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ABSTRACT

Environmental modelling is an important approach of environmental engineering and
management since it helps gain better understanding of environmental problems and impacts and
facilitate environmental decision-making processes. However, because of the intricate conditions
enormous data, diverse uncertainties, and various standards and requirements, environmental
modeling is usually sophisticated and challenging. This study aimed to develop the novel modelling
approaches by integrating machine learning (ML) into analyzing tabular and image datasets for
environmental applications.

Firstly, a data-driven binary classification approach was developed to analyze oil
fingerprinting. After comparing six different machine learning algorithms on five different
biomarkers, random forest classifier was found as the most effective and accurate model to
distinguish weathered chemically dispersed and non-dispersed oil from the dataset of diamantanes.
The developed model was approved to be capable of aiding oil fingerprinting under the studied
conditions. It showed the good value of ML methods in environmental modeling especially for oil
spill response research and practice.

Secondly, an integrated approach by combing the strengths of convolutional neural networks
and improved deep convolutional generative adversarial networks was proposed to classify
microplastics and oil-dispersant agglomerates (MODAS) with diverse weathering conditions. The
f score and model accuracy suggested the robust prediction from the trained model on the dataset
of MODAs with different weathering degrees. The results could provide a better understanding of
microplastics’ effects on oil fate and transport during a marine oil spill. The proposed approach
also presented the high potential of facilitating image-related classification work in environmental

fields.



This dissertation not only developed two new ML based modelling approaches for
environmental applications in oil fingerprinting and oil/microplastics classification, but also
demonstrated the high value of ML methods and deep neural networks in processing experimental

data for supporting environmental engineering and management.
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1.1 Background

Machine learning (ML) is a branch of artificial intelligence and computer science that
focuses on using data and algorithms to replicate the way people learn, steadily increasing
accuracy. Due to their powerful modeling capability, ML is a powerful primary tool for data
scientists to analyze and interpret data (Jordan and Mitchell, 2015). In terms of prediction, there
are two typical types of tasks that ML performs, classification and regression. The task of
estimating a mapping function (f) from input variables (x) to discrete output variables (y) is known
as classification predictive modeling. In contrast, the task of estimating a mapping function (f)
from input variables (x) to a continuous output variable (y) is known as regression predictive
modeling (Loh, 2011). The application of ML in data analysis-related fields has been booming
these years due to the advancement of computer hardware, for example, from medical to financial

and environmental research.

There have three main areas of ML, supervised learning, unsupervised learning, and
reinforcement learning. Each of them specializes in different tasks. For example, supervised
learning is suitable for classification and regression with the labeled dataset, while unsupervised
learning is more commonly used with unlabelled datasets (Reinel et al., 2020). Unlike working
with labeled datasets in supervised learning, reinforcement learning labels the sequences of
dependent decisions through agent and reward systems, and it is mainly applied in the game and
robotic fields (Vincent et al., 2018). Deep learning (DL), as a more advanced type of ML, has been
implementing to handle complicated tasks, for example, synthetic data (Ziwei et al., 2020).
Generative adversarial networks (GANSs) have been one of DL's primary applications in generating
synthetic data (e.g., images) since it was introduced by lan et al. in 2014. GANs are composed of

two neural networks, which are generator and discriminator. The generator takes random noise
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from the gaussian distribution as input and passes the noise to several upsampling layers to the
desired shape of images. Sequentially, the discriminator takes the fake output of the generator and
real image dataset as input and passes them to downsampling layers and calculates the loss between
fake output and real image dataset. The generator parameters will then be updated through
backpropagation until the generated images are good enough to fool the discriminator (Wei et al.,
2018). However, the initial version of GANs (a.k.a., vanilla GANSs) is extremely difficult to train
due to non-convergence, mode collapse, diminished gradient, overfitting from the unbalance
between the generator and discriminator, etc (Hamed et al., 2019). Therefore, many modified
versions of GANs have been proposed to optimize the problems, for example, deep convolutional
GANs (DCGANSs), conditional GANs (cGANS), information maximizing GANs (InfoGANS),
Pix2Pix, Big GANs (BigGANS), etc. These optimized GANs are served in different purposes, from
transferring portraits to animated profiles and enhancing old photo qualities (Tero et al., 2018;

Andrey et al., 2020; Tomaso et al., 2020; Yuan et al., 2021).

Currently, there have many ML algorithms that can perform regression and classification
on different types of datasets, e.g., sequential, text, audio, or images. Understanding how to choose
the appropriate ML algorithms is essential, and a comparison of the advantages and disadvantages
of different ML algorithms is needed to be provided. Moreover, some ML algorithms are black-
box algorithms with low expandability and could cause low reliability for the end-users. Thus,
how to improve the developed ML models’ reliability is desired to be explored. In terms of GANSs,
as stated above, the training suffers from some problems. Even though some different structured
GANs are proposed, further optimization still needs to be conducted when training happens in

different domains.
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ML has shown promise in tackling complex data patterns or formats due to its incredible
fitting skills. As a result, over the last decade, ML, particularly DL, has experienced tremendous
growth in various applications, including image categorization and machine translation.
Researchers in the broad field of environmental science and engineering (ESE) have
enthusiastically embraced ML in various applications. For example, Munish and Parveen
compared empirical infiltration models with ML-based adaptive neuro-fuzzy inference system and
random forest regression techniques on the soil infiltration rate dataset. They concluded that ML-
based methods are the most appropriate technique for estimating the infiltration data (Munish and
Parveen, 2019). Behrooz et al. (2020) utilized long short-term memory, a method based on deep
neural networks, to model faults in the oxidation and nitrification process in wastewater treatment
plants since the nonlinear dynamics and complex interactions of the variables in wastewater data.
Their proposed model achieved a recall of over 92%, outperformed traditional methods, and
enabled timely detection of collective faults. Hao et al. (2020) proposed an enhanced approach of
generative adversarial networks to generate more environmental microorganisms (EM) images
since EM analysis plays an essential role in environmental monitoring and protection. The
generated images were further evaluated by average precision from ResNet50 and VGG16. Their
results demonstrated that the proposed model could achieve remarkable performance in
augmenting EM images with high quality and resolution, improving EM image classification

precisions.

Despite the wide application of ML and DL in wastewater, soil, and other environmental
fields, the applications in marine oil spill-related fields are still lacking. More examples and case
studies of how ML and DL can help with marine oil spill-related problems are urgently needed

because the ocean is the world’s largest ecosystem.
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As the primary energy source, fossil fuel supplied 84% of world energy in 2019, while in
Canada, fossil fuel accounted for 88.5% of energy supply in 2018. Among all fossil fuels used in
Canada, crude oil took the most significant portion of 47.1%, followed by natural gas of 32.2%
(Carroll and Huijzer, 2018). However, during the production, transportation, and usage of fossil
fuels, oil spills have increased. The major oil spills usually happen in the marine environment,
e.g., the Deepwater Horizon spill, the largest marine oil spill in the U.S. in 2010, and many
smaller scale of oil spills. Figure 1.1 presents the oil spills incidents from 2008 to 2020 in 7 -700
metric tons and more than 700 metric tons worldwide (Gracia et al., 2020). These oil spills can
have some detrimental effects on the ecosystem and economy. The leaked oils are highly toxic,
and ingestion or inhalation of these oils can cause damage to DNA, immune function and cardiac
dysfunction, and mass mortality of eggs and larvae. The oil spills could negatively affect the
tourism industry, port business, sea-based transportation, and fishery (Zhang et al., 2019). These
damages are also valid in Newfoundland and Labrador (NL), the third-largest oil producer in
Canada. NL generated 4.4% of Canada’s petroleum from its Grand Banks offshore oil fields. In
NL’s history, the largest oil spill happened in November 2018. Husky Energy reported a spill of
an estimated 250,000 liters of crude oil from their SeaRose platform, and it killed thousands of
seabirds due to oil pollution (Higgins, 2011). It can be expected that oil spill accidents will

continue to happen before totally switching to a non-fossil fuel-powered society.

Oil spills can happen anywhere and anytime, for example, onshore and offshore. In this
thesis, offshore oil spills are mainly focused on. When an oil spill occurs in a marine environment,
the impacts have wide-ranging implications as a long-lasting environmental disaster. Depending

on the amount and preparties of the spilled oil and its location and ambient environment, the
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impacts might vary significantly. For example, oils may affect animals' respiration, feeding and

severely influence their habitat.

Moreover, the entire ecosystem might also alter remarkably and even permanently due to
toxic chemical components of the spilled oil (Chang et al., 2014). Besides the ecological damage,
oil spills can cause significant economic loss. The contamination of coastal areas can disrupt
recreational activities in tourism and incur long-term economic damage when public perception of
prolonged pollution remains long after the oil has gone (Palinkas, 2012). Damages are also usually
observed in fishery and mariculture sectors and coastal community livelihoods (Gracia et al.,

2020).

N 7-700 metric tons
B more than 700 metric tons

3
X
}
.
i
) I
0

2008 2010 2012 2014 2016 2018 2020

Number of oil spills

Figure 1.1 Global oil spills from 2008 to 2020
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Tracking back the origin of oil spills is part of environmental forensic. Knowing where the
spilled oil comes from helps investigate the cause of oil spills, for example, whether it is caused
by accidents involving tankers, pipelines, drilling rigs, or the collision of ships. If there are no
matching reports with oil spills, investigating the origin of spilled oil could minimize the oil
leaking to the marine environment. Furthermore, it is essential to know who takes responsibility
for oil spills when nobody makes an announcement (Wang and Stout, 2010). Currently, oil
fingerprinting is mainly used in environmental forensics to trace oil spills' origin. Since the
formation of hydrocarbons in oil and gas deposits is affected by many factors, such as temperature,
reservoir tectonics, biodegradation, aquifer activity, etc. These factors are different in every
reservoir, which allows the identification of hydrocarbons from evaluating changes in composition
(Stout and Wang, 2016). Therefore, oil fingerprinting is based on geochemical analysis of
hydrocarbon fluids composition, which could provide valuable and unique information to identify

hydrocarbons’ origin.

There are numerous counter measurements to marine oil spills, for example, booming,
skimming, in-situ burning, and dispersion (Dave and Ghaly, 2011). This dissertation research
mainly focused on the application of dispersants. An oil dispersant is a combination of emulsifiers
and solvents that aids in the separation of oil by spraying on a surface oil slick to break down the
oil into smaller droplets, allowing them to mix with the water more readily and enhance
biodegradation by sea-living microbes (Brakstad et al., 2018). As stated earlier, the key for oil
fingerprinting is hydrocarbons’ composition because of their uniqueness. However, when
dispersants are spilled in oil in a marine environment, the hydrocarbon composition might be
changed after the application. This change poses a challenge to oil fingerprinting since it brings

bias in the investigation in environmental forensic (Joo et al., 2013). Hence, applying different
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protocols is necessary on dispersed oil and crude oil and distinguishing dispersed oil and crude oil

is the first step before identifying their origins.

Besides the pollution of oil spills, the ocean also faces other negative impacts from
emerging pollutants, and plastic is on the top of the pollutant list. Plastic has existed in human
society for a long time since it was invented. Among all the plastic, 10% of plastic products will
end up in the ocean (Magnier et al., 2019). Figure 1.2 illustrates the plastic in the global ocean and
other individual oceans in 2013. In 2020, 300 million tonnes of plastic waste will be generated,
and if 10% of them will end up in the ocean, there will be 30 million tonnes of plastic (Ostle et al.,

2019). Compared to Fig 1.2, it increased 100 times from 2013 to 2020.

Global ocean (total 2020) | [NNENNEN wm N 50M tonnes

Global ocean (total 2013)

NnrthPar.ific‘ _ 96400 tonnes
Indian Oﬂeﬂ"_ 0 59130tonnes

North Atlantic - 56470 tonnes
Mediterranean Sea . 23150 tonnes

South Pacific [ 21020 tonnes

' 268950 tonnes

South Atlantic | I 12700 tonnes

Figure 1.2 Surface plastic mass by different oceans in 2013 and global total (2013 VS. 2020)

As the main component of personal protective equipment (PPE), plastic usage spikes
during the COVID19 pandemic. Under weathering process, including mechanical tension (e.g.,
wave motion), photooxidation, and biological degradation, these plastics will be fragmented into

micro-level size (less than 5mm in length), which are considered as weathered microplastics
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(WMPs) (Jahnke et al., 2017). In recent years, there has been a rising concern about negative
impacts on the ocean ecosystem and economy caused by WMPs (Ronkay et al., 2021). WMPs are
hard to degrade, and they can interact with another ocean pollutant, spilled oil (Liu et al., 2020).
Spilled oil can be broken down into tiny droplets by dispersants and become much easier to
degrade in the marine environment (Wu et al., 2021). However, when WMPs join the treatment
process, WMPs, oil, and dispersants will interact by forming WMPs-oil-dispersant agglomerates

(WMODAS) (Yang et al., 2021).

When heavy oil and WMPs meet, they will attract each other because of hydrophobic tails
and are further wrapped by dispersants. Hence, WMODASs are formed on the crust of dispersants
and the core of WMPs and oil. The formation of WMODASs can affect the transportation of WMPs
since the oil from WMODA:s is less dense than water. Moreover, WMODASs can also impact the
oil droplet size and efficiency of dispersant on spilled oil. Such impacts are also affected by the
weathering degree of WMODAs. Therefore, distinguishing the weathering degree of WMODAS
is essential to understand better their impact on oil spill response options such as dispersant

application (Yang et al., 2021).

However, in the research topics of weathering dispersed oil and WMODAS, the application
of ML is rare to see, and its potential to aid research in these topics needs to be cultivated. Different
ML strategies are applied based on the different data characteristics from the two topics, integer
values for weather dispersed oil and images for WMODAs. In the former topic, the data are
collected from gas chromatography and mass spectrometry (GC/MS) tests on the sample oil. The
diagnostic ratios between biomarkers are calculated from 0 days to 60 days in weathered
chemically dispersed oil (CDO) and weathered crude oil (WCO) (Song et al., 2019). Several ML

algorithms are implemented to detect the patterns of WCO and CDO, including k-nearest neighbor
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(KNN), support vector classifier (SVC), random forest classifier (RFC), decision tree classifier
(DTC), logistic regression classifier (LRC), and ensemble vote classifier (EVC). The best-
performed ML model is used to predict spilled oil type. In the latter topic, the images of WMODASs
are acquired from scanning electron microscopy (SEM) (Yang et al., 2021). Deep learning (DL)
is applied to detect differences between different weathering degrees of WMODASs images.
Different DL architectures are performed to achieve the best accuracy in the classification,
including customized convolutional neural networks, residual networks (Resnet), visual geometry
group (VGG), and transfer learning. The developed DL model can classify different weathering
degrees of WMODASs with high accuracy. Therefore, the application of ML is proved efficiently

to solve the challenges stated above and has a general reference to another environmental research.

1.2 Statement of problems

As introduced in the background section, ML and DL still face challenges in training in some
domains. The ML algorithms tend to overfit sequential datasets with hundreds and thousands of
features if they are trained directly without preprocessing. The overfitting can be incurred by a
high correlation of some features that can cause the training process's abundance. This
phenomenon is more evident in the oil fingerprinting field since it could provide hundreds or
thousands of diagnostic ratios. Without data preprocessing, the classification would overfit, and it
also adds difficulty in the deployment since the data input process is cumbersome. In the image
domain, convolution is one of the fundamental methods in DL, and the deep neural networks based
on convolutional layers lack explanation. The low expandability leads to low reliability and further

reduces models’ application. Hence, appropriate explanation algorithms could be considered to
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integrate with deep neural networks to increase models’ reliability. In some domains, the features
detected by deep neural networks are subtle to humans, and the explanation algorithms can
highlight the region of the predicted image class to increase the understandability of how the model
predicts. Apart from classification, DL also shows strong ability in data augmentation. DCGANSs
have been regarded as a promising data augmentation method to increase the size and
generalization of datasets. However, it faces some challenges, such as mode collapse due to binary
cross-entropy loss function and vanishing gradient due to the overconfidence of discriminators
(Bang and Shim, 2021). In order to acquire high-quality generated images, the optimization for a

stable training process is much needed.

In marine oil spill response, few existing modeling methods have been reported for source
identification in oil fingerprinting to distinguish WCO and CDO. It is essential to differentiate
WCO and CDO because the change is happening in diagnostic ratios between WCO and CDO,
and it could cause an error in the source identification through the database. Traditional statistic
methods are not ideal in handling hundreds or thousands of features because of high interactions
between each feature. Moreover, they cannot perform classification programmatically,
particularly in continuously improving accuracy by updating data.

The recent advancement of ML methods presents great potential in improving oil fingerprinting.
The developed ML models can better classify different types of oil and conduct a matching
process with the source oil database. Hence, it can fill the gaps and support more accurate and
reliable classification and identification of spilled oils in environmental forensic and oil spill

response.

Furthermore, the existence of MPs in the marine environment and the interactions with oil

(and dispersed oil) forming WMODASs can affect both the transport and fate of MPs and the
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degradation and dispersion effectiveness of spilled oil. The effects that WMODASs incur usually

correlate to the weathering degrees. Distinguishing the weathering degree of WMODAS is

essential to evaluate their impact on response options such as dispersant application and support

decision-making in marine oil spill response operations. However, there is lacking data/image

analysis efforts in classifying WMODASs under different weathering conditions, particularly with

limited observed datasets. Data augmentation becomes valuable to handle data scarcity, prevent

overfitting, and improve accuracy.

1.3 Research objectives

To help address the above challenges, the main objectives and tasks of this dissertation

research are as follows:

1)

(2)

To develop an approach based on meta-ML algorithms and integrate with principal
component analysis (PCA) to preprocess datasets by eliminating high correlated features
and reconstructing new features. This dimensionality reduction algorithm can reduce bias
and facilitate the data input for the prediction, and the model performance is further
evaluated by confusion matrix and f score. The developed approach is further tested on
the first case study of the classification of sequential data of WCO and CDO in oil
fingerprinting. Diagnostic ratios from five different biomarkers are selected as data input.
Different ML algorithms are used to predict class labels, and comparative analysis is
conducted to choose the most accurate model for the classification task, and it is then
deployed for general public use.

To develop an integrated approach of convolutional neural networks (CNNs) and

optimized DCGANSs. The optimized DCGANSs are enhanced by mainly three techniques
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for better stability, e.g., label smoothing, spectral normalization, and noisy labels.
Through the data augmentation of optimized DCGANS, DL algorithms can be freed from
the limitation of datasets. To further strengthen the model's reliability, local interpretable
model-agnostic explanations (LIME) are supplemented to interpret prediction from the
CNNs model. The CNNs model can also be improved from the quality of interpreted
results. The developed approach is further applied in the task of the classification of image
data of WMODASs under different weathering degrees. SEM images are taken as data
input. CNNs are tailored for the shape and channels of the image of SEM images. The
loss and the quality of generated images are the evaluation standards for the performance
of optimized DCGANSs, and the model accuracy will be evaluated for CNNs performance.
Apart from self-designed CNNs, transfer learning models based on CNNs are also
introduced to the classification and further compared with selected models for better

performance.

1.4 Structure of the thesis

This thesis consists of five chapters. Chapter 1 outlines the general research background and

scopes, research objectives, and thesis structure. Chapter 2 provides the literature reviews of the

relevant topics, including (1) current widely used ML/DL algorithms in supervised learning and

unsupervised learning and the challenges and limitations they face, (2) related research and

challenges of oil fingerprinting in oil spills and MPs in marine pollution, (3) potential application

of ML/DL on the challenges in these two areas. Chapter 3 presents the development of the

binary-classification approach using diagnostic ratios from different biomarkers and illustrates its

application for a case study on oil fingerprinting analysis. To further support in-depth analysis of

environmental data, images containing complex data are usually used, leading to more powerful
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convolutional neural networks algorithms. Chapter 4 describes the interpretation-orientated deep
learning method for data classification based on environmental images. The developed approach
is implemented to classify weathering degrees of WMODAS using SEM and investigate the
impact of MPs on dispersed oil to aid oil spill responses. Finally, Chapter 5 concludes this
research with recommendations for future work. The structure of the thesis is illustrated in

Figure 1.3.
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2.1 Machine learning

2.1.1 Machine learning techniques

As a central component of Al, ML has been reorganized as a separate field and started to
flourish in the 1990s (Kristian 2018). There are many definitions of ML, but in short, ML is a form
of Al that allows software programs to improve their prediction accuracy by detecting patterns in
the input without being expressly designed in that way (Goodfellow et al., 2016). In ML, there are
two kinds of data: labeled and unlabeled data. Labeled data includes both the input and output
parameters in a machine-readable manner. However, labeling the data needs a significant amount
of human effort. Unlabeled data contains only one or no parameters in machine-readable form
(Bach et al., 2017). This eliminates the need for human labor but necessitates more complicated
solutions. There are three major machine learning algorithms: supervised learning, unsupervised
learning, and reinforcement learning (Ayodele, 2010). The former two types will be introduced

mainly and applied in environmental data.

Supervised learning is one of the most fundamental forms of ML. The ML algorithm is
trained on labeled data in this type. Even though the data must be appropriately labeled for this
approach to operate, supervised learning is incredibly effective when utilized in the right
conditions. The supervised learning algorithms are given a short training dataset as a subset of the
larger dataset. This short training dataset helps to provide the algorithm with a rudimentary
understanding of the issue, solution and data points to be handled (Nasteski, 2017). The training
dataset is also quite close to the final dataset in terms of properties, and it supplies the algorithm
with the labeled parameters necessary for the task. The algorithm then discovers correlations

between the parameters provided, effectively constructing a cause-and-effect link between the
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variables in the dataset. After training, the algorithm understands how the data works and the
relationship between the input and the output. This solution is subsequently deployed for usage
with the final dataset, from which it learns in the same manner as it did with the training dataset

(Jiang et al., 2020).

Some of the most commonly used algorithms for supervised learning are linear regression,
support vector machine, and logistic regression. A linear regression model attempts to fit a
regression line to the data points that accurately capture the relationships or connections. Ordinary
least squares (OLE) is the most commonly used approach. The optimum regression line is obtained
using this approach by minimizing the sum of squares of the distance between data points and the
regression line (Kong et al., 2020). The example of how the regression line is drawn in a dataset

is shown below in Figure. 2.3.

4 —
Data points . o’
Regression e . . :
3 .
2
1
0

Figure 2.1 Demonstrate of linear regression’s decision boundary
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SV M differentiates between classes by constructing a decision boundary. Each observation
(or data point) is displayed in n-dimensional space before establishing the decision boundary. The
number of features utilized is denoted by “n.” The decision boundary is designed to maximize the
distance to the support vectors. If the decision boundary is too close to a support vector, it will be
susceptible to noise and fail to generalize appropriately. Even minor changes in independent
variables might result in misclassification (Golbayani et al., 2020). SVM is extremely useful when
the number of dimensions exceeds the number of samples. SVM finds the decision boundary by
using a subset of training points rather than all, saving memory. On the other hand, training time
increases for big datasets, which negatively impacts performance (Sheykhmousa et al., 2020).
Figure 2.4 shows how the decision boundary is drawn by maximizing the margin between support

vectors.

Figure 2.2 Decision boundary from SVM (Cura, 2020)
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The logistic regression model takes a linear equation as input and performs a binary
classification task using a logistic function and log odds. The logistic function, commonly known
as the sigmoid function shown below in equation 2.1, is the foundation of logistic regression. It

takes any real-valued integer and translates it to a value between 0 and 1 (Guo et al., 2020).

y=1/1+¢* (2.1)

where X is data input; y is the output of the algorithm.

Unlike supervised machine learning, unsupervised machine learning benefits working with
unlabeled data. This implies that no human labor is necessary to make the dataset machine-
readable, allowing the software to work on a much bigger dataset. Labels in supervised learning
allow the algorithms to determine the exact nature of the link between any two data points (Kim
et al., 2020). On the other hand, unsupervised learning lacks labels, leading to the information of
hidden structures. The program perceives relationships between data points abstractly, with no
human input necessary. The construction of these hidden structures gives unsupervised learning
algorithms their versatility. Instead of a predefined and fixed problem statement, unsupervised
learning algorithms may adapt to the input by constantly modifying hidden structures. This
provides greater post-deployment development than supervised learning techniques (Zhong and

Leonard, 2020).

Unsupervised learning algorithms include clustering, anomaly detection, neural network,
and others. Clustering is a crucial concept in unsupervised learning. It is primarily concerned with
identifying a structure or pattern in a set of uncategorized data by finding natural clusters (groups).
Types of clustering include K-means clustering a, principal component analysis (PCA), and others

(Grira et al., 2004). K-means is a centroid-based or distance-based technique that computes
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distances to assign a location to a cluster. Each cluster in K-means is paired with a centroid. The
K-means algorithm’s primary goal is to minimize the sum of distances between points and their
corresponding cluster centroid (Sinaga and Yang, 2020). PCA is an unsupervised statistical
approach for dimensionality reduction. It decreases the number of associated variables into fewer
independent variables while retaining the essence of these variables. It provides an overview of
the linear connections between inputs and variables. PCA can also improve high-dimensional data
visualization by constructing new features from the original dataset. The dimensionality reduction
feature realizes the data visualization in two or three dimensions and brings more insights into

datasets before further training (Kumar et al., 2017).

2.1.2 Data preprocessing

Data preprocessing is the process of converting raw data into a comprehensible format. It
is also a critical stage in data mining since raw data cannot be directly worked with. Before
deploying machine learning or data mining techniques, the data quality should be evaluated

(Huang et al., 2015). The data quality evaluation can be followed as shown in Table 2.3 (Kotsiantis

et al., 2006).
Table 2.3 Criteria to evaluate data quality
Criteria Content
Accuracy Determining whether the data entered is correct.

Completeness  Checking whether the data is available or not recorded.

Timeliness The data should be updated regularly.
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Interpretability  The understandability of the data.

Consistency Check if the same data is retained in all locations that match or do not match.

In order to realize these criteria, there are four primary tasks to be conducted: data cleaning,
data integration, data reduction, and data transformation, as shown in Figure 2.5 (Garcia et al.,

2015).

Data
integration

Data oata Data

transforma

tion preprocessing rEdl.Il:ﬂ'Dn

Figure 2.3 Four significant aspects of data preprocessing
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Data cleaning is the process of removing erroneous, incomplete, and inaccurate data from
datasets and replacing missing information. When handling noisy data, there are three primary
methods: binning, regression, and clustering (Chu et al., 2016). Binning is used to smooth or deal
with noisy data. The data is first sorted and segregated before storing in bins. Smoothing data in
the bin can be accomplished using one of the three approaches: Smoothing with the bin mean,
median, and boundary methods (Krishnan et al., 2016). In the first and second ones, the values in
the bin are replaced by the bin’s mean and median values. In the last approach, the lowest and
maximum values of the bin values are obtained and replaced with the nearest boundary value.
Regression aids data handling when there is extraneous data and helps determine which variables
are appropriate for analysis. Clustering is used to discover outliers and group data (llyas and Chu,

2019).

Data integration is the process of merging data from several sources into a single dataset,
and it is one of the essential aspects of data management. There are three problems to be considered
during data integration: schema integration, entity identification problem, and detecting and
resolving data value concepts (Li et al., 2018). Schema combines metadata from many sources.
The challenge of entity identification is to identify entities from numerous databases. The detection
and resolution of data value concepts need to consider the data taken from different databases

while merging may differ (Dong and Rekatsinas, 2018).

Data reduction aids in the decrease of data volume and storage space, making analysis
easier while producing the same or almost the same results. Dimensionality reduction, numerosity
reduction, and data compression are examples of data reduction approaches (Czarnowski and
Jedrzejowicz, 2008). The purpose of dimensionality reduction was illustrated in PCA above, and

it helps reduce storage space and computation time. Numerosity reduction reduces the amount of
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the data to make it smaller by choosing suitable forms of data presentation while no data loss
occurs. Data compression refers to the process of compressing data by encoding, reconstructing,

or modifying data (Ougiaroglou et al., 2018).

Data transformation refers to changing the format or structure of data. Depending on the
requirements, the difficulty of data transformation varies (Jiang et al., 2008). Typical techniques
for data transformation are smoothing, aggregation, discretization, and normalization. Data
smoothing can eliminate noise from the dataset by using algorithms and discovering minor changes
that aid in prediction. Data aggregation keeps and displays data in summary with a data analysis
description. It is a critical phase to ensure the data quality and quantity. Discretization divides the

continuous data into intervals and reduces data size (Kara et al., 2018).

2.1.3 Strategies of data augmentation

Data augmentation is a method of creating additional training data from existing training
data. It is accomplished by applying domain-specific approaches to examples from the training
data, resulting in new and distinct training instances, which helps increase the size of the dataset
and introduces variability in the dataset. By creating a larger dataset, models will be better at
generalizing to circumstances they may encounter in production (Mikotajczyk and Grochowski,
2018). For example, introducing random noise in a self-driving car dataset may make the model
more resistant to camera errors (Jockel et al., 2019). Similar scenarios also occur in the
environmental domain. For example, distinguishing microplastic images from other micro
particles will also be beneficial from introducing random noise to simulate complicated situations
in reality. In the training of deep neural networks, large datasets cannot handle underfitting but

only overfitting. Data augmentation can be used on any data, e.g., image, audio, text, and others
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(Aggarwal, 2019). Image data augmentation is mainly introduced since images exist in the
environmental domain. There are mainly geometric transformation methods in the transformation
of image data, such as rotations, shearing, changes in scale, translations, horizontal and vertical
flips, and others. After applying geometric transformation augmentation, the model can be trained

only by augmented data or both original and augmented data (Zoph et al., 2020).

Except for geometric augmentation methods, cutting-edge augmentation methods use
generative adversarial networks (GANSs). The GANs model architecture includes two sub-models:
a generator model for producing new instances and a discriminator model for identifying whether
created examples are real, from the domain, or fake, generated by the generator model (Luo and
Lu, 2018). The generator model creates a sample in the domain using a fixed-length random vector
as input. A Gaussian distribution is employed to generate the vector and then seed the generative
process. Points in this multidimensional vector space will correspond to points in the issue domain
during training, resulting in a compressed representation of the data distribution. A latent space,
or a vector space containing latent variables, is the name given to this vector space (Lim et al.,
2018; Waheed et al., 2020). The discriminator takes a domain example (real or generated) as input
and predicts whether it is authentic or fake. The real example is taken from the training dataset,
and the generator model produces the generated examples. During training, the loss function in the
discriminator will calculate the loss between generated and actual examples and adjust the
parameters in the network by back-propagation (Lim et al., 2018). After training, the discriminator
is discarded since the trained generator is mainly used to generate examples. The fundamental

GANs structure is illustrated in Figure 2.6 (Vallecorsa et al., 2019).

40



Real Data Samples

Condition

Discriminator Is it correct?

Generated
fake samples

Generator

Fine tune training

Latent random variable

Figure 2.4 Fundamental architecture of GANs (Vallecorsa et al., 2019)

2.1.4 Applications in the environmental field

Because of its tremendous fitting abilities, ML has shown promise in tackling complicated
data patterns or formats. As a result, ML, particularly deep learning, has seen significant growth
in a range of applications over the last decade, including image classification and machine
translation. Researchers in the broad area of environmental science and engineering (ESE) have
eagerly embraced ML as well in many applications, for example, assessing environmental hazards
(Tollefson et al., 2021), evaluating the health of water and wastewater infrastructure (Granata et
al., 2017), improving treatment methods (Inoue et al., 2017), detecting and characterizing pollutant
sources (Huang et al., 2021), and performing life cycle analysis. Compared with traditional
statistical tools (Gao and Pishdad-Bozorgi, 2020). ML is especially suitable for solving complex

environmental problems for the following reasons. ML has the capacity to address a large number
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of factors that have weak or nonlinear correlations with the results. Furthermore, in situations
where the critical information is not contained in a single input variable, nor are the essential
variables known ahead of time, ML can be more effective than traditional statistical tools in
handling various data formats, such as text, images, and graphs, where some previously unknown
combination of features is required to determine the outcome (Bini, 2018). The general process of

ML application in the environmental domain is shown below in Figure 2.7.
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Figure 2.5 General process of ML application in the environmental domain (Zhong et al., 2021)

Three examples are introduced below to illustrate better how ML can address different

environmental problems.

The first example focuses on the MPs. Due to MPs' potential influence on water pollution,
wildlife, and the food chain, MPs have gained significant attention these years. After sieving and
digestion, reliable, quick, and high-throughput screening of MPs from other components of a water
sample remains a highly desirable aim to avoid time-consuming visual inspection under the optical

microscope. Vittortio et al. (2019) proposed a novel technique that combines 3D coherent imaging
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with ML to accomplish accurate and automated identification of MPs in filtered water samples at
the microscale. During the water pre-treatment procedure, sediments and aggregates that fall
outside the measured range are removed. However, it is still crucial to differentiate MPs from
marine microalgae. It is demonstrated that by creating a distinct collection of different

“holographic properties,” MPs within the prescribed analytical range may be reliably identified.

The second example is from the air pollution domain. Suleiman et al. (2019) introduced a
new way for assessing the efficacy of roadside PM10 and PM2.5 reduction scenarios using ML-
based models, including artificial neural networks (ANN), boosted regression trees (BRT), and
SVM. The ML models predicted PM10 and PM2.5 concentrations well, with around 95% of

predictions coming within a factor of two of the actual values at the roadside.

The last example is a water quality-related problem. Lu et al. (2020) proposed two
innovative hybrid decision tree-based ML models to generate more accurate short-term water
quality predictions. Extreme gradient boosting (XGBoost) and random forest (RF) were the base
models of the two hybrid models, which both added an advanced data denoising approach. Six
water quality indicators, including water temperature, dissolved oxygen, pH value, specific
conductance, turbidity, and fluorescent dissolved organic matter, were predicted using two hybrid
models. Their results revealed the low mean absolute percentage errors in predicting temperature,

dissolved oxygen, and specific conductance.

These three examples present the most applications of ML in the environmental domain as
classification and regression problems with the different input data types, ranging from image and
tabular inputs. It shows the tremendous flexibility of ML applications in dealing with different

environmental problems. However, in the oil spill and marine pollution fields, ML models are not
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as widely applied as they are in the mentioned fields. The following two sections will illustrate
current problems and challenges in oil fingerprinting in oil spills and MPs in marine pollution, and
in the following two chapters, the proposed approaches are demonstrated how ML can be used to

solve these problems.

2.2 Oil Fingerprinting

2.2.1 Marine oil spills and oil fingerprinting

Petroleum products are increasingly produced and consumed as the world’s primary energy
source, and their environmental effect is also growing. The possibility of significant oil spills
persists, despite tremendous progress in decreasing leakage through a combination of
technological and regulatory preventative methods and improved business practices. Hundreds to
thousands of spills are estimated to occur every day worldwide, including various types of crude
oil to a wide range of refined products, from heavy, long-lasting fuels to light, short-lasting, but
very poisonous fuels in the marine environment. The fate, behavior, and influence of spilled oil in
the marine environment are determined by the spilled oil's chemical composition and bulk
properties and the accompanying weathering process. Marine oil spills are a significant source of
worry due to the enormous financial costs and persistent, severe damage to the marine ecosystem,
local economy, and coastal society. There are ten effective methods for cleaning up marine oil
spills: using oil booms, skimmers, sorbents, burning in-situ, dispersants, hot water, high-pressure
washing, and manual labor bioremediation, chemical stabilization of oil by elastomers, and natural
recovery. Each method has different advantages and disadvantages and is appropriate to use on
different occasions. For example, oil booms only work when the oil is in one spot or calm marine

environment, and skimmers are then applied in the confined area to separate the oil from the water.
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When in the scenario that booms cannot contain spilled oil, then dispersants are applied to
accelerate the disintegration of oil. They increase the surface area of each molecule, allowing the
oil to chemically bind with water and prevent the slick from spreading across the water’s surface,

and making it easier for microbes to break down the oil.

In oil spill response, cleanup methods are not the only concern needed to be considered.
Determining the source of spilled oil, differentiating and correlating oils, and monitoring the
degradation process and weathering state of oils under various conditions are all critical steps to
take. Furthermore, allocating legal liability is also essential for oil spill recovery. For the above
responsibilities, oil fingerprinting analysis is an effective solution to address them. Qil
fingerprinting is one of the critical technologies to describe procedures that use geochemical
analysis of the composition of hydrocarbon fluids spilled into the environment (Wang et al.,
2006). During the formation of oil and gas, hydrocarbons are affected by many processes, such

as biodegradation, gas flushing, water washing, and evaporation.

Furthermore, temperature, reservoir compartmentalization, aquifer activity, and other
variables influence the degree of change. Subsequently, hydrocarbons that originated in one
source rock have distinct properties in other reservoirs (Mulabagal et al., 2013). Identifying
hydrocarbons from different reservoirs can be realized by analyzing variations in composition or
identifying unique “fingerprints" of hydrocarbons. Oil fingerprinting techniques have been
frequently used to establish the sources of an oil spill by comparing compositional characteristics
of both the spilled oil and probable sources. Identifying oil sources and their characteristics is
critical for determining the spill’s fate and environmental impact, providing a suitable spill

response, and assigning obligations and liabilities (Song et al., 2016).
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2.2.2 Traditional methods in oil fingerprinting

Many advanced instruments for identifying biomarkers have recently become available,
including comprehensive two-dimensional gas chromatography, and mass spectrometry (GC/MS),
isotopic resolution mass spectrometry (IRMS), electrospray ionization liquid chromatography-
mass spectrometry (ESI-LC-MS), and ultrahigh-resolution Fourier transform ion cyclotron
resonance mass spectrometry (FT-ICRMS) (Mansuy et al., 1997) (Cho et al., 2012). In recent
years, GC/MS has been a well-known approach with a better-resolving capacity to separate groups
of hydrocarbons, particularly isomers and hydrocarbons with identical retention times. Based on
GC/MS, the impacts of physio-chemical weathering on biomarkers can be effectively examined

(Yang et al., 2011).

Diagnostic ratios are the primary indications for oil fingerprinting, allowing the tasks of oil
source identification, characterization, and weathering tracing to be realized. A significant
advantage of the diagnostic ratio of spilled oil and suspected source oil is that the influence of the
concentration is reduced, and the use of ratio tends to produce an autonomously normalizing effect
on the data (Song et al., 2018). Usually, a quantitative oil source fingerprinting is conducted by
GC/MS methodology, and specific diagnostic biomarker ratios are determined using many
published combinations of ratios and a few new ratios using similar guidelines. There are eight
major biomarker classes, and each of them has different diagnostic ratios. The following table

gives examples of diagnostic ratios under each biomarker (Song et al., 2019).
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Table 2.1 Common diagnostic ratios from biomarkers(Song et al., 2019)

Biomarker classes  Diagnostic ratios

Acyclic pristine/phytane
isoprenoids pristane/n-C17
TR23/TR24

C23 tricyclic terpane/C30a 3 hopane

C24 tricyclic terpane/C30a B hopane

C24 tertracyclic/C26 tricyclic (S)/C26 tricyclic (R) terpane
Terpanes C2718a, 21p -trisnorhopane/C27 17a, 21 -trisnorhopane

C28 bisnorhopane/C30a 3 hopane

C29a B -25-norhopane/C30a B hopane

C29a B -30-norhopane/C30a B hopane

oleanane/C30 o B hopane

C27BB(S+R)/C29B B (S+R)

C28 a B B/C29 a B B steranes (at m/z 218)

C27 a B B/(C27 a B B +C28a B B +C29a B B) (at m/z 218,
Steranes

C28 a B P/(C27 a B P+C28 a P P +C29 a P P) (at m/z 218)

C29aBPAC27TaBP+C28 a P P +C29 a P P) (at m/z 218)

C27,C28, and C29 a a o/a B B epimers (at m/z 217)

Peak 5/Peak 3
Sesquiterpanes
Peak 10/Peak 3

Peak 1/Peak 3
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Continued Table 2.2 Common diagnostic ratios from biomarkers(Song et al., 2019)

Biomarker classes

Diagnostic ratios

Diamondoids

Triaromatic steranes

Monoaromatic
steranes

1,4-DMA, cis/1,4-DMA, trans

Dimethyl admantane index: 1,3-DMA/(1,3- + 1,4- + 1,2-DMA) 1,3,4-
DMA, cis/1,3,4-DMA, trans

Trimethyl admantane index: 1,3,4-DMA, cis/(1,3,4-DMA, cis + 1,3,4-
DMA, trans)

Ethyl admantane index: 1-EA/(1- + 2-EA)
Methyl-diamantane index: 4-MD/(1- + 3- + 4-MD)

Relative distribution of diamantanes: C0-D:C1-D:C2-D:C3-D
C26 TA (20S)/sum of C26 TA (20S) through C28 TA (20R)
C27 TA (20R)/C28 TA (20R)

C28 TA (20R)/C28 TA (20S)

C26 TA (20S)/[C26 TA (20S) +C28 TA (20S)]

C27—-C28—C29 monoaromatic steranes (MA) distribution.

After deciding several diagnostic ratios, the calculation is proceeded by dividing the peak

heights of compounds with the same mass to charge ratio by the number of compounds.

During the calculation, the final series of diagnostic biomarker ratios will be determined

using a 5% fixed relative standard deviation (RSD) which means that any diagnostic ratios

exceeding the limit are excluded (Wang 2008). Once the sample oil’s diagnostic ratios are

developed, the same ratios will be calculated for different suspected source oils and statistically

compared with sample oil’s ratios. The calculated biomarkers and sediments will be classified into

four oil source-fingerprinting categories: match, potential match, inconclusive, and non-match
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(Song, 2019). The comparative findings will reveal how effective the diagnostic ratio technique

can distinguish non-weathered crude oil from a comparable geographical production area.

This approach works because quantitative diagnostic biomarker ratios are typically more

resistant to environmental weathering and will show little or no change over time.

2.2.3 Challenges of oil fingerprinting in the weathered dispersed oil

The past experiments showed that diagnostic biomarker ratios of spilled oil are stable to
environmental weathering without human intervention. During oil spills, dispersants, which
comprise surfactants and solvents, are often used to remediate marine oil spills. It can lower the
interfacial tension between oil and saltwater by increasing the formation of tiny, stable oil-
surfactant micelles (i.e., oil-in-water emulsion) (Major et al., 2012). CDO, split oil in a water
emulsion bridged by surfactants, can stay in saltwater for extended periods if dispersants are used
(Song, 2019). In the experiment of He et al. (2016), they showed that during a medium to long
term weathering process, the most selected diagnostic ratios of n-alkane, terpanes, steranes, and
polycyclic aromatic hydrocarbon (PAHs) from all oil samples changed, and only four ratios
remained good stability because their RSD is lower than 5% (He et al., 2016). The potential for oil
biomarker weathering will profoundly affect the calculation and subsequent critical difference
analysis of diagnostic ratios used for oil source fingerprinting. As a result, a more robust
quantitative oil source-fingerprinting approach is necessary since it is vital to assess its
environmental effect, select further reaction countermeasures, and gain a better knowledge of CDO

destiny and behavior in maritime ecosystems.

2.3 Microplastics and coexistence with oil spills in marine environments
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2.3.1 Microplastics in oceans

MPs are defined as particles with a diameter of less than 5 mm created by the breakdown
of more considerable plastic trash or by the direct production of tiny-sized particles (He et al.,
2016). They can be divided into two main categories by their source: primary MPs and secondary
MPs. Primary MPs are the main source directly released in the environment by laundering
synthetic clothes, abrasion of tyres when driving, and others. Secondary MPs originate from the
decomposition of more significant plastic objects, such as plastic bags, bottles, etc. From the report
of primary MPs in the oceans, there are seven major sources of primary MPs: tires, synthetic
textiles, marine coatings, road markings, personal care products, plastic pellets, and city dust
(Boucher and Friot, 2017). In terms of MPs’ pathway to ocean, there are many different routes,
such as riverine input, wastewater effluent, sewage disposal, litter coastal activities, litter from
marine activities, and atmospheric deposition. After MPs enter the ocean, they can cause an
enormous impact on the marine environment. MPs may disrupt the development of marine animals

and constitute harm to marine ecology due to their tiny size and widespread dispersion.

Furthermore, MPs have been implicated in transporting organic contaminants such as
antibiotics and insecticides, resulting in complicated interactions (Everaert et al., 2020). A recent
sorption Kinetics investigation on the behavior of crude oil on MPs in both seawater and a
simulated fish digestive system indicated the possible function of MPs as a vector for
bioaccumulation of hydrophobic organic contaminants (Guven et al., 2017). Therefore, MPs are
persistent, and a possible vector of toxic organic compounds into the marine environment, and
their negative impact is not only physical but also chemical due to their ability to adsorb and

accumulate a variety of contaminants (Michele et al., 2021).
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2.3.2 Behaviour and effects of microplastics in oil spill

When MPs are released into the ocean, they can integrate with spilled oil and dispersants
due to their physical and chemical properties. The integration can potentially affect many
processes, for example, oil dispersion, fate, and transport of MPs and spilled oil. Therefore,
studying the interaction between MPs and oil spills is necessary to provide more evidence and

insight into the synergy between these two ocean pollutants.

There have numerous oil spill response strategies, as stated in the introduction. Among
these strategies, great attention is currently being paid to the use of oil spill treatment agents, such
as chemical dispersants, that can efficiently break oil into tiny droplets under various
environmental circumstances (Clayton et al., 2020). For example, approximately 7.9 million liters
of dispersants were used to treat 780 million crude oils during the Deepwater Horizon spills in
2010 (Blumetal., 2012). These oil spill treatment agents and spilled oil in the ocean might adsorb
with hydrophobic particles with a rough surface structure, such as marine snow. Marine snow is
the decaying material from dead animals, plants, fecal matter, sand, soot, and other inorganic dust
(Dissanayake et al., 2018). Marine snow provides particles to aggregate with oil and allow oil to
be transported from the top of the sea to the bottom, resulting in an increase in oil concentration at

the seafloor (Brakstad et al., 2018).

Moreover, the interaction between particles spilled oil and chemical dispersants might impair oil
dispersion’s efficacy (Zhao et al., 2017). Furthermore, the formed oil-particle-aggregates could
significantly impact the destiny and transportation of oil. For example, they enable oil transport
from the saltwater surface to the water column, potentially increasing oil concentration in the

seawater column and improving oil droplet stability (Irisson et al., 2017; Brakstad et al., 2018).
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These aggregates are biodegradable in general, and the particulates in the aggregates are harmless
(Rahsepar et al., 2017). Unlike marine snow, MPs have physicochemical and structural features
that distinguish them from natural biodegradable particles, such as higher hydrophobicity, reduced
degradation capability, and possible toxicity (Porter et al., 2018). As a result, MPs may have
distinct effects on the oil dispersion process, influencing the transport and destiny of oil in the
marine environment. More crucially, the presence of an amphipathic dispersant in the MPs and
crude oil system may alter the efficacy of oil dispersion and the shape, transit, and destiny of MPs

in the marine system (Yang et al., 2021).

Previous research has shown that MP aging develops novel hydrophilic functional groups
and that changes in their surface shape might affect how they interact with other pollutants. The
size of oil droplets and the efficacy of dispersion would be affected by MP aging on a day-to-day
basis (Balakrishnan et al., 2019). In Yang et al. (2021) study, they measured oil droplet size and
dispersion effectiveness of light oil and heavy oil under the DOR of 1:25 after different aging
degrees with 583 mg/L MP samples (i.e., polyethylene). MP aging substantially influences the
droplet size of heavy oil but has little impact on light oil. As seen in Figure 2.1 (a), Light oil
droplet size remained consistent between 3.35 + 0.15 and 4.76 + 1.79 um after 56 days of aging.
The droplet size for heavy oil, on the other hand, grew from 9.07 + 0.50 um on day 0 to 15.49 +
0.00 um on day 56, with a high value of 20.31 £+ 2.43 um on day 21. The presence of hydrophilic
functional groups (OH, C=0, COC—) generated with slow MP surface aging may have assisted
the adsorption of the dispersant’s hydrophilic heads. In contrast, the dispersant’s hydrophobic
tails easily adsorbed the heavy oil, and this process allowed for the creation and expansion of

WMDOAs (Yang et al., 2021).
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Figure 2.6 the change of droplet size and dispersion effectiveness as MPs aging days increase

(Yang et al., 2021)

Figure 2.1 (b) demonstrated that the MP aging process improved light and heavy oil
dispersion performance compared to pristine MPs. On day 0, the dispersion efficiency of light and
heavy oil was 82.86 + 10.87 and 40.39 + 4.96%, respectively, and climbed to 109.75 + 0.71 and
58.30 + 0.00%. Aged MPs significantly improved the efficacy of light oil dispersion (about 27%).
Aged MPs were more hydrophilic than pristine MPs due to new hydrophilic functional groups
(OH, C=0, COC—). As a result, aged MPs might disperse in saltwater with less dispersant usage
than pristine MPs. Therefore, more dispersant was available for oil dispersion, increasing the

efficacy (Yang et al., 2021). The formation of WMODA:s is illustrated below.
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2.3.3 Challenges of distinguishing WMODAs

There are appropriate approaches to identify MPs, ranging from physical to chemical

means. Microscopical techniques and chemical analysis (e.g., dissect, polarised, fluorescence,
scanning electron, atomic force microscopy, spectroscopy) are the most used methods for
identifying micro/nano plastics (Chen et al., 2020; Roch and Brinker, 2017; Shim et al., 2017).
The advantages and limitations of the different microscopic and analytic techniques are

summarized in Table 2.2.
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Table 3.2 Advantages and limitations of analytic techniques (Wirtz et al., 2019; Chen et al.,

2020)
|dentification Advantages Limitations
method
Fast and eas Not confirmative of plastic c
Stereo iNd €asy. : nature of the particle.
) Identification of shape, size, and
microscopy colors Lack of data of transparent or
' small particles.
Clear and high-resolution images
Scannin of particles. Expensive.
electrong No gas into the chamber if coupled Long time and effort for analysis
microsco in ESEM mode. Lack of information on the type
Py Small, detected particles in STEM of polymer.
mode
Confirmation of the composition Expensive.
FTIR of the MPs. Wavelength radiation can be a
No false positive or negative data. limiting detection factor.
spectroscopy

Non-destructive
materials

analysis  of

Time consuming to analyze all
the particles on a filter

The stereo microscope analyses three dimensions by viewing the sample from two slightly
different angles to obtain the two pictures required for stereoscopic vision. Therefore, objects may
be observed mainly through reflected light at modest magnifications, generally between 8 and 50
times. In the case of transparent particles, several studies applied stereomicroscope to identify the
percentage of plastic-like particles, later characterized by other techniques, roughly 20-70% of the
total particles. Furthermore, synthetic and natural fibers (prevalent in water, sediment, and biota
samples) are difficult to distinguish using a stereomicroscope (Firdaus et al., 2020). The
fluorescence microscope captures fluorescent emission from materials stimulated by a specific
wavelength, as opposed to the optical microscope, which depends on the picture's contrast
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provided by the reflection of light on the sample. A fluorescence microscope effectively identifies
MPs based on their natural propensity to emit fluorescence, mainly white and clear polymers.
When paired with imaging, this method lowers MPs detection failure and can lower the size limit
of identified MPs (Scircle and Cizdziel, 2019). The quantification of fluorescence spheres with
microscopy methods may also identify MPs in various matrices. However, chemical additives in
the production process of MPs can potentially alter the fluorescence characteristics and affect the

results (Dehghani et al., 2017).

SEM is a method that can provide details on the morphological surface structure of MPs
by obtaining high-resolution pictures of the surface state. It can also offer information on the
chemical content of the samples because it can be equipped with Energy Dispersive X-ray
Spectroscopy (EDS) detectors. The source electrons penetrate the solid material, causing various
(both elastic and inelastic) scattering processes to occur, and various detection systems gather the
resulting signals to form an image. Several studies used SEM to view MPs in various matrices,
including sewage sludge, mussels, sediments, and sand (Anderson et al., 2017; Li et al., 2016;

Nguyen et al., 2021).

Infrared spectroscopy (IR) is absorption spectroscopy commonly employed in material
characterization to examine chemical bonding. A molecule transition absorbs an infrared photon
from its primary to excited vibrational state. Fourier transform infrared (FTIR) spectroscopy is
carried out using an interferometer, which allows for the scanning of all frequencies present in the
IR radiation produced by the source. FTIR employs four techniques: transmission, reflectance, true
specular reflectance/reflection-absorption, and attenuated total reflection (ATR) (Veerasingam et
al., 2021). The excellent energy availability leads to a significantly better signal/noise ratio than

traditional IR spectroscopy, which is one of the critical advantages that assures improved
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performance. FTIR is usually used to characterize MPs. In previous studies, MPs samples are
stimulated, resulting in distinct detected vibrations that allow for the generation of a spectrum with
a fingerprinting range. The nature of the substance is described by this spectrum, which can be
determined by comparing it to established reference spectra. Large particles (>500 nm) can be
examined using ATR-FTIR, while tiny particles need micro-FTIR, which allows for simultaneous
spectral imaging, mapping, and collecting (Dini et al., 2021) (Gaston et al., 2020). FTIR has been
widely employed in MPs research to locate and describe them in sediment, marine species, surface

water, and food (Cincinelli et al., 2017; Corami et al., 2020; Harrison et al., 2012).

However, no study has been done in the characterization of WMODASs since it is a
relatively new concept in the interdisciplinary area of MPs and oil spills, and the properties of
WMODA s also make the characterization difficult, for example, multiple mixed substances, wide-
ranged sizes, and subtle change of morphology. From listed identification methods, either one
cannot classify WMODASs with different weathering degrees independently. Therefore, there is a
need to develop a new approach to identify WMODAs with different weathering degrees and

further quantify their impacts on oil dispersion and oil droplet size.

2.4 Summary

In this chapter, section 2.1 reviewed ML’s methods and how ML usually conducts
classification and regression, and examples that ML was applied to solve complex environmental
problems. There have been few ML-related methods in an oil spill and marine pollution, and

further, no ML-related methods were developed to classify WCO and CDO and different
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weathering degrees of WMODASs. The potential of using ML algorithms with the aid of computer

vision and analytic techniques to solve the challenges in these two related problems is promising.

Section 2.2 reviewed the definition, motivations to conduct oil fingerprinting, and current
methods of oil fingerprinting. It further illustrated how to select diagnostic ratios from GC/MS
through relatively stable RSD and gave examples of commonly used diagnostic ratios. Section
2.2.4 discussed how the weathering process and the application of dispersant on spilled oil could

potentially affect oil fingerprinting because of the change in properties of dispersed oil.

Section 2.3 reviewed the problem of emerging contaminants (e.g., MPs) with spilled oil
which would bring challenges in oil fingerprinting, oil dispersion, MPs’ fate, and transportation in
marine environments. The effects of different weathering degrees of WMODAS on oil dispersion
efficiency were discussed, and the needs and challenges of distinguishing different weathering

degrees of WMODASs were stated.

The following chapters 3 and 4 will give the proposed approaches in an oil spill and marine
pollution fields and demonstrate solutions to the problems of distinguishing WCO and CDO in oil

fingerprinting and different weathering degrees of WMODAs in spilled oil remediation.
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CHAPTER 3: A DATA-DRIVEN BINARY-CLASSIFICATION APPROACH

FOR OIL FINGERPRINTING ANALYSIS*

*The chapter is based on a published article: Chen YF, Chen B, Song X, Kang Q, Ye XD, Zhang BY (2021) A data-
driven binary-classification framework for oil fingerprinting analysis. Environmental Research. 2021(111454).
https://doi.org/10.1016/j.envres.2021.111454. Contributions: Yifu Chen - methodology, software, validation, paper
drafting and editing; Bing Chen - conceptualization, writing, review and editing; Xing Song - review; Qiao Kang -
data curation and review; Xudong Ye - visualization and review; and Baiyu Zhang - review and & editing. All authors
have read and agreed to the published version of the manuscript.
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3.1 Introduction

In a marine oil spill, source identification and behavior characterization are critical to
understand the environmental impact and response of the accident. The subsequent weathering
process affects the fate and behavior of spilled oil such as evaporation, emulsification,
photooxidation, and biodegradation (Li et al., 2016; Song et al., 2019). Oil fingerprinting is usually
achieved by recognizing specific groups of petroleum hydrocarbons, called biomarkers, such as
terpanes and steranes (Shen et al., 2020; Wang et al., 2011). These biomarkers have unique
distributions in different oil categories, which allows effective fingerprinting based on the
diagnostic relationships among biomarkers (Wang et al., 2013).

However, oil fingerprinting becomes more challenging when spilled oil is treated by chemical
dispersants (Song et al., 2018). Dispersants can fractionate oil into smaller droplets, theoretically
facilitate the biodegradation process, and reduce the exposure to marine animals and accident
respondents (Bayable et al., 2021; Lee et al., 2015). Dispersants can significantly affect oil
physicochemical properties (e.g., viscosity, boiling point, and iodine value) and oil weathering,
and further influences biomarkers’ attributes and generate unreliable diagnostic ratios compared
with those in non-dispersed oil (Datta et al., 2018; Torres et al., 2020). This consequence could
baffle the weathering processes and result in errors after contrasting chemically dispersed oil
(CDO) fingerprinting in marine environments (John et al., 2016; Song et al., 2016). Thus, the
addition of dispersants could generate non-negligible bias to the tracking of the source and
weathering of spilled oil in oceans (Wu et al., 2021).

Traditionally statistical methods, such as cluster analysis, discriminant analysis, and principal

component analysis (PCA), have widely implemented in characterizing and tracing spilled and
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weathered oil by primarily analyzing spectrum data of biomarkers (Ismail et al., 2016; Mirnaghi
et al., 2019). Machine learning (Nasution et al., 2018), as a novel advancement of statistics, has
been recently recognized as a promising tool and introduced into environmental fields due to its
many advantages (Saha et al., 2016). Firstly, ML is effective in labelled classification problems
(Mieth et al., 2016). Secondly, it is specially designed for data with large size and intricate
relationship of input variables and samples without depending on validation of the initial
assumptions (e.g., whether data follow normal distribution and linearity) (Jordan and Mitchell,
2015). Thirdly, it only requires choosing predictive algorithms by relying on its empirical
capabilities without pre-existing knowledge about subjects (Bzdok et al., 2018). There have
growing applications of ML in studying complex environmental problems, such as predicting fecal
coliform concentrations in wastewater (Khatri et al., 2020), classifying wide-area seafloor habitat
by acoustic and visual data (Zelada Leon et al., 2020), and forecasting water quality parameters in
coastal waters (Alizadeh et al., 2018). However, few efforts have been reported in employing ML
in the area of oil fingerprinting to classify dispersed oil.

This study introduces ML as a new analysis tool by proposing a new binary classification
approach to aid source identification in oil fingerprinting by distinguishing weathered crude oil
(WCO) and CDO. The approach comprises six ML algorithms and a dimensional reduction
algorithm (i.e., PCA), to address the dispersed oil classification problem. The ML algorithms
considered in the study include Random Forest (RF), Support Vector Classifier (SVC), K-Nearest
Neighbor (KNN), Logistic Regression (LR), Ensemble Voting Classifier (EVC), and Decision
Tree (DT). The total 862 diagnostic ratios based on five types of biomarkers (terpanes, steranes,
triaromatic steranes or TA-steranes, monoaromatic steranes or MA-steranes, and diamantanes) are

chosen from our previous study (Song et al., 2019) as the features for ML and to be further
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evaluated by the six algorithms to identify the best algorithm for classification. The approach is
expected to provide an efficient analysis method for identifying the WCO/CDO and supporting oil

spill source identification.

3.2 Method

3.2.1 Binary classification approach

The binary classification approach comprised seven steps from the front data entry to the
application of ML algorithms. The core of the approach was six ML algorithms that have different
specializations in analyzing datasets. Figure 3.1 shows the workflow of the approach, where
datasets were preprocessed by feature selection, formed different feature sets, trained by ML
algorithms, ranked by performance, and finally used to make classifications. Each square

represents a machine learning operator, with arrows indicating the direction of the data flow path.

62



Entire
datasets

[

yperparameter|

Feature
extraction

Select K
best
features

r——
Form
different
feature sets

ML

tuning

3.2.2 Data entry and

algorithms

S —

Performance

Principal
component
analysis

Confusion
matrix and

Optimal
models

evaluation |

model scores

Application \

Figure 3.1 The binary classification approach

preprocessing

63

The raw datasets might not be desirable to train ML algorithms directly because of
missing data, outliers, or merely heavy computations. In this study, the original datasets were
engineered some new features by calculating quotients between every diagnostic ratio. For
example, there had up to 462 features in terpanes. This process might also bring noise into the
datasets. Without dimensionality reduction technique applied, the input would require 462 values

for a single biomarker group. To simplify the feature input process while maintaining the most



information of datasets, principal component analysis (PCA) was introduced in this approach. It
decreased hundreds features to dozens, and hence greatly reduced computational time. By
reducing dimensionality through PCA, the datasets could be denoised as well.
The main formula of PCA can be represented in Eq. 3.1 (Wetzel, 2017):

PCi = a1 X; +a X, + -+ agXy (3.2)
where, PC;, principal component i; Xgq, original feature d; aq, numerical coefficient of Xq.

The Scikit-learn library from Python® v3.8 was used to conduct PCA and data
standardization. The 95% variance was selected to keep the information relatively complete in the
data to secure accurate prediction results (Hao et al., 2020). Before the feature selection, datasets
were normalized to ensure that feature values were simultaneously distributed and contributed
equally to the analysis without creating bias (Vasan and Surendiran, 2016). Afterward, the loading
matrix in PCA provided the correlations between the original features and new principal
components (PC). For better interpretations, feature selection was proceeded by choosing the

highest correlated original features (Abdi and Williams, 2010).

3.2.3 Modeling developments for oil fingerprinting

Total six ML algorithms were applied for the comparative analysis. Before feeding input
values into ML algorithms, the preprocessed datasets were divided into training sets (80%) and
test sets (20%) to evaluate the performance based on previous studies (Bhatnagar et al., 2017,
Medar et al., 2017). The brief definitions of six ML algorithms applied in this study were
introduced below.

KNN algorithm is a supervised machine learning algorithm. It works by discovering the

distances between a query and all the examples in the datasets and choosing the specific number
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of examples (K) closest to the query, then voting for the most frequent label. Distance metric could

be represented by Euclidean distance in Eq. 3.2 (Potamias et al., 2010):

DY) = Sk, -2 (3.2)

where, D, the distance between the query and examples; x, the query; y: examples.

SVC algorithm is to find a hyperplane that has the maximum margin between data points
of classes in N-dimensional space (N: the number of features) to markedly classified the data points
(Wang et al., 2011a). Figure 3.2 demonstrates how the perpendicular distance from the line to the
nearest point is used to determine a hyperplane with the greatest margin.

The optimal separating hyperplane

@® cClass 1

Class2

Support vectors —’

“\'_‘\‘

Maximum margin
Figure 3.2 The fundamental theory of SVC
DTC consists of nodes, which are the test for the value of a specific edge or branch
corresponded to the outcome of a test and connected to the next node or leaf and leaf nodes.
Terminal nodes are used to predict the class labels (Farid et al., 2014). RFC is an advanced decision
method, which combines the output of multiple (randomly created) decision trees. This ensemble
learning increases the classification performance of a single tree classifier by randomly choosing
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data nodes to create a decision tree. The feature space is divided into M regions Rm, 1 <m <M
by a decision tree with M leaves. The prediction equations (Eg. 3.3 and Eq. 3.4) are defined below
for each tree:
fG) =%m=1 Cull(x,Rp) (3.3)
where, M, the number of regions in the feature space; Rm, a region suitable to m.
Cm is a constant appropriate to m:
(x,R,) =1{1, if x €Rpy
0, otherwise} (3.4)
The final classification prediction come from the majority votes of all trees (Chen et al., 2020;
Rodriguez-Galiano et al., 2012).
LR is a statistic model that conducts a logistic function or sigmoid function to model a
binary dependent variable, and the logistic curve, which relates the independent variable, can be

represented as shown in Eq. 3.5:

ea+bx

Py =—0 (3.5)
where, P, the probability of a label 1; e, the base of the natural logarithm; a and b are the model
parameters (Robles-Velasco et al.,, 2020) and the probability threshold used for binary
classification is 0.5.
EVC is a meta-classifier that uses majority voting to classify related or potentially different
machine learning classifiers, as shown in Eq. 3.6:
y = mode{C;(x), C;(x), ..., Cn(x)} (3.6)

where, y, the predicted label; Cr, different classifiers (Onan et al., 2016).
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Depending on the attributes of different ML algorithms, they perform distinctively on the
same datasets. Hence it is important to understand each ML algorithm’s limitations. Table 3.1

presents their significant advantages and disadvantages.

Table 3.1 Overview of different ML algorithms

Model Advantages Disadvantages References

Has no training
Has high outlier sensitivity.
periods. (Ao et al, 2019; De
KNN Is unsuited for high-
Adds new data Leonardis et al., 2018)
dimensional data.
seamlessly.

Is suitable for high-

dimensional data. Is unsuited for large datasets. (Dou et al, 2020;
Ve Has relatively Has poor noise resilience. Zendehboudi et al., 2018)

memory efficient.

Deals with very high

dimensional data. Overfits noisy classification (Aoetal., 2019; Dogru and
e Has built-in feature  problems. Subasi, 2018)

importance metric.
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Requires fewer
Has long training process. (Hamsagayathri and
efforts for data
DTC Is inadequate for regression Sampath, 2017; Pham et
preparation.
problems. al., 2017)

Updates easily to

reflect new data.

Is unable to solve non-linear
Is less prone to over-

problems. (Christodoulou et al.,
fitting in a low

LRC Is difficult to capture complex  2019; Lee and Jun, 2018;

dimensional dataset.

relationships and sensitive to Qasim and Algamal, 2018)
Extends easily to

outliers.
multi-class

classification.
Is hard to interpret ensemble

models.
Improves overall
Does not perform well when an  (Saglain et al., 2019; Xiao
EVC model performance.
individual model is closest to etal., 2018)
Unlikely overfits.
the true data generating

process.

3.2.4 Hyperparameter optimization and overfitting

In machine learning, some hyperparameters need to be initialized and adjusted for better
prediction results. Meanwhile, overfitting could happen during the model training because models

learn the details and noise in the training data to the extent that detrimentally impacts the
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performance of models on new data (Yeom et al., 2018). In this approach, GridSearchCV was
applied for both hyperparameter optimization and overfitting prevention (Ranjan et al., 2019). The
main components of the GridSearchCV are:

e Hyperparameter grid

A python dictionary was created with hyperparameter names as keys and a list of hyperparameter
settings as values. The best accuracy was verified based on the test on all the combinations of
hyperparameters.

e Cross-validation

Cross-validation was a statistical method used to estimate ML models’ skill and its primary
purpose was to evaluate models’ generalization capability on unseen data. This process had a
simple parameter called k that represented the number of groups that given datasets were to be
split with after random shuffles, and in this approach, k was set to 5 by default. The evaluation
scores were stored in the end, epitomizing the model (Ranjan et al., 2019). The following Table
3.2 summarized the chosen parameters for each ML algorithm in GridSearchCV, and the options
were decided based on the previous ML algorithms studies (Badem et al., 2019; Moldagulova and
Sulaiman, 2017; Pham et al., 2017; Roberts et al., 2017; Saqglain et al., 2019; Xiao et al., 2018).

Table 3.2 Hyperparameter tunning in different algorithms

Algorithm name Parameters Options
solver Liblinear

regularization (C) 1

LRC 10

20

30
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n-estimators

RFC
algorithms
DTC
splitter
kernel
regularization (C)
SvC
gamma
n-neighbors (K)
KNN

Parameterization for the EVC model was conducted later separately since it combined the
previously mentioned models under the best hyperparameters. The hyperparameter optimization
for EVC was to select between hard voting and soft voting for its voting system. Hard voting took
the most frequently model predicted results as its result. In soft voting, an individual classifier
provided a probability that a specific data point matched a particular label, and the target label with

the most significant sum of weighted probabilities was the final prediction (Saqglain et al., 2019).
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ID3 (entropy)
best
random
linear
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Both hard and soft voting were adopted in the study. Finally, the model accuracy came from 5-

fold cross-validation.

3.2.5 Performance evaluation and model deployment

In this approach, two methods were used to evaluate the performance of models: cross-
validation and confusion matrix (f score). Shuffle split and cross-validation were applied from the
Scikit-learn library because the conventional train-test split method cannot guarantee the original
datasets were well mixed and may cause bias in the prediction. The confusion matrix comprised
four different combinations of predicted and actual values: true positives, false positives, false
negatives, and true negatives. Here, precision and recall were applied, which refers to the
proportion of the relevant results and the ratio of the total number of the relevant results correctly
classified, respectively.

F-score was introduced in the evaluation system to 