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ABSTRACT 

There are multiple objectives that a controller designer pursues in vehicle 

dynamics, such as safety, tracking, comfort, and efficiency. These objectives are 

present in different dimensions of longitudinal, lateral, vertical, yaw, roll, and pitch 

for each vehicle and can be controlled or manipulated by all types of actuators. These 

actuators can affect the steering, braking, torques at each tire, suspension system, 

etc. The majority of studies in vehicle dynamics control address either one control 

objective or control action, and even the ones that address an integrated control 

structure (including more control objectives and actuators) neglect the counter 

effects of the controllers/actuators on each other’ objectives. So there exists the 

question of what can be the most efficient strategy in an integrated structure that 

provides the optimal solution for any set of objectives and control actions by taking 

into account the effects of each actuator in a way that no actuator can achieve a better 

optimal result by deviating from that strategy. Game theory is a field that addresses 

these types of questions, and its application in vehicle dynamics is called the theory 

of differential games.  

This dissertation explores differential game theory in two-player and three-

player optimal games in vehicle dynamics. It presents a solution for an integrated 

optimal problem, where two/three actuators (players) are trying to achieve their own 

sets of optimal goals by taking into account other actuators' (players) actions. The 

control problems are categorized into two classes of Linear Quadratic Regulators 

(LQR) and Control Coupled Output Regulation (CCOR) due to coupling between 

the output objectives and control actions. The solution for the single-player game 

exists in the literature for both LQR and CCOR for infinite horizon linear continuous 

systems. This thesis extends this solution to the two-player and three-player games 
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for continuous systems. After presenting the solution, in theory, the control feedback 

gains are calculated for the following case studies using linear control models: 

 The two-player game between active steering and corrective yaw 

moment 

 The two-player game between active steering and corrective roll 

moment 

 Three-player game between active steering, corrective yaw moment, 

and corrective roll moment 

 The two-player player game between active suspension and corrective 

roll moment 

The designed feedback gains are used in a closed-loop feedback system on a 

nonlinear vehicle model with both linear tire and nonlinear tire models. The 

simulation results for the two/three-player game theory approach are compared with 

the one player and the two/three payer decentralized approach (normal optimal 

approach without considering the counter effects of control actions on each others’ 

cost function). It is shown that the game theory approach provides better 

performance in terms of control action cost and objective cost in some scenarios. 

 

Keywords: linear quadratic regulator, control coupled output regulation, differential 

game theory, vehicle dynamics, nonlinear tire model 
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1 CHAPTER 1: INTRODUCTION 

 

1.1 Motivation 

Safety, comfort, and efficiency have always been the most significant concerns 

in vehicle dynamics, especially in more sensitive applications like military and 

automated highways. The army deploys trucks in closely-spaced convoys where the 

terrain can be highly variable, and the drivers are often inexperienced. Traffic 

accidents are a significant cause of death for soldiers during peacetime[1]. 

Automated highways in which groups of vehicles travel very closely have been 

envisioned to improve traffic flow and safety[2]. Considering the points mentioned 

above, enhancing vehicles' performance towards maintaining safety and 

maneuverability has been the target of much research. There have been many 

different approaches taken to solve this problem. The previous studies focused on 

using a single control input like suspension forces, steering angle, braking force, and 

torques generated at the wheels. 

Using a single input variable to control the vehicles' dynamic states limits the 

number of responses that can be controlled and makes it hard to provide high overall 

dynamic performance for the vehicle. For instance, using active suspension forces 

as the control input can provide ride comfort and vertical dynamic stability. 

However, it usually can't sufficiently improve the yaw dynamics of a vehicle to 

fulfill the objective of tracking the desired path. Some research studies integrated 

dynamic control that takes different controllers (multiple control inputs) into 

consideration and simultaneously achieves various objectives. For example: using 

active suspension forces and braking forces as two different groups of control inputs 

to maintain vertical vehicle stability (for ride comfort, road holding, anti-roll, and 
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anti-pitch) and track the desired yaw rate[8]. Most of the literature related to 

integrated control has taken a decentralized control approach to solve the problem, 

which means the control problem with multiple control inputs is broken into two 

small problems, each with single control input, and each problem is solved in an 

independent way to satisfy the related control objective, and the interaction between 

the control variables is neglected. There is a gap to find a solution approach to the 

integrated control problem so that all control inputs improve the performance of the 

objectives considering each other's actions. As can be found in the literature review 

in Chapter 2, a new class of problems named a differential game [3] has been 

introduced in the recent research where the control problem is defined as a 

differential game in which the control inputs are players that are trying to optimize 

a control cost function under some constraints, and the solution is provided by 

optimal control and game theory. Chapter 2 addresses an integrated control problem 

solved with the game theory for two specific control inputs. In this dissertation, 

differential game theory is utilized as a strategy that provides an optimal solution in 

problems with two or more two actuators trying to satisfy a combination of vehicle 

chassis control goals. For instance, in one scenario, active suspension and active 

anti-roll bars are working cooperatively to achieve the combinations of improving 

ride quality (minimizing vertical acceleration) and preventing rollover (or 

minimizing roll angle and roll rate). After presenting the mathematical solution for 

the Game Theory Optimal problem, the strategy is tested on some scenarios to 

explore the benefits and strengths of the multiple-player game approach compared 

to a single-player one. 

 

1.2 Background information on vehicle active safety systems  

Vehicle safety systems cover a vast and diverse area of research that started a 



3 
 

long time ago and has come a long way from simple suspension or steering control 

to complicated integrated and robust controls. The three vertical, longitudinal, and 

lateral subcategories are the most relevant to this thesis and will now be briefly 

reviewed to motivate the research problem. 

Vertical dynamics control targets increasing ride comfort and road holding, 

reducing fatigue and energy, and improving vehicle ability to execute evasive 

maneuvers by avoiding situations like spinning, drifting out, and rolling over. These 

targets are achievable by utilizing active or semi-active suspension systems.  In 

semi-active systems, the control input is the viscous damping coefficient of the 

shock absorber, but in the active suspension system, a separate actuator is used in 

parallel with suspension elements to exert independent control force to reduce the 

vibration of the car body. This method is more effective than a semi-active system 

but is more expensive and consumes more energy[4]. Moreover, several research 

papers show that taking advantage of the preview information can cause noticeable 

improvements to stability and robustness. The type of preview information helpful 

in vertical dynamic control is the road profile (roughness), and there are many ways 

to generate it. It can be measured directly with a roller wheel in front of vehicles or 

some look ahead sensors, or it can be indirectly calculated from the overall response 

of preceding vehicle(s) as preview information for the follower vehicle(s)[5]. 

The engineer is mainly concerned with longitudinal accelerations or maintaining 

the vehicle speed at the desired value in longitudinal dynamics. Sometimes, it 

pursues more ambitious targets like collision avoidance and holding the space 

between convoys of vehicles. The most well-known systems that are now 

commercially used in many cars for longitudinal control purposes are adaptive cruise 

control (ACC) and automated highway systems (AHS)[4]. 
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Yaw stability control is an essential part of lateral vehicle dynamics control that 

improves handling and stability. The control objectives are tracking the desired yaw 

rate1 or sideslip2, and sometimes both of them together. There are two common 

approaches in active chassis control[5]. The first one is the direct yaw moment 

control (DYC) method, in which the corrective yaw moment is the control input 

generated with either active braking or active torque distribution (active differential) 

[6]. In active braking, the controller distributes braking forces transversely to 

generate the proper corrective yaw moment, while in the active torque distribution 

method, the desired yaw moment is achieved by an active differential device that 

distributes left-right driving torque to the wheels. Although DYC can enhance 

stability in critical driving scenarios, it may be less effective for emergency braking 

on split-mu road surfaces and adds burden to drivers in high-speed cornering by 

decreasing the yaw rate. Hence active steering control is proposed. A corrective 

steering angle is added to the driver steering input to maintain the desired yaw rate 

and sideslip, and there are three ways to implement this method. The steering aid 

can be applied to the front axle (active front steering AFS) to improve 

maneuverability at low speed or the rear axle (active rear steering ARS) to improve 

handling at high speed. AFS and ARS (four-wheel active steering 4WAS) can also 

be combined to control lateral and yaw motion simultaneously using two 

independent control inputs[6]. 

There are more active safety methods used in the vehicle dynamics systems, such 

as lane departure warning system (LDWS), lane-keeping system (LKS), vision 

enhancement systems (like night vision), and driver condition monitoring. These are 

outside the scope of this research, and we will be only focused on vehicle stability 

                                                             
1 In order to achieve the goal of tracking the desired yaw rate of the vehicle is estimated from the steering angle or 

the desired path. Please refer to Rajamani’s Chapter 8 for the formulation [4] 
2 The angle between the vehicle’s longitudinal axis and velocity vector 
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control[4]. 

Most of the controllers are focused on solving a single problem in one of the 

three previously-mentioned areas. Even a combination of controllers acts in a 

decentralized pattern in which each controller is making decisions independently 

without considering the other ones' actions. Due to the coupled dynamics, presence 

of load transfer, and nonlinear tire behaviors, one can easily conclude that one 

actuator's control actions can affect the states of the system in all vertical, 

longitudinal, and lateral dimensions. The control actions of one actuator can be either 

constructive or destructive to the goal of other actuators.  

The optimal solution must consider all the control actions and control targets 

together. There is a need to develop an integrated control strategy in all three aspects 

of longitudinal, lateral, and vertical that allows the vehicle to optimally achieve the 

desired stability goal using the minimum control efforts for all the actuators. The 

differential game theory is introduced in the next section as a class of optimal control 

that deals with these problems. 

 

1.3 Introduction to differential game theory and its application in 

vehicle dynamics 

Most of the optimal control problems in vehicle dynamics (as reviewed in 

Chapter 2) formulate the cost function with a single objective function or a single 

control action (decision maker). However, there are some problems in which 

multiple actuators (players) are trying to achieve objectives in their cost functions. 

These problems are subject to a set of differential equations and are categorized as 

an extension of optimal control theory called the theory of differential games. 
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Using game theory in interactions between human drivers and vehicle stability 

control systems has recently grasped researchers' attention. This approach has many 

features like cooperative and non-cooperative optimization behavior, the option of 

having multiple players, enduring consequences of decisions, and robustness to 

changes in the environment. Most of the works done in this area are two-player 

differential games (the differential equation is describing states evolution over time) 

in which the driver is one of the players, and the other player is either AFS [20,21] 

or DYC [22-24]. These players' interactions are modeled in different paradigms in 

game theory (like decentralized3, non-cooperative Nash4, non-cooperative 

Stackelberg5, cooperative Pareto6 [25]). The game can also be varied based on the 

mode of play, equilibrium type, and information pattern. The play mode illustrates 

each player's behavior towards its own and other players' interests in a game. Players 

can pursue their interests and play a non-cooperative game or enter a binding 

agreement of interests and play a cooperative game. The equilibrium type is more 

about each player's adopted strategies in a strategy profile that builds the 

equilibrium. For example, each player can constitute its strategy by taking others' 

strategies into account, and they all act simultaneously, or it can be in a leader-

follower pattern. The information pattern concerns each player's open-loop or 

closed-loop knowledge from the states of a game. The game theory approach can be 

beneficial in different scenarios. For instance, in a convoy of vehicles traveling close 

to each other, a driver might not see a bump or obstacle. Still, the active front steering 

(AFS) might be aware of the upcoming barrier using preview information from front 

vehicles and help the car avoid the obstacles or vise versa. Using game theory in 

                                                             
3 In the decentralized paradigm, each players cost function is defined independent of other players’ goal or action 
4 In Nash equilibrium, each player has its own strategy by taking other’s strategies into account and all players act 

simultaneously 
5 In Stackelberg equilibrium, one player serves as a leader and the others are followers 
6 In Pareto equilibrium, the goal of each player is identical. This equilibrium is for cooperative games to reach global 

optimality 
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developing control strategies seems to be an intelligent approach in critical situations 

where different interests are involved, and players must make decisions to achieve 

global or separate goals. 

There is space for new research to investigate the potential benefits of mixing 

different stability control methods like direct yaw control, active steering, active 

suspension, active anti-roll bar, etc. The two-player differential game can pursue 

different control objectives like collision or obstacle avoidance and provides more 

stability to the vehicle. There are many different unknown scenarios in which the 

game theory approach can be helpful and more research should be done to discover 

the strength of this approach. The game can also extend to an N-player differential 

game by considering human driver, active steering, differential braking, and active 

suspension systems as players to reach a global vehicle dynamic control. 

 

1.4 Problem statement 

Consider the linear dynamic system below: 

x Ax Bu

y Cx Du

 

 
  0( )x t : is given 

(1-1) 

where A is an n by n state matrix; B is an n by m matrix, C is a k×n output matrix; 

D is a k×m matrix; x is a n×1 state vector; u is an m×1 control input vector; y is a 

k×1 output vector. 

According to the optimal control approach, the controlled and control variables 

are introduced into a quadratic cost function with respective weighting matrices sQ  

and sR . 
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0

[ ( ) ( ) ( ) ( )]T T

s s x u

t

J x Q x u R u d J J    


     (1-2) 

The whole cost function J is a combination of the state regulation cost  xJ  and 

the control effort cost uJ . Both sQ  and sR  are constructed through weighting the 

matrices in the output equation:  

T

sQ C QC  symmetric positive semi-definite matrix 

T

sR D QD  symmetric positive definite matrix 

(1-3) 

This representation is the standard LQR for state regulation problems. A more 

generalized form is a control coupled regulation problem that has the cross-coupling 

term between the state and control variables as shown below: 

0

[ ( ) ( ) 2 ( ) ( ) ( ) ( )]T T T

x c u

t

J x Qx x Nu u Ru d J J J      


       [27] 

,

,

T

T

T

Q C QC

N C QD

R D QD R





 

 

(1-4) 

In a single-player or decentralized paradigm, the control input comes from an 

actuator or a player that wants to achieve a vehicle safety or stability goal while 

minimizing the actuator control effort. This goal is modeled in a quadratic form in 

an optimal cost function, a combination of weighted goal and weighted control effort 

regulators. The optimal solution is the control action (or control actions) that 

minimizes the designed optimal cost function. Here is the list of players (actuators) 

and vehicle stability goals to pick from: 
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Players: 

 Active-steering: assisted active steering angle that is added to the human 

driver steering angle 

 Active-suspension: applies active or semi-active suspension forces 

 Corrective roll moment: active anti-roll bar generates the corrective anti-roll 

moment around the roll center 

 Corrective yaw moment: This moment is either created by applying 

differential brake forces or active torque distribution to tires 

Goals: 

 Roll stability: regulates roll angle and roll rate to provide better roll stability 

 Anti rollover: regulates and maintains the roll index between (-1,1) to prevent 

rollover. If the roll index stays in this range, no tire will leave the ground.  

 Ride quality: regulates the vertical acceleration to provide a better ride 

experience for the passengers 

 Rattle space: regulates the suspension deflections 

 Road holding: regulates the tire deflections 

 Yaw stability/tracking: regulates yaw rate error, yaw error, and lateral error 

Some of these goals can either be achieved directly from optimal control or 

indirectly observed as a by-product of other goals. In this dissertation, the objective 

of maintaining the roll index between (-1,1) is observed indirectly by regulating roll 

angle and roll rate. The rattle space and road holding are also not implemented 

directly in the cost function definition, but they are monitored in simulations. 

The single-player game consists of only one actuator. A two-player game cost 

function includes the control efforts of two actuators trying to achieve a goal 

together, and so on for an N-player game. The paradigm is called decentralized if 
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each player's cost function is defined independently of the other player's control 

action. The Nash paradigm cost function includes control actions of multiple players. 

The solution to this problem is the set of control actions (strategy) in which no player 

can improve the optimal cost unilaterally by deviating from that strategy. Here is the 

representation of the 2N   player Nash problem [3]: 

Define the cost function 1( , , ,..., )i NJ t x u u  as: 

1

0

L( , ( ), ( ),..., ( ))d , i 1,..., N

T

i NJ x t u t u t t   
(1-5) 

where x(t) is the solution to a dynamic system below 

1 0(t, (t), (t),..., (t)), x(0) xNx f x u u   (1-6) 

The Nash solution is a set of control actions * *( ,..., )i Nu u if for all * ,i iu U i N  the 

following inequality is satisfied for i=1,2,…, N 

* * * * * * * * *

1 2 1 2 1 1( ( ), , ,... ) ( ( ), , ,..., , , ,..., )i i N i i i i NJ J x t u u u J x t u u u u u u   (1-7) 

In this dissertation, the solution for a decentralized paradigm is compared to the 

solution for two-player and three-player Nash. The two-player combinations are as 

follows: 

 Active steering + Corrective yaw moment 

 Active steering + Corrective roll moment 

 Active suspension + Corrective roll moment 

and the three-player combination is: Active steering + Corrective yaw moment + 

Corrective roll moment 
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1.5 Objectives 

This thesis will develop a solution to two-player and three-player differential 

games and explore the game theory approach's benefits in some vehicle dynamics 

optimal control problems. Here are the specific objectives explored in this research: 

a) Developing linear control models and nonlinear vehicle models with linear 

and nonlinear tire models 

b) The solution to the two-player infinite horizon linear quadratic regulator 

(LQR) control problem for continuous systems (this is a contribution based 

on the solution for a discrete system that already exists in the literature[22]) 

c) Solution for the two-player control coupled output regulator (CCOR) (this 

contribution is achieved by combining  the cost functions) 

d) Investigating the game theory approach for improvement of vehicle dynamic 

systems control in a two-player differential game between each of the two 

chosen players from the following list: active front steering (AFS), active 

suspension, corrective yaw moment, and corrective roll moment affected as 

active anti-roll bar (AARB) 

e) Extension of the solution and scenarios to the three-player differential game 

between active front steering (AFS), corrective yaw moment, and corrective 

roll moment (the solution for the three-player game is also a contribution of 

this thesis) 

 

1.6 Scope of the research 

This project's overall purpose is to use differential game theory to solve optimal 

control problems in vehicle dynamics with more than one controller or player. This 

research applies the game theory approach to enhance vehicle stability and safety in 

lateral and vertical dynamics using a combination of actuators, including active 
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steering, corrective yaw moment, active suspension, and corrective roll moment as 

an active anti-roll bar. A nonlinear plant model is designed to investigate the 

proposed controller on a model that accurately captures nonlinear vehicle dynamics. 

More specifically, the thesis will address the following research questions: 

 What is the advantage of using the game theory paradigms over the 

decentralized set of optimal controllers? 

 How to extend and solve the problem from a two-player game to a three-

player game? 

 What are some scenarios and objectives in lateral and vertical vehicle 

dynamics for which using game theory can be beneficial?  

Outcomes and contributions: 

 Formulation and solution of the two-player linear-quadratic problem with 

infinite horizon for continuous systems 

 Formulation and solution of the two-player output regulation problem by 

combining the cost functions of players into a new general cost function 

 A method for application of three-player game theory to integrated vehicle 

chassis control, with solutions to game-theoretic control problems involving 

the following players:  active steering, active suspension, roll control, yaw 

control 

 An algorithm to solve the coupled Riccati equations for a continuous three-

player LQR Nash equilibrium game 

 A numerical simulation study demonstrating the capability of N-player 

optimal game theory to reduce unwanted chassis responses while reducing 

control effort, compared to traditional decentralized control design methods 
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1.7 Thesis Structure 

Chapter 2 represents the literature review in modeling, stability control, and 

optimal game theory. Once the problem is motivated, the subsequent research 

proceeds in three parts:  

The first part is devoted to modeling the control design and plant models. 

Control models are low degrees of freedom (DOF) linear models (such as 2DOF 

bicycle models for lateral dynamics and 4DOF roll models for vertical dynamics) 

capable of capturing the car's dominant dynamic behaviors. These models are 

explained mathematically and coded in MATLAB software to design and test the 

controllers. The plant model should be as close as it can be to a real vehicle. As the 

goal is to explore the global vehicle stability, a car model must simulate the vehicle 

response for states' feedback, testing the controllers, and validation. A 6DOF 

nonlinear car model is chosen as the simplest model that meets the requirements. 

This model combines the 2DOF bicycle model and 4DOF roll plane model, 

including lateral motion, yaw dynamics, roll dynamics, and vertical oscillation of 

four wheels. This model is equipped with a nonlinear tire model interface that 

generates tire forces. Lateral tire forces are calculated from slip angles and the tire's 

normal forces. In Chapter 3, the yaw plane and roll plane and combined yaw/roll 

plane models are introduced as the control models, and the roll index is also defined 

as a parameter to measure anti-roll performance. Then the combination of these two 

models is presented, and in Chapter 7, the nonlinear tire model is added to the plant 

model and tested in simulations. 

The second part includes the introduction and the mathematical representation 

of the game theory problem for a two-player game. It provides a solution for the 

linear quadratic regulator (LQR) and control coupled output regulation problem 

(CCOR). Existing literature is used to explain why the CCOR method is preferred 
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for the controller design in Chapter 4. Finally, the two-player solution in the LQR 

and CCOR solution for a three-player game is presented in Chapter 5. 

The last major part is the simulation results for control models Chapter 6 and 

the plant model with nonlinear tire model Chapter 7. In Chapter 6, the two-player 

game is explored in a differential game between active-steering versus corrective 

yaw moment, active-steering versus corrective roll moment, corrective roll moment 

versus active suspension. A three-player game is also presented, including active 

steering, corrective yaw moment, and corrective roll moment. The optimal control 

gains are calculated for decentralized and Nash paradigms for each scenario. Then, 

the closed-loop simulation results are shown using the 6DOF plant model with a 

linear tire model. It is shown that the Nash solution is capable of achieving higher 

objective performance with lower control efforts by splitting the burden between 

players. This benefit can help situations where actuators get saturated and are 

incapable of producing the required control efforts. In Chapter 7, the linear tire 

model with saturation and nonlinear Pacejka tire model is introduced and compared. 

The 6DOF plant model from Chapter 6 is equipped with the nonlinear tire model, 

and the simulation results are shown for two case studies (the two-player game 

between active steering and corrective yaw moment and the three-player game 

between active steering, corrective yaw moment, and corrective roll moment). 

Chapter 8 presents a summary of the work, highlights the contributions of this 

dissertation, and suggests future research directions.  
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2 CHAPTER 2: LITERATURE REVIEW 

 

2.1 Modeling literature review 

In order to examine, analyze, and design a controller, vehicle dynamics models 

are essential. The models are either mathematical models or built-in models from 

commercial car simulation software like CarSim [7]. The mathematical ones are 

obtained from Newton's law and can be either linear or nonlinear. The vehicle's 

equations of motion are written according to the desired number of degrees of 

freedom. Consequently, the model with more degrees of freedom is potentially 

closer to actual car dynamic behavior. According to desired control objectives, many 

different models have been used in the literature. For the simple task of controlling 

a suspension in one wheel, a 2DOF quarter car model can be used, including 

unsprung mass, sprung mass, and a suspension system between them and the road. 

The quarter car model can only be used in vertical dynamic analysis. If one is 

interested in analyzing the pitch movements, two quarter car models can be joined 

together to make a 4DOF half-car model. Roll dynamics can also be investigated 

using a 4DOF half-car model. The simplest model to investigate yaw dynamics is 

called a bicycle model. The left and right wheels are considered one wheel, and the 

dynamic system states are lateral velocity or sideslip and yaw rate. A complete 

model that is generally used for integrated control purposes closer to the real car 

model is a full-car model, a combination of four quarter car models that includes all 

the yaw, roll pitch, and heave dynamics. More details about the mentioned models 

can be found in Rajamani [4]. Aripin et al. [8] generally reviewed full car models 

and these are summarized in the chart below. 
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Table 2-1: Number of DOF of the nonlinear vehicle models [8] 

 

 

A proper tire model is also required to obtain the tire forces, which can be either 

linear tire model or nonlinear. Pacejka and Dugoff are the most common nonlinear 

tire models that their descriptions can be found in vehicle dynamics books like 

[4,26]. 

After defining the control objectives, a simple model for control design can be 

selected. A more complicated model can validate and obtain real vehicle model 

feedback signals. Besides the mathematical model, there is also a commercial 

vehicle dynamics software known as CarSim7 with multi-degree of freedom vehicle 

models that have the highest fidelity practical for simulating vehicle responses and 

interfacing with controllers [7]. 

 

                                                             
7 Manufacturer website: https://www.carsim.com/ 

https://www.carsim.com/
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2.2 Stability control literature review 

There are many control strategies reported in the literature to maintain vehicle 

stability in each level of longitudinal, vertical, and lateral dynamics individually. 

Since this research focuses on lateral, vertical, and roll dynamics, this literature 

review does not include longitudinal dynamics control. 

Hrovat [9] applied optimal control theory to generate forces in an active 

suspension system for the quarter, half, and full car models. Bender [10] and Hac [5] 

considered road preview information to generate active suspension forces, which 

improved car body vertical acceleration, tire, and suspension deflection 

performance. Marzbanrad et al. [11] studied the stochastic optimal preview control 

of vehicle suspension and the effect of preview time. They announced the 

improvement of performance compared to active or passive suspension without the 

preview information. The active suspension appears to be one of the common control 

inputs to enhance the vehicle’s vertical stability. This dissertation also picks active 

suspension as one of the control inputs for its control objectives. 

In 2014, Aripin et al. [6] did a complete review on active yaw control systems 

for vehicle handling and stability enhancement. All active chassis control methods, 

including DYC (Direct Yaw Control using active braking or active differential), 

active steering (AFS8, ARS9, 4WS10), and integrated active steering and yaw moment 

control, are included in this paper review. All the control strategies are discussed and 

compared to each other, summarized in the chart below. 

                                                             
8 Active Front Steering 
9 Active Rear Steering 
10 Four wheel Steering 
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Table 2-2: Yaw stability control algorithms [8] 

 

The major factor that can clarify these different strategies' advantages and 

disadvantages is their robustness to uncertainties. The uncertainties are variations of 

dynamic parameters like road surface adhesion coefficients, tire cornering stiffness, 

vehicle mass, vehicle speed, vehicle moment of inertia, and external disturbances 

like longitudinal and lateral crosswinds. This thesis chooses active front steering and 

corrective roll moment as the control inputs to control yaw dynamics. Besides the 

combined effects of these control inputs on yaw dynamics, their influence on the roll 

dynamics is also investigated. It is shown that active steering can either improve the 

tracking at the cost of decreasing roll performance or can improve roll stability by 

counter-steering at the cost of losing the tracking. 

When a vehicle encounters an evasive maneuver like high-speed cornering or 

cornering on icy roads, the load transfer between the tires or low friction coefficient 

makes it difficult for a vehicle to track the desired path or remain stable. Different 

things can happen in critical cornering maneuvers, like the saturation of lateral force 

on tires. The vehicle loses its steerability and drifts off, spins out, or skids. In some 

situations, the increased roll index (mostly in vehicles with a high center of gravity) 

makes the vehicle rollover. Most vehicle dynamic system stability controllers are 
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focused on yaw stability and try to use the DYC method to compensate for the yaw 

moment required to stay on the desired path. No matter how good the tires are, there 

is always a limit on the amount of lateral force generated. This limit depends on 

many factors, including friction coefficient and changes according to normal forces 

on tires. Load transfer during cornering will change the normal forces at each tire 

and makes it hard to generate the maximum required lateral force to stay on the track. 

Normal forces on tires can be affected by active or semi-active suspension systems. 

The mentioned limitations and complexity of vehicle dynamics make the controllers 

continuously seek new methods to approach vehicle stability and maneuverability 

problems. Recent research has shown that applying integrated yaw moment control 

and suspension control can help vehicle yaw stability and steerability and provide 

adequate roll stability. In this research, the game-theoretical approach is explored as 

one of the new methods to address the mentioned problems. It was shown that this 

method could split the control burden between different control inputs called players 

and enhance vehicle maneuverability and stability despite the presence of saturation 

in tire forces or some control inputs. Tim Gordon et al. [8] conducted a review on 

the methodologies and architectures of different control methods in integrated 

control for road vehicles with an emphasis on the flow of the control information, 

but there was no mention of the game theory approach in the listed architectures. 

In 2005, Shim and Margolis[12] used a trial and error method to indirectly 

control the normal force at tires with suspension actuators to reduce the yaw rate 

error. When the vehicle makes a left-hand turn and yaw rate error is positive 

(understeer car), the force actuators in the right front and left rear wheels are 

activated to reduce normal tire forces to add an oversteer effect. Similarly, for right 

turns, left front and right rear actuators are activated. As mentioned in the article, the 

proposed PD controller at each wheel improved lateral vehicle motion, but no 
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optimization was done. Due to the coupling of control inputs, a MIMO (multi-input 

multi-output) controller is required to achieve more effective results. The game-

theoretical approach in this thesis allows us to investigate the effects of different 

control inputs on control objectives using the optimal control in a more sophisticated 

way which is superior to the trial and error approach.  

Chou and D'Andrea developed a global chassis control using the collaboration 

of differential braking and active suspensions[13]. Desired yaw rate and longitudinal 

acceleration are followed by using longitudinal slip ratios of the wheels as 

intermediate control inputs controlled by braking torques. A constrained 

optimization algorithm is used in vertical dynamics to regulate roll rate, pitch rate, 

and vertical velocity considering vertical forces applied to the wheels as an 

intermediate control variable. It was also shown that the controllability problem 

could encounter a singularity if the yaw equation is considered explicitly in vertical 

dynamics. This approach was a good step towards solving the global control problem 

with different control inputs, but due to the control structure, there was no solution 

suggested that guarantees the best solution due to the combined effects of the control 

inputs. In this dissertation, the solution to the differential game theory problem 

presents the optimal response for the chosen combination set of different control 

inputs. The effects of each control input can also be tuned by changing the 

corresponding weights.  

Combined control effects of brake and an active suspension with active 

stabilizers have been investigated in [14]. It was shown to be beneficial in tracking 

the desired yaw rate during critical steering, reducing the roll angle, and influencing 

ride comfort and road-holding capabilities. The combined effect of the brake (ESC) 

and the active suspension are investigated to control yaw rate, side slip angle, and 

roll rate. The desired yaw rate is calculated based on vehicle speed and steering 
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angle, and the sliding mode controller tracks the calculated yaw rate by applying 

differential brakes on tires. To maintain ride comfort in cornering, a cost function 

that includes heave, pitch, and roll accelerations, four suspension deflections, four 

integrals of suspension deflections, and four tire deflections is defined. The optimal 

control method is used to derive control gains, and it is shown that keeping the 

chassis flat will reduce the load transfer and enhance road holding, and the flat 

vehicle has better yaw tracking performance than a tilted vehicle. The controllers 

presented in [14] were working in a decentralized manner together, and keeping the 

chassis flat can be one of the optimal answers in the whole domain of answers. The 

counter effects of the control inputs on each other's objectives must be considered in 

the optimal function to find the optimal solution that costs less control effort. This 

dissertation investigates the effects of more control inputs, including corrective roll 

moments, active steering, active suspension, and corrective roll moment in a game 

theory configuration in which all control inputs' actions are considered within each 

player's objective function.  

Chu et al. [15] tried a hierarchical control approach using smooth sliding control 

as an upper-level controller to derive the desired yaw rates and roll rates that prevent 

a vehicle from skid and rollover. The lower controller applies brakes to each wheel 

to track the desired yaw rate and calculates the MR (magnetorheological) damper's 

current at each corner to prevent rollover. It was shown that differential braking 

partially improves roll stability, and semi-active suspension directly and efficiently 

maintains stability by producing anti-roll moments. Once again, the counter effects 

of each control input on each other are not investigated directly, so there will be no 

guarantee to achieve the optimal solution. 

March et al. [16] applied fuzzy control to develop an active front steering control 

and normal force control (steering and suspension controllers) and proved that the 
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performance is improved with an integrated approach. Li et al. [17] showed that 

integrative DYC and 4WS controllers could significantly improve the stability 

performance compared to individual DYC or 4WS controllers. The active-roll control 

is also added to reduce the body roll angle, and it is shown that it can indirectly affect 

vehicle handling and yaw control in a beneficial way by further tuning the controller 

weights in the cost function. This approach emphasizes the benefits of using 

integrated approach but can’t guarantee the global optimal control when the effects 

of control inputs on each other are considered. 

Different approaches and controllers are used in the literature as mentioned 

above to investigate the combined effects of direct yaw control and suspension 

control, and they all seem to improve general vehicle stability in critical maneuvers. 

Yet, some more works are required to reach a higher performance. According to both 

vehicle and controller dynamics, it takes some transient time for a vehicle to execute 

and maintain the desired stability in unexpected maneuvers since the vehicle has no 

information on what to expect in the future. Hac introduced the idea of using preview 

information of road elevation in active suspension control [5]. The continuous-time 

optimal control method was used to investigate the effects of preview information 

about road roughness on objectives like road holding, ride comfort, and suspension 

working space, and improvements shown in road-holding performance. Even driver 

models use preview information of the road to generate lateral preview errors or 

lateral error areas to calculate the required steering input to stay on the path [18]. To 

prevent rollover, Yim designed a linear optimal preview controller using the steering 

input as preview information. Control actuators are differential brakes and active 

suspensions [19]. Compared to non-preview controllers, higher active suspension 

forces are generated in preview controllers that significantly reduce the roll angle 

and lateral acceleration at the cost of increased yaw rate error, resulting in larger 
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brake inputs. This paper shows how vehicle stability performance can benefit from 

preview information to avoid rollover. On the other hand, it introduces a trade-off 

between preview control and a yaw rate control that rises by making the controlled 

vehicle go through the understeer phase. Preview control is not considered in this 

dissertation, but it was assumed that the human driver already has the knowledge of 

the road ahead, and according to that, the open-loop human steering is generated. 

The game theory method presented in this thesis is capable of considering the 

preview information to improve tracking, but in this dissertation, this is not 

investigated and is suggested for future works as a horizon to pursue. 

The mentioned trade-off in Yim's work raises the question of how to define a 

criterion that leads to higher performance of an integrated controller of differential 

braking and active suspension, and the next question is how to solve it. The optimal 

controller is the most common controller that is applied in the literature to provide 

ride comfort, better road holding, and regulating heave, roll, and pitch motions. All 

objectives are weighted in a cost function leading to desired performance criteria, 

and the cost function is minimized under the physical constraints of the dynamic 

system. Optimal control is also used in some literature to derive the braking 

pressures to control the vehicle's yaw dynamics. In most papers on integrated control 

of vehicles, the two control problems that deliver the active suspension inputs and 

braking pressures are solved in a decentralized way. A specific control approach is 

required that deals with the interactions among multiple input parameters. According 

to coupled lateral and vertical dynamics, one optimal controller can't simply 

optimize its cost function independent of the other optimal controller input. 

The literature review concluded that the integrated control has the potential for 

higher performance and better stability. Still, most of the research on integrated 

control approaches the problem as two or three subproblems that are solved 
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individually and then merged into a global chassis control that achieves the desired 

objectives. However, the controllers' interactive effect is being left out in most cost 

functions and dynamic modeling, and there is a need for research to address this 

issue. Differential game theory is the class of optimization problems that address the 

interactive effects of the control inputs, and the literature review of this method in 

vehicle dynamics is presented in the next section.  

 

2.3 Game theory optimal in vehicle dynamics 

As mentioned in the previous section, game theory optimal deals with a class of 

optimal control problems where each player's cost function considers the control 

action of other players. The application of this method in vehicle dynamics is 

relatively new, so there is a limited amount of works found in the literature, which 

are as follows. 

Na and Cole [20, 21,30] proposed a new game-theoretical approach to model the 

human driver's steering interaction with active steering. Controllers are defined as 

players in a differential game that try to minimize their desired cost functions in path 

following scenarios. They investigated the players' interaction in different modes 

(cooperative or non-cooperative) and different paradigms (Nash, Stackelberg, and 

Pareto). The comparison was made with the decentralized paradigm (in which the 

driver and collision avoidance controller disregard each other). Noncooperative 

Nash and Stackelberg paradigms can predict drivers' behavior while collision 

avoidance controllers actively compensate for drivers' steering action. The Pareto 

paradigm models the interaction between the driver and the collision avoidance in a 

cooperative way. Model Predictive Control and Linear Quadradic dynamic 

optimization are used as two mathematical approaches to study and solve each 
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paradigm. It was shown that different steering behaviors could be achieved 

according to changes in path-error cost function weights in each paradigm. As one 

of the first research efforts in the application of game theory in vehicle dynamics, 

this research only addressed the steering problem but showed a significant potential 

for future studies.  

Tamaddoni et al. [22-24] also used the Nash game theory approach in a two-

player cooperative difference game in which the players are the driver and direct 

yaw control (DYC). It was shown that the optimal preview control could 

significantly enhance vehicle stability by reducing lateral velocity, yaw rate, and roll 

angle. Tamaddoni et al. proposed an algorithm to solve the two-player Nash game 

for a discreet system. In this dissertation, the solution for two-player and three-player 

Nash games for continuous systems is developed using a similar approach from 

Tamaddoni’s work, and its application is also explored in scenarios besides the game 

between steering and DYC.  

Huang et al. [27] presented an extension of the LQR method called CCOR 

(Control Coupled Output Regulation). The Rollover Index was introduced to merit 

roll stability performance in heavy articulated vehicles with multiple axles. Active 

anti-roll bars for the different axles (as players) minimize a performance index with 

multiple rollover indices. At last, a design algorithm is presented to compare various 

control configurations to select the final design. The method presented in Huang’s 

work is for single-player games, and there is a need to explore this method in a multi-

player game. In this thesis, the application of control coupled output regulation is 

explored in regulating sprung mass vertical acceleration to improve the ride quality, 

and the solution for two-player and three-player games is also introduced for this 

class of problems. 
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Similar to the works of Na and Tamaddoni, a general review of the whole 

literature in the application of game theory in vehicle dynamics shows that the major 

focus is on lateral and longitudinal dynamics. Game-theory paradigms and the 

solving methods can be two factors to distinguish between the research. For instance, 

Li et al. [31] used noncooperative Nash paradigm and distributed model predictive 

control method (DMPC)11, but Yang et al. [32] used the cooperative Stackelberg 

paradigm and model predictive control (MPC)12 to solve the game between human 

driver and active steering and showed that more maneuver force is saved relative to 

the Nash paradigm. The game theory approach is also used popularly in modeling 

human driver behavior in [33,34,35,36] using both Nash and Stackelberg paradigms 

in lane change and U-turn maneuver. The interactions between human drivers with 

autonomous vehicles and automated vehicles with themselves (CAVs)13 in highway 

maneuver scenarios like Lane change and cruise control were also studied in 

[37,38,39]. The objective in highway systems is mostly about safety and collision 

avoidance. These interactions were further studied in developing decision-making 

processes in agent-based or un-signalized intersections between different drivers 

[40,41,42,43,44]. Both cooperative (Stackelberg and Pareto) and noncooperative 

(Nash) paradigms were studied in the intersection traffic control. The studies related 

to highway and intersection traffic control are mostly brought here to show the scope 

of the application of game theory in the vehicle industry and are less related to this 

dissertation which is focused only on the players/actuators within the vehicle 

dynamic models. 

Four-wheel independent actuated electric vehicles are another benchmark for 

                                                             
11 Distributed model predictive control refers to a class of predictive control architectures in which a number of local 

controllers manipulate a subset of inputs to control a subset of outputs (states) composing the overall system 
12 MPC is an optimization method that uses a model of the plant to make predictions about its future outputs 
13 Connected Automated Vehicles 
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exploring the game theory approach. Zhang et al. [45] solved a cooperative Pareto 

game using the DMPC method to achieve stability in the presence of various actuator 

failure scenarios. The non-cooperative Nash paradigm was used by An, Q. et al. [46] 

to achieve trajectory control and yaw stability. The Nash problem was solved using 

the dynamic programming method, and the simulation results from Carsim were also 

validated experimentally. 

A limited amount of works were done on the application of game theory outside 

the scope of longitudinal and lateral dynamics. Han et al. [47] work conducted a 

multi-objective optimization in vertical dynamics. Ride quality, suspension 

deflection, and tire relative dynamic load were chosen as objectives, and the design 

variables were suspension stiffness and the driver's seat stiffness and damping. The 

problem was solved in a cooperative scheme for passive suspension. Dextreit and 

Kolmanovsky [48] used the Stackelberg paradigm in a game between driver and 

power train to penalize fuel consumption, battery state ad provide good drivability. 

There is a shortage of studies in the application of game theory in vertical dynamics 

that need to be addressed. 

The latest paper review of 100 articles conducted by Ramos et al. [49] showed 

the increasing use of autonomous systems (AS) to improve costs and safety in the 

years 2015 to 2021. It was concluded that the anticipation of both autonomous and 

non-autonomous systems' possible decisions during interactions is crucial to identify 

and analyze the hazards and risks, and the application of the game theory for analysis 

under risk perspective can be considered in an early stage. 

The game-theoretical approach seems promising in integrated vehicle dynamics 

control; however, its application in vehicle stability has not been thoroughly 

investigated in the literature. Most of the focus of the literature were on the lateral 
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and longitudinal dynamics, and there is a gap of studies in multi-objective controllers 

involving roll and vertical dynamics. This dissertation explores game theory 

solutions for LQR and CCOR methods for the Nash paradigm for both two-player 

and three-player games. Active steering, corrective yaw moment, active 

suspensions, and corrective roll moment are control actions of so-called players that 

participate in the two-player and three-player scenarios. The objectives selected for 

the players are to track the desired yaw rate, ride quality, roll stability, and rollover 

prevention. 
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3 CHAPTER 3: VEHICLE MODEL 

 

3.1 Introduction 

Generally, two types of models are required for any control problem. The first 

type is the control model used in the controller design to calculate controller output. 

The second one is the simulation model on which the controller performance is being 

investigated. The simulation model in vehicle dynamics can be a real car or a 

complete model close to a real vehicle (modeled using commercial software such as 

CARSIM). It can also be a mathematical model that is less complicated than high 

DOF models but simultaneously complex enough to show required behaviors close 

to a real car. On the other hand, the control model is chosen to be relatively simpler 

than the simulation model. This thesis uses simple linear models for the controllers' 

development, and a nonlinear plant model is developed from combining the control 

models for simulation.  

The first step to investigate the problem using the game theory approach is 

defining the players. In this thesis, all of the control paradigms are based on the 

interactions between three players, which are: 

 Active suspension control input (left and right suspension forces) 

 Anti-roll control input [Active Anti Roll Bar (AARB) generates corrective roll 

moment] 

 Active front steering input  

 DYC (direct corrective yaw moment was chosen as control input) 

It is essential to understand each player and their control action before taking 

any step forward in modeling. 
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Active suspension actuators on each wheel apply active suspension control 

inputs. One control input is required for a quarter car model, two control inputs for 

a half car model, and four for a full car model. 

An anti-roll control input is a corrective roll moment that can either be created 

by the same active suspension actuators or created by an active anti-roll bar. The 

corrective roll moment from the active suspension can be divided into two actuator 

forces considering the distance between the left and right tires, and the resultant 

forces can be applied to each tire individually. 

Active steering is a control input added to human driver steering input and can 

adjust the steering angle for different objectives like tracking, obstacle avoidance, or 

even counter-steering to avoid rollover. This input can be added to front wheels, rear 

wheels, or all four wheels. In this thesis, only active front steering is studied for the 

sake of simplicity and because this is the most popular configuration in actual 

passenger cars. Corrective yaw moment is also chosen as an input to control yaw 

dynamics and improve tracking. 

 

3.2 Model development 

In this section, two different models are developed. The first model describes 

the vehicle's vertical and roll motion dynamic behavior, and the second model 

illustrates the vehicle's lateral dynamics or yaw movement. 

As a start point, a 4DOF half car roll model is presented considering only one 

player (1st player: active suspension, control action: active suspension forces). After 

developing the mathematical model shown schematically in figure 3-1, the model is 

improved by adding the second player control action (2nd player: anti-roll, control 

action: corrective roll moment).  
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For the lateral dynamic model, a common 2DOF bicycle model is presented 

using a linear tire model to develop a simple continuous model for the states of the 

system. This model includes the control action of the third player. (3rd player: active 

yaw, control action: corrective yaw moment). 

The final model combines the two developed models shown in state-space 

representation, which describes the vehicle's dynamic behavior in vertical, lateral, 

and roll motions. This model includes control actions of all four players and shows 

the coupling between two models due to lateral acceleration. 

 

Figure 3-1: 4DOF roll model schematic 

 

Figure 3-1 shows a simple 4DOF half-car roll model with active suspension. It 

represents the motion of the axle and the vehicle viewed from behind. This model is 

a combination of 2DOF quarter car models with the same sprung mass. The 

suspension system consists of a spring with the stiffness of (ks), a passive damper 

with a damping coefficient of (bs), and an active force actuator (Fa) placed in parallel 

with the damper and spring for each tire. The subscript “r” is being used for the right 

tire and “l” for the left tire. According to this terminology, the active suspension 



32 
 

actuating force for a right tire is (Far), and the rest will be presented accordingly. The 

sprung mass (Ms) represents the half car equivalent of the total body mass of the 

vehicle. If the model represents the full car with two axles, then (Ms) stands for the 

full car sprung mass, and each suspension element will be the parallel equivalent of 

the two axles. Two un-sprung masses are presented as (mul and mur) to model an 

equivalent mass due to axle and tire for right and left tires. The vertical stiffness of 

each tire is represented by the spring (kt) and damper (bt). The variables zs, zy, and zr 

represent the vertical displacements from the static equilibrium of the sprung mass, 

unsprung mass, and the road elevation, respectively, and are subscripted by “r” or 

“l” according to the right or left tires.  

 

Figure 3-2: Free Body Diagram of sprung and unsprung masses 

 

The equations of motion can be written as below based on the free body 

diagram in figure 3-2: 
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( ) ( ) ( ) ( )s s sl sl ul sl sl ul sr sr ur sr sr ur al arM z k z z b z z k z z b z z F F           

. ( ) . ( ) . ( ) . ( ) . .x sl l sl ul sl l sl ul sr r sr ur sr r sr ur al l ar rI k t z z b t z z k t z z b t z z F t F t             

( ) ( ) ( ) ( )ul ul tl ul rl tl ul rl sl sl ul sl sl ul alm z k z z b z z k z z b z z F           

( ) ( ) ( ) ( )ur ur tr ur rr tr ur rr sr sr ur sr sr ur arm z k z z b z z k z z b z z F           

(3-1) 

 

assuming the center of gravity in the middle of the rigid sprung mass and small 

values for roll angle 10   (sin( )  ), equations below can be written: 

/ 2l rt t t   

. .sr s r sr s rz z t z z t       

. .sl s l sl s lz z t z z t       

(3-2) 

 

using the assumptions above and removing the four auxiliary states ( , , ,sl sl sr srz z z z ) 

equations of motion can be written as: 

( . ) ( ) ( ) ( )s s sl s l ul sl s l ul sr s r ur sr s r ur al arM z k z t z b z t z k z t z b z t z F F                  

( ) ( ) ( ) . ( )x sl l s l ul sl l s l ul sr r s r ur sr r s r ur al l ar rI k t z t z b t z t z k t z t z b t z t z F t F t                    

( ) ( ) ( ) ( )ul ul tl ul rl tl ul rl sl s l ul sl s l ul alm z k z z b z z k z t z b z t z F              

( ) ( ) ( ) ( )ur ur tr ur rr tr ur rr sr s r ur sr s r ur arm z k z z b z z k z t z b z t z F              

 

(3-3) 

The corrective roll moment cM  is the control action of the 2nd player, which 

can be translated to the equivalent force of 
cF  acting as an actuator force on the right 

and left suspension system according to figure 3-3 and can be written as: 

/c cF M t  (3-4) 
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Figure 3-3 Updated free body diagram of sprung and unsprung masses 

 

after adding the corrective roll moment, the equations are: 

[ ]s s al ar c c al arM z F F F F F F        

[ ] .x al l c l ar r c r al l ar r cI F t F t F t F t F t F t M            

[ ] /ul ul al c al cm z F F F M t        

[ ] /ur ur ar c ar cm z F F F M t        

(3-5) 

(Note that “[~]” stands for the rest of the left side of the corresponding equation. It 

is only used for simplicity in writing) 

This means that the total active suspension forces for left and right wheels are 

a combination of player 1 and 2 action forces and would be calculated as follows: 

/t

al al c al cF F F F M t     

/t

ar ar c ar cF F F F M t      

(3-6) 



35 
 

 

The effects of gravity and lateral acceleration can also be added to dynamic 

equations. According to the figure 3-4, the distance between the center of gravity of 

sprung mass and roll center is labeled as 
sh  , and the equations of motion are updated 

to the following four equations: 

 

Figure 3-4: Roll plane model with roll center 

[ ]s s al ar sM z F F M g     

[ ]x al l ar r c s s y s sI F t F t M M h a M gh         

[ ] /ul ul al c ulm z F M t m g      

[ ] /ur ur ar c urm z F M t m g      

(3-7) 

 

where   and are roll angle and lateral acceleration of the vehicle accordingly.  



36 
 

considering / 2l rt t t  , all equations can be written in a standard second-order 

matrix form 

2

0 0 0 ( ). / 2

0 0 0 ( ). / 2 ( ). / 4 . . . / 2 . / 2

0 0 0 . / 2 0

0 0 0 . / 2 0

s s sl sr sl sr sl sr s

x sl sr sl sr s s sl sr

ul ul sl sl sl tl u

ur ur sr sr sr tr

M z k k k k t k k z

I k k t k k t M g h k t k t

m z k k t k k z

m z k k t k k

 

         
     

    
     
      
     

       

2

( ). / 2 1 1

( ). / 2 ( ). / 4 . / 2 . / 2 / 2 / 2

. / 2 0 1 0

. / 2 0 0 1

l

ur

sl sr sl sr sl sr s

sl sr sl sr sl sr al

sl sl sl tl ul ar

sr sr sr tr ur

z

b b b b t b b z

b b t b b t b t b t Ft t

b b t b b z F

b b t b b z



 
 
 
 
 
 

         
                
        
     

       

0

1

1/

1/

0 0 0 0 0 0 0

0 0 . 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

c

s rl rl

s s rr rr

tl ul tly y

tr ur tr

M
t

t

M z z

M h z z

k m ba a

k m bg g



 
 

      
 
 

      
      
      
      
      

       

 

(3-8) 

The equations of motion can be summarized as follows: 

1 1 2 2 1 2eq eq eqM z K z C z B u B u L w L w       (3-9) 

Where 

 
T

s ul urz z z z   

T

rl rr yw z z a g       

(3-10) 

1u   and 
2u  are control action or input matrices defined as below 

 1

2

T

al ar

c

u F F

u M




 

(3-11) 
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and eqM  (inertia matrix), eqK (stiffness matrix), eqC  (damping matrix),
1B , 

2B , 
1L  and 

2L are corresponding multipliers. 

Damping ratios for tires can typically be ignored, which is going to cancel out 

the last term of the standard matrix equation. 

In order to represent the equations in state-space form, the continuous states 

of the system are defined as: 

c

z
x

z

 
  
 

 
(3-11) 

and state-space equation can be written as: 

1 1 2 2 1c c c c c cx A x B u B u L w     (3-12) 

where 

4 4 4 4

1 1

8 8

0

. .c

eq eq eq eq

I
A

M K M C

 

 



 
  

  

 , 4 2

11

1 8 2

0

.c

eq

B
M B







 
  

 

 , 4 1

12

2 8 1

0

.c

eq

B
M B







 
  

 

 

and 4 4

11

1 8 4

0

.c

eq

L
M L







 
  

 

 

(3-13) 

 

So far, the lateral acceleration ya  is modeled as a disturbance. In order to 

consider it as one of the states or an auxiliary state, a yaw model is required. A yaw 

model describes the vehicle's lateral dynamic behavior and includes the control 

action of the third player (corrective yaw moment:
bM ). The simplest yaw model is 

the classic bicycle model shown in figure 3-5 [4] that describes the vehicle's lateral 

and yaw motion. 
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Figure 3-5: Yaw plane bicycle model [4] 

 

The nomenclature for the figure above is as follows: 

f  : front steering angle (in radians) 

M: vehicle total mass (in kilograms) 

sM  : sprung mass (in kilograms) 

,x yv v  : longitudinal/lateral velocity of vehicle (in meters per second) 

,f r   : tire slip angles of the front and rear wheels in radians 

r  : yaw rate (in radian per second) 

yfF , yrF : front and rear lateral forces being built by the tire. 

The lateral motion equation is: 

. . .y s s yf yrM a M h F F     

lateral acceleration can be written as: 
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.y y xa v r v   (3-14) 

 

lateral velocity can be driven as a state by combining the equations above: 

. . . .r .y yf yr s s xM v F F M h M v     (3-15) 

 

There are different tire models available in the literature. For simplicity, this 

thesis's control model uses a linear tire model with no saturation limit. A more 

complicated tire model is presented in Chapter 7 that is used for the simulation 

model, which has a closer behavior to a real tire. There are different types of 

nonlinear tire models in which the amount of lateral force is saturated and related to 

the amount of normal tire force and friction coefficient (for example, Pacejka model 

or Dugoff model [4]).  

In the linear tire model, lateral forces are proportional to their corresponding 

slip angles. 

.
. ( ) ( ) r .

.
. ( ) ( ) r

f f f

yf f f y f f

x x

r r r
yr r r y

x x

C C l
F C v C

v v

C C l
F C v

v v

 



     

    

 

(3-16) 

 

where 

,f rl l : Distance from CG to front/rear axle (in meters). 

,f rC C : Cornering stiffness of front/rear tire (in Newton per radian).  

 

the lateral motion equation can be rearranged as: 
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. .
. ( ). ( . ) r . . .

f r r r f f

y y x s s f f

x x

C C C l C l
M v v M v M h C

v v
 

 
       

(3-17) 

yaw motion is described by: 

2. . . . .x zx xy yf f yr r zcI r I I F l F l M       (3-18) 

where 

Ix , Iz, Izx and xyI are roll, yaw, and combined moments of inertia ( 2.kg m ) and Mzc (or 

Mb in figure 3-5) is the control action that applies corrective yaw moment to the 

system. 

In order to avoid coupling and make the state equations linear, higher 

derivative terms (like . .s sM h   and .zxI  ) and higher power order of state derivatives 

(like 2.xyI  ) can be ignored as the vehicle is symmetric.  

By applying the linear tire model, the yaw equation can be written as: 

2 2 2 2. . . .
. ( ) . .

r r f f r r f f

z y f f f zc

x x

C l C l C l C l
I r v C l M

v v


 
     

(3-19) 

 

3.2.1 Combined lateral and roll model: 

In the roll model presented before, the parameter ya  was considered as a 

disturbance. In order to combine the roll model with the yaw model, the general 

equation for the roll model is required: 

2. .r .r . . . . . . . . .x xz yz al l ar r c s s y s sI I I C K F t F t M M h a M g h                (3-20) 

where C and K  are roll damping and stiffness coefficients that are the sum of the 

multipliers of   and   in the previous roll model. 
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Knowing .y y xa v r v   lateral acceleration can be omitted from the equation above. 

The terms .rxzI  and 2.ryzI can also be ignored for simplicity and linearity, and the 

linear equation for the roll is rearranged as follows: 

. . . . . . . . . .r . . .x al l ar r c s s y s s x s sI C K F t F t M M h v M h v M g h               (3-21) 

by deriving yv  from the lateral motion equation and inserting it in the roll equation, 

the new roll equation emerges: 

2 2 . ( ).
( ) . ( . . ) . . ( )

.

. ( . . ) . .
( ) r ( )

.

s s f rs s
x s s al l ar r c y

x

s s r r f f s s f

f

x

M h C CM h
I C K M g h F t F t M v

M M v

M h C l C l M h C

M v M

    




         




 

(3-22) 

 

The steering angle, which is the human driver's input, can be treated as a 

disturbance. The desired yaw rate 
d   can be considered as one of the states and be 

modeled as a first-order system based on the steering angle and time constant  : 

.
1

r
d f

K
r

s




 
  

 
 

(3-23) 

where 
rK  is the steady-state yaw rate gain and is calculated as below according to 

Rajamani [4]. 

2 2

. ( ).

. ( ) . ( . . )

f r f r x

r

f r f r x r r f f

C C l l v
K

C C l l M v l C l C




  
 

(3-24) 

the first-order model can be written as the following dynamic equation. 

1
.r .r

d d f

K
r 

 
    (3-25) 
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a controller can be designed to regulate the desired yaw rate error below: 

r de r r   (3-26) 

 

[note that in sections 3-6, the desired yaw rate is estimated as a linear function  

( .d r humanr K  ) instead of the first-order system. This estimation is used for all the 

simulations in this thesis. Both approaches are acceptable.] 

This new driven set of equations lets us define the states, control inputs, and 

disturbance matrices of the system as follows: 

New States: [ , , , , , , , , , r, r ]T

c s ul ur s ul ur y dX z z z z z z v    

Control inputs: 
1 2 3[ ; ; ]U u u u  where 

1u  ,
2u  and 

3u  are control actions of players 1,2 

and 3 and are defined as: 

 1

T

al aru F F , 2 cu M , 
3 zcu M  

Disturbance: [ , , , ]T

rl rr fW z z g   

The continuous state-space equation of the combined system is written as: 

c c c c cX A X B U L W    (3-27) 

 

matrices in the equation above are calculated as follows: 

4 4 4 4 4 3

1 1

1

3 4 3 4 2 11 11

0 0

0 0

c eq eq eq eq

I

A M K M C G

G

  

 

  

 
 

  
 
  

 

(3-28) 
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1 2 3 11 4[ , , ]c c c cB B B B   where 
1cB ,

2cB  and 
3cB  are corresponding multipliers for the three 

players' control actions and are defined as: 

4 1 1 1 2 2 2 3
2 111 4 11 2 11 1 11 1

c c c cB U B u B u B u
   

     

4 2

1

1

1

11 2

0

0

0

0

eq

c

M B

B







 
 
 
 
 
 
  

,

4

1

2

2

11 1

0

0

0

0

eq

c

M B

B







 
 
 
 
 
 
  

and 

4 1

4 1

3

11 1

0

0

0

1/

0

c

z

B

I







 
 
 
 
 
 
  

 

4 4

1

1

1 4

11 4

0

0

.
0 0 0

0 0 0

eq

c f f

z

M L

L C l

I

K











 
 
 
 
 
 
 
 
 
  

  

(3-29) 

eqM , eqK , eqC , 
1G , 

2G , 
1B  , 

2B and 
1L  are presented as below: 

2 2

4 4

0 0 0

0 0 0

0 0 0

0 0 0

s

s s
x

eq

ul

ur

M

M h
I

M M

m

m


 
 
 

  
 
 
  

, 

(3-30) 
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2
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3.3 Control model for the game between active steering and 

corrective roll moment 

The equations introduced in previous sections can be used to derive the linear 

simplified control models for investigating the game between active steering and 

corrective roll moment: 

Assume the state vector and control inputs described as follows: 

[ , , , ]'yx v r   
(3-31) 

Steering angle : 
1u   

Corrective roll moment: 2 cu M  

The state-space representation can be written as below from the previous section 

equations 

2

2 2

0 1 0 0 01 0 0 0

0 00 ( ) 0

0 0 ( ) / ( ) /0 0

0 0 ( ) / ( ) /0 0 0

s s s s xx s s s s

f r x r r f f x x fs s yy

r r f f x r r f f x f fz

M gh K C M h VI M h M h

C C V C l C l V MV CM h M vv

C l C l V C l C l V C lI rr





  

 

     
              
         
     

           

0

1

0

0

cM



   
   
   
   
   
    

 

(3-32) 

where K and C are roll stiffness and damping coefficients for passive suspensions 

and are calculated from the left and right wheels' suspension system using the 

formulas below: 

2

2

( )( / 4),

( )( / 4)

sl sr

sl sr

K K K t

C B B t

 

 
 

(3-32) 

The state-space representation is the form below 

1 1 2 2Ex Ux V u V u    (3-33) 
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which can be rearranged into standard form by defining matrices A , 
1B  and 

2B  as 

follows: 

1 1 1

1 1 2 2, ,A E U B E V B E V      

1 1 2 2x Ax B u B u    

(3-34) 

This control model is used for solving the game between active steering and 

corrective roll moment. For tracking, yaw rate error can be chosen as the tracking 

goal to be minimized. In order to improve the tracking goal sometimes, the lateral 

error and yaw angle error can also be added to objective functions. By adding the 

lateral position and yaw angle to the state vector, the new matrices E  U  
1V  and 

2V  are 

defined as follows. 

[y, , , r, , ]'yx v     

2

1 0 0 0 0 0
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 
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 
 
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2 2
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0 ( ) / 0 ( ) / 0 0
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0 0 0 0 0 1

0 0 0

x

f r x r r f f x x

r r f f x r r f f x
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C C V C l C l V MV
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M h V M gh K C
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 
 
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 
 

  
  

 
 
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, 

(3-35) 
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1 2

0 0

0

0 0
,

0

0 0

0 1

f

f f

C

V V
C l





   
   
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   

    
   
   
   
   

 

 

3.4 Roll plane linear control model (vertical dynamics) 

The roll plane control model can investigate the game between active 

suspension forces and the corrective roll moment. The model presented in the model 

development section can be simplified, considering the state vector and control 

inputs below: 

[ , , , , , , , ]T

c s ul ur s ul urX z z z z z z   (3-36) 

 

Corrective roll moment: 1 cu M  

Active suspension forces:  2 ,al aru F F  

The state-space representation structure of this dynamic model is similar to the 

previous section 

1 1 2 2Ex Ux V u V u    

1 1 1

1 1 2 2, ,A E U B E V B E V      

1 1 2 2x Ax B u B u    

(3-37) 

 

in which matrices E , U , 
1V  and 

2V  are defined as follows. 
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   
    
   
   

   
   
   
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(3-38) 

 

3.5 Rollover index  

The Rollover Index is a variable in vehicle safety that determines if the vehicle 

is encountering rollover. Yedavalli [27] introduced the "unified rollover index "(RI)  

for each axle of the long vehicles as merit to determine if the tires are leaving the 

ground and the vehicle is close to experiencing rollover. In his works, RI is defined 
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as the vertical load difference between the inside and outside tires, normalized by 

the total load, which is the vehicle's weight. According to Yedavalli, the RI is 

calculated as below: 

,o , ,o ,

,o ,

2[ ( ) ]s y x s rz z i z z i

z z i

m v v r h h K CF F F F
RI

F F mg mgt

      
  


 

(3-39) 

where g is gravity, ms (or m2 in figure 3-6) is sprung mass, and m is the 

vehicle's total mass, which is the summation of the sprung mass and unsprung 

masses. K and C are torsional spring stiffness and damper coefficients. In the figure 

below, hr (or hR in the figure) is the roll axis height, and hs (or h in the figure) 

represents the distance from the sprung mass center of gravity to the roll axis. 

As long as the value of RI stays in the range (-1,1), the vehicle does not roll 

over. When one of the wheels lift, the value of RI becomes 1 or -1, and that vehicle 

is encountering rollover. 

 

Figure 3-6: Roll plane model used in Yedavalli [27] 

As RI is a linear function of the system's states (roll angle, roll rate, yaw rate, 

and lateral velocity), it is defined as a linear output below to be minimized in LQR 

or output regulation framework in optimal control in Yedavalli [27]. 
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RI Cx Du   (3-40) 

The control input can either be the steering input or the corrective roll moment. 

In this thesis, the roll index is not a part of the optimal cost function, but it is still 

observed and plotted as a parameter to determine the rollover performance of the 

controllers.  

 

3.6 Plant model 

This section demonstrates the plant model dynamic equations that are driven 

by combining the control models in previous sections. Feedback gains for each 

scenario are calculated for each optimal design, and then they can be tested on a 

plant model with a higher degree of freedom and complexity. This dissertation's 

plant model is written in an ordinary differential equations form (ODEs), based on 

the model development section with some modifications explained in this section. 

The plant system's state vector is a combination of ten main states and six sub-states 

used for post-processing purposes in the simulation. 

Main states: , , , , , , , , , rs ul ur s ul ur yz z z z z z v   

Sub-states: ,X , , ,X ,YG G des des desY   

State vector: [ , , , , , , , , , r, ,X , , ,X ,Y ]T

s ul ur s ul ur y G G des des desX z z z z z z v Y     

The description of the model variables is provided in Table 3-1 and Table 3-2. 

 

Table 3-1: States and sub-states 

Main states Description  Sub-states Description  
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1 sx z  Sprung mass 

vertical position 

11x   Vehicle yaw angle 

2x   Vehicle roll angle 12x XG  Vehicle global x 

position 

3 ulx z  Left unsprung 

mass vertical 

position 

13 Gx Y  Vehicle global y 

position 

4 urx z  Right unsprung 

mass vertical 

position 

14 desx   Vehicle desired 

yaw angle 

5 sx z  Sprung mass 

vertical velocity 

15x Xdes  Vehicle desired x 

position 

6x   Vehicle roll rate 16x Ydes  Vehicle desired y 

position 

7 ulx z  Left unsprung 

mass vertical 

velocity 

8 urx z  Right unsprung 

mass vertical 

velocity 

9 yx v  Vehicle lateral 

velocity 

10x r  Vehicle yaw rate 
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Table 3-2: Input variables 

Input variables Description 

H  Human driver front steering input 

(disturbance) 

rlz  Left wheel road input position 

(disturbance) 

rrz  Right wheel road input position 

(disturbance) 

rlz  Left wheel road input velocity 

(disturbance) 

rrz  Right wheel road input velocity 

(disturbance) 

1 cu   Active steering control input 

2 ycu M  Corrective yaw moment control input 

3 cu M  Corrective roll moment control input 

4 [ , ]al aru F F  Left and right active suspension forces 

control input vector 

 

 

Here are the ordinary differential equations for the plant model main states: 

1 5sx z x   

2 6x x   

3 7ulx z x   

4 8urx z x   

(3-41) 
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(Note that the “…” means that the rest of the equation continues in the next line) 

The derivatives of the roll rate and lateral velocity are shown as 6 9, yx x v   , 

and their dynamic behaviors are described in the two governing equations below: 
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(3-42) 

 

The equations presented above are in the form of a system of two linear 

equations that can be shown in the following structure: 

y

y

a bv e

c dv f





  


 
 

(3-43) 

 

This system of linear equations can be solved by Matlab using "linsolve" command 

6

9

,
y

x a b e
linsolve

x v c d f

        
         
         

 
(3-44) 

 

Where: 
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(3-45) 

 

Tire normal forces only exist when the tire is under compression. This means 

that if the tire deflection state in figure 3-7 ( )us rz z is negative, then the normal 

tire force exists, and for all other values of the tire deflection state, the normal tire 

force is equal to zero. 

 

 

Figure 3-7: Tire deflection presentation for a quarter car model 

 

The Matlab function "subplus" is used to apply this concept in the model, 

which only returns the positive part of the parameter. The figure below plots 

y=subplus(x). 
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Figure 3-8: Matlab help- subplus function 

 

using "subplus" function, the left and right unsprung mass accelerations (
ulz and 

urz  

) are calculated as follows. 
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and the yaw acceleration is  

2 2 2 2

10

( ) ( )1
( ) v ( ) r ( ) M

r r f f r r f f

y f f H c yc

z x x

C l C l C l C l
x r C l

I V V
  

  
      

  
 

(3-47) 

 

Ordinary differential equations for sub-states are presented as follows: 

11 10x r x    (3-48) 

 

Global positions are calculated by integrating the equations below 

12

13

Cos( ) ( )

Sin( ) Cos( )

G x y

G x y

x X V v Sin

x Y V v

 

 

  

  
 

(3-49) 

 

According to Rajamani (chapter 8.2.3) [4], the desired yaw rate can be 

obtained by multiplication of  steady-state yaw rate gain and human driver steering 

input 

14 desired r Hx K    (3-50) 

where steady-state yaw rate gain is: 

2 2

2 ( )

2 ( ) (C )

f r f r x

r

f r f r x r r f f

C C l l V
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C C l l MV l C l




  
 

(3-51) 

and the desired velocities  are 

15

16

Cos( )

Sin( )

des x des

des x des

x X V

x Y V





 

 
 

(3-52) 
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3.7 Plant model test 

In this section, a simple step steer maneuver is chosen to verify the plant model 

developed in section 3.6. In this maneuver, according to figure 3-9, the human driver 

engages a 7.5  deg (π/24  rad) steering angle at 2 s and continues this constant 

steering angle to make a loop. In the passive maneuver, no controller is involved, so 

the total steering input is the human driver steering input. Based on the table 

presented in the appendix, all the vehicle parameters are chosen. The vehicle’s 

forward velocity is assumed to be constant (Vx=20 m/s), and the sampling time for 

the simulation is 0.01 s. 

 

Figure 3-9: Steering angles of human driver and controller for 7.5 deg step steer maneuver 

 

The desired trajectory and the passive maneuver for the plant model are 

shown in Figure 3-10. 
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Figure 3-10: Vehicle trajectory for 7.5 deg step steer maneuver 

The desired path radius of curvature (the kinematic radius) is 40 m, but the 

vehicle is showing understeer behavior and encountering a circle-like path with a 

radius of approximately 29.8 m. 

1

104.6 ( 11.53)
( ) 58m

2
R

 
 (3-53) 

The lateral acceleration for this maneuver is shown in Figure 3-11. 
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Figure 3-11: Lateral acceleration for 7.5 deg step steer maneuver 

 

Figure 3-11 shows that the lateral acceleration settles down at the approximate 

amount of 6.9 m/s2. Knowing that the longitudinal velocity for this maneuver is 

constant and equivalent to 20 m/s, one can calculate the radius of curvature as below: 

2 2

2

20
( ) 57.52m
6.954

x

y

V
R

a
  

(3-54) 

The yaw rate for the plant model settles down at the amount of 0.3477, 

according to Figure 3-12. The radius of curvature for this amount is as follows: 

3

20
( ) 57.52m
0.3477

xV
R

r
  (3-55) 
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Figure 3-12: Yaw plots for 7.5 deg step steer maneuver 

 

The values of radius of curvature recorded from lateral acceleration and yaw 

rate ( R2 and R3) are identical, and they are almost close to the calculated value from 

the trajectory plot (R1) with a 0.83% error, which is an acceptable error for this 

approximation. The following plots show the rest of the vehicle responses for this 

passive maneuver. 

Figure 3-13 shows the roll angle, roll rate, roll index, and yaw angle of the 

vehicle. It is shown that the vehicle has a steady-state roll angle of less than 4 

degrees. According to Figure 3-14 both front and rear tires generate the lateral force 

of around 5 kN. 
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Figure 3-13: Vehicle roll angle, roll rate, roll index, and yaw angle for step steer maneuver 

 

 

Figure 3-14: Tire lateral and normal forces for step steer maneuver 
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Figure 3-15: Vertical dynamic for step steer maneuver 

According to Figure 3-15, both suspension and tire have steady-state deflections 

and zero vertical acceleration. 

 

Figure 3-16: Vehicle lateral velocity for step steer maneuver 
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According to Figure 3-16, the vehicle’s lateral velocity settles down at -

2.705 m/s. The front and rear slip angle can be calculated in radians as follows: 

2.705 1.12 0.3477
/ 24 0.2467

20

2.705 1.68 0.3477
0.1644

20

y f

f f

x

y r

r

x

V l r

V

V l r

V

  



    
  

    
  

 

(3-56) 

 

These calculated values match the amount for the plant model simulation in 

the figure 

 

 

Figure 3-17: Slip angles for the step steer maneuver 
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3.8 Chapter summary 

Two types of models (two control models and one plant model) are presented in 

this chapter. The free-body diagrams are drawn for the roll plane model and bicycle 

model. The equations of motions are written for these two models, and the combined 

model is presented. The driven dynamic equations are used in sections 3.3 and 3.4 

to derive the linear control models. In section 3.5, the roll index parameter is 

introduced as a factor of merit to check if the vehicle encounters rollover. In the last 

section, the nonlinear plant model with the linear tire model is introduced. This plant 

model includes all the main states and the auxiliary states that are required for 

postprocessing and output plots. As the normal tire forces exist only when the tire is 

under compression, the “subplus” function is introduced to the plant model, which 

makes it nonlinear. Control models are used in chapter 6 to calculate the optimal 

gains, and then the gains are used as closed-loop feedback gains with the plant model 

to get the simulation results. Chapter 7 adds a nonlinear tire to the plant model, where 

the lateral force is a nonlinear function of normal force and slip angle. As a result, 

this chapter’s plant model lateral forces will be replaced by the new lateral forces 

generated by the nonlinear tire model, and the simulations results will be shown for 

the new nonlinear plant model.  

The next step after modeling is designing the controllers. After stating the 

optimal solution for the single-player game, the two-player and three-player game 

theory is introduced in the following chapters (chapters 4 and 5). The solutions for 

the Nash paradigm in the following chapters are presented for two classes of optimal 

problems (LQR and CCOR). 
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4 CHAPTER 4: TWO-PLAYER GAME THEORY OPTIMAL 

(GTO) 

 

4.1 Introduction to two-player paradigms (decentralized and Nash) 

In a two-player differential game, each player has its own control action to 

minimize the player's optimal control cost function. The optimal cost functions for 

players can either share some mutual objectives or be independent. This function 

can be designed as a quadratic combination of state or state errors, outputs, and 

control actions. Solving the optimal cost functions together can produce minimum 

control actions required to minimize the errors and cost function value and lead the 

system to the desired states. If each player's cost function has only that player’s 

control action, the cost function is decentralized. Sometimes, a cost function of a 

player consists of another player's control actions, called the Nash paradigm 

(Stackelberg paradigm also has the same configuration in which one player is the 

leader and the other is follower, which is not studied in this thesis). The impact of 

each control action or parameter in the cost function can be determined by setting 

different weights for each parameter. It is also possible for each player to have their 

own individual control goals or have a combined control goal. According to the 

definition of the goals, players can either play a cooperative game (which means 

they can both have the same goal) or a non-cooperative game (which means they 

have their own individual goals). Four different types of formulation for cost 

functions are presented in this section. The decentralized paradigm can be solved 

independently by the LQR method for the two cost functions. The solution approach 

for all the Nash formulations is the same, considering that each will provide different 

optimal control gains due to how their cost functions are defined. 
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When it comes to building the cost functions for players, four paradigm structures 

are defined as below according to each player's goal and action and knowledge of 

the other player's goal and control action. 

 

 Structure 1 (Decentralized): Each player has its own independent goal and 

control action and no knowledge of other players goal and control action 

 Structure 2 (Nash): each player has their own independent goal and control 

action, has knowledge of other player action but no knowledge of other player 

goals 

 Structure 3 (Decentralized): players have the same mutual goal (which is a 

combination of their independent goals) and no knowledge of each other 

actions 

 Structure 4 (Nash): players have the same mutual goal (which is a 

combination of their independent goals) and knowledge of each other's 

actions 

In section 4.2, the quadratic mathematical representation for these structures is 

presented, followed by how to identify if the optimal problem is the LQR problem 

or CCOR. The solution for the single-player LQR problem exists in all optimal 

control references [28], and the solution for CCOR is also represented by Yedavalli 

[27]. 

Section 4.3 includes the problem statement and solution for the two-player LQR 

game for both finite and infinite horizons for continuous systems. This solution 

algorithm for the continuous infinite horizon is adopted from the solution for discrete 

systems presented by Tamaddoni [22,23], which is the contribution of this thesis. 

Section 4.4 introduces the CCOR problem for the single-player based on Yedavalli’s 
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work [27]. The solution for the two-player CCOR is presented in section 4.5, which 

is also a contribution of this thesis.  

 

4.2 Mathematical formulation 

This section presents the general mathematical representations for the various 

structures in quadratic form. 

 

Structure 1 (Decentralized): 

1 1 1 1 1 11 1

0

1
[( ( )) ( ( )) ( ) ( )]

2

T TJ N z t Q N z t u t R u t dt



   

2 2 2 2 2 22 2

0

1
[( ( )) ( ( )) ( ) ( )]

2

T TJ N z t Q N z t u t R u t dt



    

(4-1) 

 

each players’ cost function contains only its control objective and control input. 

 

Structure 2 (Nash): 

1 1 1 1 1 11 1 2 12 2

0

1
[( ( )) ( ( )) ( ) ( ) ( ) ( )]

2

T T TJ N z t Q N z t u t R u t u t R u t dt



    

2 2 2 2 1 21 1 2 22 2

0

1
[( ( )) ( ( )) ( ) ( ) ( ) ( )]

2

T T TJ N z t Q N z t u t R u t u t R u t dt



    

(4-2) 

 

Each player’s cost function contains its control objective and control input and other 

players' control input. 
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Structure 3 (Decentralized): 

1 1 1 1 2 2 2 1 11 1

0

1
[( ( )) ( ( )) ( ( )) ( ( )) ( ) ( )]

2

T T TJ N z t Q N z t N z t Q N z t u t R u t dt



    

2 1 1 1 2 2 2 1 22 1

0

1
[( ( )) ( ( )) ( ( )) ( ( )) ( ) ( )]

2

T T TJ N z t Q N z t N z t Q N z t u t R u t dt



    

(4-3) 

 

Each player’s cost function contains its control objective, control input, and other 

player control objectives. 

 

Structure 4 (Nash): 

1 1 1 1 2 2 2 1 11 1 1 12 1

0

1
[( ( )) ( ( )) ( ( )) ( ( )) ( ) ( ) ( ) ( )]

2

T T T TJ N z t Q N z t N z t Q N z t u t R u t u t R u t dt



     

2 1 1 1 2 2 2 1 21 1 1 22 1

0

1
[( ( )) ( ( )) ( ( )) ( ( )) ( ) ( ) ( ) ( )]

2

T T T TJ N z t Q N z t N z t Q N z t u t R u t u t R u t dt



     

(4-4) 

 

Each player’s cost function contains both control objectives and inputs. 

Variable ( )z t  represents states or errors that are being minimized and iQ is the 

error weighted matrix for the ith player, which is a positive semidefinite matrix and 

function of time. The quadratic form ( ( )) ( ( ))T

i i iN z t Q N z t is a quadratic weighted 

representation of the errors or states and iN  helps each cost function to select the 

desired states or errors required to be minimized. 

( )iu t  is the ith player control signal which is weighted by a parameter from a positive-

definite control weighted matrix ( )R t  
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11 12

21 22

( )
R R

R t
R R

 
  
 

 
(4-5) 

There are two challenges to finding the optimal control input. The first 

challenge is defining cost functions based on the states and control inputs and 

translating them into quadratic cost functions. The second challenge is solving the 

optimal control problem for an infinite horizon.  

This process is elaborated in the example below. According to the definition 

of each cost function in each paradigm, the steps presented in the example must be 

followed to calculate the quadratic matrix of Q, R, and N. 

Example: define decentralized cost functions for a two-player game described as 

below: 

Player One is the active suspension system, which is trying to minimize vertical 

acceleration ( cz ), suspension strokes ( ( )sl ulz z and ( )sr urz z ), tire deflections (

( )ul rlz z and ( )ur rrz z ), and control efforts of the active suspension system ( lFa and

rFa ).   

Player Two is the anti-roll system trying to minimize roll angle and its first and 

second derivatives ( ,  and ) and anti-roll actuator moment (corrective roll 

moment cM ). 

According to the modeling chapter, the state space representation of the system is: 

1 1 2 2 1c c c c c cx A x B u B u L w     (4-6) 

where states and disturbances are defined as: 

c

z
x

z

 
  
 

 
(4-7) 
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 
T

s ul urz z z z  

T

rl rr yw z z a g     

and control actions are 

 1

2

T

al ar

c

u F F

u M




 

(4-8) 

According to the problem definition, cost functions for both players are written as: 

2 2 2 2 2 2 2

1 1 2 3 4 5 6 7

0

[ ( ) ( ) ( ) ( ) ]c sl ul sr ur ul rl ur rr l rJ z z z z z z z z z Fa Fa dt      


             

2 2 2 2

2 8 9 10 11

0

[ ]cJ M dt      


     

(4-9) 

where i  are weights for each quadratic parameter and are usually normalized using 

Bryson's rule [29, p 400]: 

2

1
i

i




  
(4-10) 

where i is the maximum value of the corresponding parameter that is multiplied by 

the weight. Notice that Bryson's rule is a factor of merit to normalize the effect of all 

parameters in the cost function. The weights can still be customized according to the 

designer's preference to intensify a specific parameter's effect in the cost function. 

For each cost function, the following steps must be followed to generate the 

desired linear quadratic cost function 

Step 1: cost function must be formulated in a format below according to the problem 

definition 
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2 2 2

1 1 2 2 3 3

0

[ ...]J K K K dt  


     
(4-11) 

where iK  is the term that is needed to be minimized ( iK can be an error, a defined 

parameter based on states, or a control action) and i  is the corresponding weight. 

 

Step 2: In this step, the primary cost function in step one is translated into a standard 

linear quadratic form. According to the formulation of the output, there are two 

cases: 

 

Case 1- If the output that is being minimized (Y) is only a linear function of the 

states, the problem will turn into a state regulation problem. The cost function can 

be a weighted combination of two quadratic functions of states and control actions. 

Assume the dynamic system below: 

X AX BU

Y CX

 


 

(4-12) 

Then J in step one can be translated into the LQR function below: 

0 0

[Y ] [ ]T T T TJ QY U RU dt X QX U RU dt

 

      
(4-13) 

where matrix Q is the states weighting matrix (semi-positive definite) and R  is a 

positive definite matrix that applies weighting on the inputs.  

TQ C QC

R R




 

(4-14) 

This case is under a class of optimal control problems called linear quadratic 

regulator (LQR). The general solution for the one-player game is presented in 



72 
 

optimal control reference books [28], and the solution for the two-player game is 

presented in section 4.3. 

 

Case 2- Sometimes, the output is a linear function of both states and control inputs: 

Y CX DU   (4-15) 

In that case, the defined cost function is translated to an output regulation cost 

function below: 

0 0

[Y ] [( ) ( )]T TJ Y dt CX DU CX DU dt

 

      
(4-16) 

All the iK s in the first step must be written as a function of states or control inputs, 

and the whole cost function in step one will be rearranged to derive the matrices of 

C and D. 

The cost function in the first step is rearranged again to derive the final cost function 

formatted as below: 

0

[ ]T T T T TJ X QX X NU U N X U RU dt



     
(4-17) 

Matrices Q, N, and R are linear-quadratic matrices that are calculated from C and D 

using the following procedure: 

( ) ( )T T T T T T T T T

T T T T T

CX DU CX DU X C CX X C DU U D CX U D DU

X QX X NU U N X U RU

     

   
 

(4-18) 

By comparing the similar terms in the presented equation, LQ matrices are derived 

as follows: 

TQ C C   

TN C D   

(4-19) 
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TR D D   

Case-2 is often written in a general form below where the cost function is the 

combination of output cost and the control cost:  

0 0

[Y ] [( ) ( ) ]T T T TJ QY U RU dt CX DU Q CX DU U RU dt 
 

        

0 0

[(X 2 ( ) U] [ 2 ]T T T T T T T T T

t

C QCX X C QDU U D QD R dt X QX X NU U RU dt
 

         

(4-20) 

By comparing the terms, the matrices Q, N, and R are derived as follows. 

,

,

T

T

T

Q C QC

N C QD

R D QD R





 

 

(4-21) 

The matrix N shows the coupling between the states and inputs. This case is under a 

class of optimal control problems called control coupled output regulation (CCQR). 

The general solution for the one-player game is presented by Yedavalli [27] and 

shown in section 4.4, and the solution for the two-player game is presented in section 

4.5. 

 

Here is the demonstration of applying the steps to the aforementioned example of a 

decentralized paradigm. 

8 4

1 5 51 11 52 21 5

1 1

1 1 1 1c i i i i

i i

K z a x b u b u L w
 

       2 1 2 3( )
2

sl ul

t
K z z x x x       

3 1 2 4( )
2

sr ur

t
K z z x x x     4 3 1( )ul rlK z z x w     5 4 2( )ur rrK z z x w     

6 11lK Fa u    7 21rK Fa u    8 2K x    9 6K x   
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8 4

10 6 61 6

1 1

2 2i i i i

i i

K a x b u L w
 

       11 2cK M u   

 

(4-22) 

 

a, b1 and b2 are parameters of matrices A, B1, and B2 in the state space equation. 

The cost functions J1 and J2  can be written as: 

1 1 1 1 1 1 1

0

[( ) ( )]TJ C X D u C X D u dt



    

2 2 2 2 2 2

0

[( ) ( )]TJ C X Cu C X D u dt



    

(4-23) 

 

where 1C , 2C , 1D  and 2D are calculated as below: 

1 51 1 52 1 53 1 54 1 55 1 56 1 57 1 58

2 2 2

3 3 3

1

4

5

7 8

0 0 0 0 0
2

0 0 0 0 0
2

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

a a a a a a a a

t

t

C

       

  

  







 
 
  
 
 
 
 
 
 
 
 
 
 
 
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1 51 1 52

1

6

7 7 2

1 1

0 0

0 0

0 0

0 0

0

0

b b

D

 






 
 
 
 
 

  
 
 
 
 
  

  

8

9
2

10 61 10 62 10 63 10 64 10 65 10 66 10 67 10 68

4 8

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

C
a a a a a a a a





       



 
 
 

  
 
 
 

  

2

10 61

11

0

0

2
D

b



 
 
 

  
 
  

  

 

(4-24) 

Q, N, and R matrices for decentralized paradigm cost functions can be calculated 

from 1C , 2C , 1D  and 2D . 

Player 1: 1 1 1

TQ C C   1 1 1

TN C D  

 11 1 1

TR D D  

Player 2: 2 2 2

TQ C C  2 2 2

TN C D

 22 2 2

TR D D  

(4-25) 
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4.3 The general solution for two-player paradigm using the LQR 

approach 

In the beginning, the problem is defined in a finite horizon. The finite-time 

linear quadratic regulator's solution is presented using the same approach from the 

optimal control reference book [28], and the coupled differential Riccati equations 

are presented as a result. In the next section, the problem is defined in the infinite 

horizon, and all the necessary assumptions are presented to change the Differential 

Riccati equations (DREs) to Algebraic Riccati equations (ARE’s). A numerical 

algorithm is then proposed to solve the ARE’s together to calculate the control 

signals that provide the optimal solution. 

 

4.3.1 The continuous finite-time linear quadratic formulation for a two-

player game: 

Consider a linear-time dynamic system below 

1 1 2 2

0 0

( ) ( ) ( ) ( )

( )

x t Ax t B u t B u t

x t x

  


 

(4-26) 

 

where 1( )u t  and 2 ( )u t  are control inputs of players one and two accordingly, and their 

cost functions 1J  and 2J  are defined in the format below 

0

1 1 1 1 11 1 2 12 2( ) ( ) ( )

ft

T T T T

f f f

t

J x t F x t x Q x u R u u R u d      

0

2 2 2 1 21 1 2 22 2( ) ( ) ( )

ft

T T T T

f f f

t

J x t F x t x Q x u R u u R u d     

(4-27) 
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where ifF is the terminal cost matrix ( )i fF t  and is semi-positive definite like the error 

weighted matrix iQ . The control weighted matrix ijR is positive definite. In some 

literature, there is a “1/2” multiplier for each cost function, which does not influence 

the result of the optimal solution. 

Hamiltonians [28] for both of the cost functions can be written using the co-state 

vector of nth order ( )t   as below: 

1 1 2 1 1 1 11 1 2 12 2 1 1 1 2 2( , , , ) ( )T T T TH x u u x Q x u R u u R u Ax B u B u         

2 2 2 2 1 21 1 2 22 2 2 1 1 2 2( , , , ) ( )T T T TH x u u x Q x u R u u R u Ax B u B u        

(4-28) 

 

From now all the optimal parameters (including optimal state, optimal control input, 

and optimal co-state) are shown with the star superscript (*). 

Optimal control inputs *

1u   and *

2u  can be driven from a Hamiltonian function using 

the control relation below: 

* * 11
11 1 1 1 1 11 1 1

1

0 0T TH
R u B u R B

u
 

      


  

* * 12
22 2 2 2 2 22 2 2

2

0 0T TH
R u B u R B

u
 

      


 

(4-29) 

 

from the feedback law, co-state functions can be written as a function of states. 

*

1 1

*

2 2

( ) ( )

( ) ( )

P t x t

P t x t








 

(4-30) 

where 1( )P t  and 2 ( )P t  are yet to be determined. Comparing the boundary conditions 

for the terminal condition, one can write that ( ) ( )f fP t F t   
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*

1 1

*

2 2

( ) ( )

( ) ( )

f f f

f f f

t F x t

t F x t








 

(4-31) 

Control inputs can be rearranged using the feedback law 

* 1 1 * 1 *

1 11 1 1 11 1 1 11 1 1

* 1 1 *

2 22 2 2 22 2 2

( ) ( ) ( ) ( )T T T

T T

u R B R t B t P t x t R B Px

u R B R B P x





  

 

     

   
 

(4-32) 

Notice that all parameters are a function of time, and for simplicity, x(t) is 

shown as x, and likewise for the other parameters. 

Optimal state equations can be calculated from the Hamiltonian function 

using the relation below, which is the same for both Hamiltonians since the state 

equation is the same for both. 

* * * 1 * 1 *

1 11 1 1 2 22 2 2( ) T Ti

i

H
x t x Ax B R B Px B R B P x



 
    


 
(4-33) 

The optimal co-state equation can also be calculated from the Hamiltonian function: 

*

* ji i
i

j

uH H

x u x



  

  
 

(4-34) 

The equation above must be calculated for both players' co-states. 

Calculations for Player One are shown below, and the calculation for Player Two 

can be written based on the similarity. 

* *1
1 1

TH
Q x A

x
   


 

* *
11 2 2

12 2 2 1 12 2 2 1 22 2 2

2

1 * * 1 1 1 *

12 22 2 2 2 1 22 2 2 2 2 22 12 22 2 2 2 1

1 1 1 * *

2 2 22 12 22 2 2 2 2 22 2 1 2 12 2 2 2 1

( ) ( )( )

[ ( ) ]( ) [ ]

[ ] [ ]

T T T

T T T T T

T T

H u u
R u B R u B R B P

u x x

R R B P x B Px R B P P B R R R B P B P x

P B R R R B P P B R B P x P S P P S P x

  

   

  

 
       
  

     

    

 

(4-35) 

 



79 
 

Parameters 1S , 2S , 12S  ,and 21S  are introduced as below to simplify the writing of the 

equations: 

1

1 1 11 1

TS B R B    1

2 2 22 2

TS B R B  

1 1

12 2 22 12 22 2

TS B R R R B   

 1 1

21 1 11 21 11 1

TS B R R R B   

(4-36) 

 

from the equations above, the co-state equation for Player One can be written as: 

* * * * * * * * *

1 1 1 2 12 2 2 2 1 1 1 2 12 2 2 2 1

T TQ x A P S P x P S Px Q x A Px P S P x P S Px            (4-37) 

A derivative of optimal co-state can also be calculated from the equation below: 

* * * *

1 1 1 1 1( ) ( ) ( )t P t x t Px Px      (4-38) 

Comparing the two equations for co-states: 

* * * * * *

1 1 2 12 2 2 2 1 1 1

TQ x A Px P S P x P S Px Px Px       (4-39) 

 

*x  can be entered into the equation above from the optimal state equation 

* * * * * * 1 * 1 *

1 1 2 12 2 2 2 1 1 1 1 11 1 1 2 22 2 2( )T T TQ x A Px P S P x P S Px Px P Ax B R B Px B R B P x          

* * * * * * 1 * 1 *

1 1 2 12 2 2 2 1 1 1 1 1 11 1 1 1 2 22 2 2

T T TQ x A Px P S P x P S Px Px P Ax PB R B Px PB R B P x          

* * * * * * * *

1 1 2 12 2 2 2 1 1 1 1 1 1 1 2 2

TQ x A Px P S P x P S Px Px P Ax PS Px PS P x         

(4-40) 

by rearranging the equation above and omitting the multiplier *x , the differential 

Riccati equation for Player One can be derived with the terminal boundary condition 

below 
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1 1 1 1 1 1 1 1 2 2 2 2 1 2 12 2

1 1 1( )

T

f f f

P P A A P Q PS P PS P P S P P S P

P t P F

       

 
 

(4-41) 

Using the same procedure for the second player, the coupled differential Riccati 

equation for the two-player game can be written as: 

1 1 1 1 1 1 1 1 2 2 2 2 1 2 12 2

2 2 2 2 2 1 1 2 2 2 1 1 2 1 21 1

0

0

T

T

P P A A P Q PS P PS P P S P P S P

P P A A P Q P S P P S P PS P PS P

       

       
 

1 1 1

2 2 2

( )

( )

f f f

f f f

P t P F

P t P F

 

 
 

(4-42) 

 

By solving the equations above for 1P  and 2P , co-state values of 1  and 2  are 

obtained, and optimal control inputs of *

1u  and *

2u  are calculated based on the states 

feedback. 

 

4.3.2 Infinite time LQR system for the two-player game: 

If the terminal time in previous finite equations turns into infinity, the infinite time 

LQR is reviewed  below 

1 1 2 2

0 0

( ) ( ) ( ) ( )

( )

x t Ax t B u t B u t

x t x

  


 

1 1 1 11 1 2 12 2

0

( )T T TJ x Q x u R u u R u d


    

2 2 1 21 1 2 22 2

0

( )T T TJ x Q x u R u u R u d


    

(4-43) 

 

where u(t) is not constrained, Q is a symmetric semi-positive definite matrix, and R 

is a symmetric positive definite matrix. 
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The system must be completely controllable. Using results similar to the 

finite-horizon problem iP  is still the solution of Riccati equation with the boundary 

condition: 

( ) ( ) 0f fP t F t   (4-44) 

 

 the optimal control inputs can be obtained as: 

* 1 *

1 11 1 1

* 1 *

2 22 2 2

ˆ

ˆ

T

T

u R B Px

u R B P x





 

 
 

(4-45) 

 

where 

ˆ ( ) lim{ ( )}
f

i i
t

P t P t P


   (4-46) 

 

iP  is a positive definite, symmetric, constant matrix that turns the coupled differential 

Riccati equations into coupled algebraic Riccati equations below: 

1
1 1 1 1 1 1 1 2 2 2 2 1 2 12 20 TdP

P A A P Q PS P PS P P S P P S P
dt

          

2
2 2 2 2 1 1 2 2 2 1 1 2 1 21 10 TdP

P A A P Q P S P P S P PS P PS P
dt

         

(4-47) 

 

Optimal control signals can be obtained from the equations below after solving the 

coupled ARE’s for 1P  and 2P  

* 1 *

1 11 1 1

* 1 *

2 22 2 2

T

T

u R B Px

u R B P x





 

 
 

(4-48) 
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the optimal state *x   can be calculated by solving the state equation using the initial 

boundary condition 

* 1 1 *

1 11 1 1 2 22 2 2

*

0 0

[ ]

( )

T Tx A B R B P B R B P x

x t x

   


 

(4-49) 

and optimal cost functions can be obtained using the equations below: 

* *

1 1

* *

2 2

1
( ) ( )

2

1
( ) ( )

2

T

T

J x t Px t

J x t P x t





 

(4-50) 

 

4.3.3 Solving algebraic Riccati equations (ARE's) 

The Matlab function (care) is used to solve the algebraic Riccati equations. 

According to the Matlab library function description, this function can solve the 

continuous algebraic Riccati equation below and return the unique solution for P, 

the gain matrix 
1( )T TG R B PE S   , and closed-loop eigenvalues vector L. 

1( ) ( ) 0T T T T TA PE E PA E PB S R B PE S Q       (4-51) 

 

This equation can also be simplified by omitting R and S (R=I, S=0) and setting E 

to the default identity matrix value. 

All the Riccati equations that can be written in the format above can be solved 

using the "care" function if their associated Hamiltonian eigenvalues are far from 

the imaginary axis. There is a finite stabilizing solution for P. This function can be 

used straightforwardly to solve the Riccati equation for decentralized paradigms. 

Still, a new solution needs to be introduced due to the existence of coupling between 

the Riccati equations in the Nash paradigms. The proposed solution in this 

dissertation is a numerical based solution and is described by the following steps: 
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Step 1: 

Initiate 1

CP  and  2

CP  by solving the following decoupled ARE's: 

1 1 1 11 1 1

2 2 2 22 2 2

0

0

T C C C C

T C C C C

A P P A P S P Q

A P P A P S P Q

   

   
 

(4-52) 

1

CP  and  2

CP  can be calculated in Matlab using the code below 

1 1 1 11

2 2 2 22

( , , , )

( , , , )

C

C

P care A B Q R

P care A B Q R




 

(4-53) 

 

Step 2: 

Compute the strong solution 1

1

CP   and  1

2

CP   from the following decoupled ARE's: 

1 1 1 1

1 22 2 22 2 1 1 11 1 1 2 12 2

1 1 1 1

2 11 1 11 1 2 2 22 2 2 1 21 1

( ) ( ) 0

( ) ( ) 0

C C C T C C C C C

C C C T C C C C C

P A S P A S P P P S P Q P S P

P A S P A S P P P S P Q P S P

   

   

      

      
 

(4-54) 

The equations below can be used to simplify the format of the Ricatti equation to the 

acceptable format for the "care" function: 

'

1 22 2

'

1 1 2 12 2

'

2 11 1

'

2 2 1 21 1

( ),

,

( ),

C

C C

C

C C

A A S P

Q Q P S P

A A S P

Q Q P S P

 

 

 

 

 

(4-55) 

The Riccati equations can be rearranged as: 

1 ' ' 1 1 1 '

1 1 1 1 1 11 1 1

1 ' ' 1 1 1 '

2 2 2 2 2 22 2 2

0

0

C T C C C

C T C C C

P A A P P S P Q

P A A P P S P Q

   

   

   

   
 

(4-56) 

1

1

CP   and  1

2

CP   can be calculated in Matlab using the code below: 

1 ' '

1 1 1 1 11

1 ' '

2 2 2 2 22

( , , , )

( , , , )

C

C

P care A B Q R

P care A B Q R








 

(4-57) 
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Step 3: 

This step updates  C

iP  and investigates the convergence of 1C

iP   and C

iP  using the 

Euclidean norm to stop the iteration.  The algorithm for convergence is presented as 

a "while" loop below: 

While 1C C

i iP P      

1C C

i iP P   

Repeat Step 2 

End 

 

(4-58) 

Note that the method presented in this section can only be applied to the 

problems for which their cost functions can be written in the form below: 

1 1 2 2

0 0

( ) ( ) ( ) ( )

( )

x t Ax t B u t B u t

x t x

  


 

1 1 1 11 1 2 12 2

0

( )T T TJ x Q x u R u u R u d


    

2 2 1 21 1 2 22 2

0

( )T T TJ x Q x u R u u R u d


    

(4-59) 

 

This is Case 1 (according to section 4.3), which is the class of LQR problems 

where the outputs that are being minimized are linear functions of only the states, 

meaning: 

1 1

2 2

y C x

y C x




 

(4-50) 
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The states weighting matrices 1Q and 2Q  are calculated as below based on the 

output matrices: 

1 1 1

2 2 2

T

T

Q C C

Q C C




 

(4-51) 

The weighting matrices 11 12 21, ,R R R  and 22R  are positive definite and are tuned 

arbitrarily by the controller designer. 

If the outputs are the linear combination of both states and control inputs (Case 

2), the cost functions can not be written in the form presented in this section. The 

coupling between the states and control inputs makes a new form of a cost function 

that belongs to the control coupled output regulation class. This class is introduced 

and solved in the next section. 

1 1 11 1 12 2

2 2 21 1 22 2

2( ) :Case two player

y C x D u D u

y C x D u D u

 

  

  

 
(4-52) 

 

4.4 Introduction to Control Coupled Output Regulation method 

(CCOR): 

 

4.4.1 State derivative-induced (control coupled) output regulation problem  

In this section, an extension of the popular method LQR is presented and 

studied in a general mathematical form (CCOR). The solution for one-player CCOR 

is presented in Yadevalli [27] and is reviewed in this section. The optimal approach 

to build the cost function in this dissertation is to define the desired errors or 

parameters as output and regulate them using the LQR method. Assume the state 
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space representation of the system presented as below, where the output is the linear 

combination of both states and control inputs: 

x Ax Bu

y Cx Du

 

 
  0( )x t : is given 

(4-53) 

x represents the states of the system, and y as an output can be written as a linear 

combination of all the states and control inputs. The existence of coupling between 

states and control input in the output formula makes the output regulation different 

than pure state regulation. 

The cost function for the output regulation can be designed as a linear combination 

of quadratic output cost yJ  and control cost uJ  

y uJ J J   

0

[ ( ) ( ) ( ) ( )]T T

t

J y Qy u Ru d     


   

(4-54) 

 

This function can also be written based on states and control input using the equation 

y Cx Du   

0

0

0

[ ( ) ( ) ( ) ( )]

[( ( ) ( )) ( ( ) ( )) ( ) ( )]

[( ( ) ( ) 2 ( ) ( ) ( )( ) ( )]

T T

t

T T

t

T T T T T T

t

J y Qy u Ru d

Cx Du Q Cx Du u Ru d

x C QCx x C QDu u D QD R u d

     

       

       







 

   

   







 

(4-55) 

Note that by comparing the equations above with each other yJ  and uJ  can be shown 

by 
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0

[( ( ) ( ) 2 ( ) ( ) ( ) ( )]T T T T T T

y

t

J x C QCx x C QDu u D QDu d      


    

0

[ ( ) ( )]T

u

t

J u Ru d  


   

(4-56) 

By defining new weighting matrices Q, N, and R as follows 

,

,

T

T

T

Q C QC

N C QD

R D QD R





 

 

(4-57) 

The cost function can be written in the form below, where state weighting 

matrix Q is symmetric positive semidefinite, control weighting matrix R is 

symmetric positive definite, and weight matrix N is the coupling weight between 

states and the input. 

0

[ ( ) ( ) 2 ( ) ( ) ( ) ( )]T T T

t

J x Qx x Nu u Ru d      


    (4-58) 

The solution for the coupled output regulation problem is briefly reviewed here [18]. 

Define a new control input as: 

1( ) ( ) ( )Tu u R N x     (4-59) 

The state equation can be written based on ( )u   , and a new state matrix 

1 TA A BR N    can be defined as a result. 

(Note that for writing simplification, the ( )  is omitted from equations) 

1 1( ) ( )T Tx Ax Bu Ax B u R N x A BR N x Bu

A x Bu

        

 
 

(4-60) 

It can also be written that 

1 1 1( ) ( ) 2T T T T T T T Tu Ru u R N x R u R N x u Ru x Nu x NR N x         (4-61) 
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Using the equation above and defining new weighting matrix 
1 TQ Q NR N   , the 

cost function can be written based on Q  and A : 

0

0 0

0

1 1

[ 2 ]

[ ] [ ( ) ]

[ ]

T T T

t

T T T T T T T

t t

T T

t

J x Qx x Nu u Ru d

J u Ru x NR N x x Qx d x Q NR N x u Ru d

J x Q x u Ru d



 





 

 



  

     

 



 



 

(4-62) 

The optimal control law for the new control input u  is given by 
* 1 ( )Tu R B Px    

where P is the solution for the Algebraic Riccati Equation (ARE). 

1 0T TPA A P PBR B P Q       (4-63) 

The final optimal control law for the main control input u is given by 

* * 1 1 1

* 1 *

* 1

( ) ( ) ( )

( ) ( ) ( )

( )

T T T

T T

T T

u u R N x R B Px R N x

u R B P N x K x

K R B P N

  

 

  





    

    

 

 

(4-64) 

optimal control gain *K  can be broken into two distinct gains 

* * *

* 1

* 1

,

.

P N

T

P

T

N

K K K

K R B P

K R N





 





 

(4-65) 

The first gain *

PK  is similar to uncoupled LQR gain but the second gain *

NK  

is the by-product of the coupling between the states and control input that is 

presented by matrix N. Association of the gain *

PK  with Ricatti matrix P contributes 

to the stability of closed-loop system where *

NK  gain contributes more to keeping 

the output cost yJ  small and in some cases equal to zero (by using output zeroing 

method [27]). In other words, the gain *

PK  plays the stabilization role and *

NK  
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separately accomplishes minimization. Having the conceptual understating of these 

gains' roles can be helpful to understand the differences between the coupled and 

uncoupled LQR framework [27]. 

In the design process, it is assumed that pair (A, B) is controllable and pair (A, C) 

is observable. The Closed Loop system is asymptotically stable if 

 The pair (A, B) is stabilizable; 

 0TR R  and 0Q   ; and 

 The pair ( , )Q A   has no unobservable mode on the imaginary axis. 

Note that N is embedded in the coupling weighting matrix  Q  and is involved in 

ARE and control gain *K . 

 

4.5 Solving two-player game using control coupled output 

regulation (Two-Player CCOR) 

In the previous section, the problem and solution for single-player CCOR were 

presented. Following the same concept, the solution for two-player CCOR is 

presented. 

Each player's cost function is defined as a combination of quadratic output costs 

that the player wants to regulate, plus the player's quadratic control cost and 

weighted quadratic control cost. The output cost function is weighted and 

normalized by matrix Q . The control cost function is normalized by R  and then 

multiplied by  . Bryson's rule is used in weighting matrices Q  and R  to normalize 

the values in the cost function. The multiplier   is used as a design parameter that 

the designer can tune to get the desired performance from the controller. 
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The player ith cost function in an N player game is defined as below: 

0
1 1

[ ( )]
N N

T T

i i ij j i i i ij j ij j

j jt t

J Jy Ju y Q y u R u d  


 

      (4-66) 

so for a two-player game, the cost functions are as follows: 

0 0 0

0 0 0

1 1 1 1 11 1 11 1 12 2 12 2

2 2 2 2 21 1 21 1 22 2 22 2

(y Q y ) (u ) (u )

(y Q y ) (u ) (u )

T T T

t t t t t t

T T T

t t t t t t

J d R u d R u d

J d R u d R u d

    

    

  

  

  

  

  

  

  

  

 

(4-67) 

The state-space representation of the system for a two-player game can be 

written as below, in which x is the matrix of the states. And y1 and y2 are outputs of 

the system for players 1 and 2 accordingly. 

1 1 2 2

1 1 11 1 12 2

2 2 21 1 22 2

x Ax B u B u

y C x D u D u

y C x D u D u

  

  

  

 

(4-68) 

In order to solve this problem, the Nash equilibrium is defined in such a way 

that there is no incentive for any unilateral deviation by any one of the players. This 

means that both players are making their decisions simultaneously where each player 

has an outcome that cannot unilaterally improve from a change in strategy. At Nash 

equilibrium, the player who chooses to change the strategy cannot improve its 

payoff. In order to demonstrate mathematically, a pair * *

1 2( , )u u  corresponds to Nash 

equilibrium if the following relations are satisfied for each admissible strategy: 

* * *

1 1 2 1 1 2

* * *

2 1 2 2 1 2

( , ) ( , )

( , ) ( , )

J u u J u u

J u u J u u

 




 
(4-69) 

In order to find the Nash solution, both cost functions must be solved 

simultaneously. From this part, the calculations are presented for player one, and due 

to similarity, the results for player two follow. 
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The cost function for player one can also be shown based on the states of the system 

0

1 1 1 1 1 11 1 1 11 1 11 11 11 1

1

1 1 12 2 2 12 1 12 11 12 2 1 11 1 12 2

[x 2 u (D Q D R ) u

2 u (D Q D R ) u 2u ((D Q D ) u ]

T T T T T T

T T T T T T
t t

C Q C x x C Q D u
J

x C Q D u d



 





  


   
  

(4-70) 

by defining the new variables below, the cost function can be written in a neat 

format. 

1 1 1 1

11 1 1 11 12 1 1 12

11 11 1 11 11 11 12 12 1 12 12 12 1 11 1 12

,

,

D Q D R , D Q D R , D Q D

T

T T

T T T

c

Q C Q C

N C Q D N C Q D

R R R 



 

    

  

0

1 1 11 1 1 11 1 12 2 2 12 2 1 1 2[x 2 u u 2 u u 2u u ]T T T T T T

c

t t

J Q x x N u R x N u R R d




       

(4-71) 

 

Similarly: 

0

2 2 21 1 1 21 1 22 2 2 22 2 1 2 2[x 2 u u 2 u u 2u u ]T T T T T T

c

t t

J Q x x N u R x N u R R d




       (4-72) 

where: 

2 2 2 2

21 2 2 21 22 2 2 22

21 21 2 21 21 21 22 22 2 22 22 22 2 21 2 22

,

,

D Q D R , D Q D R , D Q D

T

T T

T T T

c

Q C Q C

N C Q D N C Q D

R R R 



 

    

 

(4-73) 

Note that matrix Q is a state weighting matrix, R is a control weighting matrix, and 

N represents the coupling between states and control inputs. 

also, consider that by defining control input matrix as 1

2

u
u

u

 
  
 

 , control weight matrix 

as 11 1

1

1 12

c

T

c

R R
R

R R

 
  
 

  and coupling weighting matrix as 1 11 12[ , ]N N N the cost function 

can be shown exactly in the general form of coupled output LQR. 
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0

1 1 1 1[x 2 u u]T T T

t t

J Q x x N u R d




    (4-74) 

and similarly: 

0

2 2 2 2[x 2 u u]T T T

t t

J Q x x N u R d




    (4-75) 

where: 

2 21 22[ , ]N N N    

21 2

2

2 22

c

T

c

R R
R

R R

 
  
 

 

(4-76) 

 

4.5.1 Combining the two cost functions 

Consider the state space equations and optimal set of cost functions below: 

1 1

1 11

1 11

1 1 1 1 2 2

1 1 1 11 1 12 2

2 2 1 21 1 22 2

n p p n q q

m n m p p m q qm

k n k p p k q qk

n n n n

n

n

x A x B u B u

y C x D u D u

y C x D u D u

   

    

    

  





  

  

  

 

0 0 0

0 0 0

1 1 1 1 11 1 11 1 12 2 12 2

2 2 2 2 21 1 21 1 22 2 22 2

(y Q y ) (u ) (u )

(y Q y ) (u ) (u )

T T T

t t t t t t

T T T

t t t t t t

J d R u d R u d

J d R u d R u d

    

    

  

  

  

  

  

  

  

  

  

(4-77) 

If the output equations are combined into one equation and input vectors into 

one input vector, the state space equations can be rewritten as: 

1

1 1

1

1

1 1 1 1 2 2 1 1 2 1 ( ) ( ) 1

2

[ , ]
p

n p p n q q n p n q

q

n n n n n n n n n n n p q p q

u
x A x B u B u A x B B A x B U

u



     



          

 
       

  

  

1 1 11 12 1

1

2 2 21 22 2( ) 1 ( )

n

m k m k n

y C D D u
y x Cx DU

y C D D u


   

       
           
       
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(4-78) 

The new optimal cost function can be defined as: 

0 0

0

[y Qy U RU] [x 2 (D QD R) U]

[x Qx 2 U RU]

T T T T T T T T

t t t t

T T T

t t

J dt C QCx x C QDU U dt

J x N U dt


 

 





     

  

 



 

(4-79) 

by comparing the general cost function above with the previous two cost functions, 

the matrices Q, N and R can be generated as below: 

1

2
( ) ( )

0

0

m m

k k

m k

k m
m k m k

T

n n

Q
Q

Q

Q C QC








  



 
  
  



 

( )n p q

TN C QD
 

  

11 11 21 21

12 12 22 22

( ) ( )

( R R ) 0
R

0 ( R R )

D QD R

p p p q

q p q q

T

p q p qR

 


 



 

 

  

 
  

 

 

 

(4-80) 

The solution for combined optimal cost function J can be calculated using the 

Matlab function "care". K is the optimal feedback gain for general input vector U. 

[P,L,K] = care(A,B,Q,R,N); (4-81) 

 

4.6 Chapter summary 

After a brief introduction to the two-player differential game problem, different 

formulation possibilities for two-player cost function structures are shown in this 

chapter. Then in the second section, the problem was classified into two cases of 

state regulation and output regulation. In the third section, the two-player game for 

state regulation (Case 1- LQR) is formulated for finite and infinite horizons, and the 

solution for coupled Riccati equations is derived. The Nash solution for the 
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continuous two-player differential game for the infinite horizon was presented, 

which is in a sense similar to the approach presented by Tamaddoni [22] for discrete 

formulation. Both formulation and solution for the continuous problem are a 

contribution of this dissertation. In the fourth section, the control coupled output 

regulation (Case 2-CCOR) problem is introduced. The single-player solution was 

presented based on Yedavalli [27] using the change of variables method. In the last 

section, the two-player output regulation problem formulation was presented. Due 

to coupling between the control action parameters of the players in the cost 

functions, it was impossible to solve the problem by the change of variables.  So a 

new approach was presented by combining the cost functions of players into a new 

general cost function. Moving forward in the next chapter, the solutions for the three-

player game will be discussed based on the extension of the approaches presented in 

this chapter. 
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5 CHAPTER 5: THREE PLAYER DIFFERENTIAL GAME 

 

5.1 Introduction to three-player paradigms  

The previous chapter presented a two-player game formulation and solution for 

both LQR and CCOR problems. It was also shown how to formulate the quadratic 

cost functions for two-player decentralized and Nash paradigms. As the number of 

players that can partake in vehicle stability can be more than two, there is a need to 

expand the solutions presented in chapter 4 from a two-player game to a three-player 

game or higher. This allows us to explore the advantages or disadvantages of the 

game theory approach for integrated systems with more players to reach global 

stability. 

This chapter presents the general formulation of the three-player game for both 

LQR and CCOR. In section 5.2, the player pool and the objectives are introduced. 

Section 5.3 and 5.4 are dedicated to defining and solving the LQR three-player game 

for the finite and infinite horizon. And finally, in section 5.5, the CCOR three-player 

game is addressed, and a solution is presented. The mathematical structure used for 

three players in LQR consists of three cost functions elaborated in section 4. This 

structure allows us to explore games when players have their own individual 

objectives.  Sometimes all the players are playing a cooperative game, and they are 

all trying to achieve a global set of objectives together. 

In general formulation, all players are playing a cooperative game together to 

optimize their combined goal (which is the sum of three-player individual goals in a 

quadratic cost function) and minimize the combined control action of all three 

players. Note that having a general formulation helps the controller designer 
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investigate the effects of all parameters together in a cost function. The controller 

designer can play with the gains to prioritize or penalize a specific parameter, goal, 

error, or control action. This approach is used in section 5.5 to present a solution for 

CCOR configuration. 

Similar to the previous chapter, the optimal problem can be either state 

regulation or output regulation. The quadratic formulation for these two different 

cases (LQR and CCOR) are described as below for the three-player game: 

 

Case 1: The output that is being regulated is a linear function of only the states. 

Assume the state space below: 

1 1 2 2 3 3

1 1

2 2

3 3

x Ax B u B u B u

y C x

y C x

y C x

   







 

(5-1) 

where 1y , 2y  and 3y  are the outputs for players 1, 2, and 3 accordingly, and the cost 

function for the player 1,2,3i  is described as below: 

1 1 1 2 2 2 3 3 3

0

1 1 1 2 2 2 3 3 3

0

[y ]

[x C x ]

T T T T

i i i i i i i

T T T T T T

i i i i i i

J Q y u R u u R u u R u dt

Q C u R u u R u u R u dt





    

   





 

(5-2) 

By comparing this cost function with the state regulation cost function below 

1 1 1 2 2 2 3 3 3

0

[x u u u ]T T T T

i i i i iJ Q x u R u R u R dt



     
(5-3) 

the weighting matrices Q and R can be derived for each player as follows: 
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1 1 2 2 3 3, ,

T

i i i i

i i i i i i

Q C Q C

R R R R R R



  
 

(5-4) 

This problem is a standard LQR problem, and the solution for the three-player game 

is presented in section 5.3. 

 

Case 2: The output is a linear function of both states and control inputs. The state 

space is formulated as 

1 1 2 2 3 3

1 1 11 1 12 2 13 3

2 2 21 1 22 2 23 3

3 3 31 1 32 2 33 3

x Ax B u B u B u

y C x D u D u D u

y C x D u D u D u

y C x D u D u D u

   

   

   

   

 

(5-5) 

and the cost function for the player 1,2,3i  is described below 

3

10

1 1 2 2 3 3 1 1 2 2 3 3 1 1 1 2 2 2 3 3 3

0

[y ]

[( ) ( ) ]

T T

i i i i ij j ij j

j

T T T T

i i i i i i i i i i i i

J Q y u R u dt

C x D u D u D u Q C x D u D u D u u R u u R u u R u dt








  

         





 

(5-6) 

By expanding the cost function, the new cost function is: 

1 1 2 2 3 3

1 1 1 1 1 2 2 2 2 2 3 3 3 3 3

0

1 1 2 2 1 1 3 3 2 2 3 3

x C x 2 x C 2 x C 2 x C ...

... ( ) ( ) ( ) ...

... 2 2 2

T T T T T T T T T

i i i i i i i i i i i i

T T T T T T

i i i i i i i i i i i i i

T T T T T T

i i i i i i i i i

Q C Q D u Q D u Q D u

J u D Q D R u u D Q D R u u D Q D R u dt

u D Q D u u D Q D u u D Q D u


    
 

        
 

   

  

(5-7) 

to simplify, the new weighting matrices below are introduced: 



98 
 

1 1 2 2 3 3

1 1 1 1 2 2 2 2 3 3 3 3

1 2 1 3 2 3

Q C

C , C , C

( ),R ( ), ( )

, ,

T

i i i i

T T T

i i i i i i i i i i i i

T T T

i i i i i i i i i i i i i i i

T T T

i i i i i i i i i i i i

Q C

N Q D N Q D N Q D

R D Q D R D Q D R R D Q D R

Ra D Q D Rb D Q D Rc D Q D



  

     

  

 

(5-8) 

So the cost function can be written as: 

1 1 2 2 3 3

1 1 1 2 2 2 3 3 3

0

1 2 1 3 2 3

x Q x 2 x 2 x 2 x ...

... R ...

... 2 2 2

T T T T T

i i i i

T T T

i i i i

T T T

i i i

N u N u N u

J u R u u u u R u dt

u Ra u u Rbu u Rc u


    
 

     
 

   

  

(5-9) 

by defining control input matrix as 
1

2

3

u

u u

u

 
 


 
  

  the state space equation will turn into 

the general form below 

x Ax Bu   (5-10) 

where 1 2 3[ , , ]B B B B  

The general control weight matrix iR  and coupling weighting matrix iN  for 

the ith player are defined as: 

1

2

3

1 2 3[ , , ]

i i i

T

i i i i

T T

i i i

i i i i

R Ra Rb

R Ra R Rc

Rb Rc R

N N N N

 
 


 
  



 

(5-11) 

using the general weighting matrices iQ  iR  and iN , the cost function for the ith player 

can be written as a general output regulation form below 

0

[x 2 u u]T T T

i i i i

t t

J Q x x N u R d




    (5-12) 
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The matrix iN  shows the coupling between the states and inputs. This case is 

under a class of optimal control problems called control coupled output regulation 

(CCOR).  

 

5.2 Player selection and output function 

This section discusses the three players' player pool and the objectives that can 

be defined in cost functions. In the vehicle dynamics, there can be numerous control 

inputs (players) and control objectives, and exploring all of them is out of the scope 

of this research, so a limited player pool is chosen in this thesis as a case study to 

explore the benefits of game theory. This dissertation is limited to games from a 

player pool, including active suspension, corrective roll moment, active steering, and 

corrective roll moment.  

The active suspension system is capable of minimizing vertical acceleration (

cz ), suspension strokes ( ( )sl ulz z  and ( )sr urz z ), tire deflections ( ( )ul rlz z and

( )ur rrz z ) individually, or all together, and control efforts are left and right active 

suspension forces  ( lFa and rFa ).   

The anti-roll system as a player tries to minimize roll angle and its first 

derivative (  and  ) by creating a corrective roll moment ( cM ) using an anti-roll 

bar actuator.  

The yaw control system uses corrective yaw moment ( YcM ) and is mostly used 

for yaw stability, like minimizing yaw rate error ( r desirede r r  ). This moment can 

be either be generated by differential braking torques or differential torques applied 

to vehicle tires using one of the direct yaw moment control approaches in vehicle 

dynamics. Applying differential accelerating torques and braking torques on tires 
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can directly affect the longitudinal and lateral motion of the vehicle. The nonlinear 

tire model and a full car model with wheel dynamic modeling are required to 

investigate these effects, making the model and control problem more complicated. 

In this dissertation, the priority is to present a game theory approach in vehicle 

stability, and the corrective yaw moment is considered as a single control input for 

simplicity. The nonlinear tire model problem is addressed in chapter 7, and torque 

distribution and designing the full car model controller can be considered potential 

future works for this research. 

Active steering control can also be treated like a player that corrects the driving 

steering input, and its objective can either be defined to bring yaw stability and 

tracking or can be used as a counter-steering to enhance vehicle roll performance. 

Between these four players, any combination of three can be chosen as a case 

study to implement the methods shown in the following sections. The three-player 

game between active-steering, corrective yaw moment, and corrective roll moment 

is simulated in section 6.4 for the linear tire model and in section 7.5 for the nonlinear 

tire model. 

 

5.3 Calculating three-player coupled DRE14 for continuous finite 

horizon LQR system 

This section presents the three-player formulation for the LQR method for 

continuous finite-horizon dynamic systems. Using the Hamiltonian approach and 

feedback laws presented in [28], the set of differential Ricatti equations (DREs) is 

derived. The optimal control problem that is solved in this thesis is for the infinite 

                                                             
14 Differential Ricatti Equations: for finite horizon problem, the set of Riccatti equations are in the form of 

differential equations. This format changes to algebraic Ricatti equations (AREs) when the optimal problem is in 

finite horizon 
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horizon. To achieve the solution for the infinite horizon, the DREs calculated in this 

section will be changed to AREs (algebraic Ricatti equations) in the next section for 

the infinite horizon problem, and an algorithm is proposed to solve the AREs. The 

solution to AREs will lead to finding the feedback gains to construct the control 

inputs. 

Given a linear time-varying plant 

1 1 2 2 3 3

0 0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

x t A t x t B t u t B t u t B t u t

x t x

   


 

(5-13) 

the quadratic performance index for player i is shown as 

1 1 1 2 2 2 3 3 3

0

( ) ( ) ( ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ))

ft

T T T T

i f if f i i i iJ x t F x t x t Q t x t u t R t u t u t R t u t u t R t u t dt      

(5-14) 

where ( )iu t  is not constrained, ft  is specified, but ( )fx t  is unknown. The terminal 

cost function ifF (or ( )i fF t  ) and weight function ( )iQ t  are symmetric, positive 

semidefinite matrices, and ( )ijR t  are symmetric, positive definite matrices. 

The Hamiltonian function for the ith player can be defined using a co-state vector of 

nth order ( )i t  

1 2 3 1 1 1 1 2 2 2 3 3 3 1 1 2 2 3 3( , , , , ) ( )T T T T T

i i i i i iH x u u u x Q x u R u u R u u R u Ax B u B u B u          

(5-15) 

Optimal control inputs for three players are given by 
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* * 11
11 1 1 1 1 11 1 1

1

* * 12
22 2 2 2 2 22 2 2

2

* * 13
33 1 3 3 3 33 3 3

3

0 0

0 0

0 0

T T

T T

T T

H
R u B u R B

u

H
R u B u R B

u

H
R u B u R B

u

 

 

 








      




      




      



 

(5-16) 

Co-state functions can be written as a function of states using the feedback law 

*

1 1

*

2 2

*

3 3

( ) ( )

( ) ( )

( ) ( )

P t x t

P t x t

P t x t













 

(5-17) 

Where 1( )P t , 2 ( )P t  and 3( )P t  are yet to be determined. By comparing the boundary 

conditions for the terminal condition, it can be written that ( ) ( )f fP t F t   

*

1 1

*

2 2

*

3 3

( ) ( )

( ) ( )

( ) ( )

f f f

f f f

f f f

t F x t

t F x t

t F x t













 

(5-18) 

Control inputs can be rearranged using the feedback law 

* 1 1 * 1 *

1 11 1 1 11 1 1 11 1 1

* 1 1 *

2 22 2 2 22 2 2

* 1 1 *

3 33 3 3 33 3 3

( ) ( ) ( ) ( )T T T

T T

T T

u R B R t B t P t x t R B Px

u R B R B P x

u R B R B P x







  

 

 

     

   

   

 

(5-19) 

Optimal state and co-state equations are given by 

* * * 1 * 1 * 1 *

1 11 1 1 2 22 2 2 3 33 3 3( ) T T Ti

i

H
x t x Ax B R B Px B R B P x B R B P x



  
     


 

* *
* ji i i k
i

j k

uH H H u

x u x u x


 
   

    
 

(5-20) 

Note that the (i) subscript in the co-state equation is for the intended co-state 

that is being calculated, and j and k are for other players. 
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**
* 31 1 2 1
1

2 3

**
* 32 2 1 2
2

1 3

* *
* 3 3 31 2
3

1 2

uH H u H

x u x u x

uH H u H

x u x u x

H H Hu u

x u x u x








   

    


   

    

 
   

    

 

(5-21) 

According to symmetry properties of equations for three players, DRE 

calculation for player one is presented here, and Riccati equations for other players 

are written based on the first player.  

Consider the three terms on the left side of the co-state equation for player one 

* * * *1
1 1 1 1

T TH
Q x A Q x A Px

x
      


 

* *
11 2 2

12 2 2 1 12 2 2 1 22 2 2

2

1 * * 1 1 1 *

12 22 2 2 2 1 22 2 2 2 2 22 12 22 2 2 2 1

1 1 1 * *

2 2 22 12 22 2 2 2 2 22 2 1 2 12 2 2 2 1

( ) ( )( )

[ ( ) ]( ) [ ]

[ ] [ ]

T T T

T T T T T

T T

H u u
R u B R u B R B P

u x x

R R B P x B Px R B P P B R R R B P B P x

P B R R R B P P B R B P x P S P P S P x

  

   

  

 
       
  

     

    

 

* *
13 31

13 3 3 1 13 3 3 1 33 3 3

3

1 * * 1 1 1 *

13 33 3 3 3 1 33 3 3 3 3 33 13 33 3 3 3 1

1 1 1 * *

3 3 33 13 33 3 3 3 3 33 3 1 2 13 2 2 3 1

( ) ( )( )

[ ( ) ]( ) [ ]

[ ] [ ]

T T T

T T T T T

T T

u uH
R u B R u B R B P

u x x

R R B P x B Px R B P P B R R R B P B P x

P B R R R B P P B R B P x P S P P S P x

  

   

  

 
       
  

     

    

 

(5-22) 

The parameter mnS is introduced below to simplify the writing of the equations: 

1

1 1 11 1

TS B R B    1 1

12 2 22 12 22 2

TS B R R R B    1 1

13 3 33 13 33 3

TS B R R R B   

1 1

21 1 11 21 11 1

TS B R R R B    1

2 2 22 2

TS B R B    1 1

23 3 33 23 33 3

TS B R R R B   

1 1

31 1 11 31 11 1

TS B R R R B    1 1

32 2 22 32 22 2

TS B R R R B    1

3 3 33 3

TS B R B  

 

(5-23) 

The co-state equation for Player One can be rewritten as 
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* * * * * * *

1 1 1 2 12 2 2 2 1 3 13 3 3 3 1

TQ x A Px P S P x P S Px P S P x P S Px         (5-24) 

The derivative of optimal co-state can also be calculated from the equation below: 

* * * *

1 1 1 1 1( ) ( ) ( )t P t x t Px Px      (5-25) 

Comparing the two equations for co-states: 

* * * * * * * *

1 1 2 12 2 2 2 1 3 13 3 3 3 1 1 1

TQ x A Px P S P x P S Px P S P x P S Px Px Px         (5-26) 

*x  can be entered into the equation above from the optimal state equation 

* * * * * *

1 1 2 12 2 2 2 1 3 13 3 3 3 1

* * 1 * 1 * 1 *

1 1 1 11 1 1 2 22 2 2 3 33 3 3( )

T

T T T

Q x A Px P S P x P S Px P S P x P S Px

Px P Ax B R B Px B R B P x B R B P x  

      

   
 

(5-27) 

By rearranging the equation above and omitting the multiplier *x  the differential 

Riccati equation for player one can be derived with the terminal boundary condition 

below 

1 1 1 1 1 1 1 1 2 2 1 3 3 2 2 1 3 3 1 2 12 2 3 13 3

1 1 1( )

T

f f f

P P A A P Q PS P PS P PS P P S P P S P P S P P S P

P t P F

          

 
 

(5-28) 

Following the same procedures for Players Two and Three, the coupled differential 

Riccati equations for the three-player game can be written based on equation (5-29) 

for player one: 

1 1 1 1 1 1 1 1 2 2 1 3 3 2 2 1 3 3 1 2 12 2 3 13 3 0TP P A A P Q PS P PS P PS P P S P P S P P S P P S P            (5-29) 

 

1 1 1 1 1 1 1 1 2 2 1 3 3 2 2 1 3 3 1 2 12 2 3 13 3

2 2 2 2 2 1 1 2 2 2 2 3 3 1 1 2 3 3 2 1 21 1 3 23 3

3 3 3 3 3 1 1 3 2 2 3 3 3 1 1 3 2 2 3 1 31 1 2 32

0

0

T

T

T

P P A A P Q PS P PS P PS P P S P P S P P S P P S P

P P A A P Q P S P P S P P S P PS P P S P PS P P S P

P P A A P Q P S P P S P P S P PS P P S P PS P P S

          

          

          2 0P 

 

1 1 1

2 2 2

3 3 3

( )

( )

( )

f f f

f f f

f f f

P t P F

P t P F

P t P F

 

 

 

 

(5-30) 
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By solving the equations above for 1P , 2P  and 3P , co-state values of 1 , 2  and

3  are obtained. Optimal control inputs of *

1u   *

2u  and *

3u  can be calculated based on 

state feedback. As mentioned, this thesis aims to find the solution for the infinite 

horizon, which means that the final horizon for the cost function will be infinite. The 

next section uses the equations derived in this section to address the infinite horizon 

problem. 

 

5.4 Infinite time LQR for the three-player game 

In order to define the problem in the infinite horizon, the final time ( ft ) in the 

previous sections turned infinite. According to this change, the state equation 

remains the same, but the cost function for ith player is changed to the form below 

1 1 1 2 2 2 3 3 3

0

( )T T T T

i i i i iJ x Q x u R u u R u u R u dt



     
(5-31) 

The system must be completely controllable. Using results similar to the 

finite-horizon problem iP  is still the solution of a Riccati equation with the boundary 

condition: 

( ) ( ) 0f fP t F t   (5-32) 

The optimal control inputs can be obtained as: 

* 1 *

1 11 1 1

* 1 *

2 22 2 2

* 1 *

2 33 3 3

ˆ

ˆ

ˆ

T

T

T

u R B Px

u R B P x

u R B P x







 

 

 

 

(5-33) 

where 

ˆ ( ) lim{ ( )}
f

i i
t

P t P t P


   (5-34) 
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iP  is a positive definite, symmetric, constant matrix that turns the coupled 

differential Riccati equations into the coupled algebraic Riccati equations below: 

1
1 1 1 1 1 1 1 2 2 1 3 3 2 2 1 3 3 1 2 12 2 3 13 30 TdP

P A A P Q PS P PS P PS P P S P P S P P S P P S P
dt

             

2
2 2 2 2 1 1 2 2 2 2 3 3 1 1 2 3 3 2 1 21 1 3 23 30 TdP

P A A P Q P S P P S P P S P PS P P S P PS P P S P
dt

            

3
3 3 3 3 1 1 3 2 2 3 3 3 1 1 3 2 2 3 1 31 1 2 32 20 TdP

P A A P Q P S P P S P P S P PS P P S P PS P P S P
dt

            

(5-35) 

Optimal control signals can be obtained from the equations below after 

solving the coupled ARE’s for 1P , 2P and 3P  

* 1 *

1 11 1 1

* 1 *

2 22 2 2

* 1 *

3 33 3 3

T

T

T

u R B Px

u R B P x

u R B P x







 

 

 

 

(5-36) 

The optimal state *x   can be calculated by solving the state equation using the 

initial boundary condition 

* 1 1 1 *

1 11 1 1 2 22 2 2 3 33 3 3

*

0 0

[ ]

( )

T T Tx A B R B P B R B P B R B P x

x t x

     


 

(5-37) 

and optimal cost functions can be obtained using the equations below: 

* *

1 1

* *

2 2

* *

3 3

1
( ) ( )

2

1
( ) ( )

2

1
( ) ( )

2

T

T

T

J x t Px t

J x t P x t

J x t P x t







 

(5-38) 

As is clear from the formulation of control inputs, the values of *

1u   *

2u  and *

3u  

are completely dependent on the solution to the set of ARE’s and finding 1P , 2P and 
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3P . In the next section, an algorithm similar to the one used for the two-player game 

is proposed for the three-player game to solve the ARE’s. 

 

5.4.1 Solving algebraic Riccati equations (ARE's) 

The Matlab function (care) is used to solve the algebraic Riccati equations. 

According to the description of the function in the Matlab library, this function can 

solve the continuous algebraic Riccati equation below and return the unique solution 

for P, the gain matrix 
1( )T TG R B PE S   , and closed-loop eigenvalues vector L. 

1( ) ( ) 0T T T T TA PE E PA E PB S R B PE S Q       (5-39) 

This equation can also be simplified by omitting R and S (R=I, S=0) and setting E 

to default value E=I. 

All the Riccati equations that can be written in the format above can be solved 

using the "care" function if their associated Hamiltonian eigenvalues are far from 

the imaginary axis. There is a finite stabilizing solution for P. This function can be 

used in a straightforward way to solve the Riccati equation for decentralized 

paradigms. Still, a new solution needs to be introduced due to the existence of 

coupling between the Riccati equations in the Nash paradigms. The proposed 

solution in this dissertation is a numerical based solution and is described by the 

following steps: 

Step 1: 

Initiate 1

CP , 2

CP and  3

CP  by solving the following decoupled ARE's: 

1 1 1 11 1 1

2 2 2 22 2 2

3 3 3 33 3 3

0

0

0

T C C C C

T C C C C

T C C C C

A P P A P S P Q

A P P A P S P Q

A P P A P S P Q

   

   

   

 

(5-40) 
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1

CP , 2

CP  and  3

CP  can be calculated in Matlab using the code below 

1 1 1 11

2 2 2 22

3 3 3 33

( , , , )

( , , , )

( , , , )

C

C

C

P care A B Q R

P care A B Q R

P care A B Q R







 

(5-41) 

Step 2: 

Compute the strong solution 1

1

CP   1

2

CP  and  1

3

CP   from the following decoupled 

ARE's: 

1 1 1 1

1 2 2 3 3 2 2 3 3 1 1 1 1 1 2 12 2 3 13 3

1 1 1 1

2 1 1 3 3 1 1 3 3 2 2 2 2 2 1 21 1 3 23 3

1

3 1 1 2 2 1 1 2 2 3

( ) ( ) 0

( ) ( ) 0

( ) ( )

C C C C C T C C C C C C C

C C C C C T C C C C C C C

C C C C C T C

P A S P S P A S P S P P P S P Q P S P P S P

P A S P S P A S P S P P P S P Q P S P P S P

P A S P S P A S P S P P

   

   



         

         

     1 1 1

3 3 3 3 1 31 1 2 32 2 0C C C C C CP S P Q P S P P S P      

 

(5-42) 

Equations below can be used to simplify the format of the Ricatti equation to 

the acceptable format for the "care" function 

'

1 2 2 3 3

'

1 1 2 12 2 3 13 3

'

2 11 1 3 3

'

2 2 1 21 1 3 23 3

'

3 11 1 2 2

'

3 3 1 31 1 2 32 2

( ),

,

( ),

,

( ),

C C

C C C C

C C

C C C C

C C

C C C C

A A S P S P

Q Q P S P P S P

A A S P S P

Q Q P S P P S P

A A S P S P

Q Q P S P P S P

  

  

  

  

  

  

 

(5-43) 

The Riccati equations can be rearranged as: 

1 ' ' 1 1 1 '

1 1 1 1 1 1 1 1

1 ' ' 1 1 1 '

2 2 2 2 2 2 2 2

1 ' ' 1 1 1 '

3 3 3 3 3 3 3 3

0

0

0

C T C C C

C T C C C

C T C C C

P A A P P S P Q

P A A P P S P Q

P A A P P S P Q

   

   

   

   

   

   

 

(5-44) 

1

1

CP  , 1

2

CP  and  1

3

CP   can be calculated in Matlab using the code below: 
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1 ' '

1 1 1 1 11

1 ' '

2 2 2 2 22

1 ' '

2 3 3 3 33

( , , , )

( , , , )

( , , , )

C

C

C

P care A B Q R

P care A B Q R

P care A B Q R













 

(5-45) 

Step 3: 

This step updates  C

iP  and investigates the convergence of 1C

iP   to C

iP  using 

the Euclidean norm to stop the iteration.  The algorithm for convergence is presented 

as a "while" loop below: 

While 1C C

i iP P      

1C C

i iP P   

Repeat Step 2 

End 

(5-46) 

The approach presented in this chapter can also be used for N>3 player games 

if the algorithm converges.  

 

5.5 Solving three-player game using control coupled output 

regulation 

The previous section presented the problem and solution for three-player state 

regulation (LQR). The introduction section shows that multiple couplings exist 

between the states and inputs and between the inputs themselves in control coupled 

output regulation problem (CCOR). These couplings make it impossible to solve the 

three-player CCOR problem with the same method for LQR or the change of 

variables method. 

In this section, the problem formulation for the three-player game is presented 

again as a review, and the solution is achieved by combining all the cost functions 

as a whole. 
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 Each player's cost function is defined as a combination of quadratic output 

costs that the player wants to regulate plus the player's weighted quadratic control 

cost. The output cost function is weighted and normalized by matrix Q , and the 

control cost function is normalized by R  and multiplied by  . Bryson's rule is used 

in weighting matrices Q  and R  normalizes the cost function values. The multiplier 

  is used as a design parameter that the designer can tune to get the desired 

performance from the controller. 

The player ith cost function in an N-player game is defined as below: 

0
1 1

[ ( )]
N N

T T

i i ij j i i i ij j ij j

j jt t

J Jy Ju y Q y u R u d  


 

      (5-47) 

The state-space representation of the system for a two-player game can be 

written below, in which x is the states' matrix. The vectors 1y 2y and 3y  are outputs 

of the system for three players accordingly. 

0
1 1

[ ( )]
N N

T T

i i ij j i i i ij j ij j

j jt t

J Jy Ju y Q y u R u d  


 

      (5-48) 

Like the two-player game, Nash equilibrium is defined so that there is no 

incentive for any unilateral deviation by any one of the players. This means that all 

three players are making their decisions simultaneously where each player has an 

outcome that cannot unilaterally improve from a change in strategy. So basically, at 

Nash equilibrium, the player who chooses to change the strategy cannot improve its 

payoff. In mathematical terms, the input vector * * *

1 2 3( , , )u u u  corresponds to Nash 

equilibrium if the following relations are satisfied for each admissible strategy: 

* * * *

1 1 2 3 1 1 2 3

* * * *

2 1 2 3 2 1 2 3

* * * *

3 1 2 3 3 1 2 3

( , , ) ( , , )

( , , ) ( , , )

( , , ) ( , , )

J u u u J u u u

J u u u J u u u

J u u u J u u u

 



 

 

(5-49) 
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In order to find the Nash solution, all three cost functions must be solved 

simultaneously. From this part, the calculations are presented for the ith player as 

follows. 

In the first section, it was shown that the cost function for the ith player could 

be written in the general form below 

0

[x 2 u u]T T T

i i i i

t t

J Q x x N u R d




    (5-50) 

Consider the state space equations and optimal set of cost functions below: 

1 1 1

1 1 11

1 1 11

1 1 11
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      

  







   

   

   

   
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(5-52) 

If we combine output equations into one equation and input vectors into one 

input vector, we can rewrite the state space equations above as: 

1

1 1 1 1

1

1

1 1 1 1 2 2 3 3 1 1 2 3 2 1 ( ) ( ) 1

3

[ , , ]

p

n p p n q q n r r n p n q n r q

r

n n n n n n n n n n n p q r p q r

u

x A x B u B u B u A x B B B u A x B U

u



         



            

 
 

        
 
  
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1 1 11 12 13 1

2 2 1 21 22 23 2

3 3 31 32 33 3( ) 1 ( )

n

m k l m k l n

y C D D D u

y y C x D D D u Cx DU

y C D D D u



     

       
       

    
       
              
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The new optimal cost function can be defined as: 

0 0

0
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By comparing the general cost function above with the three players cost 

functions, the matrices Q, N, and R can be generated as below: 
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(5-55) 

The solution for combined optimal cost function J can be calculated using the 

Matlab function "care". K is the optimal feedback gain for general input vector U. 

[P,L,K]=care(A,B,Q,R,N); (5-56) 
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5.6 Chapter summary 

Like the chapter 4 pattern, the three-player game problem was introduced for the 

state regulation and output regulation cases, and the mathematical formulation was 

presented. The solution for a continuous three-player LQR game was delivered for 

the infinite horizon, and an algorithm was developed to solve the coupled Riccati 

equations. It was shown that the output regulation cost function for each player could 

be transformed to a standard control coupled output regulation format, and the three-

player game can be solved by combining all the cost functions into one cost function. 

The next chapter implements the solution for the two-player and three-player game 

in simulations and investigates the effects of using game theory, and explores the 

scenarios that can be useful. 
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6 CHAPTER 6: SIMULATION RESULTS FOR PLANT WITH 

LINEAR TIRE MODEL 

 

6.1 Introduction 

In this chapter, multiple scenarios for two-player games and three-player games 

are presented. After stating the paradigm and defining the controller's objective in 

the cost function, the controller's gains are calculated accordingly using the 

information in previous chapters. The players are chosen from the player pool below: 

 Active steering ( AS ) 

 Corrective yaw moment ( ycM ) 

 Corrective roll moment ( cM ) 

 Active suspension forces (Fal and Far) 

Here is the list of scenarios that are explored in this chapter: 

 Active steering and corrective yaw moment (two-player) 

 Active steering and corrective roll moment (two-player) 

 Active steering, corrective yaw moment, and corrective roll moment (three-

player) 

 Active suspension and the corrective roll moment 

All the first three scenarios belong to the class of LQR problems (Case 1), and 

the last scenario belongs to the class of CCOR (Case 2). 
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In each scenario, at first, the control solution for the single-player game is 

presented, and then the solution for the multi-player game is shown in both 

decentralized and Nash paradigms. Control models in sections 3.3 and 3.4 are used 

to calculate control feedback gains, and then the feedback gains are applied on the 

plant model with linear tire presented in section 3.6. The simulation results for all 

the paradigms are plotted together with the uncontrolled passive maneuver to 

compare. The root mean square of the control input, the peak value of the controller 

input and the cost function's value were also used as factors of merit to make a 

comparison. For each scenario, the discussion is presented based on the simulation 

plots and the factors of merit. 

In the Appendix, all the eigenvalues and the natural frequencies of the models are 

calculated, and they are all shown to be below 100 Hz. In order to cover all the 

frequencies, the sampling time of 0.001 sec is chosen for the simulation, which is 

equivalent to 1000 Hz that is at least ten times more than the highest frequency of 

the system. 

The passive maneuver selected for the simulations is a 2.5-meter lane-change 

maneuver with a constant longitudinal velocity of 20 m/s. Parameters for this vehicle 

are presented in the appendix.  The human driver applies a π/24 radian (7.5 degrees 

clockwise) steering angle from 1-1.5 s and reverses the steering angle (-π/24 CCW) 

from 1.5-2 s. The steering angle for all the other times is zero. No controller signal 

is added in the passive maneuver, so the total steering input signal is plotted below. 
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Figure 6-1: Human driver steering input for 2.5m lane-change maneuver 

 

The “desired” trajectory is calculated based on the steady-state cornering 

assumption in which a no-slip kinematic relation exists between steering angle and 

wheel heading.  The desired trajectory is shown in green in the figure below. 

 

Figure 6-2: Passive maneuver and desired trajectory for 2.5m lane-change maneuver 
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The blue passive trajectory response indicates a side slip, and more steering 

is required to follow the path than what is predicted by the steering angle kinematics. 

Here are the results of some other variables for the passive response 

simulation. 

 

Figure 6-3: Passive lane-change maneuver results for roll angle, roll rate, roll index, and yaw 

angle 

 

In this maneuver, the vehicle roll angle peaks around 2 degrees, and the roll 

index gets close to 0.5 at the time values of 1 and 2 seconds. 
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Figure 6-4: Yaw plots for passive lane-change maneuver 

 

The nonzero yaw rate error indicates that the vehicle needs the help of the 

controller to regulate this error to improve tracking performance. 

Figure 6-5 shows the normal and lateral forces at the left and right tires. 

Lateral tire forces are modeled as a linear function of slip angles using the model in 

section 3-6. The normal forces are the combination of the tires’ linear stiffness and 

damping forces.  
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Figure 6-5: Lateral and normal tire forces for passive lane-change maneuver 

  

Figure 6-6 shows the vertical dynamic performance of the model. Three 

merits of ride quality, rattle space, and road holding are monitored in this figure.  

The sprung mass acceleration is chosen as a merit for ride quality. The suspension 

deflections show the rattle space, and the road-holding performance is observed 

through the left and right tire deflections. 
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Figure 6-6: Vertical dynamics plots for passive lane-change maneuver 

  

Figure 6-7 shows the lateral acceleration of the plant model in section 3-6 

that is calculated as below: 

.y y xa v r v   
(6-1) 

  

Figure 6-7: Lateral acceleration for passive lane-change maneuver 
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6.2 Active Steering ( AS ) vs. Corrective Yaw Moment ( ycM ) 

Both active steering and corrective yaw moment are commonly used for the 

purpose of yaw stability or tracking. Direct yaw control methods normally generate 

the corrective yaw moment. This moment can either be generated by differential 

braking or torque distribution. This dissertation models the corrective yaw moment 

as a direct control input and investigates the games between this control input and 

the active steering. The application of a direct yaw moment, while not a high-fidelity 

representation of how the moment would be delivered in a real vehicle, is sufficient 

to compare the new game theory methods’ performance relative to decentralized 

methods. The objective for both players is defined to regulate the yaw rate error. The 

control model presented in chapter 3.3 is used to calculate the feedback gains for this 

scenario. 

The passive results are shown with the color blue. 

Four paradigms are simulated and compared with each other in this section. 

 One-player AS       

 One-player ycM       

 Two-player AS + ycM  Decentralized   

 Two-player AS + ycM  Nash    

 

1. One-player AS  

In this paradigm, active steering is trying to track the desired yaw rate by 

regulating yaw rate error through additional steering input. The results for this 

simulation are plotted in red. 
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The output matrix C1, state weighting matrix Q1, and input weighting matrix R1 for 

this design are as follows: 

C1=[0 0 0 1];  

Qb1=1; 

Q1=C1'*Qb1*C1; 

R1=6.25; 

(6-2) 

The simulation results are plotted for multiple values of R1. It appears that by 

reducing the R1 from 6.25 to 0.1, the tracking performance improves. 

 

Figure 6-8: Trajectory simulation results for different values of input weight R1 

 

But unfortunately, the peak value for active steering increases as well. As in 

real life, there is a limit to the amount of active steering that the controller can 

provide; The weight R1 is picked to prevent controller saturation. For instance, at 1 

sec, the steering input 86.47 [deg] (for R1=0.1) and 23.7 [deg] (for R1=1) are 

unrealistic values (we like to keep the active steering input less than 12-15 deg). 
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Figure 6-9: Active steering control action for different values of R1 

 

 

Figure 6-10: Zoomed-in version of figure 6-9 to read the controller steeing input peak values 
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Figure 6-11: Roll index for different values of R1 

 

The roll index plot also shows that once the value of R1 goes below 6.25, the 

peak of the roll index goes over 1, which means the vehicle is encountering rollover. 

The value of R1=6.25 is chosen as the final design to avoid saturation and rollover. 

For this value, the tracking improves compared to passive, but still, there is a steady-

state lateral error. This error can be reduced by adding the corrective yaw moment, 

which encourages the application of a two-player game. 

 

By choosing the R1 = 6.25, the optimal gain is calculated as follows. 

Optimal gain: K  = [-0.0090   -0.0019    0.0079    0.2358] 

RMS of steering input signal delta: RMS = 0.0325 rad 

Total cost:  totalJ = 0.2124 
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The next sections show single-player and two-player chassis control scenarios.  

The results will show that additional players’ control actions are required for better 

control, thus motivating this thesis to pursue the game-theoretic approach in multi-

player games for N≥3. 

 

2. One-player ycM  

In this scenario, active yaw control (DYC) is trying to track the desired yaw rate 

by regulating yaw rate error. The results for this simulation are plotted in yellow. 

The output matrix C1, state weighting matrix Q1, and input weighting matrix R1 for 

this design are as follows: 

C1=[0 0 0 1];  

Qb1=1; 

Q1=C1'*Qb1*C1; 

R1=1e-10; 

(6-3) 

Optimal gain:  

MycK  =104 × [-0.0487   -0.0053    0.0606    9.4749] 

RMS of corrective yaw moment ycM : RMSMyc  = 6.2835×103 N.m 

Total cost:  totalJ = 0.2725 

 

3. Two-player AS + ycM  Decentralized 

In this scenario, active steering and yaw control (DYC) track the desired yaw rate 

by regulating yaw rate error in a decentralized combination. This means that each 
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player is playing on their own without knowing the control action of the other player. 

The results for this simulation are plotted in purple 

This scenario combines the previous one-player scenarios, so the same optimal 

weights (Q and R s) and gains ( K , MycK ) derived from the single-player are used in 

this paradigm to make a meaningful comparison. 

C1=[0 0 0 1]; %for delta 

regulating er 

Qb1=1; 

Q1=C1'*Qb1*C1; 

R1=6.25; 

 

C2=[0 0 0 1]; %for ycM

regulating er 

Qb2=eye(2); 

Q2=C2'*Qb1*C2; 

R2=1e-10; 

(6-4) 

Optimal gains: 

K  =[-0.0090   -0.0019    0.0079    0.2358] 

MycK  =104 ×[-0.0487   -0.0053    0.0606    9.4749] 

RMS of control inputs signals: 

RMS  = 0.0147 rad 

RMSMyc  = 6.1986×103 N.m 
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The RMS value of the active steering input is lower in the decentralized 

paradigm than an individual corresponding signal in the one-player game. This 

means that these players, in a sense, are reducing loads of work from each other. The 

RMS value of corrective yaw moment is slightly less for the two-player game, but 

the difference is not significant.  

Total cost:  totalJ = 0.2816 

 

4. Two-player AS + ycM  Nash 

In this scenario, active steering and yaw control (DYC) track the desired yaw rate 

by regulating yaw rate error in a Nash paradigm. This means that players play a two-

player differential game that is solved using the two-player Nash solution. The 

results for this simulation are plotted in green. Weight matrices Q's are the same as 

one-player and decentralized. R11 and R22 are also chosen the same as R1 and R2 

in the decentralized paradigm. 

C1=[0 0 0 1];  %for delta regulating er 

C2=[0 0 0 1];  %for ycM regulating er 

Qb1=eye(1); 

Qb2=eye(1); 

Q1=C1'*Qb1*C1; 

Q2=C2'*Qb2*C2; 

R11=6.25; 

R12=0; 

R21=0; 

R22=1e-10; 

(6-5) 
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Optimal gains: 

K  =[0.0001    0.0000    0.0000    0.0225] 

MycK  = 104 × [-0.0484   -0.0052    0.0600    9.4147] 

RMS of control inputs signals: 

RMS  = 0.0015 rad 

RMSMyc  = 6.2426×103 N.m 

Total cost:  totalJ = 0.2723 

Table 6-1:Active steering vs. corrective yaw moment scenario RMS values and total cost 

 One-player 

AS  

One-player 

ycM  

Two-player 

decentralized 

Two-player 

Nash 

RMS  0.0325 0 0.0147 0.0015 

RMSMyc  0 6.2835×103 6.1986×103 6.2426×103 

Total cost 

totalJ  

0.2124 0.2725 0.2816 0.2723 

 

Both Nash and decentralized two-player games scored lower RMS than one-

player scenarios for each control input. A significant 90 % reduction in the RMS 

value of steering input control signal in Nash can be seen by comparing the 

decentralized and Nash paradigms. RMS of corrective yaw moment control input 

slightly increased 1% in Nash. 

By zooming into the active steering input plot (fig 6-15), the peak of the 

steering input signal in Nash is also reduced considerably, and the slight change in 
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the peak of yaw moment control input is negligible (fig 6-6). In a scenario where the 

steering input is limited to realistic values, the corrective yaw moment can be used 

in a Nash configuration to help reduce the peak of the steering input and achieve the 

same tracking result. The results show that Nash is spending less energy and requires 

lower control inputs to achieve the same goal of tracking than the decentralized 

approach, which means that the Nash solution is optimal. 

The Nash controller's total cost function is also lower than that of 

Decentralized and One-player ycM  controllers.  The One-player AS  scored lower, 

but with the disadvantage of diminished tracking performance. 

Figure 6-12 shows that all controllers are increasing roll angle, roll rate, and 

roll index, which shows that the goal of tracking is against the goal of roll regulation 

 

Figure 6-12: Simulation results for roll angle, roll rate, roll index, and yaw angle (active 

steering vs. corrective yaw moment game) 
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Figure 6-13 shows that active steering is not showing enough tracking 

improvement by itself relative to all the other controllers. 

 

Figure 6-13: Vehicle trajectory (active steering vs. corrective yaw moment game) 

The human driver steering input, active steering control input and the 

combination of them (total steering input) are shown in degrees in figure 6-14. The 

control signal amount is lower for two-players scenarios relative to one-player AS . 

 

Figure 6-14: Steering inputs for human driver and controller (active steering vs. corrective yaw 

moment game) 
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Figure 6-15: Active steering input signal zoomed-in  

Nash shows almost 90% less steering input control signal ( AS ) required than all 

other scenarios (except one-player ycM  where AS is zero). 

In figure 6-16, there is a nearly identical corrective yaw moment for all scenarios, 

with the exception of the one-player steering controller that does not apply ycM . 

 

Figure 6-16: Corrective yaw moment (active steering vs. corrective yaw moment game) 
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Both two-player paradigms generate a higher lateral acceleration than the 

one-player AS  , which is due to the involvement of corrective yaw moment. 

 

 
Figure 6-17: Lateral acceleration (active steering vs. corrective yaw moment game) 

 

Conclusion: 

The importance of the cooperative game between active steering and corrective 

yaw moment appears when practical limits must be placed on the steering input 

control signal. Due to this limit, high tracking performance is not achievable with 

only steering input. By adding the corrective yaw moment as the second player, the 

burden of control is divided between the players. In a two-player game, the Nash 

paradigm achieves the same tracking performance as decentralized using less control 

effort and lower cost function, which makes it the preferred paradigm for this 

scenario.  
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6.3 Active steering ( AS ) vs. Corrective roll moment ( cM ) 

In a game between these two players, the corrective roll moment's sole 

objective is improving roll stability by regulating roll angle and roll rate. Meanwhile, 

the cost function for active steering can be designed for two opposing purposes. 

Active steering can either minimize yaw rate error (investigated in the game between 

active steering and corrective roll moment for the objective of tracking) or be used 

as counter-steering to regulate the roll angle and roll angle rate. In counter steering, 

the active steering reduces the lateral acceleration to regulate the roll angle and roll 

rate, which means that the vehicle will lose its path tracking ability. This section 

investigates these two opposing objectives in two formats of non-competing and 

competing games between the active steering and corrective roll moment. The 

control model introduced in chapter 3.3 is used to calculate the feedback gains, and 

simulation results are plotted for the plant model presented in 3.6. 

 

6.3.1 Non-competing:   

The objective for both players is to regulate roll angle and roll rate.  

 One-player AS        

 One-player cM       

 Two-player AS + cM  Decentralized    

 Two-player AS + cM  Nash      

 

1. One-player AS  
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In this paradigm, active steering is trying to regulate roll and roll rate by counter 

steering. Due to the loss of lateral acceleration, the vehicle will lose its tracking 

performance. The results for this simulation are plotted in red. 

The output matrix C1, state weighting matrix Q1, and input weighting matrix R1 for 

this design are as follows: 

C1=[1 0 0 0;  %for delta regulating [phi,phid] 

    0 1 0 0]; 

Qb1=eye(2); 

Q1=C1'*Qb1*C1; 

R1=0.001; 

(6-6) 

 

Optimal gain: K  =[ 24.0123   30.8732   -0.0931    0.0249] 

RMS of steering input signal delta: RMS  = 0.0506 rad 

Total cost:  totalJ = 3.6008 ×10-5 

 

2. One-player cM  

In this scenario, active roll moment control is trying to regulate roll and roll rate. 

The results for this simulation are plotted in yellow, and the weighting matrices are 

as follows.  

C1=[1 0 0 0;  %for cM  regulating [phi,phid] 

     0 1 0 0]; 

 Qb1=eye(2); 

 Q1=C1'*Qb1*C1; 

(6-7) 
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 R1=1e-14; 

 

Optimal gain: MzcK  =  106 ×[9.9455    9.9950   -0.0007    0.0002] 

RMS of corrective yaw moment cM : RMSM c  = 533.7205 N.m 

Total cost:  totalJ = 3.0447×10-8 

 

3. Two-player AS + cM  Decentralized 

In this scenario, both active steering and active roll moment are regulating roll 

angle and roll rate error in a decentralized combination. This means that each player 

is playing on their own. The results for this simulation are plotted in purple. 

This scenario is a combination of the previous two single-player scenarios  and 

the roll moment, so the same optimal weights (Q and R s) and gains ( K , M cK  ) 

derived from the single-player are used in this paradigm. 

C1=[1 0 0 0;  %for delta regulating [phi,phid] 

    0 1 0 0]; 

Qb1=eye(2); 

Q1=C1'*Qb1*C1; 

R1=0.001; 

 

C2=[1 0 0 0;  %for cM regulating [phi,phid] 

    0 1 0 0]; 

Qb2=eye(2); 

Q2=C2'*Qb1*C2; 

(6-8) 
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R2=1e-14; 

 

Optimal gains: 

K  =[ 24.0123   30.8732   -0.0931    0.0249] 

M cK   =  106 ×[9.9455    9.9950   -0.0007    0.0002] 

RMS of control inputs signals: 

RMS  = 0.0573 rad 

RMSM c  = 472.8298 N.m 

The RMS values of each control inputs are lower in the decentralized 

paradigm than an individual corresponding signal in the one-player game. The peak 

for both control inputs delta and corrective roll moment is reduced. This means that 

these players, in a sense, are reducing loads of work from each other. 

Total cost:  totalJ = 1.9786×10-5 

 

4. Two-player AS + cM  Nash 

In this scenario, both active steering and corrective roll moment improve roll 

stability by regulating roll and roll rate in a Nash paradigm. This means that players 

play a two-player differential game that is solved using the two-player Nash solution. 

The results for this simulation are plotted in green. Weight matrices Q are the same 

as in the decentralized scenario. R11 and R22 are also chosen to be the same as R1 

and R2 in the decentralized paradigm. 

C1=[1 0 0 0;  %for delta regulating [phi,phid] (6-9) 
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    0 1 0 0]; 

C2=[1 0 0 0;  %for cM regulating [phi,phid] 

    0 1 0 0]; 

Qb1=eye(2); 

Qb2=eye(2); 

Q1=C1'*Qb1*C1; 

Q2=C2'*Qb2*C2; 

R11=.0001; 

R12=3e-13; 

R21=1e-3; 

R22=1e-12;  

 

Optimal gains: 

K = [34.0711   35.7702   -0.0147    0.0572] 

M cK  = 106 ×[1.2223    1.2834   -0.0008    0.0006] 

RMS of control inputs signals: 

RMS  = 0.0101  rad 

RMSM c  = 443.6340 N.m 

Total cost:  totalJ = 3.1223×10-6 

The table below shows the total cost and the RMS of the control input signal 

for the simulation time. 
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Table 6-2: Active steering vs. corrective roll moment (non-competing) scenario RMS values and 

total cost 

 One-player 

AS for roll 

One-player cM  Two-player 

decentralized 

Two-player 

Nash 

RMS  0.0506 0 0.0573 0.0101   

RMSM c  0 533.7205 472.8298 443.6340 

Total cost 

totalJ  

3.6008 ×10-5 3.0447×10-8 1.9786×10-5 3.1223×10-6 

 

Both two-players paradigms (decentralized and Nash) have lower RMS for 

individual control signals than the corresponding active signals in single-player 

ones. This means that the control burden is shared between the players in a two-

player paradigm.  

The total cost in Nash is slightly less than the decentralized, with significantly 

lower RMS for steering input and somewhat higher RMS for roll moment for the 

current set of weights.  

 

Simulation results for the lane-change maneuver 

           The decentralized combination has a better roll index performance, as shown 

in Figure 6-18. 
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Figure 6-18: Simulation results for roll angle, roll rate, roll index, and yaw angle (active 

steering vs. corrective roll moment non-competing game) 

 

In terms of roll angle and roll rate, performances are the same. The 

decentralized shows better performance than the rest when it comes to the roll index.  
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Figure 6-19: Vehicle trajectory (active steering vs. corrective roll moment non-competing game) 

According to Figure 6-19, One-player   loses tracking performance 

completely due to counter-steering and is incapable of regulating the yaw rate error 

according to Figure 6-20. The negative effect of counter-steering reduces in two-

player paradigms. Nash shows relatively less loss of tracking than decentralized 

while maintaining the same roll performance, which is an improvement.  

 

 

Figure 6-20: Yaw plots (active steering vs. corrective roll moment non-competing game) 
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Figure 6-21 shows that the peak of active steering control input reduces from 

one-player   to two-player paradigms. The Nash paradigm has the lowest amplitude 

for active steering control input. This means that Nash requires less control effort to 

achieve the same objective. 

 

Figure 6-21: Human and active steering control inputs (active steering vs. corrective roll 

moment non-competing game) 

 

As shown in Figure 6-22, the peak for corrective roll moment input is lower 

in both two-player paradigms than the one-player. The Nash paradigm has a 

smoother input signal than the rest of the paradigms. 
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Figure 6-22: Corrective roll moment (active steering vs. corrective roll moment non-competing 

game) 

According to Figure 6-23, the tire lateral forces for Nash are closer to the ones 

for one-player cM  (shown in plots as Mzc). The normal tire forces for Nash are also 

smoother relative to the other paradigms. The same smooth transition is also shown 

in tire deflections in Figure 6-24. 

 

Figure 6-23: Lateral and normal tire forces (active steering vs. corrective roll moment non-

competing game) 
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Figure 6-24: Vertical dynamic simulation results (active steering vs. corrective roll moment non-

competing game) 

 

 Figure 6-25 shows that the Nash paradigm generates higher lateral 

acceleration than the decentralized but has a lower value than one-player cM . 
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Figure 6-25: Lateral acceleration (active steering vs. corrective roll moment non-competing 

game) 

In summary, it is shown that countersteering can help improve the roll 

stability, but in general, the corrective roll moment is the dominating strategy, and 

even in the two-player game, the Nash strategy is closer to the corrective roll moment 

strategy. It was also shown that the corrective roll moment control input signal, the 

tire deflections, and normal forces transitions are smoother in Nash relative to other 

paradigms. 
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6.3.2 Competing:   

In this scenario, the objective for active steering is to track the desired path by 

regulating the yaw rate error, and the corrective roll moment is regulating roll angle 

and roll rate. In the previous section, active steering played a cooperative game with 

corrective roll moment and created counter-steering to improve roll stability. In this 

scenario, the active steering pursues its own individual goal which is regulating the 

yaw rate error to improve the tracking. As it is shown in Figure 6-26, this increases 

the roll angle, which is against the goal of the corrective roll moment. The 

competition between these two players is investigated in the two-player paradigms. 

Here is the list of paradigms simulated for this section. 

 

 One-player AS        

 One-player cM        

 Two-player AS + cM  Decentralized    

 Two-player AS + cM  Nash    

Passive results are shown is blue. 

 

1. One-player AS  

The active steering goal is to regulate yaw rate error. The results for this 

simulation are plotted in red. The designed weight matrices are as follows. 

C1=[0 0 0 1]; %for delta regulating er 

Qb1=1; 

Q1=C1'*Qb1*C1; 

(6-10) 
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R1=6.25; 

K =[-0.0090   -0.0019    0.0079    0.2358] 

RMS =0.0325 rad 

totalJ  =0.2124 

 

 

2. One-player cM   

Corrective roll moment improves roll stability by regulating roll angle and roll 

rate. The results for this simulation are plotted in yellow, and the weight matrices 

are. 

 

C1=[1 0 0 0;  %for cM regulating [phi,phid] 

    0 1 0 0]; 

Qb1=eye(2); 

Q1=C1'*Qb1*C1; 

R1=1e-14; 

 

(6-11) 

 Here are the optimal gain, root mean square of the moment signal, and total cost: 

M cK  =106 ×[9.9455    9.9950   -0.0007    0.0002] 

RMSM c =533.7205 

totalJ =  3.0447×10-8 
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3. Two-player AS + cM  Decentralized  

This paradigm is the combination of previous paradigms. The results for this 

simulation are plotted in purple. The weighting matrices are selected the same as 

one-player scenarios, which create the same optimal gains. 

 

  C1=[0 0 0 1]; %for delta regulating e 

  Qb1=1; 

  Q1=C1'*Qb1*C1; 

  R1=6.25; 

  C2=[1 0 0 0;  %for cM regulating [phi,phid] 

      0 1 0 0]; 

  Qb2=eye(2); 

  Q2=C2'*Qb1*C2; 

  R2=1e-14; 

(6-12) 

 

K = [-0.0090   -0.0019    0.0079    0.2358] 

M cK  =106 ×[ 9.9455    9.9950   -0.0007    0.0002] 

RMS = 0.0326 rad 

RMSM c  = 711.9162  

totalJ = 0.2119 
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4. Two-player AS + cM  Nash   

The weight matrices are designed as follows. The results for this simulation are 

plotted in green.  

  C1=[0 0 0 1]; %for delta regulating er 

 C2=[1 0 0 0;  %for cM  regulating [phi,phid] 

      0 1 0 0]; 

  Qb1=1; 

  Qb2=eye(2); 

  Q1=C1'*Qb1*C1; 

  Q2=C2'*Qb2*C2; 

  R11=6.25; 

  R12=0; 

  R21=.01; 

  R22=1e-14; 

(6-13) 

 

K = - [0.0021   -0.0022    0.0080    0.2353] 

M cK  =106 ×[ 9.9455    9.9950   -0.0007   -0.0014] 

RMS =0.0325 rad 

RMSM c = 704.4610 N.m 

totalJ  =0.2116 
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Table 6-3: Active steering vs. corrective roll moment (competing) scenario RMS values and total 

cost 

 One-player 

AS for track 

One-player cM

for roll 

Two-player 

decentralized 

Two-player 

Nash 

RMS  0.0325 0 0.0326 0.0325 

RMSM c  0 533.7205 711.9162 704.4610 

Total cost 

totalJ  

0.2124 3.0447×10-8 0.2119 0.2116 

 

For the selected set of weights, the results of Decentralized and Nash overlap 

each other on plots, and they show almost identical performances in all the areas. 

The two player-game paradigms only combine the effects of both single 

players linearly. No noticeable improvement was observed in either the cost function 

or the RMS or control inputs' peaks (Figure 6-29 and Figure 6-30).  

 As shown in Figure 6-26, the one-player active steering increases roll angle, 

roll rate, and roll index. This problem is solved by adding the corrective roll moment 

as the second player to the game 
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Figure 6-26: Simulation results for roll angle, roll rate, roll index, and yaw angle (active 

steering vs. corrective roll moment competing game) 

  

Figure 6-27 shows that the corrective roll moment as a one-player shows 

lower tracking performance relative to other paradigms. Adding the active steering 

as the second player to the game improves minimizes the yaw rate error Figure 6-28 

and improves tracking. 
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Figure 6-27: Vehicle trajectory angle (active steering vs. corrective roll moment competing 

game) 

 

There is still a steady-state lateral error. One way to improve the remaining 

steady-state lateral error is by introducing corrective yaw moment as the third player. 
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Figure 6-28: Yaw plots angle (active steering vs. corrective roll moment competing game) 

 Figure 6-29 and Figure 6-30 shows almost identical control inputs for all the 

paradigms that generate signals. 

 

Figure 6-29: Human and active steering angles angle (active steering vs. corrective roll moment 

competing game) 
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Figure 6-30: Corrective roll moment angle (active steering vs. corrective roll moment competing 

game) 

  

Similar behavior is shown in all paradigms for all the normal and lateral left 

and tire forces, according to Figure 6-31. 

 

Figure 6-31: Lateral and normal tire forces angle (active steering vs. corrective roll moment 

competing game) 
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 As shown in Figure 6-32, One-player δ shows higher suspension deflections, 

which is moderated by adding the corrective roll moment as the second player. The 

range for tire deflections remains the same, with more noises in one-player cM  and 

the two-player ones. 

 

Figure 6-32: Vertical dynamic simulation results angle (active steering vs. corrective roll 

moment competing game) 

 

One-player cM  and two-player paradigms generate identical but higher 

lateral acceleration than one-player active steering, according to Figure 6-33.  



155 
 

 

Figure 6-33: Lateral acceleration angle (active steering vs. corrective roll moment competing 

game) 

 

It appears that the only benefit that is achieved here is that a two-player game 

has the benefit of achieving two different objectives of the two players. The state 

and input weights chosen for the Nash paradigm were similar to the other paradigms 

to compare the outputs of each paradigm. However, Nash paradigm behavior in the 

competing scenarios is highly dependant on how the state and input weights are 

chosen in the cost functions. By tuning these weights, the controller designer will be 

able to penalize a specific objective or control input. This decision should be made 

based on the priorities that can happen in dangerous maneuvers; for instance, in some 

maneuvers, the roll stability can be prioritized over the tracking in order to prevent 

the rollover and guarantee the safety of the passengers. In some other maneuvers 

losing tracking can cause the vehicle to hit a fatal obstacle or fall off the main road 
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off a cliff, so the tracking must be prioritized. Exploring these scenarios, finding the 

right decision-making strategy, and catering the cost function weights to prioritize 

those decisions can be a potential target for future works. 

 

6.4 Three-player game between AS , ycM and cM  

The previous section showed that there still exists some tracking error in the 

two-player combination of active steering angle and corrective roll moment (Figure 

6-27 and Figure 6-28). In order to take advantage of all the three control inputs 

(active steering, corrective yaw moment, and corrective roll moment), a three-player 

scenario is simulated in which both active steering and corrective yaw moment are 

trying to improve tracking by regulating yaw rate error.  Meanwhile, the corrective 

roll moment improves roll performance by regulating the roll angle and roll rate. 

 At first, the single players' simulations are done, and then the three-player 

game is simulated for both decentralized and Nash paradigms. The weights and 

result data for the single-player paradigms are the same as in previous sections. 

Maintaining the same weights, the results for three-player paradigms are as follows 

1) One-player AS            

2) One-player ycM        

3) One-player cM  

The first three paradigms are the same as the single-player results in the 

previous sections. The three-player combination is investigated for both 

decentralized and Nash as follows:   
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4) Three-player  decentralized AS + ycM + cM    

By combining the three single-player controllers, the matrices and weights 

will be assigned as follows: 

C1=[0 0 0 1]; %for delta regulating er 

Qb1=1; 

Q1=C1'*Qb1*C1; 

R1=6.25; 

C2=[0 0 0 1]; %for ycM regulating er 

Qb2=eye(2); 

Q2=C2'*Qb1*C2; 

R2=1e-10; 

C3=[1 0 0 0;  %for cM regulating [phi,phid] 

    0 1 0 0]; 

Qb3=eye(2);   

Q3=C3'*Qb3*C3; 

R3=1e-14; 

(6-14) 

 

and the optimal gains for this paradigm are 

K  =[-0.0090   -0.0019    0.0079    0.2358] 

MycK  =104 ×[-0.0487   -0.0053    0.0606    9.4749] 

M cK  =106 ×[9.9455    9.9950   -0.0007    0.0002] 

 

The root mean square of the control input signals and total cost for the 

simulation are: 

RMS = 0.0147 rad 
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RMSMyc = 6.1988×103 N.m 

RMSM c = 846.0558  N.m 

totalJ  =0.2814 

 

5) Three-player Nash AS + ycM + cM      

The matrices and weights for this paradigm are assigned as: 

The output matrices for each player are as follows: 

C1=[0 0 0 1]; %for delta regulating er 

C2=[0 0 0 1]; %for ycM regulating er 

C3=[1 0 0 0;  %for cM regulating [phi,phid] 

    0 1 0 0]; 

(6-15) 

The state weights for each player is calculated as below:   

Qb1=1; 

Qb2=1; 

Qb3=eye(2); 

Q1=C1'*Qb1*C1; 

Q2=C2'*Qb2*C2; 

Q3=C3'*Qb3*C3; 

(6-16) 

The input weights for the active steering cost function: 

R11=6.25; 

R12=0; 

R13=0; 

(6-17) 

The input weights for the corrective yaw moment cost function: 
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R21=6.25; 

R22=1e-10; 

R23=0; 

(6-18) 

The input weights for the corrective roll moment cost function: 

R31=6.25; 

R32=0; 

R33=1e-11; 

(6-19) 

Using the weights and solving the optimization problem, the optimal gains 

for this paradigm are calculated as: 

 

K  =[-0.0000   -0.0000    0.0000    0.0225] 

MycK  =104 ×[-0.0159   -0.0158    0.0607    9.4304] 

M cK  =105  ×[2.6623    3.1118   -0.0062    0.0003] 

 

and root mean square of the input signals and total cost for the simulation are as 

follows 

 

RMS = 0.0015 rad 

RMSMyc = 6.2512×103 N.m 

RMSM c = 772.5502 N.m 

totalJ  =0.27.25 
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Table 6-4  shows the summary of all the paradigms for this simulation 

Table 6-4: Three-player game between active steering, corrective yaw, and roll moment scenario 

RMS values and total cost 

 One-

player AS

for track 

One-player 

ycM for track 

One-player 

cM for roll 

Three-player 

decentralized 

Three-

player 

Nash 

RMS  0.0325 0 0 0.0147 0.0015 

RMSMyc  0 6.2835×103 0 6.1988×103 6.2512×103 

RMSM c  0 0 533.7205 846.0558   772.5502 

Total cost 

totalJ  

0.2124 0.2725 3.0447×10-8 0.2814 0.2725 

 

By comparing the root mean square values for steering input, it can be 

concluded that the three-player Nash paradigm has the lowest control cost and the 

cost for the decentralized is still less than the one-player. The corrective yaw moment 

control cost for three-player is less than one player, but Nash scored a slightly higher 

value than the decentralized. Comparing the corrective roll moment, RMS shows a 

higher value for three players than one player and lower for Nash compared to the 

decentralized paradigm. 



161 
 

It is unfair to make a total cost comparison between the three-player and one-

player paradigms, as more control objectives need to be achieved for the three-

player.  However, Nash shows a lower value in the three-player paradigms, which 

makes it a more optimal answer than the decentralized one. 

The following plots show the results of the simulations for different 

paradigms. 

Figure 6-34 shows that Nash and decentralized show almost identical roll 

stability and tracking performances.  

 

Figure 6-34: Simulation results for roll angle, roll rate, roll index, and yaw angle (three-player) 

 

The tracking performance for the three-player paradigms is very similar to 

one-player corrective roll moment and better than one player active-steering. By 

comparing Figure 6-35 for the three-player with Figure 6-27 for the two-player 
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game, it can be concluded that the steady-state lateral error improved significantly, 

which shows the necessity of adding the corrective yaw moment as the third player 

to improve tracking.  

 

Figure 6-35: Vehicle trajectory (three-player) 

 

Figure 6-36 shows the steering input signals for all the paradigms. One-player 

AS  and three-player paradigms generate higher steering input control signals. In 

order to see the peak of the Three-player Nash paradigm for this control input, a 

zoomed version of the figure is presented in Figure 6-37. 
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Figure 6-36: Human driver and controller steering inputs (three-player) 

 

As it is shown in Figure 6-37, the three-player Nash peak for steering input is 

around 1.3 deg, significantly lower than the peak for three-player decentralized or 

one player AS  around 14 deg. For the same amount of tracking performance, three-

player Nash requires less control effort, and its steering input is less likely to reach 

saturation limit if there exists a cap for this control input. 
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Figure 6-37: Controller steering input zoomed-in (three-player) 

 

Figure 6-38 shows the corrective yaw moment and roll moment for all the 

paradigms. It is shown that the three players' paradigms have identical behavior but 

with higher control input amplitude relative to their corresponding single-player 

controller. Only one player Myc and the three-player paradigms generate the 

corrective yaw moment. The peaks for corrective yaw moment are almost identical 

for all the paradigms. One-player cM  and three-player scenarios generate a 

corrective roll moment. The peak increases for three-player scenarios and is slightly 

less in the Nash paradigm in comparison to decentralized. 
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Figure 6-38: Controller inputs for corrective yaw moment and corrective roll moment (three-

player) 
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Figure 6-39 once again confirms the almost identical tracking performances 

for three-player paradigms. 

 

Figure 6-39: Yaw plots (three-player) 

 Figure 6-40 shows the normal and lateral tire forces for the left and right tires. 

Both the three-player paradigms generate almost identical forces as the one-player 

Myc. 

 

Figure 6-40: Lateral and normal tire forces (three-player) 
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According to Figure 6-41, It appears that both three-player paradigms show 

good performance in moderating the variations of suspension deflections. 

 

Figure 6-41: Vertical dynamic simulation results (three-player) 

 

As it is shown in Figure 6-42, both three-player paradigms have the lateral 

acceleration close to the one-player ycM , which is higher than all the other paradigms. 

This makes sense as a part of the control goal is to make the vehicle follow the path. 

There is a slight reduction of lateral acceleration in Nash relative to decentralized.  
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Figure 6-42: Lateral acceleration (three-player) 

  

Adding the corrective yaw moment as a third player to the two-player game 

between active steering and corrective roll moment improved the tracking by 

reducing the steady-state tracking error. Like the two-player, the three-player game 

results are also dependant on the state and control input weights selected in the cost 

function, and different objectives can be achieved through tuning these weights. In 

this thesis, only one combination of three-player scenarios is explored, and there are 

still a wide variety of scenarios that need to be explored and can be potential for 

future works. 
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6.5 Two-Player Game between active suspension [Fal, Far] and 

Corrective roll moment cM  

This section presents the game between active suspension and corrective roll 

moment. Active suspension forces Fal and Far are created by two actuators on the 

left and right sides of the vehicle using the roll plane model presented in chapter 3, 

section 4. The main objective of this player is to provide ride quality by regulating 

the vertical acceleration. Corrective roll moment is introduced as a second player to 

improve roll performance by regulating roll and roll rate. After solving the single-

player, the combination of these two players is investigated in a two-player game for 

decentralized and Nash paradigms. Control models presented in chapter 3.4 are used 

to calculate the feedback gains, and the simulation results are shown for the plant 

model of chapter 3.6. 

The same lane change maneuver as previous sections is picked for this scenario. 

The road roughness/profile for left and right wheels is also introduced as two 

disturbance inputs. This disturbance induces fluctuations in vertical acceleration, 

and the ride quality performance of the controller is investigated by its ability to 

regulate these fluctuations. Note that the frequency of this disturbance is way lower 

than 1000 Hz, so the sampling time of 0.001 sec is still good for the simulation 
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Figure 6-43: Road roughness profile for the left and right wheel in roll plane model 

 

Note that in previous sections, the outputs were only related to the states of 

the system. All the paradigms in previous sections belong to the class of linear 

quadratic regulation (LQR) problems. In this section, the vertical acceleration as an 

output is a function of both states and control inputs. This means that the control 

coupled output regulation (CCOR) method is required to solve this class of 

problems. 

Considering all the assumptions above, here are the four paradigms presented for 

the game in vertical dynamics. 

 

 One-player  active suspension [Fal, Far]     

 One-player cM        

 Two-player  [Fal, Far] + cM  Decentralized   

 Two-player [Fal, Far]+ cM  Nash    
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1. One-player active suspension [Fal, Far] 

Active suspension forces Fal and Far have applied to the left and right suspension 

systems accordingly. The objective of this controller is to improve ride quality by 

regulating the sprung mass vertical acceleration. The results for this simulation are 

plotted in red. The designed weight matrices are as follows. 

 

C4=Av(5,:); 

Qb4=1e2; 

D4=B4v(5,:); 

Rb4=eye(2); 

rob4=1e-6*eye(2); 

Q1=C4'*Qb4*C4; 

N1=C4'*Qb4*D4; 

R1=D4'*Qb4*D4+rob4*Rb4; 

 

(6-20) 

The control gain for this paradigm is calculated as below for the selected weights: 

4
-4.1495 0.0000 2.2352 2.2352 -0.1865 -0.0000 0.1952 0.1952

10
-4.1495 -0.0000 2.2352 2.2352 -0.1865 0.0000 0.1952 0.1952

FK
 

   
 

 

 

and the RMS of the actuating forces signal and the total cost are as follows 

4 5.9603 5.9603]10 [RMSF    N 

51.0164 10totalJ    

 



172 
 

2. One-player cM   

Like previous sections, corrective roll moment is improving roll stability by 

regulating roll angle and roll rate. The results for this simulation are plotted in 

yellow, and the weight matrices are. 

C1=[0 1 0 0 0 0 0 0; %phi 

     0 0 0 0 0 1 0 0]; 

%phid 

Qb1=eye(2); 

D1=[0;0]; 

Rb1=1; 

rob1=1e-14; 

(6-21) 

Here are the optimal gain, root mean square of the moment signal, and total cost: 

 

 610 0.0000 9.9376 -0.0304 0.0304 0.0000 9.9950 0.0033 0.0033M cK     

36.4900 10RMSM c    N.m 

62.5697 10totalJ   

 

3. Two-player [Fal, Far] + cM  Decentralized  

This paradigm is the combination of previous paradigms. The results for this 

simulation are plotted in purple. The weighting matrices are selected the same as 

one-player scenarios, which create the same optimal gains. 
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4
-4.1495 0.0000 2.2352 2.2352 -0.1865 -0.0000 0.1952 0.1952

10
-4.1495 -0.0000 2.2352 2.2352 -0.1865 0.0000 0.1952 0.1952

FK
 

   
 

 610 0.0000 9.9376 -0.0304 0.0304 0.0000 9.9950 0.0033 0.0033M cK     

The RMS of control inputs and the total cost is as follows 

4 ]6.00 110 5[ 1 6.00 5RMSF    N 

41.1127 10RMSM c    N.m 

51.0226 10totalJ    

 

4. Two-player [Fal, Far] + cM  Nash   

The weight matrices are designed as follows. The results for this simulation are 

plotted in green.  

Output matrices for corrective roll moment: 

CC1=[0 1 0 0 0 0 0 0; %phi 

     0 0 0 0 0 1 0 0]; %phid 

  

DD11=[0;0]; 

DD12=[0 0; 

      0 0]; 

(6-22) 

 Input and state weights for corrective roll moment: 

Rbb11=1; 

Rbb12=eye(2); 

rob11=1e-14; 

rob12=1e-5;   

(6-23) 
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Qbb1=eye(2); 

Output matrices for active suspension: 

CC2=Av(5,:);  

DD21=B3v(5,:); 

DD22=B4v(5,:); 

(6-24) 

 (Av is the state matrix and B3v and B4v are the input matrices for corrective roll 

moment and active suspension forces for control model in section 3.4) 

 

Input and state weights for active suspension: 

Qbb2=1e2; 

Rbb21=1; 

Rbb22=eye(2); 

rob21=0; 

rob22=1e-6; 

(6-25) 

 

the optimal games for this Nash paradigms are  

4
-3.2150 -0.0000 1.8806 1.8806 -0.0416 -0.0000 0.1521 0.1521

10
-3.2150 0.0000 1.8806 1.8806 -0.0416 0.0000 0.1521 0.1521

FK
 

   
 

 610 0.0000 9.9376 -0.0304 0.0304 0.0000 9.9950 0.0033 0.0033M cK     

 

and the RMS of control inputs and the total cost as follows: 

4 ]1.51 510 4[ 5 1.51 4RMSF    N 

36.6225 10RMSM c    N.m 

49.0037 10totalJ    
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Table 6-5: Active suspension vs. corrective roll moment scenario RMS values and total cost 

 One-player [Fal, 

Far] 

One-player 

cM for roll 

Two-player 

decentralized 

Two-player 

Nash 

RMSF  104×[5.9603 5.9603] 0 104×[6.0015 6.0015] 104×[1.5154 1.5154] 

RMSM c  0 6.4900×103 1.1127×104 6.6225×103 

Total 

cost 

totalJ  

1.0164×105 2.5697 ×10-6 1.0226×105 9.0037×104 

 

Both players' RMS of control inputs are higher than the corresponding RMS 

for single-player paradigms in the two-player decentralized. Nash two-player scored 

the lowest RMS for control inputs overall. It also has a lower control cost than the 

decentralized and single-player active suspension. Therefore the Nash paradigm is 

the optimal solution overall. 

All three scenarios of one-player cM , two-player decentralized, and two-

player Nash show identical performance when it comes to roll and roll rate 

regulation, and they also keep the roll index in the safe zone (Figure 6-44). The only 

basis for comparison will be the amount of control effort that each paradigm 

consumes to get the same result. From the yaw angle plot, it is clear that there is no 

change in lateral dynamics. 
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Figure 6-44: Simulation results for roll angle, roll rate, roll index, and yaw angle (active 

suspension vs. corrective roll moment game) 

By comparing the peaks of the control input signals for corrective roll moment 

and active suspension forces, it is clear that the Nash paradigm has lower peaks for 

all the control inputs (Figure 6-45). Considering the fact that Nash scored lower 

RMS in all control inputs as well, one can conclude that the Nash paradigm is the 

optimal solution for this scenario. 

 

 

Figure 6-45: Controller inputs for corrective yaw moment, corrective roll moment, and active 

suspension forces (active suspension vs. corrective roll moment game) 
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As seen in Figure 6-46, Nash is doing a better job in preventing the normal 

tire forces from becoming zero, which is good for vertical stability and in some cases 

tracking due to maintaining the tire contact with the road. 

 

Figure 6-46: Lateral and normal tire forces (active suspension vs. corrective roll moment game) 

 

Both two-player paradigms keep the sprung mass vertical acceleration low 

with slightly better performance for decentralized, which shows improvement in 

ride quality. Nash is doing a better job in reducing the suspension deflection and 

tire deflection.  See Figure 6-47. 

 



178 
 

 

Figure 6-47: Vertical dynamic simulation results (active suspension vs. corrective roll moment 

game) 

As it is shown in Figure 6-48, One-player cM  and the other two-player 

paradigms have identical lateral acceleration, which is a smoother response than 

passive and one-player active suspension. 

 

 

Figure 6-48: Lateral acceleration (active suspension vs. corrective roll moment game) 
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The game between active suspension and corrective roll moment was chosen 

as a case study for the CCOR problem in this section. The main objective of active 

suspension is to improve ride quality by regulating the sprung mass vertical 

acceleration, and the corrective roll moment is to pursue ride quality by regulating 

roll and roll rate. It was shown that the Nash paradigm shows better performance in 

reaching the objectives by spending less control effort, which makes it the optimal 

paradigm for this scenario. 

 

6.6 Chapter summary 

In this chapter, the performance of the decentralized and Nash paradigm is 

studied in four different game scenarios in vehicle dynamics. In each scenario, the 

simulation was presented for both single-player and multiple-player (two or three 

players). The players were chosen from the following player pool: 

 Active steering ( AS ) 

 Corrective yaw moment ( ycM ) 

 Corrective roll moment ( cM ) 

 Active suspension forces (Fal and Far) 

A simple lane-change maneuver is chosen as a benchmark for simulation and 

investigating the performance of different paradigms. The maneuver is induced by 

human driver steering input, and the objectives of tracking, roll stability, and ride 

quality was observed in simulations. The simulation results are shown for different 

paradigms in each section, and the necessary comparison is made. Here is the 

summary of each scenario:  
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In section 6.2, the game between active steering and corrective roll moment has 

been investigated. Both players' objective is to improve tracking by regulating the 

yaw rate error. At first, the scenario is solved for single-player paradigms, and then 

the two-player game is solved and simulated for both decentralized and Nash 

paradigms. Both two players' scenarios showed improvements in tracking, but Nash 

requires lower active steering control effort (lower RMS ) overall. The peak for the 

active steering input signal is considerably lower for the Nash paradigm. Suppose 

the required active steering input for one player game reaches its threshold (there is 

always a limit on the amount of steering input that the actuator can produce), then 

the corrective roll moment can be introduced to the game as a second player to 

reduce the burden of control from active steering and keep the steering input within 

the feasible range. The LQR method developed in chapter 4.3 was used for both one-

player and two-player games. 

In section 6.3, the game between active steering and corrective roll moment has 

been investigated. The corrective roll moment ( cM ) improves roll stability by 

regulating roll angle and roll rate. It was shown that active steering could either play 

a cooperative (non-competing) game with roll moment to improve the roll stability 

by counter steering. Or it can also play a competitive game by regulating yaw rate 

error to improve the tracking performance, which creates a higher roll angle and 

more control burden for the roll moment player. In the cooperative game, the roll 

regulation control burden is shared between the players at the cost of losing the 

tracking, and it is shown that the Nash paradigm has a better performance than 

decentralized. For the competing scenario, both decentralized and Nash show 

identical performances, and the only benefit that one gets is the combination of 

players' objectives in the two-player game rather than one-player. The LQR method 

developed in chapter 4.3 was used for both one-player and two-player games. 
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In section 6.4, the three-player game has been investigated between active 

steering, corrective yaw moment, and corrective roll moment. Both active steering 

and corrective roll moment control objective is yaw rate error regulation to improve 

tracking, and corrective roll moment is improving roll stability by regulating roll and 

roll rate. All the single-player paradigms were solved using the classic LQR method 

mentioned in chapter 4. The three-player Nash paradigm is solved using the LQR 

method developed in chapter 5.4. the Nash paradigm reached the control objective 

by using lower RMS for control inputs, resulting in lower control cost, making it the 

optimal paradigm. 

In section 6.5, the two-player game between the active suspension forces and 

corrective roll moment was investigated. The objective for the corrective roll 

moment is chosen similar to previous sections, and the active suspension forces are 

improving ride quality by regulating sprung mass vertical acceleration. Road 

roughness is added as disturbance input to both left and right wheels. Note that the 

output vertical acceleration is a function of both states, and the control inputs make 

the paradigm a control coupled output regulation (CCOR) problem. The single-

player and two-player CCOR problem was solved using the method presented in 

chapter 4, sections 4 and 5 accordingly. The Nash paradigm shows better 

performance overall by scoring lower RMS and peak values for control inputs and 

lower total cost. This makes the Nash paradigm an optimal paradigm overall for this 

scenario. 
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7 CHAPTER 7: SIMULATION RESULTS FOR PLANT MODEL 

WITH NONLINEAR TIRE MODEL 

 

7.1 Introduction 

In chapter 6, the control problem was solved for multiple scenarios based on 

linear control models, and the optimal control gains were calculated. Then the 

control gains were used in a feedback loop with the plant model introduced in 

chapter 3.4 to get the simulation results. This plant model was a combination of a 4 

DOF roll plane model and the 2 DOF bicycle model. The only nonlinearity in that 

model was canceling the normal tire force when the tire was not under compression. 

The linear tire model was used for this model, where the lateral tire force is a linear 

function of slip angle multiplied by cornering stiffness. This section introduces a 

nonlinear tire model, and the simulation results are presented for the two scenarios 

below as case studies. 

 The two-player game between active steering and corrective yaw moment 

 The three-player game between active steering, corrective yaw moment, and 

corrective roll moment 

Two nonlinear tire models have been generated for this report. The first model is 

the linear tire model with saturation, and the second one is the Magic tire formula 

introduced by Pajecka [26].  
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7.2 Linear model with saturation 

In this model, the lateral force is a function of slip angle only, and it will be 

saturated at both ends when it reaches its thresholds.  Front and rear slip angles in 

the bicycle model are calculated as follows 

  y f

f HumanDriver ActiveSeering

x

y r

r

x

V l r

V

V l r

V

  




  


 

 

(7-1) 

and the lateral forces for front and rear ( ,yf yrF F ) are calculated accordingly using the 

function below 

( )

( )

threshhold

threshhold

Fy f

C if
Fy

sign C else







  

 



 
 


 

(7-2) 

The lateral forces are used to drive the yaw dynamic part of the nonlinear plant model 

y s s x yf yr

z f yf r yr yc

MV M h MV r F F

I r l F l F M

    

  
 

(7-3) 

Here are the simulation results for 0.15threshhold rad   

 

Figure 7-1: Yaw plots for tire model with saturation 
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Figure 7-2: Vehicle trajectory for tire model with saturation 

 

It appears that the saturation makes tracking hard for passive maneuver, and 

this problem gets intensified even in one-player  and shows that this player fails in 

the objective of tracking. One-player Myc and both the decentralized and Nash two-

player paradigm are capable of improving the tracking. 



185 
 

 

Figure 7-3: Active steering signal for tire model with saturation 

 

The Nash paradigm has the lowest peak for steering input signal overall, 

which means that this paradigm is reaching the control objective by spending less 

control effort. (besides the one-player Myc that doesn't involve in active steering) 

 

Figure 7-4: Corrective roll moment for tire model with saturation 
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The first peak of the corrective yaw moment is zoomed in and shown in 

Figure 7-5. The peak for the Nash Paradigm is slightly less than the One-player δ 

and two-player decentralized, so the improvement for this control input is not as 

significant as the one for active steering signal. 

 

Figure 7-5: Figure 7-4 zoomed in 

 

All the paradigms have almost identical control input performances in terms 

of corrective yaw moment effort, with Nash having a slightly lower peak. (One-

player   doesn't take part in this) 
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Figure 7-6: Lateral and normal tire forces for tire model with saturation 

Considering that the cornering stiffness and slip threshold for both front and 

rear is chosen as: 

25000[ / ]

0.15[ ]threshhold

C N rad

rad








 

(7-4) 

it can be calculated that the lateral forces get saturated at 3750 N. 

The slip angles and lateral acceleration for each paradigm are as follows 



188 
 

 

Figure 7-7 Front and rear slip angles for tire model with saturation 

 

It appears that active steering tried to improve tracking by increasing the slip 

angles, but it was no help.  

 

Figure 7-8: Lateral acceleration for tire model with saturation 
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The active steering didn't change the lateral acceleration noticeably, but all 

the other paradigms increased the lateral acceleration to improve tracking. 

  In summary, the active steering made the tracking worse in the presence of 

lateral force saturation in tires. There was a need for another player to help with this 

task. From the simulation, it can be concluded that the Nash paradigm shows better 

performance overall because it managed to achieve the tracking objective using the 

least control effort. One-player corrective yaw moment is also a good one-player 

candidate that only spends energy on one control objective with a close peak in the 

control signal to Nash and achieves the same tracking performance. 

 

7.3 Nonlinear tire model based on Pacejka's Magic Formula  

The Magic Formula tire model was developed by H. Pacejka of Delft 

University of Technology [26] and is commonly used in vehicle dynamics as a good 

choice for the nonlinear tire model. This model uses the normal tire force, slip angle, 

longitudinal slip, and camber angle as inputs to calculate lateral force, aligning 

torque, and longitudinal force generated by the tire. In the model presented in this 

dissertation, the velocity is constant, and the longitudinal dynamics are not studied. 

The camber angle is also neglected and considered as zero. A shorter version of the 

Pacejka model is introduced to calculate the tire lateral force based on slip angle and 

normal force. 

( , )zFy f F  (7-5) 

 

This model is basically a mathematical model of an S-like shape function. The 

initial slope of the curve at origin for each tire is the cornering stiffness C described 
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in units of force per degree and is nearly linear for small values of slip angle (less 

than 4 degrees). 

The function is defined by stiffness factor B, shape factor C, peak value D, 

and curvature factor E and gets tuned for each tire by coefficients ( ia ) using the data 

from the lateral force, slip angle, and normal force. The simple version of the model 

used in this dissertation is as follows: 

2

1 2

1

3 4 5

2

6 7 8

1.3

sin( tan ( ))

z z

z

z z

C

D a F a F

BCD a a a F

BCD
B
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E a F a F a





 





  

 

1

1

(1 ) tan ( )

sin( tan ( ))y

E
E B

B

F D C B

  







  



 

(7-6) 

 

The normal force zF  is given in kN. This model is tuned to match the linear 

model with saturation in the previous section. 

From the saturation model in the previous section, one data point was chosen 

for tuning the parameters in the peak value D equation. It was seen that for the 

normal tire force Fz =8.66 kN, the peak value for lateral force Fy is 3750 N. 

Parameters a1 and a2 are tuned accordingly. 

2

1 23750 (8.66) (8.66)D a a    (7-7) 
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The cornering stiffness was used as a slope at origin for the linear area to 

derive the tuning parameters for BCD. 

25000 [ / ] 436.3323 [ / deg] BCDC N rad N     

1

3 4 5436.3323 sin( tan ( 8.66))BCD a a a    

(7-8) 

Curvature factor E defines the shape of the plot. The threshold value for slip 

angle was used as the main parameter for tuning a6, a7, and a7 by visual inspection 

of the plots. 

0.15 [ ] 8.6 degthreshhold rad    (7-9) 

The tuning coefficients to match the linear tire model is chosen as the table 

below: 

Table 7-1: Magic formula parameters 

1a  2a  3a  4a  5a  6a  7a  8a  

-22.1 624.4114 467.2253 1.82 0.208 0 -0.2 -10 

 

Figure 7-9 below shows the Magic Tire model for the selected set of parameters. 

 

Figure 7-9 Magic Formula lateral forces versus slip angles result for three different normal 

forces 
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It appears that by increasing the normal force, the peak of the lateral force 

increased, but it is still bounded by slip angle. 

The plant model's front and rear tire forces (Fyf, Fyr) are based on the bicycle 

model, but the normal forces are left and right normal forces (Fzl, Fzr) based on a 

4DOF roll plane model. The lateral forces for front and rear are calculated as below 

using the Pacejka model function defined in MATLAB named (magic). 

/ 2

/ 2

( , ) ( , )

( , ) ( , )

zlh zl

zrh zr

yf f zlh f zrh

yf r zlh r zrh

F F

F F

F magic F magic F

F magic F magic F

 

 





 

 

 

(7-10) 

Here are the simulation results for the same maneuver as the previous 

section. 

As shown in Figure 7-10 and Figure 7-11, tracking performance behaviors 

are the same as the previous section for all the paradigms. A steady-state tracking 

error shows this tire model is incapable of producing as much lateral force as the 

previous model. 
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Figure 7-10: Yaw plots for Pacejka tire model (active steering vs. corrective yaw moment game) 

 

Figure 7-11: Vehicle trajectory for Pacejka tire model (active steering vs. corrective yaw 

moment game) 
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Steering angle (Figure 7-12) and corrective roll moment (Figure 7-13) control 

input plots show almost identical behavior for all the paradigms in the previous 

section. This means that Nash is scoring a lower peak for both control inputs (Figure 

7-14 shows a lower corrective roll moment peak for the Nash paradigm). 

 

Figure 7-12: Active steering control input for Pacejka tire model (active steering vs. corrective 

yaw moment game) 

 

Figure 7-13: Corrective roll moment for Pacejka tire model (active steering vs. corrective yaw 

moment game) 
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Figure 7-14: Figure 7-13 zoomed in 

 

From Figure 7-15, It appears that the peak of lateral force for the Nash is 

slightly lower than decentralized for the front tire, and for the rear tire, the lateral 

forces are identical for the corresponding normal forces. 

 

Figure 7-15: Lateral and normal tire forces for Pacejka tire model (active steering vs. corrective 

yaw moment game) 
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The slip angles and lateral acceleration are similar to the previous section 

(Figure 7-16 and Figure 7-17). 

 

Figure 7-16: Front and rear slip angles for Pacejka tire model (active steering vs. corrective 

yaw moment game) 

 

Figure 7-17: Lateral acceleration for Pacejka tire model (active steering vs. corrective yaw 

moment game) 
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7.4 Comparison of different tire models 

This section compares the performance of all three tire models listed below for 

passive lane-change maneuver. 

 Linear tire model 

 Linear tire model with saturation 

 Nonlinear Pacejka model 

 

From both trajectory and yaw plots (Figure 7-18 and Figure 7-19), it is clear 

that tracking performance decreases for both saturation and the Pacejka model due 

to the saturation of lateral forces. The Pacejka model cannot track the desired yaw 

and yaw rate and needs a controller. 

 

Figure 7-18: Vehicle trajectory (tire models comparison) 
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Figure 7-19:Yaw plots (tire models comparison) 

 

Figure 7-20 shows the front and rear slip angles for the three tire models. 

Pacejka model is generating lower slip angles in comparison to the other models.  

 

Figure 7-20: Front and rear slip angles (tire models comparison) 
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The lateral acceleration peak for both the saturated and Pacejka models is 

lower than the linear model, leading to a bigger tracking error (Figure 7-21). 

 

Figure 7-21: Lateral acceleration (tire models comparison) 

 

Pacejka's model generates lower lateral forces than the others for the same 

range of normal forces, which can be one of the reasons that it has lower tracking 

performance.  

 

Figure 7-22: Lateral and normal tire forces (tire models comparison) 



200 
 

7.5 Three-player Nash AS + 
ycM + 

cM  for plant model with nonlinear 

Pacejka model  

Since the two-player Nash has been shown to be the optimal paradigm in a two-

player-game between active steering and a corrective yaw moment, in this section, 

a three-player game between active steering, corrective yaw moment, and corrective 

roll moment has been chosen as a case study for the plant model with nonlinear 

Pacejka tire model. In this three-player paradigm, both active steering and yaw 

moment ( AS + ycM ) improve tracking by regulating yaw rate error, whilst the 

corrective roll moment ( cM ) improves roll stability by regulating roll angle and roll 

rate. The gains for two-player ( AS + ycM ) and three-player Nash ( AS + ycM + cM ) 

are the same as what is calculated in chapter six, sections two and four. 

 

Table 7-2 shows the control effort and total cost for these two scenarios. 

Table 7-2: comparison between two-player and three-player game for Nash paradigm scenario 

RMS values and total cost 

 Two-player ( AS + ycM ) Three-player Nash ( AS + ycM + cM ) 

RMS  0.0015 0.0015 

RMSMyc  6.1073×103 6.1102×103 

RMSM c  0 865.8787 

Total cost totalJ  0.2611 0.2606 

 

The root means square of the active steering is identical with almost close 

RMS values for the corrective yaw moment signal as well. The total cost of the three-
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player is less than the two-player, making it even more inviting to utilize the three-

player paradigm. 

Here are the simulation results for these two paradigms alongside passive 

maneuver: 

In trajectory and yaw rate error comparison (Figure 7-23 and Figure 7-24), 

both two-player and three-player paradigms show identical tracking performances. 

They also generate the same slip angles using the same active steering control input. 

From table 7-2, the RMS of the active steering input signals is identical for both two-

player and three-player paradigms.   

 

 

Figure 7-23: Vehicle trajectory (three-player with Pacejka tire model) 
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Figure 7-24: Yaw plots (three-player with Pacejka tire model) 

 Figure 7-25 shows the same active steering input for both two-player and 

three-player paradigms, which agrees with the data from Table 7-2. 

 

Figure 7-25: Active steering control input (three-player with Pacejka tire model) 
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The corrective yaw moment control signal and its root mean square are 

relatively identical for both two-player and three-player paradigms as well (Figure 

7-26). The three-player also generates the corrective roll moment to improve roll 

stability. From Figure 7-27, it is clear that the roll performance decreases in the two-

player paradigm relative to passive, but this problem gets fixed in the three-player 

paradigm by regulating roll angle and roll rate and maintaining the roll index in the 

safe zone (-1,1).  

 

 

Figure 7-26: Control input signals fr corrective yaw moment, corrective roll moment, and active 

suspension forces (three-player with Pacejka tire model) 
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Figure 7-27: Simulation results for roll angle, roll rate, roll index, and yaw angle (three-player 

with Pacejka tire model) 

According to Figure 7-28, both paradigms produce relatively identical lateral 

force and lateral acceleration even in the presence of more variation in normal force 

for the three-player paradigm. 

 

Figure 7-28: Lateral and normal tire forces (three-player with Pacejka tire model) 
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Identical lateral acceleration is shown for both paradigms according to Figure 7-29. 

 

Figure 7-29: Lateral acceleration (three-player with Pacejka tire model) 

As it is shown in Figure 7-30, it appears that improving roll stability in the 

three-player paradigm is also beneficial to reduce the variations in suspension 

deflection. 

 

Figure 7-30: Vertical dynamic simulation results (three-player with Pacejka tire model) 
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7.6 Chapter Summary 

In this chapter, two nonlinear tire models are used. The first model is similar to 

the linear tire model but with saturation. The second one is a simplified version of 

the famous Pacejka model, where only the lateral force is calculated based on the 

slip angle and normal force. The Pacejka model is tuned to have the same behavior 

as the linear tire model for small slip angles. This means that the slope of the lateral 

force versus slip angle plot is the same at the origin for all the tire models (the 

equivalent of cornering stiffness). A comparison is made between the tire models 

based on the vehicle encountering a passive lane change maneuver identical to what 

was presented in chapter 6. The simulation results for the two-player game between 

active steering and corrective yaw moment and the three-player game between active 

steering, corrective yaw moment, and corrective roll moment are presented using the 

same optimal gains from chapter 6. It was shown that in the two-player scenario, 

Nash still remains the optimal paradigm overall, considering the loss of traction due 

to saturation and nonlinearity. The comparison between the mentioned two-player 

and three-player scenarios shows that the three-player Nash manages to improve 

tracking and roll stability with a lower total cost with the benefit of reducing the 

suspension deflection variations. 
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8 CHAPTER 8: CONCLUSIONS AND FUTURE RESEARCH 

 

8.1 Summary and Conclusions 

In this dissertation, the main objective is to improve the design of controllers 

using differential game theory and explore the utility of game theory controllers in 

vehicle dynamics. First formulations were developed in which each actuator (control 

input/player) has its own cost function. In a decentralized paradigm, each player cost 

function consists of its own control objective and control action. In a game theory 

approach, the Nash paradigm is introduced where each player’s cost function 

includes its control objective, its control action, and other players' control actions. In 

the beginning, the problem is defined mathematically in quadratic form, and the 

solutions are presented for the two-player and three-player game scenarios. The 

control problem is solved for two frameworks of LQR (where there is no coupling 

between the output objectives and control inputs) and CCOR (where there is a 

coupling between output objectives and control inputs). The solution for single-

player LQR, single-player CCOR, and two-player discrete system LQR already exist 

in the literature. As its primary contribution, this thesis develops the solution for 

two-player and three-player games for continuous linear systems for both LQR and 

CCOR. 

After providing the theoretical solutions, the controllers are tested in the 

scenarios below: 

 The two-player player game between active steering and corrective yaw 

moment (for plant model with both linear tire model and nonlinear tire 

model) 
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 The two-player player game between active steering and corrective roll 

moment (for plant model with only linear tire model) 

 Three player game between active steering, corrective yaw moment, 

and corrective roll moment (for plant model with both linear tire model 

and nonlinear tire model) 

 The two-player player game between active suspension and corrective 

roll moment (for plant model with only linear tire model) 

The simulation results are presented for single-player paradigms, the 

decentralized combination of two/three-player paradigms, and two/three-player 

Nash paradigms for each scenario. For most cases, it was shown that the Nash 

solution shows good performance in regulating the output objectives and requires 

less control effort with lower control signal peaks. Note that these results can also 

be tuned by changing the state and input weights in the cost functions, so the 

scenarios were simulated for a similar set of weights to make a fair comparison. It 

appears that the Nash paradigm manages to find the optimal amount of control inputs 

required to achieve the control objectives by dividing the burden of control between 

the control inputs. This highlights the benefit of the game-theoretical approach 

where the counter effects of control inputs on each other's objective are considered 

in the players’ cost functions. As a by-product of this benefit, scoring lower peaks 

in control input signals can be helpful in scenarios where the decentralized approach 

fails due to the control input signal reaching the saturation limits. The Nash paradigm 

also showed better performance in simulations with the nonlinear Pacejka tire model, 

where the vehicle encountered a rollover in the decentralized paradigm. Here is the 

summary of conclusions achieved from the simulations: 

 For most scenarios, the Nash paradigm performs well in regulating the output 

(objective) and requires less control effort with lower control signal peaks. 
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 It appears that the Nash paradigm finds the optimal amount of control inputs 

required by dividing the burden of control between the control inputs 

  Nash paradigm’s Lower peak signal can be helpful in scenarios where the 

decentralized paradigm fails due to the control input signal reaching the 

saturation limits. 

 

8.2 Future Research Directions 

The Nash solution was shown to be a promising approach among all the other 

paradigms for the selected scenarios in this thesis. Yet still, there are so many 

scenarios in vehicle dynamics where the cooperative and non-cooperative nature of 

integrated control for two/three-player games can be explored. This dissertation 

didn’t explore the control objectives in longitudinal dynamics, pitch and heave 

motions, and control actions like differential braking and torque distribution. Even 

for the same scenarios that were explored here, the cost functions can still be altered 

by adding other control objectives like suspension deflections or tire deflection. 

There are so many combinations of two/three-player games that can be used as a 

benchmark for game theory applications.  

The plant model used in this research is the combination of the bicycle model 

and roll plane model. This model is still far away from the complexity of a complete 

or more sophisticated vehicle model in terms of the states, nonlinearity, and load 

transfer. A full car model with higher degrees of freedom is required to investigate 

the performance and robustness of the controllers presented in this thesis. This step 

is crucial for testing the game theory approach before implementing it practically on 

actual vehicles. 
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 The solution presented in this dissertation is for two/three-player continuous 

linear dynamic systems. This solution can be extended to a multi-player game (for 

more than three players) to achieve optimal global stability for integrated vehicle 

dynamics control. The game theory concept can also be explored for nonlinear 

control models by using nonlinear control methods like neural networks, genetic 

algorithms, or fuzzy logic.   
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10 APPENDIX 

10.1  Numerical Vehicle Data for all the models in this thesis 

Vehicle Parameters Numerical Vehicle Data 

front cornering stiffness Cf = 25000 [N/rad] 

rear cornering stiffness Cr = 25000 [N/rad] 

height of roll axis overground hr = 0.3 [m] 

nominal height of sprung mass CG over 

roll axis 

hs = 0.3 [m] 

distance from front axle to CG lf  = 1.12 [m] 

distance from rear axle to CG lr  = 1.68 [m] 

sprung mass Ms = 1330 [kg] 

left unsprung mass mul = 37×2 [kg] (front and rear axle combined) 

right unsprung mass mur = 37×2 [kg] (front and rear axle combined) 

track width t = 1.6 [m] 

sprung mass roll moment of inertia Ix = 283 [Kg.m2] 

yaw moment of Inertia Iz = 2424 [Kg.m2] 

acceleration due gravity g = 9.81 [m/s2] 

longitudinal velocity Vx = 20 [m/s] 

left suspension stiffness Ksl=22891×2 [N/m] (front and rear axle combined) 

right suspension stiffness Ksr=22891×2 [N/m] (front and rear axle combined) 

left tire stiffness Ktl=211720×2 [N/m] (front and rear axle combined) 

right tire stiffness Ktr=211720×2 [N/m] (front and rear axle combined) 

left suspension damping Bsl=2081×2 [N.s/m] (front and rear axle combined) 

right suspension damping Bsr=2081×2 [N.s/m] (front and rear axle combined) 

left tire damping Btl=100×2 [N.s/m] (front and rear axle combined) 

right tire damping Btl=100×2 [N.s/m] (front and rear axle combined) 

Road adhesion coefficient 1   
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10.2  Control Model For The Game Between Active Steering And 

Corrective Roll Moment 
 

Assume the state vector and control inputs described as follows: 

[ , , , ]'yx v r   

Steering angle : 1u   

Corrective roll moment: 2 cu M  

The state-space representation can be written as below from the previous 

section equations 

2

2 2

1 0 0 0

0 ( ) 0

0 0

0 0 0

0 1 0 0

0

0 0 ( ) / ( ) /

0 0 ( ) / ( ) /

0
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s s y
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s s s s x

f r x r r f f x x y

r r f f x r r f f x
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f f
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  
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    
   
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   

     



0
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0
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   
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   
    

 

 

where K and C are roll stiffness and damping coefficients for passive suspensions 

and are calculated from the left and right wheels' suspension system using the 

formulas below: 

2

2

( )( / 4),

( )( / 4)

sl sr

sl sr

K K K t

C B B t

 

 
 

The state-space representation structure of this dynamic model can be written 

as: 
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1 1 2 2Ex Ux V u V u    

1 1 1

1 1 2 2, ,A E U B E V B E V      

1 1 2 2x Ax B u B u Bu     

Using the parameters from appendix 10.1, the A, B1, and B2 matrices are as 

follows 

0 1 0 0

-185.3876 -18.0597 -2.2879 0.6406

-50.0471 -4.8754 -2.3091 -19.3534

0 0 0.2888 -2.1023

A

 
 
 
 
 
 

 

1

0

22.8790

23.0911

11.5512

B

 
 
 
 
 
 

, 
3

2

0

0
10

0

0.4125

B 

 
 
  
 
 
 

, 1 2[ , ]B B B  

Eigenvalues and natural frequencies of the system are calculated from the 

state matrix A and listed below: 

Eigenvalues:  

-1.8878 - 2.3821i, -1.8878 + 2.3821i, -9.3478 - 9.8560i, -9.3478 + 9.8560i 

Natural frequencies: 

2.3821, 9.3478 [rad/s] 

 

The rank of matrix A and the controllability matrix four means that the 

system is fully controllable. The Matlab code below is used to confirm this result: 

Arank=rank(A); 

Co=ctrb(A,B); 

Corank=rank(Co); 

 

The observability can be checked through to the output matrix. The output 

matrix for this scenario is either yaw rate error regulation or roll angle and roll rate 
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regulation. The output of the code below shows that both observability matrices are 

full rank (rank is four) which means the system is fully observable. 

 

C1=[0 0 0 1]; %for delta regulating er 

C2=[1 0 0 0;  %for Mzc regulating [phi,phid] 

      0 1 0 0]; 

Ob1=obsv(A,C1); 

Ob2=obsv(A,C2); 

Ob1rank=rank(Ob1); 

Ob2rank=rank(Ob2); 

 

 

10.3  Roll Plane Linear Control Model (Vertical Dynamics) 
The roll plane control model can investigate the game between active 

suspension forces and the corrective roll moment. The model presented in the model 

development section can be simplified, considering the state vector and control 

inputs below: 

 [ , , , , , , , ]T

c s ul ur s ul urX z z z z z z    

Corrective roll moment: 1 cu M  

Active suspension forces:  2 ,al aru F F  

The state-space representation structure of this dynamic model is similar to 

the previous section 

1 1 2 2Ex Ux V u V u    

1 1 1

1 1 2 2, ,A E U B E V B E V      

1 1 2 2x Ax B u B u    

in which matrices E, U, V1, and V2 are defined as follows. 



220 
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Using the parameters from appendix 10.1, the A, B1, and B2 matrices are as 

follows: 
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3

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1
10
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0.6187 -0.4949 -6.3408 0 0.0562 -0.0450  -0.0589 0

0.6187 0.4949 0 -6.3408 0.0562 0.0450 0 -0.0

A  
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 
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 
 
 
 
  

 

1

0

0

0

0

0

0.0035

0.0084

-0.0084

B

 
 
 
 
 
 
 
 
 
 
 
  

, 
2

0 0

0 0

0 0

0 0

0.0008 0.0008

-0.0028 0.0028

-0.0135 0

0 -0.0135

B

 
 
 
 
 
 
 
 
 
 
 
  

,  1 2[ , ]B B B  

Eigenvalues and natural frequencies of the system are calculated from the 

state matrix A and listed below: 

Eigenvalues:  

-29.9469 +71.7392i, -29.9469 -71.7392i, -2.6554 + 7.6247i, -2.6554 - 7.6247i,  

-29.9542 +66.3722i, -29.9542 -66.3722i, -8.9311 +12.6583i, -8.9311 -12.6583i 

Natural frequencies: 

7.6247, 12.6583, 66.3722 , 71.7392   [rad/s] 

 

Similar to the previous section, the rank of matrix A and the controllability 

matrix are calculated as eight, which means that the system is fully controllable.  

 


