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Abstract

Consumers are key actors in ecosystems, shaping processes and functions at multiple spatio-

temporal scales via their interactions with biotic and abiotic ecosystem features. Yet, research

on the dynamics of local and meta-ecosystems rarely accounts for the effects of consumers—

particularly terrestrial mammals. Two hurdles hamper progress in this field: the lack of com-

mon units of measurement for biotic and abiotic ecosystem components, and the need for flexi-

ble, system-agnostic ways to investigate how consumers interact with and influence ecosystem

functioning. In this dissertation, I offer a concerted approach to address these issues, integrat-

ing wildlife, landscape, and ecosystem ecology within an ecological stoichiometry framework. I

begin by showing that terrestrial mammals are variable in their ecological stoichiometry, using

data from the snowshoe hare (Lepus americanus), a keystone boreal herbivore. Importantly, un-

like invertebrates, organismal stoichiometry in vertebrates appears unrelated to age, sex, body

size, and body condition. Building on these results, I investigate the responses of terrestrial her-

bivores to biotic variability in their environment, finding that snowshoe hares vary their space

use when facing intraspecific variability in the stoichiometry of their foraging resources. Hares

had larger home ranges in areas of poor or highly variable forage stoichiometry compared to ar-

eas of high and consistent forage stoichiometry. This differential space use by consumers may

elicit changes in both their ecology and ecosystem dynamics. Thus, I develop a novel mathe-

matical model of a meta-ecosystem to investigate how multiple types of consumer movement

over the landscape influence ecosystem processes and functions. Expanding a classic, two-patch

meta-ecosystem model to include the surrounding matrix, I demonstrate that active, non-diffusive

movement of consumers can reduce or enhance ecosystem functions at local and regional spatial

scales. Throughout my thesis, ecological stoichiometry ties together the diverse themes of each

chapter, further demonstrating how elemental currencies can work as shared units of measure-

ment across levels of biological organization. Overall, my thesis combines a laboratory study,
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spatial statistical models fit to a field-based case study, and a novel mathematical model to pro-

vide testable predictions to guide future research into the role of consumers within meta-ecology.
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General Summary

Animal activities can change how ecosystems work, including plant growth, organism interac-

tions, and the cycling of essential nutrients between organisms and the environment. Yet, the

details of how this occurs remain largely unknown because existing conceptual and mathemati-

cal approaches make it difficult to identify important patterns across more than one ecosystem at

a time. Identifying these patterns is an important step towards understanding the links between

animals activities and how ecosystems work. A detailed understanding of these links is also im-

portant in preserving the integrity of natural environments and the services they provide us: clean

air, water, and recreational spaces. Here, I present new insights into animal-environment links,

using an approach that allows for comparisons across different ecosystems. I use chemical ele-

ments, the building blocks of life, and mathematical tools to explore the links between animals,

plants, and their environment. I focus on an important herbivore in the boreal forest of Canada,

the snowshoe hare (Lepus americanus). First, I study how chemically similar hares are among

themselves. I find that hares can be quite different in their body chemistry, but not what drives

these differences. Differences in body chemistry may change how hares use their environment,

as the same chemical elements are found in their food. So, second, I investigate how food chem-

ical qualities influence hare space use. I find that hares eating good quality food use less space,

whereas where food quality is poor they use more space. As animals move to forage, these re-

sults suggest that hares may change how their ecosystem works by transporting elements as they

move in their habitats. Lastly, I develop a mathematical model to explore how the movement of

chemical elements by animals among ecosystems can change how ecosystems work. I find that

animal movement of chemical elements can strongly change how ecosystems work by, for in-

stance, increasing plant growth. My results show that new insights can be gained by linking ani-

mals and ecosystems through chemical elements, and that we need to consider animals’ activities

in our plans to protect the environment.
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Chapter 1

Introduction and overview

“All have their worth, and each contributes to the worth of the others.” ∼ J. R. R. Tolkien

Ecosystems are shaped by interactions and exchanges among their organic and inorganic com-

ponents (Currie 2011). Energy, nutrients, and information (Loreau, Mouquet, and Holt 2003;

Marleau, Peller, et al. 2020) flow from inorganic environmental pools—e.g., the sun, soil, and

atmosphere—to primary producers and then consumers, before being broken down by decom-

posers and detritivores, thus reentering the cycle. These flows mediate and modulate ecosys-

tem functions (Loreau, Mouquet, and Holt 2003; Dı́az et al. 2015), which in turn determine the

ecosystem services enjoyed and exploited by humankind (Garland et al. 2021). Furthermore,

ecosystems exist in continuity with one another, forming meta-ecosystems connected by biotic

and abiotic pathways (Loreau, Mouquet, and Holt 2003; Gounand, Harvey, et al. 2018). This

complex network of ecosystems spans spatio-temporal scales and can further shape the services

local and meta-ecosystems mediate (Schiesari et al. 2019)—for instance, by enhancing nutri-

ent cycling through spatial flows across adjacent ecosystems (e.g., Yang and Chen 2018). As

the Anthropocene progresses, protecting and maintaining ecosystem functions and services have

come to the forefront as key actions necessary to ensure the continued survival of humanity on

Earth (Schiesari et al. 2019). Yet, our knowledge of the components of these complex systems,

and thus our ability to disentangle their individual effects and devise strategies to mitigate hu-

mankind’s impact on them, is patchy at best. This is particularly true for vertebrate consumers

and the role they play in ecosystem functions and services (Schmitz, Raymond, et al. 2014; Sit-

ters, Atkinson, et al. 2015; Sitters and Olde Venterink 2015; Gounand, Harvey, et al. 2018).

The ways in which vertebrate consumers shape ecosystem processes, functions, and services

are myriad—from changing the distribution of key inorganic resources in the landscape to mod-
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ulating microbial decomposers activity through soil compaction (Schmitz, Wilmers, et al. 2018;

Enquist et al. 2020; Schmitz and Leroux 2020). Part of the effects of vertebrate consumers on

ecosystem dynamics stems directly from the way they forage in and otherwise use their space.

For instance, through consumptive effects, the million-strong migration of wildebeest (Con-

nochaetes taurinus) increases the rates of nutrient cycling in the savannah ecosystems they tra-

verse during their seasonal migration in the Serengeti (Tanzania; Holdo, Holt, Sinclair, et al.

2011). Marine central-place foragers, such as the humpback whale (Megaptera novaeangliae),

mediate similar nutrient cycling and primary productivity enhancing effects in the photic zone

of the Gulf of Maine (Roman and McCarthy 2010; Roman, Estes, et al. 2014). Conversely, con-

sumers’ consumptive effects can also dampen ecosystem functions, as moose (Alces alces) do in

the boreal forests of North America (Pastor, Cohen, and Hobbs 2006). Moose selectively forage

on the most nutritious plant matter available leading to sequestration of limiting nutrients in their

own biomass (Pastor, Cohen, and Hobbs 2006, but see Balluffi-Fry, Leroux, Wiersma, Heckford,

et al. 2020, for an analysis of individual variation in this foraging strategy). In a positive feed-

back loop, this contributes to the low rates of nutrient cycling and primary productivity of the

boreal biome (Pastor and Naiman 1992; Pastor, Dewey, et al. 1993; Pastor, Cohen, and Hobbs

2006).

In addition to their direct, consumptive effects, consumers can elicit indirect influences on

ecosystem functions and dynamics (Schmitz, Wilmers, et al. 2018), from contrasting (e.g., Holdo,

Sinclair, et al. 2009) or compounding with (e.g., MacSween, Leroux, and Oakes 2019) the ef-

fects of natural disturbances, to changing nutrient cycling dynamics (e.g., Bump, Tischler, et al.

2009). In the Serengeti, as the wildebeest population increased following eradication of a crip-

pling disease, higher rates of herbivory reduced the susceptibility of this savannah ecosystem to

seasonal fires and turned what used to be a carbon source into a net carbon sink (Holdo, Holt, and

Fryxell 2009; Holdo, Holt, Sinclair, et al. 2011). In boreal systems, moose move over the land-

scape and change their space use under the influence of multiple stimuli, from forage stoichiom-

etry (Leroux, Vander Wal, et al. 2017; Balluffi-Fry, Leroux, Wiersma, Heckford, et al. 2020) to
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predation risk (Bump, Peterson, and Vucetich 2009; Montgomery et al. 2014). As they move to

find higher-quality resources to forage on, moose trample the soil, increasing compaction and

fostering anaerobic conditions in the organic horizons, and thus dampen nutrient mineralization

(Tuomi et al. 2021). Conversely, carcass deposition following predation by the wolf (Canis lu-

pus) may lead to enhanced local nutrient availability that can persist through time (Bump, Peter-

son, and Vucetich 2009; Bump, Webster, et al. 2009). Finally, consumers “on-the-move” indi-

rectly pair ecosystem processes over space and time, contributing to meta-ecosystem dynamics

(Gounand, Harvey, et al. 2018). At continental scales, migratory snow geese (Chen caerulen-

scens) seasonally connect fertilized agricultural fields in New Mexico (USA) to the wetlands

of the Canadian tundra, transporting human-derived nutrients and pairing ecosystem functions

across habitat types and more than 4500 km (Jefferies, Rockwell, and Abraham 2004). Similar,

albeit smaller-scale, effects can be found in boreal systems where beaver (Castor canadensis)

and moose link ponds and streams, respectively, to the nearby forests stands (Rosell et al. 2005;

Bump, Tischler, et al. 2009).

As the above examples show, consumers can mediate indirect, unintuitive effects among di-

verse ecosystems and across vast spatio-temporal scales. Yet, the potentially strong influence

of consumers on the complex machinery of the biosphere is still only rarely accounted for—

particularly in terrestrial ecosystems (Schmitz, Raymond, et al. 2014; Enquist et al. 2020). Earth-

system models routinely do not incorporate consumers in their simulations of planet-wide dy-

namics (but see Dangal et al. 2017), or do so in a limited, simplified manner that does not capture

their diverse roles as intermediaries of local and meta-ecosystem dynamics (e.g., Harfoot et al.

2014, but see Hoeks et al. 2020, for a biomass-based study accounting for the role of carnivorous

consumers). Excluding consumers from large-scale models aimed at investigating or predicting

the state of our planet in the face of Anthropogenic change is problematic for both ecological

research and mitigation and conservation efforts. The high level of abstraction of these models

(Gounand, Harvey, et al. 2018), complexity of consumer-related behaviours and interactions with

other ecosystem components (e.g., Ebel et al. 2015), and mathematical tractability (e.g., Gravel,
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Guichard, et al. 2010) have all been invoked as hurdles standing in the way of a more nuanced,

realistic representation of consumer-mediated ecosystem effects in local and meta-ecosystem

models.

I surmise that, to advance research on the role and effects of consumers in ecosystem func-

tions and services, two lines of inquiry will offer helpful contributions. In particular, (i) describ-

ing vertebrate consumers, and especially terrestrial species, using units of measurement and cur-

rencies shared among biotic and abiotic components of ecosystems and the processes that con-

nect them, and (ii) developing new, flexible, and study system-agnostic conceptual tools to rep-

resent the variety of ways consumers interact with and modify their environment, its functions,

and its services. In this thesis, I offer a two-pronged approach to tackle these issues and develop

a more comprehensive framework for consumer-mediated ecosystem effects.

1.1 What unites us: a stoichiometric approach to consumer ecology

Advancing our understanding of the role consumers play in shaping ecosystem processes and

functions requires grounding this work in common currencies and units of measurement. For all

its impressive variety of forms, life uses a relatively small subset of chemical elements to assem-

ble them (≃25 out of 118; Sterner and Elser 2002; Kaspari and Powers 2016). Excluding oxygen
and hydrogen, carbon (C), nitrogen (N), and phosphorus (P) are the most common among these

shared “building blocks”, and their relative balance among organisms and the environment is a

key trait of ecological systems (Sterner and Elser 2002). Availability of elements in abiotic en-

vironmental pools—e.g., as soil minerals or water-suspended nutrients—determines rates of pri-

mary productivity in ecosystem worldwide, with stark and consistent differences across different

ecosystems (e.g, between freshwater and terrestrial; Elser et al. 2000). Experimental evidence

shows that different environmental nutrient availability mediates the effects of herbivory on inor-

ganic pools of C and N (e.g., in grassland ecosystems; Sitters, Wubs, et al. 2020). Furthermore,

consumers appear to respond to the stoichiometry of their resources, as shown using fertiliza-

tion experiments in the boreal forests of Scandinavia (Ball, Danell, and Sunesson 2000) and with
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cafeteria-style forage choice studies in boreal Canada (Balluffi-Fry, Leroux, Wiersma, Heckford,

et al. 2020). As these examples show, ecological stoichiometry—the study of the arrangement

and dynamics of chemical elements in natural systems—offers a unifying conceptual and quan-

titative approach to investigate organism-environment interactions across levels of biological

organization (Sterner and Elser 2002).

As a framework, ecological stoichiometry stems from biogeochemistry and studies of fresh-

water and marine ecosystems (Sperfeld et al. 2016). Primary producers are stoichiometrically

plastic in the relative amounts of key elemental nutrients that they contain compared to those

available in their environment (Sterner and Elser 2002). This plasticity is mediated by the cel-

lular biology of autotrophs, which allows primary producers to store excess nutrients in a dedi-

cated type of organelle (i.e., vacuoles; Sterner and Elser 2002). The ability to decouple environ-

mental uptake of nutrients from maintaining their internal homeostasis grants primary producers

the ability to thrive in stoichiometrically heterogeneous environments (Ågren and Weih 2012;

Rivas-Ubach et al. 2012; Martiny et al. 2013). Conversely, consumers generally show limited

stoichiometric plasticity (Sterner and Elser 2002). Consumers constantly regulate the amount of

certain elements circulating in their system—e.g., the dynamics of skeletal and circulating P in

vertebrates (Sterner and Elser 2002). As well, consumers move among environments to escape

unfavourable stoichiometry conditions: from this perspective, foraging is a stoichiometric de-

cision for some consumers, dictated by the need to prioritize uptake of certain elements and not

others (see below, Section 1.2; Sterner and Elser 2002; Nie et al. 2015). Exceptions to the general

rule of low consumer stoichiometric plasticity can be found, for instance, in species that undergo

ontogenic changes to reach their adult form (Ebel et al. 2016) or following physiological changes

induced by, e.g., predation risk (El-Sabaawi et al. 2012; Rinehart and Hawlena 2020). For in-

stance, organismal content of P and other elements in Atlantic salmon varies among individuals

at different life stages (Ebel et al. 2016). In addition to the life history or behavioural changes

that it entails—i.e., the ocean-bound migration of post-spawn individuals from their spawning

freshwater streams—it is this intraspecific variation that is key to determine whether Atlantic
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salmon act as P sources or sinks for the freshwater ecosystems they spawn in (Ebel et al. 2015).

Little is known, however, about the organismal elemental composition of terrestrial, verte-

brate consumers—especially mammals. A sizeable body of literature exists on the nutritional

composition—i.e., the content of proteins, carbohydrates, and other macromolecules—of mam-

malian species of economic or recreational interest (e.g., caribou, Rangifer tarandus, Gerhart et

al. 1996, or roe deer, Capreolus capreoulus, Hewison et al. 1996). Indeed, following the develop-

ment of the nutritional geometry framework (see review in Raubenheimer 2011), nutritional com-

position analyses are experiencing a renaissance of sorts with new analyses focusing on wildlife

species (e.g., the giant panda, Ailuropoda melanoleuca; Nie et al. 2015). However, elements con-

tained in macromolecules are constrained in precise, invariant proportions and do not necessarily

represent an organism’s whole pool for a given element (Mariotti, Tomé, and Mirand 2008). Fur-

thermore, macromolecules are themselves composite currencies subject to anabolic and catabolic

processes, and thus lacking the kind of transferability across biological groups that is inherent to

elements. Macromolecular content data are thus better suited as tools to study trophic interactions

rather than ecosystem processes (Sperfeld et al. 2016).

However, aside from rare examples involving smaller-bodied species (e.g., desert lizards;

González, Fariña, et al. 2011), our knowledge of the ecological stoichiometry of terrestrial ver-

tebrate consumers is still in its infancy. This dearth of information effectively precludes inves-

tigating the finer scales and facets of consumer-environment relationships not only in terres-

trial ecosystems, but also at the interface between terrestrial and aquatic environments (Sitters,

Bakker, et al. 2017; Schmitz, Wilmers, et al. 2018). This knowledge gap can have real-world

consequences, for instance, leading to incorrectly accounting for a species’ contributions to the

ecosystem budget of a limiting nutrient (e.g., P; Ebel et al. 2015). Furthermore, dietary needs of

key chemical elements shape consumers’ dietary needs just as much as energetic requirements

(Sterner and Elser 2002; Simpson et al. 2004; González, Dézerald, et al. 2017; Anderson et al.

2020), potentially shaping multiple aspects of their ecology (Sterner 2004; Jean et al. 2015; Ler-

oux, Vander Wal, et al. 2017). Expanding our knowledge of consumer ecology with empirical

6



stoichiometry data is thus a necessary step towards a better understanding of the zoogeochem-

istry of our planet (sensu Schmitz, Wilmers, et al. 2018). As well, integrating new insights aris-

ing from this endeavour into existing frameworks and models will be instrumental in further as-

sessing the magnitude and reduction of past and present consumers’ influences on ecosystem

functioning (Doughty et al. 2016; Doughty 2017).

1.2 Step into space: meta-ecology of consumers

Consumers exist within the context of their environment, so that the study of how they fit in

ecosystem processes and functions can advance both our understanding of consumer ecology and

ecosystem dynamics. Interactions with their environment define consumers, their ecology and

life histories. The very names with which we partition consumers among eaters of plants, flesh,

carrion or waste stem from their relationships with environmental features—their food sources, in

this case. Literature is replete with examples of how consumers interact with their environment,

for instance, resource (e.g., Jean et al. 2015; Duparc et al. 2020) or habitat (e.g., Zweifel-Schielly

et al. 2009; Bjørneraas et al. 2012) selection. However, this wealth of information often exists

in isolated nuggets, without a common framework that integrates general, shared details into a

larger ecological picture. Meta-extensions of classic areas of ecology—i.e., population (Han-

ski 1998), community (Leibold et al. 2004), and ecosystem ecology (Loreau, Mouquet, and Holt

2003), collectively referred to as meta-ecology (Schiesari et al. 2019)—have brought an inte-

grative, spatially aware, multi-disciplinary approach to the forefront. Meta-ecology has proven

effective at expanding ecology’s field of inference, leading to new insights on the way structure

and variability in natural systems vary with context and scale (Levin 1992). For instance, how

fragmented landscapes can support species persistence (Haddad et al. 2015), or how flows of ele-

mental currencies enable planet-wide connections among far-flung ecosystems (Gounand, Little,

et al. 2018). Yet, meta-ecology often relies on simplistic representations of consumer-resource in-

teractions, space, and time in its theoretical constructs, limiting the applicability and relevance of

its hypotheses and predictions for real-world scenarios (Gounand, Harvey, et al. 2018; Schiesari
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et al. 2019).

Consumers interact with and experience their surroundings through multiple perceptual lay-

ers, each defined by its own currency, that together produce the spatial maps used to navigate

their environment (sensu Powell and Mitchell 2012). Integrating across these different layers and

currencies, consumers engage in iterative, progressive space selection processes in which dif-

ferent stimuli inform decisions at different spatial scales (Johnson 1980). For instance, in Isle

Royale National Park (USA) landscape use by moose changes among different seasons, with

moose prioritizing use of shorelines in winter months due to these areas’ better foraging oppor-

tunities and lower snow cover (Bump, Peterson, and Vucetich 2009). This pattern of space use

also increases encounter rates with wolves, producing clustered carcass deposition that medi-

ates ecosystem effects (see above, Section 1.1; Bump, Tischler, et al. 2009; Montgomery et al.

2014). Landscape heterogeneity, then, is a key element to consider when investigating consumer-

resources interactions. In a zoogeochemical framework (Schmitz, Wilmers, et al. 2018), elements

are the currency of choice and their variability in space is the spring that powers ecosystem pro-

cesses and functions at multiple spatio-temporal scales (Schmitz and Leroux 2020). Recent con-

tributions to ecological stoichiometry allow for explicit consideration of space in the dynamics of

elemental nutrient exchanges between consumers and resources (Leroux, Vander Wal, et al. 2017;

Soranno et al. 2019). In doing so, spatial ecological stoichiometry brings an ecosystem ecology

perspective to the study of trophic relationships. However, the question remains of whether con-

sumer can indeed perceive and respond to variation in the elemental phenotype (sensu Leal, See-

hausen, and Matthews 2017) of their resources.

In addition to expanding the way we represent consumer-resources interactions in our theoret-

ical constructs, accounting for how consumers navigate complex, realistic spatial configurations

of resources and ecosystems remains a major challenge in meta-ecology (Gounand, Harvey, et al.

2018; McLeod and Leroux 2021). Consumers move in space and time, crossing ecosystem bor-

ders and acting as vessels for a host of ecological currencies that cannot move on their own. As

well, consumers are adapting to the Anthropocene, changing the way they move and use space in
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relation to anthropogenic modifications of their environments (Tucker et al. 2018). Meta-ecology

has long adopted simple representations of space (e.g., two-patch models; Marleau, Guichard,

et al. 2010; Leroux and Loreau 2012) and consumer movement across them (e.g., diffusion-like

movement; Gravel, Guichard, et al. 2010; Gravel, Mouquet, et al. 2010). However, movement

is a complex phenomenon, shaped and influenced by a host of variables—both endogenous and

exogenous to the consumer moving (Nathan et al. 2008). Movement is also an economical pro-

cess, in which consumers seek the highest possible fitness return from the energetic investment

done when initiating the move, thus differing substantially from other types of connections across

ecosystems that do not entail energetic costs (McInturf et al. 2019). Finally, movement ability

is also an ecological trait, subject to evolution and change over time, and through this trait con-

sumers can manifest pervasive effects on local and regional processes and functions of ecosys-

tems (Schmitz, Wilmers, et al. 2018; Hartfelder et al. 2020). In this context, developing new,

more realistic and flexible mathematical representations of consumer movement is a fundamental

step towards a more empirically relevant meta-ecology (Gounand, Harvey, et al. 2018; McInturf

et al. 2019; Schiesari et al. 2019).

1.3 The boreal forest biome: brief description and overview

My thesis combines an empirical case study of the zoogeochemistry of herbivores in the boreal

forests of Canada with a mathematical model of consumer movement in a meta-ecosystem. Here,

I describe the boreal biome, one of the largest on Earth, to provide additional context to my two

empirical data-based chapters, Chapter 2 and Chapter 3. I refer the interested reader to the works

cited here for more detailed descriptions of this biome.

The boreal forest is the largest terrestrial biome on Earth, a circumpolar belt that spans the

northern reaches of Eurasia and North America between 45°N–90°N (Brandt 2009). Caught

between the arctic tree line to the North and the temperate forest to the South, the boreal forest

has a subarctic climate with average temperature ranging from 0 °C (6–9 months per year) to

10 °C (1–3 months per years; Brandt 2009; Brandt et al. 2013). Coniferous—e.g., spruce, fir, and
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pines—and deciduous—e.g., aspen, birch, maples—tree species cover the majority of the land-

scape in the boreal forest (Worrell 1996; Brandt 2009). Below the canopy, lichens (e.g., Cladonia

spp.), feather-mosses, and shrubs (e.g., Vaccinium spp.) dominate the forest floor community.

Rivers, lakes, and wetlands break up the vegetation cover, leading to the high levels of ground

humidity that characterize the boreal forest. Cold climate, frozen soils, dominant coniferous tree

species, and high levels of humidity all compound to limit the nutrient availability and uptake by

higher trophic levels—i.e., consumers (Naiman et al. 1994; Jones 1999; Gower et al. 2001).

The strong nutrient limitation of the boreal forest drives the relationship between plants and

herbivores by shaping the fundamental mismatch in the dietary needs of these two trophic com-

partments (Bryant, Reichardt, and Clausen 1992; Sterner and Elser 2002; Pastor, Cohen, and

Hobbs 2006). N is fundamental for the synthesis of the C-heavy molecules that plants rely on

for structural support and growth, as well as for the protein-based development and energy pro-

duction of herbivores. Plants, being stoichiometrically plastic, can finely regulate their internal

elemental balance—i.e., their homeostasis—to offset environmental nutrient limitation (Sterner

and Elser 2002). Herbivores, lacking the homeostatic plasticity of autotrophs, must prioritize ac-

cess to N and other limiting nutrients in order to survive (e.g., P, K, Na; Sterner and Elser 2002;

Kaspari and Powers 2016). The ensuing arms race influences not only the trophic interactions

between plants and herbivores, but also ecosystem processes and functions (e.g., nutrient cy-

cling; Leroux and Schmitz 2015). Furthermore, because of this pervasive nutrient limitation,

herbivores have disproportionate effects on nutrient cycles and ecosystem functions in the bo-

real forest—variously mediated through both direct and indirect pathways (Leroux, Wiersma, and

Vander Wal 2020). Owing to their relevance for human activities and wellbeing, several keystone

boreal herbivores have been extensively studied (Rosell et al. 2005; Pastor, Cohen, and Hobbs

2006; Krebs, Boonstra, and Boutin 2018). Indeed, tentative theoretical constructs describing the

feedback loops that link herbivory, environmental nutrient limitation, and primary productivity in

the boreal forest have been proposed (Pastor, Cohen, and Hobbs 2006) and contested (Sitters and

Olde Venterink 2015). This combination of strong nutrient limitation, well studied herbivores,
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and short trophic pathways makes the boreal forest a well-suited system to investigate the effects

of consumers—herbivores in particular—on ecosystem processes and functions.

1.4 Thesis Overview

My thesis combines empirical studies and mathematical modeling to investigate the role terres-

trial vertebrate consumers play in shaping ecosystem functions. Overall, my thesis is an example

of how infusing wildlife, landscape, and ecosystem ecology with an ecological stoichiometry

approach can lead to new insights on the mechanisms that underlie the ecosystem services hu-

mankind benefits from and strives to preserve.

In Chapter 2, I investigate the intraspecific variability in the organismal elemental compo-

sition of a keystone herbivore in the North American boreal biome, the snowshoe hare (Lepus

americanus). Here, I assemble one of the first datasets on the C, N, and P whole-body content of

a terrestrial vertebrate. I show that terrestrial vertebrates have higher intraspecific variation in the

content of key elemental nutrients than previously expected. Furthermore, I demonstrate that this

variability is mostly independent of a suite of ecological variables commonly identified as drivers

of intraspecific stoichiometric differences in invertebrates. In addition to challenging long-held

assumptions on the ecological stoichiometry of terrestrial vertebrates, in this chapter I highlight

the need to consider a broader set of potential predictors of organismal elemental composition for

this group of organisms.

In Chapter 3, I bridge landscape and wildlife ecology with ecological stoichiometry to in-

vestigate the responses of consumers to their environment. Specifically, I analyse how spatial

variability in the stoichiometry of foraging resources changes the space use of herbivores. I use

empirically assembled datasets on the spatial stoichiometry of three preferred forage species of

snowshoe hares (L. americanus) to show that herbivore spatial ecology can vary in response to

the spatial distribution of elements in their food. Snowshoe hares in areas where forage species

have lower or more variable content of key elements—i.e., C, N, and P—have larger home range

size than hares in areas with higher or less variable nutrient availability.
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Building on the results of the previous two chapters, in Chapter 4 I develop a mathemati-

cal framework to integrate different types of consumer movement into meta-ecosystem models

and explore their influences on local and meta-ecosystem functions. I demonstrate how different

types of consumer movement can have different, and at times opposite, effects on local and meta-

ecosystem functions. Furthermore, I show how the characteristics of local species assemblages—

e.g., plant communities—can modulate the effects of consumer movement and even reverse

them. Expanding meta-ecosystem models to account for multiple types of consumer movement

can drastically alter the predictions of meta-ecosystem ecology and offer new insights on the dy-

namics of ecosystems connected in space and time.

In Chapter 5, I briefly summarize the main findings of my dissertation. I then discuss poten-

tial future directions arising from this work.

My thesis spans multiple areas of ecological research, woven together through the common

threads of ecological stoichiometry and ecosystem ecology. Taken together, my thesis makes a

major contribution to ecosystem ecology and should help improve predictions of the effects of

organismal loss on ecosystem functions. In particular, my thesis highlights the importance of ter-

restrial vertebrate consumers for ecosystem functioning. First, I show that organisms are key,

elementally diverse actors in ecosystem functions, and that they can elicit both direct and indi-

rect influences on ecosystem processes. Second, I highlight conceptual and methodological is-

sues in current models of meta-ecosystem dynamics built around a single type of flows—that is,

diffusive flows—and offer an alternative approach that can accomodate a more diverse array of

exchanges happening within and across ecosystem borders. Finally, I show that elements can act

as a common currency across levels of ecological investigation in a manner akin to energy. As

humankind continues to introduce, disperse, and otherwise modify the availability of elemental

nutrients around the globe, infusing current and future research with an elementally aware ap-

proach may offer us new, unintuitive insights into ways of mitigating anthropogenic change.

Information to access the data and code used in this thesis can be found in the data accessibil-

ity section of each chapters, in the form of a hyper-textual link to an online repository.
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1.5 Co-authorship Statement

This thesis is the result of my independent research. Throughout my work, I benefitted from col-

laborating with a cohesive, supportive, and dedicated group of co-authors. The breakdown of

contributions to each chapter by co-authors is as follows:

Chapter 2

Myself, S. Leroux, E. Vander Wal, and Y. Wiersma devised the project; myself, T. Heckford, J.

Balluffi-Fry, S. Leroux, Y. Wiersma, and E. Vander Wal collected the data; myself and S. Leroux

analyzed the data; myself, T. Heckford, J. Balluffi-Fry, S. Leroux, Y. Wiersma, and E. Vander

Wal interpreted the data. I led the writing of the manuscript. All authors contributed critically to

the drafts and gave final approval for publication.

A version of this paper was published in Ecology and Evolution as:

M. Rizzuto, S. J. Leroux, E. Vander Wal, Y. F. Wiersma, T. R. Heckford, and J. Balluffi-Fry

(2019). “Patterns and potential drivers of intraspecific variability in the body C, N, and P compo-

sition of a terrestrial consumer, the snowshoe hare (Lepus americanus)”. Ecology and Evolution

9 (24), pp. 14453–14464. DOI: 10.1002/ece3.5880

Chapter 3

Myself, S. Leroux, Y. Wiersma, and E. Vander Wal designed the project; myself, T. Heckford,

J. Balluffi-Fry, I. Richmond, Y. Wiersma, and S. Leroux collected the data; myself, S. Leroux,

and I. Richmond analyzed the data. All authors contributed to interpreting the results. I led the

writing of the manuscript and all authors read and approved the final version.

A version of this paper was published in Oecologia as:
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M. Rizzuto, S. J. Leroux, E. Vander Wal, I. C. Richmond, T. R. Heckford, J. Balluffi-Fry, and

Y. F. Wiersma (2021). “Forage stoichiometry predicts the home range size of a small terrestrial

herbivore”. Oecologia 197 (2), pp. 327–338. DOI: 10.1007/s00442-021-04965-0

Chapter 4

Myself and S. Leroux designed the project; myself, S. Leroux, and O. Schmitz developed the

model; myself and S. Leroux conducted the analyses. I wrote the manuscript. All authors con-

tributed to revising the manuscript and approved the final version.

A version of this paper will be submitted to The American Naturalist as:

M. Rizzuto, S. J. Leroux, O. J. Schmitz, E. Vander Wal, Y. F. Wiersma, and T. H. Heckford (in

prep.). “Animal-vectored nutrient flow along different resource gradients influences the nature of

local and meta-ecosystem functioning.”

1.6 Achievements

I disseminated the results presented in this thesis in the form of peer-reviewed journal articles

(listed above, Section 1.5), as well as conference presentations and posters. Furthermore, this

study is part of a long-term research project jointly led by Y. Wiersma, S. Leroux, and E. Van-

der Wal and collectively known as the Terrestrial Ecology Research Group (henceforth, TERG).

TERG aims at disentangling the ecosystem dynamics of the boreal forest biome with an ecolog-

ical stoichiometry-infused approach that bridges wildlife, landscape, and ecosystem ecology. As

part of TERG, I collaborated on a number of papers led by other graduate students in the group;

these are listed below. Additionally, by attending conferences and during a three months place-

ment as visiting scholar at the Yale University School of the Environment funded by the Mitacs

Globalink Research Internship program, I developed an extensive network of collaborators out-

side Memorial University and TERG. Engaging with this network of world-class researchers

14



from diverse backgrounds and disciplines led to the development and publication of two sepa-

rate papers. The details of these additional contributions are listed below. Please, see Section 1.5

for full citations of the peer-reviewed papers that arose from this dissertation.

1.6.1 Peer-reviewed papers

The following is a comprehensive list of peer-reviewed papers I was involved in—either as lead

or co-author—throughout my Ph.D. but that are not part of this dissertation. I report the abstracts

for these papers in Appendix D. For papers where I am lead author, I led ideas development,

study design, data collection and analysis if applicable, and manuscript writing. For papers where

I am fourth author or later, I contributed to ideas, data collection, and writing. An asterisk (*)

denotes authors who contributed equally to a project.

• with the Terrestrial Ecology Research Group

– J. Balluffi-Fry, S. J. Leroux, Y. F. Wiersma, T. R. Heckford, M. Rizzuto, I. C. Rich-

mond, and E. Vander Wal (2020). “Quantity-quality trade-offs revealed using a mul-

tiscale test of herbivore resource selection on elemental landscapes”. Ecology and

Evolution 10.24, pp. 13847–13859. DOI: 10.1002/ece3.6975

– J. Balluffi-Fry, S. J. Leroux, Y. F. Wiersma, I. C. Richmond, T. R. Heckford, M. Riz-

zuto, J. L. Kennah, and E. Vander Wal (2021). “Integrating plant stoichiometry and

feeding experiments: state-dependent forage choice and its implications on body

mass”. Oecologia. DOI: 10.1007/s00442-021-05069-5

– I. C. Richmond, S. J. Leroux, T. R. Heckford, E. Vander Wal, M. Rizzuto, J. Balluffi-

Fry, J. L. Kennah, and Y. F. Wiersma (2021). “Temporal variation and its drivers

in the elemental traits of four boreal plant species”. Journal of Plant Ecology 14.3,

pp. 398–413. DOI: 10.1093/jpe/rtaa103

– I. C. Richmond, J. Balluffi-Fry, E. Vander Wal, S. J. Leroux, M. Rizzuto, T. R. Heck-

ford, J. L. Kennah, G. R. Riefesel, and Y. F. Wiersma (2021). “Individual snowshoe
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hares manage risk differently: Integrating stoichiometric distribution models and for-

aging ecology.” Journal of Mammalogy. Accepted, manuscript id: JMAMM–2021–

026.R2

– T. R. Heckford, S. J. Leroux, E. Vander Wal, M. Rizzuto, J. Balluffi-Fry, I. C. Rich-

mond, and Y. F. Wiersma (2021). “Does where you live influence what you are made

of? Spatial correlates of chemical traits across commonly occurring boreal plants”.

Landscape Ecology. DOI: 10.1007/s10980-021-01334-3

– T. R. Heckford, S. J. Leroux, E. Vander Wal, M. Rizzuto, J. Balluffi-Fry, I. C. Rich-

mond, and Y. F. Wiersma (in revision). “Foliar elemental niche responses of balsam

fir (Abies balsamea) and white birch (Betula papyrifera) to differing community

types across geographic scales.” Functional Ecology. manuscript id: FE-2020-00432.

• as visiting scholar at the Yale University School of the Environment

– D. Ellis-Soto*, K. M. Ferraro*, M. Rizzuto, E. Briggs, J. D. Monk, and O. J. Schmitz

(2021). “A methodological roadmap to quantify animal-vectored spatial ecosystem

subsidies”. Journal of Animal Ecology 90.7, pp. 1605–1622. DOI: 10.1111/1365-

2656.13538

• from other collaborations

– C. J. Little*, M. Rizzuto*, T. M. Luhring, J. D. Monk, R. Nowicki, R. E. Paseka,

J. Stegen, C. C. Symons, F. B. Taub, and J. Yen (in review). “Filling the Informa-

tion Gap in Meta-Ecosystem Ecology”. Oikos. manuscript id: OIK-08892.R1. Eco-

EvoRxiv preprint. DOI: 10.32942/osf.io/hc83u

1.6.2 Conference contributions

• Rizzuto, M., Leroux, S. J., Schmitz, O. J., Vander Wal, E., Wiersma, Y. F., Heckford, T.

R. Going against the flow: non-diffusive organismal movement influences local and meta-
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ecosystem functioning. 02–06 August 2021. Contributed talk. Ecological Society of Amer-

ica Virtual Annual Meeting, Long Beach, CA, USA.

• Rizzuto, M., Leroux, S. J., Vander Wal, E., Wiersma, Y., Heckford, T. R., Balluffi-Fry, J.

Beyond Diffusion: Animal-Mediated Nutrient Transport at Different Spatial Scales. 21–

27 July 2018. Poster. “Unifying Ecology Across Scales” Gordon Research Seminar and

Conference, Biddeford, ME, USA.

• Rizzuto, M., Leroux, S. J., Vander Wal, E., Wiersma, Y., Heckford, T. R., Balluffi-Fry, J.

Ontogeny and Ecological Stoichiometry of Snowshoe hares (Lepus americanus) in the Bo-

real Forests of Newfoundland. 18–21 July 2018. Contributed talk. Canadian Society for

Ecology and Evolution Annual General Meeting, Guelph, ON, Canada.

17



1.7 References

Ågren, G. I. and M. Weih (2012). “Plant stoichiometry at different scales: element concentration

patterns reflect environment more than genotype”. New Phytologist 194 (4), pp. 944–952.

DOI: 10.1111/j.1469-8137.2012.04114.x.

Anderson, T. R. et al. (2020). “Geometric Stoichiometry: Unifying Concepts of Animal Nutrition

to Understand How Protein-Rich Diets Can Be “Too Much of a Good Thing””. Frontiers in

Ecology and Evolution 8.July, pp. 1–12. DOI: 10.3389/fevo.2020.00196.

Ball, J. P., K. Danell, and P. Sunesson (2000). “Response of a herbivore community to increased

food quality and quantity: an experiment with nitrogen fertilizer in a boreal forest”. Journal

of Applied Ecology 37 (2), pp. 247–255. DOI: 10.1046/j.1365-2664.2000.00487.x.

Balluffi-Fry, J., S. J. Leroux, Y. F. Wiersma, T. R. Heckford, et al. (2020). “Quantity-quality

trade-offs revealed using a multiscale test of herbivore resource selection on elemental land-

scapes”. Ecology and Evolution 10.24, pp. 13847–13859. DOI: 10.1002/ece3.6975.

Balluffi-Fry, J., S. J. Leroux, Y. F. Wiersma, I. C. Richmond, et al. (2021). “Integrating plant sto-

ichiometry and feeding experiments: state-dependent forage choice and its implications on

body mass”. Oecologia. DOI: 10.1007/s00442-021-05069-5.

Bjørneraas, K. et al. (2012). “Habitat quality influences population distribution, individual space

use and functional responses in habitat selection by a large herbivore”. Oecologia 168 (1),

pp. 231–243. DOI: 10.1007/s00442-011-2072-3.

Brandt, J. P. (2009). “The extent of the North American boreal zone”. Environmental Reviews

17.NA, pp. 101–161. DOI: 10.1139/A09-004.

Brandt, J. P. et al. (2013). “An introduction to Canada’s boreal zone: ecosystem processes, health,

sustainability, and environmental issues”. Environmental Reviews 21.4, pp. 207–226. DOI:

10.1139/er-2013-0040.

18



Bryant, J. P., P. B. Reichardt, and T. P. Clausen (1992). “Chemically Mediated Interactions be-

tween Woody Plants and Browsing Mammals”. Journal of Range Management 45.1, p. 18.

DOI: 10.2307/4002520.

Bump, J. K., R. O. Peterson, and J. A. Vucetich (2009). “Wolves modulate soil nutrient hetero-

geneity and foliar nitrogen by configuring the distribution of ungulate carcasses”. Ecology

90.11, pp. 3159–3167. DOI: 10.1890/09-0292.1.

Bump, J. K., K. B. Tischler, et al. (2009). “Large herbivores and aquatic-terrestrial links in south-

ern boreal forests”. Journal of Animal Ecology 78.2, pp. 338–345. DOI: 10.1111/j.1365-

2656.2008.01498.x.

Bump, J. K., C. R. Webster, et al. (2009). “Ungulate carcasses perforate ecological filters and

create biogeochemical hotspots in forest herbaceous layers allowing trees a competitive ad-

vantage”. Ecosystems 12.6, pp. 996–1007. DOI: 10.1007/s10021-009-9274-0.

Currie, W. S. (2011). “Units of nature or processes across scales? The ecosystem concept at age

75”. New Phytologist 190.1, pp. 21–34. DOI: 10.1111/j.1469-8137.2011.03646.x.

Dangal, S. R. S. et al. (2017). “Integrating Herbivore Population Dynamics Into a Global Land

Biosphere Model: Plugging Animals Into the Earth System”. Journal of Advances in Model-

ing Earth Systems 9.8, pp. 2920–2945. DOI: 10.1002/2016MS000904.

Dı́az, S. et al. (2015). “The IPBES Conceptual Framework — connecting nature and people”.

Current Opinion in Environmental Sustainability 14, pp. 1–16. DOI: 10.1016/j.cosust.

2014.11.002.

Doughty, C. E. (2017). “Herbivores increase the global availability of nutrients over millions of

years”. Nature Ecology & Evolution 1.12, pp. 1820–1827. DOI: 10.1038/s41559- 017-

0341-1.

Doughty, C. E. et al. (2016). “Global nutrient transport in a world of giants”. Proceedings of the

National Academy of Sciences of the United States of America 113.4, pp. 868–873. DOI: 10.

1073/pnas.1502549112.

19



Duparc, A. et al. (2020). “Through the taste buds of a large herbivore: foodscape modeling con-

tributes to an understanding of forage selection processes”. Oikos 129 (2), pp. 170–183. DOI:

10.1111/oik.06386.

Ebel, J. D. et al. (2015). “Ontogenetic differences in Atlantic salmon phosphorus concentration

and its implications for cross ecosystem fluxes”. Ecosphere 6.8, art136. DOI: 10 . 1890 /

ES14-00516.1.

— (2016). “Whole body-element composition of Atlantic salmon Salmo salar influenced by

migration direction and life stage in three distinct populations”. Journal of Fish Biology 89.5,

pp. 1–10. DOI: 10.1111/jfb.13123.

Elser, J. J. et al. (2000). “Nutritional constraints in terrestrial and freshwater food webs”. Nature

408.6812, pp. 578–580. DOI: 10.1038/35046058.

Enquist, B. J. et al. (2020). “The megabiota are disproportionately important for biosphere func-

tioning”. Nature Communications 11.1, p. 699. DOI: 10.1038/s41467-020-14369-y.

Garland, G. et al. (2021). “A closer look at the functions behind ecosystem multifunctionality: A

review”. Journal of Ecology 109.2, pp. 600–613. DOI: 10.1111/1365-2745.13511.

Gerhart, K. L. et al. (1996). “Body composition and nutrient reserves of arctic caribou”. Cana-

dian Journal of Zoology 74.1, pp. 136–146. DOI: 10.1139/z96-018.

González, A. L., O. Dézerald, et al. (2017). “The Multidimensional Stoichiometric Niche”. Fron-

tiers in Ecology and Evolution 5.September, pp. 1–17. DOI: 10.3389/fevo.2017.00110.

González, A. L., J. M. Fariña, et al. (2011). “Exploring patterns and mechanisms of interspecific

and intraspecific variation in body elemental composition of desert consumers”. Oikos 120.8,

pp. 1247–1255. DOI: 10.1111/j.1600-0706.2010.19151.x.

Gounand, I., E. Harvey, et al. (2018). “Meta-Ecosystems 2.0: Rooting the Theory into the Field”.

Trends in Ecology & Evolution 33.1, pp. 36–46. DOI: 10.1016/j.tree.2017.10.006.

Gounand, I., C. J. Little, et al. (2018). “Cross-ecosystem carbon flows connecting ecosystems

worldwide”. Nature Communications 9.1, p. 4825. DOI: 10.1038/s41467-018-07238-2.

20



Gower, S. T. et al. (2001). “Net primary production and carbon allocation patterns of boreal for-

est ecosystems”. Ecological Applications 11.5, pp. 1395–1411. DOI: 10 . 1890 / 1051 -

0761(2001)011[1395:NPPACA]2.0.CO;2.

Gravel, D., F. Guichard, et al. (2010). “Source and sink dynamics in meta-ecosystems”. Ecology

91.7, pp. 2172–2184. DOI: 10.1890/09-0843.1.

Gravel, D., N. Mouquet, et al. (2010). “Patch Dynamics, Persistence, and Species Coexistence in

Metaecosystems”. The American Naturalist 176.3, pp. 289–302. DOI: 10.1086/655426.

Haddad, N. M. et al. (2015). “Habitat fragmentation and its lasting impact on Earth’s ecosys-

tems”. Science Advances 1.2, pp. 1–10. DOI: 10.1126/sciadv.1500052.

Hanski, I. (1998). “Metapopulation dynamics”. Nature 396.6706, pp. 41–49. DOI: 10.1038/

23876.

Harfoot, M. B. J. et al. (2014). “Emergent Global Patterns of Ecosystem Structure and Func-

tion from a Mechanistic General Ecosystem Model”. PLoS Biology 12.4. DOI: 10.1371/

journal.pbio.1001841.

Hartfelder, J. et al. (2020). “The allometry of movement predicts the connectivity of commu-

nities”. Proceedings of the National Academy of Sciences of the United States of America

117.36, pp. 22274–22280. DOI: 10.1073/pnas.2001614117.

Heckford, T. R. et al. (2021). “Does where you live influence what you are made of? Spatial cor-

relates of chemical traits across commonly occurring boreal plants”. Landscape Ecology.

DOI: 10.1007/s10980-021-01334-3.

— (in revision). “Foliar elemental niche responses of balsam fir (Abies balsamea) and white

birch (Betula papyrifera) to differing community types across geographic scales.” Functional

Ecology. manuscript id: FE-2020-00432.

Hewison, A. J. M. et al. (1996). “Annual variation in body composition of roe deer (Capreo-

lus capreolus) in moderate environmental conditions”. Canadian Journal of Zoology 74.2,

pp. 245–253. DOI: 10.1139/z96-031.

21



Hoeks, S. et al. (2020). “Mechanistic insights into the role of large carnivores for ecosystem

structure and functioning”. Ecography 43.12, pp. 1752–1763. DOI: 10.1111/ecog.05191.

Holdo, R. M., R. D. Holt, and J. M. Fryxell (2009). “Grazers, browsers, and fire influence the ex-

tent and spatial pattern of tree cover in the Serengeti”. Ecological Applications 19.1, pp. 95–

109. DOI: 10.1890/07-1954.1.

Holdo, R. M., R. D. Holt, A. R. Sinclair, et al. (2011). “Migration impacts on communities and

ecosystems: empirical evidence and theoretical insights”. In: Animal Migration. Ed. by E. J.

Milner-Gulland, J. M. Fryxell, and A. R. E. Sinclair. Oxford: Oxford University Press. Chap. Chap-

ter 9, pp. 130–143. DOI: 10.1093/acprof:oso/9780199568994.003.0009.

Holdo, R. M., A. R. Sinclair, et al. (2009). “A disease-mediated trophic cascade in the Serengeti

and its implications for ecosystem C”. PLoS Biology 7.9. DOI: 10.1371/journal.pbio.

1000210.

Jean, P.-O. et al. (2015). “Combining near infrared spectra of feces and geostatistics to generate

forage nutritional quality maps across landscapes”. Ecological Applications 25 (6), pp. 1630–

1639. DOI: 10.1890/14-1347.1.

Jefferies, R. L., R. F. Rockwell, and K. F. Abraham (2004). “Agricultural Food Subsidies, Mi-

gratory Connectivity and Large-Scale Disturbance in Arctic Coastal Systems: A Case Study”.

Integrative and Comparative Biology 44, pp. 130–139. DOI: 10.1093/icb/44.2.130.

Johnson, D. H. (1980). “The Comparison of Usage and Availability Measurements for Evaluating

Resource Preference”. Ecology 61.1, pp. 65–71. DOI: 10.2307/1937156.

Jones, H. G. (1999). “The ecology of snow-covered systems: a brief overview of nutrient cy-

cling and life in the cold”. Hydrological Processes 13.1415, pp. 2135–2147. DOI: 10.1002/

(SICI)1099-1085(199910)13:14/15<2135::AID-HYP862>3.3.CO;2-P.

Kaspari, M. and J. S. Powers (2016). “Biogeochemistry and Geographical Ecology: Embracing

All Twenty-Five Elements Required to Build Organisms”. The American Naturalist 188 (S1),

S62–S73. DOI: 10.1086/687576.

22



Krebs, C. J., R. Boonstra, and S. Boutin (2018). “Using experimentation to understand the 10-

year snowshoe hare cycle in the boreal forest of North America”. Journal of Animal Ecology

87.1. Ed. by K. Wilson, pp. 87–100. DOI: 10.1111/1365-2656.12720. eprint: 0608246v3.

Leal, M., O. Seehausen, and B. Matthews (2017). “The ecology and evolution of stoichiometric

phenotypes”. Trends in Ecology & Evolution 32.2, pp. 108–117. DOI: 10.1016/j.tree.

2016.11.006.

Leibold, M. A. et al. (2004). “The metacommunity concept: A framework for multi-scale com-

munity ecology”. Ecology Letters 7.7, pp. 601–613. DOI: 10.1111/j.1461-0248.2004.

00608.x. eprint: 2042.

Leroux, S. J. and M. Loreau (2012). “Dynamics of Reciprocal Pulsed Subsidies in Local and

Meta-Ecosystems”. Ecosystems 15.1, pp. 48–59. DOI: 10.1007/s10021-011-9492-0.

Leroux, S. J. and O. J. Schmitz (2015). “Predator-driven elemental cycling: the impact of pre-

dation and risk effects on ecosystem stoichiometry”. Ecology and Evolution 5.21, pp. 4976–

4988. DOI: 10.1002/ece3.1760.

Leroux, S. J., E. Vander Wal, et al. (2017). “Stoichiometric distribution models: ecological stoi-

chiometry at the landscape extent”. Ecology Letters 20 (12), pp. 1495–1506. DOI: 10.1111/

ele.12859.

Leroux, S. J., Y. F. Wiersma, and E. Vander Wal (2020). “Herbivore Impacts on Carbon Cycling

in Boreal Forests”. Trends in Ecology & Evolution 35.11, pp. 1001–1010. DOI: 10.1016/j.

tree.2020.07.009.

Levin, S. A. (1992). “The Problem of Pattern and Scale in Ecology: The Robert H. MacArthur

Award Lecture”. Ecology 73.6, pp. 1943–1967. DOI: 10.2307/1941447.

Loreau, M., N. Mouquet, and R. D. Holt (2003). “Meta-ecosystems: A theoretical framework for

a spatial ecosystem ecology”. Ecology Letters 6.8, pp. 673–679. DOI: 10.1046/j.1461-

0248.2003.00483.x.

23



MacSween, J., S. J. Leroux, and K. D. Oakes (2019). “Cross-ecosystem effects of a large terres-

trial herbivore on stream ecosystem functioning”. Oikos 128.1, pp. 135–145. DOI: 10.1111/

oik.05331.

Mariotti, F., D. Tomé, and P. P. Mirand (2008). “Converting Nitrogen into Protein—Beyond 6.25

and Jones’ Factors”. Critical Reviews in Food Science and Nutrition 48.2, pp. 177–184. DOI:

10.1080/10408390701279749.

Marleau, J. N., F. Guichard, et al. (2010). “Nutrient flows between ecosystems can destabilize

simple food chains”. Journal of Theoretical Biology 266.1, pp. 162–174. DOI: 10.1016/j.

jtbi.2010.06.022.

Marleau, J. N., T. Peller, et al. (2020). “Converting Ecological Currencies: Energy, Material, and

Information Flows”. Trends in Ecology & Evolution 35.12, pp. 1068–1077. DOI: 10.1016/

j.tree.2020.07.014.

Martiny, A. C. et al. (2013). “Strong latitudinal patterns in the elemental ratios of marine plank-

ton and organic matter”. Nature Geoscience 6 (4), pp. 279–283. DOI: 10.1038/ngeo1757.

McInturf, A. G. et al. (2019). “Vectors with autonomy: what distinguishes animal-mediated nutri-

ent transport from abiotic vectors?” Biological Reviews 94, pp. 1761–1773. DOI: 10.1111/

brv.12525.

McLeod, A. M. and S. J. Leroux (2021). “Incorporating abiotic controls on animal movements in

metacommunities”. Ecology 102.7, pp. 1–15. DOI: 10.1002/ecy.3365.

Montgomery, R. A. et al. (2014). “Where Wolves Kill Moose: The Influence of Prey Life History

Dynamics on the Landscape Ecology of Predation”. PLoS One 9.3, e91414. DOI: 10.1371/

journal.pone.0091414.

Naiman, R. J. et al. (1994). “Beaver Influences on the Long-Term Biogeochemical Character-

istics of Boreal Forest Drainage Networks”. Ecology 75.4, pp. 905–921. DOI: 10 . 2307 /

1939415.

24



Nathan, R. et al. (2008). “A movement ecology paradigm for unifying organismal movement

research”. Proceedings of the National Academy of Sciences of the United States of America

105.49, pp. 19052–19059. DOI: 10.1073/pnas.0800375105.

Nie, Y. et al. (2015). “Obligate herbivory in an ancestrally carnivorous lineage: The giant panda

and bamboo from the perspective of nutritional geometry”. Functional Ecology 29 (1), pp. 26–

34. DOI: 10.1111/1365-2435.12302.

Pastor, J., Y. Cohen, and N. T. Hobbs (2006). “The roles of large herbivores in ecosystem nu-

trient cycles”. In: Large herbivore ecology. Ecosystem dynamics and conservation. Ed. by

K. Danell et al. Conservation Biology. Cambridge University Press, pp. 289–325. DOI: 10.

1017/CBO9780511617461.012.

Pastor, J., B. Dewey, et al. (1993). “Moose Browsing and Soil Fertility in the Boreal Forests of

Isle Royale National”. Ecology 74.2, pp. 467–480. DOI: 10.2307/1939308.

Pastor, J. and R. J. Naiman (1992). “Selective Foraging and Ecosystem Processes in Boreal Forests”.

The American Naturalist 139.4, pp. 690–705. DOI: 10.1086/285353.

Powell, R. A. and M. S. Mitchell (2012). “What is a home range?” Journal of Mammalogy 93

(4), pp. 948–958. DOI: 10.1644/11-MAMM-S-177.1.

Raubenheimer, D. (2011). “Toward a quantitative nutritional ecology: the right-angled mixture

triangle”. Ecological Monographs 81.3, pp. 407–427. DOI: 10.1890/10-1707.1.

Richmond, I. C., J. Balluffi-Fry, et al. (2021). “Individual snowshoe hares manage risk differ-

ently: Integrating stoichiometric distribution models and foraging ecology.” Journal of Mam-

malogy. Accepted, manuscript id: JMAMM–2021–026.R2.

Richmond, I. C., S. J. Leroux, et al. (2021). “Temporal variation and its drivers in the elemental

traits of four boreal plant species”. Journal of Plant Ecology 14.3, pp. 398–413. DOI: 10.

1093/jpe/rtaa103.

Rinehart, S. and D. Hawlena (2020). “The effects of predation risk on prey stoichiometry: a

meta-analysis”. Ecology 101.7, pp. 1–12. DOI: 10.1002/ecy.3037.

25



Rivas-Ubach, A. et al. (2012). “Strong relationship between elemental stoichiometry and metabolome

in plants”. Proceedings of the National Academy of Sciences of the United States of America

109.11, pp. 4181–4186. DOI: 10.1073/pnas.1116092109.

Rizzuto, M., S. J. Leroux, E. Vander Wal, Y. F. Wiersma, et al. (2019). “Patterns and potential

drivers of intraspecific variability in the body C, N, and P composition of a terrestrial con-

sumer, the snowshoe hare (Lepus americanus)”. Ecology and Evolution 9 (24), pp. 14453–

14464. DOI: 10.1002/ece3.5880.

Roman, J., J. A. Estes, et al. (2014). “Whales as marine ecosystem engineers”. Frontiers in Ecol-

ogy and the Environment 12, pp. 377–385. DOI: 10.1890/130220.

Roman, J. and J. J. McCarthy (2010). “The whale pump: Marine mammals enhance primary pro-

ductivity in a coastal basin”. PLoS One 5.10. DOI: 10.1371/journal.pone.0013255.

Rosell, F. et al. (2005). “Ecological impact of beavers castor fiber and castor canadensis and their

ability to modify ecosystems”. Mammal Review 35.3-4, pp. 248–276. DOI: 10.1111/j.

1365-2907.2005.00067.x.

El-Sabaawi, R. W. et al. (2012). “Widespread intraspecific organismal stoichiometry among pop-

ulations of the Trinidadian guppy”. Functional Ecology 26.3, pp. 666–676. DOI: 10.1111/

j.1365-2435.2012.01974.x.

Schiesari, L. et al. (2019). “Towards an applied metaecology”. Perspectives in Ecology and Con-

servation 17.4, pp. 172–181. DOI: 10.1016/j.pecon.2019.11.001.

Schmitz, O. J. and S. J. Leroux (2020). “Food Webs and Ecosystems: Linking Species Inter-

actions to the Carbon Cycle”. Annual Review of Ecology, Evolution, and Systematics 51.1,

pp. 271–295. DOI: 10.1146/annurev-ecolsys-011720-104730.

Schmitz, O. J., P. A. Raymond, et al. (2014). “Animating the carbon cycle”. Ecosystems 17.2,

pp. 344–359. DOI: 10.1007/s10021-013-9715-7.

Schmitz, O. J., C. C. Wilmers, et al. (2018). “Animals and the zoogeochemistry of the carbon

cycle”. Science 362 (6419), eaar3213. DOI: 10.1126/science.aar3213.

26



Simpson, S. J. et al. (2004). “Optimal foraging when regulating intake of multiple nutrients”.

Animal Behaviour 68.6, pp. 1299–1311. DOI: 10.1016/j.anbehav.2004.03.003.

Sitters, J., C. L. Atkinson, et al. (2015). “Spatial stoichiometry: cross-ecosystem material flows

and their impact on recipient ecosystems and organisms”. Oikos 124.7, pp. 920–930. DOI:

10.1111/oik.02392.

Sitters, J., E. S. Bakker, et al. (2017). “The Stoichiometry of Nutrient Release by Terrestrial Her-

bivores and Its Ecosystem Consequences”. Frontiers in Earth Science 5.April, pp. 1–8. DOI:

10.3389/feart.2017.00032.

Sitters, J. and H. Olde Venterink (2015). “The need for a novel integrative theory on feedbacks

between herbivores, plants and soil nutrient cycling”. Plant and Soil 396.1-2, pp. 421–426.

DOI: 10.1007/s11104-015-2679-y.

Sitters, J., E. R. Wubs, et al. (2020). “Nutrient availability controls the impact of mammalian

herbivores on soil carbon and nitrogen pools in grasslands”. Global Change Biology 26.4,

pp. 2060–2071. DOI: 10.1111/gcb.15023.

Soranno, P. A. et al. (2019). “Spatial and temporal variation of ecosystem properties at macroscales”.

Ecology Letters 22 (10), pp. 1587–1598. DOI: 10.1111/ele.13346.

Sperfeld, E. et al. (2016). “Bridging Ecological Stoichiometry and Nutritional Geometry with

homeostasis concepts and integrative models of organism nutrition”. Functional Ecology,

pp. 1–11. DOI: 10.1111/1365-2435.12707.

Sterner, R. W. (2004). “A one-resource ”stoichiometry””. Ecology 85 (7), pp. 1813–1816. URL:

https://www.jstor.org/stable/3450351.

Sterner, R. W. and J. J. Elser (2002). Ecological stoichiometry: the biology of elements from

molecules to the biosphere. 1st ed. Princeton University Press, p. 464. URL: https://www.

jstor.org/stable/j.ctt1jktrp3. Accessed 26 July 2021.

Tucker, M. A. et al. (2018). “Moving in the Anthropocene: Global reductions in terrestrial mam-

malian movements”. Science 359.6374, pp. 466–469. DOI: 10.1126/science.aam9712.

27



Tuomi, M. et al. (2021). “Stomping in silence: Conceptualizing trampling effects on soils in polar

tundra”. Functional Ecology 35.2, pp. 306–317. DOI: 10.1111/1365-2435.13719.

Worrell, R. (1996). The boreal forests of Scotland. Edinburgh: Forestry Commission Edinburgh,

p. 42. URL: https://www.forestry.gov.uk/PDF/FCTP014.pdf.

Yang, H. and J. Chen (2018). “Integrating landscape system and meta-ecosystem frameworks to

advance the understanding of ecosystem function in heterogeneous landscapes: An analy-

sis on the carbon fluxes in the Northern Highlands Lake District (NHLD) of Wisconsin and

Michigan”. PLoS One 13.2, e0192569. DOI: 10.1371/journal.pone.0192569.

Zweifel-Schielly, B. et al. (2009). “Habitat selection by an Alpine ungulate: The significance of

forage characteristics varies with scale and season”. Ecography 32 (1), pp. 103–113. DOI:

10.1111/j.1600-0587.2008.05178.x.

28



Chapter 2

Patterns and potential drivers of intraspecific variability in the body C,

N, P composition of a terrestrial consumer, the snowshoe hare (Lepus

americanus).

Authors: Matteo Rizzuto1, Shawn J. Leroux1, Eric Vander Wal1, Yolanda F. Wiersma1, Travis R.

Heckford1, and Juliana Balluffi-Fry2

Authors’ Affiliations

1: Department of Biology, Memorial University of Newfoundland and Labrador, St. John’s,

Canada

2: Department of Biological Sciences, University of Alberta, Edmonton, Canada

A version of this paper was published in Ecology and Evolution as:

M. Rizzuto, S. J. Leroux, E. Vander Wal, Y. F. Wiersma, T. R. Heckford, and J. Balluffi-Fry

(2019). “Patterns and potential drivers of intraspecific variability in the body C, N, and P compo-

sition of a terrestrial consumer, the snowshoe hare (Lepus americanus)”. Ecology and Evolution

9 (24), pp. 14453–14464. DOI: 10.1002/ece3.5880

29



2.1 Introduction

The elemental composition of an organism is an important ecological trait subject to variation

within and across species (Jeyasingh, Cothran, and Tobler 2014; Leal, Seehausen, and Matthews

2017). Primary producers (e.g., plants, algae), owing to the presence of dedicated storage struc-

tures in their cells, are plastic in their elemental composition (Sterner and Elser 2002; Borer et al.

2013): individual stoichiometric variability can at times be as large as that found among different

genotypes (Ågren and Weih 2012). Marine phytoplankton and terrestrial plants show large vari-

ability in their carbon (C), nitrogen (N), and phosphorus (P) concentrations, at both large (Mar-

tiny et al. 2013; Sardans et al. 2016) and small spatio-temporal extents (Rivas-Ubach et al. 2012).

Conversely, intraspecific variability in the chemical composition of consumers is generally con-

sidered smaller than variability observed in autotrophs, due to strict homeostasis requirements—

particularly for terrestrial consumers (Sterner and Elser 2002; Elser, Bracken, et al. 2007; Leroux

and Schmitz 2015). However, studies of invertebrates (González, Fariña, et al. 2011) or aquatic

consumers (e.g., fish; Ebel et al. 2015, 2016) recently challenged this view, showing evidence

of intraspecific stoichiometric variability in these species. For terrestrial vertebrates, much re-

search has focused on their nutritional body composition (Hewison et al. 1996), differential use

of chemical elements among conspecifics (Atwood and Weeks 2002), or body condition (Peig

and Green 2010). We know little, however, about their organismal elemental composition, how

it interacts with other ecological traits, and whether it varies among individuals. Given the very

different patterns of energy and nutrient flows in aquatic and terrestrial ecosystems, which are

driven primarily by the greater resource investments in structural support structures by terrestrial

autotrophs (Shurin, Gruner, and Hillebrand 2006), we may expect differences in vertebrate con-

sumer body composition in different ecosystems. Further, knowledge of the patterns and drivers

of terrestrial vertebrate body elemental composition may shed light on how they shape a species’

ecological niche (González, Dézerald, et al. 2017; González, Céréghino, et al. 2018; Peñuelas et

al. 2019). Further, it may improve our ability to predict the relationship between consumers and
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ecosystem processes (e.g., carbon cycling; Schmitz, Raymond, et al. 2014).

Herbivores have the potential to exert top-down control on primary producers and can also

affect their predators’ ecology (Leroux and Schmitz 2015). They rely on resources whose organ-

ismal stoichiometry is markedly different from their own: terrestrial plants and algae are rich in

C-heavy structural molecules, while herbivores rely on N and P to fuel their growth (Fagan et al.

2002; Sterner and Elser 2002). This mismatch, especially evident in terrestrial food webs, cre-

ates a strong bottleneck to nutrient flow in ecosystems (Boersma et al. 2008; Leroux and Schmitz

2015). As such, investigating the drivers of intraspecific variability in elemental composition of

terrestrial herbivores can help shed light on both trophic dynamics and ecosystem processes, such

as nutrient cycling (Sterner and Elser 2002; Leroux and Schmitz 2015; Schmitz, Wilmers, et al.

2018). Previous studies showed that consumers’ elemental composition may vary under the ef-

fect of a wide range of variables and, in particular, as a function of an individual’s age, sex, or

body size and condition (El-Sabaawi, Zandona, et al. 2012; El-Sabaawi, Travis, et al. 2014; Ebel

et al. 2015). Here, we investigate how these three variables influence the C, N, P body composi-

tion of a terrestrial consumer common across North America’s boreal forest, the snowshoe hare

(Lepus americanus). We focus on C, N, and P, as these are three of the most commonly studied

and important elements for an organism (Sterner and Elser 2002, but see Jeyasingh, Cothran, and

Tobler 2014). Owing to the strong nutrient limitation of boreal ecosystems (Pastor, Cohen, and

Hobbs 2006), their unique ecology (Feldhamer, Thompson, and Chapman 2003), and their role as

keystone herbivores in the boreal forest (Krebs, Boonstra, and Boutin 2018), snowshoe hares are

well-suited to address these questions.

Organismal elemental content can vary throughout an individual’s life. For instance, early

life stages of Daphnia lumholtzi show higher concentrations of P and lower N:P than older ones,

that appear to more strongly influence their growth rate than their body size (Main, Dobberfuhl,

and Elser 1997). Evidence shows this pattern holds true among freshwater insects as well (Back

and King 2013). Furthermore, similar intraspecific differences in elemental concentrations be-

tween life stages also exist among vertebrates (El-Sabaawi, Kohler, et al. 2012; El-Sabaawi, Zan-
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dona, et al. 2012; El-Sabaawi, Travis, et al. 2014). At times, this ontogenic variation in elemental

composition of conspecifics is as large as that found among different genera (e.g., Pimephales

promelas and Cyprinodon variegatus; Boros, Sály, and Vanni 2015). This allows for describing

life stage-specific elemental signatures, as recently done for pre- and post-spawn adult Atlantic

salmon (Salmo salar) during their annual spawning migration up- and downstream, respectively

(Ebel et al. 2016). Similarly, the transition from newborn to adult in mammals involves a wide

range of developmental changes, e.g., skeletal development and gonadal maturation, that could

influence the elemental requirements and composition of an individual as it grows. For instance,

Sterner and Elser (2002) hypothesize that, as bone tissue should contain most of its P reserves, a

vertebrate’s P content should increase with age given skeletal growth. Snowshoe hares develop

quickly from newborn to adult but live in a strongly nutrient-limited environment: the trade-offs

they face in acquiring necessary nutrients throughout their lifetime makes them well-suited to

investigate how age may affect vertebrate intraspecific stoichiometry.

In a similar way, sex could affect relative content of key elements, due to differences in re-

productive strategies and roles between males and females. Female mayflies, for instance, tend

to have higher %P than males and slower %P decline with age (Back and King 2013). Among

vertebrates, three-spined stickleback (Gasterosteus aculeatus) populations sampled from differ-

ent lakes showed opposing trends in %P and N:P between sexes (Durston and El-Sabaawi 2017).

Among mammals, differences in elemental composition related to sex arise mostly because of

either parental care or mate search. Lactation and parental care exert costs due to increased for-

aging requirements in the parent administering to the newborns, as is the case among small mam-

mals such as the big brown bat (Eptesicus fuscus; Hood, Oftedal, and Kunz 2006). Similarly, the

development of secondary sexual characteristics, for instance the yearly production of antlers

in some ungulate species, dramatically increases the need of a few selected elements in one of

the two sexes (Atwood and Weeks 2002). While snowshoe hares are weakly sexually dimorphic

(Feldhamer, Thompson, and Chapman 2003), and lack specialized secondary sexual characteris-

tics, they can produce up to four litters per year, each comprising between 4–6 leverets. Females
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are larger than males, on average, likely as a strategy to offset this large reproductive investment

(Feldhamer, Thompson, and Chapman 2003). Consequently, differences in the organismal con-

tent of C, N, or P could arise between sexes in hares following varying nutritional needs due to

different reproductive strategies and efforts (Morehouse et al. 2010).

Organismal elemental composition can also vary with an individual’s body size, as well as

with its related condition metrics (body condition indexes, BCI; Stevenson and Woods 2006).

For instance, P content tends to scale with an organism’s size, particularly among vertebrates

(González, Fariña, et al. 2011; Back and King 2013; but see Gillooly et al. 2005). While widespread,

the sign of this relationship differs strongly among different groups, such as invertebrates and

vertebrates. Among invertebrates, P content decreases with size, as they lack internal reposito-

ries of this element (Sterner and Elser 2002; González, Fariña, et al. 2011). Conversely, among

vertebrates the majority of P stocks are found in bone tissue, so the P-body size allometric rela-

tionship should be positive (Sterner and Elser 2002). That is, all else being equal, P concentration

should increase as the body size of an individual increases. However, modeling approaches show

that P content should initially decrease and eventually approach an asymptotic relationship with

vertebrate body size (Gillooly et al. 2005). Yet, empirical evidence suggests vertebrates’ organis-

mal P content increases with body size among indeterminate growers: for instance, in the tropical

stream fish Rivulus hartii, larger individuals have higher concentrations of P than their smaller

conspecifics (El-Sabaawi, Kohler, et al. 2012). Likewise, in the Atacama Desert of Chile, two

species of lizards show a similar pattern of %P increasing with body size (González, Fariña, et

al. 2011). In turn, this variability in the content of fundamental nutrients with body size could

influence the overall condition of an individual—which ultimately determines its fitness and nu-

tritional value for its predators (Stevenson and Woods 2006). In a strongly N- and P-limited en-

vironment like the boreal forest, snowshoe hares need access to large quantities of both N and P

to develop muscle mass and skeleton over the course of a relatively short time (Pilati and Vanni

2007). Thus, larger individuals could indeed show higher concentrations of N and P as they may

prioritize or have easier access to these limiting nutrients over C or other elements (Kay et al.
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2005).

From all of the above it follows that, during an individual’s lifetime, its content of C, N, P

likely varies as a result of age (Ebel et al. 2016), sex (Durston and El-Sabaawi 2017), or body

size (El-Sabaawi, Kohler, et al. 2012). Following previous works and theory on both consumer

stoichiometry (González, Fariña, et al. 2011; Boros, Sály, and Vanni 2015; Ebel et al. 2016) and

snowshoe hare ecology (Krebs, Boonstra, and Boutin 2018), we predict that (i) snowshoe hare or-

ganismal concentration of N and P increases as individuals grow older, whereas C content should

decrease. We also expect (ii) female hares to have higher overall concentration of N and P than

males, due to higher reproductive costs, and lower C. Finally, we expect (iii) larger snowshoe

hares and those in better body condition to have higher concentrations of N and P. We provide

predictions for C:N, C:P, and N:P ratios in Appendix A.2. We present one of the first assessments

of the C, N, P body stoichiometry of a terrestrial vertebrate and discuss how intraspecific stoi-

chiometric variability might influence trophic dynamics and ecosystem processes.

2.2 Methods

2.2.1 Study Species

Snowshoe hares (Figure 2.1) are a keystone herbivore in the boreal forests of North America,

with a geographic range extending from Alaska to New Mexico (Feldhamer, Thompson, and

Chapman 2003). Average total body length of snowshoe hares varies 36–52 cm and mean adult

body weight is 1.3 kg (range: 0.9–2.3 kg): of this, only about 5% is fat, with both seasonal and

annual fluctuations (Murray 2002). Females are usually 10–25% larger than males (Feldhamer,

Thompson, and Chapman 2003).

Snowshoe hares are mostly nocturnal and do not hibernate over winter (Feldhamer, Thomp-

son, and Chapman 2003). For these reasons, they are most often found in habitats with dense

understory vegetation, allowing for more efficient thermo-regulation and predator avoidance

(Litvaitis, Sherburne, and Bissonette 1985). Snowshoe hares populations cycle throughout the
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continent, with peaks every 8–11 years and densities ranging 5 to 25 fold (Reynolds et al. 2017).

These abundance cycles are a defining characteristic of the boreal forest, affecting the ecology

of many boreal species, from the plants the snowshoe hares consume, to their competitors and

predators (Krebs, Boonstra, and Boutin 2018).

Snowshoe hares were introduced in Newfoundland in 1864 and quickly spread across the is-

land (Strong and Leroux 2014). Studies conducted in the 1960s investigated their population dy-

namics, diet composition, and competition with another introduced herbivore, the moose (Alces

alces; Dodds 1960, 1965). Compared to areas of Canada further west, Newfoundland has a fluc-

tuating snowshoe hare population, with shorter and less regular periodicity (8–9 years; Reynolds

et al. 2017). Their diet varies among seasons and areas of the island of Newfoundland (Dodds

1960): black spruce (Picea mariana) and balsam fir (Abies balsamea) comprise most of the win-

ter forage, whereas during the summer they forage almost exclusively on deciduous plants and

shrubs (e.g., Vaccinium spp.; Trifolium spp.; Viburnum spp.; Dodds 1960).

2.2.2 Data Collection

2.2.2.1 Snowshoe hare morphology, age, and sex

In October 2016, we purchased 50 whole, wild-caught snowshoe hares from a local trapper and

stored them in individual plastic bags at −20 °C. These wild-caught specimens came from four

snaring locations in the Eastern Avalon peninsula, over a small 21.5 km2 trapping area around

the towns of Chapel Arm (NL, 47°31’0” N, 53°40’0” W) and Long Harbour (NL, 47°25’46” N,

53°51’30” W). Individuals were snared without baiting with snares that do not select for age or

sex, and thus likely reflect the age and sex distribution of the wild population they were taken

from. In the laboratory, we thawed and weighed each specimen to the closest 0.1 g. We collected

data on total body length, left hind foot length, and skull length and width for each hare to the

closest mm, repeating each measurement 3 times and using their arithmetic mean in all subse-

quent analyses (see Appendix A.3.1). The Animal Care Committee of Memorial University ap-

proved our animal handling protocol with permit number 18-02-EV.
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Like rodents, the teeth of lagomorphs grow continuously during their life, making conven-

tional aging techniques based on dentine and cement inapplicable (Morris 1972). To account for

this, we aged our specimens using a mixed approach involving counting bone tissue growth lines

deposited after each winter in the mandibular bone. We used an ageing method developed for

mountain hares (Lepus timidus) to select the area of the bone from which to count the growth

lines (Iason 1988). For all 50 snowshoe hares in our sample, we extracted the complete mandibu-

lar bone, cleaned it of all soft tissues, and shipped the clean bones to Matson’s Laboratory (Man-

hattan, MT, USA) for age determination (see Appendix A.3.2).

Sex determination in wild-caught snowshoe hares can be difficult. While visual approaches

are available, these can be challenging when used on young, not yet fully developed individuals

(as was the case in this study, see Results below). Genitalia are often not apparent in individu-

als younger than 6–12 months old and, even among not actively reproducing adults, they can be

difficult to find. For these reasons, we chose to determine specimen sex using a DNA-based ap-

proach (Shaw, Wilson, and White 2003; see Appendix A.3.3). As the snowshoe hare genome is

not yet completely sequenced, we chose a widely used set of primers for genetic sex determi-

nation in mammals to amplify the genetic material extracted from our specimens and from two

control snowshoe hares of known sex (Shaw, Wilson, and White 2003). In cases when this DNA-

based approach failed to detect an individual’s sex (n = 3), we determined it by visual inspection

and palpation of the genital area.

2.2.2.2 Body Size Metrics

We investigate the relationship between body size and organismal chemical composition of snow-

shoe hares using two different metrics: body condition and average body length. Body condi-

tion is a widely used metric to assess the overall health and quality, or “plumpness”, of animals

(Stevenson and Woods 2006; Peig and Green 2010). Snowshoe hares, however, differ from other

mammals in that they do not rely on fat tissue to store energy (see Section 2.2.1 above). Con-

sequently, body condition indexes that rely on body fat content may not capture the real body
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condition of our sample of wild-caught hares. For this reason, we estimate body condition using

the scaled mass index (SMI; Peig and Green 2009, 2010). The SMI standardizes an individual’s

measure of body size with respect to another, thus accounting for scaling relationships (Peig and

Green 2009). In particular, the SMI uses the average value of the length measurement (𝐿) with
the strongest relationship with body weight (𝑀) as the standardizing variable, as established by a

Standardized Major Axis regression (Peig and Green 2009; see Appendix A.3.4). The SMI for-

mula is:

�̂�𝑖 = 𝑀𝑖 [𝐿0𝐿𝑖 ]𝑏𝑆𝑀𝐴
(2.1)

where �̂�𝑖 is the SMI of individual 𝑖,𝑀𝑖 is its body weight, 𝐿𝑖 is the linear measure of body size
of 𝑖, 𝑏𝑆𝑀𝐴 is the exponent (i.e. slope) of a Standardized Major Axis Regression of ln(𝑀) over
ln(𝐿), and 𝐿0 is the study population’s average value of 𝐿𝑖. Therefore, the SMI is the expected

weight of individual 𝑖 if its length measurement 𝐿𝑖 was equal to the population’s average value𝐿0. In this study, we used the length of the left hind foot to calculate the SMI. From the SMI

value, we then computed the relative body condition (𝐾𝑛) of an individual as the ratio of𝑀𝑖 to�̂�𝑖 (Stevenson and Woods 2006). This provided us with a simple metric to assess how good or

bad an individual’s condition was, compared to what it should be.

As the SMI is sensitive to the length measurement used to calculate it, we ran a separate set

of models using a SMI produced using skull length, which also showed a strong relationship with

body weight (see Appendix A.3.4 and Figure A.1). Furthermore, we considered average body

length as a separate estimate of the effect of body size on the C, N, P stoichiometry of snowshoe

hares (see Section 2.2.2.1 above).

2.2.2.3 Snowshoe hare C, N, P Body Stoichiometry

After collecting both morphological data and bone samples required for ageing, we individually

blended our specimens to a homogeneous paste using a Retsch GM300 knife mill (Retsch GmbH,

Haan, Germany). Through preliminary tests conducted on road-killed individuals not included in
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our sample of 50, we noticed that elastic or fine tissues, such as fur, skin, ears, and the walls of

the digestive tract, were particularly difficult to homogenize with our equipment. Consequently,

we removed fur, skin, and ears from all specimens: as such, our definition of body here does

not include fur, skin, and ears. For the digestive tract, instead, we removed, cleaned, and finely

chopped it before adding it back into the mixture. For each specimen, we collected a sample of

the homogenized mixture, weighed it for wet weight (g), and oven dried it to constant weight for

an average of 4 nights at 50 °C. After drying, we further ground each sample to as fine a powder

as possible using mortar and pestle, and weighed it again for dry weight (g). On average, we re-

quired 50 g of wet homogenized material to produce 10 g of dry material for determining elemen-

tal concentration. We transferred all ground samples to glass vials and stored them in desiccators

to prevent moisture accumulation and mold formation.

We sent the 50 dried samples to the Agriculture and Food Laboratory (AFL) at the Univer-

sity of Guelph for determination of the body content of C, N, and P as % of each sample’s dry

weight. At AFL, each sample was further ground before stoichiometric analyses. Concentra-

tions of C and N were obtained following standard practices with an Elementar Vario MACRO

cube (Elementar Analysensysteme GmbH, Langenselbold, Germany). For P, homogenized sam-

ples were first digested with nitric acid and hydrochloric acid using a closed-vessel microwave

(CEM Marsxpress, CEM Corporation, Matthews, NC, USA). The microwave-digested sample

was then brought to volume with nanopure water and P content quantified using Inductively-

coupled Plasma-Optical Emission Spectroscopy using a Varian Vista Pro and a pneumatic nebu-

lizer (Varian Inc., Palo Alto, CA, USA). This method was based on AOAC 2011.14.

Given that few studies have measured the C, N, P body stoichiometry of terrestrial verte-

brates, we ran pilot tests to assess within-sample variability. These showed some within-sample

variability in %C and %N (Figures A.2 and A.3). To account for this, each sample was analyzed

three times for C and N content. Conversely, %P was relatively invariant within samples. Be-

cause of this, only 5 samples were run in duplicate to assess within-sample variability in %P (see

Appendix A.3.5). In addition, to capture variability within individuals due to our homogeniza-
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tion protocol, we selected 5 random specimens for which we sent 2 additional samples (n = 10)

of the homogenized paste to AFL (see Appendix A.3.5). Upon receiving the results back from

AFL, to obtain C, N, P stoichiometry and molar ratios for each hare, we calculated each hare’s

dry body weight and converted the concentration of each element to molar mass using atomic

weights. As variation among samples taken from each individual was negligible for all three el-

ements, we used average values of %C, %N and %P for each individual in subsequent analyses

(see Appendix A.3.6).

2.2.3 Statistical Analyses

We used General Linear Models (GLMs) in R (v. 3.4.4; R Core Team 2018) to investigate age,

sex, body size and condition as potential drivers of hare stoichiometry. We used the concentra-

tion of each element of interest (i.e. %C, %N, %P), as well as the ratios C:N, C:P, and N:P as

our response variables. We chose to focus on both elemental concentrations and ratios as these

different measurements convey different but complementary information on body composition:

quantity of elements of interest and their relationship to each other and importance to the animal,

respectively. Age (continuous), sex (categorical), relative body condition (𝐾𝑛, continuous), and
average body length (ABL, continuous) were our explanatory variables. To test our predictions,

we considered the effects of each of our predictor variables alone and their additive and 2-way

interactive effects. We tested for multicollinearity among our explanatory variables using vari-

ance inflation factor analysis (VIF). As expected, VIF showed that relative body condition and

average body length were highly correlated (VIF > 3). Therefore, we did not include these two

variables in the same model (see Appendix A.4). We fit a set of 22 competing models, including

an intercept-only model, and used the function AICc from the AICmodavg R package to select the

most parsimonious model based on the Akaike Information Criterion corrected for small sample

size (AICc; Burnham and Anderson 2002; Mazerolle 2017). We assessed that the assumptions of

GLMs were met using standard approaches (Zuur, Ieno, and Elphick 2010). We then removed

models with uninformative parameters from the model set of each response variable (Leroux
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2019; see Appendix A.5.1).

2.3 Results

Snowshoe hares in our sample varied in age between 0 (“young-of-the-year”) and 6 years old, the

majority (74%) being between 0 and 1 years old. Only one individual, a female, was 6 years old.

Males were more common (31 out of 50) than females (19). Average (±SD) wet body weight
was 1374.81 g (±186.59, range: 914.30–1776.50 g), with average dry weight being 399.11 g
(±74.70, range: 241.76–567.86 g). Water made up to 72% of body weight. Average body length

was 42.49 cm (±2.07, range: 36.67–46.67 cm; Table A.16). Average left hind foot length (𝐿0)
for our snowshoe hare population was 12.88 cm (±0.58, range: 11.40–14.10 cm). The slope of
the Standardized Major Axis Regression of average left hind foot length on body weight (i.e., the

exponent 𝑏𝑆𝑀𝐴 in eq. 2.1) was 3.18. Overall, young snowshoe hares appeared more variable in

relative body condition than older individuals (mean: 1.01 ±0.14; Figure A.5).
Snowshoe hares were, on average, composed of 43.60% C (±2.59, range: 37.46%–51.29%),

11.20% N (±0.78, range: 9.42%–12.68%), and 2.97% P (±0.52, range: 2.00%–4.29%; Fig-
ure 2.2 and Table A.17). The most parsimonious model for %N included only age (R2 = 0.066):

%N was negatively related to the age of individual snowshoe hares (Table 2.1). Evidence for this

relationship is, however, weak as the intercept-only model was within 2ΔAICc of the top ranked
model (Table 2.1). For %P, the two top ranked models included relative body condition and av-

erage body length, respectively (Table 2.1). %P was positively related to relative body condition

(R2 = 0.073; Figure 2.3) and average body length (R2 = 0.047). Again, evidence for these rela-

tionships is weak as the intercept-only model was the third-best performing model and within

2ΔAICc of the top ranked models (Table 2.1). We also observed a qualitative pattern of higher

%P among older males (Figure 2.4), but found no statistical support for it (Table 2.1). For %C,

the top ranked model was the intercept-only model, which provides no evidence of a relationship

between variation in %C and age, sex, or body size and condition of individuals (Table 2.1).

For the stoichiometric ratios, the top ranked model for C:N included only age, which had a
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positive relationship with C:N ratio (R2 = 0.074; Table 2.2). For this relationship too, evidence is

weak as the intercept-only model was within 2ΔAICc of the best-performing one. We found no

evidence for a relationship between age, sex, body size and condition, and either C:P or N:P as

the top ranked model for both these ratios was the intercept-only model (Table 2.2). Using skull

length instead of left hind foot length to calculate 𝐾𝑛 did not qualitatively change our results (see
Tables A.1 and A.2).

2.4 Discussion

We provide one of few assessments of the C, N, P body stoichiometry of a terrestrial vertebrate

and investigate potential drivers of this fundamental ecological trait. Overall, we find variation in

the concentrations of C, N, P, and in their ratios within our sample of snowshoe hares. However,

age, sex, and body size or condition provide little or no explanation of this variation. Our mod-

els highlight a weak negative relationship between an individual’s age and its N concentration

and, symmetrically, a weak and positive trend of C:N and age. Likewise, we find weak support

for a relationship between an individual’s body size and condition and its P concentration. To-

gether, these results provide some of the first evidence for intraspecific variability in the C, N,

P body stoichiometry of a terrestrial vertebrate but raise the need to consider a broader suite of

potential drivers. As well, our data provide a starting point for comparisons of vertebrate species

stoichiometry across ecological realms (e.g. aquatic-terrestrial).

We found weak evidence in support of our prediction that age might drive variability in the

C, N, P body stoichiometry of snowshoe hares. In particular, contrary to our predictions, we

find weak evidence of young individuals (0–1 years old) having higher N concentrations than

older ones—with a more pronounced decrease among males than among females (Figure 2.4).

As would be expected from this pattern, C:N values show an opposite, positive trend with age

(Figure 2.4)—reflecting the lower amounts of N compared to C in older hares and lending further

support to this result. Younger individuals may show higher %N as a result of increased N allo-

cation to muscle tissue production (Boros, Sály, and Vanni 2015). Snowshoe hares experience

41



strong predation pressure from a large cohort of predators, both land-based and avian, from the

earliest life stages (Krebs, Boonstra, and Boutin 2018). A higher N content among young hares

could be a sign of early-life investments in production of N-rich protein to develop the muscle

mass necessary for their hide and run anti-predator response. We also observed a qualitative pat-

tern of increasing %P with age among males. While our models do not offer support for it (Ta-

ble 2.1), similar patterns have been described for other vertebrate species. Boros, Sály, and Vanni

(2015) found a similar trend between %P and age in two species of laboratory-reared minnows.

Similarly, Sterrett, Maerz, and Katz (2015) found that older individuals had higher %P in four

species of turtles. This pattern could result from bone tissue development as the individual ages

(Sterner and Elser 2002). In turn, by actively sequestering P in their bones, vertebrates could in-

fluence nutrient ecosystem dynamics by acting as “walking” repositories of a limiting element

(Pastor, Cohen, and Hobbs 2006; Sterrett, Maerz, and Katz 2015). Given the large number of

young individuals in our sample, and the relative rarity of snowshoe hares older than 3 years,

it may be that access to P during a hare’s ageing process is fundamental for its survival. Future

studies investigating the link between N and P availability and long-term survival in wild her-

bivore populations may further our understanding of both population dynamics and ecosystem

impacts mediated by these consumers.

Contrary to our predictions, we find no evidence for a relationship between hare stoichiome-

try and sex (Figure 2.2). This may not be surprising given the low sexual dimorphism shown by

our study species. Several studies that investigated the relationship between sex and organismal

stoichiometry among more strongly sexually dimorphic species provide similarly contradictory

evidence. Among guppies, for instance, sex had no relationship with stoichiometry when consid-

ered alone, yet it had significant interactions with the fish’s stream of origin—likely an indirect

consequence of different predation levels experienced by males and females in different streams

(El-Sabaawi, Zandona, et al. 2012). Conversely, among Hyalella amphipods, strong sexual di-

morphism in the concentrations and patterns of variation of multiple elements underlays sexual

dimorphism in traits as different as foraging behaviour, nutritional physiology, and sex-specific
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selection of genomic loci (Goos, Cothran, and Jeyasingh 2017). Among antler-producing un-

gulates, males and females differ in both content and use of certain elements (e.g., calcium; At-

wood and Weeks 2002). Finally, as hares undergo morpho-physiological changes during their

reproductive season, investigating the relationship between C, N, P body stoichiometry and sex

among actively reproducing hares might produce different results (Hood, Oftedal, and Kunz

2006). These contrasting lines of evidence highlight the need of further research, involving a

wider range of species from a variety of environments, to reduce the uncertainty around the role

of sex as a driver of variation in organismal stoichiometry.

Consistent with our predictions, our results indicate body size and condition as potential

drivers for variability in P concentration in our sample. The two top models for this element

included relative body condition and average body length, and both variables had a positive re-

lationship with %P. In particular, the observed body weight of snowshoe hares with higher %P

matched or exceeded the predicted value obtained from the SMI formula (eq. 2.1). Snowshoe

hare body condition fluctuates throughout the year (Murray 2002), with peaks in the months lead-

ing up to the boreal winter, during which hares remain active and face increased levels of stress

due to both lack of optimal forage and increased predation (Krebs, Boonstra, and Boutin 2018).

As body condition declines over the winter months (Murray 2002), one could test if the weak

relationship we observe between P and body condition would vary in a similar way. Addition-

ally, we observe a qualitatively larger variability in relative body condition among young hares

in our sample than among older specimens (Figure A.5). Snowshoe hares produce multiple litters

per year (up to four; Feldhamer, Thompson, and Chapman 2003), yet a large number of leverets

does not survive their first winter (Krebs, Boonstra, and Boutin 2018). While we do not find ev-

idence for a relationship between age and P content, a potential question to ask is whether birth

date within a year could explain part of this variability. Our results, albeit weakly supported by

our statistical analyses, appear to confirm the potential role P plays within the internal chemical

machinery of an animal, and its importance for its survival (Elser, Bracken, et al. 2007; Boersma

et al. 2008).

43



A large amount of variability in our sample remains unexplained and, overall, we find only

weak support for our initial hypothesis of variation in organismal stoichiometry among snow-

shoe hares. Indeed, other vertebrate species show much stronger patterns of intraspecific varia-

tion in elemental content. Ebel et al. (2015, 2016), for instance, showed that migratory Atlantic

salmon (S. salar) at different ontogenic stages have distinct stoichiometric signatures, particu-

larly before and after their first migration from their freshwater nurseries to the open ocean. The

reason for these differences in the magnitude of the effects mediated by ontogeny could be found

in the life history of snowshoe hares. Snowshoe hares do not undergo dramatic life events like

migratory salmon, or the metamorphosis of certain insect species, which clearly separate differ-

ent life stages. Rather, they are characterized by short gestation periods (≃30–40 days) and quick
maturation of leverets into adults (≃6 months; Feldhamer, Thompson, and Chapman 2003). It is
possible, in this scenario, that we investigated the effects of age at a time in the life of snowshoe

hares when most of the changes in chemical composition had already taken place. It is also in-

teresting to note the larger proportion of young individuals in our sample, consistent with current

knowledge about snowshoe hare survival beyond their first winter (Krebs, Boonstra, and Boutin

2018) and likely representative of the age distribution of the particular wild population we used

in this study. Thus, a potentially interesting and rewarding research avenue would be to further

investigate differences in hare stoichiometry in earlier life stages.

Before homogenization, we removed fur, skin, and ears of our snowshoe hare specimens as

these tissues proved challenging to homogenize. While we consistently applied this protocol to

all 50 hares included in our sample, excluding these tissues from analyses may have influenced

the amount of stoichiometric variability we detected. Ears are made of cartilage, which consists

mostly of polysaccharides and proteoglycans, thus being C-rich. Additionally, on average, ears

accounted for 0.74% of a hare’s body weight in our sample. As for fur and skin, in humans and

other mammalian species, hair is made up of up to ∼17%N (Block and Schein 1939). While we

could not find accounts of the chemical composition of snowshoe hare hair, it is possible that the

production, maintenance, and molting processes of this species’ fur impose further stoichiomet-
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ric requirements—ultimately influencing the relative concentrations of C, N, and P in a snow-

shoe hare body throughout its life. Finally, although our samples were collected from a small

area, fine scale forage quality may also be a driver of the stoichiometric variability we observed.

As well, snowshoe hare populations sampled from different areas of Newfoundland and North

America or in different times of the year may differ in their elemental composition from the spec-

imens investigated here (as is the case for some fish species; El-Sabaawi, Zandona, et al. 2012).

Future work could investigate spatio-temporal variation in individual, habitat, and forage qual-

ity as a driver of consumer body elemental composition (Leroux, Vander Wal, et al. 2017) and

interpopulation variability.

The variation in hare body composition we observe could have repercussions beyond the sto-

ichiometry of this species, and influence ecosystem processes such as nutrient cycling, transport,

and primary productivity (Pastor, Cohen, and Hobbs 2006). Snowshoe hares are a keystone her-

bivore in the boreal forest, a markedly nutrient-limited environment (Pastor, Cohen, and Hobbs

2006). They are characterized by strong, decade-long fluctuations in their population abundance

and serve as primary food source for multiple predator species (Krebs, Boonstra, and Boutin

2018). Paucity of nutrients, and the well-known stoichiometric mismatch between plants and her-

bivores (Elser, O’brien, et al. 2000; Sterner and Elser 2002), prompted boreal forest herbivores

to evolve browsing strategies allowing them to extract as many nutrients as possible from their

food (Pastor, Cohen, and Hobbs 2006). Thus, the appearance of a large number of young snow-

shoe hares over the landscape during a population peak could have strong dampening effects on

elemental cycling in the boreal forest—as well as in adjacent ecosystems—possibly reducing N

or P availability to primary producers as they become locked within the herbivores’ biomass. By

infusing ongoing ecological research with stoichiometric data, future studies could address this

potential interplay between a species’ stoichiometry and the ecosystem processes it contributes

to (Leal, Seehausen, and Matthews 2017). In turn, this would allow for shedding light on fine-

grain mechanisms with far-reaching consequences, such as cross-ecosystem nutrient mobilization

(Schmitz, Wilmers, et al. 2018) and nutrient recycling (Schmitz, Raymond, et al. 2014), as well
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as on their influence on ecosystem services fundamental for humans.

Ecological stoichiometry has a long history in marine and freshwater ecosystems and has

been shaped by detailed studies of algae, plants and invertebrates. In recent years, researchers

started investigating the stoichiometry of more complex organisms in aquatic ecosystems, partic-

ularly fish (Atkinson et al. 2017). This expanded the reach of ecological stoichiometry in exciting

new directions, integrating it with other subfields of ecology, such as metabolic ecology (Rivas-

Ubach et al. 2012), ecosystem ecology (Abbas et al. 2012), and landscape ecology (Sardans et

al. 2016; Leroux, Vander Wal, et al. 2017). Yet, terrestrial species other than plants and insects

remain relatively unexplored in terms of their stoichiometry. Our results suggest that a greater fo-

cus on terrestrial vertebrates and consumers could provide novel insights and potentially question

well-known concepts in this field.

2.5 Data Availability

All data and code used in the analyses are available via a figshare online repository at:

https://doi.org/10.6084/m9.figshare.7884854
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2.7 Tables

Table 2.1: Top ranking GLMs for %C, %N, and %P based on ΔAICc values. We report only
models that ranked better than the null model, together with the null model. k, number of parame-
ters in the model, LL, log-likelihood, 𝐾𝑛, relative body condition, ABL, average body length. We
provide coefficient values as estimate (±SE).

%N top models Coefficients

k LL ΔAICc 𝑅2 Intercept Age 𝐾𝑛 ABL

3 −56.599 0.000 0.066 11.367
(±0.141) −0.160

(±0.087)
2 −58.306 1.147 0.000 11.200

(±0.111)
%P top models Coefficients

k LL ΔAICc 𝑅2 Intercept Age 𝐾𝑛 ABL

3 −35.556 0.000 0.073 1.962
(±0.526) 1.006

(±0.518)
3 −36.252 1.391 0.047 0.687

(±1.495) 0.054
(±0.035)

2 −37.444 1.508 0.000 2.974
(±0.073)

%C top models Coefficients

k LL ΔAICc 𝑅2 Intercept Age 𝐾𝑛 ABL

2 −118.090 0.000 0.000 43.606
(±0.367)
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Table 2.2: Top ranking GLMs for C:N, C:P, and N:P based on ΔAICc values. All specifications
as in Table 2.1.

C:N top models Coefficients

k LL ΔAICc 𝑅2 Intercept Age 𝐾𝑛 ABL

3 −27.818 0.000 0.074 4.465
(±0.079) 0.095

(±0.049)
2 −29.731 1.559 0.000 4.564

(±0.063)
C:P top models Coefficients

k LL ΔAICc 𝑅2 Intercept Age 𝐾𝑛 ABL

2 −178.30 0.000 0.000 39.205
(±1.223)

N:P top models Coefficients

k LL ΔAICc 𝑅2 Intercept Age 𝐾𝑛 ABL

2 −94.153 0.000 0.000 8.580
(±0.227)
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2.8 Figures

Figure 2.1: A snowshoe hare, Lepus americanus, with its summer livery. Photo courtesy of
Travis R. Heckford.
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3.1 Introduction

Environmental and organismal variability within ecosystems are tightly interconnected. Geo-

chemical, atmospheric, and biological factors drive differences in the elemental composition of

primary producers across landscapes (Ågren and Weih 2012; Borer et al. 2015). For example,

elemental ratios in marine phytoplankton can vary widely across latitudinal gradients of environ-

mental variables (e.g., ocean temperature; Martiny et al. 2013). Indeed, environmental variabil-

ity in the supply of key elements like phosphorus (P) and nitrogen (N) is the single best predic-

tor of differences in cellular concentrations of these elements among phytoplankton (Galbraith

and Martiny 2015). As well, species composition of local producer and consumer communi-

ties can influence carbon (C) and N concentrations in foliar tissues of plant species (Borer et al.

2015). This variability in elemental composition of autotrophs produces areas of high- and low-

quality resources for herbivores across landscapes (Jean et al. 2015; Leroux et al. 2017). In turn,

spatial heterogeneity in resource elemental composition—i.e., their stoichiometry (Sterner and

Elser 2002)—can influence consumers’ foraging strategies (Ball, Danell, and Sunesson 2000;

Youngentob et al. 2011). However, few studies to date have investigated how consumers’ space

use varies in response to variability in resource stoichiometry (but see McNaughton et al. 1989;

Balluffi-Fry et al. 2020). Here, we investigate how this mosaic of hot- and cold-spots in resource

elemental composition (sensu Bernhardt et al. 2017) may influence the home range size of a

small terrestrial mammal, the snowshoe hare (Lepus americanus).

The home range, the area an animal routinely uses to meet its daily needs (Powell and Mitchell

2012), varies in size within and across species under the effect of multiple variables (Table 3.1;

Tamburello, Côté, and Dulvy 2015). Forage resource inter- and intra-specific variability—e.g.,

in quantity, quality, and/or spatial distribution—plays a pivotal role in shaping the cost-benefit

trade-offs that regulate animals’ dietary balances (Ball, Danell, and Sunesson 2000; van Beest

et al. 2011; Duparc et al. 2020). For instance, resource productivity is a well-known driver of

home range size among herbivores: individuals tend to have larger home ranges in low produc-
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tivity areas, because they need to move more to find enough food to avoid starvation (Bjørneraas

et al. 2012; Tucker, Ord, and Rogers 2014). Home ranges size also varies with resource qual-

ity: home range size tends to be smaller where food quality is higher, and vice versa (Saïd and

Servanty 2005; Saïd, Gaillard, et al. 2009; McClintic et al. 2014). Indeed, recent studies have

shown that terrestrial herbivores respond to variability in both quantity and quality of their pre-

ferred resources at multiple spatio-temporal scales (e.g., van Beest et al. 2011; Nie et al. 2015;

Balluffi-Fry et al. 2020). Yet, studies often use an array of different definitions and proxies to

measure variability in resource quality (Felton et al. 2018). Thus, one study may define and mea-

sure resource quality using forage species identity (van Beest et al. 2011), whereas another may

measure their macronutrients content (e.g., proteins, carbohydrates, fibers; Saïd, Gaillard, et al.

2009), or their availability in the environment (Duparc et al. 2020). Within the framework of eco-

logical stoichiometry, resource quality is often defined based on the elemental composition of

the resource—that is, its content of key nutrients such as C, N, and P (Sterner and Elser 2002;

Kaspari and Powers 2016). Here, we argue that spatial variability in a resource’s elemental com-

position may inform consumer space use by influencing its home range size and potentially act as

a common currency across studies.

Animals make space use decisions at multiple spatio-temporal scales, from which food items

to consume in a patch to where to establish their geographic range (Johnson 1980). Within a

patch, available food items vary in their quality and quantity and animals, in turn, forage only

on some of these food items (4th order selection; Johnson 1980). Koalas (Phascolarctos cinereus)

and greater gliders (Petauroides volans) prioritize use of high-quality Eucalyptus spp. patches in

different ways: koalas search for and forage longer on trees whose leaves have high N concentra-

tions (Marsh et al. 2014), while greater gliders avoid trees with high levels of N-based secondary

metabolites in their leaves (Youngentob et al. 2011). Thus, animals tend to use some areas of

the landscape more than others (3rd order selection; Johnson 1980). For instance, moose (Alces

alces) and mountain hare (Lepus timidus) visited N-fertilized forest plots more frequently than

unfertilized controls (Ball, Danell, and Sunesson 2000). Home ranges arise from these patch use
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patterns. For example, bamboo-exclusive giant pandas (Ailuropoda melanoleuca) seasonally shift

their range and vary their home range size in response to variation in N, P, and calcium content

in their food—consistently foraging on the highest-quality food available as a result (Nie et al.

2015). Here, we focus on Johnson (1980)’s 2nd order of selection—that is, the home range of an

individual—and investigate how spatial variability in resource quality influences home range size

of a small mammalian herbivore.

As these examples show, resource elemental composition can play an important role in de-

termining how animals use their space: where they forage, what they forage on, for how long,

and when. In turn, this preferential use of high forage quality areas appears to be related to re-

productive and physiological benefits (Mcart et al. 2009) or to population dynamics (Merkle et

al. 2015). With the recent development of new statistical methods to predict resource stoichiom-

etry at landscape extents (e.g., Galbraith and Martiny 2015; Leroux et al. 2017; Soranno et al.

2019), we can investigate how resource elemental composition influences consumers’ space use

beyond the local patch. For example, stoichiometric distribution models—henceforth, StDMs—

can predict element distributions over landscapes and allow identification of hot- and cold-spots

of resource elemental composition across spatial extents (Leroux et al. 2017). StDMs allow for

studying patterns of consumers’ space use and distribution in a stoichiometrically informed way.

For instance, Leroux et al. (2017) used StDMs predictions to investigate the spatial distribution

of moose (A. alces) at the landscape extent, in the boreal forests of northern Newfoundland,

Canada. Spatial distribution models of moose performed consistently better when including a

measure of forage elemental composition (e.g., elemental g dry weight, % content, or ratios), pro-

viding evidence that spatial gradients in plant stoichiometry may influence herbivores’ distribu-

tion and habitat selection (Leroux et al. 2017). Consequently, as in the case of the giant panda (A.

melanoleuca) mentioned above (Nie et al. 2015), spatial variability in forage elemental composi-

tion may also drive an animal’s home range size. While the above studies provide some evidence

for a relationship between food elemental composition and consumer home range size, whether

this relationship exists across diverse consumer-resource systems remains unclear.
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Here, we use elemental distribution models—i.e., StDMs—to investigate the relationship

between summer home range size and resource elemental composition in snowshoe hares (L.

americanus). Snowshoe hares are keystone herbivores in the boreal forests of North America, a

strongly N- and P-limited habitat (Feldhamer, Thompson, and Chapman 2003; Price et al. 2013).

Nutrient limitation influences snowshoe hare ecology, behavior, and physiology (Murray 2002),

making snowshoe hares well suited to address questions of food quality and space use. Snow-

shoe hares may respond to the overall forage quality of an area, one metric of which may be the

average quality of forage, or to heterogeneity in an area’s forage quality (Zweifel-Schielly et al.

2009). We use stoichiometric ratios—i.e., C:N, C:P, N:P ratios—as proxies for resource quality

for snowshoe hares. High C:N or C:P forage tends to be woody, hence less digestible, whereas

consumption of high N:P forage—that is, low P-content forage—may not offset the boreal for-

est’s strong P-limitation (Leroux et al. 2017). Hence, we consider food items with low C:N, C:P,

and N:P ratios as higher quality resources than those with high C:N, C:P, or N:P ratios. Using

these stoichiometric ratios, we test the hypothesis that spatial differences in average resource

quality, the variability of resource quality, or both, influence snowshoe hare home range size

(Figure 3.1). We predict (i) that snowshoe hares in areas of homogeneous resource quality (low

variability) will have smaller home ranges than individuals in areas with more spatially hetero-

geneous resources. We further predict (ii) that in areas with low and spatially homogeneous sto-

ichiometric ratios (low mean and low variation), snowshoe hares will have smaller home ranges

compared to areas where these metrics are both high or where one is high and the other is low.

As well, we predict (iii) that snowshoe hares in areas of lower average forage C:N or C:P ratio

will have smaller home ranges than individuals in areas in which these forage ratios are higher.

Finally, for N:P ratio, we predict (iv) that snowshoe hares will have larger home ranges in areas

of high N:P ratio, i.e., P-limited, than in areas of low N:P ratio, i.e., N-limited.
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3.2 Methods

3.2.1 Study area and spatial study design

We conducted our study in four boreal forest stands in eastern Newfoundland, Canada, in and

around Terra Nova National Park (48°31’50” N, 53°55’41” W; Figure B.1). We selected for-

est stands based on snowshoe hare habitat preferences and along a forest stand age chronose-

quence with four categories; 20–40 years old, 41–60 y. o., 61–80 y. o., and 81–100 y. o. (see

Appendix B.3 for more details). In all four forest stands, black spruce (Picea mariana) domi-

nates the canopy, which also comprises balsam fir (Abies balsamea), red maple (Acer rubrum),

white birch (Betula papyrifera), and white spruce (Picea glauca). Lowbush blueberry (Vaccinium

angustifolium), Sheep laurel (Kalmia angustifolia), and Labrador tea (Rhododendrum groen-

landicum) dominate the understory.

In May 2016, we established a 500m×500m snowshoe hare live trapping grid housing 50

Tomahawk live traps (Tomahawk Live Trap Company, Hazelhurst, WI) along a meandering

transect in each of the four forest stands (see Appendix B.3 and Figure B.2). Live traps were

spaced 75m apart, except for turning points in the transect where the distance was smaller (Fig-

ure B.2). Each trap location was also the center of a circular sampling plot with a 11.3m radius

and a 401.15m2 area that we used for collecting plant tissue samples (see below). While our

plant tissue sampling effort involved all four live-trapping grids, during our first live-trapping

season in summer 2016 we had consistent snowshoe hare captures only in one of the four grids,

the youngest one (20–40 y. o.). We thus focused our live-trapping efforts on this grid in the fol-

lowing live-trapping seasons (see Appendix B.5 for further details).

3.2.2 Spatial variability in food stoichiometry

We collected plant samples, ∼20 g wet weight, in the sampling plot centered on each trap loca-
tion in the four live trapping grids during the summer months of 2016 and 2017. We focused on

three important summer forage species for snowshoe hares (Dodds 1960): lowbush blueberry (V.
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angustifolium), red maple (A. rubrum), and white birch (B. papyrifera). Our sampling tried to

replicate hare browsing by collecting only new growth material—that is, new leaves and termi-

nal ends of branches. We shipped 10 g dry weight from each sample to the Agriculture and Food

Laboratory at the University of Guelph to measure content of C, N, and P for each of our three

plant species of interest (listed above; henceforth, SOI). In Appendix B.4 we report a detailed

breakdown of the number of samples collected for each plant SOI (Table B.4 and Figure B.7).

In our analyses, we used quantitative predictions of foliar C:N, C:P, and N:P ratios obtained

from fitting StDMs to the stoichiometry data obtained from plant samples from all four grids. We

built nine plant SOI stoichiometry predictive surfaces, one for each combination of plant SOI and

stoichiometric ratio. Here we briefly describe the procedure behind building and fitting StDMs

(for general rationale behind StDMs and detailed methods see Leroux et al. 2017; Heckford et al.

2021, respectively). To build each StDM, we used three types of plant SOI data: (i) sampling plot

density data from a shrub belt sampled along the South-North diameter (22.6m long, 1m wide)

of the plot, divided into 4 height classes (0–50, 51–100, 101–150, 151–200 cm, respectively);

(ii) elemental percentages, i.e., % C, N, P, extracted from foliar samples; and (iii) biomass data

collected in randomly selected areas adjacent to our sampling grids. We collected new-growth-

only biomass samples from 50 individuals per species, stratified by the aforementioned 4 height

classes. In the laboratory, we dried the biomass samples at 50 °C until we reached constant weight

(2–3 days; see Heckford et al. 2021, for detailed plant SOI sampling protocols). We first fit allo-

metric models for each study species using the formula: 𝑙𝑜𝑔(𝑏𝑖𝑜𝑚𝑎𝑠𝑠) ∼ 𝑙𝑜𝑔(𝑏𝑎𝑠𝑎𝑙 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟) +𝑙𝑜𝑔(ℎ𝑒𝑖𝑔ℎ𝑡). At the sampling plot level, this allowed us to estimate density of plant SOI by height
class based on shrub belt data, and to use these estimates to predict plant SOI biomass by height

class in each sampling plot. We then calculated C, N, P foliar content per SOI per plot by divid-

ing a SOI’s total plot biomass by the product of plot area and foliar elemental content (% dry

weight). We obtained C, N, P quantity estimates by dividing elements’ foliar content by their

molar weight, and stoichiometric ratios from these estimates (C:N, C:P, N:P; Leroux et al. 2017).

Each StDM included spatially explicit covariates, grouped into four categories: land cover,
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productivity, biotic, and abiotic factors (see Appendix B.4). Preliminary analyses of yearly varia-

tion in plant SOI stoichiometry showed negligible variability between 2016 and 2017 (Richmond

et al. 2021). Hence, we did not include year of sampling as a covariate in our StDMs. We fit a set

of 16 General Linear Models based on a priori hypotheses (see Appendix B.4), including a null

model, to plot-level data of three response variables (C:N, C:P, and N:P ratios) for each plant SOI

using function glm in the stats R package (R Core Team 2020). We used the Akaike Informa-

tion Criterion corrected for small sample size (AICc; Burnham and Anderson 2002) to assess the

weight of evidence supporting each model. After removing uninformative parameters (sensu Ler-

oux 2019), we used the top-ranked model for each plant SOI-stoichiometric ratio pair to produce

plant SOI stoichiometry predictive surfaces as proxies for resource quality available within hare

home ranges (Table B.5).

3.2.3 Home range size estimation

In May-November of 2016 through 2019, we live-trapped and radio-collared snowshoe hares

in one of our study grid, the youngest forest stand (henceforth, hare study area). We baited each

trap at dusk with apple slices, alfalfa, and rabbit chow, and checked them the following dawn.

We collected body weight (g) and other demographic data of each hare, before fitting it with a

25 g radio collar (M1555, Advanced Telemetry Systems, Isanti, MN) and releasing it. We did

not fit individuals with radio-collars when the weight of the collar was ≥5% of the hare’s own

body weight. Further details on our live trapping protocol can be found in Appendix B.5. The

Animal Care Committee of Memorial University approved our animal handling protocol with

permit number 18-02-EV.

In May-September of 2017 through 2019, we located snowshoe hares using handheld re-

ceivers (Biotracker, Lotek, Ontario, CA) and VHF antennas (RA–23K, Telonics, AZ). We col-

lected three or more azimuths per hare per day between 0500–2100, storing them in an electronic

data collection form on an iPad (FileMaker Pro Advanced, v. 14; Claris International Inc. 2015)

and using digital maps (Avenza Maps, v. 3.7; Avenza Systems Inc. 2020) to check the triangu-
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lation polygon’s size (see Appendix B.6 for further details on triangulation protocols). We esti-

mated home range size and ran all subsequent analyses in R (v. 4.0.1; R Core Team 2020). For

each hare in our sample (n = 30), we used package razimuth to estimate collar location based on

the Azimuthal Telemetry Model (Gerber et al. 2018, see Appendix B.6 for more details). From

these locations, we estimated the Utilization Distribution (UD) of our snowshoe hares using the

Autocorrelated Kernel Density Estimator corrected for small sample size (AKDEc) from the

ctmm R package (Fleming and Calabrese 2017; Fleming, Noonan, et al. 2019; Fleming and Cal-

abrese 2020). From the UDs, we estimated home range area in hectares (ha) at the 50%, 75%,

and 90% isopleths. While we did not collect nighttime relocations from our snowshoe hares,

we would expect nighttime movements of individuals to influence use patterns within the home

range rather than home range placement over the landscape or home range size. Thus, we are

confident we captured summer home range size for our snowshoe hare sample. For more details

on our home range estimation workflow, see Appendix B.7 and the Supporting Code document

in the online data repository.

3.2.4 Stoichiometry of home range size

We used function extract from the raster R package (Hijmans 2020) to overlay the boundary

of each snowshoe hare’s home range area estimate, i.e., the 50%, 75%, 90% UD isopleths, on

the stoichiometric surfaces and get C:N, C:P, and N:P ratios values for every pixel covered by

the home range (see Supporting Code for more details). From these data, for each home range,

we estimated (i) each stoichiometric ratio’s mean value and (ii) its coefficient of variation. The

coefficient of variation (henceforth, CV), the ratio of a sample’s standard deviation to its mean

value, provides an easy-to-interpret assessment of how variable the predicted SOI stoichiometry

of a given home range is, compared to its mean value.

We used linear models to investigate the effects of resource stoichiometry, i.e., mean, CV,

and their interactive effects, and body weight on the size of the home range of snowshoe hares

estimated at the 50% (i.e., the core area; Börger et al. 2006), 75%, and 90% isopleths. We in-
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cluded body weight to capture potential intraspecific variability in home range size due to an

individual’s ecology and physiology (Peters 1983). Conversely, we did not include year of sam-

pling, as preliminary analyses provided no evidence it influenced home range size of our snow-

shoe hares (see Appendix B.7.2 and Supporting Code for models’ output; Börger et al. 2006). As

well, we did not include sex in our models as evidence for snowshoe hares points to this variable

being correlated with body weight (Feldhamer, Thompson, and Chapman 2003) and it does not

appear to influence the elemental composition of snowshoe hares (Rizzuto, Leroux, Vander Wal,

Wiersma, et al. 2019). For each combination of plant SOI and C:N, C:P, and N:P ratio (n = 5, see

below), to test prediction (i) we fit a model including each stoichiometric ratio’s CV (Table 3.2).

Likewise, to test predictions (ii) and (iii) we fit a model including the ratios’ mean values (Ta-

ble 3.2). To test prediction (iv) we fit a model including the additive effects and a model includ-

ing the additive and interactive effects of the ratios’ mean and coefficient of variation (Table 3.2).

For each model, we also fit a version that included the hares’ body weight at capture (Table 3.2).

We fit this set of 8 models, plus a null model, to our dataset using function lm in the stats R

package (R Core Team 2020), and we visually checked that models met assumptions using stan-

dard approaches (Zuur, Ieno, and Elphick 2010). We used function AICc in the AICcmodavg

R package to select top models based on parsimony (Burnham and Anderson 2002; Mazerolle

2017). Following Leroux (2019), we removed uninformative parameters from the model set of

each plant SOI-stoichiometric ratio pair. Below, we present the summary AICc table for analyses

at the 50% UD slice. In Appendix B.9 we present summary tables of the analyses at the 75% and

90% UD, as well as the full AICc tables.

3.3 Results

StDMs of red maple C:N, N:P ratios and lowbush blueberry C:N, C:P, and N:P ratios all ranked

above the null model whereas all other StDMs (i.e., red maple C:P ratio, white birch C:N, C:P,

and N:P ratios) were not supported by the data (Heckford et al. 2021). We used this suite of five

StDMs to produce geo-referenced predictions of resources’ spatial variability in and around our
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hare study area (see Table B.5 for details on models fit to the data and parameters’ slope esti-

mates).

Our sample of radiocollared snowshoe hares included 30 individuals: 4 followed during sum-

mer 2017, 6 in summer 2018, and 20 during summer 2019. We followed four snowshoe hares

for two consecutive sampling years: three in the 2018 and 2019 sampling seasons and one in

the 2017 and 2018 sampling seasons. For the individuals sampled in more than one year, we in-

cluded in the analyses only the home range size estimate from the year with the most telemetry

points. Our results are not sensitive to this decision (see Appendix B.7.1 and our code repository

for more details). Our sample included 14 females, 12 males, and 4 individuals of unknown sex.

Adult hares comprised the majority of our sample (n = 27), with two young-of-the-year and one

individual of unknown age. Mean core area size was 4.21 ha (range: 0.70–11.19) in 2017, 3.39

ha (range: 1.37–7.21) in 2018, and 2.69 ha (range: 0.53–6.33) in 2019 (3-year mean ± SD: 3.03

ha ± 2.32). For lowbush blueberry, within the core area, predicted C:N ratio ranged from 45.32

to 49.18 (median: 47.13), predicted C:P ratio ranged from 1201.35 to 2277.46 (median: 1275.88),

and predicted N:P ratio from 25.15 to 45.42 (median: 28.08). For red maple, predicted C:N ratio

ranged from 23.26 to 39.79 (median: 30.89) and predicted N:P ratio ranged from 28.39 to 39.09

(median: 34.14).

We found mixed support for prediction (i), resource quality heterogeneity influencing home

range size. The CV of lowbush blueberry C:N ratio appeared in the top model for home range

core area size (slope = 3.96 ± 0.55, R2 = 0.70; Table 3.3 and Figure 3.3). This trend holds at all

UD isopleths (Tables B.1 and B.2). Indeed, the CV of lowbush blueberry C:N ratio explained a

higher portion of the variation in snowshoe hare home range size, compared to the mean value

of this ratio (CV-only model R2 = 0.45, mean-only model R2 = 0.12; Table 3.3). We found a

similar relationship for both red maple ratios, C:N (slope = 0.16 ± 0.09, R2 = 0.11; Table 3.3)

and N:P (slope = 0.73 ± 0.35, R2 = 0.14; Table 3.3). This trend holds at all UD isopleths for red

maple C:N, but only at the 75% isopleth for red maple N:P (Tables B.1 and B.2). Evidence sup-

porting the red maple C:N and N:P relationships is weak, however, as these models were con-
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sistently within 2ΔAICc from the null model (Table 3.3, and Tables B.1 and B.2). We found no

evidence of this relationship for the CV of lowbush blueberry C:P and N:P ratios (Table 3.3, and

Tables B.1 and B.2). Additionally, we found some support for prediction (ii) at the 50% UD iso-

pleth for red maple N:P ratio only (slope = 0.40 ± 0.23, R2 = 0.24; Table 3.3). However, as this

model ranked below the CV-only model for this ratio and within 2ΔAICc from the null, the evi-

dence supporting prediction (ii) is weak.

We found mixed support for our prediction (iii) on the effects of average C:N ratio and C:P

ratio on home range size. The mean values for lowbush blueberry foliage C:N ratio (slope =

5.14 ± 1.11, R2 = 0.70; Table 3.3 and Figure 3.3) and C:P ratio appeared in top models (slope

= 0.01 ± 0.004, R2 = 0.10; Table 3.3), with the trend holding at all three isopleths (Tables B.1

and B.2). While the top model included both mean and CV of lowbush blueberry C:N ratio, the

mean-only model was ranked 3rd overall and explained ∼11% of the variation in hare home range

size (Table 3.3). No support for this prediction came from models using average red maple C:N

ratio (Table 3.3, and Tables B.1 and B.2). As well, we found weak evidence supporting predic-

tion (iv), home range size increasing as resources’ N:P ratio increases, for lowbush blueberry

foliage (slope = 0.38 ± 0.24, R2 = 0.08; Table 3.3) with the trend holding at larger UD isopleths

(Tables B.1 and B.2).

3.4 Discussion

Animals forage on a variety of resources whose elemental composition may influence space use

and foraging patterns at multiple spatial scales (Lima and Zollner 1996; van Beest et al. 2011;

Duparc et al. 2020). We set out to test whether a keystone boreal herbivore, the snowshoe hare

(L. americanus), changes its home range size in response to variability in the content of key ele-

mental nutrients in two preferred summer forage species, lowbush blueberry and red maple. We

found evidence that spatial differences in a preferred resource’s elemental composition variabil-

ity and its average correlate with herbivore home range size. Additionally, forage species iden-

tity may also play a role, further influencing these relationships. Together, our results provide
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evidence supporting the role that resources’ elemental content plays in influencing consumers’

spatial ecology. The approach we adopt here suggests that exploring fundamental questions of

animal spatial ecology through an elemental lens may allow researchers to better resolve one

component of the feedbacks between animals and ecosystem functions, e.g., elemental cycling

(Schmitz et al. 2018).

The boreal forest is a strongly N- and P-limited ecosystem (Price et al. 2013). Snowshoe

hares need to carefully balance their intake of C-heavy plant food against their N and P growth

requirements (Sterner and Elser 2002). Our results provide explicit evidence of this elemental

trade-off at the home range scale and highlight how differences in resource elemental content

within and across areas used by snowshoe hares underlie variation in home range size in a het-

erogeneous landscape. Results for lowbush blueberry foliage C:N ratio and both red maple fo-

liage C:N and N:P ratio support prediction (i), that variability in plant N and P relative content

can drive home range core area size (Table 3.3). For lowbush blueberry C:N, this is evident at

larger UD isopleths too (Tables B.1 and B.2). Lowbush blueberry is a preferred summer forage

of snowshoe hare (Dodds 1960), as well as more abundant than red maple in our study area (Fig-

ure B.8). Thus, a higher sensitivity to variation in the quality of blueberry may be the most adap-

tive strategy for snowshoe hares to fulfill their high dietary requirements (Murray 2002). Conse-

quently, spatial variability in lowbush blueberry stoichiometry may exert a significant influence

on this herbivore’s space use. Evidence from other studies strongly suggests that variability in the

chemistry of a consumer’s diet main components can influence both their spatial and temporal

distribution over the environment (McNaughton et al. 1989; Nie et al. 2015; Balluffi-Fry et al.

2020).

Furthermore, we find evidence that elements can influence home range core area size even

when considering an area’s average quality—i.e., when smoothing the variation to a single value—

supporting predictions (ii) and (iii). Low average values of C:N ratio for lowbush blueberry con-

sistently correspond to smaller home range size (Table 3.3 and Figure 3.3). This held true for C:N

ratio whether we estimated home range size from the core area or from larger UD slices, suggest-
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ing that resource quality may influence space use decisions at a higher order of selection (i.e.,

landscape or 1st order of selection; Johnson 1980). Results from lowbush blueberry C:P and N:P

ratios suggest a similar, but weaker relationship (Table 3.3). Taken together, our results for both

the mean and coefficient of variation of lowbush blueberry C:N ratio point to hares living in ar-

eas of high mean and high coefficient of variation for this ratio having larger home ranges than

those living in areas where mean values are high but the coefficient of variation is small (Fig-

ure 3.2). Thus, spatial heterogeneity in the relative content of key elemental nutrient of preferred

forage species may influence consumers’ home range placement and size (Powell and Mitchell

2012).

Several study systems provide evidence of resource quality influence on consumer spatial

ecology, corroborating our results (e.g., Saïd, Gaillard, et al. 2009; van Beest et al. 2011; Nie et

al. 2015). Indeed, most snowshoe hares in this study appeared to live in areas of relatively high

N and P content in the foliage of both red maple and lowbush blueberry (Figure 3.2). The few

home ranges in areas with high resource heterogeneity may result from population dynamics,

particularly the increase in hare numbers from 2017 to 2019. In 2017, our collared snowshoe

hares all had home ranges in relatively high-quality areas for lowbush blueberry. As more snow-

shoe hares appeared on the landscape in 2018 and 2019, new individuals increasingly established

larger home ranges that extended beyond the areas of lower heterogeneity or higher mean N or P

availability. The high degree of overlap between home range estimates calculated for hares with

more than one year of telemetry data may point to a certain ability of older snowshoe hares to

retain their range across years (Table B.3 and Figures B.3 to B.6). Other herbivores show sim-

ilar colonization of less-favorable areas of a landscape that depends on growth. For example,

among bison (Bison bison), individuals appeared to expand their population range to include ar-

eas of lower resource quality and establish larger home ranges in them as population density in-

creased over time (Merkle et al. 2015). The elemental composition of foraging resources, then,

may not only influence the size of a consumer’s home range, but also its placement over the land-

scape. However, to our knowledge, this study is the first to show that the spatial distribution of
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key chemical elements can influence where and how large a home range an animal may establish

and maintain.

We modeled our measure of forage quality, forage stoichiometry, based on a suite of environ-

mental, biotic, and abiotic covariates. This approach may help investigate direct drivers of con-

sumer spatial ecology and shed light on ecosystem characteristics allowing high-quality resources

to persist in an area. Further, StDMs allow accounting for multiple ecological currencies shaping

a consumer’s ecology at varying spatio-temporal scales (Levin 1992; Lima and Zollner 1996).

Thus, applying stoichiometric measures of forage to model consumer space use may be a funda-

mental tool in bridging metabolic, nutritional, landscape, and behavioural ecology (Sterner 2004).

Furthermore, our StDM-driven approach explains a large portion of the variance observed in our

sample, albeit with some variability among model sets (see Tables B.1 and B.2). Indeed, the el-

emental composition of resources has been shown to accurately describe and predict the spatial

distribution patterns of consumers in a variety of biomes, from boreal (this study), to temperate

(Nie et al. 2015; Merems et al. 2020), to tropical (McNaughton et al. 1989).

We take a stoichiometry-based perspective on food quality and combine it with a novel mod-

eling approach to investigate herbivore spatial ecology. We assume—like most other studies that

use other quality metrics—that we have captured quality. Indeed, not all the N or P of a resource

are available to consumers, as structural or defensive compounds may sequester some portions

of these elements in undigestible macromolecules, e.g., cellulose or lignin, thus influencing the

quality of a given food item (Felton et al. 2018; Champagne et al. 2020). Our review of two re-

cent meta-analyses on herbivores and food quality (Felton et al. 2018; Champagne et al. 2020)

suggests that—across 14 studies reporting data from 12 broadleaved and 5 coniferous plants—

structural compound content, i.e., lignin and cellulose, decreased as N content increased (more

details in Appendix B.8 and Figure B.9). Taken together with our results, this suggests that el-

emental N may be a good indicator of food quality across multiple species and environments.

Nitrogen may be a particularly useful indicator of food quality in N-limited systems such as the

boreal forest (Price et al. 2013). Furthermore, integration of multiple elements into stoichiomet-

74



ric ratios—like the C:N, C:P, and N:P ratios used in our study—may prove useful for capturing

different components of food limitation or quality (Sterner and Elser 2002), particularly at land-

scape extents where herbivores make trade-offs in food quality and quantity (Balluffi-Fry et al.

2020). Given that the majority of research on the role of food on animal spatial ecology employs

non-elemental measures of food quality, future work should seek to measure both elemental con-

tent and nutritional content of food items and relate these to animal use (Wilder and Jeyasingh

2016).

Large portions of variance remain unexplained in our models suggesting that, while useful,

focusing on a few key elements and their ratios only captures one part of animal space use de-

cisions. Macromolecules (e.g., protein, fibers; Seccombe-Hett and Turkington 2008) also play

a role in influencing snowshoe hare space use, alongside other elements (e.g., Na, Ca, K; Kas-

pari and Powers 2016). Further, population dynamics and predation risk may add layers to the

cost-benefit trade-offs faced by herbivores foraging in heterogeneous landscapes. These layers,

in turn, may influence the spatial maps mammals create to navigate their environment—for in-

stance, potentially leading to different home range shapes and size when considering foraging

vs. breeding opportunities (Powell and Mitchell 2012). We offer our StDMs-driven approach

as a complementary framework to existing wildlife and nutritional ecology based approaches

(for an overview of the limitations of a StDMs-based approach, see Leroux et al. 2017). We see

much value in, for instance, combining StDMs with more traditional nutritional ecology tech-

niques, e.g., macronutrients analysis or foodscape approaches, to more fully address questions

pertaining to animal space use—as recently done for European hares (Lepus europaeus; Weter-

ings et al. 2018) and koalas (P. cinereus; Marsh et al. 2014). Furthermore, herbivores rarely ex-

perience their foraging landscape as a collection of individual resources. Spatial stoichiometry

and its applications to animal foraging ecology are in their infancy and we see exciting potential

in developing StDMs beyond the single-species models used in the present study. We can envi-

sion several ways to conceptualize multi-species StDMs, from stacking predictions from mul-

tiple single-species StDMs (Ferrier and Guisan 2006) to developing Joint Species Distribution
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Models (sensu Pollock et al. 2014) for elements. Progress in this direction means confronting

additional layers of assumptions tied to predicting the spatial distribution of multiple elemental

response variables—e.g., uneven sample size across species and elements—but promising tools

recently emerged in community ecology that could be useful to overcome these challenges (e.g.,

Ovaskainen et al. 2017).

Overall, our results provide evidence that ecological stoichiometry may help researchers un-

derstand fundamental components of consumers’ spatial ecology. Based on the emergent field

of spatial stoichiometry (Galbraith and Martiny 2015; Leroux et al. 2017; Soranno et al. 2019)

and our own results, we argue that using the elemental composition of resources to investigate

patterns of consumer spatial distribution and habitat use has several advantages. First, it may

provide a parsimonious approach to resource selection analysis that complements other, more

widespread methods—e.g., habitat classification (Zweifel-Schielly et al. 2009), forage species

identity (van Beest et al. 2011), or availability (Duparc et al. 2020). Second, using elemental

currencies would allow for consistency in defining and measuring metrics, such as food quality,

across studies and study systems, even when not used in a spatial stoichiometry framework (Van

Der Graaf et al. 2006; Weterings et al. 2018). Third, it would reduce reliance on elemental con-

version factors, increasingly recognized as problematic due to their lack of generality across dif-

ferent food items and outdated estimation methods (Mariotti, Tomé, and Mirand 2008). Fourth,

stoichiometric currencies may help investigate the different experiential layers that make up an

animal’s home range (sensu Powell and Mitchell 2012), further refining how researchers mea-

sure, describe, and interpret animal space use at multiple spatio-temporal scales (Levin 1992). Fi-

nally, rooting theoretical models of ecological processes in stoichiometric units may make them

more widely applicable to real world scenarios (Schmitz et al. 2018).

Life builds itself using a limited subset of elements (Kaspari and Powers 2016). These ele-

ments are continuously transformed and exchanged, both globally, among organisms and their

abiotic environment, and more locally within and across ecosystem borders. Our results show

that the spatial distribution of elements over the landscape plays a key role in shaping where and
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how organisms interact with their environment. Ecological stoichiometry may thus offer a highly

parsimonious approach that, by providing common units of measurement with which to describe

both actors and currencies involved in these spatial relationships, may offer researchers a holistic

perspective to explore animal spatial ecology.

3.5 Data Availability

All data and code used in the analyses are available via a figshare online repository at:

https://doi.org/10.6084/m9.figshare.12798296.
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3.7 Tables

Table 3.1: Environmental and ecological drivers of home range size among mammals.

Variable Effect References

Body Size larger body mass corresponds to
larger home ranges

Ofstad et al. (2016), Peters (1983),
and Tucker, Ord, and Rogers
(2014)

Habitat richer habitats usually corresponds
to smaller home ranges

Ofstad et al. (2016) and Tucker,
Ord, and Rogers (2014)

Information previous knowledge of an area’s
distribution of resources, risk
sources, mates, and refugia varies
how individuals use available
space

Merkle et al. (2015), Powell and
Mitchell (2012), and Zweifel-
Schielly et al. (2009)

Diet carnivores have larger home ranges
than herbivores and omnivores

Tamburello, Côté, and Dulvy
(2015) and Tucker, Ord, and
Rogers (2014)

Energy increasing energetic demands lead
to larger home ranges

Mcart et al. (2009) and Merkle
et al. (2015)

Behaviour sociality can influence where and
on what to forage on

Merkle et al. (2015)
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Table 3.2: Models’ formulation and predictions tested. For each combination of plant SOI and
stoichiometric ratio, we fit this set of 8 competing models plus a null model. The Mean Ratio and
Ratio CV terms are the average and the coefficient of variation (CV) of the StDM-predicted sto-
ichiometric ratios. The Ratio Mean * CV term is the interaction of these two measures of food
quality variability over space. Body Weight refers to the body weight of the radio-collared snow-
shoe hares at point of capture. Models listed in descending level of complexity.

Model Explanatory variables Prediction tested

1 ∼Mean Ratio + Ratio CV + Ratio Mean * CV + Body Weight iv
2 ∼Mean Ratio + Ratio CV + Ratio Mean * CV iv
3 ∼Mean Ratio + Ratio CV + Body Weight iv
4 ∼Mean Ratio + Ratio CV iv
5 ∼Mean Ratio + Body Weight ii, iii
6 ∼ Ratio CV + Body Weight i
7 ∼Mean Ratio ii, iii
8 ∼ Ratio CV i
9 ∼ Null
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Table 3.3: Top ranking GLMs describing the relationship between home range core area size
and resource stoichiometry, after removing uninformative parameters (see Table 3.2 for a list of
variables included in each model and Appendix B.9.1 for full AICc tables). For each plant SOI
and stoichiometric ratio pair, we report the top model, any model above the intercept, and the
intercept. For coefficients, we report values estimates and 95% Confidence Intervals. Mean and
coefficient of variation (CV) refer to the metrics calculated for the relevant stoichiometric ratio
within the home range core area (see text for details). Column headers: k, number of parameters
in the model; LL, log-likelihood; Mean:CV, interaction between a ratio’s mean and CV.

Coefficients

k ΔAICc LL R2 Intercept Mean CV Mean:CV

Lowbush blueberry C:N top models

4 0.00 −49.43 0.70 −242.48
(−349.82– −135.14)

5.14
(2.86–7.41)

3.96
(2.83–5.10)

3 14.87 −58.21 0.45 −0.19
(−1.71–1.33)

3.43
(1.97–4.90)

3 29.19 −65.37 0.12 −161.71
(−336.47–13.06)

3.50
(−0.21–7.21)

2 30.47 −67.25 0.00 3.03
(2.16–3.89)

Lowbush blueberry N:P top models

3 0.00 −65.99 0.08 −7.91
(−22.30–6.43)

0.38
(−0.12–0.87)

2 0.03 −67.25 0.00 3.03
(2.16–3.89)

Lowbush blueberry C:P top models

3 0.00 −65.64 0.10 −7.04
(−18.67–4.59)

0.01
(−0.00–0.02)

2 0.73 −67.25 0.00 3.03
(2.16–3.89)

Red maple N:P top models

3 0.00 −65.07 0.14 0.62
(−1.87–3.12)

0.73
(0.01–1.45)

5 1.72 −63.14 0.24 44.06
(−24.59–112.70)

−1.32
(−3.34–0.71)

−12.43
(−28.43–3.57)

0.40
(−0.08–0.88)

2 1.87 −67.25 0.00 3.03
(2.16–3.89)

Red maple C:N top models

3 0.00 −65.57 0.11 1.55
(−0.31–3.41)

0.16
(−0.02–0.35)

2 0.86 −67.25 0.00 3.03
(2.16–3.89)
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3.8 Figures
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Figure 3.2: Distribution of snowshoe hare home range size estimates (ha) from this study (n =
30) in lowbush blueberry resource quality space, defined by foliage C:N ratio.
Most hares in our sample live in areas of moderate lowbush blueberry C:N content and variabil-
ity. Some individuals maintain small home ranges in areas of relatively homogeneous, medium-
to-high lowbush blueberry foliage C:N ratio (e.g., A1673, A2702, A2081). Conversely, a few
snowshoe hares with large home ranges live in areas of heterogeneous, low-quality lowbush blue-
berry (e.g., A3705). The empty lower left corner may indicate that no areas of high and homoge-
nous resource quality are available in our study area, or that no hares are using them if present.
Data point size reflects 50% UD home range size; colors identify different individuals. Differ-
ent shapes separate individuals with more than one year of telemetry sampling (squares, A1425;
diamonds, A1698; triangles, A3719; upside-down triangles, A3769) from individuals with only
one year of telemetry (circles). The Supplementary Information contains additional details on the
degree of overlap between home ranges from consecutive years for these four individuals (Ta-
ble B.3 and Figures B.3 to B.6).
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4.1 Introduction

Ecosystems are intrinsically open systems connected by exchanges of multiple currencies (e.g.,

energy, matter, information; Loreau, Mouquet, and Holt 2003; Marleau, Peller, et al. 2020).

Abiotic and biotic vectors—for instance, rivers or migratory animals—drive these exchanges

and thus influence ecosystem functioning at multiple spatial extents (Gravel, Guichard, et al.

2010; Schiesari et al. 2019). While the influences of abiotic vectors on ecosystem dynamics have

been extensively studied (Gravel, Guichard, et al. 2010; Gravel, Mouquet, et al. 2010; Loreau,

Daufresne, et al. 2013; Gounand, Mouquet, et al. 2014), less is known about how flows medi-

ated by biotic vectors affect ecosystem processes and functions (Gounand, Harvey, et al. 2018;

but see Schmitz, Wilmers, et al. 2018; Subalusky, Dutton, Njoroge, et al. 2018). Evidence from

both the fossil record and present-day events shows that biotic drivers of ecosystem flows af-

fect ecosystem functions at extents ranging from local to continental (Bauer and Hoye 2014;

Schmitz, Raymond, et al. 2014; Doughty 2017; MacSween, Leroux, and Oakes 2019). However,

organism-driven exchanges have diminished over time, partly as humankind began modifying the

biosphere (from the late Quaternary onwards; Doughty et al. 2016). Mathematical models can

play an increasingly key role in predicting causes and consequences of human-driven changes to

biotic flows connecting ecosystems over space and time (McCann et al. 2021). Yet, most mod-

els and theory on organismal movement focus on the effects of these movements on patterns

of populations and communities (reviewed in Bauer and Hoye 2014), without addressing their

ecosystem effects. Thus, a conceptual and practical gap exists that hampers the study of how or-

ganismal movement impacts ecosystem functions, in particular biogeochemical cycling, at local

and regional extents (i.e., zoogeochemistry; sensu Schmitz, Wilmers, et al. 2018).

Organisms can mobilize large quantities of nutrients across ecosystems’ borders, influenc-

ing donor and recipient ecosystems (Earl and Zollner 2014; Hobbie and Villóeger 2015; Earl

and Zollner 2017). For instance, migratory Pacific salmon (Oncorhynchus spp.) transfer ocean-

derived nutrients to the riparian forests surrounding their spawning streams in north-western
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North America (Helfield and Naiman 2001; Francis, Schindler, and Moore 2006). Similar productivity-

enhancing effects of animal-mediated subsidies benefit ocean surface waters (Roman and Mc-

Carthy 2010). In terrestrial ecosystems, ungulates are well-known vectors of nutrient exchanges

(Seagle 2003; Frank 2008; Abbas et al. 2012). Daily foraging movement of hippopotamuses

(Hippopotamus amphibius) and seasonal mass drownings of migrating wildebeest (Connochaetes

taurinus) transfer large quantities of nitrogen from grassland plains to the Mara River, Kenya

(Subalusky, Dutton, Rosi-Marshall, et al. 2015; Subalusky, Dutton, Rosi, et al. 2017). Analo-

gous flows, mediated by local and migratory animals, act in circumpolar (Jefferies, Rockwell,

and Abraham 2004), boreal (Seagle 2003; Bump et al. 2009), and temperate (Abbas et al. 2012)

biomes. These organismal nutrient subsidies affect fundamental ecosystem processes, such as

primary productivity (Helfield and Naiman 2001; Subalusky, Dutton, Njoroge, et al. 2018) and

nutrient cycling (Bump et al. 2009; Abbas et al. 2012), and connect ecosystems into higher-order

organizational units—so that local changes elicit regional responses, and vice versa (Loreau,

Mouquet, and Holt 2003; Loreau 2010). Human activities have and will continue to modify these

widespread but delicate organismal pathways across ecosystems as we progress in the Anthro-

pocene. Yet, we currently lack the tools to predict the consequences of our influence on these

pathways.

Meta-ecosystem theory—which studies how flows of energy, matter, and organisms con-

nect ecosystems over space and time (Loreau, Mouquet, and Holt 2003; Gounand, Harvey, et al.

2018)—provides a useful framework to place the empirical evidence for organismal pathways

across ecosystems in the broader context of an interconnected biosphere. Organism-mediated

spatial exchanges of nutrients bridge ecosystem processes and functions, thus changing the struc-

ture and properties of local and meta-ecosystems (Leroux and Loreau 2012; Massol, Altermatt,

et al. 2017). Regional, consumer-mediated flows of nutrients across ecosystems can interact with

local biomass recycling processes to influence primary and secondary production and ecosystem

stability (Marleau, Guichard, Mallard, et al. 2010; Marleau, Guichard, and Loreau 2014). For

instance, these interactions can sustain autotroph populations in ecosystems with low nutrient
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availability and allow them to thrive (Gravel, Guichard, et al. 2010), as in the hippopotamus ex-

ample above (Subalusky, Dutton, Rosi-Marshall, et al. 2015). Through modifications of regional

source-sink dynamics, biotic flows can thus shift the distribution of biotic populations and abiotic

stocks across space and time (Gravel, Guichard, et al. 2010; Gounand, Mouquet, et al. 2014). Or-

ganismal movement can further benefit primary producers by redistributing excess nutrients over

regional spatial extents, alleviating the effects of excessive nutrient availability (i.e., ameliorating

the Paradox of Enrichment; Gounand, Mouquet, et al. 2014). Finally, through the movement of

organisms, trophic interactions in one ecosystem can influence those of adjacent ones and pro-

duce spatial trophic cascades (sensu Knight et al. 2005), whereby apical trophic compartments

from a donor ecosystem influence basal compartments in a recipient ecosystem (Massol, Alter-

matt, et al. 2017).

However, meta-ecosystem theory has been criticized for weak linkages to empirical research

(Gounand, Harvey, et al. 2018; Schiesari et al. 2019). We surmise that one of the reasons for this

is that most meta-ecosystem theory models organismal movements as diffusive flows along envi-

ronmental gradients—e.g., from high to low resource availability (Gravel, Guichard, et al. 2010;

Marleau, Guichard, Mallard, et al. 2010; but see Leroux and Loreau 2012). Assuming diffusive

movement of organisms implicitly assumes that it occurs among patches within the same ecosys-

tem, because the same organisms are moving within the same compartment from one patch to

another (sensu Massol, Altermatt, et al. 2017). However, organisms routinely cross the bound-

aries of different ecosystem types—that is, of different patches—in against-gradient or gradient-

neutral ways (i.e., from low to high resource availability, or in the absence of a gradient, respec-

tively; Gounand, Harvey, et al. 2018). Through these movements, organism biomass is often

converted from one compartment to another (Gounand, Harvey, et al. 2018), for instance, via

ontogenic niche shifts (e.g., juvenile insectivorous salmons in rivers evolve to adult piscivore

salmons in the ocean; Ebel et al. 2015) or senescence (e.g., leaves falling into freshwater bodies).

Assuming diffusive organismal movement also means glossing over evidence from wildlife and

behavioral ecology that describes organismal movement as driven by pervasive fitness trade-offs

95



(Hugie and Dill 1994; Nathan et al. 2008). As organisms move over landscapes, short-term (e.g.,

avoiding predation, competition, starvation) and long-term (e.g., growth, reproduction) needs

influence the processes of looking for, entering, and foraging in a new patch. The matrix that sur-

rounds local ecosystems also matters, as organisms traversing it are removed from ecosystem

dynamics that may be influenced by their absence (Weisser and Hassell 1996).

Here, we aim to enhance the ecological realism of meta-ecosystem theory by integrating

multiple types of organismal movement with respect to resource availability gradients into a

classic meta-ecosystem model and investigate their influence on ecosystem functions at local

and regional extents. We focus on three types of consumer movement with respect to resource

availability gradients: movement in the absence of a gradient (henceforth, gradient-neutral),

along-gradient movement, and against-gradient movement. We combine a classic, two-patch

meta-ecosystem model with an intermediate “dispersers’ pool” compartment to represent the

ecosystem-matrix mosaic that consumers face when traveling across the landscape (Weisser and

Hassell 1996; Gounand, Harvey, et al. 2018). While this is a two-patch model which is not spa-

tially explicit, the inclusion of the inhospitable matrix consumers travel through while moving

between the two patches echoes the “patch-matrix mosaic” model that landscape ecologist fre-

quently use to describe real-world matrix landscapes (Castilla et al. 2009; Wu 2013). Follow-

ing other meta-ecosystem models (Ludwig, Jones, and Holling 1978; Menge, Pacala, and Hedin

2009; Menge, Hedin, and Pacala 2012), we use time scales separation to investigate the com-

plex temporal dynamics of our model (Otto and Day 2011). We investigate how these different

biotic movement types influence local and meta-ecosystem functions, e.g., biomass and nutri-

ent stock accumulation, nutrient flux, and primary and secondary productivity. We expect that

different types of consumer movement will influence local and regional ecosystem functions, al-

beit not necessarily in the same direction or with the same magnitude (Table 4.1 and Figure 4.1;

Marleau, Guichard, Mallard, et al. 2010). We explore how against-gradient consumer move-

ment influences the degree of heterogeneity in resource availability at regional extents, relative

to along-gradient and gradient-neutral consumer movement. We further explore how the effects
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on heterogeneity due to consumer movement along different environmental gradients depends on

differences in the recycling rates of primary producers.

4.2 Ecosystem Model

4.2.1 Model Derivation

We derive a meta-ecosystem model comprising two ecosystems (Figure 4.2), connected by dis-

persal of consumers mediated through a dispersers’ pool (sensu Weisser and Hassell 1996). Each

ecosystem contains a food web composed of three trophic compartments: inorganic nutrients

(𝑁 𝑖), primary producers (𝑃𝑖), and consumers (𝐶𝑖)—where 𝑖 ∈ (1, 2) indicates the two ecosys-
tems. The meta-ecosystem obeys mass balance constraints, and both ecosystems are open at the

basal level through a constant input of inorganic nutrients, 𝐼𝑖. Inorganic nutrients leach from the

basal level at rate 𝑙. Biotic compartments lose biomass at rate ℎ𝑖 for producers and at rate 𝑑𝑖 for
consumers. Following Gravel, Guichard, et al. (2010), we assume all biomass lost from higher

trophic levels (𝑃𝑖, 𝐶𝑖) re-enters each ecosystem at the basal level (𝑁 𝑖). Producers uptake nutri-
ents from the basal level of each ecosystem at rate 𝑢𝑖. We assume a Type I functional response

(Holling 1959): consumers uptake producer biomass at rate 𝑎𝑖 and convert it to new consumer

biomass with efficiency 𝜖𝑖.
We model the fraction of consumers moving between the two ecosystems using a dispersers’

pool 𝑄 (eq. 4.1g; Weisser and Hassell 1996). 𝑄 can be thought of as a stopover compartment, in

which consumers enter as they leave the donor ecosystem and from which they depart once they

enter a recipient ecosystem. Thus, 𝑄 provides a first approximation for the role of the unsuit-

able matrix in which ecosystems are embedded. We use 𝑄 to explicitly investigate three types of

movement happening in one direction, from ecosystem 1 to ecosystem 2: gradient-neutral, along-

, and against-gradient movement. Consumers move from ecosystem 1 towards the dispersers’

pool 𝑄 with rate 𝑔, and leave 𝑄 towards ecosystem 2 with rate 𝑚. As 𝑄 is only used to move

from one ecosystem to the next, no production of consumer biomass takes place in it, but individ-
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ual consumers can die while in 𝑄 and do so at rate 𝑐. The following set of ordinary differential
equations describes the meta-ecosystem dynamics:

Ecosystem 1: 𝑑𝑁1𝑑𝑡 = 𝐼1 − 𝑢1 ⋅ 𝑁1 ⋅ 𝑃1 − 𝑙 ⋅ 𝑁1 + ℎ1 ⋅ 𝑃1 + 𝑑1 ⋅ 𝐶1 (4.1a)

𝑑𝑃1𝑑𝑡 = 𝑢1 ⋅ 𝑁1 ⋅ 𝑃1 − 𝑎1 ⋅ 𝑃1 ⋅ 𝐶1 − ℎ1 ⋅ 𝑃1 (4.1b)

𝑑𝐶1𝑑𝑡 = 𝜖1 ⋅ 𝑎1 ⋅ 𝑃1 ⋅ 𝐶1 − 𝑑1 ⋅ 𝐶1 − 𝑔 ⋅ 𝐶1 (4.1c)

Ecosystem 2: 𝑑𝑁2𝑑𝑡 = 𝐼2 − 𝑢2 ⋅ 𝑁1 ⋅ 𝑃2 − 𝑙 ⋅ 𝑁2 + ℎ2 ⋅ 𝑃2 + 𝑑2 ⋅ 𝐶2 (4.1d)

𝑑𝑃2𝑑𝑡 = 𝑢2 ⋅ 𝑁2 ⋅ 𝑃2 − 𝑎2 ⋅ 𝑃2 ⋅ 𝐶2 − ℎ2 ⋅ 𝑃2 (4.1e)

𝑑𝐶2𝑑𝑡 = 𝜖2 ⋅ 𝑎2 ⋅ 𝑃2 ⋅ 𝐶2 − 𝑑2 ⋅ 𝐶2 +𝑚 ⋅ 𝑄 (4.1f)

Dispersers’ pool: 𝑑𝑄𝑑𝑡 = 𝑔 ⋅ 𝐶1 −𝑚 ⋅ 𝑄 − 𝑐 ⋅ 𝑄 (4.1g)

To capture gradient-neutral, along-, and against-gradient consumer movement we keep the struc-

ture of the model (eq. 4.1) constant and vary the relative values of parameter 𝐼𝑖, thus varying the
nutrient availability in the two ecosystems. That is, we vary the inorganic nutrients inputs into

each ecosystem: this varies their availability for primary producers and hence the availability of

forage for consumers. For gradient-neutral consumer movement, we set 𝐼1 = 𝐼2, so that con-
sumers effectively move among homogeneous ecosystems. To reproduce along-gradient con-

sumer movement, we consider a scenario where 𝐼1 >> 𝐼2. Finally, for against-gradient consumer
movement, we set 𝐼1 << 𝐼2. Table 4.2 summarizes the model’s state variable and parameters,
their units of measurement, and any constraints on their values.

We use time scales separation to investigate the dynamics of this meta-ecosystem (Otto and

Day 2011). Time scales separation accounts for the different timings that processes may have in

an ecosystem. It works by keeping slow processes constant while solving for fast ones, and then
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maintaining fast processes at their quasi-equilibrium while solving for the slow ones (Otto and

Day 2011; Menge, Hedin, and Pacala 2012). Studies analyzing ecological processes involving

multiple time scales routinely employ this technique, e.g., insect outbreaks (Ludwig, Jones, and

Holling 1978). Recently, ecosystem models of nutrient limitation and ecosystem development

successfully employed time scales separation to disentangle the effects of concurring factors act-

ing at different time scales (Menge, Pacala, and Hedin 2009; Menge, Hedin, and Pacala 2012).

Fundamental to this technique is identifying the different time scales at which different processes

take place, particularly which ones happen over long (i.e., slow) and which ones over short (i.e.,

fast) time scales. We turned to natural history to identify slow and fast processes in our model.

Two fundamental processes influence the dynamics of each ecosystem in the model: biomass

production and consumers’ movement. Biomass production takes place on the scale of months

and seasons, whereas consumer movement often happens on the scale of hours to days. Briefly,

we assume that, over the time scale at which movement to and from 𝑄 takes place, biomass pro-

duction in either ecosystem is effectively invariant and constant. Thus, we solve eq. 4.1g first,

finding the quasi-equilibrium 𝑄∗:

𝑄∗ = 𝑔 ⋅ 𝐶1𝑐 + 𝑚 (4.2)

Substituting eq. 4.2 in eq. 4.1f allows us to solve for the meta-ecosystem equilibria (i.e., 𝑁∗𝑖 , 𝑃∗𝑖 ,𝐶∗𝑖 ) and to investigate the dynamics of the system as we allow the slow processes to vary over

time while the fast process is at quasi-equilibrium. Finally, we use these meta-ecosystem equilib-

ria to obtain the equilibrium for the dispersers’ pool 𝑄. See Appendix C.2 for full model equilib-
ria.
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4.2.2 Model Analyses

4.2.2.1 Ecosystem functions

Using the quasi-equilibrium for 𝑄∗ (eq. 4.2), we solve eq. 4.1 for feasible equilibria—that is, the

equilibria where the biomass of all trophic compartments is > 0 (see Appendix C.2 for mathemat-

ical expressions). We then use these equilibria to calculate biomass and nutrient stocks, primary

and secondary productivity, and nutrient flux at both local and meta-ecosystem scales. Table 4.3

shows the general formulae used to calculate these ecosystem metrics. At the local ecosystem

scale, biomass stock is defined by each state variable equilibrium equation because the model’s

units are biomass (second column in Table 4.3). We calculate the local ecosystem’s primary and

secondary productivity using the equilibrium functional responses of primary producers and con-

sumers, respectively—i.e., the flow of resources from one trophic level to the next trophic level

(third column in Table 4.3). We measure nutrient flux using the loss terms from each trophic

compartment at equilibrium (fourth column in Table 4.3). To obtain meta-ecosystem values for

the three functions of interest, we sum together the values obtained for the local ecosystems (bot-

tom rows in Table 4.3). Note that, at the meta-ecosystem scale, nutrient flux also includes the

rate at which consumers’ biomass is lost while in 𝑄—i.e., the parameter 𝑐. Consumer biomass
lost while in 𝑄 does not re-enter the recycling pathways of either local ecosystem, and is thus lost

from the meta-ecosystem. Appendix C.2 provides the formulae for the equilibria used to calcu-

late biomass and nutrient stock.

4.2.2.2 Numerical analyses

We first investigate how local and meta-ecosystem metrics vary as consumers move between two

ecosystems that differ in their local environmental nutrient availability conditions (i.e., 𝐼𝑖). We

compare three cases: equal nutrient availability (𝐼1 = 𝐼2), higher nutrient availability in the donor
ecosystem (𝐼1 >> 𝐼2), and higher nutrient availability in the recipient ecosystem (𝐼1 << 𝐼2).
These three scenarios help us establish whether different types of consumers movement—neutral,
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along-, and against-gradient, respectively—influence local and meta-ecosystem dynamics.

We then investigate whether varying the ecological characteristics of biological communi-

ties in local ecosystems influences how consumer movement affects ecosystem functions. To

achieve this, we use the same three movement scenarios listed above—i.e., neutral, along-, and

against-gradient consumer movement—and vary the recycling rates of autotrophs to be alterna-

tively higher in the donor or in the recipient ecosystem. This leads to a total of n = 9 competing

scenarios. After setting fixed values for the nutrient availability of each local ecosystem (i.e., the

parameters 𝐼1, 𝐼2), we measure the equilibrium values of the state variables and estimate ecosys-

tem functions for 1000 random sets of parameter values drawn from a uniform distribution and

fed to the single feasible equilibrium of the model (sensu Leroux and Schmitz 2015). Performing

these simulations with 10 000 random sets of parameter values did not qualitatively change our

results (see Appendix C.3, Figures C.4 to C.9).

We evaluate the effects of consumer movement on local and meta-ecosystem functions using

the log response ratio of the function’s value in each scenario to the function’s value in the base-

line condition. Our baseline condition is the case of equal nutrient availability across ecosystems

and no manipulation of the primary producers recycling rates. The ratio’s formula is:

𝐿𝑅𝑅 = 𝑙𝑜𝑔10 (𝑋𝑖,𝐼1≠𝐼2,ℎ1≠ℎ2𝑋𝑖,𝐼1=𝐼2 ) (4.3)

Where 𝑋 ∈ [𝑁, 𝑃, 𝐶] is the trophic compartment of interest, 𝑖 is either the local or meta-
ecosystem, and 𝐼1 ≠ 𝐼2 and ℎ1 ≠ ℎ2 represent the relationships between environmental nutrient
availability and primary producers recycling rates across local ecosystems, respectively. Values

of LRR > 0 indicate that the numerator of the ratio is larger than the denominator, and thus that

the value of the function of interest calculated in a given scenario is larger than in the baseline

condition. Conversely, values of LRR < 0 indicate a larger denominator and a larger value of the

function as calculated in the baseline condition than in the given scenario. Following White et

al. (2014)’s advice to not conduct frequentist statistical analyses on data from large numerical

simulations, we focus on reporting median LRR effect sizes and their ranges.
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4.3 Results

4.3.1 Consumer movement and ecosystem functions

Consumer movement establishes a spatial trophic cascade across local ecosystems, influencing

local and meta-ecosystem functions in all nutrient availability scenarios (Figure 4.3 and Fig-

ure C.1). The effects of consumer movement, however, change based on the direction of the nu-

trient availability gradient between local ecosystems.

At the meta-ecosystem scale, against-gradient consumer movement does not appear to influ-

ence neither nutrient flux (primary producers LRR = 0.01, range: 0.00–0.89; consumers LRR =

0.07, range: −0.72–0.28) nor productivity (primary producers LRR = 0.03, range: −0.31–0.85;

consumers LRR = 0.04, range: −0.72–0.28), compared to along-gradient movement (compare

yellow and red boxplots in Figure 4.3b, c). Likewise, trophic compartment biomass and nutrient

stock appear unchanged in the meta-ecosystem when movement happens against nutrient avail-

ability gradient (primary producers biomass LRR = 0.01, range: 0.00–0.88; consumers biomass

LRR = 0.08, range: −0.72–0.28; nutrient stock LRR = 0.03, range: −0.63–0.25; red boxplots,

right-most column, Figure 4.3a). However, at the local ecosystem scale, we observe a different

situation. Consumers moving against gradient lead to the recipient ecosystem having higher pri-

mary (LRR = 0.18, range: 0.01–2.27) and secondary productivity (LRR = 0.22, range: 0.03–2.41)

than in the along-gradient scenario (Figure 4.3c, compare the left and central panels). Likewise,

nutrient flux in the recipient ecosystem when consumers move against gradient is higher than in

the competing scenario for consumers (LRR = 0.16, range: −0.70–0.48) but not for primary pro-

ducers (LRR = 0.04, range: 0.00–2.11) (Figure 4.3b). In turn, the donor ecosystem shows reduced

values for consumer-mediated functions (productivity LRR = −0.72, range: −2.60– −0.70; nutri-

ent flux LRR = −0.72, range: −2.60– −0.70; biomass LRR = −0.72, range: −2.60– −0.70), primary

productivity (LRR = −0.16, range: −0.69–0.00), and nutrient stock (LRR = −0.16, range: −0.69–

0.00).

Along-gradient consumer movement does not appear to elicit marked changes with respect
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to the equal nutrient availability scenario at the meta-ecosystem scale (Figure 4.3). For all three

meta-ecosystem functions, biomass and nutrient stock accumulation, nutrient flux, and primary

and secondary productivity, we observe no change with respect to the equal nutrient availabil-

ity scenario—i.e., median LRR values are ∼ 0—with the exception of consumer biomass (LRR

= -0.10, range: -1.12–0.28). At the local ecosystem scale, however, along-gradient movement

elicits effects that are somewhat specular to those of against-gradient movement. Along-gradient

consumer movement leads to an increase in secondary productivity (LRR = 0.26, range: 0.26–

0.67) and consumer nutrient flux (LRR = 0.26, range: 0.25–0.67) in the donor ecosystem, com-

pared with the gradient-neutral movement scenarios (yellow boxplots in Figure 4.3b, c). As well,

we note a reduction of both functions for consumers (productivity LRR = −0.46, range: −2.09–

−0.03; nutrient flux LRR = −0.26, range: −1.16–0.26) and for primary producer nutrient flux

(LRR = −0.13, range: −1.68–0.00) and primary productivity (LRR = −0.34, range: −1.90– −0.03)

in the recipient ecosystem compared to the equal nutrient availability scenarios (Figure 4.3b, c).

4.3.2 Synergies between consumer movement and environmental context

Next, we vary the recycling rates of primary producers in the two ecosystems. We thus establish

a gradient of autotrophs recyclability on top of the nutrient availability one, and compare results

with those of a model with gradient-neutral movement and no manipulation of recycling rates.

This gradient of recycling rates appears to more clearly affect primary producers in the donor

ecosystem, regardless of the direction of the gradient or the type of consumer movement connect-

ing the two ecosystems.

When consumers move against the nutrient availability gradient, higher primary producers

recycling rates in the donor ecosystem (ecosystem 1, yellow boxplots in Figure 4.4) compound

with higher ecosystem functioning in the recipient ecosystem (ecosystem 2). This leads to higher

autotroph nutrient flux (LRR = 0.28, range: 0.28–0.28) and primary productivity (LRR = 0.09,

range: −0.69–0.28) in ecosystem 1, whereas ecosystem 2 shows close to no difference from the

baseline scenario in nutrient flux (LRR = 0.08, range: −2.44–2.79) and an increase in primary
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productivity (LRR = 0.20, range: −1.40–2.27) (yellow boxplots in Figure 4.4b, c). Curiously,

nutrient stock increases not in the donor (ecosystem 1, LRR = 0.09, range: −0.69–0.28) but in

the recipient (ecosystem 2, LRR = 0.13, range: −1.56–1.52) (yellow boxplots, Figure 4.4a). As

a result, the meta-ecosystem is richer in nutrients (LRR = 0.11, range: −1.18–0.70), has higher

primary productivity (LRR = 0.15, range: −1.35–1.61), and higher autotroph nutrient flux (LRR

= 0.26, range: -2.00–1.64; yellow boxplots in right-most panel, Figure 4.4). Note that this is the

opposite of what happens in the absence of a gradient of autotrophs recycling rates (Figure 4.3).

Conversely, when autotrophs are more easily recycled in the recipient ecosystem (ecosystem 2,

red boxplots in Figure 4.4), against-gradient consumer movement leads to a strong reduction

in both autotroph nutrient flux (LRR = −1.00, range: −1.00– −1.00) and primary productivity

(LRR = −0.86, range: −1.00– −0.70) in the donor ecosystem compared to gradient-neutral move-

ment (compare red to yellow and blue boxplots, Figure 4.4b, c). This reduces nutrient stock in

the donor ecosystem (LRR = −0.86, range: −1.00– −0.70; Figure 4.4a). As above, these changes

appear to scale up to affect the meta-ecosystem, and even reverse the effects of consumer move-

ment. Higher ecosystem functioning in the recipient ecosystem is not enough to offset the re-

duction in the donor, leading the meta-ecosystem to lower primary productivity (LRR = −0.11,

range: −1.38–1.61), lower autotroph nutrient flux (LRR = −0.51, range: −2.40–1.64), but appar-

ently unchanged nutrient stock accumulation (LRR = −0.04, range: −1.38–0.61; red boxplots in

right-most panel, Figure 4.4). Figure C.2 reports the untransformed response ratio data, that cor-

roborate these findings.

When the donor ecosystem (ecosystem 1) is more fertile—i.e., consumers move along-gradient—

and contains more easily recyclable autotrophs, we observe an increase in autotroph nutrient flux

(LRR = 0.28, range: 0.28–0.28) and primary productivity (LRR = 0.27, range: 0.26–0.28) in this

ecosystem compared to gradient-neutral movement, that scales up regional extents (yellow box-

plots in Figure 4.5b, c). In turn, these contribute to increasing the nutrient stock in the donor

ecosystem (ecosystem 1, LRR = 0.27, range: 0.26–0.28) compared to gradient-neutral move-

ment (Figure 4.5a), but to a limited effect at regional extents (LRR = 0.03, range: −0.91–0.70).
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When more easily recyclable autotrophs are found in the recipient ecosystem, along-gradient

movement of consumers appears to reduce autotroph nutrient flux (LRR = −1.00, range: −1.00–

−1.00) and primary productivity (LRR = −0.12, range: −0.99–0.25) in the donor ecosystem com-

pared to gradient-neutral movement (ecosystem 1, red boxplots in Figure 4.5b, c). Note that the

primary productivity reduction is less pronounced than when consumers move against-gradient

(compare Figure 4.5c with Figure 4.4c). This movement-induced reduction appears to scale up

to reduce meta-ecosystem autotroph nutrient flux (LRR = −0.70, range: −2.40–1.09) and primary

productivity (LRR = −0.24, range: −1.42–1.06; right-most column in Figure 4.5b, c). Nutrient

stock accumulation falls in the donor ecosystem (LRR = −0.12, range: −0.99–0.25), leading to

an overall reduction in the availability of nutrients in the meta-ecosystem (LRR = −0.15, range:

−1.08–0.59). These effects are more pronounced when ecosystem 2 has higher recycling rates of

primary producers (compare yellow and red boxplots in the right-most panel; Figure 4.5a). The

untransformed data corroborate these findings (Figure C.3).

4.4 Discussion

Organismal movement connects ecosystem functions and processes across space and time, me-

diating exchanges of disparate currencies (Marleau, Peller, et al. 2020; Little et al. in review)

and linking ecosystems together into meta-ecosystems (Massol, Gravel, et al. 2011; Massol, Al-

termatt, et al. 2017). Meta-ecosystem models generally account for organismal movement as a

diffusive process not dissimilar from abiotic nutrient flows across ecosystems (but see Leroux

and Loreau 2012; Häussler, Ryser, and Brose 2021). Consumer movement, however, is a multi-

faceted process (Nathan et al. 2008; Earl and Zollner 2017) and a diffusion-like approach may

not capture the variety of organism movement types observed in nature (Gounand, Harvey, et al.

2018; McInturf et al. 2019). We integrate non-diffusive movement into a novel meta-ecosystem

model and investigate how different consumer movement types may influence ecosystems func-

tions. Our results show that diffusive and non-diffusive movements of organisms can exert a

pervasive, direct and indirect influence on biomass and stock accumulation, productivity, and
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nutrient flux at local and meta-ecosystem extents. We offer our model as a flexible tool to pro-

vide testable predictions for common consumer movement scenarios observed in nature, to help

bridge empirical and theoretical meta-ecology, and we discuss ways to further expand it and test

predictions arising from it in both controlled and real-world scenarios.

Irrespective of gradients, consumers moving in meta-ecosystems directly influence consumer

biomass, secondary productivity, and nutrient flux in both donor and recipient ecosystems (Fig-

ures 4.3 to 4.5). Against-gradient, non-diffusive consumer movement results in an unbalanced

meta-ecosystem where local functioning is highly skewed towards the recipient ecosystem (Fig-

ures 4.3 and 4.4). Notwithstanding—or perhaps because of—the stark difference we observe at

local scales, a regional overview shows the meta-ecosystem being overall more productive and

nutrient-rich (right-most panels, Figures 4.3 and 4.4). Ecosystems occupied by central-place

foragers provide a real-world example of these dynamics. Central-place foragers transport ma-

terial from peripheral ecosystems into a central area—whether through ecosystem engineering

(e.g., beavers, Castor spp.; Rosell et al. 2005) or excretion and egestion (e.g., humpback whales,

Megaptera novaeangliae; Roman and McCarthy 2010; Friedlaender et al. 2016). Central-place

foraging can elicit pervasive effects on the dynamics of local and meta-ecosystems that may last

beyond the disappearance of the foragers, from increased nutrient availability and mineralization

in the central area, to higher nutrient cycling in peripheral and adjacent ecosystems (see reviews

in Rosell et al. 2005; Roman, Estes, et al. 2014). Conversely, along-gradient, diffusion-like con-

sumer movement leads to somewhat opposite effects. Specifically, when the recipient ecosys-

tem (ecosystem 2 in Figures 4.3 and 4.5) has lower nutrient availability but consumers move into

it, this local ecosystem acts as a sink for consumer biomass with reduced secondary productiv-

ity and nutrient flux (yellow boxplots, Figure 4.3b, c; yellow and red boxplots, Figure 4.5b, c).

However, consumer movement from the donor ecosystem (ecosystem 1 in Figures 4.3 and 4.5)—

which has higher nutrient availability—offset these changes in the recipient ecosystem: at the

meta-ecosystem scale, biomass, productivity, and nutrient flux are similar to those found in an

homogeneous landscape (yellow boxplots in Figure 4.3 and compare yellow and blue boxplots in
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the right-most panels in Figure 4.5). Thus, we predict that the “resource pooling” effect mediated

by non-diffusive, against-gradient consumer movement may be instrumental in the emergence

of temporal hot-spots of nutrient availability over the landscape (sensu Bernhardt et al. 2017),

or in facilitating habitat turnover dynamics (McNaughton 1990)—as opposed to along-gradient

consumer movement leading to landscape homogenization.

Moving between the two ecosystems, consumers couple trophic interactions and ecosystem

functions in time and space through mechanisms akin to those of spatial trophic cascades (sensu

Knight et al. 2005), with indirect effects on other trophic compartments that vary with the type of

consumer movement—i.e., along- or against-gradient (Figures 4.3 to 4.5). Somewhat counterin-

tuitively, the trophic cascade arising from against-gradient, non-diffusive immigration into the re-

cipient ecosystem stimulates primary productivity and nutrient flux while keeping local autotroph

biomass low (ecosystem 2 in Figures 4.3 and 4.4). In turn, this leads to nutrient accumulation in

the meta-ecosystem. That is, against-gradient consumer immigration in the recipient ecosystem

maintains and exacerbates ecosystem heterogeneity: nutrient flux and production grow, leading

the recipient ecosystem to become progressively richer in nutrients and biomass. For instance, in

Figure 4.1a, dark green ecosystem 3 would become darker and light green ecosystem 1 would get

paler. Environmental conditions can further modulate these effects, as shown by how different

recycling rates of primary producers in the two ecosystems can reduce—and even overturn—the

effects of against-gradient consumer movement (compare red and yellow boxplots in Figure 4.4).

Our model predictions provide some theoretical support to empirical evidence of synergies be-

tween an ecosystem’s autotroph community and the way consumers move over the landscape as

observed, for example, in the boreal forests and circumpolar regions of North America (Pastor

and Naiman 1992; Pastor, Dewey, et al. 1993; Jefferies, Rockwell, and Abraham 2004). Con-

versely, along-gradient, diffusive consumer movement reduces nutrient flux and ultimately nu-

trient accumulation in the recipient ecosystem, again producing meta-ecosystem dynamics that

resemble those of an homogeneous landscape (yellow boxplots, Figures 4.3 and 4.5). These re-

sults further highlight the importance of context (sensu Subalusky and Post 2019) in modulating
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ecosystems dynamics at multiple spatial extents, through the physical (e.g., Gounand, Mouquet,

et al. 2014; Sitters et al. 2020) and biological (e.g., Leroux and Schmitz 2015; Daskin and Pringle

2016; Schmitz, Miller, et al. 2017) characteristics of the environment in which a process takes

place.

We surmise that a primary reason for the abundance of simple and diffusion-based meta-

ecosystems models is that representing movement in different ways leads to challenges in math-

ematical model analysis (Massol, Altermatt, et al. 2017). As such, a major contribution of our

work is the development of a modeling framework to consider more diverse types of consumer

movement while maintaining some level of analytical tractability. We achieve this by integrating

two novel approaches into a meta-ecosystem model. First, we model the movement of consumers

in our meta-ecosystem using a dynamical variable for a “dispersers’ pool”, 𝑄 (sensu Weisser

and Hassell 1996). This dispersers’ pool lets us explicitly account for spatial heterogeneity in

ecosystem components (Figures 4.1 and 4.2). In turn, this allows us to clearly separate between

local and regional dynamics, and to quantify the influence of consumer movement across spatial

scales. Organisms can often make active decisions on where to move in a landscape, and these

can vary with spatial scales (Johnson 1980). Stimuli and information collected from both the sur-

rounding environment and the internal state of a consumer can influence the trade-offs that regu-

late these active decisions (Nathan et al. 2008; Earl and Zollner 2017; Subalusky and Post 2019).

As well, through the use of increasingly accurate bio-loggers (e.g., radio-collars combining GPS

and Accelerometer; Friedlaender et al. 2016), these movements can be described by one or more

states such as foraging, transit, or birthing (Ellis-Soto et al. 2021). The dispersers’ pool we in-

troduce may allow us to incorporate these different movement states into future meta-ecosystem

models. Our initial model uses 𝑄 simply as a transit state: consumers move from one ecosystem

to the next, and they can do so only through 𝑄. Future models could incorporate additional ele-
ments in the formulation of 𝑄 (eq. 4.1g), to account for qualitative or quantitative heterogeneity

in the movement of consumers and the landscape it takes place in. For example, by making em-

igration from 𝑄 towards a recipient ecosystem dependent on some metric of patch quality (Sub-
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alusky and Post 2019) or of biotic and abiotic connectivity (McLeod and Leroux 2021).

Consumer movement and activities occur over diverse time frames, that further differ from

those of, e.g., primary productivity. Thus, time is a key variable for meta-ecosystem dynamics,

defining and influencing both ephemeral (e.g., Bernhardt et al. 2017) and long-term processes

(e.g., Ludwig, Jones, and Holling 1978; Menge, Hedin, and Pacala 2012). There is a long history

of using time scales separation (Otto and Day 2011) to study processes that occur over different

temporal scales in ecosystems. For example, time scales separation has been used to model the

dynamics of insect outbreaks in the boreal forests of North America (Ludwig, Jones, and Holling

1978). When parameterized with general empirical data from a spruce budworm (Choristoneura

fumiferana) system, their model predicted ecosystem dynamics that closely matched those of

a typical spruce budworm outbreak (Ludwig, Jones, and Holling 1978). Similarly, time scales

separation helped to shed light on the emergence of autotroph plasticity in nutrient uptake and

limitation (Menge, Ballantyne IV, and Weitz 2011). Competing nutrient uptake strategies vary in

their adaptive value over time based on the degree of environmental heterogeneity, in turn influ-

encing primary producers community dynamics and nutrient cycling (Menge, Ballantyne IV, and

Weitz 2011). However, to our knowledge, our study is the first to apply time scale separation to

a meta-ecosystem model to tease apart the relative timing of local and regional events. We can

envision fruitful applications of the combined approach involving 𝑄 and time scale separation in

future ecosystem ecology research, from increasing generality by varying the timing of events, to

connecting more than two patches, to accounting for a more diverse matrix among patches.

Meta-ecosystem ecology theory—and, indeed, meta-ecology at large—have historically fo-

cused on local and meta-ecosystem stability as the response variable of interest (Gravel, Guichard,

et al. 2010; Marleau, Guichard, Mallard, et al. 2010; Marleau, Guichard, and Loreau 2014; Mar-

leau, Peller, et al. 2020). However, ecosystem functions are diverse and encompass a broad range

of processes that enable and complement ecosystem stability. The modeling framework we pro-

pose allows us to pivot from a focus on stability, to consider instead how consumer movement

influences some of these ecosystem functions—namely, primary and secondary productivity
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and nutrient flux—in local and meta-ecosystems. Crucially, these ecosystem functions are com-

monly measured in empirical studies (Garland et al. 2021). For instance, measuring gross pri-

mary production and respiration rates of freshwater autotrophs was instrumental in disentan-

gling the effects of subsidies on ecosystem functions mediated by different types of consumer

movement in the Mara River, Kenya (Subalusky, Dutton, Njoroge, et al. 2018). As well, data on

organic matter flow and secondary productivity from the Horonai Stream, Japan, helped show

that consumer-mediated subsidies may elicit opposite effects on ecosystem functions at differ-

ent temporal scales (Marcarelli et al. 2020). We hope that, by allowing integration of widespread

measurements of ecosystem function in mathematical models, our approach will foster the de-

velopment of feedbacks between empirical and theoretical meta-ecology—with the potential for

real-world applications. For instance, how might the removal or alteration of organismal move-

ment pathways (e.g., through road or hydro-electric dam construction, Tucker et al. 2018) impact

ecosystem primary productivity at local and regional extents in, e.g., the meta-ecosystem formed

by salmon-spawning rivers and tropical boreal forests of the North American Pacific North-West.

Or, in the wake of the COVID-19 pandemic, how widespread, rapid, and long-term changes in

humankind’s habitat use patterns (e.g., the COVID-19 Anthropause; sensu Rutz et al. 2020) may

in turn vary consumer movement pathways and the connections among, e.g., agricultural and

forested areas in the Central European landscape mosaic (Abbas et al. 2012).

In our model, we focus on reproducing key dynamics of a complex phenomenon (i.e., move-

ment of medium-to-large land mammals; Nathan et al. 2008) and make several simplifying as-

sumptions. While open at the basal level, our model does not feature ecosystem flows other

than consumer movement (Figure 4.2). By focusing only on apical flows, our work comple-

ments and expands on earlier studies of passive ecosystem exchanges of abiotic and biotic re-

sources (e.g., Leroux and Loreau 2008; Gravel, Guichard, et al. 2010; Gravel, Mouquet, et al.

2010; Marleau, Guichard, Mallard, et al. 2010) and consumer influence on ecosystem dynamics

(e.g., Leroux and Loreau 2010; Leroux, Hawlena, and Schmitz 2012; Leroux and Schmitz 2015),

offering new insights on the mechanisms that may regulate ecosystem functions and their scale-
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dependency (Levin 1992). We see developing and analyzing models that include both types of

flow—diffusive and non-diffusive—as a natural extension of this work. Indeed, as our analy-

ses of consumer movement in the presence of both nutrient availability and autotrophs recycling

rates gradients show (Figures 4.4 and 4.5), synergies or antagonisms with other landscape pro-

cesses and features may modulate the effects described here (Subalusky and Post 2019). Con-

cepts and tools from landscape ecology, where space is often treated explicitly, may be useful

to integrate into future development of our approach. For example, mapping the patch compart-

ments into a spatially explicitly cellular automata model would be useful to test how landscape

features might influence consumer movement (see Crespo-Pérez et al. 2011, for an example of

a model of moth pests between “patches” of storage silos within an agricultural landscape). As

well, further integrating landscape ecology in our model may help to explicitly account for the

spatial relationship among different ecosystems—thus informing how 𝑄 is modeled—and to

identify spatial extents at which the model’s predictions may no longer be viable, for instance,

for movement of small-bodied terrestrial or aquatic organisms.

Integrating additional movement pathways, e.g., allowing bidirectional movement, and an

ecosystem “preference” parameter would greatly enhance the realism of our model, and thus

help bridge the gap with more complex, Earth-system models (for an example of an Earth-system

model, see Harfoot et al. 2014). Consumers routinely move in both one-way and two-way fash-

ion in real-world scenarios—for instance, during continental migration or when moving from

resting to foraging areas (Gounand, Harvey, et al. 2018)—and the decision to move itself entails

complex trade-offs on part of the organism (Charnov 1976; Nathan et al. 2008). Furthermore,

moving in the unsuitable matrix exposes consumers to a host of inputs and environmental fea-

tures that may play a role in shaping both the direction of movement and its ecosystem conse-

quences. The spatial configuration of habitat patches within an inhospitable matrix can influence

movement, and the ability to move through a matrix can vary depending on how the landscape

has been altered and the species’ tolerance of anthropogenic features; these features of the ma-

trix could be parameterized in a spatial model with, for instance, different friction values (e.g.,
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Coulon et al. 2015). In particular, we see scope to expand our model to account for human mod-

ifications of landscapes. For instance, habitat fragmentation (Haddad et al. 2015), sensory pol-

lution (Sanders et al. 2021), and movement barriers (Tucker et al. 2018) can potentially greatly

influence the trajectory and scale of organismal movement. Our model’s ability to account for

these modifications by changing the simple functions that govern movement into and from 𝑄,
while maintaining mathematical tractability, may be instrumental in developing new hypotheses

and predictions to investigate their effects on both organismal movement and ecosystem func-

tions.

Meta-ecosystem ecology encourages and challenges researchers to expand their focus and

look at general, emerging properties of ecosystems. Here, we develop a novel, flexible approach

to investigate the influence of different types of consumer movement in meta-ecosystems. Key

predictions arising from our initial, simple model include (i) along- and against-gradient con-

sumer movement has different, at times opposite influences on local and meta-ecosystem stocks,

productivity, and nutrient flux, (ii) a spatial trophic cascade, whereby consumers from the donor

ecosystem influence the trophic interactions in the recipient ecosystem, mediate these effects,

and (iii) functional traits, such as plant recycling rates, can further modulate the effects of con-

sumer movement on ecosystem functions. Furthermore, our results conform to earlier expecta-

tions about the effects of more complex movement representations in meta-ecosystem models

(Massol, Altermatt, et al. 2017). As humankind adopts new actions and strategies to mitigate the

effects of anthropogenic environmental change, accounting for the myriad moving pieces that

shape ecosystem functioning has never been more pressing.

4.5 Data Availability

All data and code used in the analyses are available via a figshare online repository at:

https://doi.org/10.6084/m9.figshare.16479933
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4.7 Tables

Table 4.1: Predictions of the effects of consumer movement at the ecosystem scale, under three
scenarios of nutrient availability. Column headers indicate the nutrient availability scenarios we
use to compare the effects of different types of consumer movement (see text). Numbers in each
row indicate in which of the two ecosystems (1, 2) we expect a given metric to be higher.

Metric Along-gradient Equal Against-gradient

Biomass and Nutrient Stock 1 1 2
Primary productivity 1 2 2
Nutrient flux 2 2 2

Table 4.2: The model state variables, parameters, definitions, units of measurements, and range
of values. See Figure 4.2 for a diagram.

Variable Definition Units Range𝑁 𝑖 Inorganic nutrient stock in patch 𝑖 𝑔 > 0𝑃𝑖 Primary producer stock in patch 𝑖 𝑔 > 0𝐶𝑖 Consumer stock in patch 𝑖 𝑔 > 0𝑄 Dispersers’ pool 𝑔 > 0
Parameter𝐼𝑖 Inorganic nutrient input rate to patch 𝑖 𝑔 ∗ 𝑡−1 > 0𝑙 Inorganic nutrient output rate 𝑔 ∗ 𝑡−1 > 0𝑢𝑖 Producer uptake rate in patch 𝑖 (𝑔 ∗ 𝑡)−1 > 0𝑎𝑖 Consumer attack rate in patch 𝑖 (𝑔 ∗ 𝑡)−1 > 0𝜖𝑖 Consumer assimilation efficiency in patch 𝑖 dimensionless [0, 1]ℎ𝑖 Biomass loss rate from Producer stock in patch 𝑖 𝑡−1 > 0𝑑𝑖 Biomass loss rate from Consumer stock in patch 𝑖 𝑡−1 > 0𝑔𝑖 Movement rate from Consumer stock in patch 𝑖 to-

wards Dispersers’ pool
𝑡−1 [0, 1]

𝑚𝑖 Movement rate from Dispersers’ pool towards Con-
sumer stock in patch 𝑖 𝑡−1 [0, 1]

𝑐𝑖 Biomass loss rate from Dispersers’ pool 𝑡−1 > 0
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Table 4.3: Formulas to calculate ecosystem and meta-ecosystem functions. See Table 4.2 for
variable and parameter definitions. An asterisk ∗ indicates the feasible equilibrium value of a
variable, whereas 𝑖 ∈ (1, 2) indicates either local ecosystem.
Compartment Stock Productivity Nutrient Flux

Ecosystem 𝑖 ∑(ℎ𝑖 ⋅ 𝑃∗𝑖 , 𝑑𝑖 ⋅ 𝐶∗𝑖 )
Nutrients 𝑁∗𝑖
Producers 𝑃∗𝑖 𝑢𝑖 ⋅ 𝑁∗𝑖 ⋅ 𝑃∗𝑖 ℎ𝑖 ⋅ 𝑃∗𝑖
Consumers 𝐶∗𝑖 𝜖𝑖 ⋅ 𝑎𝑖 ⋅ 𝑃∗𝑖 ⋅ 𝐶∗𝑖 𝑑𝑖 ⋅ 𝐶∗𝑖
Meta-ecosystem ∑𝑖 (ℎ𝑖⋅𝑃∗𝑖 , 𝑑𝑖⋅𝐶∗𝑖 )−𝑐⋅𝑄∗
Nutrients ∑𝑖 (𝑁∗𝑖 )
Producers ∑𝑖 (𝑃∗𝑖 ) ∑𝑖 (𝑢𝑖 ⋅ 𝑁∗𝑖 ⋅ 𝑃∗𝑖 ) ∑𝑖 (ℎ𝑖 ⋅ 𝑃∗𝑖 )
Consumers ∑𝑖 (𝐶∗𝑖 ) ∑𝑖 (𝜖𝑖 ⋅ 𝑎𝑖 ⋅ 𝑃∗𝑖 ⋅ 𝐶∗𝑖 ) ∑𝑖 (𝑑𝑖 ⋅ 𝐶∗𝑖 )
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4.8 Figures
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Figure 4.2: Model diagram, showing the two ecosystems and the pool of dispersers connecting
them through unidirectional movement. Boxes and circles represent nutrient stock, primary pro-
ducers, and consumers biomass, respectively. Solid arrows connecting trophic compartment (i.e.,
Nutrients 𝑁 𝑖, Primary Producers 𝑃𝑖, and Consumers 𝐶𝑖) represent trophic interactions, whereas
dashed arrows represent recycling pathways. See Table 4.2 for variables and parameters defini-
tions.
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Chapter 5

Summary

Ecosystems are complex systems whose existence relies on interactions among their diverse

components (Currie 2011) and with other ecosystems across spatio-temporal scales (i.e., meta-

ecosystems; Loreau, Mouquet, and Holt 2003). Mapping and understanding what drives these

ubiquitous relationships between organic and inorganic ecosystem components is a prime ob-

jective of ecology, made more pressing by anthropogenic environmental change (Schiesari et

al. 2019). In ecosystem ecology, consumers have historically received less attention than other

ecosystem compartments, such as primary producers or decomposers and detritivores (Schmitz,

Raymond, et al. 2014). This is particularly true for terrestrial vertebrates other than Homo sapi-

ens, as they account for a small portion of Earth’s extant biomass and are generally assumed

to have a limited influence on ecosystem functioning (but see Schmitz, Raymond, et al. 2014;

Schmitz, Wilmers, et al. 2018). However, a growing body of literature points to the relationship

between biomass and ecosystem influences being non-linear and multi-faceted, with increasing

calls to re-evaluate how consumers fit into local and meta-ecosystem processes and functions

(Enquist et al. 2020; Leroux, Wiersma, and Vander Wal 2020; Schmitz and Leroux 2020; Ler-

oux, Charron, et al. 2021). For instance, fossil-record analyses show high-magnitude effects of

consumers on ecosystem nutrient budgets and primary productivity patterns in past geological

ages, with reductions starting around the late Quaternary (Doughty et al. 2016; Doughty 2017).

Furthermore, present-day evidence from disparate ecosystems shows that, while reduced in both

numbers and diversity, terrestrial vertebrate consumers are still instrumental in mediating ecosys-

tems’ resilience (e.g., response to natural disturbances; Leroux, Charron, et al. 2021), functions

(e.g., nutrient cycling; Rosell et al. 2005; Pastor, Cohen, and Hobbs 2006), and services (e.g.,

carbon sequestration; Holdo, Sinclair, et al. 2009; Strickland et al. 2013).
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Accounting for consumers in ecosystem studies, or doing so in more nuanced ways, is chal-

lenging. Consumers have complex ecologies and behaviours (e.g., Felton et al. 2018; Gounand

et al. 2018), that are difficult to include in mathematical models and theoretical frameworks of

ecosystem functioning (but see Leroux and Loreau 2010; Leroux and Schmitz 2015, building on

work by DeAngelis 1992; Loreau 2010). The goals of my thesis were to (i) describe a keystone

boreal vertebrate using stoichiometric units of measurement, (ii) examine its interactions with the

environment within a spatial ecological stoichiometry framework, and (iii) develop mathematical

tools able to account for the multiple ways consumers’ can influence local and meta-ecosystem

functioning at multiple spatial scales. To achieve these goals, I adopted a multidisciplinary ap-

proach that combined empirical data collection in both laboratory and field settings, spatial statis-

tical analyses, and mathematical modeling, woven together through an ecological stoichiometry

lens. I found that:

(i) Contrary to expectations, snowshoe hares (L. americanus) showed variability in their con-

tent of key elements, irrespective of the metrics—absolute or relative—used. A set of com-

monly used, invertebrate-derived predictors, e.g., age, sex, and body condition indices,

explained little of this intraspecific elemental variation. I found weak evidence supporting

a decrease in body content of nitrogen with age, which could be consistent with the escape-

based anti-predator strategy of snowshoe hares, which are heavily preyed-upon in the bo-

real biome. As well, I found weak evidence supporting higher content of phosphorus (P)

among hares in better overall body condition, consistent with both stoichiometric expecta-

tions for vertebrates and the strong P-limitation of the boreal biome. Taken together, these

results suggest three insights. First, snowshoe hares demonstrate plasticity in whole-body

stoichiometry, posing new questions about the stoichiometry of vertebrates that require

further study. Second, while constrained by stricter homeostasis requirements, stoichio-

metrically variable vertebrates may play more substantial roles in the elemental budgets

of ecosystems than previously thought. Third, identifying proximate and remote causes of

vertebrate intraspecific elemental variability will require accounting for multiple endo- and
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exogenous potential drivers that do not necessarily transfer across taxa.

(ii) Consumers are aware of the elemental composition of their resources and its spatial vari-

ability, and this contributes to their space use and spatial ecology. Snowshoe hares ap-

peared to vary their space use based on two different facets of food stoichiometry. One

of these was the overall difference in quality between two areas (i.e., the mean content of

key elements), while the other one was the variation within a given area (i.e., the varia-

tion around the mean quality). Snowshoe hares had smaller home range sizes in areas of

the landscape where quality of preferred forage species was either overall higher or more

homogeneous. Curiously, this meant that some hares had relatively small home ranges in

areas of overall lower, but homogeneous, forage quality. Conversely, hares maintained

larger home ranges where forage quality was overall poor or highly heterogeneous. These

results demonstrate that intraspecific variability at the most fundamental, atomic level can

traverse scales of biological organization to influence scale-dependent, iterative processes

such as habitat and resource selection.

(iii) The multiple ways in which consumers can move over the landscape elicit different effects

in local and meta-ecosystems, changing how ecosystem functions and processes play out at

multiple spatial extents. Expanding on existing conceptual models of meta-ecosystem con-

nectivity, I demonstrate that consumers moving against gradients of resource availability

can directly alter the balance of functions such as productivity and nutrient cycling among

local ecosystems. In turn, these alterations scale up to change the overall functional pro-

file of meta-ecosystems. Furthermore, I show that the effects of consumer movement may

be further modulated, and even reversed, by the functional traits of biological communi-

ties they interact with in either the donor or recipient ecosystem. The novel mathematical

modeling framework I develop here allows for inference beyond local and meta-ecosystem

stability, opening new research avenues to study the dynamics of these ubiquitous ecolog-

ical units. As well, it offers a way to develop future meta-ecosystem models beyond the
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classic, two-patch approach, to include more complex and realistic spatial layouts, as well

as additional currencies and scales.

Overall, my thesis offers empirical evidence and theoretical tools to re-evaluate the role of

consumers in the dynamics of ecosystems. Unified by a common stoichiometric framework, the

disparate topics of my thesis coalesce around two main themes to explore in future studies. First,

by showing how terrestrial vertebrates are both stoichiometrically variable and able to respond to

stoichiometric variation in their environment, my thesis offers support to an expansion of existing

paradigms in both ecological stoichiometry and ecosystem ecology to better integrate consumers

and their interactions with other biotic and abiotic compartments into ecosystem processes and

functions (Schmitz, Wilmers, et al. 2018; Harvey et al. 2021; Leroux, Charron, et al. 2021). As

well, my thesis offers evidence supporting the development of ecology towards multi-currency

models that comprise energy, matter (i.e., elements; Sterner 2004), and other currencies (e.g.,

information; O’Connor et al. 2019; Marleau et al. 2020) to paint a more refined picture of the

actors and interactions shaping ecosystem functions and services.

5.1 Come together: integrating consumers into ecosystem ecology

In recent years, integrating consumers into existing paradigms became a focus for ecosystem

ecology (Schmitz, Raymond, et al. 2014; Gounand et al. 2018; Schmitz, Wilmers, et al. 2018).

Part of the challenge lies in consumers being, like ecosystems, complex systems that show a high

degree of variability in their interactions with the environment; this is particularly true for verte-

brates. Consumers continuously experience endogenous stimuli—e.g., energetic (Carbone et al.

1999) and dietary (Nie et al. 2015) requirements, but also memory (Powell and Mitchell 2012;

Spencer 2012). As well, they constantly collect exogenous inputs—e.g., environmental vari-

ability (Marsh et al. 2014; Nie et al. 2015), competition (Schradin et al. 2010), risk and safety

(Lima and Zollner 1996; Laundré et al. 2014). In turn, intelligent behaviour arises from con-

sumers integrating these disparate types of information (sensu Fronhofer, Hovestadt, and Poethke
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2013; Harfoot et al. 2014). This set of condition-informed actions and reactions then shapes con-

sumers’ relationships with their habitats and environments (Powell and Mitchell 2012; Bernhardt,

O’Connor, et al. 2020). How to distill and account for the salient properties of this biological

complexity within the ecosystem ecology framework, rooted in trophic or functional groupings of

organisms, remains an open question.

At times, long-term empirical studies have succeeded in this endeavour by employing multi-

disciplinary approaches, synthesizing data and insights from disparate ecological disciplines. For

instance, in Isle Royale National Park (Michigan), bridging animal and plant ecology through

combined physiological and behavioural approaches led to insights into moose influence on nu-

trient cycling and other ecosystem functions (Pastor and Naiman 1992; Pastor, Dewey, et al.

1993). In turn, integrating individual-scale results with spatial data from movement ecology,

population dynamics, and forest distribution patterns, helped define a framework to predict how

large herbivores alter the balance of limiting nutrients in ecosystems via feedback processes (see

synthesis in Pastor, Cohen, and Hobbs 2006). In turn, by introducing stoichiometric approaches,

new studies (Bump, Peterson, and Vucetich 2009; Bump, Tischler, et al. 2009; Bump, Webster,

et al. 2009; Montgomery et al. 2014) uncovered the ecosystem influences of trophic interactions,

e.g., moose-wolf, and of their outcomes, e.g., carcass deposition, on the distribution of ecosystem

control points that further mediate nutrient cycling and soil fertility (sensu Bernhardt, Blaszczak,

et al. 2017). Recently, the distilled insights arising from this diverse literature led to studies ad-

dressing applied ecology questions—e.g., how rewilding efforts impact nutrient subsidies (Bump

2018). Similar examples from well-known study systems include the northern boreal forests of

Kluane (Yukon; Krebs, Boonstra, and Boutin 2018), the grasslands of the Serengeti (Tanzania

and Kenia; McNaughton et al. 1989; McNaughton 1990; Holdo, Holt, et al. 2011; Subalusky

et al. 2018), and a few others (reviewed in Schmitz, Wilmers, et al. 2018; Schmitz and Leroux

2020).

On the other hand, theoretical studies of ecosystems and the interactions among their com-

partments have lagged behind, mostly eschewing the complexity of consumers’ ecology and of
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their interactions with each other and the environment (Massol et al. 2017; Gounand et al. 2018;

Schiesari et al. 2019). Simplifying approaches and assumptions are commonly used in theoreti-

cal models of ecosystem functioning (reviewed in Massol et al. 2017, see also Chapter 4 for fur-

ther examples). As well, Earth-system models aimed at simulating and predicting the current and

future dynamics of our planet under varying scenarios are just beginning to include consumer-

mediated effects (e.g., the Madingley Model; Harfoot et al. 2014). While mostly centered around

direct measures of consumers’ ecosystem effects, e.g., biomass or body size, recent works on

Earth-system models have produced compelling evidence of consumers’ influences on terrestrial

ecosystem functioning being detectable even at continental scales (Enquist et al. 2020; Hoeks

et al. 2020). Yet, consumers elicit effects on ecosystem functioning—and thus Earth’s state and

conditions—through a host of other mechanisms that do not necessarily depend on their body

size or biomass, or even their presence (Lima and Zollner 1996; Strickland et al. 2013; Wirsing

et al. 2021). Functional traits, the morphological, behavioural, or physiological characteristics of

an organism, can account for both direct and indirect consumers’ effects and may thus be instru-

mental in capturing their contributions to ecosystem processes (reviewed in Schmitz and Leroux

2020).

Stoichiometric ratios, e.g., the Carbon:Nitrogen, Carbon:Phosphorus, or Nitrogen:Phosphorus

ratios of an organism or substrate, can be considered functional traits (Leal, Seehausen, and Matthews

2017) and thus allow for investigating how organisms may fit into biogeochemical processes and

models of ecosystem functioning (Sterner and Elser 2002). While further studies are necessary to

identify what drives their variability, throughout my thesis I offer evidence that terrestrial mam-

mals show and are sensitive to variation in stoichiometric traits. In turn, this opens the door to fu-

ture studies of terrestrial mammals’ role in ecosystem functioning, rooted in the combined use of

stoichiometric and functional traits. For instance, in the context of the snowshoe hare-based case

study presented here, infusing stoichiometric and functional traits into future studies could lead

to new insights in the role of snowshoe hares in the dynamics of boreal forests. While showing

some overlap in diet with the moose (Dodds 1960) and sharing some physiological adaptations
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with beavers (e.g., hindgut fermenting; Rosell et al. 2005), snowshoe hares differ from either

these larger herbivores in their foraging strategies, space use patterns, and population dynamics

(Krebs, Boonstra, and Boutin 2018). Snowshoe hares exhibit boom-bust population dynamics

with distinct, multi-year periodicity driven mainly by food availability (Krebs, Boonstra, and

Boutin 2018). Building on the results I present in Chapters 2 and 3, future studies in this system

could pair population and community ecology approaches with stoichiometric distribution mod-

els (StDMs; Leroux, Vander Wal, et al. 2017) to investigate how successive peaks and valleys in

the hares’ abundance cycle influence the stoichiometry of their ecosystem’s functions and pro-

cesses by, for example, increasing or decreasing amounts of faeces, litter, and carcasses available

for decomposition.

Functional traits can also help resolve the interplay among consumers, their resources, and

other organismal and environmental variables. In Chapter 3, I showed how snowshoe hares re-

spond to variability in stoichiometric traits of their forage and consequently vary aspects of their

ecology—space use, in this case. Crucially, my stoichiometric trait-based approach produced

insights that would have been lost otherwise—namely, that spatial heterogeneity in forage sto-

ichiometric traits may be as or more important than their averages in shaping the space use of

some individuals. Conversely, focusing on ecosystem functions such as primary productivity and

nutrient cycling, in Chapter 4 I demonstrated that these are sensitive to differences in consumers’

traits—movement capabilities, in this case. However, while my thesis points to stoichiometric

and functional traits of consumers and resources interacting to shape multiple aspects of organ-

isms’ ecology and ecosystem functioning, it stops short of integrating these separate lines of ev-

idence into a unified investigation of these feedback processes. Consequently, a way to expand

and advance the results presented here would be to integrate ecological traits of both consumers

and resources into the meta-ecosystem model presented in Chapter 4. For instance, consumer

movement could be adaptive to the environmental, climatic, or biological conditions of an area—

e.g., forage quality (Chapter 4), but also predation risk (Richmond et al. 2021) and temperature

(Balluffi-Fry, Leroux, Wiersma, Richmond, et al. 2021)—by including a preference parameter in
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the formulation of movement functions to determine which ecosystem consumers move towards

from the dispersers’ pool 𝑄.
A consumer-aware paradigm rooted into stoichiometric and functional traits may also account

for effects that consumers mediate by changing the environment around them. For instance,

while examples reported so far implicitly assumed consumers are present in the ecosystem, con-

sumers can also influence ecosystem functions through their absence. Movement of consumers

in Chapter 4 influences functions and processes in both donor and recipient ecosystems—that is,

through both absence and presence. Studies abound that describe and investigate the ecosystem

influences of consumers’ indirect effects, such as the non-consumptive influences that predators

can exert on their prey through their mere presence or absence (Leroux, Hawlena, and Schmitz

2012; Strickland et al. 2013). For instance, risk of predation is a well-known cause of stress

in prey, leading to distinct physiological responses (Hawlena and Schmitz 2010) that can alter

how prey experience and interact with their environment (Richmond et al. 2021) and, ultimately,

modify nutrient cycles (Schmitz, Hawlena, and Trussell 2010; Strickland et al. 2013). For in-

stance, considering the mostly aerial predation risk present in my study system (Richmond et

al. 2021), stoichiometric and functional traits could allow for capturing alterations of ecosystem

functions and processes arising from the landscape of fear (Laundré et al. 2014; Schmitz, Miller,

et al. 2017) created by aerial predation on snowshoe hares—both empirically (e.g., Richmond

et al. 2021) and theoretically (see above). Additionally, such an approach could be transferred to

other systems where the main source of predation is different (e.g., lynx, Lynx canadensis; Krebs,

Boonstra, and Boutin 2018), allowing for comparisons of dynamics among the core and periph-

ery of the snowshoe hare’s geographic range. Thus, an inclusive paradigm, rooted in the use of

functional and stoichiometric traits, may be instrumental in accounting for both direct and in-

direct effects of consumers occupying different trophic positions in an ecosystem. In turn, this

approach could help resolve a few more pieces of the ecosystem functioning puzzle and improve

our ability to forecast the fate of key ecosystem functions and services at local and planetary spa-

tial scales (Harfoot et al. 2014).
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5.2 A multi-currency approach to ecosystem ecology

Developing and adopting an inclusive, trait-based paradigm that re-evaluates the influences of

consumers in the ecology of ecosystems entails a wider shift in perspective—from single- to

multi-currency approaches. Single-currency approaches focus on one resource that links in-

dividuals to ecosystems and limits their biological activities; energy being the most common

(Brown et al. 2004). Indeed, single-currency approaches can lead to resolving patterns that span

scales of biological organization, such as the well-known 3/4 scaling of metabolic rate to body

size (Brown et al. 2004) that underlies a host of other allometric relationships (Carbone et al.

1999; Tucker, Ord, and Rogers 2014; Rizzuto, Carbone, and Pawar 2018). However, a single-

currency framework compresses much of the inherent complexity arising from the interactions

of multiple resources and from their effects on organisms (e.g., energy, elements, information;

Marleau et al. 2020). Importantly, a single-currency approach also implies that the same currency

is the sole limiting factor across widely different biological activities and ecosystem processes—

whereas evidence shows that different limiting currency may be species- or landscape-specific

(e.g., Chapter 3; Sterner and Elser 2002; Sterner 2004). In turn, this limits investigation of pro-

cesses involving other currencies whose qualities differ from energy (e.g., nutrient cycling; Sterner

2004), as well as of the relationships among different currencies (but see Marleau et al. 2020).

The trade-off between simplicity and complexity that underlies the switch from a single- to

multi-currency approaches can lead to unveiling new generalities, such as the relatively consis-

tent Carbon:Nitrogen:Phosphorus ratio of the world oceans (Sterner and Elser 2002), the nutrient

limitation of food webs (Boersma et al. 2008), or the latitudinal patterns in the stoichiometric ra-

tios of autotrophs (Borer et al. 2013; Martiny et al. 2013; Galbraith and Martiny 2015). Indeed,

examples of multi-currency approaches already exist in ecology, particularly among empirical

subdisciplines (Sterner and Elser 2002; Raubenheimer 2011). For instance, nutritional geome-

try, which investigates the connections between physiology and behavioural ecology, developed

alongside and complements ecological stoichiometry, instead focused on physiology and biogeo-
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chemistry (Sperfeld et al. 2016). Rooted into the multiple currencies of dietary macromolecules,

e.g., carbohydrates, proteins, lipids, nutritional geometry has led to key insights into the foraging

process of multiple animal species—from those of conservation interest (e.g., the giant panda,

A. melanoleuca; Nie et al. 2015) to those that are regarded as pests in certain parts of the world

(e.g., the Chacma baboon, Papio ursinus; Johnson et al. 2013).

Multi-currency approaches are instrumental to bridge techniques and disciplines, for instance,

as proposed in a recent roadmap to guide empirical assessment of animal-vectored nutrient sub-

sidies (Ellis-Soto et al. 2021). Based on processes of interests identified using a meta-ecosystem

model, the roadmap integrates biogeochemical, stoichiometric, remote sensing, macroecological,

and statistical techniques (Ellis-Soto et al. 2021). Importantly, this roadmap also combines mul-

tiple currencies, suggesting that integration of energy- and element-based techniques may pro-

duce highly detailed explorations of animal-vectored subsidies (e.g., Figure 2 in Ellis-Soto et al.

2021). Initial examples of the insights this type of approach could lead to include, for instance,

recent studies integrating behavioural and stoichiometric currencies to investigate the space use

of moose (A. alces; Balluffi-Fry, Leroux, Wiersma, Heckford, et al. 2020). This fine-scale in-

vestigation revealed individual trade-offs that led to different moose adopting either quantity- or

quality-maximizing strategies while foraging, and modifying their movement paths accordingly

(Balluffi-Fry, Leroux, Wiersma, Heckford, et al. 2020). In turn, this individual variability may

influence ecosystem processes and functions, as moose are an important terrestrial-freshwater

link in boreal ecosystems (Bump, Tischler, et al. 2009). Similarly, in a study of the influence of

trophic cascades on ecosystem functioning, adopting a multi-currency approach tracking both

carbon isotopes and organismal biomass allowed for resolving the biogeochemical footprint of

predators’ non-consumptive effects on ecosystem carbon sequestration (Strickland et al. 2013).

In addition to empirical studies employing multidisciplinary, multi-currency frameworks, the-

oretical tools are starting to appear that investigate multiple currencies, their relationships, and

their ecosystem effects. For instance, a recent ecosystem model combined energy, elements, and

information to investigate how the continuous conversions among these three currencies that take
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place in ecosystems influence trophic and non-trophic interactions (Marleau et al. 2020). Impor-

tantly, this proposed multi-currency model allows for tracking changes in the system’s emerging

properties by using the same mathematical scaffolding as previous ecosystem models (Marleau et

al. 2020). Incorporating this multi-currency approach into the meta-ecosystem model presented

in Chapter 4 could help disentangle scales and timing of information exchanges crucial to, e.g.,

animal ecology (e.g., home range formation; Powell and Mitchell 2012; Spencer 2012), or sim-

ulate the consequences of artificially introduced amounts of a currency on both organismal and

ecosystem processes (e.g., light, sound, and chemical pollution; see review in Little et al. in re-

view).

Other than in a meta-ecological framework, multi-currency approaches may be able to im-

prove our assessment of the disparate alterations of natural processes, pathways, and relation-

ships triggered by anthropogenic activities. By variously introducing, sequestering, and consum-

ing energy, matter, and information, humankind has been changing natural systems in ways that

go beyond mere alterations of resource availability and distribution (Marleau et al. 2020). Hu-

mankind has been changing not only the non-random arrangement of these currencies in space

and time, but also their relationships and interplay (Little et al. in review). Indirect effects of an-

thropogenic activities abound, from altering habitat connectivity (Haddad et al. 2015; Tucker,

Böhning-Gaese, et al. 2018), to changing natural cycles (Bernhardt, O’Connor, et al. 2020), to

disrupting information pathways (Sanders et al. 2021). In the context of rapidly increasing an-

thropogenic modifications of the biosphere, developing realistic, multi-faceted theoretical tools to

inform empirical research and mitigation strategies is urgently needed.

5.3 Conclusions

In my thesis, I investigate the role of terrestrial consumers in ecosystem functioning, using a

multi-disciplinary and multi-currency approach that merges an empirical case study with theo-

retical modeling. I began by describing the ecological stoichiometry of a keystone boreal herbi-

vore, the snowshoe hare (L. americanus). I demonstrated that a set of invertebrate-derived pre-
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dictors does not explain much of the higher-than-expected intraspecific variability I observed

in this terrestrial mammal, leading me to investigate other possible factors. Using data from

the same study system, I then investigated the response of snowshoe hares to intraspecific vari-

ability in the stoichiometry of their preferred forage. I found that snowshoe hares change their

space use as key stoichiometric traits of their preferred forage varied in space, with hares having

larger home ranges in areas of lower or more variable food content of nitrogen or phosphorus.

The combined insights of high intraspecific variability in snowshoe hare ecological stoichiom-

etry and their response to spatial variation in food elemental content led me to question whether

consumers moving over the landscape can influence ecosystem processes and services. Thus, I

developed a mathematical model of a meta-ecosystem, introducing a new framework to account

for the multiple ways consumers traverse landscapes. I found that how consumers move over the

landscape can strongly influence ecosystem functioning a multiple spatial scales, changing the

biomass accumulation, productivity, and nutrient cycling profiles of local and meta-ecosystems.

Taken together, my results demonstrate that expanding existing ecological frameworks to account

for the role of consumers in mediating both biogeochemical cycles and ecosystem functioning

can lead to unexpected, unintuitive insights into the processes and functions of these systems.

Throughout my thesis, I additionally provide evidence that chemical elements and stoichio-

metric traits offer a powerful unifying lens through which to investigate the myriad interactions

among organic and inorganic components of ecosystems. Shared among consumers and resources,

stoichiometric traits allow for describing different ecosystem compartments and measuring eco-

logical metrics of interest using the same units of measurement—with potential benefits for com-

parability and reproducibility of studies, as well as transferability and collaboration across study

systems. Furthermore, stoichiometric traits complement energy-based approaches, opening the

way for multi-currency investigation—both empirical and theoretical—of ecosystems’ function-

ing and emerging properties. Thus, my thesis also provides support to the development of multi-

currency approaches to investigating ecosystem dynamics.

Overall, my thesis offers a two-pronged approach rooted in shared units of measurements
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and system-agnostic tools to address emerging questions in ecosystem ecology and meta-ecology.

The two prongs—developing a consumer-aware ecosystem ecology paradigm and adopting multi-

currency, system-agnostic approaches to explore ecosystem functioning—are well-positioned to

integrate and expand the scope of meta-ecological and Earth-system models, which will be key to

predict and address the fate of ecosystems and of the planet as the Anthropocene unfolds.

141



5.4 References

Balluffi-Fry, J., S. J. Leroux, Y. F. Wiersma, T. R. Heckford, et al. (2020). “Quantity-quality

trade-offs revealed using a multiscale test of herbivore resource selection on elemental land-

scapes”. Ecology and Evolution 10.24, pp. 13847–13859. DOI: 10.1002/ece3.6975.

Balluffi-Fry, J., S. J. Leroux, Y. F. Wiersma, I. C. Richmond, et al. (2021). “Integrating plant sto-

ichiometry and feeding experiments: state-dependent forage choice and its implications on

body mass”. Oecologia. DOI: 10.1007/s00442-021-05069-5.

Bernhardt, E. S., J. R. Blaszczak, et al. (2017). “Control Points in Ecosystems: Moving Beyond

the Hot Spot Hot Moment Concept”. Ecosystems 20.4, pp. 665–682. DOI: 10.1007/s10021-

016-0103-y.

Bernhardt, J. R., M. I. O’Connor, et al. (2020). “Life in fluctuating environments”. Philosophical

Transactions of the Royal Society B: Biological Sciences 375.1814, p. 20190454. DOI: 10.

1098/rstb.2019.0454.

Boersma, M. et al. (2008). “Nutritional limitation travels up the food chain”. International Re-

view of Hydrobiology 93, pp. 479–488. DOI: 10.1002/iroh.200811066.

Borer, E. T. et al. (2013). “Global biogeography of autotroph chemistry: is insolation a driving

force?” Oikos 122.8, pp. 1121–1130. DOI: 10.1111/j.1600-0706.2013.00465.x.

Brown, J. H. et al. (2004). “Toward a Metabolic Theory of Ecology”. Ecology 85.7, pp. 1771–

1789. DOI: 10.1890/03-9000.

Bump, J. K. (2018). “Fertilizing riparian forests: nutrient repletion across ecotones with trophic

rewilding”. Philosophical Transactions of the Royal Society B: Biological Sciences 373.1761,

p. 20170439. DOI: 10.1098/rstb.2017.0439.

Bump, J. K., R. O. Peterson, and J. A. Vucetich (2009). “Wolves modulate soil nutrient hetero-

geneity and foliar nitrogen by configuring the distribution of ungulate carcasses”. Ecology

90.11, pp. 3159–3167. DOI: 10.1890/09-0292.1.

142



Bump, J. K., K. B. Tischler, et al. (2009). “Large herbivores and aquatic-terrestrial links in south-

ern boreal forests”. Journal of Animal Ecology 78.2, pp. 338–345. DOI: 10.1111/j.1365-

2656.2008.01498.x.

Bump, J. K., C. R. Webster, et al. (2009). “Ungulate carcasses perforate ecological filters and

create biogeochemical hotspots in forest herbaceous layers allowing trees a competitive ad-

vantage”. Ecosystems 12.6, pp. 996–1007. DOI: 10.1007/s10021-009-9274-0.

Carbone, C. et al. (1999). “Energetic constraints on the diet of terrestrial carnivores”. Nature

402.6759, pp. 286–288. DOI: 10.1038/46266.

Currie, W. S. (2011). “Units of nature or processes across scales? The ecosystem concept at age

75”. New Phytologist 190.1, pp. 21–34. DOI: 10.1111/j.1469-8137.2011.03646.x.

DeAngelis, D. (1992). Dynamics of Nutrient Cycling and Food Webs. 1st ed. Springer Nether-

lands, p. 288. DOI: 10.1007/978-94-011-2342-6.

Dodds, D. G. (1960). “Food Competition and Range Relationships of Moose and Snowshoe hare

in Newfoundland”. The Journal of Wildlife Management 24 (1), pp. 52–60. DOI: 10.2307/

3797356.

Doughty, C. E. (2017). “Herbivores increase the global availability of nutrients over millions of

years”. Nature Ecology & Evolution 1.12, pp. 1820–1827. DOI: 10.1038/s41559- 017-

0341-1.

Doughty, C. E. et al. (2016). “Global nutrient transport in a world of giants”. Proceedings of the

National Academy of Sciences of the United States of America 113.4, pp. 868–873. DOI: 10.

1073/pnas.1502549112.

Ellis-Soto, D. et al. (2021). “A methodological roadmap to quantify animal-vectored spatial

ecosystem subsidies”. Journal of Animal Ecology 90.7, pp. 1605–1622. DOI: 10 . 1111 /

1365-2656.13538.

Enquist, B. J. et al. (2020). “The megabiota are disproportionately important for biosphere func-

tioning”. Nature Communications 11.1, p. 699. DOI: 10.1038/s41467-020-14369-y.

143



Felton, A. M. et al. (2018). “The complexity of interacting nutritional drivers behind food selec-

tion, a review of northern cervids”. Ecosphere 9 (5). DOI: 10.1002/ecs2.2230.

Fronhofer, E. A., T. Hovestadt, and H.-J. Poethke (2013). “From random walks to informed

movement”. Oikos 122.6, pp. 857–866. DOI: 10.1111/j.1600-0706.2012.21021.x.

Galbraith, E. D. and A. C. Martiny (2015). “A simple nutrient-dependence mechanism for pre-

dicting the stoichiometry of marine ecosystems”. Proceedings of the National Academy of

Sciences of the United States of America 112 (27), p. 201423917. DOI: 10.1073/pnas.

1423917112.

Gounand, I. et al. (2018). “Meta-Ecosystems 2.0: Rooting the Theory into the Field”. Trends in

Ecology & Evolution 33.1, pp. 36–46. DOI: 10.1016/j.tree.2017.10.006.

Haddad, N. M. et al. (2015). “Habitat fragmentation and its lasting impact on Earth’s ecosys-

tems”. Science Advances 1.2, pp. 1–10. DOI: 10.1126/sciadv.1500052.

Harfoot, M. B. J. et al. (2014). “Emergent Global Patterns of Ecosystem Structure and Func-

tion from a Mechanistic General Ecosystem Model”. PLoS Biology 12.4. DOI: 10.1371/

journal.pbio.1001841.

Harvey, E. et al. (2021). “A general meta-ecosystem model to predict ecosystem function at land-

scape extents”. DOI: 10.22541/au.162799968.80128369/v1.

Hawlena, D. and O. J. Schmitz (2010). “Herbivore physiological response to predation risk and

implications for ecosystem nutrient dynamics”. Proceedings of the National Academy of Sci-

ences of the United States of America 107.35, pp. 15503–15507. DOI: 10 . 1073 / pnas .

1009300107.

Hoeks, S. et al. (2020). “Mechanistic insights into the role of large carnivores for ecosystem

structure and functioning”. Ecography 43.12, pp. 1752–1763. DOI: 10.1111/ecog.05191.

Holdo, R. M., R. D. Holt, et al. (2011). “Migration impacts on communities and ecosystems: em-

pirical evidence and theoretical insights”. In: Animal Migration. Ed. by E. J. Milner-Gulland,

J. M. Fryxell, and A. R. E. Sinclair. Oxford: Oxford University Press. Chap. Chapter 9, pp. 130–

143. DOI: 10.1093/acprof:oso/9780199568994.003.0009.

144



Holdo, R. M., A. R. Sinclair, et al. (2009). “A disease-mediated trophic cascade in the Serengeti

and its implications for ecosystem C”. PLoS Biology 7.9. DOI: 10.1371/journal.pbio.

1000210.

Johnson, C. A. et al. (2013). “30 Days in the Life: Daily Nutrient Balancing in a Wild Chacma

Baboon”. PLoS One 8.7. Ed. by T. Deschner, e70383. DOI: 10 . 1371 / journal . pone .

0070383.

Krebs, C. J., R. Boonstra, and S. Boutin (2018). “Using experimentation to understand the 10-

year snowshoe hare cycle in the boreal forest of North America”. Journal of Animal Ecology

87.1. Ed. by K. Wilson, pp. 87–100. DOI: 10.1111/1365-2656.12720. eprint: 0608246v3.

Laundré, J. W. et al. (2014). “The landscape of fear: the missing link to understand top-down and

bottom-up controls of prey abundance?” Ecology 95.5, pp. 1141–1152. DOI: 10.1890/13-

1083.1.

Leal, M., O. Seehausen, and B. Matthews (2017). “The ecology and evolution of stoichiometric

phenotypes”. Trends in Ecology & Evolution 32.2, pp. 108–117. DOI: 10.1016/j.tree.

2016.11.006.

Leroux, S. J., L. Charron, et al. (2021). “Cumulative effects of spruce budworm and moose her-

bivory on boreal forest ecosystems”. Functional Ecology 35.7, pp. 1448–1459. DOI: 10 .

1111/1365-2435.13805.

Leroux, S. J., D. Hawlena, and O. J. Schmitz (2012). “Predation risk, stoichiometric plasticity

and ecosystem elemental cycling”. Proceedings of the Royal Society B Biological Sciences

279.1745, pp. 4183–4191. DOI: 10.1098/rspb.2012.1315.

Leroux, S. J. and M. Loreau (2010). “Consumer-mediated recycling and cascading trophic inter-

actions”. Ecology 91.7, pp. 2162–2171. DOI: 10.1890/09-0133.1.

Leroux, S. J. and O. J. Schmitz (2015). “Predator-driven elemental cycling: the impact of pre-

dation and risk effects on ecosystem stoichiometry”. Ecology and Evolution 5.21, pp. 4976–

4988. DOI: 10.1002/ece3.1760.

145



Leroux, S. J., E. Vander Wal, et al. (2017). “Stoichiometric distribution models: ecological stoi-

chiometry at the landscape extent”. Ecology Letters 20 (12), pp. 1495–1506. DOI: 10.1111/

ele.12859.

Leroux, S. J., Y. F. Wiersma, and E. Vander Wal (2020). “Herbivore Impacts on Carbon Cycling

in Boreal Forests”. Trends in Ecology & Evolution 35.11, pp. 1001–1010. DOI: 10.1016/j.

tree.2020.07.009.

Lima, S. L. and P. A. Zollner (1996). “Towards a behavioral ecology of ecological landscapes”.

Trends in Ecology & Evolution 11 (3), pp. 131–135. DOI: 10.1016/0169-5347(96)81094-

9.

Little, C. J. et al. (in review). “Filling the Information Gap in Meta-Ecosystem Ecology”. Oikos.

manuscript id: OIK-08892.R1. EcoEvoRxiv preprint. DOI: 10.32942/osf.io/hc83u.

Loreau, M. (2010). From populations to ecosystems: Theoretical foundations for a new ecologi-

cal synthesis. Princeton University Press, p. 320. DOI: 10.1515/9781400834167.

Loreau, M., N. Mouquet, and R. D. Holt (2003). “Meta-ecosystems: A theoretical framework for

a spatial ecosystem ecology”. Ecology Letters 6.8, pp. 673–679. DOI: 10.1046/j.1461-

0248.2003.00483.x.

Marleau, J. N. et al. (2020). “Converting Ecological Currencies: Energy, Material, and Informa-

tion Flows”. Trends in Ecology & Evolution 35.12, pp. 1068–1077. DOI: 10.1016/j.tree.

2020.07.014.

Marsh, K. J. et al. (2014). “Feeding rates of a mammalian browser confirm the predictions of a

’foodscape’ model of its habitat”. Oecologia 174 (3), pp. 873–882.

Martiny, A. C. et al. (2013). “Strong latitudinal patterns in the elemental ratios of marine plank-

ton and organic matter”. Nature Geoscience 6 (4), pp. 279–283. DOI: 10.1038/ngeo1757.

Massol, F. et al. (2017). “How life-history traits affect ecosystem properties: effects of dispersal

in meta-ecosystems”. Oikos 126.4, pp. 532–546. DOI: 10.1111/oik.03893.

McNaughton, S. J. (1990). “Mineral nutrition and seasonal movements of African migratory un-

gulates”. Nature 345.6276, pp. 613–615. DOI: 10.1038/345613a0.

146



McNaughton, S. J. et al. (1989). “Ecosystem-level patterns of primary productivity and herbivory

in terrestrial habitats”. Nature 341, pp. 142–144. DOI: 10.1038/341142a0.

Montgomery, R. A. et al. (2014). “Where Wolves Kill Moose: The Influence of Prey Life History

Dynamics on the Landscape Ecology of Predation”. PLoS One 9.3, e91414. DOI: 10.1371/

journal.pone.0091414.

Nie, Y. et al. (2015). “Obligate herbivory in an ancestrally carnivorous lineage: The giant panda

and bamboo from the perspective of nutritional geometry”. Functional Ecology 29 (1), pp. 26–

34. DOI: 10.1111/1365-2435.12302.

O’Connor, M. I. et al. (2019). “Principles of Ecology Revisited: Integrating Information and Eco-

logical Theories for a More Unified Science”. Frontiers in Ecology and Evolution 7.June,

pp. 1–20. DOI: 10.3389/fevo.2019.00219.

Pastor, J., Y. Cohen, and N. T. Hobbs (2006). “The roles of large herbivores in ecosystem nu-

trient cycles”. In: Large herbivore ecology. Ecosystem dynamics and conservation. Ed. by

K. Danell et al. Conservation Biology. Cambridge University Press, pp. 289–325. DOI: 10.

1017/CBO9780511617461.012.

Pastor, J., B. Dewey, et al. (1993). “Moose Browsing and Soil Fertility in the Boreal Forests of

Isle Royale National”. Ecology 74.2, pp. 467–480. DOI: 10.2307/1939308.

Pastor, J. and R. J. Naiman (1992). “Selective Foraging and Ecosystem Processes in Boreal Forests”.

The American Naturalist 139.4, pp. 690–705. DOI: 10.1086/285353.

Powell, R. A. and M. S. Mitchell (2012). “What is a home range?” Journal of Mammalogy 93

(4), pp. 948–958. DOI: 10.1644/11-MAMM-S-177.1.

Raubenheimer, D. (2011). “Toward a quantitative nutritional ecology: the right-angled mixture

triangle”. Ecological Monographs 81.3, pp. 407–427. DOI: 10.1890/10-1707.1.

Richmond, I. C. et al. (2021). “Individual snowshoe hares manage risk differently: Integrating

stoichiometric distribution models and foraging ecology.” Journal of Mammalogy. Accepted,

manuscript id: JMAMM–2021–026.R2.

147



Rizzuto, M., C. Carbone, and S. Pawar (2018). “Foraging constraints reverse the scaling of ac-

tivity time in carnivores”. Nature Ecology & Evolution 2.2, pp. 247–253. DOI: 10.1038/

s41559-017-0386-1.

Rosell, F. et al. (2005). “Ecological impact of beavers castor fiber and castor canadensis and their

ability to modify ecosystems”. Mammal Review 35.3-4, pp. 248–276. DOI: 10.1111/j.

1365-2907.2005.00067.x.

Sanders, D. et al. (2021). “A meta-analysis of biological impacts of artificial light at night”. Na-

ture Ecology & Evolution 5.1, pp. 74–81. DOI: 10.1038/s41559-020-01322-x.

Schiesari, L. et al. (2019). “Towards an applied metaecology”. Perspectives in Ecology and Con-

servation 17.4, pp. 172–181. DOI: 10.1016/j.pecon.2019.11.001.

Schmitz, O. J., D. Hawlena, and G. C. Trussell (2010). “Predator control of ecosystem nutrient

dynamics”. Ecology Letters 13.10, pp. 1199–1209. DOI: 10.1111/j.1461-0248.2010.

01511.x.

Schmitz, O. J. and S. J. Leroux (2020). “Food Webs and Ecosystems: Linking Species Inter-

actions to the Carbon Cycle”. Annual Review of Ecology, Evolution, and Systematics 51.1,

pp. 271–295. DOI: 10.1146/annurev-ecolsys-011720-104730.

Schmitz, O. J., J. R. B. Miller, et al. (2017). “Toward a community ecology of landscapes: pre-

dicting multiple predator-prey interactions across geographic space”. Ecology 98.9, pp. 2281–

2292. DOI: 10.1002/ecy.1916. eprint: 0608246v3.

Schmitz, O. J., P. A. Raymond, et al. (2014). “Animating the carbon cycle”. Ecosystems 17.2,

pp. 344–359. DOI: 10.1007/s10021-013-9715-7.

Schmitz, O. J., C. C. Wilmers, et al. (2018). “Animals and the zoogeochemistry of the carbon

cycle”. Science 362 (6419), eaar3213. DOI: 10.1126/science.aar3213.

Schradin, C. et al. (2010). “Female home range size is regulated by resource distribution and in-

traspecific competition: a long-term field study”. Animal Behaviour 79.1, pp. 195–203. DOI:

10.1016/j.anbehav.2009.10.027.

148



Spencer, W. D. (2012). “Home ranges and the value of spatial information”. Journal of Mammal-

ogy 93.4, pp. 929–947. DOI: 10.1644/12-MAMM-S-061.1.

Sperfeld, E. et al. (2016). “Bridging Ecological Stoichiometry and Nutritional Geometry with

homeostasis concepts and integrative models of organism nutrition”. Functional Ecology,

pp. 1–11. DOI: 10.1111/1365-2435.12707.

Sterner, R. W. (2004). “A one-resource ”stoichiometry””. Ecology 85 (7), pp. 1813–1816. URL:

https://www.jstor.org/stable/3450351.

Sterner, R. W. and J. J. Elser (2002). Ecological stoichiometry: the biology of elements from

molecules to the biosphere. 1st ed. Princeton University Press, p. 464. URL: https://www.

jstor.org/stable/j.ctt1jktrp3. Accessed 26 July 2021.

Strickland, M. S. et al. (2013). “Trophic cascade alters ecosystem carbon exchange”. Proceed-

ings of the National Academy of Sciences of the United States of America 110.27, pp. 11035–

11038. DOI: 10.1073/pnas.1305191110.

Subalusky, A. L. et al. (2018). “Organic matter and nutrient inputs from large wildlife influence

ecosystem function in the Mara River, Africa”. Ecology 99.11, pp. 2558–2574. DOI: 10 .

1002/ecy.2509.

Tucker, M. A., K. Böhning-Gaese, et al. (2018). “Moving in the Anthropocene: Global reduc-

tions in terrestrial mammalian movements”. Science 359.6374, pp. 466–469. DOI: 10.1126/

science.aam9712.

Tucker, M. A., T. J. Ord, and T. L. Rogers (2014). “Evolutionary predictors of mammalian home

range size: Body mass, diet and the environment”. Global Ecology and Biogeography 23

(10), pp. 1105–1114. DOI: 10.1111/geb.12194.

Wirsing, A. J. et al. (2021). “The context dependence of non-consumptive predator effects”.

Ecology Letters 24.1. Ed. by J. Chase, pp. 113–129. DOI: 10.1111/ele.13614.

149



Appendices

150



APPENDIX A

Supplementary Information for Chapter 2: Patterns and potential drivers of intraspecific vari-

ability in the body C, N, P composition of a terrestrial consumer, the snowshoe hare (Lepus amer-

icanus)

A.1 Introduction

This appendix contains supplementary information on the rationale, data collection and anal-

yses, and model selection for our study of the ecological stoichiometry of snowshoe hares (L.

americanus) and its drivers. In Appendix A.2, we provide additional predictions for the influ-

ence of age, sex, and body size or conditions on the values of the stoichiometric ratios measured

from our sample animals. Appendix A.3 describes our data collection protocol in more detail, fo-

cusing on the methods use to collect morphometric data (Appendix A.3.1), determine the age of

hares in our sample (Appendix A.3.2), identify their sex (Appendix A.3.3), calculate the Scaled

Mass Index (Appendix A.3.4), and on the methods used to asses intra-individual variability (Ap-

pendix A.3.5) and to calculate stoichiometric ratios (Appendix A.3.6). In Appendix A.4, we

provide additional details on our Variance Inflation Factor analysis. Appendix A.5 describes in

detail the process and rationale for removing uninformative parameters from our models, and

provides full AICc model selection tables (Tables A.4 to A.15). Finally, in Appendix A.6 and

Appendix A.7 we provide additional figures and tables, respectively.

A.2 Ratios Predictions

Based on snowshoe hare ecology, we predict that (1) older snowshoe hares would have lower

C:N, C:P, and N:P than younger ones due to the larger size of their skeleton and muscle mass.

We also predict that (2) male snowshoe hares would have higher C:N, C:P, and N:P than females

due to their lower reproductive costs. Finally, for body size and condition, we predict (3) hares in
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better conditions to have lower C:N, C:P, and N:P than those in worse condition.

A.3 Data Collection

In this section, we provide details on the laboratory protocols we used to obtain data on morphol-

ogy, age, sex, and body condition of the snowshoe hares in our sample. We additionally provide

details on the protocols used to assess intra-individual stoichiometric variation and how we cal-

culated molar weights and elemental ratios. At AFL, the limit of detection (henceforth, LOD)

for C and N from plant or other organic material is 0.02% (N. Schrier, personal communication),

determined using a reagent blank (i.e., the tin capsule) and calculated as:

𝐿𝑂𝐷 = 3 × 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 10 𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑒𝑠 (A.1)

For P, the method detection limit is 12 ppm with a reporting limit of 100 ppm, obtained using the

digestion solution as a reagent blank (CWA Methods Team 2016).

A.3.1 Morphometric Data

Following Peig and Green (2009)’s recommendation of testing a range of different length mea-

surements before selecting the one used in the Scaled Mass Index calculations, from each of

our 50 snowshoe hares we collected four different length measurements. These were total body

length, left hind foot length, skull length and skull width. We measured total body length from

the tip of the nose to the anus. We measured the left hind foot from the knee joint to the tip of

the nail of the middle finger, while pressing down the foot and spreading the fingers. As for the

skull measurements, we took length as the distance between the tip of the nose and the base of

the skull and width as the width at the cheekbones. We took each measurement to the nearest

0.1mm and repeated each measurement three times. We collected and handled data from our lab-

oratory processing in digital format, by using a digital collection form (FileMaker Pro v. 14.0,

Claris International Inc. 2015) on an iPad Mini 2 (Apple Inc., Cupertino, CA), thus removing the
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potential error-prone step of transferring information from physical data collection forms to digi-

tal spreadsheets.

A.3.2 Age Determination

Ageing snowshoe hares can be difficult, as their teeth grow continuously throughout their lives.

Hence, traditional cementum-based ageing techniques are not available for this species. We used

a mixed approach that involved combining an ageing method developed by Iason (1988) for for

mountain hares (Lepus timidus) and standard histological procedures for examining bone sec-

tions.

For each of our 50 snowshoe hares, we extracted the complete mandibular bone. We carefully

cleaned it both by hand, removing as much soft tissue as possible before drying the bones out and

storing them in desiccators to prevent mold formation. To further clean each bone, we let carrion

beetles (family: Dermestidae) digest all remaining soft tissue over a period of two weeks and

until the bone was completely clean. Each bone was individually tagged with its specimen’s ID

before beetle digestion. Once we cleaned all 50 bones, we shipped them to Matson’s Laboratory

(Manhattan, MT, USA) for age determination.

Here, mandible specimens were prepared for histological examination following standard

procedure. Each sample was decalcified in a weak acidic solution, then embedded in a paraffin

block to allow sectioning at 14 µm using a microtome. We used Iason (1988) as a guideline to

choose the location of the section. The resulting section was mounted, stained, coverslipped, and

examined for age determination under magnification (Figures A.6 and A.7).

A.3.3 Sex Determination

Genetic sex determination followed the protocol detailed by Shaw, Wilson, and White (2003).

This protocol uses mammal-specific primers that amplify an intron region of the zinc-finger re-

gions of the X and Y chromosomes. For snowshoe hares in this study, these regions weighted ap-

proximately 1500 bp in female (ZFNx) and 950 bp in males (ZFNy). Since no complete genome
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sequence exists for snowshoe hare yet, we used a set of primers widely used in mammalian ge-

netic sex determination by Shaw, Wilson, and White (2003).

The PCR used a reaction volume of 25 µL with 1 µL each of the forward and reverse primers

and 10 µL of 2X Promega PCR Master Mix. The PCR consisted of one 5-minutes cycle at 95 °C.

This was followed by a sequence of 30 s at 94 °C, 60 s at 52 °C, and 60 s at 72 °C, which was re-

peated for 35 cycles before a final cycle at 72 °C for 2 minutes. The end product was held at 4 °C

before being electrophoresed on a 1.5% agarose gel in 1X TBE. The Genomics and Proteomics

Laboratory at Memorial University of Newfoundland performed all DNA-based analyses and

determined the sex of the individuals.

A.3.4 Scaled Mass Index Calculation

Multiple indices of body condition exist which differ in both how they define “body condition”

and in how they calculate it (Peig and Green 2010). Most indices fall in one of three categories:

ratios, whose units are often difficult to interpret; residuals, computed using units of mass; or

non-dimensional indices (Stevenson and Woods 2006). Recent evidence also suggests that mul-

tiple regression, while not an index per se, provides a valuable alternative (Labocha, Schutz,

and Hayes 2014). As the debate surrounding BCIs is ongoing, no clear “best” index emerged so

far, and the decision on which one to apply to one’s work is often heavily dependent on the his-

tory and traditions of a certain subfield of ecology (Stevenson and Woods 2006; Peig and Green

2010). In our study, we used the Scaled Mass Index developed by Peig and Green (2009).

We computed the Scaled Mass Index (SMI) following the procedure detailed by Peig and

Green (2009), which consists of three steps: (1) investigate which body length measurement (𝐿)
has the strongest relationship with body weight (𝑀) using bivariate plots, (2) fit a Standardized

Major Axis (SMA) regression to the ln-transformed bivariate plots, and (3) calculate the SMI

using the scaling exponent of the SMA (𝑏𝑆𝑀𝐴) from the strongest length-weight relationship

identified earlier and a Thorpe-Lleonart scaling model (see main text for details). We began by

producing bivariate plots for each of the four length measurements we collected from our spec-
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imens (Figure A.1). From visual inspection, both average left hind foot length (HFL) and aver-

age skull length appeared to have a strong relationship with body weight. HFL also correlated

strongly with average body length (ABL), as well as allowing us to compare our results with

other published studies. Thus, we chose to proceed using HFL. We then used the function sma

in R package smatr (Warton et al. 2012) to fit a SMA to the ln-transformed values of HFL and

body weight. Finally, we extracted the slope value (𝑏𝑆𝑀𝐴) and computed the SMI using Peig and

Green’s equation (eq. 2.1).

As the SMI presents several individual components that may vary, we tested the sensitivity

of our results to changes in the length measurement used to calculate it by running the analyses

again using Skull Length instead of HFL. We obtained qualitatively similar results with this alter-

native measure of body size (Tables A.1 and A.2).

A.3.5 Intra-individual Stoichiometric Variability

Our study is one of the first to specifically assess intraspecific variability in the content of C, N,

and P in a terrestrial vertebrate. As such, no precedent existed that could inform us as to whether

our hares could show significant intra-individual variability in the concentrations of the three

elements of interest or not. We addressed this issue in two ways.

First, during our laboratory sample collection, we randomly selected five individuals. For

each of these specimens, we collected three separate samples of the homogeneous paste result-

ing from our homogenization process. These three samples were identified with a progressive

letter appended to their individual identifier (e.g., “TCH037_A”, “TCH037_B”, “TCH037_C”)

and underwent the same drying, hand-grinding, weighting, storing, and analysis protocol as the

rest of the samples. Thus, along the 50 samples we sent to the Agriculture and Food Labora-

tory at the University of Guelph, we sent 10 additional samples, 2 each for specimens TCH037,

TCH040, TCH042, TCH045, and TCH048. Second, at AFL, lab technicians ran the analyses in

triplicate on each sample, providing us with a quantitative assessment of within-sample variabil-

ity. We adopted this approach because pilot analyses performed at AFL on a subset of samples
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indicated that %C and %N had a potentially higher intra-individual variability than %P. For %P,

we nonetheless ran 5 samples in duplicate as part of AFL’s internal quality assurance protocol.

The raw data we received from AFL are available online as a separate dataset and shown in Fig-

ures A.2 and A.3. None of our samples presented strong intra-individual variability in the content

of C and N, so we averaged the three %C and %N values we received from each sample in sub-

sequent analyses. As for the samples we submitted to AFL in triplicate, we computed the grand

mean (mean of the mean) of the values of %C and %N, and then used these values in the analy-

ses.

A.3.6 Obtaining Molar Weights and Elemental Ratios

To obtain molar and stoichiometric ratios for the three elements of interest, we converted the

original percentage data into weight of each element. To do this, we first calculated the dry body

weight of each snowshoe hare in our sample as:

𝑆𝑎𝑚𝑝𝑙𝑒 𝐷𝑟𝑦 𝑊𝑒𝑖𝑔ℎ𝑡𝑆𝑎𝑚𝑝𝑙𝑒 𝑊𝑒𝑡 𝑊𝑒𝑖𝑔ℎ𝑡 ∶ 𝐻𝑎𝑟𝑒 𝐷𝑟𝑦 𝑊𝑒𝑖𝑔ℎ𝑡𝐻𝑎𝑟𝑒 𝑊𝑒𝑡 𝑊𝑒𝑖𝑔ℎ𝑡 (A.2)

We then used the atomic weights for Carbon (C), Nitrogen (N), and Phosphorus (P) to calculate

the corresponding molar ratios (Meija et al. 2016). We then computed the stoichiometric ratios

by dividing the molar ratio of two elements and repeated this procedure for each pair of elements.

As part of this process, we also calculated each hare’s water content (in g) as:

(𝑆𝑎𝑚𝑝𝑙𝑒 𝑊𝑒𝑡 𝑊𝑒𝑖𝑔ℎ𝑡 − 𝑆𝑎𝑚𝑝𝑙𝑒 𝐷𝑟𝑦 𝑊𝑒𝑖𝑔ℎ𝑡𝑆𝑎𝑚𝑝𝑙𝑒 𝑊𝑒𝑡 𝑊𝑒𝑖𝑔ℎ𝑡 ) × 𝐻𝑎𝑟𝑒 𝑊𝑒𝑡 𝑊𝑒𝑖𝑔ℎ𝑡 (A.3)

A.4 Variance Inflation Factor Analysis

We used Variance Inflation Factor analysis to investigate collinearity among the predictor vari-

ables included in our models. We tested for independence among our variables using a VIF thresh-

old value of <3 (Yalcin and Leroux 2018). To do so, we used function vifstep in R package
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usdm (Naimi et al. 2014), and ran the analyses twice, once for each of the two length measure-

ments used to calculated the SMI and 𝐾𝑛 (see above, Appendix A.3.4). The results of the VIF
analyses indicate that, when using HFL to calculate the SMI, average body length has a collinear-

ity problem (i.e., VIF>3). We addressed this problem by never fitting a model containing 𝐾𝑛 and
ABL at the same time. In all other cases, no collinearity issues arise (Table A.3).

A.5 Model Selection

A.5.1 Removal of Uninformative Parameters

An uninformative parameter (or “pretending variable”) is a variable that does not have a rela-

tionship with the response and does not improve a model’s fit to the data (i.e., its log-likelihood)

or does so only marginally but, based on its AICc value, is included in a model that is ranked

close to models with informative parameters (Burnham and Anderson 2002; Arnold 2010; Ler-

oux 2019). Reporting and interpretation of results from models including uninformative param-

eters is a widespread, yet unappreciated, issue in ecological literature (Leroux 2019). To avoid

this issue, after fitting our set of models to each response variable, we reviewed the resulting

AICc table and removed models including likely uninformative parameters. We followed Leroux

(2019)’s decision tree to identify and deal with uninformative parameters in our model set. We

report a summarized version of each response’s AICc table in the main text. Below, we report

the complete AICc tables for each response variable, with models that contained uninformative

parameters highlighted.

When using left hind foot length to calculate the relative body condition (𝐾𝑛), for %N, 𝐾𝑛,
sex, and average body condition (ABL) were uninformative parameters (Table A.4). For %P,

both sex and age behaved as pretending variables and we thus removed them from the final AICc

table (Table A.5). For %C, all parameters were uninformative (Table A.6). For the C:N ratio,

all variables other than age behaved as uninformative parameters (Table A.7). For C:P and N:P

ratios, we found that all variables were uninformative parameters (Tables A.8 and A.9).
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When using skull length as length measurement in the SMI formula to calculate the relative

body condition (Sk𝐾𝑛; see eq. 2.1 in main text and above, Appendix A.3.4), for %N, all variables
other than age proved to be uninformative parameters and we removed all models including them

(Table A.10). For %P, we found that the age, sex, and relative body condition were uninforma-

tive parameters, and thus we removed them (Table A.11). For %C, we found all parameters to be

pretending variables (Table A.12). For the C:N ratio, all variables other than age were uninforma-

tive parameters (Table A.13). For C:P and N:P ratios, we removed all models other than the null

model, as all variables were uninformative (Tables A.14 and A.15).

A.6 Additional Tables

In this section, we provide supplementary tables. Table A.1 shows %C, %N, and %P results for

models using skull length to calculate the Scaled Mass Index (Sk𝐾𝑛; see eq. 2.1 in main text and
above, Appendix A.3.4). Likewise, Table A.2 shows results for C:N, C:P, and N:P ratios when

using skull length to calculate the SMI. Table A.3 shows the results of our Variance Inflation

Factor analysis. Tables A.4 to A.9 show full AICc model selection tables when using left hind

foot length to calculate the relative body condition (𝐾𝑛). Tables A.10 to A.15 show full AICc

model selection tables for models including relative body condition calculated using skull length

as length measurement in the SMI formula. Table A.16 compares the Observed body size range

in our study sample with the Expected values for snowshoe hares, as well as that of several other

species for which stoichiometric composition has been published. Finally, Table A.17 shows C,

N, P body stoichiometry data for our species of interest, the snowshoe hares, together with data

on a range of other taxonomic groups collected from published sources.
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Table A.1: Top ranking GLMs for %C, %N, and %P based on ΔAICc, when Scale Mass Index
and relative body condition (𝐾𝑛) calculations are based on average skull length. Only the models
that scored better than the null model are reported, together with the null model. k, number of
parameters in a model, LL, log-likelihood, 𝑆𝑘𝐾𝑛, skull length-derived relative body condition,
ABL, average total body length. Coefficient values are presented as estimate (±SE).

%N top models Coefficients

k LL ΔAICc 𝑅2 Intercept Age 𝑆𝑘𝐾𝑛 ABL

3 −56.599 0.000 0.066 11.367
(±0.141) −0.160

(±0.087)
2 −58.306 1.147 0.000 11.200

(±0.111)
%P top models Coefficients

k LL ΔAICc 𝑅2 Intercept Age 𝑆𝑘𝐾𝑛 ABL

3 −36.252 0.000 0.047 0.687
(±1.495) 0.054

(±0.035)
2 −37.444 0.118 0.000 2.974

(±0.073)
%C top models Coefficients

k LL ΔAICc 𝑅2 Intercept Age 𝑆𝑘𝐾𝑛 ABL

2 −118.090 0.000 0.000 43.606
(±0.367)
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Table A.2: Top ranking GLMs for C:N, C:P, and N:P values based on ΔAICc, when Scale Mass
Index and relative body condition (𝐾𝑛) calculations are based on average skull length. All speci-
fication as in Table A.1.

C:N top models Coefficients

k LL ΔAICc 𝑅2 Intercept Age 𝑆𝑘𝐾𝑛 ABL

3 −27.818 0.00 0.074 4.465
(±0.079) 0.095

(±0.049)
2 −29.731 1.59 0.000 4.564

(±0.063)
C:P top models Coefficients

k LL ΔAICc 𝑅2 Intercept Age 𝑆𝑘𝐾𝑛 ABL

2 −178.30 0.000 0.000 39.205
(±1.223)

N:P top models Coefficients

k LL ΔAICc 𝑅2 Intercept Age 𝑆𝑘𝐾𝑛 ABL

2 −94.153 0.000 0.000 8.580
(±0.227)

Table A.3: Results of the Variance Inflation Factor analysis run on the four explanatory vari-
ables included in the set of 22 GLMs fitted to the data. Note that no model included both Rela-
tive Body Condition (𝐾𝑛) and Average Body Length (ABL). The > 3 result for ABL when SMI,
and hence 𝐾𝑛, is calculated from HFL is likely due to the stronger relationship between ABL and
HFL than between ABL and Skull Length.

Variable Did it pass the VIF <3 test?

SMI from HFL SMI from Skull Length𝐾𝑛 2.504 2.101
Age 1.572 1.432
Sex 1.034 1.064
ABL 3.225 2.052
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Table A.4: Full AICc table for the model set fitted to the %N data. Only one model performed
better than the intercept-only (i.e., null) model. The table is sorted according to the smallestΔAICc value. In this case, relative body condition (𝐾𝑛) was calculated using left hind foot length
(see main text). For each model, we report the number of parameters it estimates (k), its AICc
and ΔAICc values, the model’s Log-Likelihood (LL) and the model’s fit to the data (𝑅2). Rela-
tive body condition (𝐾𝑛), sex, and average body length (ABL) were uninformative parameters.
Accordingly, we greyed-out all models including these variables.

Model k AICc ΔAICc LL R2
Age 3 119.721 0.000 −56.600 0.066
Intercept 2 120.868 1.147 −58.306 0.000
Age + 𝐾𝑛 4 121.194 1.473 −56.153 0.083
Age + ABL 4 121.735 2.014 −56.423 0.073
Age + Sex 4 122.076 2.355 −56.594 0.066𝐾𝑛 3 122.633 2.912 −58.055 0.010
ABL 3 122.985 3.264 −58.232 0.003
Sex 3 123.112 3.391 −58.295 0.000
Age + 𝐾𝑛 + Age:𝐾𝑛 5 123.473 3.753 −56.055 0.086
Age + 𝐾𝑛 + Sex 5 123.632 3.911 −56.134 0.083
Age + ABL + Age:ABL 5 124.016 4.295 −56.326 0.076
Age + Sex + Age:Sex 5 124.193 4.472 −56.415 0.073
Age + ABL + Sex 5 124.196 4.475 −56.416 0.073
Sex + 𝐾𝑛 4 124.989 5.269 −58.050 0.010
Sex + ABL 4 125.335 5.614 −58.223 0.003
Age + 𝐾𝑛 + Sex + Sex:𝐾𝑛 6 125.762 6.041 −55.904 0.092
Age + 𝐾𝑛 + Sex + Age:𝐾𝑛 6 126.006 6.285 −56.026 0.087
Age + ABL + Sex + Sex:ABL 6 126.423 6.703 −56.235 0.080
Age + ABL + Sex + Age:ABL 6 126.594 6.873 −56.320 0.076
Sex + 𝐾𝑛 + Sex:𝐾𝑛 5 126.965 7.244 −57.801 0.020
Sex + ABL + Sex:ABL 5 127.730 8.009 −58.183 0.005
Age + 𝐾𝑛 + Sex + Sex:𝐾𝑛 + Age:𝐾𝑛 7 128.261 8.540 −55.797 0.096
Age + ABL + Sex + Sex:ABL + Age:ABL 7 129.038 9.317 −56.186 0.081
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Table A.5: Full AICc table for the model set fitted to the %P data. Two models performed better
than the intercept-only (i.e., null) model. Both include proxies for body size: relative body condi-
tion and average body length, respectively. Both sex and age were uninformative parameters. All
specifications as in Table A.4.

Model k AICc ΔAICc LL R2𝐾𝑛 3 77.635 0.000 −35.556 0.073
ABL 3 79.026 1.391 −36.252 0.047
Intercept 2 79.144 1.509 −37.444 0.000
Sex + 𝐾𝑛 4 79.946 2.312 −35.529 0.074
Age + 𝐾𝑛 4 79.970 2.335 −35.540 0.073
Age + ABL 4 81.208 3.573 −36.159 0.050
Age 3 81.266 3.632 −37.372 0.003
Sex + ABL 4 81.393 3.758 −36.252 0.047
Sex 3 81.402 3.767 −37.440 0.000
Sex + 𝐾𝑛 + Sex:𝐾𝑛 5 82.328 4.693 −35.482 0.075
Age + 𝐾𝑛 + Sex 5 82.400 4.765 −35.518 0.074
Age + 𝐾𝑛 + Age:𝐾𝑛 5 82.403 4.768 −35.519 0.074
Age + ABL + Age:ABL 5 82.905 5.270 −35.771 0.065
Sex + ABL + Sex:ABL 5 83.583 5.949 −36.110 0.052
Age + Sex 4 83.632 5.997 −37.372 0.003
Age + ABL + Sex 5 83.678 6.043 −36.157 0.050
Age + 𝐾𝑛 + Sex + Sex:𝐾𝑛 6 84.894 7.259 −35.470 0.076
Age + 𝐾𝑛 + Sex + Age:𝐾𝑛 6 84.938 7.303 −35.492 0.075
Age + Sex + Age:Sex 5 85.418 7.783 −37.027 0.017
Age + ABL + Sex + Age:ABL 6 85.492 7.858 −35.769 0.065
Age + ABL + Sex + Sex:ABL 6 86.045 8.410 −36.046 0.054
Age + 𝐾𝑛 + Sex + Sex:𝐾𝑛 + Age:𝐾𝑛 7 87.556 9.921 −35.445 0.077
Age + ABL + Sex + Sex:ABL + Age:ABL 7 87.733 10.098 −35.533 0.074
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Table A.6: Full AICc table for the model set fitted to the %C data. No model performed better
than the intercept-only (i.e., null) model. All parameters were uninformative. All other specifica-
tions as in Table A.4.

Model k AICc ΔAICc LL R2
Intercept 2 240.436 0.000 −118.090 0.000
Age 3 241.703 1.268 −117.591 0.020𝐾𝑛 3 242.340 1.905 −117.909 0.007
ABL 3 242.452 2.016 −117.965 0.005
Sex 3 242.484 2.048 −117.981 0.004
Age + 𝐾𝑛 4 243.820 3.384 −117.465 0.025
Age + Sex 4 243.959 3.523 −117.535 0.022
Age + ABL 4 244.070 3.635 −117.591 0.020
Sex + 𝐾𝑛 4 244.445 4.009 −117.778 0.012
Sex + ABL 4 244.624 4.188 −117.868 0.009
Sex + 𝐾𝑛 + Sex:𝐾𝑛 5 245.787 5.351 −117.211 0.035
Sex + ABL + Sex:ABL 5 245.986 5.551 −117.311 0.031
Age + 𝐾𝑛 + Sex 5 246.150 5.714 −117.393 0.027
Age + 𝐾𝑛 + Age:𝐾𝑛 5 246.163 5.727 −117.399 0.027
Age + Sex + Age:Sex 5 246.197 5.761 −117.416 0.027
Age + ABL + Sex 5 246.433 5.997 −117.535 0.022
Age + ABL + Age:ABL 5 246.473 6.038 −117.555 0.021
Age + 𝐾𝑛 + Sex + Sex:𝐾𝑛 6 247.534 7.098 −116.790 0.051
Age + ABL + Sex + Sex:ABL 6 248.131 7.695 −117.089 0.039
Age + 𝐾𝑛 + Sex + Age:𝐾𝑛 6 248.576 8.140 −117.311 0.031
Age + ABL + Sex + Age:ABL 6 248.947 8.511 −117.497 0.023
Age + 𝐾𝑛 + Sex + Sex:𝐾𝑛 + Age:𝐾𝑛 7 250.083 9.647 −116.708 0.054
Age + ABL + Sex + Sex:ABL + Age:ABL 7 250.595 10.159 −116.964 0.044
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Table A.7: Full AICc table for the model set fitted to the C:N data. The age-only model was the
only one that performed better than the intercept-only (i.e., null) model. All other parameters
were uninformative. All specifications as in Table A.4.

Model k AICc ΔAICc LL R2
Age 3 62.158 0.000 −27.818 0.074
Intercept 2 63.718 1.559 −29.731 0.000
Age + ABL 4 64.391 2.233 −27.751 0.076
Age + 𝐾𝑛 4 64.452 2.293 −27.781 0.075
Age + Sex 4 64.507 2.349 −27.809 0.074
ABL 3 65.587 3.428 −29.533 0.008
Sex 3 65.825 3.667 −29.652 0.003𝐾𝑛 3 65.982 3.823 −29.730 0.000
Age + ABL + Age:ABL 5 66.668 4.510 −27.652 0.080
Age + ABL + Sex 5 66.849 4.690 −27.743 0.076
Age + 𝐾𝑛 + Sex 5 66.914 4.755 −27.775 0.075
Age + 𝐾𝑛 + Age:𝐾𝑛 5 66.926 4.768 −27.781 0.075
Age + Sex + Age:Sex 5 66.938 4.779 −27.787 0.075
Sex + ABL 4 67.820 5.661 −29.465 0.011
Sex + 𝐾𝑛 4 68.192 6.033 −29.652 0.003
Age + ABL + Sex + Age:ABL 6 69.238 7.080 −27.642 0.080
Age + ABL + Sex + Sex:ABL 6 69.419 7.261 −27.733 0.077
Age + 𝐾𝑛 + Sex + Sex:𝐾𝑛 6 69.478 7.320 −27.762 0.076
Age + 𝐾𝑛 + Sex + Age:𝐾𝑛 6 69.503 7.345 −27.775 0.075
Sex + ABL + Sex:ABL 5 70.121 7.963 −29.379 0.014
Sex + 𝐾𝑛 + Sex:𝐾𝑛 5 70.657 8.498 −29.646 0.003
Age + ABL + Sex + Sex:ABL + Age:ABL 7 71.892 9.733 −27.613 0.081
Age + 𝐾𝑛 + Sex + Sex:𝐾𝑛 + Age:𝐾𝑛 7 72.191 10.033 −27.762 0.076
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Table A.8: Full AICc table for the model set fitted to the C:P data. No model performed better
than the intercept-only (i.e., null) model. All parameters were uninformative. All specifications
as in Table A.4.

Model k AICc ΔAICc LL R2
Intercept 2 360.864 0.000 −178.304 0.000𝐾𝑛 3 361.583 0.719 −177.531 0.030
ABL 3 361.821 0.957 −177.650 0.026
Age 3 363.107 2.243 −178.293 0.000
Sex 3 363.111 2.247 −178.294 0.000
Sex + 𝐾𝑛 4 363.897 3.033 −177.504 0.032
Age + 𝐾𝑛 4 363.950 3.086 −177.531 0.030
Age + ABL 4 363.970 3.106 −177.541 0.030
Sex + ABL 4 364.182 3.318 −177.646 0.026
Age + Sex 4 365.460 4.596 −178.285 0.001
Age + ABL + Age:ABL 5 365.689 4.825 −177.163 0.045
Sex + ABL + Sex:ABL 5 366.249 5.385 −177.443 0.034
Age + 𝐾𝑛 + Age:𝐾𝑛 5 366.294 5.430 −177.465 0.033
Sex + 𝐾𝑛 + Sex:𝐾𝑛 5 366.351 5.487 −177.494 0.032
Age + 𝐾𝑛 + Sex 5 366.371 5.507 −177.504 0.032
Age + ABL + Sex 5 366.425 5.561 −177.531 0.030
Age + Sex + Age:Sex 5 367.688 6.824 −178.162 0.006
Age + ABL + Sex + Age:ABL 6 368.263 7.399 −177.155 0.045
Age + ABL + Sex + Sex:ABL 6 368.688 7.824 −177.367 0.037
Age + 𝐾𝑛 + Sex + Age:𝐾𝑛 6 368.811 7.947 −177.429 0.034
Age + 𝐾𝑛 + Sex + Sex:𝐾𝑛 6 368.940 8.077 −177.494 0.032
Age + ABL + Sex + Sex:ABL + Age:ABL 7 370.355 9.492 −176.844 0.057
Age + 𝐾𝑛 + Sex + Sex:𝐾𝑛 + Age:𝐾𝑛 7 371.503 10.639 −177.418 0.035
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Table A.9: Full AICc table for the model set fitted to the N:P data. No model performed better
than the intercept-only (i.e., null) model. All parameters were uninformative. All specifications
as in Table A.4.

Model k AICc ΔAICc LL R2
Intercept 2 192.561 0.000 −94.153 0.000
ABL 3 192.627 0.066 −93.053 0.043𝐾𝑛 3 193.015 0.454 −93.247 0.036
Age 3 193.747 1.186 −93.613 0.021
Age + 𝐾𝑛 4 194.546 1.985 −92.829 0.052
Sex 3 194.618 2.056 −94.048 0.004
Sex + ABL 4 194.844 2.282 −92.978 0.046
Age + ABL 4 194.856 2.294 −92.983 0.046
Sex + 𝐾𝑛 4 195.064 2.502 −93.088 0.042
Age + Sex 4 196.012 3.450 −93.561 0.023
Age + ABL + Age:ABL 5 196.760 4.199 −92.698 0.057
Age + 𝐾𝑛 + Sex 5 196.830 4.269 −92.733 0.055
Age + 𝐾𝑛 + Age:𝐾𝑛 5 196.953 4.392 −92.795 0.053
Sex + ABL + Sex:ABL 5 197.122 4.561 −92.879 0.050
Age + ABL + Sex 5 197.213 4.652 −92.925 0.048
Sex + 𝐾𝑛 + Sex:𝐾𝑛 5 197.539 4.977 −93.087 0.042
Age + Sex + Age:Sex 5 197.915 5.354 −93.276 0.034
Age + ABL + Sex + Age:ABL 6 199.242 6.681 −92.644 0.059
Age + 𝐾𝑛 + Sex + Age:𝐾𝑛 6 199.326 6.764 −92.686 0.057
Age + 𝐾𝑛 + Sex + Sex:𝐾𝑛 6 199.419 6.857 −92.733 0.055
Age + ABL + Sex + Sex:ABL 6 199.552 6.991 −92.799 0.053
Age + ABL + Sex + Sex:ABL + Age:ABL 7 201.485 8.924 −92.409 0.067
Age + 𝐾𝑛 + Sex + Sex:𝐾𝑛 + Age:𝐾𝑛 7 202.038 9.476 −92.686 0.057
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Table A.10: Full AICc table for the model set fitted to the %N data. In this case, relative body
condition was calculated using skull length (Sk𝐾𝑛; see text for details). Only one model per-
formed better than the intercept-only (i.e., null) model. Sex, average body length, and skull
length-derived relative body condition were uninformative parameters. All other specifications
as in Table A.4.

Model k AICc ΔAICc LL R2
Age 3 119.721 0.000 −56.600 0.066
Intercept 2 120.868 1.147 −58.306 0.000
Age + ABL 4 121.735 2.014 −56.423 0.073
Age + Sk𝐾𝑛 4 121.981 2.260 −56.546 0.068
Age + Sex 4 122.076 2.355 −56.594 0.066
Sk𝐾𝑛 3 122.773 3.052 −58.126 0.007
ABL 3 122.985 3.264 −58.232 0.003
Sex 3 123.112 3.391 −58.295 0.000
Age + Sk𝐾𝑛 + Age:Sk𝐾𝑛 5 123.845 4.124 −56.241 0.079
Age + ABL + Age:ABL 5 124.016 4.295 −56.326 0.076
Age + Sex + Age:Sex 5 124.193 4.472 −56.415 0.073
Age + ABL + Sex 5 124.196 4.475 −56.416 0.073
Age + Sk𝐾𝑛 + Sex 5 124.427 4.707 −56.532 0.069
Sex + Sk𝐾𝑛 4 125.099 5.378 −58.105 0.008
Sex + ABL 4 125.335 5.614 −58.223 0.003
Age + Sk𝐾𝑛 + Sex + Sex:Sk𝐾𝑛 6 125.756 6.035 −55.901 0.092
Sex + Sk𝐾𝑛 + Sex:Sk𝐾𝑛 5 126.389 6.668 −57.513 0.031
Age + ABL + Sex + Sex:ABL 6 126.423 6.703 −56.235 0.080
Age + Sk𝐾𝑛 + Sex + Age:Sk𝐾𝑛 6 126.432 6.711 −56.239 0.079
Age + ABL + Sex + Age:ABL 6 126.594 6.873 −56.320 0.076
Sex + ABL + Sex:ABL 5 127.730 8.009 −58.183 0.005
Age + Sk𝐾𝑛 + Sex + Sex:Sk𝐾𝑛 + Age:Sk𝐾𝑛 7 128.018 8.298 −55.676 0.100
Age + ABL + Sex + Sex:ABL + Age:ABL 7 129.038 9.317 −56.186 0.081
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Table A.11: Full AICc table for the model set fitted to the %P data. In this case, relative body
condition was calculated using skull length (Sk𝐾𝑛; see text for details). Only one model per-
formed better than the intercept-only (i.e., null) model. Age, sex, and skull length-derived rela-
tive body condition were uninformative parameters. All other specifications as in Table A.4.

Model k AICc ΔAICc LL R2
ABL 3 79.026 0.000 −36.252 0.047
Intercept 2 79.144 0.118 −37.444 0.000
Age + ABL 4 81.208 2.182 −36.159 0.050
Age 3 81.266 2.241 −37.372 0.003
Sk𝐾𝑛 3 81.364 2.339 −37.421 0.001
Sex + ABL 4 81.393 2.367 −36.252 0.047
Sex 3 81.402 2.376 −37.440 0.000
Age + ABL + Age:ABL 5 82.905 3.879 −35.771 0.065
Sex + ABL + Sex:ABL 5 83.583 4.558 −36.110 0.052
Age + Sex 4 83.632 4.606 −37.372 0.003
Age + Sk𝐾𝑛 4 83.632 4.607 −37.372 0.003
Age + ABL + Sex 5 83.678 4.652 −36.157 0.050
Sex + Sk𝐾𝑛 4 83.719 4.694 −37.415 0.001
Age + Sex + Age:Sex 5 85.418 6.392 −37.027 0.017
Age + ABL + Sex + Age:ABL 6 85.492 6.467 −35.769 0.065
Age + Sk𝐾𝑛 + Age:Sk𝐾𝑛 5 85.822 6.797 −37.229 0.009
Age + ABL + Sex + Sex:ABL 6 86.045 7.020 −36.046 0.054
Age + Sk𝐾𝑛 + Sex 5 86.105 7.079 −37.371 0.003
Sex + Sk𝐾𝑛 + Sex:Sk𝐾𝑛 5 86.189 7.164 −37.413 0.001
Age + ABL + Sex + Sex:ABL + Age:ABL 7 87.733 8.707 −35.533 0.074
Age + Sk𝐾𝑛 + Sex + Age:Sk𝐾𝑛 6 88.370 9.344 −37.208 0.009
Age + Sk𝐾𝑛 + Sex + Sex:Sk𝐾𝑛 6 88.690 9.664 −37.368 0.003
Age + Sk𝐾𝑛 + Sex + Sex:Sk𝐾𝑛 + Age:Sk𝐾𝑛 7 91.083 12.057 −37.208 0.009
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Table A.12: Full AICc table for the model set fitted to the %C data. In this case, relative body
condition was calculated using skull length (Sk𝐾𝑛; see text for details). No model performed
better than the intercept-only (i.e., null) model, and all parameters were uninformative. All other
specifications as in Table A.4.

Model k AICc ΔAICc LL R2
Intercept 2 240.436 0.000 −118.090 0.000
Sk𝐾𝑛 3 241.628 1.192 −117.553 0.021
Age 3 241.703 1.268 −117.591 0.020
ABL 3 242.452 2.016 −117.965 0.005
Sex 3 242.484 2.048 −117.981 0.004
Age + Sk𝐾𝑛 4 243.665 3.229 −117.388 0.028
Sex + Sk𝐾𝑛 4 243.680 3.244 −117.396 0.027
Age + Sex 4 243.959 3.523 −117.535 0.022
Age + ABL 4 244.070 3.635 −117.591 0.020
Sex + ABL 4 244.624 4.188 −117.868 0.009
Sex + Sk𝐾𝑛 + Sex:Sk𝐾𝑛 5 245.690 5.254 −117.163 0.036
Age + Sk𝐾𝑛 + Age:Sk𝐾𝑛 5 245.772 5.336 −117.204 0.035
Age + Sk𝐾𝑛 + Sex 5 245.934 5.498 −117.285 0.032
Sex + ABL + Sex:ABL 5 245.986 5.551 −117.311 0.031
Age + Sex + Age:Sex 5 246.197 5.761 −117.416 0.027
Age + ABL + Sex 5 246.433 5.997 −117.535 0.022
Age + ABL + Age:ABL 5 246.473 6.038 −117.555 0.021
Age + Sk𝐾𝑛 + Sex + Sex:Sk𝐾𝑛 6 248.057 7.621 −117.052 0.041
Age + ABL + Sex + Sex:ABL 6 248.131 7.695 −117.089 0.039
Age + Sk𝐾𝑛 + Sex + Age:Sk𝐾𝑛 6 248.275 7.839 −117.161 0.037
Age + ABL + Sex + Age:ABL 6 248.947 8.511 −117.497 0.023
Age + Sk𝐾𝑛 + Sex + Sex:Sk𝐾𝑛 + Age:Sk𝐾𝑛 7 250.577 10.141 −116.955 0.044
Age + ABL + Sex + Sex:ABL + Age:ABL 7 250.595 10.159 −116.964 0.044
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Table A.13: Full AICc table for the model set fitted to the C:N data. In this case, relative body
condition was calculated using skull length (Sk𝐾𝑛; see text for details). Only one model per-
formed better than the intercept-only (i.e., null) model. Sex, average body length, and skull
length-derived relative body condition were uninformative parameters. All other specifications
as in Table A.4.

Model k AICc ΔAICc LL R2
Age 3 62.158 0.000 −27.818 0.074
Intercept 2 63.718 1.559 −29.731 0.000
Age + ABL 4 64.391 2.233 −27.751 0.076
Age + Sk𝐾𝑛 4 64.456 2.297 −27.783 0.075
Age + Sex 4 64.507 2.349 −27.809 0.074
Sk𝐾𝑛 3 64.646 2.487 −29.062 0.026
ABL 3 65.587 3.428 −29.533 0.008
Sex 3 65.825 3.667 −29.652 0.003
Age + ABL + Age:ABL 5 66.668 4.510 −27.652 0.080
Sex + Sk𝐾𝑛 4 66.760 4.601 −28.935 0.031
Age + ABL + Sex 5 66.849 4.690 −27.743 0.076
Age + Sk𝐾𝑛 + Age:Sk𝐾𝑛 5 66.863 4.704 −27.750 0.076
Age + Sk𝐾𝑛 + Sex 5 66.896 4.738 −27.766 0.076
Age + Sex + Age:Sex 5 66.938 4.779 −27.787 0.075
Sex + ABL 4 67.820 5.661 −29.465 0.011
Sex + Sk𝐾𝑛 + Sex:Sk𝐾𝑛 5 69.015 6.856 −28.826 0.036
Age + ABL + Sex + Age:ABL 6 69.238 7.080 −27.642 0.080
Age + Sk𝐾𝑛 + Sex + Sex:Sk𝐾𝑛 6 69.257 7.098 −27.652 0.080
Age + Sk𝐾𝑛 + Sex + Age:Sk𝐾𝑛 6 69.380 7.221 −27.713 0.078
Age + ABL + Sex + Sex:ABL 6 69.419 7.261 −27.733 0.077
Sex + ABL + Sex:ABL 5 70.121 7.963 −29.379 0.014
Age + Sk𝐾𝑛 + Sex + Sex:Sk𝐾𝑛 + Age:Sk𝐾𝑛 7 71.889 9.731 −27.611 0.081
Age + ABL + Sex + Sex:ABL + Age:ABL 7 71.892 9.733 −27.613 0.081
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Table A.14: Full AICc table for the model set fitted to the C:P data, when using skull length to
calculate relative body condition (Sk𝐾𝑛). No model performed better than the intercept-only (i.e.,
null) model. All parameters were uninformative. All specifications as in Table A.4.

Model k AICc ΔAICc LL R2
Intercept 2 360.864 0.000 −178.304 0.000
ABL 3 361.821 0.957 −177.650 0.026
Age 3 363.107 2.243 −178.293 0.000
Sex 3 363.111 2.247 −178.294 0.000
Sk𝐾𝑛 3 363.124 2.260 −178.301 0.000
Age + ABL 4 363.970 3.106 −177.541 0.030
Sex + ABL 4 364.182 3.318 −177.646 0.026
Age + Sex 4 365.460 4.596 −178.285 0.001
Sex + Sk𝐾𝑛 4 365.469 4.605 −178.290 0.001
Age + Sk𝐾𝑛 4 365.474 4.610 −178.293 0.000
Age + ABL + Age:ABL 5 365.689 4.825 −177.163 0.045
Sex + ABL + Sex:ABL 5 366.249 5.385 −177.443 0.034
Age + ABL + Sex 5 366.425 5.561 −177.531 0.030
Age + Sk𝐾𝑛 + Age:Sk𝐾𝑛 5 367.687 6.823 −178.162 0.006
Age + Sex + Age:Sex 5 367.688 6.824 −178.162 0.006
Sex + Sk𝐾𝑛 + Sex:Sk𝐾𝑛 5 367.925 7.061 −178.281 0.001
Age + Sk𝐾𝑛 + Sex 5 367.933 7.070 −178.285 0.001
Age + ABL + Sex + Age:ABL 6 368.263 7.399 −177.155 0.045
Age + ABL + Sex + Sex:ABL 6 368.688 7.824 −177.367 0.037
Age + Sk𝐾𝑛 + Sex + Age:Sk𝐾𝑛 6 370.198 9.335 −178.122 0.007
Age + ABL + Sex + Sex:ABL + Age:ABL 7 370.355 9.492 −176.844 0.057
Age + Sk𝐾𝑛 + Sex + Sex:Sk𝐾𝑛 6 370.504 9.640 −178.275 0.001
Age + Sk𝐾𝑛 + Sex + Sex:Sk𝐾𝑛 + Age:Sk𝐾𝑛 7 372.904 12.040 −178.119 0.007
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Table A.15: Full AICc table for the model set fitted to the N:P data, when using skull length to
calculate relative body condition (Sk𝐾𝑛). No model performed better than the intercept-only (i.e.,
null) model. All parameters were uninformative. All specifications as in Table A.4.

Model k AICc ΔAICc LL R2
Intercept 2 192.561 0.000 −94.153 0.000
ABL 3 192.627 0.066 −93.053 0.043
Age 3 193.747 1.186 −93.613 0.021
Sk𝐾𝑛 3 194.596 2.034 −94.037 0.005
Sex 3 194.618 2.056 −94.048 0.004
Sex + ABL 4 194.844 2.282 −92.978 0.046
Age + ABL 4 194.856 2.294 −92.983 0.046
Age + Sex 4 196.012 3.450 −93.561 0.023
Age + Sk𝐾𝑛 4 196.114 3.552 −93.612 0.021
Sex + Sk𝐾𝑛 4 196.711 4.150 −93.911 0.010
Age + ABL + Age:ABL 5 196.760 4.199 −92.698 0.057
Sex + ABL + Sex:ABL 5 197.122 4.561 −92.879 0.050
Age + ABL + Sex 5 197.213 4.652 −92.925 0.048
Age + Sk𝐾𝑛 + Age:Sk𝐾𝑛 5 197.867 5.306 −93.252 0.035
Age + Sex + Age:Sex 5 197.915 5.354 −93.276 0.034
Age + Sk𝐾𝑛 + Sex 5 198.485 5.924 −93.561 0.023
Sex + Sk𝐾𝑛 + Sex:Sk𝐾𝑛 5 199.060 6.499 −93.848 0.012
Age + ABL + Sex + Age:ABL 6 199.242 6.681 −92.644 0.059
Age + ABL + Sex + Sex:ABL 6 199.552 6.991 −92.799 0.053
Age + Sk𝐾𝑛 + Sex + Age:Sk𝐾𝑛 6 200.111 7.549 −93.079 0.042
Age + Sk𝐾𝑛 + Sex + Sex:Sk𝐾𝑛 6 200.948 8.387 −93.497 0.026
Age + ABL + Sex + Sex:ABL + Age:ABL 7 201.485 8.924 −92.409 0.067
Age + Sk𝐾𝑛 + Sex + Sex:Sk𝐾𝑛 + Age:Sk𝐾𝑛 7 202.752 10.190 −93.042 0.043
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Table A.16: Comparison of Observed and Expected total body length ranges between our study species, the snowshoe hare L. ameri-
canus, and three other freshwater vertebrate species commonly used in studies of intraspecific variability in ecological stoichiometry.

Species Observed range (cm) Expected range (cm) References

Snowshoe hare 36.67–46.67 36.0–52.0 this study; Feldhamer, Thompson, and Chapman (2003)
Rivulus hartii 1.0–8.4 1.0–10.0 El-Sabaawi, Kohler, et al. (2012)
Poecilia reticulata 0.35–0.4 - El-Sabaawi, Travis, et al. (2014)
Gasterosteus aculeatus 3.2–7.2 3.0–8.0 Scott and Crossman (1973) and Durston and El-Sabaawi (2017)

Table A.17: Average, minimum and maximum values for %C, %N, %P, and their respective ratios for snowshoe hares, L. americanus,
and five other taxonomic groups.

Species Carbon Nitrogen Phosphorus C:N C:P N:P ReferencesAvg. Min. Max. Avg. Min. Max. Avg. Min. Max. Avg. Min. Max. Avg. Min. Max. Avg. Min. Max.

Snowshoe hare 43.61 37.46 51.29 11.20 9.42 12.68 2.97 2.00 4.29 4.56 3.91 5.65 39.21 25.23 64.73 8.58 5.22 12.28 this study
Freshwater Fishes 44.70 30.20 53.60 10.10 6.70 13.20 2.90 1.30 5.70 5.20 3.80 7.70 44.00 15.90 95.90 8.40 2.80 15.10 McIntyre and Flecker (2010)a
Invertebrates 42.45 39.65 50.23 10.70 9.13 14.80 0.79 0.36 1.50 3.97 - - 53.73 - - 13.54 - - González et al. (2011)b
Lizards 37.88 - - 9.75 - - 4.56 - - 3.89 - - 8.31 - - 2.14 - - González et al. (2011)c
Insects 50.26 - - 9.29 - - 0.85 - - 5.91 - - 192.95 - - 26.42 - - Elser et al. (2000)d
Zooplankton 48.00 - - 9.39 - - 1.08 - - 7.30 - - 108.52 - - 22.27 - - Elser et al. (2000)e

a. Average values of 100 species from Europe, North and South America
b. Average values of 22 species of terrestrial invertebrates from the Atacama Desert, Chile
c. Average values of 22 species of terrestrial invertebrates from the Atacama Desert, Chile
d. Average values of 130 species collected from published sources
e. Average values of 43 species collected from published sources
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A.7 Additional Figures

In this section, we provide additional figures and graphs. Figure A.1 shows the bivariate plots

used to select the best length measurement to calculate the SMI. Figures A.2 and A.3 show the

amount of intra-individual variability in the C and N content of hares in our sample. Figure A.4

shows the variability in P concentration found among three repeated samples taken from 5 ran-

dom snowshoe hares. Figure A.5 shows variability in relative body condition (𝐾𝑛) and average
body length among different hares of different age and sex. Figures A.6 and A.7 provide ex-

amples of the mandibular bone sections used to age snowshoe hares in our sample. Figure A.6

shows the section obtained by the oldest individual in our sample, a 6 years old female, whereas

Figure A.7 show the same section but for a 1 year old hare.
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Figure A.1: Bivariate plots used to select the length measurement to calculate the SMI. On the
y-axis is the ln-transformed hare body weight in g. The x- axis reports each ln-transformed length
measurement: (a) left hind foot length, (b) skull width, (c) skull length, and (d) total body length.
All length measurements are in mm. Note the different scales of each x-axis. Each data point is
the arithmetic mean of three measurements repeated on a single specimen.
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Figure A.2: Within-sample variability in the concentration of C among the 50 snowshoe hare
samples sent to AFL. The dark line inside the box is the median, the upper and lower hinges rep-
resent the 75th and 25th percentile respectively, and the two whiskers extend to 1.5 × the distance
between the first and third quartile.
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Figure A.3: Within-sample variability in the concentration of N among the 50 snowshoe hare
samples sent to AFL. All specifications as in Figure A.2.
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Figure A.4: Variability in P content among three repeated samples taken from 5 random snow-
shoe hares after homogenization.
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APPENDIX B

Supplementary Information for Chapter 3: Forage stoichiometry predicts the home range size

of a small terrestrial herbivore.

B.1 Introduction

This appendix contains supplementary information on the study species, area, and methods used

in investigating the influence of forage elemental composition on the home range size of snow-

shoe hares (Lepus americanus) in the boreal forest of the island of Newfoundland, Canada. Ap-

pendix B.2 provides additional details on the ecology of the snowshoe hare, a keystone herbi-

vore species in the boreal ecosystem. Appendix B.3 describes the rationale and techniques used

in establishing our snowshoe hares live trapping grids. Appendix B.4 describes the groups of

covariates included in our Stoichiometric Distribution Models, whereas Appendix B.5 and Ap-

pendix B.6 provide details on our live trapping and triangulation protocols, respectively. We pro-

vide details on home range size estimation in Appendix B.7, describing our handling of pseu-

doreplicates in Appendix B.7.1 and our rationale for not including sampling year in our models

of hare home range size in Appendix B.7.2. Appendix B.8 details the methods we used to review

the literature on elemental and macromolecular definitions of food quality. In Appendix B.9, we

provide supplementary tables, including model selection summary tables for the analyses ran on

home range size estimated at the 75% and 90% UD isopleths, as well as a model selection sum-

mary table for the Stoichiometric Distribution Models. In Appendix B.9.1, we present full AICc

model selection tables for our analyses of the relationship between home range size and forage

ecological stoichiometry. Finally, in Appendix B.10, we provide visual supporting materials,

including a map of our study area, the layout of our live trapping grids, and maps showing the de-

gree of overlap among home range estimates from consecutive sampling years for four snowshoe

hares.
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We refer the interested reader to the companion R notebook “Supporting Code” for an in-

depth description of the R workflow and code used to perform UD home range size estimation,

overlap analyses, stoichiometric data extraction, and model fitting, as well as additional visual

supporting materials including Utilization Distribution maps and an interactive map of our study

area.

B.2 Study species

The snowshoe hare (L. americanus) is a keystone herbivore in the boreal forest and has been

extensively studied for the role its characteristic boom-bust population cycle plays in the bo-

real forest’s ecosystem dynamic (Krebs, Boonstra, and Boutin 2018). Snowshoe hare popula-

tions cycle regularly in their abundance, with an 8–11 years periodicity that was already evi-

dent to 19𝑡ℎ century fur trappers (Feldhamer, Thompson, and Chapman 2003; Krebs, Boonstra,
and Boutin 2018). Active year-round, snowshoe hares (L. americanus) seasonally forage on

different plant species (see Dodds 1960, for an extensive list) and face consistently high preda-

tion risk from a diverse group of both land-based and airborne predators (Krebs, Boonstra, and

Boutin 2018). Among these predators, the lynx (Lynx canadensis) is the most well-known, as

its own population dynamics closely follow that of the snowshoe hare (Krebs, Boonstra, and

Boutin 2018). Furthermore, snowshoe hares have low fat tissue accumulation, ≤5% of their

body weight on average, and vary their diet seasonally (Feldhamer, Thompson, and Chapman

2003). They face high reproductive investment, with up to four litters per year and 6–8 leverets

per litter (Feldhamer, Thompson, and Chapman 2003). Thus, access to good quality resources

is paramount for their survival throughout the winter and to support their reproductive costs in

spring and summer (Murray 2002). Finally, in south-eastern portions of their range—like the is-

land of Newfoundland—their distribution is patchier and more discontinuous compared to core

areas, like the Yukon (Thornton et al. 2013; Krebs, Boonstra, and Boutin 2018). As well, recent

evidence points to their population cycle being less regular and shorter in Newfoundland than

in the core areas of their range, like the Yukon (e.g., 8–9 years; Reynolds et al. 2017). In turn,
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this makes hares likely more sensitive to differences in resource quality and its variation over the

landscape (Thornton et al. 2013).

B.3 Grid establishment

We selected forest stands to house live trapping grid using data from the Forest Resource Inven-

tory compiled by the Provincial Government of Newfoundland and Parks Canada. We selected

two forest stands inside the border of Terra Nova National Park, and two forest stands outside

the protected area (Figure B.1). We selected forest stands based on snowshoe hare habitat pref-

erences and along a stand age chronosequence, with age groups 20–40, 41–60, 61–80, 81–100

years old. To reduce error in deploying the traps, we drew each grid’s trap lines layout in ArcGIS

(v. 10.4, ESRI, Redlands, CA) and then used digital, geo-referenced maps showing the location

of each trap to deploy them. Upon deployment, we further confirmed trap location by taking av-

eraged waypoints with a GPS unit (GPSMAP 64s, Garmin Ltd., Olathe, KS).

B.4 Stoichiometric Distribution Models data and covariates

We collected plant samples to build our Stoichiometric Distribution Models from three preferred

summer forage species of snowshoe hares: red maple (Acer rubrum), white birch (Betula pa-

pyrifera), and lowbush blueberry (Vaccinium angustifolium). We collected foliar material sam-

ples for each plant species in and around our snowshoe hare trapping grids. Inside each grid, we

collected plant foliar samples for stoichiometric analyses to assess their C:N:P content. Around

each grid, we collected plant foliar samples to calculated biomass (see main text for further de-

tails). Table B.4 provides a breakdown of the number of foliar samples collected for each plant

species in each study site for the stoichiometric analyses (see Figure B.7 for a visual breakdown).

We built our Stoichiometric Distribution Models using a set of spatially explicit covariates

grouped in four classes: land cover, productivity, biotic, and abiotic (Heckford et al. 2021). We

considered three land cover types—coniferous, deciduous, and mixed wood—derived from the
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Commission for Environmental Cooperation Land Cover publicly available dataset. We quanti-

fied productivity using the Enhanced Vegetation Index (EVI) as a proxy, because the Normalized

Difference Vegetation Index saturates easily in the wet conditions of the boreal forest. Our biotic

covariate included stand height, age, and canopy closure as categorical variables, each derived

from the Forest Resource Inventory compiled by the Provincial Government of Newfoundland

and Labrador and the Federal Government of Canada. Stand height in our analyses comprised

6.6–9.5 m (class 3), 9.6–12.5 m (class 4), and 12.6–15.5 m (class 5). Stand age included 41–60

(class 3), 61–80 (class 4), and 81–100 (class 5) years old. Crown density included 51–75% (class

2), 25–50% (class 3), and 10–25% (class 4) canopy closure. Finally we included elevation, as-

pect, and slope in our abiotic covariate, each derived from a Canadian Digital Elevation Model

(see Heckford et al. 2021, for more details on spatial covariates in our StDMs).

Each of these covariates groups can influence plant species of interest (SOI) spatial stoi-

chiometry, either individually or together with one, two, or all other groups. Accordingly, we

fit a set of 16 different Generalized Linear Models, including all possible additive combinations

of our four covariate groups and a null model (for full results see Heckford et al. 2021).

B.5 Live trapping

Live trapping sessions lasted 3–4 days, with a pattern of one night of trapping, followed by one

night of no trapping, followed by 1–2 additional trapping nights. In 2016 and 2017, we also used

an optional pre-baiting night—i.e., baiting with the trap door jammed open—to allow individ-

uals to familiarize themselves with the traps. Live-trapping nights depended on weather condi-

tions: as snowshoe hares rely on movement to thermoregulate, due to their low body fat reserve

(Feldhamer, Thompson, and Chapman 2003), trapping in cold or wet nights may jeopardize their

survival. Hence, whenever weather forecasts would call for night temperatures below 5 °C or for

intense precipitation, e.g., rain or snow, we would suspend live trapping.

Before handling begun, we transferred trapped individuals from the trap to a burlap sack of

known weight (∼200 g). We inserted the door-end of the trap in the burlap sack, then opened the
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door and waited for the hare to walk in the sack. Once the hare was in the sack, we weighted (g)

the whole sack. We then eartagged the individual and fitted it with a radio-collar before proceed-

ing to collect data on sex, age, left hind foot length (mm), percent white fur estimated visually,

and tick load. After releasing the individual, we calculated net wet body weight of the trapped

hare by subtracting the weight of the empty burlap sack from the weight of the burlap sack with

the hare in it. We further weighted the burlap sack between handling different individuals, to ac-

count for increased weight due to the sack getting soaked in rain and/or morning dew.

During our initial trapping season of 2016–2017, we had low capture rates and most of the

individuals trapped and fitted with radiocollars where on the live trapping grid located in the 20–

40 years old forest stand (cfr., “hare study area” in the main text). Because of this, we decided to

focus our trapping efforts on this grid and trapped in both spring and fall for the subsequent three

years.

B.6 Triangulation and data processing

Triangulation happened daily from May to September in 2017, 2018, and 2019. Our daily trian-

gulation timeframe changed slightly from year to year, to accommodate changes in workforce

available and fieldwork logistics: we relocated hares between 0600–2100 in 2017, 0630–2200

in 2018, and 0500–2100 in 2019. We attempted to triangulate all active collars present on the

grid every day, randomizing the order and time at which we attempted to locate each collar. In

summer 2017, a single operator (MR) performed all triangulations, whereas in summers 2018

and 2019 two to three operators collected azimuths simultaneously from different locations: this

greatly reduced the time necessary to triangulate all individuals and improved precision of trian-

gulations. We estimated triangulation error for two of our operators using the razimuth R pack-

age (Gerber et al. 2018). In 2017, our sole observer had a mean (±SD) error of 151 (±90.3) m,
whereas in 2018 an additional observer had a mean error of 269 (±372.2) m.

In R, we used package razimuth (Gerber et al. 2018) to estimate the location of each snow-

shoe hare for each set of azimuths collected daily during the sampling season. razimuth fits an
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Azimuthal Telemetry Model (ATM) to telemetry data using a Markov Chain Monte Carlo pro-

cess. The ATM estimates both the location of the transmitter, in our case a radio-collar, and an

error ellipse encircling it, which represents the uncertainty around the transmitter location (Ger-

ber et al. 2018). These error ellipses can then be used to inform home range estimation using

the ctmm package (Fleming and Calabrese 2017; Fleming, Noonan, et al. 2019). To estimate the

location of a transmitter, the ATM requires an estimate of the maximum distance between the

transmitter and the receiver. Our live trapping grid was a square of 500m per side (see above,

Appendix B.3). While standing on the highest point of the grid, our observers could barely hear

the signal of a collar on the opposite side of the grid—a challenge likely due to the dense, young

vegetation of the grid and significant presence of water on it. Based on these observations, we

conservatively estimated the maximum distance between transmitter and receiver to be 750m.

We assessed the ATM fit to our triangulation data by visually checking the values of parameter𝜅, which captures the uncertainty in the azimuthal data (Gerber et al. 2018). We checked both the

variation in the values of 𝜅 and their running mean, as described in Gerber et al. (2018). The Sup-
porting Code document, available through our online repository, contains the complete workflow

to perform these triangulations—from data preparation to output.

B.7 Home Range Estimation

We used an Autocorrelated Kernel Density Estimator corrected for small sample size (hence-

forth, AKDEc) method to estimate home range area in hectares (ha) of our snowshoe hares, as

this method is more reliable and accurate than more traditional approaches even with low reloca-

tion sample size (Fleming and Calabrese 2017; Fleming, Noonan, et al. 2019).

We first visually checked each individual’s telemetry relocation dataset for outliers, i.e., re-

locations too far from the median latitude and longitude of an individual’s dataset, and removed

them using function outlie in R package ctmm (Fleming and Calabrese 2020). Following guide-

lines in Fleming and Calabrese (2017), we visually assessed space use patterns for each individ-

ual in our dataset containing both relocations and error ellipses using variograms. We then used
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function ctmm.guess in the same package to fit a continuous time movement model (Fleming

and Calabrese 2017) based on the variogram’s shape and extract the estimated model parameters

for each individual. Then, using the function ctmm.select, we fit hypothetical movement mod-

els with the initial estimates from ctmm.guess for each individual using a perturbative hybrid

residual maximum likelihood method (pHREML; Fleming, Noonan, et al. 2019). We evaluated

model fit using summary tables for each model, AICc, and variogram fit. Finally, we selected the

top-ranking movement model for each individual and used it to calculate the Utilization Distri-

bution (UD) for each individual in our dataset. We calculated the UD using function akde from

the same package. From the UDs, we then estimated the area (ha) of the 50%, 75%, and 90% UD

slices. We used the contours of these estimates to extract plant SOI stoichiometric data from our

StDMs predictive surfaces as described in the main text.

Below we describe how we addressed the few pseudoreplication issues that arose in our sam-

ple. The Supporting Code document available through the online repository contains code and

outputs for this entire R workflow.

B.7.1 Accounting for pseudoreplication

For four snowshoe hares in our sample, we had telemetry data for two consecutive sampling

years: three individuals were collared in the 2018 sampling season and were followed again in

the 2019 sampling season, and one individual was collared in the 2017 and was followed again in

the 2018 sampling seasons. We used the Bhattacharyya’s affinity index (Fieberg and Kochanny

2005) to estimate overlap in the utilization distribution of these four individuals between consec-

utive years (Winner et al. 2018). Results from this analysis highlight a high degree of overlap,

likely an indication of strong site-fidelity across years (Table B.3 and Figures B.3 to B.6). Armed

with this knowledge, we addressed this issue in two ways: we decided to use only one year of

sampling for each of these four individuals, and we used only the year with the most relocations

for each individual.
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B.7.2 Testing for sampling year-related effects

Evidence in the literature suggests that year of sampling—that is, the year during which reloca-

tions are collected—can play a role in determining home range size (Börger et al. 2006). Because

of this, we ran preliminary analyses on our data using a model that included only the variable

“sampling year”, including only the year with most locations for the four individuals with year

replicates (see section Appendix B.7.1). We found no evidence of a relationship between sam-

pling year and home range size (see the Supporting Code document for code and model output).

Alternative methods of considering the four individuals with year replicates, e.g., randomization,

selecting the year closest to plant SOI sampling, yielded qualitatively similar results. Based on

these results, we decided to not include the variable sampling year in our analyses.

B.7.3 Nighttime relocations and home range size estimates

Snowshoe hares are nocturnally active but we did not collect nighttime relocations, due to labour

and logistical limitations (see above, Appendix B.6). However, we do not expect this to influence

our estimates of the location and size of our snowshoe hares’ home ranges, for several reason.

First, while snowshoe hare may move within their home range during night hours, we would ex-

pect this to more likely influence patterns of use of different portions of the home range rather

than where or how large it is. Indeed, the results from our home range overlap analysis for the

four snowshoe hare for which we had two consecutive years of telemetry data appear to con-

firm this expectation (Table B.3). In particular, Figures B.3 to B.6 show minimal variation in

the location of the home ranges with respect to the live-trapping grid or other features—natural or

otherwise—of the landscape. Finally, our home range size estimates are consistent with those of

the only other study we could find on snowshoe hare home range size in Newfoundland (Barta,

Keith, and Fitzgerald 1989). Together, we take these elements as evidence that we did capture

summer home range size of our sample of snowshoe hare across multiple years.
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B.8 Food Quality: elements and macromolecules

The majority of studies investigating the influence of food quality on consumer home range size

use nutritional measures of food such as macromolecules: carbohydrates, protein, cellulose, etc.

We propose a parsimonious definition of food quality that considers the basic elemental content

of food: its content of carbon (C), nitrogen (N), and phosphorus (P) among others (Kaspari and

Powers 2016). The strength of an elemental approach and the ability to compare our elemental

approach to other, more common approaches depends on how well the elemental content of food

relates to the nutritional content of food. Consequently, we performed a literature review. We

collated data from two recent reviews on the topic of leporid and cervid food choice by Felton et

al. (2018) and Champagne et al. (2020) to investigate the relationship between elemental content

and nutritional content of food. The datasets used in both these reviews are publicly available on-

line and we extracted data from them to perform our analyses. Our data extraction proceeded in

two steps. First, we identified potential studies from Felton et al. (2018) and Champagne et al.

(2020) that measured elemental or nutritional content of food (n = 101). Second, we selected,

reviewed, and extracted data from papers identified in the first step that measured both elemen-

tal and nutritional content. In some cases, we used data extraction software to collect data from

graphs or figures (PlotDigitizer v 2.6.8; Huwaldt 2014). Our review revealed that N was the most

common element measured in food along with six classes of structural and non-structural macro-

molecules in plants: Neutral Detergent Fiber, Acid Detergent Fiber, Cellulose, Hemicellulose,

Lignin, and Total Non-Structural Carbohydrates (Figure B.9).

From the Felton et al. (2018) and Champagne et al. (2020) datasets, we identified 40 stud-
ies that measured both N content and at least one of the six nutritional indicators listed above.

In case of multiple entries for the same plant species, e.g., data recorded at different times of the

year or for different phenotypes, we recorded each entry as a separate record for that species to

capture intra-specific variability. We further recorded the type of herbivore involved in the study,

the type of plants—e.g., broadleaved, coniferous, legumes—, the type of study, and whether pro-
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tein content had been estimated from N content using a conversion factor (Mariotti, Tomé, and

Mirand 2008). There was substantial overlap in the datasets from the Felton et al. (2018) and

Champagne et al. (2020) meta-analyses.

Once we completed data extraction, we used the statistical language R (v. 4.0.1; R Core Team

2020) to visually examine the data. First, as units of measurements for macromolecules content

varied across studies, we subset our dataset to include only data reported as % dry matter/mass or

% dry weight of N or the nutritional macromolecules measured. Our final dataset thus included

data from n = 14 studies. We then proceeded to fit linear regression models to these data for each

of the six groups of macromolecules of interest and N (listed above). We present and interpret

results from these analyses in Figure B.9.

B.9 Additional Tables

Here we provide additional tables from our analyses of the influence of forage elemental compo-

sition on home range size of snowshoe hare. Table B.1 and Table B.2 show top ranking models

for the analyses ran on home range size estimates at 75% and 90% AKDEc isopleths, respec-

tively. Table B.3 provides details on the degree of overlap between home range estimates for

the four individuals for which we had two years of telemetry data. Table B.4 provides a break-

down of the number of foliar material samples collected for each plant species of interest, in each

study site. Table B.5 present summary statistics and coefficient estimates for the Stoichiometric

Distribution Models we used to predict forage species stoichiometry over our study area. In Ta-

bles B.6 to B.10, we show the full AICc model selection tables for home range size calculated at

the 50% UD, for each stoichiometric ratio. Likewise, in Tables B.11 to B.15 we present the full

AICc model selection tables for home range size at the 75% UD. Finally, in Tables B.16 to B.20

we show full AICc model selection tables for home range size at 90% UD.
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Table B.1: Top ranking GLMs describing relationship between home range area at the 75%
AKDEc isopleth and resource stoichiometry, after removing uninformative parameters (see Table
2 in the main text for a list of variables included in each model and appendix B.9.1 for full AICc
tables). For each plant SOI and stoichiometric ratio pair, we report the top model, any model
above the intercept, and the intercept. For coefficients, we report values estimates and 95% Con-
fidence Intervals. Mean and coefficient of variation (CV) refer to the metrics calculated for the
relevant stoichiometric ratio within the home range core area (see main text for details). Column
headers: k, number of parameters in the model; LL, log-likelihood.

Coefficients

k ΔAICc LL R2 Intercept Mean CV

Lowbush blueberry C:N top models

4 0.00 −70.99 0.66 −449.17
(−685.52– −212.83)

9.50
(4.49–14.52)

8.16
(5.59–10.73)

3 10.65 −77.65 0.47 −1.64
(−5.06–1.78)

7.59
(4.47–10.71)

3 25.70 −85.17 0.12 −352.62
(−721.30–16.09)

7.63
(−0.21–15.47)

2 27.20 −87.16 0.00 6.10
(4.42–7.78)

Lowbush blueberry N:P top models

3 0.00 −85.46 0.11 18.94
(−46.93–9.05)

0.86
(−0.10–1.82)

2 0.93 −87.16 0.00 6.10
(4.42–7.78)

Lowbush blueberry C:P top models

3 0.00 −85.13 0.13 −17.93
(−42.36–6.51)

0.02
(−0.00–0.04)

2 1.60 −87.16 0.00 6.10
(4.42–7.78)

Red maple N:P top models

3 0.00 −85.88 0.08 2.36
(−2.74–7.46)

1.04
(−0.31–2.39)

2 0.10 −87.16 0.00 6.10
(4.42–7.78)

Red maple C:N top models

3 0.00 −85.39 0.11 2.48
(−1.80–6.75)

0.37
(−0.03–0.76)

2 1.06 −87.16 0.00 6.10
(4.42–7.78)
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Table B.2: Top ranking GLMs describing relationship between home range area at the 90%
AKDEc isopleth and resource stoichiometry, after removing uninformative parameters. All spec-
ification as in Table B.1.

Coefficients

k ΔAICc LL R2 Intercept Mean CV

Lowbush blueberry C:N top models

4 0.00 −85.50 0.66 −895.04
(−1313.68– −476.39)

18.94
(10.04–27.84)

13.95
(9.19–18.71)

3 13.35 −93.51 0.43 −4.21
(−11.00–2.58)

13.52
(7.43–19.61)

3 22.82 −98.25 0.21 −827.72
(−1454.51– −200.92)

17.82
(4.49–31.15)

2 27.46 −101.81 0.00 10.11
(7.37–12.84)

Lowbush blueberry N:P top models

3 0.00 −100.37 0.09 −29.08
(−77.07–18.91)

1.35
(−0.30–2.99)

2 0.39 −101.81 0.00 10.11
(7.37–12.84)

Lowbush blueberry C:P top models

3 0.00 −100.16 0.10 −27.14
(−69.62–15.33)

0.03
(−0.00–0.06)

2 0.81 −101.81 0.00 10.11
(7.37–12.84)

Red maple N:P top models

2 0.00 −101.81 0.00 10.11
(7.37–12.84)

Red maple C:N top models

3 0.00 −100.56 0.08 4.09
(−4.27–12.44)

0.59
(−0.19–1.37)

2 0.02 −101.81 0.00 10.11
(7.37–12.84)

196



Table B.3: Quantification of home range core area overlap for the four individuals with more
than one year of telemetry sampling (see Appendix B.7.1), as calculated with the Bhattacharyya
affinity index (Fieberg and Kochanny 2005; Winner et al. 2018). Note that we calculated the
overlap for the whole Utilization Distribution (UD) of each individual between consecutive years
of telemetry sampling. Figures B.3 to B.6 provide a visual representation of the overlap among
these yearly home ranges.

UD1 UD2 Bhattacharyya Index

A1425
2018 2018 1.00
2019 2018 0.84
2018 2019 0.84
2019 2019 1.00

A1698
2018 2018 1.00
2019 2018 0.26
2018 2019 0.26
2019 2019 1.00

A3719
2017 2017 1.00
2018 2017 0.91
2017 2018 0.91
2018 2018 1.00

A3769
2018 2018 1.00
2019 2018 0.84
2018 2019 0.84
2019 2019 1.00
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Table B.4: Breakdown of foliar samples collected per plant species of interest (SOI), per study
site. Study sites are listed by forest stand age, from youngest to oldest. For each plant SOI, we
provide a breakdown of how many samples were collected for stoichiometric analyses and for
local biomass extimation, respectively.

Sample Bloomfield Unicorn Terra Nova North Dunphy’s Pond

Red maple
Stoichiometry 2 30 19 40
Biomass 10 14 13 20

White birch
Stoichiometry 11 25 15 20
Biomass 9 13 12 16

Lowbush blueberry
Stoichiometry 39 36 41 44
Biomass 14 10 10 16
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Table B.5: Summary model selection table for the Stoichiometric Distribution Models used to predict foliar C:N, C:P, N:P values over
the study area. We report the top-ranked models within 2ΔAICc of the highest ranked one. For each model, we report coefficient es-
timates and 95% Confidence Intervals. Column headers: k, number of parameters, LL, log-likelihood, Age Class 3 (41–60 years old),
Age Class 4 (61–80 y.o.), Age Class 5 (81–100 y.o.), Height Class 3 (6.6m to 9.5m), Height Class 4 (9.6m to 12.5m), Height Class
5 (12.6m to 15.5m), Crown Density 2 (51–75%), Crown Density 3 (26–50%), Crown Density 4 (10–25%). Adapted from Heckford
et al. (2021).

Coefficients

k ΔAICc LL R2 Intercept Land Cover Productivity Biotic Abiotic

Deciduous Mixed wood Age
Class 3

Age
Class 4

Age
Class 5

Height
Class 3

Height
Class 4

Height
Class 5

Crown
Density 2

Crown
Density 3

Crown
Density 4 Aspect Slope Elevation

Lowbush blueberry C:N ratio models

3 0.00 −539.51 0.09 48.81
(47.71–49.91)

−2.21
(−3.31– −1.11)

5 0.79 −537.79 0.11 48.14
(45.35–50.93)

5.87
(−0.62–12.38)

0.60
(−2.67–3.86)

−2.45
(−3.79– −1.11)

Lowbush blueberry C:P ratio models

11 0.00 −1189.78 0.33 1236.66
(871.64–1601.45)

600.19
(347.73–852.65)

438.81
(82.57–795.06)

585.00
(305.37–864.64)

18.98
(−224.77–262.73)

118.38
(−170.51–407.27)

−6.08
(−335.39–323.23)

−48.19
(−384.27–287.89)

49.93
(−265.13–365.00)

204.86
(−224.67–634.39)

12 0.03 −1188.63 0.34 1188.23
(819.07–1557.39)

69.94
(−23.29–163.18)

653.17
(391.96–914.39)

578.27
(177.66–978.87)

652.94
(360.03–945.85)

18.95
(−223.87–261.76)

84.36
(−206.97–375.69)

−90.02
(−436.61–256.58)

−33.56
(−368.91–301.79)

45.40
(−268.51–359.31)

190.11
(−238.21–618.44)

Lowbush blueberry N:P ratio models

15 0.00 −541.26 0.41 29.35
(22.46–36.24)

2.44
(0.70–4.19)

11.99
(5.63–18.35)

7.76
(−0.20–15.73)

11.98
(6.45–17.51)

−1.98
(−6.35–2.39)

1.17
(−3.99–6.32)

−2.31
(−8.54–3.92)

−2.84
(−8.86–3.19)

−1.46
(−7.02–4.10)

−0.13
(−7.71–7.44)

−1.33
(−3.00–0.34)

0.05
(−1.59–1.69)

−1.72
(−3.36– −0.08)

12 0.04 −544.89 0.39 27.62
(21.02–34.23)

3.05
(1.38–4.72)

13.24
(8.57–17.91)

10.93
(3.76–18.10)

13.45
(8.21–18.69)

−1.26
(−5.61–3.08)

1.20
(−4.02–6.41)

−2.89
(−9.09–3.31)

−2.39
(−8.39–3.61)

−1.84
(−7.46–3.77)

0.06
(−7.60–7.73)

17 0.94 −539.24 0.43 31.58
(23.67–39.50)

−7.48
(−15.25–0.29)

−3.46
(−8.47–1.56)

2.63
(0.89–4.37)

11.98
(5.58–18.37)

6.42
(−2.25–15.10)

12.28
(6.64–17.91)

−2.28
(−6.65–2.09)

0.62
(−4.55–5.79)

−2.30
(−8.50–3.89)

−1.37
(−7.56–4.81)

−0.06
(−5.83–5.71)

0.48
(−7.10–8.06)

−1.30
(−2.96–0.36)

0.26
(−1.42–1.94)

−1.74
(−3.38– −0.11)

14 1.44 −543.2 0.4 29.27
(21.88–36.66)

−7.02
(−14.86–0.83)

−3.00
(−7.92–1.91)

3.26
(1.58–4.94)

13.57
(8.89–18.25)

10.27
(2.64–17.90)

14.00
(8.69–19.32)

−1.61
(−5.96–2.74)

0.64
(−4.59–5.88)

−2.85
(−9.03–3.33)

−0.95
(−7.16–5.27)

−0.58
(−6.41–5.26)

0.62
(−7.07–8.31)

Red maple C:N ratio models

13 0.00 −267.39 0.39 23.77
(16.69–30.85)

7.80
(2.01–13.59)

3.02
(−1.36–7.40)

12.05
(4.81–19.29)

16.38
(8.79–23.97)

13.51
(7.45–19.58)

−4.60
(−11.19–1.98)

−7.48
(−12.45– −2.50)

−11.94
(−16.77– −7.10)

4.10
(−0.20–8.40)

6.04
(1.28–10.79)

6.98
(1.19–12.77)

Red maple N:P ratio models

6 0.00 −324.45 0.17 29.44
(27.63–31.25)

2.37
(0.52–4.21)

−1.87
(−4.07–0.33)

−2.52
(−4.72– −0.33)

−3.67
(−5.84– −1.50)



B.9.1 Model Selection Tables

B.9.1.1 Model selection for home range area calculated at 50% UD

Table B.6: Full AICc table for the model set fit to home range size at the 50% UD (core area) us-
ing stoichiometric data from red maple C:N, sorted in ascending order of ΔAICc. Uninformative
parameters (sensu Leroux 2019) include the mean C:N ratio values and body weight. Column
headers: k, number of parameters in the model, LL, log-likelihood. Colons indicate interaction
terms, asterisks identify uninformative parameters.

Models k AICc ΔAICc LL R2
Home Range size ∼ C:N CV 3 138.07 0.00 −65.57 0.11
Home Range size ∼ C:N CV + Weight∗ 4 138.31 0.24 −64.36 0.18
Intercept 2 138.93 0.86 −67.25 0.00
Home Range size ∼Mean C:N∗ + C:N CV 4 140.56 2.49 −65.48 0.11
Home Range size ∼Mean C:N∗ + Weight∗ 4 141.01 2.93 −65.70 0.10
Home Range size ∼Mean C:N∗ 3 141.08 3.01 −67.08 0.01
Home Range size ∼Mean C:N∗ + C:N CV + Weight∗ 5 141.17 3.10 −64.34 0.18
Home Range size ∼Mean C:N∗ + CV C:N + Mean:CV 5 143.45 5.38 −65.48 0.11
Home Range size ∼Mean C:N∗ + C:N CV + Mean:CV + Weight∗ 6 144.26 6.19 −64.31 0.18

200



Table B.7: Full AICc table for the model set fit to home range size at the 50% UD (core area) us-
ing stoichiometric data from red maple N:P, sorted in ascending order of ΔAICc. Uninformative
parameters (sensu Leroux 2019) include the mean N:P ratio values and body weight. Column
headers: k, number of parameters in the model, LL, log-likelihood. Colons indicate interaction
terms, asterisks identify uninformative parameters.

Models k AICc ΔAICc LL R2
Home Range size ∼ N:P CV 3 137.06 0.00 −65.07 0.14
Home Range size ∼ N:P CV + Weight∗ 4 137.89 0.83 −64.15 0.19
Home Range size ∼Mean N:P∗ + N:P CV + Mean:CV 5 138.78 1.72 −63.14 0.24
Intercept 2 138.93 1.87 −67.25 0.00
Home Range size ∼Mean N:P∗ + N:P CV 4 139.10 2.04 −64.75 0.15
Home Range size ∼Mean N:P∗ + N:P CV + Mean:CV + Weight∗ 6 139.78 2.72 −62.06 0.29
Home Range size ∼Mean N:P∗ + N:P CV + Weight∗ 5 140.02 2.96 −63.76 0.21
Home Range size ∼Mean N:P∗ + Weight∗ 4 141.04 3.98 −65.72 0.10
Home Range size ∼Mean N:P∗ 3 141.16 4.10 −67.12 0.01

Table B.8: Full AICc table for the model set fit to home range size at the 50% UD (core area)
using stoichiometric data from lowbush blueberry C:N, sorted in ascending order of ΔAICc. Un-
informative parameters (sensu Leroux 2019) include body weight and the interaction of C:N ra-
tio mean and CV. Column headers: k, number of parameters in the model, LL, log-likelihood.
Colons indicate interaction terms, asterisks identify uninformative parameters.

Models k AICc ΔAICc LL R2
Home Range size ∼Mean C:N + C:N CV 4 108.47 0.00 −49.43 0.70
Home Range size ∼Mean C:N + C:N CV + Weight∗ 5 109.68 1.22 −48.59 0.71
Home Range size ∼Mean C:N + C:N CV + Mean:CV∗ 5 110.19 1.72 −48.84 0.71
Home Range size ∼Mean C:N + C:N CV + Mean:CV∗ + Weight∗ 6 111.86 3.39 −48.11 0.72
Home Range size ∼ C:N CV 3 123.33 14.87 −58.21 0.45
Home Range size ∼ C:N CV + Weight∗ 4 125.25 16.78 −57.83 0.47
Home Range size ∼Mean C:N + Weight∗ 4 136.20 27.73 −63.30 0.23
Home Range size ∼Mean C:N 3 137.66 29.19 −65.37 0.12
Intercept 2 138.93 30.47 −67.25 0.00
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Table B.9: Full AICc table for the model set fit to home range size at the 50% UD (core area) us-
ing stoichiometric data from lowbush blueberry C:P, sorted in ascending order of ΔAICc. Body
weight and the coefficient of variation are uninformative parameters (sensu Leroux 2019). Col-
umn headers: k, number of parameters in the model, LL, log-likelihood. Colons indicate interac-
tion terms, asterisks identify uninformative parameters.

Models k AICc ΔAICc LL R2
Home Range size ∼Mean C:P 3 138.20 0.00 −65.64 0.10
Home Range size ∼Mean C:P + Weight∗ 4 138.24 0.04 −64.32 0.18
Intercept 2 138.93 0.73 −67.25 0.00
Home Range size ∼Mean C:P + C:P CV∗ + Weight∗ 5 140.44 2.24 −63.97 0.20
Home Range size ∼Mean C:P + C:P CV∗ 4 140.50 2.29 −65.45 0.11
Home Range size ∼ C:P CV∗ 3 140.61 2.40 −66.84 0.03
Home Range size ∼ C:P CV∗ + Weight∗ 4 140.65 2.45 −65.53 0.11
Home Range size ∼Mean C:P + C:P CV∗ + Mean:CV 5 141.41 3.21 −64.45 0.17
Home Range size ∼Mean C:P + C:P CV∗ + Mean:CV + Weight∗ 6 142.15 3.95 −63.25 0.23

Table B.10: Full AICc table for the model set fit to home range size at the 50% UD (core area)
using stoichiometric data from lowbush blueberry N:P, sorted in ascending order of ΔAICc. Col-
umn headers: k, number of parameters in the model, LL, log-likelihood. Colons indicate interac-
tion terms.

Models k AICc ΔAICc LL R2
Home Range size ∼Mean N:P 3 138.91 0.00 −65.99 0.08
Intercept 2 138.93 0.03 −67.25 0.00
Home Range size ∼Mean N:P + Weight 4 138.95 0.04 −64.68 0.16
Home Range size ∼ N:P CV 3 140.22 1.31 −66.65 0.04
Home Range size ∼ N:P CV + Weight 4 140.43 1.53 −65.42 0.12
Home Range size ∼Mean N:P + N:P CV + Weight 5 141.48 2.57 −64.49 0.17
Home Range size ∼Mean N:P + N:P CV 4 141.50 2.59 −65.95 0.08
Home Range size ∼Mean N:P + N:P CV + Mean:CV 5 143.87 4.96 −65.68 0.10
Home Range size ∼Mean N:P + N:P CV + Mean:Cv + Weight 6 144.46 5.55 −64.41 0.17
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B.9.1.2 Model selection for home range area calculated at 75% UD

Table B.11: Full AICc table for the model set fit to home range size at the 75% UD using stoi-
chiometric data from red maple C:N, sorted in ascending order of ΔAICc. Uninformative param-
eters (sensu Leroux 2019) including body weight and the mean C:N ratio. Column headers: k,
number of parameters in the model, LL, log-likelihood. Colons indicate interaction terms, aster-
isks identify uninformative parameters.

Models k AICc ΔAICc LL R2
Home Range size ∼ C:N CV 3 177.71 0.00 −85.39 0.11
Home Range size ∼ C:N CV + Weight∗ 4 178.37 0.66 −84.38 0.17
Intercept 2 178.77 1.06 −87.16 0.00
Home Range size ∼Mean C:N∗ + C:N CV 4 180.38 2.67 −85.39 0.11
Home Range size ∼Mean C:N∗ 3 181.13 3.42 −87.10 0.00
Home Range size ∼Mean C:N∗ + Weight∗ 4 181.24 3.53 −85.82 0.09
Home Range size ∼Mean C:N∗ + C:N CV + Weight∗ 5 181.27 3.56 −84.38 0.17
Home Range size ∼Mean C:N∗ + C:N CV + Mean:CV 5 182.96 5.26 −85.23 0.12
Home Range size ∼Mean C:N∗ + C:N CV + Mean:CV + Weight∗ 6 184.22 6.51 −84.28 0.18
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Table B.12: Full AICc table for the model set fit to home range size at the 75% UD using stoi-
chiometric data from red maple N:P, sorted in ascending order of ΔAICc. Body weight and mean
N:P ratio are uninformative parameters (sensu Leroux 2019). Column headers: k, number of pa-
rameters in the model, LL, log-likelihood. Colons indicate interaction terms, asterisks identify
uninformative parameters.

Models k AICc ΔAICc LL R2
Home Range size ∼ N:P CV 3 178.67 0.00 −85.88 0.08
Intercept 2 178.77 0.10 −87.16 0.00
Home Range size ∼ N:P CV + Weight∗ 4 179.41 0.74 −84.91 0.14
Home Range size ∼Mean N:P∗ + N:P CV 4 180.79 2.12 −85.60 0.10
Home Range size ∼Mean N:P∗ 3 181.25 2.58 −87.16 0.00
Home Range size ∼Mean N:P∗ + Weight∗ 4 181.26 2.58 −85.83 0.09
Home Range size ∼Mean N:P∗ + N:P CV + Weight∗ 5 181.55 2.88 −84.53 0.16
Home Range size ∼Mean N:P∗ + N:P CV + Mean:CV 5 182.73 4.05 −85.11 0.13
Home Range size ∼Mean N:P∗ + N:P CV + Mean:CV + Weight∗ 6 183.36 4.68 −83.85 0.20

Table B.13: Full AICc table for the model set fit to home range size at the 75% UD using stoi-
chiometric data from lowbush blueberry C:N, sorted in ascending order of ΔAICc. Uninforma-
tive parameters (sensu Leroux 2019) include body weight and the interaction of C:N ratio mean
and CV. Column headers: k, number of parameters in the model, LL, log-likelihood. Colons in-
dicate interaction terms, asterisks identify uninformative parameters.

Models k AICc ΔAICc LL R2
Home Range size ∼Mean C:N + C:N CV 4 151.57 0.00 −70.99 0.66
Home Range size ∼Mean C:N + C:N CV + Weight∗ 5 153.21 1.64 −70.36 0.67
Home Range size ∼Mean C:N + C:N CV + Mean:CV∗ 5 154.25 2.67 −70.87 0.66
Home Range size ∼Mean C:N + C:N CV + Mean:CV∗ + Weight∗ 6 156.35 4.77 −70.35 0.67
Home Range size ∼ C:N CV 3 162.22 10.65 −77.65 0.47
Home Range size ∼ C:N CV + Weight∗ 4 163.68 12.11 −77.04 0.49
Home Range size ∼Mean C:N + Weight∗ 4 177.20 25.62 −83.80 0.20
Home Range size ∼Mean C:N 3 177.27 25.70 −85.17 0.12
Intercept 2 178.77 27.20 −87.16 0.00
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Table B.14: Full AICc table for the model set fit to home range size at the 75% UD using stoi-
chiometric data from lowbush blueberry C:P, sorted in ascending order of ΔAICc. Body weight
and C:P ratio CV are uninformative parameters (sensu Leroux 2019). Column headers: k, num-
ber of parameters in the model, LL, log-likelihood. Colons indicate interaction terms, asterisks
identify uninformative parameters.

Models k AICc ΔAICc LL R2
Home Range size ∼Mean C:P 3 177.18 0.00 −85.13 0.13
Home Range size ∼Mean C:P + C:P CV∗ 4 177.79 0.61 −84.09 0.19
Home Range size ∼Mean C:P + Weight∗ 4 178.12 0.95 −84.26 0.18
Home Range size ∼Mean C:P + C:P CV∗ + Weight∗ 5 178.70 1.53 −83.10 0.24
Intercept 2 178.77 1.60 −87.16 0.00
Home Range size ∼Mean C:P + C:P CV∗ + Mean:CV 5 180.39 3.22 −83.95 0.19
Home Range size ∼ C:P CV∗ 3 180.94 3.76 −87.01 0.01
Home Range size ∼ C:P CV∗ + Weight∗ 4 181.21 4.04 −85.81 0.09
Home Range size ∼Mean C:P + C:P CV∗ + Mean:CV + Weight∗ 6 181.59 4.42 −82.97 0.24

Table B.15: Full AICc table for the model set fit to home range size at the 75% UD using stoi-
chiometric data from lowbush blueberry N:P, sorted in ascending order of ΔAICc. Body weight
and the CV of N:P ratio are uninformative parameters (sensu Leroux 2019). Column headers: k,
number of parameters in the model, LL, log-likelihood. Colons indicate interaction terms, aster-
isks mark uninformative parameters.

Models k AICc ΔAICc LL R2
Home Range size ∼Mean N:P 3 177.84 0.00 −85.46 0.11
Intercept 2 178.77 0.93 −87.16 0.00
Home Range size ∼Mean N:P + Weight∗ 4 178.81 0.97 −84.60 0.16
Home Range size ∼Mean N:P + N:P CV∗ 4 178.93 1.09 −84.66 0.15
Home Range size ∼Mean N:P + N:P CV∗ + Weight∗ 5 179.74 1.90 −83.62 0.21
Home Range size ∼ N:P CV∗ 3 180.59 2.75 −86.84 0.02
Home Range size ∼ N:P CV∗ + Weight∗ 4 181.07 3.22 −85.73 0.09
Home Range size ∼Mean N:P + N:P CV∗ + Mean:CV 5 181.83 3.98 −84.66 0.15
Home Range size ∼Mean N:P + N:P CV∗ + Mean:CV + Weight∗ 6 182.89 5.05 −83.62 0.21
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B.9.1.3 Model selection for home range area calculated at 90% UD

Table B.16: Full AICc table for the model set fit to home range size at the 90% UD using stoi-
chiometric data from red maple C:N, sorted in ascending order of ΔAICc. Column headers: k,
number of parameters in the model, LL, log-likelihood. Colons indicate interaction terms.

Models k AICc ΔAICc LL R2
Home Range size ∼ C:N CV 3 208.04 0.00 −100.56 0.08
Intercept 2 208.06 0.02 −101.81 0.00
Home Range size ∼ C:N CV + Weight 4 208.96 0.92 −99.68 0.13
Home Range size ∼Mean C:N 3 210.34 2.30 −101.71 0.01
Home Range size ∼Mean C:N + C:N CV 4 210.72 2.68 −100.56 0.08
Home Range size ∼Mean C:N + Weight 4 210.80 2.76 −100.60 0.08
Home Range size ∼Mean C:N + C:N CV + Weight 5 211.86 3.82 −99.68 0.13
Home Range size ∼Mean C:N + C:N CV + Mean:CV 5 213.44 5.40 −100.47 0.09
Home Range size ∼Mean C:N + C:N CV + Mean:CV + Weight 6 214.96 6.92 −99.65 0.13

Table B.17: Full AICc table for the model set fit to home range size at the 90% UD using sto-
ichiometric data from red maple N:P, sorted in ascending order of ΔAICc. Column headers: k,
number of parameters in the model, LL, log-likelihood. Colons indicate interaction terms.

Models k AICc ΔAICc LL R2
Intercept 2 208.06 0.00 −101.81 0.00
Home Range size ∼ N:P CV 3 208.92 0.86 −101.00 0.05
Home Range size ∼ N:P CV + Weight 4 209.75 1.69 −100.07 0.11
Home Range size ∼Mean N:P 3 210.44 2.38 −101.76 0.00
Home Range size ∼Mean N:P + Weight 4 210.67 2.61 −100.53 0.08
Home Range size ∼Mean N:P + N:P CV 4 210.85 2.80 −100.63 0.08
Home Range size ∼Mean N:P + N:P CV + Weight 5 211.63 3.57 −99.56 0.14
Home Range size ∼Mean N:P + N:P CV + Mean:CV 5 213.75 5.70 −100.63 0.08
Home Range size ∼Mean N:P + N:P CV + Mean:CV + Weight 6 214.78 6.72 −99.56 0.14
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Table B.18: Full AICc table for the model set fit to home range size at the 90% UD using stoi-
chiometric data from lowbush blueberry C:N, sorted in ascending order of ΔAICc. Uninforma-
tive parameters (sensu Leroux 2019) include body weight and the interaction of C:N ratio mean
and CV. Column headers: k, number of parameters in the model, LL, log-likelihood. Colons in-
dicate interaction terms, asterisks identify uninformative parameters.

Models k AICc ΔAICc LL R2
Home Range size ∼Mean C:N + C:N CV 4 180.60 0.00 −85.50 0.66
Home Range size ∼Mean C:N + C:N CV + Weight∗ 5 183.06 2.46 −85.28 0.69
Home Range size ∼Mean C:N + C:N CV + Mean:CV∗ 5 183.26 2.66 −85.38 0.67
Home Range size ∼Mean C:N + C:N CV + Mean:CV∗ + Weight∗ 6 186.15 5.55 −85.25 0.67
Home Range size ∼ C:N CV 3 193.95 13.35 −93.51 0.43
Home Range size ∼ C:N CV + Weight∗ 4 195.38 14.78 −92.89 0.45
Home Range size ∼Mean C:N 3 203.42 22.82 −98.25 0.21
Home Range size ∼Mean C:N + Weight∗ 4 204.57 23.97 −97.48 0.25
Intercept 2 208.06 27.46 −101.81 0.00

Table B.19: Full AICc table for the model set fit to home range size at the 90% UD using stoi-
chiometric data from lowbush blueberry C:P, sorted in ascending order of ΔAICc. Body weight
and C:P ratio CV are uninformative parameters (sensu Leroux 2019). Column headers: k, num-
ber of parameters in the model, LL, log-likelihood. Colons indicate interaction terms, asterisks
identify uninformative parameters.

Models k AICc ΔAICc LL R2
Home Range size ∼Mean C:P 3 207.25 0.00 −100.16 0.10
Home Range size ∼Mean C:P + C:P CV∗ 4 207.58 0.33 −98.99 0.17
Intercept 2 208.06 0.81 −101.81 0.00
Home Range size ∼Mean C:P + Weight∗ 4 208.55 1.30 −99.47 0.14
Home Range size ∼Mean C:P + C:P CV∗ + Weight 5 208.92 1.67 −98.21 0.21
Home Range size ∼ C:P CV∗ 3 210.41 3.16 −101.74 0.00
Home Range size ∼Mean C:P + C:P CV∗ + Mean:CV 5 210.48 3.22 −98.99 0.17
Home Range size ∼ C:P CV∗ + Weight∗ 4 210.94 3.69 −100.67 0.07
Home Range size ∼Mean C:P + C:P CV∗ + Mean:CV + Weight∗ 6 212.06 4.81 −98.20 0.21

Table B.20: Full AICc table for the model set fit to home range size at the 90% UD using stoi-
chiometric data from lowbush blueberry N:P, sorted in ascending order of ΔAICc. Column head-
ers: k, number of parameters in the model, LL, log-likelihood. Colons indicate interaction terms.

Models k AICc ΔAICc LL R2
Home Range size ∼Mean N:P 3 207.67 0.00 −100.37 0.09
Intercept 2 208.06 0.39 −101.81 0.00
Home Range size ∼Mean N:P + N:P CV 4 208.69 1.02 −99.54 0.14
Home Range size ∼Mean N:P + Weight 4 209.01 1.34 −99.70 0.13
Home Range size ∼Mean N:P + N:P CV + Weight 5 210.04 2.37 −98.77 0.18
Home Range size ∼ N:P CV 3 210.13 2.46 −101.60 0.01
Home Range size ∼ N:P CV + Weight 4 210.85 3.18 −100.63 0.08
Home Range size ∼Mean N:P + N:P CV + Mean:CV 5 211.47 3.80 −99.48 0.14
Home Range size ∼Mean N:P + N:P CV + Mean:CV + Weight 6 213.14 5.47 −98.74 0.19

207



B.10 Additional Figures

Here we provide supporting visual materials for our field protocols, analyses, and results. Fig-

ure B.1 shows the location of our study area. For an interactive study area map, please see the

Supporting Code document. Figure B.2 provides a visualization of the grid layout. Figures B.3

to B.6 show the overlap in the 50%, 75%, and 90% AKDEc isopleths of the four individuals for

which we had multiple sampling years. Figure B.7 provides a breakdown of the plant foliar sam-

ples collected in each study site, by plant species of interest and intended purpose (i.e., stoichio-

metric analyses or local plant biomass estimation). Figure B.8 shows a comparison of the C, N,

P content of red maple and lowbush blueberry in our hare study area. In Figure B.9, we inspect

the relationship between six classes of macromolecules and nitrogen content across 23 species of

broadleaved and coniferous plants.
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Figure B.2: Layout of a snowshoe hare trapping grid. The grid consists of 14 rows and 14
columns (fine gray lines). At each intersection we placed a trap (full circles), alternating odd and
even rows on adjacent lines. Traps on a line were 75 m apart, the only exceptions being traps
placed on turns for which the distance was necessarily shorter.
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Figure B.7: Breakdown of the number of samples collected for each plant species of interest in
each study site. Samples are identified as either “Stoichiometry” when intended for stoichiomet-
ric analyses, or as “Biomass” when intended for local plant species biomass estimation.
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APPENDIX C

Supplementary Information for Chapter 4: Animal-vectored nutrient flow along different re-

source gradients influences the nature of local and meta-ecosystem functioning.

C.1 Introduction

Here we provide additional details on our model’s equilibria and on our results. In Appendix

Appendix C.2, we report all model equilibria—both feasible and unfeasible. In Appendix Ap-

pendix C.3, we show raw data results for the model analyses when we vary both environmental

nutrient availability conditions and primary producers recycling rates. Stability analyses for the

model can be found in the Supporting Code document, available through our online repository at:

https://doi.org/10.6084/m9.figshare.16479933.

C.2 Model Equilibria

Here we report the feasible and un-feasible equilibria of our model (see text, eq. 4.1). As de-

scribed above (Section 4.2.2.1), we first solve equation eq. 4.1g to find the quasi-equilibrium 𝑄∗
(eq. 4.2). We then substitute eq. 4.2 in equation eq. 4.1f and solve for 𝐶∗2 . Through subsequent
rounds of substitution, we solve for all other state variables. Finally, we substitute the solution

for 𝐶∗1 into eq. 4.2, to get the solution for 𝑄∗.
Feasible equilibria:

𝑁∗1 = (𝑑1 − 𝑑1𝑒1 + 𝑔)ℎ1 + 𝑎1𝑒1𝐼1)𝑎1𝑒1𝑙 + (𝑑1 − 𝑑1𝑒1 + 𝑔)𝑢1 (C.1a)

𝑃∗1 = 𝑑1 + 𝑔𝑎1𝑒1 (C.1b)

𝐶∗1 = 𝑒1(−ℎ1𝑙 + 𝐼1𝑢1)𝑎1𝑒1𝑙 + (𝑑1 − 𝑑1𝑒1 + 𝑔)𝑢1 (C.1c)
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𝑁∗2 =−𝑎1𝑒1(𝑑2(−1+𝑒2)ℎ2−𝑎2𝑒2𝐼2)𝑙𝐴+𝑑2(−1+𝑒2)(𝑑1(−1+𝑒1)−𝑔)ℎ2𝐴𝑢1+𝑎2(𝑒2(𝑑1+𝑔)𝐼2𝐴𝑢1−𝑒1(𝑑1𝑒2𝐼2𝐴𝑢1+𝑔𝑚(ℎ1𝑙−𝐼1𝑢1)))𝐴𝐵(𝑎2𝑒2𝑙−𝑑2(−1+𝑒2)𝑢2)
(C.1d)𝑃∗2 = 𝑙(−𝑑2(𝑑1(−1+𝑒1)−𝑔)ℎ2𝐴𝑢1+𝑎2𝑒1𝑔𝑚(−ℎ1𝑙+𝐼1𝑢1))+𝑑2(𝑑1𝑒1𝐼2𝐴𝑢1−(𝑑1+𝑔)𝐼2𝐴𝑢1+𝑒1𝑔𝑚(ℎ1𝑙−𝐼1𝑢1))𝑢2+𝑎1𝑑2𝑒1𝑙𝐴(ℎ2𝑙−𝐼2𝑢2)𝑎2𝑒2ℎ2𝑙𝐴𝐵−𝑎2(𝑎1𝑒1𝑒2𝐼2𝑙𝐴+𝑒2(𝑑1+𝑔)𝐼2𝐴𝑢1−𝑒1(𝑑1𝑒2𝐼2𝐴𝑢1+𝑔𝑚(ℎ1𝑙−𝐼1𝑢1)))𝑢2
(C.1e)

𝐶∗2 = 𝑒1𝑔𝑚(−ℎ1𝑙+𝐼1𝑢1)𝑢2𝐴𝐵+𝑒2(−ℎ2𝑙+𝐼2𝑢2)𝑎2𝑒2𝑙 − 𝑑2(−1 + 𝑒2)𝑢2 (C.1f)

𝑄∗ = 𝑒1𝑔(−ℎ1𝑙 + 𝐼1𝑢1)𝐴𝐵 (C.1g)

Where,

𝐴 = (𝑐 + 𝑚)
𝐵 = (𝑎1𝑒1𝑙 + (𝑑1 − 𝑑1𝑒1 + 𝑔)𝑢1)

Other, unfeasible equilibria:

Case 1: 𝑁∗1 = 𝐼1𝑙 (C.2a)

𝑃∗1 = 0 (C.2b)

𝐶∗1 = 0 (C.2c)

𝑁∗2 = 𝐼2𝑙 (C.2d)

𝑃∗2 = 0 (C.2e)

𝐶∗2 = 0 (C.2f)

Case 2:

𝑁∗1 = (𝑑1 − 𝑑1𝑒1 + 𝑔)ℎ1 + 𝑎1𝑒1𝐼1𝑎1𝑒1𝑙 + (𝑑1 − 𝑑1𝑒1 + 𝑔)𝑢1 (C.3a)
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𝑃∗1 = 𝑑1 + 𝑔𝑎1𝑒1 (C.3b)

𝐶∗1 = 𝑒1(−ℎ1𝑙 + 𝐼1𝑢1)𝑎1𝑒1𝑙 + (𝑑1 − 𝑑1𝑒1 + 𝑔)𝑢1 (C.3c)

𝑁∗2 = 𝑎1𝑒1𝐼2𝑙(𝑐 + 𝑚) + (𝑑1 + 𝑔)𝐼2(𝑐 + 𝑚)𝑢1 − 𝑒1(𝑑1𝐼2(𝑐 + 𝑚)𝑢1 + 𝑔𝑚(ℎ1𝑙 − 𝐼1𝑢1))𝑙(𝑐 + 𝑚)(𝑎1𝑒1𝑙 + (𝑑1 − 𝑑1𝑒1 + 𝑔)𝑢1) (C.3d)

𝑃∗2 = 0 (C.3e)

𝐶∗2 = 𝑒1𝑔𝑚(−ℎ1𝑙 + 𝐼1𝑢1)𝑑2(𝑐 + 𝑚)(𝑎1𝑒1𝑙 + (𝑑1 − 𝑑1𝑒1 + 𝑔)𝑢1) (C.3f)

Case 3:

𝑁∗1 = 𝐼1𝑙 (C.4a)

𝑃∗1 = 0 (C.4b)

𝐶∗1 = 0 (C.4c)

𝑁∗2 = 𝑑2ℎ2 − 𝑑2𝑒2ℎ2 + 𝑎2𝑒2𝐼2𝑎2𝑒2𝑙 + 𝑑2𝑢2 − 𝑑2𝑒2𝑢2 (C.4d)

𝑃∗2 = 𝑑2𝑎2𝑒2 (C.4e)

𝐶∗2 = 𝑒2(−ℎ2𝑙 + 𝐼2𝑢2)𝑎2𝑒2𝑙 − 𝑑2(−1 + 𝑒2)𝑢2 (C.4f)
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C.3 Additional Figures

Here, we present additional figures that provide more detail into our model’s result. In Figure C.1,

we report the untransformed values for the results shown in Figure 4.3. Figures C.2 and C.3 re-

port the untransformed values for the results presented in Figure 4.4 and Figure 4.5, respectively.

Finally, in Figures C.4 to C.9, we report the results obtained from running 10 000 iterations of

our model.
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APPENDIX D

Abstracts of collaborative papers

D.1 Introduction

Here, I provide abstracts for the collaborative papers listed in Section 1.6.1. For ease of refer-

ence, papers are organized in the same three groups used in Section 1.6.1.

D.2 As part of the Terrestrial Ecology Research Group

D.2.1 Abstract for Balluffi-Fry, Leroux, Wiersma, Heckford, et al. (2020)

Herbivores consider the variation of forage qualities (nutritional content and digestibility) as well

as quantities (biomass) when foraging. Such selection patterns may change based on the scale

of foraging, particularly in the case of ungulates that forage at many scales. To test selection for

quality and quantity in free-ranging herbivores across scales, however, we must first develop

landscape-wide quantitative estimates of both forage quantity and quality. Stoichiometric dis-

tribution models (StDMs) bring opportunity to address this because they predict the elemental

measures and stoichiometry of resources at landscape extents. Here, we use StDMs to predict

elemental measures of understory white birch quality (% nitrogen) and quantity (g carbon m−2)

across two boreal landscapes. We analyzed global positioning system (GPS) collared moose

(𝑛 = 14) selection for forage quantity and quality at the landscape, home range, and patch ex-
tents using both individual and pooled resource selection analyses. We predicted that as the scale

of resource selection decreased from the landscape to the patch, selection for white birch quan-

tity would decrease and selection for quality would increase. Counter to our prediction, pooled-

models showed selection for our estimates of quantity and quality to be neutral with low explana-

tory power and no scalar trends. At the individual-level, however, we found evidence for quality
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and quantity trade-offs, most notably at the home-range scale where resource selection models

explain the largest amount of variation in selection. Furthermore, individuals did not follow the

same trade-off tactic, with some preferring forage quantity over quality and vice versa. Such in-

dividual trade-offs show that moose may be flexible in attaining a limiting nutrient. Our find-

ings suggest that herbivores may respond to forage elemental compositions and quantities, giving

tools like StDMs merit toward animal ecology applications. The integration of StDMs and ani-

mal movement data represents a promising avenue for progress in the field of zoogeochemistry.

D.2.2 Abstract for Balluffi-Fry, Leroux, Wiersma, Richmond, et al. (2021)

Intraspecific feeding choices account for a large portion of herbivore foraging in many ecosys-

tems. Plant resource quality is heterogeneously distributed, affected by nutrient availability and

growing conditions. Herbivores navigate landscapes, making feeding decisions according to

food qualities, but also energetic and nutritional demands. We test three non-exclusive forag-

ing hypotheses using the snowshoe hare (Lepus americanus): 1) herbivores feeding choices and

body conditions respond to intraspecific plant quality variation, 2) feeding responses are miti-

gated when energetic demands are high, and 3) feeding responses are inflated when nutritional

demands are high. We measured black spruce (Picea mariana) nitrogen, phosphorus, and ter-

pene compositions, as indicators of quality, within a snowshoe hare trapping grid and found plant

growing conditions to explain spruce quality variation (𝑅2 < 0.36). We then offered two qualities

of spruce (H1) from the trapping grid to hares in cafeteria-style experiments and measured their

feeding and body condition responses (𝑛 = 75). We proxied energetic demands (H2) with ambi-

ent temperature and coat insulation (% white coat) and nutritional demands (H3) with the spruce

quality (nitrogen and phosphorus content) in home ranges. Hares that preferred higher-quality

spruce lost less weight during experiments (𝑝 = 0.018). The results supported our energetic pre-
dictions: hares in colder temperatures and with less insulative coats (lower % white) consumed

more spruce and were less selective towards high-quality spruce. Collectively, we found varia-

tion in plant growing conditions within herbivore home ranges substantial enough to affect herbi-
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vore body conditions, but any plant-herbivore interactions are also mediated by animal energetic

states.

D.2.3 Abstract for Richmond, Leroux, et al. (2021)

Aims Intraspecific variation in plant traits has important consequences for individual fitness and

herbivore foraging. For plants, trait variability across spatial dimensions is well documented.

However, temporal dimensions of trait variability are less well known, and may be influenced by

seasonal differences in growing degree days (GDD), temperature and precipitation. Here, we aim

to quantify intraspecific temporal variation in traits and the underlying drivers for four commonly

occurring boreal plant species.

MethodsWe sampled the elemental and stoichiometric traits (%C, %N, %P, C:N, C:P, N:P) of

four common browse species’ foliage across 2 years. Using a two-step approach, we first fitted

generalized linear models (GzLM, 𝑛 = 24) to the species’ elemental and stoichiometric traits,
and tested if they varied across years. When we observed evidence for temporal variability, we

fitted a second set of GzLMs (𝑛 = 8) with temperature, productivity and moisture as explanatory
variables.

Important FindingsWe found no evidence of temporal variation for most of the elemental and

stoichiometric traits of our four boreal plants, with two exceptions. Year was an important pre-

dictor for percent carbon across all four species (𝑅2 = 0.47–0.67) and for multiple elemental and

stoichiometric traits in balsam fir (5/8, 𝑅2 = 0.29–0.67). Thus, variation in percent carbon was

related to inter-annual differences, more so than nitrogen and phosphorus, which are limiting nu-

trients in the boreal forest. These results also indicate that year may explain more variation in

conifers’ stoichiometry than for deciduous plants due to life history differences. GDD was the

most frequently occurring variable in the second round of models (8/8 times, 𝑅2 = 0.21–0.41),

suggesting that temperature is an important driver of temporal variation in these traits.
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D.2.4 Abstract for Richmond, Balluffi-Fry, et al. (2021)

Herbivores making space use decisions must consider the trade-off between perceived predation

risk and forage quality. Herbivores, specifically snowshoe hares (Lepus americanus), must con-

stantly navigate landscapes that vary in predation risk and food quality, providing researchers

with the opportunity to explore the factors that govern their foraging decisions. Herein, we tested

predictions that intersect the Risk Allocation Hypothesis (RAH) and Optimal Foraging Theory

(OFT) in a spatially explicit ecological stoichiometry framework to assess the trade-off between

predation risk and forage quality. We used individual and population estimates of snowshoe hare

(𝑛 = 29) space use derived from biotelemetry across three summers. We evaluated resource for-

age quality for lowbush blueberry (Vaccinium angustifolium), a common and readily available

forage species within our system, using carbon:nitrogen and carbon:phosphorus ratios. We used

habitat complexity to proxy perceived predation risk. We analyzed how forage quality of blue-

berry, perceived predation risk, and their interaction impact the intensity of herbivore space use.

We used generalised mixed effects models, structured to enable us to make inferences at the pop-

ulation and individual home range level. We did not find support for RAH and OFT. However,

variation in the individual-level reactions norms in our models showed that individual hares have

unique responses to forage quality and perceived predation risk. Our finding of individual-level

responses indicates that there is fine-scale decision making by hares, although we did not iden-

tify the mechanism. Our approach illustrates spatially explicit empirical support for individual

behavioural responses to the food quality-predation risk trade-off.

D.2.5 Abstract for Heckford et al. (2021)

Context Spatially explicit correlates of foliar elemental, stoichiometric, and phytochemical (ESP)

traits represent links to landscape patterns of resource quality.

ObjectivesWe investigate spatial correlates for multiple foliar ESP traits at the species level and

across species at the trait level for five boreal forest understory plants.

Methods On the island of Newfoundland, Canada, we collected plot-level foliar material from
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four chronosequenced forest grids. We integrate plot-level response variables of foliar elemental

(C, N, P, percent and quantity), stoichiometric (C:N, C:P, N:P), and phytochemical (terpenoids)

traits, with spatial predictors available for the whole landscape to test multiple competing hy-

potheses. These hypotheses include the effects of land cover (e.g., coniferous, deciduous, mixed-

wood), productivity (e.g., enhanced vegetation index), biotic (e.g., stand age/height, canopy clo-

sure) and abiotic (e.g., elevation, aspect, slope) factors.

Results Spatial correlates of foliar ESP traits were generally species specific. However, at the

trait level, some species shared spatial predictors, notably for foliar percent carbon, C:P, N:P,

sesquiterpene traits. Here we highlight that foliar C, C:P, and sesquiterpene traits between dif-

ferent species were explained by abiotic spatial correlates alone. Similarly, foliar terpenoid traits

between different species were related to a combination of abiotic and biotic factors (mean 𝑅2 =0.26).
Conclusions Spatial-trait relationships mainly occur at the species level, with some common-

alities at the trait level. By linking plot-level foliar ESP traits to spatial predictors, we can map

plant chemical composition patterns that influence landscape-scale ecosystem processes and thus

inform sustainable landscape management.

D.2.6 Abstract for Heckford et al. (in revision)

1. Life history and leaf economic strategies relate Intraspecific Trait Variability (ITV) of fo-

liar C, N, and P to differing environmental conditions. Foliar C, N, and P traits may vary

across community (conspecific, heterospecific) and geographic gradients where differ-

ences in community structure, temperature, and precipitation may influence elemental

homeostatic-physiological processes. Foliar elements are intrinsically coupled and col-

lective shifts in intraspecific trait variability can be represented along niches axes defined

by foliar C, N, and P.

2. Using foliar C, N, and P traits of balsam fir (Abies balsamea) and white birch (Betula pa-

pyrifera), species with different life history and leaf economic strategies, we compare con-
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specific and heterospecific niche similarity and volume in terms of ITV at the regional and

local spatial extent. At the local extent, we compare within and between two biogeographic

separated populations. We test the predictions that balsam fir and white birch will exhibit

heterospecific niche responses that reflect their elemental homeostatic constraints and that

northerly populations have higher foliar N, and P content.

3. We found no evidence to support our prediction for balsam fir at regional and local ex-

tents; however, ITV increased for heterospecific niches ranging from 0–35.49%. At the

regional and local extent, we found no evidence to support our white birch niche predic-

tions, although significant differences between conspecific and heterospecific niches were

detected. Comparing conspecific and heterospecific niches between northern and southern

populations yielded significant differences, on average northerly niches had higher N (fir:

conspecific = 0.176% and heterospecific = 0.15%; birch: conspecific = 1.26% and het-

erospecific = 1.214%) and P foliar content (fir: conspecific = 0.046% and heterospecific =

0.053%; birch: conspecific = 0.146% and heterospecific = 0.141%).

4. Our results suggest balsam fir exhibits a rigorous, yet geographically specific elemental

homeostasis. Although white birch is also geographically specific, it may exhibit greater

plasticity given our mixed findings between populations in terms of community structure.

Understanding how foliar elemental traits vary across spatial scales can be useful to predict

ecosystem processes that influence nutrient and trophic dynamics at multiple scales.

D.3 As visiting scholar at the Yale University School of the Environment

D.3.1 Abstract for Ellis-Soto et al. (2021)

1. Energy, nutrients and organisms move over landscapes, connecting ecosystems across

space and time. Meta-ecosystem theory investigates the emerging properties of local ecosys-

tems coupled spatially by these movements of organisms and matter, by explicitly tracking

exchanges of multiple substances across ecosystem borders. To date, meta-ecosystem re-
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search has focused mostly on abiotic flows—neglecting biotic nutrient flows. However,

recent work has indicated animals act as spatial nutrient vectors when they transport nutri-

ents across landscapes in the form of excreta, egesta and their own bodies.

2. Partly due to its high level of abstraction, there are few empirical tests of meta-ecosystem

theory. Furthermore, while animals may be viewed as important mediators of ecosystem

functions, better integration of tools is needed to develop predictive insights of their rela-

tive roles and impacts on diverse ecosystems. We present a methodological roadmap that

explains how to do such integration by discussing how to combine insights from move-

ment, foraging and ecosystem ecology to develop a coherent understanding of animal-

vectored nutrient transport on meta-ecosystems processes.

3. We discuss how the slate of newly developed technologies and methods—tracking devices,

mechanistic movement models, diet reconstruction techniques and remote sensing—that

when integrated have the potential to advance the quantification of animal-vectored nutri-

ent flows and increase the predictive power of meta-ecosystem theory.

4. We demonstrate that by integrating novel and established tools of animal ecology, ecosys-

tem ecology and remote sensing, we can begin to identify and quantify animal-mediated

nutrient translocation by large animals. We also provide conceptual examples that show

how our proposed integration of methodologies can help investigate ecosystem impacts of

large animal movement. We conclude by describing practical advancements to understand-

ing cross-ecosystem contributions of animals on the move.

5. Understanding the mechanisms by which animals shape ecosystem dynamics is important

for ongoing conservation, rewilding and restoration initiatives around the world, and for

developing more accurate models of ecosystem nutrient budgets. Our roadmap will enable

ecologists to better qualify and quantify animal-mediated nutrient translocation for animals

on the move.

240



D.4 From other collaborations

D.4.1 Abstract for Little et al. (in review)

Fluxes of matter, energy, and information over space and time contribute to ecosystems’ func-

tioning. The meta-ecosystem framework addresses the dynamics of ecosystems linked by these

fluxes, however, to date, meta-ecosystem research focused solely on fluxes of energy and matter,

neglecting information. This is problematic due to organisms’ varied responses to information,

which influence local ecosystem dynamics and can alter spatial flows of energy and matter. Fur-

thermore, information itself can move between ecosystems. Therefore, information should con-

tribute to meta-ecosystem dynamics, such as stability and productivity. Specific sub-disciplines

of ecology currently consider different types of information (e.g., social and cultural informa-

tion, natural and artificial light or sound, body condition, genotype, and phenotype). Yet neither

the spatiotemporal distribution of information nor its perception are currently accounted for in

general ecological theories. Here, we provide a roadmap to synthesize information and meta-

ecosystem ecology. We begin by defining information in a meta-ecological context. We then

review and identify challenges to be addressed in developing information meta-ecology. Finally,

we present new hypotheses for how information could impact dynamics across scales of spatio-

temporal and biological organization.
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