
Distributed Collision Avoidance and Object

Sorting for Robot Swarms

by

Mohammed Abdullhak

Supervisor: Dr. Andrew Vardy

A thesis submitted to the

School of Graduate Studies

in partial fulfilment of the

requirements for the degree of

Master of Science

Department of Computer Science

Memorial University of Newfoundland

September 2021

St. John’s Newfoundland

Abstract

A robotics swarm is a set of simple distributed agents cooperating to achieve a

certain goal. Each robot works independently of the others based on its own local

knowledge without any central coordination. These systems are often inspired by

social insects which work collaboratively to perform complicated tasks such as sorting

their brood or waste in certain patterns through local interactions. Swarm robotics

take inspirations from these natural phenomena to design scalable and robust systems.

The work in this thesis can be divided into two main objectives. The first is a

general purpose distributed collision avoidance algorithm that enables multiple robots

to seamlessly share their environment without colliding or blocking each other’s paths.

The proposed algorithm is very fast with O(n) complexity and only requires relative

positions of neighboring robots. It also has special mechanisms for early deadlock

prediction and recovery to prevent robots from getting stuck.

The second objective is proposing a distributed sorting algorithm. It builds upon

the previous algorithm, which guarantees collisions avoidance and minimizes dead-

locks while driving the robots to their goals, and incorporates the ability for a robotic

swarm system to cooperatively sort a collection of objects from different classes into

desired areas for each class.

The design and implementation of this swarm system on a simulation platform

and on physical robots will be detailed. A web-based multi-robot simulation platform

is developed as a general robotics simulation and will be used to evaluate the different

algorithms in our system. We will also showcase and evaluate the proposed swarm

system by deploying these algorithms on actual robots.

ii

Acknowledgements

First and foremost I am forever grateful to my supervisor, Prof. Andrew Vardy

for giving me the opportunity to pursue this degree by accepting me to the Bio-

Inspired Robotics Lab (BOTS) and for his invaluable advice and continuous support

throughout this program. I am also deeply grateful to the funding received from the

Institute of International Education (IIE) and Memorial University of Newfoundland

without which it would have been impossible for me to pursue this degree.

I would also like to express my gratitude to my parents and my whole family for

their tremendous encouragement. And finally, I wish to thank my wife for standing by

me, for always being extremely patient and supportive, and for her countless sacrifices

to help me get here.

The work discussed in this thesis was partially supported by the Natural Sciences

and Engineering Research Council of Canada.

iii

Contents

Abstract ii

Acknowledgements iii

List of Figures viii

1 Introduction 1

1.1 Thesis Outline . 4

1.2 Contributions . 6

2 Literature Review and Problem Definition 8

2.1 Multi-Robot Collision Avoidance . 8

2.2 Swarm Sorting . 13

2.3 Problem Definition . 16

3 Collision Avoidance 18

3.1 Background . 18

3.1.1 Voronoi Diagram . 18

3.1.2 Buffered Voronoi Cell . 19

iv

3.1.3 Collision Avoidance with Buffered Voronoi Cells 20

3.2 Deadlock Prediction and Recovery Algorithm 22

3.2.1 Collision Avoidance Algorithm Overview 22

3.2.2 Deadlock Prediction . 25

3.2.3 Deadlock Recovery . 30

3.2.4 Deadlock Recovery Success Prediction 32

4 Swarm Sorting Algorithm 36

4.1 Sorting Algorithm . 36

4.1.1 Default Behavior - Orbiting the Environment 37

4.1.2 Target Selection and Target Conflict Avoidance 44

4.1.3 Control Strategy . 45

4.1.4 Global Planning . 49

4.2 Obstacle Avoidance with Voronoi Cells 55

5 Simulation 59

5.1 Introduction . 59

5.2 SwarmJS Simulation Platform . 60

5.2.1 Quick Actions . 62

5.2.2 Quick Start . 63

5.2.3 Configuration . 64

5.2.4 Software Architecture . 68

6 Experimental Setup 90

6.1 Experimental Setup . 90

v

6.2 Robot Control Software . 92

6.2.1 Sensor Update . 95

6.2.2 Goal Selection . 96

6.2.3 Local Planning . 99

6.2.4 Motor control . 99

6.2.5 Summary . 101

7 Experiments and Results 102

7.1 Collision Avoidance Algorithm Experiments 102

7.1.1 Simulation . 102

7.1.2 Real-world Validation . 111

7.2 Swarm Sorting Algorithm Experiments 115

7.2.1 Simulation . 115

7.2.2 Real-world Validation . 126

8 Conclusion 128

8.1 Future Work . 129

Bibliography 131

vi

Citations to Published Work

Parts of the work presented in this thesis was published in the following paper [1]:

Abdullhak, Mohammed, and Vardy, Andrew. “Deadlock Prediction and Recovery

for Distributed Collision Avoidance with Buffered Voronoi Cells.” 2021 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS) © 2021 IEEE.

vii

List of Figures

3.1 Voronoi Diagram and Buffered Voronoi Cells for 10 robots 19

3.2 Deadlocks With Respect to Environment Density 23

3.3 Examples of Deadlock Configurations 28

3.4 Example of Deadlock Prediction and Recovery 33

4.1 Environment Shape and Resulting Orbit Border 39

4.2 Distance to Orbit Border . 40

4.3 Gradients of Distance Function and Direction to Orbit Border Vectors 41

4.4 Environment Orbits . 43

4.5 Target Selection . 46

4.6 Control Strategy . 47

4.7 Goal Mask . 50

4.8 Speed Mask . 51

4.9 Distance to Goal . 52

4.10 Gradient of the Distance Function . 53

4.11 Goal Map . 54

4.12 Static Obstacle Avoidance . 56

viii

5.1 Simulation Rendering . 61

5.2 SwarmJS Architecture . 67

5.3 Simulation Loop . 69

5.4 Environment Map . 87

5.5 Distance Map . 88

6.1 Arena . 91

7.1 Collision Avoidance Simulation Experiment - Case 1 104

7.2 Congestion at Multiple Time-steps During a Case 1 Experiment . . . 106

7.3 Collision Avoidance Simulation Experiment - Case 2 107

7.4 Collision Avoidance Simulation Experiment - Case 3 108

7.5 Collision Avoidance Simulation Experiment - Case 4 110

7.6 Collision Avoidance Real-world Validation for Case 3 112

7.7 Collision Avoidance Real-world validation with Targeted Experiments 114

7.8 Swarm Sorting Simulation Experiment Setup - Case 1 116

7.9 Swarm Sorting Simulation Experiment Results - Case 1 117

7.10 Swarm Sorting Simulation Experiment Setup - Case 2 119

7.11 Swarm Sorting Simulation Experiment Results - Case 2 120

7.12 Swarm Sorting Simulation Experiment Results - Case 3 122

7.13 Swarm Sorting Simulation Experiment Results - Case 4 124

7.14 Swarm Sorting Simulation Experiment Results - Case 5 125

7.15 Swarm Sorting Validation Experiment Result 127

ix

Chapter 1

Introduction

Robotic swarms consist of multiple autonomous robots without any centralized con-

trol. In this thesis we will present a distributed collision avoidance algorithm that

allows multiple robots to seamlessly work in a shared environment without colliding

or blocking each other paths. We will then build upon this algorithm to introduce

a swarm sorting system where autonomous robots work cooperatively to gather ob-

jects into specific locations in the environment. We will also introduce SwarmJS, a

web-based multi-robot simulation platform that was developed specifically for imple-

menting and bench marking swarm algorithms.

Swarm systems often use simple robots with limited capacity to sense and act in

their local environments, so they must cooperate to achieve a given task [2]. This

cooperation can lead to emergent behaviors similar to ones observed in social insects,

which was described by Beni [3] as swarm intelligence (SI), the collective behavior of

decentralized, self-organized systems, whether natural or artificial.

Swarm robotics was defined by Brambilla [4] as the study of collective robotics

1

that takes inspiration from the self-organized behaviors of social animals. Brambilla

et al. further detail swarm systems as multi-robot systems which have the following

characteristics:

• robots are autonomous

• robots are situated in the environment and can act to modify it

• robots’ sensing and communication capabilities are local

• robots do not have access to centralized control and/or to global knowledge

• robots cooperate to tackle a given task

These characteristics lead to the main advantages of swarms robots: flexibility,

robustness, and scalability [5]. These advantages are similar to those exhibited by

the main inspiration for swarm robotics, social animals such as ants and bees.

Robustness is a system’s ability to continue normal uninterrupted operation in

case of disturbance or loss of individual agents within the system. Swarm systems’

redundancy and lack of central control allows robots to perform their tasks regardless

of the state of individual robots within the system, since the failure of some members

will be compensated by others [6].

Scalability is the property of a system to handle a growing amount of work by

adding resources to the system [7]. The applied methods in swarm robotics -such as

control algorithms of the robots- scale to any size of the swarm [8]. Such a system “can

maintain its function while increasing its size without the need to redefine the way

its parts interact” [9]. Thus, swarm systems can handle increasingly bigger problems

such as larger areas or more objects to sort simply by adding more robots to the

2

swarm without the need to make any major modifications to how the system works.

This, in part, is supported by the robots’ use of local sensing and planning.

Flexibility is the ability to cope with a broad spectrum of different environments

and tasks [4]. This is supported by the use of simple agents and behaviors which can

be easily modified to handle different environments and tasks using the same basic

underlying algorithms. These characteristics are analyzed by Camazine et al. in [10].

Object sorting is an important problem in swarm robotics. It has many possible

applications such as sorting recyclable objects and sorting different materials and

products in warehouses and factories. Object sorting can also be seen as a generaliza-

tion of foraging, where multiple classes of objects must be gathered at corresponding

depots. As such, our algorithm can also be applied to gather a single class of ob-

jects in a desired location such as cleaning a plant floor by gathering all waste into a

designated location.

This thesis investigates a sorting problem where a swarm of robots are tasked with

grouping randomly distributed objects from one or more classes into separate clusters

for each class.

We introduce a fully distributed algorithm for sorting randomly distributed ob-

jects (pucks) by a swarm of robots. An algorithm is introduced for target (object)

selection and target conflict avoidance (two robots competing to push the same tar-

get) without any central coordination or communication between the robots. Global

planning -to determine the direction to push targets towards in order to reach their

end goals- is performed using goal maps generated from the distance transforms of

these goals within the environment. A collision avoidance algorithm based on the

concept of Buffered Voronoi Cells (BVC) [11] is also proposed, including dynamic

3

obstacle avoidance (other robots), static obstacle avoidance (environment obstacles),

and new mechanisms for deadlock avoidance and recovery.

The development of SwarmJS, an open-source web-based swarm robot simulation

platform will be detailed. The simulation platform is modifiable, modular and easily

extensible; allowing it to be used as a general purpose swarm simulation platform.

This platform will be used to showcase and evaluate the proposed algorithms before

being deployed to actual robots.

The proposed algorithms are also deployed on a swarm of multiple small Pololu 3pi

robots and a set of experiments are performed to showcase the proposed algorithms

in action.

1.1 Thesis Outline

Chapter 2

The second chapter includes literature review of relevant collision avoidance and

swarm research, with discussion of different approaches to solve some of the most

important problems within these fields. It also includes a formal definition of the

main problems we are trying to solve in this work.

Chapter 3

The third chapter describes the proposed collision avoidance algorithm. It includes

some background of the theoretical principles based on which the algorithm is built,

such as the Voronoi diagram. A detailed description of the collision avoidance algo-

4

rithm will be described here, with special emphasis on the proposed deadlock avoid-

ance and recovery algorithms.

Chapter 4

The fourth chapter describes the proposed sorting algorithm with detailed description

of each part of the algorithm, including the target selection, target conflict avoidance,

control strategy, and global planning for calculating paths from targets’ current po-

sitions towards their goals.

Chapter 5

The fifth chapter describes the simulation platform. It discusses the general design of

the system as well as the different parts in the software, their functions, interactions

and inter-dependencies. It also includes a description of how the platform can be

modified and extended to implement and evaluate different robotics algorithms.

Chapter 6

The sixth chapter describes the physical swarm system’s design. It includes detailed

discussion of the hardware design of these robots, the software systems running on the

robots, and the setup of the experimental system including the tracking and sensing

simulation system.

5

Chapter 7

The seventh chapter details the experiments used to validate the proposed collision

avoidance and object sorting algorithms and a detailed analysis of the results of the

various experiments performed.

Chapter 8

The eighth chapter discusses the conclusions of our work and possible future work that

can be performed on both algorithms as well as the developed simulation platform

and the physical swarm system.

1.2 Contributions

Below is a list of the main contributions in this thesis:

• Distributed Collisions Avoidance Algorithm: This algorithm build on previous

research where buffered Voronoi cells were used to guarantee collision avoidance.

However, deadlocks have been mostly ignored or handled with simple heuristics

such as the right hand rule. Our contributions lie mainly in introducing a

deadlock prediction and recovery algorithm consisting of the following steps:

– Deadlock prediction for preemptively detecting possible deadlocks and

starting maneuvering actions to prevent them.

– Deadlock recovery for choosing an alternative path that provides the most

maneuverability to prevent the predicted deadlock.

6

– Deadlock recovery success prediction for deciding when to end the recovery

maneuver and go back to normal operation.

• Swarm Sorting Algorithm: Previous work in the literature has tackled similar

sorting tasks, often using randomized motion that could result in collisions and

deadlocks. Our contribution lies in proposing a swarm sorting algorithm that

builds upon the proposed collision avoidance algorithm to introduce distributed

sorting behaviour with guaranteed collision-free motion and minimal deadlocks.

Our algorithm also handles complex environments with obstacles which was not

considered in previous work.

• SwarmJS Simulation Platform: Interactivity is key in demonstrating how swarm

systems work. Existing robotics simulations often run in their own environments

with no way to showcase and share the results on the web. Having a web-based

interactive simulation platform can be a valuable tool to many researchers where

they can showcase their work in an interactive and easily shareable format.

SwarmJS is an interactive web-based multi-robot simulation platform that was

developed to rapidly prototype and share multi-robot algorithms as quickly and

seamlessly as possible. It runs completely in the browser so it can be run on

any system that supports modern web browsers, and can be easily hosted online

using any hosting service that supports static websites. It allows developers

to define 2D environments and populate them with multiple type of objects

(static, passive, dynamic, ... etc) in addition to being open source, modular and

extensible allowing researchers to easily add required functionalities as needed.

7

Chapter 2

Literature Review and Problem

Definition

This chapter discusses existing work in the area of multi-agent robotic systems. It

focuses on two areas where this thesis’s main contributions lie: multi-robot collision

avoidance, and object sorting by a swarm of robots. It demonstrates some existing

approaches to each of these problems and details how our work fits within the general

field of swarm robotics. It concludes by providing a clear definition for the problems

we are aiming to solve in this work.

2.1 Multi-Robot Collision Avoidance

Multi-robot collision avoidance is a fundamental problem in autonomous robotics. It

enables robots to avoid each other while navigating their local environments towards

their goals. Distributed collision avoidance is particularly important for multi-robot

system applications where centralized control is not wanted or not possible, such as

8

environment mapping, natural resource mining, industrial fault diagnosis and repair,

and factory floor applications such as cleaning, sorting, and packaging.

Many existing algorithms that solve the collision avoidance problem require cen-

tralized processing [12], or extensive information such as the position, velocity, and

trajectory details of other robots [13, 14, 15, 16]. This information can either be

communicated between the robots or sensed and estimated locally, both of which can

lead to delays, and introduce errors.

Deadlocks happen when multiple robots block each others’ paths in a way that

at least one robot is unable to advance along its planned trajectory to reach its goal.

Another phenomenon that often arises in distributed collision avoidance algorithms

is livelock, where a robot keeps alternating between a deadlock state and performing

a deadlock recovery action to recover from that state.

Multi-robot collision avoidance has been extensively studied and many approaches

have been developed. Velocity-based methods, which were proposed in [13], have seen

wide success and adoption. They require knowledge of other agent’s position, velocity

and shape. The main idea behind such approaches is to repeatedly calculate the

velocity obstacles, which are the set of velocities that would lead to a collision with

a certain obstacle moving at a specific velocity, then generate avoidance maneuvers

using feasible velocities that are outside of the velocity obstacles. Reciprocal collision

avoidance (RVO) [14] extended this approach by assuming that both agents will work

to avoid the collision. In this paper, Jur van den Berg et al introduced a new concept

called ”Reciprocal Velocity Obstacle” which assumes that the other agents in the

environment are using similar collision-avoidance reasoning. This assumption helped

resolve common oscillation issues with similar approaches and generate collision-free

9

and oscillation-free trajectories. This work is continued in [17] where Jur van den

Berg et al introduced the concept of acceleration velocity obstacles (AVO) to take the

agent’s acceleration constraints into account when accelerating towards a new velocity.

This guarantees collision avoidance with other moving obstacles by using proportional

control when accelerating the agent towards a new velocity, where the acceleration

corresponds to the difference between the current velocity and the new one and a new

velocity is continually selected outside the values of forbidden velocities which would

lead to a collision at one point in the future. The Hybrid Reciprocal Velocity Obstacles

(HRVO) approach eliminates oscillations by explicitly considering that other robots

sense their surroundings and change their trajectories accordingly [18]. The Optimal

Reciprocal Collision Avoidance (ORCA) algorithm increases computation efficiency

by reducing the problem to solving a low-dimensional linear program [15]. It assumes

that all agents are using the same collision-avoidance algorithm. Each agent then

calculates possible values in its velocity space by observing the velocities of other

agents in the environment and marks regions (half-planes) within the velocity space

that leads to collisions with these agents as ‘forbidden’. Then it efficiently selects

the optimal velocity from the intersections of the allowed half-planes using linear

programming. If no safe velocity is feasible, the safest possible velocity is selected.

Many other variations also exist in this class [19, 20, 21, 22] but they all require

knowledge of the neighboring agents’ velocities in addition to their positions; while

the method proposed by this thesis requires knowledge of the neighbors’ positions

only.

Model predictive control (MPC) approaches have also been successfully used for

collision avoidance. D. H. Shim et al [23] adopted ideas from the potential field

10

method which is another popular approach in path planning [24], [25] and presented

a nonlinear model predictive control (NMPC) algorithm that provided a framework to

solve discrete control problems for nonlinear systems under state constraints and input

saturation. It combined stabilization of vehicle dynamics and operational constraints

in trajectory generation with a potential function representing the state of information

of an obstacle or another agent to the cost function. Daniel Morgan et al proposed

a decentralized model predictive control approach for optimal trajectory planning

of multi-agent systems [26]. It built on previous work [27] which found that using

j2-invariant relative orbits with minimal relative drift between agents can drastically

reduces collisions and generate collision-free trajectories for many agents. Daniel

Morgan et al proposed an optimal real-time control algorithm that changes between

multiple j2-invariant orbits to avoid collision using sequential convex programming to

solve approximate path planning problems until the solution converges resulting in

decentralized computations and communication between neighboring agents only. H.

Zhu and J. Alonso-Mora presented a probabilistic collision avoidance by formulating

a chance constrained nonlinear model predictive control problem (CCNMPC) [28].

Many other approaches have also been proposed such as deep reinforcement learn-

ing. In [29], Yu Fan Chen et al proposed a method which offloads online computations

to an offline learning procedure by developing a network of values representing the

time it takes an agent to reach a goal considering its current configuration and the

configurations of its neighbors. The network is then used in real-time to find a fea-

sible velocity that guarantees collision-free trajectory with all neighbors. Another

approach is using gyroscopic forces and scalar potentials fields [30], and control bar-

rier functions (CBF) [31] among others.

11

Our approach is based on dividing the environment into non-overlapping regions

where agents can locally plan their trajectories while avoiding collisions with other

robots. Zhou et al [11] use this approach to propose a multi-agent distributed collision

avoidance algorithm in arbitrary dimensions which guarantees collision avoidance

between multiple agents by utilizing the Voronoi diagram of the agents to partition

the environment. Each agent is assigned a section of the environment (its Voronoi

Cell) where it can plan its own trajectory in a receding horizon manner. They also

introduce the concept of buffered Voronoi cells (BVC) which takes the robot size into

account to guarantee collision avoidance with other agents.

This work was later extended to take uncertainty into account and extend this

approach with probabilistic collision avoidance. Wang and Schwager [32] proposed the

Probabilistic Buffered Voronoi Cell (PBVC) which aims to take the uncertainty of the

on-board sensors’ measurements into consideration by introducing the notion of safety

levels, where multiple BVCs are calculated with different safety levels corresponding

to the probability that this area lies within the robot’s actual BVC. Then the PBVC

calculates corresponding probabilistically safe trajectories the agent can pursue. Zhu

et al [33] describe a similar approach by proposing the Buffered Uncertainty-Aware

Voronoi Cells (B-UAVC), which calculates regions in the environment where the agent

can travel to while remaining within its B-UAVC, given a set of chance constraints.

This method guarantees that the collision probability between the agents remain

below a certain threshold.

Another extension to the buffered Voronoi Cell approach was proposed by Pier-

son et al [34] which introduced the Weighted Buffered Voronoi tessellation to take

prioritization between agents into account by using dynamic weights to bias the cells’

12

boundaries towards agent with lower importance leading agents with higher priority

to have bigger relative cells.

All of these buffered Voronoi cell based approaches either do not specify any

deadlock avoidance behavior or use simple heuristics such as the right-hand rule,

which do not always perform well and tend to fail in densely populated environments.

We extend these methods by proposing a deadlock avoidance algorithm with three

stages for early deadlock prediction, deadlock recovery, and deadlock recovery success

prediction and integrating it into a collision avoidance algorithm based on buffered

Voronoi cells.

2.2 Swarm Sorting

Swarm sorting can be considered a part of a more general research area called swarm

intelligence (SI) which was defined by Gerardo Beni [35] as “a ‘swarm’ of agents (bio-

logical or artificial) which, without central control, collectively (and only collectively)

carry out (unknowingly, and in a somewhat-random way) tasks normally requiring

some form of ‘intelligence’”. Swarm Intelligence was first introduced by Gerardo Beni

and Jing Wang in 1989 [36] where they defined the intelligence of robot systems with

respect to how improbable their behavior is, and described how non-trivial intelligent

behavior can arise in such systems. Since then, the SI term has greatly increased in

popularity and seen widespread usage in many different fields such as robotics, artifi-

cial intelligence, computation, self-organization, complexity, economics, and sociology

[35].

One application of swarm intelligence is robot foraging, which was defined by

13

Alan F. T. Winfield [37] as “searching for and collecting any objects, then returning

those objects to a collection point”. Foraging can be performed by a single robot or

multiple robots. In the context of swarm intelligence we are interested in foraging

tasks performed by multi-robot systems, where each robot should be able to search

for the objects scattered in the environment, recognize them, transport them by pick-

ing or pushing or some other means to move them towards the desired collection

point. Foraging is very important in robotics because it represents a whole class of

other problems where search, recognition, navigation, and transport is needed, which

includes real-world applications such as cleaning, sorting, collective construction, col-

lective transport, and search and rescue [37].

These problems have their origin in nature. Obvious examples of animals ex-

hibiting foraging behavior are social insects like ants and bees. Ants cooperatively

search for food and bring it back to their nest. They where also found to organize

their brood in special patterns [38] and cluster their waste in internal nest chambers

or external piles[39], all without any central decision making or coordination. This

cooperation is one of the reasons behind the ecological success of social insects [40]

where they have been estimated to make up approximately 75% of the world’s total

insect biomass [41].

Robot foraging algorithms can be very different depending on the capabilities of

the individual robots within the swarm. Capabilities such as the robots’ ability to

access maps of their environments, localize within their environments, communicate

with a central entity, communicate locally among themselves, and have powerful on-

board sensors greatly change the type of algorithms used to solve a foraging task.

Deneubourg et al [42] proposed a very simple yet highly influential distributed sort-

14

ing algorithm inspired by how ant colonies sort their brood. This algorithm assumes

that individual agents have very limited planning (random movements), communica-

tion (no communication nor hierarchical organisation), and sensing capabilities (no

global mapping nor localization). The main ability of the agents is sensing the ex-

istence and type of objects directly in front of them and being able to pickup or

drop such objects. Even with such limited capabilities, Deneubourg et al presented a

clustering model where the agents were able to sort objects into common clusters of

the same class by setting the probability of an agent to pick up or drop a specific ob-

ject based on the number of objects it has recently encountered from the same class.

Beckers et al [43] evaluated this model by developing a multi-robot system to gather

randomly placed objects into a single cluster using the same approach. Each robot

was designed with the ability to move a few objects and leave them in locations with

high local density decided by a simple threshold. Maris and Boeckhort [44] studied

the dynamics of this clustering process with respect to the number of objects and

robots in the environment and concluded that limited mutual interference is critical

for the formation of large clusters.

Object sorting was later studied by many researchers such as Melhuish et al [45],

[46] and [47] where simple agents were used to group object from multiple classes so

that “each is both clustered and segregated, and each lies outside the boundary of

the other” [45].

Previous work within the Bio-Inspired Robotics Lab (BOTS) at Memorial Uni-

versity of Newfoundland have also tackled similar problems. Vardy [48] utilized the

agents’ vision to sense the size of visible clusters and their homogeneity to devise a

guidance strategy towards objects to pick up or drop that can dramatically accelerate

15

the sorting process. And in another work [49], Vardy et al gave the agents the ability

to localize within their environment and remember cluster sizes and locations and

compare them to observed clusters, which led to a significant improvement in the

rate of convergence.

The next section provides a formal definition of the problem we are investigating

in this thesis, and a brief introduction into the proposed algorithms to solve this task.

2.3 Problem Definition

This thesis focuses on two main problems. The first is distributed goal seeking and col-

lision avoidance for mobile robot systems where independent robots share the same

work space. The second is sorting as a distributed task, where a swarm of simple

robots are tasked to search and collect randomly distributed targets within the envi-

ronment that belong to one or more different classes, while avoiding collisions with

the static obstacles in the environment and avoiding collisions among themselves.

We propose a distributed sorting algorithm with no centralization nor cooperation

requirements. The robots are assumed to have plans of their environments, including

the desired location for each class of pucks. We also assume the robots can localize

and determine the relative positions of nearby robots and pucks. This assumption

could be met via an external localization system (e.g. [50]) or by self-localization by

reference to sensor cues. The execution of the algorithm on each robot relies solely

on the position of the robot itself and the sensed relative positions of neighboring

robots and pucks. The algorithm assumes that the robots have circular bodies with

the same radius, however, it can be deployed on robots of any shape by using the

16

radius of the robots bodies’ outermost extent to define their circular area.

We also propose an underlying local planning and collision avoidance algorithm

by integrating a novel deadlock avoidance algorithm into a base collision avoidance

algorithm based on buffered Voronoi cells (BVC), similar to the one proposed by

Zhou et al [11]. We do not introduce any additional centralization nor cooperation

requirements. The proposed algorithm is fully distributed and the execution of the

algorithm on each robot relies only on the relative positions of neighboring robots.

17

Chapter 3

Collision Avoidance

1 This chapter provides a detailed description of the proposed collision avoidance

algorithm and the basic concepts on which it is built such as the Voronoi diagram

and the buffered Voronoi cell.

3.1 Background

3.1.1 Voronoi Diagram

The Voronoi diagram is defined by a set of ‘sites’ which partition the environment

into a set of non-overlapping regions, one for each site. The region for a site s consists

of all points closer to s than to any other site [51]. Each region is called a Voronoi

cell [52]. For a finite number of sites s1, . . . , sn : n > 2 in the Euclidean plane, the

1The contents of this chapter have been published as a paper in the 2021 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS 2021) [1]

18

Figure 3.1: Voronoi Diagram and Buffered Voronoi Cells for 10 robots

Voronoi cell of si is:

V (si) = {p | ‖p− pi‖ ≤ ‖p− pj‖ for j 6= i , j ≤ n}

where pi is the location vector of si.

In the context of collision avoidance, a Voronoi diagram for the whole environment

is generated at each time step with the robots’ current positions as the sites. This

divides the environment into non-overlapping regions around each robot. If each

robot stays completely within its own cell, collisions can be avoided. To guarantee

this condition, the Buffered Voronoi Cell (BVC) is introduced.

3.1.2 Buffered Voronoi Cell

Assume we have a set of N disk-shaped robots, with radius R, and center points

p1, . . . , pn, in a collision-free configuration (the distance between any two robots is

larger than 2R). The buffered Voronoi cell of robot i is its Voronoi cell retracted by

19

its radius R, so that if the center of the robot is within its buffered Voronoi cell, the

entirety of its body is guaranteed to be within its Voronoi cell [11]. Figure 3.1 shows

the Voronoi cell and buffered Voronoi cells of a set of 10 robots.

3.1.3 Collision Avoidance with Buffered Voronoi Cells

For a set of disk-shaped robots in a collision-free configuration, the definition of the

buffered Voronoi cell guarantees that the BVC of each robot is non-empty and contains

its center. If each robot’s incremental movements are restricted to lie within their own

BVC, then their new positions are guaranteed to be in a collision-free configuration

for all future time-steps [11].

Thus, distributed collision avoidance between this group of robots can be achieved

by each robot executing the following steps at each time step until they reach their

own goals:

1) Calculate the Voronoi diagram and the buffered Voronoi cell based on the po-

sitions of the robot and its sensed neighbors.*

2) Calculate a local waypoint within the buffered Voronoi cell.

3) Move towards this local waypoint.

* The computational complexity of the 2D Voronoi diagram is O(n.log(n)) so

calculating the full Voronoi Diagram for all the robots in the environment would take

more time as more robots are added to the environment, possibly becoming too slow

for the robots to perform in real time. However, since each robot does not have

global knowledge of the positions of all robots in the environment, only a localized

20

subset of the full Voronoi diagram is calculated by each robot at each time-step using

the detected neighboring robots. This greatly limits the possible number of Voronoi

sites (robots) used when generating each of the local Voronoi diagrams allowing the

algorithm to run in real-time. We were able to perform the algorithm in real-time in

both the simulation and the physical robots.

Similar to other distributed collision avoidance algorithms, the lack of coordination

between robots can lead to deadlocks, where robots block each others’ paths in a way

that prevents at least one of them from reaching its final goal. Some algorithms use

simple heuristics to solve these deadlocks such as the right-hand rule, where each

robot moves to its right when facing another robot [11, 34]. In another technique the

robot chooses one of the nearby edges of its current buffered Voronoi cell to detour

along when in a deadlock configuration [33, 11].

These heuristics perform well in sparsely populated environments but fail to reli-

ably prevent deadlocks as the population size increases. Figure 3.2 shows comparison

between the collision avoidance algorithm introduced in [11] with right-hand heuristics

(in blue) and the proposed collision avoidance algorithm (in orange). Each algorithm

is used to drive the robots from random starting positions towards random goals

within the simulation environment described in chapter 5.

The number of robots in the environment was increased from 10 to 100 by a step

of 10 robots, and 100 simulations were performed for each configuration using both

algorithms, each lasting 2000 time steps. The long run-time is used to ensure that

the robots that did not reach their goals were trapped in deadlocks since even for

the highest number of robots used, most robots reach their final state by time step

600 (this can be clearly seen in figure 7.5 for experiment case 4, which uses the same

21

number of robots and random configuration as these experiments).

Figure 3.2 shows the average total distance between the robots and their respective

goals after 2,000 time steps for both algorithms. We can see that when using the right-

hand heuristics (in blue) all robots can reach their goals in small population sizes, but

as the number of robots increases from 10 (environment occupancy rate of 1.3%) to

100 (environment occupancy rate of 13%), the total distance increases drastically as

a result of more and more robots getting stuck in deadlocks. While for the proposed

algorithm (in orange), the total distance barely increases as more robots are added

to the environment and at 100 robots only reaches a tenth of its corresponding value

when using the right-hand heuristics.

3.2 Deadlock Prediction and Recovery Algorithm

In this section, we will first outline the proposed collision avoidance algorithm, then

describe each of its stages.

3.2.1 Collision Avoidance Algorithm Overview

We add to the assumptions given in Section 3.1.2 that the set of n disk-shaped robots

starts in a collision-free configuration and each robot is assigned a goal g, with the

goals also being in a collision-free configuration (when the robots reach them). With

these assumptions in mind, We propose the following distributed collision avoidance

algorithm.

At time t, each robot senses its own position pt, and the positions of neighboring

robots, forming the set Nt, where Nt is the set of sensed neighbors’ positions at

22

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90 100

D
is

ta
n

ce
 (

cm
)

Number Of Robots

Total Distance To Goals After 2,000 Timestep

Figure 3.2: Deadlocks With Respect to Environment Density

Mean and standard deviation of remaining total distance to goals after 2,000 time

steps for 100 simulations for the right-hand heuristics (blue) and the proposed

algorithm (orange).

23

time t. Then it calculates its current buffered Voronoi cell (BVC) Bt based on these

measurements. A local waypoint gt within the current BVC is then selected. Once gt

is found, the control input ut is calculated to drive the robot towards it for that time

step. This process is repeated until the robot reaches its goal within an acceptable

distance ε such that

‖g − pt‖ < ε.

Algorithm 1. Collision Avoidance Algorithm

while ‖g − pt‖ > 0 do

Update pt (current position)

Update Nt (current neighbors’ positions)

Calculate Bt (current buffered Voronoi cell)

Calculate g∗t (closest point in Bt to goal)

if g ∈ Bt then # Goal is Within BVC

Set gt = g

else if RecoveringfromDeadlock = True then

Perform Deadlock Recovery Step

else if DeadlockDetected or DeadlockPredicted then

Initiate Deadlock Recovery

else

Set gt = g∗t

end if

Calculate ut to drive robot directly towards gt

end while

24

By default, the waypoint at time t, gt, is the point within the current buffered

Voronoi cell Bt that is closest to the goal, we will call this special point g∗t . However,

if a deadlock is detected or if this waypoint is predicted to lead to a deadlock con-

figuration according to the proposed deadlock prediction step, or if the robot is still

recovering from previous deadlock, a different waypoint is selected in the deadlock

recovery step. An overview of this algorithm is given in Algorithm 1 3.2.1.

3.2.2 Deadlock Prediction

The proposed deadlock avoidance algorithm consists of three stages: deadlock pre-

diction, deadlock recovery, and deadlock recovery success prediction. Early deadlock

prediction and recovery has many benefits over sensing and reacting to deadlocks; it

helps steer the robots clear of each other and increase the safety distances between

them since sensing a deadlock often means the robots are already at the minimum

distance possible without causing a collision -as proved by condition (1) in section

3.2.2-. The lack of deadlock prediction can also lead to extreme congestion where

many robots get too close to each others leaving the robots in the center stuck while

waiting for outside robots to detect and recover from their deadlock configurations.

Deadlock prediction can reduce this risk by predicting possible deadlocks caused by

congestion and maneuvering towards clearer paths. This difference can be clearly

seen in the simulations discussed in section 7.1.1. Deadlock recovery success pre-

diction ends deadlock recovery maneuvers as soon as it predicts that the deadlock

has been successfully avoided -as explained in section 3.2.4, which helps decrease the

distance and time to reach the goal by reducing the overshoot during these maneuvers.

25

The proposed deadlock prediction algorithm is based on the position of the way-

point gt at each time step with respect to the positions of neighboring robots and the

goal g.

We know that a deadlock can only occur when the robot is located at g∗t , the

closest point to a robot’s goal within its buffered Voronoi cell, otherwise, there would

be a closer point to the goal, and according to Algorithm 1 3.2.1, the robot would

move towards that point for at least one time step. Furthermore, Zhou et al [11]

prove that this point can only be a) A vertex of the BVC or b) On an edge of the

BVC such that a line from pt to g∗t is perpendicular to this edge, and the center of

the neighboring robot who shares the Voronoi edge must also be located on the same

line. Case (b) is trivial due to the collinear requirement which can be broken with

any deviation to either side by either robot, thus we are only interested in predicting

the case (a) where g∗t is a vertex of the BVC.

Since this deadlock configuration only occurs when the robot is located at g∗t , and

g∗t is a vertex of the BVC, then by definition of the BVC, the vertex is connected

with two edges shared with two neighboring robots ni, nj positioned at pit and pjt,

the distance between the robot and these neighboring robots must be 2R:

‖g∗t − pit‖ = ‖g∗t − pjt‖ = 2R (1) (3.1)

Proposition 1 : For condition (1) to be satisfied, the distance between ni and nj,

must be equal to or less than 4R:

‖pit − pjt‖ ≤ 4R (2) (3.2)

Proof : Let us assume that ‖pit− pjt‖ > 4R, then for any point x ∈ R2 not on the

26

line segment between pit and pjt:

‖x− pit‖+ ‖x− pjt‖ > ‖pit − pjt‖ ∀ x ∈ R2

then,

‖x− pit‖+ ‖x− pjt‖ > 4R ∀ x ∈ R2

If we choose x as a point where,

‖x− pjt‖ = 2R

then it must be that,

‖x− pit‖ > 2R

which contradicts condition (1).

When condition (1) is satisfied, we are only interested in predicting deadlock

configurations where the current waypoint g∗t and the goal g are on different sides of

the line between the neighbors ni and nj. Otherwise the deadlock would be a result

of one of the neighboring robots being positioned too close to the goal, preventing

the robot from reaching it. This means that the robot is already as close to the goal

as possible without colliding with other robots and performing a deadlock recovery

maneuver would drive the robot further away from the goal, so it would be better for

the robot to remain still and wait for the neighboring robot to move away allowing

it to continue towards its goal.

Figure 3.3 shows an example of each of these cases. The red sector corresponds

to the points where a goal would lead to a deadlock according to condition (1), since

the closest point to it within the BVC would be the vertex. Otherwise, the closest

27

(a) (b)

Figure 3.3: Examples of Deadlock Configurations

Condition (3) is satisfied in (a) and but not satisfied in (b), while condition (1) is

satisfied in both cases. It is clear that a detour around one of the neighboring

robots in the first case would be helpful, but not in the second case. The red sector

corresponds to the points where a goal would lead to a deadlock according to

condition (1).

28

point to the goal would be other than the vertex and the robot can move towards it

according to Algorithm 1 3.2.1 without causing a deadlock.

For two robots ni(xi, yi) and nj(xj, yj), we can find on which side of line −−−→ni, nj a

given point g(xg, yg) is located by calculating the following term:

d = (xg − xi)(yj − yi)− (yg − yi)(xj − xi)

The sign of d indicates on which side of the line the point lies and d = 0 means

that it lies exactly on the line.

We can then define condition (3) as: the local waypoint at time t, g∗t (xg∗t , yg∗t)

and the goal g(xg, yg) must be on different sides of the line −−−→ni, nj connecting the two

neighbors nit(xit, yit) and njt(xjt, yjt). Then can be formulated as:

sign((xg∗t − xit)(yjt − yit)− (yg∗t − yit)(xjt − xit)) 6=

sign((xgt − xit)(yjt − yit)− (ygt − yit)(xjt − xit))

(3.3)

Using conditions (1), (2), and (3) we propose our deadlock prediction algorithm

to be performed for g∗t at each time step as:

Find Nt
′, the set of neighbors within kR distance to g∗t , this is similar to condition

(1), after replacing 2 with constant k ≥ 2 (we used k = 3) to achieve earlier prediction

of deadlocks:

Nt
′ = {ni ∈ Nt | ‖g∗t − pni‖ < kR}

We then calculate the number of neighbors satisfying this condition as |Nt
′|, the

cardinality of set Nt
′. If |Nt

′| < 2, we predict no deadlock will occur. Otherwise, We

look for neighbor pairs ni, nj in Nt
′, within 4R of each other and for each pair we

29

check whether gt and g∗t are on opposite sides of the line −−→ninj. If this condition is

satisfied for any pair, then a deadlock is predicted.

3.2.3 Deadlock Recovery

We propose a multi-step deadlock recovery algorithm; when a deadlock is predicted

or detected, the robot goes into deadlock recovery state, during which multiple ma-

neuvers are performed until deadlock recovery success is predicted or the maximum

number of maneuvers M is reached.

During each maneuver, simple heuristics are used to select a detour waypoint

within the current buffered Voronoi cell, gt ∈ Bt (selection process is detailed below).

The robot then moves towards this waypoint at each time step t until one of following

condition occurs:

a) The deadlock recovery success prediction algorithm predicts that deadlock re-

covery has succeeded, in which case the deadlock recovery process is terminated,

and the robot goes back to normal operation state.

b) The waypoint gt is reached: then a new maneuver is re-initiated, and a new

detour waypoint gt is calculated if the maximum number of maneuvers M has

not been reached. Otherwise, the deadlock recovery process is terminated, and

the robot goes back to normal operation state.

c) The waypoint gt goes outside of the new buffered Voronoi cell (as a result of the

robot moving and its BVC changing according to its new position and the new

positions of its neighboring robots): then a new maneuver is re-initiated, and a

30

new detour waypoint gt is calculated if the maximum number of maneuvers M

has not been reached. Otherwise, the deadlock recovery process is terminated,

and the robot goes back to normal operation state.

There are alternate approaches which select the detour waypoint as a point on

one of the adjacent edges to the vertex where deadlock was detected [11, 34]. While

this works well in some cases, it leads to poor performance in many others. For exam-

ple, when the adjacent edges, and consequently, the distance between the deadlock

position and the detour waypoint are very short, the robot fails to recover from the

deadlock and instead goes into a livelock state where it keeps alternating between

these two points.

To increase the likelihood of successful deadlock recovery, we propose a detour

point that takes into account the shape of the buffered Voronoi cell and the positions

of the neighboring robots with respect to the goal. We call this the outermost point

ot and define it as the point within the BVC that is furthest from the line between the

current position of the robot and the goal, −→ptg as shown in Figure 3.4. We formulate

ot as:

ot = vi ∈ VBV C | ‖vi − v′i‖ ≥ ‖vj − v′j‖ ∀ vj ∈ VBV C , vi 6= vj

where:

• VBV C is the set of all vertices of the current BVC, Bt, for the first maneuver when

a deadlock recovery is initiated. For all other maneuvers, only the vertices of the

Bt that are on the same side of −→ptg as the initial ot was in the first corresponding

maneuver (to keep the robot heading in one direction for the whole recovery).

• vi is one of the vertices of VBV C

31

• v′i is the projection of vi on −→ptg

To decrease overshooting, we can use a point between the robot’s current position

and ot as the detour point gt:

gt = (1− c)pt + c . ot

where c is the proportion of the distance for which the robot moves towards the

outermost point, ot.

3.2.4 Deadlock Recovery Success Prediction

Deadlock recovery success prediction works by using heuristics based on the conditions

that predicted the deadlock and the locations of the robot and neighboring robots;

the robot tracks the position of neighbors near the location of the last deadlock and

detects whether the robot’s maneuver has caused a deadlock condition to be broken.

From deadlock conditions (1) and (3) we can deduce that in a deadlock configura-

tion where the robot is located at g∗t , and g∗t is a vertex of the BVC; the neighboring

robots n1 and n2 who share the Voronoi edges connected to g∗t must be on different

sides of the line −→ptg connecting the robot position and its goal. We use the failure of

these conditions (1) and (3) as prediction of success of this deadlock maneuver.

We propose a deadlock recovery success prediction condition requiring all robots

within distance kR : k ≥ 2 (where k is the same constant used in the deadlock

prediction algorithm) to be on the same side of the line −→ptg. Furthermore, the distance

between any of these robots and the line −→ptg must be larger than the radius of the

robot.

32

Figure 3.4: Example of Deadlock Prediction and Recovery

Step 1 shows how the outermost point ot and the detour point gt were selected after

a deadlock configuration was predicted at g∗t . Steps 2-4 show the following

maneuvers until normal operation is resumed on step 5 (gt = g∗t).

33

For a robot at position pt, moving towards goal g, and currently recovering from

a deadlock that occurred at position pd; we refer to the set of all neighbors at time t

as Nt, and define Nt
∗ as the subset of neighbors that are located within kR of pd:

Nt
∗ = { ni ∈ Nt : ‖pd − pni‖ < krs}

We define si as the side of line −→ptg on which neighbor ni is located,

si = sign((xni − xpt)(yg − ypt)− (yni − ypt)(xg − xpt))

and the distance between neighbor ni and line −→ptg as,

mi = ‖pni − pn′i‖,

where pn
′
i is the projection of pni on the line −→ptg.

We can then formulate the proposed conditions for deadlock recovery success

prediction as:

si = sj ∀ i, j | ni, nj ∈ Nt
∗ and mi > R ∀i | ni ∈ Nt

∗

Summary

In this chapter we detailed the proposed collision avoidance algorithm including a

background look at some of the theoretical concepts it is built upon, such as the

Voronoi Diagram; how collision avoidance is guaranteed; and the proposed deadlock

prediction and recovery algorithm, describing each of its three stages: deadlock pre-

diction, deadlock recovery, and deadlock recovery success prediction. The proposed

collision avoidance algorithm runs slower than the generic algorithm since it adds

34

more steps for predicting and avoiding deadlocks while the generic algorithm lacks

similar steps. However, the measured difference between the two algorithms is min-

imal, only around 10% according to our bench marking. Chapter 7 provides further

details about how this algorithm was implemented and validated in both simulations

and real-life experiments.

In the next chapter we propose a distributed sorting algorithm that builds upon

this collision avoidance algorithm to enable multiple robots to gather objects from

different sets into specific areas in the environment.

35

Chapter 4

Swarm Sorting Algorithm

In this chapter we will detail the proposed distributed sorting algorithm, with the goal

of sorting randomly positioned objects in the environment into specific goal areas for

each class of targets. We introduce algorithms for target selection, target conflict

avoidance, control strategy, and global planning. The proposed algorithm uses the

previously detailed collision avoidance algorithm in section 3.2.1 as the underlying

local movement planning algorithm. We assume that the environment will contain

static obstacles so at the end of this chapter we propose additional mechanisms for

avoiding static obstacles using the same concept of buffered Voronoi cells.

4.1 Sorting Algorithm

In this section we will discuss the sorting algorithm including the following sub-

problems:

• Target selection: how the robots choose a suitable target to push.

36

• Target conflict avoidance: how robots avoid competing for the same target.

• Control strategy: how to control the robot in order to push a target towards its

goal.

• Target direction: how robots decide which direction to push each target towards.

• Default behavior when no suitable targets can be found: orbit the environment.

For this sorting problem we are assuming that the environment is static, the

robots have a map of the environment, and know the desired final position for each

class of targets. We also assume that the robots can localise themselves within their

environment and can sense the position of nearby robots, targets, and static obstacles.

The algorithm is fully distributed; each robot works independently without any need

for communication or central coordination.

4.1.1 Default Behavior - Orbiting the Environment

The default behavior for robots with no suitable targets in range is to circle the

environment looking for new targets, this behaviour is inspired by other algorithms

such as [53], where the robots orbit the environment and push objects inwards to build

enclosures with specific shapes. Similar to that algorithm, our robots move targets

(pucks) towards their goals only by pushing them. This can be done optimally when

the puck lies between the robot and its goal. With the robot directly behind the puck

with respect to the puck’s goal, it can push the puck directly towards its goal (from

the outside in, with respect to the environment). To achieve this optimal positioning

while orbiting the environment looking for pucks, the path length of the orbit around

37

the environment is continuously expanded, causing the robots to slide further towards

the edges as they orbit the environment.

Instead of repeatedly calculating the environment orbit route, we can use the

robot’s knowledge of the environment to generate a static map for the orbit route.

This map will contain, for each position in the environment, the direction towards

which the robot should move when located at that position, if no suitable targets are

found. This can be represented as a direction vector or as a local goal point. In this

section, we will detail how this map is generated using the fast marching method [54],

which describes the propagation of a closed surface as a function of time.

The first step is to produce the closed surface that we want to propagate, which is

the outermost orbit, where the robot moves directly along the border of environment,

we will call it the orbit border. This can be generated directly from the polygon

representing the shape of the environment boundary and the static obstacles, after

shrinking the resulting polygon by a safety distance that equals the radius of the

robot R.

We can define this surface using a discretized grid representation of the environ-

ment such as a binary array of the same size as the environment. We initialize all

cells in this array with a default value (V0 = −1). We use another value (V1 = 1) for

all points within the environment boundary that are at least R distance away from

the border of the environment and from any static obstacle. The surface can then

be defined as the contour resulting between these two sections of the map. Figure

4.1 shows how the orbit border can be defined for a simple map with a single static

obstacle.

We then calculate the distance to this orbit border from every cell in the environ-

38

Figure 4.1: Environment Shape and Resulting Orbit Border

39

Figure 4.2: Distance to Orbit Border

This figure shows the distance to orbit border array calculated using the fast

marching method. Distance is denoted with colors where darker colors (blue shades)

represent small distances near the orbit border while lighter colors (green and yellow

shades) represent longer distances further away from the border.

ment using the fast marching method. This generates an array with the same size as

the discretized environment array, where each cell’s value is the closest distance from

the cell’s position to the orbit border. Figure 4.2 shows the distance array generated

for the environment shown in figure 4.1.

This array can be used to find the shortest path from any point in the environment

40

(a) Gradient vectors pointing to increasing distances from orbit border

(b) Vectors pointing to decreasing distances to orbit border

Figure 4.3: Gradients of Distance Function and Direction to Orbit Border Vectors

41

to the orbit border by walking downhill (following neighbors with minimal distances).

First, we calculate the gradient of the distance array on both the X and Y axes

resulting in a gradient vector for each point in the environment that describes the

direction and rate of change of the fastest local increase in distance. figure 4.3 shows

the gradient vectors generated from the distance array shown in figure 4.2.

As we want to find the directions towards the orbit border (towards decreasing

distances), we reverse the direction of the gradient vectors (multiply the vectors by

−1). This produces an array of vectors pointing along the shortest path to the orbit

border from any point in the environment as shown in figure 4.3.

In order to introduce the environment orbiting behavior in the same direction on

both sides of the orbit border; we define the orbit direction vector
−→
dr for a vector

denoting the direction towards the border
−−−−→
b(x, y) by rotating

−−−−→
b(x, y) by 90◦ clockwise

for all points within the orbit border:

−→
dr = (y,−1x)

and by 90◦ anti-clockwise for all points outside of the orbit border:

−→
dr = (−1y, x)

By adding the two vectors
−→
b and

−→
dr for all points in the environment and smooth-

ing the resulting array using a Gaussian filter we reach a smooth orbiting behavior

for the entire map where the robot circles the environment on an orbit with an ever

increasing radius, moving closer to the boundary until it reaches the orbit border,

where it keeps circling the environment on this border along side the edge of the

environment until a suitable puck is found. The corresponding vector field for the

environment shown in figure 4.1 is shown in figure 4.4.

42

Figure 4.4: Environment Orbits

This figure shows the paths on which a robot orbits the environment using direction

vectors pointing along orbits with increasing radii up to the orbit border.

43

This map can be calculated once either offline or on startup of the robot, and

can be dynamically regenerated only when necessary, such as in cases where static

obstacles change during operations. The map can be accessed quickly in real-time,

providing an efficient default path planning for robots when no suitable targets are

detected.

4.1.2 Target Selection and Target Conflict Avoidance

In this section, we will refer to the objects in the environments which the robots need

to sort into different areas as targets or pucks. At each time step t, the robot detects

all nearby targets within the sensing range, we can refer to the set of all detected

nearby targets as Qt.

In order to avoid target conflicts, where multiple robots compete to push the same

target, only targets located within the robot’s current Voronoi cell Vt are considered,

which prevents multiple robots from pursuing the same target since the voronoi cells

do not overlap. We define Tt as the set of detected targets that lie within the current

voronoi cell:

Tt = { ni | ni ∈ Qt , pi ∈ Vt }

Where: pi is the position of target ni.

In the case where Tt = φ, when no target in the sensing range lies within the

current voronoi cell Vt, the robot falls back to orbiting the environment as described

in section 4.1.1.

For each target ni in Tt, the robot retrieves
−→
di , the direction towards which the

target should be pushed -using the algorithm described in section 4.1.4- and calculates

44

a local goal gi for this target based on
−→
di and pi:

gi = pi +
−→
di

Then the robot calculates two metrics for each target ni that will be used to

determine which target to pursue: the first is the distance di between the robot’s

current position P and the target’s current position pi. The second is the angle ai

which is calculated from the angle ∠Ppigi between the robot’s current position P ,

the puck’s current position pi, and the puck’s local goal gi.

The angle ai for each target is then converted to the [0◦ − 180◦] range as follows:

ai = |∠Ppigi − 180|

The target with the smallest angle ai is then selected as the best target Wt, since

targets with small angles are best positioned to be pushed to their local goal from

the robot’s current position as explained in 4.1.3. If multiple targets have the same

angle, the one closest to the robot is selected as the best target Wt:

Wt = ni | (ai < aj) or (ai = aj and di ≤ dj) ∀ ni, nj ∈ Tt

4.1.3 Control Strategy

After the robot selects its target, it tries to find a trajectory that allows it to push

that target towards its goal. We propose two trajectories based on the angle ai of the

target as described in section 4.1.2.

If the angle ai is very small, smaller than a specific threshold c1 (c1 = 15◦ in our

experiments), then the robot is already well positioned to directly push the target

45

Figure 4.5: Target Selection

Figure shows how two metrics, distance di and angle ai, are used for selecting the

best target. In this figure, pucks 1 and 2, located at p1 and p2 have the smallest

angles (a1 = a2 = 15◦) but since puck 1 is closer to the robot (d1 ≤ d2), puck 1 is

chosen as the best target.

46

Figure 4.6: Control Strategy

Possible trajectories for a robot depending on the selected target’s position:

Left: For target p1, a1 = 15◦ ≤ c1 = 15◦ so the current position of the puck is set as

the robot’s local goal gt.

Right: For target p3, c1 = 15◦ ≤ a3 = 60◦ ≤ c2 = 75◦ so the robot’s local goal gt is

set as the point closest to the robot’s current position P from the line connecting

the puck’s position p3 and its goal g.

47

towards it goal. Thus, the robot moves directly towards the target by setting its local

goal gt as the target’s current position pi.

Otherwise, if the angle ai is larger than c1 but is still smaller than another threshold

c2 (c2 = 75◦ in our experiments), then the robot needs to perform a maneuver to

better position itself to be able to push the target towards its goal. This maneuver

can be performed by selecting the local goal gt as the point g′i that is closest to the

robot’s current position P from the line connecting the target’s current position and

the target’s current local goal −→pigi. This causes ai to decrease as the robot gets closer

to the line −→pigi and the previous threshold c1 to be eventually crossed when ai < c1,

the robot can then move directly towards the target to push it towards its goal as

explained in the previous paragraph. Figure 4.6 shows both of the previous scenarios.

If the angle ai is larger than c2 then the current target is not well positioned to

be pushed towards its goal from the current robot position, because the robot would

need to perform a complicated maneuver to decrease ai (get behind the target with

the respect to the target’s goal). An example of this configuration is puck 4 shown

in figure 4.5. In this case, the robot ignores this puck and falls back to orbiting

the environment. The default environment orbit behaviour described in section 4.1.1

drives the robot towards the environment boundaries; this causes the robot’s orbit

to expand with time and leads the robot in future encounters with the puck to be

better positioned to push it from the outside in towards its goal (if the robot doesn’t

diverge from its orbit by finding another suitable target to pursue).

48

4.1.4 Global Planning

The previously discussed behaviors allow the robots to navigate their local environ-

ment and select and push suitable targets towards their goals. However, choosing

a suitable target assumes the robots know the direction towards which each target

should move from its current position to get closer to its goal. This might be triv-

ial in environments with no static obstacles, where the targets can always be pushed

directly towards their goals. But with static obstacles present, it requires global plan-

ning for finding a suitable route a target can take from its current position towards its

final goal. This can be extremely time consuming if the path has to be recalculated

for each target at each time step. We will address this issue by generating global goal

maps for each target group. This map will contain, for each position in the environ-

ment, the direction towards which a target located at that position should move to

get closer to its goal. This can be represented as direction vectors or as local goal

points. In this section, we will detail how these maps are generated using the fast

marching method [54] similar to how the environment orbit map was generated in

section 4.1.1, but with the addition of considering the propagation speed within the

environment.

The first step is to produce a discretized grid representation of the environment

such as an array of cells of the same size. Then we define the closed surface that

we want to propagate, which is the goal position in our case. This is achieved by

generating a binary array of the environment where all cells representing empty space

have the same value V0 = −1, while the cells containing the goal has a different value

V1 = 1, the closed surface is thus defined by the contour around the cells with value

49

V1. We call this array the goal mask. Figure 4.7 shows a goal mask where the goal

position (75, 65) is enclosed by a circle separating it from the rest of the empty space.

Figure 4.7: Goal Mask

This figure shows the goal mask where the goal cell has a value of V1 = 1, while all

other cells representing the empty space have a different value V0 = −1. The red

contour separates the goal from the empty space and acts as the closed surface in

the fast marching method.

The next step needed for the fast marching algorithm is defining the speed func-

tion, which describes the propagation speed at each cell in the environment. Since we

want to use the fast marching method to calculate the distance to the goal, we can set

that speed to s = 1 in empty space, and denote static obstacles in the environment

by setting the speed in their corresponding cells to zero. Figure 4.8 shows a speed

50

mask where the static obstacle cells have a propagation speed of 0 while the rest of

the cells have a speed of 1.

Figure 4.8: Speed Mask

The figure shows the speed mask where the static obstacles’ cells (in blue) have a

value of 0, while all other cells representing the empty space (in green) have speed

value of 1.

We then calculate the distance to goal array using the fast marching method, this

generates an array with the same size as the discretized environment array with each

cell’s value set to the total distance of the shortest path from the cell’s position to

the goal. Cells that represent static obstacles where the propagation speed is set to 0

and no path to the goal can be calculated are represented with a special value such as

Null. Figure 4.9 shows this array calculated using the goal and speed masks shown

in figures 4.7 and 4.8.

51

Figure 4.9: Distance to Goal

This figure shows the distance to goal array calculated using the goal and speed

masks shown in figures 4.7 and 4.8. Distance is denoted with colors where darker

colors (blue shades) represent small distances near the goal while lighter colors

(green shades) represent longer distances, and white is used to denote static

obstacles where a path to goal cannot be calculated.

This array can be used to find the shortest path from any point to the goal by

walking downhill towards the goal. One way to achieve this is to calculate the gradient

of the distance array on both the X and Y axes. This results in gradient arrays, which

are two arrays that represent the changes in the distance function on both axes. The

value of these gradient on X and Y axes at a certain point p in the environment

can be interpreted as a gradient vector −→gp that describes the direction and rate of

change for the fastest local increase in the distance. If these values are non-zero,

52

then the direction of the gradient vector points towards the direction of the fastest

increase, while its magnitude represents the rate of this increase. Figure 4.10 shows

the gradient vectors of the distance to the goal array shown in figure 4.9.

Figure 4.10: Gradient of the Distance Function

This figure shows the gradient vectors pointing towards increasing distances to the

goal at each point in the environment.

However, since we want to find the path towards the goal, we are interested

in calculating the directions towards decreasing distances to the goal rather than

increasing distances. This can be calculated from the gradient vectors as follows:

−→
dp = −1 −→gp

We call
−→
dp the direction to goal vector, which defines the direction along the shortest

path to the goal from a target located at point p in the environment.

53

Using the gradient arrays we can calculate a new array with the same size as

the discretized environment array where each cell’s value is
−→
dp (the direction to goal

vector), we call this array the goal map. Figure 4.11 shows the goal map calculated

from the gradient vectors shown in figure 4.10.

Figure 4.11: Goal Map

This figure shows the direction to goal vectors
−→
dp pointing towards decreasing

distances along the shortest path to the goal from each point in the environment.

These maps can be calculated once, using the definition of the environment, static

obstacles, and the goal positions for each target group, either offline or on startup of

the robot. They provide fast online access to global planning for each target group in

real time. At each time step, each robot senses the type and location of neighboring

pucks and directly finds each puck’s direction using the goal map of that particular

54

target type with no need for any extra path planning calculations during runtime. It

then chooses the best candidate to push according to the target selection algorithm

detailed in section 4.1.2.

4.2 Obstacle Avoidance with Voronoi Cells

The collision avoidance algorithm described in chapter 3.2.1 handles collision avoid-

ance against other robots but does not deal with other obstacles in the environment.

In this section we will propose a mechanism for avoiding static obstacles within the

environment based on the same concept of buffered voronoi cells. The algorithm

works by finding the closest obstacle to the robot at each time step and modifying

the voronoi cell in a way that prevents the robot from colliding with that obstacle.

At each time t, each robot calculates its current Voronoi cell Vt based on its

position P and the positions of neighboring robots. The robot then senses the nearby

objects within its sensing range forming St, the set of all sensed points belonging to

nearby static obstacles at time t that lie within Vt. If St is empty, meaning no point

within the current sensing range is found to be within Vt, then Vt is used to calculate

the buffered voronoi cell without modification. Otherwise, a new Vt is calculated as

follows.

The closest point to the current robot position P within St is selected as st:

st = pi | ‖P − pi‖ ≤ ‖P − pj‖ ∀ j 6= i , pi, pj ∈ St

We then calculate the equation of the line that passes through st and is perpen-

dicular to the line connecting st and the current position of the robot P . We first

55

(a) (b)

(c) (d)

Figure 4.12: Static Obstacle Avoidance

Examples of dynamically modifying the Voronoi cell to avoid static obstacles. The

figures show the robot at position P and its sensing range. In (a) no static obstacle

is detected so the Voronoi Cell is not modified. (b, c, and d) show how the Voronoi

cell is modified by splitting it -with the blue line- depending on the position of the

point st, the closest static obstacle detected within the sensing range.

56

calculate the vector −→rt from P to st as:

−→rt = st − P

We then find a vector −→rt ′ that is perpendicular to −→rt from the fact that their dot

product is equal to 0:

−→rt ′.−→rt = 0

The equation of the line passing through st and perpendicular to −→rt can then be

formulated as:

lt = st +m.−→rt ′ : m ∈ R

We use this line to split the robot’s current Voronoi cell Vt into two polygons.

Since all voronoi cells are convex polygons, this split will result into two polygons

that are also convex polygons. We then set the polygon that contains the robot’s

current position as the new voronoi cell Vt, which is used to calculate the current

buffered voronoi cell and the navigation process is continued as described in 3.2.1.

As the robot moves closer towards other obstacles in the environment, the closest

point to these obstacles st is dynamically recalculated along with the line splitting

the voronoi cell, limiting the robot’s movements within this cell and guaranteeing no

collisions can occur with any obstacle.

Summary

In this chapter we described the proposed distributed sorting algorithm, With de-

tailed solutions for solving each of its sub problems; target selection, target conflict

avoidance, control strategy, and global planning. We also proposed an extension to

57

the collision avoidance algorithm described in chapter 3 for avoiding static obstacles

using the same concept of buffered Voronoi cells. Chapter 7 provides further details

about how this algorithm was implemented and validated in both simulations and

real-life experiments.

In the next chapter we will describe the design and development of a web-based

robotics simulation platform that will be later used to implement and validate the

proposed algorithms.

58

Chapter 5

Simulation

This chapter describes the design and development of the SwarmJS simulation plat-

form. This platform is open source and available on GitHub (github.com/m-abdulhak/

SwarmJS). It is written in JavaScript and relies only on open source libraries. It was

custom built to be a general simulation for swarm robotics algorithms and was used to

develop and benchmark the collision avoidance algorithm (github.com/m-abdulhak/

Buffered-Voronoi-Cell-Deadlock-Avoidance) and the swarm sorting algorithm

(github.com/m-abdulhak/swarm).

5.1 Introduction

Computer simulations can be invaluable tools in the development of new robotics

platforms and algorithms. They provide a virtual playground to rapidly prototype

ideas and collect testing data to validate which approaches work well. Having access

to an accurate and easy to use simulation can drastically cut down on the development

time and cost, while also providing a safe testing environment [55].

59

github.com/m-abdulhak/SwarmJS
github.com/m-abdulhak/SwarmJS
github.com/m-abdulhak/Buffered-Voronoi-Cell-Deadlock-Avoidance
github.com/m-abdulhak/Buffered-Voronoi-Cell-Deadlock-Avoidance
github.com/m-abdulhak/swarm

In addition to providing easier diagnosis and much finer control and debugging

capabilities. They also provide easier separation of concerns, where we can test a

specific part of the system without worrying about the effects other parts of the

system might have on the results; such as evaluating a path planning problem without

worrying about the accuracy of the localization sensors, or the mechanical limitations

of the robot’s physical body.

The use of simulations can also be an important factor in avoiding cost and time

limitations, as they commonly allow testing configurations that would be infeasible

or too expensive to perform otherwise; such as evaluating how a collision avoidance

algorithm would perform with hundreds of robots instead of being limited by the

number of available physical robots, or how a foraging algorithm would fare with

thousands of targets, which might take hours to perform in real life.

5.2 SwarmJS Simulation Platform

The SwarmJS platform is a web-based multi-robot simulation platform that was devel-

oped to prototype and benchmark the previously discussed robotic algorithms before

deployment to actual robots. While this simulation was built from scratch for this

purpose, it was designed to be a general purpose simulation so that it can be used

for simulating multi-robot algorithms as quickly and seamlessly as possible.

SwarmJS is written in JavaScript and runs completely in the browser. This makes

it very portable as it can be run on any system that supports modern web browsers,

and since it runs completely in the browser, it does not need a back end server and

can be easily hosted online using any hosting service that supports static websites,

60

0 316

Figure 5.1: Simulation Rendering

Figure shows a simulation scene with static objects shown in black. Two types of

pucks and their goal areas are shown in red and blue. Robots are shown in yellow

with their actuators, sensors, goals, local waypoints, Voronoi cells, and buffered

Voronoi cells.

such as GitHub pages, where it is currently accessible.

SwarmJS allows developers to define 2D environments and populate them with

multiple kinds of components including static objects such as obstacles, passive dy-

namic objects such as targets (pucks), and active dynamic objects such as the robots.

It utilizes a realistic physics engine to simulate these elements’ interactions within

the environment, giving the ability to define the physical properties for each element

61

such as shape, mass, and density in addition to advanced properties such as friction

coefficients, restitution coefficients, collision filters to limit interactions between dif-

ferent types of objects, and gravity forces on each axis of the environment. In short,

SwarmJS provides capabilities to simulate the following:

• Virtual environment with static and dynamic objects

• Robot sensing

• Robot planning

• Robot motion

• Interactions between multiple robots

• Interactions between robots and objects in the environment

5.2.1 Quick Actions

A list of quick action buttons can be found above the simulation window as shown in

figure 5.1 including:

• Toggle Rendering: Enables / disables the rendering of the simulation. Disabling

the simulation can lead to 2x better performance while the simulation is running.

• Toggle UI: Enables / disables a user interface that displays more options and

the benchmarking graphs.

• Reset Simulation

• Pause / Resume simulation

62

• Start / Stop benchmarking

• Benchmark Runs: Number of times the benchmark has finished a simulation

run across all provided simulation scenarios.

• Simulation Time

5.2.2 Quick Start

The following commands shown in code listing 5.1 can be run to startup the simulator:

> git clone https :// github.com/m-abdulhak/SwarmJS.git

> cd SwarmJS

> npm install

> npm run dev

Listing 5.1: SwarmJS Quick Start

The App component provides the entry point of the simulator. Two parameters

should be passed when initializing a new simulation:

• config: defines the simulation configuration.

• benchSettings: defines the benchmarking configurations.

Two example configurations are provided and can be used to start new simulations

as shown in code listing 5.2:

63

import { examples } from ’./swarmjs -core’;

const {simConfig , benchmarkConfig} = examples.voronoiSorting;

// or:

// const {simConfig , benchmarkConfig} = examples.simpleSorting;

ReactDOM.render(

<App config ={ simConfig} benchSettings ={ benchmarkConfig }/>,

document.getElementById(’root’)

);

Listing 5.2: SwarmJS Simulation Initialization

5.2.3 Configuration

Simulations are generated based on configuration objects passed to the SwarmJS

library. Below are the main parameters that can be used:

• env: Defines the environment properties, including:

– width: width of the simulated environment

– height: height of the simulated environment

– speed: relative speed of the simulation

• objects: a list of static object definitions, two types of static objects are sup-

ported, circles and rectangles. Each object definition can include the following:

– type: ’rectangle’ or ’circle’

64

– center: the center of the object

– radius: radius of the circle, for circles only.

– width: width of the rectangle, for rectangles only.

– height: height of the rectangle, for rectangles only.

• robots: Defines the robots properties, including:

– count: number of the robots

– radius: radius of the robots

– sensors: list of enabled sensors.

– actuators: list of enabled actuators.

– useVoronoiDiagram: boolean, if true the Voronoi diagram for the robots

is calculated at each timestep.

– controllers: controllers are either passed directly or along with tuning pa-

rameters using the controller and params keys. Both syntax are present in

the provided example configurations. Below are the 4 types of controllers

that can be defined:

∗ goal: sets the goal of the robot at each timestep. Accepts 3 parameters

oldGoal, sensors, actuators and returns the new goal.

∗ waypoint: provides motion planning for the robots. Accepts 3 param-

eters goal, sensors, actuators and returns a waypoint for the robot to

head towards.

∗ velocity: provides the control signals (velocities) that should move

65

the robot towards the waypoint. Accepts 3 parameters goal, sensors,

actuators and returns a vector of velocities linearVel, angularVel .

∗ actuator: optional controller to control the actuators. Accepts 2 pa-

rameters sensors, actuators and does not return any value.

• pucks: Defines the pucks properties, including:

– groups: list of puck group definitions, each should contain:

∗ id: unique value for each group

∗ color: unique color for each group

∗ count: number of pucks in the group

∗ radius: radius of each puck in the group

∗ goal: coordinates of the center of the goal area the pucks should be

gathered at (if one exists)

∗ goalRadius: radius of the goal area (if one exists)

– useGlobalPuckMaps: boolean, if true a goal map for each puck group will

be calculated at the start of the simulation, for each point in the environ-

ment the map provides a corresponding goal point where the puck should

go towards to reach the group goal, useful for environments with static

obstacles, but has a huge impact on the startup time of the simulation,

should be disabled if not used.

66

Figure 5.2: SwarmJS Architecture

Major modules in SwarmJS with their most important properties and methods

67

5.2.4 Software Architecture

There are multiple modules in SwarmJS. Each provides useful functionalities for cre-

ating different simulations. Some are vital for running any simulation such as the

scene and physics engine, while others might be used or not depending on the specific

experiment being simulated such as pucks, globalPlanning, and staticObjects. Figure

5.2 shows the main modules in SwarmJS.

Scene

This module can be considered the main coordinator in the simulation. It handles

the simulation update cycle and provides methods and properties to specify different

aspects of the simulation such as the shape of the environment, the number of robots

and pucks present, and the physical properties of the simulation environment. It is

closely dependent on the physics engine, which handles all the physical interactions

between the various elements in the scene. Figure 5.3 shows the main steps in the sim-

ulation loop, the scene module coordinates these steps and assigns each responsibility

to the appropriate module.

Renderer

The Renderer module provides a simple canvas based visualization for the simula-

tion elements using the D3.js library, which is a JavaScript library for manipulating

documents based on data. It allows data-based visualization using HTML, SVG, and

CSS by binding arbitrary data to a Document Object Model (DOM) and applying

data-driven transformations to the document. For example, we can bind the robots

68

Figure 5.3: Simulation Loop

69

and pucks positions data to the renderer’s canvas to create an interactive SVG-based

map showing the static environment and the moving robots and pucks, with smooth

transitions and interactions.

D3 is not a monolithic framework that seeks to provide every conceivable feature.

Instead, it solves the crux of the problem: efficient manipulation of documents based

on data. This avoids proprietary representation and affords extraordinary flexibility,

exposing the full capabilities of web standards such as HTML, SVG, and CSS. With

minimal overhead, D3 is extremely fast, supporting large data sets and dynamic

behaviors for interaction and animation. D3’s functional style allows code reuse

through a diverse collection of official and community-developed modules.

A configuration-based rendering engine was built on top of D3.js to rapidly define

renderable elements in the simulation with minimal code. A simple configuration

format is used to define each renderable element, its attributes, and attach it to

a specific object in the environment so that it is automatically updated while the

simulation is running. Renderables can be defined within any module but they should

always be imported and registered into the renderering module.

The Renderer is attached to the scene at startup and a visual element is created

for each renderable in the configuration. Examples of renderables are:

• Environment boundaries

• Static obstacles

• Pucks

• Goal area for each puck group

70

• Robots, with each of the following items visualized independently for each robot:

– Robot body

– Voronoi cell

– Buffered Voronoi cell

– Goal

– Local waypoint

– Sensors

– Actuators

Figure 5.1 shows a scene being rendered with all of the previous items visible.

Examples of renderable definitions can be found in the Scene, Robot, and Puck

modules. Each renderable element can include the following parameters:

• type: mandatory, used for grouping renderables into UI buttons to enable/dis-

able them.

• svgClass: optional, used to add classes to the svg elements.

• dataPoints: optional, defines the data points if the renderable is repeated for

multiple objects such as robots, pucks, or static objects. DataPoints are usually

defined as a property of the scene with the ’sceneProp’ key. If dataPoints

are defined, prop key can be used in the following configurations to refer to

properties of the datapoint object. Otherwise, only ’sceneProp’ can be used

throughout the renderable definition.

• shape: mandatory, svg shape to be rendered

71

• staticAttrs: optional, defines the attributes to be set only once when the element

is initialized.

• styles: optional, defines the styling attributes for the element, also only applied

once, when the element is initialized.

• dynamicAttrs: optional, defines the attributes to be set on every simulation

update.

• drag: optional, defines the draggable behavior for the element through the

following properties:

– prop: the property of the datapoint to be set using the position of the drag

event, such as the position of the robot.

– pause: whether the simulation should be paused while dragging the ele-

ment.

– onStart / onEnd: define the actions to be performed when dragging starts

and ends:

∗ styles: defines the styles to set when dragging starts / ends.

∗ log: defines the attributes to be logged to console when dragging starts

/ ends.

– onDrag: defines the actions to be performed when dragging:

∗ log: defines the attributes to be logged to console when dragging is in

progress

72

Syntax

Any property can be one of the following:

• string or number: the value is set directly.

• { prop, modifier } : the value of prop is parsed as a property of the datapoint,

a modifier function can be defined to modify the value after it is parsed.

• { sceneProp, modifier }: the value is parsed as a property of the scene, a modifier

function can be defined to modify the value after it is parsed.

• { special } : used for special behaviors, such as setting a color according to the

color schema, currently only schemaColor is supported.

At each time step in the simulation, the dynamic attributes (such as location and

shape) for each renderable (robots, pucks, Voronoi cells, etc) are recalculated by the

scene and physics engine and the new properties are passed to the Renderer to update

the corresponding visual components accordingly by modifying their shape (modifying

the polygon representing a Voronoi cell) or applying the needed transformations to

them (moving a robot to a new position).

73

{

type: ’Goal’,

svgClass: ’robot -goal’,

dataPoints: { sceneProp: ’robots ’ },

shape: ’circle ’,

staticAttrs: {

r: { prop: ’radius ’, modifier: (val) => val / 2 },

id: { prop: ’id’ }

},

dynamicAttrs: {

cx: { prop: ’goal.x’ },

cy: { prop: ’goal.y’ }

},

styles: {

fill: { special: ’schemaColor ’ },

stroke: ’white’

},

drag: {

prop: ’goal’,

pause: true ,

onStart: { styles: { stroke: ’black’ } },

onEnd: { styles: { stroke: ’lightgray ’ } }

}

}

Listing 5.3: Creating Visual Elements with SwarmJS

Code listing 5.3 shows how renderable configuration is used to create visual ele-

ments (circles) corresponding to the robots’ goals. Robots in the scene are iterated

74

and a circle is created to highlight the goal of each robot. The corresponding robot

for each circle is bound to this circle as its ’data point’, and its properties can be

dynamically accessed through the ’prop’ keyword. The location of each circle (cx and

cy) is set according to the position of the corresponding goal, the radius of the goal

circle is set to the robot’s radius/2, a random color from a predefined color schema

is assigned for each goal circle, and finally support for interactivity by dragging and

dropping goal circles is added. During drag events, the styling of the goal circle is

changed and after the event is ended, the scene is updated to notify the robot of its

new goal.

The goal circles are then updated at each simulation time step by updating the de-

fined dynamic Attributes, in this case, the position of the circle (cx and cy) according

to the corresponding data point’s (robot) properties (goal location).

PhysicsEngine

A physics engine is needed to perform the necessary calculations to simulate the

movements of each component in the scene, which requires repeated calculations of

their positions based on their velocities and accelerations. Forces such as gravity and

friction, if implemented, are also taken into considerations. The physics engine is also

responsible for collision detection and resolution, by determining when two objects

collide and calculating how the objects move after the collision based on their physical

properties such as shape, velocity, and mass.

Physics engines can vary greatly based on their complexity, ranging from advanced

engines used for critical physics calculations to simple engines that can run in real-

75

time. A suitable engine should be selected based on the use case; fast engines might

not offer the required precision for certain applications, While complex engines can

be very precise but the extra calculations can cause the processing time to take longer

and prevent their use in real-time applications.

Most of the calculations needed for our simulation can be implemented from

scratch using simple Newtonian physics (positions, velocities, and accelerations), but

using a simple engine such as Matter.js is preferred to more easily implement some

advanced features such as collision detection and resolution.

Matter.js is a 2D rigid body physics engine built with JavaScript. Rigid body

physics calculates object interactions and resolves collisions without considering force-

based deformities, so physical objects never deform.

We can use Matter.js in one of two ways; The first is using its own Runner module

which provides a simulation loop that continuously updates the engine at fixed in-

tervals. The other approach that we use is implementing our own loop and updating

the engine by calling its Engine.update() method and passing the time passed (delta)

since the last update. Code listing 5.4 shows a pseudo code of the main steps involved

during each update in our simulation.

76

update () {

Update background calculations such as Voronoi diagram

voronoi = Delaunay.from(scene.robots);

Simulate robots ’ sensor measurements (neighbors and pucks)

updateRobotsMeasurements ();

Calculate new robots ’ properties (goals and velocities)

scene.robots.forEach ((r) => r.timeStep ());

Calculate new pucks ’ properties (direction to goal)

scene.pucks.forEach ((p) => p.timeStep ());

Update benchmarking data

scene.updateBenchmark ();

Update physics engine (calculate new positions)

Engine.update(timeDelta);

If rendering is enabled , call Renderer ’s update ()

to redraw the UI elements

if (renderingEnabled) {

renderer.update(activeElements);

}

}

Listing 5.4: Pseudo Code of Simulation Update Steps

77

StaticObject

The StaticObject module contains methods to create rigid bodies with common

shapes like a circle or a rectangle. A body for this object is created at startup and

added to the engine. This type of object is completely static and passive and does

not move nor has any dynamic physical properties such as velocity or acceleration,

meaning they do not move as a result of any interactions with any other object in

the environment.

var staticObjectsDefinitions = [

{

type: ’circle ’,

center: { x: 250, y: 350 },

radius: 50,

},

{

type: ’rectangle ’,

shape: [{ x: 50, y: 50 },

{ x: 50, y: 100 },

{ x: 100, y: 100 },

{ x: 100, y: 50 },

],

},

];

Listing 5.5: Static Objects Definition

The static objects are defined using a JSON object, staticObjectsDefinitions,

which defines the type and shape of each static object and is passed to the Scene

78

module at startup, which creates the static objects according to these definitions.

Code listing 5.5 shows an example of this object defining two static objects of type

circle and rectangle.

var pucksGroups = [

{

id: 0,

count: 25,

radius: 10,

goal: { x: 150, y: 250 },

color: ’red’,

},

{

id: 1,

count: 25,

radius: 10,

goal: { x: 650, y: 250 },

color: ’blue’,

}

];

Listing 5.6: Pucks Definition

Puck

The Puck module contains methods to create dynamic circle-shaped rigid bodies

called pucks. A body for this object is created at startup and added to the engine.

This type of object is passive, meaning it does not move by itself but only as a result

79

of its interactions with other active elements in the environment like the robots.

Pucks are separated into different groups, with each group having: a unique id,

a goal area where the pucks need to be gathered defined by a circle with a center

and a radius, the number of pucks in this group, and a color used for rendering the

pucks from this group. The pucks are defined using a JSON object, pucksGroups

and is passed to the Scene module at startup, which creates these pucks according

to the definitions. Code listing 5.6 shows an example of pucks definitions. Pucks

are dependent on the global planning module to calculate their local waypoint, or

direction towards their group’s goal.

Robot

The robot module contains methods to create dynamic rigid bodies. A body for this

object is created at startup and added to the engine. The body of the robot can be

a simple circle-shaped body or more complex compound body. This type of object

is dynamic, its movement is simulated at each time step and is associated with a

Voronoi cell calculated using the D3Delaunay module. It has sensors and actuators

simulated at each simulation step, and its goal and velocities are calculated using the

goal and velocity controllers. As the main active objects, robots interact with and

move other passive objects in the environment such as the pucks.

Robots are defined using configuration objects specifying the number of robots

and their radius, numberOfRobots and radiusOfRobots. They are passed to the

Scene module at startup, which creates these robots according to the configuration.

The robot module depends on controllers which implement the low-level motion

80

planning and collision avoidance algorithm based on its sensor values, which are

simulated using available data such as neighboring robots’ positions, nearby pucks’

positions, and the Voronoi cells calculated using the D3Delaunay module.

Controllers

Controllers are higher order functions that return functions that control different

aspects of the robots behaviors, they are called at each timestep when the simulation

is updated. There are 4 types of controllers:

Goal Controller

The main controller that implements the application specific algorithm and sets the

goal of the robot at each time-step.

This controller is responsible for defining and implementing the high-level algo-

rithm which can change drastically depending on the scenarios being simulated as

it relates to the intention of the simulation and objective of the robots within the

environment.

For instance, when running a simulation to evaluate a collision avoidance algo-

rithm, similar to the one proposed in chapter 3.2.1; a robot goal set by the goal

controller can be simply a static point for each robot that does not change with time,

with the intention of evaluating how fast the robots can reach their goals using the

collision avoidance algorithm under review. These goals can either be randomly se-

lected or follow a predefined pattern such as lie on a specific geometrical shape like a

circle.

Another scenario can involve dynamically calculating a new goal for each robot at

81

each time step depending on the position of the robot within the environment and the

values of the robot sensors at that particular instance. Such as having a robot orbit

the environment when no nearby pucks are sensed, while moving towards a puck in

case one is detected. Similar goal selection algorithm is discussed in details in section

4.1.

Waypoint Controller

Provides motion planning (collision avoidance and maneuverability) for the robots.

While the goal controller is expected to be application-dependent, the waypoint con-

troller can provide more general motion planning algorithms at can be used across

different simulation scenarios.

Velocity Controller

Provides the control signals (velocities) that should move the robot towards the way-

point.

Actuator Controller

Optional controller to control the actuators.

Sensors

Objects that define how the robot can sense a specific aspect of the simulation, such as

its own position and orientation, the position of neighboring robots, nearby objects,

etc. Other sensors can easily be defined by extending the Sensor class. Sensors can

82

be implemented as either a class or a function but should implement the following

interface:

• sample(): calculates the value of the sensor

• read(): returns the latest sampled value of the sensor

• name: used to access (sample and read) the sensor through the sensor manager

• type: determines when the sensor is sampled, possible values: onStart, onUp-

date.

• dependencies: optional, a list specifying any other sensors needed for this sensor

to work, sensorManager uses these lists to generate a dependency graph and

determine the order in which the sensors should be sampled.

All sensors should be added to the ’availableSensorDefitions’ list in sensorManager

and the name and sensor object should be exposed by default exporting an object

with the following properties:

• name: the name of the sensor

• Sensor: the sensor object

Position Generators

Higher order functions that return a function that generates positions in the environ-

ment. They are used to generate starting coordinates for the robots, goals, pucks,

etc. They are useful for generating and repeating specific starting configurations for

these elements.

83

Performance Trackers

Special objects that describe the simulation performance. Each object provides a

function to calculate a performance metric at each simulation update. Each tracker

will result in a separate graph in the benchmarking tab. Trackers should also define

functions for reducing and aggregating values. Tracker can be used as a reference and

extended as it provides most of the needed functionalities.

Benchmark

This module is responsible for comparing different simulation scenarios by running

and recording the simulation performance as defined by the provided Trackers.

Benchmarks provide an easy way to run multiple simulations and compare them

across multiple runs using specific metrics. Benchmarks are defined using configura-

tion objects that are passed to the simulation on initialization. Below are the main

parameters that should be preset in a benchmark configuration object:

• simConfigs: a list of configuration objects that describe different simulation

scenarios, each object should include:

– name: unique name for this scenario, will be used to refer to this scenario

in the benchmarking graphs.

– simConfig: a simulation configuration object that should adhere to the

specifications described in section 5.2.3. Not all parameters should be

specified here, but rather only the ones that separate this scenario from

the main simulation scenario. These differences can be simple such as

84

changing the defined static objects, number or radius of robots, number

of puck groups or the number or radius of the pucks; or they can be more

specific such as comparing different controllers or even changing specific

parameters for the same controller. Any property in the main simulation

configuration can be overridden here.

• timeStep: minimum reported time step in the graphs.

• maxTimeStep: length of each simulation run while benchmarking.

• trackers: list of special objects that describe the performance and provide a

function to calculate a performance metric at each simulation update.

D3Delaunay

This is a fast library for computing the Voronoi diagram of a set of two-dimensional

points (robot positions). It is based on Delaunator, a fast library for computing the

Delaunay triangulation using sweep algorithms. The Voronoi diagram is constructed

by connecting the circumcenters of adjacent triangles in the Delaunay triangulation.

This module might not be needed if the robot’s motion planning algorithm does

not depend on the Voronoi diagram. But since our collision avoidance algorithm

depends on the Voronoi cells, this module’s delaunay.voronoi function is used by the

Scene to calculate the Voronoi diagram of the current robot positions at each time

step. The corresponding Voronoi cell and buffered Voronoi cell for each robot are

then passed to the robot as a sensed value.

85

GlobalPlanning

Global planning is used to find the direction a puck should go towards in order to

move closer to its goal. This is implemented using the distance transform method,

which requires the goal and the environment’s shape to be known. It produces a

discretized grid representation of the environment where the value of each cell is the

smallest distance from the cell’s position to the goal.

The distance transform can be calculated using many methods, such as the fast

marching method that we use on the physical robots, but due to lack of suitable

libraries support in JavaScript, we decided to implement the distance transform from

scratch in this module.

We start by creating an array as a discretized representation of the environment,

we call it the environment map. Each cell in this map is initialized as follows: 0 for

cells representing empty areas in the map where no static obstacles exist, and 1 for

cells containing static obstacles. Figure 5.4 shows an example of the environment

map.

Then we create a new array that will contain the distance of the closest path from

each cell in the map to the goal, we call it the distance map. We start processing this

array from the cell representing the goal and give it a distance of 0. Then we move

on to the goal’s immediate neighbors which are assigned a distance of 1, then their

neighbors are assigned a distance of 2, ... etc, increasing the distance by 1 at each scan

until all cells in the grid are visited. However, any cell representing a static obstacle

in the environment map is a assigned a special distance value NaN , denoting that

the goal cannot be reached from this position. 8-connectivity is used to traverse the

86

Figure 5.4: Environment Map

map using the neighbors. So each cell, excluding cells on the edges of the map, has 8

neighbors by default which make up the Moore Neighborhood of that cell, consisting

of the 4 immediate cells along diagonal offsets, and the cells directly above and below

and to the left and right of the cell. Figure 5.5 shows an example of the generated

distance map.

The generated distance map is independent of any start point, it expands from

the goal similar to a wave, flowing and propagating around obstacles. A path from

any point to the goal can be found by walking downhill (following neighbors with

minimal distances) towards the goal. However, a full path is not required for each

cell, only the direction towards the goal along the shortest path is sufficient.

We generate the final goal map by iterating through all cells in the distance map.

87

Figure 5.5: Distance Map

88

If the distance at a cell is NaN , then no path to goal can be found, so the direction

to the goal is not defined, so we keep the NaN value for this cell in the goal map as

well. Otherwise, we check all the neighboring cells to find the cells closest to the goal

those having the minimum distance in the distance map. We then calculate the final

direction to the goal as the average of the directions towards each of these cells.

89

Chapter 6

Experimental Setup

This chapter describes the physical swarm system. It details the hardware design

of the robots and the setup of the experimental system including the tracking and

sensing simulation system, and the software system running on the robots.

6.1 Experimental Setup

Our experimental platform is a set of Pololu 3pi robots 1 fitted with Raspberry Pi

3 A+ single-board computers 2 to perform the on-board processing. The 3pi robot

base is ≈9.5 cm in diameter and provides basic differential-drive mobility.

Each robot is also fitted with 2 acrylic plates, providing mounting points for the

Raspberry Pi and two small communication and power interface boards. A unique

AprilTag [50] is printed on the top of each robot to identify the robot by the overhead

tracking system that provides localization and sensing to the robots.

1https://www.pololu.com/product/975
2https://www.raspberrypi.org/products/raspberry-pi-3-model-a-plus

90

https://www.pololu.com/product/975
https://www.raspberrypi.org/products/raspberry-pi-3-model-a-plus

Figure 6.1: Arena

These robots mainly operate on a table with a stadium-shaped boundary. A

stadium consists of a rectangular region in the middle with semicircular ends. The

overall width and height of the table’s surface is 1.82 × 1.21 m.

The “pucks” are cups with a bottom diameter of 6 cm, weighted with a wooden

disk on the bottom that also presents a 4 cm green painted dot visible to the overhead

camera. The table’s boundary has a height of 2 cm and the pucks have a height of 4

cm.

A wooden board was added to the middle of the table to present a more complex

boundary for testing. An image of the arena is shown in Figure 6.1, showing the

shape of the arena, pucks, and robots.

The robots connect to a central server remotely over WiFi to continuously request

91

location and sensing data. The server continuously processes the images received from

the attached overhead camera, an Intel Real-sense D435. It uses computer vision to

detect the positions and orientations of the robots and the positions of the pucks.

It uses this data to simulate the values detected by each robot’s virtual sensors by

passing each robot a message containing its current position and orientation, the

positions of nearby robots, and the positions of nearby pucks.

The software used on the central server was adapted from a previously developed

system for controlling autonomous surface vehicles [56] with the server component

available as open source 3.

Using a centralized computer to simulate local sensing violates a core principle of

swarm robotics, local sensing [4]. It is important however to emphasize that only the

central server has access to the global knowledge and each robot strictly receives local

sensing and makes all the planning and control decisions on board their own local

computer. So while the experimental setup falls short of meeting the technical defi-

nition of a swarm, it still provides a useful research platform for testing decentralized

robotic algorithms.

6.2 Robot Control Software

Each robot has an on-board Raspberry Pi computer that runs a custom controller re-

sponsible for autonomously driving the robot. This application was written in Python

because it is natively supported by the Raspberry Pi’s operating system, in addition

to its power, ease of use, and its extensive collection of libraries for many program-

3https://github.com/BOTSlab/kodama_server

92

https://github.com/BOTSlab/kodama_server

ming tasks. The entire software is available as an open source project on GitHub

and can be accessed through the following link (https://github.com/m-abdulhak/

kodama_swarm).

The controller software consists of multiple modules that handle all the sub-tasks

required for operating the robots from low-level tasks such as sending control signals to

the wheel motors to high-level ones such as goal selection. Many of the modules were

directly ported from the corresponding JavaScript modules in the SwarmJS simulation

described in chapter 5, such as the goal selection module, the global planning module,

and the local planning module that was implemented as part of the robot module in

SwarmJS, so we will not describe them in details again here.

The following is a list of these tasks:

• Sensor update: requesting sensor data from the central server and parsing that

data.

• Goal Selection: choosing a goal in the environment depending on the task de-

fined such as the sorting task.

• Local planning: finding a local waypoint that drives it towards its goal using

the collision avoidance algorithm defined in section 3.

• Motor control: calculating and sending the appropriate control signals to the

wheels’ motors in order to reach its local waypoint.

Code listing 6.1 shows a simplified code of the main steps involved during each

update in robot controller’s loop.

93

https://github.com/m-abdulhak/kodama_swarm
https://github.com/m-abdulhak/kodama_swarm

def update(self , sensor_data):

Get Robot Position and orientation

x, y = sensor_data.pose.x, sensor_data.pose.y

theta = sensor_data.pose.yaw

Update buffered Voronoi Cell

bvcCell = bvcNav.update(sensor_data)

Get new goal

self.newGoal = updateGoal(bvcCell , sensor_data , self.env)

Get the local waypoint within BVC Cell

waypoint = bvcNav.setWaypointInCell ()

Compute relative position of waypoint in polar coordinates

dx = waypoint["x"] - x

dy = waypoint["y"] - y

distanceToGoal = sqrt(dx**2 + dy**2)

angleToGoal = min_signed_ang_diff(atan2(dy, dx), theta)

Get forward and angular speeds (v, w)

fSpeed , aSpeed = getDiffSpeeds(distanceToGoal , angleToGoal)

Convert to right and left wheels speeds and send to robot

v_left , v_right = getMotorSpeeds(fSpeed , aSpeed)

Send speeds to motors

three_pi.send_speeds(v_left , v_right)

Listing 6.1: Simplified Code of Robot Controller Update Steps

94

6.2.1 Sensor Update

The sensing data calculated by the central server is sent over WiFi and encoded using

Google’s Protocol Buffer library [57]. It offers language-neutral, platform-neutral,

extensible mechanism for serializing structured data. A single definition for the data

structure is used to generate source code that can used to easily write and read

the structured data to and from a variety of data streams and using a variety of

languages. This greatly simplifies transferring the data between the sever software

written in C++ and the robot control software written in Python.

message SensorData {

message Position2D {

int32 x = 1;

int32 y = 2;

}

message Pose2D {

int32 x = 1;

int32 y = 2;

float yaw = 3;

}

Pose2D pose = 1;

repeated Pose2D nearby_robot_poses = 2;

repeated Position2D nearby_target_positions = 3;

google.protobuf.Timestamp timestamp = 4;

}

Listing 6.2: Sensor Data Message Definition Using Protocol Buffer

95

Code listing 6.2 shows how the sensor data message is defined using the Protocol

Buffer. Each sensor data message contains the following information: the robot’s

current location and orientation, the position of the neighboring robots, and the

positions of neighboring pucks. This data is parsed and stored and made available

for access by other modules.

6.2.2 Goal Selection

This implements the high level behavior of the robot. It varies greatly depending on

the task assigned to the robot.

When validating the collision avoidance algorithm, the high level goal for each

robot was to reach a specific goal point in the environment. In practice, that goal

was determined by the location of a specific AprilTag assigned as a goal to each

robot. This was implemented by requesting the location of this AprilTag at the first

successful connection to the central sensing server and setting that position as the

goal of the robot for the remainder of the experiment. Figure 7.6 shows an example

experiment where in the initial stat configuration, 9 robots and 9 goal tags can be

seen on the field, while in the final configuration only the robots robots can be seen

after reaching their tags successfully.

For the sorting task, the goal selection module implements the sorting algorithm

involving all the behaviours described in section 4.1. This includes target selection,

target conflict avoidance, control strategy and the default behavior of orbiting the

environment when no suitable targets can be found.

The environment orbit map and the puck goal maps are generated offline by a

96

Python script as described in sections 4.1.1 and 4.1.4. The generated maps are saved

as raw data using Python’s pickle module and loaded on systems startup. Code listing

6.3 shows a script for generating the goal maps for each puck group.

for indx , goal in enumerate(goals):

Generate environment boundary mask

X, Y = np.meshgrid(np.linspace(0, envXMax , envXMax +1), \

np.linspace(0, envYMax , envYMax +1))

map_goal_mask = -1 * np.ones_like(X)

map_goal_mask[np.logical_and(X==goal[0], Y==goal [1])] = 1

Generate speed mask

speed = 1 * np.ones_like(X)

speed[np.logical_or(X>=envXMax , Y>= envYMax)] = 0

speed[np.logical_or(X==0, Y==0)] = 0

for x in range(0, envXMax):

for y in range(0, envYMax):

curPoint = Point(x,y)

for o in staticObstaclesPolygons:

if(pointIsInsidePolygon(curPoint , o)):

speed[y][x] = 0

Generate Distance Transform

distTr = skfmm.travel_time(map_goal_mask , speed , 1).filled ()

Generate Gradients on both axes

yG , xG = np.gradient(distTr)

Calculate goals for each point in the environment

x_goals , y_goals = -1 * xG + X, -1 * yG + Y

Listing 6.3: Simplified Script for Target Goal Maps Generation

97

def setWaypointInCell(self):

Set the cell as the current Buffered Voronoi cell

cell = self.bvc

If cell is undefined , set waypoint = goal

if (cell == None or len(cell) <2):

log("Error , Cell Not Defined!")

self.waypoint = self.goal

return self.waypoint

If the goal is within the Buffered Voronoi cell

set waypoint = goal

if (cellContains(cell , self.goal)):

self.waypoint = self.goal

return self.waypoint

If deadlocked or deadlock is expected

or if currently recovering from deadlock

set waypoint according to deadlock recovery policies

if (self.setWaypointByDeadlockRecovery(cell)):

return self.waypoint

Default behavior: set waypoint as the point in cell

that is closest to the goal

self.waypoint = self.findPointInCellClosestToGoal(cell)

return self.waypoint

Listing 6.4: Simplified Local Planning Function

98

6.2.3 Local Planning

This module implements the collision avoidance algorithm proposed in chapter 3. This

includes calculating the Voronoi diagram using the positions of the robot and neigh-

boring robots, calculating the buffered Voronoi cell, modifying the buffered Voronoi

cell depending on the locations of nearby static obstacles as described in section 4.2,

and finding the best local waypoint that drives the robot towards its goal using the

algorithm defined in section 3.2.1. Code listing 6.4 shows a simplified version of the

function responsible for finding this local waypoint.

The Voronoi diagram is calculated using the Voronoi module in SciPy [58], which

is a free and open-source Python library used for scientific computing.

6.2.4 Motor control

This implements the low-level control strategy for the robot by defining the control

signals that should be sent to each of the motors of the two wheels in the differen-

tial drive system on the robot. It receives the distance and angle to the local goal,

calculated from the local waypoint defined by the Local Planning module, and cal-

culates the corresponding forward and angular speeds required to reach that goal.

Code listing 6.6 shows how forward and angular speeds are calculated based on the

distance and angle to local goal. These are then translated into left and right motor

speeds that are passed through a Serial Gateway to the 3pi robotic base. Code listing

?? shows how forward and angular speeds are translated into left and right motor

speeds.

99

def getFowrardAndAngSpeeds(self , distanceToGoal , angleToGoal):

forwardSpeed , angularSpeed = 0, 0

If goal is reached , stop

if (bvcNav.reached(goal)):

return forwardSpeed , angularSpeed

If angle to goal is small enough , move in a straight line

if (abs(angleToGoal) < maxAngleToMoveStraightToGoal):

forwardSpeed = min(distanceToGoal /10, maxForwardSpeed)

Else , turn in place , No Forward Speed

else:

forwardSpeed = 0

If robot is not facing goal , turn to goal

if (abs(angleToGoal) > robotIsFacingGoalMaxAngle):

angularSpeed = min(angleToGoal / pi , maxAngularSpeed)

Else do not turn (move in straight line)

else:

angularSpeed = 0

return forwardSpeed , angularSpeed

Listing 6.5: Simplified Function for Calculating Forward and Angular Speeds

100

def getMotorSpeeds(self , forwardSpeed , angularSpeed):

v_right = forwardSpeed - angularSpeed / 2

v_left = forwardSpeed + angularSpeed / 2

if forwardSpeed == 0 and angularSpeed != 0:

if(v_right > 0):

v_right = max(min(v_right , maxMotSpeed), minMotSpeed)

else:

v_right = max(min(v_right , minMotSpeedBck), maxMotSpeedBck)

if (v_left > 0):

v_left = max(min(v_left , maxMotSpeed), minMotSpeed)

else:

v_left = max(min(v_left , minMotSpeedBck), maxMotSpeedBck)

else:

v_right = max(min(v_right ,1), -1)

v_left = max(min(v_left ,1), -1)

return v_left , v_right

Listing 6.6: Simplified Function for Calculating Motor Speeds

6.2.5 Summary

In this chapter we described the experimental setup including the hardware and the

software of the robots and the setup of the experimental system. In the next chapter

we will describe how this setup was used to validate and test the proposed algorithm

and show the results of the performed experiments along with the data obtained from

simulating the algorithms in SwarmJS.

101

Chapter 7

Experiments and Results

This chapter describes the the simulation and physical experiments used to validate

the proposed collision avoidance and object sorting algorithms and a detailed analysis

of the results of the various experiments performed.

7.1 Collision Avoidance Algorithm Experiments

7.1.1 Simulation

In this section we will detail the results of multiple simulation experiments to com-

pare our collision avoidance algorithm -integrating the proposed deadlock avoidance

algorithm- and a buffered Voronoi cell based collision avoidance algorithm with right-

hand deadlock recovery heuristics.

1All simulations are performed in an interactive web-based multi-robot simulation

based on the SwarmJS platform described in chapter 5.

1https://github.com/m-abdulhak/Buffered-Voronoi-Cell-Deadlock-Avoidance

102

https://github.com/m-abdulhak/Buffered-Voronoi-Cell-Deadlock-Avoidance

A set of disk-shaped single-integrator robots moving in a planar space are simu-

lated, each robot is assigned a specific goal, and for each simulation, the same collision

avoidance algorithm is applied for all robots. Two metrics are tracked and compared:

the total distance between the robots and their goals and the minimum distance be-

tween the robots at each time step. We compare the performance of 2 algorithms,

our collision avoidance algorithm integrating the proposed deadlock avoidance algo-

rithm and a baseline buffered Voronoi cell based collision avoidance algorithm with

the right-hand deadlock recovery heuristics. Performance is compared across 4 dif-

ferent cases, all performed in a 800 ∗ 500 cm environment, with 100 robots and 100

simulations per algorithm. No collisions occurred in any of the simulations.

First, 100 robots with 3 cm radius are placed around a circle, with their respective

goals assigned to the point directly across them on the same circle, with a small

displacement to break the symmetry.

This configuration presents a considerable challenge for collision avoidance algo-

rithms since the default paths of all robots intersect at the same point in the envi-

ronment, the circle’s center. All robots start at the same time and head along their

intersecting paths, causing a huge congestion at the center of the circle.

With the baseline algorithm, the robots keep going along their path until they find

themselves stuck in a deadlock configuration. While the proposed deadlock prediction

algorithm allows the robots to predict the deadlocks caused by the congestion at

the center of the circle earlier and proactively find alternative paths to avoid these

deadlocks.

Figure 7.2 shows the difference between the states of the robots at multiple times

during an experiment for both algorithms. While both algorithms are able to eventu-

103

(a) Starting configuration for simulation case 1 with 16 robots instead of 100 for clarity

(b) Total distance to goal (solid) and minimum distance to neighbors (dashed) with safety

distance in red (dashed). Each simulation is presented as a single line, with the average for

each algorithm in bold. Proposed algorithm in green and BVC algorithm with right-hand

heuristics in blue.

Figure 7.1: Collision Avoidance Simulation Experiment - Case 1

104

ally drive the robots to their destination, this look into how the experiment progresses

with time clearly shows how the proposed algorithm successfully prevents the conges-

tion and leads the robots into alternative paths around it and into their goals much

faster than the baseline algorithm.

This translates into a clear performance improvement as shown in figure 7.1. The

figure shows the performance metrics across the run time of the 100 experiments

for this case, the total distance to goal is shown for each simulation individually.

The baseline algorithm is shown in light blue and our algorithm with the proposed

deadlock avoidance algorithm is shown in light green, the means of these simulations

are also highlighted in blue and green respectively. The safety distance (2rs) is also

shown for each case as a dashed red line, and the minimum distances between robots

are shown as two dashed lines in blue and green for the two previous algorithms,

respectively.

While both algorithms are eventually able to drive all the robots to their respec-

tive goals, the time taken clearly shows the benefits of the early deadlock prediction

algorithm, with the proposed algorithm driving the robots to their goals in almost

half the time. The figure shows how all robots reach their goals by the 400th time

step in all experiments using the proposed algorithm, while needing 800 time steps

to reach their goals for most experiments using the baseline algorithm.

For the next experiments, 100 robots (5 cm radius) are placed on a square, and

the goals are set as their positions reflected across the y-axis (case 2). Then, the same

configuration is used but the goals are reflected across the origin of the environment

(case 3) as shown in Figures 7.3 and 7.4. These two cases along with the previous one

represent particularly challenging configurations for collision avoidance algorithms

105

Figure 7.2: Congestion at Multiple Time-steps During a Case 1 Experiment

Left: baseline algorithm, Right: proposed algorithm

Time-steps shown: 100, 200, 300, 400, and 500

106

(a) Starting configuration for simulation case 2 with 16 robots instead of 100 for clarity

(b) Total distance to goal (solid) and minimum distance to neighbors (dashed) with safety

distance in red (dashed). Each simulation is presented as a single line, with the average for

each algorithm in bold. Proposed algorithm in green and BVC algorithm with right-hand

heuristics in blue.

Figure 7.3: Collision Avoidance Simulation Experiment - Case 2

107

(a) Starting configuration for simulation case 3 with 16 robots instead of 100 for clarity

(b) Total distance to goal (solid) and minimum distance to neighbors (dashed) with safety

distance in red (dashed). Each simulation is presented as a single line, with the average for

each algorithm in bold. Proposed algorithm in green and BVC algorithm with right-hand

heuristics in blue.

Figure 7.4: Collision Avoidance Simulation Experiment - Case 3

108

and are considered as performance benchmarks [11]. The results of the experiments

for these cases are shown in the figure in similar fashion to the results of the first case

shown in figure 7.1.

The results show clear performance improvement when using the proposed algo-

rithm. While the proposed algorithm is able to drive the robots to their goals in all

the experiments, we can clearly see many experiments where many robots are not

able to reach their goals by the end of the recorded timeline for both cases, especially

in the more challenging case 3. These cases can be identified by the total distance

line (solid blue) not reaching 0 at the final time step in the graph. It is also clear how

the proposed algorithm drives the robots to their goals much faster in both cases, and

almost twice as fast in case 3.

In the last set of experiments, a set of 100 robots (5 cm radius) are assigned

random starting positions in the environment and random goals. The only constraint

is that both the starting and final positions need to be in a collision-free configuration.

The experiment is repeated 100 times for both algorithms and the results recorded.

Figure 7.5 shows the starting configuration and recorded results for these experiments.

This case is particularly important since it demonstrates the advantages the pro-

posed deadlock prediction and recovery stages offer in real scenarios. It clearly shows

how the baseline algorithm with the right-hand heuristics fails to drive many robots

to their goals due to unsolved deadlocks. This can be identified by the total distance

between the robots and their goals (solid blue lines) reaching a minimum of 100cm

on average across all simulations, and in some simulations as high as 250cm, meaning

that at the end of these experiments many robots were still far from their goals, and

the flatter slopes near the end of the experiments, with minimal decreases in distances

109

(a) Starting configuration for simulation case 4 with 16 robots instead of 100 for clarity

(b) Total distance to goal (solid) and minimum distance to neighbors (dashed) with safety

distance in red (dashed). Each simulation is presented as a single line, with the average for

each algorithm in bold. Proposed algorithm in green and BVC algorithm with right-hand

heuristics in blue.

Figure 7.5: Collision Avoidance Simulation Experiment - Case 4

110

to goals indicate that the robots are not able to proceed any further towards their

goals due to being stuck in deadlocks.

In contrast, the proposed algorithm is able to resolve most deadlocks and drive

many more robots to their goals, with the total distance between the robots and their

goals reaching a minimum of around 10 cm on average across all simulations, almost

10 times better than the baseline algorithm.

It is also important to note that some of these unresolved deadlocks are due to

the random nature of this case where some robots become completely surrounded by

static robots (who already reached their goals) and it is impossible to resolve these

cases with the current restrictions (distributed algorithm without any communication

between agents).

7.1.2 Real-world Validation

Our experimental platform is a set of Pololu 3pi robots fitted with Raspberry Pi 3

A+ single-board computers to perform the on-board processing. Each robot is also

fitted with a unique AprilTag [50], and the localization and sensing are performed

with an external server fitted with an overhead camera using software previously

developed for unmanned surface vehicles [56]. The server continuously detects the

robots’ positions and simulates their sensor data by restricting the passed positions of

neighbors for each robot to only those within their own sensing distance. Each robot

is assigned a unique AprilTag as its goal, its position is obtained by the robot once

at the start of the experiment and used throughout the experiment. The experiment

setup is described in details in chapter 6.

111

(a)

(b)

Figure 7.6: Collision Avoidance Real-world Validation for Case 3

(a) paths with time encoded by transparency; (b) initial and final configurations.

112

We performed validation experiments to give confidence to the results obtained

in our simulator. We used initial and final configurations arranged in cases 2 and 3

(see figures 7.3 and 7.4), with 9 robots instead of 100. Figure 7.6 shows the paths

taken by all robots, as well as the initial and final configurations of robots. These

experiments were recorded and are available online through the following link: https:

//youtu.be/tvH3xAL9YD0

The relationship between the robots’ initial configuration and the configuration

of goals here is as described in case 3. For this case all robots reached their goals

without any collisions and the same result was obtained for case 2 (not shown). We

repeated both experiments with tighter spacing between the robots and between the

goals so that a robot could not pass between two goals. In these experiments all

robots reached their goals except the one in the center, since its path was blocked by

surrounding robots who had already reached their goals.

We also performed targeted experiments where robots were placed in challenging

configurations certain to lead to deadlocks. Figure 7.7 shows the initial configurations

and the paths taken by a single robot under the control of each algorithm. It shows

how the algorithm with right-hand heuristics failed to resolve the deadlocks and ended

up in livelock, while the proposed algorithm successfully drove the robot to its goal

every time.

113

https://youtu.be/tvH3xAL9YD0
https://youtu.be/tvH3xAL9YD0

Figure 7.7: Collision Avoidance Real-world validation with Targeted Experiments

Left column: initial configuration (robot with tag 11 has X as its goal). Middle

column: paths taken with the BVC collision avoidance algorithm with right-hand

heuristics. Right column: paths taken with the proposed algorithm.

114

7.2 Swarm Sorting Algorithm Experiments

7.2.1 Simulation

In this section we will describe the experiments performed in simulation to test and

benchmark the proposed swarm sorting algorithm. The simulations are performed

using the web-based SwarmJS simulation platform 2 described in chapter 5.

For this experiment setup we simulate a set of disk-shaped single-integrator robots

moving in a planar space, with static obstacles in the environment, and multiple

groups of targets (pucks); each group has a unique goal area (a circular area of a

specific radius around a unique goal position). The pucks are completely passive and

only move as a result of their interactions with the robots and the static environment.

The robots are tasked to gather pucks in their respective goal areas using the

proposed sorting algorithm. This involves finding pucks and pushing them around

obstacles and into their respective goals, and taking care to extract any pucks from

another group’s goal area and not to disturb pucks who are already in their goal

areas.

For the first set of experiments, the proposed sorting algorithm is used and two

metrics are tracked to evaluate the performance of the algorithm; the total distance

between all pucks and their goal areas, and the number of pucks outside of their goal

areas at each time step.

Performance is recorded and evaluated for two experiment setups, differing only

by the shape of the environment. In the first one, an 800x500 cm empty environment

is used, with a set of 25 robots having a radius of 8 cm, and three groups of pucks,

2https://github.com/m-abdulhak/swarm

115

https://github.com/m-abdulhak/swarm

(a) Starting state for a case 1 experiment

(b) Ending state for a case 1 experiment

Figure 7.8: Swarm Sorting Simulation Experiment Setup - Case 1

116

(a) Total Puck-Goal Distances for All Case 1 Experiments

(b) Number of Pucks Outside Goal Areas for All Case 1 Experiments

Figure 7.9: Swarm Sorting Simulation Experiment Results - Case 1

117

each having 20 pucks with a radius of 10 cm and three distinct goal areas as shown

in figure 7.8. This figure shows the start and end state of one experiment where all

pucks were successfully sorted and placed in their goal areas. The experiment was

repeated for 100 times each lasting for 35, 000 time steps.

Figure 7.9 shows the results of these experiments. We can see how the total

puck to goal distance, and number of pucks outside of their goal areas start high and

decrease as the robots push more and more pucks toward their goals, reaching zero by

the end of most experiments. In the experiments where the distance does not reach

zero, not all pucks reach their targets. This occurs mostly due to pucks getting stuck

on the boundary of the environment.

The second experiment setup asses a more realistic use case by adding static ob-

stacles to the environment. Adding multiple static objects produces a more complex

map and forces the robots to utilize the global planning and produce more compli-

cated orbits around the environment to be able to cover the inner locations between

the static objects. Figure 7.10 shows this experiment setup inside a 800x500 cm en-

vironment, with a set of 25 robots having a radius of 8 cm, and two groups of pucks,

each having 20 pucks with a radius of 10 cm and two distinct goal areas. This figure

shows the start and end state of one experiment where all pucks where successfully

sorted and placed in their goal areas.

This experiment was repeated for 100 times each lasting for 35, 000 time steps

and the same previous metrics were recorded. Figure 7.11 shows the results of these

experiments where we can see how the algorithm is still able to drive most pucks to

their goals in most experiments, with the problem of some stuck pucks still present

in some experiments.

118

(a) Starting state for a case 2 experiment

(b) Ending state for a case 2 experiment

Figure 7.10: Swarm Sorting Simulation Experiment Setup - Case 2

119

(a) Total Puck-Goal Distances for All Case 2 Experiments

(b) Number of Pucks Outside Goal Areas for All Case 2 Experiments

Figure 7.11: Swarm Sorting Simulation Experiment Results - Case 2

120

In the next set of experiments, the proposed algorithm is compared against a

baseline algorithm. For each of these experiments a core feature of the proposed

algorithm is disabled and the performance is compared against the full algorithm to

measure the impact of this proposed feature and the effectiveness of the proposed

approach to solving this sub-problem.

First, we measure the impact of the proposed target conflict avoidance, which

works by limiting the possible targets to ones in the current buffered Voronoi cell

of the robot. We disable this feature in the baseline algorithm by allowing any

robots within the sensing distance to be valid targets for a robot. We use the same

experimental setup shown in figure 7.8 but with only two groups of pucks, each having

20 pucks. This particular setup was chosen because including static obstacles in the

environment while allowing robots to pursue targets outside of their buffered Voronoi

cells leads to very poor performance due to cases where the robots get stuck chasing

unreachable targets behind static obstacles (on the other side of a wall). Limiting the

allowed targets to the buffered Voronoi cell in The full proposed algorithm prevents

these cases because the proposed static obstacle avoidance algorithm automatically

limits the buffered Voronoi cell to the visible part with respect to close by static

obstacles.

Figure 7.12 shows the results of the 100 performed experiments. Similar to previ-

ous benchmarks, the figures show the total puck to goal distances, and the number of

pucks outside of their goal areas for each individual experiment as well as the means

of all experiments.

The results show that while the proposed algorithm allows the robots to gather

most pucks into their goal areas with a mean of only 2 pucks outside of their goal areas

121

(a) Total Puck-Goal Distances for All Case 3 Experiments

(b) Number of Pucks Outside Goal Areas for All Case 3 Experiments

Figure 7.12: Swarm Sorting Simulation Experiment Results - Case 3

122

by the end of the experiments; disabling the target conflict avoidance has a profound

effect on this success rate, with the mean number or unsorted pucks reaching 15 by

the end of the experiments when disabling this feature, with some experiments having

as many as half the total number of pucks not sorted by the end of the experiments.

The same effect can also be seen in the total distance graph with the mean total

distance for these experiments reaching as much as 40 m compared to just 3 m for

the full proposed algorithm.

The same approach is used in the next set of experiments, where we assess the

impact of the proposed expanding environment orbits. For these experiments we

compare the full proposed algorithm against a baseline algorithm where the robots

pursue random points in the environment when no suitable targets are found instead

of following the proposed expanding orbits.

We are interested in studying the effects of this feature in both simple cases

with empty environments as well as more complex environments with multiple static

obstacles, thus we perform two sets of experiments with the environment setups shown

in figures 7.8 and 7.10 but with only two groups of pucks, each having 20 pucks.

The results of the first set of experiments shown in figure 7.14 show the advantage

these orbits provide in this complex environment. While the proposed algorithm is

able to sort most pucks into their goal areas even with all the static obstacles, the one

using random goals is not able to keep up. The mean number of unsorted pucks for

the proposed algorithm is almost 0 while the one for the baseline algorithm is much

higher at almost 12, and the corresponding mean distances is less than 1 m for the

proposed algorithm compared to around 32 m for the baseline algorithm.

The next set of experiments show that the expanding orbits have an impact on

123

(a) Total Puck-Goal Distances for All Case 4 Experiments

(b) Number of Pucks Outside Goal Areas for All Case 4 Experiments

Figure 7.13: Swarm Sorting Simulation Experiment Results - Case 4

124

(a) Total Puck-Goal Distances for All Case 5 Experiments

(b) Number of Pucks Outside Goal Areas for All Case 5 Experiments

Figure 7.14: Swarm Sorting Simulation Experiment Results - Case 5

125

the speed and effectiveness of the sorting process even in simple environments as seen

in figure 7.13, with the mean number of unsorted pucks by the end of the experiments

decreasing from around 10 when using random goals compared to almost 0 when using

the proposed expanding orbits, and the corresponding mean puck to goal distances

also decreasing from around 28 m to less than 1 m.

7.2.2 Real-world Validation

A validation experiment using real robots was performed to insure that the results

obtained with the simulation are credible and that the proposed algorithm performs

well in real-world scenarios.

The same experimental platform discussed in chapter 6 is used to perform this

experiment. We use the setup shown in figure 7.15 where the proposed algorithm is

deployed on a single robot with the task of gathering 10 randomly distributed pucks

around the stadium-shaped table into a single goal area at the center of the table.

Figure 7.15 shows the starting and final states of this experiment. The robot was

able to gather all pucks into their goal areas except for two pucks that got stuck near

the edge of the table and the robot could not retrieve them.

The algorithm performed similar to the expectations set out by the simulation

results; the pucks getting stuck near the boundary of the environment was also ob-

served in the simulation when the radius of the pucks was smaller than that of the

robots. These results show that the proposed algorithm shows promising results with

drawbacks that still need to be addressed.

126

(a) Starting State for Real World Validation Experiment

(b) Ending State for Real World Validation Experiment

Figure 7.15: Swarm Sorting Validation Experiment Result

127

Chapter 8

Conclusion

This thesis presented a distributed multi-robot collision avoidance algorithm inte-

grating a novel deadlock avoidance algorithm with a buffered Voronoi cells based

approach. Collision avoidance is guaranteed and only the position of the robot and

neighboring robots is needed. While our algorithm does not completely eliminate

deadlocks, both simulations and experiments showed that it offers drastic improve-

ment in resolving deadlocks compared to the buffered Voronoi cells based approach

with right-hand heuristics. We also proposed a new mechanism for static obstacle

avoidance based on the same concept of buffered voronoi cells. The algorithm works

by finding the closest obstacle to the robot at each time step and modifying the

voronoi cell in a way that prevents the robot from colliding with that obstacle.

We also presented a distributed sorting algorithm for gathering pucks into specific

goal areas in the environment. It uses the collision avoidance algorithm as the local

movement planning algorithm and adds algorithms for target selection, target conflict

avoidance, control strategy, and global planning for calculating directions from tar-

128

gets’ current positions towards their goals. The simulations showed that the proposed

algorithm works reliably even in complex environments, and the physical experiment

validated that the proposed algorithm works similarly on real robots. Both the sim-

ulations and real experiments showed that there are still issues that can be improved

such as pucks getting stuck near the boundaries of the environment.

8.1 Future Work

While the sorting algorithm was demonstrated on real robots, more experiments

can be done with more general use cases, since only a subset of the algorithm’s

behaviours were assessed, namely a single group of pucks and a single robot were

used for the experiment. The currently available experimental setup and timing

restrictions prevented us from performing further tests in this area.

In terms of improvements, the following is a list of known issues or feature sug-

gestions that could be the focus of future work in this area:

• Due to the collision avoidance algorithm’s lacks of any communication capabil-

ities (by design), some scenarios arise when a robot’s path is blocked by one or

more static robots, causing the robot never be able to reach its goal. This is

seen in both simulations and the real world experiments. Introducing a simple

communication mechanism that allows a robot to signal to nearby neighbors

that it is stuck and needs them to make way for it to pass could dramatically

increase the success rate of avoiding such deadlocks. It would only be used

in these situations, while keeping all the processing and decision making fully

distributed.

129

• An always present issue with the swarm sorting experiments and simulations is

pucks getting stuck near the edges of the environment with no way for robots

to retrieve them due to their circular shape. This was mostly avoided in the

simulations by making the pucks larger than the robots allowing them to slide

behind them and retrieve them while following their expanding environment or-

bits. A better approach could be implemented to fix this issue, such as changing

the shape of robots by adding a pointed wedge that would allow the robots to

retrieve targets that are near the boundaries of the environment, this approach

is used by work in the BOTS lab [59]. This would require modifying the col-

lision avoidance algorithm to allow the robots to take the wedge’s shape into

account when recognizing and avoiding other robots.

• A possible continuation of this work could be investigating the possibility of

using the same algorithm to build specific structures from multiple materials by

gathering different type of targets into specific areas with different shapes. Only

circular areas around a goal position were used in this work, but the underlying

distance transform algorithm that is used for find pucks’ paths to their goals

could be used with goal areas of any shape.

130

Bibliography

[1] Mohammed Abdullhak and Andrew Vardy. Deadlock prediction and recovery for

distributed collision avoidance with buffered voronoi cells. In 2021 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), pages 429–

436. IEEE.

[2] Kazuhiro Ohkura, Toshiyuki Yasuda, Yoshiyuki Matsumura, and Masaki

Kadota. Gpu implementation of food-foraging problem for evolutionary swarm

robotics systems. In International Conference on Swarm Intelligence, pages 238–

245. Springer, 2014.

[3] Gerardo Beni and Jing Wang. Swarm intelligence in cellular robotic systems. In

Robots and biological systems: towards a new bionics?, pages 703–712. Springer,

1993.

[4] Manuele Brambilla, Eliseo Ferrante, Mauro Birattari, and Marco Dorigo. Swarm

robotics: a review from the swarm engineering perspective. Swarm Intelligence,

7(1):1–41, 2013.

[5] Melanie Schranz, Martina Umlauft, Micha Sende, and Wilfried Elmenreich.

Swarm robotic behaviors and current applications. Frontiers in Robotics and

131

AI, 7:36, 2020.

[6] Giandomenico Spezzano. Swarm Robotics. MDPI-Multidisciplinary Digital Pub-

lishing Institute, 2019.

[7] André B Bondi. Characteristics of scalability and their impact on performance.

In Proceedings of the 2nd international workshop on Software and performance,

pages 195–203, 2000.

[8] Heiko Hamann. Swarm robotics: A formal approach. Springer, 2018.

[9] Marco Dorigo, Mauro Birattari, and Manuele Brambilla. Swarm robotics. Schol-

arpedia, 9(1):1463, 2014.

[10] Scott Camazine, Jean-Louis Deneubourg, Nigel R Franks, James Sneyd, Eric

Bonabeau, and Guy Theraula. Self-organization in biological systems. Princeton

university press, 2003.

[11] D. Zhou, Z. Wang, S. Bandyopadhyay, and M. Schwager. Fast, on-line collision

avoidance for dynamic vehicles using buffered voronoi cells. IEEE Robotics and

Automation Letters, 2(2):1047–1054, 2017.

[12] L. Aguilar, R. Alami, S. Fleury, M. Herrb, F. Ingrand, and F. Robert. Ten

autonomous mobile robots (and even more) in a route network like environment.

In Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots

and Systems. Human Robot Interaction and Cooperative Robots, volume 2, pages

260–267 vol.2, 1995.

132

[13] Paolo Fiorini and Zvi Shiller. Motion planning in dynamic environments using

velocity obstacles. The International Journal of Robotics Research, 17(7):760–

772, 1998.

[14] J. van den Berg, Ming Lin, and D. Manocha. Reciprocal velocity obstacles for

real-time multi-agent navigation. In 2008 IEEE International Conference on

Robotics and Automation, pages 1928–1935, 2008.

[15] J. V. D. Berg, Stephen J. Guy, M. Lin, and D. Manocha. Reciprocal n-body

collision avoidance. In ISRR, 2009.

[16] M. Jager and B. Nebel. Decentralized collision avoidance, deadlock detec-

tion, and deadlock resolution for multiple mobile robots. In Proceedings

2001 IEEE/RSJ International Conference on Intelligent Robots and Systems.

Expanding the Societal Role of Robotics in the the Next Millennium (Cat.

No.01CH37180), volume 3, pages 1213–1219 vol.3, 2001.

[17] J. van den Berg, J. Snape, S. J. Guy, and D. Manocha. Reciprocal collision

avoidance with acceleration-velocity obstacles. In 2011 IEEE International Con-

ference on Robotics and Automation, pages 3475–3482, 2011.

[18] J. Snape, J. v. d. Berg, S. J. Guy, and D. Manocha. The hybrid reciprocal

velocity obstacle. IEEE Transactions on Robotics, 27(4):696–706, 2011.

[19] D. Wilkie, J. van den Berg, and D. Manocha. Generalized velocity obstacles.

In 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems,

pages 5573–5578, 2009.

133

[20] J. Alonso-Mora, A. Breitenmoser, P. Beardsley, and R. Siegwart. Reciprocal col-

lision avoidance for multiple car-like robots. In 2012 IEEE International Con-

ference on Robotics and Automation, pages 360–366, 2012.

[21] A. Giese, D. Latypov, and N. M. Amato. Reciprocally-rotating velocity obstacles.

In 2014 IEEE International Conference on Robotics and Automation (ICRA),

pages 3234–3241, 2014.

[22] A. Best, S. Narang, and D. Manocha. Real-time reciprocal collision avoidance

with elliptical agents. In 2016 IEEE International Conference on Robotics and

Automation (ICRA), pages 298–305, 2016.

[23] D. H. Shim, H. J. Kim, and S. Sastry. Decentralized nonlinear model predictive

control of multiple flying robots. In 42nd IEEE International Conference on

Decision and Control (IEEE Cat. No.03CH37475), volume 4, pages 3621–3626

vol.4, 2003.

[24] Oussama Khatib. Real-time obstacle avoidance for manipulators and mobile

robots. In Autonomous robot vehicles, pages 396–404. Springer, 1986.

[25] Jean-Claude Latombe, Anthony Lazanas, and Shashank Shekhar. Robot motion

planning with uncertainty in control and sensing. Artificial Intelligence, 52(1):1–

47, 1991.

[26] Daniel Morgan, Soon-Jo Chung, and Fred Y. Hadaegh. Model predictive con-

trol of swarms of spacecraft using sequential convex programming. Journal of

Guidance, Control, and Dynamics, 37(6):1725–1740, 2014.

134

[27] Daniel Morgan, Soon-Jo Chung, Lars Blackmore, Behcet Acikmese, David Ba-

yard, and Fred Y Hadaegh. Swarm-keeping strategies for spacecraft under j2 and

atmospheric drag perturbations. Journal of Guidance, Control, and Dynamics,

35(5):1492–1506, 2012.

[28] H. Zhu and J. Alonso-Mora. Chance-constrained collision avoidance for mavs in

dynamic environments. IEEE Robotics and Automation Letters, 4(2):776–783,

2019.

[29] Y. F. Chen, M. Liu, M. Everett, and J. P. How. Decentralized non-

communicating multiagent collision avoidance with deep reinforcement learning.

In 2017 IEEE International Conference on Robotics and Automation (ICRA),

pages 285–292, 2017.

[30] D. E. Chang, S. C. Shadden, J. E. Marsden, and R. Olfati-Saber. Collision

avoidance for multiple agent systems. In 42nd IEEE International Conference

on Decision and Control (IEEE Cat. No.03CH37475), volume 1, pages 539–543

Vol.1, 2003.

[31] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada. Control barrier function

based quadratic programs for safety critical systems. IEEE Transactions on

Automatic Control, 62(8):3861–3876, 2017.

[32] M. Wang and M. Schwager. Distributed collision avoidance of multiple robots

with probabilistic buffered voronoi cells. In 2019 International Symposium on

Multi-Robot and Multi-Agent Systems (MRS), pages 169–175, 2019.

135

[33] H. Zhu and J. Alonso-Mora. B-uavc: Buffered uncertainty-aware voronoi cells for

probabilistic multi-robot collision avoidance. In 2019 International Symposium

on Multi-Robot and Multi-Agent Systems (MRS), pages 162–168, 2019.

[34] A. Pierson, W. Schwarting, S. Karaman, and D. Rus. Weighted buffered voronoi

cells for distributed semi-cooperative behavior. In 2020 IEEE International Con-

ference on Robotics and Automation (ICRA), pages 5611–5617, 2020.

[35] Gerardo Beni. Swarm Intelligence, pages 1–28. Springer Berlin Heidelberg,

Berlin, Heidelberg, 2019.

[36] Gerardo Beni and Jing Wang. Swarm intelligence in cellular robotic systems. In

Paolo Dario, Giulio Sandini, and Patrick Aebischer, editors, Robots and Biological

Systems: Towards a New Bionics?, pages 703–712, Berlin, Heidelberg, 1993.

Springer Berlin Heidelberg.

[37] Alan F. T. Winfield. Foraging Robots, pages 1–26. Springer New York, New

York, NY, 2009.

[38] Elizabeth A Langridge, Nigel R Franks, and Ana B Sendova-Franks. Improve-

ment in collective performance with experience in ants. Behavioral Ecology and

Sociobiology, 56(6):523–529, 2004.

[39] Alejandro G Farji-Brener, Luciana Elizalde, Hermógenes Fernández-Maŕın, and

Sabrina Amador-Vargas. Social life and sanitary risks: evolutionary and current

ecological conditions determine waste management in leaf-cutting ants. Proceed-

ings of the Royal Society B: Biological Sciences, 283(1831):20160625, 2016.

136

[40] Davide Santoro, Stephen Hartley, and Philip J Lester. Behaviourally specialized

foragers are less efficient and live shorter lives than generalists in wasp colonies.

Scientific reports, 9(1):1–10, 2019.

[41] Anna Dornhaus. Specialization does not predict individual efficiency in an ant.

PLoS biology, 6(11):e285, 2008.

[42] Jean-Louis Deneubourg, Simon Goss, Nigel Franks, Ana Sendova-Franks, Claire

Detrain, and Laeticia Chrétien. The dynamics of collective sorting robot-like

ants and ant-like robots. In From animals to animats: proceedings of the first

international conference on simulation of adaptive behavior, pages 356–365, 1991.

[43] Ralph Beckers, Owen E Holland, and Jean-Louis Deneubourg. Fom local actions

to global tasks: Stigmergy and collective robotics. In Prerational Intelligence:

Adaptive Behavior and Intelligent Systems Without Symbols and Logic, Volume

1, Volume 2 Prerational Intelligence: Interdisciplinary Perspectives on the Be-

havior of Natural and Artificial Systems, Volume 3, pages 1008–1022. Springer,

2000.

[44] Marinus Maris and René Boeckhorst. Exploiting physical constraints: heap

formation through behavioral error in a group of robots. In Proceedings

of IEEE/RSJ International Conference on Intelligent Robots and Systems.

IROS’96, volume 3, pages 1655–1660. IEEE, 1996.

[45] Chris Melhuish, Owen Holland, and Steve Hoddell. Collective sorting and seg-

regation in robots with minimal sensing. In Proc. 5th Int. Conf. Simulation of

Adaptive Behaviour, pages 465–470, 1998.

137

[46] Chris Melhuish, Ana B Sendova-Franks, Sam Scholes, Ian Horsfield, and Fred

Welsby. Ant-inspired sorting by robots: the importance of initial clustering.

Journal of the Royal Society Interface, 3(7):235–242, 2006.

[47] Tao Wang and Hong Zhang. Multi-robot collective sorting with local sensing. In

Ieee intelligent automation conference (IAC). Citeseer, 2003.

[48] Andrew Vardy. Accelerated patch sorting by a robotic swarm. In 2012 Ninth

Conference on Computer and Robot Vision, pages 314–321. IEEE, 2012.

[49] Andrew Vardy, Gregory Vorobyev, and Wolfgang Banzhaf. Cache consensus:

rapid object sorting by a robotic swarm. Swarm Intelligence, 8(1):61–87, 2014.

[50] E. Olson. Apriltag: A robust and flexible visual fiducial system. In 2011 IEEE

International Conference on Robotics and Automation, pages 3400–3407, 2011.

[51] Jörg-Rüdiger Sack and Jorge Urrutia. Handbook of computational geometry.

Elsevier, 1999.

[52] A. Okabe, B. Boots, K. Sugihara, and S.N. Chiu. Spatial Tessellations: Concepts

and Applications of Voronoi Diagrams. Wiley Series in Probability and Statistics.

Wiley, 2009.

[53] Andrew Vardy. Orbital construction: Swarms of simple robots building enclo-

sures. In 2018 IEEE 3rd International Workshops on Foundations and Applica-

tions of Self* Systems (FAS* W), pages 147–153. IEEE, 2018.

[54] James A Sethian. A fast marching level set method for monotonically advancing

fronts. Proceedings of the National Academy of Sciences, 93(4):1591–1595, 1996.

138

[55] HeeSun Choi, Cindy Crump, Christian Duriez, Asher Elmquist, Gregory Hager,

David Han, Frank Hearl, Jessica Hodgins, Abhinandan Jain, Frederick Leve,

et al. On the use of simulation in robotics: Opportunities, challenges, and

suggestions for moving forward. Proceedings of the National Academy of Sciences,

118(1), 2021.

[56] C. Gregory and A. Vardy. microUSV: A low-cost platform for indoor marine

swarm robotics research. HardwareX, 2020.

[57] Protocol buffers. https://developers.google.com/protocol-buffers/. Ac-

cessed: 2020-09-30.

[58] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler

Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser,

Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jar-

rod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern,

Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas,

Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero,

Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa,

Paul van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algo-

rithms for Scientific Computing in Python. Nature Methods, 17:261–272, 2020.

[59] Andrew Vardy. Robot distancing: Planar construction with lanes. In Interna-

tional Conference on Swarm Intelligence, pages 229–242. Springer, 2020.

139

https://developers.google.com/protocol-buffers/

	Abstract
	Acknowledgements
	List of Figures
	Introduction
	Thesis Outline
	Contributions

	Literature Review and Problem Definition
	Multi-Robot Collision Avoidance
	Swarm Sorting
	Problem Definition

	Collision Avoidance
	Background
	Voronoi Diagram
	Buffered Voronoi Cell
	Collision Avoidance with Buffered Voronoi Cells

	Deadlock Prediction and Recovery Algorithm
	Collision Avoidance Algorithm Overview
	Deadlock Prediction
	Deadlock Recovery
	Deadlock Recovery Success Prediction

	Swarm Sorting Algorithm
	Sorting Algorithm
	Default Behavior - Orbiting the Environment
	Target Selection and Target Conflict Avoidance
	Control Strategy
	Global Planning

	Obstacle Avoidance with Voronoi Cells

	Simulation
	Introduction
	SwarmJS Simulation Platform
	Quick Actions
	Quick Start
	Configuration
	Software Architecture

	Experimental Setup
	Experimental Setup
	Robot Control Software
	Sensor Update
	Goal Selection
	Local Planning
	Motor control
	Summary

	Experiments and Results
	Collision Avoidance Algorithm Experiments
	Simulation
	Real-world Validation

	Swarm Sorting Algorithm Experiments
	Simulation
	Real-world Validation

	Conclusion
	Future Work

	Bibliography

