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Abstract 

Chemical process industries are vulnerable to accidents due to their inherent hazardous nature, 

complex operations, and growing size. Although the control system works as the first safety layer 

and is designed to maintain the setpoint within the safety limit, it cannot suppress all the deviations. 

Therefore, a warning system is used above the control layer to provide alarm(s) to the operators 

about unpermitted process deviations that cannot be negated by the controllers. Data-based process 

fault detection and diagnosis (FDD) and dynamic risk assessment (DRA) tools play a pivotal role 

to ensure that any significant process deviation is efficiently captured and necessary maintenance 

has been done to restore the process to normal operating mode. Besides, these tools can provide a 

detailed analysis of failure paths which are significant to prevent a fault from propagating into an 

accident.  

Conventional univariate monitoring is easier to implement and comes as standard with distributed 

control systems (DCS). This conventional approach is unsuitable in digitalized process systems 

due to increased close loop control, large process dimension, and complex interaction among 

variables. Modern process industries require techniques that can handle the complexity and scale 

of process plants. Timely detection of faults, diagnosis of root cause(s) of faults that affect multiple 

variables, and predicting a quantitative measure of consequence is vital to ensure process safety 

and reliability. The thesis deals with multivariate data-driven FDD and DRA for digitalized 

process systems. This research aims to reduce the technological gaps between the current methods 

and prerequisites of automated FDD and DRA tools for multivariate safety analysis. 

This thesis looks at improving all aspects of FDD and DRA methods, starting from data pre-

processing to consequence analysis due to fault(s). First, the effect of data pre-processing is 

investigated in the context of multivariate FDD. Multivariate exponentially weighted moving 
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average (MEWMA) is found to be an effective way of filtering process data without adversely 

affecting their correlation structure. The MEWMA is combined with PCA-BN, and a new method 

called MEWMA-PCA-BN is proposed. The developed framework can detect and diagnose the 

fault earlier than many contemporary multivariate process monitoring models. In this work, a novel 

methodology has been proposed to construct the BNs from historical fault symptoms. Second, the 

selection of the principal components (PCs) for the PCA-BN method is made automated; the 

correlation dimension (CD) is used in this regard. Also, a new methodology is proposed for 

developing BNs from continuous process data. 

Third, the prediction of the consequences of a fault has been adapted for multivariate process 

systems. A novel data-driven framework has been proposed for concurrent FDD and DRA using 

the naïve Bayes classifier (NBC), BN, and event tree analysis (ETA). This work utilizes a 

multivariate fault probability from NBC for dynamic failure prediction. It overcomes the limitation 

of using univariate probability in DRA. Finally, this thesis looks into improving the FDD 

performance by capturing the correlation structure of process variables and considering the 

consequence analysis. The R-vine copula is used to demystify the correlation structure accurately 

while the ETA predicts the consequences. Unacceptable deviation of risk is used as an indicator 

of a fault, and subsequently, root cause(s) diagnosis is performed using density quantile analysis 

(DQA). Industrial, experimental, and simulated datasets are used to test and validate the 

performance of the developed models. This thesis is an important step for multivariate data-driven 

FDD and DRA research. 
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Chapter 1: Introduction 

1.1. Background and Motivation 

Process industries play a pivotal role in global economic growth. A list of the world’s top 500 

largest companies in 2021 includes many process industries such as ExxonMobil, Chevron, and 

Dow, to name a few (Fortune, 2021). The role of adequate safety assurance is instrumental behind 

this success, as an accident can lead to enormous financial damage and more importantly, 

reputation loss, which has a long-lasting impact on a company’s investment portfolio and 

operational success. Although less frequent, indeed process industries experienced catastrophic 

accidents in the past century (Khan and Abbasi, 1999) and are still experiencing in this century 

(Mannan et al., 2016); this indicates that the current safety technologies need to be continually 

reviewed and improved to avoid any undesired event (Amin et al., 2019a; Talebberrouane et al., 

2016). 

Continuous monitoring and preventive actions are the keys to avoiding abnormal situations and 

accidents (Khan et al., 2016). Thus, fault detection and diagnosis (FDD), the core elements of 

process monitoring, are paramount in ensuring process safety (Chiang et al., 2000). A fault can be 

defined as an unwanted deviation of at least one of the variables from the acceptable operational 

range. A fault initiates an abnormal event or accident. If it goes unmitigated, eventually, a process 

can be led to catastrophic failure. Therefore, nullifying faults in process operations is one of the 

primary operational tasks to enhance safety and reliability (Vathoopan et al., 2018). An early fault 

detection gives a lead time to the operators, while an accurate root cause diagnosis saves a 

significant amount of time when an alarm is noticed (Isermann, 2005).  
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The current era is often termed the Fourth Industrial Revolution or Industry 4.0, characterized by 

the automation and digital transformation of industries (Reis and Kenett, 2018). According to Khan 

et al. (2021), process digitalization integrates digital technologies in process operations for 

achieving greater efficiency and increased product quality. An effort is ongoing to upgrade the 

existing chemical plants harmonious to the Industry 4.0 requirements. Along with process 

digitalization, data-driven automated abnormal event management and predictive monitoring are 

critical mandates of the current industrial revolution (Pandey et al., 2020).  

Figure 1.1 compares a traditional and a digitalized process system from the control and monitoring 

perspectives; a tank filling system has been considered. In earlier days, operator(s) used to monitor 

the level of the tank to protect against any potential overfilling. The complete control and 

monitoring mechanisms were manually done. On the other hand, with the advancement of sensor 

technologies and control and automation, this practice has been shifted to automated control 

(Moshgbar and Hammond, 2010). A sensor can monitor the level inside the tank, and the inlet 

flow controller can use this information to increase or decrease the flowrate to maintain the level, 

thereby protect overflow. The FDD module is equally crucial to both process systems. 

Nonetheless, the expected mode is different. In a digitalized process system, automated FDD is 

expected due to the complexity of close loop operations (Khan et al., 2021). The algorithms used 

for process monitoring should provide a detailed diagnostic report that the operators can utilize to 

take necessary actions in case of an abnormal situation.  
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Figure 1.1: Conventional vs digitalized process system. 

Although a faulty condition affects plant safety significantly, it alone does not directly measure 

safety since it needs to pass through several physical (e.g. emergency shutdown valve) and non-

physical (e.g. controller) safety barriers to turn into an accident. Safety cannot be measured 

directly; it can be perceived from the assessment of risk, which is mathematically defined as the 

product of the probability of failure and severity of consequence (Khan et al., 2020). Process 

operations are dynamic; therefore, dynamic risk assessment (DRA) provides detailed plant safety 

information considering process state (i.e. probability of fault) and safety barriers’ performance.  

During the emergence of process monitoring, model-based tools were widely used for FDD. These 

tools rely on the first principal methods, which need detailed plant information 

(Venkatasubramanian et al., 2003b). A significant time is required to build the models. Also, 

uncertainty affects the performance of these tools significantly. In this context, the data-based 

statistical tools provide a more flexible mean, using available process data to develop monitoring 
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models. These tools can be divided into univariate and multivariate techniques 

(Venkatasubramanian et al., 2003c). 

The univariate tools use a dedicated control chart for each variable. Although these are easier to 

implement, monitoring a high-dimensional process with these control charts becomes tedious and 

stressful for operators. The multivariate tools overcome this limitation since they use fewer control 

charts for the entire process (Kresta et al., 1991). Additionally, these tools can provide an early 

fault detection than the univariate counterparts, as they consider the correlation among process 

variables (Neogi and Schlags, 1998). 

Nevertheless, accurate diagnosis is a significant problem for multivariate tools (Vedam and 

Venkatasubramanian, 1999). Operators’ experience often becomes a vital resource in fault 

diagnosis. The personnel in the control room can predict the root cause by analyzing the variable 

trend plots or contribution plots (Miller et al., 1998). This is a time-consuming process and may 

entail errors, given the fact that symptoms often become more sensitive to a fault rather than the 

root cause (Liu, 2012). Furthermore, multivariate FDD tools need user opinion in captured 

variance to develop the monitoring model. Detecting faults earlier is another issue that 

continuously gets researchers’ attention (Amruthnath and Gupta, 2018). 

The knowledge-based tools have been used for fault diagnosis, as well. These tools necessitate 

expert knowledge. Nonetheless, one cannot guarantee the accuracy of the developed model due to 

knowledge uncertainty and human error (Gharahbagheri et al., 2017b). Recently, many researchers 

have developed knowledge-based tools from process data (Gharahbagheri et al., 2017b; Meng et 

al., 2019; Yang et al., 2014). However, the majority of these tools use process knowledge to 

develop models. 
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One of the significant limitations of the current multivariate FDD tools is their inability to capture 

dynamic risk profiles. Although a few articles are available in the existing literature that has 

addressed simultaneous FDD and DRA using multivariate process data (Yu et al., 2016; Yu et al., 

2015a; Zadakbar et al., 2015, 2013, 2012), these works estimate risk from a univariate fault 

probability. In addition to this, the majority of them lack robust fault diagnosis and failure 

prognosis characteristics. 

While there is progress in multivariate data-based FDD and DRA, several semi-automated aspects 

of these tools are the major issues that need cautious attention. The contemporary technology 

focuses on enhanced use of multivariate data; still, human intervention is required for model 

development and online performance. The current process monitoring and safety analysis tools 

need to be multivariate and automated, especially considering the growing complexity and 

required parameters to be handled in a digitalized process system (Khan et al., 2021). Hence, the 

motivation of this research is to bridge the main technological gaps between the existing methods 

and the requirements of an automated FDD and DRA method by using available process data to 

reduce human dependency, ensure accurate fault diagnosis, and enhance process safety.  

1.2. Objectives 

The main goal of this work is to develop data-based FDD and DRA tools for multivariate safety 

analysis in digitalized process systems. Instead of using prior knowledge, available process data 

are used to develop the monitoring models. Different data characteristics, such as linearity, 

nonlinearity, Gaussianity, and non-Gaussianity, have been considered. This work attempts to 

provide answers to the following questions. 

i. Can the monitoring system reliably determine the system state? 

ii. Can the developed system detect fault early? 
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iii. Where has the fault(s) likely occurred in a process? 

iv. What is the likelihood of a fault transforming to a failure through different paths? 

v. How can multivariate process data be utilized for predictive FDD and DRA? 

Having the research questions in mind, the objectives of this research (Figure 1.2) are: 

i. To develop a multivariate tool for early fault detection and diagnosis in linear and 

Gaussian process systems. 

ii. To develop a data-driven and automated fault diagnosis tool for linear and Gaussian 

process systems. 

iii. To develop a framework for simultaneous FDD and DRA in Gaussian and nonlinear 

process systems. 

iv. To develop a risk-based FDD model for nonlinear and non-Gaussian process systems. 

v. To test and verify the developed models with simulated and real-life case studies. 

 

Figure 1.2: Research objectives. 
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1.3. Novelties and Contributions 

This doctoral research's main novelties and contributions are fault detection, diagnosis, and 

dynamic risk assessment in process industries. The highlights of these contributions are stated 

below: 

• An improved version of PCA for early fault detection. The multivariate exponentially 

weighted moving average (MEWMA) model has been integrated with the PCA. The 

developed MEWMA-PCA model can detect fault earlier than many contemporary fault 

detection tools. 

• A novel data-driven BN learning method. The BNs are developed from historical fault 

symptoms using a supervised learning technique.  

• An automated principal component (PC) selection technique for process FDD using 

correlation dimension (CD). It eliminates the need for human interference in PCA model 

development. 

• An innovative data-driven BN learning algorithm using the Kullback-Leibler divergence 

(KLD), vine copulas, and Bayes’ theorem. The proposed algorithm adopts an unsupervised 

learning method and is found efficient in fault diagnosis. 

• A method to estimate high-dimensional conditional probabilities from continuous process 

data. It relaxes the necessity to discretize continuous data at the cost of information loss. 

• A multivariate simultaneous FDD and DRA methodology. This work can show the failure 

paths using the event tree analysis (ETA). Additionally, a dynamic risk profile is developed 

using a multivariate probability estimator, the naïve Bayes classifier (NBC), and thus, it 

eliminates the existing univariate probability-based dynamic risk computation. 
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• A methodology to compute multivariate fault probability by an unsupervised learning 

method that is used for risk assessment. The R-vine copula model has been used in this 

context. 

• A model-free simultaneously active multiple fault diagnosis module using the density 

quantile analysis (DQA).  

1.4. Outline of Thesis 

This thesis contains seven chapters and is written in a manuscript-based format. The overall 

outcomes of this thesis are published in four peer-reviewed journal papers. Figure 1.3 shows the 

organizational structure of this thesis. Chapter 1, 2, and 7 are the introduction, literature review 

and conclusions, respectively. Chapters 3 to 6 of this thesis are developed based on the papers 

published in peer-reviewed journals. 

The first chapter demonstrates the motivations and objectives of the research. Chapter 2 presents 

a brief overview of the available literature and identified knowledge gaps. Chapters 3, 4, 5, and 6 

discuss the technical outcomes based on the objectives mentioned in Section 1.2.  

Chapter 3 reviews the current progress in FDD and proposes an MEWMA-PCA-BN model for 

fault detection and diagnosis. An algorithm is also proposed to develop BNs from historical fault 

symptoms. This algorithm follows a supervised learning method where all fault information needs 

to be available. On the contrary, the fault is detected using the MEWMA-PCA in an unsupervised 

manner. This work has been published in the Industrial & Engineering Chemistry Research 

journal. 

Chapter 4 proposes a data-driven BN learning algorithm. This work relaxes the necessity of 

historical fault symptoms to build a BN and adopts an unsupervised learning technique. The KLD 
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has been used for determining BN topology, and the prior and conditional probabilities are 

estimated using the vine copula and Bayes’ theorem. This work also proposes a CD-based 

automated PC selection method to eliminate user-opinion requirements in PCA model 

development. This work has been published in Process Safety and Environmental Protection 

journal. 

Chapter 5 reviews the current simultaneous FDD and DRA methods and proposes a new concept 

in the context of DRA, where failure probability is estimated using multivariate fault probability. 

The NBC is used for FDD in a supervised manner. It generates a multivariate probability of each 

fault type which is fed into the ETA for failure prediction. This work has been published in The 

Canadian Journal of Chemical Engineering.  

Chapter 6 proposes a risk-based FDD framework. It also uses multivariate probability for failure 

prediction. However, the fault probability is estimated in an unsupervised manner using the 

advantage of the R-vine copula. The diagnosis technique developed in this framework is found 

sensitive to multiple faults. This work has been published in Process Safety and Environmental 

Protection journal. 

Chapter 7 reports the summary of this thesis and the main conclusions drawn through the technical 

works. Recommendations for future work are also presented at the end of this chapter. 
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Chapter 2: Literature Review 

2.1. Multivariate Data-based FDD Tools 

Data-based quantitative multivariate tools are being used in process FDD for almost three decades 

(Alauddin et al., 2018). These tools can be classified into two major categories: statistical process 

monitoring and machine learning tools (Venkatasubramanian et al., 2003c). Machine learning-

based techniques such as the artificial neural network (ANN) and support vector machine (SVM) 

require in-depth information about normal and faulty data. The training time is also longer, and 

accurate performance is not guaranteed when facing an unknown fault type (Ge et al., 2013).  

On the contrary, the multivariate statistical process monitoring (MSPM) tools such as the principal 

component analysis (PCA) and independent component analysis (ICA) only require normal data 

to develop the monitoring model. Any deviation from the normal operating region is considered a 

fault. Thus, the requirement for faulty data is avoided. It saves a considerable amount of time to 

develop the monitoring models. Also, these tools can provide reliable performance (Ge et al., 2013; 

Venkatasubramanian et al., 2003c).  

Many review articles found the PCA, ICA, partial least squares (PLS), and their derivatives as the 

predominant members of multivariate statistical FDD family (Alauddin et al., 2018; Ge, 2017). 

The PCA was first invented by Pearson (1901). It was originally used for data compression. Later, 

it became popular in process industries after the works by Wise et al. (1988) and Kresta et al. 

(1991). It transforms a higher-dimensional data into a lower-dimensional feature space keeping 

the most significant information of original data.  
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The PCA uses a linear transformation to find a set of uncorrelated variables, which are called the 

PCs. Each PC is orthogonal to each other and linear combination of original variables. Singular 

value decomposition (SVD) is the most widely used technique to find PCs. This method 

decomposes the covariance or correlation matrix to find a set of vectors that has the same properties 

as the PCs.  

Monitoring each PC is cumbersome. Usually, the first few PCs contain the most crucial variational 

information and are used to monitor the process. Still, the necessity of monitoring the process with 

one control chart is not met. To handle this issue, two statistics: the Hotelling’s T2 and squared 

prediction error (SPE), are used with the PCA to monitor the process with one consolidated control 

chart. The SPE gives a measurement of the distance between the sample space and residual space, 

while the T2 indicates how far a sample lies from the centre of the feature space (Jackson, 2005). 

When an online sample violates the threshold of T2 or SPE control chart, a fault is detected. 

The selection of an appropriate number of PCs largely affects the monitoring performance. The 

SCREE (Cattell, 1966) and CPV (Malinowski and Howery, 1980) are the two most commonly 

used approaches (Valle et al., 1999). However, both these approaches are heavily user-perspective. 

The SCREE uses a graphical plot to select the required number of PCs. It starts searching from the 

first PC with the highest variation and stops when the PCs do not show a significant difference in 

variation. Although it is easier to use in lower-dimensional cases, it becomes ineffective when the 

data dimension is higher. On the contrary, the CPV uses a mathematical model. Still, it requires 

the information of how much variation one wants to capture while building the model. Although 

a thumb rule of 90% is suggested, it is found ineffective in many cases (Imtiaz et al., 2008).  

One of the intrinsic limitations of PCA is the distribution assumption. It assumes process data to 

be following the Gaussian distribution that may not be a valid assumption since process data 
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contains both Gaussian and non-Gaussian features. The PLS suffers from the same limitation, as 

well.  

To overcome the distribution assumption and capture non-Gaussian data, Kano et al. (2003) 

proposed an ICA-based process monitoring model. The ICA uses independent components (ICs) 

with the I2, SPE, and Ie
2 statistics for FDD (Lee et al., 2004b). It could explain non-Gaussian data 

using higher-order statistics such as kurtosis and negentropy. However, the ICA cannot extract 

important ICs. Therefore, during ICA’s inception in FDD, the number of ICs was set equal to the 

number of PCs obtained from PCA. Lee et al. (2006) proposed a modified ICA (MICA) approach 

to address the aforementioned issue. It included an additional pre-processing of the whitened score 

matrix that enabled the ICA to capture the most significant ICs like the PCA. 

Data nonlinearity is another issue which the PCA and ICA cannot address since they use linear 

transformation. An auto-associative neural network-based nonlinear PCA (NLPCA) was proposed 

by Kramer (1991). However, training an NLPCA is time-consuming. In recent years, kernel-based 

methods have become popular to address data nonlinearity. Lee et al. (2004a) proposed a kernel 

PCA (KPCA)-based fault detection technique. The KPCA was found efficient in monitoring 

nonlinear processes. However, it cannot provide good performance when non-Gaussianity is 

predominant. Kernel ICA is utilized to capture both the nonlinearity and non-Gaussianity (Lee et 

al., 2007). 

The kernel methods transform lower-dimensional data into a higher-dimensional feature space. 

Hence, they become computationally onerous. Also, selecting the appropriate kernel function and 

associated parameters requires trial and error. One of the major limitations of all the methods 

discussed above is their limited diagnosis capacity. Although these tools can generate multivariate 
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contribution plots that indicate where is the possible root cause of the fault, these diagnosis reports 

are often inaccurate (Gharahbagheri et al., 2017b; Yu et al., 2015b). 

Recently, vine copula-based methods have been proposed by many researchers for nonlinear and 

non-Gaussian process monitoring. Nonlinear dependence is measured by Kendall’s rank 

correlation coefficient, τ, and the empirical distribution is used to capture both the Gaussian and 

non-Gaussian data. Unlike the statistical techniques, no dimensionality reduction is required while 

developing the vine copula-based FDD tools. Instead, these methods seek to find the correlation 

structure among process variables and subsequently, copula density which is further utilized for 

calculating the joint probability density functions (JPDFs). Then density quantile analysis (DQA) 

on JPDFs is used to estimate the fault probability.  

Ren et al. (2015) introduced the vine copula-based process monitoring scheme. The authors used 

the C-vine model for fault detection. The first few trees of a vine model usually contain the most 

critical dependence information, and significant computation time can be saved by discarding 

some of the high-dimensional conditional copulas. Based on this motivation, Wan and Li (2019) 

proposed a pruning C-vine copula-based FDD model. The authors found an improved detection 

rate in the Tennessee Eastman (TE) chemical process compared to the work by Ren et al. (2015).  

One of the intrinsic limitations of the C-vine-based method is its inability to maximize the 

correlation structure due to the used decomposition technique. C-vine copula uses a star structure 

to describe the correlation pattern. A variable is selected as the root node, and other variables are 

connected to it. The D-vine is another multivariate vine modelling technique that uses a sequential 

decomposition technique. The C-vine and D-vine models have superiority when process variables 

are strongly and weakly dependent, respectively. 
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Cui and Li (2020) used a combination of C-vine and D-vine copulas to capture both the stronger 

and weaker correlations. The authors used the maximum information coefficient (MIC) (Reshef et 

al., 2014) to determine the stronger and weaker correlations. The combined C-D vine model 

provided better performance than each of these vine models alone. However, the D-vine copula 

also fails to maximize the correlation structure due to its sequential decomposition technique. The 

R-vine copula can aid in this context, as it does not have any predefined structure like the C-vine 

or D-vine copulas. The applications of the R-vine model can be found in the works by Zhou and 

Li (2018) and Jia and Li (2020). 

The majority of these vine-based works mainly aim at fault detection. Ren et al. (2017) proposed 

a copula subspace division-based fault diagnosis technique. Two distinct contribution plots: 

margin deviation contribution (MDC) and dependence variation contribution (DVC), were used 

for diagnosis. However, like the statistical tools, these cannot secure accurate root cause diagnosis. 

Even though the current progress in fault detection is significant, a comparison of the performance 

of data-driven FDD tools such as the PCA, ICA, and their derivates on the benchmark TE chemical 

process suggests that these tools cannot successfully detect three faults: IDV 3, IDV 9, and IDV 

15 (Yin et al., 2012). Therefore, many authors have described these faults as unobservable or 

challenging to detect. Interested readers are referred to the original article by Downs and Vogel 

(1993) for details of the TE chemical process and these faults’ description. Even the recently 

developed copula-based tools are found ineffective in case of these faults.  

Shams et al. (2011) proposed a cumulative sum (CUSUM) PCA-based monitoring model for these 

faults. The authors used the average detection delay to diagnose the fault type. The proposed 

method took several hundred hours to detect IDV 3 and IDV 9. Later, Du and Du (2018) used the 

ensemble empirical mode decomposition (EEMD), PCA, and CUSUM statistics to develop a better 
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monitoring model that could detect IDV 3 within 42 minutes. Nonetheless, detecting these faults 

early, like the other faults, is still considered a challenging task. 

2.2. BN-based FDD Tools 

The BN, a causal model, is becoming increasingly popular in FDD literature. The BN overcomes 

the limited diagnostic capacity of MSPM tools. It utilizes probabilistic reasoning for fault 

diagnosis. BN has received growing attention in FDD in the last fifteen years (Zerrouki et al., 

2020). At the dawn of multivariate FDD, in the late 1980s and early 1990s, the use of rule-based 

expert systems was predominant for diagnosis (Kramer and Palowitch, 1987; Wilcox and 

Himmelblau, 1994). These tools suffered from uncertainty handling capacity and thus, showed 

poor performance while dealing with a new fault condition (Gao et al., 2015; Venkatasubramanian 

et al., 2003a).  

To address this issue, Rojas-Guzman and Kramer (1993) proposed a BN-based probabilistic 

reasoning model and demonstrated the superiority of BN over the then rule-based methods. 

Process knowledge was used to develop the BN structure, and the Monte Carlo Simulation (MCS) 

was utilized for developing the CPTs. Ibargüengoytla et al. (1996) used BN to check the 

consistency of sensor data and the presence of possible faults. A single sensor fault detection and 

identification technique was proposed by Mehranbod et al. (2003). The authors considered three 

types of sensor faults: noise, bias, and drift in steady operating conditions. Later, a more 

sophisticated mechanism to address multiple faulty sensors in the transient operating condition 

was developed by Mehranbod et al. (2005). These works used the probability absolute difference 

(PAD) for fault detection. PAD was defined as the absolute difference between the normal state 

probability and updated probability. Then, rules-based methods were used to identify the fault 

types. 
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Verron et al. (2006) proposed a BN-based classifier for chemical process fault diagnosis. Since the 

classifier could not provide good performance while all the variables were used to train a fault 

class, crucial class variables were identified using mutual information (MI), and the diagnosis 

performance was found to be better. Such classifier-based fault diagnosis methods using BN can 

be found in (Verron et al., 2010b, 2010a, 2007). These works' major problem is the requirement 

of all the possible fault information that may not always be obtainable. 

The conventional BNs are static. On the contrary, process operations are dynamic in nature. Being 

motivated by this fact, Yu and Rashid (2013) introduced a dynamic BN (DBN) for process 

monitoring. The abnormality likelihood index (ALI) was used for fault detection, and the dynamic 

Bayesian contribution index (DBCI) was utilized for fault diagnosis. Unlike the tools discussed in 

Section 2.1, the proposed method could provide insight into the fault propagation pathway.  

Industrial data are often imperfect and missing. Zhang and Dong (2014) proposed a multiple time-

slice DBN-based FDD model that could handle missing data. The authors reported that increasing 

the number of time-slices while constructing the DBN could significantly improve monitoring 

performance. The DBN-based method proposed by Yu and Rashid (2013) used an arbitrary 

threshold for fault detection. To address this issue, Amin et al. (2019b) proposed a dynamic 

Bayesian anomaly index (DBAI)-based thresholding technique in the context of DBN.  

Although the DBN-based methods can provide better performance because they can detect and 

diagnose a fault and identify its propagation path, they suffer from early fault detection capacity 

when fault magnitude is lower. Many hybrid methods are found in FDD literature that have used 

the early fault detectability of PCA, ICA, and their derivatives and accurate root cause diagnosis 

capacity of a BN to ensure a fault is detected early, and the root cause is diagnosed accurately 

(Amin et al., 2018a, 2017; Gharahbagheri et al., 2017a; Mallick and Imtiaz, 2013; Yu et al., 
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2015b). Thus, the limitations of data-based multivariate statistical process monitoring tools 

(limited diagnostic capacity) and DBN (delayed fault detection) are overcome, and a more reliable 

FDD tool is developed.  

Mallick and Imtiaz (2013) combined PCA with BN. This hybrid method can provide better 

diagnostic performance than the conventional PCA. The BN was developed from process 

knowledge. As discussed earlier, PCA cannot capture the non-Gaussianity. Yu et al. (2015b) 

proposed an MICA-BN framework to overcome this issue. Though the qualitative parts were 

developed from prior knowledge, process data were utilized to estimate the quantitative parts. 

Wang et al. (2017) integrated the BN with semiparametric PCA for nonlinear and non-Gaussian 

fault diagnosis. These two works (Wang et al., 2017; Yu et al., 2015b) showed monitoring the 

inputs and outputs could be sufficient for root cause diagnosis. Gharahbagheri et al. (2017b) 

proposed a data-driven BN learning algorithm using Granger causality and transfer entropy. A 

continuous data discretization technique was used to estimate the prior and conditional 

probabilities. The KPCA-BN was used for nonlinear fault diagnosis.  

The above mentioned BN-based hybrid methods consider a hard evidence-based updating 

mechanism for root cause diagnosis. Amin et al. (2018b) showed such updating technique could 

result in inaccurate diagnosis due to information loss and proposed a multiple likelihood evidence-

based fault diagnosis method. Later, Galagedarage Don and Khan (2019) developed a hidden 

Markov model (HMM)-BN-based FDD model adopting the diagnostic methodology proposed by 

Amin et al. (2018b). For quantitative probability estimation, Amin et al. (2018b) and  

Galagedarage Don and Khan (2019) used the methodology proposed by Gharahbagheri et al. 

(2017b). However, discretizing continuous data may result in information loss. Moreover, except 
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for the work by Gharahbagheri et al. (2017b), the other works are not purely data-driven, as these 

frameworks use process knowledge to develop the BN structure. 

2.3. Risk-based FDD Tools 

Although risk is the measure of safety, the FDD tools mentioned in Sections 2.1 and 2.2 cannot 

estimate it. Also, the conventional risk assessment methods cannot monitor the process in a 

multivariate manner. To address these issues, Zadakbar et al. (2012) proposed a PCA-based 

multivariate fault detection and DRA technique. The use of PCA enabled to monitor all the process 

variables efficiently. Unlike the conventional T2 and SPE statistics-based monitoring, this work 

used risk as the indicator of fault. The dynamic risk profile was developed from PCA scores. Later, 

the Kalman filter (Zadakbar et al., 2013) and particle filter (Zadakbar et al., 2015) were also 

utilized for simultaneous multivariate fault detection and risk assessment. The use of particle filter 

allowed to monitor and risk assessment of nonlinear and non-Gaussian process systems. 

The major limitation of Zadakbar’s works is the inability to show different failure paths, as these 

works used different severity indexes to calculate risk ignoring the effect of safety barriers’ 

performance. Besides, these methods cannot provide any solution for root cause diagnosis. Yu et 

al. (2015b) proposed a risk-based FDD framework using the self-organizing map (SOM) that 

provided the solutions to the limitations faced by previously discussed risk-based FDD and DRA 

models. The use of an event tree provided a robust mechanism to visualize the failure paths. 

Additionally, the SOM can be applied to both nonlinear and non-Gaussian cases.  

Operational risk assessment is often needed to predict dynamic operational loss. The above 

mentioned works used pre-defined severity indices to estimate the risk. However, loss itself shows 

dynamic behaviour. Suppose μ±σ is used to generate a warning about a process deviation. μ and σ 

represent mean and standard deviation, respectively. Consider a sample fall outside of μ+2σ; 
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another sample is found outside of μ+3σ. The warning will be generated in both cases. The earlier 

methods will assign the same severity index in both cases. However, the second sample should 

represent a higher loss since it is more spreader from the target or mean. Yu et al. (2016) used 

SOM and loss function to overcome this issue. The use of loss function enabled capturing dynamic 

loss characteristics.  

Although all the methods discussed in Section 2.3 use multivariate methods to monitor the process, 

these frameworks develop the dynamic risk profile in a univariate manner. The variable with the 

highest contribution in PCA score or SOM dynamic loading is used to compute risk. However, 

this practice may lead to inaccurate risk estimation due to information loss. 

2.4. Identified Knowledge Gaps 

The following knowledge gaps are identified from the above literature review of different 

multivariate data-based FDD and DRA approaches:  

i. The current research has made remarkable advancements in fault detection. Still, there exist 

challenges in early fault detection. 

ii. Although the PCA and ICA are data-driven approaches, these require user-opinion to select 

the PCs or ICs based on percentage variation captured.  

iii. The BNs can provide a better solution in fault diagnosis. However, most of the existing 

works rely on process knowledge for developing BN.  

iv. The current literature lacks a technique that can estimate CPTs from continuous process 

data without discretizing them. 

v. Granger causality and transfer entropy are the used tools to learn BN topology from process 

data. The application of other mutual information (MI) transfer-based methods such as the 

Kullback-Leibler divergence (KLD) has not yet been tested in this context. 
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vi. Works on simultaneous multivariate FDD and DRA are limited. Some of them cannot show 

how a fault can lead a process to failure. All the existing works use univariate fault 

probability to compute dynamic risk. 

vii. Vine copula-based tools are promising in generating a multivariate probability index for 

each observation. However, these frameworks mostly suffer from diagnosis modules. 
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Chapter 3: Robust Process Monitoring Methodology for Detection and Diagnosis of 

Unobservable Faults 
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Abstract 

This chapter presents a new integrated methodology for fault detection and diagnosis. The 

methodology is built using the multivariate exponentially weighted moving average principal 

component analysis (MEWMA-PCA) and the Bayesian network (BN). The fault detection is 

carried out using the MEWMA-PCA; diagnosis is completed utilizing the BN models. A novel 

supervisory learning-based methodology has been proposed to develop the BNs from historical 

fault symptoms. Although the algorithm has been extensively applied to the Tennessee Eastman 

(TE) chemical process, monitoring of three specific (difficult to observe) faults: IDV 3, IDV 9, 

and IDV 15 has been demonstrated in this article. Most of the existing data-based methods have 

faced the challenge of detecting these faults with a good detection rate (DR). Hence, these faults 

have been reported as either unobservable or strenuous to detect. The overall fault detection 

performance of the squared prediction error (SPE) statistics combined with the MEWMA-PCA 

was found to be better than the T2-based monitoring model. Although the cumulative sum 

(CUSUM) PCA-based approaches have demonstrated successful detection and diagnosis of these 

specific faults, the comparative studies suggest that the proposed methodology can outperform the 

CUSUM PCA approach.  

Keywords: Process monitoring, fault detection, unobservable faults, MEWMA-PCA, Bayesian 

network. 
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3.1. Introduction 

Early detection of an abnormal event (e.g. process deviation or equipment malfunction) is required 

for safe and reliable process operations. Finding the root cause(s) of such undesired events is also 

crucial to restore the process within a normal operating mode (Mnassri et al., 2009). These two 

actions are combinedly known as fault detection and diagnosis (FDD). FDD is the core element of 

any process monitoring scheme (Chiang et al., 2001; Venkatasubramanian et al., 2003b). The 

existing FDD techniques can be segregated into three categories: model-based methods, 

knowledge-based methods, and data-based methods (Venkatasubramanian et al., 2003b, 2003a, 

2003c). In the modern process industries, data-based methods are widely used compared to model-

based methods, as the precise mathematical models required to build the model-based monitoring 

models for process plants are often harder to obtain. Furthermore, the availability of a large volume 

of data makes the data-based tools more suitable than the model-based counterparts (Chiang et al., 

2001; Ge et al., 2013; Qin, 2009).  

Data-based methods are mainly divided into two types: univariate tools and multivariate tools (Pei 

et al., 2008; Venkatasubramanian et al., 2003c). Both these families of data-driven models use 

historical process data collected in normal operating condition (NOC) to define the control limits 

(CLs) of acceptable process operations. The Shewhart chart, exponentially weighted moving 

average (EWMA) chart, and cumulative sum (CUSUM) chart are the widely used univariate 

monitoring tools (Montgomery and Runger, 2010; Shewhart, 1930). However, process monitoring 

using the univariate tools is arduous for operations with a large number of variables due to the use 

of a dedicated control chart for each variable. Moreover, these charts are not adaptable to a change 

in the operating conditions; this may result in a false detection or missed alarm (Kondaveeti et al., 

2009). Multivariate statistical process monitoring (MSPM) tools reduced some complexities 
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associated with the univariate monitoring tools and became more popular for FDD in recent 

decades (Ge et al., 2013; He and Wang, 2018; Qin, 2003).  

According to a bibliometric review by Alauddin et al. (2018), principal component analysis (PCA), 

partial least squares (PLS), independent component analysis (ICA), Gaussian mixture model 

(GMM), and their derivates are the most widely used MSPM tools in process industries. PCA 

projects a higher-dimensional historical process data to a lower-dimensional feature space, 

retaining the significant information of original variables (Bakshi, 1998; Garcia-Alvarez et al., 

2012; Misra et al., 2002). Fault is generally detected with the aid of the T2, the Q or the squared 

prediction error (SPE)-based control charts (Mnassri et al., 2009). By employing PCA, PLS was 

also developed (MacGregor et al., 1994; Wilson and Irwin, 2000). Both PCA and PLS assume a 

linear correlation among the process variables and a Gaussian distribution of data. These 

assumptions limit the performance of these approaches. Additionally, conventional PCA and PLS 

are static in nature. Dynamic versions of PCA and PLS were also proposed to capture the dynamic 

process nature (Chen and Liu, 2002; Ku et al., 1995). 

ICA was proposed to relax the distribution assumption, as it is capable of representing features 

from a non-Gaussian distribution (Kano et al., 2003; Lee et al., 2004b). However, the ICA cannot 

rank the important independent components (ICs) like the PCA, and therefore, modified versions 

of ICA (MICA) were proposed to capture the significant ICs (Lee et al., 2006; Zhang and Zhang, 

2010). The combined PCA-ICA approach was presented by Jiang et al. (2016) for fault diagnosis 

in non-Gaussian processes. In real industrial processes, data are often found to be following both 

non-Gaussian and Gaussian distributions. Hence, GMM was proposed to address this issue (Yu 

and Qin, 2008). However, nonlinear relationships among the process variables affect the 

performance of these tools significantly. Kernel-based tools were introduced to overcome this 
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problem. Kernel PCA (KPCA), kernel ICA (KICA), kernel PLS (KPLS), and kernel GMM 

(KGMM) are some of the attempts to handle process nonlinearity (Kim et al., 2005; Lee et al., 

2007, 2004a; Yu, 2012; Zhang et al., 2010). Dynamic extensions of these tools are also available 

in the existing literature (Fan and Wang, 2014; Jia et al., 2010; Jia and Zhang, 2016). However, 

kernel-based methods transform the lower-dimensional data into a higher-dimensional feature 

space, making the computation onerous. To avoid this issue, nonlinear versions of conventional 

PCA have also been proposed (Yu et al., 2016a, 2016b).  

Although the MSPM tools have advanced the pace of fault detection remarkably, accurate 

diagnosis of faults is still an existing challenge. The hybrid methods have been developed to 

provide robust diagnostic performance, as no individual method is found to be fulfilling each and 

every aspect of FDD, according to the exhaustive review by Venkatasubramanian et al. (2003c). 

The main aim of these hybrid methods is to overcome the limitations of an individual tool. 

Although the MSPM tools cannot guarantee accurate diagnosis consistently, these can generate 

multivariate contribution plots after successful fault detection that contain useful information and 

can be used for fault diagnosis (Alcala and Qin, 2010, 2009; Li et al., 2016; Mnassri et al., 2015). 

This lucrative aspect of the MSPM tools has paved the way for developing several hybrid tools by 

combining them with the knowledge-based tools such as sign digraph (SDG), possible cause and 

effect graph (PCEG), Granger causality, transfer entropy, and Bayesian network (BN). Vedam and 

Venkatasubramanian (1999) proposed a PCA-SDG based hybrid method where the SDG 

overcomes the limited diagnostic capacity of the PCA. Efficacy of the PCA combined with the 

Granger causality and the transfer entropy in root cause diagnosis of a Fluid Catalytic Cracking 

Unit (FCCU) was shown by Gharahbagheri et al. (2015). Li et al. (2016) combined the DPCA with 
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the Granger causality for efficient fault diagnosis. Many hybrid methods have been developed 

using the BN, as well (Amin et al., 2018b; Gharahbagheri et al., 2017b; Yu et al., 2015b).  

The Tennessee Eastman (TE) chemical process was introduced by Downs and Vogel (1993) in 

1993, and it is the most widely used process model for demonstration of FDD tools (Bathelt et al., 

2015; Chiang et al., 2001; Ding et al., 2009). It is an open-loop unstable process that contains real 

industrial process data and requires to operate under control action. A total of four single-input 

and single-output (SISO) plant-wide control structures and their performance for the TE chemical 

process were displayed by Lyman and Georgakis (1995). The decentralized control strategy of this 

process was demonstrated by Ricker (1996). Recently, Bathelt et al. (2015) presented a revised TE 

process model in MATLAB that extends the flexibility of stochastic simulation. This revision is 

an updated version of Ricker (2005). The advantages of this simulator are described in the work 

by Capaci et al. (2018).  

There are 15 known and 5 unknown faults that can be introduced into the TE chemical process. 

According to the Web of Science and Scopus databases, the total number of published documents 

on FDD using the TE chemical process are 866 and 1,001, respectively (searched on April 6, 

2019). The TE chemical process has been utilized to validate several data-driven MSPM tools over 

the last three and a half decades. However, most of the tools failed to provide a good DR for three 

specific faults: IDV 3 (a step change in the D feed temperature), IDV 9 (a random variation in the 

D feed temperature), and IDV 15 (condenser cooling water valve stiction). These three faults have 

been described as either unobservable or difficult to detect by many authors (Krishnannair and 

Aldrich, 2017; Shams et al., 2011; Yin et al., 2012). Table 3.1 shows a list of some of the articles 

reporting a lower DR for these faults employing several MSPM tools. It can be seen that major 

FDD tools such as PCA, ICA, PLS, and kernel-based methods consistently fail to detect these three 
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faults early. The DR was found to be lower than the other fault cases by applying some recently 

developed advanced tools (Dong and Qin, 2018; Gajjar et al., 2018; Wan and Li, 2019; Yu et al., 

2016b; Zhu et al., 2018b). 

Table 3.1: A list of works that have reported lower detection rates for IDV 3, IDV 9, and IDV 

15.  

Article Reported Methods 

(Lee et al., 2007) PCA, ICA, MICA, KICA 

(Salahshoor and Kiasi, 2008) ICA, DICA 

(Cheng et al., 2010) PCA, KPCA, AKPCA 

(Hsu et al., 2010) PCA, ICA, ICA-AO 

(Vahed et al., 2010) PCA, RBF, RBF-GA 

(Zhang and Zhang, 2010) ICA, Fast ICA, PSO-ICA 

(Yin et al., 2011) PLS, MPLS 

(Yin et al., 2012) 
PCA, DPCA, ICA, MICA, FDA, PLS, TPLS, 

MPLS, SAP 

(Rato and Reis, 2013) PCA, DPCA, DPCA-DR 

(Yu et al., 2014) PCA, SOM 

(Yu et al., 2015c)  PCA, KPCA, KICA, SPA, MWKPCA, NLGBN 

(Yu et al., 2015b) PCA, ICA, G-Copula 

(Yu et al., 2016b) 

PCA, KPCA, KICA, IKICA, SPA, MWKPCA, 

SePCA (Spearman correlation), SePCA (Distance 

correlation), 

(Zhu et al., 2018b) Distributed parallel GMM 

(Gajjar et al., 2018) PCA, SPCA, RNPCA, KPCA, KICA, ASPCA 

(Zhu et al., 2018a) PCA, PPCA, BWPCA, Distributed BN 

(Dong and Qin, 2018) DPCA 

(Wan and Li, 2019) KPCA, ICA, VCDD, TVCDD, PVCDD 

 

Shams et al. (2011) proposed a CUSUM PCA-based method to detect these three faults. The out-

of-control average run length (ARLOC) was used to diagnose the fault types. The ARLOC is the 

minimum number of samples (expressed in unit time) required to detect a fault after its inception. 

This methodology took longer to detect these three faults. The ARLOC was found 0.15 hrs for IDV 

7, IDV 11, and IDV 19; however, how these faults can be isolated in the case of equal ARLOC was 

not mentioned. Furthermore, for real data, no information is generally available about the fault 
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inception time; this can make the estimation of ARLOC arduous. When simulated data is used, 

calculation of ARLOC is straightforward, as it is known that the fault has been introduced at that 

particular sample. On the contrary, calculation of ARLOC is not possible if the fault initiation time 

is unknown. Du and Du (2018) applied an ensemble empirical mode decomposition (EEMD) PCA 

and integrated CUSUM statistics to improve the DR. Several threshold limits were utilized to 

diagnose the fault type. Krishnannair and Aldrich (2017) proposed a nonlinear singular spectrum 

analysis based on the autoencoders and the dissimilarity matrices to detect these faults. However, 

no analysis on fault diagnosis was presented in their work.  

CUSUM models are built considering a target mean shift. Although it provides robust performance 

over EWMA while process deviation matches the target deviation, it cannot guarantee the 

superiority if the observed deviation is extremely larger or smaller than the designed one (Hawkins 

and Wu, 2014). On the contrary, EWMA is found efficient in detecting a fault of a smaller 

magnitude (Han et al., 2010). When the level of deviation is within one standard deviation around 

the mean, EWMA outweighs CUSUM-based monitoring (De Vargas et al., 2004). The pre-

processing stages of the CUSUM model need more effort compared to the EWMA model. In 

multivariate cases, many variables do not show any variation over time using the CUSUM 

technique, which results in another data processing step for these variables before applying PCA 

or similar approaches on the pre-processed matrix. Furthermore, deviations can be of any 

magnitude in real industrial processes. These make the application of EWMA models more 

suitable over the CUSUM-based approaches.  

Multivariate exponentially weighted moving average (MEWMA) statistics is an extension of the 

conventional univariate EWMA (Lowry et al., 1992) that can efficiently detect small shifts 

(Aparisi and García-Díaz, 2007; Carson and Yeh, 2008; Prabhu and Runger, 2018). MEWMA-



 

31 
 

PCA is a marriage between MEWMA and PCA. Process monitoring scheme integrating MEWMA 

with PCA was first proposed by Wold (1994). MEWMA was applied to the scores of PCA in this 

work. A more elaborated work was presented by Chen et al. (2001). The control limits of the T2 

and the SPE control charts were defined, and the MEWMA model was applied to the auto-scaled 

process data in their work. They mentioned that a process could be monitored with a lower number 

of principal components (PCs) using the MEWMA-PCA model. Lane et al. (2003) proposed an 

exponentially weighted PCA model for monitoring a film manufacturing process. Unlike the 

previous works, they used the MEWMA model to update the covariance matrix. Cheng et al. 

(2010) proposed an adaptive KPCA based monitoring tool applying the MEWMA model to the 

whitened components. Chouaib et al. (2015) proposed another adaptive KPCA model using the 

MEWMA model to update the gram matrix. Lee et al. (2003) presented two combinations of ICA 

with MEWMA. The first one applied the MEWMA model to the auto-scaled data (MEWMA-

ICA), and the second one utilized the MEWMA to update the monitoring statistics (e.g. I2 and 

SPE) (ICA-MEWMA). These works (with MEWMA) reported improved performance compared 

to the conventional tools such as the PCA, the ICA, and the KPCA.  

The inability of several MSPM FDD tools to provide a quick detection and good DR for IDV 3, 

IDV 9, and IDV 15 of the TE chemical process is the main motivation behind this work. Even 

though the main aim of this article is to develop a tool that will detect and diagnose these faults 

early, the proposed method can provide the desired FDD performance for all the faults in the TE 

chemical process. The MEWMA has been integrated with the PCA to improve its fault 

detectability, and a BN is used to diagnose the fault type. The comparative studies with the 

previously published works based on CUSUM PCA (Du and Du, 2018; Shams et al., 2011) suggest 

that the proposed method is a more efficient FDD tool.  
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The rest of this chapter is organized as follows: Section 3.2 describes the methodology. A brief 

discussion on the TE chemical process along with the application of the proposed methodology is 

demonstrated in Section 3.3. Comparative performance evaluation with previous works is 

presented in Section 3.4. The advantages, limitations, and future work scopes are discussed in 

Section 3.5. 

3.2. Proposed Methodology 

This proposed integrated methodology (Figure 3.1) is comprised of MEWMA-PCA and BN. 

Henceforth, the integrated methodology is referred to as MEWMA-PCA-BN. MEWMA-PCA 

detects a fault and provides the primary diagnostic report in terms of multivariate contribution 

plots (e.g. T2 and SPE). Although this diagnostic report is incomplete and points towards a group 

of variables as the probable causes of the detected fault, this information can be utilized to collect 

the fault signatures. A bank of MEWMA-PCA models for each fault type is trained to collect the 

fault signatures and used to train the BNs; these BNs are utilized to identify the fault type after 

fault detection. Even though several techniques have been described in Section 3.1 to build the 

MEWMA-PCA model, we have constructed the model in a different manner: first applying the 

MEWMA to the auto-scaled historical process data and then, performing the conventional PCA. 

The procedure is analogous to the method of constructing the MEWMA-ICA model described by 

Lee et al. (2003). This technique is found to be the simplest compared to the methods described in 

Section 3.1. Furthermore, it can serve the purpose of quicker detection and requires less 

computation. 

The limited diagnostic capacity of the MEWMA-PCA is overcome by coupling it with the BN. 

Even though a BN has ample application in process safety and risk analysis (Bobbio et al., 2001; 

Hashemi et al., 2016), reliability and availability analysis (Amin et al., 2018c; Cai et al., 2012), 
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and dependability and maintainability modelling (Weber et al., 2012), still, it is at a premature 

stage in the field of FDD in spite of several documents published using it. It is a directed acyclic 

graph (DAG)-based tool that uses probabilistic reasoning to reach a certain conclusion from either 

certain or uncertain observations. The flexibility of modelling the BNs from both process 

knowledge and historical data has made it appealing to the researchers (Li et al., 2016). In-depth 

process knowledge can be displayed in graphical view using a BN (Wang et al., 2017).  

BNs are constructed using nodes, arcs, prior, and conditional probabilities. In the BNs, process 

variables are shown as nodes, and arcs are used to define their causal relationships. An arch is 

directed to a child node (effect) from a parent node (cause). The strength of the relationships among 

the process variables is defined using conditional probabilities. Prior probability is the anecdotal 

belief about an event. Another robust property of a BN is that it can get updated at any state of any 

node upon receiving evidence and provide new probabilities in the nodes. This makes the BNs 

suitable for fault diagnosis, as the renewed probabilities can be compared with the prior 

probabilities for measuring the effect of an evidence to the variables. Bayes’ theorem (Equation 

3.1) is the prime-mover of the BNs. 

 𝑃(𝑌 𝑋⁄ ) =
𝑃(𝑋 𝑌) × 𝑃(𝑌)⁄

𝑃(𝑋)
 (3.1) 

where P(Y) is the prior belief, and P(X) is the probability of an observation or evidence. P(X/Y) is 

the conditional probability of X given Y, and P(Y/X) is the conditional probability of Y given X.  

For a certain evidence of X, the Bayesian belief updating equation can be obtained from Equation 

3.2 as:  

 𝑃(𝑌 𝑋⁄ ) = 𝑃(𝑋 𝑌) × 𝑃(𝑌)⁄  (3.2) 
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Figure 3.1: Flowchart of the proposed methodology. 

The conventional approaches to build the BNs include constructing the causal network from prior 

knowledge and determining the prior and conditional probabilities from historical process data or 

the PCA residuals (Amin et al., 2019a, 2017; Gharahbagheri et al., 2017; Mallick and Imtiaz, 2013; 

Verron et al., 2010; Wang et al., 2017; Yu et al., 2015a; Yu and Rashid, 2013). Nevertheless, the 

BNs are constructed in a different manner in this work. Fault symptoms are expressed as a set of 

parent nodes, and fault types are shown as the child nodes. Fault signatures are inserted into the 

BNs in terms of conditional probabilities. The mathematical translation of conditional probabilities 

in the conditional probability table (CPT) of a fault node can be defined as expressed in Equation 

3.3. 

 P(F) = {

 1         𝑖𝑓 𝑥𝑗 𝑥1, 𝑥2, … , 𝑥𝑗−1𝑖𝑠 𝑓𝑎𝑢𝑙𝑡𝑦⁄

  1         𝑖𝑓 𝑥𝑘 𝑥1, 𝑥2, … , 𝑥𝑘−1𝑖𝑠 𝑓𝑎𝑢𝑙𝑡𝑦⁄

          0         𝑖𝑓 𝑥𝑘 𝑥1, 𝑥2, … , 𝑥𝑘−1𝑖𝑠 𝑛𝑜𝑡 𝑓𝑎𝑢𝑙𝑡𝑦⁄

 0.50         𝑖𝑛 𝑎𝑙𝑙 𝑜𝑡ℎ𝑒𝑟 𝑐𝑎𝑠𝑒𝑠                             

            (3.3) 
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where j is the number of variables used to collect the fault signatures. k is the total number of 

variables associated with a fault node, and j ≤ k. 

The development procedure of a BN from multiple MEWMA-PCA models is shown in Figure 3.2. 

 

Figure 3.2: Flowchart of the BN development technique. 

Suppose a process has two fault types: DN 1 and DN 2, and four variables: A, B, C, and D exhibit 

symptoms due to these faults. A, C, and D exhibit the fault symptoms associated with DN 1, and 

B and C are associated with DN 2. A BN can be constructed using the following steps: 

Step 1 (determining the child nodes): There will be two child nodes, as there are two fault types in 

this process. The child nodes will represent DN 1 and DN 2. 
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Step 2 (determining the parent nodes): A total of four nodes will be assigned as the parent nodes. 

A, C, and D will be the parent nodes for DN 1, while B and C will serve as the parent nodes for 

DN 2. 

Step 3 (assigning the arcs): Each pair of parent and child nodes (i.e. C and DN 1, C and DN 2) will 

be connected by an arc. A variable corresponding to a symptom can act as the parent node of 

multiple child nodes. 

Step 4 (assigning the states): All nodes are considered with binary states: faulty (F) and normal 

(NF) for simplicity in diagnosis. A node can have more than two states.  

Step 5 (assigning the CPTs): This BN will have two CPTs: one for DN 1 and another one for DN 

2. Tables 3.2 and 3.3 show the CPTs for DN 1 and DN 2, respectively. The number of columns in 

a CPT will be 2h. h is the number of parent nodes for a child node. Therefore, there will be 8 and 

4 columns in the CPTs for DN 1 and DN 2, respectively. The first and last columns of Table 3.2 

satisfy conditions 1 and 3, respectively, in Equation 3.3. Hence, P(F) will be 1 in column 1, and 

P(F) will be 0 in column 8. P(F) is assigned in the other six columns (column 2-7) as 0.50 using 

condition 4 since all three variables associated with fault DN 1 are not in a faulty state for these 

six columns. On the contrary, P(F) will be assigned as 1 and 0 for columns 1 and 4, respectively, 

in Table 3.3, using conditions 1 and 3 of Equation 3.3, respectively. Additionally, Column 1 also 

satisfies condition 2 of Equation 3.3 in this case. P(F) will be 0.50 for columns 2 and 3, following 

condition 4. It is noteworthy to mention that condition 2 of Equation 3.3 is frequently used when 

a BN is trained with a large number of MEWMA-PCA models. Figure 3.3(A) shows the developed 

BN for the illustrative process. 
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Table 3.2: CPT for DN 1. 

A F NF 

C F NF F NF 

D F NF F NF F NF F NF 

DN 1 
F 1 0.50 0.50 0.50 0.50 0.50 0.50 0 

NF 0 0.50 0.50 0.50 0.50 0.50 0.50 1 

 

Table 3.3: CPT for DN 2. 

B F NF 

C F NF F NF 

DN 2 
F 1 0.50 0.50 0 

NF 0 0.50 0.50 1 

 

 

 

Figure 3.3: (A) Construction of a simple BN of four symptoms and two fault types (B) 

illustration of fault diagnosis scheme. 

 

A 

B 
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Now, if A, B, and C are identified as the probable causes of a fault by the multivariate contribution 

plot after successful detection, the BN will be updated with three hard evidence (i.e. P(F) =100%) 

to the faulty state of A, B, and C (Figure 3.3(B)), and DN 2 will be diagnosed as the fault type 

since it has the closest similarity with the observed fault signatures. 

It can be seen from Figure 3.1 that the proposed methodology works in two phases: model 

development and online monitoring. Model development is done in offline mode using the 

historical process data collected in both normal and faulty operating conditions, and real-time 

online samples are used to distinguish the faulty and non-faulty conditions of process operations. 

If fault is detected by the MEWMA-PCA, a contribution plot is generated, and the trained BN(s) 

is updated using the fault signatures to diagnose the fault type.  

The model development phase consists of the following steps: 

Step 1: The process system is fully studied, and the faults associated with the process is identified. 

Step 2: This step is mainly concerned with the development of the MEWMA-PCA model using 

the historical process data and is comprised of the following sub-steps. 

Sub-step 2a: Historical process data in NOC is collected and auto-scaled to zero mean and unit 

variance. 

Sub-step 2b: The MEWMA model is developed using Equation 3.4. 

 𝑍𝑡 =  𝑋𝑡 + (1 − )𝑍𝑡−1 (3.4) 

where  is a tuning parameter. X = [x1, x2, x3, …., xm] is the auto-scaled data from previous sub-

step. m is the number of process variables. The value of  falls within 0 to 1 (i.e. 0 <  ≤ 1). 

Selection of an optimal  is crucial for the proper process monitoring. Hunter (1986) proposed a 

calculation method for  based on the smallest sum of one step ahead prediction errors. Lee et al. 

(2003) found this procedure unsuitable. Montgomery (2007) suggested an interval from 0.05 to 
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0.25. Chen et al. (2001) proposed that  value should be selected in such a way that it can capture 

the optimal process behaviour. In general, a lower  value is used to detect smaller shifts.  can be 

assigned by expert opinion, as well. In this study, we have selected the optimal  value, following 

the strategy mentioned in (Chen et al., 2001). 

Sub-step 2c: Principal component analysis is performed on the MEWMA model. PCA is the most 

widely used FDD tool, and details on PCA can be found in (Garcia-Alvarez et al., 2009; Jackson, 

2005; Jackson and Mudholkar, 1979). 

Sub-step 2d: Two statistics, the Hotelling’s T2 and the SPE are used in MEWMA-PCA based fault 

detection. The T2 value is a measure of the distance between samples and focus of the feature 

space, while the SPE value indicates a measure of lack of mismatch of a sample from the residual 

space (Yu et al., 2015b). The T2 value and contribution for a sample can be calculated using 

Equations 3.5 and 3.6, respectively. 

 𝑇𝑖
2 = 𝑡𝑖𝑡𝑖

𝑇 (3.5) 

 ti = xiPl˄b
-1/2Pl

T (3.6) 

where ti is the T2 contribution of the ith monitored sample. Pl is the loading, and ˄b is a diagonal 

matrix that contains the first ‘b’ number of eigenvalues in descending order. b is selected using the 

cumulative percentage of variation (CPV) approach, as described in Garcia-Alvarez et al. (2009).  

The SPE value and contribution for a sample can be calculated using Equations 3.7 and 3.8, 

respectively. 

 𝑆𝑃𝐸𝑖 = 𝑒𝑖𝑥𝑖
𝑇 (3.7) 

 ei = xi(I-PlPl
T) (3.8) 

where ei is the SPE contribution of the ith monitored sample. I is an m by m identity matrix. 
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Sub-step 2e: The thresholds of T2 and SPE statistics can be computed using Equations 3.9 and 

3.10, respectively. 

 𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
2 =

(𝑛2 − 1)𝑏

𝑛(𝑛 − 𝑏)
× 𝐹𝛼(𝑏, 𝑛 − 𝑏) 

 

(3.9) 

where Fα (b, n-b) is the probability obtained from the F distribution with (b, n-b) degrees of 

freedom with a 1-α level of confidence. n and b denote the number of trained samples and selected 

PCs, respectively. 

 𝑄𝛼 = Ɵ1 [
ℎ𝑜𝑐𝛼√2Ɵ2

Ɵ1
+ 1 +

Ɵ2ℎ𝑜(ℎ𝑜 − 1)

Ɵ1
2 ]

1

ℎ𝑜
 

 

 

(3.10) 

where Ɵ𝑖 =  ∑ 𝜆𝑗
𝑖𝑚

𝑗=𝑏+1   and  ℎ𝑜 = 1 −
2Ɵ1Ɵ3

3Ɵ2
2  

cα is obtained from a normal distribution for α level of confidence (Jackson and Mudholkar, 1979).  

Step 3: A bank of MEWMA-PCA models is trained for each fault type.  

Step 4: Fault signatures are collected using the contribution plots from the trained MEWMA-PCA 

models, and these are used to train the BN. Fault information is inserted in terms of conditional 

probabilities in the BN using Equation 3.3. It is noteworthy to mention that the six topmost 

contributing variables have been considered as the fault signatures for each MEWMA-PCA model. 

Two distinct BN models are trained from the results of T2 and SPE contribution plots, respectively. 

Each BN has a number of decision nodes equal to the number of identified faults in the studied 

process system.  

The online monitoring is performed in the following steps: 

Step 5: Online samples are auto-scaled using the same mean and standard deviation values 

obtained in sub-step 2a.  
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Step 6: Equation 3.4 is applied to the auto-scaled online data samples using the same  value that 

has been used in sub-step 2b. 

Step 7: T2 and SPE values of all the online samples are calculated using Equations 3.5 and 3.7, 

respectively. If the threshold value of any of these control charts is violated, fault is detected. 

Step 8: Following the successful detection of fault, corresponding contribution plot (i.e. T2 or SPE) 

is generated. 

Step 9: Top six contributing variables are identified and used to update the belief of the 

corresponding BN.  

Step 10: The percentage change in the faulty state of fault nodes is computed, and the fault node 

that has the highest percentage increase in the faulty state is diagnosed as the occurred fault type 

3.3. Application of the Methodology to the TE Chemical Process 

The TE chemical process (shown in Figure 3.4) has five major units: a reactor, a product 

condenser, a vapour-liquid separator, a recycle compressor, and a product stripper. The process 

produces two products in irreversible and exothermic reactions. A total of three main gaseous feeds 

(A, D, and E) are fed into the reactor in the gaseous form, where catalyzed chemical reactions form 

liquid products. The product stream from the reactor enters the condenser as a vapour and gets 

condensed. However, all the compounds are not condensed, and these are passed through the 

vapour-liquid separator, where the condensed and non-condensed products are separated. The non-

condensed product is returned to the reactor as an additional feed by using a centrifugal 

compressor, while the condensed product stream enters the stripper unit to be stripped. Then, the 

final products exit from the stripper and are pumped for further purification.  

The TE chemical process consists of a total of 53 variables: 41 measured variables and 12 

manipulated variables. Among the measured variables, 22 variables are continuous process 
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variables, and 19 variables are related to composition measurements. The location of IDV 3, IDV 

9, and IDV 15 in the different locations of the TE process is shown in Figure 3.4, and it can be 

seen that IDV 3 and IDV 9 occur in stream 2, while IDV 15 appears in stream 13. Variable 

description of the TE chemical process can be found in (Downs and Vogel, 1993). 

 

Figure 3.4: PFD of the Tennessee Eastman chemical process. 

Chiang et al. (2000) presented a dataset for the TE chemical process. This dataset consists of 52 

variables (except the agitation speed). The sampling time is 180 seconds, and a total of 960 test 

samples were generated for each fault case (48 hours of operation). After 8 hours (160 samples) 

of normal operation, fault starts for all 20 cases. Additionally, a training set of 960 samples is also 

presented that contains data from NOC. The results of PCA applied to this dataset for IDV 3, IDV 
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9, and IDV 15 are shown in Figure 3.5. The PCA model is built using the first 31 PCs that capture 

more than 90% variation. In Figure 3.5, the horizontal blue lines show the threshold limit of T2 

and SPE statistics, and the vertical green lines display the fault inception time. It can be seen that 

PCA provides a lower detection rate for all three cases. It should be noted that a level of confidence 

of 99% is used to calculate the thresholds of T2 and SPE statistics. 
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Figure 3.5: PCA based monitoring of IDV 3, IDV 9, and IDV 15. 

A total of 160 samples (8 hours of normal process operation) in the NOC are used to build the 

MEWMA-PCA monitoring model. This regime has been considered to have a fair comparison 

with the work by Shams et al. (2011). These data are auto-scaled and transformed into the 

MEWMA model using Equation 3.4 with =0.03. By employing the CPV approach, it is found 

that the first 41 PCs can capture more than 99.99% variation and are selected to estimate the 

threshold limit of T2 and SPE control charts, using Equations 3.9 and 3.10, respectively. Several 

MEWMA-PCA models have been trained to collect the fault signatures for each fault type where 

the fault was introduced after different periods of normal operation. Figure 3.6 shows the 

developed BN model for T2 statistics. As the BNs are complicated and difficult to visualize due to 

the size of the structure, a truncated portion containing the fault nodes that show a significant 

increase after updating the BNs will be shown in the remainder of this chapter. However, 

percentage increase in the faulty state for all the fault nodes will be shown so that the diagnosis 

technique can lucidly be understood. 
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Figure 3.6: BN for T2 control chart. 

Fault starts from the 161st sample and continues for the rest of the 800 samples in all three cases. 

For IDV 3, SPE control chart detects the fault instantly (Figure 3.7(A)), while T2 control chart 

takes a little longer and reports an abnormal situation at 162nd sample (Figure 3.7(B)). As this fault 

is detected earlier by the SPE control chart, SPE contribution plot is generated (Figure 3.7(C)), 

and it can be seen that XMV (9), XMEAS (21), XMEAS (18), XMEAS (11), XMEAS (16), and 

XMV (1) are the six variables that have the highest contributions to this fault. It is noteworthy to 
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mention that the 41 measured variables are sequentially placed first in the contribution plots as 

XMEAS (1) – XMEAS (41), followed by the 11 manipulated variables that are placed as XMV 

(1) – XMV (11).  

The BN developed using the fault signatures collected from the SPE contribution plots is updated 

in the faulty state of the nodes that represent the above mentioned six top contributing variables. 

The updated BN in Figure 3.7(D) identifies IDV 3 as the diagnosed fault type accurately since it 

has an 86.29% increase in the faulty state, which is higher compared to the other fault nodes 

(Figure 3.7(E)). This diagnosis report also gives vital information about the part of the process 

from where the fault has emerged, as IDV 3 is a fault that appears in stream 2. It can guide the 

operators to restore the process quickly in normal operating mode by taking care of D feed 

temperature. 
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Figure 3.7: Fault detection and diagnosis by MEWMA-PCA-BN for IDV 3 (A) T2 control chart, 

(B) SPE control chart (earlier detection), (C) SPE contribution plot, (D) updated SPE-based BN, 

and (E) fault diagnosis using percentage increase in the faulty state. 
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Although the location of IDV 9 is the same as that of IDV 3, the signal type (random variation) is 

different. Therefore, a little delay is observed to detect this fault by MEWMA-PCA. Both T2 and 

SPE control charts detect this anomaly at 162nd sample (Figures 3.8(A) and 3.8(B)). After 

successful detection of fault, SPE contribution plot is generated (Figure 3.8(C)). XMV (5) and 

XMEAS (38) have the highest contributions, followed by the contributions of XMEAS (11), 

XMEAS (20), XMEAS (39), and XMV (1). The BN associated with the SPE statistics is utilized 

for fault diagnosis. The updated BN and percentage change in the faulty states of the fault nodes 

are shown in Figures 3.8(D) and 3.8(E), respectively, and it can be seen that IDV 7, IDV 9, IDV 

10, IDV 13, and IDV 19 have significant increase in the faulty state after updating the BN with 

multiple evidence. However, IDV 9 has the highest percentage increase in the faulty state (70.02%) 

among all the fault nodes and can be diagnosed as the observed fault type.  
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Figure 3.8: Fault detection and diagnosis by MEWMA-PCA-BN for IDV 9 (A) T2 control chart, 

(B) SPE control chart, (C) SPE contribution plot, (D) updated SPE-based BN, and (E) fault 

diagnosis using percentage increase in the faulty state. 
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IDV 15 is the next fault that is activated after 8 hours of normal operation. Figures 3.9(A) and 

3.9(B) show the T2 and SPE control charts, respectively. Unlike the previous two cases, the T2 

control chart detects this fault earlier than the SPE control chart. Then, T2 contribution plot is 

generated, as shown in Figure 3.9(C). XMEAS (33), XMV (2), XMEAS (19), XMEAS (37), XMV 

(9), and XMEAS (39) have the highest impact to this abnormal event, with a contribution of 

15.78%, 6.08%, 5.79%, 3.98%, 3.68%, and 3.65%, respectively. As this fault is detected earlier 

by the T2 control chart, the BN developed from the fault signatures collected from the T2 

contribution plots is selected to update, with the evidence received for the aforementioned six 

variables. The updated BN is shown in Figure 3.9(D), and it diagnoses IDV 15 as the observed 

fault type unequivocally since it is the only fault node that displays significant increase at the faulty 

state in the updated network (Figure 3.9(E)). In this case, the diagnosis report suggests that the 

fault has originated from stream 13, and condenser cooling valve stiction is the root cause of this 

process abnormality.  
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Figure 3.9: Fault detection and diagnosis by MEWMA-PCA-BN for IDV 15 (A) T2 control chart 

(earlier detection), (B) SPE control chart, (C) T2 contribution plot, (D) updated T2-based BN, and 

(E) fault diagnosis using percentage increase in the faulty state. 

This methodology has been applied to the concurrent action of two faults as well. In this tested 

fault scenario, both IDV 3 and IDV 15 start from the 161st sample, and a process abnormality is 

reported by the T2 and SPE control charts at 166th and 162nd samples, respectively (Figures 3.10(A) 

and 3.10(B)). The T2 and SPE values for the test samples become extremely higher than the other 

fault cases due to the simultaneous action of two faults. SPE contribution plot is generated since 

an alarm has been generated by the SPE control chart earlier than the T2 control chart (Figure 

3.10(C)). It can be observed that XMV (1) has the highest contribution, and the percentage 

contribution is much higher than the other variables. By norm, XMEAS (2), XMEAS (7), XMEAS 

(15), XMEAS (22), XMV (1), and XMV (11) are selected to update the BN. XMV (1) and XMV 

(11) are the manipulated variables that control the D feed temperature and condenser cooling water 

flowrate, respectively. Figure 3.10(D) shows the updated SPE-based BN. Updated fault probability 

for all the fault nodes have been recorded and compared with the values that have been obtained 

before updating the network. The percentage increase in the faulty state for all the fault nodes is 
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shown in Figure 3.10(E), and it can be seen that IDV 3 & 15 have simultaneously occurred to 

generate this abnormal situation. This diagnostic report suggests that the operators need to take 

required action in both streams 2 and 13, and D feed temperature and condenser cooling water 

valve are the specific places where they need to look at to restore the process in normal operating 

mode.  
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Figure 3.10: Fault detection and diagnosis by MEWMA-PCA-BN for IDV 3 & 15 (A) T2 control 

chart, (B) SPE control chart (earlier detection), (C) SPE contribution plot, (D) updated SPE-

based BN, and (E) fault diagnosis using percentage increase in the faulty state. 
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3.4. Results and Discussion 

Performance of the MEWMA-PCA is compared with the previously published works on CUSUM 

PCA that reported the out-of-control average run length (ARLOC), particularly for IDV 3, IDV 9, 

IDV 15, and IDV 3 & 15 of the TE chemical process. The comparison is shown in Table 3.4. It 

can be seen that the methodology proposed by Shams et al. (2011) takes the longest time to detect 

these faults. It takes 222.90 and 127.90 hours to detect IDV 3 and IDV 9, respectively. It gives a 

reasonable performance for IDV 15, where the ARLOC is 0.60 hours for both T2 and SPE control 

charts. The EEMD PCA CUSUM method proposed by Du and Du (2018) provides better 

performance than the previous CUSUM PCA-based method for all three fault cases, as it can be 

seen that the maximum time to detect the fault is 0.70 hours, and that has been observed for IDV 

3.  

On the contrary, the current MEWMA-PCA outweighs the performance of the previous two 

methods, as it detects IDV 3 and IDV 9 much faster than the EEMD CUSUM PCA. Although 

these two faults are detected earlier by the CUSUM PCA-SPE control chart, T2-based control chart 

is a better choice with the combination of MEWMA-PCA. Nevertheless, IDV 15 is found to be 

detected earlier by the T2 control chart using the proposed methodology, and the detection time is 

twelve-times and two-times faster than the methods proposed by Shams et al. (2011) and Du and 

Du (2018), respectively. For the simultaneous action of IDV 3 & 15, SPE control chart provides a 

much faster detection than T2 control chart in integration with the MEWMA-PCA model. The 

proposed methodology also provides earlier detection than the other two previous works in this 

fault scenario. Even though the overall performance of SPE control chart is found to be superior 

in the exhaustive applications to the TE chemical process, it is essential to monitor the T2 control 

chart, as evident from IDV 15.  
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Table 3.4: Comparison of out-of-control average run length (bold implies the best performance). 

Work 

CUSUM PCA 

(Shams et al., 

2011) 

EEMD PCA 

CUSUM (Du and 

Du, 2018) 

Current 

Statistics T2 SPE T2 SPE T2 SPE 

Fault ID ARLoc (hr) 

IDV 3 467.60 222.90 7.20 0.70 0.05 0.04 

IDV 9 143.80 127.90 0.80 0.40 0.05 0.08 

IDV 15 0.60 0.60 0.10 0.10 0.05 0.075 

IDV 3 & 15 0.60 0.60 0.10 0.10 0.38 0.05 

 

The proposed methodology is applied to the TE chemical process for the other 17 fault scenarios, 

and the comparative ARLOC, average fault detection rate (FDR), and accurate diagnosis capacity 

between the current methodology and CUSUM PCA is shown in Table 3.5. It is worthy to mention 

that exhaustive application to the TE chemical process is not mentioned in (Du and Du, 2018) that 

enables including the results from (Shams et al., 2011) only in the comparison. It can be seen that 

the MEWMA-PCA model provides earlier detection in 19 cases, and the detection time is the same 

in IDV 8 for both derivatives of the conventional PCA. The difference in detection time between 

these two methods can rise to more than several hundred hours, as evident from IDV 3 and IDV 

9. MEWMA-PCA-SPE is found to be providing a better performance in 9 fault scenarios, while 

this number is found to be 8 for MEWMA-PCA-T2. IDV 7, IDV 11, and IDV 12 are the three fault 

cases where MEWMA-PCA-T2 and MEWMA-PCA-SPE have the same average detection delay 

(DD). However, the maximum difference in detection time between the two statistics is observed 

as 6 minutes for any of the test cases. The proposed methodology detects IDV 1, IDV 2, IDV 4, 

IDV 5, IDV 6, IDV 7, and IDV 10 without any delay that is not observed for CUSUM PCA, as an 

associated detection delay is noticed by the CUSUM-based approach. The average FDR is also 
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found to be better by the MEWMA-PCA model. It gives a consistent average FDR irrespective of 

the fault type.  

Table 3.5: Comparison of ARLOC, average FDR, and accurate diagnosis capacity for all fault 

cases in the TE chemical process (bold implies the best performance). 

Fault ID 

Detection Performance Accurate Diagnosis 

CUSUM 

PCA-T2 

MEWMA-

PCA 
CUSUM 

PCA-T2 

MEWMA-PCA CUSUM 

PCA with 

ARLoc based 

diagnosis 

MEWMA-

PCA-BN T2 SPE T2 SPE 

ARLoc (hr) Average FDR (%) 

IDV 1 0.05 0.05 0.00 99.88 99.88 100 No Yes 

IDV 2 1.05 0.05 0.00 97.38 99.88 100 No Yes 

IDV 3 467.60 0.05 0.04 36.98 99.88 99.90 Yes Yes 

IDV 4 13.70 0.00 0.04 65.75 100 99.90 Yes Yes 

IDV 5 0.10 0.00 0.06 99.75 100 99.85 No Yes 

IDV 6 0.50 0.05 0.00 98.75 99.88 100 Yes Yes 

IDV 7 0.15 0.00 0.00 99.63 100 100 No Yes 

IDV 8 0.05 0.05 0.08 99.88 99.88 99.80 No Yes 

IDV 9 143.80 0.05 0.08 80.62 99.88 99.80 Yes Yes 

IDV 10 11.65 0.15 0.00 70.88 99.63 100 Yes Yes 

IDV 11 0.15 0.05 0.05 99.63 99.88 99.88 No Yes 

IDV 12 1.05 0.05 0.05 97.38 99.88 99.88 No Yes 

IDV 13 3.70 0.03 0.06 90.75 99.93 99.85 Yes Yes 

IDV 14 0.25 0.01 0.05 99.38 99.98 99.88 Yes Yes 

IDV 15 0.60 0.05 0.08 98.50 99.88 99.80 Yes Yes 

IDV 16 49.75 0.05 0.01 93.30 99.88 99.98 Yes Yes 

IDV 17 0.10 0.04 0.03 99.75 99.90 99.93 No Yes 

IDV 18 2.60 0.05 0.11 93.50 99.88 99.73 Yes Yes 

IDV 19 0.15 0.05 0.02 99.63 99.88 99.95 No Yes 

IDV 20 4.90 0.06 0.03 87.75 99.85 99.93 Yes Yes 

 

Table 3.5 also gives a justification of using the BNs in fault diagnosis, as it can be found that 

several faults have the same ARLoc, and the DD-based fault diagnosis strategy demonstrated by  

Shams et al. (2011) becomes inefficient and misleading in IDV 1, IDV 2, IDV 5, IDV 7, IDV 8, 

IDV 11, IDV 12, IDV 17, and IDV 19. CUSUM PCA with a misdetection-based diagnosis strategy 
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can provide an accurate diagnosis in 11 (55%) cases, while this number is 20 (100%) for 

MEWMA-PCA-BN.  

To understand the underlying reason behind MEWMA-PCA’s better performance over CUSUM 

PCA, the filtering effect of these two statistics on XMEAS (1) is shown in Figure 3.11 as an 

example. The slack parameter of CUSUM was set to half of the standard deviation. It can be seen 

that the location CUSUM (LCS) can merely follow the original signal, and it is only sensitive to 

any variation that is significantly higher than the mean value. Although the standard CUSUM 

(SCS) can mimic the raw process data, it is observed to be fluctuating with a higher magnitude. 

On the contrary, pre-processed data from the MEWMA model takes a while to follow the original 

data due to a lower value of the tuning parameter, . However, once it starts following the signal, 

it can closely follow the mean of the original signal with a more smoothed form. Additionally, it 

captures the deviations in both the upper and lower sides of the mean. It implies that the MEWMA 

model provides a lesser noisy dataset retaining the dynamic variational property. This makes the 

feature extraction easier for PCA, as it can capture the significant deviations with a lower number 

of PCs and distinguish the faulty samples with a smaller magnitude more vigorously.  
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Figure 3.11: Effect of MEWMA and CUSUM on original data. 

3.5. Conclusion 

This chapter presents a robust FDD methodology, developed using the MEWMA-PCA and the 

BN models. Detection capacity of the conventional PCA is found to increase significantly by 

integrating it with the MEWMA model. Successful applications of the MEWMA-PCA model has 

been demonstrated for three specific faults: IDV 3, IDV 9, and IDV 15 of the benchmark TE 

process. These faults have been selected, as many advanced MSPM tools are found to be inefficient 

in detecting them. Simultaneous occurrence of two faults can also be detected and diagnosed by 

applying the MEWMA-PCA-BN model proposed in this article. The comprehensive applications 

to the other fault cases of the TE chemical process suggest that the proposed method can 

successfully be applied to different types of fault signals, and still, an early detection can be 

achieved. 
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Although CUSUM PCA-based FDD tools have demonstrated the capacity to detect and diagnose 

these faults efficiently, the newly proposed tool provides a better detection rate. It can detect the 

fault earlier than previously reported two CUSUM PCA-based approaches, as evident from Table 

3.4. Furthermore, the computational cost of CUSUM PCA is essentially higher, as each sample 

consists of twice the volume of the original data matrix due to the simultaneous application of LCS 

and SCS. For example, CUSUM PCA needs to monitor a matrix that contains 104 columns for the 

demonstrated TE chemical process, while MEWMA-PCA monitors only 52 columns. However, 

MEWMA-PCA cannot diagnose the faults consistently, which is a drawback of this MSPM tool. 

Although a misdetection-based diagnosis technique is available in the existing literature, this 

method is found misleading, as many faults can have similar misdetection rates, and hence, a BN 

is used to diagnose the active fault type. It is found that the proposed MEWMA-PCA-BN model 

can detect the fault early and diagnose the fault type accurately. 

This work demonstrates a simple, yet effective procedure to develop an MEWMA-PCA model. 

Unlike the traditional approaches, a novel technique to construct and train the BNs from the 

observed fault symptoms in a supervised learning method is also presented, which can be 

efficiently utilized by other MSPM tools to build the hybrid methods. Furthermore, the current 

work presents an FDD tool to overcome the limitations of several tools that face difficulty while 

detecting and diagnosing the unobservable process faults. The advantages of this hybrid method 

are: (i) early fault detection, (ii) higher detection rate, (iii) lower computational cost than CUSUM 

PCA, (iv) consistent accurate diagnosis, and (v) easier construction process.  

Despite this work having demonstrated a robust methodology for FDD, identification of fault 

propagation pathway is another aspect of process monitoring that can be integrated to make the 

work more comprehensive. A separate BN constructed by following the conventional techniques 
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can be utilized to serve this purpose. Six topmost contributing variables are selected to train and 

update the BNs. Integrating the contribution of more variables will provide more confidence in 

fault diagnosis. As the number of faults increases, training of the BN models becomes complex 

and time-consuming. An automated training method can help in this context. This methodology 

assumed a stationary process application; recursively updated or moving window-based versions 

of the MEWMA-PCA could be utilized to capture the non-stationary conditions. The above will 

be promising venues to improve this work significantly. 
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Chapter 4: A Data-Driven Bayesian Network Learning Method for Process Fault Diagnosis 
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Abstract 

This chapter presents a data-driven methodology for fault detection and diagnosis (FDD) by 

integrating the principal component analysis (PCA) and Bayesian network (BN). Though the 

integration of PCA-BN for FDD purposes has been studied in the past, the present work makes 

two contributions for process systems. First, the application of correlation dimension (CD) to select 

principal components (PCs) automatically. Second, the use of Kullback-Leibler divergence (KLD) 

and copula theory to develop a data-based BN learning technique. To avoid discretizing continuous 

high-dimensional process data and to capture nonlinear dependence, this methodology uses a 

combination of vine copula and Bayes’ theorem. The data-driven integrated PCA-BN framework 

has been applied to two process systems. The performance of the proposed methodology is 

compared with the independent component analysis (ICA), kernel principal component analysis 

(KPCA), kernel independent component analysis (KICA), and their integrated frameworks with 

the BN. The comparative study suggests that the proposed framework provides superior 

performance.  

Keywords: Process monitoring, fault diagnosis, process safety, correlation dimension, vine 

copula, Bayesian network. 
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4.1. Introduction 

Fault detection and diagnosis (FDD) has the utmost importance in increasing the profitability of a 

process plant by ensuring safety, reliability, and product quality. By nature, process industries are 

a source of high-dimensional correlated data due to multivariate process operations and 

digitalization. The success of an FDD tool largely depends on an accurate analysis of these data 

for predicting the process state (i.e. faulty or normal) and decoding the underneath causal 

relationships and correlation structure among the process variables (Jia and Li, 2020; Zhou and Li, 

2018). Data-based process FDD tools play a pivotal role in preventing a fault from propagating to 

an accident by providing an early indication of fault and information about the root cause. The 

multivariate statistical process monitoring (MSPM) tools are continually drawing researchers’ 

attention due to their ease of implementation, reliable performance, and relatively lower historical 

data requirement compared to machine learning techniques (i.e. artificial neural network).  

The principal component analysis (PCA) (Wise et al., 1988), partial least squares (PLS) (Kresta et 

al., 1991), independent component analysis (ICA) (Kano et al., 2003), and their derivatives are the 

major MSPM tools used in FDD. An appropriate number of principal component (PC) or 

independent component (IC) selection greatly affects the performance of these MSPM tools. The 

cumulative percentile variation (CPV) (Malinowski and Howery, 1980) and SCREE (Cattell, 

1966) procedures are the two most common and reliable means in this context. Unlike PCA, the 

ICA cannot distinguish variations captured by the ICs, and therefore, the number of ICs is often 

set equal to the number of PCs from PCA. The modified ICA (MICA) is another alternative 

formulation of ICA to capture the significant process variations with the required ICs (Lee et al., 

2006). Like PCA, the MICA utilizes CPV or SCREE approach to pick the significant ICs to build 

the monitoring model.  
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Due to SCREE’s graphical nature, its output is prone to error when the dimension is higher. On 

the other hand, the CPV uses a simple mathematical formulation to estimate the required number 

of PCs. Usually, the first few PCs are selected based on the percentage variation that an MSPM 

designer wants to capture. Although the CPV uses a straightforward equation, it is a user-

perspective approach, as different researchers have used a wide range of values (i.e. 65-99%) to 

construct the monitoring models, with a view to reducing false alarms, yet securing an early fault 

detectability.  

The correlation dimension (CD) finds a set of linear or nonlinear axes that represents the 

multidimensional data in a reduced dimension retaining the vital information of original data 

(Grassberger and Procaccia, 1983). This exactly matches to the definition of PC or IC, and the 

existing techniques to measure the required number of PCs or ICs to build the FDD model can be 

improved and made automated by including it in model development (i.e. the CD is an assumption-

free approach, and no user preference is required).  

Along with early fault detectability, the MSPM tools can provide diagnostic information in terms 

of multivariate contribution plots. However, this diagnosis is often inaccurate and misleading due 

to the smearing effect (Westerhuis et al., 2000). The Bayesian networks (BNs) are becoming 

increasingly popular in FDD, especially in fault diagnosis. In addition to FDD, BNs are widely 

used in process safety and risk analysis (Adedigba et al., 2017; Amin et al., 2020; Barua et al., 

2016; Ghosh et al., 2020; Guo et al., 2019; Ping et al., 2018; Rostamabadi et al., 2020; Yazdi and 

Kabir, 2017).   

Rojas-Guzman and Kramer (1993) showed the suitability of a BN over the then rule-based expert 

systems in fault diagnosis. Process knowledge was utilized as the basic building block of the 

network. A BN-based single sensor fault detection and identification technique was proposed by 
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Mehranbod et al. (2003). The probability absolute difference was utilized for fault detection. 

Nonetheless, the authors did not address how continuous data were converted into probabilities 

that were further used to update the BN.  

A combination of T2 statistics and BN was proposed by Verron et al. (2010). The authors utilized 

the causal decomposition of T2 statistics for fault diagnosis. However, the application to a hot 

forming process suggested that the proposed method could not ensure accurate diagnosis in all the 

studied cases. The conventional BN is static, and hence, it cannot capture the dynamic nature of 

process operations. To address this issue, Yu and Rashid (2013) proposed a dynamic BN (DBN)-

based process monitoring model. The kernel distribution was utilized to learn the parameters, while 

the network topology was developed from prior knowledge and process flow diagram. The other 

applications of DBN in process monitoring can be found in the works by Zhang and Dong (2014) 

and Amin et al. (2019a). The major advantage of DBN-based methods is their capability to detect 

and diagnose a fault and identify its propagation pathway by a solitary tool. However, these cannot 

provide early detection in case of subtle faults.  

Many integrated frameworks have been developed using the early fault detectability of the MSPM 

tools and accurate diagnosis capacity of a BN. A fault is first detected by an MSPM tool; then, 

diagnosis is completed by the BN using contribution plots. As a result, both the early fault detection 

and accurate diagnosis features are captured. Some of the hybrid methods adopting this philosophy 

are PCA-BN by Mallick and Imtiaz (2013), MICA-BN by Yu et al. (2015), KPCA-BN by 

Gharahbagheri et al. (2017), and PCA-BN with likelihood evidence by Amin et al. (2018). Strong 

prior knowledge of BN structure and conditional probability tables (CPTs) was the prerequisite 

for the first PCA-BN work. Yu et al. (2015) and Amin et al. (2018) utilized prior knowledge and 

data for learning structure and CPTs, respectively.  
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Developing BNs from process data is still an existing challenge. Yang et al. (2014) demonstrated 

the applications of Granger causality and transfer entropy for capturing causality and connectivity 

from process data. Later, Gharahbagheri et al. (2017) utilized these tools to build BNs from process 

data. Selecting the optimal lag for Granger causality requires significant effort. Besides, the 

outputs from transfer entropy are often error-prone in the context of process data (Yu and Rashid, 

2013). One of the salient features of Gharahbagheri’s work was the use of residuals for estimating 

priors and CPTs. However, continuous data were discretized at the cost of information loss. Zhu 

et al. (2019) proposed a multiblock transfer entropy (MBTE)-based BN learning technique for root 

cause diagnosis. The authors segregated the process into different sub-systems based on prior 

knowledge and subsequently, used the MBTE to find causal relations. This technique cannot be 

considered purely data-driven since prior knowledge is used to divide the entire process.  

Meng et al. (2019) applied a family transfer entropy (FTE) technique to the alarm repository and 

proposed a score-based BN learning method. Process variables were classified based on alarm 

history. Suppose fault A causes a total of five variables exceeding the pre-defined thresholds. 

These variables are included in the developed BN for diagnosing fault A. The causal structure of 

these five variables is then determined using FTE. This procedure is carried out for each fault type.  

Wang et al. (2018) proposed a BN-based fault diagnosis methodology. Knowledge of faults and 

Pearson’s correlation coefficient were used to develop the causal structure for each fault type, and 

the parameters were learnt using the expectation-maximization algorithm. Amin et al. (2019) 

combined the multivariate exponentially weighted moving average PCA (MEWMA-PCA) with 

the BN to detect and diagnose some faults in the Tennessee Eastman chemical process that have 

been described as unobservable or difficult to detect. The authors proposed a data-based BN 

structure learning algorithm that utilized historical fault signatures. However, in-depth fault 
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information is required to develop the BNs in the above mentioned works which may not be 

obtainable in many cases.  

The Kullback-Leibler divergence (KLD) is an approach that is used in information theory to 

measure the distance between two probability distributions (Kullback and Leibler, 1951). Also, it 

can be utilized to determine the amount and direction of mutual information (MI) transfer between 

two variables. Several studies are conducted to use MI by KLD to learn BN topologies (Friedman 

et al., 2013; Wu et al., 2001). These works mainly consider discrete data. The KLD is a lag 

selection free technique, and its calculation is straightforward compared to Granger causality and 

transfer entropy. Therefore, it can be utilized to develop a BN topology learning method to 

overcome the limitations faced by Granger causality and transfer entropy. Besides, it will eliminate 

the necessity of process knowledge or detailed fault information to build the BN and enable 

developing a data-driven BN structure.  

Copula functions provide the estimate of joint density among multi-dimensional variables without 

discretizing data. The correlation estimates provided by the copula functions in terms of Kendall’s 

rank correlation coefficient and Spearman's rank correlation coefficient are often described as a 

measure of nonlinear dependence, as well. Although the conventional bivariate copulas can be 

used to model dependency between two variables, these cannot be utilized flexibly to measure the 

dependence in high-dimensional cases (Joe, 1996).  

Elidan (2010) developed a technique to estimate the joint densities in a flexible manner using 

bivariate copulas and proposed a copula Bayesian network (CBN) model. It overcomes the 

limitation of traditional discrete BNs, as the use of copulas allowed to model continuous variables. 

Additionally, the CBN preserves the strengths of traditional BNs. Conditional independence 

among variables was assumed to estimate high-dimensional joint densities. However, this may not 
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be a valid assumption, especially in chemical systems, as process variables exhibit strong nonlinear 

dependence.  

The vine copula models such as the R-vine, C-vine, and D-vine are pertinent in this context, as 

these can capture the joint dependence in high-dimensional cases using the bivariate copula 

decompositions. Furthermore, no conditional independence assumption is required. Although 

several process monitoring schemes are available in the existing literature that have utilized the 

vine copula models (Ren et al., 2015; Zhou and Li, 2018), none of them utilized the copula-based 

BN for fault diagnosis. The vine copula-based models can provide a good detection performance 

like the MSPM tools. However, the diagnostic task is not straightforward like the BN-based 

methods, as each pair of variables needs to be analyzed that may introduce a vast computational 

burden for large-scale processes. On the contrary, the BNs only need to be updated, and the 

percentage change in each node can be used for fault diagnosis. Therefore, a vine copula aided BN 

model can be utilized for fault diagnosis that ensures high-dimensional continuous process data 

are utilized in building the CPTs, avoiding a considerable amount of computational efforts. 

The current research first examines the efficacy of CD-based PCA, ICA, KPCA, and KICA over 

the CPV-based counterparts. It then integrates the data-based BN structure with PCA-CD, as PCA-

CD-BN is found to be the most effective method for FDD based on four fault cases studied in the 

continuous stirred tank heater (CSTH) and binary distillation column.  

This work proposes a CD-based PC or IC selection technique since it can provide an unbiased 

measurement of required dimensions to reduce the original dataset. A data-driven BN learning 

technique is also proposed using the KLD and copula theory. Although bivariate copulas are easier 

to apply to estimate the joint density between two variables, process operations often contain 
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higher dimensional dependencies among variables where the bivariate copulas may not be suitable. 

Therefore, a combination of vine copula and Bayes’ theorem is used to overcome this problem.  

The remainder of this chapter is organized as follows: Section 4.2 describes the distinct steps of 

this methodology. Applications of the proposed framework to two process systems are displayed 

in Section 4.3. Detailed comparative performance analysis with the ICA, KICA, and KPCA-based 

methods are discussed in Section 4.4. The concluding remarks, advantages, limitations, and future 

work scopes are summarized in Section 4.5. 

4.2. Proposed Methodology 

The proposed methodology (Figure 4.1) is comprised of CD-based PCA and KLD and copula-

based BN. Fault is first detected using the PCA, and subsequently, root cause is diagnosed by the 

BN, utilizing PCA contributions. The proposed methodology for FDD works in two phases. The 

first task is to develop the monitoring model by using the following nine steps. 

Step 1: Historical normal and faulty data are collected. Normal process data is auto standardized 

to zero mean and unit variance.  

Step 2: PCA is performed on data obtained from the previous step. The details of PCA algorithm 

can be found in the works by Kresta et al. (1991), Garcia-Alvarez et al. (2012), Adedigba et al. 

(2017), and How and Lam (2018), just to name a few. For estimating CD, this work uses the 

algorithm proposed by Grassberger and Procaccia (1983). It is computed based on the assumption 

that two points lie at a distance of r. The point correlation for X∈ℜn×m can be calculated as: 

 𝐶𝑢(𝑟) =
𝑞

𝑛 − 1
  (4.1) 

where q is the number of points xv within the hypersphere radius, r of a reference point xu. 
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The radial correlation function can be estimated by averaging the point correlation function, as 

shown in Equation 4.2. 

 𝐶(𝑟) =
1

𝑛
  ∑ 𝐶𝑢(𝑟)

𝑛

𝑢=1

 (4.2) 

The correlation sum for all the hypersphere radii can be computed as: 

 𝐶(𝑟) = 𝑙𝑖𝑚
𝑛→∞

2

𝑛 (𝑛 − 1)
  ∑ ∑ 𝐻(𝑟 − |𝑥𝑢 − 𝑥𝑣|)

𝑛

𝑣=𝑢+1

𝑛

𝑢=1

 (4.3) 

where H denotes the Heaviside function. |𝑥𝑢 − 𝑥𝑣| is measured using the Euclidean distance. The 

distance between each pair of points are measured, and the points that give a value less than r are 

included in calculating the correlation sum.  

If r becomes smaller, the correlation sum follows a power law (Equation 4.4).  

 𝑙𝑖𝑚
𝑛→∞

𝑙𝑖𝑚
𝑟→0

𝐶(𝑟) = 𝑟𝐶𝐷 (4.4) 

Finally, the CD can be obtained by taking the logarithm of both sides. 

 𝐶𝐷 =  𝑙𝑖𝑚
𝑛→∞

𝑙𝑖𝑚
𝑟→0

𝑙𝑜𝑔 𝐶(𝑟)

𝑙𝑜𝑔(𝑟)
 (4.5) 

CDs of the original data matrix (X) and score matrix (T) are estimated. The higher value between 

these two is rounded off to the next positive integer and used to select the number of required PCs 

to build the PCA monitoring model. The minimum distance is chosen as the absolute difference 

between the median and maximum values. 

Step 3: Thresholds of T2 and squared prediction error (SPE) statistics are calculated. A level of 

99% confidence is used in the proposed approach. 

Step 4: PCA residuals are collected. Gharahbagheri et al. (2017) used these residuals to estimate 

the CPTs after discretizing them. However, these are not readily usable to estimate CPTs using the 

copula functions. According to the theorem by Sklar (1959), data need to be transformed into 
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cumulative density functions (CDFs) to estimate the correlation measure. Therefore, the kernel 

density estimator (KDE) is used to estimate the probability density functions (PDFs) and CDFs. 

The kernel PDF, fh and CDF, Fh for a random variable, x can be obtained using Equations 4.6 and 

4.7, respectively (Bowman and Azzalini, 1997). 

 

Figure 4.1: The proposed methodology for FDD. 

 𝑓ℎ(𝑥) =  
1

𝑛ℎ
 ∑ 𝐾 (

𝑥 − 𝑥𝑖

ℎ
)

𝑛

𝑖=1

 (4.6) 
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 𝐹ℎ(𝑥) =  ∫ 𝑓ℎ(𝑥)𝑑𝑥
𝑥

−∞

 (4.7) 

where i = 1, 2, 3, …, n is the number of samples. h is the bandwidth, and K (·) is the kernel 

smoothing function. A Gaussian kernel is considered in this work.  

The kernel bandwidth, h is calculated using the rule provided by Silverman (1986). For a sample 

size of n with σ standard deviation, h can be computed as shown in Equation 4.8. 

 ℎ =  (
4𝜎5

3𝑛
)

1

5

 (4.8) 

Step 5: Faulty data are used to build the topology of BN using the KLD. However, data need to be 

fitted in a probability distribution to estimate the KLD. The probability of fault for each variable 

from faulty dataset is estimated using the Gaussian cumulative distribution by Equation 4.9. 

 𝑃(𝐹𝑎𝑢𝑙𝑡) = 𝜑 (
𝑋 ± 𝜇

𝜎
) (4.9) 

where X, , and  are the arbitrary value, mean, and standard deviation, respectively. 

A limiting zone needs to be defined for efficient fault probability estimation. The upper and lower 

thresholds for this zone are selected as +3σ and -3, respectively. The probability of fault is 

considered as 0.50 and 0 at ±3 and , respectively (Bao et al., 2011).  and  are calculated 

from the normal operational data of step 1. Although ±3 gives a wider horizon, this work 

considers this limit due to the susceptibility of process data to random noise.   

for xij>j,  

 𝑃(𝐹𝑎𝑢𝑙𝑡) = 𝜑 (
𝑥𝑖𝑗 − (𝜇𝑗 + 3𝜎𝑗)

𝜎𝑗
)  
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                   = ∫
1

𝜎𝑗√2𝜋 
𝑒

−
{𝑥𝑖𝑗−(𝜇𝑗+3𝜎𝑗)}

2

2𝜎𝑗
2  

𝑑𝑥
𝑥𝑖𝑗

−∞

 (4.10) 

for xij<j,  

 𝑃(𝐹𝑎𝑢𝑙𝑡) = 1 − 𝜑 (
𝑥𝑖𝑗 − (𝜇𝑗 − 3𝜎𝑗)

𝜎𝑗
)  

 

                   = 1 − ∫
1

𝜎𝑗√2𝜋 
𝑒

−
{𝑥𝑖𝑗−(𝜇𝑗−3𝜎𝑗)}

2

2𝜎𝑗
2

𝑑𝑥
𝑥𝑖𝑗

−∞

 (4.11) 

where i =1, 2, …., n and j =1, 2, …., m. 

Step 6: The KLD for each pair of variables is calculated from the probabilities obtained from the 

previous step and presented in a confusion matrix. The KLD between two random variables X1 

and X2 can be computed as shown in Equation 4.12. 

 𝐷𝐾𝐿(𝑋1||𝑋2) =  ∑ 𝑃(𝑋1) 𝑙𝑛
𝑃(𝑋1)

𝑃(𝑋2)

𝑛

𝑖=1

 (4.12) 

where DKL is the measure of Kullback–Leibler divergence, and P denotes probability. 

It is noteworthy to mention that the average KLD is used to represent the confusion matrix after 

discarding lower values. A threshold of 0.60 is used in this context. An average measure is required 

to set up a general threshold level for different process operations. Suppose 1000 and 2000 faulty 

samples are collected from two process operations. It is expected that the second dataset will yield 

a higher total value of KLD; thus, it is difficult to set a common threshold. However, if the average 

value is used, it will give the measure of KLD per observation. Hence, the obtained KLD from 

Equation 4.12 is divided by the total number of faulty samples. 
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Step 7: The root and leaf nodes are identified from the confusion matrix. The variables that have 

zero values all through the corresponding columns are selected as the root node. This implies that 

information flows from these variables to others. On the other hand, the variables with zero values 

all through the corresponding rows are selected as the leaf nodes. 

Step 8: The order of the intermediate nodes is selected using the best child searching strategy. 

Suppose a process has five variables (X1-X5). X1 and X2 are the root nodes, and the confusion matrix 

does not provide any concrete information about the leaf nodes. The joint densities of X1 and X3, 

X1 and X4, and X1 and X5 are estimated, and the variable among X3, X4, and X5 gives the highest 

joint density with X1 is selected as the best child node for X1. The same procedure is recursively 

performed unless the qualitative network is constructed. 

Step 9: The prior probability of root nodes is calculated by averaging the fault probability of 

corresponding variables from step 5. The CPTs are estimated using the copula functions. For 

pairwise cases, bivariate copulas are used. On the contrary, the D-vine copula model with Bayes’ 

theorem is used in multivariate cases. The reason for selecting D-vine is that it does not require 

computation of the root node of the first tree. Also, it performs better in capturing weaker 

correlations (Cui and Li, 2020). A statistical software, R has been used to model the copulas. The 

‘CDVine’ package by Brechmann and Schepsmeier (2013) in R provides the flexibility of 

modelling a wide range of copula types. Kendall’s rank correlation coefficient, τ is used to describe 

the nonlinear dependence among the variables. The maximum value of τ by applying distinct 

copula types is used to compute the CPTs. As the range of τ varies from -1 to 1, an absolute value 

is considered when building the CPTs. 

Once the joint density of multiple variables is computed using the D-vine copula, the CPTs can be 

estimated by dividing the probability of child variable(s). Consider a four-dimensional case. Using 
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D-vine copula, the joint density of four variables, f (X1, X2, X3, X4), can be computed by Equation 

4.13 as follows: 

 𝑓(𝑋1, 𝑋2, 𝑋3, 𝑋4) = 𝑓(𝑋1)𝑓(𝑋2)𝑓(𝑋3)𝑓(𝑋4)𝐶12𝐶23𝐶34𝐶1,3|2 𝐶2,4|3 𝐶1,4|2,3  (4.13) 

f(X1), f(X2), f(X3), and f(X4) can be computed from the residuals’ kernel density, while D-vine will 

give the measure of required copula functions. Suppose P(𝑋1|𝑋2, 𝑋3, 𝑋4) needs to be computed. 

We can compute P(𝑋2, 𝑋3, 𝑋4|𝑋1) by Equation 4.14. 

 𝑃(𝑋2, 𝑋3, 𝑋4|𝑋1) =
𝑓(𝑋1,𝑋2,𝑋3,𝑋4)

𝑓(𝑋1)
=  

𝑃(𝑋1,𝑋2,𝑋3,𝑋4)

𝑃(𝑋1)
  (4.14) 

Now, the Bayes’ theorem can be utilized to calculate the required conditional probability as 

follows: 

 𝑃(𝑋1|𝑋2, 𝑋3, 𝑋4) =  
𝑃(𝑋2,𝑋3,𝑋4|𝑋1)𝑃(𝑋1)

𝑃(𝑋2, 𝑋3, 𝑋4)
  (4.15) 

In Equation 4.15, P(X2, X3, X4) can be computed by applying further D-vine decomposition on X2, 

X3, and X4. In this way, the conditional probability of any combination can be obtained. It is 

noteworthy to mention that no discretization of data is required to define the quantitative parts 

following the described approach.  

The online part consists of the following four simple steps. 

Step 9: Online process data is auto standardized using the same mean and standard deviation 

obtained from step 1. 

Step 10: The T2 and SPE values for each observation are computed. If any T2 or Q value exceeds 

the threshold obtained from step 3, fault is detected.  

Step 11: Once fault is detected, diagnosis is completed using the methodology proposed by Amin 

et al. (2018); the authors viewed the contribution plots as a set of uncertain evidence and suggested 

to update the BN with multiple likelihood evidence for accurate root cause diagnosis. The average 
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contribution of the first ten faulty samples is utilized to generate the contribution plots. These 

contributions are rescaled on a scale of 0-80%.  

Step 12: The variables that have more than 20% rescaled contribution are selected to update the 

BN, and the percentage change of each variable is calculated from the updated BN. Then, the 

variable that has the highest percentage in the faulty state is identified as the root cause if it is a 

root node; otherwise, the root cause is identified among its parent nodes based on their respective 

percentage increase in the faulty state. 

4.3. Applications of the Proposed Methodology 

4.3.1. Continuous Stirred Tank Heater (CSTH) 

The continuous stirred tank heater (CSTH) is a common sub-unit in several process operations. It 

is used as a testing example in many studies (Tong et al., 2014; Yu and Qin, 2008). The considered 

CSTH model (Figure 4.2) was developed at the University of Alberta. It contains real disturbances 

data, and this process is highly nonlinear. A total of five variables: cold water valve demand, steam 

valve demand, level, temperature, and output water flowrate have been monitored in this study. 

All the measurements are collected on a scale of 4-20 mA. Detailed process description of the 

considered CSTH simulator can be found in the article by Thornhill et al. (2008). Two fault cases 

have been considered in this work. In both scenarios, fault starts after 1000 samples of normal 

operation. The fault description and their root cause are listed in Table 4.1.  

Table 4.1: Fault description in the CSTH. 

Fault scenario no. Fault description Root cause 

A1 Steam valve stiction Steam valve 

A2 Step change in cold water valve Cold water valve 
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Figure 4.2: The continuous stirred tank heater (modified and redrawn from (Thornhill et al., 

2008)). 

First, a total of 1000 normal and 200 faulty samples are collected. The faulty samples are generated 

by providing random signals in the inputs to the system. It is noteworthy to mention that these 

faulty samples are different from the ones that are being used to examine the efficacy of proposed 

methodology. The normal samples are auto standardized to zero mean and unit variance. The 

singular value decomposition (SVD) is performed on the covariance matrix, and loadings and 

score matrices are calculated. Then, the CD is performed on the raw data and score matrix. CD(X) 

and CD(T) are calculated as 2.66 and 2.86, respectively; this implies that 3 PCs are required to 

build the PCA monitoring model. Once the number of PCs is determined, thresholds of T2 and 

SPE statistics are calculated as 11.43 and 5.12, respectively, for a 99% confidence level.  

The fault probabilities for the 200 faulty samples are estimated using Equations 4.10 and 4.11. The 

required mean and standard deviation are calculated from 1000 normal samples. The KLD for each 



 

83 
 

pair of variables is calculated using Equation 4.12 and divided by 200. A confusion matrix is 

constructed from the obtained results, as shown in Table 4.2.  

Table 4.2: Confusion matrix for the CSTH. 

Variables 

Cold 

water 

valve 

demand 

Steam 

valve 

demand 

Level 
Water 

flowrate 
Temperature 

Cold water valve 

demand 
0 0 0.61 0 1.40 

Steam valve demand 0 0 0.73 0.65 0 

Level 0 0 0 0 1.11 

Water flowrate 0 0 0 0 0.61 

Temperature 0 0 0.63 0.61 0 

 

It can be seen that the first two columns are filled with zeroes; hence, the corresponding variables: 

cold water valve demand and steam valve demand can be identified as the root nodes. However, 

no variable has only zeroes row-wise, and no leaf node is identified from the confusion matrix. 

Then, the joint probability density is estimated from the joint frequency distribution. The joint 

density of the cold water valve and level, cold water valve and temperature, and cold water valve 

and flowrate is calculated as 0.37, 0, and 0.31, respectively. Hence, level can be identified as the 

best child for the cold water valve demand. Similarly, temperature is identified as the child node 

of steam valve demand, as the joint probability of the steam valve demand and level, steam valve 

demand and flowrate, and steam valve demand and temperature is calculated as 0, 0.07, and 0.84, 

respectively. The optimality of level and temperature is checked and found that level has a higher 

joint density with the flowrate. However, the temperature is also affected by the level (from Table 

4.2). Therefore, level is used as the parent nodes of both the temperature and flowrate. This 

completes the qualitative BN structure. 



 

84 
 

To determine the priors, the average fault probability of cold water valve demand and steam valve 

demand is calculated from 200 faulty samples. PCA residuals are used to estimate the CPTs, as 

the residuals contain more significant causal information (Gharahbagheri et al., 2017b). Bivariate 

copulas are used to estimate the dependency between single parent-child pairs (i.e. level and 

flowrate). Table 4.3 shows the justification of using residuals with KDE for building the CPTs. 

From process knowledge, it is obvious that there exists a strong dependency between the level and 

flowrate. However, the copula function fails to capture the true measure of dependence from raw 

data and residuals, as they often exceed the limit of 0 to 1. On the contrary, it provides a realistic 

value of τ when copula function is applied to the kernel CDFs that are obtained from PCA 

residuals. 

Table 4.3: A comparison of Kendall’s rank correlation coefficient for different data sources. 

Pair Cold water valve and level Level and flowrate 

Data type 
Raw 

data 
Residual 

Residual with 

KDE 

Raw 

data 
Residual 

Residual with 

KDE 

Kendall’s rank 

correlation coefficient, τ 
0.1647 0.1563 0.5492 0.0087 0.0215 0.8131 

 

The D-vine copula is used to estimate the CPT of temperature, as it has two parent nodes: level 

and steam valve demand. It should be noted that binary states: faulty (F) and non-faulty (NF) have 

been considered in this work since the focus is to differentiate the abnormal condition from the 

normal one. Our aim is to estimate P(temperature=F | steam valve demand=F, level=F) in the first 

column of CPT.  The marginal fault probabilities are estimated from the residuals. The maximum 

value among 1000 residual samples is considered as the marginal probability. It yields: 

P(steam valve demand=F) = 0.9990, P(temperature=F) = 0.9993, and P(level=F) = 0.9995. 

Then, D-vine copula is applied to steam valve demand, level, and temperature, and the copula 

parameters are obtained. The joint density of these three variables is calculated.  
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f(temperature=F, steam valve demand=F, level=F) = 0.9990 × 0.9993 × 0.9995 × 0.9757 ×

0.9893 ×  0.9999 =  0.9631  

Therefore, P(steam valve demand=F, level=F | temperature=F) = 
0.9631

0.9993
=  0.9637   

Applying bivariate copula, P(steam valve demand=F, level=F) is found as 0.9971.  

Finally, P(temperature=F | steam valve demand=F, level=F) = 
0.9637×0.9993

0.9971
=  0.9658 

The other columns of the CPT are estimated using a similar procedure. Finally, the BN is inserted 

with all the priors and CPTs and ready to be used for fault diagnosis. Figure 4.3 shows the 

developed BN for CSTH, modelled in GeNIe 2.0.  

 

Figure 4.3: BN for the CSTH. 

4.3.1.1. Fault Scenario A1 (Steam Valve Stiction) 

Valve stiction is a frequently encountered operational problem in process industries and one of the 

main reasons for plant-wide oscillation and poor control loop performance. Therefore, an FDD 

scheme should be capable of tackling it. In this fault case, steam valve demand stiction occurs after 

1000 samples. This scenario is generated by using a switch in the Simulink that provides a constant 

value from the 1001 sample. As a result of stiction, temperature upset occurs. The controller tries 

to maintain the setpoint; however, it fails as the steam valve remains in the same position. The T2 
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control chart detects this fault much earlier than the SPE control chart (Figures 4.4(A) and 4.4(B)). 

As this fault is detected earlier by the T2 control chart, corresponding contribution plot is generated 

(Figure 4.4(C)). The contribution plot suggests temperature as the root cause, which is inaccurate.  

The T2 contributions are rescaled from 0-80% with respect to temperature’s original contribution. 

In the contribution plot, the left-hand bar (green coloured) and right-hand bar (red coloured) 

represent the original and rescaled contributions, respectively. The rescaled contributions of cold 

water valve demand, steam valve demand, level, temperature, and flowrate become 2.38%, 6.68%, 

1.23%, 80%, and 15.39%, respectively. Therefore, the BN is updated with the likelihood evidence 

of temperature, as it is the only variable that has more than 20% rescaled contribution. 

Figures 4.4(D) and 4.4(E) show the updated BN and percentage change in the probability at the 

faulty state. Although all the variables show an increasing probability to be in the faulty state, 

temperature and steam valve demand have prominent increases. Temperature has the highest 

probability increase (95.51%). Since it is a child node, it is not considered as the root cause. It has 

two parent nodes: level and steam valve demand. Steam valve demand and level have 82.30%, 

13.32% increase in the faulty state, respectively. Hence, level can be ignored, and steam valve 

demand can be accurately identified as the root cause.  
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Figure 4.4: Monitoring results for steam valve stiction (A) PCA-T2 control chart, (B) PCA-SPE 

control chart, (C) PCA-T2 contribution plot, (D) updated BN, and (E) root cause diagnosis by 

percentage change in the faulty state. 

4.3.1.2. Fault Scenario A2 (Step Change in Cold Water Valve) 

This fault scenario has been generated by using a step type signal. Figures 4.5(A) and 4.5(B) show 

the PCA-T2 and PCA-SPE control charts, respectively. Both these control charts can detect this 

fault immediately. However, after a brief period, the T2 and SPE values return under the thresholds. 

This fault changes the level in the tank and output water flowrate. Cold water valve demand and 
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flowrate are operated in a closed-loop by a proportional-integral-derivative (PID) controller. 

Hence, the controller tries to compensate for the change in flowrate by altering the valve opening. 

As a result, the effect of this fault is mitigated. 

PCA-T2 contribution plot is generated (Figure 4.5(C)). All the contributions are rescaled, and cold 

water valve demand, flowrate, and temperature are the variables that are selected to update the BN. 

Figure 4.5(D) shows the updated BN. The updated probabilities are compared, and the percentage 

change in the faulty state is plotted in Figure 4.5(E). Any negative percentage change implies that 

the variable has an increasing probability in the non-faulty state. It can be seen that cold water 

valve demand has the highest increase in the faulty state (136.17%), and it is a root node. 

Therefore, it can be identified as the root cause of the fault. 
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Figure 4.5: Monitoring results for step change in cold water valve demand (A) PCA-T2 control 

chart, (B) PCA-SPE control chart, (C) PCA-T2 contribution plot, (D) updated BN, and (E) root 

cause diagnosis by percentage change in the faulty state. 

4.3.2. Binary Distillation Column 

The distillation column is a common sub-system in process industries. Distillation is the process 

of separating a mixture of two or more components by heating the mixture to a temperature 

between their boiling and condensing points. In this study, a binary distillation column (Figure 

4.6) is considered. It consists of 40 stages and separates a mixture of relative volatility of 1.5 into 

products of 96% purity. Three input variables: feed rate, feed composition, and reflux flowrate and 

two output variables: top composition and bottom composition have been monitored. The 

description of this process and relevant assumptions are available at (Skogestad, 1997). Two fault 

cases are considered for this process model. Table 4.4 shows the fault description and their root 

cause. 
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Figure 4.6: A binary distillation column (modified and redrawn from (Skogestad, 1997)). 

Table 4.4: Fault description in the binary distillation column. 

Fault scenario no. Fault description Root cause 

B1 Random variation in reflux flowrate Reflux flowrate 

B2 Step change in feed rate Feed rate 

  

A total of 500 samples are collected, where the first 400 samples are collected in the normal 

operating condition, and the rest consist of faulty data. The non-faulty samples are used to build 

the PCA monitoring model. The samples are auto standardized to zero mean and unit variance. 

The SVD is performed, and the score matrix, T is computed using the standard PCA procedure. 

Correlation dimension analysis on X and T yields 1.79 and 1.45, respectively. Hence, the first 2 

PCs are selected, and thresholds of T2 and SPE are calculated as 9.34 and 0.05, respectively, with 

a level of 99% confidence. It should be noted that the CPV method also suggests the same number 

of PCs to build this FDD model. 

The faulty samples are converted into probabilities using Equations 4.10 and 4.11. The KLDs for 

all possible pairs of variables are calculated using Equation 4.12 and divided by 100. The 
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respective confusion matrix (Table 4.5) is constructed from the average KLD. It is noteworthy to 

mention that the average KLD values lower than 0.60 has been assigned zero in the confusion 

matrix, considering lower than 0.60 as insignificant information flow.  

Table 4.5: Confusion matrix for the binary distillation column. 

Variables 
Feed 

rate 

Feed 

composition 

Reflux 

flowrate 

Top 

composition 

Bottom 

composition 

Feed rate 0 0 0 2.47 1.78 

Feed composition 0 0 0 3.11 2.31 

Reflux flowrate 0 0 0 3.11 2.31 

Top composition 0 0 0 0 0 

Bottom composition 0 0 0 0 0 

 

The feed rate, feed composition, and reflux flowrate are found as the root nodes, as their respective 

columns contain only zeroes. On the contrary, top composition and bottom composition are the 

leaf nodes. Also, both these leaf nodes are receiving significant information from all the root nodes. 

Hence, six arcs are directed from feed rate, feed composition, and reflux flowrate towards top 

composition and bottom composition (three each). The priors are calculated from the faulty 

samples, and the CPTs are estimated using the D-vine copula and Bayes’ theorem. Figure 4.7 

shows the developed BN.  

 

Figure 4.7: BN for the binary distillation column. 
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4.3.2.1. Fault Scenario B1 (Random Variation in Reflux Flowrate) 

In a distillation column, the vapour from top of the column is condensed in a condenser and 

collected at a receiver in the bottom of the tower. A portion of this liquid is pumped back at the 

top of the tower; this is called the reflux flowrate, and it has a significant impact on the purity of 

the products (Skogestad and Morari, 1988). In this fault scenario, a random variation starts from 

the 401st sample that directly affects the top and bottom composition and results in products of 

undesired quality. The PCA-SPE control chart detects the fault immediately; however, the PCA-

T2 fails to detect the fault due to a lower magnitude of the random variation (Figures 4.8(A) and 

4.8(B)).  

The PCA-SPE contribution plot is generated using 401-410 samples. It shows that three variables: 

reflux flowrate, top composition, and bottom composition are highly affected by this fault. The 

bottom composition has the highest contribution (32.28%), and its contribution is used to rescale 

the other contributions, as shown in Figure 4.8(C). The BN is updated with three likelihood 

evidence of the variables stated above, as their rescaled contribution is higher than 20%.  

The updated BN is shown in Figure 4.8(D). Then, the percentage change in the fault probability is 

calculated and displayed in Figure 4.8(E). It is noticed that all the variables show an increasing 

tendency to be in the faulty state because feed rate and feed composition are also the parent nodes 

of top composition and bottom composition, and any evidence in these leaf nodes have an effect 

on all the three root nodes. Among all the root nodes, reflux flowrate has the highest increase in 

the faulty state (336.81%) and is successfully diagnosed as the root cause of the observed anomaly. 
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Figure 4.8: Monitoring results for random variation in reflux flowrate (A) PCA-T2 control chart, 

(B) PCA-SPE control chart, (C) PCA-SPE contribution plot, (D) updated BN, and (E) root cause 

diagnosis by percentage change in the faulty state. 

4.3.2.2. Fault Scenario B2 (Step Change in Feed Rate) 

In this fault case, a step reduction occurs in the feed rate after 400 samples. Again, PCA-SPE 

detects the fault much earlier than PCA-T2 (Figures 4.9(A) and 4.9(B)). Upon successful fault 

detection, the contribution plot is generated and rescaled (Figure 9(C)). Three variables: feed rate, 
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feed composition, and reflux flowrate have more than 20% rescaled contribution. Therefore, the 

BN is updated with the likelihood evidence of these variables.  

Figures 4.9(D) and 4.9(E) show the updated BN and percentage change in the faulty state, 

respectively. It can be seen that feed rate, top composition, and bottom composition have an 

increasing proclivity towards the abnormal state, while the other two variables: reflux flowrate and 

feed composition have an increased probability to be in the normal state. This implies that these 

two variables are not the reason behind the fault. Feed rate has the highest increase in the faulty 

state (205.77%), and it is the only root node with an increasing tendency to be in a faulty state. 

Hence, it can be diagnosed as the root cause in this fault scenario. 
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Figure 4.9: Monitoring results for step change in feed rate (A) PCA-T2 control chart, (B) PCA-

SPE control chart, (C) PCA-SPE contribution plot, (D) updated BN, and (E) root cause diagnosis 

by percentage change in the faulty state. 

4.4. Results and Discussion 

The performance of proposed CD-based PCA, KPCA, ICA, and KICA in terms of false alarm rate 

(FAR), detection rate (DR), and detection delay (DD) is compared with that of CPV-based PCA, 

KPCA, ICA, and KICA. Interested readers are referred to the works by Cho et al. (2005) and Lee 

et al. (2007) for details of KPCA and KICA algorithms, respectively. The comparison is displayed 

in Table 4.6. It should be noted that the CPV-based models are built using 4 and 2 PCs for the 

CSTH and binary distillation column, respectively; these PCs or ICs are required to capture more 

than 90% variation. Although the CPV method cannot be directly applied to the ICA and KICA, 

the same number of PCs obtained by the PCA and KPCA are utilized to build the CPV-based ICA 

and KICA models for a fair comparison. The SCREE procedure gives the same number of PCs or 

ICs as that of CPV and therefore, is not included in Table 4.6. 
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Table 4.6: Fault detection performance comparison of distinct tools (bold implies the best performance).  

Fault 

ID 

Performance 

criterion  

PCA (CD) PCA (CPV) KPCA (CD) KPCA (CPV) ICA (CD) ICA (CPV) KICA (CD) KICA (CPV) 

T2 SPE T2 SPE T2 SPE T2 SPE I2 SPE I2 SPE I2 SPE I2 SPE 

A1 

FAR (%) 0.20 1.20 0.30 0.80 0.20 1.20 0.30 1 0.80 0.90 0.90 0.80 0.90 1 1 1.10 

DR (%) 92.60 89 93 71.80 92.60 89 93 72.40 90.40 94.40 96.40 93.80 94.60 94.80 96.80 94.20 

DD (s) 37 56 35 8 37 56 35 8 8 25 8 32 8 25 8 32 

A2 

FAR (%) 0.20 1.20 0.30 1 0.20 1.20 0.30 1 0.80 0.90 0.90 0.80 0.90 1 1 1.10 

DR (%) 12.60 11.00 13.40 6.60 12.60 11.20 13.40 7.20 7.20 13.80 11.20 12.60 7.60 14.00 11.80 12.80 

DD (s) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

B1 

FAR (%) 0 2.50 0 2.50 0 0.50 0 0.50 1.25 1.50 1.25 1.50 1.25 1.75 1.25 1.75 

DR (%) 0 60 0 60 0 13 0 13 100 100 100 100 100 100 100 100 

DD (s) NA 0 NA 0 NA 27 NA 27 0 0 0 0 0 0 0 0 

B2 

FAR (%) 0 2.50 0 2.50 0 0.50 0 0.50 1.25 1.50 1.25 1.50 1.25 1.75 1.25 1.75 

DR (%) 45 100 45 100 44 90 44 90 100 100 100 100 100 100 100 100 

DD (s) 55 0 55 0 59 7 59 7 0 0 0 0 0 0 0 0 
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Overall, the KICA and ICA provides better DRs; this implies that a strong non-Gaussian feature 

is predominant in the studied fault cases, which causes them to perform better. However, the FARs 

are also higher for KICA compared to the PCA, ICA, and KPCA. In terms of DD, the PCA and 

KPCA give a compatible performance as that of the ICA and KICA. This suggests that all these 

MSPM tools can detect the fault early. The PCA and KPCA provide almost the same performance. 

It is noteworthy to mention that the Gaussian type kernel function is used to build the KPCA and 

KICA models, as it is the most widely used kernel function in this context.  

In general, the CD-based models provide lesser false alarms. However, the DRs are also slightly 

lower than the CPV-based models for PCA, ICA, KICA, and KPCA. One of the notable facts about 

the proposed CD-based method is the perseverance of early detection capacity; even the 

conventional PCA-CD can detect the fault as early as that of KICA in 3 out of 4 cases. As a result, 

an optimum monitoring performance can be obtained, which secures lower FAR and early 

anomaly detection. Besides, the automated manner of PC or IC selection provides a more reliable 

way of constructing the PCA or ICA-based MSPM tools and relaxes the necessity of incorporating 

user-perspective. 

The root cause diagnosis capacity of CD-based PCA, KPCA, ICA, KICA, and their combination 

with the existing residual discretization-based BN and newly proposed data-driven KLD and 

copula-based BN are also studied, and the relative comparison is shown in Table 4.7. None of the 

standalone MSPM tools is capable of securing an accurate root cause diagnosis feature. The PCA, 

ICA, and KICA can diagnose the root cause in two cases, while this number is one for KPCA. 

Both the ICA and KICA provide a robust FDD performance in the distillation column. The time 

of fault detection is the same for the I2 and SPE control charts for ICA and KICA, which may 



 

102 
 

create an ambiguity, as an accurate diagnosis is provided by the SPE and I2 control charts for fault 

B1 and B2, respectively. From the real industrial perspective, it will be hard to isolate the 

acceptable results from a control chart in such cases since they provide the opposing diagnostic 

report concurrently, and none of them consistently provide accurate information.  

Table 4.7: Root cause diagnosis performance comparison of distinct tools (bold implies the best 

performance). 

Tool 
Fault ID 

A1 A2 B1 B2 

PCA-CD No Yes No Yes 

KPCA-CD No Yes No No 

ICA-CD No No Yes Yes 

KICA-CD No No Yes Yes 

PCA-CD-BN (Discrete) Yes Yes No Yes 

KPCA-CD-BN (Discrete) Yes Yes No No 

ICA-CD-BN (Discrete) No No Yes Yes 

KICA-CD-BN (Discrete) No No Yes Yes 

PCA-CD-BN (Copula) Yes Yes Yes Yes 

KPCA-CD-BN (Copula) Yes Yes No No 

ICA-CD-BN (Copula) No Yes No Yes 

KICA-CD-BN (Copula) No Yes No Yes 

 

The adjunction of BN (both copula and data discretization-based) with the aforementioned FDD 

tools increases the diagnostic accuracy of the PCA and KPCA while the diagnostic performance 

still remains the same for the ICA and KICA. The data discretization-based BNs have been 

developed according to the work by Gharahbagheri et al. (2017). The residuals are discretized 

around one standard deviation. The samples that lie outside this limit are considered faulty, and 

subsequently, maximum likelihood estimation is used to estimate the CPTs. The PCA-BN with 

copula is found to be the best choice from diagnostic perspective, as it can diagnose the root cause 

in all four cases. When process data is discretized, a significant amount of information is lost. The 
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use of copula function allows to prevent this loss and therefore, helps the BNs to capture a better 

dependence measure. 

The copula-based CPT modelling strategy from residuals provide distinct conditional probabilities 

for the studied MSPM tools. For illustration, the CPT estimation for level in the CSTH is 

considered. The τ of cold water valve and level is found as 0.5492, 0.1659, 0.1563, and 0.1374 

from the PCA, KPCA, ICA, and KICA, respectively. Obviously, cold water valve demand greatly 

influences the level in the tank, and the PCA residuals provide more robust information about this 

causality. This is the underlying reason behind PCA-CD-BN’s success over the other three 

integrated approaches.  

4.5. Conclusion 

A data-driven hybrid FDD tool is proposed here. This methodology is built using the early fault 

detectability of PCA and accurate root cause diagnosis capacity of BN. A unique PC selection 

criterion is demonstrated using the CD, which eradicates the necessity of inserting user-opinion 

during PCA model construction. A comparative study among the CD-based PCA, KPCA, ICA, 

and KICA confirms the efficacy of the CD-based PCA, as it can provide lesser false alarms without 

sacrificing the early fault detectability.  

Unlike most of the exiting BN-based integrated methods, this work constructs the BN solely from 

process data. The KLD is utilized for BN topology learning, while the copula functions are utilized 

for parameter estimation. Although the vine copula models are found suitable for high-dimensional 

CPT modelling, these alone cannot provide the exact form of the conditional densities required to 

insert into the BN. The Bayes’ theorem has been utilized to overcome this issue. A total of sixteen 

BNs have been developed from PCA, ICA, KICA, and KPCA residuals and integrated with the 
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CD-based MSPM tools. The PCA-CD-BN is found to be the best combination due to its accurate 

diagnostic property. 

The main advantages of this hybrid method are: (i) free of expert judgment, (ii) purely data-driven, 

(iii) lesser false alarms, (iv) early fault detection, (v) consistently accurate root cause diagnosis, 

and (vi) no data discretization while building the CPTs. Furthermore, the data-driven nature will 

add its value in process digitalization, as the task of FDD can be done in an automated manner. 

Consequently, the process plants will operate efficiently in the entire life cycle due to early 

anomaly detection and accurate diagnosis that will save considerable maintenance costs and 

enhance asset integrity.  

This methodology is built using conventional PCA, and it may not provide the optimal 

performance when dealing with extreme nonlinearity and non-Gaussianity. Even though a 

comparative study among the PCA-CD-BN, KPCA-CD-BN, ICA-CD-BN, and KICA-BN finds it 

as the most suitable method from both the detection and diagnostic perspectives, several other 

MSPM tools such as semi-parametric PCA and sparse PCA can be examined for their efficacy. 

The Grassberger-Procaccia algorithm has been utilized for estimating the CD. Many advanced 

versions of this algorithm are available in the existing literature that can be applied to estimate the 

number of PCs. These might significantly improve the methodology. 
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Chapter 5: A Novel Data-Driven Methodology for Fault Detection and Dynamic Risk 

Assessment 

Preface 

A version of this chapter has been published in The Canadian Journal of Chemical Engineering. 

This work was featured as the Trend in Chemical Engineering. I am the primary author, along 

with the co-authors, Drs. Faisal Khan, Salim Ahmed, and Syed Imtiaz. I developed the conceptual 

framework for the FDD and DRA model and carried out the literature review. I prepared the first 

draft of the manuscript and subsequently revised the manuscript based on the co-authors’ and peer 

review feedback. Co-author Dr. Faisal Khan helped in the concept development and testing the 

model, reviewing, and revising the manuscript. Co-authors Drs. Syed Imtiaz and Salim Ahmed 

provided support in implementing the concept and testing the model. The co-authors provided 

fundamental assistance in validating, reviewing, and correcting the model and results. The co-

authors also contributed to the review and revision of the manuscript. 

Reference: Amin, M. T., Khan, F., Ahmed, S., & Imtiaz, S. (2020). A novel data‐driven 

methodology for fault detection and dynamic risk assessment. The Canadian Journal of Chemical 

Engineering, 98(11), 2397-2416. https://doi.org/10.1002/cjce.23760 
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Abstract 

This chapter presents a novel methodology for dynamic risk assessment, integrating the 

multivariate data-based process monitoring and logical dynamic failure prediction model. This 

concept for dynamic risk assessment is comprised of the fault assessment and dynamic failure 

prognosis modules. A combination of the naïve Bayes classifier, Bayesian network, and event tree 

analysis is utilized to manifest the concept. The naïve Bayes classifier is used for fault detection 

and diagnosis; it also generates a multivariate probability for a fault class in each time-step, which 

is used for dynamic failure prognosis by different paths a fault can lead to a process to failure. The 

proposed framework has been applied to two process systems: a binary distillation column and the 

RT 580 experimental setup in four fault scenarios, and it is found the developed technique can 

effectively monitor the process and predict the failure. 

Keywords: Risk analysis, predictive safety, fault assessment, Bayesian network, failure prognosis. 
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5.1. Introduction 

Chemical plants are inherently large dimensional highly correlated systems with many process 

variables both in open loop and closed loop. In order to ensure safe and event free operation, these 

large sets of variables need to be monitored continuously. Dynamically calculated process risk is 

a good indicator of process state at any time. Hence, a process monitoring scheme, capable of 

capturing the complex relationships among the interacting process variables and showing 

continuous process risk estimate is required (Yu et al., 2015a). 

The data-based multivariate statistical process monitoring (MSPM) tools such as the principal 

component analysis (PCA) (Bakshi, 1998), independent component analysis (ICA) (Lee et al., 

2004b), partial least squares (PLS) (MacGregor et al., 1994), and Gaussian mixture model (GMM) 

(Yu and Qin, 2008) provide excellent solutions by monitoring in reduced dimension with fewer 

control charts. However, these tools suffer from a lack of accuracy in diagnosis capacity. A number 

of hybrid methods have been developed to provide robust solutions for fault detection and 

diagnosis (FDD) (Amin et al., 2019c, 2018b; Vedam and Venkatasubramanian, 1999; Yu et al., 

2015b). Recent developments in data-based process monitoring can be found in (Jiang et al., 2019; 

Youqing Wang et al., 2018). One of the significant limitations of the above mentioned data-based 

methods is that these cannot qualitatively show how a fault can lead a process to several possible 

paths (i.e. safe, near-miss, mishap, incident, accident, and catastrophic accident). 

Dynamic risk assessment (DRA) is a novel concept that has been getting attention by industry and 

as well as academia in recent years (Villa et al., 2015). An accurate quantitative estimation of 

possible failure paths is a prerequisite for DRA. A study on the evolution of DRA depicts that the 

Boolean logic gates-based fault tree analysis (FTA), logical failure modelling technique-based 

event tree analysis (ETA), and bow-tie (BT) are the most widely used tools in this context. A BT 
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can be considered as a marriage between FT and ET. An FT is placed on the left-hand side of the 

BT that gives the probability of a hazard, while the ET is placed on the right-hand side, which 

shows the possible consequences the hazard can exert, based on the sequential failure or success 

of the safety barriers. Khakzad et al. (2012) used the BT for DRA; failure probabilities of the safety 

barriers were updated periodically using the Bayes’ theorem from the accident pre-cursor data. 

Islam et al. (2017) proposed a BT-based DRA methodology for drilling operations. Fault trees 

were used to determine the reliability of safety barriers.  

The major drawbacks of the FTA are that it cannot model complex inter-dependency and represent 

uncertainty, while the ETA cannot show the non-sequential nature of an accident. A Bayesian 

network (BN) is an advanced probabilistic tool that can overcome the limitations of FTA and ETA 

(Adedigba et al., 2016a; Bobbio et al., 2001). A technique to map the BT to BN is demonstrated 

by Khakzad et al. (2013). Zarei et al. (2017) proposed a dynamic safety and risk analysis approach, 

utilizing the hazard and operability studies (HAZOP) and BN. An application to a flammable liquid 

storage system at a gas refinery was used for validation. A process safety and dynamic risk 

assessment tool, Process Unit Life Safety Evaluation (PULSE), was developed using BN by the 

ExxonMobil Research Qatar (EMRQ) and Mary Kay O'Connor Process Safety Center - Qatar 

(MKOPSC-Q) (Kanes et al., 2017). This tool can report the potential increases in risk levels by 

monitoring the pre-identified risk factors and process safety-related data.  

One of the major limitations of the above mentioned DRA approaches is that these tools monitor 

the process in a univariate manner; this may result in delayed process anomaly detection. Zadakbar 

et al. (2012) proposed a risk-based fault detection and dynamic risk assessment scheme using the 

PCA. This method was able to detect a fault much earlier than the univariate tools. However, this 

work did not account for the failure path analysis. The Kalman filter (KF) was also used for 
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concurrent fault detection and dynamic risk assessment (Zadakbar et al., 2013). Despite the robust 

state estimation capacity of the KF, it is considered unsuitable for applying to large-scale industrial 

processes due to the necessity of a precise model for its secured performance. Also, building such 

a model is complex and time-consuming when the number of variables is high for process 

operations. Furthermore, both the PCA and KF cannot provide optimal performance when the 

process variables exhibit nonlinearity.  

Yu et al. (2015a) proposed a methodology for fault detection and dynamic risk assessment using 

the self-organizing map (SOM) to overcome the limitations of (Zadakbar et al., 2012). The process 

risk profile was generated using each variable’s dynamic loading, which may yield over-estimation 

of system risk. Besides, this work did not consider the human and organizational factors while 

displaying the failure paths. Integration of loss function with the SOM is also available in the 

existing literature (Yu et al., 2016). Although this work can estimate the operational risk, it did not 

include the failure prognosis module. Gabbar et al. (2014) developed a novel fault semantic 

network (FSN)-based fault propagation behaviour analysis tool. Gabbar and Boafo (2016) 

demonstrated another application of FSN in fault propagation pathway analysis in a nuclear power 

plant. An FSN-BN-based dynamic risk assessment and safety verification methodology is also 

available in the existing literature (Gabbar et al., 2015). However, these methods have mainly 

focused on modelling the fault propagation paths.  

The major limitation of PCA and KF-based methods is that these methods do not show detailed 

analysis on fault diagnosis. Although the SOM-based methods demonstrate root cause analysis, 

they heavily rely on individual variable’s risk profile to estimate the overall risk. Furthermore, 

these cannot provide a multivariate posterior probability for a fault class based on the extracted 

features. The current authors believe that a modern DRA tool should be able to monitor (i.e. FDD) 
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a process in a multivariate manner and display the detailed failure paths to explain how a fault can 

lead a process to failure. Figure 5.1 shows a novel conceptual framework for DRA. It can be seen 

that the proposed dynamic risk assessment framework consists of two parts: fault assessment (by 

the data-based tools) and failure path realization (by the logical failure modelling tools). Predictive 

dynamic failure analysis can be conducted by adopting such a mechanism, which can be further 

utilized for DRA by integrating the severity of the consequences. This concept assumes that the 

existing faults in a process are known, and the probabilities of the faulty states are generated at 

each time-slice. These probability values work as the input of the logical failure modelling tools 

showing different failure paths, depending on the performance of the safety barriers. The barrier 

failure probabilities can be estimated by employing the BNs. 

The machine learning techniques such as the artificial neural network (ANN), support vector 

machine (SVM), and naïve Bayes classifier (NBC) can generate a posterior probability for each 

fault class, and the fault class that has the highest posterior can be identified as the observed fault 

(He et al., 2014; Koivo, 1994; Widodo and Yang, 2007). The posteriors can also be used as the 

input to the failure pathway model to predict the dynamic failure probability. Perhaps the ANN 

and SVM are the predominating members among the machine learning-based classifiers due to 

their higher classification accuracy. However, the innate limitations of these powerful tools include 

the fitting problem, complex training process, lengthy training time, and higher computation cost 

and memory requirements. On the contrary, the NBC is easier to construct and has a lower 

computational cost and memory requirements. Furthermore, the volume of required training data 

is also lower. Hence, extensive research is ongoing on how an NBC can be efficiently utilized to 

perform the diagnostic analysis (Domingos and Pazzani, 1997; He et al., 2014). 
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Figure 5.1: A conceptual illustration of the proposed dynamic risk assessment framework. 

Muralidharan and Sugumaran (2012) integrated the wavelet analysis and NBC for fault diagnosis 

of a monoblock centrifugal pump. The features were extracted from the vibration signals using the 

wavelet analysis, and NBC was used to classify the various faulty conditions. Zhang et al. (2018) 

utilized a  combination of the decision tree (DT), selective support vector machine (SSVM), and 

NBC for fault classification in the bearings. The DT was applied to extract the significant features, 

followed by the application of the SSVM to remove the redundant features. Finally, NBC was used 

to classify different faults. The effect of data pre-processing procedures such as the PCA, the ICA, 

and the class-conditional ICA (CC-ICA) on NBC is also available in the existing literature (Fan 

and Poh, 2007). The tree augmented network (TAN), an advanced version of the NBC, was applied 

to the fault diagnosis in the Tennessee Eastman (TE) chemical process; it provided a better 

performance over the Fisher discriminant analysis (FDA), proximal SVM (PSVM), and 

independent SVM (ISVM) (Verron et al., 2006b). 
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The primary motivation behind this work is to implement the concept of dynamic risk assessment 

by integrating the FDD and dynamic failure prognosis in a unified framework. Multivariate 

posterior probability generation capacity of the NBC has been utilized for FDD, and a logical 

failure modelling tool, ET has been used for failure prognosis. The failure probability of the safety 

barriers has been estimated using the BNs. Table 5.1 shows the comparison of the proposed 

methodology with the existing multivariate fault detection and DRA methodologies in terms of 

FDD, failure path analysis, and input probability to the failure prognosis model. It can be seen that 

the current method enables computing dynamic failure probability using the multivariate posterior 

probability for the observed process state, which cannot be obtained by any of the existing 

methods. The proposed methodology has been applied to a binary distillation column process 

simulator and an experimental setup situated in the Memorial University of Newfoundland, named 

the RT 580 (fault finding control-system). The results suggest the proposed tool can provide a 

better prediction of risk, associated with the different failure paths. 

Table 5.1: A comparison of the multivariate fault detection and dynamic risk assessment 

methods. 

Work 
Fault 

detection? 

Fault 

diagnosis? 

Failure 

path 

analysis? 

Input to the failure prognosis 

model 

(Zadakbar et al., 

2012)  
Yes No No Not applicable 

(Zadakbar et al., 

2013) 
Yes No No Not applicable 

(Yu et al., 2015a) Yes Yes Yes Each variable's dynamic loading 

(Yu et al., 2016)   Yes Yes No Not applicable 

Current   Yes Yes Yes Multivariate posterior probability 

 

The remainder of this chapter is organized as follows: Section 5.2 briefly discusses the NBC, BN, 

and ETA. Section 5.3 describes the methodology Applications of the proposed framework to two 
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process systems are demonstrated in Section 5.4. The contribution, advantages, limitations, and 

future work scopes are discussed in Section 5.5. 

5.2. Preliminaries 

5.2.1. Naive Bayes classifier (NBC) 

The NBC is a supervised learning-based classifier that uses the Bayes’ theorem (Equation 5.1) 

(Boullé, 2007). 

 𝑃 (
𝑓

𝑋
) =

𝑃 (
𝑋

𝑓
) 𝑃(𝑓)

𝑃(𝑋)
 (5.1) 

where f and X denote the fault class and feature vectors, respectively. If a process has i number of 

faults and j number of variables, f = [f1, f2, f3, …., fi] and X = [X1, X2, X3, …., Xj], P(X) and P(f) are 

the prior probability of a feature and fault, respectively. P(X/f) is the likelihood probability of a 

feature given that a fault has occurred, while P(f/X) is the posterior probability of a fault, based on 

a set of features. 

Equation 5.1 can be written as, 

 𝑃(
𝑓

𝑋1, 𝑋2, … , 𝑋𝑗
) =

𝑃(𝑓) ∏ 𝑃(
𝑋𝑛

𝑓
)

𝑗
𝑛=1

𝑃(𝑋1) 𝑃(𝑋2) … 𝑃(𝑋𝑗)
 (5.2) 

The denominator is constant for a given input. Hence, Equation 5.2 can be written as, 

 𝑃(
𝑓

𝑋1, 𝑋2, … , 𝑋𝑗
) ∝ 𝑃(𝑓) ∏ 𝑃(

𝑋𝑛

𝑓
)

𝑗

𝑛=1
 (5.3) 

The likelihoods of each observation can be computed using Equation 5.4 when the process data 

follow a Gaussian distribution. 
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where y is a random observation. μ and σ denote the mean and standard deviation of a variable, 

respectively.  

The posterior of each class is normalized by employing Equation 5.5. 

 𝑃 (
𝑓𝑖

𝑦
) =

𝑓𝑖

∑ 𝑓𝑖
𝑖=𝑖
𝑖=1

 (5.5) 

In the application stage, Equations 5.3-5.5 are utilized to calculate the posterior of i number of 

fault classes. The fault class that has the highest normalized posterior is diagnosed as the observed 

fault class. 

In essence, the NBC algorithm develops the classifier model in the following two steps: 

Step 1: Class priors are estimated from the historical trained datasets. 

Step 2: Process variables’ mean and standard deviation are calculated for all classes. 

When online samples come, the following three steps are utilized to classify the process state and 

diagnose the fault type. 

Step 3: Likelihood probabilities, P(Xj/fi) are calculated using Equation 5.4. 

Step 4: Posterior of each class, P(fi/Xj) is computed using Equation 5.3.  

Step 5: Equation 5.5 is used to normalize the class posteriors. The class with the highest posterior 

is identified as the active class for an observation.  

Let us consider a process system that has a total of two variables and three classes. Class 1, 2, and 

3 imply the normal, fault 1, and fault 2, respectively. A total of 400 historical samples have been 

used to train the NBC model, where the number of samples from classes 1, 2, and 3 are 300, 50, 
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and 50, respectively. The mean and standard deviation of these variables from the trained samples 

are listed in Table 5.2. 

Table 5.2: Mean and standard deviation of the variables for all classes. 

Statistical 

Parameter 
Variable Class 

No. X1 X2 

Mean 

40.001 33.311 Class 1 

200000.001 1.254 Class 2 

2.932 96.114 Class 3 

Standard 

Deviation 

0.112 0.307 Class 1 

0.002 4.028 Class 2 

10.318 14.063 Class 3 

From the training dataset, P(Class 1) = 0.75, P(Class 2) = 0.125, and P(Class 3) = 0.125. 

Let us consider a sample online observation, y = [9.62, 100] 

P(y=9.62/Class 1) can be calculated using Equation 5.4 as follows, 

P(y=9.62/Class 1) = 1/(2*π*0.1122)1/2 exp{-(9.62-40.001)2/(2*0.1122} = 0 

Similarly, P(y=9.62/Class 2) = 0, P(y=9.62/Class 3) = 0.031, P(y=100/Class 1) = 0,   

P(y=100/Class 2) = 0, and P(y=100/Class 3) = 0.027 

P(Class 1/y) can be calculated using Equation 5.3 as follows, 

P(Class 1/y) = P(y=9.62/Class 1) * P(y=100/Class 1) * P(Class 1) = 0*0*0.75 = 0 

Similarly, P(Class 2/y) and P(Class 3/y) can be obtained as 0 and 1.046*10-4, respectively.  

Now, the normalized posterior probability for classes 1, 2, and 3 can be calculated as 0, 0, and 1, 

respectively, using Equation 5.5.  

Since class 3 has the highest normalized posterior probability, the current process state based on 

the considered sample, y = [9.62, 100] can be distinguished as class 3. 
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5.2.2. Bayesian network (BN) 

A BN is a directed acyclic graph (Heckerman et al., 1995). It is a powerful probabilistic tool that 

can be used to model complex interdependency among the process variables. A BN consists of 

both qualitative and quantitative parts (Neapolitan, 2004). There are four components in a BN: 

nodes, arcs, priors, and conditional probabilities. The nodes and arcs are the qualitative parts, while 

the priors and conditional probabilities are the quantitative parts of a BN. In the BNs, nodes are 

used to represent the process variables, and the arcs display the dependency among the variables. 

An arc is directed from a parent node to a child node (Bobbio et al., 2001). The priors express the 

anecdotal belief of the process variables, while the conditional probability shows the strength of 

the relationship between two connected variables. Each probability in a conditional probability 

table (CPT) is the state of a child node given that the state of its parent node(s). Both the data and 

knowledge uncertainty can be illustrated using the BN, which make it pertinent in the field of 

safety analysis.  

5.2.3. Event Tree Analysis (ETA) 

An ETA is a systematic method that is mostly used in the process industries for accident analysis. 

It is an inductive analysis technique that is utilized to reveal the event sequence given that the 

initiating event has occurred (Kalantarnia et al., 2009). It starts with a hazard or fault and ends 

with probable consequences. These consequences are called the end states. Safety barriers in an 

ET are placed chronologically. Therefore, it is termed as a sequential failure model (Adedigba et 

al., 2016a). An ETA clearly depicts how a fault can lead a process to failure by several paths, based 

on the success and failure of the functional or safety barriers. Although it is termed as a proactive 

risk analysis tool to identify and display a specific event sequence, it can be utilized for reactive 
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analysis as well, by using as a mean/tool for DRA. The occurrence probability of each path, P(Pw) 

of an event tree can be calculated using Equation 5.6. 

 
𝑃(𝑃𝑤) =  ∏ 𝑥𝑑

𝜃𝑑,𝑤(1 − 𝑥𝑑)1−𝜃𝑑,𝑤

𝑔∈𝑆𝐵𝑤

 (5.6) 

where SB denotes the safety or accident prevention barrier. d is the number of safety barriers 

available to prevent an accident, while w refers to the number of safety barriers associated with 

each path. x and θ are the failure probability of a barrier and severity level of the failure passes of 

safety barriers. θd,w takes a value of 0 when all the safety barriers work successfully. On the other 

hand, θd,w becomes 1 when all the safety barriers fail (Rathnayaka et al., 2011a). 

5.3. Methodology 

The proposed methodology (Figure 5.2) is comprised of the NBC, BN, and ETA. First, the current 

process state (i.e. faulty or normal) is assessed by the NBC. It generates the posterior probability 

for each class in each time-slice that is further utilized for fault diagnosis and predicting the process 

failure probability. The BN is used to estimate the failure probability of the safety barriers, and the 

ETA is used to model the failure paths. The quantitative dynamic failure analysis is conducted, 

utilizing the outputs from the NBC and BNs.  

The model development stage is conducted in the offline mode, using the following six steps. 

Step 1: Detail study on the faults associated with a process system is carried out. This can be done 

by the process simulator, as well as from expert judgment. 

Step 2: Historical data for both the normal and identified fault conditions are collected. These data 

are labelled according to their class. 
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Step 3: The NBC is trained with the collected historical datasets. In this step, the prior probability 

of all the labelled classes is calculated. The mean and standard deviation of all the variables for all 

classes are also calculated to estimate the likelihoods. 

 

Figure 5.2: Flowchart of the proposed methodology. 

Step 4: Safety barriers employed to prevent an accident for the studied process are identified, and 

failure data of the basic events for each safety barrier are gathered from the historical database, 

manufacturer-provided specifications, and expert opinion. 

Step 5: The BNs for the safety barriers are constructed, and the failure probability of safety barriers 

are estimated. The principal advantage of using a BN in this context is that it can be updated based 

on the functionality of any element of a barrier. This enables the barriers to be designed with the 
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dynamic failure probabilities. A BN also considers the complex interdependency among the basic 

and intermediate events. 

Step 6: The safety barriers’ sequence is determined, and the ET is constructed. This gives the 

failure paths that a fault can exhibit. The end states are classified as the safe, near-miss, mishap, 

incident, accident, and catastrophe based on the potential of each path’s impact on the plant, human 

health, and environment. Detail description of each end state with practical examples can be found 

in (Hashemi et al., 2014).  

The online monitoring is done using the following three steps. 

Step 7: Online process data is passed through the NBC. Equations 5.3-5.5 are used to determine 

the normalized posterior probability of each state. If the normal state has the highest posterior 

probability, the process is within the normal operating mode; otherwise, a fault is detected.   

Step 8: Once a fault is detected, diagnosis is completed using the posterior distribution. The fault 

class that has the highest posterior probability is identified as the active fault type. 

Step 9: The posterior probability of the diagnosed fault type is used as the initiating event’s 

probability in the pathway realization model. This gives the predictive dynamic failure probability 

of each path in each sample due to the observed fault. 

5.4. Applications of the Proposed Methodology 

5.4.1. A Binary Distillation Column 

A binary distillation column (Figure 5.3) is used to separate two distinct liquids by distillation. 

The distillation column model that has been utilized in this study consists of a total of 40 stages. 

It separates a mixture with a relative volatility of 1.5 into products of 96% purity. An equilibrium 

condition in all stages, a linearized liquid dynamic, no vapour holdup, and a total condensation 
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have been assumed. Besides, constant pressure and relative volatility have been considered while 

designing the distillation column unit (Skogestad, 1997). There are 82 states and 10 variables (6 

inputs and 4 outputs) in the linearized dynamic model. Among these variables, three input 

variables: feed rate (F), feed composition (zF), and boil up flowrate (V), and two output variables: 

top composition (xD) and bottom composition (xB) have been monitored in this study. Table 5.3 

shows the considered fault types in the binary distillation column. 

 

Figure 5.3: Schematic diagram of a binary distillation column (modified and redrawn from 

(Skogestad, 1997)). 

Table 5.3: Fault descriptions in a binary distillation column. 

Fault Scenario Description 

A1 10% sudden increase in feed rate 

A2 Gradual increase in boil up flowrate 

 

First, historical data for the normal operating zone, fault A1, and fault A2 are collected to train the 

NBC. Then, safety barriers are identified. The release prevention barrier (RPB), dispersion 
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prevention barrier (DPB), ignition prevention barrier (IPB), escalation prevention barrier (EPB), 

emergency management failure prevention barrier (EMFPB), human failure prevention barrier 

(HFPB), and organizational failure prevention barrier (OFPB) are adopted as the safety barriers, 

as these barriers are considered the major measures to prevent a fault being a failure. Detail 

description of these barriers is available in (Adedigba et al., 2016a; Rathnayaka et al., 2011a). The 

basic and intermediate events considered (Table 5.4) and their failure probabilities have been 

collected from (Adedigba et al., 2016a, 2016b; Amin et al., 2018c; Rathnayaka et al., 2011a).  

Table 5.4: Event description and assigned probabilities for safety barriers.  

Sl. No Event description Notation Assigned probability 

1 Operational error factors ICE_1 Not applicable 

2 Design error factors ICE_2 Not applicable 

3 Inspection error factors ICE_3 Not applicable 

4 Maintenance error factors ICE_4 Not applicable 

5 Physical barrier failure prevention factors ICE_5 Not applicable 

6 Natural factor ICE_6 Not applicable 

7 Process Upset ICE_7 Not applicable 

8 Operational error ICE_8 Not applicable 

9 Leak detection system failure ICE_9 Not applicable 

10 Monitoring Error ICE_10 Not applicable 

11 Improper maintenance procedure ICE_11 Not applicable 

12 Safety system barrier failure ICE_12 Not applicable 

13 Passive barrier failure ICE_13 Not applicable 

14 Isolation barrier failure ICE_14 Not applicable 

15 Ventilation system failure ICE_15 Not applicable 

16 Detection system failure ICE_16 Not applicable 

17 Automatic system failure ICE_17 Not applicable 

18 Manual system failure ICE_18 Not applicable 

19 Closing at point of inflow failure ICE_19 Not applicable 

20 Automatic emergency shutdown failure ICE_20 Not applicable 

21 Manual emergency shutdown failure ICE_21 Not applicable 

22 Emergency shutdown valve failure ICE_22 Not applicable 

23 Containment system failure ICE_23 Not applicable 

24 Inert system failure ICE_24 Not applicable 

25 Gas detection failure ICE_25 Not applicable 
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26 Gas escalation mitigation failure ICE_26 Not applicable 

27 Emergency gas transfer system failure ICE_27 Not applicable 

28 Fire detection system failure ICE_28 Not applicable 

29 Automatic fire detection system failure ICE_29 Not applicable 

30 Manual fire detection system failure ICE_30 Not applicable 

31 Fire detection failure ICE_31 Not applicable 

32 Fire escalation barrier failure ICE_32 Not applicable 

33 Communication error factors ICE_33 Not applicable 

34 Management error factors ICE_34 Not applicable 

35 Knowledge error factors ICE_35 Not applicable 

36 Skill error factors ICE_36 Not applicable 

37 Hot work precaution barrier failure ICE_37 Not applicable 

38 Operator factors ICE_38 Not applicable 

39 Hot surface shielding barrier failure ICE_39 Not applicable 

40 Hot work failure factors ICE_40 Not applicable 

41 Inadvertent flame control system failure ICE_41 Not applicable 

42 Automatic inadvertent flame control system failure ICE_42 Not applicable 

43 Manual inadvertent flame control system failure ICE_43 Not applicable 

44 Unsuitable ambient temperature BCE_1 2.50E-02 

45 Difficulty in valve operation during start up BCE_2 1.50E-02 

46 Leaks in heat exchanger during start up BCE_3 5.00E-02 

47 Unknown disturbances BCE_4 1.50E-03 

48 Job carried without permission BCE_5 1.00E-02 

49 Inexperience BCE_6 1.00E-02 

50 External supervision failure BCE_7 8.30E-02 

51 Wrong procedure BCE_8 5.00E-03 

52 
Insufficient instrument to measure process 

conditions 
BCE_9 1.00E-03 

53 High mechanical stress BCE_10 1.00E-02 

54 Poor quality of the construction materials BCE_11 1.00E-02 

55 Long delay in inspection interval BCE_12 5.00E-02 

56 Failure to detect a leak BCE_13 5.00E-02 

57 Failed to detect a minor release BCE_14 5.00E-02 

58 Inadequate training to the inspector for a detection BCE_15 2.50E-02 

59 Inadequate method required for a detection BCE_16 9.00E-02 

60 Material degradation monitoring failed BCE_17 6.60E-02 

61 
Material degradation monitoring was not 

performed 
BCE_18 5.00E-02 

62 Physical barrier not available BCE_19 1.00E-02 

63 Higher external load BCE_20 1.00E-02 
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64 Earthquake BCE_21 5.00E-03 

65 Harsh weather BCE_22 4.50E-04 

66 Long delay in response BCE_23 1.00E-02 

67 Emergency shutdown controller failure BCE_24 2.50E-01 

68 Emergency shutdown sensor failure BCE_25 2.40E-02 

69 Long delay in operator response BCE_26 1.00E-02 

70 Operator awareness failure BCE_27 4.00E-02 

71 Operator response failure BCE_28 5.00E-02 

72 Delayed operation BCE_29 5.00E-02 

73 Valve failed to close on demand BCE_30 1.30E-01 

74 Inert unavailable BCE_31 5.00E-02 

75 Inadequate inert BCE_32 8.00E-02 

76 Drainage not available BCE_33 1.00E-03 

77 Inadequate performance of the passive barrier BCE_34 1.00E-03 

78 Gas detection sensor failure BCE_35 1.28E-01 

79 Gas detection controller failure BCE_36 1.00E-03 

80 Gas detection alarm failure BCE_37 2.00E-02 

81 Detector malfunction BCE_38 2.20E-04 

82 Manual detection or minor release failure BCE_39 5.00E-02 

83 Manual inspection not performed BCE_40 5.00E-02 

84 Inadequate ventilation BCE_41 6.70E-02 

85 Forced dilution failure BCE_42 4.00E-02 

86 Manual closing at release point failure BCE_43 2.50E-02 

87 Inflow valve inaccessible BCE_44 5.00E-02 

88 Inadequate blowdown BCE_45 1.00E-03 

89 Inadequate scrubbers BCE_46 8.00E-03 

90 Fire detection sensor failure BCE_47 8.00E-02 

91 Fire detection controller failure BCE_48 1.00E-03 

92 Fire alarm failure BCE_49 2.10E-02 

93 Inadequate detector coverage BCE_50 2.00E-01 

94 Operator unaware of fire BCE_51 5.00E-02 

95 Operator unable to activate manual alarm BCE_52 1.00E-03 

96 Manual alarm button failure BCE_53 1.11E-03 

97 Sprinkler not available BCE_54 1.00E-02 

98 Sprinkler insufficient BCE_55 4.00E-02 

99 Sprinkler failure BCE_56 4.50E-02 

100 Inadequate firefighting equipment BCE_57 2.00E-02 

101 Site not aware of fire BCE_58 1.10E-03 

102 Alarm not audible BCE_59 4.30E-03 
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103 Route not clear to follow BCE_60 1.00E-04 

104 Insufficient instrument to reach operators BCE_61 2.00E-05 

105 Poor management practice BCE_62 2.50E-02 

106 Insufficient funding behind safety BCE_63 3.00E-04 

107 Poor safety culture BCE_64 1.00E-03 

108 Insufficient evacuation resources BCE_65 1.40E-02 

109 Insufficient knowledge of emergency situation BCE_66 5.00E-03 

110 Inadequate safety drill BCE_67 2.90E-03 

111 Lack of operational skill BCE_68 2.50E-04 

112 Lack of awareness BCE_69 1.80E-04 

113 Failure to follow work permit BCE_70 4.00E-02 

114 Wrong work permit BCE_71 4.50E-02 

115 Operation without work permit BCE_72 1.00E-02 

116 Shielding unavailable  BCE_73 6.70E-03 

117 Shielding failure BCE_74 1.00E-02 

118 Hot work permission not issued BCE_75 3.30E-02 

119 Improper guidelines BCE_76 6.70E-02 

120 Risk assessment was not performed BCE_77 1.00E-01 

121 Insulation failure BCE_78 1.00E-02 

122 Flame detector failure BCE_79 5.60E-02 

123 Flame detector unavailable BCE_80 5.00E-02 

124 Insufficient flame detectors BCE_81 7.00E-02 

125 Manually undetected BCE_82 5.00E-02 

 

The BNs for these safety barriers are shown in Figures 5.4-5.10. The safety barrier failure 

probabilities estimated through the BNs are listed in Table 5.5. The next step is to develop the 

logical failure paths. These failure paths have been identified using the ETA (Figure 5.11). It 

should be noted that S and F mean success and failure of a safety barrier, respectively. It can be 

seen that a fault can lead a process to 24 types of consequences, based on the performance of the 

safety barriers. C14, C16, C17, C19, and C21 are the paths that may lead a fault to an accident, 

while C18, C20, C22, C23, and C24 are the paths that represent the catastrophic accident.  
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Figure 5.4: BN for the RPB. 

 

Figure 5.5: BN for the DPB. 
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Figure 5.6: BN for the IPB. 

 

Figure 5.7: BN for the EPB. 
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Figure 5.8: BN for the EMFPB. 

 

Figure 5.9: BN for the HFPB. 

 

Figure 5.10: BN for the OFPB. 

 



 

128 
 

 

Figure 5.11: Pathway realization of a fault to failure. 
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Table 5.5: Failure probability of the safety barriers. 

Sl. 

No 

Name of the barrier Notation Failure 

probability 

1 Release prevention barrier RPB 0.0979 

2 Dispersion prevention barrier DPB 0.0227 

3 Ignition prevention barrier IPB 0.0530 

4 Escalation prevention barrier EPB 0.0306 

5 Emergency management failure prevention barrier EMFPB 0.0824 

6 Human failure prevention barrier HFPB 0.0646 

7 Organizational failure prevention barrier OFPB 0.0668 

 

The results of process monitoring by the NBC in a distillation column are shown in Figure 5.12 

for two fault cases, mentioned in Table 5.3. In both cases, the fault has been initiated from the 

401st sample. The NBC can accurately classify the normal condition for all the test samples. It 

takes only 1 sample to detect the fault A1. As this fault causes an increase in input feed rate, it 

affects the top and bottom compositions. Although the posterior probability of fault A1 shows 

some jittering from 402-450 samples, it remains close to 1 for the remaining test samples. On the 

contrary, the NBC can detect the fault A2 at the 406th sample, as the posterior probability takes a 

value of 0.9947. A gradual increase in boil up flowrate may increase the vapour flowrate, which 

eventually may end up with increased pressure in the distillation column and off graded product. 

The posteriors are fed into the failure pathway realization model in each time-slice; this gives the 

dynamic failure probability of a process system due to a fault. Although the pathway analysis 

model gives 24 possible outcomes, the catastrophic accident analysis consequences are presented 

in Figure 5.13. Figure 5.13(A) shows the prognosis results when fault A1 is activated after the 

400th sample. It can be seen that the probability of a catastrophic accident remains significantly 

lower when the process is in a normal state; however, it gets a sharp jump as soon as the fault is 

detected and reaches a level of 10-7 from 10-12, which is a significant rise. In case of the dynamic 

failure profile due to fault A2 (Figure 5.13(B)), a sudden rise is reasonably observed at the 406th 
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sample, which stays remarkably higher since the fault goes uncorrected. The probability also 

reaches a level of 10-7; it indicates that the process needs to be undergone corrective actions to 

minimize the risk. 

 

Figure 5.12: Fault assessment in a binary distillation column using an NBC. 
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Figure 5.13: Prognosis of catastrophic accidents for (A) fault A1 and (B) fault A2. 

5.4.2. The RT 580 Experimental Setup 

The RT 580 fault-finding control system (Figure 5.14) has three circuits to control three commonly 

used process variables: level, flowrate, and temperature. A circuit consisting of a pump (P1), 

collecting tank (B1), and process tank (B2) is used for control of level and flowrate. There are four 

temperature sensors (TIR 01, TIR 02, TIR 03, and TIR 04) to measure the temperature of different 
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places in this circuit. There are three other sensors as well to measure the level, pressure, and 

flowrate. A pneumatic control valve, V7 works as an actuator. Additionally, the outlet of the tank 

has a valve that is used to generate disturbances that help to generate noisy data.  

 

Figure 5.14: Schematic diagram of the RT 580 experimental setup (modified from (Ghosh et al., 

2019)). 

The temperature is controlled by two circuits. A refrigeration system cools the water in the 

collecting tank. A pump, P3 circulates the water via a heat exchanger (cooling circuit). A heater, 

H heats the water in the process tank. Another pump, P2 also circulates the warm water via the 

heat exchanger. In the heat exchanger, the water in the cooling circuit is heated. The controlled 

variable is the water temperature in the cooling circuit after heating in the heat exchanger. The 

actuator is the pneumatic control valve that adjusts the flowrate of the warm water.  

This setup enables introducing the faults by pressing the fault switches. Two faults have been 

considered in this study, as shown in Table 5.6. 
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Table 5.6: Fault descriptions in the RT 580 experimental setup.  

Fault Scenario Description 

B1 The wire to the pressure sensor of the process tank is broken 

B2 V7 malfunction 

 

The NBC is first trained with historical normal and faulty datasets. To have a good control 

performance, all the experiments were conducted considering the proportional-action range, 

integral-action time, and derivative-action time as 42, 11 s, and 0 s, respectively (Ghosh et al., 

2019). The failure pathway realization model, displayed in Figure 5.11, is also used here. However, 

it is noteworthy to mention that the qualitative structure and quantitative outcomes of each path 

may vary for different process systems. 

Both the test scenarios consist of 350 samples, and fault has been introduced from the 264th sample 

using the fault switches for the specific fault types. Figure 5.15 shows the fault assessment results. 

It can be seen that the posterior probabilities for fault B1 and B2 remain close to zero till 263 

samples. However, as soon as the faults are introduced, the posterior probability of the normal 

state comes down near to zero; it indicates that the process is in a faulty operating condition. Then, 

the posterior probability of each class is used to diagnose the fault type. When fault B1 is activated 

at the 264th sample (fault scenario B1), the posterior of the corresponding fault class takes a value 

of near 1; hence, it can be concluded that fault B1 is the abnormality that has affected the process. 

Similarly, fault B2 is diagnosed as the observed abnormal phenomenon in the case of fault scenario 

B2. Finally, the generated posterior probability by the NBC, along with the safety barrier failure 

probabilities, is provided in the pathway realization model to predict the dynamic failure 

probabilities.  
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Figure 5.15: Fault assessment in the RT 580 experimental setup using an NBC. 

The dynamic probabilities of catastrophic accident causation paths are shown in Figure 5.16. It is 

observed that the probability of catastrophic accidents rises to a level of 10-7 once the fault is 

detected, in case of the fault B1 (Figure 5.16(A)). As the sensor that takes the pressure reading in 

the process tank was working perfectly, the failure probability in the normal operating region 

remains close to zero. When fault B1 is activated, the controller takes the control action based on 

the observed value in the process tank, which is set at a significantly higher number. Hence, the 

flowrate is reduced, which eventually leads the tank to a dry-out condition.  

On the contrary, the magnitude of catastrophic accidents gets an increase to an order of 10-19 from 

the initial level, when fault B2 is detected (Figure 5.16(B)). In the RT 580 setup, V7 works as an 

actuator which has a significant impact on the water flowrate and level in the process tank. As this 

valve starts malfunctioning in fault scenario B2, the flowrate in the level control circuit gets upset, 

which also affects the level in the process tank. As a consequence, the tank becomes empty (Figure 
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5.17) at the 279th sample. However, the proposed methodology can predict a higher failure risk 

quantitatively at the 264th sample by using the prognostic analysis. 

 

 

Figure 5.16: Prognosis of catastrophic accidents for (A) fault B1 and (B) fault B2. 
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Figure 5.17: Water level in the process tank (%) for fault scenario B2. 

5.5. Conclusion 

This study demonstrates an NBC, BN, and ETA-based fault assessment and failure prognosis 

technique. Unlike the existing methods for DRA discussed in Section 5.1, the proposed 

methodology generates a multivariate probabilistic index to assess the process health, which is 

further utilized to predict the dynamic failure probability of a process system, based on the 

sequential success and failure of the applied safety barriers to prevent an unwanted event. The 

robust capacity of the BN to model complex relationships among the failure causation factors has 

been utilized to estimate the performance of the safety barriers. A total of two process systems: a 

binary distillation column and an experimental setup, the RT 580 fault-finding control system have 

been utilized to display the effective application of the developed framework. 

The major contribution of this work is that it introduces a novel data-driven methodology for 

dynamic risk assessment, which includes monitoring the process by using a data-based 

multivariate process monitoring tool and predicting the dynamic failure frequency by utilizing a 

logical failure model. The proposed concept will contribute significantly to designing the next-
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generation DRA tools and act as a pivotal concept in the predictive safety analysis. The developed 

NBC-BN-ETA-based framework is easier to construct, yet, it can provide robust performance.  

Although the PCA, the KF, and the SOM-based frameworks have been successfully used for 

simultaneous fault detection and dynamic risk assessment, these methods have not either provided 

any solution to fault diagnosis or relied on individual variable’s fault probability from the dynamic 

loadings for generating the overall system risk profile. Furthermore, the PCA and KF-based 

methods do not display any analysis on how a fault can turn into a failure. On the contrary, the 

proposed method can detect the fault and accurately diagnose the active fault type, which is a 

desired feature of an FDD tool. Besides, it can predict the real-time failure risk, utilizing the 

posterior probability of a fault class that has been generated in a multivariate manner. Hence, it 

eliminates the necessity to calculate the probability of a fault for each variable to estimate the 

process system risk. 

The NBC assumes that all the features are conditionally independent of each other, which may not 

be the case in many industrial applications. This can affect the classification accuracy. The 

advanced versions of the NBC, such as the TAN and semi-naïve Bayesian classifier (SNBC) can 

aid in this context. A sequential logical failure model, the ETA has been utilized for failure 

prognosis. However, a fault can lead a process to failure by adopting a non-sequential path. A BN 

can be used to capture the non-sequential failure paths. The copula functions can also be added to 

the BNs to handle the nonlinear dependence among the barrier failure causation factors. Finally, 

the loss functions can be used to quantify the severity of the consequences and predict the dynamic 

process risk in a financial term. These will be promising venues to improve the present work 

significantly. 
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Chapter 6: Risk-based Fault Detection and Diagnosis for nonlinear and non-Gaussian 

Process Systems using R-vine Copula 

Preface 

A version of this chapter has been published in the Process Safety and Environmental Protection 

journal. I am the primary author, along with the co-authors, Drs. Faisal Khan, Salim Ahmed, and 

Syed Imtiaz. I developed the conceptual framework for this risk-based FDD model and carried out 

the literature review. I prepared the first draft of the manuscript and subsequently revised the 

manuscript based on the co-authors’ and peer review feedback. Co-author Dr. Faisal Khan helped 

in the concept development and testing the model, reviewing, and revising the manuscript. Co-

authors Drs. Syed Imtiaz and Salim Ahmed provided support in implementing the concept and 

testing the model. The co-authors provided fundamental assistance in validating, reviewing, and 

correcting the model and results. The co-authors also contributed to the review and revision of the 

manuscript. 

Reference: Amin, M. T., Khan, F., Ahmed, S., & Imtiaz, S. (2021). Risk-based fault detection and 

diagnosis for nonlinear and non-Gaussian process systems using R-vine copula. Process Safety 

and Environmental Protection, 150, 123-136. https://doi.org/10.1016/j.psep.2021.04.010 
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Abstract 

This chapter presents a risk-based fault detection and diagnosis methodology for nonlinear and 

non-Gaussian process systems using the R-vine copula and the event tree. The R-vine model 

provides a multivariate probability that is used in the event tree to generate a dynamic risk profile. 

An abnormal situation is detected from the monitored risk profile; subsequently, root cause(s) 

diagnosis is carried out. A fault diagnosis module is also proposed using the density quantiles, 

developed from marginal probabilities. The performance of this methodology is benchmarked 

using the Tennessee Eastman chemical process. The proposed risk-based framework has also been 

applied to an experimental setup and a real industrial isomer separator unit. The diagnosis module 

is found sensitive to both single and simultaneous faults. The results confirm that the proposed 

methodology provides better performance than the conventional principal component analysis and 

transfer entropy-based fault diagnosis techniques using the advantage of marginal density quantile 

analysis. 

Keywords: Process safety, risk assessment, process monitoring, fault diagnosis, R-vine copula. 
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6.1. Introduction 

Fault detection and diagnosis (FDD) has paramount significance in ensuring process safety. In the 

process industries, data-based multivariate FDD tools such as the principal component analysis 

(PCA), independent component analysis (ICA), and their derivatives found widespread use due to 

their ease with implementation and reliable performance (Kresta et al., 1991; Lee et al., 2007, 

2004b; Wise et al., 1988). PCA provides the best performance when process data follow the 

Gaussian distribution. On the contrary, ICA is efficient in capturing non-Gaussian features. 

However, both these tools are not optimal for nonlinear datasets. Therefore, kernel-based 

derivatives of PCA and ICA are often used to handle nonlinearity (Lee et al., 2007, 2004a). 

Even though these tools can provide early fault detection, their root cause diagnosis is not precise 

(Li et al., 2016; Vedam and Venkatasubramanian, 1999). Also, these multivariate FDD tools do 

not provide any indication of associated risk of the fault, which is highly desirable from safety 

analysis perspective. More recently, a risk-based multivariate fault detection methodology has 

been proposed by Zadakbar et al. (2012). The major advantage of this concept is the ability to 

calculate and visualize dynamic risk profile from continuous process data along with early fault 

detection. The PCA was used to monitor the process, and the risk profile was developed from the 

principal components (PCs). This method uses a dedicated control chart for each PC. Therefore, it 

requires monitoring several control charts depending on the number of selected PCs to build the 

PCA model. Additionally, it does not provide any solution for fault diagnosis. 

In order to improve diagnosis of fault, Yu et al. (2015) proposed a self-organizing map (SOM)-

based fault detection and dynamic risk assessment (DRA) framework. The event tree was used to 

display the failure paths, and the fault probability from the loading matrix was used to update the 

event tree. The SOM is applicable to both nonlinear and non-Gaussian datasets. It utilized the 
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Gaussian cumulative density functions (CDFs) for fault probability estimation. The diagnosis 

report was developed from each variable’s dynamic loading, which may be inaccurate since the 

symptoms often show earlier responses compared to the root cause. 

Amin et al. (2020) proposed a methodology that used the naïve Bayes classifier (NBC) and event 

tree for FDD and DRA, respectively. The event tree describes pathways that show how a fault 

propagates to an accident. The probability of occurrence of each pathway is highly significant to 

safety practitioners to minimize risk. The use of NBC enabled development of the risk profile in a 

multivariate manner; thus, it could eliminate the use of several control charts as in the PCA-based 

method. Nonetheless, the NBC is a supervised learning technique, and it requires an extensive 

amount of data and detailed information about available faults in a process. It may not provide a 

robust performance to unknown fault types. 

The vine copula-based methods can provide a viable solution to generate multivariate probability 

in an unsupervised manner by using density quantile analysis (DQA). The nonlinear and non-

Gaussian dependence structure can be captured utilizing the copula functions. Ren et al. (2015) 

proposed a novel C-vine copula-based process monitoring model. However, the C-vine model 

cannot maximize the correlation structure due to its innate decomposition technique (i.e. C-vine 

copula uses a star structure). The R-vine model can provide a better description of the correlation 

structure, as it can be of any form (i.e. star and linear) (Zhou and Li, 2018). Most vine-based 

methods perform the DQA on the joint probability density functions (JPDFs) for fault detection. 

Nevertheless, the DQA can also be performed on the marginal densities to accurately identify the 

variables that have deviated from the normal operating regime, and this analysis can be used for 

fault diagnosis. 
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The current work proposes an unsupervised FDD method using the R-vine copula model. The 

developed framework has been applied to the Tennessee Eastman (TE) chemical process and an 

experimental tank heater system at Memorial University. It has also been tested on a dataset 

collected from an isomer separator unit of a petroleum refinery. The results suggest that the 

proposed method can outperform the existing fault diagnosis techniques such as the PCA and 

transfer entropy. The contributions of this work are: 

I. An unsupervised risk-based FDD technique for nonlinear and non-Gaussian processes 

using R-vine copula. 

II. A DQA-based method applied to marginal distributions for fault diagnosis. 

III. Diagnosing process faults from observed risk profile. 

The remainder of this chapter is organized as follows: Section 6.2 briefly discusses the R-vine 

copula. Section 6.3 describes the different modules of this framework. Applications of the 

proposed framework to three process systems are presented in Section 6.4. Finally, Section 6.5 

contains the concluding remarks, limitations, and future work scopes. 

6.2. R-vine Copula 

Copula functions are widely utilized to estimate the correlation among variables. These can also 

be used to measure the joint probability density function (JPDF) and are comprised of a marginal 

distribution function and a uniform distribution (Sklar, 1959). Let us consider a random vector X 

= [x1, x2, …, xm] that contains m number of random variables. According to Sklar’s theorem, there 

exists a copula function, C, such that, 

 𝐹(𝑥1, 𝑥2, … , 𝑥𝑚) = 𝐶(F1(x1), F2(x2), …, Fm(xm)) (6.1) 
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where F is the joint cumulative density function of X, and Fi(xi) is the marginal CDF of any random 

variable that can be estimated, as stated in Equation 6.2. 

 𝐹𝑖(𝑥𝑖) =  ∫ 𝑓𝑖(𝑡)𝑑𝑡
𝑥𝑖

0

 (6.2) 

where fi(xi) is the marginal probability density function (PDF) of xi, and i = 1, 2, 3, …, m is the 

number of random variables. 

The JPDF consists of two distinct spaces: univariate marginal probability density space and copula 

density region. The mathematical formulation of JPDF is shown in Equation 6.3. 

 𝑓(𝑥1, 𝑥2, … , 𝑥𝑚) = 𝑐(F1(x1), F2(x2), …, Fm(xm)) ∏ 𝑓𝑖(𝑥𝑖)

𝑚

𝑖=1

 (6.3) 

where f is the joint probability density function of X, and c is the copula probability density 

function; it is defined as shown in Equation 6.4 (Wan and Li, 2019): 

 𝑐(F1(x1), F2(x2), …, Fm(xm)) =
𝜕𝑚𝐶(F1(x1), F2(x2), …, Fm(xm))

𝜕𝐹1(𝑥1), 𝜕𝐹2(𝑥2), … , 𝜕𝑚(𝑥𝑚)
 (6.4) 

The PDFs and CDFs can be estimated from the appropriate probability distribution. Utilizing 

CDFs, the copula type and associated parameters are obtained. The Akaike information criterion 

(AIC) (Akaike, 1974) and the Bayesian information criterion (BIC) (Schwarz, 1978) are used to 

find the best-suited model among a set of candidate models (i.e. distribution or bivariate copula 

function). The AIC and BIC values can be computed by Equations 6.5 and 6.6, respectively.  

 𝐴𝐼𝐶 = 2𝐾 − 2 𝑙𝑛(𝐿) (6.5) 

where K and L are the number of parameters and the maximum value of the likelihood function, 

respectively. 

 𝐵𝐼𝐶 = 𝐾𝑙𝑛(𝑛) − 2 𝑙𝑛(𝐿) (6.6) 

where n is the number of data points in a given sample space for a candidate model. 
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The application of bivariate copulas becomes remarkably difficult when data dimension is 

significantly higher. To address this issue, Joe (1996) proposed a vine copula model that could 

capture correlation among high dimensional data while preserving their tail correlation, 

asymmetry, and conditional correlation. It decomposes a multivariate copula into several bivariate 

copulas. An m dimensional vine copula consists of m−1 trees and 
m(m−1)

2
 edges.  

The vine model introduced by Joe (1996) used a sequential decomposition technique, which is 

familiarly known as the D-vine copula. Later, several vine models were proposed. Among them, 

the C-vine and R-vine models are noteworthy in the context of process monitoring (Ren et al., 

2015; Zhou and Li, 2018). The C-vine model utilizes a star structure, while the R-vine is 

independent of any particular structure. Figure 6.1 shows an illustrative example of these three 

vine models for a four-dimensional case. There are four nodes, and any two nodes are connected 

by an edge, E (e.g. 1,2 for connecting node 1 and node 2). The C-vine model uses a root node (i.e. 

the node that shares edges with all other nodes), and the D-vine model places the nodes 

sequentially. On the other hand, the R-vine utilizes both the star and sequential structures and 

therefore, provides a better estimate of the correlation structure.  

The JPDF of an R-vine model can be computed as follows. 

 𝑓(𝑥1, 𝑥2, … , 𝑥𝑚) = ∏ 𝑓𝑖𝑥𝑖 × 𝐶(𝐹1(𝑥1), 𝐹2(𝑥2), … , 𝐹𝑚(𝑥𝑚), 𝜃)

𝑚

𝑖=1

 (6.7) 

where θ denotes the parameters of the copula functions. 

C is defined by Equation 6.8. 

 

𝐶(𝐹1(𝑥1), 𝐹2(𝑥2), … , 𝐹𝑚(𝑥𝑚)) = 

∏ ∏ 𝐶𝑗(𝑒),𝑘(𝑒)| 𝐷(𝑒)(𝐹(𝑥𝑗(𝑒)|𝑥𝐷(𝑒)), 𝐹(𝑥𝑘(𝑒)|𝑥𝐷(𝑒)), 𝜃𝐷(𝑒))𝑒∈𝐸𝑖

𝑚−1
𝑖=1  

(6.8) 
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where E = [E1, E2,…, Em-1] are the edges. The bivariate copula density, Cj(e),k(e)|D(e) is associated 

with each edge. j(e) and k(e) are the nodes under conditional set D(e).  

 

Figure 6.1: An illustrative example of four-dimensional D, C, and R-vine models. 

As the R-vine has no specific structure like the C and D-vines, it is an arduous task to determine 

an accurate structure. Kendall’s nonlinear rank correlation coefficient, τ is utilized for this purpose 

(Kendall, 1938). The first tree is selected in such a way that maximizes î in Equation 6.9 (Zhou 

and Li, 2018). The parameters and τ values of binary copulas are selected based on the BIC values. 

The copula family that yields the minimum BIC value is used to model the considered pair-wise 

relation (Cui and Li, 2020; Ren et al., 2015). Interested readers are referred to (Aas, 2016; Aas et 

al., 2009; Brechmann et al., 2012; Brechmann and Joe, 2015) for details on theoretical foundations 

and model development of R-vine copula. 

 𝑖̂ = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑖

∑ |𝜏𝑖,𝑗|

𝑚

𝑗=1

 (6.9) 
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6.3. Proposed Methodology 

The proposed risk-based FDD model is shown in Figure 6.2. The method utilizes the R-vine copula 

to describe the dependence structure and compute the JPDFs, which are further used to estimate 

fault probability. The dynamic failure prognosis module is developed using the event tree, as it 

can show how a fault can turn into an accident. The fault diagnosis module is built from univariate 

density quantiles. Once the observed failure value gets a sharp jump, a warning is generated, and 

root cause(s) is diagnosed using density quantiles. The proposed framework is mainly comprised 

of the data pre-processing, R-vine construction, fault probability estimator, failure probability 

estimator, multiple fault diagnosis, and online monitoring modules. The first five modules are used 

to develop the risk-based monitoring model (Figure 6.3) that consists of the fault probability and 

failure probability estimators. Details of each step are described in the following subsections. 

 

Figure 6.2: Conceptual framework of the proposed risk-based FDD framework. 
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6.3.1. Data Pre-processing 

Normal operational data is collected, and process variables are fitted to a candidate distribution. 

This work considers the beta, exponential, gamma, generalized extreme value, log-normal, 

Gaussian, Rayleigh, t-location scale, and Weibull distributions to find the best distribution that fits 

process data. Once the suitable distribution is identified for a variable, corresponding distribution 

parameters are also estimated. We used AIC to find the distribution and optimal parameters. Then, 

the PDFs and CDFs are calculated for each variable.  

 

Figure 6.3: Proposed risk-based FDD model development phases. 
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Next, the PDFs and CDFs are shifted using Equation 6.10. 

 𝑃(𝐹𝑎𝑢𝑙𝑡) = 𝜑 (
𝑋 ± 𝑘𝜇

𝜎
) (6.10) 

where X, , k, and  are the arbitrary sample, mean, multiplier, and standard deviation (SD), 

respectively. This mean shifting is important for risk calculation. Suppose a sample lies on the 

mean for a normal distribution; the PDF will be the highest compared to the other samples.  

However, this observation should exhibit the lowest fault probability, as process operations usually 

exhibit a higher likelihood to be in the normal state when data closely follow the mean. The 

probability of an abnormality is assumed 0 and 0.50 at mean and one SD, respectively. The choice 

of k depends on allowable deviations of process variables before generating warnings. Usually, a 

value of k between 0 and 3 is chosen. In this study, a value of 1 is used for k. 

Consider a variable follows the Gaussian distribution with  =10 and  =1. The PDF and CDF can 

be estimated using Equations 6.11 and 6.12, respectively. 

 𝑓(𝑥) =  
1

√2𝜋𝜎2
𝑒

−
(𝑥−𝜇)2

2𝜎2  (6.11) 

 𝐹(𝑥) =  ∫
1

√2𝜋𝜎2 
𝑒

−
(𝑥−𝜇)2

2𝜎2 𝑑𝑥
𝑥

−∞

 (6.12) 

Suppose a sample yields a value of 10.10 (greater than the mean value). According to Equations 

6.11 and 6.12, the PDF and CDF for this sample will be 0.40 and 0.54, respectively.  

From Equation 6.10, the shifted PDF and CDF equations for this variable can be written as: 

 𝑓(𝑥) =  
1

√2𝜋𝜎2
𝑒

−
(𝑥−(𝜇+𝜎))2

2𝜎2  (6.13) 

 𝐹(𝑥) =  ∫
1

√2𝜋𝜎2 
𝑒

−
(𝑥−(𝜇+𝜎))2

2𝜎2 𝑑𝑥
𝑥

−∞

 (6.14) 
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Then, the revised PDF and CDF will be 0.27 and 0.18, respectively. Clearly, the distribution 

shifting strategy provides a more realistic probability of fault. 

6.3.2. R-vine Construction 

The CDFs are used to estimate copula parameters. This work considers six bivariate copula types: 

Gaussian, t, Clayton, Gumbel, Frank, and Joe copula. The use of these copulas ensures that the 

asymmetric and tail dependence are captured.  

The BIC is used to select the most suitable copula. Equation 6.6 can be re-written as: 

 𝐵𝐼𝐶 = 𝐾𝑙𝑛(𝑛) − 2 ∑ 𝑙𝑛(𝑥1𝑖 , 𝑥2𝑖|𝜃)

𝑛

𝑖=1

 (6.15) 

where K = 2 for the t-copula (i.e. it is the only two parameter copula among the considered six 

bivariate copulas) and 1 for the other five copula families. 

After selecting the appropriate copula family of each bivariate copula in the first tree, Kendall’s 

τ is calculated; subsequently, the R-vine structure is determined. Although τ ranges from -1 to 1, 

this work uses an absolute value (i.e. 0≤ τ ≤1). Consider a process with four variables (x1-x4). Table 

6.1 shows the approximated τ values. The pair of x2 and x3 exhibits the strongest correlation (0.95), 

followed by x1 and x2 (0.90). Therefore, x2 can be placed in between x1 and x3. x4 is the remaining 

variable that needs to be connected with any of the other variables. The fourth row or column of 

Table 6.1 depicts that x4 gives a higher τ value when coupled with x1 (0.85) than x2 (0.80) and x3 

(0.50). Finally, x4 can be adjoined with x1 to maximize the correlation structure and complete the 

first tree. The R-vine model in Figure 6.1 displays the structure, as described earlier. 
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Table 6.1: Kendall’s τ values for illustrative four variable process. 

Variable x1 x2 x3 x4 

x1  / 0.90 0.80 0.85 

x2 0.90  / 0.95 0.80 

x3 0.80 0.95  / 0.50 

x4 0.85 0.80 0.50 /  

6.3.3. Multivariate Density Quantile Development 

The JPDF of each sample is calculated by multiplying the marginal and copula densities. However, 

these probabilities are not readily usable for risk assessment since a process industry is a source of 

numerous variables which may yield a lower and impractical value of fault probability. Let us 

consider a process with 4 variables. For JPDF, there will be 4 marginal probabilities and 

4×3

2
= 6 probabilities from the vine model. For simplification, let us assume all these probabilities 

have a value of 0.10. Therefore, JPDF will be 10-10. For small processes, this probability value 

may make sense. For larger processes (say 20 variables), the fault probability from JPDF will be 

close to 10-200, which is impractical and vague. Ren et al. (2015) proposed a DQA technique to 

address this issue. The DQA uses a set of discrete intervals to fit a probability distribution. The 

fault probability of a sample can be computed using Equation 6.16. 

 𝑃(𝐹𝑎𝑢𝑙𝑡)𝑖 =  
𝐽𝑃𝐷𝐹𝑖

𝑄(ℎ𝑖𝑔ℎ)𝑢
∗ 𝑃(𝐹𝑎𝑢𝑙𝑡)𝑄𝑢

  (6.16) 

where 𝑖 = 1, 2, 3, …, 𝑛 is the sample number. 𝑄 and 𝑢 represent the quantile and quantile number, 

respectively. 𝑄(high)𝑢 is the highest value in uth quantile, and 𝑃(Fault)𝑄𝑢
is the maximum fault 

probability corresponding to uth quantile. 

Suppose the obtained JPDFs are divided into 100 quantiles (u =100). This implies the first and last 

quantiles refer to a maximum fault probability of 0.01 and 1, respectively. Consider a sample that 
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has a JPDF 9.81×10-201. The third quantile is ranged from 9.71×10-201 to 9.95×10-201. Therefore, 

According to Equation 6.16, the probability of fault for this sample can be calculated as follows. 

 P(Fault)= 
9.81×10-201

9.95×10-201 × 0.03 = 0.0296   

If any sample does not fit any of the hundred known quantiles, P(Fault) is 1, considering this 

sample to be out of normal operating zone.  

6.3.4. Failure Probability Estimator 

A process is usually equipped with a series of physical and non-physical protection systems to 

prevent a fault from leading to a failure. These are called safety barriers. The dynamic risk profile 

is greatly affected by the performance of these barriers, and an accurate sequence identification is 

required to assess the paths that a fault can propagate.  

Although several safety barriers may be present in a process system, this work considers four 

commonly used safety barriers: control system (CS), alarm system (AS), emergency management 

failure prevention barrier (EMFPB), and human failure prevention barrier (HFPB). The failure 

probability of each barrier can be estimated from the historical database and subject matter 

specialists’ opinions. One of the simplest ways to calculate barrier failure probability is dividing 

the failures on demand by the total number of occasions when the barrier was required to perform. 

However, this database may not always be available. This issue can be handled by using expert 

opinions and manufacture provided failure rate.  

The ET is used to predict the online failure probability. It is a popular technique in logical accident 

analysis. Interested readers are referred to the works by Kalantarnia et al. (2009) and Rathnayaka 

et al. (2011b) for illustration of potential applications of event tree in the context of process 

accident analysis. Fault probability is continuously fed into the ET model, which shows the 

consequences as safe, near-miss, mishap, incident, accident, and catastrophe based on the potential 
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of each path’s impact on the plant, personnel, and the environment. Suppose a minor deviation is 

suppressed by the control system; this will lead to a safe state, and no loss is expected. On the 

other hand, failure of all the barriers will lead to a catastrophic accident that will result in 

significant asset, business, and reputation loss, environmental impact, injuries, and fatalities.  

6.3.5. Fault Diagnosis Module 

The fault diagnosis module is built using the same concept described in Section 6.3.3. Each 

variable’s marginal density is divided into density quantiles, and root cause(s) is diagnosed when 

dynamic risk profile reveals a sharp change. The variable(s) that has unit fault probability from the 

univariate DQA is selected as the root cause(s).  Suppose two variables: A and B have a normal 

marginal density range of 0.20-0.40 and 0.30-0.50, respectively. A fault has occurred due to 

variable A, and the observed marginal densities are 0.45 and 0.50 for A and B, respectively. 

Clearly, the DQA will be able to diagnose A as the root cause, as it violates its normal operating 

region. If the marginal densities are utilized without the DQA, variable B will be mistakenly 

diagnosed as the root cause.  

6.3.6. Online Monitoring 

The online application part of this methodology (Figure 6.4) monitors dynamic risk and generates 

a warning when needed. First, the online samples are projected to the marginal density space using 

the distribution parameters obtained in the data pre-processing stage. The JPDF of each 

observation is calculated using copula parameters from the R-vine construction module. These 

JPDFs are passed through the density quantiles to estimate the fault probabilities which are 

continuously fed into the failure prediction model, and the dynamic risk profile is continuously 

monitored. If any sharp change is observed, a warning is generated. Finally, the fault diagnosis 
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module is utilized to identify the root cause(s). To capture the dynamic process behaviour and 

mean shifting data, the distribution parameters are recursively updated after each fifty samples if 

no fault is detected. Subsequently, the copula densities and density quantiles are also updated with 

the new distribution parameters.  

 

Figure 6.4: Online process monitoring using the proposed risk-based FDD model. 
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6.4. Applications of the Proposed Methodology 

6.4.1. Benchmarking using the Tennessee Eastman (TE) Chemical Process 

The TE chemical process (Figure 6.5) is the most widely used benchmark model for examining 

the efficacy of an FDD tool. There are 41 measured and 12 manipulated variables. A total of 22 

variables (denoted by XMEAS (1), XMEAS (2), …, and XMEAS (22)) are continuous process 

variables which have been considered in this study (see Table 6.2). This work uses eleven fault 

cases to test the developed framework where the first nine scenarios contain single faults, and in 

the other two cases, two different faults simultaneously occurred at two different variables. These 

test cases have been generated using the simulator developed by Professor Daniel Rivera and his 

colleague, Marty Braun from Arizona State University. This simulator can be downloaded from 

https://7starm.asu.edu/node/33 (last checked on March 13, 2021). The concurrent fault conditions 

have been selected to demonstrate the proposed methods ability to diagnose simultaneous faults. 

In this section, the efficiency of developed method for detection and diagnosis of simultaneous 

step change in A/C feed ratio keeping B composition constant in stream 4 and A feed loss in stream 

1 is discussed. The root causes for these faults are XMEAS (4) and XMEAS (1), respectively. A 

detailed process description can be found in the work by Downs and Vogel (1993). 

A total of 1000 normal samples with a sampling time of 1 second are used to develop the R-vine-

based fault probability estimator. The suitable distributions for the 22 monitored variables are 

selected by minimizing AIC, and subsequently, the distribution parameters are estimated. The 

PDFs and CDFs are estimated using these parameters and Equation 6.10. The CDFs are used to 

estimate copula parameters. The BIC is utilized for finding the most appropriate copula family. 

Then, the first tree of the R-vine model is selected in a way that maximizes the correlation 

structure. The binary copulas and associated parameters in other 20 trees are determined based on 

https://7starm.asu.edu/node/33
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BIC, as well. The parameters are used to compute Kendall’s τ for all 231 binary copulas; this 

completes the R-vine construction module.  

Table 6.2: Description of monitored variables in the TE chemical process (Downs and Vogel, 

1993).  

Variable No Description Unit 

XMEAS (1) A feed (stream 1)                    kscmh 

XMEAS (2) D feed (stream 2)                   kg/hr 

XMEAS (3) E feed (stream 3)                   kg/hr 

XMEAS (4) A and C feed (stream 4)               kscmh 

XMEAS (5) Recycle flow (stream 8)            kscmh 

XMEAS (6) Reactor feed rate (stream 6)          kscmh 

XMEAS (7) Reactor pressure                      kPa gauge 

XMEAS (8) Reactor level                        % 

XMEAS (9) Reactor temperature     ºC 

XMEAS (10) Purge rate (stream 9)                  kscmh 

XMEAS (11) Product separator temperature                  ºC 

XMEAS (12) Product separator level                      % 

XMEAS (13) Product separator pressure                      kPa gauge 

XMEAS (14) Product separator underflow (stream 10)  m3/hr 

XMEAS (15) Stripper level               % 

XMEAS (16) Stripper pressure                      kPa gauge 

XMEAS (17) Stripper underflow (stream 11)        m3/hr 

XMEAS (18) Stripper temperature                  ºC 

XMEAS (19) Stripper steam flow                   kg/hr 

XMEAS (20) Compressor work                       kW 

XMEAS (21) Reactor cooling water outlet temperature     ºC 

XMEAS (22) Condenser cooling water outlet temperature     ºC 
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Figure 6.5: A schematic diagram of the TE chemical process (modified and redrawn from 

(Downs and Vogel, 1993)). 

The marginal PDFs are multiplied by the copula densities to estimate the JPDFs. These JPDFs are 

segregated into 100 quantiles to build the fault probability estimator. Also, each univariate PDF is 

divided into 100 density quantiles for root cause diagnosis. The next task is to develop the failure 

prognosis module. As mentioned earlier, the event tree for failure prognosis is built considering 

the CS, AS, EMFPB, and HFPB. The failure probability of these barriers (Table 6.3) is collected 

from the existing literature. Figure 6.3 shows the event tree-based failure prediction model. A total 

of eight consequences are identified based on success (S) and failure (F) of the safety barriers. The 

controller can compensate for the smaller deviations. However, it may fail to maintain the setpoint 

if the deviation is higher. Then, the warning system will be activated to give an indication of an 

unwanted operating region and alert operator. If the alarm generated by the process monitoring 
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scheme is taken care of by the responsible personnel, a near-miss situation is observed.  All the 

failure paths are designed using such logic. 

Table 6.3: Failure probability of safety barriers (Amin et al., 2020; Yu et al., 2015a). 

Sl. 

no 
Name of the barrier Notation Failure probability 

1 Control system  CS 0.01 

2 Alarm system  AS 0.05 

3 Emergency management failure prevention barrier EMFPB 0.0824 

4 Human failure prevention barrier HFPB 0.0646 

  

  CS AS EMFPB  HFPB  Consequences 
       

     S 
C1 (Safe) 

       

  S      

           

      F 
C2 (Near-miss) 

        

        

      S 
C3 (Safe) 

        

    S     

           
P (Fault)      F 

C4 (Accident) 
         

         

       S 
C5 (Incident)         

      S    

           

        F 
C6 (Accident) 

  F       

         

   F   S 
C7 (Accident) 

        

    F    

         

     F C8 (Catastrophe) 
      

Figure 6.6: The failure prediction model for the TE chemical process. 

 



 

158 
 

The proposed method is validated using 500 test samples (1001-1500 sample in Figure 6.7), where 

faults start from the 1101st sample. The PDFs are estimated using the distribution parameters from 

data pre-processing module. The JPDFs are calculated by multiplying the online PDFs and copula 

densities. The fault probability is estimated by passing the JPDFs through the density quantiles 

built from multivariate joint distribution earlier. These probabilities are fed into the failure 

prediction model.  

Although the event tree can lead a process to eight different paths, this article shows the prognosis 

result through the path, C8, as it represents the catastrophic failure probability. The fault and failure 

probabilities are shown in Figures 6.7(A) and 6.7(B), respectively. It can be seen that only one 

sharp rise in risk profile is observed in the first 1100 samples. While building density quantiles, 

the highest value among the JPDFs takes a fault probability of 1. This is the reason why this false 

alarm is generated. 

These faults are detected at the 1103rd sample, as a sharp rise in risk profile is noticed through path 

C8. The fault probability for each variable is determined using individual density quantiles (Figure 

6.7(C)). Both XMEAS (1) and XMEAS (4) are found to have a probability of fault equal to 1 at 

the 1103rd sample. This implies both these are the reasons behind the generated warning, and the 

operator(s) can do troubleshooting in streams 1 and 4 for restoring the process in normal operating 

condition. 
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Figure 6.7: Monitoring results in the TE process for simultaneous A feed loss and step change in 

A/C feed ratio (A) fault probability estimation, (B) failure prognosis through C8, and (C) fault 

diagnosis. 

The diagnosis capacity of PCA and transfer entropy is also examined in this dataset. PCA-SPE 

and PCA-T2 can detect this fault at the 1102nd and 1103rd samples, respectively. Although PCA-

SPE can detect this fault earlier, it does not provide significant information about the root causes 

(Figure 6.8(A)). PCA-T2 provides a better diagnosis report, as it can diagnose the root cause of A 

feed loss. Nevertheless, it cannot provide any information about the presence of an abnormality in 

XMEAS (4) (Figure 6.8(B)). Since the proposed method can detect the fault at the 1103rd sample, 

the first 1103 sample is used to construct the transfer entropy-based causal map (Gharahbagheri et 

al., 2017a); thus, a fair comparison is ensured. Figure 6.8(C) shows the developed causal map, and 

it suggests XMEAS (2) and XMEAS (13) as the root causes, which is completely inaccurate. The 

diagnostic performance comparison in all 11 fault cases is presented in Table 6.4, which shows 

better accuracy by the proposed method compared to the PCA and transfer entropy. 
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Figure 6.8: Root causes diagnosis of simultaneous A feed loss and step change in A/C feed ratio 

by (A) PCA-SPE contribution plot, (B) PCA-T2 contribution plot, and (C) transfer entropy. 
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Table 6.4: Diagnostic performance comparison of proposed method, PCA, and transfer entropy. 

Fault 

ID 
Fault description 

Accurate diagnosis 

PCA Transfer 

entropy 

Proposed 

method T2 SPE 

A1 A feed loss Yes No No Yes 

A2 Step change in A/C feed ratio Yes No No Yes 

A3 D feed loss Yes Yes Yes Yes 

A4 E feed loss Yes No No Yes 

A5 Random variation in purge rate No No No Yes 

A6 Random variation in reactor cooling water flow No No No Yes 

A7 Gradual increase in separator pot liquid flow No No No Yes 

A8 Gradual increase in stripper liquid product flow No No No Yes 

A9 Stripper steam valve stiction Yes No No Yes 

A10 
Simultaneous A feed loss and step change in A/C feed 

ratio 
No No No Yes 

A11 Simultaneous D and E feed loss No No No Yes 

 

6.4.2. The RT 580 Experimental Setup 

The RT 580 fault-finding control system is an experimental setup, situated at the Memorial 

University for testing control and fault detection algorithms. In the RT 580 setup, several real-time 

fault conditions can be introduced by using different switches. Figure 6.9 shows the schematic 

diagram of RT 580. It consists of three circuits to control the level, flowrate, and temperature. The 

pump (P1), collecting tank (B1), and process tank (B2) are controlled by a circuit, while the other 

two circuits are used to control the temperature. A total of four temperature sensors are used to 

measure the temperature of the liquid flowing through different parts of this system. There is a 

pressure sensor to measure the water column height in the process tank. A magnetic induction flow 

sensor is installed at the entry to the process tank to measure the flowrate. A pneumatic control 

valve (V7) serves as the actuator. Detail process description can be found in the work by Ghosh et 

al. (2019).  
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Figure 6.9: Schematic diagram of the RT 580 experimental setup (modified from (Ghosh et al., 

2019)). 

A total of seven variables are monitored in this study, as shown in Table 6.5. This case study 

consists of 300 samples where faulty condition is generated at 251st sample by simultaneously 

altering V7 and introducing a sensor fault to the sensor that measures the level in process tank, B2. 

There is no continuous measurement for V7; however, it directly affects the manipulated variable, 

Y1. Therefore, both the X1 and Y1 are the monitorable root causes in this fault scenario. The first 

200 samples are used to build the R-vine model. The rest of the samples is utilized to examine the 

efficacy of the proposed method. 

At first, the candidate distributions are used to fit process variables based on AIC values. The 

distribution that gives the lowest AIC value is selected to model the corresponding variable. Y1, 

T2, and T4 can be fitted with the generalized extreme value distribution, and the Weibull 

distribution is found to be suitable for T1, T3, and F. The other variable, X1 follows the normal 
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distribution. Once the candidate distribution is identified, associated parameters are estimated. A 

total of three parameters: the location, shape, and scale parameters are required to model the 

generalized extreme value distribution. On the contrary, the Weibull distribution needs the scale 

and shape parameters. These parameters can be used to calculate the mean and standard deviation 

of distinct process variables. Then the PDFs and CDFs are computed after shifting the fault 

probability, as demonstrated in Equation 6.10.  

Table 6.5: Monitored variables in the RT 580 setup.  

Variable 
Unit 

ID Description 

X1 Actual process tank level  % 

Y1 Manipulated variable N/A 

T1 Heat exchanger outlet temperature ºC 

T2 Process tank inlet temperature ºC 

T3 Process tank temperature ºC 

T4 Collecting tank temperature ºC 

F Flow L/h 

 

The bivariate copula families and their associated parameters are estimated from the CDFs using 

BIC. The Kendall’s rank correlation coefficient, τ for different copulas are calculated. The R-vine 

structure is defined, and τ for all the binary copulas are computed from respective copula 

parameters. The correlation coefficients for the entire R-vine structure are calculated and 

multiplied with the PDFs obtained earlier. This will give the JPDFs from the 200 samples, which 

are further utilized to build the density quantiles. The multivariate JPDFs are divided into 100 

quantiles. A total of seven density quantiles are also built from the marginal PDFs of monitored 

variables for fault diagnosis. The failure prognosis module shown in Figure 6.6 is utilized in this 

case study, as well. 
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During the testing period, all the samples are projected to the PDF space using the distribution 

parameters obtained from 200 normal samples and Equation 6.10. The JPDFs are computed after 

multiplying these PDFs with the copula densities from 21 binary copulas from the R-vine model. 

Then, the fault probability is estimated by passing each JPDF through the developed density 

quantiles (Figure 6.10(A)). The fault probabilities are continuously fed into the failure prognosis 

module to realize any potential risk of failure. The catastrophic failure probability through path C8 

is shown in Figure 6.10(B). Since no fault is detected from 201st to 250th samples, the distribution 

and copula parameters are updated using the first 250 samples. The density quantiles are also 

updated using the revised parameters. The failure risk experiences a sharp jump from the 251st 

sample as soon as the faults are activated, and a warning is generated.  

The fault probability of all variables at the 251st sample is estimated using the univariate density 

quantiles and shown in Figure 6.10(C). Both X1 and Y1 have a unit failure probability which 

implies the maintenance needs to be done on these variables to take the process back to the normal 

operating zone. Figure 6.10(D) shows the risk profile through C8 that has been developed from 

the univariate analysis (from X1) and without considering the joint dependence structure. Although 

the univariate risk-based FDD module can timely detect the fault, it provides an improper 

estimation of risk, which results in higher false alarms than the R-vine-based model.  
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Figure 6.10: Monitoring results in the RT 580 fault finding setup (A) fault probability estimation, 

(B) failure prognosis through C8, (C) fault diagnosis, and (D) failure prognosis through C8 

without considering joint dependence. 
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6.4.3. The Industrial Isomer Separator Unit 

This case study contains a real industrial dataset from an isomer separator unit. This industry is 

one of the biggest petroleum refineries in Canada. The separator unit considered here is used to 

separate oil, water, and gas. The unit operates at 2400 psig and 100-110ºF. It is comprised of a 

horizontal low-pressure separator (LPS), vertical high-pressure separator (HPS), and wash water 

tank (WT) (Figure 6.11). The HPS works as the first stage separator. However, it cannot provide 

the desired product composition. Hence, the LPS is utilized for further separation.  

 

Figure 6.11: Schematic diagram of the isomer separator unit. 

Effluent from the condenser enters into the HPS. As the effluent vapours are condensed, 

ammonium and hydrosulphide are formed due to the presence of ammonia and hydrogen sulphide. 

The wash water is injected into the WT at a flowrate of V1. It is then pumped into the HPS to 

dissolve ammonia salts. The water carries the dissolved salts out of the system, as it leaves the 

bottom of the HPS. The water is transferred to the sour water stripper for the removal of ammonia 

and hydrogen sulphide. The gas also exits from the HPS while the oils leave the LPS (V2 and V3). 

This unit is equipped with advanced safety systems such as the cascaded controller, alarm system, 
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flare system, emergency shutdown device, and automatic blowdown system. However, no 

multivariate risk monitoring system is equipped there. 

The refinery suffered from an unwanted event that caused significant financial losses. This case 

study consists of data from the stated consequence. A total of 1200 samples are collected where 

the abnormal event was first detected in the refinery at the 1152nd sample. The sampling time is 1 

minute. The first 700 samples are used to build the FDD model. A total of 11 monitored variables 

are found in this unit. The variable description and fitted distributions are listed in Table 6.6. 

Table 6.6: Variable description and fitted distributions in the separator unit. 

Variable 
Unit Fitted distribution 

ID Description 

V1 Flow to wash water tank GPM Generalized extreme value 

V2 Feed 1 to debutanizer BPD Generalized extreme value 

V3 Feed 2 to debutanizer BPD Generalized extreme value 

V4 Wash water tank level % Gaussian 

V5 LPS pressure PSIG Gaussian 

V6 HPS trim pressure PSIG Generalized extreme value 

V7 LPS level % Generalized extreme value 

V8 LPS waterbooth interface level % t-location scale 

V9 Effluent temperature  ºF t-location scale 

V10 HPS level % Generalized extreme value 

V11 LPS water interface % t-location scale 

 

The PDF and CDF are calculated for each variable using the distribution parameters and Equation 

6.10. The CDFs are used to estimate the R-vine structure. Since the separator unit has 11 variables, 

the R-vine model has 55 binary copulas in 10 trees. The τ value for each copula function is 

estimated using BIC, and subsequently, the JPDFs for these 700 samples are calculated using the 

estimated PDFs. Then, the density quantiles are estimated from these JPDFs. The same failure 

prognosis module shown in Figure 6.6 is used in this case, as well. The reasons are twofold: firstly, 

the developed logical failure analysis model can capture the major safety devices equipped in the 
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refinery, and secondly, the refinery does not wish to expose their complete safety features due to 

confidential reasons. 

The test region starts from the 701st sample. Figure 6.12(A) shows the fault probability estimation 

results. Figure 6.12(B) shows the failure prognosis results. The failure risk remains significantly 

lower for the first 813 minutes of operation. Then, a sharp rise is observed in risk profile at the 

814th sample that lasts for 12 minutes, as V4 shows a slight deviation from its normal operating 

region due to a fluctuation in V1. The controller takes quick action and returns the process within 

normal condition. Many fluctuations are observed between the 1055th to 1096th samples. At the 

1120th sample, the risk value gets a rise from an order of 10-8 to 10-4 and never comes back during 

the remaining test samples. This fault eventually affected both V2 and V3.  

Consequently, the other units in the refinery were affected, and notable financial damage 

happened. The refinery got an alarm only at the 1152nd minute, as none of the variables exceeded 

the setpoint, and no multivariate monitoring technique was employed there. Figure 6.12(C) shows 

the fault diagnosis result from the 814th sample, and it is observed that the proposed marginal 

DQA-based fault diagnosis module can accurately diagnose the flowrate to wash water tank (V1) 

and level in the wash water tank (V4) as the faulty variables that required troubleshooting. Since 

the proposed diagnostic module is sensitive to probability deviation, it could diagnose the root 

causes immediately after fault detection. 
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Figure 6.12: Monitoring results in the industrial separator unit (A) fault probability estimation, 

(B) failure prognosis through C8, and (C) fault diagnosis. 

6.5. Conclusion  

This work proposes a new risk-based FDD methodology using R-vine copula and ETA. The R-

vine model is used for fault probability generation, and the ET is continuously updated by the fault 

probability obtained from the R-vine-based fault probability estimator. The outputs of ET are 

utilized for failure prediction. The use of the R-vine model relaxes the necessity to build an arduous 

supervised learning-based multivariate fault probability estimator.   

Findings from the application to an experimental setup highlight the necessity of capturing the 

dependence structure in risk assessment (see Figure 6.10). Ignoring the joint dependence may lead 

to an improper risk assessment and subsequently, an unsatisfactory performance of the FDD tools. 

This article proposes a fault diagnosis module based on the density quantiles of marginal PDFs. 

The developed diagnosis technique is sensitive to simultaneous faults when two faults originate 

from two different variables and affect the process significantly.  A comparison of the diagnostic 

performance of the proposed approach with that using PCA and transfer entropy on the benchmark 
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TE chemical process for eleven fault cases suggests that the proposed framework provides more 

meaningful information about the root cause(s).  

Few areas can be considered to further advance the current work. The event tree is a sequential 

failure modelling tool that considers binary states of a safety barrier (i.e. success and failure). The 

safety barriers can have multiple states. The failure can also be non-sequential; therefore, the 

Bayesian network or the Petri net can be used as the failure prognosis model to overcome these 

issues. This will also enable to update failure probabilities of safety barriers and provide a robust 

failure prognosis mechanism. This work has considered simultaneously acting two faults from 

different sources. It will be interesting to examine the efficacy of the proposed method when more 

than two faults act concurrently in a process system.  
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Chapter 7: Summary, Conclusions, and Future Work Scopes 

7.1. Summary 

The use of multivariate data to solve many existing problems (i.e. early fault detection, automated 

PC selection, causal model development, and multivariate DRA), related to process safety 

analysis, is the main contribution of this work. Considering the strengths and limitations of 

different FDD and DRA methods, the current knowledge gaps and challenges to developing an 

efficient and practical safety assessment approach are identified. PCA, MEWMA-PCA, NBC, BN, 

ETA, and copulas are used to address the identified challenges. The efficacy of the proposed 

methods for FDD and DRA is compared with the existing methods. The results suggest that the 

developed frameworks provide better solutions.  

The first two technical chapters are devoted to providing solutions to FDD. Instead of relying on 

process knowledge or operator experience, a common practice in process industries, this thesis 

uses available process data for fault diagnosis. The BNs, used for root cause identification, are 

developed from fault symptoms and continuous process data. An automated PC selection 

technique is also proposed. In a practical industrial scenario, the developed methods will reduce 

opeartors’ burden and increase operational efficiency.  

The latter technical chapters focus on integrated FDD and DRA since FDD alone is insufficient 

for safety analysis. Multivariate fault probability has been used to generate dynamic risk profiles.  

In this context, the risk-based abnormal situation management framework is capable of monitoring 

a nonlinear and non-Gaussian process. Also, it does not require prior fault information. These 

works will provide a paradigm shift in multivariate data-driven dynamic risk analysis.   
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The use of copula theory is another salient feature of this thesis. A novel technique to estimate 

CPTs using bivariate and vine copulas is proposed to handle continuous process data. Moreover, 

an R-vine copula-based multivariate fault probability estimator has been used for DRA. The R-

vine model enables capturing high-dimensional correlation structures. The PCA-based method 

was highly appreciated by an oil and gas industry in Newfoundland, and they showed interest to 

implement the framework for FDD. The aforementioned developed methods are applied to a wide 

range of process systems. The datasets used for model testing and validation have been obtained 

from simulation, experiment, and industry. 

7.2. Conclusions 

There have been efforts for early fault detection, automated fault diagnosis, and dynamic risk 

assessment considering their importance on process safety analysis. A real-time dynamic risk 

assessment tool provides industries with a means to measure dynamic safety. Given the ever-

increasing multi-dimensional and complex nature of digitalized process systems, it is expected that 

safety analysis tools will utilize the benefits of multivariate data and perform better than the 

conventional approaches. From these perspectives, this thesis provides a viable basis for dynamic 

multivariate safety analysis. The specific conclusions are listed below. 

7.2.1. Development of an Early Fault Detection and Diagnosis Model 

Early fault detection and diagnosis is always crucial as it gives a lead time from a safety perspective 

to take the process back to the normal operating condition. The developed MEWMA-PCA 

provides a better tool for early fault detection. Additionally, it can detect three specific faults (IDV 

3, IDV 9, and IDV 15) of the benchmark TE chemical process. These three faults have been 

described as arduous to detect by many authors. However, MEWMA-PCA’s diagnosis 
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performance is not better than PCA. Therefore, a BN has been integrated to overcome the 

limitation of MEWMA-PCA. The combined MEWMA-PCA-BN framework is found to be 

providing an excellent solution to fault detection and diagnosis utilizing the benefit of MEWMA-

PCA’s early detection and BN’s robust diagnosis capabilities. 

7.2.2. Development of a Data-Driven and Automated Fault Diagnosis Tool 

Accurate root cause diagnosis is inevitable for digitalized process systems. Due to close loop 

control and complex correlation among process variables, a single fault may generate many 

simultaneous warnings. This makes diagnosing the actual root cause extremely difficult. 

Conventionally, operators’ experience is used to solve this problem. In this thesis, a data-driven 

and automated fault diagnosis module based on PCA and BN is used to reduce operators workload. 

PCA is the first stage fault diagnosis tool. As it cannot provide accurate diagnosis in all cases, a 

BN is used as the second stage diagnosis tool. In terms of data-based automation, the PCs are 

selected using the correlation dimension analysis that does not require human interference for PC 

selection. A new BN topology learning method has been developed from continuous process data. 

The quantitative parts of the BN (prior and conditional probabilities) are estimated using bivariate 

and vine copulas. The copula functions are found efficient in capturing the degree of dependence 

among process variables. Application of KDE on PCA residuals aids copula functions significantly 

in this context. 

7.2.3. Development of a Framework for Simultaneous FDD and DRA 

From a safety analysis perspective, along with FDD, a continuous dynamic risk estimate is 

required. However, the conventional process monitoring models heavily focus on FDD. Although 

there is progress on multivariate FDD and DRA, most of these works lack a diagnostic feature. 
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Also, these tools estimate the dynamic risk profiles from univariate fault probabilities. As a result, 

an inaccurate risk level may be estimated because the univariate fault probability does not account 

for the combined contribution of all the process variables to a fault. This research has provided a 

solution to these problems. The NBC has been used for FDD and multivariate fault probability 

estimation that is further used by the ET for failure prediction. This work provides new insight 

into multivariate dynamic safety assessment and will help to develop next-generation process 

monitoring schemes. 

7.2.4. Development of a Risk-Based Abnormal Situation Management Framework 

In this thesis, a risk-based abnormal situation management framework has been proposed using 

the R-vine copula and ETA. The R-vine model has the advantage over other tools such as the 

SOM, PCA, KF, and PF in elucidating accurate correlation structure among the process variables. 

Also, it can generate a multivariate fault probability without prior fault information that can be 

utilized for dynamic risk assessment. To effectively manage an abnormal situation, it is essential 

to identify the faulty variables. A DQA-based fault diagnosis module is proposed in this context; 

it diagnoses the root cause(s) once an unacceptable deviation is observed in the dynamic risk 

profile. An application to a Canadian refinery suggests that the developed risk-based framework 

could save its significant financial loss due to abnormal situations. 

7.3. Future Work Scopes 

This PhD thesis attempts to introduce new concepts and overcome the limitations of existing 

techniques in the fields of FDD and DRA in the context of process industries. This study, however, 

can be further improved by adopting the following recommendations. 
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7.3.1. Tuning Parameter Selection for MEWMA-PCA 

One of the crucial parameters for MEWMA-PCA’s successful performance is the tuning 

parameter, λ. In this thesis, an optimization technique proposed by Chen et al. (2001) is used to 

select an optimal λ. This method requires a lot of trial and error. Further research is required on 

how an optimal λ can be selected in a computational friendly way. The genetic algorithm and 

particle swarm optimization can be explored in this context. 

7.3.2. Automated PC Selection for MEWMA-PCA 

Since the MEWMA-PCA model requires user input regarding an expected variance to be captured, 

the PC selection is semi-automated. The CD-based PC selection technique can also be applied to 

the MEWMA-PCA model to eliminate this semi-automated feature. 

 7.3.3. Application of Advanced Machine Learning Algorithms in DRA 

The naïve Bayes classifier may not be suitable for large-scale process systems. Advanced machine 

learning algorithms such as the deep neural network and ensemble methods (i.e. bagging, boosting, 

and stacking) can be used to predict multivariate fault probability. Nonetheless, these tools should 

only be considered when in-depth fault information is available. 

7.3.4. Sensor Fault Detection Module 

None of the developed methods has considered sensor fault detection module before passing the 

data to the rest of the algorithms. A bank of Kalman filters or rule-based methods can be used in 

this regard. This will help to isolate the sensor faults early and distinguish them from process and 

actuators faults. 
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7.3.5. Multimodal Process Handling 

This thesis has considered a single operational mode for process operations. However, in reality, 

a process system may be operated in multiple modes. Suppose process variables’ setpoints can be 

different depending on the product requirements. In such cases, the developed frameworks may 

not provide satisfactory performance. Hence, further research is required to develop dynamic 

safety analysis frameworks for multimodal process operations. 

7.3.6. R-vine Copula-based BN Topology Learning 

This research has proposed two techniques for BN topology learning. These are suitable for 

process fault diagnosis. The R-vine model can also be used for examining another possible 

topology learning invention. Such an example can be found in the work by Jia and Li (2020). 

7.3.7. Dynamic Loss Modelling 

The developed risk assessment methodologies have considered loss as a static component. 

However, this may result in inaccurate risk estimation. Estimating dynamic losses using loss 

functions may provide a viable solution to this problem.  

7.3.8. Integration of Intentional and Natural Threats  

The developed frameworks have considered that a failure can only happen due to random process 

variation. Cyber-attacks and physical intrusions can cause process failure in highly digitalized 

process systems. Also, although rare, natural disasters such as lightning, flood, tsunami, hurricane, 

and earthquake can lead to partial or complete process failure. Therefore, the more holistic nature 

of process accidents, including all the mentioned threats above, needs to be considered while 

advancing the current work. 
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7.3.9. Imperfect Data Treatment 

This thesis has considered datasets with perfect quality. No outlier or missing data has been 

considered during the model development phase. However, industrial datasets are not always of 

perfect quality, and a commendable time is lost in data cleaning. If a model is built with outliers, 

it will be less sensitive to fault detection. Also, offline and real-time datasets may contain missing 

data. Therefore, further research is required to integrate imperfect data treatment techniques with 

the developed frameworks for a robust solution to FDD and DRA. The works by Imtiaz and Shah 

(2008) and  Zhang and Dong (2014) can be helpful in this context. 
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