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Abstract

Measuring the environments around us, including cities, roads, and social environ-

ments is crucial to understanding human behaviour. This knowledge can help us

predict how aspects of the environment influence behaviour and health. Walkability

is a popular measure of the environment used to describe various aspects of the built

and social environment associated with physical activity and public health. Most

existing methods are missing or underutilizing some crucial parameters that sub-

stantially impact measuring accurate walkability scores. For instance, road network

structure is an integral part of mobility and should be an essential part of walkability

but is not widely discussed in existing methods. Moreover, most walkability mea-

sures provide area-based walkability, or their scores are distributed with low spatial

resolution. Additionally, individuals’ opinions are not considered when measuring

walkability. Furthermore, walkability is subjective, and although multiple definitions

of walkability exist, there is no single agreed-upon definition. Existing measures take

a one-size-fits-all approach without providing any personalization based on users’ per-

spectives, leaving much more desired. In this research, Active Living Feature Score or

ALF-Score 1 is proposed, which is a novel approach to measure walkability scores more

accurately and efficiently while addressing existing limitations. ALF-Score incorpo-

rates road network structure to derive features such as network science centralities

and network embedding, which are crucial in understanding the road structure bet-

ter. ALF-Score utilizes user opinion to build a high-confidence ground-truth used

to generate models capable of estimating walkability scores based on user opinion.

1https://alfscore.com/
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By incorporating machine learning approaches in its pipelines, ALF-Score achieved a

much higher granularity and higher spatial resolution of walkability scores at point

level. ALF-Score introduced two new methods: 1) a combined graph reduction and

reconstruction technique that focuses on reducing the number of nodes in a road

network achieving an average of 77% reduction while preserving the core structure

of the road network, and 2) the Generalized Linear Extension of Partial Orders or

GLEPO, which enables the conversion of relative rankings to absolute scores. More-

over, ALF-Score+ extends ALF-Score by incorporating user demographics such as

age and gender to capture profile clusters that help provide personalized walkability

scores suitable for varying individual profiles. Additionally, ALF-Score++ improves

the overall scalability of ALF-Score and further extends this measure by incorporat-

ing transferability to allow reusability of already-learned knowledge and previously

detected patterns as a base for further and continued learning to help reduce train-

ing time, improve prediction accuracy, reduce resource consumption, and lower the

number of labels needed for training. Most importantly, ALF-Score++ enables zero-

user-input application, which allows predicting walkability scores for any location on

the road without training models for that particular region with a low transferability

loss of 13.28 units using Deep Neural Network approaches, and a direct training loss

of only 4.56 units using shallow learners (MAE on a scale of 0-100).
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submission maintains five entries containing five unique locations. Dif-

ferent submissions may randomly include the same location. . . . . . 172

6.3 Exploration of various machine learning techniques and feature com-

binations over an 80-20 data split (matching approach) for the city of
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user data (matching approach). Top right: predictions based on a

transferred model only trained on St. John’s user data (zero-user-

input approach). Bottom left: predictions based on a model trained
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Chapter 1

Introduction

1.1 Motivation

Worldwide physical inactivity is associated with 9% of all premature mortality (5.3

million deaths per year), 6% of the burden of coronary heart disease, and 7% of type

2 diabetes. If the population meeting physical activity guidelines increased by 10%,

more than 533,000 deaths could be averted every year worldwide [71]. In Canada,

self-report data suggest that 60% of the population meet physical activity guide-

lines of 150 minutes of moderate to vigorous physical activity per week (MVPA),

while device-based estimates using research-grade accelerometers suggest that only

39% of Canadians meet physical activity guidelines [27]. There is a clear need to

increase physical activity among the population. Yet, how to increase physical ac-

tivity among the population remains a challenge. Canada’s physical activity rates

have been relatively stable for the past 15 years [64]. The built environment, de-

fined as “man-made or modified structures that provide people with living, working,
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and recreational spaces [3]”, represents an essential method with the potential to

increase physical activity at the population level in Canada and worldwide. For ex-

ample, significant changes to the built environment in transportation interventions

suggest that new cycling infrastructure and public transit improvements can improve

population health. Overall, meta-analyses indicate that installing new public transit

in a city increases physical activity overall [134, 60]. For cycling infrastructure, there

are clear physical activity benefits [109, 68]. Today, as local and federal governments

respond to COVID-19, built environment changes are unfolding quickly in an attempt

to redesign cities with the health of residents in mind [36].

In addition to increasing physical activity and overall health, there is also a need

to address the pressing issue of climate change. Built environment and policy changes

can increase physical activity, which has essential health benefits and reduce green-

house gas emissions. For example, Maislish et al. using a case study from San Fran-

cisco, showed that increasing median daily walking and cycling from 4 to 22 minutes

by improving public transit and walkability reduced the burden of cardiovascular

disease and diabetes by 14% (32,466 Disability Adjusted Life Years (DALYs), and

decreased Green House Gas Emissions by 14% [81]. Minor changes to our mobility

could have essential impacts on physical activity and climate change.

Unfortunately, our transportation environments, particularly our road networks,

strongly encourage us to use personal motor vehicles rather than more physically

active and sustainable transportation modes. Over 200 million drivers [122] are in

the United States alone, averaging 76.4% [20] of people commuting to work. In

Canada, 74% [84] of commuters, 11.4 million, drive to work. According to the 2009

National Household Travel Survey (NHTS) [122], less than 4 percent of commuting
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Americans walk or cycle to work. In a similar survey [84] conducted in Canada in

2011, 7 percent of commuting Canadians walk or cycle to work, both representing

a tiny percentage. Analyzing and studying road importance will help researchers

better understand the city structure’s underlying factors to improve city planning

and increase the rate of people walking and cycling to promote a healthier and more

active lifestyle and a cleaner and safer environment. According to a study [32]

published by Statistics Canada, 12.6 million Canadians reported in 2016 to have

commuted by car to work, with an average commute duration of 24 minutes. The

median distance to the workplace is 8.7 kilometres. Furthermore, close to 1 million

car commuters spent at least 60 minutes travelling to work. Trips to work, grocery

stores, hospitals or even casual jogs and road trips mainly occur on the road network.

Roads are how we connect. From family visits to business trades, from a local alley

to an autobahn, roads and the road networks are crucial parts of our daily lives

providing access to social activities, employment, education and health. They bring us

critical social benefits and contribute to our economic development. The importance

of roads and how they impact our lives is an already-established fact. Measuring this

importance is one of the primary objectives of this research. With the increase of

publicly available geographic information systems, road network data is now freely

accessible from numerous sources. Due to this availability, road network data can be

used as a good source for various types of analysis like road importance [21, 124, 5, 63]

road characteristics [86, 82] city planning [17, 139, 116] creating walkability or

bikeability scores or examining the association between different health conditions

such as diabetes and obesity of local communities with their walkability scores [135,

66, 116].
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Some previous works, such as Winters et al. [133] and Glazier et al. [51], have

been inspirations for this research. These works use road scores, partly based on road

connectivity, for various analyses. Specifically, Winters et al. created Bike Score. This

measure calculates the bikeability of multiple cities, uses road connectivity and fo-

cuses on finding associations between urban bikeability and cycling behaviour, aiming

to determine if Bike Score was associated with between and within-city variability in

cycling behaviour of 24 different North American cities. Glazier et al. compared pre-

viously published walkability measures related to transportation behaviours, obesity

and diabetes, in Toronto, by factoring in population density, residential density, avail-

ability of salable destinations and street connectivity. The latter found individuals

who live in more walkable areas are over twice as likely to walk, cycle or use public

transport and are significantly less likely to drive or own a vehicle compared with

those living in less walkable areas, which are up to one third more likely to be obese

or have diabetes.

Walkability is a measure that many researchers have used to operationalize char-

acteristics of the environment that support walking. Walkability [117] is a term used

to describe aspects of the built and social environment with significant population-

level impacts on physical activity and health. Several systematic reviews have shown

that walkability in a neighbourhood is associated with more physical activity among

both children [39], adults [95], and older adults [11, 126]. Knowing how walkable an

area is based on walkability scores is essential for public health, urban transportation

and engineering research planning. Walkability scores provide a necessary insight into

how the environment around us influences our behaviour and health.
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1.2 Walkability

Walkability has been widely used in the academic literature since the late 1990s by

urban planners, the general public, and researchers [77, 74, 83, 42, 75, 43, 136, 120]

when they began to examine the association between walkability and various factors

including travel behaviour, urban design, real estate, physical activity, and obesity.

Although there are multiple operational definitions of walkability in the literature

[56, 44, 48, 54, 97, 41, 110] there is no single agreed-upon conceptual definition of

walkability. Grant (2013) defines walkability as an “excellent shorthand for good ur-

ban design” [54]. Wikipedia defines walkability as “a measure of how friendly an

area is to walking” [128]. Wang and Yang, in their review and bibliometric analysis,

define walkability as “the extent to which the built environment is friendly to peo-

ple who walk, which benefits the health of residents and increases the liveability of

cities” [126]. These definitions are rather broad to encompass all relevant environ-

mental features that may lead to active living and not guide measurement. Simply

put, walkability is a way to show how walkable/connected/accessible our surround-

ings are concerning walking. Researchers typically use walkability as a measure to

operationalize characteristics of roads combined with other attributes, including pop-

ulation density, access to shops and services, and safety, among others. Knowing how

walkable an area is (i.e. walkability score) is an essential factor in everyone’s lives,

especially how the spread of the COVID-19 implicated restrictions and limitations to

how and when we can/should go outside. Walkability scores provide essential insight

into the roads and neighbourhoods around us. However, using the road structure as

nodes is not widely discussed in existing methods.

28



1.3 Related Work

Several existing walkability measures provide walkability scores for Canada, each

with different strengths and limitations. Approaches have typically relied on using

self-reports from individual participants to understand how walkable an area might

be. For example, according to Carr et al. [23], previous efforts (before 2011) to

measure neighbourhood walkability have primarily relied on self-reported data, using

time-intensive and costly measures. For example, Duncan et al. [37] focused on cer-

tain buffer distances within the street networks such as 400, 800, 1600 meters. The

buffer distance was ignored in most existing measures and was deemed essential. The

second approach uses geographic information systems (GIS), which combine different

environment features like the number of street intersections or the population den-

sity to create neighbourhood-level walkability measures. While several city-specific

walkability measures have been developed, two prominent, national-level walkabil-

ity measures are available in Canada: Can-ALE and Walk Score. For comparison,

the Canadian Active Living Environments measure (Can-ALE) [21] and Walk Score

[124] were chosen as they are both commonly used by researchers and end-users alike.

These measures each have different strengths and limitations.

1.3.1 Can-ALE

Can-ALE [Figure 1.1 right] is one of the most prominent and publicly available walk-

ability metrics. It is an area-based measure at the Dissemination Area (DA) level.

A DA is a small, relatively stable geographic unit composed of one or more adja-

cent dissemination blocks and is the smallest standard geographic area for which all
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census data are disseminated [112, 111]. DAs’ physical size may vary depending on

their geographical location, but they usually have a population of between 400 to 700

persons. Canada is divided into DAs covering all its provinces and territories, and

there are approximately 54,000 DAs in Canada. Can-ALE, widely used for walkabil-

ity scores in Canada, utilizes intersection density and dwelling density measures to

devise a walk score for each Canadian DA. The measure also includes the number of

Points of Interests (POI) within a 1KM buffer around the DA’s centroid. Accord-

ing to Canadian Active Living Environments Database (Can-ALE) User Manual &

Technical Document [22] “Can-ALE measures are based on one-kilometre, circular

(Euclidean) buffers drawn from the centre points (centroids) of dissemination areas

(DAs)”. Can-ALE’s only measure of road network importance is a count of the num-

ber of three (or more) way intersections per square kilometre of the buffer around a

dissemination area’s centroid.

For the 2016 Can-ALE dataset, authors produced the following measures for all

DAs in Canada:

• Intersection density

• Dwelling density

• Points of interest

• Transit measure (transit stops for all DAs within Census Metropolitan Areas

(CMAs) in Canada)

Intersection Density measure is defined as “directness and connectedness of streets

and/or paths through a community” which was “done by counting the number of

three or more way intersections within a one-kilometre buffer of the dissemination

area (DA) centroid”. Authors used both Road Network Files by Statistics Canada
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and OpenStreetMap roads and footpaths for this purpose, and from both datasets

“limited-access highways (e.g., freeways, 400-Series Ontario Highways, Quebec Au-

toroutes) and highway entrances and exits are removed from the files before calculat-

ing intersection density, as these roads typically restrict active transport”. Off-road

footpaths and recreational trails were added to the files.

Dwelling Density measure is defined as “the average dwelling density of the DAs

in the buffer area” which is “a common measure of active living environments and

strongly correlates with active transportation rates”.

Furthermore, the Points of Interest measure is defined as “the number of points

of interest (POIs) in a one-kilometre buffer around the DA centroids,” and “include

a wide range of potential walking destinations (e.g., parks, schools, shops, places

of business, landmarks, etc.)”. Can-ALE includes almost all POI keys extracted

from OSM under the Key “amenities”. However, excluded alpine huts, caravan sites,

wayside crosses, and other features that likely have no relationship with walking.

Transit measure is defined as “presence of public transit stops in the community”

which involves a process similar to that of POI extraction. It was noted that this

measure only covers DAs within Census Metropolitan Areas (CMAs).

1.3.2 Walk Score

Walk Score [124] [Figure 1.1 left] is another well-known walkability tool that uses a

proprietary method that has several features, including population density and road

metrics such as block length and intersection density. Its authors use a patented

system and analyze hundreds of walking routes to nearby amenities. Although it is
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based on a closed-source system using proprietary methods, it is unclear if the scores

are calculated for every location instead of general areas that provide distributed

scores down to locations within each region. Their walkability score is awarded based

on the distance to amenities of specific categories (eg. Grocery stores, coffee shops,

restaurants, movie theatres, schools, parks, libraries, book stores, fitness centres,

drug stores, hardware stores, clothing/music stores). Amenities within a 5-minute

walk (.25 miles) are given maximum points. They use a decay function to devise

what score should be given to more distant amenities, where no score is given for

amenities located farther than a 30-minute walk. Walk Score also measures pedestrian

friendliness by analyzing population density and road metrics such as block length

and intersection density. Their data sources include Google Maps, Factual, Great

Schools, Open Street Map, the U.S. Census, Localeze, and places added by the Walk

Score user community. Walk Score is a rank between 0-100 where:

• 90–100 describes “Walker’s Paradise” where daily errands do not require a car

• 70–89 describes “Very Walkable” where most errands can be accomplished on

foot

• 50–69 describes “Somewhat Walkable” where some errands can be accomplished

on foot

• 25–49 describes “Car-Dependent” where most errands require a car, and

• 0–24 describes “Car-Dependent” where almost all errands require a car
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Figure 1.1: Walk Score [124] Walkability score of Victoria, BC (left - Screenshot

taken from walkscore.com). Dark green is the most walkable, dark yellow/orange

is the least walkable. Can-ALE Walkability score of Victoria, BC (right - generated

through RStudio [103] Version 1.2 from rstudio.com), assigned by dissemination area.

Dark green is the most walkable, dark red is the least walkable.
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1.3.3 Limitations of previous approaches

There are several limitations regarding previous approaches that aimed to measure

walkability. Both Walk Score and Can-ALE are heavily used/cited [28, 58, 29,

46]. But there are some noticeable drawbacks and opportunities for improvements.

These limitations are significant and likely the result of limited interdisciplinary work

between computer science, public health, and urban planning. The critical limitations

of previous research works include:

1. Incomplete use of road structures

2. Lack of predictive models

3. Low spatial resolution

4. Lack of user opinion

5. Lack of personalization

6. Limited transferability to new cities

The following section will discuss the limitations of previous walkability measures.

Some limitations are independent, while others may be directly or indirectly associ-

ated with other limitations. Specifically, predictive models, spatial resolution and

personalization tend to go hand in hand. Using a predictive approach to estimate

walkability scores allows training models on personalized demographics and generat-

ing walkability scores at higher spatial resolution.

1.3.3.1 Incomplete use of road structures

Road networks have been used in many analytical studies [18, 25, 138] to associate

road structure with various topics. For example, R.S. Mahabir et al. studied the
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impact of road networks on the distribution of dengue fever cases [80] based on the

data observed in 1998 in Trinidad and West Indies. Their result represented “the

first evidence of dengue cases being found restricted between forested areas and ma-

jor highways” which they found very useful in planning and implementing mitigation

strategies to control dengue and Aedes aegypti mosquitoes. But the importance of

road networks has been well-known for thousands of years. Chengjin Wang et al.

studied the evolution of road networks in China between 1600 BC to 1900 AD [125]

and suggested that road networks were used for major nationwide socio-economic ex-

changes long before modern transportation emerged and have been in long-term de-

velopment and are continuously expanding. According to the authors, this expansion

of road networks with continuous change in accessibility and coverage is character-

ized by a “core-peripheral configuration” closely associated with natural conditions

and national defence and warfare. Furthermore, they found the development of the

road networks are associated with “centralization of national power, national land

governance, postal transport, the transport of specialized cargos, and international

trade”.

The importance of road networks should undoubtedly be considered when creating

a walkability metric. A simple description of walkability is a way to show how walkable

are the roads around us when it comes to walking around neighbourhoods. The

influence of the roads themselves towards these scores is a significant component that

differs from metric to metric. Road structure and connectivity play essential roles

in how neighbourhoods are connected. Although there is an indirect use of the road

structure (i.e. intersection density), in some of these measures (such as Can-ALE),

road network and road structure as nodes are not fully utilized. Walk Score does not
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appear to use this directly, but it was not possible to verify that due to its closed-

source design. However, Can-ALE’s only influence of roads was accumulated in the

intersection density parameter, the number of intersections with three or more ways

per square km within the buffer zone. Let us imagine two locations, each with five

intersections per square kilometre. One of these locations is on the edge of a small

industrial region, while the other is within some of a large city’s busiest and most

popular attraction sites. Would it be meaningful if their road-structure-based scores

carry the same weight due to having the same number of intersections within the

buffer zone?

Just as road structure matters, network science approaches such as centralities

and network embedding can extract valuable information from road networks and are

just as important. These approaches are currently missing from existing walkability

measures, yet they are integral parts of our mobility and should be essential for

measuring walkability. Additionally, computation for large road networks has proven

to be a time-consuming task that poses an additional challenge if left unchecked.

Road networks and other geographical-based data are expanding every day, while

there is still a significant gap in processing this ocean of data. Lack of accessibility

to computational resources such as superclusters or high-speed workstations to the

general public (where only small groups such as researchers may have access to these

resources) has led to the need for finding alternative ways to produce similar results

with significantly lower computational requirements.
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1.3.3.2 Lack of predictive models

Existing walkability measures are developed as stand-alone calculations. They are

not designed to predict scores, and calculated scores may not be used in different ar-

eas than they have initially been calculated for. One reason behind this is that some

of these research studies come from areas that tend not to consider using predictive

machine learning approaches [47]. As a result, existing measures are generally com-

puted once and only recalculated after a significant change in the data is observed or

a substantial improvement to the approach is made (for example, Can-ALE in 2006

and 2016). The results may turn outdated due to the changes in the road structures

and POI depending on many variables such as population, region size, and urban-

ization level. Walkability measures have not used predictive machine-learning-based

approaches such as supervised and semi-supervised learning to build predictive mod-

els capable of predicting walkability scores in areas where data may not be available.

Building predictive models enable us to address this challenge by utilizing smaller

datasets that rely on multiple input features, including the road network, POI, and

user data, learning from various elements, and projecting and accurately predicting

walkability scores for large road networks, cutting the computational time and re-

quired technical resources to a fraction of that achieved through some traditional

methods.

1.3.3.3 Low spatial resolution

Two aspects limit the spatial resolution of traditional walkability measures: 1) reliance

on census-based geographies, including dissemination areas, and 2) use of buffers to
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calculate summary measures. As is evidenced in Figure 1, using dissemination areas

does not capture the local feel of walkability for someone on the road. Dissemination

Areas are on average 1-2 city blocks and can be much larger as population density

decreases. As a result, walkability measures that use dissemination areas as their unit

of analysis may mask a significant variation in walkability within each dissemination

area. For instance, a drawback of Can-ALE is the 1KM radius limitation. There are

cases where population density has caused the DA structure to fall shorter or much

greater than the 1KM radius. This phenomenon causes the capture of either too

many outside-DA variables or not enough parameters, among other issues, all leading

to inaccurate results. Additionally, a 1KM radius may not be considered walkable for

many people. Walk Score uses a decay function to address this.

1.3.3.4 Lack of user opinion

In most existing measures, user opinion is not used. These measures typically follow

a one-size-fits-all approach mainly influenced by the researchers’ perspective instead

of the end-users view [12]. As a result, their walkability scores may be biased by

characteristics deemed by researchers and developers as more or less critical. User

opinion is a crucial yet missing piece that will substantially impact how the walkability

scores are derived and assigned, reflecting various commonly observed patterns seen

in people’s daily lives.

1.3.3.5 Lack of personalization

Existing measures are not flexible and generalized to address all users and parameters

with many assumptions. None of the mentioned methods utilize user opinion as one
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of their internal factors to derive their walkability scores nor try to bind their scores

with a personalization component that would influence or represent the changing

needs of individuals and various groups. Moreover, existing methods are typically

calculated for the entire network only once. Walkability should be user-opinion-based

and personalized to represent the population and valuable for various groups with

different criteria.

Existing walkability measures are typically generalized with no consideration for

individuals’ preferences, opinions, or how they interact with the environment. Walka-

bility scores generated by generalized algorithms are the same for everyone regardless

of the individual. However, people live in different environments and have other prior-

ities and preferences for what they would consider as walkable based on their personal

needs. A single parent who is unemployed and has a low income with young children

may likely have a completely different set of priorities and preferences for what they

would consider a walkable environment compared to that of a higher-income working

couple with no child. Similarly, a young single student with no child may find ar-

eas close to their school, library, fast-food restaurants, and bus stop more walkable.

In contrast, a professional working parent may consider areas closer to parks and

playgrounds, schools and daycares, grocery stores, and hospitals or clinics as more

walkable. There is a strong need to develop a personalized walkability measure that is

accurate and efficient. A personalized walkability measure can address many existing

limitations and contribute new data and methods that have not been used in the field

of walkability research development.
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1.3.3.6 Limited transferability to new cities

Walkability metrics are city-specific and require all necessary data for a given city

to be available. Some cities may often lack the required data (e.g. POI, population

density, etc.) needed to calculate walkability scores using traditional measures. Fur-

thermore, minor differences in the data may make comparisons between cities very

complex. None of those existing methods, as mentioned earlier, have predictive ca-

pabilities that would allow them to fully utilize available features to build models

that learn from data and can estimate scores for locations never seen before or have

the ability of continuous and transferable learning, instead of calculating walkability

score for the entire network, which is a very time and resource-consuming task.

1.3.3.7 Summary of limitations

These limitations leave a gap in our ability to measure and understand the actual

impacts of walkability. Network-based walkability utilizes road network structure

and embeds a solid link to these crucial components currently missing from most

existing methods. It combines features that tie each element to a specific weight

using machine learning methods to build predictive models that generate network-

based walkability scores. Furthermore, walkability is very subjective, and network-

based walkability brings to the table a systematic metric that uses user opinion and

enables personalization capability to address each individual’s profile.
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1.4 Objectives

As an overall goal, this research aims to create a novel, reliable, precise, efficient and

widely applicable measure of walkability that can help better understand and plan for

city structures, improve overall health and physical activity at the population level,

reduce traffic congestion, fight climate change and enhance sustainable transportation

[45]. Neither Can-ALE nor Walk Score provides user opinion input, predictive models,

personalization, or the use of road network structure as nodes. This research works

towards addressing these missing components and aims to improve the accuracy and

feasibility of walkability scores by using features based on road network structures and

points of interest to generate models capable of estimating network-based walkability

scores for any point within a road network and of doing so Active Living Feature

Score (ALF-Score) was developed. ALF-Score is a measure that provides a faster and

better walkability scoring system that aims to fill in the gap and address significant

limitations of existing measures by introducing the use of opinion-based crowd-sourced

user parameters in conjunction with road network characteristics to provide scores

that better represent individuals’ perspective of walkable areas while utilizing road

network structure to improve accuracy and spatial resolution.

This research utilizes road networks as nodes to better understand the underlying

structure that impacts the walkability score of every single location and applies it in

such a fashion that brings out the uniqueness of all locations based on road structure

and network connectivity. But furthermore, it shifts away from DA-based and radius-

based approaches towards a point-based system that uses road networks and various

POI categories. This approach allows for higher spatial resolution and potentially
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unique scores for every point on the road. Moreover, scores can be personalized

to individuals’ unique profile features. This personalization is derived from user-

collected data used towards user profiling and building machine learning models that

are flexible enough to bend the curve to find the most relevant and suitable predictions

for each user based on their profiles.

One of ALF-Score’s significant contributions is using user opinion data as a feature

to influence walkability scores using what general users think of the region. This

approach paves the path to build a predictive and personalized walkability measure

that utilizes user demographics and profiles and user opinions to build walkability

models capable of estimating walkability scores associated with individuals’ profiles

for any point within a road network currently missing from existing methods.

It is important to emphasize that this research does not aim to add yet another

component to existing metrics. Instead, the goal is to reconstruct how the entire

process works. This research utilizes road network structure, user opinion, machine

learning, personalized models based on user demographics, transferability of learned

models and various other methods to generate well-trained, accurate and transferable

personalized models that predict walkability scores based on each user profile for any

point within a road network at point-level with high spatial resolution, anywhere and

anytime.

This work uses interdisciplinary research from computer science and public health

to address the limitations of some previous research studies. This interdisciplinary

research is not without challenges outlined in the next section.
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1.5 Challenges

1.5.1 Incomplete use of road structures

The first step is to embed road network and network science approaches into this

research to address the lack of network features as nodes and build a more accurate

walkability scoring system. Furthermore, various machine learning techniques will be

used that utilize road network data and other essential elements. Moreover, users’

opinions are embedded to reflect a real-world perception of people’s views into the

generated scores. Additionally, a pipeline will be put together that is dedicated to

producing highly accurate, predictive, robust, personalized and network-based walk-

ability scores based on each user.

POIs, when used without consideration for road connectivity, distance, frequency,

and relevance (i.e. weighting less relevant POIs with the same score as those more

relevant) will lead to higher inaccuracies and less relevancy to varying POI categories

and individual users. For example, for some users, grocery stores, daycares, and

hospitals may be much more important, whereas, for some others, public transit

stops and restaurants may be considered more important. Each category and sub-

category will have a significant role for individuals with various requirements, needs,

and preferences. Furthermore, POI connectivity on the road network, such as direct

distancing as opposed to those separated by freeways or those in a different DA that

fall within the 1KM radius of the centroid, plays a crucial role in determining a more

suitable and personalized approach to measuring walkability scores. In most existing

measures, many features that do not carry the same weight contribute equally towards

measuring walkability scores, leading to less accurate and less reliable final scores.
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1.5.2 Lack of predictive models

In existing works, when changes are observed in any of the data parameters or if

the authors decide to update their walkability scores, the process requires a complete

re-run of the entire computational operation. A time-consuming, resource-intensive

process and the results may quickly get outdated with any neighbourhoods’ structural

shifts, which may be due to physical, geographical, environmental, ecological, socio-

logical and economic changes. A predictive approach that could allow for continuous

learning and avoid complete re-runs of the entire process is currently missing from

existing measures.

1.5.3 Low spatial resolution

Measures such as Can-ALE are area-based, which means a large area (in the case of

Can-ALE, a dissemination area or DA) is associated with a single walkability score.

Although DAs vary in size, each has a population of between 400 to 700 people. A DA

in a dense and heavily populated area may maintain many roads, buildings, shops,

or other points of interest within a small area. However, a DA could also be isolated

entirely, covering an extensive geographical area with a segregated population and a

significantly smaller number of POIs. DAs may be completely different in structure,

available resources and accessibility. Having a single score representing the walkability

of the entire DA leads to a deficient representation and will not be meaningful for

everyone. This lack of representation is because all points within each DA will always

carry the same walkability score regardless of their specific location, structure or

conditions.
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1.5.4 Lack of user opinion

Without user opinion, walkability scores may be generated through a one-size-fits-all

approach that is influenced and biased by the person(s) who decides what features or

characteristics should be used and what priorities are given to each feature. However,

when user opinion is used, every user is entitled to their personal opinion, and the

expectation is that these opinions will vary. Hence, if a user deems certain features

as more important to them, such as restaurants or bus stops, it does not mean every

other user will conform to this importance of features. Although people tend to

follow routines and have shown similar patterns, there will likely be individuals who

may have similar and different opinions. Dealing with this difference of opinion is a

significant challenge that will be addressed.

1.5.5 Lack of personalization

When it comes to personalization, there are several different challenges to consider.

The first challenge is that a considerable amount of data is required to create mean-

ingful features, user-opinion database and user profiles. Data that can be burdensome

to collect from users. An additional challenge is that when user profiles are created

and reduced to cluster profiles, each cluster profile may be associated with only a

fraction of the user data from the original data submission pool. Each cluster profile

needs to maintain enough labelled data for training and testing purposes to build

machine learning models specific to each profile’s demographics.

A personalized walkability pipeline needs to train its models so that they conform

to different user profiles. How these profiles are defined is crucial to understanding
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how users are grouped based on factors that influence their perception of walkability.

As a result, the first goal of building user profiles is to collect appropriate data and

identify patterns from a diverse set of users. These user profiles are then analyzed

and grouped into a further abstraction layer, called a cluster profile. These cluster

profiles are then fed into the extended ALF-Score pipeline to generate personalized

walkability models for each cluster profile. The precision of the data collection, sample

size and the conflicts found among user opinions pose additional challenges that will

be addressed in this research.

The aim is to take a significant step further from being a user-opinion-based

pipeline and move to a personalized system. The pipeline considers user demographics

such as age, gender, preferred walkable distance, profession and other profile param-

eters that allow the predictive models to estimate walkability scores based on specific

user profiles with personalized, predictive scores for each user. Finally, a thorough

exploration of the scalability and transferability of this pipeline will be done by ap-

plying the personalized, predictive models to user-based data collected from a larger

city in Canada (Montréal QC).

1.5.6 Limited Transferability to New Cities

Due to the structure of how existing measures compute their scores and the lack of

full incorporation of machine learning or utilizing predictive models, their pipelines

lack transferability, which means if scores for one city are measured, they may not be

applied to other cities directly or indirectly to help towards generating new scores.

Furthermore, there are no known pre-trained walkability models available for public
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use to facilitate the transferability of existing measures.

1.6 Scope of Research Project

This work builds on the theory that accurate walkability scores should be easily and

readily accessible for every single point within the road network, with the scores be-

ing predicted instead of calculated and personalized to individuals’ profiles instead of

generic one-size-fits-all to best represent the most accurate walkability scores as per-

ceived by each individual. This research provides a practical approach by redesigning

how walkability scores should be measured from the ground up. New and improved

algorithms are developed to utilize many datasets and derive the most relevant feature

sets. Furthermore, as road connectivity and structure play crucial roles in measuring

walkability, this research extends their use to utilize them fully. Road connectivity

and structure are used in various ways, such as road centrality metrics and road

embedding representations.

This approach does not rely on region-based computations such as DA-based, nor

does it depend on fixed-term limitations such as using data within a 1-km radius of the

centroid of a region or applying the same weight to all POI categories. This research

does not make any assumptions on what POI categories are more important nor treat

them equally. This research does not provide a generalized metric that produces the

same results for everyone. Instead, this research aims to build a personalized approach

that uses users’ opinions and profiles to understand each individual’s needs and build

models that are capable of predicting results that may be unique for each individual.

Unlike Can-ALE and Walk Score, which follow rule-based deterministic approaches,
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this research develops a model-based approach to consider different interactions in

different scenarios. Furthermore, various machine learning algorithms are utilized for

training models that are capable of predicting high-resolution walkability scores based

on users’ profiles for any given point within the model’s known road network, as well

as utilizing transfer learning to induce transferability and Zero-User-Input capabilities

to predict accurate and personalized walkability scores for any point within any given

road network that was never seen before by the model.

There are four phases in this research. The first phase (Chapter 3 - Graph Re-

duction and Reconstruction) involves an in-depth examination of road network struc-

tures and graph reduction methods for road networks. This work was published and

presented at the 2020 International Conference on Computing, Networking and Com-

munications [5]. The published paper is slightly revised for flow in this dissertation

document, and the introduction is shortened. The second phase (Chapter 4 - ALF-

Score: a Predictive Network-Based Walkability System) focuses on building a better

and faster way to predict walkability scores with point-based high resolution while

addressing some of the challenges of scalability when working with large networks.

Chapter 4 was submitted for publication and is currently under review. The third

phase (Chapter 5 - ALF-Score+: Personalization of a Predictive Walkability System)

focuses on the inclusion of user demographics in addition to user opinion to allow user

profiling and personalization to associate users’ preferences and characteristics with

their preferred walkability scores to be able to predict personalized walkability scores

for each individual. Chapter 5 was submitted for publication and is currently under

review. The last phase (Chapter 6 - ALF-Score++: Transferability of a Predictive

Walkability System) investigates and implements measures to scale up the entire pro-
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cesses in phase 1 through phase 3, so they can apply to much larger cities with a

focus on implementing transferability measures that allow transferred learning where

global models can be trained based on a small set of user data from only a few cities,

capable of predicting accurate walkability scores for any point in any city. Chapter 6

was submitted for publication and is currently under review.

1.7 Research Questions

MAIN How walkable is our surroundings, and how to accurately and efficiently measure

walkability scores personalized for different individuals?

– Why does it matter? Walkability is crucial as it is directly associated

with mobility and affected by our surroundings and living environment.

There is no agreed-upon unified measure of walkability, and current mea-

sures are limited and generalized at best. Having the ability to generate

accurate walkability scores based on individuals’ needs can help improve

the overall population’s health by promoting an increase in outdoor activ-

ities, understanding city structure, assisting with better planning of new

city structures, reducing air pollution by encouraging walking and cycling

instead of vehicular use and incentivizing people to walk more often. Ev-

ery individual has their criteria of what constitutes as walkable. Current

measures are generic, do not consider personalization and are not spatially

high-resolution. They do not consider some of the most important factors

such as road networks, road centralities and similarity patterns leading to

imposed limitations and restrictions within their metrics.
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SUB 1 How to calculate network centrality for very large networks using limited re-

sources (e.g. on personal computers) in a fraction of the time needed to do so

using conventional algorithms?

– Why does it matter? Large road networks have millions of nodes and

edges, which lead to higher complexity and slower computation. Some

computations could take days, weeks or months to complete on some per-

sonal computers, which restrict the use of road networks if the required

resources are not met.

SUB 2 How to accurately predict walkability score for any given location using road

network data as nodes and user opinion?

– Why does it matter? Conventional approaches do not fully utilize road

network connectivity as nodes, which is essential in determining walka-

bility. Newer roads, alleys, walkways, etc. that are added continuously

are not ranked, and the scaled-down ranks are arbitrarily assigned. Con-

ventional approaches do not have any self-learned components, and small

changes in data/method require the entire calculation re-processed. They

are very time-consuming and resource-intense and require large datasets to

calculate walkability scores. They require too many manually-performed

and segregated components and yield lower accuracy with no flexibility

in their pipelines. Furthermore, user opinion is not used in most existing

measures, making them generic one-size-fits-all methods influenced mainly

by the researchers’ perspectives instead of the end-users.
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SUB 3 How to personalize walkability scores based on specific user profiles, using small

user-sample datasets?

– Why does it matter? The mere fact that walkability remains a very sub-

jective matter points to the need for a personalized walkability measure

where each individual can enjoy personalized scores that are most suitable

to their daily needs and preferences, based on their profile and demograph-

ics. Most previous research studies are generalized, with none focusing on

user input or personalization and lack high-resolution walkability scores

that vary from person to person as their criteria change.

SUB 4 How to implement transferability in walkability using transfer learning to allow

estimation of walkability scores for any never-seen-before locations?

– Why does it matter? Data acquisition is costly and time-consuming, so is

recalculating walkability scores for new locations. With today’s demand,

there is a growing need for re-using existing knowledge to save time and

resources and improve performance. For this research to be applicable and

useable in various scenarios, its pipelines need to work seamlessly over small

datasets and be capable of using pre-trained models in conjunction with

new data to learn new patterns. More importantly, the ability to transfer

previously learned knowledge of small cities to predict walkability scores

of different and larger cities with no user data will provide a tremendously

important component to this research.
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1.8 Contribution & Potential Outcomes

This research addresses one of the most prominent challenges among existing walk-

ability measures as previously outlined. It mainly focuses on three variations of

ALF-Score as a path to building a faster and better walkability scoring system using

predictive and user-based personalized parameters to promote a healthier lifestyle and

raise awareness about the impacts of city structure on our daily lives. However, the

underlying approach is not limited to user-based personalized scores. Still, it is cus-

tomizable on other parameters such as road classification, connectivity distribution,

population exposure, local centres (hubs), weather information, etc. Suppose one was

to modify the parameters of this pipeline. In that case, one could generate predic-

tive and personalized models based on traffic congestion, area population, number of

traffic lights, etc., to produce scores matching the requirements of their study.

ALF-Score is a network-based walkability measure that utilizes road network

structure alongside user opinion and other features through machine learning ap-

proaches to build predictive models capable of generating high spatial resolution and

network-based walkability scores. Below is a list of the main contributions of this

research:

• Building an entirely new metric - ALF-Score (Active Living Feature Score) -

and ability to measure much more precise, personalized, predictive, transferable

and network-based walkability scores.

• Building new algorithms that allow for significant reduction of graph nodes while

preserving the structure of the graph intact leading to much smaller networks

capable of representing their much larger original networks.
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• Utilizing interpolation to estimate node centrality for road nodes and recon-

structing full node centrality measures for an entire network by going through

the reduced networks.

• Providing a new approach that significantly speeds up similar processes com-

pared to existing methods and ability to generate similar results as in tradi-

tional methods but in a much shorter period and requiring much less technical

resources such as the necessary processing power in the form of superclusters,

GPUs and very powerful servers.

• Applying reduction and reconstruction techniques to St. John’s, NL road net-

work and ability to match the result with those calculated using traditional

methods, yet in a fraction of the time.

• Building a pipeline towards generating a step-by-step approach to produce pre-

dictive models capable of predicting walkability scores.

• Building predictive models ready to provide instant predictions for any given

point with an outcome of predictive regression results.

• Building a completely new method of converting relative rankings to absolute

rankings which can be very much useful in various scopes and fields such as

ranking every member of one team (4-6 members) among the team and con-

verting it such that the numbers measure up to everyone across all teams, or

ranking 5 locations concerning one another and converting it such that each

locations’ relative rank measures up to all locations ever ranked on the same

system.

• Predicting walkability score for the entire city of St. John’s, NL, with results

verifiable via visual maps.
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• Exploring, integrating and profiling user characteristic measures based on col-

lected data.

• Building a pipeline to personalize predictive models based on users’ profiles to

achieve the ability to predict personalized walkability scores based on individual

profiles.

• Scaling ALF-Score pipeline to utilize a much smaller fraction of user data to-

wards much larger regions.

• Integration of transferability into ALF-Score so models trained on small cities

can be used to predict walkability scores for larger cities with zero-user-input.

• Building predictive and personalized models for the city of Montréal, QC and

generating walkability scores for the entire city of Montréal to show the power

of transferability achieved in the methods, approaches and models using user

data.

• Predicting walkability scores for the entire city of Kingston, ON using the zero-

user-input approach.

• Predicting walkability scores for the entire city of Vancouver, BC using the

zero-user-input approach.
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Chapter 2

Background

This chapter presents background information on the technical aspects of this re-

search. Because this work is highly interdisciplinary, it is vital to establish a common

language to understand better the methods used in this work. Specifically, this sec-

tion reviews graph theory and machine learning concepts using road networks and

walkability research examples.

2.1 Graph Theory Fundamentals

Graph G is defined as G = (V,E) where V is a list of vertices/nodes and E is a list

of links/edges. Each vertex represents a point on the road, and each edge represents

a road connection where two vertices are directly connected. The degree of a vertex

is the number of edges that are incident to the vertex, and a path in a graph is

a sequence of edges that joins a set of vertices. The shortest path is the path(s)

between two vertices in a graph where the sum of the edge weights is minimized.

Road network G is considered undirected, but this may be changed depending on the
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completeness of data tags. For example, one-way streets represent directed vertices,

while two-way streets represent undirected vertices. Reduced graph Gr is defined

such that Gr = (Vr, Er) where Vr is a subset of V but Er will have less edges while

containing some new links.

There are many ways to represent a graph data structure, such as an adjacency

matrix and an adjacency list. An adjacency matrix, a 2-dimensional array of size

|V | × |V |, carries a simple implementation and has a faster data access of O(1) time

as well as when removing, editing and checking whether an edge exists between vertex

i and j, i.e. G[i][j] = 1. However, it takes O(|V |2) space regardless of whether the

network is sparse or otherwise, as there is always an entry dedicated to each vertex’s

association with all other vertices in the graph. An adjacency list is an array of size

|V | where the value of cell i represents a list of vertices adjacent to the ith vertex.

Adjacency list saves space for sparse networks taking O(|V | + |E|). For a dense

network, a worst-case scenario of O(|V |2) time can be expected, and queries such as

finding if an edge between two vertices exists take O(|V |) time. An adjacency list is

used since road networks are generally sparse and computer memory is a concern.

2.1.1 Road Network

Road networks are interconnected roads designed to accommodate vehicles and pedes-

trian traffic. According to Urban Securipedia [121], road networks consist of “a sys-

tem of interconnected paved carriageways designed to carry buses, cars and goods

vehicles”. Furthermore, road networks form the “most basic level of transport in-

frastructure within urban areas, and will link with all other areas, both within and

56



Figure 2.1: A neighbourhood in Victoria, BC. Left: Neighbourhood’s road network

visualized as a complex network by node connectivity (generated by Cytoscape [30]),

Right: Neighbourhood’s road network visualized as how they are physically structured

within the city (generated by QGIS [98]).

beyond the boundaries of the urban area”. Urban Securipedia divided road networks

into eight parts: intersections (controlled or uncontrolled intersections, roundabouts),

urban roads, rural roads, motorways, bicycle lanes, footpaths and pedestrian areas,

pedestrian crossings, bridges and tunnels.

A Road network is a form of a complex network where nodes refer to physical

geographical points and edges are the connections between two points. For example,

if two points are directly and physically connected, there will be an edge between

them. When multiple edges are connected, they form roads. Road maps are typically

converted into a road network structure for computational purposes. Road networks

can be represented as graphs.
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2.1.2 Complex Networks

A complex network is a set of many connected nodes that interact in different ways

[102] and are connected via links (edges). Some examples for complex networks are:

• Social networks [132]. For example [102]:

– Friendship - where two people are connected if they are friends

– Scientific - where two scientists are connected if they have been coauthors

in any paper

– Family - where two people are connected if they belong to the same close

family

• Technological networks [130]. For example [102]:

– Internet - where two computers are connected if they are in the same

domain

– WWW - where two web pages are connected if there is a link from one to

the other

– Words - where two words are connected if they are synonyms

• Biological networks [131]. For example [102]:

– Proteic - where two proteins are connected if they participate in the same

metabolic path

– Genetic - where two genes are connected if one regulates the expression of

the other

– Ecologic - where species are connected if they have a predator-prey rela-

tionship

According to [31], complex networks are “graphs that depart substantially from
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regular or statistically regular graphs”. Furthermore, while a good idea about “the

local connectivity of a simple network” can be obtained by “considering only its ver-

tices’ degree (number of neighbours/connected vertices)”, more “complex networks

will demand the specification of many more additional respective properties or fea-

tures”.

2.1.3 Centrality

Centrality quantifies how important vertices (or edges) are in a network. Social net-

work analysts, in particular, have expended considerable effort in studying centrality.

There are many mathematical measures of vertex centrality that focus on different

concepts and definitions of what it means to be central in a network [88].

A component of this research is the ability to find the importance of each node

with respect to all other node in the network based on their connectivity and central-

ity measures. Road importance can represent its control over the connectivity of the

entire network, defining each road’s influence on traffic flow, drivability and walkabil-

ity. In some centrality measures such as Degree centrality where xi =
∑

j Aij [88],

and PageRank where xi = α
∑

j Aij
xj

δ+j
+β [88], higher centrality values correspond to

higher importance, whereas some other measures such as Closeness centrality where

xi =
1
n

∑
dij [88], dij being the distance from vertex j to vertex i, smaller centrality

values represent higher importance. Here, xi is the centrality of vertex i, δj is vertex

j’s out degree and α and β are positive constants with α usually equal to 0.85 and β

equal to 1, but can be fine-tuned as needed.

Betweenness centrality, xi =
∑

st
ni
st

gst
[88], with ni

st representing if vertex i lies on

59



the shortest path from s to t and gst the total number of shortest paths from s to t,

measures the extend to which a vertex lies on shortest paths between other vertices,

quantifying the importance of the roads based on their control over the connectivity

and flow. Vertices with high betweenness centrality may have a stronger influence

within the network. They may control a higher traffic rate, and any disruption to

these roads may cause some repercussions concerning traffic flow. Closeness centrality

measures the mean distance from a vertex to all other vertices. PageRank, (which is

a variation of Katz xi = α
∑

j Aijxj + β [88]), uses the number of incoming edges

to outgoing edges and the importance of each vertex pointing to and from a vertex

to converge on a score. Another centrality measure, Hyperlink-Induced Topic Search

(HITS), also known as hubs and authorities, is used in this research. HITS is generally

used on directed graphs and measures each vertex based on two factors: its authority

centrality xi and its hub centrality yi where xi = α
∑

j Aijyj and yi = β
∑

j Ajixj

[88] where xj is vertex j centrality. A good hub points to many good authorities; a

good authority is pointed to by many hubs.

Centrality Measure Computational Complexity

Degree Centrality O(|V |)
Eigenvector Centrality O(|V |+ |E|)
PageRank Centrality O(|V |+ |E|)
Katz Centrality O(|V | × (|V |+ |E|))
Closeness Centrality O(|V | × (|V |+ |E|))
Betweenness Centrality O(|V |2 log |V |+ |V | × |E|)

Table 2.1: Centrality Computational Complexity

For centrality measures such as betweenness and closeness centralities, where they
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compute the shortest path for all nodes, the computational time gets more complex

as the network increases in size. Considering the computational complexity of a

famous betweenness centrality algorithm by Brandes [19] which is O(|V |× |E|) when

applied to an unweighted graph and O(|V |2 log |V | + |V | × |E|) when applied to a

weighted graph and the computational complexity of closeness centrality based on an

algorithm by Sariyüce et al. [105] which is O(|V | × (|V |+ |E|)), given an extensive

network, centrality computation is a lengthy and time-consuming task, such as the

downtown Toronto road network with close to half a million nodes and almost 1

million edges, which required over five days to processes. (The computation was

performed on a 2012 MacBook Pro with 8GB of RAM, i7 CPU with four cores, and

an SSD drive.) Large graphs generally require extensive calculations, which come

with expensive resource requirements, potentially causing additional costs and delays

in processing and analysis. To address this challenge and make it more feasible to

process larger networks, a reduction and reconstruction process [5] was developed

that can significantly reduce the number of nodes in a network while preserving its

core structure essential to compute its centrality.

2.1.4 Network Embedding

Network representation [9] learning, also known as network embedding, aims to

generate numerical representations for nodes in a network to preserve its structures

while allowing for great abstraction, which is one of the several ways used to preserve

the road structure mainly by incorporating the resulting reduced network into a

feature list. Essential use for network embedding is its excellent representation of
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road structure when used as a feature set in machine learning methods. At the same

time, its dimensionality reduction gives the ability to significantly reduce networks’

size while maintaining its core structure intact. Various methods allow embedding

road networks into numerical representations while lowering the network dimension

and preserving its structure¿ This research uses two specific methods for learning

continuous feature representations of nodes in road networks:

node2vec [55] - based on a biased random walk procedure

struc2vec [101] - which uses a hierarchy to measure node similarity at different

scales

2.2 Machine Learning

Machine learning (ML), a branch of Artificial Intelligence (AI), focuses on applications

[62] that learn from experience and are capable of continuous learning and improving

their prediction accuracy over time. Unlike traditional rule-based approaches, what

differentiates machine learning from traditional approaches is how machine learn-

ing algorithms are trained and tested by going through various datasets that allow

the algorithms to discover patterns and determine essential features to build mod-

els. There are various types of machine learning, such as supervised learning, semi-

supervised learning, unsupervised learning and reinforcement learning. However, su-

pervised learning and semi-supervised learning are among more popular approaches

[57]. When it comes to machine learning, data plays an important role. The type of

expected output and whether there is enough labelled data can help determine the

appropriate methods. For example, the regression method is commonly used as a
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supervised learning approach to predict the numerical or continuous output. On the

other hand, classification is typically used when the desired outcome is categorical or

discrete. Semi-supervised learning is a great way to utilize labelled and unlabelled

data by learning patterns in the feature set. Unsupervised learning is typically applied

where there is little to no labelled data.

Linear Regression is a supervised machine learning algorithm where the predicted

output is continuous and with a constant slope [85]. A random forest is a meta

estimator that fits several classifying decision trees on various sub-samples of the

dataset and uses averaging to improve the predictive accuracy and control over-fitting

[107]. A decision tree builds regression or classification models in the form of a tree

structure, and it breaks down a dataset into smaller and smaller subsets. At the

same time, an associated decision tree is incrementally developed while the final

result is a tree with decision nodes and leaf nodes [104]. Gradient boosting is yet

another machine learning technique for regression and classification problems, which

produces a prediction model in the form of an ensemble of weak prediction models,

typically decision trees where it builds the model in a stage-wise fashion as other

boosting methods do, and it generalizes them by allowing optimization of an arbitrary

differentiable loss function. [129].

2.2.1 Transfer Learning

Transfer learning is the process of re-utilizing the knowledge learned from other re-

lated tasks and has become very popular in recent years, especially in deep learning.

In many machine learning approaches solving a single task at hand has been the
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main focus. Still, in more recent years, the development of approaches that allow

for knowledge transfer has become a very popular focus [119]. As with most real-

world problems, specifically in machine learning, collecting labelled data is a time-

consuming, expensive [115] and difficult task. Transfer learning uses the knowledge

learned from previous problems to solve new but related problems [143]. As a result

of its approach, transfer learning can help reduce training time, resources, and the

required labelled data [79] and improve overall accuracy. Weiss et al. [127] provide

a much more formal definition of transfer learning as the following: “given a source

domain DS with a corresponding source task TS and a target domain DT with a cor-

responding task TT , transfer learning is the process of improving the target predictive

function fT (.) by using the related information from DS and TS , where DS ̸= DT or

TS ̸= TT ”.

The type of transfer learning used in this research is the transfer of model pa-

rameters. The general idea behind transfer learning is to apply a previously trained

model on labelled data (in the case of supervised learning) to another similar task

with little data available. Instead of starting from scratch, start with some existing

knowledge. Transfer learning is typically used in computer vision. For example, the

weights of a model trained to detect apples could be transferred for another task of

detecting fruits. In this case, instead of training the new model to detect apples from

scratch, the knowledge about detecting apples is transferred, and the algorithm now

looks to learn how to detect other fruits. Transfer learning is a technique that requires

significantly less data for training and will also speed up the training process [50].

There are a few approaches to transfer learning and to name a few, feature ex-

traction, training a generalized model, and the use of pre-trained models are among
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these options. When it comes to feature extraction, determining the best represen-

tation for the problem at hand is a crucial task which if done correctly, can often

lead to much better and more accurate results. Carefully selected features can often

lead to a robust and well-generalized model applicable to various related problems.

Another approach using transfer learning to solve a task with insufficient data is to

train models designed for a similar task with an abundance of data. These models can

then act as a starting point to address the original task. To highlight the difference

with other approaches, to solve a given task A using this technique, training on a

similar task B is performed. Once satisfied with the model, transfer and reuse of this

knowledge in task A may begin. Furthermore, using already available pre-trained

models is yet another common approach. There are countless pre-trained models

available online that provide ready weights for many popular tasks such as classifying

types of images, object detection and object tracking. It is important to highlight

that this approach only requires access to a previously trained model and not the

entire dataset. Goodfellow, in his book [53] further discussed two extreme forms of

transfer learning, namely: 1) one-shot learning - which only one labelled example of

the transfer task is given while, 2) zero-shot learning, which has no labelled example

given.

Being able to generate reproducible and transferable predictive walkability models

is an important component of which this research addresses in two ways: 1) by

gaining the ability to utilize previously learned knowledge when directly generating

walkability scores for new cities (zero-user-input approach), 2) by using this previously

learned knowledge as a base to train new models (combined approach) which can

lead to reduced training time, improved accuracy, reduced resource consumption, and
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reduction in the labels required for supervised learning. A well-generalized model will

have the capability of transferring its knowledge to various cities never seen during

its training to generate accurate walkability scores in a fraction of the time without

the need for any new user input within the target city.

Transfer learning falls under-representation learning intending to use the same

representation in various tasks. According to Ian Goodfellow [53], transfer learn-

ing can be viewed as of particular multi-task learning that typically revolves around

supervised learning. Although, transfer learning can also be used to solve unsuper-

vised learning tasks. Transfer learning aims to take advantage of previously trained

models and extract knowledge useful in new tasks. However, transfer learning is also

beneficial to generate predictions in another environment directly and for other tasks

without any more learning needed [53]. Many surveys on transfer learning explore

various parts of this domain, focusing on its potentials, advancements, and gaps, such

as one by Pan et al. [92] published in 2010 and a more recent survey by Zhang et al.

[140] published in 2019.

2.2.2 Machine learning formulation

Machine learning formulation of walkability in a network-based context pursues the

following structure:

Problem: Training a machine-learned model that predicts a numeric value defining

how walkable different points within the road network are. The feature set will need

to include road parameters extracted from the road network. A continuous multi-
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label regression, which predicts walkability scores based on node characteristics.

Outcome: The ideal outcome is to avoid calculating walkability scores individually

for every single point within the road network and have the ability to accurately

predict point-specific scores from only a small sample of crowd-sourced labelled data

while incorporating user opinion and having the ability to influence the outcome as

user demographics change. The output of this machine learning pipeline would be

trained models, and the output of these models is walkability score predictions for

given nodes. Walkability score is defined as how walkable the user will find the se-

lected point, an output normalized between 0 and 100.

Input: A feature set containing various features derived from road network data (cen-

trality, road embedding), GIS data (POIs), as well as user demographics (user-defined

and system-defined). Please refer to the Data section (2.3) for an in-depth description.

Output:

1. Walkability metric, a global scalar that is consistent across all road nodes that

have user input. But it is also coherent across all road nodes with and without

user input labels.

2. Walkability function w : V =⇒ R+

3. Performance metric of w: consistency with user rankings R.

- Specifically, consider a user ranking r ∈ R involving a set of 5 nodes {v1, v2, v3, v4, v5}.

- Ranking r gives each node vi (i = 1, 2, 3, 4, 5) a rank denoted ori , (i.e. the “or-

der” of node vi as in user ranking.)
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- Similarly, walkability w would also imply for vi (i = 1, 2, 3, 4, 5) a rank denoted

owi , (i.e. the “order” of node vi as suggested by w.)

4. The loss function of w with respect to r, or “inconsistency” between r and w,

can be defined as

L(r, w) =
5∑

i=1

|ori − owi |

- (Note there can be other ways to define such an inconsistency, e.g. l2-norm or

“out-of-order” counts.)

- The loss function with respect to R is aggregate of L(r, w), say summation:

L(R,w) =
l∑

j=1

L(rj, w)

- That is, the total amount of inconsistency of w as compared to all user-

provided rankings.

(Note again that the aggregate function can take other forms, too, such as mean

or multiplication.)

5. The goal is to find w that minimizes L(R,w), the amount of inconsistency be-

tween w and R.

- A conversion from “relative” rankings to “absolute” scores among all user-

provided data with as little discrepancy among R as possible is a crucial step)

Success and Failure Metrics: Accuracy, efficiency and consistency; neither would

be good enough without the other. In terms of accuracy, the success metric in this

component is based on how accurate the results are based on visual verification and

cross-validation with user inputs. In terms of efficiency, if the total time required

to produce predictions based on trained models would be less than the computation
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time using the traditional walkability measures, then the model would be efficient.

When it comes to consistency, spatial consistency is measured through mapping and

visual verification of projected scores. As for user ranking consistency, a metric that

measures consistency or lack thereof (inconsistency) has been defined and developed,

which is a crucial step to determine if the user-driven ground truth remains in the

same order as users ranked it after being processed through the relative to absolute

conversion (GLEPO algorithm), to ensure the full utilization of user-labelled data

and least amount of introduced bias.

Usage: The output of the model, walkability scores, is robust and much more refined

with a much higher spatial resolution that can be used to create an interactive inter-

face that would allow users to visually view walkability scores for various regions at

the desired resolution. Furthermore, due to the predictive nature of the models, there

would be no need to calculate the walkability scores for an entire network. Models

trained on only a small subset, as needed, can produce predictive scores for the entire

network in a fraction of the time.

Alternatives: If machine learning were not used, the approach to this issue would

be very different and tedious, involving many manual and redundant tasks. For ex-

ample, walkability scores would have significantly lower spatial resolution and little

reliance on user opinion. It would follow a rule-based approach producing generic

scores, making it very difficult to incorporate personalization and requiring complete

recalculation for every cycle generation.
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Using machine learning allows for incorporating various vital features such as road

network data and moving to an efficient approach generating point-based walkabil-

ity scores with much higher refined distribution when compared to the traditional

methods such as Can-ALE, where it provides only area-based (i.e. DA-level) scores.

Furthermore, when done correctly, using different machine learning algorithms al-

lows the machine to decide what features are more relevant to enhance the selection

process further and produce more accurate and highly efficient results. Without the

machine learning pipeline, this process would be a time-consuming task that would

not be as accurate or efficient.

When it comes to utilizing machine learning, there are many considerations to

ensure the accuracy and efficiency of the models. A generalized approach to train

models over a set of data while testing the models over a different and unseen dataset

can produce more accurate prediction results. However, there are various challenges

in keeping a machine learning model as generalized as possible. For example, lack

and bias in the data, incorrectly labelled data, etc., can lead to modelling errors.

Overfitting and underfitting, are also two widespread modelling errors that occur

when the model’s primary function is too closely fit the data (too well-learned) for

the case of overfitting, or in the case of underfitting, when the function does not

capture the prominent patterns in the data (not enough learning). Overfitting results

in high accuracy when applied to previously seen data but significantly lower accuracy

when applied to unseen data. Underfitting results in unpredictable output. In both

cases, low generalization of the models leads to unreliable predictions.

There are many ways to address these challenges, one of which is data split. The

core concept in data split is to split the labelled data into two datasets: 1) training
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set and 2) testing set. Typically a 70-30 or an 80-20 percent split is commonly seen.

However, this research has experimented with various other variations, such as a 90-

10 and a 60-40 percent split. In the case of an 80-20 percent split, 80 percent of

the labelled data is assigned to the training set while the labels from the remaining

20 percent are extracted to form a testing set where the trained model will perform

prediction on. The prediction results are then compared to the actual results to

determine a baseline on the accuracy when compared to the accuracy of the same

model performing on the training set.

The dataset used to train models is likely a relatively small set. Therefore, by

taking an even smaller training set (due to cluster profiling), there is a risk of losing

essential patterns and trends within the dataset, increasing the error rate in the

models. K-fold cross-validation is yet another statistical method commonly used to

test and estimate the accuracy of machine learning models on new data, [65] which

is typically done by splitting the dataset into k sets. One set is selected as the test

data, and the remaining sets are chosen as the training data. Once the model is built,

it is evaluated on the test dataset. The procedure repeats for every set in k to ensure

the entire dataset is utilized towards building and evaluating the models.

There are many methods to determine the accuracy of machine learning models

when it comes to predicting the desired output. Such methods include 1) Mean

Absolute Error (MAE) with MAE =

∑n
i=1 |yi − xi|

n
, where xi is the actual value,

yi is the prediction, and n is the total number of data points, 2) Mean Squared

Error (MSE) with MSE =
1

n

∑n
i=1(xi − yi)

2, 3) Coefficient of Determination, with

R2 = 1 − RSS

TSS
where sum of squares of residuals or RSS =

∑n
i=1(yi − xi)

2, total

sum of squares or TSS =
∑n

i=1(xi − x̄)2, and x̄ is the mean value of actual labels,
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and 4) Root Mean Squared Error (RMSE), with RMSE =

√∑n
i=1(xi − yi)

2

n
. In this

research, both MAE as well as RMSE is used.

Moreover, various machine learning techniques have been applied and compared

based on multiple feature set combinations to find the most suitable technique and

feature set combination that results in the best prediction accuracy predicting walka-

bility scores. The following methods were used in both supervised and semi-supervised

environments to train shallow and deep models:

• Random Forest Regressor

• Linear Regression

• Decision Tree Regressor

• Gradient Boosting

• Polynomial Features (Non-Linear approach)

• Lasso CV

• Label Propagation

• Label Spreading

• Logistic Regression

• K-Means Clustering

• PCA

• t-SNE

• Multi-Layer Perceptrons (MLP)
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2.3 Scalability

In 1990, a paper published by Mark D Hill [59] suggested there is no “generally-

accepted definition” for scalability, likely due to the misuse of the term at the time,

mainly for its marketing potentials. He then challenged the technical community to

define scalability or stop using it to describe systems. André B Bondi, in a paper

[16] published in 2000, suggested that scalability is “a desired attribute of a network,

system or process”. Bondi argued that systems with poor scalability might engage in

repeated wasteful activities, consuming and wasting processing time and resources.

Ensuring the ALF-Score pipeline does not engage in repeated wasteful activities is

one of the sub-objectives of this research, which is particularly important since road

networks can vary in size, with some cities being very small (e.g. with a population of

a few hundred). In contrast, some other cities could be huge and dense (e.g. Tokyo,

Japan, with over 37 million people in just one city). The Table 2.2 shows a list

of various cities used in this research alongside their network size, number of POIs,

population and total land area size. Processing data from St. John’s, NL, as opposed

to data from Toronto, ON, will have a significantly different resource requirement and

time consumption due to the change in the size of the city leading to an extended set

of complexities. If the algorithms are not optimized, this difference in requirements

may lead to the infeasibility of the research. Various cities, including those mentioned

in the Table 2.2, have been experimented with within this research. However, only

St. John’s NL, Kingston ON, Vancouver BC, and Montréal QC are highlighted.
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City # of Nodes # of Edges # of POIs Population Total Land Area

Victoria, BC 6,770 8,593 3,318 85,792 19.47 km2

Kingston Metro, ON 3,427 4,769 813 161,175 1,906.82 km2

St. John’s Metro, NL 5,364 6,851 592 205,955 804.63 km2

Vancouver Metro, BC 45,125 60,299 13,321 2,463,431 2,878.52 km2

Montréal Metro, QC 76,663 114,414 10,045 4,247,000 4,604.26 km2

Toronto Metro, ON 479,520 Over a million 23,930 6,417,516 5,905.71 km2

Table 2.2: List of road networks for various cities with their network and POI sizes

that have been experimented with within this research. Nodes and edges are extracted

from road networks. Population density and the total land area information are

excerpted from Wikipedia.

2.4 Data

There are several data types required for this work. Individual user profile data,

road network data (road structure, edge list, node/edge centrality, node embedding),

and POI. Since road networks are accessible through many different sources such as

OpenStreetMaps (OSM) [91] and Statistics Canada [113], different data formats are

also available for processing. Among these formats, many files are binary or text-

based. User readability and processing speed are two main factors when selecting

the appropriate format. Binary-based files tend to be faster when processed, whereas

text-based files are more user-readable through conventional software. However, the

main concern when selecting the most appropriate data source and format in this

research is data comprehensiveness and accuracy.

The road network data were extracted from both sources, OSM and Statistics

Canada (referencing the Census year 2016). OSM (typically with .osm as its file

format) follows an XML scheme containing nodes and ways elements. The nodes el-
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ements define points in space, consisting of their unique id, latitude and longitude,

with an optional third dimension, altitude, which could be included depending on the

completeness of the data. The ways elements define linear features and area bound-

aries as an ordered list of nodes elements’ unique ids with specific property tags such

as highway [90], barrier, amenity, name, oneway or landuse. Statistics Canada

however, depending on the year the road network data was compiled, may provide

three data formats: 1) ArcGIS .shp, 2) Geography Markup Language .gml, and 3)

MapInfo .tab. For this research, Esri vector shapefile is utilized, which stores the

location, shape, and attributes of geographic features and several other fields. For

example, TYPE which defines the type of the road such as CRES referring to crescent, or

DIRECTION defining the direction of the road, where applicable. Many other variables

such as Census subdivision types, Census metropolitan area, or census agglomera-

tion are also available to provide an in-depth description of each road. There are

a few differences between the two data sources: formatting, information included,

completeness, comprehensiveness, recency, or reliability. However, one of the main

differentiators between the two data sources is that OpenStreetMap utilizes crowd-

sourcing, which considers each person living in a community an expert of their local

surroundings and collects information from a large group of individuals from various

communities. The road data was used to build various datasets derived directly or

indirectly from the road network structure. For instance, a comprehensive node list

and an edge list were derived from the graph used to generate a complete set of cen-

trality measures and road embedding representations. Road importance and graph

reduction have been explored and explained in [5]. Here is an example of variables

available through extracted road networks:
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NGD_UID, TYPE, DIR, AFL_VAL, ATL_VAL, CSDUID_L, CSDTYPE_L,

RANK, CLASS, ...

The POI data for this research was exclusively extracted from OSM. There are

3 main elements defined in OSM generated POI files: nodes, ways and relations.

Nodes define a point on the map, each with a specific key assigned to it. From various

existing keys, the “amenity” key [90] maintains the most relevant set of POIs. There

are numerous categories such as Sustenance, Education, Transportation, Financial,

Healthcare, Entertainment, Arts & Culture, and Others. However, since there are

only eight main categories deemed relevant, it was decided that each of the eight

relevant keys would be used as a feature on its own. Here is an example of a single

entry of a feature set containing a node id, latitude and longitude and various other

POI features:

777 -0.039065 0.836415 -0.598678 -0.346100 -0.001968 0.010741

6,-52.7321222911614,47.5687221942087,0,0,0,0,1,0,0,1,4,5,

0,0,0,0,0,0,1,0,0,1,0,0,1,1,3,0,0,1,0,2,1,1,0,3,10,0,0,0,0,0,0,0,0, ...

Additionally, a crucial component of this research revolves around crowd-sourced

user data, which contains specific user labels (opinion) and demographics. A web

interface was built to enable data collection for the required information from volun-

teer participants to achieve this. Two data categories were collected: 1) user-defined

features containing seven variables, and 2) system-defined features containing six

variables. User-defined features consist of walkability ranking, preferred walkable

distance, age group, gender, if the user lives alone, if the user has children, and occu-
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pation. The system-defined features are public IP address, public port number, user

device language, user browser type, user operating system and time of submission.

The web interface displays an interactive map with 5 locations marked as {A,B,C,D,E}.

Every time the web page is reloaded, 5 locations are randomly selected from a pool

of points on the road network within a specific geographic area. Before each data

submission, users can adjust the ranking of the 5 locations by reordering them based

on the user’s personal perceived relative walkability. This approach allows users to

use their knowledge of the city while exploring a diverse set of potential locations in

the region. The relative rankings are then submitted as groups of 5 locations to the

server for downstream processing. Note that given the random nature of the web tool,

the group of five locations provided by the web tool can overlap across different users

and even various submissions of the same user but not within the same submission.

These overlaps provide common references among submission groups and the needed

data that can help distinguish between users’ perceptions and preferences. The chal-

lenge here is to balance out the data from users to yield a walkability measure that

can produce specific results for each user cluster. Moreover, the web interface allows

volunteer participants to zoom in and out, pan around the map and view various

POIs as automatically provided by Google Maps API. Here are three examples of

variables available through the crowd-sourcing platform:

— Predefined data: data extracted from a node list on the server such as Node ID,

Longitude, Latitude:

850, -52.7098539006027, 47.6177887084157

— User-defined: Data entered by users such as Walkability Order (relative ranking),
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Preferred Walkable Distance, Age Group, Gender, If User Lives Alone, If User Have

Children, Occupation:

3, 1000, 50-59, Man, No, Yes, Executive

— User extracted: data from a user that was not explicitly entered such as Public IP

Address, Public Port Number, User Device Language, User Browser Type, User OS,

Time of Submission:

192.168.0.1, 12345, en-CA-en-US, Mozilla/5.0 (Windows NT 10.0; ),

AppleWebKit/Safari/537.36, 2020-05-26 22:27:34

Here is an example of a single road embedding entry generated by node2vec:

777 -0.039065 0.836415 -0.598678 -0.346100 -0.001968 0.010741

-0.150576 0.114083 -0.704087 -0.285862 0.447592 -0.345718

0.405268 0.116926 0.151894 0.051038 0.203209 ...

Here is an example of a single node centrality entry generated for “AverageShort-

estPathLength”, “BetweennessCentrality”, “ClosenessCentrality”, “ClusteringCoef-

ficient”, “Degree”, “Eccentricity”, “IsSingleNode”, “name”, “NeighborhoodConnec-

tivity”, “NumberOfDirectedEdges”, “NumberOfUndirectedEdges”, “PartnerOfMul-

tiEdgedNodePairs”, “Radiality”, “SelfLoops”, “Stress”, “TopologicalCoefficient”:

‘‘42.90749064’’, ‘‘3.7453E-4’’, ‘‘0.02330595’’, ‘‘0.0’’, ‘‘2’’, ‘‘96’’,

‘‘false’’, ‘‘1’’, ‘‘2.0’’, ‘‘2’’, ‘‘0’’, ‘‘0’’, ‘‘0.66740087’’, ‘‘0’’,

‘‘830096’’, ‘‘0.5’’
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In total, 680 features are included in this research. The following are the input

parameters:

1. The primary road network data G = (V,E) covers St. John’s, NL and is undi-

rected and unweighted (but weights are calculated when needed). |V | = 5,364

nodes and |E| = 6,851 edges (refer to Table 2.2 for the size of various other

road networks used in this research). However, this reflects the entire network.

This network has eight components with a small subset of nodes and edges (23

nodes, 16 edges) belonging to 7 small components, whereas the giant compo-

nent maintains 5,341 nodes and 6,835 edges. Only the giant component is used;

therefore, |V | = 5,341 nodes and |E| = 6,835 edges. Figure 4.2 also shows

the region covered by the road network data. Road node features, a mix of

numeric, ordinal, and categorical data. First, POIs with 530 features. These

features are derived from 8 separate OSM categories with 53 total POI subkeys.

Every single key contributes to 10 features. Each feature reflects on a specific

geometrical/distance range to show whether that particular key falls within the

associated distance of any point within the network. The geometrical distance

ranges from 200m to 2,000m with 200m increments (based on popular user

walkable distance entries). There are 530 POI features for every single node on

the road network. Complex Networks which contributes ten features, namely:

Betweenness centrality, Closeness centrality, clustering coefficient, degree, ec-

centricity, neighbourhood connectivity, stress, topological coefficient, average

shortest path length, and radiality. Finally, Road Embedding which contributes

128 features based on 128 reduced dimensions.

2. There are 13 variables collected from users (such as location labels, user-defined
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and system-defined variables), and 11 are used as user profiling features. Fig-

ure 2.2 shows a representation of location data collected from the participating

users in St. John’s, NL. Purple points represent unique nodes, while red, yel-

low and green points represent the low, medium and high frequency of location

overlaps among user submissions. In various experiments, user data from ap-

proximately 80 unique users was used with |S| = 409, where S represents all

user submissions. Each Sj represents a user submission where (j = 1, 2, . . . , |S|).

Each Sj user submission consists of 5 road nodes ⟨v1, v2, v3, v4, v5⟩. Groups of

5 node rankings per submission were decided to be used. With few nodes (i.e.

2 locations), there is not enough data to capture variation and relevancy in

user rankings. With too many nodes (i.e. n > 10), posing cognitive challenges

is a risk when users rank too many locations. In total, 1,050 user-submitted

ranks (852 unique locations) from the city of St. John’s, NL and 995 user-

submitted ranks (824 unique locations) from the city of Montréal, QC from

around 80 participants were included. The outcome of this research is influ-

enced by user representation. Therefore, it is essential to highlight that due

to limited access to volunteers, the participant list comprises people who are

educated and financially secure and does not include vulnerable or other mi-

nority populations. When possible, the inclusion of more diverse volunteers is

highly recommended to reduce bias and improve user representation and per-

sonalization. “Anchor” 1 locations appearing in two or more submissions that

connect/associate these submissions together are used to establish a global view

1ALF-Score uses the presence of these “anchor” points to create a unified list (using GLEPO -

Generalized Linear Extension of Partial Orders [6]) that is used to build generalized walkability
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of user opinion. Each road node vi (i = 1, 2, . . . , 5) has a unique relative ranking

rvi between {1, 2, . . . , 5}. Order of rvi , the relative ranking, is of utmost impor-

tance as it defines how users perceive the walkability of each vi with respect to

one another. Virtual links [6] are also utilized in this pipeline.

2.5 Summary

This section reviewed graph theory and machine learning, focusing on road networks

and transfer learning, followed by the required data and the methods used to collect

them. The goal of this section is to provide the fundamental knowledge needed to

understand the underlying structure of this research better and to be able to set up

and recreate the experiments performed in the later chapters of this research while

exploring some of the introductory yet important and relevant concepts. Understand-

ing the base anatomy of referenced fields such as complex networks, graph theory,

and machine learning is a crucial step to accurately and efficiently process each step

in this research. Furthermore, since machine learning has been a core component

to build various predictive models throughout this research, the data structure and

feature sets are also equally important and carefully defined in this section. Addi-

tionally, since transfer learning is one of the finalizing components of this research

and relies on pre-trained models, it is important to have a solid foundation on how

transfer learning works, why it is important in this research and what it requires to

function.

scores. On the one hand, these potential conflicts are sources of inconsistency. On the other hand,
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their existence means there are individual differences between various users that should be accounted

for when generating walkability measures.
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Figure 2.2: There are 1050 user-submitted locations with 852 unique locations cover-

ing most of the road network in St. John’s, NL. This figure shows a large portion of

the crowd-sourced data collected through the web-tool platform. Purple points rep-

resent unique nodes, whereas red, yellow and green points represent the low, medium

and high frequency of user opinion overlaps respectively across user-submitted data.

Generated through RStudio [103] Version 1.2 from rstudio.com.
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Chapter 3

Graph Reduction and

Reconstruction

This chapter involves an in-depth examination of road network structures, graph re-

duction and reconstruction methods for road networks. This work was published and

presented at the 2020 International Conference on Computing, Networking and Com-

munications [5]. The published paper is slightly revised for flow in this dissertation

document, and the introduction is shortened.

Over a decade ago, a significant issue with computing measures such as walkability

was the lack of data. As we walk through the age of data explosion and exploration,

lack of data, a long-standing matter, is no longer an issue. Fortunately, road network

data is abundantly available today from various sources such as Statistics Canada

[113] and OpenStreetMap [91] making analytical studies on road networks much more

accessible. However, as data expands, analyzing larger regions requires much more

processing power and computational time. Especially when working with networked
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data, as the availability of data increases, so does the connectivity and complexity of

the network.

However, since most popular and existing algorithms to measure importance are

already very efficient yet too complex to process large networks, researchers are yearn-

ing for alternative methods to decrease the long computational time required to ana-

lyze large networks. Specifically, when analyzing road networks, although processing

small neighbourhoods may be accomplished quickly, when processing larger regions

such as a city, province/state or even an entire country, the complexity of the net-

work requires much more than a day-to-day personal computer and much longer than

mere hours to process the network. For example, when considering the computa-

tional time required to calculate the betweenness centrality, with the complexity of

O(|V |2 log |V |+ |V | ∗ |E|), for a road network covering downtown Toronto which con-

tains 479,520 nodes and close to 1 million edges, on a 2012 MacBook Pro with 8GB

of RAM, an SSD drive and an Intel Core i7 quad-core processor clocking at 2.7GHz,

an approximate five days (or 121 hours) of processing was needed to complete the

task. This research approaches this problem with a simple yet powerful solution: a

reduction-reconstruction hybrid system.

This work incorporates graph reduction and centrality interpolation while utilizing

some already-efficient complex networks centrality algorithms to produce ready-to-

analyze road centrality scores for the entire given dataset while reducing the required

computational time compared to the conventional algorithms that do not use reduc-

tion. Furthermore, the produced road scores can be applied to non-network charac-

teristics such as amenities and POIs, elevation, road type, road condition and road

structure to have accurate walkability scores.
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To produce accurate road centrality scores based on their connectivity and to

enhance computational time for road network analysis and reduce network’s com-

plexity, the network is reduced (Section 3.1) while preserving its original structure.

The reduced graph’s centrality scores are then calculated and used to reconstruct the

original network using interpolation (Section 3.1). During the reduction step, the

number of nodes in the graph decreases, which helps reduce the complexity of the

road network and the computational time when measuring centrality. This reduction

is particularly important when using centrality algorithms with higher computational

complexity, such as those calculating the shortest paths [88] between all nodes in the

network, which will require longer computational time. As this graph reduction al-

gorithm results in a smaller network by removing many “less-important” nodes from

the original graph, centrality scores computed for this reduced graph do not cover the

entire original road network, leaving some informational gaps. To address this short-

coming, linear interpolation techniques are used to fill in the blanks. The final road

scores from these techniques will cover all the nodes from the entire road network,

yet the computational time is noticeably reduced.

3.1 Graph Reduction

When working with reduction, a balance between properties to retain and those to

reduce needs to be maintained to keep the network’s structure intact and avoid loss of

crucial information, which could produce unusable results. Road networks generally

contain multiple points within each road. These points have the following degree

properties:
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1. degree of 1: representing the beginning or the end of the road,

2. degree of 21: representing points on the road that are only connected to two

other points on the same road,

3. degree of 3 or more: representing points where the road intersects with other

roads.

Nodes with a degree of 1 and those with a degree of 3 or more hold the key to

preserving the structure of the network. Connected nodes with a degree of 2 that are

within the same road, in most cases, have a closely associated importance which can

be interpolated (Section 3.1) from nearby nodes. This definition of properties is used

to choose what nodes to remove and what nodes to retain to ensure the removal does

not impact the network’s core structure.

In Algorithm 1, Graph reduction, vertices v with a degree of 2 are split into two

path searches beginning from each of v’s two degrees: v0 and v1. Each path includes

continuous occurrences of immediate vertices with a degree of 2. Once a vertex with

a degree other than two is reached, it will be selected as the head (path with v0) or

tail (path with v1) vertex, and the search stops. All nodes within these paths are

removed, and an edge between head and tail is added to represent the reduced path.

1if the road ends to or begins from another road, that point will be shared by the secondary

connected ways element.
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Algorithm 1 Graph Reduction

Input: G

Output: Gr

1: for all vertices v in G do

2: if v not reduced then

3: if v has degree of 1 then

4: tail = v0 {in this case v’s only degree}
5: if v0 not reduced then

6: [tail, weight] = EndFinder(G, v0, v)

7: addEdge (v, tail, weight) to Gr

8: else if v has degree of 2 then

9: mark v as reduced

10: head = v0

11: tail = v1

12: if v0 not reduced then

13: [head, head weight] = EndFinder(G, v0, v)

14: if v1 not reduced then

15: [tail, tail weight] = EndFinder(G, v1, v)

16: weight = head weight + tail weight

17: addEdge (head, tail, weight) to G2

18: else

19: for all neighbours n of v do

20: if n not reduced AND n’s degree != 2 then

21: addEdge (v, n, 1) to G2

Algorithm 2, EndFinder, a variation of the depth-first search algorithm, takes

in graph G, start and root vertices, and finds a path, if any, where all its vertices

have a degree of 2, and returns its end-point vertex. To verify that the reduction

algorithm maintains the original structure of the road network, small real-world road
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networks were collected (such as downtown St. John’s, St. John’s east end and

St. John’s west end), processed and reduced. The original and reduced networks

were physically visualized on the map, for example, Fig. 3.1, to visually inspect

the networks’ structure. To further verify the accuracy of the reduction algorithms,

numerous artificial graphs were created, for example, Fig. 3.2, to consider different

scenarios and special cases. Each artificial graph is carefully designed and measured

to act as a benchmark and compare its non-reduced and reduced results.

Algorithm 2 End Finder

Input: G, start, root

Output: [end vertex where path reduction ends, weight]

1: add start to stack

2: mark root as visited

3: weight = 0

4: while stack is not empty do

5: vertex = stack.pop

6: increase weight by 1

7: if vertex is not visited then

8: if vertex degree != 2 then

9: return [vertex as end point, weight]

10: mark vertex visited & reduced

11: update stack with vertex degrees that are not visited

Once reduction is complete, Gr will contain a similar number of roads but fewer

vertices. Any centrality calculation performed on the reduced graph Gr should be

noticeably faster than those performed on the original graph G. The proposed re-

duction method, on average, reduces the number of nodes by 77%, and although the
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Figure 3.1: Original road network (left) vs. reduced graph (right). The reduced graph

still preserves the original graph’s structure, including all roads; however, there is a

loss of information such as road curvature refinement caused by removing nodes from

the original graph. This figure covers a small section of downtown St. John’s with 30

roads and 85 nodes. The reduced network, while maintaining 30 roads, contains only

44 nodes. The top image represents the original graph over a standard OSM map

layer. Generated by QGIS [98]. 90



(a) (b)

(c) (d)

Figure 3.2: Sample artificial graphs. 3.2a: a single acyclic path with 1000 nodes.

3.2b: two paths each with 501 nodes, a total of 1002 nodes. Every second node of

the two paths is linked. 3.2c: a single cyclic path with 1000 nodes. 3.2d: two cyclic

paths that share a single node. Each cycle has 500 nodes with a total of 999 nodes.

The Figure is drawn by the author.

structure of the graph is kept mostly intact (Fig. 3.1), there is a significant loss of

vertex data. Due to this loss of vertex data, reduced vertices should be placed back

after the reduction is complete and have their centrality scores approximated to re-

construct a complete graph. To take advantage of the reduced complexity and yet

produce centrality scores for a complete graph, an interpolation method is used to

reconstruct the reduced graph.

3.2 Graph Reconstruction

Graph reconstruction is a way of constructing new data points and reconstructing

removed or missing data points, within the range of a set of known data points
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using interpolation. There are various types of interpolation such as polynomial

interpolation [13] and spline interpolation [33, 106]. Linear interpolation [15] is

used in this work to simplify the computation yet reflect the weight geographical

distance carries over centrality computations. Given two coordinates (χ1, µ1) and

(χ2, µ2), the µ interpolation for some point χ is defined as µ = µ1 + (χ − χ1)
µ2−µ1

χ2−χ1
.

To interpolate centrality χi where i is a reduced vertex, given two of its closest “un-

reduced” neighbors lying on the same road as i, on each side, the following is used:

χi =
δ(i,n1)

δtotal
× ζn1 +

δ(i,n2)

δtotal
× ζn2

where δ(i,n1) is the distance between nodes i and n1, δ(i,n2) is the distance between

nodes i and n2, and δtotal is the total distance between n1 and n2, ζn1 is n1’s centrality

and ζn2 is n2’s centrality. The distance between i and each end-point n1 and n2

determines the nodes’ influence on i’s interpolated centrality. The closer each node

is to i the more influence it will have in interpolating i’s centrality. There are 3 steps

to measure the distance used in this interpolation:

1. computing the physical distance of each neighbouring vertices within the same

road during the data processing step (graph construction),

2. calculating the total distance between the head vertex and the tail vertex as a

path going through all points connecting them, during the reduction step,

3. computing individual distances for specific vertices on the same path during

interpolation step.
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3.3 Results

Table. 3.1 includes a small sample of datasets used for testing and verification. The

algorithms can reduce the number of nodes, on average, by 77% while preserving

the original network’s structure, and the application of most centrality measures

such as betweenness centrality and closeness centrality performed over the reduced

network is completed considerably faster. Additionally, the interpolated centrality

scores showed 89% accuracy on average. A few select test networks were chosen to

verify the accuracy of the interpolated values. They had various centrality measures

computed for both their original and reduced forms and compared the final results.

The entire graph reduction and reconstruction process take O(n2).

Number Number Number

Road network of roads of nodes of nodes reduction

after reduction

Artificial-A n/a 1002 498 50.3%

Artificial-B n/a 999 1 99.9%

Artificial-C n/a 1000 1 99.9%

Artificial-D n/a 1000 2 99.8%

Partial Toronto 32,450 142,267 51,123 64%

St. John’s metro 11,016 105,475 14,034 86.7

City of St. John’s 3,442 21,330 4434 79.2%

Table 3.1: Reduction results

Table 3.2 shows the betweenness and closeness centralities applied to three dif-

ferent road networks. As evident, the computational time for centrality measurement

has been reduced significantly using the reduction and reconstruction techniques. As

93



Road network Betweenness Betweenness Closeness Closeness

on original on reduced original reduced

Partial Toronto 121:00 hrs 6:08 hrs 32:54 hrs 1:52 hrs

St. John’s metro 41:00 hrs 2:09 hrs 9:55 hrs 0:35 mins

St. John’s City 01:22 hrs 00:04 mins 00:26 mins 00:01 min

Table 3.2: Reduction Computational time

linear interpolation methods were used, interpolating centrality scores for the reduced

vertices is done very quickly and in linear time and the added time due to the inter-

polation process is almost negligible. Fig. 3.3 shows two heat maps generated for St.

John’s downtown road network. The heat-map on the left is generated from the orig-

inal network (full coverage). In contrast, the heat-map on the right is generated from

the reconstructed version of the reduced graph (with significantly smaller coverage)

by applying interpolation to measure the missing centrality scores. The figure shows

that the interpolated results are very similar to the original results.

Fig. 3.4 represents four different centrality measures computed for the city of St.

John’s. Betweenness centrality scores appear to be the closest to potential walkability

scores, which are measured based on locally observed data. This similarity is likely due

to how Betweenness centrality measures importance by highlighting each road’s role

in allowing traffic to pass from one part of the road network to another. Furthermore,

in Fig. 3.5 bottom left plot, which represents centrality correlation for a small road

network, as expected, there is a constant and noticeable positive correlation between

most centrality measures. However, in Fig. 3.5 bottom right plot, which represents

the centrality correlation of a larger road network, little to no correlation between

these centrality measures is observed. This finding holds for many different sample
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Figure 3.3: Comparison between the original graph (top left), the reduced graph (top

right), and the complete interpolated centrality after reduction and reconstruction

(bottom). Heat maps represent road scores for downtown St. John’s and are closely

similar, albeit one generated through reduction and reconstruction. (Generated by

QGIS [98])
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Figure 3.4: Top left: Betweenness centrality. Top right: Closeness centrality. Bottom

left: hubs and authority centrality. Bottom right: page rank centrality. Visualized

through Google Map.
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Figure 3.5: Top left: Betweenness vs Closeness centrality correlation comparison.

The X-axis represents Betweenness centrality scores, while Y-axis represents Close-

ness centrality scores. Top right: Betweenness vs PageRank centrality correlation

comparison (By Cytoscape [30]). X-axis represents Betweenness centrality scores

while Y-axis represents PageRank centrality scores. Bottom left: correlation for a

small road network of 85 nodes. Bottom right: correlation for a larger road network

of 21,330 nodes (By RStudio [103])

.
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test road networks covering small and larger sections of St. John’s and Toronto. This

phenomenon was an expected side-effect of the number of connected and disconnected

components in each network. Some centrality measures, such as Closeness centrality,

use the inverse of the distance, which could be infinite in the case of disconnected

components turning the inverse to a very small number. Many small hand-picked

road networks contained only a single connected component, such as multiple partial

road networks covering downtown St. John’s, east end and west end of St. John’s,

all containing only a single connected component. However, this was not the case

for larger networks such as the road network for the entire city of St. John’s, which

contains 49 components.

Although one may assume a road network should always be a single component,

making all roads connected, there are special cases such as when certain roads are

not connected to the rest of the road network, such as race tracks, runways, roads

in small islands that are only connected to the mainland by ferry lines, etc. The

giant components of the networks where all the roads are connected were selected to

address this. For example, an instance of Newfoundland’s road network containing

21,330 nodes within 49 components was selected and determined to hold the majority

of its nodes within its giant component, leaving only a few hundred nodes distributed

among 48 components. To verify if using a single giant component will address the

low and sometimes non-existing correlation between different centrality measures in

larger networks, road data was filtered to contain the nodes from only the giant

component. However, similarly, low correlation results between various centrality

measures were observed even after removing all disconnected components. Notably,

in the case of the partial road network for the province of Newfoundland, as seen in
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Figure 3.6: Correlation list for a larger road network containing 21,330 nodes. This

figure is based only on the single giant component of the network that contains 20,975

nodes before reduction and 4,206 nodes after reduction. (Generated by RStudio [103])

Fig. 3.6, although the correlation is still similar, a small decrease is noticeable for the

single giant component.

Road network Reduction time Interpolation time

Partial Toronto 01:33 hr 00:15 mins

St. John’s metro 00:36 mins 00:07 mins

St. John’s City 00:03 mins 00:01 mins

Table 3.3: Interpolation Computational time

Using the reduction algorithms in this research, the ability to reduce a significant

number of nodes in various road networks was achieved, which led to a substantial

reduction in the required computational time and saved countless hours, possibly

days of computation, as evident from Table 3.2. Although to ensure accurate results
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are produced, the network structure needs to be kept intact during the reduction

step, limiting vertex reduction. However, a significant reduction of 77% on average

was achieved. Furthermore, to produce results for the entire network, specifically to

address the removed vertices, a variation of linear interpolation was used, maintaining

an accuracy of 89% on average. Though interpolation requires additional time to

compute, the computational time for interpolation (Table 3.3) is almost negligible

since it runs in linear time.
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Chapter 4

ALF-Score: a Predictive

Network-Based Walkability System

This chapter involves an in-depth definition of the ALF-Score walkability measure,

which utilizes road network structure and machine learning to generate spatially high-

resolution walkability scores derived from user opinion. This work has been submitted

for publication. The paper submitted for publication is slightly revised for flow in

this dissertation document, and the introduction is shortened.

Since there is no known predictive walkability measure, this research will devise

an entirely new approach to measure walkability scores to bring a fresh take on

how people consider locations walkable or otherwise. This approach allows the use

of various essential features, currently not utilized, to help better understand our

surroundings and map different locations together based on their similarities and

characteristics. A predictive approach helps move into the highest possible spatial

resolution, point—level, and ease into downscaling and upscaling processes when
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applied to various resolutions such as partial road networks, DAs, neighbourhoods,

districts, etc.

One of the key elements of predictive walkability lies in its contribution, which

opens the door to many new possibilities such as the capability of building a platform

to provide personalized walkability based on individual’s profiles (explored in the next

chapter) where users’ observations and demographics can be infused with individuals’

opinions into building predictive and personalized models. These models can identify

user patterns and compensate for the output to best fit the user’s profile to bypass

traditionally time-consuming and resource-intensive processes.

The overall ALF-Score pipeline (shown in Figure 4.1) requires various data inputs

and processes. However, since ALF-Score is a network-based walkability measure, an

essential step in this pipeline is to utilize road networks and other road characteris-

tics better. To this end, ALF-Score incorporates a map database derived from the

road network and POI inputs extracted from OpenStreetMap and Statistics Canada.

Other GIS features such as road embedding and various centrality measures were later

generated from the road network structure and used as additional road-network-based

features. In addition, crowd-sourced user opinion is collected through the web-based

data collection platform, specifically developed for this purpose. The web tool allows

the collection of user opinions within groups of 5 locations, all of which are only

relative among their respective groups. The crowd-sourced data is then processed

through the Generalized Linear Extension of Partial Orders (GLEPO) algorithm in

such a manner that the relative structure of each submission is converted into a global

view within all user submissions. GLEPO’s output of user ranking alongside the GIS-

derived features are then fed into the supervised machine learning pipeline to train
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predictive models capable of estimating walkability score for any given point within

the road network that falls within the map database coverage.

4.1 Crowd-Sourcing Platform

To further expand on the crowd-sourcing platform and the collected data, which play

crucial roles in providing the required user opinion, first, how the data collection takes

place is explored, followed by the reasons behind this approach. To have the ability

to collect accurate user data and ensure data completeness while reducing bias, a web

interface was developed capable of collecting various information from volunteer users

such as walkability order of 5 randomly selected locations (relative ranking among

only the 5 locations), users preferred walkable distance, their age group, gender,

if users live alone, have children, their occupation, and a few other browser-agent

details that are publicly available (such as users browser type, operating system,

etc.). The web interface shown in Figure 4.2 top displays an interactive map with five

randomly selected locations marked as {A,B,C,D,E}. Every time the web page is

reloaded, Five randomly selected locations are chosen from a given geographic area.

The coverage is tied to a pool of nodes derived from the map database, specifically the

road network structure of the region. Users can zoom in and out, pan around each area

and see various POIs, landmarks and region-specific information set automatically by

Google Maps within the display area.

Various randomization methods are introduced to ensure an evenly distributed

coverage of node labels and user opinions across the given geographical area. Users

can reorder the ranking of the 5 locations by moving them up or down based on
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Figure 4.1: ALF-Score utilizes various GIS features such as road network structure,

POI, and features derived from road networks such as various centrality measures and

road embedding. GLEPO’s linear extension of user opinions that produces a global

view of relative user opinions is then aligned with the GIS features as an input to

the supervised machine learning processes. Walkability estimates produced through

trained models will have a high spatial resolution, represent users’ opinions, and

provide better insights into different regions and neighbourhoods. (Figure is drawn

by the author.)
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Figure 4.2: The interactive web-based data collection platform (top - Map generated

by Google Map, screenshot taken from alfosool.com) has been deployed with road data

from various cities in Canada. Displayed here is the city of St. John’s, NL. Total 1050

(bottom left1) rankings were received from participants showing a well-distributed

data collection. Some locations were ranked multiple times (bottom right2) by various

participants. It is observed that the maximum number of conflicts in this scenario

is 3 per location with very little occurrence. (1,2: Maps generated through RStudio

[103] Version 1.2 using mapview package from rstudio.com.)
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how they perceive the relative walkability of the shown locations among each set

of 5 locations. This approach reduces a potential cognitive challenge and allows

users to use their intellect and knowledge of the city while exploring a diverse set of

possible locations in the region. The relative rankings are then submitted as groups

of 5 locations to the server for downstream processing. Given the random-selection

nature of the web tool, the 5 (unique) locations randomly selected by the web tool

can overlap across different sets, users or even different submissions of the same user.

On the one hand, the overlaps provide common references among submission groups.

On the other hand, the submission groups will likely accumulate perceived conflicts

across their relative rankings. In Figure 4.2 bottom right, all locations with two or

more associated submissions leading to conflicts are highlighted.

The decision to collect the data labels as a combination of relative rankings and

not absolute scores (e.g. ranking every 5 locations between a fixed range such as

0-100 where the same rank may apply to other locations) was made to reduce bias,

conflict and variability in the data while incentivizing the participants to make a

precise decision to determine which of the given 5 locations would be most or least

walkable and order the locations as deemed appropriate. While absolute scores are

easier to use, each individual may have a completely different rationale for why a

location has been ranked the way it is, such as a walkability score of 65 and not

40. Utilizing relative rankings takes that factor out and helps narrow the focus on

the most important factor: whether location A is more walkable than location B for

a given individual. This way, there will be a concise approach to determine each

individual’s perception towards walkability when comparing different points together

over the responses of all users. Conflicts are unavoidable and lead to inconsistencies
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among user opinions. The challenge here is to balance the opinions collected from

users to yield a walkability metric that represents an average user opinion. User

opinions collected maintain a unique form observing only relative orders within each

submission of 5 locations and therefore do not represent the global view among the

overall data. Due to this and the nature of the conflict resolution, the problem remains

in the NP-complete space, and therefore, there is a need to devise a new approach to

handle conflicts and represent user opinions within a global perspective.

4.2 Generalized Linear Extension of Partial Or-

ders - GLEPO

Generalized Linear Extension of Partial Orders or GLEPO, is an algorithm devised

and developed in this research specifically to process the relative approach of user

opinion label collection. GLEPO produces a generalized list of all user opinions in

total order and absolute ranks to represent relative ranks of small submissions within

a global observation of the overall data. This conversion is especially important as

the users rank locations within small groups of 5 nodes. The order/rank of the nodes

in these small groups remains unique and only relative within the same group of 5

locations. Rankings ori between 1 − 5 are relative only within their own set of 5

nodes where i ranges between 1 and the total number of nodes in a single submission

(5). The ori relative rankings similarly apply to all user submissions within S. Each

Sj submission maintains five nodes holding a unique rank between 1 − 5 where j

ranges between 1 and the total number of submissions. ori is completely localized at
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this stage and in no relationship with nodes from other submissions. To correctly

utilize user data in conjunction with their submitted rankings and find the missing

link between various submissions, an approach was devised to evaluate and establish

a unified relationship between all nodes within the user-submitted data.

The first step of GLEPO is to group the submissions into multiple lists Sj con-

taining 5 nodes {v1, v2, v3, v4, v5} each. The next step is to detect anchor nodes.

Anchor nodes are defined as those commonly reoccurring nodes that naturally repeat

in various submissions. For instance, in the submissions x = {n1, n2, n3, n4, n5} and

y = {n6, n7, n3, n8, n9}, the node n3 would be considered as an anchor node defining a

connection between submissions x and y. GLEPO algorithm uses anchor nodes to de-

fine connections between two or more submissions. The reason behind this approach

is to narrow down an approximate positioning between various nodes if there is an

anchor node(s) connecting them in two or more submissions. Submissions may have

none, one or more anchor nodes. For instance, in the example above n3 is the only

anchor node, but it also happens to be in the centre of both submissions x and y.

Therefore, {n1, n2} must fall before {n8, n9} and similarly {n6, n7} must fall before

{n4, n5}.

The main routine (Algorithm 4) iterates through the user data to form one pos-

sible variation of a newly sorted global list. When an anchor node is detected, the

submission containing the anchor node is passed along to the addToSorted() function

to be evaluated and decide where the node entries within that submission should be

placed. This process helps appropriately address the anchor nodes’ associated rela-

tionship regarding nodes’ ranks while sorting the entries based on their user-submitted

order. However, when multiple anchor nodes are detected, special conditions may be
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invoked within the addToSorted() function that determines the best course of action.

GLEPO’s sorting subroutine (Algorithm 5) parses the passed submission where

one (or more) anchor node(s) has been detected. The core of this algorithm revolves

around determining the number of anchor nodes, their positions within the current

submission and associated position in the partially sorted list, and invoking the ap-

propriate case associated with each condition. There are four main conditions, two

of which are associated with detecting only a single anchor node positioned either at

the beginning or the end of the submission in process. The third condition is applied

when the anchor node is not at the beginning or the end of the submission in-process

and applies to two cases: 1) if only a single anchor is detected, or 2) multiple anchors

detected but the anchor in the process is the last. The final case accounts for all other

conditions. Each case determines the segment or segments of the submission in the

process that requires insertion into the global list. These segments are then passed

to another subroutine for insertion into the list.

Algorithm 3 Grouping user data by submission

Input: Original User Submission Data

Output: User Data Organized By Submission

1: initialize subs grouped as an empty list

2: for every entry in user data do

3: if subs grouped contains an item with similar submission id then

4: append the new row to the existing sub list

5: else

6: append the new row to a new sub list.

7: return subs grouped list
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Algorithm 4 GLEPO: Main Routine

Input: User data organized by submission: subs grouped

Output: List of sorted user data entries: sorted entries

1: initialize sorted entries as an empty list

2: initial randomization by shuffling subs grouped

3: for every submission group sub g in subs grouped do

4: if sorted entries is empty then

5: for every submission sub in sub g do

6: append sub to sorted entries

7: else

8: for every submission sub in sub g do

9: if submission node exists in sorted entries then

10: add submission to list of anchor nodes.

11: if anchor node(s) detected then

12: pass sub g and anchor list to addToSorted() function

13: else

14: pass sub g to FindV Link() function

15: return sorted entries list

Due to the structure of the data input and the nature of the algorithm, and if any

variation in the order the input is fed into the algorithm is detected, a potentially

different order of the global list is expected after every run of the algorithm. For

example, the order of submissions and the nodes can affect the decision-making pro-

cesses of the algorithm when conflicts are detected. Due to this, two randomization

components were introduced to the process. The first randomization component is

applied within the main subroutine (Algorithm 4), which randomly shuffles the order

of appearance in all submission inputs. The second randomization component is in-

voked through the sorting subroutine (Algorithm 5), which randomizes the locations
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Figure 4.3: Three examples of many artificial networks created to represent various

possible scenarios of user submissions and conflicts. Left: graph of 2 submissions

(each with five nodes) containing two anchor nodes, ‘4’ and ‘2’, forming a loop.

Center: graph of 3 submissions with four anchor nodes. Right: graph of 2 submissions

containing two anchor nodes ‘1’ and ‘5’ falling on two extreme ends. (Figures are

drawn by the author.)
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that nodes are inserted into the global list by determining all appropriate positions

and randomly choosing one to insert the node in the process. Further details on

how the randomized insertion is used can be found in the Algorithm 6. With the

randomization introduced, the entire GLEPO process requires running multiple it-

erations until the order of nodes within the global list converges. This convergence

is associated with the order of how each node appears within the global list in each

run. The main process averages every node’s order throughout all iterations and de-

termines the final order under which each node falls after multiple iterations. Due to

this approach, various nodes may have a similar ranking which is the expected result.

GLEPO has been tested over numerous numbers of iterations such as 10, 30, 50, 80

and 100 iterations. It was observed that with 30 iterations and onward, the order

of nodes appearing in the generated global lists starts to converge and yield a stable

result.
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Algorithm 5 GLEPO: Sorting Subroutine

Input: Submission group sub g alongside its list of anchor node(s)

Output: Updates: sorted entries

1: set current pointer to 0

2: for every anchor node do

3: if it’s the only anchor and is positioned at the beginning of sub g then

4: set segment to all 4 elements to its right

5: pass segment to RandomizeInsertion() function

6: else if it’s the only anchor and is positioned at the end of sub g then

7: set segment to all 4 elements to its left

8: pass segment to RandomizeInsertion() function

9: else if it’s the last anchor but positioned in the middle of sub g then

10: set left segment to all elements to its left

11: set right segment to all elements to its right

12: pass left segment to RandomizeInsertion() function

13: pass right segment to RandomizeInsertion() function

14: update current pointer

15: else

16: set segment to all elements between current pointer and anchor’s position

17: pass right segment to RandomizeInsertion() function

18: update current pointer

19: return sorted entries list

An important step here is to ensure GLEPO can handle special cases, no matter

how rare their occurrence may be. To this end, various artificial networks were

created to present different scenarios within the user submission dataset. Each of these

artificial networks was converted into a graph and processed by GLEPO. The resulting

output was tested and verified to ensure the algorithm always returns results with

the least possible inconsistency (defined later in this chapter). In Figure 4.3, three
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artificial networks are demonstrated to verify GLEPO’s accuracy and consistency.

A few possible (and correct) outcomes are observed for each graph. For example,

in Figure 4.3 right, node 5 is the highest-ranked node among the two submissions,

whereas node 1 is the lowest-ranked node among the two. Therefore, based on users’

opinions and the limited information given by only these two submissions, node five

should be ranked the highest and node one the lowest. In this example, all other nodes

could form several different orders as long as they remain true to their respective

submission. To name a few possible outcomes [1, 2, 3, 4, 6, 7, 8, 5], [1, 6, 7, 8, 2, 3, 4, 5]

and [1, 2, 6, 3, 7, 4, 8, 5] are all potential lists. Node 1 maintains the least rank, while

node 5 is the highest in all generated outcomes. It is further observed that nodes

from each submission always follow their original order of [2, 3, 4] and [6, 7, 8]. It is

important to reiterate the significance of the randomization component and how it

will help form a uniform distribution of nodes into positions within GLEPO’s output

that are most appropriate, especially when there is no anchor node to establish a

direct connection between various nodes.

To ensure the sorted list remains true and consistent with the users’ submitted

rankings, its consistency to the original user data is examined. Each user submis-

sion consists of 5 nodes ⟨v1, v2, v3, v4, v5⟩, where each node vi (i = 1, 2, 3, 4, 5) has a

ranking r denoted ori , (“order”) between 1 and 5. The rank ori defines users’ assigned

order to each node concerning the other four nodes within that submission. When

GLEPO sorts the nodes from all submissions into a unified global list, the most nat-

ural approach to check for any inconsistencies is to compare and verify the order of

all nodes in their original user submissions with that appearing in the global list.

Suppose the order of the five nodes in each original submission remains intact and is
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the same as that appearing within the global list. In that case, the nodes within that

submission are considered consistent with the original user’s opinion. However, if the

order differs, all out-of-order nodes are counted, amounting to a value representing its

inconsistency, which is done by pair-wise comparison of each submission appearing

in two separate lists: 1) a list in the original order submitted by the user, 2) a list in

the order appearing in the sorted list.

Based on the earlier definition of anchor nodes, submissions containing one or

more anchor nodes become anchored. In contrast, those submissions without an

anchor node are defined as Constrain-Free submissions. Based on this definition, two

possible challenges are faced with GLEPO on how well-anchored the submissions are

concerning user data: 1) over constraining, 2) under constraining. Over-constraining

occurs with excessive conflicts and inconsistencies through anchor nodes when adding

new nodes to the general list. For example, when the majority of the submissions

have multiple conflicts with multiple submissions, over-constraining is faced. With

more crowd-sourced user opinion comes more potential conflicts and disagreements.

A natural solution to this is the embedded randomization of GLEPO over multiple

iterations to ensure a good distribution within the input set and the node insertion.
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Algorithm 6 GLEPO: Randomized Insertion Subroutine

Input: Current list of sorted entries, minimum insertion range, maximum insertion

range, list of elements to insert

Output: Updates: sorted entries by randomly inserting new elements within the

given range

1: if the size of the list of elements to insert is less than the range between min and

max then

2: for the size of the list of elements to insert, generate random numbers within

min and max range

3: sort the generated random indexes

4: for a range between 0 and the size of the list of elements to insert do

5: insert an element of the list into sorted entries at the position within the

generated numbers

6: else

7: for the size of the range between min and max, generate random numbers

within the size of the list of elements to insert

8: sort the generated random indexes

9: for a range between 0 and the size of the range between min and max do

10: insert an element of sorted entries at selected position into the list of ele-

ments to insert at the position within the generated numbers

11: replace elements of sorted entries within min and max range with an updated

list of elements to insert

12: return sorted entries list

Under constraining, on the other hand, occurs when there is an insufficient number

of connections (or anchors) among user submissions. This lack of anchored submis-

sions leads to an inability to establish accurate associations among submissions. These

associations enable the algorithm to present the data within a global list that reflects

the global view of all users concerning one another. The majority of the user sub-
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missions within the crowd-sourced data used in this research do not have an anchor

node and are constraint-free, leading to under-constraining. Two main approaches are

considered when addressing this challenge, both of which are complementary and can

be done concurrently. The first is the collection of more user data. Second, through

creating virtual anchor nodes or virtual links. The virtual link is defined as an ar-

tificial connection between two or more submissions created specifically to associate

constraint-free submissions that do not have any naturally-occurring anchor nodes.

Virtual link utilizes geographical proximity to establish a virtual connection between

a single submission and the partially complete global list by determining the closest

node(s) (or shortest physical distance) between the two. The algorithm 7shows the

approach taken to create virtual links. This subroutine is called through the main

routine whenever a submission without an anchor node is detected.
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Algorithm 7 GLEPO: Virtual Link Subroutine

Input: Current list of sorted entries, submission group sub g, distance matrix of all

nodes

Output: Create a virtual link for the given sub g and updates sorted entries ac-

cordingly

1: set the desired threshold - maximum distance to consider a virtual link

2: initialize main shortest distance to a very high number

3: for every element in sorted entries do

4: find element’s distance to all 5 nodes within sub g

5: if shortest distance among the 5 is shorter than main shortest distance then

6: set main shortest distance to new distance

7: set main shortest node to associated node

8: if main shortest distance < threshold then

9: treat main shortest node as an anchor node

10: pass sub g and main shortest node to addToSorted() function

11: else

12: pass the entire sub g to RandomizeInsertion() function

13: return sorted entries list

4.3 Active Living Feature Score - ALF-Score

The Active Living Feature Score or ALF-Score is a novel measure of walkability

that aims to create a better scoring system capable of generating walk scores at a

much higher spatial resolution (point level) that are representative of user opinions

and more informative to most individuals. ALF-Score takes a user-centric approach

instead of the traditional researcher-centred approach. ALF-Score aims to utilize

road network structure and characteristics better and derive node features defined

by various road characteristics and their direct and indirect associations that can
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consider how the underlying road structure can influence neighbourhood and city

structure and walkability scores. ALF-Score employs user-based parameters such as

users’ opinions of walkability to represent users’ perception better and provide user-

derived scores of what individuals perceive as various degrees of walkability.

At the core of the ALF-Score pipeline lies various machine learning approaches

and methods to train machine-learned models capable of estimating numeric val-

ues defining how walkable specific points on the map are, based on various feature

combinations that include road network, road embedding and POI features. This

approach would help estimate walkability scores based on node characteristics. The

input maintains a combination of various features derived from road structure and

POIs generated by different methods while user opinion acts as training labels. It

is essential to highlight that raw user opinions are not directly used as labels but

instead processed through GLEPO with the resulting list representing user opinions

within a global view among all participating users, which are used as the labels for

various machine learning techniques. The ideal outcome is to avoid calculating walk-

ability scores individually for every single point on the map and have the ability to

accurately estimate point-specific scores from only a small sample of crowd-sourced

labelled data. The output of the machine learning pipeline would be a trained model,

and the model’s output will be walkability score predictions for given nodes. The

score will define how walkable users may find the given node (location), an output

normalized between 0-100.

When it comes to the machine learning pipeline, and since the goal is to estimate

continuous numerical output (walkability scores) based on numerical features (some

converted from other types such as categorical, ordinal, etc.), this would make up
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for a node regression problem. To address a regression problem, there are many

possible approaches such as linear regression, random forest, support vector regression

(SVR), and multi-layer perceptron neural network (MLP), which are explored in this

research. The prediction input variables describing data features are represented as

{x1, x2, x3, . . . , xn} while the output is represented by y. To train the model, labelled

sets are defined as {features, label} : {x, y}. Given an unlabelled set {features, ?} :

{x, ?}, the expectation from trained models is to produce y′. The models, defined

by internal parameters learned through the process, map unlabelled example sets to

predicted value y′. Additionally, since some of the features are not numerical (e.g.

categorical or ordinal), one hot encoding has been used where applicable to convert

non-numerical features into appropriate numerical entries. The developed machine

learning pipeline has five primary components: 1) GLEPO, 2) consistency measure

and verification, 3) feature selection, 4) model training, and 5) model validation.

The model’s output, walkability scores for given points within the dataset, is

robust and refined with a much higher spatial resolution than other walkability mea-

sures. The nature of the output and its predictive structure can be used to create

interactive interfaces that allow users to visually view walkability scores for any se-

lected areas with as high as point-level resolution. Furthermore, due to the nature of

the model, there is no need to calculate the walkability score for the entire network.

Predictions for small subsets or even the entire network, as needed, can be made

available in a fraction of the time required to calculate the walkability scores using

traditional methods.

The desired walkability function is a global scalar which is consistent across all

nodes with user input. But it is also coherent across all nodes without user input.
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This walkability function is defined as w : V =⇒ R+ where V is a set of vertices and

R is a set of user rankings. The performance metric of w is based on consistency

with user rankings R. Specifically, the performance metric considers user ranking

r ∈ R involving a set of 5 nodes {v1, v2, v3, v4, v5}. Ranking r gives each node vi

(i = 1, 2, 3, 4, 5) a rank denoted by ori (i.e. the “order” of node vi as they appear in

user ranking). Similarly, walkability w would also imply vi (i = 1, 2, 3, 4, 5) a rank

denoted by owi (i.e. the “order” of node vi as suggested by w). Furthermore, the loss

function of w for r, or the “inconsistency” between r and w, can be defined as

L(r, w) =
5∑

i=1

|ori − owi |

while the loss function concerning R is aggregate of L(r, w):

L(R,w) =
l∑

j=1

L(rj, w)

That is, the total amount of inconsistency of w as compared to all user-provided

rankings. The aggregate function can take other forms, too, such as mean or multi-

plication. There can also be other ways to define such an inconsistency measure, e.g.

l2-norm or “out-of-order” counts, or Kendall rank correlation coefficient [69]. The

goal is to determine the most appropriate w that minimizes L(R,w), the amount of

inconsistency between w and R. A conversion from “relative” ranking only associated

within a small localized set of nodes provided by a single user to a “global” list of

scores which represents relativity among all users and their provided opinions within

the network with as little discrepancy among R as possible is a crucial step.
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Algorithm 8 Inconsistency Loss Function

Input: sorted grouped list where it maintain the original order as well

Output: Percentage of inconsistency over all user data and its sorted counterpart

1: initialize count mis as 0

2: initialize count sub as 0

3: for every submission group sub g in sorted grouped do

4: initialize list1 as sub g with user-submitted orders

5: initialize list2 as sub g with GLEPO sort orders

6: initialize count as 0

7: for every index1 between 0 and length of sub g do

8: if index1 is not the last index then

9: for every index2 between index1 + 1 and length of sub g do

10: retrieve index3 value at position index2 of list2

11: retrieve the index4 of the order at position index3 of list1

12: if index1 is greater than index4 then

13: increase count by 1 unit

14: add count to count mis

15: increase count sub by 10 units

16: set loss percentage to (count mis× 100)÷ count sub

17: return loss percentage

The improved computational complexities for various algorithms in the pipeline

are highlighted in Table 4.1.

Various machine learning techniques are applied and compared based on various

feature set combinations. The goal is to find the most suitable technique and feature

combination set that produces the most appropriate models predicting accurate walk-

ability scores. The techniques that were used in both supervised and semi-supervised

environments were: 1) random forest, 2) linear regression, 3) decision tree, 4) support
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Table 4.1: The computational complexity of various algorithms in the pipeline.

Method Big-O

Distance Matrix Measurement O(3n2)

AddToSort O(10n)

RandomizedInsertion O(n)

Virtual Link Creator O(4n)

GLEPO O(3n2)

vector regression (SVR), 5) gradient boosting, 6) polynomial features (a non-linear

approach), 7) lasso CV and 8) multi-layer perceptron neural network (MLP). Feature

combinations used are: 1) only POI features, 2) only network features (centrality

measures), 3) only road embedding features, 4) POI + road network features, 5)

POI + road embedding features, 6) road network + road embedding features, 7) all

features.

It is important to point out that ALF-Score is a novel and unique approach with

no similar measure for direct comparison. The success metric when it comes to

determining the accuracy of generated models is based on how close the results are to

user opinions and the general knowledge of the area, based on two main approaches: 1)

using validation and test sets to verify the models, 2) visual inspection and verification

based on local knowledge of various cities. As with most machine learning approaches,

various challenges are observed, especially when keeping the models as generalized

as possible. For example, insufficient data, bias in data collection or processing, and

incorrectly labelled data are challenges that can lead to modelling errors. Overfitting

and underfitting are also two very common modelling errors that occur when the

model’s primary function is too closely fit the data (too well-learned) for the case
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of overfitting or when the function does not capture the prominent patterns in the

data (not enough learning) in the case of underfitting. Overfitting leads to high

accuracy in training results (previously seen data) but leads to significantly lower

accuracy when applied to new (unseen) data. Underfitting, on the other hand, leads

to unpredictable outputs. In both cases, low generalization of the models leads to

unreliable predictions. Furthermore, one of the main challenges this research faces is

that the crowd-sourced data is relatively small. Two directly associated issues are: 1)

potential bias in representation due to lack of variety in participating user groups, 2)

lack of appropriate coverage when it comes to relative walkability scores associated

with various road network structures.

There are many approaches to address these challenges. One of these approaches

used in this research is data split. The core concept of data split is to separate the

labelled data into two datasets: 1) training set 2) testing set. For example, in an 80-20

percent split, 80 percent of the labelled data is assigned to the training set while the

remaining 20 percent form the test set. Typically a 70-30 or an 80-20 percent split is

commonly seen, but various other variations such as a 90-10 and a 60-40 percent splits

are experimented with. It is important to highlight that the labels from the test set

are never shown to the algorithms while training the models. The prediction results

are then compared to the actual results to determine a baseline on the accuracy and

performance of various models. Furthermore, a well-balanced split can make a huge

difference in a well-generalized model, especially when labels are scarce. For instance,

when working with a small set of data, if too much or too little is assigned to either

the training or the test set, the model may not perform well due to a lack of observable

patterns. Additionally, Mean Absolute Error (MAE) and Root Mean Squared Error
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(RMSE) were used to measure each model’s error. Mean Absolute Error (MAE) is

defined as

MAE =

∑n
i=1 |yi − xi|

n

where xi is the actual value, yi is the prediction, and n is the total number of data

points. Root Mean Squared Error (RMSE), on the other hand, is defined as

RMSE =

√∑n
i=1(xi − yi)2

n

K-fold cross-validation [65] is used as yet another method to address this challenge.

K-fold cross-validation is typically done by splitting the dataset into k smaller sets.

One set is selected as the test dataset, and the remaining sets are combined as one

training dataset. Once the model is built, it is evaluated on the test dataset. The

procedure repeats for every other set in k to ensure the entire dataset is utilized

towards building and evaluating the model.

4.4 Results

In total, 668 features (excluding the 12 demographic parameters used in the later

chapters) are used to train various models, with some models trained with a specific

subset of these features. This is done to examine and compare the resulting accuracy

and determine the effects of each feature set on generating walkability scores closest

to that of users’ opinion baseline. The following input parameters are used in the

machine learning pipeline:
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1. Road network data G = (V,E) which covers the city of St. John’s, NL. G

is connected, undirected and unweighted. |V | = 5,341 nodes and |E| = 6,835

edges. Road node features, a mix of numeric, ordinal, and categorical data.

1) POI features with 530 features. These features are derived from 8 separate

OSM categories with 53 total subkeys. Every single key contributes to 10 fea-

tures. Each of these features reflects on a specific geometrical distance range

showing whether that particular key falls within the associated distance of any

node within the network. The geometrical distance ranges from 200 meters to

2,000 meters with 200-meter increments. These 530 features are extended to

every node on the road network. 2) Network features consisting of 10 features,

namely: Betweenness centrality, Closeness centrality, clustering coefficient, de-

gree, eccentricity, neighbourhood connectivity, stress, topological coefficient,

average shortest path length and radiality. 3) Network embedding with 128

features using node2vec [55] technique.

2. Crowd-sourced data. At this stage in the research, there are approximately 40

unique users with |S| = 210, where S represents all user submissions and each

Sj where (j = 1, 2, . . . , |S|) represents a user submission. Each Sj user submis-

sion consists of 5 road nodes ⟨v1, v2, v3, v4, v5⟩. This data collection approach

was chosen (rankings of 5 nodes per submission) with careful considerations.

With a small number of nodes (i.e. 2 locations), there is not enough relativity

among submitted nodes. With too many nodes (i.e. 10 locations), there is a

risk of posing cognitive challenges when users decide rankings between many

locations. To ensure sufficient relativity among submitted data yet avoid cog-

nitive challenges, there need to be enough location nodes to create a balanced
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association among various nodes. There are a total of 1,050 user-submitted

locations among their relative ranks. Of these 1,050 locations, there are 852

unique locations. Leaving 198 “anchor” locations appearing in two or more

submissions. Each road node vi (i = 1, 2, . . . , 5) has a unique relative ranking

rvi between {1, 2, . . . , 5}. The order of rvi , which is a relative ranking, is of

utmost importance as it defines how users perceive the walkability of each vi

concerning one another.

Using the Generalized Linear Extension of Partial Orders (GLEPO) algorithm,

users’ relative opinions (among groups of 5 locations) were successfully converted into

globally relative scores (among all submissions). GLEPOmaintains a high consistency

of 98.24% on average throughout the conversion. Furthermore, after numerous vari-

ations and experimentation, it was determined that the best results were produced

using the randomized version of the algorithm with at least 30 iterations. Virtual

link, a method developed to establish associations between user submissions based on

their geographical distance, was enabled when the best results were produced.

Compared to Can-ALE, a clear variation is observed, especially when producing

fine-tuned high spatial resolution ground truth. As observed in Figure 4.4, while Can-

ALE (left) is dedicating a single and spatially low-resolution walkability score to each

large region (DAs), users have different and varying opinions (center) ranging from

low to high walkability associated to different points on the map that may fall within

the same region. Therefore, GLEPO provides a more representative and high spatial

resolution ground truth. This research does not imply that Can-ALE is incorrect but

rather points out some of its limitations and shortcomings due to its characteristics.

Since Can-ALE is area-based, its scores provide a spatially low-resolution coverage.

127



Since user opinion is not used in its pipeline, Can-ALE scores do not represent users’

opinions. As observed in GLEPO’s result, not only do the volunteer participants have

a clear difference of opinion with that of Can-ALE’s provided walkability scores but

there is also a difference in opinion among participants themselves, which opens up

the possibility for future research on applying GLEPO and ALF-Score to different

subgroups of users (personalization which is explored in the next chapter).

Although GLEPO’s results provide an overall well-represented user opinion base-

line to walkability scores while establishing a ground-truth for ALF-Score machine

learning pipeline as its y label vector, GLEPO’s main contributions may be extended

to a vast range of researches such as enabling accurate use of crowd-sourced data

while reducing bias as a result of the difference in opinion.

Figure 4.4 further expands on how predicted walkability scores generated by ALF-

Score (right) compare with that of Can-ALE (left) and how ALF-Score can provide

high spatial resolution walkability scores instead of existing area-based walkability

measures. High variation was found in ALF-Score walkability scores while observing

an even distribution within the selected region. For instance, the closer to the Kelsey

Drive region, the more walkable ALF-Score becomes. (There are numerous amenities

within the vicinity of Kelsey Drive.)

GLEPO’s output was used to train the supervised machine learning models as

a regression problem on 668 features iterating over multiple variations of data com-

bination subsets. Six primary techniques were used, namely: 1) Random Forest

Regression, 2) Linear Regression, 3) Support Vector Regression (SVR), 4) Gradient

Boosting, 5) Decision Tree Regression, and 6) Multi-layer Preceptions (MLP). Ran-

dom Forest outperformed all other techniques in terms of performance and accuracy

128



Figure 4.4: Great Eastern Ave. in St. John’s, NL. Top Left: Can-ALE, Top Right:

ALF-Score, Bottom: GLEPO. A score variation ranging between 16-81 is observed

within GLEPO, which provides a user-level insight about how users perceive their

neighbourhood in their own opinion, as opposed to what Can-ALE suggests of a neigh-

bourhood to its users. Furthermore, a variation ranging between 20-70 is observed in

ALF-Score, which provides high spatial resolution scores specific to each point instead

of a single score for an entire area observed in Can-ALE. Note: Can-ALE colours are

slightly dimmed due to the adjusted opacity to visualize street overlay.
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by achieving a top prediction accuracy of 87.49% using all features. Table 4.2 takes a

closer look at all feature combinations used in various experiments followed by their

best-achieved accuracy. All accuracy values are representative of the best-recorded

accuracy over numerous runs. Models trained on only POI features were observed to

perform relatively similar to that of those models trained on POIs plus network fea-

tures and POIs plus road embedding. However, models trained on network features

combined with network embedding perform better than those using POIs (except for

linear regression). The highest accuracy was observed when all features were used

together, which presents a convincing argument in contrast to some other walkability

measures’ hypotheses, which assume high importance towards POI features. Further-

more, it also conveys an important message that road network structure plays a crucial

role in measuring walkability. The improvement in accuracy observed after adding

POI features to the network and road embedding features contributes to the com-

plimentary positions POIs and road network features have concerning one another,

where combined can provide a more in-depth understanding of our surroundings.

Technique

Set
POI POI + Net. POI + Emb. Network + Embedding All

Random Forest 77.36 79.49 79.40 81.07 87.49

Linear Regression 51.15 54.57 61.74 30.86 72.21

SVM 66.47 68.50 66.35 75.38 76.36

Gradient Boosting 60.30 59.16 58.17 68.75 68.78

Decision Tree 65.33 67.52 64.98 75.89 76.35

MLP 69.86 70.94 73.18 74.63 79.87

Table 4.2: Exploration of various machine learning techniques and feature combina-

tions with their top-performing accuracy.
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Figure 4.5 shows how ALF-Score (center) compares with two prominent walka-

bility measures, namely Can-ALE (right) and Walk Score (left), for the walkability

scores of the city of St. John’s, NL (Canada). The walkability scores produced

by Can-ALE vary by region (DAs), where all nodes within each DA carry the same

score. Some of these regions may cover much larger geographical areas, whereas other

regions may cover a higher population density within a much smaller geographical

area. This variation significantly reduces these scores’ accuracy, relevancy, and spa-

tial resolution. As observed in Figure 4.5 center, this issue is no longer the case with

ALF-Score walkability ranks. They are much more refined with a clear variability

among the scores for different nodes within the same region and significantly higher

spatial resolution when compared to Can-ALE. Furthermore, ALF-Score walkability

ranks represent users’ opinions with higher accuracy associated with users’ perception

of walkability in different regions. The accuracy of the predicted ALF-Score ranks was

successfully verified based on user-opinion-based ground-truth and local knowledge

of the city of St. John’s.

Furthermore, it was observed that areas with greater population density are as-

signed with higher Can-ALE scores, which may not always be how users perceive

walkability. In Figure 4.6 which represents two examples where ALF-Score and Can-

ALE do (right) and do not agree (left), it is observed that Can-ALE fail to identify

regions such as local in-city parks and trails as walkable areas as observed in Figure

4.6 left. The Signal Hill area is a well-known and commonly visited area by the lo-

cal community, especially hikers, runners, joggers and families. There are numerous

amenities nearby, such as convenience stores, restaurants, coffee shops and gas sta-

tions, and there are multiple bus stops. Yet, the area was considered as not walkable
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Figure 4.5: Walk Score [124] Walkability score of St. John’s, NL (bottom left - screen-

shot from walkscore.com), followed by Can-ALE Walkability score (bottom right) and

ALF-Score walkability of the same region (top). Dark green is most walkable, dark

red is least walkable. Walk Score is observed not to have sufficient data to cover

the entire region while Can-ALE is observed to be overly generalized. Generated by

RStudio [103]. 132



Figure 4.6: Examples of where ALF-Score and Can-ALE do and do not agree. Each

DA polygon is represented by a single Can-ALE value, while each circle represents an

ALF-Score rank. Left: Downtown St. John’s, NL, shows a strong agreement among

the two measures. Right: Signal Hill region, St. John’s, NL, shows a strong disagree-

ment between the two measures. Note: Can-ALE is represented as an overlay with

a small opacity/alpha and is visualized with significantly lighter colours due to this

transparency. Legends and borderlines represent the actual colours. (Maps generated

through RStudio [103] Version 1.2 using mapview package from rstudio.com.)

by Can-ALE. The analysis suggests that Can-ALE’s approach is missing some of the

important features and area characteristics that people consider important such as

being near ponds, trails, and national monuments. Based on various experiments,

ALF-Score is observed to do a much better user representation and provide a more

in-depth ranking based on different road characteristics, feature sets and users’ opin-

ions.
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4.5 Discussion

The purpose of this chapter is to fill in the gap and address some of the most prominent

challenges observed in existing walkability measures by introducing a novel approach

to measure walkability score with a high spatial resolution, precision, accuracy and

efficiency. Strong indicators of walkability can be derived from road importance which

requires extensive utilization of road network structure. However, there is very little

use of road network structure, if at all, in most existing walkability measures. This

lack leads to a significant gap in utilizing one of the most important walkability fac-

tors and, hence, lower accuracy. Although an important consideration is that road

network structure can be quite large and creating a graph structure while calculat-

ing graph-based features (such as centralities and network embedding) pose various

challenges (which is addressed in the previous chapter [5]), ALF-Score walkability

scores using road network structure show a substantial improvement, especially when

the road network structure is combined with user opinion. Road network structure

provides crucial information about neighbourhoods and cities. Furthermore, road

network structure is also a conduit to propagate the importance of POIs. It was

shown that incorporating user opinion and perception as one of the crucial contribut-

ing components in the pipeline can significantly improve the overall relevancy of the

generated scores.

Additionally, using crowd-sourced data in ALF-Score opens the door to many new

possibilities, such as building a platform to provide personalized walkability based on

user demographics, which will be challenging without user opinion. Users’ observa-

tions and demographics can be included in personalized models that can identify user
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patterns and generate models to best fit users’ profiles.

Furthermore, collecting crowd-sourced data is expensive, time-consuming, limited

and resource-intensive. It is difficult to recruit a diverse group of volunteer partici-

pants who have the appropriate knowledge of the city and are willing to help with

providing their walkability scores that could amount to sufficient data to be used

as ground truth. It is also essential to consider that walkability is subjective, and

people will have different opinions. Specifically, each user is entitled to their personal

opinion regarding walkability scores (among other things). Everyone may and likely

will have a different opinion on how walkable they may consider different locations.

This expected variation can potentially lead to noticeable inconsistencies within the

user labels. This challenge was addressed in two phases 1) developing a web-based

crowd-sourcing tool to maximize the data calibration and accuracy of collected data,

2) using GLEPO to process the collected data further to ensure a fair distribution

within localized relative scores and accurate globalized representation among all users.

Accuracy of ground-truth data is crucial as it represents the population through only

a small sample size, and as more data is collected, accuracy will likely improve.

The concept and processes behind GLEPO and the data collection methods used

in this chapter can be applied to many other fields when it comes to utilizing opinion-

based data as it allows for the collection of small and relative sets leading to reduced

bias and presumptive measures, such as defining a hard-coded range for walkability.

For instance, if users rank walkability scores for locations by assigning a number

between 0-100, locations will get varying scores associated with them by different

users. This assignment is dependent on how users define the numerical range and how

this assignment aligns, or otherwise, with that of the researcher(s). Utilizing relativity
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instead of absolute scores allows for a reduction in the imposed cognitive challenge,

which is done by assigning a representative score for each location where users use

relative ordering by indicating if they consider a location more or less walkable than

another location without giving a fixed numerical value. GLEPO will then take

the responsibility of globalizing the relative ranks to reflect how they would rank

concerning all other user submissions. This approach gives researchers the flexibility

to maintain their rationality while preserving the integrity of users’ opinions.

To tie in with the previous points, since ALF-Score relies on crowd-sourced data,

it is likely that only a small amount of data may be available in the initial stages

of the research. This crowd-source data will play a crucial role in two key ways: 1)

to represent user opinion of a much larger population and 2) to represent nodes of

a much larger geographical region. Based on the experimentation and results in this

chapter, the ALF-Score pipeline has proven to accurately generate walkability models

capable of estimating walkability scores for various cities using only a small set of user

data.

Furthermore, the spatial resolution of walkability was significantly improved by

utilizing road networks, user opinions and machine learning approaches that help

generate point-level walkability scores of all nodes within a given road network, as

opposed to area-based approaches found in some existing measures. This higher spa-

tial resolution of walkability provides the much-needed depth for various analyses in

many research studies that require fine-tuned and specific scores for various locations

within proximity that are situated within the same DA.

An important factor about this research is its interdisciplinary contributions,

specifically in Computer Science and Public Health. Interdisciplinary research studies
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are crucial and can provide practical applications to many important and immediate

challenges at hand. Day-to-day users are among the intended users of ALF-Score, but

they are not the only intended users. ALF-Score aims to be used as a tool that allows

researchers in the public health sector, especially the epidemiologist, to understand

better how walkability scores are associated with our health, such as physical activity,

obesity, and diabetes. Technology is advancing every day, and what better use of it

than to improve people’s lives and health. This kind of practical interdisciplinary

research can truly and positively impact the world.
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Chapter 5

ALF-Score+: Personalization of a

Predictive Walkability System

This chapter involves an in-depth definition of the ALF-Score+ walkability measure,

which is an extension of the previously defined ALF-Score with a focus on embed-

ding personalization based on user demographics and opinions. This work has been

submitted for publication. The paper submitted for publication is slightly revised for

flow in this dissertation document, and the introduction is shortened.

ALF-Score+ is an extension of ALF-Score, which utilizes user-defined and system-

defined demographics to create individual profiles to develop profile clusters. The

ALF-Score pipeline then uses user labels and profile clusters to further process and

generate machine learning predictive models capable of estimating personalized walk-

ability scores specific to each profile cluster. ALF-Score pipeline requires various data

inputs. Since ALF-Score is a network-based walkability measure, an important step is

to use road networks and other road characteristics, which ALF-Score+ also inherits.
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A map database [Figure 5.1] is derived from road networks and POI inputs extracted

from both OpenStreetMap and Statistics Canada to help enrich the feature set to-

wards achieving high-resolution walkability scores. The introduction of user profiling

and profile clustering into the ALF-Score+ pipeline helps assign users to distinctive

clusters that could represent the majority of users within that cluster. Each cluster

is then used to train specific machine learning models that best represent the users

within that cluster and can estimate walkability scores influenced by users’ opinions

and demographics.

5.1 Cluster Profiling

People tend to have many similarities in their daily routines such as work hours,

mealtime, profession, preferences or hobbies [141, 94, 52, 67]. For instance, many

people work regular shifts between 9 am and 5 pm, with most taking their lunch break

at or around noon. Furthermore, many of these patterns may be linked to specific

demographics such as age, gender, or personal circumstances. For example, picking

up children from childcare or school daily. With that in mind, cluster profiling aims

to establish common points among various users that can be associated with how

each user interacts with their surroundings and perceives walkability.

Each user submission contains five entries, with every entry maintaining metadata

for its associated location, user’s relative ranks, user-defined and system-defined de-

mographics. Public IP addresses alongside submission timestamps are associated with

each entry, and their combination provides unique identifiers distinguishing each sub-

mission. Various submissions associated with each user help will estimate user profiles
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Figure 5.1: ALF-Score+ utilizes various GIS features such as POI and road network

data (and derived features such as centralities and road embedding) and features en-

gineered from their combination or subset. Aligned with GLEPO’s linear extension

of user labels, user demographics from two categories (user-defined & system-defined)

are processed into user-profiles and then grouped into a few select clusters. k per-

sonalized walkability models are produced using the machine learning pipeline for

k profile clusters, taking GLEPO’s output alongside the profile clusters. Figure is

drawn by the author.
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related to each user.

The next step is to group these user profiles into clustered profiles. However,

when it comes to clustering user profiles, an important component is determining

the correct number of clusters to represent all participating users best. To this end,

two various k estimation methods are used, namely the elbow method [87] and the

silhouette coefficient [108]. Both methods utilize k-means as their base clustering

algorithm, with the elbow method measuring the distortion over a various number

of clusters. At the same time, the other compares the silhouette coefficient for each

cluster. Lower distortion in the elbow method and higher silhouette coefficient in the

silhouette method represent better fits using each method [Figure 5.2].

Another method used in this research to better understand the data and en-

sure clusters capture the right set of data is the t-distributed stochastic neighbour

embedding (t-SNE). t-SNE is a common method typically used for visualizing high-

dimensional data [26, 89, 142] by giving each point a location in a two or three-

dimensional map. t-SNE was used to reduce 11 user features into a 2D space for

visualization and verification. Each cluster is then associated with a specific colour

determined by the k-means method. Once the correct number of clusters is deter-

mined, and t-SNE visualization has been verified, each user is assigned to a particular

cluster. The user data is then segmented based on clusters for processing through the

ALF-Score+ machine learning pipeline. The Figure 5.3 generated by t-SNE shows

a 2-dimensional representation of 11 demographic features (6 user-defined and five

system-defined) collected from the volunteer participants. A perplexity of 10 is used

for this visualization; however other variations have also been experimented with. It

is important to highlight that other techniques available for dimensionality reduc-
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tion, such as Principal Component Analysis (PCA), have also been experimented

with within this research.

5.2 An Extension to ALF-Score

To further explore how and where ALF-Score+ extends the original ALF-Score, first,

the data processing stage is explored. Once data collection and cleaning steps are

complete, the pipeline will proceed to the verification step to ensure data complete-

ness. Specifically, since ALF-Score+ uses user-defined and system-defined parameters

where each user may have submitted through a different device (PC, Mac, Linux, iOS,

Android, etc.) or platform (Chrome, Safari, Firefox, etc.), the metadata will need

to be checked to ensure validity and accuracy. To this end, data entries are con-

verted into dataframes [93] and various data cleaning methods [123] were applied.

These methods include but are not limited to addressing empty cells, removing du-

plicates, verifying appropriate data, confirmation of appropriate data formats and

visualization of GEO-based data such as POIs and road networks to ensure accurate

and matching geo-projections and transformations are used. Once the data has been

cleaned and verified, entries are sent to the Generalized Linear Extension of Partial

Orders (GLEPO) [6] to process users’ relative ranking and generate ground truth for

the machine learning pipelines. GLEPO works by structuring the data entries into

separate lists of submissions. Anchor nodes for each submission (where applicable)

are found. GLEPO’s sorting algorithm associates these localized submissions to build

a unified list that globalizes (among volunteer participants) users’ local and relative

rankings into absolute scores. A normalization function is used to keep scores between
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0-100. Since there may be many ‘right ways’ of ordering the final list, GLEPO’s path

selection and submission selection are completely randomized with multiple passes

of GLEPO to ensure the results are always highly consistent. Virtual link [6] was

enabled for the experiments performed in the personalization chapter.

User demographics, profile data, labels and how each user ranks different loca-

tions are crucial input components of ALF-Score+. To stay true to users’ opinions,

ALF-Score+ inherits the incorporated consistency measure part of the GLEPO algo-

rithm. Specifically, all submissions go through a pair-wise verification process that

compares the five user-defined relative ranks of each submission in the original order

submitted by the user to that of the same 5 locations in order of their appearance in

the final globalized list (output of GLEPO). For instance, a submission for 5 locations

{A,B,C,D,E}may carry a relative ranking of {5A, 4B, 3C , 2D, 1E}. These 5 locations

may appear in a different order in a final list such as {..., A, ..., B, ..., E, ..., C, ..., D, ...}

and therefore, a globalized ranking of {5A, 4B, 3E, 2C , 1D}. GLEPO’s consistency mea-

sure determines if the processed ground truth remains true to that provided by the

users. Furthermore, with each run of randomized GLEPO, a slightly different output

is generated due to its randomized nature. Multiple passes of GLEPO are processed

to generate the final globalized list of ranks that shows the most commonly associated

ranks for all user-ranked nodes. Furthermore, Kendall rank correlation coefficient [2]

is also used to further verify the consistency of the original relative ranks to that

found in the final globalized list.

At this point, user labels are ready to be processed in the ALF-Score+ machine

learning pipeline. The next step requires preparing the demographic data to ensure

each feature is accurately and appropriately processed and accounted for. An im-
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portant note is that each feature carries a different type of information, possibly of

different data types (i.e. categorical, ordinal, numerical, etc.) and may have a dif-

ferent priority or weight, which entails converting some of the features. For instance,

time entries are converted into their epoch representation (number of seconds since 1

January 1970), while certain other features, for example, the categorical and ordinal

features, are encoded. One-hot encoding is used to encode features from user-defined

and system-defined datasets such as profession, age group, whether user lives alone,

operating system, system language, and other features. Once the encoding is com-

plete, this user-derived feature set is ready to be processed by the cluster profiling

pipeline. The machine learning pipeline will also utilize this user-based feature set as

a combination of and in conjunction with other road-network-based features.

5.3 Experimental Set-up and Results

Three separate instances of data collection web tools associated with St. John’s NL,

Vancouver BC, and Montréal QC were created to help crowd-source user opinions

and user demographics. This chapter focuses on data collected for the city of St.

John’s, NL. In the experiments performed to estimate the number of clusters (k), the

elbow method and the silhouette coefficient were applied with a range between 1 and

21 clusters. kmeans++ algorithm was used as their base as well as the core clustering

algorithm, with n init set to 10 (number of times the k-means algorithm will be run

with different centroid seeds), max iter set to 300 (maximum number of iterations of

the k-means algorithm for a single run), random state set to 42 (determines random

number generation for centroid initialization to make the randomness deterministic),
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and tol set to 1e04 (relative tolerance with regards to Frobenius norm of the difference

in the cluster centers of two consecutive iterations to declare convergence).

Using the elbow method and the silhouette coefficient and based on the data

collected from the city of St. John’s, it was determined that six distinguished clusters

[Figure 5.2] would best represent the volunteer participants. To further visualize these

clusters and verify the association between users placed into the same cluster, 11 user

features for all volunteer users were reduced to a 2-dimensional representation using

t-SNE with n components set to 2 (dimension of the embedded space) while init

was set to random (initialization of embedding) with a perplexity of 10 (related to

the number of nearest neighbours that is used in other manifold learning algorithms

with larger datasets usually requiring a larger perplexity). Figure 5.3 shows the t-

SNE visualization of crowd-sourced user demographics (user-defined combined with

system-defined) with six distinguished clusters separated by six different colours.

5.4 Results

The study in this chapter includes n = 40 users (from the city of St. John’s, NL).

Among the users were n = 20 (50 %) women. The average age of participants was 48.6

(standard deviation = 17.1). The most commonly reported walkable distance was 800-

1000 meters. Ten (25 %) of participants were living alone, while 14 (35 %) participants

had children living in their homes, with the average number of children being 2.6

(standard deviation = 1.2). Finally, the most commonly reported professions were

Retired n = 8 (20 %), Professor n = 4 (10 %), and Nurse n = 4 (10 %). Table 5.1

shows an overview of the user data.
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Figure 5.2: The Elbow method and silhouette coefficient determine the most ap-

propriate number of clusters. In the top figure, it can be observed the silhouette

coefficient increases between 3 clusters and 9 clusters, with 6 clusters being pivotal

with a very small variation with that of 9 clusters. The bottom figure, elbow method,

shows that the k-means distortion value drops significantly as the number of clusters

is increased to 3, with the distortion value converging around 8 clusters with 6 clusters

being pivotal (similar to that of the top figure) with a very small variation with that

of 8 clusters. (Generated by Matplotlib [61])
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Figure 5.3: 2-dimensional t-SNE representation of user entries on demographics and

system features. Eleven features are reduced to 2 features. The perplexity is set to 10,

and the colours are associated with 6 clusters determined by the k-means algorithm.

(Generated by Matplotlib [61])
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Table 5.1: User submissions and feature statistics for the city of St. John’s. Each

submission maintains five entries containing five unique locations. Different submis-

sions may randomly include the same location.

Number of Value

Submissions 210

Entries 1050

Unique Locations 895

Estimated Participants 40

Demographic Features 6(+1)

Systems Features 5(+1)

Region St. John’s

ALF-Score+ maintains accuracy of 90.48% on average over at least 35 separate

experiments with the best case of 93.70%. Specific accuracy of each cluster varies

within each run (e.g. Table 5.2) and changes through different experiments; however,

ALF-Score+’s overall accuracy on average is consistently and noticeably higher than

that of ALF-Score. This improvement in accuracy is attributed to the user-focused

approach of ALF-Score+. It is also essential to highlight the significant drop in the

size of the training sets compared to the original used in ALF-Score. Although a

smaller number of data entries in each training set was used to train models specific

to each cluster profile, the trained models captured more in-depth characteristics of

each profile cluster due to a better alignment and synchronicity of data entries in

each cluster. It is believed that ALF-Score+ accuracy can be improved significantly

with more data. In the previous chapter detailing ALF-Score [6], random forest [8]

regressor was deemed a better choice among other methods. ALF-Score+ inherits

this regressor. Furthermore, Mean Absolute Error (MAE) and Root Mean Squared
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Error (RMSE) [24] were both used to measure how close the fitted line is to the

actual data points’ labels.

Table 5.2: Accuracy for the ALF-Score+ pipeline has increased to an average of

90.48%, with a best-case of 93.70% compared to that of ALF-Score. It can be observed

that although each cluster uses a smaller data size for training since the set is highly

focused on a single cluster of users that are deemed similar, the estimation accuracy

is maintained and improved. Accuracy is expected to improve with more data.

Cluster # Training Size Test Size Accuracy

0 112 23 93.70%

1 131 27 90.20%

2 278 56 91.42%

3 209 42 88.46%

4 149 30 86.58%

5 112 23 92.49%

Furthermore, a clear variability in the results of ALF-Score when compared to

the personalized models trained on specific profile clusters generated by ALF-Score+

can be observed. Figure 5.4 shows the Pearson correlation coefficients [14] between

ALF-Score generalized walkability predictions and ALF-Score personalized walkabil-

ity predictions for all six profile clusters generated by ALF-Score+.

5.5 Analysis

One of the most critical components of this research is user demographics (user-

defined and system-defined). However, selecting the right features to collect has been
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Figure 5.4: Histogram Pearson correlation coefficients for the generalized ALF-Score

prediction scores and the personalized ALF-Score prediction scores for all six profile

clusters generated by ALF-Score+. (Generated by RStudio [103])
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detrimental to the success of this research. Various experiments have been performed

outside of those stated here that considered different variations of user data, with

some key features removed or encoded differently. The results were not feasible and

led to a strong case of the importance of selecting the right features and how well

the data is cleaned and prepared. Ultimately, in most research studies similar to this

that heavily rely on data, specifically crowd-sourced data, not only does selection

of the appropriate features matter, the number of data samples, their consistency,

relevancy and accuracy will also play critical roles towards the succession of the

research. Furthermore, when it comes to user-defined data, measures must be taken

to ensure users are well informed of what they are expected to do and what they

should expect. The collection of user data is a time-consuming and challenging task.

In case of a lack of necessary features or incorrect data collection, the recollection of

user data is an even more time-consuming and challenging task.

Through visual inspection of the elbow method and silhouette coefficient, it was

determined that a 6-cluster solution is optimal (see Figure 5.2) based on the user

data collected from the city of St. John’s. Examination of the 6 clusters suggests

that each user profile cluster appears to be consistent with how different groups

experience walkability. The list below shows the predominant groups represented in

each cluster:

• Cluster 0: Young men with no children, partly living alone, either students or

unemployed, perceive walkable distances as less than 800 meters. (see Figure

5.5 right)

• Cluster 1: Women in their 30’s who don’t live alone and have children, and

perceive walkable distances as greater than 1000 meters.
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Figure 5.5: Comparison between the generalized ALF-Score (left) and ALF-Score+

for cluster 0 (right). A clear variability can be observed that is dependent on the

demographics of cluster 0. (Generated by RStudio [103].)

• Cluster 2: Students in their 30’s who do not live alone and do not have children,

perceive walkable distances as greater than 1500 meters.

• Cluster 3: Female professionals in their 20’s and 30’s who do not live alone and

have no children, perceive walkable distances as greater than 1500 meters. (see

Figure 5.6 left)

• Cluster 4: Professionals and retired people in their late 40’s who perceive walk-

able distances as greater than 1000 meters.

• Cluster 5: Retired professionals in their late 60’s up to 80 who perceive walkable

distances as less than 800 meters. (see Figure 5.6 right)

Figure 5.5 shows a comparison of the results generated by ALF-Score (left) and

ALF-Score+ (right and specific to cluster 0). The ALF-Score results are produced
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Figure 5.6: A comparison between cluster 3 (left) and cluster 5 (right) of the ALF-

Score+. A noticeable variability in the walkability of the two clusters can be observed.

Cluster 3 appears to be mainly walkable around and within the downtown area with no

significantly walkable (dark green) locations. Cluster 5 appears to have higher overall

walkability (darker green); however, with increased coverage of more walkable areas

around the southeast region. Additionally, fewer locations with highly unwalkable

scores (dark red) can be observed in cluster 5. (Generated by RStudio [103].)
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without explicitly using the clustering or user profile cluster-specific models. Visual

comparison of the maps shows that in cluster 0, more areas are considered walkable

within the three main cities of St. John’s, Mount Pearl and Paradise, with most “out-

of-town” areas regarded as not walkable. This observation is aligned with the findings

of researchers who have determined younger people tend to drive less and walk more

[38] due to various reasons [70] such as lower income, higher living costs and being

more health-conscious.

In Figure 5.6 differences in the walkability predictions of two different clusters

produced by ALF-Score+ can be observed. Cluster 3, which represents female pro-

fessionals in their 20’s and 30’s, shows an increase among less and highly-walkable

locations with only key areas (i.e., around downtown St. John’s and some local parks)

considered as highly walkable. However, from cluster 5, which represents retired and

older adults, it is observed that, on average, the city is predicted to be more walk-

able with a decrease in unwalkable areas. Simultaneously, cluster 5 appears not to

have many highly-walkable areas, other than a few small areas such as parts of the

downtown region. However, more “out-of-town” areas are considered as walkable as

opposed to cluster 3.

Further in-depth analysis of clusters 0 and 5 shows substantial variability in some

neighbourhoods and communities as personal characteristics, demographics and pref-

erences of each cluster profile change. In cluster 0 [Figure 5.7 top], which repre-

sents young men living alone, most of the area is considered reasonably walkable. In

cluster 5 [Figure 5.7 bottom], which represents retired and older adults, the entire

area is assigned with low walkability scores. A clear variation between ALF-Score+

generated scores for different cluster profiles can be observed through these analy-
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ses. While both measures (ALF-Score and ALF-Score+) follow the same pipeline

and logic, each cluster’s characteristics influence the final decision-making process of

ALF-Score+, making its results unique and personalized. The ALF-Score+ method

can capture and distinguish between these variations among users and user profiles to

generate highly personalized walkability scores for users based on their profile cluster

characteristics in addition to an overall predictive accuracy improvement to that of

ALF-Score.

5.6 Discussion

ALF-Score+ is a walkability measure that builds walkability models capable of gener-

ating personalized walk scores based on each user and their profile. The ALF-Score+

pipeline needs to identify users and link them with the appropriate cluster profile that

best represents their criteria to produce personalized walkability scores. Each user

is then associated with the appropriate model to generate the relevant, personalized

walkability scores. However, to profile users and build cluster profiles, clustering al-

gorithms require specific user traits to distinguish various users and user groups. A

straightforward approach to link users to appropriate cluster profiles is by asking the

users to provide specific demographics about themselves, such as age group and gen-

der (similar to the method used in this research to collect volunteers’ data). However,

in a production environment, an important challenge is raised due to privacy reasons.

Unlike the data collection process in this study that involves volunteer participants

willing to help with this research, everyday users may not be willing to disclose cer-

tain personal demographics about themselves, such as their age group or gender. It
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Figure 5.7: Personalized ALF-Score+ walkability for clusters 0 (top) and 5 (bottom)

for the Topsail road, Kenmount Road and Mount Carson areas. A clear variation

between the preferences of the two cluster profiles is observed. (Generated by RStudio

[103].)
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is challenging to profile users and associate them with the most representative profile

cluster without such information. An appropriate step will need to be taken to ensure

this important challenge is addressed accordingly. Building a reverse-profiling algo-

rithm could be considered that instead of using user demographics, it would ask users

to rank several locations based on their personal opinion. These rankings would then

be reverse-profiled to estimate users’ demographics and link to the most appropriate

cluster profile. This approach will require an existing knowledge of a sample group

of users, their opinions, and demographics.

Although personalized walkability may not have been considered in previous mea-

sures, it is clear that personalization is essential and should be considered when

creating walkability measures. In this chapter, ALF-Score+ was introduced, which

uses user demographics and system data to build user profile clusters that distinguish

prominent profiles to build personalized machine-learned models that can accurately

estimate spatially high-resolution walkability scores for individuals based on cluster

profiles for each point within the road network. ALF-Score+ successfully achieved an

accuracy of 90.48% on average with a best-case of 93.70%, with its generated scores

accurately associated with the appropriate user groups.

It is crucial to keep in mind that volunteer data such as user opinion and demo-

graphics will significantly impact the outcome. Furthermore, algorithmic bias must

be considered to avoid unintended use/misuse. Ensuring an unbiased selection of

participants and inclusion of vulnerable and minority groups are crucial to providing

a fair user representation. It is also equally important to highlight that while ALF-

Score is meant for regular use, using profile clusters to derive specific walk scores

could drive certain populations to certain areas. While this is unintended and could
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potentially be a non-issue, it can result in inequities across demographic groups if

misused.
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Chapter 6

ALF-Score++: Transferability of a

Predictive Walkability System

This chapter involves an in-depth definition of the ALF-Score++ walkability measure,

which is an extension of the previously defined ALF-Score with a focus on transfer-

ability and scalability. This work has been submitted for publication. The paper

submitted for publication is slightly revised for flow in this dissertation document,

and the introduction is shortened.

ALF-Score++ is the second extension of the ALF-Score pipeline, focusing on

transferability. ALF-Score++ pipeline 6.1utilizes a map database containing road

network data and POIs extracted from Statistics Canada [113] and OpenStreetMap

(OSM) [91]. The map database feeds into two separate processes: 1) GIS feature

extraction 2) user data extraction through the web-tool interface. The GIS feature

extraction process extracts and generates the required features such as node lists,

edge lists, various centrality measures, road embedding, and various POI features.
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The output of this process is fed into the machine learning component as one of its

three main input feature sets. The user data extraction process involves the web-tool

interface that utilizes road data to feature various points on an interactive map where

users provide their opinion and demographics. User data is broken into two separate

processes, each resulting in a separate input to the machine learning component.

The first process is the collection of users’ opinions through the web tool, where

users provide relative ranks for various points on the map. This process passes users’

opinions to the Generalized Linear Extension of Partial Orders or GLEPO algorithm

to convert users’ relative ranks to a globalized rank among all submissions. The

output of GLEPO is fed into the machine learning component as its second feature

set. This input serves as the y label during the training and testing processes. The

second process of user data revolves around users’ demographics and is intended for

personalization (excluded from this diagram). This process uses various clustering

techniques and unsupervised learning methods to generate profile clusters. These

profile clusters represent users deemed by the algorithm as similar. These profile

clusters are then fed into the machine learning component as its third feature set.

The machine learning component utilizes these three feature sets in conjunction with

its internal transfer learning process, and the general flow is as follows. GIS features

form a feature set associated with specific locations that have their ranks available

through the GLEPO algorithm as its y label. These models will be trained on the

data from only one specific city. The first round of models trained through a deep

neural network technique will transfer their knowledge to the second round of training.

Transfer learning utilizes appropriate layers (mostly top layers) within these models

while replacing the output layer. The new data used in the transfer learning process
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will include features and user opinions from a second city. The output will be a more

generalized model capable of transferring its knowledge to cities never seen before

during its training process. The personalization process utilizes this transfer learning

approach to do the same task but on each separate profile cluster, resulting in multiple

models capable of predicting personalized walkability scores for cities seen or never

seen by the algorithm. These personalized models will be generalized over users from

multiple cities but are personalized to their demographics.

6.1 Data Preparation

The first step is to gather the feature set that includes POI, road embedding, and road

network data to prepare the map database. The POI data is available freely through

OpenStreetMap (OSM) [91]. Overpass-Turbo [100] was utilized with the help of a

customized extraction code to extract OSM POIs from 53 unique amenity categories.

Once complete, a new algorithm was devised that creates POI-based features for all

nodes within the network. Below is an example of a single POI contained within

a GeoJSON file extracted from OSM through Overpass-Turbo. Each POI point is

divided into two parts: 1) description 2) geometry. Description contains the type and

properties of the point, while the geometry contains the location’s type as well as its

coordinates:

• ”type”: ”Feature”, ”properties”: ”@id”: ”node/1401297904”,

”amenity”: ”fire station”, ”name”: ”Caserne 29 Rosemont”

”geometry”: ”type”: ”Point”, ”coordinates”: [ -73.5762681, 45.5453509 ]

The role of the POI2Features algorithm (Algorithm 9) is to prepare the segregated
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Figure 6.1: ALF-Score++ utilizes features similar to ALF-Score and ALF-Score+

such as road network structure, POI, centrality measures and road embedding.

GLEPO’s linear extension of user opinions that produces a global view of relative

opinions is then aligned with the features as an input to the machine learning pro-

cesses. Models trained by ALF-Score++ can be applied to cities seen or unseen by

the algorithms during the training processes. Walkability estimates produced through

trained models will have a high spatial resolution, represent users’ opinions, and pro-

vide a better insight into different regions and neighbourhoods. (Figure is drawn by

the author.)
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POI data based on each specific node within a given road network. Ten separate

distance ranges are created for each POI category. Each POI is represented by a node

on the road, and the number of its appearances within these ten different distance

ranges to every node within the road network is measured. Based on 53 amenity

categories, a POI feature list containing 530 feature columns and n rows for the

number of unique nodes in the road network was produced. Below is an example of

one possible POI feature header structure followed by an example of a single entry

for a unique node:

• node id lon lat bar 200 bar 400 bar 600 ... bbq 200 bbq 400 bbq 600 ...

317 -73.57113438 45.51020696 0 6 12 ... 14 11 12 ...

Algorithm 9 POI2Features

Input: GeoJSON POI List — List of Categories, Road Network Node List

Output: POI feature list for all nodes in road network within the range of 200m -

2,000m

1: initialize feature list as an empty list

2: set headers in feature list for 10 distance ranges

3: for every node in node list do

4: get node latitude and longitude

5: for every poi in poi list do

6: get poi latitude and longitude

7: find distance between node and poi

8: if distance is falls within the predefined range then

9: add 1 to node’s feature in feature list for the specific range

10: return feature list

While road network data is available freely from both OSM and Statistics Canada
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[113], Statistics Canada was chosen to extract the road networks data in the form

of ArcGIS Shapefile [40]. The 2016 Shapefile for Canada was extracted, which is

the most recent Census year available. Furthermore, QGIS, [98] which is “a free and

open-source cross-platform desktop geographic information system application that

supports viewing, editing, and analysis of geospatial data” was used to extract road

networks specific to four different cities of St. John’s NL, Montréal QC, Vancouver

BC and Kingston ON from a single and large Shapefile containing the road network

for entire Canada. All of the individual city sub-networks were further processed to

build specific node lists, and edge lists that are used in the pipeline. “shp2graph”

package [78] through R [99] was utilized to generate node lists and edge lists for

various road networks which have been stored in the form of graphs. It is important

to mention that the coordinate systems may differ depending on the data source and

the format. For instance, some formats may present coordinates in UTM [114] or

WGS [49] while others may present them in different coordinate systems. Appropri-

ate conversions, projections and transformations, where applicable, may be required.

As is the case with many research studies, it is crucial to maintain a unified unit of

measurement throughout the research to avoid any unwanted disasters [73]. Individ-

ual city sub-networks are also processed to generate various complex network features

such as different centralities and road embedding features for all road networks. Fur-

thermore, graph reduction and reconstruction techniques [5] may be applicable when

working with large networks. Additionally, the edge list for each city is processed

through Cytoscape [30], which is “an open source bioinformatics software platform

for visualizing molecular interaction networks and integrating with gene expression

profiles and other state data”, to generate a list of network features. To generate
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road embedding features, edge lists are processed through Node2vec [55], which is

“an algorithm to generate vector representations of nodes on a graph”. All features

that are not numerical go through an encoding process called one-hot encoding to

prepare the features necessary for the machine learning pipeline.

The next step needed to prepare the pipeline is the application of Generalized Lin-

ear Extension of Partial Orders or GLEPO [6]. GLEPO requires a few datasets such

as users’ opinions, node lists and a distance matrix connecting all the nodes within

the road network. The overall GLEPO pipeline involves multiple algorithms such as

seperateBySub which is used to prepare users’ opinions into subsets that are suitable

for processing. Various other algorithms such as calculateDistance, FindDistance, ad-

dToSorted, FindVLink, RandomizeInsertion, normalize and GLEPO are also used to

further process user opinion and to convert their relative rankings into generalized

scores which are globalized among all opinions. The output of the GLEPO pipeline

is a generalized list of users’ opinions which can be fed into the next component of

the pipeline. This globalized list is crucial to the entire structure of ALF-Score as it

plays an important role in ground truth used as machine learning labels.

6.2 Experiments

There are three main experimentation scenarios used to guide this research forward,

and they are 1) the matching approach, 2) the combined approach, and 3) the zero-

user-input approach.

Matching approach is a scenario where users’ opinions from one specific city

are used to train and test models that are applied to the same city. This approach
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creates an important base for the ALF-Score++ machine learning pipeline. It focuses

on testing the feasibility and accuracy of the pipeline derived from users’ opinions and

feature sets belonging to the same city. For instance, using users’ opinions and feature

sets collected for the city of St. John’s, NL, to train and test models on St. John’s

road network. Furthermore, this approach is used to test the scalability of the pipeline

for very large road features and user opinion datasets.

Combined approach is an approach that focuses on the transferability of ALF-

Score++ models. This approach uses data from multiple cities to train and test var-

ious models. These models can then be applied to cities either seen by the pipeline

through the training process or cities never seen by the algorithms before. This

approach aims to test and verify that transfer learning can improve the overall gen-

eralization of the models while broadening models’ applicability. This scenario has

multiple variations, specifically how training and test sets are selected. Two of the

commonly used variations are random and semi-random selections. In the random

selection, a typical 80-20% training-test distribution is used that includes data from

two cities. In the semi-random approach, for example, a 50-50-100 distribution, the

entire data from the second city is used in the training set alongside 50% randomly

selected data from the first city, while the remaining 50% is maintained for the test

set. There are other variations, and the models are tested in both cities.

Zero-user-input approach aims to use models that are previously trained on

a specific city (or cities) to predict walkability scores of other cities. This approach

uses predefined features and pre-trained models to generate walkability scores for

points in cities never seen by the algorithms and is very important to help identify

how applicable and transferable are the pre-trained models to data from unseen cities
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and whether the patterns observed and learned in different cities are similar and

transferable to one another. Models in this scenario could have been trained on

either a single city or be multi-city models. The models in this scenario can be

applied to cities never seen before during the training process and those previously

trained, making them very versatile.

6.3 Transfer Learning

ALF-Score [6] pipeline has been tested for various supervised and semi-supervised

approaches and methods. However, the most promising shallow models are random

forest, support vector machine (SVM), and decision tree, whereas the most promis-

ing deep model, was multi-layer perceptron neural network (MLP). These methods

generated reasonably accurate results while random forest performed the best among

all. Random forest was set up with 100 estimators (the number of trees in the forest),

while the maximum depth of the tree was not limited. Most other parameters such

as the number of jobs to run in parallel, the number of features to consider when

looking for the best split and bootstrap sampling were set to scikit-learn’s [96] de-

fault parameters. Random forest is an ensemble approach. Ensemble learners aim to

use multiple weak learners to build a strong learner that performs very well, taking

a divide and conquer approach. Random forest uses a standard decision tree that

could be considered its weak learner. Multiple of these trees will then form a forest

that can perform better as a group. Table 6.3 shows the difference in observed error

between random forest using 100 weak learners and a single decision tree. Random

forest performs significantly better. There are two specific functions in scikit-learn’s
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random forest that, although not specifically labelled as transfer learning approaches,

are geared toward transferring previously learned knowledge. These functions are

warm start and partial fit. Warm start aims to fit an estimator repeatedly over the

same dataset but with varying parameters. Using this approach, one can look at

various parameters to improve performance while reusing the model learned from

previous parameters to save computing resources and time. Warm start is typically

used for fine-tuning the model parameters. On the other hand, partial fit aims to

provide an online machine learning approach while maintaining fixed model parame-

ters between calls by allowing for new data in every call, also known as a mini-batch.

Online machine learning updates the predictor in sequential order as new data be-

comes available. This approach is the opposite of batch learning, where the training

dataset never changes.

Furthermore, MLP was used to utilize deep learning, specifically as a doorway

to transfer learning. In this research, transfer learning was approached under the

assumption that previously trained models of similar tasks are available (through

ALF-Score). The first step to initiate the transfer learning process is to import

three sets of data: 1) previously trained MLP models, 2) GIS features such as POI,

centrality and embedding features associated with the new city, 3) user data such as

users’ opinions and demographics associated with the new city. After a successful

import of data, the usual data processing and preparation steps will need to be

taken, such as dealing with incomplete entries and processing features through one-hot

encoding, where applicable. TensorFlow [1] was used to facilitate MLP training and

transfer learning processes and is “a free and open-source software library for machine

learning and artificial intelligence” that enables us to apply various techniques with
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very efficient implementations. To set up TensorFlow for transfer learning, the first

step is to create a Sequential model. Next, multiple Dense layers can be added as

hidden layers. Each dense layer takes in a unit value and an activation function. The

unit value, which is a positive integer, defines the dimensionality of the output space.

The activation function [34] acts as a trigger based on the input values and fires

only if the input exceeds a set threshold. In this setup, ReLU activation function

[35] was used. If the input is negative, ReLU returns 0; otherwise, it will return the

actual input. For the last layer that acts as the output layer, the unit is set to 1. It is

common to see the Softmax activation function used in classification tasks for the last

dense layer. However, since the task in this work is a regression problem, the linear

activation function is used. At this point, the model needs to be compiled with the loss

function, optimizer and metrics set. The loss function was set to mean absolute error,

the optimizer to adam and the metrics to mean squared error. The last step is to fit

the model by feeding the feature set followed by the labels and setting the number of

epochs and the size of the validation split. Depending on the batch size, the number

of epochs and the data size, the process may take a while. This process will result in

a model trained on the {features, label}: {x, y} set.

# of Dense Layers Output Shape Range Total Parameters Optimizer # of Epochs

2 8-16 10,945 Adam 200

5 50-300 418,301 Adam 300

11 50-1,000 2,673,301 AdaMax 400

12 50-800 2,303,001 AdaMax 600

Table 6.1: Various deep neural network settings under which MLP and transfer learn-

ing were experimented with.
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ALF-Score uses various combinations of dense layers and the number of neurons.

Table 6.1 shows a brief set of example settings that are experimented with. To transfer

the model generated/imported as above, the first step is to create a new Sequential

model and copy the hidden layers desired from the original model over to the new

model. In this process, the output layer is excluded. It is also important to ensure all

transferred layers are frozen by setting them as non-trainable so the algorithm will

not modify them. Next, a dense output layer is added to the new model with the unit

set to 1 and the activation function set to linear. Finally the loss function is set to

mean absolute error, the optimizer to adam and the metrics to mean squared error

and compile and fit the new model. After a few iterations/epochs, unfreezing the

reused hidden layers is an option to allow backpropagation to modify and fine-tune

them and re-evaluate the performance. It is also suggested [53] to reduce the learning

rate to avoid changes in fine-tuned weights when these layers are unfrozen. A good

rule of thumb is to train the model for the new task for a few epochs while the

reused layers are frozen. Then unfreeze the reused layers and continue to train with a

reduced learning rate for further fine-tuning these layers. The learning rate is always

an important variable to consider in transfer learning. If the learning rate is set too

high, training may diverge, and if the learning rate is set too low, the processing speed

will be very slow to reach convergence. Experimenting with various parameters may

be an excellent approach to find the best setting that may be most appropriate in a

particular task.

It is important to note that if the input data of the new task does not have

the same shape structure as the data used in the original task, they will need to be

processed to match the original size. However, that is not the case with ALF-Score++
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since the structure of feature sets used for training various models remains the same.

Additionally, according to Géron [50] “...transfer learning will work best when the

inputs have similar low-level features”. It is a good idea to replace the appropriate

layers for the new task as they will likely be very different from the original task.

For example, a voice recognition task will still need to produce the correct and valid

words associated with its output layer. However, top layers may need to recognize

words spoken by different people. In this case, reusing the top layers may be more

useful [53]. Furthermore, the output layer of the original model will be replaced

since it is no longer useful as an updated output using the new input is expected.

It should be noted here that it is suggested that the more similar the tasks are, the

more hidden layers may be used. For instance, in the case of ALF-Score++, since

the original task is very similar to the new one, all hidden layers may be kept with

only the output layer requiring replacement.

6.4 Results

In this work, ALF-Score++ successfully achieved the capability of transferability.

First, using the newly collected user opinion data for the city of Montréal QC, a

consistency of 99.6% was achieved during the GLEPO processing stage. While various

feature combinations and machine learning techniques were experimented with, the

lowest achieved MAE prediction error (matching approach) using a shallow model

was achieved using random forest at 11.87 units (Figure 6.4 top left). In comparison,

MLP was the best performing deep model with an MAE error of 13.87 units on a

scale of 0-100. Table 6.2 shows an overview of the user data while Table 6.3 highlights
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some of the techniques and feature combinations used to generate ALF-Score for the

city of Montréal using users’ opinions collected from the same city.

Table 6.2: User submissions and feature statistics for the city of Montréal. Each sub-

mission maintains five entries containing five unique locations. Different submissions

may randomly include the same location.

Number of Value

Submissions 199

Entries 995

Unique Locations 824

Estimated Participants 40

Demographic Features 6(+1)

Systems Features 5(+1)

Region Montréal

Technique POI POI + Network POI + Embedding Network + Embedding All

Random Forest 19.65 18.20 17.13 15.47 11.87

MLP 26.65 24.08 23.44 23.56 21.91

SVM 29.03 31.04 29.78 23.63 21.74

Decision Tree 21.65 31.87 34.23 24.45 21.49

Table 6.3: Exploration of various machine learning techniques and feature combi-

nations over an 80-20 data split (matching approach) for the city of Montréal, QC

reflecting their top-performing accuracy. Results represent MAE error over a range

of 0-100 units.

As explored in the background section, the goal of transfer learning is to take ad-

vantage of previously trained models. For instance, models trained based on the data
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MLP POI POI + Network POI + Embedding Network + Embedding All

St. John’s (STJ on STJ (100%))(1) 27.55 26.22 22.23 21.91 17.88

Montréal (MTL on MTL (100%)(1) 26.65 24.08 23.44 23.56 21.91

STJ on MTL (100%)(3) n/a n/a n/a n/a 32.44

STJ on STJ (50%) + MTL (100%)(2) 26.87 25.10 23.55 19.31 15.77

STJ on STJ + MTL(2) (rand 80-20) 25.87 23.74 21.45 20.23 14.12

MTL on STJ (100%)(3) n/a n/a n/a n/a 33.89

MTL on STJ + MTL(2) (rand 80-20) 25.11 22.23 21.67 20.11 16.23

MTL on STJ (100%) + MTL (50%)(2) 27.67 24.86 14.43 21.51 16.73

MTL on STJ (100%) + MTL (80%)(2) 24.84 20.17 19.92 18.36 13.87

MTL on STJ (100%) + MTL (20%)(2) 29.66 25.34 25.73 22.89 18.34

Table 6.4: Exploration of the three experimentation approaches (1) Matching, (2)

Combined and (3) Zero-user-input over five different feature combinations and two

different data split approaches based on data from the cities of St. John’s NL and

Montréal QC. Results represent MAE error over a range of 0-100 units.

for St. John’s NL in previous chapters to essentially extract their learned knowledge

that could be useful when applied to training new models (combined approach) for

new cities. However, transfer learning is also useful for directly generating predictions

for new cities without further learning (zero-user-input approach). Zero-user-input

was the first transfer learning approach experimented with within this work using the

best model trained on the data for the city of St. John’s by the random forest method

to predict ALF-Score walkability for the city of Montréal (Figure 6.4 top right), which

resulted in a correlation of 0.4 compared to the predictions generated by a model that

was trained purely on Montréal’s user data (Figure 6.4 top left). Furthermore, the

second approach of using previously trained models towards training new models

(MLP) (Figure 6.4 bottom left) led to a much higher correlation of 0.79 compared to

the models trained only on the data from one city. It is observed that this approach

can well utilize the transfer of previously learned knowledge in conjunction with a

new learning task which enables new models to identify additional patterns that may
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Figure 6.2: Experimentation results of four machine learning techniques over five

feature combinations for Montréal, QC with an 80-20 percent data split. The bars

represent MAE error over a range of 0-100 units. RF: Random forest, MLP: Multi-

Layer Perceptrons, SVM: Support Vector Machine, DC: Decision Tree. RF provides

the best performance overall. (Generated by Matplotlib [61])

have not been fully captured by models trained on small sets of user data.

It can be observed that among the top 150 features (out of 668 features), 128 of

them belong to the road embedding feature list and account for all road embedding

features, which highlights the importance of road embedding with regards to predict-

ing walkability scores based on user-submitted ground truth. Additionally, among

the top 150 features, only 14 belong to the POI feature list, which contributes to 530

features. Furthermore, among the top 150 features, six belong to centrality features

out of the total of 10 centrality features.
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Figure 6.3: Exploration of 3 approaches (1) Matching, (2) Combined, (3) Zero-user-

input. The combined approach is extensively tested with various conditions. One such

condition is different ways of data split to better understand how the data affects the

transfer of knowledge in transfer learning while providing solid training and test sets.

The best performance was observed to be generated through a completely random

selection into an 80-20 percent split. MTL on STJ reflects score predictions for

Montréal based only on a model trained on St. John’s. MTL on STJ+MTL, on the

other hand, reflects score predictions for Montréal based on a transfer-learned model

trained on both St. John’s and Montréal. (Generated by Matplotlib [61])
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Figure 6.4: Walkability results were produced by three separate variations of ALF-

Score and ALF-Score++ for the city of Montréal, QC and their correlation. Top

left: predictions based on a model only trained for Montréal’s user data (matching

approach). Top right: predictions based on a transferred model only trained on St.

John’s user data (zero-user-input approach). Bottom left: predictions based on a

model trained for Montréal’s user data while having the previously trained weights

for St. John’s user data transferred in its transfer learned training process (combined

approach). Bottom right: correlation between the three variations. The road network

for Montréal maintains over 76 thousand nodes. ALF-Score walkability scores range

between 0-100 units. This range can be adjusted if needed. (Generated by RStudio

[103])
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The road embedding features account for 0.778486799 importance over 128 fea-

tures while representing only 19% of the overall features. The centrality features

account for 0.039919843 importance over ten features, and the POI features account

for 0.169245465 importance over 530 features while representing over 79% of the fea-

tures.

Eccentricity accounts for the highest centrality importance among the ten features;

however, it contributes almost 33% to the overall centrality importance, which is

rather a significant amount when considering there are nine other centrality features.

The highest-ranked POI is restaurants within 600 meters, contributing to almost

9% of all POI importance among 529 other POI features. Furthermore, it is very

interesting to see 8 out of the top 10 POIs are either restaurants or cafes, while

bars within 1,800 meters and benches within 1,800 meters amount to the remaining

top 2 POIs. This may point to the possibility of many people seeking out places

to socialize, with light entertainment and the possibility to gather with friends and

family. Especially, since the user data in this research was collected post COVID-19

pandemic, this may show an underlying effect of the pandemic’s isolation taking a

toll on people’s mental and physical health and as it changes people’s priority and

perception to place an important value on socializing.

The next step is to utilize the zero-user-input approach of the transfer learned

model trained on the user data collected from the two cities of St. John’s NL and

Montréal QC which have different structures and apply this model directly to the

third and fourth cities of Kingston ON and Vancouver BC, which the model has

never seen before, to generate ALF-Score walkability. In Figure 6.7 ALF-Score walk-

ability (right) is compared to Can-ALE scores (left) for the city of Kingston, ON. At
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Feature Importance

Eccentricity 0.01316184

Stress 0.004649347

Betweenness Centrality 0.004590322

Average Shortest Path Length 0.0043923

Topological Coefficient 0.003773664

Neighborhood Connectivity 0.003381009

Radiality 0.002233024

Closeness Centrality 0.001581954

Clustering Coefficient 0.001386535

Degree 0.000191574

Table 6.5: Feature importance for all centrality features (10 features in total) con-

tributes to 4.1% of the total feature importance.

Feature Importance

restaurant 600 0.014984423

bar 1800 0.010154083

cafe 1400 0.007755144

cafe 1600 0.007659399

cafe 2000 0.007125045

cafe 1800 0.005620239

restaurant 1000 0.005089702

restaurant 1400 0.004664054

restaurant 1400 0.004664054

bench 1800 0.003845234

Table 6.6: Feature importance for top 10 (from 530) POI features. The entire 530

features contribute 17.1% to feature importance.
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Figure 6.5: Total contribution to feature importance among 668 features is divided

into three categories: 1) centrality, 2) POI, 3) road embedding. Left: Road embed-

ding, while contributing to only 19% of the total features, accounts for 78.7% of the

total feature importance, while centrality features contribute to 4.1% and POI fea-

tures to 17.1% of the total feature importance. Right: when normalized to individual

feature importance, the highest contribution is through embedding features where

each feature contributes to 58.2% of the total embedding contribution of 78.7%, and

each centrality feature contributes to 38.8% of the total centrality feature importance

of 4.1, while each POI feature contributes to only 3.1 % of the total contributing

feature importance of 17.1%. (Figures are drawn by the author.)
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Figure 6.6: Top 150 features. While a noticeable difference is observed among the top

13 features, a steady trend is observed among most embedding features. Embedding

feature importance accounts for most of the feature importance. It can also be ob-

served that despite having the highest number of features (530), only a small number

of POI features appear in the top 150 features. (Generated by Matplotlib [61])
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the first glance, a clear variation in the spatial resolution between these two meth-

ods is observed with ALF-Score capturing the walkability of the region in a much

greater depth. While Can-ALE shows some variation among different dissemina-

tion areas (DA), only the city center is highlighted with visible green and marked

as walkable. Although ALF-Score++ agrees with Can-ALE with assigning higher

walkability scores to the city center, the first major differentiator among the two is

that in Can-ALE higher walkability is given to the central and highly populated areas

of the city center whereas in ALF-Score++, while the central region is ranked with

higher walkability, ALF-Score++ recognizes the core as slightly less walkable com-

pared to locations surrounding the core of the city center. Specifically, ALF-Score++

favours waterfront walkways and paths as more walkable as opposed to Can-ALE. For

instance, the area near Leon’s Centre on Ontario Street is known to be a walkable

area and is ranked with high walkability through ALF-Score zero-user-input approach

whereas it is ranked with a significantly lower walkability score by Can-ALE.

Additionally, ALF-Score captured a cluster of greener/more walkable spots close

to students’ housing and living quarters near Queen’s University. While this area is

popular among many students, faculty and other members of the public, Can-ALE

was unable to capture it due to its area-based structure and lower spatial resolu-

tion. Moreover, it is observed that various other areas that ALF-Score++ ranked as

walkable Can-ALE failed to capture their actual walkability due to its lower spatial

resolution and granularity. For instance, the Division St. — Dalton Ave. — Benson

St. region (which falls under multiple DAs) is ranked with low walkability scores

by Can-ALE whereas ALF-Score captured and distributed much more refined and

relatable walkability scores to varying spots where there are many restaurants, stores
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and other popular places. Furthermore, the walkability of Point Frederick Peninsula

(across the LaSalle Causeway bridge) is in the red zone of the Can-ALE scores while

ALF-Score suggests the opposite for the region. This region houses multiple military

campuses with varying facilities and is deemed walkable.

Figure 6.8 shows the ALF-Score++ walkability (right) compared to Can-ALE

scores (left) for the city of Vancouver, BC. The ALF-Score++ for this region is gen-

erated based on a zero-user-input approach and similar to ALF-Score++ for Kingston,

a high spatial resolution is observed as opposed to Can-ALE’s low spatial resolution

for the same area. To look further into this region, Can-ALE highlights the inner

campus area (left side) of the University of British Columbia with light orange while

the outer campus area (right side) remains darker orange. ALF-Score++ picks up

on the fact that the right area should be more walkable due to bus stops and vari-

ous facilities commonly used by students and staff. Additionally, North Vancouver’s

walkability appears not to have been captured by Can-ALE where its walkability for

the region is ranging between dark orange and red. In contrast, ALF-Score was able

to better capture various popular areas in North Vancouver that are walkable. Fur-

thermore, the walkability for the Richmond area is barely captured by Can-ALE with

mostly dark orange and red walkability. ALF-Score++ on the other hand can capture

various walkable areas in that region. An interesting observation here is the similarity

with zero-user-input walkability data generated for the city of Kingston. Can-ALE

typically marks areas close to the water as less walkable whereas ALF-Score++ tends

to object. ALF-Score++ results are positively associated with a collective knowledge

of Vancouver and Kingston. ALF-Score++ utilizes its transferability capabilities to

better understand the city structures and find patterns in various associated data to
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Figure 6.7: Left: Can-ALE for the city of Kingston, ON. Right: walkability results

produced by ALF-Score++ for the city of Kingston, ON using a zero-user-input

approach of a model trained through transfer learning based on user data from two

cities of St. John’s and Montréal. The road network for Kingston maintains over

3400 nodes. ALF-Score walkability scores range between 0-100 units. This range can

be adjusted if needed. (Generated by RStudio [103])
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generate zero-user-input walkability scores for virtually any location on the map.

As observed earlier, the combination of user data from just two cities of St. John’s

and Montréal allowed ALF-Score generate accurate walkability scores for cities never

seen by its algorithms. Transfer learning has proven to work well in this application

even with a small set of user data. Additionally, it is believed as more user data is

accumulated, ALF-Score algorithms will be able to better capture various patterns

in the data leading to improved accuracy.

In this work, the ALF-Score pipeline was reviewed, tested and improved to ensure

it is scalable as data size increases. The pipeline was optimized to perform well while

processing, training and predicting walkability scores for small and large cities alike.

One of the major enhancements to the pipeline was improving the GLEPO algorithm

such that the processing time is reduced. This reduction process went through mul-

tiple stages. In the initial trials, every iteration of GLEPO took approximately 17

minutes on a personal 2015 MacBook Air configured with a 2.2GHz dual-core Intel

Core i7 (Turbo Boost up to 3.2GHz) with 4MB shared L3 cache and 8GB of 1600MHz

LPDDR3 onboard memory. A typical run of the algorithm takes approximately 50

iterations totalling over 14 hours of operation. In the final stage of this improvement,

the newly updated ALF-Score++ pipeline was able to process the same data using

the same computer in just under 3 minutes per iteration, a reduction of almost 6 fold.

A GLEPO run of 50 iterations will now only take 2.5 hours. Additionally, after rigor-

ous experimentation and testings, it was determined that while the optimal number

of iterations desired for the GLEPO algorithm is 50 iterations or more, the minimum

number of iterations required to produce a consistent global list is 30 iterations which

could lead to successful completion of the example task above within only 1.5 hours.
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Figure 6.8: Left: Can-ALE for the city of Vancouver, BC. Right: walkability results

produced by ALF-Score++ for the city of Vancouver, BC using a zero-user-input

approach of a model trained through transfer learning based on user data from two

cities of St. John’s and Montréal. The road network for Vancouver maintains over

45 thousand nodes. (Generated by RStudio [103])
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6.5 Personalization of Transferability

A side-effect of transfer learning is its generalization. Each city will have its range

of walkability. Small cities may have a smaller range of walkability whereas larger

cities may have a wider range of walkability. When models trained based on small

and large cities are combined using transfer learning, the newly trained model will be

more generalized. Although this generalization is very important to be able to take

a zero-user-input approach to generate walkability scores for cities never seen by the

algorithms, one must keep in mind that a balance of data must be maintained. As

observed earlier (in Montréal’s results), applying a model trained only on a small city

might not capture the varying patterns of a larger city and vice versa. It is important

to ensure the transfer learning process maintains a good balance of user data for

training, such as using user data for small and large cities to build the base model

with transferability capabilities. These small samples can prove to be invaluable

in improving the overall quality and accuracy of pattern detection and prediction.

Moreover, to further address the generalization phenomenon happening during the

transfer learning phase, ALF-Score personalization extension (ALF-Score+) can be

utilized to create personalized and transferable models that are generalized to various

city structure patterns, yet personalized to specific individual profile clusters.

Personalization is not a necessary component of transferability. However, the

personalization component can be combined with transferability to complement its

pipeline. The personalization process is explained in detail in the previous chapter,

ALF-Score+ [4], but certain approaches can be adjusted to allow compatibility with

ALF-Score++ transfer learning capability. The first approach to personalization in
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the context of transferability is to combine the user demographics from all user data

planned to be used in the process. This includes user data collected from all cities

that will be included in the transfer learning process. In this work, user data from two

cities of St. John’s NL and Montréal QC is used. The combined user demographics

are then processed by the ALF-Score+ profile clustering pipeline resulting in a list

of appropriate clusters. After the right number of clusters is determined through

the elbow method and the silhouette coefficient, assigned cluster numbers will be

associated with each user entry specific to each city. For instance, if 5 clusters are

deemed appropriate, each cluster may contain users from either or both cities of St.

John’s and Montréal. If user entry ESTJ
x from St. John’s happen to be associated to

cluster 1 while user entry EMTL
y from Montréal is also associated to cluster 1, these

cluster associations are retained within localized data for each city. Then the user

data from each city is segregated based on the cluster association and will follow the

MLP training approaches to train a base personalized model. Top hidden layers in

these models can then be processed by the transfer learning pipeline to train new

models.

Figure 6.9 shows the silhouette coefficient (top right) with a gradual increase in a

span of 10 clusters between 2 and 12 clusters. A small variation is observed between

10 and 12 clusters with 12 clusters being the peak of the coefficient at 0.95. On the

other hand, the elbow method (Figure 6.9 top left), shows the k-means distortion drop

significantly as the number of clusters is increased to 4 followed by a gradual decrease

in distortion converging between 9 and 11 clusters. Ten-cluster point is observed as

a pivotal point in both methods and for this reason, 10 personalized profile clusters

were generated. Figure 6.9 bottom shows user demographics features reduced to a

187



Figure 6.9: The Elbow method (top left) and silhouette coefficient (top right) are

used to determine the most appropriate number of clusters. 2-dimensional t-SNE

representation (bottom) of users over their demographics and system features. (Gen-

erated by Matplotlib [61])

2-dimensional representation using the t-distributed stochastic neighbour embedding

(t-SNE).

From Table 6.7, it can be observed that the error rate has been decreased over

the generalized models with the lowest error of 4.56 units for random forest and 13.28

units for MLP. It is important to note the columns Avg RF Error and Avg MLP

Error in Table 6.7 represent average MAE error among two models: 1) the model

trained on the subset of user data containing nodes associated to the relevant cluster

that are only within St. John’s, 2) the model trained on the subset of user data

containing nodes associated to the relevant cluster that are only within Montréal.

Furthermore, Transfer (MLP) column represents the best accuracy achieved through
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transfer learning using MLP. This transfer learning utilizes weights trained through

model 1 as the base of the learning and continues the learning process using the user

data that was used as input to model 2. An additional note is that cluster 9 contains

only volunteer users from the Montréal data and the average accuracy columns for

RF and MLP associated with this cluster only represent the accuracy for the models

associated with this cluster that were trained on Montréal data.

Cluster # Training Size Test Size Avg RF Error Avg MLP Error Transfer (MLP)

0 312 78 8.66 17.22 18.01

1 258 65 5.89 15.30 14.85

2 144 36 7.52 16.80 16.17

3 128 32 6.43 16.06 15.87

4 241 60 4.56 14.62 13.28

5 317 79 9.07 18.24 17.49

6 117 29 7.62 17.96 17.31

7 78 19 10.21 19.32 19.82

8 56 14 9.98 18.61 19.55

9 19 5 13.45 21.76 20.32

Table 6.7: Accuracy for personalized and transferable models generated by ALF-

Score++ pipeline based on 10 profile clusters. A best-case of 4.56 MAE error units

using random forest (RF) technique is observed while the MAE error for MLP has also

been decreased with a best-case of 13.28 units. Although each cluster uses a smaller

data size for training as opposed to the larger original dataset, since the sets are

highly focused on specific clusters of users with similar opinions towards walkability,

prediction accuracy was maintained and improved. Accuracy is expected to improve

further with more data.

Figure 6.10 visualizes the prediction results for the city of Kingston ON, based

on a specific personalized cluster (left) processed through zero-user-input transfer
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learning and compares with the results of a zero-user-input transfer learned model of

the same city without any personalization (right). The personalized model is trained

based on cluster # 4 over user data collected from both cities of St. John’s NL and

Montréal QC with a transfer learning error of 13.28 units (MLP). Cluster # 4 is

associated with men in their 20’s and 30’s who do not live alone and mostly have no

children, consider 1,200 to 1,400 meters as a walkable distance and with a common

profession selected as Professional. A very noticeable difference is observed in how

the algorithm assigns walkability scores based on various locations when personalized.

Although, it is important to note that with more user data collected, the clusters

will need to be redefined. Furthermore, cluster # 4 was chosen as it shows the most

extreme variation to that generated by the generalized ALF-Score++ through transfer

learning. This was done to maximize the visibility of the variation and to highlight

the different results generated using a personalized cluster. It is worth noting that

different clusters will have different results some closer to the generalized model while

some others (such as cluster # 4) may have a clear variation. Stratification of the data

means a sparser training set for each cluster profile however since the models are well

defined, improved accuracy is observed. Finally, the application and visualization of

transfer learning can be applied to all other individual profile clusters; however, are

omitted for brevity.

It is important to note that as more user data is collected, to improve user demo-

graphics associativity with the profile clusters, clustering will need to be reapplied.

However, transfer learned models that are trained based on personalized clusters can

continue to be used as zero-user-input models to predict personalized walkability

scores for cities never seen by the algorithms during their training cycle.
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Figure 6.10: Left: Zero-user-input personalized and transferred predictions of cluster

# 4 for the city of Kingston, ON. Right: ALF-Score++ zero-user-input transferred

predictions without personalization for the city of Kingston, ON. (Generated by RStu-

dio [103])
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6.6 Discussion

The goal of this overall research is to explore how machine learning can be applied

to the spatial domain with application in public health through generating relevant

and meaningful walkability scores with the high spatial resolution based on a very

small set of users’ opinions. In this chapter, ALF-Score pipeline was improved and

tested to be fully capable of scaling up and down to match the data based on the

size of the city and user opinion data while performing promptly. Additionally, since

the computational complexity of the pipeline is O(n2), It is expected that processing

larger cities will perform reasonably and within the expected parameters. Moreover,

ALF-Score++ was shown fully capable of processing data and generating models for

the city of Montréal QC which is almost 16 times larger than that of the city of St.

John’s NL, within a timely fashion without requiring any extended resources while

these models are capable of producing walkability scores with high spatial resolution

compared to that of Can-ALE. Figure 6.11 shows a correlation comparison between

ALF-Score++ walkability scores and Can-ALE walkability scores for four different

cities in Canada.

Moreover, the power of transferability was observed to provide an upper hand to

transfer the knowledge learned from small cities to predict accurate walkability scores

for much larger cities. This leads to many advantages such as reduced resource re-

quirement and reduced processing time while increasing the flexibility of applicability

of the trained models. Furthermore, its application of zero-user-input transfer learn-

ing proved to be a huge success in predicting walkability scores for cities never seen

by the algorithm before and without any prior knowledge about them while utilizing
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Figure 6.11: Correlation between ALF-Score++ and Can-ALE for four different cities.

Top left: Montréal QC, Top right: Kingston ON, Bottom left: Vancouver BC, Bottom

right: St. John’s NL. (Generated by RStudio [103])
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previously learned information and patterns. Of note, the transfer learning process

was able to capture both relative and absolute differences between cities in terms of

walkability. For example, the range of walkability scores assigned to Kingston based

on the transfer learning was between 30 and 70, whereas scores generated for the city

of Vancouver based on transfer learning ranged between 30 and 80 when St. John’s

and Montréal were used as training cities. Developing measures that capture both

relative and absolute differences in cities has been an ongoing challenge, that transfer

learning may be able to solve.

Furthermore, it was observed that adding a small set of users’ opinions from a

different region can lead to much higher pattern recognition by the models while

allowing for a better generalization of these models. This generalization can therefore

help capture various common patterns found in different cities without any actual

prior knowledge about them.

Similar to many machine learning tasks, the ALF-Score++ pipeline can train

more accurate models and benefit from more data. For instance, collecting small user

data samples across various cities, towns and user groups could cover a much more

diverse set of user demographics, user opinion, patterns, city and road structures

leading to a well-representative model applicable to virtually any location within

any road network. Given enough user information from a few select key cities in

Canada (cities with varying structure and sizes), models generated through transfer

learning of this data should be able to estimate accurate scores for any location in

Canada. To generate new models, one does not need to rerun the entire process on

the entire dataset. All that is required is to transfer the knowledge from previously

trained models (which can be transfer-learned models themselves). ALF-Score++
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pipeline can be adjusted to be fully capable of continuous learning. This could be

particularly important as changes to road networks are detected. The network-based

approach combined with continuous transfer learning can help models detect patterns

associated with various regions, types of road and user demographics and provide

accurate predictions for new roads and structures never seen by the model.

As the work went through the predictive process, a variation was observed between

the performance of shallow and deep models. Throughout ALF-Score, random forest

(a shallow model) was the preferred technique since 1) it performed best across all

other techniques (shallow and deep) achieving an MAE error as low as 4.56 units, 2)

its simplicity and powerful approach, 3) faster processing and prediction compared to

MLP. Although, MLP (a deep model) is the main technique used in ALF-Score++

since deep models are preferred when it comes to transfer learning due to their layered

structure. The lowest error achieved using MLP was 13.28 units. Although deep

neural network techniques are generally expected to provide more accurate results,

they require a tremendous amount of data. As it was observed, this could be an issue

when dealing with only a small set of data like the one used in this research. It is

believed that as more user data is accumulated, MLP’s performance will improve.

According to the popular book by Aurélien Géron [50], it turns out that transfer

learning does not perform very well given a small network. This is presumed to be

because small networks learn few patterns while dense networks learn very specific

patterns which may not be useful for other tasks. Géron suggests that “transfer

learning works best with deep convolutional neural networks, which tend to learn

feature detectors that are much more general”. Furthermore, deep neural network

methods are typically used when there is huge and unstructured data to process, for

195



example classifying images. On the other hand, shallow models, for example, random

forest, tend to be more useful to process structured data with many dependable

features, for example predicting the weather. These models work well with smaller

cases and larger attributes whereas, in the case of deep neural networks, much more

cases and much fewer attributes are required. This is one of the reasons why higher

error rates in ALF-Score were observed among the MLP models when compared to

the shallow models, specifically random forest. Deep neural network models perform

particularly well in vision and speech domains.

Lastly, it is important to highlight that there are other methods and approaches

to transfer learning such as ensemble transfer learning approach [76] and boosting for

transfer learning [137] and one should consider such methods and choose the most

appropriate based on the task at hand.
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Chapter 7

Conclusion

To conclude this dissertation, it is important to point out the importance of the in-

terdisciplinary research between computer science and other fields, specifically public

health. Technology is advancing every day, and what better use of it than to improve

people’s lives and health. This kind of practical interdisciplinary work can truly and

positively impact the world. For example, worldwide physical inactivity is associated

with 9% of all premature mortality (5.3 million deaths per year), 6% of the burden of

coronary heart disease, and 7% of type 2 diabetes. If the population meeting physi-

cal activity guidelines increased by 10%, more than 533,000 deaths could be averted

every year worldwide [71]. The built environment, defined as “man-made or mod-

ified structures that provide people with living, working, and recreational spaces”

[3], represents an important method with the potential to increase physical activity

at the population level in Canada and worldwide. Many research studies focus on

how computer science can bring a wealth of possibilities to public health and health

professions. For instance, Tolsgaard et al. [118] studied the role of data science and
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machine learning in health professions education. They conducted a review to ex-

plore “(1) published applications of data science and ML in HPE literature and (2)

the potential role of data science and ML in shifting theoretical and epistemologi-

cal perspectives in HPE research and practice”. Furthermore, in another article by

Barnes et at. [10], the authors made a case for Computational Health Science, an

interdisciplinary collaborative work among health scientists, computer scientists, en-

gineers, psychologists, and other social scientists. They defined computational health

science as conducting “innovative research that will inform future practice directed at

changing health behaviour through improved communication, networking, and social

capital”. Others, such as Kunkle et al. [72], call for action to address emerging health

needs through integrating new and personalized technologies.

Furthermore, measuring the environments around us, including cities, roads, and

social environments, is crucial to help better understand human behaviour. This

knowledge can help predict how aspects of the environment influence behaviour and

health. Walkability is one measure of the environment used to predict health. As this

research revolves around walkability, it is vital to define walkability since there are

many operational definitions of walkability in the literature. Walkability is a concept

that many researchers have used to operationalize characteristics of the environment

that support walking. Simply put, walkability scores can tell how “walkable” the

surroundings are. However, it is important to keep in mind that there is no single

agreed-upon conceptual definition of walkability. For instance, some measures define

walkability focusing on POIs, whereas others may consider a higher weight for pop-

ulation density. Similarly, some walkability measures deem an area-based approach

feasible to calculate accurate walkability scores, whereas others may have a different
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Figure 7.1: An overall look at the entire ALF-Score pipeline. (Figure is drawn by the

author.)

acceptable policy. Figure 7.1 reflects on the overall structure of the entire ALF-Score

pipeline.

The primary reason behind incorporating road networks into ALF-Score is that

roads and road network structures are essential in people’s daily lives. To better

understand our surroundings and how aspects of the environments influence human

behaviour, how people are connected to their surroundings should be considered. The

importance of road networks has been well-known for thousands of years. Chengjin

Wang et al. studied the evolution of road networks in China between 1600 BC to

1900 AD [125] and suggested that road networks were used for major nationwide

socio-economic exchanges long before modern transportation emerged and have been
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in long-term development and are continuously expanding. This expansion of road

networks with continuous change in accessibility and coverage is closely associated

with natural conditions, national defence and “centralization of national power, na-

tional land governance, postal transport, the transport of specialized cargos, and

international trade”.

Road network data is abundantly available from various sources such as Statistics

Canada [113] and OpenStreetMap [91]. However, as data expands, analyzing larger

regions requires much more processing power and computational time. Especially

when working with road networks, typically larger networks lead to higher connectiv-

ity between the nodes causing a higher complexity within the network. Most popular

and existing algorithms to measure network importance are already efficient, yet due

to the nature of the problem they are solving, they are still too complex to process

large networks quickly and on personal computers without any specialized hardware.

Graph reduction and reconstruction techniques were proposed (and presented in

Chapter 3) to address the existing gap. Its first phase reduces network size to a

fraction of the original graph while maintaining the main structural characteristics.

The reduced graph can then be processed much faster than the original graph and be

used in various methods such as different centrality measures. In its second phase, the

reduced graph is reconstructed using a variation of the linear interpolation technique.

This phase reconstructs the original graph based on the partially calculated data

measured in phase one and estimates the values for the “reduced” nodes.

This approach made it possible to reduce large road networks and decrease the

required computational time, saving hours and possibly days, as evident from Ta-

ble. 3.2. Although to ensure accurate results are produced, the network structure
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needs to be kept intact during the reduction process, limiting node reduction. How-

ever, on average, a 77% reduction of road nodes was achieved within various networks

while preserving the original networks’ structure. The application of most centrality

measures such as betweenness centrality and closeness centrality performed over the

reduced network was made considerably faster. It is worth mentioning that the sec-

ond phase runs in linear time and the computational time for reconstruction (Table

3.3) is almost negligible.

After completing the graph reduction and reconstruction phase, it was possible

to fully reduce and reconstruct networks to calculate various centrality measures for

different cities in Canada for a fraction of the time needed using traditional methods.

The next important step was to consider implementing user opinion as a guiding

factor towards how ALF-Score walkability scores based on road network features are

influenced by the general public’s view, which brings up a significant gap in existing

walkability measures, highlighting that most are one-size-fits-all heavily influenced by

only a few people’s perspectives (generally the researchers). Through user opinion,

ALF-Score walkability represents user opinion while being more informative to most

users by taking a user-centric approach instead of the traditional researcher-centred

approach.

An interactive web interface was devised to reduce bias while collecting user opin-

ion data, allowing users to provide their opinion in rankings between 5 randomly

selected locations. The decision to collect the data labels as a combination of relative

rankings and not absolute scores (e.g. ranking every 5 locations between a fixed range

such as 0-100 where the same rank may apply to other locations) was made to reduce

bias and conflict in the data while incentivizing the participants to make a precise
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decision to determine which of the given 5 locations would be most or least walkable

and order the locations as deemed appropriate. While absolute scores are easier to

use, each individual may have a completely different rationale for why a location has

been ranked the way it is, such as a score of 65 and not 40. Utilizing relative rank-

ings takes that factor out to focus on the most important factor: whether location

A is more walkable than location B for a given individual. This way, there will be a

concise approach to determine each individual’s perception towards walkability when

comparing different points together over other users’ responses.

It is essential to highlight that only a small group of users provided user opinions

and demographics in this research due to limited access to volunteer participants. To

avoid bias and to be more representative of people, one should consider the inclusion

of various groups and sub-groups of individuals such as minorities and those with

disability.

Conflicts are unavoidable and lead to inconsistencies among user opinions. The

challenge was to balance out the opinions collected from users to yield a walkability

metric that is agreeable to most users. The collected user opinions maintain a unique

form observing only relative orders within each submission of 5 locations and therefore

do not represent the global view among all people. Due to this and the nature of

the conflict resolution, the problem remains in the NP-complete space. Therefore,

a new approach to handling conflicts and representing user opinions within a global

perspective needs to be devised. Generalized Linear Extension of Partial Orders,

or GLEPO, is an algorithm developed specifically to process this approach of user

opinion label collection and to convert relative ranks to absolute orders. GLEPO

produces a generalized list of all user opinions in total order and absolute ranks to
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represent relative ranks of small submissions within a global observation of the overall

data.

Using the GLEPO algorithm, converting users’ relative opinions among groups of

5 locations into globally relative scores (among all submissions) was successful with

only a minor inconsistency. GLEPO maintains a high consistency of 98.24% through-

out the conversion. Furthermore, after numerous variations and experimentation, it

was determined that the best results were produced using the randomized version

of the algorithm with at least 30 iterations. In comparison, 50 or more iterations

were preferred. The virtual link was enabled when the best results were produced.

GLEPO’s output provides an overall well-represented user opinion baseline to walka-

bility scores while establishing a ground truth for the ALF-Score pipeline. However,

GLEPO’s main contributions may be extended to an extensive range of researches

requiring proper use of crowd-sourced user data while reducing bias due to differences

in opinion.

A few alternative approaches were experimented with in the earlier stages of

GLEPO’s development before moving on to the final approach. One of the earlier

versions of GLEPO, which was called R2A or Relative to Absolute, utilized Can-ALE

data as its base. This approach took advantage of already established scores generated

by Can-ALE and assigned these scores to their associated locations within the user

data. The association was done by projecting each DA’s score to all nodes within the

DA. The algorithm would then rearrange the nodes based on the conflicts observed

within the user opinion data. Each point within the resulting globalized list may have

a completely different score than what it may have had within Can-ALE; however,

the overall list will still maintain a score range similar to Can-ALE for the region.
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This approach worked great as a starting point to establish a base algorithm to pro-

duce a based line to process the user opinion data. But the issue with this approach

is that although the resulting scores for the nodes may have been different than that

they would have been assigned through Can-ALE, the influence of this extension was

observed within the range of the overall score list. For instance, if Can-ALE for a

region R1 ranges between -2 and 2, this would have been the same range of score

for R2A’s globalized list for the same region; even though a given node a may have

been ranked as -1 in Can-ALE and yet ranked as +1.5 by R2A. Furthermore, having

other regions with different ranges in their overall Can-ALE scores included in the

algorithm, for example, R2 ranging between -3 and 10, would further influence the

overall baseline. Can-ALE data was removed in the later iterations, relying only on

user-provided data. Some other earlier iterations of GLEPO also included variations

with no randomization, no virtual link or without multiple iterations.

Since user opinion was fully processed into usable data, there are a few potential

approaches to utilizing this user opinion data. Treating them as labels in a machine

learning pipeline is an excellent approach chosen in this research. The reason behind

choosing machine learning is that predictive models have considerable potential for

flexibility and diversity of application. Through machine learning, this research fore-

goes the need to compute walkability scores for every single location but instead train

models that can make intelligent estimations. This approach reduces score generation

time and makes it possible and feasible to estimate scores for all points within the

road network leading to a high point-level spatial resolution. Furthermore, machine

learning approaches open the door to many possibilities, such as incorporating per-

sonalization through unsupervised learning methods and utilizing transferability to
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gain the ability to transfer previously learned ALF-Score walkability knowledge to

various cities that were never involved in the training process.

Various ML techniques were applied and compared based on different feature set

combinations to incorporate machine learning. The goal is to find the most suitable

technique and feature combination sets that produce the most appropriate models

predicting accurate walkability scores. The techniques that were used in both super-

vised and semi-supervised environments are: 1) random forest, 2) linear regression,

3) decision tree, 4) support vector regression (SVR), 5) gradient boosting, 6) poly-

nomial features (a non-linear approach), 7) lasso CV and 8) multi-layer perceptron

neural network (MLP). Feature combinations used are: 1) only POI features, 2) only

network features (centrality measures), 3) only road embedding features, 4) POI +

road network features, 5) POI + road embedding features, 6) road network + road

embedding features, 7) all features.

Random forest outperformed all other techniques in terms of performance and

accuracy by achieving a top prediction accuracy of 87.49% (ALF-Score) using all

features. Models trained on only POI features performed relatively similar to those

trained on POI plus network features and POI plus road embedding. However, mod-

els trained on network features combined with network embedding appeared to per-

form better than those using POI previously motioned. Furthermore, road network

structure plays a crucial role in measuring walkability. Improvement in accuracy is

observed after adding POI features to the network and road embedding features,

which highlights the complementary position of POI to road network structure.

ALF-Score’s use of user opinion and machine learning approach to estimate scores

based on various features opens the possibility of introducing an extension to person-
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alize this walkability measure. ALF-Score+ explores this extension by utilizing user-

defined and system-defined user demographics to create individual profiles to develop

profile clusters. The ALF-Score pipeline then uses user labels and profile clusters

for further processing. It generates machine learning predictive models that estimate

personalized walkability scores specific to each profile cluster. The introduction of

user profiling and profile clustering into the pipeline helps assign users to distinctive

clusters that represent the majority of users within that cluster. Each cluster is then

used to train specific machine learning models that best represent the users within

that cluster with estimated walkability scores influenced by their opinion.

Using the elbow method and the silhouette coefficient, it was determined that six

distinguished clusters would best represent the users from the St. John’s dataset.

ALF-Score+ maintained an accuracy of 90.48% on average over at least 35 separate

experiments with the best case of 93.70%. ALF-Score+’s overall accuracy on average

is consistently and noticeably higher than that of ALF-Score. This improvement in

accuracy is attributed to the user-focused approach of ALF-Score+ models; however,

one should also note the significant drop in training size of personalized sets compared

to the original ALF-Score experiments. Although smaller training sets were used to

train each cluster profile’s specific model, the trained models captured more in-depth

characteristics of each profile cluster. Random forest regressor remained the top-

performing technique.

The final phase of this research, ALF-Score++ [7], is the second extension of

ALF-Score. It focuses on scalability and transferability of the overall pipeline to

ensure 1) the feasibility of the flow and the algorithms within the pipeline regardless

of the size of the city being processed, and 2) producing repurposable, reusable and
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transferable predictive walkability models. Most experiments in the previous chapters

focused on utilizing smaller cities, such as the city of St. John’s, NL, with only 5,364

nodes and 6,851 edges. Furthermore, a small set of user opinion data containing 1,050

user entries covering 895 unique locations was used. Feasibility of the flow and the

algorithms within the pipeline is a crucial step to ensure the pipeline can handle road

networks and user opinion datasets of varying sizes and can process them promptly.

For example, the city of Montréal QC and its surroundings have around 76,663 nodes

and 114,414 edges which is almost 16 times larger than the road network for the

city of St. John’s. Transfer learning is yet another missing component from many

existing walkability measures. Producing transferable and reproducible predictive

walkability models is an essential component of ALF-Score++, which allows this

measure to utilize previously learned knowledge when generating walkability scores.

This knowledge can be used to reduce future training time, required resources and

labelled data, help improve the overall accuracy and provide estimated walkability

scores for cities never seen before by the algorithms.

Finally, with ALF-Score++, transferability was explored. A way to use existing

ALF-Score models as a base to transfer previously trained knowledge was proposed

to speed up the processing time for new training and increase the accuracy of these

models. Transferability was successfully achieved using ALF-Score++. The lowest

prediction MAE error (matching approach) using random forest shallow model was

at 11.87 units (Figure 6.4 top left) (and 4.56 when personalized). At the same time,

MLP was the best performing deep model with an MAE error of 13.87 units (and

13.28 when personalized). Walkability scores for the city of Montréal were accurately

predicted using user data associated with this city. However, walkability scores for
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the cities of Kingston and Vancouver were also estimated using models only trained

on the user data from the cities of St. John’s and Montréal. The performance was

improved by combining transferability (ALF-Score++) with personalization (ALF-

Score+) to generate transferable and personalized walkability scores, achieving an

MAE error of 4.56 units for direct training using random forest on a personalized

cluster and 13.28 units for transfer learning using MLP, over a value range of 0-100

units.

ALF-Score and its various extensions, such as ALF-Score+ and ALF-Score++,

can be very beneficial and powerful tools for many people from various backgrounds

working on different domains. Although ALF-Score can produce results specific to

various parameters, such as demographics, to provide personalized walkability scores,

the ALF-Score pipeline takes a generalized approach instead to allow addressing var-

ious issues that may not be directly related to walking or walkability. For instance,

bikeability, school friendliness, transit friendliness, or even POI specialties based on

different demographics and perceptions. Moreover, the pipeline may be capable of

handling a wide variety of features and other types of networks instead of the road

network. For example, subway networks. At its core, ALF-Score requires a vector of

user ground truth labels alongside a list of features. ALF-Score uses its dedicated web

tool to collect the ground truth labels and processes them through GLEPO to reflect

relative to absolute conversion within a small group of users. However, the ALF-

Score pipeline follows a black box system and works with any compatible input data

regardless of how they were prepared. The ground truth data can be processed ac-

cording to researchers’ needs, and this step can be bypassed in the pipeline if needed.

Although walkability scores generated by ALF-Score and its extensions rely on road
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network data, the generalization offered by their pipelines can be further distilled

beyond road networks. Road network data is treated as any other feature and can

be replaced with an appropriate feature based on the issue at hand and the research

requirements. It is my genuine belief and hope that ALF-Score can open the door to

many possibilities well beyond the scope covered in this research.

To conclude, ALF-Score and its extensions show tremendous potential in utiliz-

ing the science of complex networks, graph theory, and machine learning to act as a

positive tool to solve real-world problems in varying fields such as computer science

and public health. Although the contributions of this research to the literature are

evident, I believe ALF-Score has the potential to continue to contribute to the world,

people’s health and well-being in many significant ways and that the possibilities of

its application and use are endless.

I am hopeful for a brighter future!
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acteristics and environment factors associated with motorcycle fatal crashes in

Malaysia. IATSS research, 42(4):207–220, 2018.

[83] K. Manaugh and A. El-Geneidy. Validating walkability indices: How do different

households respond to the walkability of their neighborhood? Transportation

research part D: transport and environment, 16(4):309–315, 2011.

[84] S. C. Minister of Industry. 2011 National Household Survey (NHS), 2013.

[85] ML Glossary - Read The Docs. Linear Regression, 2017 (accessed Dec

220

https://CRAN.R-project.org/package=shp2graph
https://CRAN.R-project.org/package=shp2graph


11, 2020). https://ml-cheatsheet.readthedocs.io/en/latest/linear_

regression.html.

[86] P. Morency, J. Archambault, M.-S. Cloutier, M. Tremblay, and C. Plante. Ma-

jor urban road characteristics and injured pedestrians: A representative sur-
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