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Abstract 

This thesis proposes a novel approach to fault detection and diagnosis (FDD) that is 

focused on artificial neural network (ANN). Unlike traditional methods for FDD, neural 

networks can take advantage of large amounts of complex process data and extract core 

features to help detect and diagnose faults. In the first part of this work, a hybrid model 

was developed to improve efficiency and feasibility of neural networks by combining 

Kernel Principal Analysis (kPCA) and deep neural network. The hybrid model was 

successfully validated by Tennessee Eastman Process. The second part of the research 

focuses on a specific application to gas leak detection and classification. In this 

scenario, a convolutional network (ConvNet) was used as a feature extraction tool prior 

to network training due to the visual nature of data. The model was shown to accurately 

predict leaks and leak sizes; furthermore, further model optimizations were performed 

and evaluated. The proposed approach is superior to other FDD approaches due to its 

performance and optimization flexibility. 
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Chapter 1 

Introduction 

1.1 Background 

Chemical industry has seen several major accidents in the past few decades which 

resulted in severe damage to environment, economy, and human health. However, these 

accidents are not frequent and are usually the result of a chain of incidents that happen 

prior (Venkatasubramanian, Rengaswamy, Yin, et al., 2003a). Therefore, the 

researchers from industrial and academic fields have focused on dealing with minor 

accidents in a form of fault detection and root cause analysis. These techniques are 

implemented to already operational plants to detect and diagnose potential faults that 

can adversely affect the process or cause damage. A faulty state means that the process 

or a variable is outside its acceptable range (Himmelblau, 1978). For example, 

abnormal increase in feed flowrate may results in excess generation of heat during 

reaction and is considered as a process fault. There are several causes that can be related 

to the increased feed rate, such as malfunctioning pump or a controlled, and they need 

to be monitored to prevent the accident. The process of monitoring process parameters 

and equipment to identify deviations from normal operating state and finding the root 

causes for such deviations is called fault detection and diagnosis (FDD). Identifying 

root case is essential to developing proper corrective response. It is essential to detect 

faults early, as it may propagate throughout the process and cause deviation or failure 

of unrelated systems. Although there has been a lot of developments around FDD in 

recent decades, faults persist in process industries which causes loss of human life, 
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environmental damage and property loss (Nimmo, 1995). Severe damage to equipment 

can result in halts in production, which can have economic impact on other industries. 

For example, with the shortage of microchips in 2020 and 2021, phone and car 

production companies are being limited in their production, which can affect the prices 

for the customer (Moore, 2021). However, this was exacerbated by recent fire accidents 

in two major chip production facilities in Japan and China (Kelion, 2021; Shaw, 2021). 

Considering that process safety and accident prevention has been researched thoroughly 

and many methods for fault detection and diagnosis are available, these faults still occur 

globally, and more sophisticated approaches are needed.  

Fault detection and diagnosis fall under abnormal event management system (AEM). 

In fact, FDD are the first two steps of AEM, and the third step is to take appropriate 

corrective actions to revert the process back to a healthy operating state (Isermann, 

2006). As processes get bigger and more process variables are involved, it becomes 

more difficult to maintain safe operating conditions. In this respect, development  of 

sophisticated models is sought after to increase the diagnosis accuracy 

(Venkatasubramanian, Rengaswamy, Yin, et al., 2003b). These models are also called 

hybrid models and they incorporate several techniques that cover certain shortcomings 

of their individual parts. With recent development in machine learning, artificial neural 

networks have been included in several hybrid models that can take advantage of the 

availability of large process data. These methods were shown to differentiate between 

faulty and healthy operating state and identify root causes for faults with a high degree 

of certainty (Gharahbagheri et al., 2017; Pérez-Pérez et al., 2021; Travis et al., 2020; 

Wang et al., 2021; H. Yu et al., 2015; Zeng et al., 2016). 
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1.2 Objectives 

With rapid development of machine learning techniques, hybrid model for fault 

detection and diagnosis with artificial neural networks have been barely explored. 

Considering the large amount of process data is becoming more available, ANN hybrid-

based approaches have a potential to greatly diagnostic capacity in industrial setting. 

This work aims explore this area of research with proposing two hybrid methods that 

mainly focus on detecting and classifying faults using supervised neural networks. The 

main objective of this thesis is to develop a hybrid approach to fault detection and 

diagnosis for chemical industries incorporating elements of machine learning. 

Achieving high diagnosis accuracy is the central focus of this research. In addition, this 

work focuses on potential reduction in computational resources and time needed to train 

and test the model. This is achieved via these sub-objectives: 

I) Detect and diagnose faults using available process data 

II) Reduce the complexity of data for more efficient and more accurate neural 

network training process 

III) Incorporate graphic data for fault detection and diagnosis 

IV) Develop a methodology that requires minimal expert supervision when it comes 

to tuning of network parameters 

While first paper is focused on dimensionality reduction technique for ease and 

efficiency of network training, the second paper is about combining different neural 

network techniques to achieve detection for a specific problem of gas leakage. 
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1.3 Software used 

The proposed models were developed and tested using MATLAB R2021a, a numeric 

computing platform. It is available for all students at Memorial University of 

Newfoundland and can be downloaded from https://www.mathworks.com/mwaccount 

using a student license available at https://my.mun.ca/student. Codes for data 

preparation, network training, validation, testing, and results demonstration were 

written in MATLAB. Generation of visual data for the second part of the thesis was 

done using OpenFOAM, a free, open source CFD software; can be downloaded from 

https://openfoam.org/download/. The simulations were performed on Virtual Machine 

using Ubuntu 18.04 operating system.  

1.4 Organization 

This thesis consists of five chapters and contains two manuscripts. Chapter 1 briefly 

discusses fault detection and diagnosis and outlines potential consequences. In this 

chapter, the objectives of the research are stated, and core simulation software are listed. 

Chapter 2 covers extensive literature review on fault detection and diagnosis. 

Conventional methods as well as data-driven approaches are analysed. It also covers 

recent advancements in ANN-based fault detection and diagnosis techniques and 

identifies research gaps. In Chapter 3, a hybrid model is proposed using kPCA and 

Deep Neural Networks (DNN) to detect faulty operating state and classify identified 

faults. Tennessee Eastman Process benchmark was used to validate the model. This 

work has been published in Computers and Chemical Engineering on November 22, 

2021. Chapter 4 focuses on leak detection in a plant setting using graphical data. The 

proposed model consists of convolutional network and a long short-term memory layer 

https://www.mathworks.com/mwaccount
https://my.mun.ca/student
https://openfoam.org/download/
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network to deal with visual representations of input data. This paper was submitted for 

publication to Process Safety and Environmental Protection. In Chapter 5, the outcomes 

of this thesis are summarized and recommendations for future work are given.  
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Chapter 2  

Literature review 

This chapter provides and overview of existing FDD techniques. Advantages and 

limitations will be discussed for each approach. The chapter will be split into five parts 

corresponding to major FDD technique groups: Model-based approaches, knowledge-

based approaches, data driven approaches, ANN-based approaches, and hybrid 

approaches. 

2.1 Model-based approaches 

In the area of model-based fault detection and diagnosis, two steps are necessary to 

achieve proper process monitoring. The first step is to identify the inconsistencies 

between true and expected behavior of the system. The second step is to apply a certain 

decision rule to diagnose the said inconsistency. The concept of inconsistencies is 

directly tied to redundancy. Hardware redundancy is achieved via redundant sensors 

and is typically too expensive to implement large-scale. Analytical redundancy, on the 

other hand, investigates dependencies between process variables and sets algebraic or 

temporal relationship between system states, inputs, and outputs. This is accomplished 

using residuals, which are obtained by comparing the actual output of a specific sensor 

to a calculated value from the mathematical model. The difference between these values 

is then analyzed to classify the state of the process as either faulty or faultless (P. M. 

Frank & Ding, 1997). Ideally, absence of redundancy is desired, which would indicate 

that the system is operating according to the proposed model. Therefore, it 
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fundamentally requires an explicit mathematical model, that can be either derived from 

the first principles or based on empirical data. Constructing a model based on first 

principle may prove to be difficult, as simulating a complex process requires solving 

multiple equations for conservation of mass, energy, and momentum. Even with 

advancements in computer processing units, complex systems may be too 

computationally expensive and time consuming. Taking into consideration that 

chemical processes are often nonlinear, the complexity is further increased, which 

makes this method unfeasible. Therefore, empirical methods are often used instead. 

These methods rely on obtained knowledge and statistics about the process and largely 

remove connections to physical variables, which makes the diagnosis procedure less 

intuitive. Residuals obtained from either methods can then be used to identify a faulty 

operating state (Chow & Willsky, 1984). However, this is not always true due to 

presence of noise and various uncertainties during modeling procedure. The most 

popular methods for quantitative model-based approach are diagnostic observers, 

Kalman filters, parity relations, frequency response models and others 

(Venkatasubramanian, Rengaswamy, Yin, et al., 2003a, 2003b).  

Diagnostic observers method relies on observers that focus on monitoring a specific 

output of a system. Observer generates a residual that is then evaluated for faults. In 

normal operation conditions the residuals are also influenced by noise (Severson et al., 

2016). Attempts to differentiate between unknown disturbances from faulty state were 

successful by employing a bank of observers (P. M. Frank & Ding, 1997). In this 

method, several observers placed for a specific type of fault while ignoring other faults 

and unknown inputs. For a healthy state, all observers will return the values for 
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residuals close to zero. Non-zero value will be attributed to noise and therefore ignored. 

In case of a fault, most observers continue to display near-zero residuals, while a 

specific observer will have a drastic change in residual. It is then trivial to isolate the 

fault and continue with diagnosis. To further reduce the effect of noise, filters were 

designed, such as unknown input observer (UIO) (Frank & Wünnenberg, 1989).  

Diagnostic observers and UIOs were successfully applied in many processes for FDD 

(P. Frank, 1994; Kamatchi Kannan et al., 2021; Sotomayor & Odloak, 2005). 

Kalman filter (KF) is widely used in chemical industry to estimate process states(Chang 

& Chen, 1995). It can perform well having Gaussian distribution disturbance. KF, 

however, does not produce good results when it comes to nonlinear processes, which 

led to development of modified KF models, such as extended KF and unscented KF 

(LaViola, 2003; Wan & Vam der Merwe, 2000). 

Parameter estimation is another method for fault detection developed by (Isermann, 

1997). This approach is based on the assumption that process parameters are affected 

by faults. Various techniques for parameter estimation exist, such as linear least 

squares, orthogonal least squares, discrete-time models, time derivatives and more 

(Young, 1981). Estimated parameters are then compared to those obtained from sensor 

measurements. Large discrepancies are correlated to faults. A proper threshold needs 

to be set according to existing noise during normal operating state. This method is 

effective for small scale system, where parameter dependencies are clear. In the 

literature, complex models have been developed to tackle this issue (Che Mid & Dua, 

2017). However, this may be too computationally expensive and even impossible for 

large scale industries.  
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Another popular approach to detect and diagnose faults is parity equation relations 

(Gertler, 1997). In this method, residual is calculated from the parity (consistency) of 

the model output with the measured output and inputs. The residual from the parity 

equation needs to be zero under the assumption of no process uncertainty and ideal 

mathematical modeling. These, however, are unrealistic expectations of any chemical 

process, therefore the application of the method is limited (Patton & Chen, 1991). In 

addition, only linear processes can be analyzed using parity equation relations, which 

further reduces its applicability. Later works improved the robustness of parity relations 

FDD and made it a more viable model-based approach (Odendaal & Jones, 2014; 

Staroswiecki et al., 1993; Zhong et al., 2015). 

Other model-based FDD approaches have been used, such as hardware redundancy 

(Willsky, 1976), input-output relations (Chow & Willsky, 1984), directional (Gertler & 

Monajemy, 1995) and structural (Gertler & Singer, 1990) residual approaches and 

more.  

While model based FDD methods have several advantages, such as easy and cost-

effective implementation for simple linear processes, they have critical limitations. 

Most of these approaches work under assumption that the process is linear, which 

makes it impractical for any batch scenario. These models also highly depend on the 

availability of theoretical basis and require precise model simulations, which can 

become computationally expensive and time consuming for complex systems. The 

accuracy of FDD can quickly deteriorate due to modelling errors. In all consideration, 

application of model-based FDD approaches in large scale chemical plants is not 

practical (Venkatasubramanian, Rengaswamy, Yin, et al., 2003b). 
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Developing tools for FDD has been a very active area of research in the past couple of 

decades. Many tools have been proposed to deal with faults in different ways. This led 

to agglomeration of these methods into categories, which include model-based 

methods, knowledge-based methods, data-based methods, and hybrid methods. In 

addition, with development of machine learning, ANN-based approaches have become 

a hot topic for research. In this section, knowledge-based and model-based FDD 

approaches will be reviewed first. Then, data-driven and hybrid methods will be 

reviewed. 

2.2 Knowledge based approaches  

Knowledge based approaches heavily rely on prior knowledge about a certain process 

or a system to detect and diagnose abnormal behavior. A cause-and-effect connections 

are established based on known physics, which are then implemented in a 

computational software along with logic systems to perform FDD 

(Venkatasubramanian, Rengaswamy, & Kavuri, 2003). Many knowledge-based 

systems have been developed, such as rule-based expert system, fault tree analysis 

(FTA), Bayesian Network (BN), signed graph (SDG) and many more.  

Rule based expert systems were pioneers in knowledge-based systems in FDD. They 

are mostly represented by a code that contained a bunch of if-else rules that were 

derived prior based on the fundamental knowledge of the process. The computer 

program is trying to repeat the mental processing of a human to solve a problem. 

However, this is a rigid system and can only work with information that it was “taught”, 

therefore any deviations will turn the model practically useless. Nevertheless, this 
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model can identify a faulty state, track the root cause using the process data and suggest 

a corrective measure (Chen & Modarres, 1992; Nan et al., 2008). While it is easy to set 

up and execute, for complex processes the what-if code will grow massively, which can 

lead to confusion issues. The major downside of this approach is its inability to 

incorporate physical laws in detection process, which makes the model rigid and not 

easily adaptable to changes, as it must be manually re-entered upon receiving new 

information. 

An extension to rule based expert approach is case based reasoning approach. It 

essentially tries to overcome the core limitation of rule based approach by “learning” 

new faults that it encounters (Kolodner, 1992). This approach has been successfully 

applied in several works with promising results (Ashley, 2003; Grant et al., 1996; H. 

Zhao et al., 2017). However, it suffers from another downside of rule-based approach 

which is chunkiness. Developing a base model for a complex system already requires 

a large domain of expert input, developing a self-learning model with more rules makes 

it even more difficult and time consuming.  

Fault tree analysis (FTA) is a very common tool in risk, safety, and reliability. In FTA, 

a tree is constructed using a top-down deductive approach, where the top event is failure 

of a system, and the bottom part shows basic events. The basic events are assumed to 

be independent of each other, while top event is directly dependent on other variables 

(Vesely et al., 1981). In this model, events are interconnected via Boolean logical 

“AND” and “OR” gates. This allows to quantitatively calculate the propagation of event 

probabilities from bottom up. Diagnosis is then performed using minimal cut sets, 

which represent the shortest path to failure (Woodward & Pitbaldo, 2010). While fault 
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trees are widely used in risk analysis, their use in FDD is limited. Complex processes 

would require large fault trees, which would be nearly impossible to build while 

assuming independence of all basic events. This renders FTA impractical for FDD 

purposes. 

Another popular knowledge-based approach is signed directed graphs, or signed 

digraphs (SDG). This method uses graphical form to represent cause-and-effect 

relationship between process variables. Process variables are represented as nodes, 

while the relationship between then is represented by directed arcs from “cause” node 

to “effect” node. Each node takes on a state comparative to the steady state. SDG model 

can be derived from a mathematical model, a differential equation, or from a process 

data (Umeda et al., 1980). The model can use cause-and-effect relationship as well as 

the underlying model to detect and diagnose faults and was first presented by (Iri et al., 

1979). It was then refined and improved in later publications (Yang et al., 2010, 2012). 

Improved version of SDG has been developed called possible cause effect graph 

(PCEG). This is a very similar model except for node structure. In SDG, nodes are 

given a specific state, while in PCEG nodes are given meaningful descriptions about 

the variables. This greatly improves root cause analysis as it contains proper knowledge 

of the process system. More information on PCEG can be found in (Wilcox, 1992) and 

(Wilcox & Himmelblau, 1994). 

Bayesian Network (BN) is another popular technique for reliability analysis and FDD 

that has proven to successfully tackle processes with uncertainty (Musharraf et al., 

2013). In prior models, uncertainty has been a common limitation, which usually 

restricted their practical use in the field. BN is a probabilistic approach that presents 
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interactions between process variables in the graphical form (Neapolitan, 2004). It is 

fundamentally built with a certain degree of “belief” which makes the model flexible 

in cases of limited or absent data. Bayesian method is used to update the model 

variables, or weights, which can be used for both risk assessment and root cause 

analysis (Wilson & Huzurbazar, 2007). Since BN is a probabilistic approach, it is best 

suited to deal with uncertainty in FDD, unlike other methods. In addition, it was shown 

to be applicable for complex industrial systems, such as Tennessee Eastman Process 

(Azhdari & Mehranbod, 2010). BN has gained popularity in fault diagnosis procedures 

and works have been published with successful implementation of BN (Gonzalez et al., 

2015; Huang, 2008; Khakzad et al., 2013). In addition, many hybrid models 

incorporating BN have also been proposed for root cause analysis. However, BN is 

static in nature which excludes its applications to dynamic processes. Extensions of BN 

have been proposed to deal with dynamic processes. In complex systems, calculation 

of probabilities and interrelations between variables may be too expensive or even 

impossible. In addition, BN is designed to work with acyclic relations, whereas many 

variables in a process may be of cyclic nature. In addition, the prior beliefs used in BN 

can have severe impact on an entire network. This along with statistical distributions 

choices for data modelling are challenges to constructing a proper network for FDD.    

2.3 Data driven approaches  

Data driven approaches, which are also called history-based approaches, are reliant on 

available large amounts of process data to derive dependencies that result in faulty 

operations. The data is typically taken acquired from sensors and test samples. This 

data is then processed and used to construct or train monitoring or fault detection tools. 
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Data driven methods are generally divided into qualitative and quantitative based on 

the type of collected data. Qualitative data-based approaches mostly rely on expert 

analysis and are generally limited in FDD capacity. Quantitative methods use statistical 

tools to analyze and extract useful features from the data. In this section, some of the 

more popular techniques for quantitative data driven approaches will be discussed, such 

as principal component analysis (PCA), support vector machine (SVM), artificial 

neural network (ANN), and partial least squares (PLS) (Venkatasubramanian, 

Rengaswamy, Yin, et al., 2003b). Since these methods mostly rely on vector operations 

between matrices that involve large datasets, they received high popularity as the 

computational capacity of computers increased in the last few decades. Performing a 

statistical analysis on a process with tens of thousands of datapoints and hundreds of 

variables can just take several hours on a powerful computer workstation.  

Among statistical methods, univariate and multivariate methods exist. Univariate 

methods are more primitive in a way that they directly compare measured process 

variables to threshold values. As the measured value drifts away from the accepted 

value, the fault is detected (Mah & Tamhane, 2004). While the simplicity of the 

univariate method is obvious, it is usually impractical due to its inability to distinguish 

between operational disturbances and faults with high degree of certainty, which leads 

to an unacceptable number of false alarms. To counter this, operator supervision is 

required to maintain detection validity, but may not be optimal for large scale industrial 

processes (Kourty & MacGregor, 1995).  

As the term suggests, multivariate approach is designed to consider multiple variables 

at the same time. This is achieved through dimensionality reduction technique. The core 
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of the technique lies in transforming original data into a lower dimensional space 

without losing valuable contextual information about the process. The effectiveness of 

dimensionality reduction technique is usually measured in the percent of variability that 

is retained throughout the transformation (Hu & Yang, 2021). Multivariate analysis can 

capture the complexity of the process and therefore differentiate basic process 

disturbances from those caused by faulty operation.  

Principal component analysis (PCA) is a dimensionality reduction technique that has 

been widely used in risk assessment and process monitoring, among other fields 

(Adedigba et al., 2017; Price et al., 2006; Zadakbar et al., 2012). The method revolves 

around eigenvalue decomposition or singular value decomposition (SVD) of the 

original data. This projects the data onto a new space, effectively performing data 

rotation, which results in new set of variables being orthogonal to each other. The new 

variables are called Principal Components, or PCs. PCs are numbered according to the 

respective eigenvalue from highest to lowest (Dunia et al., 1996). The resulting order 

of PCs represents the relative variance of the original data. For example, if there are 2 

principal components with corresponding eigenvalues of 0.7 and 0.3, that means that 

the first PC accounts for 70% of original data’s variability, and the second PC – for 

30%. Eigenvectors represent the “rule” by which transformation occurs. For a simple 

case of 2 PCs, it can be shown geometrically. Figure 2.1 shows a distribution of 

datapoints for some arbitrary variables; the straight orthogonal lines are drawn to show 

the transformation that would occur to obtain PC1 and PC2. For higher dimensional 

data, the core task is to correctly choose the number of PCs as that is the deciding factor 

to the quality of transformed data. It is important to reduce initial dimensionality by a 
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large factor and simultaneously retain the variance of the data intact. Another major 

drawback of PCA is that it is a linear transformation. Graphically, it means that 

transformation occurs only via straight lines, such as shown in Figure 2.1. On the 

contrary, if a dataset is presented in a form shown in Figure 2.2, PCA will not yield 

accurate results. The two most common statistics to detect faults with PCA are T2 and 

squared prediction error (SPE). Both monitor the deviation from normalcy and can 

alarm faulty state. However, proper fault diagnosis is difficult to achieve due to 

“smearing effect” (Joe Qin, 2003). This happens when several PCs are shown to 

contribute to faults, because they are calculated by matrix multiplication of initial 

variables. In addition, the ranking of PCs may not always reflect the actual contribution 

to the fault. These factors cause misdiagnosis and overall reduce the effectiveness of 

PCA as FDD tool. 

 

Figure 2.1 Graphical representation of PCA in 2 dimensions (Starmer, 2015) 
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Figure 2.2 Example of a nonlinear dataset that cannot be treated by PCA 

In addition, PCA is a static model. Extended versions of PCA were developed to combat 

nonlinearity, such as kernel PCA (kPCA) (Choi et al., 2005), and static nature of the 

model, such as dynamic PCA (Ku et al., 1995). Kernel PCA is discussed in detail in 

Chapter 3.  

Support vector machines (SVM) and artificial neural networks (ANN) can be used 

when sufficient process data is available. ANN is discussed in next Chapter. Data driven 

FDD tools have shown to be an effective tool for fault detection, but often lack 

diagnosis precision, especially for low signal faults. More limitations and technology 

gaps of data-based approaches are presented in Chapter 2.5. To overcome shortcomings 

of single type FDD methods, hybrid approaches have been developed. Those are 

discussed in Chapter 2.5.  

2.4 ANN-based approaches 

ANN-based approach is a subset of data-driven approaches, as it highly relies on 

historical data to perform FDD. It received large popularity in the last decade due to a 
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lot of development in machine learning (Zhang & Zhao, 2017). ANN-based approaches 

are divided into supervised and unsupervised learning types, where one requires prior 

knowledge about fault types, whereas the other does not. Supervised learning has a high 

FDD efficiency but is harder to set up due to requirements of specific information. 

Unsupervised models can be applied to a wider range of applications, but their detection 

and diagnosis accuracy may be lacking. Due to complexity of industrial processes (Ge 

et al., 2013), ANN-based approaches have been successfully utilized nonlinear process 

data (Sorsa & Koivo, 1993). A typical neural network has input, output, and one or 

more hidden layer. Input layer receives data, a hidden layer transforms that data into 

sets of higher features applying nonlinear function. Output layer converts signals from 

the hidden layer into probabilities of classes.  The connections between layers represent 

matrix operation with weights and biases, which need to be properly tuned. The tuning 

of these values is called network training. During network training, the values are 

initially randomized, and input is fed into the network to calculate the output. The 

difference between calculated output and true output is compared and the numbers are 

slightly adjusted accordingly. This process is repeated until the difference between 

calculated and true result is minimized. Neural networks are generally used for 

classification purposes and not necessarily for FDD; however, fault detection can be 

assumed to be a classification problem, setting output classes as “faulty” and 

“faultless”. The same is applied to diagnosis, as various root causes are simply set as 

classes of data. This concept was applied to gas leak detection with high accuracy 

(Wang et al., 2021). While this requires a large amount of specific data, this can also 

be accomplished using simulated data, as shown in recent research (Travis et al., 2020).  
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Unlike PCA, neural network can be applied to temporal data using long short-term 

memory (LSTM) layer networks, which are designed to capture a timed data (D. Song 

et al., 2021). Neural networks also showed to be compatible with a wide range of data 

types. (Y. Song & Li, 2021) applied signals in frequency domain to develop several 

neural network configurations to separate pipeline faults from flow noise. (Ning et al., 

2021) used acoustic data to perform FDD in pipelines.  

Extensions of neural networks have also been applied to FDD, such as convolutional 

neural networks (ConvNet), deep neural networks (DNN), recurrent neural networks 

(RNN) and so on (R. Zhao et al., 2018). (Guo et al., 2016) proposed a hierarchical 

convolutional network with adaptive learning rate for fault detection and classification. 

Other variations of ConvNet were successfully used for FDD in mechanical systems 

(Fuan et al., 2017; Shao et al., 2018). 

ANN-based approaches require substantial amount of process data for proper network 

training. This may not be easily accessible in chemical plants, as it requires a series of 

sensors for data acquisition, proper transportation, and storage of data. In addition, 

network training takes a long time due to high computational load, but also needs a 

great amount of tuning from layer structure to dropout/learning rate/other parameters 

tuning. In fact, the success of the model will greatly depend on both the quality of data 

and the tuning process. In general, the tuning process is intuitive as there is no accepted 

framework. Training for a specific application may take a long time but may also be 

unattainable due to the model not being able to converge for various reasons. In many 

cases, data pre-processing can help alleviate these issues, but it adds more complexity 

to it. Although these issues seem substantial, it is mostly case dependent. Some of these 
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can be overcome with a specific network which favors certain type of scenario/data 

type. For example, convolutional networks have stellar performance when it comes to 

visual data, and LSTM networks can work proficiently with temporal data. Other 

difficulties have been addressed by combining several FDD approaches to cover 

various weaknesses of each individual approach.   

2.5 Hybrid approaches 

Hybrid FDD methods are a combination of several independent FDD methods into one. 

The primary reason for combining FDD methods is that it is practically impossible to 

construct a diagnostic system that satisfies many requirements of a good system 

(Mylaraswamy & Venkatasubramanian, 1997). While knowledge-based system excels 

at diagnostic part, they lack in early detection. History-based approaches are good fault 

detectors but suffer from misdiagnosis. Model-based systems have high detection 

accuracy and are very sensitive to fault types; however, they require availability of 

physical models and are computationally very expensive. Neural networks are 

generally cheap to set up, but they require substantial information for proper diagnosis 

and are greatly affected by training parameters. Integrating different models to cover 

for each others’ weaknesses has been more attractive for researchers in recent years 

(Das et al., 2012). For example, a combination of neural network and expert system 

was successfully applied to diagnose common faults in a chemical plant (Becraft et al., 

1991). Detection of faults was mainly performed by the neural network, while the 

knowledge expert system identified the root cause and proposed a response plan. 

Another work suggested to combine neural networks with parity equations (D. Yu et 
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al., 1996). In this case, neural networks were used to analyze the residuals from parity 

equations to form a decision upon fault type classification.  

A combination of neural network and SDG was proposed to extract the most benefit 

out of each individual method (Mylaraswamy & Venkatasubramanian, 1997). In this 

case, neural network was used for timely fault detection, and SDG performed diagnostic 

role. It performed with high accuracy in the Amoco FCUU process identifying 13 

different scenarios. A hybrid FDD method of neural network with extended KF was 

developed to monitor a chemical reactor (Benkouider et al., 2012). Other works have 

been conducted to combine neural networks with other FDD approaches, including 

other neural networks. These hybrid networks consist of several neural network 

configurations in series, each performing a specific task. For example, (D. Song et al., 

2021) proposed a hybrid model that consisted of convolutional network and a LSTM 

network. Convolutional network was used as a feature extraction tool, while LSTM 

network was trained to detect and classify faults. In another paper, two convolutional 

networks were used as both feature extractor and classifier (Ning et al., 2021).  

Assuming the complexity of modern processes is increasing, and large amount of 

process data is easier to collect and store due to advancements in computer 

technologies, ANN-based hybrid models should be getting more attention in FDD. 

They have been shown to perform exceptionally well in early fault detection as well as 

dynamic environment. They can capture hidden connections between variables and 

classify faults in complex scenarios. Several open-source neural networks have been 

developed by large tech companies, such as Google, which allows for an easy setup for 

FDD in some situations.  
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Chapter 3 

Fault Detection and Diagnosis to Enhance Safety in Digitalized Process System 

Abstract 

The increased complexity of digitalized process systems requires advanced tools to 

detect and diagnose faults early to maintain safe operations. Availability of online data 

enables the application of a data-driven approach in fault detection and diagnosis. Deep 

Neural Networks (DNN) can detect faulty behavior and fault types with high accuracy. 

Increased system complexity offers challenges in network training, the accuracy of fault 

detection and diagnosis. Limited work has been done to overcome these limitations. 

This study proposed a hybrid model that consists of Kernel Principal Component 

Analysis (kPCA) and DNNs that can be applied to detect and diagnose faults in various 

processes. The complex data is processed by kPCA to reduce its dimensionality; then, 

simplified data is used for two separate DNNs for training (detection and diagnosis). 

The relative performance of the hybrid model is compared with conventional methods. 

Tennessee Eastman Process was used to confirm the efficacy of the model. The results 

show the reduction of input dimensionality increases classification accuracy. In 

addition, splitting detection and diagnosis into two DNNs results in reduced training 

times and increased classification accuracy. The proposed hybrid model serves as an 

important tool to detect the fault and take early corrective actions, thus enhancing 

process safety.  
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Keywords: Deep Neural Networks; kPCA; fault detection and diagnosis; process 

system safety; Hybrid model 

3.1 Introduction 

Modern engineering systems have become more sophisticated and complex due to 

increased interactions between process sensors and actuators to pursue optimization and 

automation. The actuators control critical parameters of the system while the sensors 

keep track of any changes in the system. In some cases, the process fails to operate 

within safe boundaries due to various faults. An unsafe operation may lead to 

equipment or system failure and can eventually result in an accident. To prevent this 

from happening, fault detection and diagnosis methods have been proposed to ensure a 

safe process environment and to maintain product quality  (Venkatasubramanian et al., 

2003b). 

Fault detection and diagnosis is a monitoring system that is aimed to identify deviations 

in the system or its parameters. As such, early identification is then followed by 

corrective measurements that result in accident prevention or damage mitigation. Fault 

detection and diagnosis can be generalized into quantitative/analytical model-based 

methods, qualitative model-based methods, and data-driven methods 

(Venkatasubramanian et al., 2003b). Quantitative model-based methods include 

techniques such as regression parameter estimation (Wu & Liu, 2017), least-squares 

parameter estimation (Cimpoesu et al., 2013; Isermann, 1993), linear quadratic 

estimation (Amoozgar et al., 2013; Huang et al., 2012), and others. Qualitative based 

approaches have also been thoroughly investigated, such as fault tree (Antonio et al., 
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1995), functional abstraction (Ham & Yoon, 2001), structural hierarchy (Lind, 1999), 

fuzzy logic systems (Nan et al., 2008), directed graph-based methods (Gao et al., 2010). 

Data-driven methods rely on process data to identify operational conditions and detect 

abnormal behaviors. Feature extraction is the crucial step in data-driven methods, which 

focuses on condensing the process data into more practical information. Univariate and 

multivariate approaches have been deployed to perform data transformation. Several 

multivariate methods have been successful in overcoming shortcomings of traditional 

approaches, such as dynamic principal component analysis (Ku et al., 1995), 

independent component analysis (Kano et al., 2003), modified partial least squares (Yin 

et al., 2011), and others. Recent years have seen some studies that attempt to link the 

qualitative-based approaches to the data-driven approaches (Sarbayev et al., 2019).  

As engineering processes get more complex, analytical models cannot consider the 

increasing number of highly correlated dynamic system interactions (Ge et al., 2013; 

Venkatasubramanian et al., 2003a). A recent direction in a data-driven approach 

focused on applying neural networks in fault detection and diagnosis tasks. Neural 

networks showed successful application in complex classification tasks in various 

fields, such as speech recognition (Hinton et al., 2012), digit recognition (Kayumov et 

al., 2020), image recognition (Simonyan & Zisserman, 2015), and others. It was 

proposed that neural networks have the potential for fault detection and diagnosis (Z. 

Zhang & Zhao, 2017). This is possible because neural networks consist of a structured 

network of neurons that can learn sophisticated patterns via nonlinear transformations. 

A faulty operation can be treated as a specific pattern in process data, which a trained 

neural network will detect. 
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Modified neural networks have been successfully applied to perform fault detection 

and/or diagnosis (Heo & Lee, 2018; Ince et al., 2016; Su et al., 2020; Tang et al., 2019; 

Wen et al., 2018) of various processes ranging from Tennessee Eastman process to 

motor lifetime estimation. However, most of these works dealt with low-dimensionality 

data, which is suitable for neural networks. When the complexity of data increased, the 

computations became time expensive and inapplicable to complex equipment/systems. 

In addition, Tang et al. (2019) suggested that hybrid models that combine data 

preprocessing models with neural networks might increase the detection accuracy, but 

it has not been tested before. Finally, limited work has been done to support dynamic 

data, and issues of dealing with increase in the dimensions of the data matrix and 

interpretability of the data analytics are a common challenge among them  (Dong & Joe 

Qin, 2018).  

This work proposes a hybrid method that deals with high-dimensionality data and 

performs fault detection and diagnosis. Kernel Principal Component Analysis (kPCA) 

was used as the first step of our model: this can process nonlinear data and reduce its 

dimensionality with minimal loss of variability. Then, we trained a deep neural network 

(DNN) for fault classification as the second step. We separated fault detection and 

diagnosis into consecutive deep neural networks to simplify the tuning process and 

reduce training time. Although both kPCA and DNN were used in literature for fault 

detection and diagnosis purposes (Maki & Loparo, 1997; Navi et al., 2018), a 

combination of both has not yet been explored.  

We used the digit classification dataset as a substitute due to its high dimensionality, 

which allowed us to monitor classification accuracy for different model configurations. 
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Then, we applied the hybrid model to Tennessee Eastman Process (TEP) to confirm the 

effectiveness in detecting and diagnosing various process faults.   

The remaining part of this section is organized as follows. Section 3.2 presents an 

overview of the hybrid model and provides a brief background on kPCA, fault detection 

and diagnosis, and Deep Neural Networks. The performance of the proposed hybrid 

model is discussed via a case study in Section 3.3. Section 3.4 contains an analysis and 

discussion of the results of the case studies. Finally, Section 3.5 concludes the work and 

gives recommendations for future work. 

3.2 Methodology to Develop the Hybrid Model 

3.2.1 Process overview 

 

Figure 3.1 Methodology to develop a hybrid model for fault detection and diagnosis 

using Deep Neural Networks 

Figure 3.1 shows that the process consists of three steps: feature reduction using kPCA, 

fault detection and fault diagnosis using two Deep Neural Networks (DNN) NI and NII 

respectively. The kPCA step is used as a feature reduction step that transforms the 
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dataset so that the neural network can process more accurately. The first neural network 

NI distinguishes faults from normal operation, and the second neural network NII 

differentiates the faults by nature. The resulting hybrid model can detect and diagnose 

faults from complex datasets. Fault detection and fault diagnosis can be conducted 

simultaneously or separately. Simultaneous detection and diagnosis are a classification 

task that is efficient in some situations. Only one neural network needs to be trained in 

that case, and therefore the training time is reduced, and all data is used for diagnosis 

without loss. However, the accuracy of such a model is highly dependent on the dataset. 

If a dataset is dominated by one category, there is a high chance of misclassification 

towards that class. In fault detection and diagnosis, this will usually be the issue since 

we are interested in the minority (faulty operation). The overall accuracy of the model 

will be high, but so will the number of false positives. If the data is evenly distributed 

between operational conditions and different types of faults, the performance of this 

network will be acceptable. However, this is not the usual case in industrial processes. 

Therefore, we split fault detection and fault diagnosis into separate classification 

models using two separate DNN for each. For the case study, input data is manually 

cleaned to remove noise. Effect of noise and randomness on FDD performance of the 

model needs to be investigated in the future work. 

3.2.2 Step 1. Reducing the dimensionality of input data with Kernel Principal 

Analysis (kPCA) 

This technique aims to reduce the complexity of the input dataset to be used for the 

training of neural networks by reducing its dimensionality. Principal Component 

Analysis is commonly used for this purpose. It is an effective data modelling tool that 
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can extract latent variables from complex datasets while maximizing the data variation. 

However, the basic PCA cannot efficiently separate nonlinear data. In this work, an 

extension of PCA, called kPCA, will be used to handle linearly inseparable datasets. 

This method uses the integral operator kernel function to transform data in higher-

feature space and then perform PCA (Schölkopf et al., 1998) This is possible due to a 

“kernel trick”, which allows us to avoid calculations in the feature space and to use dot 

product between points to find principal components.  

First, we map data into a higher feature space ф: 

𝑋(𝑖) → ф(𝑋(𝑖)) (3.1) 

Then, the covariance matrix becomes: 

𝐶 =
1

𝑁
∑ ф(𝑋(𝑖))

𝑁

𝑖=1

ф(𝑋(𝑖))
𝑇
 (3.2) 

By denoting a dot product between datapoints in the mapped space as K (elements of 

the kernel), we perform eigendecomposition for kPCA: 

𝑁𝜆𝒂 = 𝐾𝒂 (3.3) 

Where 𝑁 is the number of observations, 𝜆 is eigenvalues, and 𝒂 is eigenvectors. 

However, we must first “centralize” the kernel 𝐾 → 𝐾′: 

𝐾′ = 𝐾 − 1𝑁𝐾 − 𝐾1𝑁 + 1𝑁𝐾1𝑁 (3.4) 

where  
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1𝑁 =
1

𝑁
 (3.5) 

Now, centralized kernel K’ can be used to perform kPCA, and similar to basic PCA, 

we can use the eigenvalues to determine the variability of each principal component. 

Some of the widely used kernels are polynomial, radial basis function, sigmoid, 

Gaussian, exponential, and others (J. Zhang, 2015). There is a trial-and-error procedure 

of trying different kernel functions that can affect the performance of kPCA. 

Challenges of kPCA. 

The major issue with kPCA is that the kernel K is a N-by-N matrix, and for large 

datasets, this step may require a lot of resources (RAM and CPU). This method does 

not allow for dynamic analysis, as the addition of any data requires the calculation of 

kernel matrix from scratch.  

In practice, a 16GB RAM computer can handle a dataset containing roughly 30,000 

data points. For datasets beyond this size, modifications to kPCA are required. As for 

dynamic datasets, there exist extensions of kPCA, such as TP-IKPCA (Zhao et al., 

2019), which can handle both large and incremental datasets. 

3.2.3 Step 2. Classifying input data as faulty or faultless, i.e., Fault Detection 

Fault detection is an integral part of improving the reliability and safety of a system. In 

this paper, Deep Neural Network (DNN) is trained to detect faults among process data. 

This is an example of supervised learning as it requires labeling of process data. We 

treat fault detection as a simple classification problem because artificial neural networks 

have been widely used for classification problems. They consist of several 



30 

 

interconnected layers, which pass information from one layer to another with some 

modifications.  

A deep neural network has an input layer, output layer, decision layer, and hidden layer 

(one or more). The input layer receives input data in the form of a table. While the 

neural network can work with raw data, a considerable improvement can be achieved 

through initial data processing. Normalization of a dataset is applied to scale the 

numeric values to a common range without distorting the differences in the data. This 

helps with performance of the machine learning model as well as improves its stability. 

While normalization is a common technique used to improve the input data, it carries a 

risk of losing some features of process parameters. In the case study presented in this 

chapter, normalization was successfully used by researchers without loss of features 

(refer to Ch. 3.3.5). There are various normalization techniques, such as scaling to a 

range, log scaling, clipping, and more. In this paper, we apply normalization based on 

the mean and standard deviation of the data.  

𝑋𝑛(𝑖) =
𝑋(𝑖) − 𝜇

𝜎
 (3.6) 

Where 𝑋(𝑖) and 𝑋𝑛(𝑖) are raw and normalized data. Calculations are applied to each 

row of the dataset. 𝜇 and 𝜎 are data mean and standard deviation, calculated over the 

entire dataset.  

Normalized data is then passed to the input layer, which consists of the same number 

of nodes as the number of features in the dataset. 

Data from the input layer is then passed to the hidden layer and transformed into 

different sets of higher features through a nonlinear function. Rectified linear unit 
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(ReLU) is commonly used for classification problems because of the ease of training 

and greater accuracy it provides, and will be used in this work (Agarap, 2018): 

𝑅𝑒𝐿𝑈(𝑥) = max(0, 𝑥) (3.7) 

Hidden layer transformations are a set of matrix calculations that involve weights, data, 

and biases, with added ReLU function. A dropout layer is added after each hidden layer 

for regularization of the neural network to prevent overfitting of the model (Srivastava 

et al., 2014). 

The output of each hidden layer is calculated as follows: 

𝐻𝑂 = 𝑤𝑖𝐻𝑖 + 𝑏𝑖 (3.8) 

where 𝐻𝑂 is the output of a hidden layer, 𝐻𝑖 is the input of that layer, 𝑤𝑖 and 𝑏𝑖 are 

weight and bias vectors. The output of one hidden layer is passed as input to the 

following hidden layer. 

The output of the last hidden layer is collected into an Output Layer that has the same 

number of nodes as required classes. These values are then transformed into 

probabilities through a decision layer, such as softmax function (Goodfellow et al., 

2016): 

𝑃𝑐 =
𝑒𝑦

∑𝑒𝑦
 (3.9) 

where 𝑦 is a vector coming from the output layer of the DNN and 𝑃𝑐 is the probability 

assigned to each category 𝑐. In the case of fault detection, there are only 2 categories: 

faulty and faultless operation. The output layer classifies the input data into a category 
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based on the highest probability from 𝑃𝑐. We define accuracy as the number of correctly 

classified data points (Eq. 10): 

𝐴𝑐𝑐 =
# 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑙𝑎𝑏𝑒𝑙𝑠

# 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑙𝑎𝑏𝑒𝑙𝑠
∗ 100% (3.10) 

In some applications, we are concerned with the number of false negatives and false 

positives. In this work, we will use both the accuracy calculation stated above and a 

confusion matrix that shows the number of actual and predicted samples for each 

category in one figure (Ting, 2017).  

The process of training the network includes the calculation of the weight and bias 

matrices. Initially, when all values are taken at random, the performance of the network 

is intolerable. We improve the model through the backpropagation technique, which 

involves recalculation of weights and biases based on the difference between predicted 

and actual output. This difference is called cost function, and the backpropagation 

method tries to minimize it.  

Besides choosing the type of backpropagation, we also need to select an appropriate 

hidden layer structure. We do this by selecting different combinations of several layers. 

In this work, 2 and 3 hidden layers with various numbers of nodes were tested. The 

layer structure needs to be complex enough to capture the nonlinear patterns within the 

data and have greater capacity to prevent underfitting; but simultaneously, a structure 

that is too complex may lead to longer training times and an overfitting that prevents it 

from generalizing to a test dataset.  

Both static and dynamic data can be used in DNN. In case of dynamic data types, a 

“SequenceInputLayer” was used to accept a dataset containing temporal data, and long 
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short-term memory hidden layers were used due to their capability of processing 

sequential data types. 

3.2.4 Step 3. Classifying faulty data into fault types, i.e., Fault Diagnosis 

Fault diagnosis is an extension to fault detection and can also be performed using 

DNNs. The procedure for fault diagnosis is the same as in fault detection except for the 

output layer. The output layer in this step consists of nodes depicting fault type. Each 

fault is treated as a class, and classification portion of DNN acts as a FDD in this case. 

The performance of this model is primarily measured by the confusion matrix and 

classification accuracy (Eq. 11). The performance of both networks is combined to 

calculate overall performance: 

𝑂𝑣𝑒𝑟𝑎𝑙 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 = 

# 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑓𝑎𝑢𝑙𝑡𝑠

# 𝑎𝑐𝑡𝑢𝑎𝑙 𝑓𝑎𝑢𝑙𝑡𝑠
∗

# 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑓𝑎𝑢𝑙𝑡 𝑡𝑦𝑝𝑒

# 𝑎𝑐𝑡𝑢𝑎𝑙 𝑓𝑎𝑢𝑙𝑡 𝑡𝑦𝑝𝑒
∗ 100% 

(3.11) 

The outcome of this step greatly depends on the accuracy of the previous step. This 

requires careful tuning of both models, which translates into an increased amount of 

time needed to set up the hybrid model as there are twice more parameters to configure.   

3.2.5 Integrating all models to produce a hybrid model 

Combining all steps, we get a hybrid model which can detect and diagnose faults from 

complex data (Figure 3.1). The first step is needed in case the dimensionality of the 

dataset is too great. The first step can be omitted otherwise. Then, consecutive deep 

neural networks perform classification tasks to detect faults and then classifying them 
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by types. All steps are implemented in MatLab consequently, and the model is tested 

with new data. 

3.3 Applications of the Hybrid Model 

In this section, we discuss the application of the hybrid model to classify the MNIST 

handwritten digits dataset, which is a benchmark for neural network classification 

problems (LeCun & Cortes, 2010). Different network setups and training options are 

examined and comparison between their accuracies was analysed to determine their 

performance. The hybrid model is then trained to detect and diagnose faults in the 

Tennessee Eastman (TE) process (Rieth et al., 2017). For illustrative purpose, we the 

model is trained to differentiate between 4 fault types and a non-faulty operation. 

3.3.1 MNIST dataset 

MNIST dataset consists of images (28x28 pixels) of handwritten single digits and is 

widely used to test the performance of neural networks. An example of these images is 

shown in Figure 3.2.  

 

Figure 3.2 A selection of images of 10 handwritten digits. Each image is 28x28 pixels 
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While MNIST is used for general classification tasks, it can also be applied to specific 

areas unrelated to digit recognition. At its core, the classification of handwritten digits 

is an optimization of network parameters to fit nonlinear patterns; therefore, it can be 

used it as a temporary substitute in other applications where it is difficult to obtain data. 

The MNIST dataset is used to measure the relative performance of different network 

setups, which can later be utilized in fault detection and diagnosis tasks. The dataset is 

evenly distributed between digits and utilizing a part of the dataset will still yield 

satisfactory results. The primary constraint of our network is data points, which is why 

we could not use the Tennessee Eastman Process directly as it is difficult to isolate each 

fault and reduce the amount of data. Out of 60000, we used 10000 to 15000 to reduce 

training time and 5000 testing data points.  

Another advantage of the MNIST dataset is its large dimensionality: the 28x28 pixels 

result in 784 features. The large number of features is usually a downside, but as in the 

present case, it provides a basis for dimensionality reduction and paves way to show 

how such datasets can be dealt with through the hybrid model.   

3.3.2 Dimensionality reduction (Step 1) 

Having large dimensionality in the input dataset can lead to long training times and 

reduced accuracy. In some industrial processes, the data may be too complex, and 

dimensionality reduction may be required. For these reasons, Kernel Principal 

Component Analysis (kPCA) is implemented to reduce dataset complexity. In our 

model, the Radial Basis Function kernel is used to create the kernel matrix (J. Zhang, 

2015): 
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𝐾 = exp (−
|𝑥 − 𝑦|2

𝛾
) (3.12) 

where x and y are two samples representing feature vectors in the input space, and 𝛾 is 

a width parameter. The width parameter was chosen as 10000, this number was selected 

after a series of sensitivity analyses aimed to achieve the largest variability contained 

within the chosen number of principal components. We then select the number of 

principal components and generate a new input dataset. As the original MNIST dataset 

has 784 variables, various datasets were created ranging from 50 to 500 dimensions to 

test the effectiveness of the method for various dimensions of the input dataset. There 

is always some loss of variability when applying PCA techniques; however, reducing 

dimensionality allows the following neural network to train better.  

The main disadvantage of using the kPCA algorithm is its inability to handle data with 

many data points. Since we have an input matrix X with N data points, the Kernel matrix 

that we obtain is of B-by-N dimension, which occupies a large portion of computation 

space (RAM). 

3.3.3 Training networks with different input datasets (Step 2) 

This section will use the various datasets created from kPCA to train a network to 

classify handwritten digits. This will be analogous to the fault diagnosis task as we treat 

each number as an operational state or a fault state. For proper comparison, we use 

12000 data points for training, 3000 for validation, and 5000 for testing in all 

simulations. As the original dataset contains approximately 60,000 datapoins, we 

assume that 25% of that dataset is sufficient for producing acceptable results. 15,000 
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datapoints were used due to RAM limitations of kPCA algorithm. We utilized ADAM 

- adaptive moment estimation algorithm (Kingma & Ba, 2015), and networks would 

train for up to 1000 epochs with occasional premature stops to reduce overfitting. 

Neural networks consist of three hidden layers with 20 nodes each, a dropout layer after 

each hidden layer of 20%, and ten output layers depicting ten digits. The input layer 

would be different each time, depending on the input dataset used. The schematic of 

our network is shown in Figure 3.3. Table 3.1 shows accuracy results for networks with 

different input datasets. 

 

Figure 3.3 Structure of the deep neural network used to compare the effectiveness of 

dimensionality reduction via kPCA method 

Table 3.1 Network structures for different input databases 

Case # Number of features Accuracy 

1 784 80% 

2 500 80% 

3 400 83% 
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4 300 84% 

5 200 85% 

6 150 86% 

7 100 86% 

8 75 86% 

9 50 88% 

The first case without kPCA resulted in 80% classification accuracy. Figure 3.4 shows 

confusion matrices for the initial case and the final case.  

  

784 inputs. Accuracy of 80%. 50 inputs. Accuracy of 88%. 

Figure 3.4 Confusion matrices for classification of digits with 784 inputs (left) and 50 

inputs (right) for MNIST dataset estimation 

Based on Table 3.1, the accuracy steadily increased as the number of features 

decreased. Figure 3.4 shows considerable improvement for classifying several classes 

(most notably for numbers 5 and 8). This is considered to be the result of the neural 
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network having less complex input, which allowed for a more accurate tuning of the 

network parameters.  

3.3.4 Dividing fault detection and diagnosis (Step 3) 

 

Figure 3.5 Training and testing of fault detection and diagnosis using separate deep 

neural networks 

In some cases, the classification of data into working/fault types may prove difficult. 

Especially if the dataset is dominated by operational data points, the network may be 

biased towards the operational class. To overcome this issue, a decision was made to 

split the task of detection and diagnosis. To do so, two neural networks were put in 

series, as shown in Figure 3.5. First, the input data is processed by kPCA algorithm to 

reduce the number of variables to 50. For this case, 8000 data points were chosen for 

training, 2000 points for validation, and 5000 for testing. This is fed as input data into 

the first neural network NI. NI has only two outputs to differentiate working and faulty 

conditions. In our case, we labeled digits 0-4 as faulty and digits 5-9 as working. 

Following NI, all operational datapoints (digits 5-9) are removed and the second 

network NII is trained to classify digits 0-4 to simulate fault diagnosis. To compare the 

results of this hybrid model, we simulated another network that would classify ten digits 
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directly using the same input data and network parameters as in NI. Table 3.2 shows 

the comparison between the two.  

Table 3.2 Double network model vs Single network model. *Training time is for 

comparison purposes. This is dependent on the computer capacity which is training the 

model.  

Model type Single model Double model NI + NII 

Input features 50 50 

Training data 8000 8000 

Validation data 2000 2000 

Testing data 5000 5000 

Classification accuracy for digits 0-4 84.7%  

Classification accuracy for N1 N/A 91.2% 

Classification accuracy for N2 N/A 95.2% 

Overall performance 84.7% 86.8% 

Training time, minutes* 12 5 

 

From Table 3.2, the overall performance of the combined model is better than a single 

model by 2%. Training a single model took roughly 12 minutes, while each NI and NII 

trained for 2-2.5 minutes. The results shown represent an incomplete dataset and may 

contain a bias due to sampling of the data. However, the potential bias would be applied 
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to all model configurations and could be ignored since this is a comparative example 

that is aimed to explore the effect of the proposed model. 

3.3.5 Fault detection and diagnosis in the Tennessee Eastman (TE) Process 

The same approach as described above were applied to the TE process to observe the 

accuracy of fault detection and diagnosis in a chemical process. The datasets published 

online (Rieth et al., 2017) contain process data of over 500 simulation runs for 

normal/faulty operation. Original data has 20 faults and 52 input nodes. In this case 

study, we reduced the amount of data used for training due to RAM requirements, such 

that we dealt with four fault types (#1, #6, #12, #18) and a non-faulty operation. Table 

3.3 describes the selected faults. In addition, each class was limited to 100 simulations. 

Overall, this case study is a miniature version of the TE process, aimed to demonstrate 

the performance of the hybrid model compared to the base model (Heo & Lee, 2018).  

Table 3.3 Selected faults for the case study 

Fault ID Process variable Type 

Fault #1 A/C feed ratio Step 

Fault #6 A feed loss Step 

Fault #12 Condenser cooling water temperature Random variation 

Fault #18 Unknown Unknown 
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The network configuration was kept constant throughout all examples. As such, the 

hidden layer consisted of three layers, each containing 25 nodes. A dropout layer of 0.2 

was added after each hidden layer. The networks were trained until overfitting started, 

which was generally under 15 or 25 epochs. The network training was manually 

stopped while monitoring for overfitting, in particular, the data loss progression would 

go up as the network memorized certain data. The hyperparameters for the network 

were updated according to batch size, which was selected as 20. This value can affect 

the accuracy of parameter estimation and was selected after trial and error. Due to 

reduced number of datapoints, the network training step took several minutes compared 

to 20 minutes when using full dataset. However, a significant amount of time (several 

hours) was required for the data sampling and kPCA dimensionality reduction step. It 

is important to mention that in the context of industrial application of neural networks, 

the tuning of network parameters needs to be done by hand using trial and error method, 

which may take a long time or be ineffective. These parameters may need to be revised 

later to further optimize the model. Absence of a concrete methodology for parameter 

tuning is a major limitation of such approach. 

First, the effectiveness of a single neural network on fault detection and diagnosis 

(FDD) performance was measured. Applying the single neural network to the reduced 

TE dataset resulted in a 97.4% accuracy of fault prediction. The model struggled to 

differentiate between fault #12 and fault #18 in 13 cases out of 500. Due to the reduced 

dataset, training times for all simulations were shorter.  

As a first step, we decided to split the network into fault detection and fault diagnosis. 

While keeping the same network configurations, the first network NI was trained to 
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detect and remove all healthy cases; and the faulty cases would then be diagnosed by 

the second network NII. The first network showed a 100% detection rate, while the 

second network correctly identified 393 out of 400 faulty cases, leading to a total 98.3% 

prediction accuracy.  

Then, the effect of dimensionality reduction on FDD in the TE process was 

investigated. We performed kPCA reduction from 52 to 25 principal components and 

repeated the network training. The single FDD network was able to accurately predict 

497 out of 500 cases, or 99.4%. Applying kPCA reduction to the double model showed 

a slight improvement as the hybrid model diagnosed 398 out of 400 faults in the second 

network, with a 100% fault detection accuracy in the first network, bringing the overall 

accuracy to 99.5%. The results of the simulations are presented in Table 3.4.  

Table 3.4 Results of different model configurations for the TE process 

# Description FDD accuracy 

1 Single neural network 97.4% 

2 Double neural network configuration 98.3% 

3 Single neural network-assisted by kPCA 99.4% 

4 

Double neural network configuration assisted by 

kPCA (the proposed model) 

99.5% 

The comparison between confusion matrices of the base model and the enhanced model 

are shown in Figure 3.6. 
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52 inputs. Accuracy of 97.4%. 

 

25 inputs. Accuracy of 99.4%. 

Figure 3.6 Confusion matrices for classification of digits with 52 inputs (left) and 25 

inputs (right) for TE process estimation. 

3.4 Discussion 

Results shown in Table 3.1 provide a visible effect of reducing input dimensions on the 

classification accuracy. Since the deep neural network is not the optimal solution for 

digit classification, we would not expect near-hundred percent accuracy; we also use a 

limited amount of data for network training, making it even more difficult to classify 

data points correctly.  Because all cases had the same framework, we were able to 

isolate input dimensionality and compare the results. By reducing the number of 

variables that the network is learning from, we could increase the initial accuracy of 

80% to 86-88%. The ‘optimal’ number of variables for this case study is between 150 

and 50. Reducing dimensionality further may result in unnecessary loss of variability, 

which can lead to reduced prediction accuracy. This work showed that kPCA can be 

successfully applied to complex datasets and can result in more accurate classifications. 
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Considering reliability, this can help detect and classify faults with less error and 

increasing model accuracy by 10% is a significant upgrade. Applying this technique is 

suited for industrial process data which is complex.  

In this work, we also showed the benefit of splitting the model into fault detection and 

fault classification. Having the same constraints, we achieved a slight increase in 

overall classification accuracy, which may be beneficial in process data analysis. We 

initially predicted that the main downside to this model would be the increase in tuning 

complexity: since we have two models instead of one, we must tune double the number 

of parameters.  However, by splitting the task into detection and classification, we 

reduced the number of output nodes, which increased the speed of network training. 

This allowed quickly to tune parameters for one model, get relevant results, and then 

focus on the second model. In the end, comparing to a single neural network, we spent 

far less time working with two networks. Larger datasets may result in longer training 

times, and therefore will take longer to adjust parameters for optimal results. Providing 

an option to significantly reduce this time while not losing accuracy is another outcome 

of this paper.  

Then, we applied different model setups for a reduced dataset of the TE process. It was 

shown that splitting diagnosis and detection into separate neural networks can be 

successfully applied to a chemical process. It results in a slight increase in classification 

accuracy, reduced training times, and eases the tuning process. In addition, the 

application of kPCA as a dimensionality reduction technique to the data helped increase 

the accuracy even further. By reducing the complexity of the training dataset to 25 

variables, the model was able to diagnose faults with 99.4-99.5% accuracy. A similar 
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study achieved 97.3% accuracy using DNN in detection and diagnosis of faults in TEP 

(Heo & Lee, 2018), however they used a complete dataset. This is similar to our result 

using base model (97.4%). Although we cannot make direct comparison between 

studies with complete and incomplete dataset, the improvement from a hybrid approach 

cannot be overlooked. We conclude that this model can be applied to chemical 

processes with large dimensionality and produce more accurate results. DNN was used 

as an example of a ML method in this work, and it is suggested that other combinations 

of kPCA and ML mechanisms are explored for potential increase in FDD performance. 

A downside to this model is that it is not clear how much variability is lost during kPCA. 

It is suggested to add a step to confirm that the reduced dataset is an accurate 

representation of the process. Another downside to using kPCA is its difficulty in 

handling large and/or dynamic datasets. The basic kPCA algorithm is not flexible and 

does not allow the addition of data to improve the model. For this reason, in the case 

study, we had to use a simplified version of the TE process. In reality, it is essential that 

the model is regularly updated and new data is tested in real-time. This can be overcome 

by utilizing a modification of kPCA, such as two-phase incremental kPCA (TP-IKPCA) 

(Zhao et al., 2019). The authors concluded that the enhanced model produces similar 

results to conventional kPCA, but is computationally faster, and it can be used for large 

and dynamic datasets. Another challenge of the proposed model is that both kPCA and 

DNN are trial and error dependent. The success of the model will largely depend on the 

model setup and parameter selection. It is suggested to look into the corresponding 

literature for kPCA and DNN to determine appropriate model configurations.  
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3.5 Conclusions 

This paper proposes a hybrid model that combines kPCA and deep neural networks to 

help detect and diagnose faults. The novelty of the work lies in the successful 

application of the proposed hybrid model by reduction of the dimensionality of a 

complex chemical process dataset and splitting the detection and diagnosis task 

between two DNNs to achieve higher accuracy of data interpretation.  

We treated fault detection and diagnosis as classification problems in the MNIST digit 

classification dataset; and then applied the model to the TE process. The first part of 

this work concentrated on the application of kPCA to process data, and we showed that 

reducing the dimensionality of input data had allowed neural networks to train more 

proficiently, resulting in improved classification accuracy (by approximately 10%). 

Then, we demonstrated that dividing fault detection and diagnosis into two separate 

neural networks could further improve overall accuracy and reduce network training 

times. Using the hybrid model brought the FDD accuracy in the TE process to 99.4-

99.5%. 

However, while training times were noticeably reduced in the later stages of the hybrid 

model, the model needs a significant amount of time in the early stage, where input data 

is processed via kPCA. In addition, the model in its current state cannot work with large 

amounts of data points and dynamic data. This can be overcome by adopting variations 

of kPCA explicitly aimed to cover the weaknesses of conventional kPCA. In this work, 

we did not focus on the effects of layer configuration and interactions between kPCA 

and other types of networks, which could be the focus of future research.  
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Chapter 4 

Gas Leak Detection Using Combined Neural Network Model 

Abstract 

Natural gas leakage has been a major issue in the chemical industry. Methods to detect 

and diagnose leaks have been developed and widely used for gas pipeline and storage. 

Most techniques include manual inspection of sensor-aided mathematical models. 

Although machine learning has seen a lot of developments in recent years, its 

application in gas leak detection has been barely explored. In this context, artificial 

neural networks can be used as a feature extraction tool, as a decision-making tool, or 

both. In this work, we combined a pretrained convolutional network and a long short-

term memory layer network to perform both roles, respectively. Our model was trained 

and tested using sequences of concentration profiles generated by a CFD software. The 

model learned to successfully predict gas leak and classify its size based on 50 seconds 

of data. We then looked at flexibility of our network to work with limited amount of 

data and performed some tuning to have a quick detection model under 30 seconds. The 

neural networks did not require parameter adjustments to achieve high prediction 

accuracy, but we showed that further optimization is possible through data selection 

and preparation. The model needs to be further tested for various leak locations, as this 

was not covered in this paper due to limitations of CFD software. Experimental results 

are needed to confirm the effectiveness of the model and use of other types of input 

needs to be investigated. 

Keywords: gas leak detection, convolutional neural network, gas leak safety design. 
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4.1 Introduction 

Natural gas has become an integral part of society, being widely used for both 

residential and industrial purposes. Many systems were built to sustain the demand, 

such as pipeline networks, loading and receiving terminals, storage vessels etc. All 

these systems are prone to deterioration due to corrosion or aging, which become more 

prevalent as time goes on. This is associated with one of the primary issues in chemical 

industry – gas leakage (Eckerman, 2005). Leakage of natural gas can result in severe 

environmental impact as it is a major greenhouse gas. In addition, it can result in 

intoxication, suffocation or explosion which results in damage to human health, 

property, reputation, and finances (Bonvicini et al., 2015). To avoid these 

consequences, the safety of these systems must be developed and polished. While 

inspection and maintenance can improve the reliability of pipelines and storage vessels, 

it is practically impossible to avoid gas leaks. Therefore, an early response plan needs 

to be put in place to conceal the leak and prevent escalation (Datta & Sarkar, 2016). 

The first and crucial step is detection of gas leak, which has attracted a lot of attention 

from industry and research lately. 

Several methods are used to detect gas leakage, which rely on manual inspection of 

pipelines and vessels. These methods require investments, labor and are not continuous 

in nature. In addition, increasing pipe distance and plant structure complexity, further 

reduces effectiveness of manual methods. Other methods include monitoring of process 

parameters, such as pressure, temperature, and flowrate (Xiao et al., 2018). These 

methods heavily rely on proper data acquisition and the accuracy of the mathematical 

models (Doshmanziari et al., 2020). Specialized sensors are used for this purpose, such 
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as acoustic, optical, electrochemical, distributed sensing fiber optic, and so on 

(Meribout et al., 2020). It was suggested to use image processing methods for gas leak 

monitoring via infrared cameras that can detect methane molecules on the infrared 

spectrum (Fahimipirehgalin et al., 2021; Vollmer & Möllmann, 2017). 

In recent years with the rapid development of machine learning techniques, neural 

networks have become a popular in the context of outlier detection. A number of papers 

have been published in regards to application of neural networks for detection of gas 

leaks (Ning et al., 2021; Pérez-Pérez et al., 2021; S. J. Song & Jang, 2018; Y. Song & 

Li, 2021; Travis et al., 2020; Wang et al., 2021). These papers focus mainly on pipeline 

leak detection and involve various types of neural networks, such as convolutional 

neural networks, recurrent neural networks, hybrid networks etc. For example, artificial 

neural network was to enhance the precision of frequency analysis in pipeline leak 

detection (Wang et al., 2021). The trained model achieved high accuracy but required 

a series of filters and signal transformation techniques. In another work, artificial neural 

network was used to predict near real time gas leak at a testing site using both simulated 

and field data (Travis et al., 2020). However, as in many cases with machine learning, 

this model was highly dependant on sensor data and interference of unexpected winds 

caused the model to overestimate the leak rates by a significant value. A separate paper 

investigated application of artificial neural network in pipe leak detection (Pérez-Pérez 

et al., 2021). They achieved high accuracy in detection of leaks and leak locations. 

However, the model required pressurized flow and was highly dependant on network 

configuration.  
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A combined network of convolutional layer and convolutional long short-term memory 

(LSTM) layer was employed predict leak locations in an enclosed space (D. Song et 

al., 2021). In this work, convolutional layer extracted special representations, while 

LSTM layer extracted temporal representations. The model was successful in adapting 

to building layout but did not account for the leak size and used input data not verified 

by an experiment. The authors did not utilize “healthy” state where no leak occurred, 

and misclassifications were not explored. In another work, convolutional network was 

used as a primary detection mechanism for gas leaks in galvanised steel pipe (Y. Song 

& Li, 2021). The authors investigated many network architectures to see the 

effectiveness in separating leak detection from internal flow noise in frequency domain. 

The difficulty of this model lied in the necessity of substantial data denoising and 

preprocessing, and it required input produced by a specific sensor. Another paper used 

convolutional network as both feature extractor and classifier in a gas pipeline setting 

(Ning et al., 2021). The network was aided by spectrum enhancement, which improved 

prediction accuracy and reduced training times. It also uses sound signals which may 

not be available for every pipe/vessel in industrial setting and covers a limited number 

of leak types. Limited work has been done to analyze visual data with neural networks 

and its application to a leak scenario in a plant setting.  

This work proposes a combined model that primarily focuses on leak detection and 

classification in case of a receiving terminal. It uses a pretrained GoogLeNet 

convolutional network as a feature extraction tool and a bidirectional long short-term 

memory layer network (BiLSTM) as a classification tool. Training and testing data 

were generated using a CFD software that was previously validated by field tests. This 
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model employs visual input data and tries to optimize the speed of leak detection to 

reduce escalation and damage. The next part of this paper will explain data generation 

procedure, the role of neural networks. Classification results will be presented in the 

following section, and different setups will be evaluated to optimize leak detection 

speed. Limitations of the proposed model will be discussed and suggestions for future 

work will be given. 

4.2 Methodology 

4.2.1 Process overview 

 

Figure 4.1 Methodology for gas leak detection using a combination of ConvNet and 

LSTM 

Figure 4.1 shows that the process consists of four steps: data generation using 

OpenFOAM, data processing and transformation, feature extraction using GoogLeNet, 

and gas leak classification using LSTM neural network. OpenFOAM software is used 

to generate a gas leak scenario in a receiving terminal and allows to track the changes 

that happen within first 50 seconds of the accident. It generated a series of images that 

were then transformed into videoclips of a particular resolution via MATLAB 
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functions. Video footage is then fed into GoogLeNet convolutional network to extract 

sequences of feature vectors. These sequences of features are used in bidirectional long 

short-term memory layer neural network (BiLSTM) training that learns to classify those 

sequences into gas leak categories. This model utilized strengths of convolutional 

networks as they are suitable for feature extraction from visual data, which makes 

network training produce accurate results. Since data generated from OpenFOAM was 

proven reliable based on previous studies, the combined model should produce 

promising results. 

4.2.2 Generation of training data 

Prior to building the model, a search for available data was performed on gas leaks that 

could be used for network training and testing. It appears there is not enough resources 

freely available online that could satisfy the neural network training requirements. 

Although Convolutional Network has the possibility to generate additional data for 

proper training (Jain, 2017), there is a bare minimum that could not be met.  Therefore,  

a mathematical simulation of a gas leak published recently and validated with a twin 

experiment (Wu et al., 2021) was used in this work. We contacted one of the authors of 

the paper and received a copy of the model, which was later used to generate sufficient 

data for network training. 

The model was simulated using OpenFOAM, a free open source CFD software, which 

was installed onto Ubuntu 18.04 operating system inside a virtual machine. The upside 

is that it is ready for use immediately after installation of the VMware, and some key 

parameters are easily configured. The downside is that the generation speed is limited 
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by the virtual machine characteristics and could not be sped up using a more 

computationally powerful engine. Another downside was inability to change the 

geometry of the simulation since it was built and validated for that specific geometrical 

setup. Changing the setup could potentially lead to inaccurate results.  

In this work, we will not go over the model in detail as it is extensively described in the 

original paper. In short, it is a three-dimensional model that combines computational 

fluid dynamics (CFD) with the ensemble Kalman filter (EnKF) to simulate leaked CH4 

vapor propagation in a typical receiving terminal setting. The results of the model were 

compared to the field test (the Burro 8 spill test) conducted by the Lawrence Livermore 

National Laboratory (LLNL) at the Naval Weapons Center. In addition, CFD 

simulations were compared to an ANSYS FLUENT simulation. These tests verified 

that CFD and EnKF coupling reproduced accurate results and 

rhoReactingBuoyantFoam solver can be used as an alternative to simulate LNG vapor 

dispersion.  

Generation of data was performed using a receiving terminal setup with complex 

layout, obstacles, buoyancy forces etc. Figure 4.2 taken from the original paper shows 

the layout of the receiving terminal and the location of the leak (Wu et al., 2021). More 

details regarding geometrical setup, input parameters and boundary conditions can be 

found in the paper. To train a neural network, it is required to provide data of different 

scenarios, such as different leak location or leak size. Since we did not have a chance 

to change the geometry of the simulation, we decided to set the leakage velocity as the 

variable parameter. For our simulations, we chose five setups: no leak; 10m/s, 20 m/s, 

30 m/s and 50 m/s leakage velocity. Because the leak size can be directly tied to the 
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severity level, these scenarios reflect different states of the terminal: safe state, unsafe 

state with variable danger level. All scenarios were simulated within first 50 seconds 

of the leak, which would allow for quick response to the accident.  

 

Figure 4.2 The layout of the receiving terminal used for gas leak detection tests (Wu et 

al., 2021) 

The results of each simulation contained 51 PNG files representing concentration 

profile of a plant at elevation of 20 meters. The 1st PNG is the state of the system at t = 

0, where the leak starts. 2-51 files represent the following 50 seconds. Figure 4.3 shows 

example of the concentration profile for 30 m/s scenario at t = 35 seconds; the axes and 

color description were removed for clearance purposes. The simulations were repeated 

25 times for each scenario; 20 for network training and 5 for network testing. In total, 

there were 125 simulations containing 6375 PNG files. There was no identical 

simulation as each time the leakage velocity was increased or decreased by a small 

amount: for example, simulations for 30 m/s contain simulations from 29 m/s to 31 m/s. 
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In addition, turbulence-related coefficients were changed accordingly for each 

simulation.  

 

Figure 4.3 LNG vapor dispersion at t = 35s and v = 30 m/s 

4.2.3 Data Transformation 

The generated data consisted of several thousands of images 759 by 610 pixels, which 

was the default setting for the simulation in OpenFOAM software. This format and 

amount of data is not convenient to use for network training, as the images are not 

independent and are sequences of different case scenarios. To simplify the input 

process, the data was first transformed into video format, hence generating only 100 

files for training and 25 for testing.  

First, it was important to make sure that all images are homogenous. After each 

simulation was performed, we made sure that the format and dimensions of the image 

did not alter. Then, we checked the integrity of all files; some files were corrupt in the 

process of either results generation or copying from virtual machine to a local disk. In 
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case some files were damaged, the simulation was repeated, and new results were 

generated to replace corrupted ones. Finally, sets of images were then transformed into 

videos using MATLAB writeVideo function at 17 frames per second to produce 3 

second clips for each simulation.  

Finally, the videoclips were resized to fit the input resolution of the GoogLeNet 

network using additional function that would transform 759 by 610-pixel frames into 

224 by 224-pixel frames. Example of the initial and resized frame is shown in Figure 

4.4. This process was conducted twice: 100 cases for network training and 25 cases for 

network testing.  

  

Figure 4.4 Initial and resized versions of the frame at t = 35s and v = 20 m/s 

4.2.4 GoogLeNet Feature Extraction 

Gas leak detection is an integral part of accident mitigation and escalation prevention. 

In this work, we train a Convolutional Neural Network (ConvNet) to detect gas leaks 

as well as leak size. We gathered labeled data to assist the training process as an 

example of supervised learning. Gas detection is treated similarly to a classification 

problem that artificial neural networks have been widely used for; and since our input 
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data consists of visual content, ConvNet was chosen accordingly, as it is well suited for 

such input type.  

A typical neural network consists of an input layer, output layer and a hidden layer (one 

or more). Input data enter the input layer, goes through hidden layer(s), and is then 

passed to the output layer. Hidden layers transform data into sets of higher feature 

vectors through nonlinear operations; in case of ConvNets, hidden layers perform 

convolution operations that generate feature maps that become input of the next layer. 

In some cases, hidden layers may contain pooling layers, fully connected layers, and 

normalization layers. 

Convolutional network can be used for classification tasks or just feature extraction; 

and they can be built from scratch or adapted from existing networks. As such, we took 

advantage of existing GoogLeNet convolutional neural network that is primarily used 

for image classification developed by researchers at Google (Szegedy et al., 2015). It 

is a complex network that consists of 27 layers and includes convolution layers, pooling 

layers, inception modules, dropout layers, output layer and a SoftMax layer. The input 

layer accepts images of 224 by 224 pixels while the output layer was initially designed 

to classify 1000 different images, and hence had an output layer of 1000 cells. In our 

model, we use GoogLeNet as a feature extraction tool; extracted features are then sent 

to long short-term memory (LSTM) neural network for classification. 

To extract features out of frames in each video, we use GoogLeNet’s last pooling layer 

“pool5-7x7_s1” and activations function to generate sequences of feature vectors. Each 

sequence is 51 cells long corresponding to 51 frames of each video. Each sequence has 

1024 features that are used as input to the LSTM network. 
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4.2.5 BiLSTM Network Training 

The next step is to build LSTM network to classify gas leaks. The sequences of feature 

vectors are passed to the Sequence Input Layer with 1024 nodes. Input layer is 

connected to a bidirectional long short-term memory layer (BiLSTM) with 2000 units 

and a 50% dropout layer. BiLSTM is the learning mechanism for classification of 

sequential data that can account for the complete time series at each time step. A 

dropout layer removes a portion of hidden layer units after each repetition during 

training and to prevent overfitting of the model (Srivastava et al., 2014).  

A fully connected layer with an output size of 5 cells corresponding to gas leak size. 

SoftMax layer and classification layer are used to assign probabilities of each class and 

subsequently make a decision (Goodfellow et al., 2016). In this work, we classify video 

footage into 5 categories: 

- No leak, 0 m/s 

- Leak, 10 m/s 

- Leak, 20 m/s 

- Leak, 30 m/s 

- Leak, 50 m/s 

The original paper was using leakage velocity of 15 m/s. We chose different velocities 

arbitrarily to showcase different accident scenarios. 

Additional networks settings include: minibatch size of 16; adaptive moment estimation 

(Adam) solver; learning rate increasing from 0.0001 to 2.0; validation as well as data 
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shuffling after each epoch. Minibatch size affects the number of times the network is 

updated in an epoch. Minibatch size and learning rate can be adjusted if needed for 

convergence purposes. Minibatch size also reduces memory requirements since the 

algorithm must perform calculations only over a fraction of the dataset at a time.  

The accuracy of classification is then measured by counting the number of correct 

predictions and dividing by the total number of cases: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
#(𝑝𝑟𝑒𝑑 ==  𝑡𝑟𝑢𝑒)

# 𝑡𝑟𝑢𝑒
 

A confusion matrix is then constructed to provide visual representation of the results. 

It compares the number of predicted and true samples of all categories in a single figure 

(Ting, 2017). The network was then trained and tested for different combinations of 

time durations to see the flexibility of the model in a context of limited data.  

4.3 Results 

4.3.1 Data generation and preparation 

As mentioned before, we generated concentration profiles of CH4 after 50 seconds of a 

gas leak in the receiving terminal. Most setting were unchanged from the previous paper 

of this simulation published by the original authors, such as ambient temperature, wind 

velocity and direction, vessel pressure and so on. The only variable part was wind 

velocity, and turbulence parameters, accordingly.  Another choice was regarding 

elevation selection. The original paper documented concentration profiles at three 

different heights: 20 meters, 32 meters and 40 meters. All elevations were shown to 

produce results in accordance with test data, therefore any of the three could be chosen 
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in this work. The decision to choose 20 meters was made to include as many obstacles 

as possible, as going higher leaves only tall vessels in cross section. In the future work, 

it is suggested to generate data from different elevations and comparing the results of 

gas leak detection between them, and possibly combining the data from different 

heights for further analysis as a more complete picture. 

Simulations were run 25 times for each wind velocity, so a total of 125 times. Since 

OpenFOAM was used inside a virtual machine, the computational capacity was limited 

to the computational capacity of the VM. Setting up the model on a separate workstation 

would take a long time and require assistance from the original authors. In addition, at 

a time of conducting this research, access to a powerful workstation was denied due to 

lockdown. As a result, data was generation and analyzed on a laptop, which further 

limited the computational speed and capacity. Considering all limitations, a single 

simulation of a gas leak would take approximately 25-40 minutes of calculations. In 

addition, using a separate software (ParaView), the results would need to be displayed 

and formed according to a template to avoid any noise during training. This and saving 

of the results would take additional 3-5 minutes. As it was not possible to compute 

several simulations at the same time, this was the lengthiest part of the project.  

As there were five different leak velocities, we additionally changed velocities slightly 

to avoid the same results being produced multiple times. For example, in a case of 30 

m/s leak velocity, we would choose random velocities in a range from 29.0 to 31.0 for 

both training and testing purposes. The velocity was not changed for 0 m/s (no leak 

case). Turbulence parameters were chosen according to an online calculator that was 

also used by the original authors (IChrome, 2016). These parameters are shown in Table 
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4.1. The reference length was chosen as 8 meters and kinematic viscosity v of the 

natural gas taken as 1.70e-5 m2/s.  

Table 4.1. Turbulence parameters for data generation for different velocities (IChrome, 

2016). 

Velocity v, m/s 

Turbulence kinetic energy k, 

J/kg 

Specific dissipation rate ω, 

1/s 

10 m/s 0.082 0.936 

20 m/s 0.277 1.717 

30 m/s 0.563 2.448 

50 m/s 1.378 3.828 

 

The data was saved in folders in a form of sets of images (.png), 51 image for each 

simulation. When the integrity of all files was checked, the complete visual dataset was 

moved outside of the virtual machine and saved on the laptop.  

Then, using MATLAB writeVideo function the sets of images were transformed into 

videos, one video per one set (folder). Since there were 51 frames per simulation, we 

choose a framerate of 17 to make 3 second clips. The videos were in the same format 

as the images, 759 by 610 pixels. These videos were then resized to match the 

GoogLeNet neural network input specifications of 224 by 224 pixels. Alternatively, 

one could resize the images first, and then compile them into videos. Due to 

arrangement of images into different folders, it would take too long to manually resize 
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all images, therefore we produced videos first and then worked with them (only 125 

videos to be resized).  

It should also be noted that all videos were 3 seconds long and that simplified the data 

preparation process significantly. In case the available data is varying duration, an 

additional step is necessary to remove longer sequences. Having large time diversity 

may lead to reduction in classification accuracy, therefore outliers should be either 

removed or trimmed down.  

4.3.2 Extraction of feature vectors and network training 

When the videos are prepared, they can be used to extract sequences of feature vectors. 

The activations function of the GoogLeNet returns feature vectors of each frame of the 

video, which are saved separately. The output of the activations produces 1024 by 51 

cell array for each video, where 51 is the number of frames and 1024 is the number of 

features.  

The sequences of feature vectors are then used as a sequence input layer to train the 

bidirectional long short-term memory network to classify the sequences into gas leak 

categories. 20% of the training dataset was used for validation. The training procedure 

achieved 100% validation accuracy by 6th epoch. The trained network is then used to 

classify testing samples and the results are shown in a form of confusion matrix in 

Figure 4.5. 
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Figure 4.5 Confusion matrix for gas leak size classification at t = 50s 

The trained network correctly classified 25 videos of gas leaks into correct categories.  

Finally, the number of frames that presented to the network for training was limited to 

see how reduced information affects classification accuracy. Effectively, we were 

looking at the prediction accuracy at different times to see at what point can the model 

correctly identify leaks. We set a minimum time of 5 seconds and train-tested the model 

repeatedly until t = 50 s. Classification accuracy over time is show in Figure 4.6. At t = 

27 s, the accuracy became 100% and we noticed a steady reduction in epochs needed 

for network training, as expected. However, in this case the network was trained and 

tested using the same time. Which means that in this situation it would be enough to 

gather data of the first 27 seconds. 

On the other hand, this work investigated whether the model that was trained on a full 

50-second data could be applied to a limited time testing data. In other words, how well 
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would a complete model be able to predict incomplete data. Figure 4.7 shows the 

accuracies from 10 seconds to 50 seconds. The data suggests that applying the full 

model is unreliable for the first 26 seconds; the accuracy only starts to increase at t = 

27 seconds. However, the results don’t get significantly better until t = 39 seconds, 

where classification accuracy reaches 84%, and for t > 39 it becomes a confident 100%. 

Therefore, applying a complete model to incomplete dataset can be allowed only for 

situations where at least 40 seconds elapsed after the leakage.  

 

Figure 4.6 Accuracy of gas leak classification using the same duration of training and 

testing data 



72 

 

 

Figure 4.7 Accuracy of gas leak classification using a 50 second-trained model on 

limited duration testing data 

Analyzing confusion plots, we found that for lower times the model would predict a 

“no leak” result. The model would underpredict rather than overpredict, meaning there 

were no false positives throughout simulations. As time increased, the model started to 

detect leaks, but would often misclassify their magnitudes.   

4.4 Discussion 

The results of the initial test run are shown in Figure 4.5. The model was successful in 

classifying leak sizes based on provided sequences of concentration profiles over a 

period of 50 seconds since leak initiation. This accuracy was achieved partially due to 

homogenous nature of data: it was generated via CFD simulation, which did not account 

for numerous sources of noise. If real data were used, it is possible the prediction 

accuracy would decline. However, since the model was proven to be in accordance with 
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testing on a real receiving terminal site, we can conclude that the model’s performance 

is relevant. It is also important to note that only 100 sets of data were used for training 

of the model, which only accounted for one factor of the gas leak phenomenon – gas 

leak velocity. It is important to test the model’s flexibility when it comes to other 

factors, such as leak location, vessel pressure, ambient conditions etc. The model was 

able to successfully isolate one parameter and make accurate predictions. The leak 

velocity is proportional to the size of the formed gas cloud, which is directly linked to 

potential damage that can result from said leak. If the model can identify the severity 

of the accident, it can result in a more educated responses to avoid further escalation 

and loss. In addition, this model can be incorporated in a larger risk assessment system, 

which would use the leak size to determine the severity of an accident.  

Another matter to consider is the type of data used for prediction. We used 

concentration profiles which are generated via CFD software. While it is a great leak 

indicator, this type of data may not be readily available at any chemical plant. The 

model needs to be tested with other types of input, such as infrared thermal imaging, 

gas sensor data from various locations, and mixed data. Since ConvNet is used for 

feature extraction, it is advised to utilize visual data if possible.   

Although the model performed with absolute accuracy on a 50 second simulated 

experiment, we wanted to see the flexibility of the model. First, we decided to reduce 

the amount of data that we feed into the model by reducing the time from leak to 

detection. For that, we were gradually removing one frame at a time and were re-

training the model to see the change in performance. As Figure 4.6 shows, the model 

retained its performance to a point where only 26 seconds were used. The model was 
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still able to identify leaks but would struggle to correctly classify its size. As the 

available data kept decreasing, the prediction accuracy also decreased, and below 10 

seconds it would produce undesirable results. This suggests that with proper tuning, the 

model may need less time than 50 seconds to accurately predict leak and its size.  

While this leads to a quicker response, we wanted to see if a trained model could make 

prediction based on a limited amount of data. Even if the model was trained to detect a 

leak based on 50 seconds of data, the model should also make predictions if the leakage 

has not reached a 50 second timer. Figure 4.7 shows the change in performance when 

a model was trained on a full 50 seconds of data and was forced to make a prediction 

early. The results suggest that this model does not perform well unless it is fed at least 

40 seconds of data. In comparison to the previous analysis, it would be more proficient 

to set up a gas leak detection model that is trained only on 30 seconds available data, 

and let it decide based on full 30 seconds, rather than setting up a 50-seconds trained 

model which is only able to predict after 40 seconds. This suggests that there is a certain 

amount of optimization that can be done to improve the model.  

Aside from model optimization, the model needs to be validated by data acquired from 

a test site in addition to the fact that the CFD model used to generate data was proven 

legitimate. A different geometrical setup should also be tried, as well as different leak 

locations need to be tested. The ability of the model to predict leak location and its size 

needs to be examined.  Finally, the effect of noise should be investigated on the model’s 

performance. In particular, a potential for discerning leak over noise is a major concern 

when it comes to industrial application and should be a focused of the future work. 
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4.5 Conclusion 

In this paper we developed a model to detect and classify gas leak based on series of 

concentration profiles. This work presents a novel approach to gas leak detection with 

neural networks based on temporal data. The model consists of feature extraction 

element and classification element. To extract features from visual data we used 

GoogLeNet pretrained convolutional network that converted input video files into 

sequences of feature vectors; classification was performed using a bidirectional long 

short-term memory layer neural network. The data was generated using a hybrid model 

that incorporates CFD and the ensemble Kalman filter and was shown to produce results 

comparable to field tests. The major advantage of the proposed method is that it does 

not require fine tuning of layer configuration and other training parameters to produce 

satisfying results.  

The model had 100% accuracy when trained and tested on a 50-second dataset. The 

generated input data lacked the presence of noise and it only examined one parameter 

of leakage – its size. And while the leak size can be directly correlated to risk level, 

other factors should also be considered, such as leak location, variation of ambient 

parameters, gas temperature and pressure and so on. We then examined classification 

accuracy based on shortened dataset. For the receiving terminal used in our case, as few 

as 27 seconds of footage were enough for the model to accurately classify faults. We 

further investigated model’s ability to make predictions based on limited information. 

As such, we fed a model trained on 50 seconds of data testing samples that contained 

shortened datasets. The results show that the ability to classify leakage was reduced 

significantly and the model produced acceptable results only when it was fed almost 
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entire dataset (40+ seconds). Under these circumstances, the model did not produce 

false negatives and mostly suffered in its ability to classify detected leaks. These 

findings suggest that a lot of optimizations can be done aside from training the neural 

network. The model can be tuned to detect and classify gas leaks in a short period of 

time with high accuracy, which can result in timely response to an accident, stop 

escalation and reduce damage. 

The model needs further testing incorporating field data. In addition to testing more gas 

leak factors, other type of visual data needs to be used, such as thermal imaging. 

Incorporation of sensor data and its effect on prediction accuracy should be investigated 

to improve the model efficiency. Finally, GoogLeNet needs to be compared to other 

pretrained convolutional networks to determine the most fitting one for this type of 

input data.  
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Chapter 5: Conclusions and feature work 

5.1 Conclusion 

Two hybrid neural network-based approaches have been proposed for fault detection 

and diagnosis. The first hybrid method is a combination of kPCA and DNN. The 

proposed method combines the nonlinear dimensionality reduction from kPCA and 

then trains reduced data with deep neural network to detect and diagnose faults. 

Reduction of data complexity allowed for a better learning process of the neural 

network. Kernel PCA was employed specifically to tackle complex process data. The 

model was tested on a benchmark Tennessee Eastman Process. The model also 

explored the possibility of dividing fault detection and diagnosis tasks into separate 

deep neural networks. This showed to be beneficial in terms of classification accuracy 

as well as training time. 

The second work proposed a hybrid model that consisted of a convolutional network 

and a BiLSTM network. The feature extraction was performed by the pretrained 

convolutional network and classification of temporal data was done by BiLSTM 

network. Convolutional network was a great feature extraction tool for graphical-type 

input data, and BiLSTM network excelled at classifying gas leaks over 50 seconds. In 

addition, the model was further optimized by proper selection of the amount of data 

fed into the model, which resulted in the new model being able to accurately predict 

gas leaks and their size within first 30 seconds. A strong advantage of this work is that 

the amount of manual tuning of network parameters was minimal. This model was 

validated by a simulated data of gas leak in an LNG receiving terminal. The 
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simulation was previously validated with experimental data, which in turn validates 

the hybrid leak detection model.  

5.2 Future work 

i. Kernel PCA is not dynamic in nature, and it cannot be used for dynamic FDD. 

Future work is required to test variations of kPCA in combination of DNN, such 

as dynamic kPCA. 

ii. Kernel PCA is computationally very expensive in both memory and time regard. 

Modifications of kPCA, such as TP-IKPCA, need to be employed and tested on 

large datasets. 

iii. Future work should focus on building a framework for neural network parameter 

selection as currently this process is mostly intuitive. 

iv. This work explored only supervised ANN-based approaches. Combination of 

kPCA and DNN for unsupervised dataset should be investigated. 

v. GoogLeNet ConvNet was used as a feature extraction tool in the second work. 

Other pretrained networks should be tested for different input data types. 

vi. The models need to be tested with field data to examine the difficulty and the cost 

of implementation and monitoring.  

vii. Future work needs to be conducted to investigate multiple faults/leaks scenarios.  

viii. Effect of noisy data should be investigated.  

ix. Various visual data should be tested, such as CCTV footage or footage from IR 

camera. 

x. Effect of discerning leak over noise should be investigated. 
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