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ABSTRACT 

Environmental modelling is an important approach of environmental engineering and 

management since it helps gain better understanding of environmental problems and impacts and 

facilitate environmental decision-making processes. However, because of the intricate conditions 

enormous data, diverse uncertainties, and various standards and requirements, environmental 

modeling is usually sophisticated and challenging. This study aimed to develop the novel modelling 

approaches by integrating machine learning (ML) into analyzing tabular and image datasets for 

environmental applications.  

Firstly, a data-driven binary classification approach was developed to analyze oil 

fingerprinting. After comparing six different machine learning algorithms on five different 

biomarkers, random forest classifier was found as the most effective and accurate model to 

distinguish weathered chemically dispersed and non-dispersed oil from the dataset of diamantanes. 

The developed model was approved to be capable of aiding oil fingerprinting under the studied 

conditions. It showed the good value of ML methods in environmental modeling especially for oil 

spill response research and practice.  

Secondly, an integrated approach by combing the strengths of convolutional neural networks 

and improved deep convolutional generative adversarial networks was proposed to classify 

microplastics and oil-dispersant agglomerates (MODAs) with diverse weathering conditions. The 

f score and model accuracy suggested the robust prediction from the trained model on the dataset 

of MODAs with different weathering degrees. The results could provide a better understanding of 

microplastics’ effects on oil fate and transport during a marine oil spill. The proposed approach 

also presented the high potential of facilitating image-related classification work in environmental 

fields. 
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This dissertation not only developed two new ML based modelling approaches for 

environmental applications in oil fingerprinting and oil/microplastics classification, but also 

demonstrated the high value of ML methods and deep neural networks in processing experimental 

data for supporting environmental engineering and management.  
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1.1 Background 

Machine learning (ML) is a branch of artificial intelligence and computer science that 

focuses on using data and algorithms to replicate the way people learn, steadily increasing 

accuracy. Due to their powerful modeling capability, ML is a powerful primary tool for data 

scientists to analyze and interpret data (Jordan and Mitchell, 2015). In terms of prediction, there 

are two typical types of tasks that ML performs, classification and regression. The task of 

estimating a mapping function (f) from input variables (x) to discrete output variables (y) is known 

as classification predictive modeling. In contrast, the task of estimating a mapping function (f) 

from input variables (x) to a continuous output variable (y) is known as regression predictive 

modeling (Loh, 2011). The application of ML in data analysis-related fields has been booming 

these years due to the advancement of computer hardware, for example, from medical to financial 

and environmental research.  

There have three main areas of ML, supervised learning, unsupervised learning, and 

reinforcement learning. Each of them specializes in different tasks. For example, supervised 

learning is suitable for classification and regression with the labeled dataset, while unsupervised 

learning is more commonly used with unlabelled datasets (Reinel et al., 2020). Unlike working 

with labeled datasets in supervised learning, reinforcement learning labels the sequences of 

dependent decisions through agent and reward systems, and it is mainly applied in the game and 

robotic fields (Vincent et al., 2018). Deep learning (DL), as a more advanced type of ML, has been 

implementing to handle complicated tasks, for example, synthetic data (Ziwei et al., 2020). 

Generative adversarial networks (GANs) have been one of DL's primary applications in generating 

synthetic data (e.g., images) since it was introduced by Ian et al. in 2014. GANs are composed of 

two neural networks, which are generator and discriminator. The generator takes random noise 
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from the gaussian distribution as input and passes the noise to several upsampling layers to the 

desired shape of images. Sequentially, the discriminator takes the fake output of the generator and 

real image dataset as input and passes them to downsampling layers and calculates the loss between 

fake output and real image dataset. The generator parameters will then be updated through 

backpropagation until the generated images are good enough to fool the discriminator (Wei et al., 

2018). However, the initial version of GANs (a.k.a., vanilla GANs) is extremely difficult to train 

due to non-convergence, mode collapse, diminished gradient, overfitting from the unbalance 

between the generator and discriminator, etc (Hamed et al., 2019). Therefore, many modified 

versions of GANs have been proposed to optimize the problems, for example, deep convolutional 

GANs (DCGANs), conditional GANs (cGANs), information maximizing GANs (InfoGANs), 

Pix2Pix, Big GANs (BigGANs), etc. These optimized GANs are served in different purposes, from 

transferring portraits to animated profiles and enhancing old photo qualities (Tero et al., 2018; 

Andrey et al., 2020; Tomaso et al., 2020; Yuan et al., 2021).  

Currently, there have many ML algorithms that can perform regression and classification 

on different types of datasets, e.g., sequential, text, audio, or images. Understanding how to choose 

the appropriate ML algorithms is essential, and a comparison of the advantages and disadvantages 

of different ML algorithms is needed to be provided. Moreover, some ML algorithms are black-

box algorithms with low expandability and could cause low reliability for the end-users. Thus, 

how to improve the developed ML models’ reliability is desired to be explored. In terms of GANs, 

as stated above, the training suffers from some problems. Even though some different structured 

GANs are proposed, further optimization still needs to be conducted when training happens in 

different domains.    
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ML has shown promise in tackling complex data patterns or formats due to its incredible 

fitting skills. As a result, over the last decade, ML, particularly DL, has experienced tremendous 

growth in various applications, including image categorization and machine translation. 

Researchers in the broad field of environmental science and engineering (ESE) have 

enthusiastically embraced ML in various applications. For example, Munish and Parveen 

compared empirical infiltration models with ML-based adaptive neuro-fuzzy inference system and 

random forest regression techniques on the soil infiltration rate dataset. They concluded that ML-

based methods are the most appropriate technique for estimating the infiltration data (Munish and 

Parveen, 2019). Behrooz et al. (2020) utilized long short-term memory, a method based on deep 

neural networks, to model faults in the oxidation and nitrification process in wastewater treatment 

plants since the nonlinear dynamics and complex interactions of the variables in wastewater data. 

Their proposed model achieved a recall of over 92%, outperformed traditional methods, and 

enabled timely detection of collective faults. Hao et al. (2020) proposed an enhanced approach of 

generative adversarial networks to generate more environmental microorganisms (EM) images 

since EM analysis plays an essential role in environmental monitoring and protection. The 

generated images were further evaluated by average precision from ResNet50 and VGG16. Their 

results demonstrated that the proposed model could achieve remarkable performance in 

augmenting EM images with high quality and resolution, improving EM image classification 

precisions.      

Despite the wide application of ML and DL in wastewater, soil, and other environmental 

fields, the applications in marine oil spill-related fields are still lacking. More examples and case 

studies of how ML and DL can help with marine oil spill-related problems are urgently needed 

because the ocean is the world’s largest ecosystem.    
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As the primary energy source, fossil fuel supplied 84% of world energy in 2019, while in 

Canada, fossil fuel accounted for 88.5% of energy supply in 2018. Among all fossil fuels used in 

Canada, crude oil took the most significant portion of 47.1%, followed by natural gas of 32.2% 

(Carroll and Huijzer, 2018). However, during the production, transportation, and usage of fossil 

fuels, oil spills have increased. The major oil spills usually happen in the marine environment, 

e.g., the Deepwater Horizon spill, the largest marine oil spill in the U.S. in 2010, and many 

smaller scale of oil spills. Figure 1.1 presents the oil spills incidents from 2008 to 2020 in 7 -700 

metric tons and more than 700 metric tons worldwide (Gracia et al., 2020). These oil spills can 

have some detrimental effects on the ecosystem and economy. The leaked oils are highly toxic, 

and ingestion or inhalation of these oils can cause damage to DNA, immune function and cardiac 

dysfunction, and mass mortality of eggs and larvae. The oil spills could negatively affect the 

tourism industry, port business, sea-based transportation, and fishery (Zhang et al., 2019). These 

damages are also valid in Newfoundland and Labrador (NL), the third-largest oil producer in 

Canada. NL generated 4.4% of Canada’s petroleum from its Grand Banks offshore oil fields. In 

NL’s history, the largest oil spill happened in November 2018. Husky Energy reported a spill of 

an estimated 250,000 liters of crude oil from their SeaRose platform, and it killed thousands of 

seabirds due to oil pollution (Higgins, 2011). It can be expected that oil spill accidents will 

continue to happen before totally switching to a non-fossil fuel-powered society.  

Oil spills can happen anywhere and anytime, for example, onshore and offshore. In this 

thesis, offshore oil spills are mainly focused on. When an oil spill occurs in a marine environment, 

the impacts have wide-ranging implications as a long-lasting environmental disaster. Depending 

on the amount and preparties of the spilled oil and its location and ambient environment, the 
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impacts might vary significantly. For example, oils may affect animals' respiration, feeding and 

severely influence their habitat. 

Moreover, the entire ecosystem might also alter remarkably and even permanently due to 

toxic chemical components of the spilled oil (Chang et al., 2014). Besides the ecological damage, 

oil spills can cause significant economic loss. The contamination of coastal areas can disrupt 

recreational activities in tourism and incur long-term economic damage when public perception of 

prolonged pollution remains long after the oil has gone (Palinkas, 2012). Damages are also usually 

observed in fishery and mariculture sectors and coastal community livelihoods (Gracia et al., 

2020).  

 

 

Figure 1.1 Global oil spills from 2008 to 2020  
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Tracking back the origin of oil spills is part of environmental forensic. Knowing where the 

spilled oil comes from helps investigate the cause of oil spills, for example, whether it is caused 

by accidents involving tankers, pipelines, drilling rigs, or the collision of ships. If there are no 

matching reports with oil spills, investigating the origin of spilled oil could minimize the oil 

leaking to the marine environment. Furthermore, it is essential to know who takes responsibility 

for oil spills when nobody makes an announcement (Wang and Stout, 2010). Currently, oil 

fingerprinting is mainly used in environmental forensics to trace oil spills' origin. Since the 

formation of hydrocarbons in oil and gas deposits is affected by many factors, such as temperature, 

reservoir tectonics, biodegradation, aquifer activity, etc. These factors are different in every 

reservoir, which allows the identification of hydrocarbons from evaluating changes in composition 

(Stout and Wang, 2016). Therefore, oil fingerprinting is based on geochemical analysis of 

hydrocarbon fluids composition, which could provide valuable and unique information to identify 

hydrocarbons’ origin. 

There are numerous counter measurements to marine oil spills, for example, booming, 

skimming, in-situ burning, and dispersion (Dave and Ghaly, 2011). This dissertation research 

mainly focused on the application of dispersants. An oil dispersant is a combination of emulsifiers 

and solvents that aids in the separation of oil by spraying on a surface oil slick to break down the 

oil into smaller droplets, allowing them to mix with the water more readily and enhance 

biodegradation by sea-living microbes (Brakstad et al., 2018). As stated earlier, the key for oil 

fingerprinting is hydrocarbons’ composition because of their uniqueness. However, when 

dispersants are spilled in oil in a marine environment, the hydrocarbon composition might be 

changed after the application. This change poses a challenge to oil fingerprinting since it brings 

bias in the investigation in environmental forensic (Joo et al., 2013). Hence, applying different 
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protocols is necessary on dispersed oil and crude oil and distinguishing dispersed oil and crude oil 

is the first step before identifying their origins. 

Besides the pollution of oil spills, the ocean also faces other negative impacts from 

emerging pollutants, and plastic is on the top of the pollutant list. Plastic has existed in human 

society for a long time since it was invented. Among all the plastic, 10% of plastic products will 

end up in the ocean (Magnier et al., 2019). Figure 1.2 illustrates the plastic in the global ocean and 

other individual oceans in 2013. In 2020, 300 million tonnes of plastic waste will be generated, 

and if 10% of them will end up in the ocean, there will be 30 million tonnes of plastic (Ostle et al., 

2019). Compared to Fig 1.2, it increased 100 times from 2013 to 2020. 

 

Figure 1.2 Surface plastic mass by different oceans in 2013 and global total (2013 VS. 2020) 

As the main component of personal protective equipment (PPE), plastic usage spikes 

during the COVID19 pandemic. Under weathering process, including mechanical tension (e.g., 

wave motion), photooxidation, and biological degradation, these plastics will be fragmented into 

micro-level size (less than 5mm in length), which are considered as weathered microplastics 
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(WMPs) (Jahnke et al., 2017). In recent years, there has been a rising concern about negative 

impacts on the ocean ecosystem and economy caused by WMPs (Ronkay et al., 2021). WMPs are 

hard to degrade, and they can interact with another ocean pollutant, spilled oil (Liu et al., 2020). 

Spilled oil can be broken down into tiny droplets by dispersants and become much easier to 

degrade in the marine environment (Wu et al., 2021). However, when WMPs join the treatment 

process, WMPs, oil, and dispersants will interact by forming WMPs-oil-dispersant agglomerates 

(WMODAs) (Yang et al., 2021). 

When heavy oil and WMPs meet, they will attract each other because of hydrophobic tails 

and are further wrapped by dispersants. Hence, WMODAs are formed on the crust of dispersants 

and the core of WMPs and oil. The formation of WMODAs can affect the transportation of WMPs 

since the oil from WMODAs is less dense than water. Moreover, WMODAs can also impact the 

oil droplet size and efficiency of dispersant on spilled oil. Such impacts are also affected by the 

weathering degree of WMODAs. Therefore, distinguishing the weathering degree of WMODAs 

is essential to understand better their impact on oil spill response options such as dispersant 

application (Yang et al., 2021). 

However, in the research topics of weathering dispersed oil and WMODAs, the application 

of ML is rare to see, and its potential to aid research in these topics needs to be cultivated. Different 

ML strategies are applied based on the different data characteristics from the two topics, integer 

values for weather dispersed oil and images for WMODAs. In the former topic, the data are 

collected from gas chromatography and mass spectrometry (GC/MS) tests on the sample oil. The 

diagnostic ratios between biomarkers are calculated from 0 days to 60 days in weathered 

chemically dispersed oil (CDO) and weathered crude oil (WCO) (Song et al., 2019). Several ML 

algorithms are implemented to detect the patterns of WCO and CDO, including k-nearest neighbor 
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(KNN), support vector classifier (SVC), random forest classifier (RFC), decision tree classifier 

(DTC), logistic regression classifier (LRC), and ensemble vote classifier (EVC). The best-

performed ML model is used to predict spilled oil type. In the latter topic, the images of WMODAs 

are acquired from scanning electron microscopy (SEM) (Yang et al., 2021). Deep learning (DL) 

is applied to detect differences between different weathering degrees of WMODAs images. 

Different DL architectures are performed to achieve the best accuracy in the classification, 

including customized convolutional neural networks, residual networks (Resnet), visual geometry 

group (VGG), and transfer learning. The developed DL model can classify different weathering 

degrees of WMODAs with high accuracy. Therefore, the application of ML is proved efficiently 

to solve the challenges stated above and has a general reference to another environmental research. 

 

1.2 Statement of problems  

As introduced in the background section, ML and DL still face challenges in training in some 

domains. The ML algorithms tend to overfit sequential datasets with hundreds and thousands of 

features if they are trained directly without preprocessing. The overfitting can be incurred by a 

high correlation of some features that can cause the training process's abundance. This 

phenomenon is more evident in the oil fingerprinting field since it could provide hundreds or 

thousands of diagnostic ratios. Without data preprocessing, the classification would overfit, and it 

also adds difficulty in the deployment since the data input process is cumbersome. In the image 

domain, convolution is one of the fundamental methods in DL, and the deep neural networks based 

on convolutional layers lack explanation. The low expandability leads to low reliability and further 

reduces models’ application. Hence, appropriate explanation algorithms could be considered to 
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integrate with deep neural networks to increase models’ reliability. In some domains, the features 

detected by deep neural networks are subtle to humans, and the explanation algorithms can 

highlight the region of the predicted image class to increase the understandability of how the model 

predicts. Apart from classification, DL also shows strong ability in data augmentation. DCGANs 

have been regarded as a promising data augmentation method to increase the size and 

generalization of datasets. However, it faces some challenges, such as mode collapse due to binary 

cross-entropy loss function and vanishing gradient due to the overconfidence of discriminators 

(Bang and Shim, 2021). In order to acquire high-quality generated images, the optimization for a 

stable training process is much needed.  

      In marine oil spill response, few existing modeling methods have been reported for source 

identification in oil fingerprinting to distinguish WCO and CDO. It is essential to differentiate 

WCO and CDO because the change is happening in diagnostic ratios between WCO and CDO, 

and it could cause an error in the source identification through the database. Traditional statistic 

methods are not ideal in handling hundreds or thousands of features because of high interactions 

between each feature. Moreover, they cannot perform classification programmatically, 

particularly in continuously improving accuracy by updating data.  

The recent advancement of ML methods presents great potential in improving oil fingerprinting. 

The developed ML models can better classify different types of oil and conduct a matching 

process with the source oil database. Hence, it can fill the gaps and support more accurate and 

reliable classification and identification of spilled oils in environmental forensic and oil spill 

response.  

Furthermore, the existence of MPs in the marine environment and the interactions with oil 

(and dispersed oil) forming WMODAs can affect both the transport and fate of MPs and the 



27 

 

degradation and dispersion effectiveness of spilled oil. The effects that WMODAs incur usually 

correlate to the weathering degrees. Distinguishing the weathering degree of WMODAs is 

essential to evaluate their impact on response options such as dispersant application and support 

decision-making in marine oil spill response operations. However, there is lacking data/image 

analysis efforts in classifying WMODAs under different weathering conditions, particularly with 

limited observed datasets. Data augmentation becomes valuable to handle data scarcity, prevent 

overfitting, and improve accuracy.  

1.3 Research objectives 

To help address the above challenges, the main objectives and tasks of this dissertation 

research are as follows: 

(1) To develop an approach based on meta-ML algorithms and integrate with principal 

component analysis (PCA) to preprocess datasets by eliminating high correlated features 

and reconstructing new features. This dimensionality reduction algorithm can reduce bias 

and facilitate the data input for the prediction, and the model performance is further 

evaluated by confusion matrix and f score. The developed approach is further tested on 

the first case study of the classification of sequential data of WCO and CDO in oil 

fingerprinting. Diagnostic ratios from five different biomarkers are selected as data input. 

Different ML algorithms are used to predict class labels, and comparative analysis is 

conducted to choose the most accurate model for the classification task, and it is then 

deployed for general public use. 

(2) To develop an integrated approach of convolutional neural networks (CNNs) and 

optimized DCGANs. The optimized DCGANs are enhanced by mainly three techniques 
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for better stability, e.g., label smoothing, spectral normalization, and noisy labels. 

Through the data augmentation of optimized DCGANs, DL algorithms can be freed from 

the limitation of datasets. To further strengthen the model's reliability, local interpretable 

model-agnostic explanations (LIME) are supplemented to interpret prediction from the 

CNNs model. The CNNs model can also be improved from the quality of interpreted 

results. The developed approach is further applied in the task of the classification of image 

data of WMODAs under different weathering degrees. SEM images are taken as data 

input. CNNs are tailored for the shape and channels of the image of SEM images. The 

loss and the quality of generated images are the evaluation standards for the performance 

of optimized DCGANs, and the model accuracy will be evaluated for CNNs performance. 

Apart from self-designed CNNs, transfer learning models based on CNNs are also 

introduced to the classification and further compared with selected models for better 

performance.   

1.4 Structure of the thesis 

This thesis consists of five chapters. Chapter 1 outlines the general research background and 

scopes, research objectives, and thesis structure. Chapter 2 provides the literature reviews of the 

relevant topics, including (1) current widely used ML/DL algorithms in supervised learning and 

unsupervised learning and the challenges and limitations they face, (2) related research and 

challenges of oil fingerprinting in oil spills and MPs in marine pollution, (3) potential application 

of ML/DL on the challenges in these two areas. Chapter 3 presents the development of the 

binary-classification approach using diagnostic ratios from different biomarkers and illustrates its 

application for a case study on oil fingerprinting analysis. To further support in-depth analysis of 

environmental data, images containing complex data are usually used, leading to more powerful 
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convolutional neural networks algorithms. Chapter 4 describes the interpretation-orientated deep 

learning method for data classification based on environmental images. The developed approach 

is implemented to classify weathering degrees of WMODAs using SEM and investigate the 

impact of MPs on dispersed oil to aid oil spill responses. Finally, Chapter 5 concludes this 

research with recommendations for future work. The structure of the thesis is illustrated in 

Figure 1.3. 
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Figure 1.3 Roadmap of the research 
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2.1 Machine learning 

2.1.1 Machine learning techniques 

As a central component of AI, ML has been reorganized as a separate field and started to 

flourish in the 1990s (Kristian 2018). There are many definitions of ML, but in short, ML is a form 

of AI that allows software programs to improve their prediction accuracy by detecting patterns in 

the input without being expressly designed in that way (Goodfellow et al., 2016). In ML, there are 

two kinds of data: labeled and unlabeled data. Labeled data includes both the input and output 

parameters in a machine-readable manner. However, labeling the data needs a significant amount 

of human effort. Unlabeled data contains only one or no parameters in machine-readable form 

(Bach et al., 2017). This eliminates the need for human labor but necessitates more complicated 

solutions. There are three major machine learning algorithms: supervised learning, unsupervised 

learning, and reinforcement learning (Ayodele, 2010). The former two types will be introduced 

mainly and applied in environmental data.          

Supervised learning is one of the most fundamental forms of ML. The ML algorithm is 

trained on labeled data in this type. Even though the data must be appropriately labeled for this 

approach to operate, supervised learning is incredibly effective when utilized in the right 

conditions. The supervised learning algorithms are given a short training dataset as a subset of the 

larger dataset. This short training dataset helps to provide the algorithm with a rudimentary 

understanding of the issue, solution and data points to be handled (Nasteski, 2017). The training 

dataset is also quite close to the final dataset in terms of properties, and it supplies the algorithm 

with the labeled parameters necessary for the task. The algorithm then discovers correlations 

between the parameters provided, effectively constructing a cause-and-effect link between the 
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variables in the dataset. After training, the algorithm understands how the data works and the 

relationship between the input and the output. This solution is subsequently deployed for usage 

with the final dataset, from which it learns in the same manner as it did with the training dataset 

(Jiang et al., 2020).  

Some of the most commonly used algorithms for supervised learning are linear regression, 

support vector machine, and logistic regression. A linear regression model attempts to fit a 

regression line to the data points that accurately capture the relationships or connections. Ordinary 

least squares (OLE) is the most commonly used approach. The optimum regression line is obtained 

using this approach by minimizing the sum of squares of the distance between data points and the 

regression line (Kong et al., 2020). The example of how the regression line is drawn in a dataset 

is shown below in Figure. 2.3. 

 

Figure 2.1 Demonstrate of linear regression’s decision boundary 
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SVM differentiates between classes by constructing a decision boundary. Each observation 

(or data point) is displayed in n-dimensional space before establishing the decision boundary. The 

number of features utilized is denoted by “n.” The decision boundary is designed to maximize the 

distance to the support vectors. If the decision boundary is too close to a support vector, it will be 

susceptible to noise and fail to generalize appropriately. Even minor changes in independent 

variables might result in misclassification (Golbayani et al., 2020). SVM is extremely useful when 

the number of dimensions exceeds the number of samples. SVM finds the decision boundary by 

using a subset of training points rather than all, saving memory. On the other hand, training time 

increases for big datasets, which negatively impacts performance (Sheykhmousa et al., 2020). 

Figure 2.4 shows how the decision boundary is drawn by maximizing the margin between support 

vectors. 

 

Figure 2.2 Decision boundary from SVM (Cura, 2020) 
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The logistic regression model takes a linear equation as input and performs a binary 

classification task using a logistic function and log odds. The logistic function, commonly known 

as the sigmoid function shown below in equation 2.1, is the foundation of logistic regression. It 

takes any real-valued integer and translates it to a value between 0 and 1 (Guo et al., 2020). 

                                                      y = 1 / 1+ e-x                                                           (2.1) 

where x is data input; y is the output of the algorithm. 

Unlike supervised machine learning, unsupervised machine learning benefits working with 

unlabeled data. This implies that no human labor is necessary to make the dataset machine-

readable, allowing the software to work on a much bigger dataset. Labels in supervised learning 

allow the algorithms to determine the exact nature of the link between any two data points (Kim 

et al., 2020). On the other hand, unsupervised learning lacks labels, leading to the information of 

hidden structures. The program perceives relationships between data points abstractly, with no 

human input necessary. The construction of these hidden structures gives unsupervised learning 

algorithms their versatility. Instead of a predefined and fixed problem statement, unsupervised 

learning algorithms may adapt to the input by constantly modifying hidden structures. This 

provides greater post-deployment development than supervised learning techniques (Zhong and 

Leonard, 2020).   

Unsupervised learning algorithms include clustering, anomaly detection, neural network, 

and others. Clustering is a crucial concept in unsupervised learning. It is primarily concerned with 

identifying a structure or pattern in a set of uncategorized data by finding natural clusters (groups). 

Types of clustering include K-means clustering a, principal component analysis (PCA), and others 

(Grira et al., 2004). K-means is a centroid-based or distance-based technique that computes 
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distances to assign a location to a cluster. Each cluster in K-means is paired with a centroid. The 

K-means algorithm’s primary goal is to minimize the sum of distances between points and their 

corresponding cluster centroid (Sinaga and Yang, 2020). PCA is an unsupervised statistical 

approach for dimensionality reduction. It decreases the number of associated variables into fewer 

independent variables while retaining the essence of these variables. It provides an overview of 

the linear connections between inputs and variables. PCA can also improve high-dimensional data 

visualization by constructing new features from the original dataset. The dimensionality reduction 

feature realizes the data visualization in two or three dimensions and brings more insights into 

datasets before further training (Kumar et al., 2017).  

2.1.2 Data preprocessing 

Data preprocessing is the process of converting raw data into a comprehensible format. It 

is also a critical stage in data mining since raw data cannot be directly worked with. Before 

deploying machine learning or data mining techniques, the data quality should be evaluated 

(Huang et al., 2015). The data quality evaluation can be followed as shown in Table 2.3 (Kotsiantis 

et al., 2006). 

Table 2.3 Criteria to evaluate data quality 

Criteria 
Content 

Accuracy Determining whether the data entered is correct. 

Completeness Checking whether the data is available or not recorded. 

Timeliness The data should be updated regularly. 
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Interpretability The understandability of the data. 

Consistency Check if the same data is retained in all locations that match or do not match. 

  

In order to realize these criteria, there are four primary tasks to be conducted: data cleaning, 

data integration, data reduction, and data transformation, as shown in Figure 2.5 (García et al., 

2015). 

 

 

Figure 2.3 Four significant aspects of data preprocessing 
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Data cleaning is the process of removing erroneous, incomplete, and inaccurate data from 

datasets and replacing missing information. When handling noisy data, there are three primary 

methods: binning, regression, and clustering (Chu et al., 2016). Binning is used to smooth or deal 

with noisy data. The data is first sorted and segregated before storing in bins. Smoothing data in 

the bin can be accomplished using one of the three approaches: Smoothing with the bin mean, 

median, and boundary methods (Krishnan et al., 2016). In the first and second ones, the values in 

the bin are replaced by the bin’s mean and median values. In the last approach, the lowest and 

maximum values of the bin values are obtained and replaced with the nearest boundary value. 

Regression aids data handling when there is extraneous data and helps determine which variables 

are appropriate for analysis. Clustering is used to discover outliers and group data (Ilyas and Chu, 

2019).  

Data integration is the process of merging data from several sources into a single dataset, 

and it is one of the essential aspects of data management. There are three problems to be considered 

during data integration: schema integration, entity identification problem, and detecting and 

resolving data value concepts (Li et al., 2018). Schema combines metadata from many sources. 

The challenge of entity identification is to identify entities from numerous databases. The detection 

and resolution of data value concepts need to consider the data taken from different databases 

while merging may differ (Dong and Rekatsinas, 2018).  

Data reduction aids in the decrease of data volume and storage space, making analysis 

easier while producing the same or almost the same results. Dimensionality reduction, numerosity 

reduction, and data compression are examples of data reduction approaches (Czarnowski and 

Jȩdrzejowicz, 2008). The purpose of dimensionality reduction was illustrated in PCA above, and 

it helps reduce storage space and computation time. Numerosity reduction reduces the amount of 



39 

 

the data to make it smaller by choosing suitable forms of data presentation while no data loss 

occurs. Data compression refers to the process of compressing data by encoding, reconstructing, 

or modifying data (Ougiaroglou et al., 2018).  

Data transformation refers to changing the format or structure of data. Depending on the 

requirements, the difficulty of data transformation varies (Jiang et al., 2008). Typical techniques 

for data transformation are smoothing, aggregation, discretization, and normalization. Data 

smoothing can eliminate noise from the dataset by using algorithms and discovering minor changes 

that aid in prediction. Data aggregation keeps and displays data in summary with a data analysis 

description. It is a critical phase to ensure the data quality and quantity. Discretization divides the 

continuous data into intervals and reduces data size (Kara et al., 2018). 

2.1.3 Strategies of data augmentation 

Data augmentation is a method of creating additional training data from existing training 

data. It is accomplished by applying domain-specific approaches to examples from the training 

data, resulting in new and distinct training instances, which helps increase the size of the dataset 

and introduces variability in the dataset. By creating a larger dataset, models will be better at 

generalizing to circumstances they may encounter in production (Mikołajczyk and Grochowski, 

2018). For example, introducing random noise in a self-driving car dataset may make the model 

more resistant to camera errors (Jöckel et al., 2019). Similar scenarios also occur in the 

environmental domain. For example, distinguishing microplastic images from other micro 

particles will also be beneficial from introducing random noise to simulate complicated situations 

in reality. In the training of deep neural networks, large datasets cannot handle underfitting but 

only overfitting. Data augmentation can be used on any data, e.g., image, audio, text, and others 
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(Aggarwal, 2019). Image data augmentation is mainly introduced since images exist in the 

environmental domain. There are mainly geometric transformation methods in the transformation 

of image data, such as rotations, shearing, changes in scale, translations, horizontal and vertical 

flips, and others. After applying geometric transformation augmentation, the model can be trained 

only by augmented data or both original and augmented data (Zoph et al., 2020).   

Except for geometric augmentation methods, cutting-edge augmentation methods use 

generative adversarial networks (GANs). The GANs model architecture includes two sub-models: 

a generator model for producing new instances and a discriminator model for identifying whether 

created examples are real, from the domain, or fake, generated by the generator model (Luo and 

Lu, 2018). The generator model creates a sample in the domain using a fixed-length random vector 

as input. A Gaussian distribution is employed to generate the vector and then seed the generative 

process. Points in this multidimensional vector space will correspond to points in the issue domain 

during training, resulting in a compressed representation of the data distribution. A latent space, 

or a vector space containing latent variables, is the name given to this vector space (Lim et al., 

2018; Waheed et al., 2020). The discriminator takes a domain example (real or generated) as input 

and predicts whether it is authentic or fake. The real example is taken from the training dataset, 

and the generator model produces the generated examples. During training, the loss function in the 

discriminator will calculate the loss between generated and actual examples and adjust the 

parameters in the network by back-propagation (Lim et al., 2018). After training, the discriminator 

is discarded since the trained generator is mainly used to generate examples. The fundamental 

GANs structure is illustrated in Figure 2.6 (Vallecorsa et al., 2019). 
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Figure 2.4 Fundamental architecture of GANs (Vallecorsa et al., 2019) 

   

2.1.4 Applications in the environmental field 

Because of its tremendous fitting abilities, ML has shown promise in tackling complicated 

data patterns or formats. As a result, ML, particularly deep learning, has seen significant growth 

in a range of applications over the last decade, including image classification and machine 

translation. Researchers in the broad area of environmental science and engineering (ESE) have 

eagerly embraced ML as well in many applications, for example, assessing environmental hazards 

(Tollefson et al., 2021), evaluating the health of water and wastewater infrastructure (Granata et 

al., 2017), improving treatment methods (Inoue et al., 2017), detecting and characterizing pollutant 

sources (Huang et al., 2021), and performing life cycle analysis. Compared with traditional 

statistical tools (Gao and Pishdad-Bozorgi, 2020). ML is especially suitable for solving complex 

environmental problems for the following reasons. ML has the capacity to address a large number 
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of factors that have weak or nonlinear correlations with the results. Furthermore, in situations 

where the critical information is not contained in a single input variable, nor are the essential 

variables known ahead of time, ML can be more effective than traditional statistical tools in 

handling various data formats, such as text, images, and graphs, where some previously unknown 

combination of features is required to determine the outcome (Bini, 2018). The general process of 

ML application in the environmental domain is shown below in Figure 2.7. 

 

Figure 2.5 General process of ML application in the environmental domain (Zhong et al., 2021) 

Three examples are introduced below to illustrate better how ML can address different 

environmental problems.  

The first example focuses on the MPs. Due to MPs' potential influence on water pollution, 

wildlife, and the food chain, MPs have gained significant attention these years. After sieving and 

digestion, reliable, quick, and high-throughput screening of MPs from other components of a water 

sample remains a highly desirable aim to avoid time-consuming visual inspection under the optical 

microscope. Vittortio et al. (2019) proposed a novel technique that combines 3D coherent imaging 
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with ML to accomplish accurate and automated identification of MPs in filtered water samples at 

the microscale. During the water pre-treatment procedure, sediments and aggregates that fall 

outside the measured range are removed. However, it is still crucial to differentiate MPs from 

marine microalgae. It is demonstrated that by creating a distinct collection of different 

“holographic properties,” MPs within the prescribed analytical range may be reliably identified.  

The second example is from the air pollution domain. Suleiman et al. (2019) introduced a 

new way for assessing the efficacy of roadside PM10 and PM2.5 reduction scenarios using ML-

based models, including artificial neural networks (ANN), boosted regression trees (BRT), and 

SVM. The ML models predicted PM10 and PM2.5 concentrations well, with around 95% of 

predictions coming within a factor of two of the actual values at the roadside.  

The last example is a water quality-related problem. Lu et al. (2020) proposed two 

innovative hybrid decision tree-based ML models to generate more accurate short-term water 

quality predictions. Extreme gradient boosting (XGBoost) and random forest (RF) were the base 

models of the two hybrid models, which both added an advanced data denoising approach. Six 

water quality indicators, including water temperature, dissolved oxygen, pH value, specific 

conductance, turbidity, and fluorescent dissolved organic matter, were predicted using two hybrid 

models. Their results revealed the low mean absolute percentage errors in predicting temperature, 

dissolved oxygen, and specific conductance.   

These three examples present the most applications of ML in the environmental domain as 

classification and regression problems with the different input data types, ranging from image and 

tabular inputs. It shows the tremendous flexibility of ML applications in dealing with different 

environmental problems. However, in the oil spill and marine pollution fields, ML models are not 
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as widely applied as they are in the mentioned fields. The following two sections will illustrate 

current problems and challenges in oil fingerprinting in oil spills and MPs in marine pollution, and 

in the following two chapters, the proposed approaches are demonstrated how ML can be used to 

solve these problems. 

2.2.1 Marine oil spills and oil fingerprinting 

Petroleum products are increasingly produced and consumed as the world’s primary energy 

source, and their environmental effect is also growing. The possibility of significant oil spills 

persists, despite tremendous progress in decreasing leakage through a combination of 

technological and regulatory preventative methods and improved business practices. Hundreds to 

thousands of spills are estimated to occur every day worldwide, including various types of crude 

oil to a wide range of refined products, from heavy, long-lasting fuels to light, short-lasting, but 

very poisonous fuels in the marine environment. The fate, behavior, and influence of spilled oil in 

the marine environment are determined by the spilled oil's chemical composition and bulk 

properties and the accompanying weathering process. Marine oil spills are a significant source of 

worry due to the enormous financial costs and persistent, severe damage to the marine ecosystem, 

local economy, and coastal society. There are ten effective methods for cleaning up marine oil 

spills: using oil booms, skimmers, sorbents, burning in-situ, dispersants, hot water, high-pressure 

washing, and manual labor bioremediation, chemical stabilization of oil by elastomers, and natural 

recovery. Each method has different advantages and disadvantages and is appropriate to use on 

different occasions. For example, oil booms only work when the oil is in one spot or calm marine 

environment, and skimmers are then applied in the confined area to separate the oil from the water. 

2.2 Oil Fingerprinting  
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When in the scenario that booms cannot contain spilled oil, then dispersants are applied to 

accelerate the disintegration of oil. They increase the surface area of each molecule, allowing the 

oil to chemically bind with water and prevent the slick from spreading across the water’s surface, 

and making it easier for microbes to break down the oil.  

In oil spill response, cleanup methods are not the only concern needed to be considered. 

Determining the source of spilled oil, differentiating and correlating oils, and monitoring the 

degradation process and weathering state of oils under various conditions are all critical steps to 

take. Furthermore, allocating legal liability is also essential for oil spill recovery. For the above 

responsibilities, oil fingerprinting analysis is an effective solution to address them. Oil 

fingerprinting is one of the critical technologies to describe procedures that use geochemical 

analysis of the composition of hydrocarbon fluids spilled into the environment (Wang et al., 

2006). During the formation of oil and gas, hydrocarbons are affected by many processes, such 

as biodegradation, gas flushing, water washing, and evaporation. 

Furthermore, temperature, reservoir compartmentalization, aquifer activity, and other 

variables influence the degree of change. Subsequently, hydrocarbons that originated in one 

source rock have distinct properties in other reservoirs (Mulabagal et al., 2013). Identifying 

hydrocarbons from different reservoirs can be realized by analyzing variations in composition or 

identifying unique “fingerprints'' of hydrocarbons. Oil fingerprinting techniques have been 

frequently used to establish the sources of an oil spill by comparing compositional characteristics 

of both the spilled oil and probable sources. Identifying oil sources and their characteristics is 

critical for determining the spill’s fate and environmental impact, providing a suitable spill 

response, and assigning obligations and liabilities (Song et al., 2016). 
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 2.2.2 Traditional methods in oil fingerprinting 

Many advanced instruments for identifying biomarkers have recently become available, 

including comprehensive two-dimensional gas chromatography, and mass spectrometry (GC/MS), 

isotopic resolution mass spectrometry (IRMS), electrospray ionization liquid chromatography-

mass spectrometry (ESI-LC-MS), and ultrahigh-resolution Fourier transform ion cyclotron 

resonance mass spectrometry (FT-ICRMS) (Mansuy et al., 1997) (Cho et al., 2012). In recent 

years, GC/MS has been a well-known approach with a better-resolving capacity to separate groups 

of hydrocarbons, particularly isomers and hydrocarbons with identical retention times. Based on 

GC/MS, the impacts of physio-chemical weathering on biomarkers can be effectively examined 

(Yang et al., 2011). 

Diagnostic ratios are the primary indications for oil fingerprinting, allowing the tasks of oil 

source identification, characterization, and weathering tracing to be realized. A significant 

advantage of the diagnostic ratio of spilled oil and suspected source oil is that the influence of the 

concentration is reduced, and the use of ratio tends to produce an autonomously normalizing effect 

on the data (Song et al., 2018). Usually, a quantitative oil source fingerprinting is conducted by 

GC/MS methodology, and specific diagnostic biomarker ratios are determined using many 

published combinations of ratios and a few new ratios using similar guidelines. There are eight 

major biomarker classes, and each of them has different diagnostic ratios. The following table 

gives examples of diagnostic ratios under each biomarker (Song et al., 2019). 
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Table 2.1 Common diagnostic ratios from biomarkers(Song et al., 2019) 

Biomarker classes Diagnostic ratios 

Acyclic pristine/phytane 

isoprenoids pristane/n-C17 

Terpanes 

TR23/TR24 

C23 tricyclic terpane/C30α β hopane 

C24 tricyclic terpane/C30α β hopane 

C24 tertracyclic/C26 tricyclic (S)/C26 tricyclic (R) terpane 

C2718α, 21β -trisnorhopane/C27 17α, 21β -trisnorhopane 

C28 bisnorhopane/C30α β hopane 

C29α β -25-norhopane/C30α β hopane 

C29α β -30-norhopane/C30α β hopane 

oleanane/C30 α β hopane 

Steranes 

C27ββ(S+R)/C29β β (S+R) 

C28 α β β/C29 α β β steranes (at m/z 218) 

C27 α β β/(C27 α β β +C28α β β +C29α β β) (at m/z 218, 

C28 α β β/(C27 α β β +C28 α β β +C29 α β β) (at m/z 218) 

C29 α β β/(C27 α β β + C28 α β β +C29 α β β) (at m/z 218) 

C27,C28, and C29 α α α/α β β epimers (at m/z 217) 

Sesquiterpanes 

 

Peak 5/Peak 3 

Peak 10/Peak 3 

Peak 1/Peak 3 

 



48 

 

 

Continued Table 2.2 Common diagnostic ratios from biomarkers(Song et al., 2019) 

Biomarker classes Diagnostic ratios 

Diamondoids 

1,4-DMA, cis/1,4-DMA, trans 

Dimethyl admantane index: 1,3-DMA/(1,3- + 1,4- + 1,2-DMA) 1,3,4-

DMA, cis/1,3,4-DMA, trans 

Trimethyl admantane index: 1,3,4-DMA, cis/(1,3,4-DMA, cis + 1,3,4-

DMA, trans) 

Ethyl admantane index: 1-EA/(1- + 2-EA) 

Methyl-diamantane index: 4-MD/(1- + 3- + 4-MD) 

Relative distribution of diamantanes: C0-D:C1-D:C2-D:C3-D 

Triaromatic steranes 

C26 TA (20S)/sum of C26 TA (20S) through C28 TA (20R) 

C27 TA (20R)/C28 TA (20R) 

C28 TA (20R)/C28 TA (20S) 

C26 TA (20S)/[C26 TA (20S) +C28 TA (20S)] 

Monoaromatic 

steranes 
C27−C28−C29 monoaromatic steranes (MA) distribution. 

 

After deciding several diagnostic ratios, the calculation is proceeded by dividing the peak 

heights of compounds with the same mass to charge ratio by the number of compounds.  

During the calculation, the final series of diagnostic biomarker ratios will be determined 

using a 5% fixed relative standard deviation (RSD) which means that any diagnostic ratios 

exceeding the limit are excluded (Wang 2008). Once the sample oil’s diagnostic ratios are 

developed, the same ratios will be calculated for different suspected source oils and statistically 

compared with sample oil’s ratios. The calculated biomarkers and sediments will be classified into 

four oil source-fingerprinting categories: match, potential match, inconclusive, and non-match 
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(Song, 2019). The comparative findings will reveal how effective the diagnostic ratio technique 

can distinguish non-weathered crude oil from a comparable geographical production area. 

This approach works because quantitative diagnostic biomarker ratios are typically more 

resistant to environmental weathering and will show little or no change over time.  

2.2.3 Challenges of oil fingerprinting in the weathered dispersed oil  

The past experiments showed that diagnostic biomarker ratios of spilled oil are stable to 

environmental weathering without human intervention. During oil spills, dispersants, which 

comprise surfactants and solvents, are often used to remediate marine oil spills. It can lower the 

interfacial tension between oil and saltwater by increasing the formation of tiny, stable oil-

surfactant micelles (i.e., oil-in-water emulsion) (Major et al., 2012). CDO, split oil in a water 

emulsion bridged by surfactants, can stay in saltwater for extended periods if dispersants are used 

(Song, 2019). In the experiment of He et al. (2016), they showed that during a medium to long 

term weathering process, the most selected diagnostic ratios of n-alkane, terpanes, steranes, and 

polycyclic aromatic hydrocarbon (PAHs) from all oil samples changed, and only four ratios 

remained good stability because their RSD is lower than 5% (He et al., 2016). The potential for oil 

biomarker weathering will profoundly affect the calculation and subsequent critical difference 

analysis of diagnostic ratios used for oil source fingerprinting. As a result, a more robust 

quantitative oil source-fingerprinting approach is necessary since it is vital to assess its 

environmental effect, select further reaction countermeasures, and gain a better knowledge of CDO 

destiny and behavior in maritime ecosystems. 

2.3 Microplastics and coexistence with oil spills in marine environments 
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2.3.1 Microplastics in oceans 

MPs are defined as particles with a diameter of less than 5 mm created by the breakdown 

of more considerable plastic trash or by the direct production of tiny-sized particles (He et al., 

2016). They can be divided into two main categories by their source: primary MPs and secondary 

MPs. Primary MPs are the main source directly released in the environment by laundering 

synthetic clothes, abrasion of tyres when driving, and others. Secondary MPs originate from the 

decomposition of more significant plastic objects, such as plastic bags, bottles, etc. From the report 

of primary MPs in the oceans, there are seven major sources of primary MPs: tires, synthetic 

textiles, marine coatings, road markings, personal care products, plastic pellets, and city dust 

(Boucher and Friot, 2017). In terms of MPs’ pathway to ocean, there are many different routes, 

such as riverine input, wastewater effluent, sewage disposal, litter coastal activities, litter from 

marine activities, and atmospheric deposition. After MPs enter the ocean, they can cause an 

enormous impact on the marine environment. MPs may disrupt the development of marine animals 

and constitute harm to marine ecology due to their tiny size and widespread dispersion. 

Furthermore, MPs have been implicated in transporting organic contaminants such as 

antibiotics and insecticides, resulting in complicated interactions (Everaert et al., 2020). A recent 

sorption kinetics investigation on the behavior of crude oil on MPs in both seawater and a 

simulated fish digestive system indicated the possible function of MPs as a vector for 

bioaccumulation of hydrophobic organic contaminants (Güven et al., 2017). Therefore, MPs are 

persistent, and a possible vector of toxic organic compounds into the marine environment, and 

their negative impact is not only physical but also chemical due to their ability to adsorb and 

accumulate a variety of contaminants (Michele et al., 2021). 
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2.3.2 Behaviour and effects of microplastics in oil spill 

 When MPs are released into the ocean, they can integrate with spilled oil and dispersants 

due to their physical and chemical properties. The integration can potentially affect many 

processes, for example, oil dispersion, fate, and transport of MPs and spilled oil. Therefore, 

studying the interaction between MPs and oil spills is necessary to provide more evidence and 

insight into the synergy between these two ocean pollutants.   

 There have numerous oil spill response strategies, as stated in the introduction. Among 

these strategies, great attention is currently being paid to the use of oil spill treatment agents, such 

as chemical dispersants, that can efficiently break oil into tiny droplets under various 

environmental circumstances (Clayton et al., 2020). For example, approximately 7.9 million liters 

of dispersants were used to treat 780 million crude oils during the Deepwater Horizon spills in 

2010 (Bælum et al., 2012). These oil spill treatment agents and spilled oil in the ocean might adsorb 

with hydrophobic particles with a rough surface structure, such as marine snow. Marine snow is 

the decaying material from dead animals, plants, fecal matter, sand, soot, and other inorganic dust 

(Dissanayake et al., 2018). Marine snow provides particles to aggregate with oil and allow oil to 

be transported from the top of the sea to the bottom, resulting in an increase in oil concentration at 

the seafloor (Brakstad et al., 2018). 

Moreover, the interaction between particles spilled oil and chemical dispersants might impair oil 

dispersion’s efficacy (Zhao et al., 2017). Furthermore, the formed oil-particle-aggregates could 

significantly impact the destiny and transportation of oil. For example, they enable oil transport 

from the saltwater surface to the water column, potentially increasing oil concentration in the 

seawater column and improving oil droplet stability (Irisson et al., 2017; Brakstad et al., 2018). 
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These aggregates are biodegradable in general, and the particulates in the aggregates are harmless 

(Rahsepar et al., 2017). Unlike marine snow, MPs have physicochemical and structural features 

that distinguish them from natural biodegradable particles, such as higher hydrophobicity, reduced 

degradation capability, and possible toxicity (Porter et al., 2018). As a result, MPs may have 

distinct effects on the oil dispersion process, influencing the transport and destiny of oil in the 

marine environment. More crucially, the presence of an amphipathic dispersant in the MPs and 

crude oil system may alter the efficacy of oil dispersion and the shape, transit, and destiny of MPs 

in the marine system (Yang et al., 2021).    

Previous research has shown that MP aging develops novel hydrophilic functional groups 

and that changes in their surface shape might affect how they interact with other pollutants. The 

size of oil droplets and the efficacy of dispersion would be affected by MP aging on a day-to-day 

basis (Balakrishnan et al., 2019). In Yang et al. (2021) study, they measured oil droplet size and 

dispersion effectiveness of light oil and heavy oil under the DOR of 1:25 after different aging 

degrees with 583 mg/L MP samples (i.e., polyethylene). MP aging substantially influences the 

droplet size of heavy oil but has little impact on light oil. As seen in Figure 2.1 (a), Light oil 

droplet size remained consistent between 3.35 ± 0.15 and 4.76 ± 1.79 um after 56 days of aging. 

The droplet size for heavy oil, on the other hand, grew from 9.07 ± 0.50 um on day 0 to 15.49 ± 

0.00 um on day 56, with a high value of 20.31 ± 2.43 um on day 21. The presence of hydrophilic 

functional groups (OH, C=O, COC––) generated with slow MP surface aging may have assisted 

the adsorption of the dispersant’s hydrophilic heads. In contrast, the dispersant’s hydrophobic 

tails easily adsorbed the heavy oil, and this process allowed for the creation and expansion of 

WMDOAs (Yang et al., 2021).  
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Figure 2.6 the change of droplet size and dispersion effectiveness as MPs aging days increase 

(Yang et al., 2021) 

Figure 2.1 (b) demonstrated that the MP aging process improved light and heavy oil 

dispersion performance compared to pristine MPs. On day 0, the dispersion efficiency of light and 

heavy oil was 82.86 ± 10.87 and 40.39 ± 4.96%, respectively, and climbed to 109.75 ± 0.71 and 

58.30 ± 0.00%. Aged MPs significantly improved the efficacy of light oil dispersion (about 27%). 

Aged MPs were more hydrophilic than pristine MPs due to new hydrophilic functional groups 

(OH, C=O, COC––). As a result, aged MPs might disperse in saltwater with less dispersant usage 

than pristine MPs. Therefore, more dispersant was available for oil dispersion, increasing the 

efficacy (Yang et al., 2021). The formation of WMODAs is illustrated below. 
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Figure 2.7 Formation process of WMODAs (Yang et al., 2021) 

 

2.3.3 Challenges of distinguishing WMODAs 

There are appropriate approaches to identify MPs, ranging from physical to chemical 

means. Microscopical techniques and chemical analysis (e.g., dissect, polarised, fluorescence, 

scanning electron, atomic force microscopy, spectroscopy) are the most used methods for 

identifying micro/nano plastics (Chen et al., 2020; Roch and Brinker, 2017; Shim et al., 2017). 

The advantages and limitations of the different microscopic and analytic techniques are 

summarized in Table 2.2. 
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Table 3.2 Advantages and limitations of analytic techniques (Wirtz et al., 2019; Chen et al., 

2020) 

Identification 

method 
Advantages Limitations 

Stereo 

microscopy 

Fast and easy. 

Identification of shape, size, and 

colors. 

Not confirmative of plastic c 

nature of the particle. 

Lack of data of transparent or 

small particles. 

Scanning 

electron 

microscopy 

Clear and high-resolution images 

of particles. 

No gas into the chamber if coupled 

in ESEM mode. 

Small, detected particles in STEM 

mode 

Expensive. 

Long time and effort for analysis 

Lack of information on the type 

of polymer. 

FTIR 

spectroscopy 

Confirmation of the composition 

of the MPs. 

No false positive or negative data. 

Non-destructive analysis of 

materials 

Expensive. 

Wavelength radiation can be a 

limiting detection factor. 

Time consuming to analyze all 

the particles on a filter 

 

The stereo microscope analyses three dimensions by viewing the sample from two slightly 

different angles to obtain the two pictures required for stereoscopic vision. Therefore, objects may 

be observed mainly through reflected light at modest magnifications, generally between 8 and 50 

times. In the case of transparent particles, several studies applied stereomicroscope to identify the 

percentage of plastic-like particles, later characterized by other techniques, roughly 20-70% of the 

total particles. Furthermore, synthetic and natural fibers (prevalent in water, sediment, and biota 

samples) are difficult to distinguish using a stereomicroscope (Firdaus et al., 2020). The 

fluorescence microscope captures fluorescent emission from materials stimulated by a specific 

wavelength, as opposed to the optical microscope, which depends on the picture's contrast 
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provided by the reflection of light on the sample. A fluorescence microscope effectively identifies 

MPs based on their natural propensity to emit fluorescence, mainly white and clear polymers. 

When paired with imaging, this method lowers MPs detection failure and can lower the size limit 

of identified MPs (Scircle and Cizdziel, 2019). The quantification of fluorescence spheres with 

microscopy methods may also identify MPs in various matrices. However, chemical additives in 

the production process of MPs can potentially alter the fluorescence characteristics and affect the 

results (Dehghani et al., 2017).  

SEM is a method that can provide details on the morphological surface structure of MPs 

by obtaining high-resolution pictures of the surface state. It can also offer information on the 

chemical content of the samples because it can be equipped with Energy Dispersive X-ray 

Spectroscopy (EDS) detectors. The source electrons penetrate the solid material, causing various 

(both elastic and inelastic) scattering processes to occur, and various detection systems gather the 

resulting signals to form an image. Several studies used SEM to view MPs in various matrices, 

including sewage sludge, mussels, sediments, and sand (Anderson et al., 2017; Li et al., 2016; 

Nguyen et al., 2021). 

Infrared spectroscopy (IR) is absorption spectroscopy commonly employed in material 

characterization to examine chemical bonding. A molecule transition absorbs an infrared photon 

from its primary to excited vibrational state. Fourier transform infrared (FTIR) spectroscopy is 

carried out using an interferometer, which allows for the scanning of all frequencies present in the 

IR radiation produced by the source. FTIR employs four techniques: transmission, reflectance, true 

specular reflectance/reflection-absorption, and attenuated total reflection (ATR) (Veerasingam et 

al., 2021). The excellent energy availability leads to a significantly better signal/noise ratio than 

traditional IR spectroscopy, which is one of the critical advantages that assures improved 
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performance. FTIR is usually used to characterize MPs. In previous studies, MPs samples are 

stimulated, resulting in distinct detected vibrations that allow for the generation of a spectrum with 

a fingerprinting range. The nature of the substance is described by this spectrum, which can be 

determined by comparing it to established reference spectra. Large particles (>500 nm) can be 

examined using ATR-FTIR, while tiny particles need micro-FTIR, which allows for simultaneous 

spectral imaging, mapping, and collecting (Dini et al., 2021) (Gaston et al., 2020). FTIR has been 

widely employed in MPs research to locate and describe them in sediment, marine species, surface 

water, and food (Cincinelli et al., 2017; Corami et al., 2020; Harrison et al., 2012).  

However, no study has been done in the characterization of WMODAs since it is a 

relatively new concept in the interdisciplinary area of MPs and oil spills, and the properties of 

WMODAs also make the characterization difficult, for example, multiple mixed substances, wide-

ranged sizes, and subtle change of morphology. From listed identification methods, either one 

cannot classify WMODAs with different weathering degrees independently. Therefore, there is a 

need to develop a new approach to identify WMODAs with different weathering degrees and 

further quantify their impacts on oil dispersion and oil droplet size.  

 

2.4 Summary 

In this chapter, section 2.1 reviewed ML’s methods and how ML usually conducts 

classification and regression, and examples that ML was applied to solve complex environmental 

problems. There have been few ML-related methods in an oil spill and marine pollution, and 

further, no ML-related methods were developed to classify WCO and CDO and different 



58 

 

weathering degrees of WMODAs. The potential of using ML algorithms with the aid of computer 

vision and analytic techniques to solve the challenges in these two related problems is promising. 

Section 2.2 reviewed the definition, motivations to conduct oil fingerprinting, and current 

methods of oil fingerprinting. It further illustrated how to select diagnostic ratios from GC/MS 

through relatively stable RSD and gave examples of commonly used diagnostic ratios. Section 

2.2.4 discussed how the weathering process and the application of dispersant on spilled oil could 

potentially affect oil fingerprinting because of the change in properties of dispersed oil. 

Section 2.3 reviewed the problem of emerging contaminants (e.g., MPs) with spilled oil 

which would bring challenges in oil fingerprinting, oil dispersion, MPs’ fate, and transportation in 

marine environments. The effects of different weathering degrees of WMODAs on oil dispersion 

efficiency were discussed, and the needs and challenges of distinguishing different weathering 

degrees of WMODAs were stated. 

The following chapters 3 and 4 will give the proposed approaches in an oil spill and marine 

pollution fields and demonstrate solutions to the problems of distinguishing WCO and CDO in oil 

fingerprinting and different weathering degrees of WMODAs in spilled oil remediation.  
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CHAPTER 3: A DATA-DRIVEN BINARY-CLASSIFICATION APPROACH 
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In a marine oil spill, source identification and behavior characterization are critical to 

understand the environmental impact and response of the accident. The subsequent weathering 

process affects the fate and behavior of spilled oil such as evaporation, emulsification, 

photooxidation, and biodegradation (Li et al., 2016; Song et al., 2019). Oil fingerprinting is usually 

achieved by recognizing specific groups of petroleum hydrocarbons, called biomarkers, such as 

terpanes and steranes (Shen et al., 2020; Wang et al., 2011). These biomarkers have unique 

distributions in different oil categories, which allows effective fingerprinting based on the 

diagnostic relationships among biomarkers (Wang et al., 2013).  

However, oil fingerprinting becomes more challenging when spilled oil is treated by chemical 

dispersants (Song et al., 2018). Dispersants can fractionate oil into smaller droplets, theoretically 

facilitate the biodegradation process, and reduce the exposure to marine animals and accident 

respondents (Bayable et al., 2021; Lee et al., 2015). Dispersants can significantly affect oil 

physicochemical properties (e.g., viscosity, boiling point, and iodine value) and oil weathering, 

and further influences biomarkers’ attributes and generate unreliable diagnostic ratios compared 

with those in non-dispersed oil (Datta et al., 2018; Torres et al., 2020). This consequence could 

baffle the weathering processes and result in errors after contrasting chemically dispersed oil 

(CDO) fingerprinting in marine environments (John et al., 2016; Song et al., 2016). Thus, the 

addition of dispersants could generate non-negligible bias to the tracking of the source and 

weathering of spilled oil in oceans (Wu et al., 2021).  

Traditionally statistical methods, such as cluster analysis, discriminant analysis, and principal 

component analysis (PCA), have widely implemented in characterizing and tracing spilled and 

3.1 Introduction 
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weathered oil by primarily analyzing spectrum data of biomarkers (Ismail et al., 2016; Mirnaghi 

et al., 2019). Machine learning (Nasution et al., 2018), as a novel advancement of statistics, has 

been recently recognized as a promising tool and introduced into environmental fields due to its 

many advantages (Saha et al., 2016). Firstly, ML is effective in labelled classification problems 

(Mieth et al., 2016). Secondly, it is specially designed for data with large size and intricate 

relationship of input variables and samples without depending on validation of the initial 

assumptions (e.g., whether data follow normal distribution and linearity) (Jordan and Mitchell, 

2015). Thirdly, it only requires choosing predictive algorithms by relying on its empirical 

capabilities without pre-existing knowledge about subjects (Bzdok et al., 2018). There have 

growing applications of ML in studying complex environmental problems, such as predicting fecal 

coliform concentrations in wastewater (Khatri et al., 2020), classifying wide-area seafloor habitat 

by acoustic and visual data (Zelada Leon et al., 2020), and forecasting water quality parameters in 

coastal waters (Alizadeh et al., 2018). However, few efforts have been reported in employing ML 

in the area of oil fingerprinting to classify dispersed oil.  

This study introduces ML as a new analysis tool by proposing a new binary classification 

approach to aid source identification in oil fingerprinting by distinguishing weathered crude oil 

(WCO) and CDO. The approach comprises six ML algorithms and a dimensional reduction 

algorithm (i.e., PCA), to address the dispersed oil classification problem. The ML algorithms 

considered in the study include Random Forest (RF), Support Vector Classifier (SVC), K-Nearest 

Neighbor (KNN), Logistic Regression (LR), Ensemble Voting Classifier (EVC), and Decision 

Tree (DT). The total 862 diagnostic ratios based on five types of biomarkers (terpanes, steranes, 

triaromatic steranes or TA-steranes, monoaromatic steranes or MA-steranes, and diamantanes) are 

chosen from our previous study (Song et al., 2019) as the features for ML and to be further 
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evaluated by the six algorithms to identify the best algorithm for classification. The approach is 

expected to provide an efficient analysis method for identifying the WCO/CDO and supporting oil 

spill source identification.  

3.2.1 Binary classification approach  

The binary classification approach comprised seven steps from the front data entry to the 

application of ML algorithms. The core of the approach was six ML algorithms that have different 

specializations in analyzing datasets. Figure 3.1 shows the workflow of the approach, where 

datasets were preprocessed by feature selection, formed different feature sets, trained by ML 

algorithms, ranked by performance, and finally used to make classifications. Each square 

represents a machine learning operator, with arrows indicating the direction of the data flow path.   

3.2 Method 
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Figure 3.1 The binary classification approach 

3.2.2 Data entry and preprocessing 

The raw datasets might not be desirable to train ML algorithms directly because of 

missing data, outliers, or merely heavy computations. In this study, the original datasets were 

engineered some new features by calculating quotients between every diagnostic ratio. For 

example, there had up to 462 features in terpanes. This process might also bring noise into the 

datasets. Without dimensionality reduction technique applied, the input would require 462 values 

for a single biomarker group. To simplify the feature input process while maintaining the most 
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information of datasets, principal component analysis (PCA) was introduced in this approach. It 

decreased hundreds features to dozens, and hence greatly reduced computational time. By 

reducing dimensionality through PCA, the datasets could be denoised as well.  

The main formula of PCA can be represented in Eq. 3.1 (Wetzel, 2017): 

𝑃𝐶𝑖 = 𝑎1𝑋1 + 𝑎2𝑋2 + ⋯ + 𝑎𝑑𝑋𝑑                                              (3.1) 

where, PCi, principal component i; Xd, original feature d; ad, numerical coefficient of Xd. 

The Scikit-learn library from Python® v3.8 was used to conduct PCA and data 

standardization. The 95% variance was selected to keep the information relatively complete in the 

data to secure accurate prediction results (Hao et al., 2020). Before the feature selection, datasets 

were normalized to ensure that feature values were simultaneously distributed and contributed 

equally to the analysis without creating bias (Vasan and Surendiran, 2016). Afterward, the loading 

matrix in PCA provided the correlations between the original features and new principal 

components (PC). For better interpretations, feature selection was proceeded by choosing the 

highest correlated original features (Abdi and Williams, 2010).  

3.2.3 Modeling developments for oil fingerprinting 

Total six ML algorithms were applied for the comparative analysis. Before feeding input 

values into ML algorithms, the preprocessed datasets were divided into training sets (80%) and 

test sets (20%) to evaluate the performance based on previous studies (Bhatnagar et al., 2017; 

Medar et al., 2017). The brief definitions of six ML algorithms applied in this study were 

introduced below.  

KNN algorithm is a supervised machine learning algorithm. It works by discovering the 

distances between a query and all the examples in the datasets and choosing the specific number 
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of examples (K) closest to the query, then voting for the most frequent label. Distance metric could 

be represented by Euclidean distance in Eq. 3.2 (Potamias et al., 2010): 

𝐷(𝑥, 𝑦) = √∑𝑘
𝑖=1 (𝑥𝑖 − 𝑦𝑖)2                                                         (3.2) 

where, D, the distance between the query and examples; x, the query; y: examples. 

SVC algorithm is to find a hyperplane that has the maximum margin between data points 

of classes in N-dimensional space (N: the number of features) to markedly classified the data points 

(Wang et al., 2011a). Figure 3.2 demonstrates how the perpendicular distance from the line to the 

nearest point is used to determine a hyperplane with the greatest margin. 

 

Figure 3.2 The fundamental theory of SVC 

DTC consists of nodes, which are the test for the value of a specific edge or branch 

corresponded to the outcome of a test and connected to the next node or leaf and leaf nodes. 

Terminal nodes are used to predict the class labels (Farid et al., 2014). RFC is an advanced decision 

method, which combines the output of multiple (randomly created) decision trees. This ensemble 

learning increases the classification performance of a single tree classifier by randomly choosing 
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data nodes to create a decision tree. The feature space is divided into M regions Rm, 1 ≤ m ≤ M 

by a decision tree with M leaves. The prediction equations (Eq. 3.3 and Eq. 3.4) are defined below 

for each tree: 

𝑓(𝑥) = ∑𝑀
𝑚=1 𝐶𝑚𝛱(𝑥, 𝑅𝑚)                                                            (3.3) 

where, M, the number of regions in the feature space; Rm, a region suitable to m. 

Cm is a constant appropriate to m: 

𝛱(𝑥, 𝑅𝑚) = {1, 𝑖𝑓 𝑥 ⋲ 𝑅𝑚  

0,       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒}                                             (3.4) 

The final classification prediction come from the majority votes of all trees (Chen et al., 2020; 

Rodriguez-Galiano et al., 2012).  

LR is a statistic model that conducts a logistic function or sigmoid function to model a 

binary dependent variable, and the logistic curve, which relates the independent variable, can be 

represented as shown in Eq. 3.5: 

𝑃𝑖 =
ⅇ𝑎+𝑏𝑥

1+ⅇ𝑎+𝑏𝑥                                                                  (3.5) 

where, P, the probability of a label 1; e, the base of the natural logarithm; a and b are the model 

parameters (Robles-Velasco et al., 2020) and the probability threshold used for binary 

classification is 0.5. 

EVC is a meta-classifier that uses majority voting to classify related or potentially different 

machine learning classifiers, as shown in Eq. 3.6: 

𝑦 = 𝑚𝑜𝑑𝑒{𝐶1(𝑥), 𝐶2(𝑥), … , 𝐶𝑚(𝑥)}                                     (3.6) 

where, y, the predicted label; Cm, different classifiers (Onan et al., 2016). 
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Depending on the attributes of different ML algorithms, they perform distinctively on the 

same datasets. Hence it is important to understand each ML algorithm’s limitations. Table 3.1 

presents their significant advantages and disadvantages. 

 

 

 

 

 

Table 3.1 Overview of different ML algorithms 

Model Advantages Disadvantages References 

KNN 

Has no training 

periods. 

Adds new data 

seamlessly. 

Has high outlier sensitivity. 

Is unsuited for high-

dimensional data. 

(Ao et al., 2019; De 

Leonardis et al., 2018) 

SVC 

Is suitable for high-

dimensional data. 

Has relatively 

memory efficient. 

Is unsuited for large datasets. 

Has poor noise resilience. 

(Dou et al., 2020; 

Zendehboudi et al., 2018) 

RFC 

Deals with very high 

dimensional data. 

Has built-in feature 

importance metric. 

Overfits noisy classification 

problems. 

(Ao et al., 2019; Dogru and 

Subasi, 2018) 
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DTC 

Requires fewer 

efforts for data 

preparation. 

 

Has long training process. 

Is inadequate for regression 

problems. 

(Hamsagayathri and 

Sampath, 2017; Pham et 

al., 2017) 

LRC 

Updates easily to 

reflect new data. 

Is less prone to over-

fitting in a low 

dimensional dataset. 

Extends easily to 

multi-class 

classification. 

Is unable to solve non-linear 

problems. 

Is difficult to capture complex 

relationships and sensitive to 

outliers. 

(Christodoulou et al., 

2019; Lee and Jun, 2018; 

Qasim and Algamal, 2018) 

EVC 

Improves overall 

model performance. 

Unlikely overfits. 

Is hard to interpret ensemble 

models. 

Does not perform well when an 

individual model is closest to 

the true data generating 

process. 

(Saqlain et al., 2019; Xiao 

et al., 2018) 

 

3.2.4 Hyperparameter optimization and overfitting     

In machine learning, some hyperparameters need to be initialized and adjusted for better 

prediction results. Meanwhile, overfitting could happen during the model training because models 

learn the details and noise in the training data to the extent that detrimentally impacts the 
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performance of models on new data (Yeom et al., 2018). In this approach, GridSearchCV was 

applied for both hyperparameter optimization and overfitting prevention (Ranjan et al., 2019). The 

main components of the GridSearchCV are:  

● Hyperparameter grid 

A python dictionary was created with hyperparameter names as keys and a list of hyperparameter 

settings as values. The best accuracy was verified based on the test on all the combinations of 

hyperparameters.  

● Cross-validation 

Cross-validation was a statistical method used to estimate ML models’ skill and its primary 

purpose was to evaluate models’ generalization capability on unseen data. This process had a 

simple parameter called k that represented the number of groups that given datasets were to be 

split with after random shuffles, and in this approach, k was set to 5 by default. The evaluation 

scores were stored in the end, epitomizing the model (Ranjan et al., 2019). The following Table 

3.2 summarized the chosen parameters for each ML algorithm in GridSearchCV, and the options 

were decided based on the previous ML algorithms studies (Badem et al., 2019; Moldagulova and 

Sulaiman, 2017; Pham et al., 2017; Roberts et al., 2017; Saqlain et al., 2019; Xiao et al., 2018).            

Table 3.2 Hyperparameter tunning in different algorithms 

Algorithm name Parameters Options 

LRC 

solver Liblinear 

regularization (C) 1 

10 

20 

30 
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RFC 

n-estimators 50 

100 

150 

DTC 

algorithms CART (gini impurity) 

ID3 (entropy) 

splitter best 

random 

SVC 

kernel linear 

rbf 

regularization (C) 1 

10 

20 

gamma auto 

KNN 

n-neighbors (K) 7 

10 

15 

    

Parameterization for the EVC model was conducted later separately since it combined the 

previously mentioned models under the best hyperparameters. The hyperparameter optimization 

for EVC was to select between hard voting and soft voting for its voting system. Hard voting took 

the most frequently model predicted results as its result. In soft voting, an individual classifier 

provided a probability that a specific data point matched a particular label, and the target label with 

the most significant sum of weighted probabilities was the final prediction (Saqlain et al., 2019). 
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Both hard and soft voting were adopted in the study. Finally, the model accuracy came from 5-

fold cross-validation.  

3.2.5 Performance evaluation and model deployment 

In this approach, two methods were used to evaluate the performance of models: cross-

validation and confusion matrix (f score). Shuffle split and cross-validation were applied from the 

Scikit-learn library because the conventional train-test split method cannot guarantee the original 

datasets were well mixed and may cause bias in the prediction. The confusion matrix comprised 

four different combinations of predicted and actual values: true positives, false positives, false 

negatives, and true negatives. Here, precision and recall were applied, which refers to the 

proportion of the relevant results and the ratio of the total number of the relevant results correctly 

classified, respectively.  

F-score was introduced in the evaluation system to handle classification imbalance 

situations. The following equations were the calculations for recall, precision, and F-score (Ohsaki 

et al., 2017).  

Precision =  
𝑇𝑃 

𝑇𝑃+𝐹𝑃
                                                                 (3.7) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =      
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                  (3.8) 

 

F-score =   
2∗𝑟ⅇ𝑐𝑎𝑙𝑙∗𝑝𝑟ⅇ𝑐𝑖𝑠𝑖𝑜𝑛

𝑟ⅇ𝑐𝑎𝑙𝑙+𝑝𝑟ⅇ𝑐𝑖𝑠𝑖𝑜𝑛
                                                         (3.9) 

where, TP, true positive; FP, false positive; FN, false negative. 

F-score ranges from 0 to 1 and reflects how accurate the model predicts. The higher F-score 

is, the more accurate model predicts (Deng et al., 2016). After the evaluation of both F-score and 
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model score, the best ML model was chosen to build a final model from the features selected 

datasets after PCA. 

Python was the language for ML algorithms. In the end, a web-based application was 

further developed through Python Flask based on the developed method for more general use 

through APIs.  

The binary approach was further applied to distinguish dispersed oil for the aid of oil 

fingerprinting. The detailed operation procedures and results were elaborated in this section.    

3.3.1 Biomarker data entry and preprocessing  

The experimental data used in this study came from the work published by Song et al. 

(2018) which provided a detailed description of the experiment. Alaska North Slope crude oil was 

used in the study. Briefly, aliquot chemically dispersed oil, and non-dispersed oil samples were 

generated and weathered from day 1 to day 60 in a simulated marine environment. Five types of 

biomarkers (terpanes, steranes, triaromatic steranes or TA-steranes, monoaromatic steranes or 

MA-steranes, and diamantanes) were detected and analyzed to differentiate dispersed oil and non-

dispersed oil. The samples were analyzed for each biomarker in 10 days intervals, through day 1 

to day 60 weathering process. However, diamantanes could not be detected in long-term 

weathering after 30 days, while data from the other four biomarkers were retrieved through the 

whole weathering process (Song et al., 2019). In terms of the missing data from the experiments, 

medium values were filled in from the duplicates (Wei et al., 2018). For simplification of 

expression of peaks, Table S1 of the supplements contains information on identified peaks, 

including peak codes (abbreviations) and compound names (Song et al., 2019). 

3.3 Application for oil fingerprinting analysis 
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Originally, except that diamantanes’ dataset was made of 35 samples and 9 features due to 

lack of detection after 30 days, the other four biomarkers’ datasets were generated from 108 to 125 

samples corresponded to 9 to 22 features in WCO and CDO. Quotients between each biomarker 

were calculated as diagnostic ratios for feature engineering. Terpanes increased to 462 features, 

followed by 182 features from steranes.  

After feature engineering, PCA was applied for feature selection and dimensionality 

reduction. As mentioned in section 2, all datasets from five biomarkers were standardized before 

conducting PCA, and 95% variance was chosen to ensure the retention of most information from 

the original datasets. Scree plots were drawn for PCs against the percentage of explained variance 

(Murugan and Devi, 2019). The scree plots below showed the results from these biomarkers.  
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Figure 3.3 Scree plots of principal components under 95% variance of five biomarkers 

(Note: A: Diamantanes, B: MA-steranes, C: Steranes, D: TA-steranes, E: Terpanes) 

Comprehensively, in Fig. 3, the most PC (13) belonged to terpanes, followed by steranes 

(10), and the least PC belong to diamantanes, which only had 5 PCs under 95% variance. All the 

first PC account for above 35% variance, and the first PC in Figure. 3(D) and (E) further reached 

around 50% variance. Moreover, only the top three PCs of steranes in Fig. 3 (C) did not explain 
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more than 75% variance. Table 3.3 presented the selected features in every biomarker and features 

corresponded with biomarkers listed in Table S1 of the supplements. 

Table 3.3 Selected features in five biomarkers 

Features Diamantanes MA-steranes Steranes TA-steranes Terpanes 

PC1 9/2 1/12 16/1 3b/7 C25/H35S 

PC2 5/4 4/11 14/18 3b/1 H35S/H32R 

PC3 1/4 5/4 8/7 8/6 C25/C27b 

PC4 5/3 12/6 16/13 6/4 H35S/H34R 

PC5 6/7 11/8+9+10 17/16 6/7 C26/C28a 

PC6  6/7 8/10 3b/3a H32S/H32R 

PC7  8+9+10/12 11/8 2/1 H31S/H31R 

PC8   8/11  H32R/H33S 

PC9   15/13  Ts/Tm 

PC10   13/14  H33R/H34S 

PC11     H31R/H32S 

PC12     Tm/C30 

PC13     C23/C25 

 

The chemical compositions of these biomarkers decided whether they had high resistance 

to physicochemical or biological weathering processes (e.g., terpanes) or were more likely 

oxidized and biodegraded (e.g., diamantanes) (Song et al., 2019). This different response 

determined the number of selected features and implied potential candidates for distinguishing 

WCO and CDO, for example, 3,4-dimethyldiamantane, and 4-methyldiamantane in diamantanes; 
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C21 5ß monoaromatic steroid, and C28 monoaromatic 5α (H)-ergostane (20R) in MA-steranes; 

C28 20R-5α(H),14α(H),17α(H)-ergostane, and 20S-13β(H),17α(H)-diasterane in steranes; C22 

triaromatic steroids (b), and C27 triaromatic-ergostane (20R) in TA-steranes; C25 tricyclic terpane 

(a), and 22S-17α(H),21β(H)-30,31,32,33,34-pentakishomohopane in terpanes. 

For dimensionality reduction, instead of transforming features into a lower dimension, the 

features with the most significant loading values were chosen to represent the PCs for better 

interpretation and the convenience of the input for model prediction. Two more feature spaces 

were created for comparative analysis in terms of the impact of different PCs on the performance 

of ML algorithms. The original dataset was marked as X1, and the dataset with all PCs after PCA 

was marked as X, and the dataset with the top 3 PCs was marked as X3.  

3.3.2 Data visualization   

Other than resizing the datasets, dimensionality reduction also made data visualization 

possible by choosing the top 3 PCs by their variance. 3D graphs could be presented to generalize 

how data spread out in different directions. In Fig. 3.4, red dots represent CDO, and green dots 

represent WCO. From Fig. 3.4 (A-E), the green dots and red dots were intermixed with each other, 

and it was challenging to tell whether two-dimensional feature space or three-dimensional feature 

space separated better between WCO and CDO by visual observation. This principle could also be 

inferred for other dimensional feature spaces. Moreover, complicated mingle between red dots and 

green dots also made it difficult to tell which biomarker better separate WCO can and CDO. The 

interweave between CDO and WCO was caused by the addition of dispersants in oil and water 

emulsion because dispersants can substantially lessen the interface tension and change physical 

attributes, such as oil viscosity (Torres et al., 2020). These effects from dispersants could further 
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influence the fate and behaviours of CDO, leading to a decrease in fingerprinting accuracy (Song 

et al., 2018).  

3.3.3 Models development for oil fingerprinting  

Six ML algorithms and three different feature spaces were used for model training and 

comparative analysis. The cross-validation on testing datasets in GridSearchCV was set to 20%, 

which assigned 20% data on test datasets. The hyperparameter optimization of each model was 

followed by the options in Table 3.4 to find the best parameters combination. For further prediction 

and evaluation, the labels were converted from texts to numbers, 0 representing CDO and 1 

representing WCO. The results were shown in Table 3.4 by the hyperparameter optimization. 
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Figure 3.4 Scatter plots of the top three PCs datasets in five biomarkers 

(Note: A: Diamantanes, B: MA-steranes, C: Steranes, D: TA-steranes, E: Terpanes) 
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Table 3.4 Outputs of different ML models in each biomarker 

Biomarkers Datasets Models Best model score Best parameters 

Terpanes X (all PCs) 

LRC 0.827 

C: 20, 

solver: liblinear 

RFC 0.863 n-estimators: 100 

DTC 0.890 

Criterion: gini, 

splitter: best 

SVC 0.842 kernel: linear 

KNN 0.727 n-neighbors: 10 

EVC 0.864 Vote: soft 

TA-steranes X (all PCs) 

LRC 0.825 

C: 30, 

solver: liblinear 

RFC 0.875 n-estimators: 100 

DTC 0.841 

Criterion: entropy, 

splitter: random 

SVC 0.783 kernel: linear 

KNN 0.683 n-neighbors: 7 

EVC 0.900 Vote: soft 
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Continued Table 3.5 Outputs of different ML models in each biomarker 

Biomarkers Datasets Models Best model score Best parameters 

Steranes X (all PCs) 

LRC 0.727 

C: 1, 

solver: liblinear 

RFC 0.845 n-estimators: 100 

DTC 0.800 

Criterion: entropy, 

splitter: best 

SVC 0.736 kernel: rbf 

KNN 0.773 n-neighbors: 7 

EVC 0.800 Vote: soft 

MA-steranes X (all PCs) 

LRC 0.704 

C: 1, 

solver: liblinear 

RFC 0.848 n-estimators: 100 

DTC 0.792 

Criterion: gini, 

splitter: random 

SVC 0.864 kernel: rbf 

KNN 0.840 n-neighbors: 5 

EVC 0.832 Vote: soft 

Diamantanes X (all PCs) 

LRC 0.686 

C: 1, 

solver: liblinear 

RFC 0.900 n-estimators: 30 

DTC 0.743 

Criterion: gini, 

splitter: best 
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SVC 0.771 kernel: rbf 

KNN 0.729 n-neighbors: 5 

EVC 0.686 Vote: soft 

 

For each biomarker, the best-performed models were highlighted. Table S2 in the 

supplements provided all the parameters from three different datasets in five biomarkers. Among 

three datasets, the models associated with all PCs feature space after PCA acquired the highest 

scores. The reason could be PCA filtered out the noise in the original datasets and help improve 

the model prediction. Similar results of improvement of ML performance could also be found in 

previous PCA integrated ML studies (Nasution et al., 2018; Xu and Wang, 2005). In Table 3.4, 

TA-steranes and diamantanes gained the highest score (0.900) from the EVC model and RFC in 

the X dataset with seven features and five features, respectively. The least score (0.845) was from 

the RFC model in the X dataset of steranes with 10 features. These scores reflected how accurate 

ML algorithms predict these biomarkers.  

3.3.4 Confusion matrix and decision boundary visualization 

Except for model scores, confusion matrices were also introduced to probe the detailed 

performance of best models from a summary of prediction results, and combined with decision 

boundary, the intuitive understanding of how targets get divided can be easily achieved.  
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Figure 3.5 Normalization confusion matrix for the prediction of two classes (WCO and CDO) 
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Figure. 3.5 provided confusion matrices after training models with the best parameters and 

datasets with all PCs of five biomarkers from the results of Tables 3.3 and 3.4. In the confusion 

matrix, the small squares of top left, top right, bottom left, and bottom right represented true 

negative, false positive, false negative, and true positive, respectively. If evaluation only 

considered true negative, diamantanes Figure. 3.5 (A) had the highest rate, while terpanes Figure. 

3.5 (E) had the highest true positive rate. This imbalance of precision and recall made it difficult 

to decide which biomarker predicted better. Hence, in this case, the f-score was set as a standard 

to rank models' performance on biomarkers (Juba and Le, 2019). The true values and predicted 

values were used to calculate the precision and recall and f-score through equations 7, 8, 9, and 

the final results were normalized with a color bar. F-score is a measure of a model’s accuracy on 

a dataset, the higher F-score is, the more accurate model predicts (Ohsaki et al., 2017). 

Table 3.6 F-score for different models 

Biomarkers Models F-score 

Terpanes DTC 0.869 

TA-steranes EVC 0.792 

Steranes RFC 0.845 

MA-sterane SVC 0.793 

Diamantanes RFC 0.871 

 

Table 3.5 listed F-scores from the best-performed models and each biomarker has different best-

performed model due to the unique distribution in their datasets which was contributed by 

distinctive features. RFC in diamantanes performed best (0.871) among other biomarkers under 

the conditions of this study. The result was in consonance with our previous studies which showed 
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diamantanes were optimal to be used for distinguishing WCO and CDO because it was influenced 

by weathering (Wang et al., 2006) and dispersants also had a direct impact on it (Song et al., 2019). 

Decision boundary that partitioned the feature space into two labels under two dimensions. It 

reflected on how well different classifiers perform to separate WCO and CDO. Under the best 

performance in two dimensions, the targets could be separated well without missing many targets, 

and the results got better as dimension increases to all PCs.  

Finally, ML models were deployed through the flask server and NumPy, and Pickle 

libraries were applied through the PyCharm for general use. The web app provided five different 

biomarkers options, and users could choose the one(s) for prediction to meet their requirements. 

After selecting specific biomarkers and filling in the input features, the result could be showed to 

indicate whether a sample is either WCO or CDO. 
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Figure 3.6 Decision boundary of models in different biomarkers 
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Distinguishing the dispersed oil in the marine environment is an essential step in 

environmental forensic. Currently, there were few of studies on applying ML methods for oil 

fingerprinting. This study presented a binary classification approach to classify WCO and CDO 

rapidly and accurately, using PCA and six ML algorithms. The performances were evaluated and 

compared among ML models that were trained from scratch. The criteria for choosing ML 

algorithms were flexible since each algorithm came with advantages and disadvantages. Hence, 

adequate trials of ML algorithms were made to achieve the best performance.  

In this paper, PCA was implemented as a dimensionality reduction and feature selection tool 

to acquire a meaningful data interpretation by choosing the most significantly correlated variables. 

There were three benefits of dimensionality reduction. It reduced ML algorithms' training time 

because of the downsizing of datasets by selecting features (Becht et al., 2019). It removed noise 

and reduced overfilling by keeping the relevant ones, which was beneficial in oil spill 

fingerprinting because of the high dimensionality. Screening out the redundancy from these 

features could also increase the modeling accuracy (Kiarashinejad et al., 2020). It could also reflect 

the potential pattern or trend in datasets by choosing the top three PCs for visualization (Murugan 

and Devi, 2019). The following table listed the average time spent between dataset X1 (without 

PCA) and dataset X (with PCA) in five runs and the increasing ratio from applying X to X1. 

 

3.4 Discussions and future research perspectives 
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Table 3.7 Time cost on algorithms with and without PCA 

Time (s) Diamantanes MA-steranes Steranes TA-steranes Terpanes 

X1 (Without 

PCA) 

1.929 2.240 2.437 2.230 2.872 

X (With PCA) 1.826 1.862 1.920 1.925 1.913 

Increasing ratio 5.6% 20.3% 26.9% 15.8% 50.1% 

 

All biomarkers' executing time increased when training ML models with datasets before 

PCA and terpanes increased the most (50.1%) shown in Table 3.6. The execution speed of the 

dataset with PCA was faster than without PCA as it takes less time with a reduced feature set by 

grouping the maximum variance components in the orthogonal space (Becker et al., 2020). The 

amount of decreased time here might not be impressive in terms of its magnitude. However, when 

dealing with massive datasets, decreased training time would be more magnificent.   

 The sample size was used for model training in this study is relatively small (n = 35 to 

125). Naturally, ML algorithms heavily rely on large datasets to increase the accuracy (Apruzzese 

et al., 2018). Therefore, there is a need to build an open-source database management system that 

gathers more information about dispersants and diagnostic ratios of biomarkers to increase dataset 

size and boosts the accuracy of classification in future works. Except the slow building process of 

database management system to boost dataset size, many other ways are also available for 

immediately model training. Traditional methods include synthetic minority over-sampling 

technique (SMOTE) (Guo et al., 2019), uniform random generation and adding noise (Moreno-
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Barea et al., 2018). These methods are simple to implement but have high risk to introduce biases. 

The newly invented generative adversarial networks (GANs) can be substantially useful in 

increasing datasets and decrease the chance of introducing biases because it can simulate the 

distribution from sample data (Shin et al., 2018).         

 For applying ML models, the disadvantage is the lack of explanations that is why some 

ML algorithms are metaphorized as a black box because only inputs and outputs are visible and 

the logic behind how classification is made by features is extremely hard for a human to understand 

or impossible to comprehend in some cases. For example, EVC performed well on TA-steranes, 

but it was complex to understand how a single diagnostic ratio impacted the outcome since it 

involved many ML algorithms. The absence of explanation on single or local observation could 

cause the mistrust of models because the good performance may be contributed by noise, 

correlations, and overfitting (Ribeiro et al., 2016). For example, in Figure. 3.6 (D), the EVC model 

seems overfitting in that decision boundary. Hence, the improvement of this approach can also be 

achieved in interpretability and could further increase the reliability of models and the prediction 

accuracy. The corresponded techniques such as local interpretable model agnostic explanations 

(LIME), Shapley additive explanations (SHAP) will be introduced. Lately, neural networks (NN) 

have drawn massive attention because of their ability in classification, prediction, clustering, and 

associating. NN’s application can be found in various industries, such as aerospace, automotive, 

robotics, and telecommunications (Abiodun et al., 2018). In the future, we would like to utilize 

different state-of-the-art NN in deep learning. For example, applying a combination of feature 

selection, model interpretation algorithms and NN, especially the convolutional neural network 

(CNN), for classification tasks to avoid overfitting and improve reliability and accuracy in oil 

fingerprinting.  
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Oil spill fingerprinting has been widely used for source identification by matching 

compositional parameters of both candidate spill sources and oil spill samples in the marine 

environment. However, the addition of dispersants on oil spills changes their chemical 

composition and makes it harder to determine the possible source. There have few studies on 

distinguishing dispersed oil by ML. The study proposed the binary classification approach for the 

classification to fill the gap between dispersed oil and source identification. 

This study analyzed various variables to discover valuable features as future input, used data 

preprocessing and six ML algorithms for comparative analysis, such as RFC, SVC, KNN, LR, 

EVC and DT, developed the binary classification model to identify WCO and CDO. The proposed 

method classified sample oil as dispersed in seconds by inputting selected diagnostic ratios and 

prediction looked promising. The EVC and RFC models performed best with TA-steranes and 

diamantanes datasets in terms of accuracy, but from the decision boundary perspective, overfitting 

occurred with the EVC models. Thus, considering the f score and overfitting problem, RFC with 

diamantanes for dispersed oil classification was recommended. The preprocessed datasets with 

dimensionality reduction algorithms also indicated better prediction and faster speed than the 

original datasets. The results from this research could effectively support oil spill source 

identification and proved the practical value of adopting ML to facilitate oil fingerprinting.  

 

  

3.5 Summary  
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4.1 Introduction 

Deep learning (DL), as one of the advanced computational methods, has been widely 

applied in finance, medical treatment, self-driving and causality inference domains for 

classification and regression (Duan et al., 2020; Kang et al., 2021; Ozbayoglu et al., 2020; Sahiner 

et al., 2019). Among DL algorithms, convolutional neural networks (CNNs) are among the most 

popular networks that usually perform classification under computer vision tasks through images. 

The significant benefits of CNNs over other DL algorithms are that CNNs can learn features 

without any human intervention and weight sharing (Wu et al., 2018). Specifically, each feature 

map after extraction is linked to the preceding layers through a series of weights, and the locally 

weighted sum is then transferred to the activation layer (Qian et al., 2018). The successful 

application of CNNs can be seen in many computer vision domains, such as facial recognition, 

image search, and natural language processing (Liu et al., 2018; Sajjad et al., 2020; Shen et al., 

2018). 

However, CNNs also have some disadvantages, and if they are not well addressed in the 

application, the performance will be heavily affected. The filters can be used to check whether 

features are present by striding the image, and the information regarding the composition and 

location of the components is lost during the process (Zhu et al., 2017). Moreover, CNNs cannot 

classify images with different positions and understand coordinate frames of images (Tu et al., 

2019). Finally, training CNNs requires a large amount of data, and collecting sufficient data may 

not be possible or cost-efficient due to restrictions in some domains. Therefore, some data 

augmentation techniques are usually introduced to solve the above difficulties. One of the most 

used and traditional data augmentation techniques is transforming original images by rotating, 

flipping, zooming in/out, and other methods. However, if data augmentation solely depends on 
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this technique, the model’s performance may plateau or even overfit since “new” images came 

from the small original images’ dataset (Shorten and Khoshgoftaar, 2019). Instead, deep 

convolutional generative adversarial networks (DCGANs) derived from generative adversarial 

networks (GANs) can perform better data augmentation to increase CNNs performance by 

increasing the size and generalization of the dataset.      

Compared to the architecture of original GANs, DCGANs replaced the deterministic 

spatial pooling function with convolutional nets, eliminated connected layers, and included batch 

normalization to stabilize learning and help poor initialization (Fang et al., 2018). Its application 

covers from generating realistic photographs, semantic-image-photo translation to 3D object 

generation (Chen and Hays, 2018; Luo et al., 2020; Volokitin et al., 2020). However, there are 

some issues after implementing these changes in DCGANs, including mode collapse due to binary 

cross-entropy loss function and vanishing gradient due to the overconfidence of the discriminator 

(Bang and Shim, 2021). Before integrating DCGANs with CNNs to boost model performance, the 

above challenges of DCGANs are optimized. Furthermore, local interpretable model-agnostic 

explanations (LIME) are implemented to interpret the prediction and increase model reliability by 

highlighting salient superpixels of the input image (Zhang et al., 2018).  

 

The mentioned classification techniques, from using DCGANs to augment and generalize 

datasets and applying LIME to explain the prediction from CNNs, can potentially improve the 

performance and reliability of CNNs models in classifying image data. To assess the performance 

of classification techniques, scanning electron microscopy (SEM) images of microplastics (Ostle 

et al.) associated agglomerates are applied since no DL-related research has been done yet. SEM 

has the advantage of avoiding radical illumination effects on the pixel level and background clutter 
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(Goldstein et al., 2017). Previous studies used SEM to discover the surface properties of the target, 

for example, the investigation on the surface morphology of algae cells growth (Xin et al., 2019); 

the polysulfide polymer in oil spill remediation (Worthington et al., 2018). However, it is rare to 

see the combination of SEM and CNNs in the environmental field, and their potential application 

related to oil spills has not been fully discovered yet.  

The presence of MPs has drawn the scientific community's attention worldwide since the 

rising concern of its negative impacts on the ocean ecosystem and economy (Brandon et al., 2016; 

Kuo et al., 2018). As the main component of making surgical masks, plastic usage spikes during 

the COVID19 pandemic, and MPs production increases accordingly. Usually, ten percent of plastic 

products end up in the ocean (Magnier et al., 2019). MPs are easy to be weathered through 

mechanical tension (e.g., wave motion), photooxidation, and biological degradation in the marine 

environment to form weathered MPs (WMPs). WMPs could interact with another ocean pollutant, 

spilled oil (Shan et al., 2020). Spilled oil can be broken down into tiny droplets by dispersants and 

become much easier to be biodegraded in the marine environment (Merlin et al., 2021; Ye et al., 

2021). However, when WMPs encounter the dispersed oil, they will interact with each other by 

forming WMPs-oil-dispersant agglomerates (WMODAs) (Yang et al., 2021). 

Due to the hydrophobicity of WMPs, oil would adsorb on WMPs surface, and dispersant 

would then cover at the out layer, forming WMODAs in seawater. The formation of WMODAs 

can affect the oil droplet size and the efficiency of dispersants on spilled oil. Such impacts are 

determined by the weathering degree of WMODAs. For example, heavy oil droplet size increases 

by 124% from pristine microplastics (Ostle et al.) to 21 days WMPs; the dispersion effectiveness 

climbs by 44% from pristine MPs to 56 days WMPs (Yang et al., 2021). Therefore, distinguishing 
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the weathering degree of WMODAs is essential to define their impact better on oil spill response 

options such as dispersant application.  

This study proposed an interpretable CNNs approach powered by optimized DCGANs and then 

was implemented in the oil spill field to validate its applicability. The approach mainly contained 

the optimized DCGANs to boost dataset size, five CNNs-based DL models to compare the 

performance, including customized CNNS algorithm, original and transfer learning algorithms of 

residual network_50 (Resnet50), Visual Geometry Group (VGG16), and LIME. The developed 

approach was further tested by a case study on the dataset of SEM images of WMODAs from 

different weathering degrees. The modeling results would help demonstrate the feasibility and 

robustness of the developed approach and indicate its potential in extended application in the other 

areas where advanced imagine analysis is required.  

 

4.2 Materials and Methods 

4.2.1 Model development 

The proposed approach comprises three significant modules, as shown in Figure 4.1. The 

first step is image preparation and preprocessing. Two data augmentation methods, 

ImageDataGenerator and DCGANs, are implemented to artificially create new training data from 

existing data to increase the dataset size. The normalization of images is implemented to reduce 

the bias in the training process.  

 

The second step is model training, in which CNNs algorithms adjust the weights of the 

kernel through backpropagation to decrease the loss from learning features of input pictures. A 
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trial-and-error strategy is applied to construct CNNs. Multiple combinations of fundamental 

network elements, such as 3x3 convolutional layers and max-pooling layers, are tested during the 

construction. Furthermore, several performance metrics are implemented to discover an optimal 

architecture for the network. The CNNs classifiers can learn the underlying patterns behind the 

labeled target during the training process by feature extraction. The feature extraction is realized 

by many convolutional layers performing convolution operation through filters and pooling layers 

performing dimensionality reduction.   

The last step is to pass feature vectors to the trained classifier for the final prediction of the 

class. Model explanation powered by LIME is then executed to explain the predicted image by 

highlighting the salient superpixels and increase model reliability.    

 

 

Figure 4.1 General workflow of the proposed approach for classifying WMODAs before/after 

21 days 
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4.2.2 Optimizing DCGANs for Image Augmentation  

As mentioned in the introduction, CNNs model performance can be substantially impacted 

by dataset size. Traditional data augmentation techniques such as ImageDataGenerator may not 

efficiently improve the model performance and may even weaken it since, in those techniques, 

“new” images are essentially simple transformations of the original images. DCGANs, as a more 

sophisticated data-enrichment method, can solve the problem by generating actual new images to 

enhance the performance. However, there have been some challenges in training DCGANs. A 

combination of several optimization techniques is proposed and implemented in this paper to 

tackle these challenges.  

The first optimization shed light on weight initialization. Weight initialization is essentially helpful 

to accelerate DCGAN’s convergence process (Dewa, 2018). From previous studies, Su et al. (2017) 

suggested using a zero-centered Gaussian distribution with a standard deviation of 0.02 in the 

dense layer. Moreover, to eliminate outliers during training, a truncated normal distribution as a 

variation of Gaussian distribution is applied, and it generates values from the initializer except that 

those values two standard deviations away from the mean are discarded. The truncated normal 

distribution is applied as kernel initializer in transpose convolutional layers with spectral 

normalization (SN) in the generator and convolutional layers with SN in the discriminator to 

accelerate the convergence.   

As a conventional weight normalization technique, batch normalization (BN) allows 

networks to use a higher learning rate without compromising convergence. The benefits coming 

from the ability to use a larger learning rate are various. For example, the interval of the learning 

rate, which lies between underfitting, and gradient explosion, is more extensive. A higher learning 

rate also helps the optimizer avoid local minima convergence by encouraging the optimizer to 
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explore, and it will more easily converge on better solutions. Batch normalization transforms the 

input as follow: 

Calculate the mean and variance of the input of the layer by equations 4.1 and 4.2: 

 

𝜇 =
1

𝑛
∑𝑍(𝑖)                                                                 (4.1) 

 

𝜎 =
1

𝑛
𝛴(𝑧(𝑖) − 𝜇)                                                        (4.2) 

 

Where 𝜇 means batch mean, 𝜎 means batch standard deviation, and Z means layers input. 

 

Normalize the layers input vector 𝑍(𝑖) by equation 4.3: 

 

𝑍𝑁
(𝑖)

=
𝑍(ⅈ)−𝜇

√𝜎2−ε
                                                              (4.3) 

 

Where 𝑍𝑁
(𝑖)

 means the normalized Z and ε means a constant used for numerical stability.  

 

Scale and shift to obtain the output of the layer by equation 4.4: 

 

 𝑍𝑂 = 𝛾 ⋅ 𝑍𝑁
(𝑖)

+ 𝛽                                                       (4.4) 

 

Where ZO means output and 𝛾 allows to adjust the standard deviation and 𝛽 allows to adjust bias. 
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At each iteration, the mean 𝜇 and the standard deviation 𝜎 are computed from the current batch, 

followed by trained 𝛾 and 𝛽 through gradient descent. Even though BN benefits the performance 

of a network, it can still cause instability in the evaluation phase, which includes cross-validation 

or test and prediction. As mentioned above about the process of BN, it takes batch in the training 

phase to compute 𝛾, 𝛽, 𝜇, 𝜎, but in the evaluation phase, the batch is substituted by a single input 

at the most time. Hence, 𝜇_pop , σ_pop are computed by using all the 𝜇_batch , σ_batch decided 

in training to replace 𝜇_batch and σ_batch in equation (Aggarwal, 2019). 𝜇_pop , σ_pop stand for 

an estimated mean and estimated standard deviation of the studied population, respectively 

(Santurkar et al., 2018). The solution works well when the distribution of the training dataset is 

similar to that of the testing dataset. However, if the input came from different distribution, 

DCGANs might not generate ideal images since the network does not consider the actual activation 

values from the input. In 2018, Takeru et al. pointed out that the disjoint of model distribution and 

target distribution is a persistent challenge and can cause the generator to stop training because the 

discriminator's derivative will be 0. To stabilize the training of discriminator networks, SN is 

proposed, which constrains the Lipschitz constant of the convolutional filters (Zhang and Yu, 

2019). Therefore, the second optimization technique is substituting BN by SN in convolutional 

layers in the discriminator. 

Neural network training is sensitive to the minimized loss, and by performing gradient 

descent to minimize standard cross-entropy, networks can achieve better classification 

performance and fast convergence. However, more novel techniques could outperform the 

standard cross-entropy, for example, label smoothing. Label smoothing improves accuracy by 

computing cross-entropy with a weighted combination of targets from the datasets with the 

uniform distribution instead of the hard targets. Müller et al. (2019) experimented with how label 
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smoothing can implicitly calibrate a model’s prediction and significantly impact model 

interpretability. Furthermore, they also revealed that label smoothing would impair distillation 

which is when teacher models are trained with label smoothing, student models perform worse. 

Since the application of label smoothing in DCGANs does not involve these two side effects, it is 

applied as the third optimization technique to calculate loss and accelerate the convergence of 

generator and discriminator. 

The last added optimization technique is instance noise. It aims to make the true and 

predicted distributions overlap that help DCGAN’s instability. Sequentially, fitting a custom 

distribution of generated images would be easier in the learning process (Mescheder et al., 2018). 

The application of instance noise is by adding noisy labels to calculate the discriminator’s loss to 

help it better convergence.          

Before training DCGANs, input images need to be normalized to the pixel range of -1 to 1 

since the Tanh activation function is suggested in the generator for its output layer (Chen and 

Wang, 2020). The architecture of the generator is modified as below:  

 

Figure 4.2 DCGAN generator used for WMODAs modeling. A 100-dimensional truncated 

normal distribution Z is projected to a small spatial extent convolutional representation with 

many feature maps. 
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Figure. 4.2 illustrates how the generator takes 100×1 noise vector and upsamples it by four 

transposed convolutional layers using 512, 256, 128, 64, and 32 different filters with a stride of 2 

to the output, which is 224×224×1 to match with the input size. Discriminator reverses this process 

which downsamples it by using four convolutional layers with 64, 128, 256, and 512 filters each 

and outputs 1 and 0, which are classification classes for the real or fake image.  

4.2.3 Transfer learning  

Transfer learning is a machine learning methodology in which a model built for one task 

is used as the foundation for another task to optimize the progress and improve model performance 

(Zhuang et al., 2020). Two original deep neural networks, Resnet50 and VGG16, are applied for 

comparative study. Resnet50, as the modern network architecture representative, introduces 

residual blocks. It provides the alternative shortcut through identifying functions for the gradient 

to flow through to avoid vanishing gradient and performance degradation. The residual block is 

presented in Figure 4.3.  

 

Figure 4.3 Residual block in ResNet50. 

The architecture of ResNet50 is made of 50 layers, including one input layer, five convolutional 

blocks with ReLU activation function, and one dense layer with a SoftMax activation function 

(Theckedath and Sedamkar, 2020).  
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The VGG16 represents a classic deep neural network. Its architecture consists of 16 3x3 

convolutional layers stacking on top of each other in increasing depth and using only max pooling 

to reduce volume size. A SoftMax classifier then follows two fully connected layers with 4,096 

nodes (Qassim et al., 2018).  

The pre-trained ResNet50 and VGG16 models are introduced from the Keras library, and 

they are trained with the ImageNet dataset, which contains more than 1.2 million images in 1000 

classes. 

 

4.2.4 Comparative study of applied CNNs models  

The comparison mainly explores the performance and architecture between original 

models and transferring learning models. Four criteria are selected: accuracy, training time, total 

parameters, and model size. Accuracy indicates the correct prediction of each model, while 

training time refers to the processing speed of each model. Total parameters and model size specify 

the complexity and amount of memory required to deploy the final prediction architecture.  

A normalized confusion matrix (Table 4.1) is introduced to calculate the model accuracy. 

The normalized confusion matrix comprises four different combinations of predicted and actual 

values: true positives, false positives, false negatives, and true negatives. Precision and recall from 

the confusion matrix are applied, referring to the proportion of the relevant results and the ratio of 

the total number of the relevant results correctly classified, respectively. 
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Table 4.1 An illustration of the confusion matrix 

 Predicted positive  Predicted negative  

Actual positive  True Positives (TPs) False Positives (FPs)  

Actual negative  False Negatives (FNs) True Negatives (TNs) 

 

The evaluation system also introduces F-score from the confusion matrix to handle 

classification imbalance situations between precision and recall. The following equations are the 

recall, precision, and F-score (Chicco and Jurman, 2020). 

Precision =  
𝑇𝑃 

𝑇𝑃+𝐹𝑃
                                                                          (4.5)         

𝑅𝑒𝑐𝑎𝑙𝑙 =      
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                  (4.6) 

F-score =   
2∗𝑟ⅇ𝑐𝑎𝑙𝑙∗𝑝𝑟ⅇ𝑐𝑖𝑠𝑖𝑜𝑛

𝑟ⅇ𝑐𝑎𝑙𝑙+𝑝𝑟ⅇ𝑐𝑖𝑠𝑖𝑜𝑛
                                            (4.7)                                                                                                                                             

where TP, true positive; FP, false positive; FN, false negative. 

F-score ranges from 0 to 1 and reflects how accurate the model predicts. The higher F-

score is, the more accurate model predicts (Chen et al., 2021).  

 

4.2.5 Model interpretation 

The lack of explanation of how the DL model predicts has been constantly criticized. Even 

though CNNs can visualize the network architecture and the output of hidden layers, the feature 

maps and filters are still quite abstract to understand. Instead, LIME is supplemented to explain 

how models predict. LIME is an innovative explanation approach that leans an interpretable model 

locally around the prediction to explain any classifier’s prediction in an interpretable and faithful 

manner (Visani et al., 2020). There are four significant steps in LIME: 1) create perturbation of 
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image through superpixels, 2) predict classes of new images by CNNs models, 3) compute 

distances between the original image and each of the perturbed image and computed weights of 

each perturbed image, 4) use perturbations, predictions, and weights to fit an explainable model 

(Garreau and Luxburg, 2020). The explainable model highlights the top features in superpixels 

which are reasons how models predict.   

The network is built by the Keras (2.4.0) and TensorFlow (2.5.0) libraries, which are 

python libraries developed by google for deep learning applications. All techniques mentioned 

above are executed in Python v3.8 and run on a GTX 2060 super GPU with CUDA 11.3.    

 

4.2.6 Case study in WMODAs images   

Before making WMODAs samples, Polyethylene (PE) (6.00-8.50 um) was obtained from 

Micro Powders Inc. (New York, USA). Heavy oil (API gravity 8.00-15.00) was applied in this 

study. Corexit 9500A was obtained from Nalco Environmental Solutions LLC (Texas, USA).  Sea 

salt was purchased from Millipore Sigma (Ontario, Canada). Ultrapure water was used throughout 

the experiments. Synthetic seawater was made by dissolving 34.00 sea salt in 1L ultrapure water 

and filter through a 0.20 µm membrane to remove suspended particles. Based on the method 

developed by Yang et al. (2021), 100 µL heavy oil and 4 µL Corexit 9500A were released into 

120 mL synthetic seawater, reaching a dispersant to oil volume ratio (Roberts et al.) of 1:25 for 

the oil-dispersant-seawater mixture. To produce different WMODAs, 48mg of 7, 14, 28, 42, or 56 

days weathered MPs, prepared following Yang et al. (2021), were added to the mixture. Then the 

mixture was shaken for 10 min at 200 rpm and kept stationary for 10 min in each run. WMODA 

samples were collected and dried until no weight loss. The surface morphology of WMODAs was 
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observed by a FEI Quanta 650 FEG scanning electron microscopy (SEM) (Thermo Fisher 

Scientific, Hillsboro, OR, USA). All samples were coated with gold to improve conductivity.    

SEM images were acquired from five WMODAs samples, and for each class, 100 SEM images 

were taken to guarantee the balance between the two classes. Since CNNs cannot adapt to scaled 

images, ImageDataGenerator was applied to add more variance in the dataset, including horizontal 

flip, zoom in/out, width and height shift, rescale, and rotation. 

4.3.1 Image augmentation 

The optimization techniques mentioned in the methodology were implemented in the 

DCGANs to boost the WMODAs image dataset size. Spectral normalization was performed via 

power iteration operation on the specific weight for convolutional layers in the discriminator. 

Label smoothing set the class labels in the range [0, 0.3] for the WMODAs before 21 days and 

[0.7, 1] for the WMODAs after 21 days. Noisy labels were determined by adding 5% of the error 

to the labels.  

Except for the original SEM images as the input for DCGANs, additional images from 

ImageDataGenerator were also included to add more variance to generate synthetic images 

(Shorten and Khoshgoftaar, 2019). The image dataset was trained in optimized DCGANs in 1,000 

epochs and saved in the same directory as picture format. Each epoch costs about 16 seconds, and 

this result could be varied based on different CPUs and GPUs of the computer. In total, training 

WMODAs images before/after 21 days cost about 4.4 hours, and the WMODAs datasets 

before/after 21 days were augmented to 1,200 images and 1,200 images, respectively.    

4.3 Results and Discussion    
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In Figure 4, the losses from the generator and discriminator were presented. In Figure 4(a), the 

losses from the generator, which was illustrated as the blue line, fluctuated as iterations increased, 

while the losses from the discriminator were relatively stable. However, as epochs increased, the 

losses from the generator and discriminator gradually converged, as shown in Figure 4.4(b). This 

trend proved that the optimizations were successful in stabilizing DCGANs' training process. The 

results were also reflected in the generated images of WMODAs before 21 days in Figure 4.5. In 

Figure 4.5(a), the nine images were generated at the first epoch, and apparently, the quality was 

not acceptable with coarse texture. As training went further, the image quality improved drastically. 

In Figure 4.5(b), the images were generated at the final epoch, and it was clear to see the details of 

generated agglomerates.       
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Figure 4.4 Generator and discriminator loss at epoch 1 (a) and their loss at final epoch in all 

iterations (b). The blue line is the generator, and the yellow line is the discriminator 
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Figure 4.5 Generated WMODA images before 21-day weathering at epoch 1 (a) and the final 

epoch 1,000 (b). 
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4.3.2 Customized CNNs model (benchmark) 

The augmented SEM images were the input for CNNs models. However, the input layer 

of CNNs only took images with a specific resolution; thus, resizing needs to be done before 

feeding images to CNNs since these SEM images had different resolutions. All images were 

resized into 224×224 pixels, and the channel was set to one since the input SEM images were 

grayscale. The two-dimensional network was built from scratch as a benchmark by utilizing 

several various convolutional and pooling layers. The convolution layers were composed of 3 × 

3 filter sizes with filters from 16 to 64. Three convolution layers were passed through a ReLU 

function to allow a non-linear transformation. Three max-pooling layers had a filter with a size 

of two or five. The final output feature maps were flattened and attached to the dense layer and 

output layer. The 2D network architecture is shown in Figure 6.  

The network’s weights were initialized using the Kaiming initialization or He initialization 

through kernel initializer in the Conv2D layer, which is an initialization method for non-linearity 

of activation functions such as ReLU activation. This initialization facilitated model convergence 

(Sai and Lee, 2018). Following that, these weights were modified through training processes. 

The customized CNNs were then trained with a batch size of 5 and a maximum epoch of 1000. 

Furthermore, the network was programmed with early stopping on the validation set with an 

initial learning rate of 0.001 and was used sparse-categorical-cross-entropy for loss function and 

Adam for optimizer with a minimal change rate of 0.0001 and patience of five epochs.  
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Figure 4.6 representation of the two-dimensional CNNs architecture with SEM image inputs 

connected to the convolution, pooling, and output layers. 

 

4.3.3 Adaptive transfer learning 

All grayscale WMODAs images were transformed into RGB channels to be aligned with 

the input channels of pre-trained CNNs models. Furthermore, the last fully connected layer was 

randomly initialized and freshly trained to accommodate the new object categories in our 

WMODAs study. The learning rate was kept at the default 0.01. Hence, the architectures of the 

pre-trained ResNet50 and VGG16 were identical to the original ones, except for the last two 

layers. Pre-trained weights were loaded to improve training speed and model accuracy.  

 

4.3.4 Training results and comparative analysis of different CNNs models 

 

In this study, we explored, evaluated, and analyzed the influence of various CNNs 

algorithms, including original and transfer learning algorithms from non-microplastic to 

microplastic image domains. Five CNNs-based models were trained with early stopping by 
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augmented datasets stratified into train and test subsets in the ratio of 0.8/0.2. The results of each 

model are presented in Table 4.2. 

     

Table 4.2 Experimental results of different CNNs models over MP images datasets 

Model Accuracy Training time 

(sec) 

Total 

parameters 

Model size  

(Mirnaghi et al.) 

Customized CNNs model 0.6122 15 123,650 1,499 

VGG16 (WOT) 0.6282 66 21,202,883 248,618 

ResNet50 (WOT) 0.8738 141 23,794,578 96,170 

VGG16 (WT) 0.9593 42 21,203,778 133,598 

ResNet50 (WT) 0.9986  117 23,788,418 94,994 

Note “WOT”: without transfer learning; “WT”: with transfer learning. 

In Table 4.2, the customized CNNs model, as a benchmark model, performed the worst 

(0.6122), and ResNet50 (WT) performed the best (0.9986) in terms of model accuracy. All 

models with transfer learning acquired higher accuracy than those which were only trained with 

original WMODAs datasets. ResNet50 (WOT) spent the longest time training and had the largest 

total parameters. Noticeably, ResNet50 had more parameters in deep architecture, but their 

model size is substantially less than VGG16. ResNet50 applied global average pooling rather 

than fully connected layers in VGG16 to reduce model size. These benefits from ResNet50 can 

facilitate deployment in a quicker and more efficient manner, compared to other larger models.  
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Figure 4.7 Confusion matrix of VGG16 (WT) in (a) and ResNet50 (WT) in (b). 

 



112 

 

In Figure 4.7, confusion matrices with normalization were presented from the two highest 

accuracies scored models in table 1. Through the equations (5), (6) and (7), F-score from VGG 

16 (WT) and ResNet50 (WT) were 0.9063 and 0.9192, respectively. Hence, ResNet50 performed 

better with WMODAs dataset. Despite the disparity between natural images and WMODA 

images, CNNs were comprehensively trained on the large scale well-annotated ImageNet could 

still be effective when they were transferred to perform WMODA image recognition tasks.  

 

4.3.5 Model interpretation on WMODAs image   

 

In image preprocessing, segmentation usually played a vital role in dividing the image 

into segments, and algorithms would train only important segments to improve the model 

accuracy. However, since the SEM images were included by one object in this study, 

segmentation would not make much difference in model accuracy. Instead, image segmentation 

was combined with LIME for improving model explanation and reliability.  

An increasing model explanation was essential for the reliability of applying the ML model. 

LIME was applied to determine the aspects of the models that were salient in regions to help 

recognize particular parts of images. In Figure 4.8, the primary process of how LIME makes 

predictions is illustrated. In Figure 4.8(a), the image which needed to be explained was extracted 

superpixels and divided by yellow lines. Then, through the perturbation function, the given 

image was perturbed based on a perturbation vector and predefined superpixels, and one of the 

examples was shown in Figure 4.8(b). The kernel function is by computing the cosine distance 

between each randomly generated perturbation and the given image. Once the weighted model 
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was created, the given image could be explained by choosing the top important superpixels, as 

shown in Figure 4.8(c).   

               

 

Figure 4.8 Explanation of a prediction of WMODAs before 21-day weathering with LIME: (a) 

interpretable components (adjacent superpixels), (b) an example of a perturbated image, and (c) 

an explanation image 
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  The effects on dispersants can vary from different weathering degrees of WMODAs and 

currently, there has no effective method to distinguish them. The deep neural network is a 

promising method in image classification and can potentially aid the problem of separating 

WMODAs from different weathering degrees. However, the application of deep neural networks 

always faces a dilemma: users fear overfitting because of data shortage. Therefore, it is not 

widely implemented in fields that usually do not generate substantial data.  

In this study, an interpretable CNN approach with optimized DCGANs was developed and 

successfully applied on the classification task of distinguishing WMODAs before/after 21 days 

using SEM images. To our best knowledge, this was the first time that proposed image 

classification techniques have been trained to categorize WMODAs in the marine environment.  

A combination of several optimization methods was applied to effectively stabilize 

DCGANs' training process to generate high-quality images, including truncated normal 

distribution, spectral normalization, label smoothing, and instance noise. The F score of 0.9192 

and the accuracy of 0.9986 was achieved by pre-trained Resnet50 with augmented datasets, 

indicating a robust prediction result. LIME was applied to explain the developed model in 

predicting WMODAs based on SEM images, which successfully increased the model's 

reliability.  

The developed approach can have positive impacts on marine and modeling studies based 

on SEM images. From a marine environmental aspect, the developed approach can assist the 

understanding of the effects by differentiating weathering degrees of WMODAs. The formation 

of WMODAs would affect the efficiency of oil spill response options such as dispersant 

4.4 Summary  
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application in oceans. Furthermore, in WMODAs, the MP weathering degree played an 

important role in oil dispersion effectiveness. As the weathering process helped form hydrophilic 

functional groups (OH, C=O, COC––) in WMPs, the increase of MP hydrophilicity led to less 

assumption of dispersant in WMPs dispersion. As a result, more dispersants would be available 

for oil dispersion. Thus, classifying weathering degree of MPs would be crucial for 

understanding their effects on oil dispersion effectiveness in offshore oil spills.  

Furthermore, the application of the developed approach could also help characterize other WMPs 

associated with agglomerates and be implemented in classifying SEM images in other fields, 

such as environment, materials, and broader engineering applications. 
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CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS 
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In this dissertation research, the history of machine learning (ML) development was first 

briefly introduced, and more details of standard ML algorithms were provided in supervised and 

unsupervised learning, such as SVM, KNN, logistic regression, PCA, and others. Data 

preprocessing is one of the necessary steps to conduct before training the model to increase the 

model accuracy. Four different strategies in data preprocessing were elaborated, including data 

cleaning, data integration, data transformation, and data reduction. Data augmentation techniques 

were necessary before training the model when dealing with small datasets. Mainly, when training 

deep neural networks, large datasets were better to free the model from the limitation of small 

datasets, and data augmentation techniques could boost the size of datasets when large datasets 

were not available. Two significant data augmentation techniques, geometric transformation, and 

GANs were introduced to augment image data. Following up the tremendous potential in tackling 

data patterns, several applications of ML in environmental fields were showcased, but there have 

been few studies of ML targeting the problems related to oil fingerprinting in an oil spill and MPs 

in marine pollution. Therefore, these two fields' problems were explained in Sections 2 and 3 under 

Chapter 2, and the approaches were proposed in Chapters 3 and 4.          

In Chapter 3, the proposed pipeline targeted sequential data. It is integrated with data 

preprocessing, feature engineering, hyperparameters tunning, and deployment of the final model. 

Five popular ML algorithms and one ensemble ML algorithm based on the weights of the first five 

ML algorithms were trained and evaluated. It then applied to the problem of WCO and CDO in oil 

fingerprinting. The dataset of diagnostic ratios from five different biomarkers was extracted to 

perform a training job from a previous study that the oil sample provided by Alaska North Slope. 

5.1 Conclusions  
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After conducting PCA for dimensionality reduction and visualization in data preprocessing, the 

preprocessed dataset was passed to hyperparameter optimization. The results involved two 

comparisons between different ML algorithms and different biomarkers, respectively. After the 

evaluation from the confusion matrix, the best F score (0.871) was achieved by RFC from the 

diamantanes biomarker. The final model was then deployed through flask API on the website for 

public access. The proposed pipeline can handle tabular datasets in many other environmental 

fields, such as water, air, or soil. A slight change can be made by selecting different ML algorithms 

considering the characteristics and distribution of specific datasets. The developed ML model has 

proved the successful application in predicting WCO and CDO and can support oil spill source 

identification in environmental forensic effectively.    

In Chapter 4, to cover more comprehensive ML applications in the environmental domain, 

classifying image data through integrated neural networks was proposed. The proposed approach 

for image classification included image preprocessing (data augmentation), constructing the CNN 

model, and model explanation. The major problem in many ML training was data shortage, and 

this problem was magnified in many environmental domains, especially in image data format. 

Hence, the approach adapted optimized DCGANs for not only grayscale but RGB images 

augmentation as well. Through introducing SN, label smoothing, and instance noise, DCGANs 

training became more stable and generated better images. The augmented image dataset was then 

applied to train different CNN models, including transfer learning models and original models. 

LIME was implemented to explain the prediction and increase the reliability of the developed 

model. 

Meanwhile, the explanation from LIME can also improve the model accuracy by adjusting 

the dataset accordingly. The proposed approach was then applied to classify WMODAs with 
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different weathering degrees in marine pollution. The grayscale SEM image dataset of WMODAs 

was selected to perform classification. From the comparison of F score, ResNet50 with transfer 

learning reached the highest score (0.9192), and it had a smaller model size than VGG16 due to 

its residual block design. With the image analysis of the developed model, distinguishing 

WMODAs from different weathering degrees became easier and provided a fundamental 

understanding of how they can affect oil dispersion effectiveness in offshore oil spills. 

From the two case studies illustrated in this research, the characteristics of ML and the 

situation of choosing ML in the environmental field can be summarized. In the first case study, the 

dataset of oil fingerprinting potentially contained hundreds of features, and previous studies only 

chose a dozen diagnostic ratios as features by heuristics because traditional data analysis cannot 

handle hundreds of features simultaneously. Moreover, using the trained ML model to predict oil 

type was not applicable by inputting hundreds of features. Therefore, PCA was supplemented to 

conduct dimensionality reduction to simplify the input process while potentially increasing 

prediction accuracy by eliminating high correlated features and constructing new features. Lastly, 

in terms of increasing the mobility of the application, the final model should be deployed on a 

website or mobile app. By considering the above reasons, the ML was decided to deal with the oil 

fingerprinting problem. The second case study was a computer vision-related environmental 

problem, and traditional analysis could not deal with this type of data. The significant contribution 

was integrated optimized DCGANs to boost the dataset and LIME to explain the prediction. GANs 

training was difficult and faced many challenges, such as mode collapse, convergence problem, 

etc. Many variations of GANs were proposed, but there was no perfect GANs to be trained to 

generate any datasets. Due to convolutional layers’ ability in feature extraction, DCGANs were 

chosen to perform augmentation on the WMODAs image dataset. To further free CNN models 



120 

 

from the limitation of dataset size, transfer learning models trained on hundreds of thousands of 

images were selected to perform classification. It was the first time GANs’ variation coupled with 

LIME as image analysis tools to perform classification in the WMODAs field. The two case studies 

environmental domains demonstrate the success of proposed ML approaches in dealing with 

sequential and image datasets, and they also showed how to design ML approaches to address 

different environmental challenges.   

 

Based on the research, three journal papers and conference presentations are under review or 

preparation as follows: 

Yifu Chen, Bing Chen, Min Yang, Xiaying Xin, Qiao Kang, Xudong Ye, Baiyu Zhang. An 

integrated approach of optimized learning networks for classifying oil-mixed microplastics. 

(Submitted, reference number: JCLEPRO-D-21-22184). The Journal of Cleaner Production. 

My duty is developing the proposed approach, building the case study model, analyzing 

results, and writing the whole paper. 

Yifu Chen, Bing Chen, Xing Song, Qiao Kang, Xudong Ye, Baiyu Zhang.  A data-driven binary-

classification approach for oil fingerprinting analysis (published). Environmental Research. 

DOI: https://doi.org/10.1016/j.envres.2021.111454.  My duty is developing the proposed 

approach, building the case study model, analyzing results and writing the whole paper. 

Min Yang, Baiyu Zhang, Yifu Chen, Xiaying Xin, Keneth Lee, Bing Chen. Imapct of Microplastic 

on Oil Dispersion Efficiency in the Marine Environment. (published). Sustainability. DOI: 

https://doi.org/10.3390/su132413752. My duty is conducting data analysis using machine 

learning.  

 

https://doi.org/10.1016/j.envres.2021.111454
https://doi.org/10.3390/su132413752
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Conference oral presentations: 

Yifu Chen, Bing Chen, Min Yang, Xiaying Xin, Qiao Kang, Xudong Ye, Baiyu Zhang. 

Convolutional neural network approach for classifying oil-mixed microplastics. The 

Canadian association on water quality. The LEADERS & PEOPLE 2021 Virtual Symposium 

2021, July 20-22, Virtual. My duty is making and delivering presentation.  

Yifu Chen, Bing Chen, Xing Song, Qiao Kang, Xudong Ye, Baiyu Zhang.  Machine learning aided 

classification for oil fingerprinting analysis. The Canadian Society for Civil Engineering 

(CSCE) 2021 Annual General Meeting and the 18th International Environmental Specialty 

Conference, May 26-29, Virtual. My duty is developing the proposed method and presenting 

at CSCE. 

Yang M*, Zhang BY, Chen YF*, Chen B (2021) Effects of microplastics on oil droplet size 

distribution in the marine environment. The LEADERS & PEOPLE 2021 Virtual Symposium 

2021, July 20-22, Virtual. My duty is analyzing image data of microplastics. 

5.2 Recommendations for Future Work 

In this research, a new data-driven binary classification method including dimensionality 

reduction and seven classification algorithms was first proposed to analyze diagnostic ratios as 

tabular values. The sample size for oil fingerprinting was somewhat limited. Naturally, ML 

algorithms relied substantially on multiple datasets to improve accuracy. The GANs based data 

augmentation was supplemented in the developed method for image analysis. However, in the 

approach of analyzing tabular values, it was only augmented the traditional geometric 

transformation without bringing more variations into the dataset. In the future, other data 

augmentation techniques, such as autoencoder and GANs with pre-trained generators, can be 
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tested on biomarkers’ datasets and choosing the best-performed technique based on the 

distribution of the specific dataset.  

The explanatory algorithm was applied in the developed image analysis method; however, it 

was difficult to tell the region of interest (Roberts et al., 2017) without the help of an expert in 

MPs since the difference between each weathering degree is very subtle. In the future, the dataset 

with the highlights of the region of interest (ROI) could be established with the support of 

experts in MPs to help identify the highlighted areas in prediction coming from the explanatory 

algorithm.         

In addition, other novel methods may be considered in future research. For example, you 

only look once (YOLO) algorithm has the potential for the prediction in real-time and can be 

used in environmental data analysis to detect any changes in shape, color, and other properties of 

targeted elements.   
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APPENDIX 

Table A1 Characteristics of biomarkers in the thesis (Song et al., 2019) 

Peak Compounds Formula Target ions 

Diamantanes    

1  diamantane  C14H20  188  

2  4-methyldiamantane  C15H22  187  

3  4,9-dimethyldiamantane  C16H24  201  

4  1-methyldiamantane  C15H22  187  

5  1,4-and 2,4-dimethyldiamantane  C16H24  201  

6  4,8-dimethyldiamantane  C16H24  201  

7  trimethyldiamantane  C17H26  215  

8  3-methyldiamantane  C15H22  187  

9  3,4-dimethyldiamantane  C16H24  201  

Steranes    

DIA27S (1)  C27 20S-13β(H),17α(H)-diasterane  C27H46  217, 218  

DIA27R (2)  C27 20R-13β(H),17α(H)-diasterane  C27H46  217, 218  

C27S (7)  C27 20S-5α(H),14α(H),17α(H)-

cholestane  

C27H48  217, 218  

C27αββR (8)  C27 20R-5α(H),14β(H),17β(H)-

cholestane  

C27H48  217, 218  

C27αββS 

(10)  

 

C27 20S-5α(H),14β(H),17β(H)-

cholestane  

C27H48  217, 218  
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Table A1 Characteristics of biomarkers in the thesis (Song et al., 2019) 

Peak Compounds Formula Target ions 

C27R (11)  C27 20R-5α(H),14α(H),17α(H)-

cholestane  

C27H48  217, 218  

C28S(13)  C28 20S-5α(H),14α(H),17α(H)-

ergostane  

C28H50  217, 218  

C28αββR(14)  C28 20R-5α(H),14β(H),17β(H)-

ergostane  

C28H50  217, 218  

C28αββS(15)  C28 20S-5α(H),14β(H),17β(H)-

ergostane  

C28H50  217, 218  

C28R(16)  C28 20R-5α(H),14α(H),17α(H)-

ergostane  

C28H50  217, 218 

C29S  C29 20S-5α(H),14α(H),17α(H)-

stigmastane  

C29H52  217, 218  

C29αββR  C29 20R-5α(H),14β(H),17β(H)-

stigmastane  

C29H52  217, 218  

C29αββS  C29 20S-5α(H),14β(H),17β(H)-

stigmastane  

C29H52  217, 218  

C29R 

 

 

 

 

C29 20R-5α(H),14α(H),17α(H)-

stigmastane  

C29H52  217, 218  

Continued Table A1 Characteristics of biomarkers in the thesis (Song et al., 2019) 
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Peak Compounds Formula Target ions 

Terpanes     

C23  C23 tricyclic terpane  C23H42  191  

C24  C24 tricyclic terpane  C24H44  191  

C25  C25 tricyclic terpane (a)  C25H46  191  

C26  C26 (S + R) tricyclic terpanes  C24H42 + C26H48  191  

TR28a  C28 tricyclic terpane (a)  C28H52  191  

TR28b  C28 tricyclic terpane (b)  C28H52  191  

TR29a  C29 tricyclic terpane (a)  C29H54  191  

TR29b  C29 tricyclic terpane (b)  C29H54  191  

Ts  18α(H),21β(H)-22,29,30-

trisnorhopane  

C27H46  191  

Tm  17α(H),21β(H)-22,29,30-

trisnorhopane  

C27H46  191  

H29 (C29)  17α(H),21β(H)-30-norhopane  C29H50  191  

C29TS  18α(H),21β(H)-30-norneohopane  C29H50  191  

M29  17α(H),21β(H)-30-norhopane  C29H50  191  

H30 (C30)  17α(H),21β(H)-hopane  C30H52  191  

H31S (C31S)  22S-17α(H),21β(H)-30-homohopane  C31H54  191  

H31R 

(C31R)  

22R-17α(H),21β(H)-30-homohopane  C31H54  191  
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Continued Table A1 Characteristics of biomarkers in the thesis (Song et al., 2019) 

 

Peak Compounds Formula Target ions 

H32S (C32S)  22S-17α(H),21β(H)-30,31-

bishomohopane  

C32H56  191  

H32R 

(C32R)  

22R-17α(H),21β(H)-30,31-

bishomohopane  

C32H56  191  

H33S (C33S)  22S-17α(H),21β(H)-30,31,32-

trishomohopane  

C33H58  191  

H33R 

(C33R)  

22R-17α(H),21β(H)-30,31,32-

trishomohopane  

C33H58  191  

H34S (C34S)  22S-17α(H),21β(H)-30,31,32,33-

tetrakishomohopane  

C34H60  191  

H34R 

(C34R)  

22R-17α(H),21β(H)-30,31,32,33-

tetrakishomohopane  

C34H60  191  

H35S (C35S)  22S-17α(H),21β(H)-30,31,32,33,34-

pentakishomohopane  

C35H62  191  

H35R 

(C35R)  

22R-17α(H),21β(H)-30,31,32,33,34-

pentakishomohopane  

C35H62  191  

TA-steranes     

1  C20 triaromatic-sterane  C10H16  231  

2  C21 triaromatic-sterane  C11H18  231  

3a  C22 triaromatic steroids (a)  C12H20  231  

    



145 

 

 

Continued Table A1 Characteristics of biomarkers in the thesis (Song et al., 2019) 

 

Peak Compounds Formula Target ions 

3b  C22 triaromatic steroids (b)  C13H22  231  

4  C26 triaromatic-chloestane (20S)  C14H24  231  

5  C26 triaromatic-chloestane(20R)  

+ C27triaromatic-ergostane(20S)  

C11H18  231  

6  C28 triaromatic-stigmastane (20S)  C12H20  231  

7  C27 triaromatic-ergostane (20R)  C12H20  231  

8  C28 triaromatic-stigmastane (20R)  C13H22  231  

MA-steranes     

1  C21 5ß monoaromatic steroid  C21H30  253  

2  C21 5a monoaromatic steroid  C21H30  253  

3a  C23 monoaromatic steroid (20S)  C22H32  253  

3b  C23 monoaromatic steroid (20R)  C22H32  253  

4  C27 monoaromatic 5ß(H)-cholestane 

(20S)  

C27H42  253  

5  C27 monoaromatic diacholestane 

(20S)  

C27H42  253  
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Continued Table A1 Characteristics of biomarkers in the thesis (Song et al., 2019) 

 

Peak Compounds Formula Target ions 

7  (C27 monoaromatic 5α (H)-cholestane 

(20S)) + C28 monoaromatic 5ß(H)-

ergostane(20S) + diaergostane (20S)  

C27H42+ C28H44  253  

8  C27 monoaromatic 5α (H)-cholestane 

(20R)  

C27H42  253  

9  C28 monoaromatic 5α (H)-ergostane 

(20S)  

C28H44  253  

10  C28 monoaromatic 5ß(H)-ergostane 

(20R)  

+diaergostane (20R)  

C28H44  253  

11  C29 monoaromatic 5α (H)-stigmastane 

(20S)  

C29H46  253  

12  C28 monoaromatic 5α (H)-ergostane 

(20R)  

C28H44  253, 193  
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Table A2 Outputs of different ML models in all biomarkers 

 

Biomarkers Datasets  Models Best model score Best parameters 

Terpanes 

X1 (original 

dataset) 

LRC 0.827 C:20, solver: 

liblinear 

RFC 0.864 n-estimators: 100 

DTC 0.845 Criterion: gini, 

splitter: best 

SVC 0.827 kernel: linear 

KNN 0.800 n_neighbors: 5 

EVC 0.870 Vote: soft 

X (all PCs) LRC 0.827 C:20,  

solver: liblinear 

RFC 0.863 n-estimators: 100 

DTC 0.890 Criterion: gini, 

splitter: best 

SVC 0.842 kernel: linear 

KNN 0.727 n_neighbors: 10 

EVC 0.864 Vote: soft 

X3 (top 3 PCs) LRC 0.718 C:1,  

solver: liblinear 

RFC 0.836 n-estimators: 100 

DTC 0.836 Criterion: entropy, 

splitter: random 

SVC 0.727 kernel: linear 

KNN 0.780 n_neighbors: 5 

EVC 0.855 Vote: soft 

TA-steranes 

X1 (original 

dataset) 

LRC 0.825 C:30, solver: 

liblinear 

RFC 0.830 n-estimators: 100 

DTC 0.854  Criterion: gini, 

splitter: random 

SVC 0.783 kernel: linear 

KNN 0.878 n_neighbors: 5 

EVC 0.880 Vote: soft 

X (all PCs) LRC 0.825 C:30,  

solver: liblinear 

RFC 0.875 n-estimators: 100 

DTC 0.841 Criterion: entropy, 

splitter: random 

SVC 0.783 kernel: linear 

KNN 0.683 n_neighbors: 7 
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EVC 0.900 Vote: soft 

X3 (top 3 PCs) LRC 0.817 C:1,  

solver: liblinear 

RFC 0.867 n-estimators: 50 

DTC 0.833 Criterion: gini, 

splitter: random 

SVC 0.842 kernel: rbf 

KNN 0.85 n_neighbors: 5 

EVC 0.858 Vote: soft 

Steranes 

X1 (original 

dataset) 

LRC 0.727 C:1,  

solver: liblinear 

RFC 0.818 n-estimators: 100 

DTC 0.781 Criterion: gini, 

splitter: best 

SVC 0.736 kernel: linear 

KNN 0.780 n_neighbors: 5 

EVC 0.800 Vote: soft 

X (all PCs) LRC 0.727 C:1,  

solver: liblinear 

RFC 0.845 n-estimators: 100 

DTC 0.800 Criterion: entropy, 

splitter: best 

SVC 0.736 kernel: rbf 

KNN 0.773 n_neighbors: 7 

EVC 0.800 Vote: soft 

X3 (top 3 PCs) LRC 0.627 C:1,  

solver: liblinear 

RFC 0.709 n-estimators: 100 

DTC 0.782 Criterion: gini, 

splitter: best 

SVC 0.682 kernel: rbf 

KNN 0.718 n_neighbors: 5 

EVC 0.709 Vote: soft 

MA-steranes 

X1 (original 

dataset) 

LRC 0.856 C:30, solver: 

liblinear 

RFC 0.836 n-estimators: 100 

DTC 0.816 Criterion: gini, 

splitter: random 

SVC 0.864 kernel: linear 

KNN 0.810 n_neighbors: 7 

EVC 0.856 Vote: soft 

X (all PCs) LRC 0.704 C:1,  

solver: liblinear 

RFC 0.848 n-estimators: 100 

DTC 0.792 Criterion: gini, 

splitter: random 
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SVC 0.864 kernel: rbf 

KNN 0.840 n_neighbors: 5 

EVC 0.832 Vote: soft 

X3 (top 3 PCs) LRC 0.712 C:1,  

solver: liblinear 

RFC 0.824 n-estimators: 150 

DTC 0.800 Criterion: gini, 

splitter: random 

SVC 0.808 kernel: rbf 

KNN 0.834 n_neighbors: 5 

EVC 0.852 Vote: soft 

Diamantanes 

X1 (original 

dataset) 

LRC 0.743 C:1,  

solver: liblinear 

RFC 0.829 n-estimators: 150 

DTC 0.800 Criterion: gini, 

splitter: random 

SVC 0.629 kernel: linear 

KNN 0.835 n_neighbors: 5 

EVC 0.857 Vote: soft 

X (all PCs) LRC 0.686 C:1,  

solver: liblinear 

RFC 0.900 n-estimators: 30 

DTC 0.743 Criterion: gini, 

splitter: best 

SVC 0.771 kernel: rbf 

KNN 0.729 n_neighbors: 5 

EVC 0.686 Vote: soft 

X3 (top 3 PCs) LRC 0.457 C:1, 

solver: liblinear 

RFC 0.771 n-estimators: 50 

DTC 0.829 Criterion: gini, 

splitter: random 

SVC 0.714 kernel: rbf 

KNN 0.757 n_neighbors: 7 

EVC 0.771 Vote: soft 

 

 

 


