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Abstract—The presence of rain degrades the performance of
sea surface parameter estimation using X-band marine radar. In
this article, a novel scheme is proposed to improve wind mea-
surement accuracy from rain-contaminated X-band marine radar
data. After extracting texture features from each image pixel,
the rain-contaminated regions with blurry wave signatures are
first identified using a self-organizing map (SOM)-based clustering
model. Then, a convolutional neural network used for image haze
removal, i.e., DehazeNet is introduced and incorporated into the
proposed scheme for correcting the influence of rain on radar
images. In order to obtain wind direction information, curve fitting
is conducted on the average azimuthal intensities of rain-corrected
radar images. On the other hand, wind speed is estimated from
rain-corrected images by training a support vector regression-
based model. Experiments conducted using datasets from both
shipborne and onshore marine radar show that compared to re-
sults obtained from images without rain correction, the proposed
method achieves relatively high estimation accuracy by reducing
measurement errors significantly.

Index Terms—Image dehazing, rain, wind, X-band marine
radar.

I. INTRODUCTION

THE real-time monitoring of sea surface wind information
enhances the safety, performance, and efficiency of vari-

ous weather-sensitive on- and off-shore activities, such as port
operations, cargo shipping, and marine resource development
(e.g., offshore drilling and windfarming). While conventional
in situ sensors such as anemometers are usually used for wind
measurements, they are susceptible to several factors, such as
atmospheric turbulence and the flow distortion caused by super-
structure or the movement of the anemometer platform, resulting
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in inaccurate estimation [1]. Thanks to the development of faster
hardware with more memory in the past two decades, X-band
marine radar has become a popular ocean remote sensor for
sea surface wind, wave, and current parameter measurements
due to its high temporal and spatial resolution. In addition, as
practically most ships are already equipped with X-band radars
for navigational purposes, these wind data can be obtained at a
small extra cost [2].

Previous studies [3] and [4] have demonstrated that for X-band
radar operating at grazing incidence with horizontal-transmit-
horizontal-receive (HH) polarization, its radar backscatter from
the ocean surface only exhibits one peak, which lies in the
upwind direction. Thus, wind direction can be derived from
the dependence of backscatter intensity on the relative azimuth
between antenna look direction and wind direction. As for
wind speed, it can be retrieved by establishing an empirical
model relating wind speed to backscatter intensity information
extracted from the radar data. Based on this principle, multiple
wind parameter estimation methods have been proposed. Some
of them [5]–[8] require temporal-integrated radar images for
wind retrieval, while others can estimate wind parameters from
individual images directly [2], [9]. Although satisfactory mea-
surement results were demonstrated with data from shipborne
and onshore marine radars, it has been found that under the
presence of rain, the performance of the methods mentioned
above might be negatively affected. That is because X-band radio
wave is scattered and attenuated by rainfall in the atmosphere,
and the sea surface roughness is altered by rain drops as well [10].
Consequently, the ocean waves imaged by the radar are blurred,
causing inaccurate measurements. Thus, in these studies, radar
data contaminated by precipitation were first identified and
then excluded from wind retrieval. In recent years, a series of
works [11]–[16] managed to recycle the rain-contaminated data
and applied novel or modified algorithms for wind retrieval,
which improved the estimation accuracy under rain conditions.
Nevertheless, those methods still have certain limitations. For
example, no strategy has been undertaken to conduct pixel-based
rain detection or to correct the influence of rain on radar images.
In addition, as those methods were only validated using the same
shipborne marine radar image dataset, whether they can still
perform generally well using other datasets remains unknown.
Thus, a novel scheme for determining wind parameters from
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rain-contaminated data with pixel-based rain correction tech-
niques incorporated is worth pursuing.

Following the common practice in radar data processing, the
proposed scheme should consist of three major procedures:
Detecting the presence of rain, mitigating the influence of
rain, and estimating wind parameters from rain-corrected radar
images. It was found in [14] that the influence of rain on
different portions of the radar image may differ. Specifically,
in a rain-contaminated radar image, some regions may still
remain unaffected by rain. Hence, rain-contaminated regions
need to be identified first before introducing rain mitigation
techniques. In [17], Chen and Huang proposed a self-organizing
map (SOM)-based model to classify between rain-free and
rain-contaminated regions in a single radar image with relatively
high accuracy, which can be incorporated into the first step of
the proposed scheme directly. While the method for detecting
rain-contaminated regions can be applied directly, no mature
rain correction techniques are available for our application.
That is because little is known about the dominant backscat-
ter mechanism for X-band marine radars operating at grazing
incidence in presence of rain [2], which hinders the studies
concerning correcting the influence of rain on radar images.
Although in recent years, many other image correction problems
have been successfully tackled using the latest machine learning
techniques, a lack of corresponding “ground truth” rain-free
images for model training makes it impossible to build the rain
correction model from scratch.

In contrast to rain mitigation, analyzing and mitigating the
influence of haze on terrestrial images is a hot research topic
with numerous papers being published in the past decade. In
this study, many similarities have been observed between the
influence of rain on marine radar images and the influence
of haze on terrestrial photography, which enables us to apply
image dehazing techniques on rain correction with certain mod-
ifications. In particular, a type of convolutional neural network
(CNN)-based image dehazing model, named as DehazeNet,
proposed by Cai et al. [18] is not only superior in performance
but also efficient and easy to use, which can be considered as the
basis of the rain correction model. As for the third step, i.e., wind
measurements, in the past few years, machine learning-based
regression algorithms have been introduced to estimate wind
speed and significant wave height from marine radar data [16],
[19], [20] with higher accuracy and robustness in comparison
with traditional methods, which can be incorporated into the
proposed scheme.

In this article, a novel scheme for wind parameter estimation
using rain-contaminated X-band marine radar data based on
the techniques mentioned above is presented. This is the first
work to apply the pixel-based rain identification model for sea
surface parameter estimation from X-band marine radar data
under rain conditions. Also, instead of just identifying rain-
contaminated pixels like [17] without any further processing,
the DehazeNet is introduced and incorporated into the proposed
scheme for correcting the influence of rain on those pixels.
While the cosine-squared function proposed in [2] is applied
for wind direction estimation, modifications have been made on
the curve fitting procedure in order to improve the robustness of
the estimation results under rain conditions. As for the support

vector regression (SVR)-based wind speed estimation method,
although the settings of the SVR algorithm (e.g., kernel function
and training solver) are based on [16], the feature vectors input
into the model are extracted from the texture feature maps of
the rain-corrected radar image and those feature maps contain
the information about the spatial variation of the radar image.
In contrast, the feature vector of the SVR model in [16] only
consists of histogram-based features extracted from the original
radar image, which does not preserve the spatial information
of the radar image and might not perform well in the pres-
ence of rain. Thus, extracting texture map-based features from
rain-contaminated images significantly improves the estimation
accuracy of the SVR model under rain conditions. The remainder
of the article is organized as follows. A detailed illustration of
all the models and algorithms employed in each step of the
proposed scheme is given in Section II. Section III presents an
overview of the radar datasets used in this study followed by
experimental results obtained from real radar data. A summary
with discussions appears in Section IV.

II. PROPOSED SCHEME FOR WIND ESTIMATION

A. Framework of the Proposed Scheme

Fig. 1 shows the framework of the proposed method for
rain mitigation and wind estimation. Texture features extracted
from each pixel of the radar image are input into the SOM-
based clustering model proposed in [17], which generates rain-
contaminated region identification results. Images contaminated
by rain are then subjected to the rain correction procedure
based on the DehazeNet proposed in [18]. After obtaining
rain-corrected radar images, curve fitting techniques are used
to measure wind direction, while a modified SVR-based model
is trained for wind speed estimation.

B. SOM-Based Rain-Contaminated Region Identification

Fig. 2 illustrates the SOM-based identification model. Since
it has been found in [14] that the texture of rain-contaminated
echoes is different from that of less-contaminated or rain-free
echoes, four types of texture features are first extracted from
each pixel and combined as a 55D feature vector. Each type of
texture feature is briefly introduced below.

1) Gabor Features: The Gabor filter bank is a set of Gaussian-
shaped band-pass filters, which has been widely used for
texture analysis due to its similarity with human visual
system in frequency and orientation representations [21].
The Gabor filter bank constructed in [17] with 4 orienta-
tions and 6 wavelengths is used to filter each radar image
and produce 24 Gabor feature maps.

2) Wavelet Features: In previous studies, wavelet transform
has been applied for wave [22] and bathymetry [23] inver-
sion using X-band marine radar data. Here, 1D discrete
wavelet transform (DWT) is applied to each radar image,
which generates four feature maps consisting of four
channels (i.e., low-low, low-high, high-low, high-high).
After upsampling the four channels to the same size as
the radar image, the standard deviation filtering is then
performed on each output channel image, producing the
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Fig. 1. Flowchart of the proposed scheme for sea surface wind measurements from rain-contaminated marine radar images.

Fig. 2. SOM-based rain-contaminated region identification. The radar data presented on the left is described in Section III-A.

corresponding local standard deviation image. Hence, an
8D feature vector can be derived for each pixel.

3) Discrete Cosine Transform (DCT)-Based Features: A set
of filters consisting of nine 3× 3 orthogonal DCT masks
proposed in [24] is used to generate the DCT features.
Since the mask with low-pass property is excluded from
feature combination, 8 DCT feature maps can be gener-
ated.

4) Local Histogram Features: As it has been observed in [16]
that rain alters the pixel distribution, i.e., histogram, of
the radar image [a comparison between the normalized
histogram of a rain-free and rain-contaminated image is
shown in Fig. 3(d)], for each pixel its local histogram
feature vector is obtained from the histogram of a moving
window with respect to the center pixel. Since the moving
window is supposed to cover a range of around 200 m
and an azimuth of around 10◦, its size is determined by
the image resolution. It should also be noted that pixel
intensities between 0 and 150 are used to generate the
normalized histogram with a bin size of 10, while pixel
intensities larger than 150 are discarded from feature
extraction.

As one of the most popular unsupervised neural networks, the
SOM looks for patterns previously undetected in a dataset with
no preexisting labels. In other words, it is able to classify data
automatically without human supervision. It is well known that

for supervised training techniques such as backpropagation, the
training data consist of vector pairs, i.e., an input vector and a
target vector. With this approach an input vector is presented to
the network (typically a multilayer feedforward network) and the
output is compared with the target vector. If they are different, the
weights of the network are altered slightly to reduce the error in
the output. This is repeated many times with many sets of vector
pairs until the network obtains the desired output. In contrast,
training an SOM requires no target vector. The training of SOM
begins with initializing each weight vector that represents a cer-
tain neuron. From there an input vector (i.e., the texture feature
vector in this study) is selected randomly and the map of weight
vectors is searched to find which weight (a certain neuron) best
represents that input vector. Each weight vector has neighboring
weights that are close to it. The weight that is chosen (denoted
as the winning neuron) is rewarded by being able to become
more like that randomly selected sample vector. The neighbors
of the winning neuron are also rewarded by being able to become
more like the chosen input vector. The closer a neuron is to the
winning neuron, the more its weight gets altered. In contrast, the
farther the neighbor is away from the winning neuron, the less
it learns. In addition, the number of neighbors and how much
each weight is altered decrease over time. This whole process is
repeated a large number of times until the preset iteration time
is reached. Compared to the input texture feature vector with
relatively high dimension, the neurons in the proposed SOM
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Fig. 3. (a) Example of a rain-free, (b) Rain-contaminated, and (c) its corresponding rain-corrected radar image obtained in the same region under similar wind
speeds. Comparisons of their normalized histograms are presented in (d) and (e).

are arranged in a single, 2D grid in the shape of rectangles,
which provides a way of representing multidimensional data in
spaces of much lower dimension. Nevertheless, the topological
relationships within the training set are still maintained, which
means feature vectors that are close in the feature space tend to
be clustered into the same or topological neighboring neurons.
In this work the texture feature vector extracted from each pixel,
denoted asX = {xi, i = 1, . . ., D}, D = 55, is input into the 10
× 10-neuron SOM constructed and trained in [17]. Each neuron
is represented by a weight vector vj = {vji : j = 1, . . ., N ; i =
1, . . ., D}, where N is the total number of neurons (100 here).
In order to classify each feature vector into a certain class, the
Euclidean distance between X and each neuron is calculated
and X is classified into the neuron with the smallest distance,
which can be expressed as

j = argmin
j

D∑
i=1

(xi − vji)
2. (1)

As in [17], neurons were already clustered into three types
(rain-free, rain-contaminated, and low-backscatter) using a hi-
erarchical clustering tree, pixel-based identification results can
be obtained directly. It should be noted that in this study, neu-
rons classified as low-backscatter type are also considered as
rain-free since low-backscatter radar images are caused by low
sea states instead of rain. Hence, given a polar radar image I ,
its corresponding identification result P can be represented as a
binary image

P (θ, r) =

⎧⎪⎨
⎪⎩
0, if I(θ, r) is clustered into a rain-free neuron

1, if I(θ, r) is clustered into a rain-

contaminated neuron
(2)

where θ and r represent azimuth direction coordinate and range
coordinate, respectively.

C. DehazeNet-Based Rain-Contaminated Region Correction

In recent years, significant progresses have been made on
terrestrial image haze removal thanks to the important assump-
tions and priors about the influence of haze on images proposed
in previous studies [25]–[27]. While there are many differences
in the physical process between rain affecting sea surface and
radio waves and haze scattering atmospheric light, it has been
observed in this study that rain-contaminated radar images also
conform to those assumptions, which makes it reasonable to
apply image dehazing algorithms on rain correction. Here, the
similarities between the influence of rain on marine radar images
and the influence of haze on terrestrial photography based on
those assumptions/priors are first illustrated below.

(1) Reduction of “Dark” Pixel Proportion: Previous statis-
tical observation has found that in most of the haze-free
patches of terrestrial photography, their minimum intensi-
ties in one or more certain channels should have very low
values or even close to zero. That assumption is referred
to as dark channel prior in [26]. In contrast, patches
affected by haze generally look brighter than haze-free
ones due to the scattering introduced by haze. As a
result, it is common that none of the channels has pixels
with very low intensities. Likewise, for rain-free marine
radar image regions, the “dark” pixels located in areas
shadowed by surface wave crests generally have very
low backscatter intensities. Consequently, as presented
by the blue bins in Fig. 3(d), the first bin of the normalized
histogram obtained from a rain-free image [i.e., Fig. 3(a)]
should have a relatively significant portion. While for
the rain-contaminated image shown in Fig. 3(b), it is
uniformly bright [28] with a relatively low value in the
first bin of its normalized histogram, as shown by the
orange bins in Fig. 3(c).

(2) Reduction of Local Contrast: It has been widely ac-
knowledged that terrestrial photography with enhanced
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visibility (or clear-day images) has higher contrast than
images obtained under bad weather such as the presence
of haze. Based on the definition of RGB image contrast
proposed in [25], the contrast C(I) of a grayscale radar
image I(θ, r) can be quantitatively defined as

C(I) =
∑
θ,r

|∇I(θ, r)| (3)

where ∇ is the differential operator over azimuth and
range coordinate. By observing the radar dataset, the con-
trast of a radar image contaminated by rain is significantly
lower than a rain-free image obtained under similar wind
speeds.

(3) Reduction of Local Saturation: Based on the definition of
saturation in an RGB image patch proposed in [27], the
saturation of a radar image patch S(I) can be expressed
as

S(I) =
max(I(θ, r))−min(I(θ, r))

max(I(θ, r))
. (4)

As the decline of saturation under the influence of haze
has been widely observed, it is also found here that the
saturation of a rain-contaminated radar image region is
generally lower than a rain-free region obtained under
similar wind speeds.

Designed and trained by Cai et al. [18], DehazeNet is a
CNN-based end-to-end system for single image haze removal.
The reasons of adopting DehazeNet instead of other AI models
for rain correction are explained as follows. First, as an end-
to-end neural network, DehazeNet is able to take the whole
original radar image as an input and generate its corresponding
transmission map directly without additional processing steps,
which is both efficient and easy to use. Second, as illustrated in
Section II-C, it has been observed that the effect of haze on ter-
restrial images and the influence of rain on marine radar images
are similar on several assumptions (e.g., reduction of “dark”
pixel proportion, reduction of local contrast, and reduction of
local saturation). Compared to other AI models or previous
proposed image dehazing models that are based on a single
assumption (e.g., [26] and [25]), DehazeNet takes all of those
assumptions into consideration in its feature extraction step,
which improves the performance of the model in haze removal
and rain correction. In addition, compared to other CNNs with
classical architecture, several modifications are made in the
components and structure of DehazeNet, which further improves
the robustness and efficiency of the model. For example, in-
stead of using standard nonlinear activation functions in deep
networks such as rectified linear unit (ReLU), a novel nonlinear
activation function, i.e., bilateral rectified linear unit (BReLU), is
proposed and applied in DehazeNet. As ReLU is mainly used for
the problems of classification, BReLU is specifically designed
for regression problems, which can reduce search space and
improve convergence during the training process. Fig. 4 shows
the framework of the proposed rain correction method based on
DehazeNet with each step elaborated below.

1) Haze-Relevant Feature Extraction: As the first step of op-
eration conducted by the DehazeNet, a variety of features based
on those haze-related assumptions/priors are extracted through

Fig. 4. Flowchart of the proposed rain correction method based on DehazeNet.

convolution. While DehazeNet differs from other typical CNNs
in structure, convolution is still one of the main building blocks.
The term convolution refers to the mathematical combination
of two functions to produce a third function which merges two
sets of information. In the case of a CNN, each convolution
operation is performed on the input data with the use of a
filter (or kernel) to produce a feature map, which is executed
by sliding the filter over the input. At every location, a matrix
multiplication is performed and the result in the feature map is
the sum of the element-by-element product. Since the network is
originally used to process RGB images, each rain-contaminated
radar image is first converted into RGB format by replication
before inputting the image into the network. Sixteen 5× 5× 3
filters, denoted as W i

1 (i = 1, . . ., 16), are first convolved with
the radar image, which generates 16 haze-related feature maps
(denoted as f1) expressed as

f i
1 = W i

1 ∗ I +Bi
1 (5)

where ∗ and Bi
1 represent the convolution operation and the

bias term for each filter, respectively. Then, an unusual acti-
vation function called maxout unit is introduced to reduce the
dimension of the feature maps, which generates a new feature
map by taking a pixel-wise maximization operation for every 4
consecutive feature maps, which can be expressed as

F k
1 (θ, r) = max

i∈{0,1,2,3},k∈{1,2,3,4}
fk×4−i
1 (θ, r). (6)

Therefore, a total of four feature maps can be generated after
the feature extraction steps.

2) Multiscale Feature Generation: In this step, filters with
different spatial scales (i.e., 3× 3, 5× 5, and 7× 7) are used
to filter F1 in order to generate multiscale features, which have
been proven effective for haze removal [29]. Since 16 filters
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Fig. 5. (a)–(c) Examples of X-band marine radar images with rain-contaminated regions. (d)–(f) Transmission map obtained from (a)–(c) using the DehazeNet.
The radar data presented here is described in Section III-A.

are assigned for each selected filter size, a total of 48 feature
maps, denoted as F i

2 (i = 1, . . ., 48), can be generated using the
convolution operation in (5).

3) Local Extremum: The max-pooling layer calculates and
preserves the maximum value for each patch of the feature map
in order to reduce the number of parameters and computation
in the network. In this way, the training time can be shortened
and overfitting can be better avoided. However, since the size of
the final output image in DehazeNet is supposed to be the same
as the input image’s, the traditional max-pooling operation is
replaced by another type of operation named as local extremum
in [18], in which the original image size is retained while the
local maximum values can still be extracted. Specifically, for
each pixel in the feature map F i

2, its local extremum equals the
maximum value in a 7× 7 window centered at this pixel. Thus,
the output feature maps F i

3 (i = 1, . . ., 48) obtained from local
extremum operation can be expressed as

F i
3(θ0, r0) = max

θ,r∈Ω(θ0,r0)
F i
2(θ, r) (7)

where Ω(θ0, r0) is the 7× 7 neighborhood centered at the pixel
located at (θ0, r0). In this way, the size of the output image
remains the same as the input image.

4) Nonlinear Regression: Activation functions perform a
nonlinear transformation on the input received, which keep
values within a manageable range. Since values in the input
layers are generally centered at zero and have already been
appropriately scaled, they do not require transformation in the
first place. However, the range of these values becomes much
larger after they are multiplied by weights and summed together
during the convolution operation. Thus, the activation functions
should be introduced after convolution, which force values back
within an acceptable range and make them meaningful. For
classic CNNs, an activation function is normally applied to the
filtering outputs for nonlinear regression and approximation.
In the DehazeNet, a novel activation function modified from

the rectified linear unit (ReLU) called bilateral ReLU is used
to regress and generate the network output F4, which can be
expressed as

F4 = min(tmax,max(tmin, F3 ∗W4 +B4)) (8)

where W4 and B4 represent a 6× 6× 48 filter and its corre-
sponding bias, respectively. tmin and tmax are the marginal values
limiting the minimum and maximum of the regression output,
which equal 0 and 1, respectively.

5) Rain-Corrected Radar Image Generation: As shown in
Fig. 4, the output image obtained from the DehazeNet, i.e.,F4, is
input into the guided filters proposed in [30] for edge-preserving
smoothing. The filtering output, denoted as t(θ, r), is called the
transmission map, which is used to describe the light portion
that is not scattered and reaches the camera in terrestrial pho-
tography. In this study, the transmission map generated from
rain-contaminated radar image can be used to reflect the degree
of rain influence. That is because it has been observed that
regions contaminated by heavy rain generally have much lower
corresponding pixel intensities in the transmission map than
those less affected or unaffected by rain (see a few examples
presented in Fig. 5). Hence, the formulation of the atmospheric
scattering model obtained from previous studies [25], [31], [32]
is introduced to suppress the rain echoes in the original radar
image. Its output of each pixel, denoted as J(θ0, r0), can be
calculated as

J(θ0, r0) =
I(θ0, r0)−max(I)

t(θ0, r0)
+ max(I) (9)

where the intensity range of I has been scaled to [0,1]. Fi-
nally, J(θ, r) is combined with the rain-contaminated region
identification results (P (θ, r)) to generate the rain-corrected
radar image with smooth transition between rain-free and
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rain-contaminated regions. Specifically, for each radar im-
age consisting of both rain-free and rain-contaminated re-
gions, if c1 and c2 denote the centroids of rain-free and rain-
contaminated regions, respectively, the Euclidean distances be-
tween each pixel I(θ0, r0) and c1, c2 are obtained and expressed
as d1(θ0, r0), d2(θ0, r0). Each pixel of the rain-corrected image
L(θ0, r0) is then calculated as

L(θ0, r0) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

I(θ0, r0) +
d1(θ0, r0)[J(θ0, r0)− I(θ0, r0)]

5[d1(θ0, r0) + d2(θ0, r0)]

if P (θ0, r0) = 0

J(θ0, r0) +
d2(θ0, r0)[I(θ0, r0)− J(θ0, r0)]

d1(θ0, r0) + d2(θ0, r0)

if P (θ0, r0) = 1.
(10)

It should be noted that (10) is only applicable for images
with both rain-free and rain-contaminated regions. For a rain-
contaminated image without any rain-free regions, its corre-
sponding rain-corrected result equals to J(θ0, r0) directly. Also,
it should be noted that the intensity range of I has been scaled
to [0, 1].

In [18], the training of DehazeNet has been illustrated in detail
and will be introduced briefly here. First, in order to obtain
sufficient amount of training data, 10 000 haze-free patches
(a patch refers to a subsection of a whole image) are sampled
randomly from terrestrial images collected from the Internet.
Then, 10 random transmission maps (with values uniformly
distributed from 0 to 1) are generated from each patch, which
can therefore generate 10 corresponding hazy patches. Hence, a
total of 100 000 artificial hazy patches are generated and used to
train the network. A Gaussian distribution function (with mean
value μ = 0 and standard deviation σ = 0.001) is introduced to
give random values to the filters in each layer of the network,
and the initial values of all bias terms are set to be 0. The initial
learning rate is set to be 0.005 and will decrease by half for every
100 000 iterations. In each iteration, a total of 128 patches are
utilized for training. Based on the parameter settings mentioned
above, the DehazeNet can be trained after a total of 500 000
iterations. It should be noted that since the learnable parameters
(i.e., filters and biases) of the network are inherited from the
training results obtained in [18], the network can be incorporated
into the proposed scheme directly without further training.

D. Wind Parameter Estimation Algorithms

After obtaining the rain-corrected radar image, for each az-
imuthal direction θ, its average pixel intensity (denoted as σθ)
is calculated and curve fitted using the cosine-squared function
proposed by Lund et al. [2], which can be expressed as

σθ = a0 + a1 cos
2(0.5(θ − a2)) (11)

where a0, a1, and a2 are parameters determined through least-
squares fitting. The estimated wind direction corresponds to the
azimuth located at the peak of the fitted function. It should
be noted that for one certain rain-corrected radar image, the
curve fitting is conducted for multiple times (20 in this study),
which generates 20 different combinations of coefficients [i.e.,
a0, a1, and a2 in (11)] for the fitted function. The combination of

coefficients with the highest R-squared (coefficient of determi-
nation) value, which reflects how close the data are to the fitted
regression line, is selected for producing the final fitted curve.
The reason to do so is because during each curve fitting, the value
for each coefficient is initialized uniformly but randomly from
the interval (0,1). As a result, multiple fits using the same data
and function might lead to different fitted coefficients. Thus,
in order to generate the best fitted curve for each image, it is
necessary to repeat the curve fitting for multiple times.

As for wind speed estimation, the SVR-based wind speed
estimation model proposed in [16] is modified and trained
using the rain-corrected radar images. Specifically, in the feature
extraction step, instead of extracting the normalized histogram
bin values of the original radar image, several of the texture
feature maps (presented in Table I) introduced in the first step
of the proposed scheme (i.e., Section II-B) are generated from
the rain-corrected radar image and incorporated into the feature
vector, which further improves the accuracy and robustness of
the model. The first two feature maps generated by two Gabor
filters with the same orientation (90◦) and two different wave-
lengths manifest the clarity of the stripe-like wave patterns in
the radar image. Although under rain conditions, the sea surface
roughness might be altered and wave patterns in the radar image
might be blurred, it has been observed that the wave patterns in
rain-contaminated images obtained under high wind speeds tend
to be less affected or even unaffected in some image regions. An
example of a rain-contaminated radar image obtained under high
wind speed is presented in Fig. 6(a). It can be observed that re-
gions with clear wave signatures have relatively high intensities
in the corresponding pixels of those two Gabor feature maps, as
shown in Fig. 6(b) and (c). While for the rain-contaminated radar
image obtained under low wind speed presented in Fig. 7(a), the
wave patterns are blurred significantly in almost all areas. In
consequence, the pixel intensities in its corresponding feature
maps, i.e., Fig. 7(b) and (c) are generally much lower than that
of Fig. 6(a)’s. As for the third feature map, i.e., the local standard
deviation image of the radar image’s low-low channel generated
by DWT, it is used to reflect of the influence of wind speed and
rain on sea surface roughness. It is well known that an increasing
wind speed leads to the increase in sea surface roughness [33]
as well as average radar backscatter intensity [2]. On the other
hand, the change of sea surface roughness due to the presence
of rain results in the decrease of pixel intensity variation in
rain-contaminated images/regions [34]. For instance, it can be
observed from Fig. 6(d), that regions that are less affected by
rain with high sea surface roughness and simultaneous wind
speed have relatively high intensities. In contrast, the pixel
intensities of most pixels in Fig. 7(d) are very low compared to
Fig. 6(d) because the sea surface roughness is altered significant
by rain with wave patterns barely observed in almost all areas
in Fig. 7(a), which also causes fairly uniform pixel intensities in
the radar image. Bin values are extracted from the histograms of
the texture feature maps presented in Table I. Thus, the feature
vector extracted from each image consists of 70 elements.

For a certain rain-corrected radar image, the feature vector ex-
tracted from the histograms of texture feature maps is denoted as
hi = {hi,1, hi,2, . . ., hi,70}, while yi and y′i represent the ground
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Fig. 6. (a) Rain-contaminated Decca radar image collected at 9:53, December 01. Anemometer-measured wind speed is 15.6 m/s. (b) Gabor texture feature map
of (a) obtained from a Gabor filter with 5.7 in wavelength and 90◦ in orientation. (c) Gabor texture feature map of (a) obtained from a Gabor filter with 11.3 in
wavelength and 90◦ in orientation. (d) DWT texture feature map of (a) obtained from the local standard deviation image of the low-low channel.

Fig. 7. (a) Rain-contaminated Decca radar image collected at 3:28, November 27. Anemometer-measured wind speed is 3.1 m/s. (b) Gabor texture feature map
of (a) obtained from a Gabor filter with 5.7 in wavelength and 90◦ in orientation. (c) Gabor texture feature map of (a) obtained from a Gabor filter with 11.3 in
wavelength and 90◦ in orientation. (d) DWT texture feature map of (a) obtained from the local standard deviation image of the low-low channel.

truth wind speed and radar-derived wind speed, respectively. As
we know, in most linear regression models, the objective is to
minimize the sum of squared errors. However, in many practical
problems based on real data such as wind speed estimation, we
are only concerned about reducing error to a certain degree as
long as they fall within an acceptable range. SVR provides us
with the flexibility to define how much error is acceptable in our
model and find an appropriate hyperplane in higher dimensions
to fit the data. Instead of minimizing the squared error in linear
regression, the objective function of SVR is to minimize the
coefficients, i.e., the l2-norm of the coefficient vector (denoted
as ||w||). The error term is instead handled in the constraints,
where we set the absolute error less than or equal to a specified
margin, called the maximum error (denoted as ε). We can tune
ε to gain the desired accuracy of our model. Therefore, the
goal of training is to find a function f(hi) that has at most ε
deviation from yi while minimizing the norm of w at the same
time [35]. Similar to [16], the classic ε-SVR algorithm proposed
in [35] is employed to train the texture-feature-based wind speed

estimation model. Thus, function can be expressed as

y′i = f(hi) = wTφ(hi) + b (12)

where φ(·) is a Gaussian kernel function that maps hi into a
higher dimension space for linear separation, w is the weight
of φ(hi) and b is the bias term. According to the support vector
machine (SVM) algorithm proposed in [36], finding such a func-
tion is equivalent to solving the following convex optimization
problem

min

(
1

2
‖w‖2 + C

l∑
i=1

(ξi + ξ∗i )

)
(13)

subject to ⎧⎪⎪⎨
⎪⎪⎩
yi − y′i ≤ ε+ ξi

y′i − yi ≤ ε+ ξ∗i

ξi, ξ
∗
i ≥ 0

(14)

where ξi and ξ∗i represent the values of estimation errors that are
greater than ε, l is the total number of training samples. Since
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TABLE I
TEXTURE FEATURE MAPS FOR HISTOGRAM FEATURE EXTRACTION

TABLE II
RADAR INFORMATION

the existence of such errors is common when using real data for
training, it is necessary to add the error terms into our objective
function so that they can be minimized as much as possible.C is a
positive constant named as box constraint, which determines the
penalty imposed on y′i that lies outside the ε margin and helps
avoid overfitting. In this work, the regression learner toolbox
from MATLAB is used to train the SVR-based wind estimation
model, in which the sequential minimal optimization (SMO)
algorithm proposed in [37] is adopted for solving the convex
optimization problem.

III. EXPERIMENTAL RESULTS

A. Data Overview

Two radar image datasets collected from different sites are
used to validate the effectiveness of the proposed method. A
summary of the radar and dataset information is presented in
Tables II and III. The first dataset, provided by Defence Research
and Development Canada (DRDC), was collected during a sea
trial in the North Atlantic Ocean off the East Coast of Canada.
Specifically, the image data were obtained from a shipborne
Decca radar, whose parameters are presented in Table II. By
selecting the first pulse radar image generated per minute, a total
of 3902 polar images were collected during several time periods
from November 26 to December 4, 2008. Two sets of simultane-
ous wind information collected per minute by two anemometers
mounted on the port and starboard of the ship, respectively, are
averaged and used as ground truths. In addition, the presence
of rain during data collection period can be indicated by the
simultaneous rain rate information collected by two rain gauges
installed on the ship.

The second dataset was provided by the Nearshore Remote
Sensing Group of Oregon State University. A Koden marine

TABLE III
DATASET INFORMATION

radar was installed on a United States Coast Guard watchtower
near the North Pacific Ocean, providing real-time radar images
24 h/d. A detailed description of the location information, radar
and tower equipment can be found in [38]. In this study, 980
pulse images randomly collected from January 11 to July 18,
2019 with various time intervals are selected for wind parameter
estimation. Since nearly half of the radar coverage area consists
of land, the radar image only preserves azimuths that point
toward the sea surface. The ground truth wind information was
reported hourly by the weather station NWPO3 near the base
of South Jetty of Yaquina Bay Inlet. It should be noted that the
provided wind speed has already been averaged over a 2-min
period, while wind direction was reported in 10◦ increments. In
addition, rain rate data was obtained from rain station AS512
(ocrg.org) in the Newport residential area North of Yaquina
Bay. It can be observed from Table III that both datasets cover
a relatively wide range of wind speeds, rain rates, and wave
heights (obtained from buoys deployed near radar sites), which
permits the proposed method to be evaluated under various sea
states and rain conditions.

B. Rain Detection Results

In order to investigate the accuracy of the proposed scheme
in rainy image detection, the global rainfall data provided
by European Centre for Medium-Range Weather Forecasts
(ECMWF) [39] are used as ground truth for comparison since
they are derived from the advanced precipitation hindcasting
techniques. Each value in the data corresponds to the accumu-
lated rainfall in the previous hour (i.e., hourly average rain rate,
mm/h) obtained from a certain measurement point. The distance
between each adjacent measurement point (indicated by red
dots in Fig. 8) in space is 0.25◦ in either latitude or longitude
(around 27 km). Therefore, since the Decca radar was installed
on a moving ship whose course is shown in Fig. 8, the hourly
average rain rate is acquired from the measurement at the red
dot that was closest to the ship location at that time. In Fig. 9, the
hourly average rain rate values during the sea trial are depicted
by the blue dotted line. It should be noted that radar data were
not collected in several time periods during the sea trial and
those periods are indicated by the black arrow lines between
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Fig. 8. Ship’s course and available measurement points of rainfall.

the green dash lines. In order to show whether the proposed
model can detect rainy images accurately using Decca radar data,
the identification of rainy images using the proposed method is
indicated by the gray shadows in Fig. 9. It can be observed that
when hourly average rain rate is greater or equal to 1 mm/h, the
presence of rainy images can always be detected (i.e., a detection
success rate of 100%) among the 60 radar images obtained in
each hour using the proposed model. On the other hand, when
the hourly average rain rate is nonzero but less than 1 mm/h,
rainy images might not be identified. That is because when the
average rain rate is low, the presence of rainfall might be sparse
in either time or space and is not within the radar coverage.
Another possible reason is that under certain sea states (e.g.,
high wind speeds), the radar backscatter might not be altered
significantly under low rain rates. As for the Koden radar data,
they are not used to validate the rain detection accuracy because
the time interval between each provided image is longer than
an hour. Due to the fact that the rainfall distribution can be
nonuniform in both time and space, as well as the fact that the
radar coverage is much smaller than the spatial interval of each
measurement point, it is likely that while rainfall was recorded,
the only available radar image during this certain hour might not
be affected by rain. Nevertheless, if more Koden radar images
are available within a single hour, it is expected that the rainy
images can be easily identified by thes model.

C. Wind Direction Results

The rain-correction result of Fig. 3(b) is presented in Fig. 3(c)
and compared with Fig. 3(a), i.e., a rain-free radar image ob-
tained from the same region under similar wind speeds. As
shown in Fig. 3(e), the differences of normalized histogram bin
values between two types of images are very small for most
of the bins (no larger than 0.04), which indicates that both
the rain-free and rain-corrected images have similar charac-
teristics in pixel intensity distribution. Figs. 10 and 11 show
the comparison of wind direction estimation results using the
original rain-contaminated radar images without rain mitigation
and rain-corrected images. As shown in Figs. 10(b) and 11(b),
although it is impossible to fully recover the wave signatures

contaminated by rain, the noise introduced by rain has been
effectively suppressed. It can also be observed that the estimation
errors can be reduced significantly for both the Decca (Fig. 10)
and Koden data (Fig. 11) after introducing the proposed rain
mitigation method.

Thus, in order to evaluate the effectiveness of the proposed
method on rain mitigation quantitatively, for Decca radar data,
all images are first input into the SOM-based identification
model. In consequence, a total of 540 images that contain rain-
contaminated regions are selected for wind estimation study.
Fig. 12 shows the sequences of wind direction estimation results
using rain-contaminated Decca radar images. As the time inter-
val between each image in the same time period is one minute,
both the anemometer and radar results are moving-averaged over
10 min. The root mean square deviation (RMSD) between wind
directions derived using the proposed scheme (i.e, the red dots
in Fig. 12) and measured by the anemometers (i.e., black line in
Fig. 12) is 18.6◦. In contrast, if the original rain-contaminated
images are used directly for curve fitting without any correction,
the RMSD is as high as 37.7◦, as indicated by the blue dots in
Fig. 12. Hence, the proposed method significantly improves the
wind direction estimation accuracy with a reduction of 19.1◦ in
RMSD.

As for the Koden radar data, the region presented in Fig. 11(a)
is first cropped from the original radar image in order to avoid
the influence of shore on sea clutter. As a result, the azimuth
and range coverages of the region are around 135◦ and 5130 m,
respectively. It should be noted that the images obtained under
heavy precipitation or very low wind speeds (≤2 m/s) with little
or no wave signatures are excluded from wind direction estima-
tion in order to ensure that all testing images contain sufficient
electromagnetic backscatter from the ocean surface [40]. As the
acquisition time interval between each image is relatively large,
the wind direction estimation results obtained from 230 rain-
contaminated images identified by the SOM-based model are
presented as scatter plots in Fig. 13. Specifically, for Fig. 13(a),
the curve fitting is applied to rain-contaminated radar images
directly without correction, while Fig. 13(b) shows the results
obtained from the rain-corrected images. Since the RMSDs
between radar wind direction and anemometer wind direction
calculated from Fig. 13(a) and (b) are 47.5◦ and 23.6◦, respec-
tively, the proposed scheme improves the estimation accuracy
significantly, with a reduction of 23.9◦ in RMSD. Although the
RMSD obtained from Koden images is 5.0◦ higher than using
Decca images, it should be noted that the azimuth coverage
in Koden images is only 135◦, which indicates that it is more
difficult to fit an accurate curve for wind direction estimation.

D. Wind Speed Results

For both datasets, nearly half of the rain-contaminated radar
images are selected as training samples for the SVR-based
wind speed estimation models. It should be noted that those
samples should be obtained under a relatively wide range of
wind speeds in order to ensure the models’ robustness. The
other half of the rain-contaminated images are all used to test
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Fig. 9. Hourly average rain rate (dots connected by blue lines) values provided by ECMWF during Decca radar data collection periods. Simultaneous radar
images with rainy regions detected by the proposed method are indicated by gray shadows.

Fig. 10. (a) Example of a rain-contaminated Decca radar image. (b) Rain-corrected image obtained from (a) using the proposed method. (c) Wind direction
estimation result using (a). (d) Wind direction estimation result using (b). The blue data points refer to the average pixel intensity in each azimuth of the radar image,
while the orange line is the corresponding best-fit curve of the blue data points using the cosine-squared function. Red and black dash line indicate radar-derived
wind direction and anemometer-measured wind direction, respectively.

Fig. 11. (a) Example of a rain-contaminated Koden radar image. (b) Rain-corrected image obtained from (a) using the proposed method. (c) Wind direction
estimation result using (a). (d) Wind direction estimation result using (b). The blue data points refer to the average pixel intensity in each azimuth of the radar image,
while the orange line is the corresponding best-fit curve of the blue data points using the cosine-squared function. Red and black dash line indicate radar-derived
wind direction and anemometer-measured wind direction, respectively.
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Fig. 12. Comparison of the sequences of Decca wind direction results.

Fig. 13. Comparison of wind direction estimation results using (a) rain-contaminated Koden radar images without correction and (b) rain-corrected Koden radar
images.

Fig. 14. Comparison of wind speed estimation results using (a) rain-contaminated Decca radar images without correction and (b) rain-corrected Decca radar
images.

the models’ accuracy. In addition, in order to validate the ef-
fectiveness of the proposed rain mitigation method, for each
dataset two models are trained and tested separately using the
original and rain-corrected radar images, respectively. The wind
speed estimation results obtained from the Decca radar data are
shown in Fig. 14 with both the anemometer and radar results

being moving-averaged over 10 min. By comparing the results
presented in Fig. 14(a) and (b), it can be observed that the
proposed rain correction method further improves estimation
accuracy in both training and testing samples. In particular, the
RMSD between testing images and anemometer measurements
is reduced by 0.45 m/s.
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Fig. 15. Comparison of wind speed estimation results using (a) rain-contaminated Koden radar images without correction and (b) rain-corrected Koden radar
images.

TABLE IV
WIND ESTIMATION STATISTICS RESULTS

As for the Koden radar data, since the texture features ex-
tracted from each image are no longer dependent on the az-
imuthal intensity information, images obtained under low wind
speeds (except zero wind speed) may still be utilized for wind
speed estimation. Thus, a total of 350 rain-contaminated images
identified by the SOM-based model are used to train and test
the proposed wind speed estimation model. The estimation
results obtained from models using original radar data (i.e., rain-
contaminated images without correction) and rain-corrected
images are presented in Fig. 15(a) and (b), respectively. Hence,
it can be concluded that the proposed rain mitigation method
improves both training and testing accuracy, with a reduction of
0.23 m/s in RMSD for both samples. Nevertheless, it should be
noted that the RMSD obtained from the Koden radar data is gen-
erally higher than that of the Decca radar data. One reason may be
due to the fact that compared to the Decca radar data, a relatively
large portion of rain-contaminated Koden images were obtained
under low wind speeds (≤4 m/s) with little wave signatures. In
consequence, texture features extracted from those images are
more likely to be similar to each other, which makes it hard
to provide highly precise estimation. Thus, it can be concluded
that although the texture-feature-incorporated SVR-based wind
speed estimation method is already more accurate than previous
proposed models, introducing rain correction procedure will fur-
ther improve measurement accuracy. To sum up, the RMSDs and
correlation coefficients (CCs) of the wind speed and direction
results for different schemes and radar datasets are shown in
Table IV. It can be clearly observed that all the CC values
are improved after introducing the proposed rain correction
techniques. In the end, in order to ensure the proposed scheme
can be implemented in real-time, the testing was conducted in

MATLAB R2019b installed on a normal PC running Windows
10 with a 3.0 GHz Intel Core i5-2320 CPU, 8 GB memory, and a
64-bit operating system. For each rain-contaminated radar image
it took an average of around 45 s to conduct rain correction and
generate wind estimation results.

IV. CONCLUSION

In this study, a novel scheme to mitigate the rain influence and
estimate sea surface wind parameters from rain-contaminated
marine radar images is proposed. In order to detect the presence
of rain, texture features extracted from radar data are input
into an SOM-based model, which generates pixel-based rain
identification results. Then, an image dehazing CNN called
DehazeNet is applied to images that contain rain-contaminated
pixels, which produces a transmission map reflecting the degree
of rain influence. The influence of rain can therefore be cor-
rected by inputting both the transmission map and the original
image into the atmospheric scattering model. After obtaining
rain-corrected radar images, wind direction can be estimated
by curve fitting on average azimuthal intensities. As for wind
speed, normalized histogram bin values extracted from three
texture feature maps are combined as feature vectors to train the
SVR-based wind speed estimation models.

Both shipborne (Decca) and shore-based radar (Koden)
datasets are employed to validate the proposed scheme, with
simultaneous anemometer measurements used as ground truths
to evaluate estimation accuracy. In addition, in order to validate
the effectiveness of the proposed rain correction method, wind
measurements using original rain-contaminated images without
correction are also conducted for comparison. For wind direction
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estimation, the RMSDs obtained using the proposed scheme
are 18.6◦ for the Decca radar images and 23.6◦ for the Koden
radar images, respectively. Compared to the results obtained
without applying rain correction, the estimation errors are re-
duced significantly, with RMSDs decreased by 19.1◦ and 23.9◦

for the Decca and Koden data, respectively. While for wind
speed estimation, for both datasets, two SVR-based models are
trained and tested separately under a wide range of wind speeds,
with one using rain-contaminated images without correction
and another using rain-corrected images, respectively. Results
show that compared to the SVR-based models trained using
the original radar images, the rain-corrected SVR-based models
further improve both training and testing accuracy. Specifically,
the RMSDs calculated from rain-corrected testing samples are
1.10 and 1.40 m/s for the Decca and Koden data, respectively,
which are 0.45 and 0.23 m/s lower than that obtained from the
original rain-contaminated images. Since rain echoes are more
likely to overwhelm wave signatures under low wind speeds, the
proposed method produces better results at higher wind speeds
than lower wind speeds. In addition, as it takes around 45 s to
obtain rain correction and wind estimation results from each
rain-contaminated radar image, the proposed scheme can be
implemented in real time.

As the first work to apply pixel-based rain identification model
and image dehazing techniques for wind parameter measure-
ments using X-band marine radar images, the proposed method
effectively improves the accuracy of wind estimation from rain-
contaminated data. Also, this is the first method validated using
rain-contaminated shore-based marine radar images with limited
azimuthal coverage. Despite the significant reduction of estima-
tion errors achieved by the proposed method, it should be noted
that the wind direction estimation results are still not as accurate
as that obtained from previous studies using rain-free radar
data. As the SVR-based wind speed estimation models have
received satisfactory results, it is worthwhile to develop machine
learning-based algorithms for wind direction estimation. Due to
similar imaging mechanisms, it is also possible to extend the
proposed method to radar images captured at other frequency
bands such as S-band, which is another common frequency
band for commercial marine radars. Although compared to the
X-band radar, the S-band radar gives a coarser spatial resolution,
previous studies have found that the influence of rain on S-band
radar images is less severe than that on X-band radar images [41].
In addition, the effectiveness of the proposed rain correction
scheme should be further validated on the estimation of other
parameters (e.g., surface wave and current parameters) in future
work.
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