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Abstract                                         

Three-dimensional forward-modelling and inversion problems are investigated for the 

controlled-source audio-frequency magnetotelluric (CSAMT) method and both 

forward-modelling and inversion codes written. The finite-element (FE) method, 

which is a numerical method for obtaining approximate solutions to boundary-value 

problems, is used for forward modelling. A potential formulation, specifically the 

decomposition of the electric field into vector and scalar potentials for the Helmholtz 

and the conservation of charge equations, is used. Vector and scalar basis functions 

are used for the potentials. The equations are discretized using the weighted residual 

method, which results in a sparse linear system. Modelling domains are subdivided 

into unstructured tetrahedral grids. The linear system is solved by the direct solver, 

MUMPS, with LU factorization. A number of examples are presented for the 

validation of the code. A minimum-structure method with Gauss-Newton iterations is 

used for the inversion. Iterative preconditioned conjugate gradient and 

nonpreconditioned generalized minimal residual methods are used to solve the linear 

systems of equations for the model updates. These solvers do not request explicit 

calculations of the matrices; therefore, this significantly reduces memory demand. 

Three benchmark tests are presented to verify the inversion code.  
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Chapter 1 

1 Introduction 

Electromagnetic (EM) methods, including profiling and sounding techniques, are used 

to determine the changes in the electrical conductivity of the earth with both depth 

and laterally. These methods include methods that use natural and artificial sources 

and which operate in the time and frequency domains. Most EM measurements are 

conducted at a number of frequencies or times using fixed source and receiver 

locations since the strength of the EM fields depends on the earth's conductivity and 

signal frequency (Spies and Frischknecht, 1991). The controlled-source audio-

frequency magnetotelluric (CSAMT) method is a frequency-domain EM method that 

uses a grounded dipole or horizontal loop as a source. Since the source ensures a 

stable and reliable signal, the method is more able to determine the earth conductivity 

than methods using a natural source. One or two sources can be used depending on 

the consideration of surveys and the geologic complexity of the survey area (e.g., 

Bartel and Jacobson, 1987; Boerner et al., 1993; Wannamaker, 1997). Apparent 

resistivity and phase are defined by using mutually orthogonal electric (E) and 

magnetic (H) fields (Sandberg and Hohmann, 1982; Zonge and Hughes, 1991).  

The CSAMT method has been used in geophysical exploration applications such as 

mineral explorations (Sasaki et al., 1992; Boerner et al., 1993; Başokur et al., 1997; 
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Wang et al., 2018), geothermal explorations (Sandberg and Hohmann, 1982; 

Wannamaker, 1997; Savin et al., 2001), hydrocarbon explorations (Bartel et al., 1981; 

Hughes and Carlson, 1987), and aquifer explorations (Fu et al., 2013; Pedrera et al., 

2016; Šumanovac and Orešković, 2018). 

Many methods have been used for the numerical modelling of controlled-source 

electromagnetic methods (CSEM) as a result of developments in computer science. 

Although integral-equation (IE) formulations are one of the difficult methods for 

modelling in terms of mathematics, unknown fields only need to be found in 

anomalous regions. Hence, the memory demand of IE solutions is less than other 

modelling methods, and the method attracted attention in the early days of 3D 

modelling (e.g., Hohmann, 1975; Wannamaker et al., 1984). However, the method 

becomes very complicated for complex geology (Hohmann, 1983; Avdeev, 2005). In 

three-dimensional (3D) CSEM modelling, another widely used method is the finite 

difference (FD) method using rectangular cells (e.g., Newman and Alumbaugh, 1995; 

Streich, 2009; Li and Han, 2017; Lin et al., 2017; Wang and Tan, 2017). The 

implementation of the FD method is easier than other methods, and the method allows 

modelling of the entire region of interest. In the so-called staggered scheme (Yee, 

1966), electric field components are calculated on the edges of the cells while 

magnetic field components are calculated on the faces of the cells, or vice versa.  

Due to the inflexibility of the traditional rectangular grids, the FD method may cause 

inadequate results in 3D modelling. In other words, real geological features such as 

contacts between rock units and topography require powerful and flexible modelling. 

In contrast to the traditional FD method, different types of grids can be used for the 
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finite element (FE) and finite volume (FV) methods (e.g., for the FE method: 

Mitsuhata, 2000; Mitsuhata and Uchida, 2004; Ansari and Farquharson, 2014; for the 

FV method: Haber et al., 2007; Lu and Farquharson, 2020). Even though quadtree and 

octree grids, which have child rectangular and prismatic elements where they are 

desired, are computationally more efficient than unstructured grids (see, Haber et al., 

2007), these grids do not provide as much flexibility as unstructured girds for 

geological structures. They cause stair-casing and pixelation in the modelling domain. 

In this study, the FE method is used for the forward-modelling of the CSAMT method 

with unstructured girds. The method has been successfully applied to CSEM 

modelling (e.g., Badea et al., 2001; Schwarzbach et al., 2011; Dunham et al., 2018), 

and detailed information is given by Coggon (1971) about the FE method. The main 

attraction to the FE method is that the method can overcome topography and bodies 

that have arbitrary shapes in complex geology by using unstructured tetrahedral 

elements. Also, the unstructured tetrahedral elements can be refined locally where 

desired or can be chosen coarser depending on the problem; therefore, the desired 

accuracy can be obtained with a reasonable number of grids. 

The solution of the FE method can be obtained by weighting of the differential 

equations, or minimizing a functional, the result of which is equivalent to the 

differential equations (Sadiku 2001; Jin, 2014). In these equations, the unknown 

parameters, either the E or H fields, are approximated by using scalar or vector 

interpolation (basis) functions. By defining the scalar interpolation functions at nodes 

for each tetrahedron element in a 3D domain, fields are interpolated, and these 

functions ensure the tangential continuous condition of the electric field between 

different conductivities (e.g., Mogi, 1996). However, the node-based FE method 
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contravenes the discontinuity condition for the normal component of the electric field, 

and further, the electric field does not satisfy the divergence-free condition in source-

free elements. To meet the necessary conditions, the vector-based FE method 

introduced firstly by Whitney (1957) can be used. The application of the vector-based 

FE method is given by Nédélec (1980) for tetrahedral elements, and applications of 

the method to geophysical EM problems are given by, e.g., Schwarzbach (2009), 

Farquharson and Miensopust (2011), Castillo-Reyes et al. (2018). The electric field is 

approximated along the edges by using vector basis functions in all these studies. This 

satisfies the necessary interface boundary conditions of the electric fields.  

EM modelling can be done by using either direct E-field methods or potential 

methods. The commonly used method, in potential methods, is the A- decomposition 

in which potentials are expressed as magnetic vector (A) and electric scalar () 

potentials (for the FD method: Haber et al., 2000, Weiss, 2013; for the FE method: 

Badea et al., 2001, Ansari and Farquharson, 2014; for the FV method, Jahandari and 

Farquharson, 2015, Lu and Farquharson, 2020).  Other decompositions can also be 

applied (e.g., Mitsuhata and Uchida, 2004). Since frequencies are very low in 

exploration geophysics, the linear system of the direct E-field method is poorly 

conditioned compared to the potential methods. Therefore, iterative solvers struggle to 

solve the systems. However, the linear system can be solved by using direct solvers. 

Because the A- approach gives a better conditioned linear system, which is more 

computationally expensive, the linear system of the method can be solved by either 

iterative solvers or direct solvers.  A comparison is given by Ansari and Farquharson 

(2014). Also, A- methods provide the potentials separated into galvanic and 
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inductive parts (Ansari and Farquharson, 2014; Jahandari and Farquharson 2015; Lu 

and Farquharson, 2020). The galvanic part is the contribution from the direct flow of 

current through the subsurface, and across interfaces and conductivity gradients, 

whereas the inductive part is the contribution from eddy currents and the linkage 

between different parts of a current system by the time-varying magnetic field. 

Even though the coefficient matrices of both systems are very sparse, direct solvers 

are more expensive in terms of memory compared to iterative solvers. On the other 

hand, the advantage of the direct solvers over iterative solvers is that they allow 

factorizations to be reused after a solution step. This is particularly significant for the 

CSAMT method because data acquisition of the method can be made by using more 

than one source. This means that only the right-hand side of the linear system will 

change for the forward modelling; therefore, the factorized matrix can be reused for 

multiple sources without additional computational effort. Furthermore, this feature is 

also important for inversions when a gradient-based method is used to invert a data-

set. In this case, the calculation of the sensitivities is required, and the factorized left-

hand side matrix can be reused for this calculation.  

Inversion methods can be mainly separated into local (gradient-based) and global 

methods. Although global methods have the ability to reach the global minimum and 

use less memory, due to their nature, they have to call the forward-modelling operator 

many times. Therefore, gradient-based methods have become more attractive for 

higher dimensional inversions. The most favored gradient-based methods are the 

Newton and conjugate-gradient methods, and their variants such as Gauss-Newton 

(GN), nonlinear conjugate-gradient (NLCG), and quasi-Newton (QN). These methods 
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have been extensively used by researchers; reviews and strategies about the methods 

are given by Newman and Hoversten (2000), Avdeev (2005), Siripunvarapron (2012). 

In this study, the GN method is used. The GN method results in stable and 

computationally efficient Hessian matrices; hence, the method has been used for 

many EM studies (e.g., Mackie and Madden, 1993; Haber et al., 2000b; Sasaki, 2001; 

Usui et al., 2017). 

In the GN method, the Jacobian or sensitivity matrix, which contains the derivatives 

of the data with respect to the model parameters, must be calculated in each iteration. 

Although some closed-form expressions are available for some EM models, generally, 

numerical methods are preferred for calculating Jacobian matrices. (An overview for 

the DC method is given by Spitzer, 1998.) Traditionally, each column of the Jacobian 

matrix can be formed by perturbing each model parameter in turn, carrying out a 

forward modelling for each perturbed model, and calculating a finite-difference 

approximation to the derivatives. The method requires as many forward modellings as 

the number of model parameters. When the number of parameters is considered in 

three-dimensional inverse problems, this is prohibitive. Another method is to use an 

adjoint-equation approach in which adjoint electric fields are computed for sources at 

the observation locations, and the inner products of these adjoint fields with the 

forward-modelled electric field computed. This method requires as many forward 

modellings as there are data to generate the Jacobian matrix (see Rodi, 1976; Mackie 

and Madden, 1993). Although the number of data are usually a lot less than the 

number of parameters in geophysical inversions, and explicit calculation of the 

transpose of the Jacobian matrix with direct solvers seems to be possible, the matrix 

requires a large amount of memory due to it being a full, and dense matrix. However, 
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iterative solvers such as conjugate gradient (CG) and generalized minimal residual 

(GMRES) do not require explicit knowledge of the Jacobian and GN matrices to solve 

the linear system but instead require only the results of the products of these matrices 

with the CG or GMRES vectors.  

The CG method has attracted more attention due to its applicability to either solution 

of the linear systems (e.g., Mackie and Madden, 1993; Zhang et al., 1993; Günther et 

al., 2006; Siripunvaraporn and Egbert, 2009) or the minimization problems (e.g., 

Newman and Alumbaugh, 2000; Rodi and Mackie, 2001; Newman and Bogss, 2004) 

in geophysical inversion. The method can calculate a new vector only using the 

previous vector called conjugacy based on linear relations; this property provides the 

method with memory efficiency. Further, the convergence rate of the method can be 

accelerated by using a preconditioner (Haber, 2004). However, the GMRES solver 

introduced by Saad and Schultz (1986) has greater stability than the CG solver. The 

solver uses the Arnoldi process for constructing an l2-orthogonal basis of Krylov 

subspaces. Also, the solver has the capability to solve nonsymmetric matrices. There 

are a few applications for geophysical inverse problems in the literature (Jahandari 

and Farquharson, 2017; Ansari et al., 2018; Ansari and Craven, 2020). In this study, 

both solvers, preconditioned CG and nonpreconditioned GMRES, are implemented. 

As mentioned above, generally, the number of parameters needed to be determined is 

much greater than the amount of data in geophysical inversions. This means that 

inversions are under-determined. Also, the measured data includes some uncertainties. 

Therefore, many models can be found which fit the measured data. Further geological 

information is vital for the reliability of inversions and to reduce the ambiguity of 
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inversions. Geological constraints can be incorporated by using relations of adjacent 

cells (Li and Oldenburg, 1996; Bosch et al., 2001; Lelièvre and Oldenburg, 2009; 

Farquharson, 2007). Here, minimum-structure inversion is used for the CSAMT 

method. This procedure has been applied for the inversions of various geophysical 

methods (e.g., Li and Oldenburg, 1996; Farquharson and Oldenburg, 1998; Günther et 

al., 2006; Lelièvre and Farquharson, 2013; Mosher and Farquharson, 2013). An 

objective function, which is the sum of the measures of data misfit and model 

structure, is minimized by the GN method. l2 measures are used for the data misfit and 

model structure; nonetheless, different types of measures can be used (see 

Farquharson and Oldenburg, 1998; Farquharson, 2007). 

The purpose of this study is to develop an interpretation tool for the CSAMT method. 

For this purpose, new three-dimensional forward-modelling and inversion codes have 

been developed. The FE method is applied to obtain the forward-modelling responses 

in the new algorithm, and computational domains are discretized with unstructured 

grids. The new inversion code uses a minimum-structure inversion procedure with the 

GN method. Software FacetModeller (Lelièvre et al., 2018) and TetGen (Si, 2015) are 

used for building models and generating unstructured tetrahedral grids. The direct 

solver MUMPS (Amestoy et al., 2001) is used for forward modelling and the pseudo 

forward modelling used in the sensitivity computations. Also, SPARSKIT (Saad, 

1990) is used in some parts of the developed code for sparse matrix-vector operations. 

Forward-modelling and inversion programs, as well as preconditioned CG and 

nonpreconditioned GMRES solvers, are coded in the Fortran language.  A number of 

examples are given from simple to complex for both forward modelling and inversion 

to verify the codes.  
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Chapter 2 

2 The Controlled-Source Audio-Frequency 

Magnetotelluric Method 

2.1 Introduction  

The controlled-source audio-frequency magnetotelluric (CSAMT) method, which was 

introduced by Goldstein (1971), is one of the electromagnetic methods using 

grounded electric wires and large magnetic loops as sources. The method is similar to 

magnetotelluric (MT) and audio-frequency magnetotelluric (AMT) methods, which 

use natural sources. The advantage of the CSAMT method over the natural-source 

methods is that it has high signal strength due to the artificial sources. This ensures 

the CSAMT method is able to investigate the top 2-3 km of the subsurface efficiently 

(Zonge and Hughes, 1991).  

Generally, the grounded electric wire, whose length is about 1 to 3 km, is used as a 

source of the CSAMT method. If the distance between source and sounding areas is at 

least 3 to 4 km (with this distance depending on ground conductivity and transmitter 

frequency), the fields at the sounding area can be considered as plane waves and thus 

treated like in the MT method. The sounding frequency ranges from 0.1 Hz to 10 kHz, 

and orthogonal electric and magnetic field components are measured over this 

frequency range. The measurements of electric fields are made parallel to the 
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transmitter, and there are two configurations: broadside and collinear. While the 

broadside configuration refers to measuring the electric field parallel to the transmitter 

and on its centerline, the collinear configuration refers to measuring the electric field 

parallel to the transmitter and on its axis (Sandberg and Hohman, 1982, see Figure 

2.1). The electric fields are measured by an electric dipole whose length is 10 to 150 

m, and the dipole is terminated by two nonpolarizing potential electrodes. A third 

electrode can be used to determine noise by locating it at the center of the dipole. The 

electric field measurements include the potential difference between the potential 

electrodes and the associated phase angle reference to the source signal. The magnetic 

field is measured by using magnetic field antenna. The magnetic field measurement, 

which is done simultaneously with the electric field measurement, resembles the 

electric field measurement and consists of a voltage and phase angle. Horizontal 

electric and magnetic fields that are perpendicular to each other are used to determine 

apparent resistivity (Zonge and Hughes, 1991).  

2.2 Measurement types of the CSAMT method 

Depending on the complexity of the geology and the consideration of surveys, a 

CSAMT measurement can involve from two individual components to ten individual 

components. Two individual components correspond to a scalar measurement (e.g., Ex 

and Hy) and ten individual components correspond to a tensor measurement (e.g., Ex1, 

Ex2, Ey1, Ey2; see Figure 2.1). CSAMT measurements can be classified as scalar, 

vector and tensor measurements associated with measured components and the 

number of sources used. The tensor measurements can overcome complex geological 

structures, and the measurements can be used to map geological features directly due 
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Figure 2.1 CSAMT measurement types: a) tensor separated-sources configuration, b) tensor coinciding 
sources configuration, c) partial-tensor configuration using separated sources, d) vector CSAMT 
measurement, e) scalar CSAMT measurement, and f) scalar CSAET measurement (adapted from 
Zonge and Hughes, 1991). 

to the high survey resolution when soundings are made closer together. The tensor 

CSAMT measurements include five components (Ex, Ey, Hx, Hy, and Hz) for each of 

two sources. Nonetheless, this type of measurement is tedious compared to other 

measurement types due to the use of two sources. As shown in Figure 2.1a-c, the 

tensor survey can be conducted by separated or coinciding sources. The separated-

source configuration ensures widely separated polarizations; hence, the configuration 

approximates the natural-source measurements. Nevertheless, the use of the 

configuration may cause problems such as source overprint effect on measurements if 
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the geological features are significantly different between these sources. The effect is 

directly related to the physical and geometric structures of survey areas, and it may 

affect the whole survey (Zonge and Hughes, 1991; Hughes and Carlson, 1987). Since 

the sources are located at the same place in the coinciding-source configuration, a 

source overprint effect is less likely to occur. Further, this measurement type is easier 

in terms of fieldwork. If the geologic strike is known, the sources are oriented to be 

strike parallel and perpendicular. However, an arbitrary orientation can be used if the 

strike direction is unknown. In addition, partial-tensor configurations (Figure 2.1c) 

can be used as well if the strike is well known.  

The vector measurement (Figure 2.1d), which uses a single source, can be used by 

measuring four or five components (Ex, Ey, Hx, Hy, Hz) in complex geology. Although 

this type of system involves less data than the tensor configurations due to the use of 

the single source, the vector measurement is efficient to determine two-dimensional 

(2D) and three-dimensional (3D) geological features when regional anisotropy does 

not dominate. In other words, when resistivities do not depend on the directions, it can 

be used for the definition of complex geological structures (Zonge and Hughes, 1991). 

The scalar CSAMT (Figure 2.1e) measurement consists of two components Ex, Hy or 

Ey, Hx, and the measurement is run by using a single source polarization. The 

measurement is adequate to determine one-dimensional (1D) geological structures. 

However, it can be used for 2D and 3D modelling by increasing data acquisition 

density if again survey areas are isotropic. The main advantage of the scalar 

measurement is high data acquisition speed. Lastly, controlled-source audio- 

frequency electrotellurics (CSAET) including only one component of the electric field 
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Figure 2.2 Demonstration of the geometric parameters in cylindrical coordinates. 

is a simple version of the scalar CSAMT measurement. This type of system, 

generally, is used in survey areas in which the magnetic field is fairly uniform, and 

the magnetic field is measured at a few stations to calculate the resistivity. However, 

it may cause significant errors in the calculation of resistivity (Zonge and Hughes, 

1991). 

2.3 The effect of the physical and geometric parameters on data 

Not only can physical parameters affect the CSAMT data, but geometric parameters, 

source-sounding separation (r), and angle between source and sounding locations () 

also can have an influence on the data. Figure 2.2 shows the geometric measurement 

parameters in cylindrical coordinates.  

A survey area can be divided into three regions in accordance with the wavenumber   

( 1 2( )k i  where   is the magnetic permeability,   is the electrical conductivity, 

  is the angular frequency, and i is the imaginary unit) and separation (r). The region 

electrically near the transmitting source is defined by small induction numbers            



14 

 

( 1kr  ) and is known as the near-field zone. The region electrically far from the 

dipole is defined by a large induction number ( 1kr  ) and is known as the far-field 

zone. The region between these zones is known as the transition zone. Since the 

wavenumber is related to the frequency and resistivity, they have a direct link with 

these zones. The effect of r is given for a homogeneous earth whose conductivity is 

10-3 S/m by using the broadside configuration in Figure 2.3a. The distance and 

frequencies change from 1 to 16 km and from 1 and 4096 Hz, respectively, and  is 

90°. The magnetic field reduces sharply when r increases. This causes the apparent 

resistivity values to approach the actual resistivity value. Figure 2.3b shows the 

dependence of the data on the ground resistivity as it changes from 16 to 4096 Ωm. r 

and  are fixed at 4 km and 90°, respectively. The magnetic field reduces sharply; for 

the low resistivity values, the reductions are seen for even low frequencies. Therefore, 

the near-field zone is smaller in conductive regions. The behavior of the electric and 

magnetic fields as  varies is given in Figure 2.3c. The angle changes from 0 to 60°, 

and the conductivity of the earth is 10-3 S/m. r is 4 km. The fields are affected sharply 

at low frequencies; hence, apparent resistivity is affected by the angle changing in the 

near field. Each graph has a notch that shows the transition zone, and it is clearer for 

60° in Figure 2.3c.  

Further, there are other parameters such as topography that can affect the data. Any 

electromagnetic measurement is affected by current density changes due to the 

topography. For instance, valleys in which resistivities are artificially high result in 

higher current densities. The opposite situation occurs in hills. Therefore, topography 

should be considered in CSAMT modelling.  
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Figure 2.3 Influence of the variables on CSAMT measurements: a) separation, b) ground resistivity, 
and c) angle (adapted from Zonge and Hughes, 1991). 

2.4 Calculation of apparent resistivity and phase 

As mentioned in Section 2.1 and above, if the observation locations are in the far-field 

of a source, the fields can be considered as plane waves and the MT equations for 

apparent resistivity and phase used. The scalar impedance (Z) is defined as the ratio of 

the orthogonal components of the E and H fields: 

E
Z

H
  (2.1) 

The apparent resistivity is given by  

2

0

1
Z


  (2.2) 

where ω is the angular frequency and µ0 is the magnetic permeability of free space, 

and phase (φ) can be calculated by 
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( )

( )

Z
Arg

Z


 
   

 (2.3) 

where  and   show imaginary and real parts of the impedance (Zonge and Hughes, 

1991). The tensor impedance is given as 

x xx xy xz x

y yx yy yz y

z zx zy zz z

E Z Z Z H

E Z Z Z H

E Z Z Z H

    
         
        

 (2.4) 

The z-component of the E field (Ez) is very small at low frequencies; hence, this 

component is not measured. In this case, the tensor impedances become 

x xx x xy y

y yx x yy y

E Z H Z H

E Z H Z H

 

 
 (2.5) 

Equations 2.5 show that there is a mutual dependence between E and H fields. Unlike 

natural-source measurements, the source of the CSAMT method does not have an 

infinite number of polarizations due to its finite location and orientation. Therefore, 

tensor measurements require ten components. In accordance with this, Equation 2.5 

can be written as 

1 1 1

1 1 1

x xx x xy y

y yx x yy y

E Z H Z H

E Z H Z H

 

 
 (2.6) 

2 2 2

2 2 2

x xx x xy y

y yx x yy y

E Z H Z H

E Z H Z H

 

 
 (2.7) 

in which the subscripts 1 and 2 denote source numbers. From Equations 2.6 and 2.7, 

the tensor impedances are obtained as   
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1 2 2 1

1 2 2 1

x y x y
xx

x y x y

E H E H
Z

H H H H





 (2.8) 

1 2 2 1

2 1 1 2

y x y x
yy

x y x y

E H E H
Z

H H H H





 (2.9) 

2 1 1 2

1 2 2 1

x x x x
xy

x y x y

E H E H
Z

H H H H





 (2.10) 

2 1 1 2

2 1 1 2

y x y y
yx

x y x y

E H E H
Z

H H H H





 (2.11) 

In the 3D case, components are nonzero and not equal, unlike in 1D and 2D cases. 

Since the main objective of tensor measurements is to determine structures, the 

impedances can be rotated in accordance with a strike (see Zonge and Hughes, 1991). 

Lastly, the vector measurements are useful in areas of complex geology, as mentioned 

in Section 2.2. Although the full tensor is not determined due to the use of only one 

source polarization, scalar impedance based on polarization ellipse orientations can be 

used. 

However, the full impedance tensor cannot be determined when only one source 

polarization is used. A rotationally constant scalar impedance is obtained by choosing 

scalar field components oriented along the major axes of the polarization ellipse. To 

calculate the impedance independent of the coordinate system, the phase of the 

electric field polarization-ellipse maximum is given as: 

 
 

2 2

1

2 2
0.5 tan

x y

x y

E E

E E
 

  
 
   

 (2.12)   

and orientation is given by:  
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 
 

1tan
i

y

i
x

E e

E e




 

 
 
  

 (2.13) 

The electric field component parallel to the major axis of the ellipse (Em) is obtained 

from: 

cos sinm x yE E E    (2.14) 

The magnetic field component (Hm) can be obtained in a similar way. Em and Hm are 

nearly orthogonal, and the scalar impedance is calculated by: 

m
m

m

E
Z

H
  (2.15) 

The corresponding apparent resistivity and phase are then calculated using Equations 

2.2 and 2.3 (Zonge and Hughes, 1991). 
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Chapter 3 

3 Finite Element Boundary Value Problems in the 

Frequency Domain 

3.1 Introduction  

All electromagnetic phenomena are described by the empirical Maxwell’s equations, 

which are a set of four equations. Maxwell’s equations are uncoupled first-order 

linear differential equations; however, they are connected by constitutive relations. 

Although Maxwell’s equations can be solved analytically for some models, the 

solutions are restricted to simple and unrealistic cases such as wholespaces and 

halfspaces and some simple geometric shapes. However, analytical solutions are 

useful to check the accuracy of numerical solutions (Sadiku, 2001; Ward and 

Hohmann,1988). 

This chapter begins with a brief description of Maxwell’s equations in the time and 

frequency domains and the relevant boundary conditions. Then the FE method is 

explained for the vector and scalar potentials using the Helmholtz equation and the 

equation of conservation of charge. 

3.2 Maxwell’s equations and boundary conditions  

EM fields are explained with four equations; in the time domain, Maxwell’s equations 

in their differential and integral forms are:



20 

 

0
t


  


B

E  0
C S

d d
t


   

 
B

E l S  (3.1) 

t


  


D

H J  
C S S

d d d
t


    

  
D

H l S J S  (3.2) 

0  B  0
S

d  B S  (3.3) 

 D  
S V

d dV  D S  (3.4) 

Equation 3.1 is known as Faraday’s law and states that time-varying magnetic flux 

density B, through a surface, generates electric field intensity, E, around the outline of 

the surface. The second Maxwell’s equation (Equation 3.2) is Ampère’s law: the law 

states that the line integral of the magnetic field intensity H around a closed path is 

equal to the total current flowing through the surface enclosed by the path. Relation 

3.3 is the law of conservation of magnetic flux or Gauss’s law: the law states that 

there is no monopole; in other words, the total magnetic flux density B, through any 

closed surface, is zero. The last equation is Coulomb’s law which states that the flux 

of the displacement current D through a closed surface is equal to the electric charge 

density in the volume that is enclosed by the surface (Sadiku, 2001). J is the electric 

current density; it is given by Ohm’s law which is one of the constitutive relations and 

explains the relation between E and J:  

J E  (3.5) 

where  is the electrical conductivity. The other two constitutive relations explain the 

relation between B-H and D-E:  
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B H  (3.6) 

D E  (3.7) 

where, µ and ɛ are magnetic permeability and dielectric permittivity, which are 

assumed to be linear and isotropic. Also, magnetic permeability is normally taken to 

be µ=µ0 which is the magnetic permeability of free space. Due to the use of low 

frequencies in the CSAMT method, the quasi-static approximation, in which the 

displacement current D is ignored, can be used (Ward and Hohmann, 1988). 

Therefore, electrical conductivity is the only variable for earth models.  

Using the Fourier transform, Faraday’s and Ampère’s laws can be written in the 

frequency domain: 

0i  E B  (3.8) 

i  H D J  (3.9) 

where 1i    and ω is the angular frequency (Ward and Hohmann, 1988). An EM 

problem is a boundary value problem that should satisfy both differential equations 

and boundary conditions; in other words, the problem should incorporate information 

about both the behaviour of the fields throughout the domain as well as on the 

boundary of the domain. The boundary conditions at the interface between two media, 

namely medium 1 and 2, are given as the following: 

1 2t tE E  (3.10) 

1 2t tH H  (3.11) 
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1 2n nB B  (3.12) 

1 2n nJ J  (3.13) 

1 2n nD D    (3.14) 

where subscripts t and n are the tangential and normal components, respectively. The 

tangential components of the field intensities (Conditions 3.10 and 3.11) are 

continuous across the interface of two media. At the same time, the normal 

components of B and J are continuous at the interfaces of the media. Condition 3.13 

is valid for the stationary situation, which says that 0t   ; however, J is is not 

necessarily continuous at every instant in time (see Ward and Hohmann, 1988). 

However, the normal component of D is discontinuous across the interface because of 

the accumulation of electric charge density. 

The boundary conditions should also be defined at the boundaries of the numerical 

domain. The attenuation of EM fields is exponential, and if there is a source in the 

problem region (as for most geophysical EM problem), and the boundaries are far 

enough from the source, then the first kind of boundary condition (Dirichlet) can be 

applied: 

  0


 n E  (3.15) 

where   is the outer boundary, and n is the normal vector for the boundary surfaces. 

Other boundary conditions can be applied (see Sadiku, 2001; Jin, 2014). 
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3.3 Vector-scalar potentials formulation 

Faraday’s and Ampère’s laws can be re-written for a region containing electric and 

magnetic sources with a time dependence of i te :  

s
mi   E B J  (3.16) 

  H E J s
e  (3.17) 

where s
mJ  and s

eJ  are magnetic and electric current density source terms, respectively 

(Ward and Hohmann, 1988). These two equations are first-order linear differential 

equations, and the E-field equation, i.e., the second-order partial differential equation 

(PDE), can be obtained by taking the curl of Equation 3.16 and using Equation 3.17: 

0 0
s s
e mi i      E E J J  (3.18) 

which is the general form for the decoupled Helmholtz equation. From Maxwell’s 

equations, B is divergence-free ( 0  B ); therefore, it can be expressed as the curl 

of a vector potential A: 

 B A  (3.19) 

Substituting Equation 3.19 into Equation 3.16 gives 

  0i  E A  (3.20) 

Since the curl in Equation 3.20 equals zero, the term in parentheses can be expressed 

as the gradient of a scalar, giving 

i   E A  (3.21) 
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where  is the scalar potential and its sign is arbitrary (Ward and Hohmann, 1988). 

However, this decomposition suffers from non-uniqueness. To overcome this non-

uniqueness, the Coulomb gauge condition, suppressing the freedom of vector 

potential, is frequently used (Equation 3.22): 

0 A  (3.22) 

Replacing E in Equation 3.18 with the potentials from Equation 3.21 gives  

0 0 0
s s
e m

i
i     


      A A J J  (3.23) 

where A and  are complex-valued functions associated with position and frequency. 

Lastly, this equation requires one more extra condition which is the conservation of 

charge which is given by  

at the source location

0 otherwise

s
   



J
J  (3.24) 

where the current density, J, is associated with the electric field by Ohm’s law 

(J=E). Substituting Equation 3.21 into Equation 3.24 gives 

    s
ei           A J  (3.25) 

The system of equations consisting of Equations 3.23 and 3.25 are square and 

diagonally dominant. To solve these equations, the boundary condition of the first 

kind (Dirichlet) can be applied. 

  0


 n A  3.26 
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0   3.27 

The boundary conditions should be also defined at material interfaces for the 

potentials. As mentioned in Section 3.2, the tangential components of the field 

intensities are continuous between two media. Therefore, the tangential component of 

A and   must be continuous at the interfaces of two media (Condition 3.28). The 

normal component of A is also continuous due to the Coulomb gauge condition 

(Condition 3.29). The decomposition satisfies the continuity of the normal component 

of the current density (Condition 3.30). Lastly, the normal component of   is 

discontinuous between two media (Condition 3.31).   

1 2t tA A  3.28 

1 2n nA A  3.29 

   1 21 2n n
     A A  3.30 

2 1n n

 


    3.31 

3.4 The Finite Element Method 

The general form of the boundary-value problem is given by the following equation in 

a domain,  , which may be 1D, 2D, or 3D depending on a defined problem:  

ƒ  (3.32) 

where   is the differential operator,  is the unknown function to be determined, 

and ƒ is a known function. The differential operator ( ) also is self-adjoint, 

, ,    ; it can be seen by determining  and   as real values for 
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convenience and using Green’s identity. Conventionally, the Rayleigh-Ritz variational 

method, or Galerkin’s, which uses the concept of the weighted residuals, can be used 

for the solution of a boundary-value problem. Nonetheless, Galerkin’s method is more 

general and has wider applications than the Rayleigh-Ritz method since the method 

does not need a functional for the solution of a boundary-value problem (Sadiku, 

2001; Jin, 2014). The analysis can be divided into four main steps, which are domain 

discretization, selection of the interpolation (basis) function, formulation of the 

system of equations, and solution of the system of equations. 

3.4.1 Domain discretization  

The domain discretization is the first and a significant step in finite element analysis 

since it will affect the accuracy of numerical results and computation time. 

Tetrahedral elements having four nodes can be used to subdivide a volume domain. In 

the general case, the tetrahedral element is the best choice for arbitrary shapes since it 

is more suitable for the boundary of an arbitrary domain. Further, the accuracy of the 

numerical results can be increased by using higher-order elements. In this case, the 

implementation of the method may become difficult (Sadiku, 2001; Jin, 2014).  

Another important point is the structure of tetrahedral elements; they should not have 

narrow inner angles. Even though these kinds of elements are admissible, they may 

reduce the accuracy of the numerical solution. The error is inversely proportional to 

the sine of the smallest inner angle of an element (Jin, 2014). Moreover, the use of 

fine meshes for a domain increases the accuracy of the solution; however, this causes 

more unknown parameters and results in more memory being needed. Due to the 

rapid variations of the fields, small tetrahedral elements can be used around sources, 
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whereas coarse elements can be used towards the boundary. Furthermore, arrays 

related to the boundary nodes, the coordinates of each node, and the global numbers 

of each element, etc., are defined to impose prescribed values of a function on the 

boundary, i.e., the boundary conditions. 

3.4.2 Scalar interpolation function  

After domain discretization, the unknown function ( ) within each element needs to 

be approximated. The typical (linear) tetrahedral element has four nodes (Figure 3.1). 

For each node numbered 1,2,3 and 4,  can be approximated as: 

 , , e e e ex y z a b x c y d z     (3.33) 

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

e e e e e e e e

e e e e e e e e

e e e e e e e e

e e e e e e e e

a b x c y d z

a b x c y d z

a b x c y d z

a b x c y d z

   

   

   

   











 (3.34) 

where   is an approximated function, and the coefficients ae, be, ce and de can be 

determined by enforcing Equation 3.33 at four nodes of the elements:  

   
4

1

, , , ,e e e
j j

j

x y z N x y z


    (3.35) 

The  , ,e
jN x y z  are interpolation functions that are given by  

   1
, ,

6
e e e e e
j j j j je

N x y z a b x c y d z
V

     (3.36) 

where Ve is the volume of element 
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Figure 3.1 A linear tetrahedron element. 
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  (3.37) 

Also, the interpolation functions have the property: 

  1
, ,

0
e
i j j j ij

i j
N x y z

i j



   

 (3.38) 

3.4.3 Vector interpolation function  

Vector finite elements is an approach that assigns degrees of freedom to the edges 

instead of the nodes of the elements; for this reason, they are also called edge 

elements. The use of the node-based finite elements, calculated by interpolating the 

nodal values, causes some problems when vector electric or magnetic field equations 

are used. The first problem is nonphysical solutions due to the lack of enforcement of 

the divergence condition. The second one is the difficulty of imposing boundary 
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conditions at material interfaces. The last problem is an inconvenience in treating 

conducting and dielectric edges and corners due to field singularities (Jin, 2014). 

Although these types of elements were introduced by Whitney (1957), further 

discussion was given by Nédélec (1980) for tetrahedral elements. 

Consider the tetrahedron element given in Figure 3.2. Its edge elements are shown 

associated with the nodes. If the scalar interpolation functions (Equation 3.36) are 

shown as 1
eL , 2

eL , 3
eL and 4

eL , the corresponding vector function for the pair of nodes 1 

and 2, can be written as: 

12 1 2 2 1
e e e eL L L L   W  (3.39) 

It can be easily seen that the vector function is divergence-free, which also means that 

the approximate function is also divergence-free within the element: 

   12 1 2 2 1 0e e e eL L L L         W  (3.40) 

Further, the following equation can be written: 

   12 1 2 2 1 1 22e e e e e eL L L L L L        W  (3.41) 

The curl of the vector function is nonzero; therefore, the basis functions and their 

curls are complete to the zeroth-order. Let e1 be the unit vector extending from node 1 

to node 2 (Figure 3.2), 1
eL is a linear function whose value changes from one to zero at 

nodes 1 and 2, respectively, and 2
eL  is a linear function whose value changes from 

1 2 11/e eL e ℓ where 1
eℓ  is the length of the edge connecting nodes 1 and 2: 
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Figure 3.2 A tetrahedral element with its nodes and edges 

 1 12 1 2 1 1/ 1 /e e e eL L   e W ℓ ℓ  (3.42) 

It means that W12 has a constant tangential component along the edge (1,2); however, 

it has no tangential component along the other five edges because 1
eL  vanishes along 

edges (2,3), (2,4) and (1,2), and 2
eL vanishes along edges (1,3), (1,4) and (3,4). 

Moreover, W12 has a tangential component on the element faces (1,2,3) and (1,2,4) 

because these faces contain edge (1,2).  This vector function satisfies the necessary 

problems mentioned above (Jin, 2014). In its general form, the vector interpolation 

function is given as: 

 1 2 1 2 2 1
e e e e e e e
j j j j j j j j jL L L L    N W ℓ ℓ  (3.43) 

3.4.4 Discretization of vector-scalar formulation  

Galerkin’s method, which is used here and is one of the weighted residual methods, 

starts with setting up the residual which is given by: 
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0r   ƒ  (3.44) 

The best approximation for   will be the one that reduces the residual r to the least 

value at all points in a domain (Ω), i.e.,  

  0i iR w r d


    (3.45) 

where iR  denotes the weighted residual and iw  are chosen weighting functions. The 

weighting function can be chosen to be the same as used for the expansion of the 

approximate solution. Using Equations 3.44 and 3.23, the vector residual can be 

obtained as: 

0 0 0
s s
e m

i
i     


       r A A J J     (3.46) 

where A  and   are the approximated vector and scalar potentials, respectively. 

Equating the weighted residual (Equation 3.45) to zero gives: 

  0 0

0                 0

V V V

s s
e m

V V

dV i dV dV

i
dV dV

    




      

   

  

 

W A W A W

W J W J

  

 (3.47) 

The first term in the left-hand side is integrated by parts: 

     

                                   

V V

dV dV

dS
 

      

  

 



W A W A

W A n

 

  (3.48) 

By rearranging Equation 3.47 in accordance with Equation 3.48 gives: 
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     

0 0 0     

V

s
e

V V V

dV dS

i dV dV dV



     



      

     

 

  

W A W A n

W A W W J

 

 
 (3.49) 

The surface integral term in Equation 3.49 expresses the behavior of the approximated 

vector potential at the inner,  , and outer,  , boundaries of the mesh. 

The same procedure can be applied to Equation 3.25 by using a scalar weight 

function: 

    s
er i         A J   (3.50) 

where r is the scalar residual. Substituting this into Equation 3.45 and integrating by 

parts gives 

                 

V V

s
eV

i W dV i W dS W dV

W dS W dV





     






        

     

  
 

A A n

n J

  


 (3.51) 

The surface integrals that are related to the inner boundaries in Equations 3.49 and 

3.51 can be ignored. It can be seen that nodes that are not on boundaries will not have 

any contribution to the solution. All elemental surfaces directly connected to an 

internal node lie inside V and are shared by two elements. Since the normal 

components of A  and    are continuous but the unit vector n changes sign 

between two connected elements, their contributions cancel each other. Therefore, 

only nodes residing on boundaries have contributions. Nonetheless, nodes residing on 

  where homogeneous Dirichlet boundary conditions are applied are discarded; 

hence, these boundary nodes do not need to be considered (Jin, 2014).  
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Approximated vector and scalar potentials can be expressed with linear interpolation 

(basis) functions as described in detail in Sections 3.4.2 and 3.4.3: 

1

edgesn

j j
j

A


 A N   (3.52) 

1

nodesn

k k
k

N 


    (3.53) 

where Nj and Nk are the vector and scalar interpolation functions, respectively. The 

numbers nedges and nnodes are the numbers of edges and nodes in a tetrahedron element, 

respectively, and since linear interpolation functions are used, these numbers are 6 

and 4 for each tetrahedron. By ignoring the surface integrals and using the basis 

functions for the weighting functions, Equations 3.49 and 3.51 can be written as: 

    0
1 1

0 0
1

edges edges

nodes

N N

j i j j i j
j jV V

N
s

k i k i e i
k V V V

A dV i A dV

N N dV N dV N dV

 

   

 



     

 
     

 

  

   

N N N N

J M

 


 (3.54) 

   
1 1

              

edges nodesN N

j l j k l k
j kV V

s
l e

V

i A N N dV N N dV

N dV

   
 

    

   

  



 

J

 (3.55) 

where i=1,…,Nedges and l=1,…,Nnodes, and Nedges and Nnodes are the total numbers of 

edges and nodes, respectively, in the volume. The equations are solved for the 

approximate vector potential ( A ) and scalar potential ( ). 
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3.4.5 Solution of the discrete system 

The left-hand sides of Equations 3.54 and 3.55 contain node-based and edge-elements 

basis functions and the scalar and vector potentials to be determined. The right-hand 

sides of these equations contain interactions between the basis function and sources. 

Before solving the system of equations, Dirichlet boundary conditions are imposed. 

To force the condition, the elements of the coefficient matrix corresponding to nodes 

and edges on the problem boundaries are set to zero except the diagonal element (Jin, 

2014). Further, the corresponding element in the source vector is set to zero in the 

equations. The matrix form of the system of equations is: 

 0 0 0 1 2

3

S SA

i S

  
 
      

    
    

C D F

G H


  (3.56) 

By separating the real and imaginary parts of the system of equations, the matrix form 

is given as: 

 0 0 0 1 2

0 0

3

0

0 0

0 0

0 0 0

R

I

R

I

S SA

A

S

  
 

 
 

      
    
                      

C D F

D C F

G H

G H






 (3.57) 

where  

   ij i j

V

C dV    N N  (3.58) 

ij i j

V

D dV  N N  (3.59) 
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 il l j

V

F N N dV    (3.60) 

 lk l k

V

H N N dV    (3.61) 

G is the transpose of the matrix F, the subscripts i and j are 1,…,Nedges, and the 

subscripts l and k are 1,…, Nnodes,  

1
s

i e

V

S dV N J  (3.62) 

2 i

V

S dV N M  (3.63) 

3
s

l e

V

S N dV   J  (3.64) 

RA , IA , R and I are the real and imaginary parts of the coefficients.  

When the grounded wire is used as a source, the contribution from the magnetic 

current (S2) would be zero. The other sources (S1 and S3) are the same. Therefore, the 

system of equations (Equation 3.56) can be written as: 

0 10 0

3

SA

Si

 
 
     

    
    

C D F

G H


  (3.65) 

An infinitesimal magnetic dipole can be represented by a point source, and in this 

case, the contributions of other two sources (S1 and S3) would be zero; therefore, the 

system of equations (Equation 3.56) can be written as: 
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0 0 0 2

0

SA

i

  
 
     

    
    

C D F

G H


  (3.66) 

The system of equations is constructed by using the developed forward modelling 

code and solved by using the direct solver MUMPS. Once the system of equations 

(Equation 3.64 or 3.65) is solved, the electric field is calculated with Equation 3.21.  

The magnetic field is calculated by taking the curl of the vector interpolation 

functions and using the vector potential ( A ): 

10

1 edgesN

j j
j

A N
 

 H   (3.67) 
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Chapter 4 

4 Forward-Modelling Examples  

4.1 Introduction   

In this chapter, the accuracy of the developed code is shown with a number of 

examples. In the first two examples, the FE results that are obtained by using 

magnetic and electric sources in homogeneous whole-space and half-space are 

compared with the analytic solutions. The other three examples are more realistic 

models that are found in the literature, and the FE results obtained in this study are 

compared with other numerical solutions such as the finite-volume (FV) method and 

the integral-equation (IE) solution. In the last example, the real-life situation which 

includes topography and an arbitrarily shaped ore body is modelled. Also, the effect 

of the mesh quality on the accuracy of the FE results and the resource usage are given 

in this chapter.  

4.2 A magnetic point source  

For this verification example, an infinitesimal z-directed magnetic dipole represented 

by a point source is considered. The location of the magnetic dipole is at the center of 

the conductive wholespace of 0.01 S/m, and its dipole moment is equal to unity. 

Figure 4.1 shows the side view of the model. In the figure, the magnetic point source 

is denoted by the black dot; the observation points along the x-axis with 200 m 

spacing from -6 km to 6 km are shown by the blue dots. The dimension of the 
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Figure 4.1 The side view of the conductive whole-space for the z-directed magnetic dipole with 1 A/m 
dipole moment 

problem region is 50 km from -25 km to 25 km for all three directions. The region 

was tetrahedralized by using TetGen (Si, 2007) and locally refined at the source and 

observation locations by inserting additional nodes to increase the accuracy of the 

solution (Figure 4.2 and 4.3). Further, as mentioned in Section 3.4.1, the quality of the 

tetrahedral elements affects the accuracy of the solutions. Therefore, to avoid bad 

quality tetrahedrons that have narrow inner angles, the parameters maximum radius-

edge ratio and minimum dihedral angles (the definitions of these constraints are given 

in Section 4.8) were chosen carefully, taking into account the limited computer 

memory. To reduce the total number of tetrahedral elements in the region, the size of 

the tetrahedrons is increased towards the boundaries by defining the volume 

constraints. Therefore, choosing the computational area bigger than necessary affects 

the number of tetrahedral elements slightly; however, this guarantees the boundaries 

are sufficiently far away from the source. The number of elements, nodes, and edges 
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Figure 4.2 The xz-section of the mesh for the conductive whole-space model. 

 

Figure 4.3 An enlarged xy-section of the mesh from the center of the model. 

for this example were 132110, 21607, and 153877, respectively, and this resulted in 

350968 unknowns. To solve the linear system, the parallel version of MUMPS was 
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used with the LU factorization option, which is for unsymmetric matrices, and the 

computation was done on a laptop having an Intel I7-9750H processor and 40 GB 

memory. The total runtime was about 90 seconds, and the total memory usage was 

about 4 GB for this example. Figure 4.4 shows the component of the total magnetic 

field at the observation points for 3 Hz. The result obtained by the A- finite-element 

approach is compared against the analytic equation given by Ward and Hohmann 

(1988). In the figure, the blue circles show the A- result, and the black lines show the 

analytic result. It can be seen that there is a good agreement between the analytical 

and A- results. The relative errors are 0.002 for the real part, 0.04 for the imaginary 

part ( RE= An FE AnE E E ). 

4.3 Conductive half-space and electric dipole  

In this example, a tiny length electric dipole source is considered on the Earth’s 

surface. The Earth’s surface is excited by the source terms S2 (Equation 3.63) and S3 

(Equation 3.64), and the system of equations that is given in Equation 3.65 is solved 

to obtain the potentials. The closed-forms of the source terms are given in Appendix 

A. The conductivity of the homogeneous half-space and air are 0.01 S/m and 10-8 

S/m, respectively (see Figure 4.5). In the figure, the solid red line shows the source 

location, and the blue dots denote the observation locations. 1 A current runs through 

the 10 m wire extending from -5 m to 5 m in the x-direction. The dimension of the 

problem region is 50 km from -25 km to 25 km for the three directions. The 

observation points extend along the x-direction spaced by 200 m from -6 km to 6 km. 

Around observation locations the mesh was locally refined by inserting additional 

tetrahedrons whose size is 4 m for the accuracy of the solution, and the sizes of the 
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Figure 4.4 A comparison of the z-component of the magnetic field for 3 Hz for the whole-space 
example. 

 

Figure 4.5 The side view of the homogeneous half-space example. 

tetrahedral elements were gradually increased towards the boundaries (Figure 4.6 and 

4.7). The number of elements, nodes, and edges for this example were 287836, 47257, 

and 335691, respectively; this resulted in 765896 unknowns, and the number of nodes 

and edges on the boundaries, for this example, were 595 and 1957, respectively. The 

system of equations was solved by the parallel version of MUMPS. The total run time 
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Figure 4.6 The xz-section of the mesh for the homogeneous half-space model for the electric dipole 
source. 

 

Figure 4.7 An enlarged xy-section of the homogeneous half-space example  
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Figure 4.8 The real and imaginary parts of Ex for the homogeneous half-space example for a frequency 
of 0.1 Hz. 

was about 7 minutes, and the memory usage about 11.5 GB. Figure 4.8 shows the x-

component of the electric field for the frequency of 0.1 Hz.  The result obtained from 

the vector and scalar potential formulation was compared with the analytic solution 

given by Ward and Hohmann (1998). It can be said that there is a good agreement 

between A- and analytical results. The fit between A- and analytical solutions is 98 

percent for the real part and 99 percent for the imaginary part. 

4.4 Conductive half-space with a block  

This example represents a geophysical scenario that uses an x-directed long grounded 

wire whose length is 100 m starting at the center of the computational domain. In this 

model, there is a buried conductive block (0.2 S/m) with dimension 120×200×400 m 

in a conductive half-space of 0.02 S/m with its center at 1000, 0 and -300 m in the x-, 

y- and z-directions, respectively, from the Earth's surface.  

The model is depicted in Figure 4.9. In the figure, the solid red line denotes the 

grounded wire; the blue dots show the observation points starting at 400 m and ending  
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Figure 4.9 The xz-section of the plan view of the conductive block example in a half-space. 

at 1500 m along the x-direction. The source and observation locations were refined by 

adding tetrahedrons of 5 m size to improve the accuracy of the solution. Thus, the 100 

m long wire was divided into 54 segments. In the model, finer tetrahedrons were used 

by setting the maximum volume of the tetrahedrons inside of the conductive block 

equal to 800 m3 to represent the conductive block correctly. The total region, whose 

dimension is 40 km for each of the three directions, consists of 221496 elements, 

37630 nodes, and 263903 edges with 4778 nodes and 14897 edges lying on the 

boundaries.  An enlarged cross-section of the mesh is given in Figure 4.10.  

The system of equations is the same as Equation 3.65, and it was solved by using the 

parallel version of MUMPS with the LU factorization option. The total run time was 

about 6.5 minutes, and the memory usage was about 9.4 GB.  The FE result was 

verified with the IE solution given by Farquharson and Oldenburg (2002) and the FV 

solution given by Jahandari and Farquharson (2015). The relative errors are given for 

the secondary electric field. The comparison is given in Figure 4.11. Panel a in the 

figure shows the homogeneous half-space response of the model, and panel b shows 
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Figure 4.10 An enlarged xz-section of the tetrahedral mesh for the conductive block example. 

 

Figure 4.11 The comparison of the FE result with the IE and the FV solutions for the example shown 
on Figure 4.9 and 4.10. The IE and FV results are given, respectively, by Farquharson and Oldenburg 
(2002) and Jahandari and Farquharson (2014). 

the half-space response with the block. The differences between the homogeneous 

half-space response and half-space response with the block give the secondary field 

which is shown in Figure 4.11c. The relative error between the IE and FE solutions is 

0.15 for the real part and 0.20 for the imaginary part. For the FV method, the relative 

error is 0.07 for the real part and 0.05 for the imaginary part. It can be said that there 

is a good match with the other two numerical methods. However, it can be said that 
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the points at the end of the profile cause relative errors to increase between the FE and 

the IE solutions. The reason for the inconsistency at these points is probably due to 

the crude discretization of the conductive block (5×5×5 blocks) used for the IE 

solution (see Farquharson and Oldenburg, 2002, for details). 

4.5 CSAMT-like measurement with a conductive block  

In this scenario, a grounded electric wire whose length is 1000 m extending along the 

x-direction from -500 m to 500 m on the flat Earth’s surface was used with a dipole 

moment of 40,000 Am. The conductivity of the buried block is 1 S/m in a 

homogeneous half-space of 0.01 S/m. The dimension of the block is 1000×1000×300 

m in the x-, y-, and z-directions, respectively, and its center is at the point 0, -8500, 

and -550 m. The observation points lie on the Earth’s surface and extend from -10 km 

to 10 km with a spacing of 100 m in the x- and y-directions; this results in more than 

400 observation points.  The computational domain of 40 km for each direction was 

divided into tetrahedral elements. The source and observation locations were locally 

refined by inserting tetrahedrons of 10 m size (Figure 4.12). For the block, finer 

tetrahedrons were used by equating the maximum volume of the tetrahedrons in the 

block to 30000 m3. The 1 km of the grounded wire was represented with 228 

segments.  The entire domain consists of 769596 elements, 125010 nodes, and 895416 

edges. 

The linear system was solved by using MUMPS on a workstation having an Intel 

Xeon E5-2630v4 processor and 32 GB memory. The total run time and memory 
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Figure 4.12 The left panel shows the xy-section of the flat Earth’s surface and observation points 
extending from -10 km to 10 km. The right panel shows the yz-section of the block in the mesh. 

 
Figure 4.13 The plan view of the model, and, for a frequency of 10 Hz, the contour maps of the EM 
fields. a) The red dots are observation points; the solid blue line is the source location, and the dotted 
square is the location of the block. b-c) Electric field components. d-f) Magnetic field components.     

usages were about 22 minutes and 28 GB for this example. The result obtained from 

the FE potential approach was verified through comparison with the result given by 

Zhang et al. (2020). Zhang et al. solved the same geophysical scenario by using 

COMSOL software, which is general-purpose software for modelling, design, etc. For 

the comparison, the behavior of the electromagnetic fields is shown as contour maps 
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for the components Ex, Ey, Hx, Hy, and Hz (Figure 4.13). In Figure 4.13a, the red dots 

denote observation points; the blue line represents the grounded wire, and the dotted 

black line shows the buried block. Figure 4.13b-c show the contour maps of the x- 

and y-components of the electric fields. The contour maps of the magnetic field 

components are given in Figure 4.13d-f. The color scale of the maps fits the given 

maps by Zhang et al. (2020). The clear anomaly can be seen in the x-component of 

the electric field and the vertical component of the magnetic field. Further, the shape 

of the block is well defined in the x-component of the electric field. 

4.6 A layered Earth model 

In this geophysical scenario, a layered Earth model is considered by using two y-

directed long grounded wires of 2 km on the flat Earth’s surface. The purpose of this 

scenario is to simulate the oil and geothermal reservoirs that can occur over volcanic 

bedrock. Typically, in this type of reservoir, a thick conductive layer that is rich in 

clay minerals settles over a resistive basement, and the conductive layer decreases the 

permeability of the fluids; therefore, the layer acts as a trap for oil and geothermal 

water (Mitsuhata et al., 2002; Mitsuhata et al., 1999). For this purpose, the vertical 

component of the magnetic field is calculated for two sources for the frequencies of 

0.3 and 3 Hz at 12 points that start at -3 km and end at 9 km along the x-axis. The 

plan view is depicted in Figure 4.14. The FE result is verified through comparison 

with the 2.5-D FE solution of Mitsuhata et al. (2002).  

In the 3D model, the layers were extended up to boundaries, and the dimension of the 

region is 40 km for each direction. The problem region was subdivided into a 

tetrahedral grid giving 329932 elements, 54945 nodes, and 387608 edges. The parts 
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Figure 4.14 A side view of the layered Earth model. The blue dots are observation points, and the stars 
denote the y-directed sources of 2 km. 

 

Figure 4.15 Unstructured tetrahedral mesh of the model: Left panel shows the xz-section of the mesh, 
right panel shows the refined observation points and source locations in the xy-section. 

of the mesh around the source locations and observation points were locally refined 

by adding tetrahedrons of 10 m size (Figure 4.15). The first source (at x=0 km) and 

second source (at x=6 km) pass through 585 and 574 elements, respectively. The 

current in the wires is unity; hence, the electric dipole moment of the wires equals 

2000 Am.  
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Figure 4.16 The data calculated from the layered Earth model shown in Figure 4.14. The left panels 
show the data that are generated by the first source (x=0 km) for frequencies of 3 (a-b) and 0.3 (c-d) 
Hz. The right panels show the data that are generated by the second source (x=6 km) for the 
frequencies of 3 (e-f) and 0.3 (g-h) Hz. 

The system of equations was solved with MUMPS. The total run time and total 

memory usage were about 25 minutes and 17.8 GB. The left-hand side matrix in 

Equation 3.65 was factorized once for each frequency, and the factorized matrix was 

re-used for the first and second sources. Figure 4.16 shows the forward-modelling 

result for two frequencies of 0.3 and 3 Hz. It can be seen that the potential formulation 

result has a good match with the 2.5-D result of Mitsuhata et al. (2002). Because the 

slope of the primary field masks the effect on the data of the discontinuity and the 

uplift; at first glance, recognizing the discontinuity in the first layer and the uplift of 

the basement is difficult. However, it can be seen that in Figure 4.16e, that is, for the 

second source at the frequency of 3 Hz, the slope of the curve is different than the 

general incline in the positive side of the curve until 3 km. Therefore, it can be said 
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from the curves’ character that the areas which are close to the source can be defined 

well and are most sensitive. The sensitivity decreases when the distance between 

source and observation points increases (Mitsuhata et al., 2002). 

4.7 Realistic Ovoid model  

This example represents a realistic model with a complex body and topography. The 

model used here was built by Jahandari (2015) considering gravity, helicopter EM, 

and drilling data which were obtained on a massive sulphide deposit at the region 

Voisey’s Bay, Labrador, Canada. However, the model was rebuilt to make a synthetic 

dataset with a grounded electric wire source. The frame of the complex ore body, and 

the tetrahedralized surface are shown in Figure 4.17. It can be seen that unstructured 

tetrahedral grids reflect the topography and complex body accurately. A 1A current 

was considered in the 500 m long x-directed grounded electric wire, and the EM 

fields were calculated at 31 points on a profile. The observation and source locations 

of the mesh were refined by adding tetrahedrons of 5 m size.  This resulted in 123008 

elements, 19823 nodes, and 143111 edges. The frequency was 50 Hz for this 

example, and the conductivity of the half-space was chosen to be 0.001 S/m. 

However, several conductivity values were used for the ore body to show how the 

code works with large conductivity contrasts. Note that Jahandari (2015) found the 

conductivity value of the ore body to be 100 S/m with the trial-and-error forward-

modelling approach applied to the helicopter EM data. 

The system of equations was solved with MUMPS. The total run time was about 2.5 

minutes, and the memory usage was about 6 GB. The x-component of the electric 
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Figure 4.17 Surface mesh and ore body of the realistic model. The black dots show the observation 
locations, and the red line indicates the source location.  

 

Figure 4.18 The data calculated from the realistic Ovoid body shown in Figure 4.17. The top two 
panels show the x-component of the electric field; the bottom two panels show the vertical component 
of the magnetic field. The right panels show the real parts of the electric and magnetic fields 
components, and the left panels show the imaginary parts of the components.  

field and vertical component of the magnetic field are given in Figure 4.18. It can be 

seen that the responses are consistent for various conductivity contrasts. 
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4.8 Mesh quality and local refinement  

The quality of the tetrahedral girds affects the accuracy of the numerical solutions, as 

mentioned in Section 3.4.1. Mesh qualities are controlled by a few constraints, which 

are maximum radius-edge ratio bound and minimum dihedral angle bound in TetGen 

(Si, 2015). The radius-edge ratio of tetrahedrons is defined as the ratio between the 

radius of its circumscribed ball and the length of the shortest edge. The default values, 

namely when the radius-edge constraint is not used, is 2, and high values of this 

constraint reduce the mesh quality.  The second constraint, minimum dihedral angle, 

is defined as the angle between two faces, and small angles cause a reduction in mesh 

quality. Another significant factor that highly affects the accuracy of the numerical 

solutions is the size of the tetrahedrons used for the refinement of source and 

observation locations.  

In this section, several tests were conducted to demonstrate the effect of the mesh 

quality and refinement, and resource usage was observed. For the tests, a 

homogeneous half-space model was used with the conductivity of 0.01 S/m. A 1A 

current was put through the 20 m wire extending from -10 m to 10 m in the x-

direction. The frequency was 0.1 Hz. Observation sites were located from -6 km to 6 

km with a spacing of 200 m. The numerical results were compared with the analytical 

solution that is given by Ward and Hohmann (1988). To generate tetrahedral grids of 

different qualities, maximum radius-edge ratio bound and minimum dihedral angle 

bound were used from 1.8 to 1.3 and from 4 to 18, respectively. Further, some tests 

were repeated by inserting additional tetrahedrons the size of 10 m and 5 m for the 

refinement of the observation locations.  The minimum dihedral angle and the size of  
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Table 4.1 Effects of the maximum radius-edge ratio on FE results.  The size of the tetrahedrons used 
for refinements was 10 m, and the minimum dihedral angle was 16 degrees. 

Cell 
Size 

R/L 
N. 

nodes 
N. 

elements 
N. 

edges 
 LU fac 

t (s) 
Solution 

t (s) 
Total 
t (s) 

Memory 
usage for 
LU Fac. 

(MB) 

Error 
(%) 

real/imag 
10

 m
 

1.8 20058 114031 136785 49.6 0.56 73.8 3376 3.9 4.7 

1.6 23177 133329 159192 64.8 0.71 92.1 4199 10.6 5.9 

1.4 37515 222012 262237 194.4 1.4 237.4 8983 1.4 2.0 

1.3 59124 355582 417486 524.6 3.3 595.3 17813 3.4 6.0 

Table 4.2 Effects of the maximum radius-edge ratio on FE results.  The size of the tetrahedrons used 
for refinements was 5 m, and the minimum dihedral angle was 16 degrees. 

Cell 
size 

R/L 
N. 

nodes 
N. 

elements 
N. 

edges 
LU fac.  

t (s) 
Solution 

t (s) 
Total 
t (s) 

Memory 
usage for 
LU Fac. 

(MB) 

Error 
(%) 

real/imag 

5 
m

 

1.8 23817 136582 163078 60.4 0.67 86.2 4122 2.3 3.5 

1.6 30084 175199 207974 92.8 0.96 127.2 5796 5.2 2.1 

1.4 48729 290655 342101 254.3 2.1 307.8 11704 2.2 3.2 

1.3 82838 501576 587195 769.5 4.8 866.2 25248 2.5 1.1 

the additional tetrahedrons were 16 and 10 m, respectively, and the variable was the 

maximum radius-edge ratio for the first test (Table 4.1). In the second test, the size of 

the refinement grids was 5 m (Table 4.2). It can be seen from these tests that using a 

small radius-edge ratio does not always improve the numerical solution. On the other 

hand, using small size refinement cells mostly improves the accuracy of the solutions.  

In the third test, the variable was the minimum dihedral angle; the mesh was 

generated by adding tetrahedrons the size of 5 m and using the maximum radius-edge 

ratio constraint of 1.4. The results are given in Table 4.3. The minimum error was  
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Table 4.3 Effects of the minimum dihedral angles on FE results.  The size of the tetrahedrons used for 
refinements was 5 m, and the maximum radius-edge ratio was 1.4. 

Cell 
size 

D. 
ang 

N. 
nodes 

N. 
elements 

N. 
edges 

LU fac 

 t (s) 

Solution 
t (s) 

Total t 
(s) 

Memory 
usage 

for LU 
Fac. 
(MB) 

Error 
(%) 

real/imag 

5 
m

 

4 21284 123811 147685 41.9 0.58 65.2 3347 3.8 4.6 

8 23270 136293 162164 49.1 0.63 75.1 3841 5.1 4.1 

12 28923 170421 201971 78.84 0.89 111.2 5371 3.5 2.8 

16 48729 290655 342101 254.3 2.1 307.8 11704 2.2 3.2 

18 103402 621936 727581 1371.4 99.48 1606 35388 2.3 0.8 

obtained when the minimum dihedral angle of 18 was used. However, this mesh was 

highly dense and consumed the largest memory. To note that the computer memory 

(40 GB) was not enough to solve the model; therefore, the swap area that is the part of 

the storage was used, and the solution of the model took more time than expected. 

Mostly, the source of the errors is the closest observation points where EM fields 

change more rapidly. The observation points close to the source may be locally 

refined with the smaller size of tetrahedrons. 

Even though today’s computer systems support very large memory or big clusters are 

available for geophysical modelling, the limits of computers should be considered. 

These tests show that improving mesh quality brings more tetrahedrons, and hence 

more computation effort. Further, improvements do not directly reflect in errors. On 

the other hand, local refinements at observation and source locations demonstrate 

better results with a moderate number of cells (see Section 4.3). This allows only the 

area of interest to be refined rather than the entire domain. Also, some experiment 
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design methods, such as the Taguchi method (Yano et al., 2005), may be useful for 

statistical aspects for this test. 

4.9 Conclusions 

In this chapter, a number of three-dimensional forward-modelling examples were 

presented to verify the developed code for the CSMAT method by using the vector 

and scalar potentials decomposition. Vector and scalar basis functions were used 

respectively for the vector and scalar potentials. A grounded wire and a magnetic 

dipole were used as a source, and the three-dimensional domain was discretized into 

unstructured tetrahedral grids, which is one of the suitable options for arbitrary 

geological structures and topography and allows domains to be refined locally.  The 

direct solver, MUMPS, was used to solve the linear system of equations of the 

forward modelling. MUMPS is efficient for the solution of the linear system because 

it allows the factorization of the coefficient matrix to be reused. This feature is 

particularly important for the CSAMT method because data acquisition can be made 

with more than one source, as mentioned in Section 2.2. 

In the first two examples, the FE results were compared with the analytical solutions. 

The comparisons showed that there are good agreements between numerical results 

and analytical solutions. The other three verification examples involved comparisons 

with other numerical solutions from the literature such as the finite-volume method, 

the integral-equation solution, and the finite-element method (COMSOL); it can be 

said that there are good agreements for all comparisons. Also, the code was tested 

with a real-life example to show the suitability of the unstructured tetrahedral grids 

for the topography and ore body. This example showed that the grids can handle real 
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geological features easily. The forward-modelling responses were not compared with 

a verified code for this example. However, it can be said that the responses that are 

obtained from the realistic model are correct based on the agreement of the other 

given comparative examples. Also, the responses seem to be consistent for the 

different conductivity values for the amorphous body. 

Further, the accuracy of the FE results was examined in terms of mesh quality and 

local refinement. It was found that although the discretization of domains with high-

quality grids generally generates more accurate results, this results in more tetrahedral 

grids. Further, due to the use of the direct solver for the solution of the linear system, 

the vector and scalar potentials are less sensitive to the quality of the mesh; in other 

words, solutions are less sensitive to the conditioning of a problem (Jahandari 2015).  

Thus, it can be said that it is sufficient to use meshes of average quality with local 

refinement at observation and source locations.  
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Chapter 5 

5 Inversion of the CSAMT Data  

5.1 Introduction  

In this chapter, the formulation of the minimum-structure inversion, which is one of 

the gradient-based methods, is derived. The minimum-structure inversion procedure 

generates a smooth model by combining the measure of the data misfit and the 

measure of the model structure. The Gauss-Newton (GN) method is used to minimize 

the objective function. The GN method linearizes the forward-modelling operator and 

is more efficient for the calculation of the Hessian matrix. However, the Jacobian 

matrix must be recalculated in each GN iteration. The linear system of the inversion is 

solved with the implementations of the preconditioned conjugate gradient (CG) and 

nonpreconditioned generalized minimal residual (GMRES) iterative methods. Hence, 

the basics of these iterative solvers are briefly discussed here. Also, these solvers do 

not require the Hessian matrix to be formed explicitly to solve the linear system of the 

inversion. Therefore, these solvers are memory-efficient for such dense systems.  

5.2 Minimum-structure inversion  

The minimum-structure inversion procedure aims to find the simplest and most robust 

model that reproduces the observed data by dividing the problem region into many 

fine cells, and keeping the locations and sizes of these cells constant during the 

inversion procedure, and finding the conductivity values in the cells. Therefore, the 
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inversion procedure is a highly under-determined inverse problem that achieves the 

goal by iteratively minimizing an objective function, , that includes data misfit, d, 

and model structure, m, terms. The objective function is given as the following: 

k k k k
d m      (5.1) 

where the superscript k denotes the kth GN iteration, and λ is the trade-off or 

regularization parameter that controls the relative balance of the data misfit and model 

structure terms.  

To determine appropriate values of the trade-off parameter, a few methods are 

available in the literature, such as L-curve criterion, cooling schedule, and using a 

fixed value (see Constable et al., 1987; Farquharson and Oldenburg, 2004). In this 

study, the cooling schedule, in which the trade-off parameter is initially chosen as a 

relatively large number and reduced by a fixed factor, λk= λk-1c, until the data misfit d 

is smaller or equal to target misfit (the number of data), is used. This strategy ensures 

steady convergence to the target misfit.  

The measure of data misfit is the sum-of-squares of the differences between the 

observed data (dobs) and calculated candidate data (dcal) (Equation 5.2): 

  2

2

k k
d d obs cal  W d d      (5.2) 

where 
2

  denotes l2-norm, and Wd is a diagonal matrix whose elements are the 

reciprocals of the measurement uncertainties, given by: 
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  1/ ( )d obs obsdiag std W d d  (5.3) 

where std indicates the standard deviations of the observed data. The contribution to 

the misfit measure of the large uncertainties will be small.  

The measure of the model structure m is the summation of the roughness r and 

smallness s measures: 

k k k
m r r s s       (5.4) 

where αr and αs are the constant scalars for the relative importance of the roughness 

and smallness terms. The measure of the roughness is given by: 

2

2

k k
r r  W m  (5.5) 

where Wr is the first-order spatial finite difference (FD) matrix taking into account 

neighbor relations in the region of interest, and mk is a vector that contains model 

parameters. The elements of the roughness matrix can be used as -1 and 1 (Günther et 

al., 2006); however, this can cause bias between neighbouring tetrahedron cells. 

Therefore, cell properties such as distance between the centroid of the neighbor cells, 

cell volumes, and face area can be used to avoid bias. An overview and more 

sophisticated methods to calculate the elements of the roughness matrix are given by 

Lelièvre and Farquharson (2013). In this study, cell properties are considered to 

construct the roughness matrix. Assume that ith tetrahedron is a central tetrahedron 

and jth tetrahedron is one of the four adjacent tetrahedrons of the ith tetrahedron. For 

each face, the values of the matrix Wr can be set as the following: 
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 ( , )
/ 2

r f i

c n

r

V V
 


W  (5.6a) 

 ( , )
/ 2

r f j

c n

r

V V



W  (5.6b) 

where r is the distance between the centroids of the two adjacent cells, and the 

denominator, in Equation 5.6, is the square root of the arithmetic mean of the volumes 

of the center (Vc) and neighbor (Vn) cells. Therefore, the roughness matrix Wr is a 

very sparse matrix that includes only 2 entries in each row, and its dimension is

F M
r R W , where F and M are the number of common faces in the active part and 

the number of active cells, respectively. The measure of the smallness is given by the 

following equation: 

  2

2

k k ref
s s  W m m  (5.7) 

where Ws is a diagonal matrix whose purpose is to weight the difference between the 

candidate model vector and reference model vector mref.  

The system of the linear equations for the GN method is derived by taking the 

derivative of the objective function  with respect to the model perturbation m  and 

equating to zero: 

0
k

k






 m

 (5.8) 

0
k kk

kd sr
r sk k k

   
  

  
      m m m

 (5.9) 
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where, 

 1 1 12
T

k
k T k k kd

d d obs calk

 


  
   


J W W d d J m

m
 (5.10) 

 12
k

T k kr
r rk

 



 


W W m m

m
 (5.11) 

 12
k

T k k refs
s sk

 



  


W W m m m

m
 (5.12) 

By substituting Equations 5.10-5.12 into Equation 5.9 and rearranging, Equation 5.13 

is obtained: 

 
 

  

1 1

1 1

1 1

T

T

k T k k T T k
d d r r r s s s

k T k
d d obs cal

k T k T ref k
r r r s s s

   

  

 

 

 

   

 

  

J W W J W W W W m

J W W d d

W W m W W m m

 (5.13) 

where the left-hand side is the approximation of the Hessian matrix ( M MR H ) with 

the GN method, and the right-hand side is the gradient of the objective function  

(Farquharson, 2008). J is the Jacobian or sensitivity matrix, and its dimension is 

n MR J , where n is the number of data. The superscript T denotes the transpose of 

the matrices. The Hessian matrix is a symmetric and positive definite matrix; 

therefore, the above system can be solved using iterative solvers such as GMRES and 

CG. The model update vector is calculated by solving the above system of equations, 

and the updated model vector mk is given with Equation 5.15: 

1k  m H g  (5.14) 
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1k k k m m m  (5.15) 

The Hessian and Jacobian matrices are very dense matrices; thus, explicitly forming 

such matrices is an intensive and expensive task in terms of memory and time, 

especially for the 3D inverse problem because there are thousands of inversion 

parameters that must be determined. In the next sections, explicitly and implicitly 

forming of these matrices and solution of Equation (5.14) will be discussed.  

5.3 Calculation of the Jacobian matrix  

The Jacobian matrix must be calculated for each GN iteration to linearize the inverse 

problem. Traditionally, the matrix is calculated using the FD approach, e.g., using 

backward difference: 

k k k

k
k

m

m

             
 

F m F m F m
J

m
 (5.16) 

where F is the forward model operator; it is the FE method in this study. Δm is the 

model perturbation. One column of the Jacobian matrix is obtained by solving one 

forward-modelling solution. This means that for each GN iteration, M+1 forward-

modelling solutions are required to explicitly construct the Jacobian matrix. 

Therefore, considering the number of model parameters M for the 3-dimensional 

inverse problem, it is impractical to obtain the Jacobian matrix using the FD method. 

The other method is the use of forward modelling sensitivities. By using the linear 

system of equations of the forward modelling (Equation 3.32), the model response at 

the kth iteration is given by: 
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k k
cal    d F m Q  (5.17) 

where the matrix Q is a sparse matrix, n NR Q , to calculate the E and H fields at the 

observation locations from the potentials that are obtained solving the linear system of 

the forward modelling. This matrix is independent of the model parameters. By taking 

the derivative of Equation 5.17 with respect to the model parameters: 

k
k





J Q

m


 (5.18) 

where, 

1
k k

       m m

    (5.19) 

By substituting Equation 5.19 into Equation 5.18, the Jacobian matrix can be 

expressed as the product of the three matrices:  

1k J Q G  (5.20) 

where N MR G  and is given as the following: 

 1 2, ,..., Mm m m       G        (5.21) 

Note that if the secondary-field approach is used for the forward modelling, the source 

terms in the forward-modelling operator are not independent of model parameters; 

therefore, these terms should be considered for the calculation of the sensitivities.  

The transpose of the Jacobian matrix can be written by rearranging Equation 5.20: 
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1Tk T T T
   J G Q  (5.22) 

Considering Equation 5.20, M pseudo-forward modellings are required to construct 

the Jacobian matrix; however, Equation 5.22 requires n pseudo forward modellings 

(Newman and Hoversten, 2000; Rodi and Mackie, 2001; Newman and Boggs, 2004; 

Siripunvaraporn, 2012). Therefore, using Equation 5.22 is more computationally 

efficient. Nonetheless, explicitly forming such a dense matrix consumes very large 

amounts of memory, and it is not necessary when any iterative solvers that belong to 

the Krylov subspace family are used. These solvers only need the products of the 

Hessian matrix with a vector to solve linear systems of the inverse problem. 

The vector product of the Jacobian and its transpose are given by the following 

equation: 

1k J p Q Gp  (5.23) 

1Tk T T T

J q G Q q  (5.24) 

where p and q are arbitrary vectors, and two pseudo-forward modelling are required 

for the calculation of these products of the Jacobian matrix and its transpose with a 

vector (Newman and Hoversten, 2000; Rodi and Mackie, 2001). In the next section, 

the basics of the conjugate gradient method shall be demonstrated. 

5.4 Preconditioned conjugate gradient method 

The conjugate gradient (CG) method is one of the favorite methods in inverse 

problems, and it has proven itself. Although other iterative solvers such as MINRES 

and GMRES are more stable than the CG solver (Saad and Schultz, 1986; Jahandari 
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and Farquharson, 2017), the CG method has been preferred due to its simple 

implementation and that it has been adapted for both linear and nonlinear problems. 

The CG method requires a symmetric and positive definite matrix. Assume the linear 

system as follows:  

Ax b  (5.25) 

where A is a square, symmetric, and positive definite matrix, and x and b are the 

vectors.  Equivalently, Equation 5.25 can be expressed as the following: 

  1
min

2
T  x x Ax bx  (5.26) 

This equivalence allows the CG method to be used as a solver for linear systems and 

as a technique for minimization problems (Nocedal and Wright, 1999). For a 

particular vector xk, the residual rk can be written as the following: 

k k r b Ax  (5.27) 

The CG method can generate a set of vectors pk with a property known as conjugacy 

in a very computationally efficient way and can compute a new vector by using only 

the previous vector pk-1, which means that the method requires little memory. The 

sequence of the xk is given by the following equation: 

1k k k k  x x Ap  (5.28) 

where 
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T
k k

k T
k k

 
r y

p Ap
 (5.29) 

where the vector yk is the solution of a preconditioned linear system. The sequence of 

the residual is calculated by the following equation: 

1k k k k  r r Ap  (5.30) 

The conjugate direction pk+1 is calculated with a linear combination of the solution of 

the reduced system and the previous direction pk: 

1 1 1k k k k   p y p  (5.31) 

where the scalar is to be determined by the following equation: 

1 1
1

T
k k

k T
k k

  
 

r y

r y
 (5.32) 

For the initial direction p0, the solution of the reduced system is used ( 0 0p y ).  

The preconditioning of linear systems accelerates the convergence rate of the CG 

method (Nocedal and Wright, 1999; Newman and Boggs, 2004). There is no single or 

best way for all types of linear systems. A good preconditioning strategy is to design 

the preconditioner for specific types of linear systems. This may be to solve a reduced 

or simple version ( My r ) of the original linear system.  

The model structure terms (Wr and Ws) are very sparse matrices that include only two 

elements and one element in each row, as mentioned in the previous section. Also, 

due to the trade-off parameter being a very large number, the linear system of the GN 

algorithm is dominated by that parameter. Therefore, obtaining an approximate 
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solution by using only model structure terms is both inexpensive and close to the 

original system of the GN method (Haber et al., 2000).  The reduced system is given 

as the following: 

 
 

  
1 1

1 1

T

k T k T
r r r s s s k

k T k
d d obs cal
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   (5.33) 

The above system is preconditioned and solved by using incomplete LU factorization 

and the GMRES solver from the SPARSKIT package (Saad, 1990). The parameters 

‘lfil’ and ‘droptol’ for the incomplete LU factorization are chosen 3 and 10-3 for all 

examples that are shown in the next Chapter. The reduced system is solved with 

relatively high tolerance (e.g., 10-5
 or 10-6) by 100 times iterating the GMRES solver.  

5.5 Nonpreconditioned generalized minimal residual method  

Unlike the CG method, the GMRES method is designed to solve nonsymmetric linear 

systems. It is an extension of the MINRES method, which can be applied only to 

symmetric matrices (Saad and Schultz, 1986). Similar to the CG method, the GMRES 

method starts with the calculation of the residual that is obtained by multiplying the 

left-hand matrix A with an arbitrary vector x0:  

0 0-r b Ax  (5.34) 

In the CG method, the residuals form an orthogonal basis for the space

 0 0 2 0, , ,...span r Ar A r ; however, this basis is formed explicitly in the GMRES 

method. 
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1 1 1

2
/V r r  (5.35) 

where V is a matrix, whose columns span Krylov subspace. The calculation sequence 

of the Krylov subspace vectors is given as the following:  

k kH AV  (5.36) 

 ,k k k l l H H H V V  (5.37) 

1

2
/k k k V H H  (5.38) 

where H is an upper Hessenberg matrix, and the superscript k is the current GMRES 

iteration. l is a number that changes in each GMRES iteration from 1 to k for the 

calculation of the current elements of the Hessenberg matrix. The above calculation is 

known as the Gram-Schmidt orthogonalization, and applying this calculation to a 

Krylov sequence is known as the Arnoldi method. Once the target residual norm is 

reached, the update vector is given by the following function: 

0k  x x Vy  (5.39) 

where the vector y is the solution of the upper triangular system: 

1 0
12

k ky H r e  (5.40) 

where e1 is a unit vector (Saad and Schultz, 1986). When the number of GMRES 

iterations (the number of Krylov subspace vectors) increases, the calculation effort 

and memory requirements will increase. Further, if the number of GMRES iterations 

is very large, the method may not converge. On the other hand, the GMRES method 

can be used with the restart option. In the restart option, the number of the Krylov 
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subspace is chosen as a reasonable number depending on the linear system, and the 

GMRES algorithm is restarted until the desired residual norm is obtained. Even 

though choosing the size of the Krylov subspace to be small reduces computational 

efforts and memory requirements, it can cause the total number of iterations to 

increase. Therefore, the number of Krylov subspace vectors should be chosen in a 

careful manner. 
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 Chapter 6 

6 Inversion Examples 

6.1 Introduction  

In this chapter, three geophysical scenarios are presented to verify the inversion code. 

For all scenarios, an x-directed grounded wire is used as a source and data over a 

range of frequencies are considered. The coefficient matrix of the forward modelling 

is factorized once for all frequencies using MUMPS for each GN iteration, and this 

factorization is reused to calculate the vector product of the Hessian matrix. The linear 

system of the GN method is solved by using preconditioned CG and 

nonpreconditioned GMRES iterative solvers. In the first example, the conductive 

block example that is shown in Section 4.4 is inverted using only the x-component of 

the electric field as data; however, in the second example, both the x-component of 

the electric field and the z-component of the magnetic field are used to invert the 

geophysical scenario. For the last example, the Ovoid model shown in Section 4.7 is 

inverted to show the flexibility of the unstructured tetrahedral grids over complex 

geology. Similar to the second example, the x-component of the electric field and the 

z-component of the magnetic field are used as data.  

6.2 Conductive block example 1 

In this example, synthetic data were calculated at 105 observation locations using a 

100 m long x-directed grounded wire for four frequencies (100, 30, 3, and 0.3 Hz). 
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Figure 6.1 Plan view of the model that is used to generate synthetic data. Dots denote observation 
points, and the blue ones denote the profile used for the comparison between synthetic data and the 
inversion result. The solid red line shows the source location. 

The observation points were located by spacing of 20 m and 50 m for the x- and y-

directions, respectively, and the mesh at the observation points and the source location 

was refined by inserting tetrahedrons of 10 m size. The scenario is depicted in Figure 

6.1. To represent the conductive block properly, the maximum volume of the 

tetrahedrons was set equal to 800 m3. This resulted in 25223 nodes, 149816 

tetrahedral elements, and 176822 edges.  

The real and imaginary parts of Ex were used as data; therefore, the number of data is 

840. Random Gaussian noise was added to each datum with 2% standard deviation to 

make a noisy dataset. The maximum volume of the tetrahedrons in the active part of 

the mesh where cell conductivities are not constant was set to 24000 m3, and the 

dimension of the active part is 1500×800×700 m (see Figures 6.1 and 6.2). The 
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Figure 6.2 Unstructured mesh used for inversion procedure. Top panel shows an enlarged xy section of 
the mesh; the bottom panel shows an enlarged xz section of the mesh. The dark red section is the active 
part of the mesh. 

number of nodes, elements, and edges for the inversion procedure, are 18536, 115352 

(62774 of elements in the active part), and 134263, respectively. This results in more 

than 1 million unknowns that needed to be determined for four frequencies in each 

GN iteration. 

The inversion was started with the initial guess of 0.02 S/m, which is the half-space 

conductivity. The computation was done on a laptop having an Intel I7-9750H 

processor and 40 GB memory. The coefficient matrix of the forward-modelling 

operator was factorized once with the LU factorization option of MUMPS for four 

frequencies to obtain forward-modelling response, and this factorization was re-used 

for the calculation of the vector product of the Jacobian matrix for each GN iteration.  
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Figure 6.3 Convergence curves of the preconditioned CG solver (top panel) and nonpreconditioned 
GMRES solver (bottom panel) for different iterations of the GN inversion procedure.  

Memory usage was about 25 GB for the factorization step, and the computation time 

for this step was about 860 s. The solution step took 3.7-4.2 s, which depends on the 

density of the right-hand side vectors.  The inversion procedure was repeated by using 

preconditioned CG and nonpreconditioned GMRES solvers for the comparison 

between iterative solvers. The initial trade-off parameter was chosen to be 105 and 

multiplied by the cooling factor 0.5 for each GN iteration until the target misfit was 

reached. To avoid over-fitting the data the target misfit was chosen to be 840
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Figure 6.4 Inversion progression with iterations of data misfit, trade-off parameter (left axis), and 
measure of the model structure (right axis). Panel a for the CG solver; panel b for the GMRES solver.  

which is equal to the number of data for this example. When the l2 norm of the model 

update vector, δmk, was less than 10-3, the minimum-structure inversion procedure 

was terminated. For the preconditioned CG algorithm, the reduced system (Equation 

5.33) was preconditioned using incomplete LU factorization and solved using the 

GMRES solver from the SPARSKIT package (Saad, 1990). The parameters ‘lfil’ and 

‘droptol’ were chosen to be 3 and 10-3 for the incomplete LU factorization. Using a 

large value for the ‘lfil’ can increase the memory demand (Jahandari and Farquharson, 

2017) because the parameter controls the number of elements in each row of the 

triangle matrices L and U. Using a small value for the ‘droptol’ can increase
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Figure 6.5 A comparison between the observed and calculated data for the profile shown in Figure 6.1 
with blue dots. Panels a, b, c, and d show frequencies of 100, 30, 3, and 0.3, respectively.  

memory requirements. On the other hand, using a low value for the parameter 

‘droptol’ can increase the convergence rate because the parameter is a measurement 

of how ‘incomplete’ the LU factorization is (Saad, 1996). 100 iterations were found to 

be enough to reduce the relative residual norm 5-6 orders of magnitude by setting the 

Krylov subspace to 200. Preconditioning and solving the reduced linear system of the 

GN method was quite fast (about 13 s) because the left-hand side matrix of the system 

was very sparse. The vector product of the Hessian matrix must be recalculated in 

each CG iteration even though the Jacobian matrix does not change during the CG 

iteration. As mentioned in Section 5.3, two pseudo-forward modellings are needed for 

the calculation of the vector product of the Hessian matrix. Therefore, approximately 

22 s were needed for each preconditioned CG iteration for this example. 150 CG 
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iterations were used to solve the linear system of each GN iteration, which reduced 

the residual norm 4 orders of magnitude. For different GN iterations, the convergence 

curves of the preconditioned CG solver are given in Figure 6.3. By using the CG 

solver, the target misfit was reached at the 10th GN iteration, and the total number of 

the GN iterations was 32 (Figure 6.4a). Obtaining the result at the end of the 32 GN 

iterations took approximately 30 hr. 

The example was also solved by using the nonpreconditioned GMRES solver with the 

restart option. The Krylov subspace was 300; the target relative residual norm was  

10-6. Similar to the CG solver, the vector product of the Hessian matrix must be 

recalculated in each GMRES iteration. However, in this implementation, there was no 

preconditioning step; therefore, each GMRES iteration approximately took 9 s. Due to 

the same reason, the GMRES iterative solver requires more iterations. The 

convergence curves of the GMRES solver are given in Figure 6.3. It can be seen from 

Figure 6.3 that the GMRES solver is more stable than the CG solver. The target misfit 

was reached at the 10th iteration (Figure 6.4b). The obtained result took 32 GN 

iterations, and the total computation time was approximately 33 hr for this example. 

Data fits are given in Figure 6.5 for the profile that is shown with blue dots in Figure 

6.1 for all frequencies considered.  It can be said that there is a good agreement 

between synthetic observed and calculated data. The recovered model is given for the 

xz- and yz-sections in Figures 6.6 and 6.7. The conductive body was fully recovered; 

however, the model has a smeared-out shape as expected due to the l2 measure of 

model roughness (see Farquharson, 2008). 
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6.3 Conductive block example 2 

In this synthetic example, a grounded electric wire whose length is 400 m extending 

along the x-direction from -200 m to 200 m on the flat Earth’s surface was used with 

 

Figure 6.6 xz-section of the recovered models at y=0 m. The top panel shows the recovered model that 
was obtained using the CG solver; the bottom panel shows the recovered model that was obtained 
using the GMRES solver. The white rectangle represents the conductive block. 

the dipole moment of 400 Am. The conductivity of the buried block is 0.5 S/m in a 

homogeneous half-space of 0.01 S/m. The dimension of the block is 400 500 300   

m in the x-, y-, and z-directions, respectively (Figure 6.8). The mesh at the source and 

observation locations were refined by inserting additional tetrahedrons whose size is 

10 m. The dataset was calculated at 99 points for the frequencies of 50, 10, and 1 Hz.  
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Figure 6.7 yz-section of the recovered model at x=1000 m. The top panel shows the recovered model 
by using the CG solver; the bottom panel shows the recovered model by using the GMRES solver. The 
white rectangular represents the conductive block. 

The mesh that was used to generate synthetic data consisted of 34062 nodes, 169860 

elements, and 239346 edges. The real and imaginary parts of Ex and Hz were used for 

the inversion; therefore, 1188 data were used for the inversion. Gaussian random 

noise of 2% of each datum was added to make noisy data. The maximum volume of 

the tetrahedrons in the active part of the mesh was set to 8.7×104 m3, and the 

dimension of the active part was 2000×1900×1000 m. The mesh used for the 

inversion consisted of 33054 nodes, 202311 elements (108571 of the elements in the
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Figure 6.8 Plan view of the second example. Dots show observation locations; blue ones show the 
profile used for the comparison of observed and calculated data. The solid red line demonstrates the 
source.  

active part), and 237070 edges (Figure 6.9). Initial and reference models were the 

half-space conductivity. Forward modelling and pseudo-forward modellings were 

solved by using MUMPS. 34 GB memory was used to factorize the coefficient matrix 

for the three frequencies. Computation time for the factorization step was about 1430 

s, and solution steps took 5-6 s depending on the right-hand side vector. Note that 

physical memory was not enough to solve this system; therefore, the swap area in the 

storage was used during factorization. Similar to the first example, the inversion was 

repeated by using preconditioned CG and nonpreconditioned GMRES solvers. The 

initial trade-off parameter was chosen as 5×105, and the parameter was halved in each 

GN iteration.  

The reduced system (Equation 5.33) was preconditioned and solved using incomplete 

LU factorization and GMRES solver. The preconditioner parameters, ‘lfil’ and 
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.  

Figure 6.9 Tetrahedral mesh used for the second inversion example. The top panel is the enlarged xy-
section; the bottom panel is the enlarged yz-section 

‘droptol’, were used as 3 and 10-3. The Krylov subspace was 200. This step 

approximately took 14 s, which reduced the residual norm 6 orders of magnitude; 

therefore, each CG iteration took about 25 s. The preconditioned CG solver was 

iterated until the residual norm had been reduced 4 orders of magnitude. The 

convergence curves of the CG solver are given in Figure 6.10. For this example, the 

CG solver was quite unstable and required many more iterations compared to the first 

example. Similar to the first example, the nonpreconditioned GMRES iterative solver 

was used to solve the linear system of the inversion with the restart option. The 

Krylov subspace was 300, and the target residual norm was 10-6. Each GMRES 
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Figure 6.10 Convergence curves of the CG (top) and GMRES (bottom) solvers for various GN 
iterations. 

iteration approximately took 11 s. The convergence of the GMRES solver was quite 

stable; therefore, reaching the target residual norm took fewer iterations than the CG 

solver (see Figure 6.10). However, the target misfit (the number of data) could not be 

reached by using the two solvers because continuing to multiply the trade-off 

parameter by the cooling factor caused artifacts which led the data misfit to increase.  

Therefore, the trade-off parameter was reduced until 488, then was kept constant. The 

inversion was terminated when the norm of the model update vector was less than 

103. Total computation times were 26 hr and 22 hr by using the CG and GMRES
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Figure 6.11 Inversion progression with iterations of data misfit, trade-off parameter (left axis), and 
measure of the model structure (right axis) for the second example. Panel a for the CG solver, panel b 
for the GMRES solver.  

solvers, respectively, and obtaining the final model took 17 GN iterations. The final 

data misfit was 1714 for both solvers (Figure 6.11).  

A comparison between the observed and calculated data is given for the frequency of 

10 Hz in Figure 6.12 for the profile shown in Figure 6.8 with blue dots. It can be said 

that there is a good agreement between observed synthetic and calculated data except 

for the imaginary part of Hz. This component has larger uncertainties compared to the 

other components; therefore, the contribution of the component to the data misfit is 

less. The contour maps of the total fields are given for all used frequencies and EM 

field components in Figures 6.13 and 6.14, and the recovered models are given in 

Figures 6.15 and 6.16.   
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Figure 6.12 A comparison between the observed and calculated data for the profile shown in Figure 6.8 
with blue dots. Panels a and b show real and imaginary parts of Ex, and panels c and d show real and 
imaginary parts of Hz. 

 

Figure 6.13 Contour maps of the total Ex field. Panels a, b, and c show observed and inverted data for 
frequencies of 50, 10, and 1 Hz (from top to bottom). The dotted black line denotes the location of the 
buried block. 
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Figure 6.14 Contour maps of the total Hz field. Panels a, b, and c show observed and inverted data for 
frequencies of 50, 10, and 1 Hz (from top to bottom). The dotted black line denotes the location of the 
buried block. 

 

Figure 6.15 xz-section of the recovered models at y=900 m. The top panel shows the recovered model 
that was obtained using the CG solver; the bottom panel shows the recovered model that was obtained 
using the GMRES solver. The white rectangle represents the conductive block. 
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6.4 Realistic Ovid model 

In this example, a similar model to that shown in Section 4.7 is used. A grounded 

electric wire whose length is 400 m along the x-direction on the topographic Earth’s 

surface was used with the dipole moment of 400 Am. The conductive body was 

located 50 m deeper (the inversion algorithm has a tendency to put the ore body 

deeper because the CSAMT method is not as good as Helicopter EM at determining 

shallow structures) compared to the forward-modelling example in a homogeneous 

background of 0.001 S/m and the conductivity of the body was chosen to be 1 S/m 

(Figure 6.17). The forward-modelling mesh at the source and observation locations 

was refined by inserting additional tetrahedrons whose size is 5 m. The dataset was 

calculated at 143 points for the frequencies of 1500 Hz and 500 Hz. The mesh used to  

 

Figure 6.16 yz-section of the recovered model at x=0 m for the second example. The top panel shows 
the recovered model by using the CG solver; the bottom panel shows the recovered model by using the 
GMRES solver. The white rectangle represents the conductive block. 
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Figure 6.17 Surface mesh and topography of the realistic model. The dots show the observation 
locations, and the red line represents the grounded wire. 

make a synthetic dataset consisted of 44230 nodes, 275849 elements, and 320282 

edges. 

The real and imaginary parts of Ex and Hz were used for the inversion; therefore, the 

dataset consisted of 1144 data. To make a noisy dataset, Gaussian random noise of 

5% of each datum was added. The mesh used for the inversion consisted of 52044 

nodes, 325873 elements (162904 of the elements in the active part), and 378085 

edges. The initial and reference models were chosen to be 0.001 S/m. The initial 

trade-off parameter was chosen as 1×107 and this parameter was multiplied by the 

cooling factor of 0.7 in each GN iteration. 

The inversion of this model was completed with a laptop having an Intel I7-9750H 

processor and 40 GB of RAM. Forward modelling and pseudo-forward modelling 

were solved by using MUMPS. 35 GB memory was used to factorize the linear 
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systems of equations for the two frequencies. Computation time for the factorization 

step was about 1560 s, and solutions steps took about 5-6 s depending on the right-

hand side vectors. Similar to the previous examples, the inversion process was 

repeated using preconditioned CG and nonpreconditioned GMRES solvers.  

The reduced linear system of the inversion process (Equation 5.33) was solved by 

using preconditioned GMRES solver in each CG iteration, and this step took about 16 

s, which decreased the residual norm of the reduced system 6 orders of magnitude. 

The preconditioned CG solver was iterated until the residual norm of the inversion 

(Equation 5.13) had been reduced 6 orders of magnitude. The convergence curves of 

the CG solver are given in Figure 6.18. It can be seen that the CG solver was quite 

unstable; however, the convergence rate of the solver was very high in the first 

Figure 6.18 Convergence curves of the CG (top) and GMRES (bottom) solvers for the realistic model. 
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Figure 6.19 Inversion progression with the iterations of data misfit, trade-off parameter (left axis), and 
measure of the model structure (right axis) for the Ovoid model. Panel a for the CG solver, and panel b 
for the GMRES solver.   

iterations. The target misfit was reached at the 35th iteration, and the inversion was 

terminated at the 43rd iteration. The total run time was 85 hr for this example. The 

same dataset was solved using nonpreconditioned GMRES solver. The dimension of 

the Krylov subspace was 300, and the target residual norm was chosen to be 10-6. The 

GMRES solver had a stable convergence (Figure 6.18); however, the convergence 

rate of the solver was low due to being nonpreconditioned. Similar to the CG solution, 

the target misfit was reached at the 35th iteration, and the inversion was terminated at 

the 43rd iteration. The total run time with the nonpreconditioned GMRES solver was 

about 103 hr. The inversion progression with the iterations for both solvers is given in 

Figure 6.19. Figure 6.20 shows a comparison between the observed and calculated 
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data for the profile shown in Figure 6.17 with the blue dots. It can be said that the fit 

between the observed and calculated data is good. The contour maps of the total fields 

are given for the two frequencies in Figures 6.21 and 6.22. The recovered model is 

given in Figures 6.23 and 6.24, and it can be seen that the shape of the recovered 

model resembles the real model. 

 

Figure 6.20 A comparison for the Ovoid model between the observed and calculated data for the profile 
shown in Figure 6.17 with the blue dots. Panels a and b show the real and imaginary parts of Ex, and 
panels c and d show the real and imaginary parts of Hz. 
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Figure 6.21 Contour maps of the total Ex field for the Ovoid model. Panel a shows the observed data. 
Panel b and c show the inversion results. The top panels show the results for 1500 Hz and the bottom 
panels show the results for 500 Hz. The dotted black line represents the frame of the Ovoid body.   

 

Figure 6.22 Contour maps of the total Hz field for the Ovoid model. Panel a shows the observed data. 
Panel b and c show the inversion results. The top panels show the results for 1500 Hz and the bottom 
panels show the results for 500 Hz. The dotted black line represents the frame of the Ovoid body.   
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Figure 6.23 The vertical section of the Ovoid and recovered models at northing= 6243100. The middle 
panel shows the recovered model by using the CG solver; the bottom panel shows the recovered model 
by using the GMRES solver.  

6.5 Effect of the Krylov subspace on the convergence rate 

As mentioned in Section 5.5, the number of Krylov subspace vectors affects the 

convergence rate and memory usage of the GMRES solver (also see Jahandari and 

Farquharson, 2017). In this section, a test was conducted based on different 

dimensions of the Krylov subspaces for the first inversion example. Krylov subspace 

dimensions of 50, 100, and 300, respectively, were chosen. The converge curves of 

the 2nd GN iteration are given in Figure 6.25. Further, the memory usage was 

observed for the three Krylov subspaces; however, the difference in memory usage 

was not noticeable because the number of inversion parameters was not large for the 

first example. 
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Figure 6.24 A comparison between the Ovoid model and recovered model. The gray model shows the 
threshold view of the recovered model between the conductivity of 0.01 and 1.6 S/m. The dark red 
body represents the model used for the forward modelling. 

 

Figure 6.25 A comparison for the GMRES solver with different Krylov subspaces. 

It is obvious that if the number of Krylov subspace vectors is chosen as a small 

number, the GMRES solver requires more iterations. On the other hand, there is not a 

very large iteration difference between 100 and 300 Krylov space for this example.  
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6.6 Conclusions 

In this chapter, minimum-structure inversion was used to invert three synthetic 

CSAMT datasets. The three-dimensional domain was discretized into tetrahedral 

grids, and forward-modelling responses were calculated by using A- decomposition. 

The objective function was minimized by Gauss-Newton iterations. l2 measures were 

used for both the measures of the data misfit and model structure. In each Gauss-

Newton iteration, the linear system of equations for the forward modelling was 

factorized once with MUMPS for all used frequencies. Then this factorization was 

used for the calculation of vector products of the Jacobian matrix and Hessian matrix. 

Thus, preconditioned CG and nonpreconditioned GMRES solvers, which do not need 

the explicit calculation of the matrices for solutions of the linear systems, were used.  

It can be said that the minimum-structure inversion was successfully applied by using 

tetrahedral grids. In the first example, only the x-component of the electric field was 

used as data. The linear system of the inversion was solved by both preconditioned 

CG and nonpreconditioned GMRES solvers. Both iterative solvers performed stable 

convergence rates; therefore, obtaining the final model of the preconditioned CG 

solver took less time. However, the CG solver was quite unstable in the second and 

third examples. Even though the nonpreconditioned version of the GMRES method 

was used, obtaining the recovered model took less time than the preconditioned CG 

solver. This test showed that the GMRES solver has greater stability than the CG 

solver. Further, all examples showed that using a preconditioner considerably 

increases the converge rate of a solver.  
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Chapter 7   

7 Summary  

In this thesis, three-dimensional forward modelling and inversion for the CSAMT 

method were investigated, and forward-modelling and inversion codes have been 

developed. The forward-modelling of the CSAMT method uses the finite-element 

scheme with unstructured tetrahedral grids, and the inversion code uses a regularized 

minimum-structure inversion scheme with the Gauss-Newton method. The main goal 

was to develop a flexible and complete tool for the interpretation of CSAMT data.  

The CSAMT method is a frequency-domain EM method which uses an artificial 

source or sources. The advantage of the method over MT and AMT methods is that 

artificial sources provide reliable signals for measurements. A planewave 

approximation is valid for the method as long as measurements are made at a certain 

distance from the sources. However, if an inversion is considered for a dataset, then it 

is not needed to worry about whether the data are in the far-field zone or not. There 

are different types of measurements depending on the number of sources and 

components of the electromagnetic fields. The types of measurement used should be 

defined by considering geology. Further, measurement parameters such as frequency, 

and the distance between source and observation locations should be chosen carefully 

before measurements. The analytical solution for a conductive whole space was given 

to show the effects of these parameters in Chapter 2, and the calculation of the 

apparent resistivity and phases was given in the same chapter. Unstructured 
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tetrahedral grids are one of several grids suitable for the purpose of geophysical 

modelling. They can provide the necessary flexibility between geological contacts as 

well as for amorphous bodies. Further, they allow locally refined meshes where this is 

desired, e.g., source and observation locations. The software FacetModeller and 

TetGen were used for the construction of the models and the generation of tetrahedral 

grids. In TetGen, mesh quality is controlled by two flags, radius-edge ratio and 

dihedral angle. These two flags control mesh qualities, namely the shape of the 

tetrahedral grids, for computational domains.   

The E-field equation was decomposed into vector and scalar potentials. The equation 

of conservation of charge and the Helmholtz equation were discretized by the method 

of weighted residuals.  Vector basis functions were used for the approximation of the 

vector potentials. Similarly, scalar basis functions were used for the approximation of 

the scalar potentials. This decomposition results in a better-conditioned system than 

the direct E-field equation (Chapter 3). The direct solver, MUMPS, was used to solve 

the forward-modelling linear systems with LU factorization. This is important 

because MUMPS provides a fast solution when more than one source is used. Several 

benchmark tests were conducted, from simple to complex. In the first two benchmark 

tests, the FE results were compared with their analytical solutions; the other three tests 

were from the literature. In the last example, a realistic model was presented 

considering complex topography and body. Also, various conductivity values were 

used for the ore body to show how the code works with the large conductivity 

contrast. Further tests were conducted to show the effects of mesh quality and 

refinements on results. As mentioned in the above paragraph, the mesh quality is 

controlled by two parameters, radius-edge ratio and dihedral angle. Different values 
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of these parameters (e.g., 1.8 to 1.3 for the radius-edges ratio) and different sizes of 

refinement tetrahedrons (e.g., 10 and 5 m) were tested to demonstrate the effects on 

the FE results (Chapter 4).  

The rest of this thesis is about inversion for the CSAMT method. Regularized 

minimum-structure inversion was applied with the Gauss-Newton method to invert 

the CSAMT data, and the objective function, which combines measures of data misfit 

and model structures, was minimized with l2 norms. When data misfit reduces, model 

structure increases in this type of inversion. The measure of model structure part 

consists of two matrices, smallness and roughness. These matrices ensure geological 

information for the inversion process, and this helps to reduce ambiguity. The most 

intensive task in terms of memory and time is the calculation of the Jacobian matrix in 

gradient-based inversions, and the Jacobian matrix must be recalculated for each 

Gauss-Newton iteration. However, when iterative solvers such as conjugate gradient 

and generalized minimal residual methods are used, only vector products of matrices 

are needed to solve the linear system of inversions. In this thesis, preconditioned CG 

and nonpreconditioned GMRES solvers were implemented (Chapter 5). Three 

benchmark tests were conducted for the inversion code. First, synthetic CSAMT data 

were generated at multiple frequencies over conductive bodies. Noise was added, then 

the data were inverted by using CG and GMRES solvers. Both solvers could reduce 

the residual norms down to the desired level, and the recovered models were almost 

the same. On the other hand, the preconditioned CG solver was quite unstable for the 

second and third examples. In addition to that, it was seen that using a preconditioned 

iterative solver considerably increases the convergence rate of the solver. 
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The developed forward-modelling code is only capable of using a grounded wire as 

sources; however, the code can be modified easily for a general-purpose of 

controlled-source EM modelling in the frequency domain. An adaptive mesh 

refinement method can be considered for future work. The method used here was 

based on experiments and experiences; therefore, most of the meshes were generated 

several times for a model. Further, an adaptive mesh refinement method may reduce 

the computation efforts and improve the forward-modelling and inversion results. 

Here, the EM variables (e.g., conductivity) were assumed as scalar instead of tensors 

namely, modelling domains were assumed isotropic. Anisotropy can be investigated 

both for the forward modelling and inversion for future work because anisotropy may 

significantly affect EM measurements, for example, in sedimentary formations 

relevant to hydrocarbon exploration and in sheet-like zones of mineralization. 
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Appendix A  

Elements of the coefficient matrix 

The closed forms of the inner product integrals in the coefficient matrix are given 

here. For the full derivation of the equations, see Ansari (2014) and Jin (2014). 

The first inner product integral is the interaction of the curl of vector basis functions 

between two edges: 

    1 2 34

4
( )

(6 )

e e e
i j

ij i j e
V

V
C dV K K K

V
       N N

ℓ ℓ
 (A.1) 

where ℓ  is the length of the edges for a particular element and V is the volume of the 

element. The terms K1, K2, and K3 are given as the following:  

  1 1 2 1 2 1 2 1 2i i i i j j j jK c d d c c d d c    (A.2) 

  2 1 2 1 2 1 2 1 2i i i i j j j jK d b b d d b b d    (A.3) 

   3 1 2 1 2 1 2 1 2i i i i j j j jK b c c b b c c b    (A.4) 

The second term is the interaction of the vector basis functions between two edges:
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where 

e e e e e e
ij i j i j i jf b b c c d d    (A.7) 

If  i j  

60
e e
i jL L 

J
 (A.7) 

If i j  

120
e e
i jL L 

J
 (A.8) 

J is the transformation matrix, and it is given as the following: 

1 4 2 4 3 4

1 4 2 4 3 4

1 4 2 4 3 4

x x x x x x

y y y y y y

z z z z z z

   
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J  (A.9) 

The third inner product integral is the interaction between the vector basis function 

and the gradient of the scalar basis function: 
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 (A.3) 

The fourth term is the interaction between the gradients of the scalar basis functions:  
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Elements of the source terms 

The first source term (S1) deals with the interaction of the vector basis functions and a 

current segment of a wire. 

1
s

i e

V

S dV N J  (A.5) 

For an x-directed current source, and considering a particular tetrahedron, the above 

integral can be written as: 

 
          1 1 0 02
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where Nx, Ny, and Nz are the vector basis functions for the three directions. Because 

the current segment has only an x-component the above integral can be evaluated as: 

 
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ℓ
 (A.7) 

where x  is the segment length, and I is the current.  

The second term is the calculation of the dot-product of a vector basis function with 

the curl of the source term.  

2 i

V

S dV N M  (A.8) 

For a vertical magnetization vector, the above integral can be written as:  
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The last source term S3 is given for an x-directed wire: 
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