models had lower
values than 75% and 70% respectively, which explained
that these two models performed poorly for one or two
participants.
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FIGURE 6. Bar-plots to represent the spread of metrics over 9 participants for each model.

TABLE 3. Standard deviation to represent the spread of evaluation metrics over all participants.

TABLE 4. Averaged value of evaluation metrics for five different speed trials over all participants.

For a better understanding of models’ performance on
an individual participant, we emphasized the residual plots
(Y-axis) against predicted ankle joint power (X-axis), as por-
trayed in Fig. 7. For participants 3, 6, 7 and 8, the residuals
seemed less spread and closer to 0, which explained that all
three models obtained comparatively better performance for
these 4 participants. For participants 2, 4 and 5, residuals plots
were more scattered and few higher residuals indicated the
existence of some noisy values as well as poor performance
of the models. For all other participants, all three regressors
generated average performance comparatively with the pres-
ence of some points exhibiting higher errors in predictions.

ii Speed-wise Evaluation: Comparative analysis of the
proposed architectures was further investigated for different
speed trials. As mentioned in section 2.A, each participant
performed 5 walking trials with divergent speeds for each
trial. Table 4 provides the averaged value of all evaluation
metrics for each regressor for all five speed-trials. It was
observed that all three regressors responded inadequately
for trials with lower speeds (0.4 m/s and 0.7 m/s), but they
performed better with increasing speeds (1.0 m/s,1.3 m/s,

and 1.6 m/s). The reason behind this could be that the peak
ankle joint power for lower speeds was not as large as
it was for higher speeds. In predicting ankle joint power
in lower speeds, LSTM performed poorer [R = 81.25%,
89.72%, and 93.54% for 0.4 m/s, 0.7 m/s and 1.0 m/s, respec-
tively] in comparison with CNN [R = 83.09%, 90.53% and
94.22% for 0.4 m/s, 0.7 m/s and 1.0 m/s, respectively] and
CNN-LSTM [R = 83.19%, 90.84% and R = 93.80% for
0.4 m/s, 0.7 m/s and 1.0 m/s, respectively]. Similar trends
were observed for MSE and MAE at lower speeds. However,
for higher speed-trials LSTM [R = 92.17% and 93.45% for
1.3 m/s and 1.6 m/s, respectively] outperformed CNN [R =
91.88%, and 91.75% for 1.3 m/s and 1.6 m/s, respectively]
and CNN-LSTM [R = 91.64% and 92.06% for 1.3 m/s and
1.6 m/s, respectively]. Both MSE and MAE were noticed
to have higher values when computed for dimensions with
higher variances.We did not consider the Adjusted R-squared
value in speed-trial comparisons as it could have a negative
value for non-linear regression since there was no pre-defined
intercept term. Bar plots of Fig.8a and Fig.8b showed the
presence of outliers in adjusted R-squared value and R-value
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FIGURE 7. Residual plots to exhibit widening of estimated residuals for all participant by each model.
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FIGURE 8. Bar plot of evaluation metrics for divergent speed-trials.
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FIGURE 9. Closeness of ankle joint power predicted by the models to reference ankle joint power.

which caused the regressors to perform badly for few partic-
ipants. Fig.8 [(a)-(e)] shows the speed trial responses of the
three models. Besides, Fig. 9 provides a pictorial view of the
closeness of predicted ankle joint powerwith reference values
achieved by the proposed models.

IV. DISCUSSION
Deep learning architecture has been advanced so rapidly
because of its’ information productive nature which basic
learning algorithms cannot offer. Prediction of ankle joint
power using two IMUs were performed using Random Forest
Regressor where an almost similar result was acquired (R =
92%) [32]. However, to achieve this outcome, it was required
to extract a bunch of features and required to make use of
the Quantile Regression method to compensate for the error
generated when predicting peak powers.

In this study, few extracted features from the raw IMU
signals improved the proposed models’ performances with
higher ankle power estimation accuracies. During the study,
the wearable IMUs were worn on and off which resem-
bled practical scenarios. Such position shift of the IMUs
introduced variations in the raw signals which could restrict
model performances in inter-participant evaluations. Also,
raw signals could result in poor prediction for the LSTM
model. However, the CNN and the LSTM-CNN could predict
well with raw signals (R < 88%) but their performances
improved significantly with extracted features like the LSTM
(R > 92%). Furthermore, the feature extraction process was
simple and required minimal processing time (< 810 ms)

which was negligible but worthy of implementation. Also,
we could drastically reduce the required 256 extracted fea-
tures mentioned in [32] to only 8 extracted features to imple-
ment the deep learning models. These features were simple
and effective that resulted in higher estimation accuracies.

The speed-wise analysis showed that proposed models
performed well for both lower and higher speeds. Although
LSTM clearly outperformed CNN and CNN-LSTM in esti-
mating ankle joint power for higher speed trials, it performed
slightly inferior in lower speeds. So, speed-wise assessment
demonstrated that prediction of ankle joint power was much
facilitated if we took account of patterns (CNN) for lower
speed trials and time-series nature (LSTM) for higher speed
trials. In [32], the RF model could not predict better peak
power during stance. Introducing such deep learning models
could improve estimation accuracies even when participants
walked in either lower or higher walking speeds with varia-
tions in peak power.

In our study extraction of lots of features was not required,
rather we reduced the dimensions, and all three proposed
frameworks performed effectively even in the prediction of
peak powers without involving any further compensating
algorithm. Table 3 shows that LSTM rendered better out-
comes even for individual participants. Three out of the four
metrics and positive skewness of the boxplots also demon-
strated that LSTM exhibited better performances. Although
CNN could not outperform LSTM, it had performed com-
parably to LSTM. In terms of standard deviation, MSE for
both LSTM and CNN showed a comparatively lower spread
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FIGURE 10. Comparative view of metrics values generated from each model type for individual participants.
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0.029, which was almost similar for MAE too. Also, LSTM
outperformed other models by exhibiting a lower standard
deviation of 5.5% and 3.1% for Adjusted R-squared value
and R-value, respectively. However, the hybrid model of
CNN and LSTM could not render similar effectiveness. This
lower potency could arise from the combination of both
time-series and patterns in IMU signals, made the prediction
process comparatively complex and lowered its performance
formodel generalization. In Fig. 10. although all threemodels
performed poorly for participants 1, 2, 4, 5, and 9 [bar dia-
gram of R-values], still LSTM seemed to be more effective
for most of these participants, but further study is needed to
support this leading nature of LSTM in the ankle joint power
prediction.

V. LIMITATION AND FUTURE SCOPES
The employment of three divergent deep neural architec-
tures to predict ankle joint power using two IMUs can help
other researchers to assess their performance. Our study
demonstrated that the prediction of ankle joint power can
be assisted using both time-stamp and successive trends
present in IMUs signals. The study data was accumulated in
a confined environment where participants walked at some
pre-defined speeds. Future studies can be conducted in an
open environment with natural walking speed to investigate
the models’ performances in real-world scenarios. Moreover,
the performance of each model on individual speed trials can
also be assessed in the future to provide more comparative
analysis among these proposed frameworks.

VI. CONCLUSION
Advancement in the prediction of ankle joint power with
the instrumental set-up of lesser complexity can help in the
development of applications associated with lower extremity
monitoring appliances. Since ankle joint power can be a
good indicator of players’ movement in sports, estimating
it with simple arrangement may lead to a facile method
to observe players’ activities associated with lower limbs.
Besides, we evaluated our models by using the data amassed
from a group of young people so the models can be employed
to estimate the ankle joint power of players with fewer target
training data using transfer learning. In our study, we exerted
effort to accomplish such advancement by exhibiting the
effectiveness of three deep neural architectures (LSTM,
CNN, and CNN-LSTM). It was observed that deep neural
frameworks could forecast ankle joint power with higher
accuracy (maximum R = 92%) and lower error (minimum
MSE = 0.059) employing only 8 simple features. In terms
of inter-participant test, considering sensors positioning and
shifting, it can be considered as significant progress and may
pave other researchers to initiate further analysis.
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