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Abstract

In binary black hole mergers and other highly dynamical spacetimes, the surface of

most obvious interest, the event horizon, is often computationally difficult to locate.

Instead, it is useful to use quasi-local characterizations of black hole boundaries, such

as Marginally Outer Trapped Surfaces (MOTS), the outer-most of which is (often)

the apparent horizon. Recent studies have shown that MOTS not only characterize

boundaries, but may also be found in black hole interiors. This has been seen in 4D

Schwarzschild and Reissner-Nordstrom, as well as in binary black hole mergers.

In this thesis, behaviours of MOTS—and their open generalization, Marginally

Outer Trapped Open Surfaces (MOTOS)—in the interior of five-dimensional black

holes are studied; both static (Schwarzschild), and rotating (Myers-Perry). Similar to

four-dimensions, we find infinitely many self-intersecting MOTS in 5D Schwarzschild.

We find finitely many self-intersecting MOTS in Myers-Perry, finding fewer as the

rotation increases. However, we do find oscillations of the MOTOS, which is novel

behaviour.

Keywords: black holes, binary black hole mergers, Myers-Perry, 5D black holes,

MOTS, apparent horizons.
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Lay summary

Black holes are one of the most striking predictions of Einstein’s theory of General

Relativity, as they give us unique insight into the nature of space and time, and

their existence in the universe as real, astrophysical objects is now accepted. In

2015, the first direct experimental evidence of gravitational waves was detected at

LIGO; the waves their detectors found were produced by a binary black hole merger:

an event wherein two black holes merge into one. The subject of this thesis deals

with understanding the nature of a kind of surface, called Marginally Outer Trapped

Surfaces (MOTS), which are used as proxies for finding black holes in spacetimes that

change dramatically with time—like binary black hole mergers. These surfaces are

used because, if initial data is specified at a given time, then they can be readily found

and analyzed. This is in contrast to the usual surface that defines a black hole, called

the event horizon.

In this thesis, Marginally Outer Trapped Surfaces are studied for two types of five-

dimensional black holes: one which does not change with time (called Schwarzschild),

and one which rotates (called Myers-Perry). Interesting looping behaviour is seen in

these MOTS, as was seen before when they were studied for a four-dimensional black

hole in [11]. We also see oscillating behaviour in surfaces which are like the MOTS,

called Marginally Outer Trapped Open Surfaces (MOTOS).
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Chapter 1

Introduction

We study black holes because they are able to give us unique insight into the nature

of space and time in our Universe: they are arguably the most dramatic and counter-

intuitive prediction of Einstein’s theory of General Relativity, and yet we now can be

certain they are real, astrophysical objects. While the first observational evidence of

a black hole was found in 1964, this field is more at the forefront now than it has

ever been, since the detection of gravitational waves in 2015 [8]. Even before this,

many potential candidates for black holes had been detected through a variety of

methods—some found in X-ray binary systems, some found in galactic nuclei [26].

Now, gravitational wave detector experiments like LIGO and VIRGO collect data

every day, and have the capacity to locate black holes previously invisible to us.

These gravitational waves were determined to have come from a binary black hole

merger: two in-spiralling black holes, which finally merged into one. Understanding

such a complex and dynamical spacetime requires numerical methods and simulations,

as well as a notion of a black hole boundary [35, 33, 7, 5].

This thesis focuses on the novel behaviour we have seen in one such characterization

of a boundary: the marginally outer trapped surface; first seen in [30] for binary black

hole mergers, and later studied by my collaborators in 4D Schwarzschild spacetime

[11], MOTS were found not only to characterize a black hole boundary, but also to

produce complex self-intersecting behaviour inside the black hole. The purpose of this

work is to show the generality of this behaviour through establishing its existence in

multiple 5-dimensional spacetimes.
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1.1 Event Horizons

In the study of black holes, the most obvious surface of interest is the event horizon—

the surface beyond which light cannot escape, and thus from inside of which signals

sent cannot be received by observers outside. That is, the event horizon is the surface

which separates the interior and exterior of the black hole spacetime [28], and thus is

something of a defining feature of any given black hole.

More precisely, the event horizon is the outermost surface traced out by a con-

gruence of null geodesics which never escape to future null infinity. This surface is

inherently global in its definition: one specifies boundary conditions that the geodesics

have at future infinity (never escaping), and then traces the ones that satisfy this con-

dition back in time, to find the location of the event horizon at the previous time.

That is, the event horizon is a surface defined by boundary condition in the asymp-

totic future. It is, therefore, a surface defined for all time, and requires complete

knowledge of the future to properly locate [9, 20, 37].

For a black hole like the Schwarzschild solution [34], for which the line element is

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dΩ2, (1.1)

the event horizon is at r = 2M—where there exists a coordinate singularity. But

for a more complicated black hole spacetime, the location of the event horizon is not

so obvious. A good example of this is the (in-going) Vaidya spacetime [36], where

one considers a (locally) Schwarzschild black hole of some mass M1, which then is

irradiated by null rays until it is of mass M2 > M1. After the irradiation stops, the

spacetime is once again (locally) that of Schwarzschild, but with the new larger mass.

The line element for this spacetime during the irradiation is, taken from [28],

ds2 = −fdv2 + 2dvdr + r2dΩ2 where f(v) = 1− 2m(v)

r
, (1.2)

and these are in-going Eddington-Finkelstein -type coordinates [14][18], meaning that

surfaces of constant v-coordinate are null and in-falling.

Before the irradiation, the Vaidya spacetime is simply Schwarzschild with mass

M1 = m(v1), and after, it is the same, but with mass M2 = m(v2). v1 is when the

irradiation begins, and v2 is when it stops.
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Figure 1.1: Taken from [13]; a diagram showing the difference between the location
of the event horizon and the apparent horizon in Vaidya spacetime. The grey band
indicates in-falling matter (irradiation), and the apparent horizon follows the mass
function, being located at r = 2m(v). The “false horizon” shown here is the path of
null rays which begin at r = 2m1 before the irradiation, and thus is inside the event
horizon and intersects the singularity.

Where is the event horizon in such a spacetime? The following argument illustrates

that the event horizon is defined for all time in the following way: if a congruence of

null geodesics were to be just outside of r = 2M1 when the irradiation occurs, then

because the irradiation itself occurs instantaneously (in the frame of the horizon),

this congruence will instantaneously be within the new horizon r = 2M2. If they
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are within this horizon for a Schwarzschild black hole, we know that they cannot

escape to future null infinity. Thus, the future of this congruence will be inside the

horizon forever. But if we define the event horizon teleologically—as a surface which

separates null rays that can never escape to future null infinity—then this r = 2M2

surface must be the event horizon, after the irradiation occurs. Thus, to find the event

horizon before the irradiation, one must trace back the null geodesics which end up

at r = 2M2, and wherever they originated, that is the event horizon at that point in

time [28].

This example illustrates the global nature of the event horizon, and thus hopefully

suggests to the reader why it might not always be practical computationally to use the

event horizon to define a black hole: in numerical simulations, for example, surfaces

which can be defined for an instant in time are much more widely used, as they are

more convenient [21, 29, 4, 5, 33].

To this end, one defines the apparent horizon, which is more or less where we

would naively expect the event horizon to be, at any instant in time. Unlike the

event horizon, which, in a 4-dimensional spacetime, is a 2+1-dimensional surface (2

dimensions of space, 1 of time), the apparent horizon is defined on a constant timeslice

of the spacetime, and so is only 2 dimensional. The 2+1-dimensional analogue of the

event horizon for the apparent horizon is the tube that the AH traces out in time,

called the dynamical horizon. For the previously described Vaidya spacetime, the

apparent horizon, for some time before the irradiation, is indeed at r = 2M1, after it

is at r = 2M2, and during the irradiation it follows the mass function m(v), i.e., it is

at r(v) = 2m(v).

But then, what is the apparent horizon? The definition—to use the term loosely—

given before, “where one would naively guess the event horizon would be, not knowing

the future”, is not very precise. We can make it more precise by first defining the

expansion of a congruence of null geodesics, and from this, trapped surfaces and then

marginally outer trapped surfaces (or MOTS), which are the subject of this work.
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1.2 Expansions of Null Geodesics

A geodesic is a curve γ = xα(s), which satisfies the geodesic equation

ẍα + Γαβγẋ
βẋγ = κ(s)ẋα (1.3)

where κ(s) = 0 indicates affine parameterization. If one imagines a particle moving

along the curve, where its location is indicated by the parameter, then relative to

an affine parameterization, the particle has zero acceleration along its path. A null

geodesic is one where the tangent vector to the path is null, that is, ẋαẋα = 0.

A congruence of geodesics is a collection of such curves, which satisfies the con-

dition that they do not cross anywhere—a point where they cross is called a caustic

and is technically not part of the congruence. We label a congruence of geodesics

according to the type of geodesics that form it; for example, a null congruence is one

which is made up of null geodesics.

It is not, however, required for each of the curves of the congruence to be parallel to

one another. Whether the geodesics in the congruence are converging or diverging can

be expressed through the expansion, which is the rate of change in area for a surface

element that all of the geodesics intersect once. A positive expansion indicates the

geodesics of the congruence are diverging, and a negative expansion indicates they

are converging.

If one considers some point P at which a light is turned on, then a congruence

of null geodesics, that is, light rays, will be emitted from this point (note, however,

the point itself is a caustic, so the congruence will be defined on points very near

to it). The expansion of these geodesics at this point P indicates whether they are

converging or diverging there; in the case of a light being turned on in flat space at

P , the expansion will be positive, because the light rays will be diverging.

If one then were to consider some surface S, and a light turned on at every point of

this surface, one will have to define two types of expansions: those associated with the

light rays which are directed in toward the inside of the surface, and those associated

with the light rays directed toward the outside of the surface.

More precisely, let (M, gαβ,∇α) denote an n + 1-dimensional spacetime. Then

let a constant timeslice in this spacetime be denoted by (Σ(t), hij, Di). Now define



6

a surface S in this constant timeslice. The normal to this surface, existing on the

timeslice, will be n̂ = nidx
i, where xi are the coordinates on the timeslice. This exists

in the timeslice, but is defined only on the surface S.

One then takes the covariant derivative of this normal, Dinj, and pulling this back

onto the surface gives its extrinsic curvature,

kAB = eiAe
j
BDinj, (1.4)

where eiA are the pullback operators.

The timelike unit normal to the timeslice is û = uαdx
α (future-directed), and

will be proportional to −dt. The extrinsic curvature of the timeslice is the covariant

derivative of this, ∇αuβ, pulled back into the timeslice:

Kij =
∂xα

∂xi
∂xβ

∂xj
∇αuβ. (1.5)

The operators ∂xi/∂xα = eαi are the pushforward/pullback operators.

An expansion is found from the extrinsic curvature by taking its trace. However,

this is done with the metric on S, pushed forward into the timeslice; this is because

the expansion is defined on S, and not in the whole timeslice. Letting quantities

defined on S have upper case Latin indices (here and for the rest of this text), the

inverse metric on S is denoted q̃AB and its pushed-forward analogue on the timeslice

is q̃ij. Then the expansion associated to each of Dinj and Kij are

θu = q̃ijKij = q̃ij
(
∂xα

∂xi
∂xβ

∂xj
∇αuβ

)
θn = q̃ijDinj.

(1.6)

From these two normals, you can see that one gets two expansions: one a timelike

expansion (from the timelike normal û), and one spacelike (from the spacelike normal

n̂). To get a null expansion, θ`, one requires a null normal, which is defined as a linear

combination of these two normals [11]:

ˆ̀+ = û+ n̂, ˆ̀− =
1

2
(û− n̂) (1.7)

Then, the null expansion can be found by finding the expansion of this null normal,
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that is, first taking its covariant derivative, and then contracting this with q̃αβ, where

here the metric will have to be pushed forward onto the full spacetime, as this is where

û exists (so too will n̂ in the above definition of `±). However,

eαAe
β
B∇α`

+
β = eαAe

β
B∇α (uβ + nβ) = eiAe

j
B(eαi e

β
j∇αuβ +Dinj) = eiAe

j
B(Kij +Dinj)

(1.8)

which means that

θ` = q̃αβ∇α`
+
β = q̃ABeαAe

β
B∇α`

+
β = q̃ABeiAe

j
B(Kij +Dinj)

= q̃ij(Kij +Dinj) = θu + θn
(1.9)

That is to say, the timelike and spacelike expansions relate in the same way to the

null expansion as the null normal does to the timelike and spacelike normals. So one

may simply add the two expansions θu, θn to find the null expansion. (Of course, an

analogous calculation holds for `−.)

One sees there are two choices of null normal, `+ and `−. These correspond to

what are calling the outward oriented null expansion, θ+, and the inward oriented,

θ−. The outward (null) expansion is that associated to null rays which are directed

from inside the surface toward the outside. This is found by defining the normal to

the surface S in the usual convention (positive); the expansion calculated in 1.9 is an

outward null expansion, θ` = θ+ (in this thesis, the notation θ` refers to this outward

oriented expansion). The inward oriented null expansion is found by defining the

spacelike normal in the negative direction (opposite to usual convection), and perhaps

intuitively, this is associated to light rays which are directed from outside the surface

toward the inside.

Now we may define trapped surfaces.

1.3 Trapped Surfaces

Before defining marginally outer trapped surfaces, which can be used to define the

apparent horizon as mentioned previously, it will be useful to define trapped surfaces.

Considering again the example of a surface S, and on every point of it lights are

turned on. Our every day experience is that of a surface which has positive outward
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null expansion, and negative inward: the null rays emitted from the surface which are

directed outward from the surface are diverging, and those directed inward from the

surface are converging (to a point at the centre, if, say, the surface is spherical).

The notion of a trapped surface was first introduced by Penrose in 1965 [27]. The

intended purpose was to provide a quasi-local characterization of black holes, meaning

a surface which could be located by an observer in order to detect whether a black

hole exists [22, 21]. The trapped surface is defined as a spacelike surface, for which

both the inward and outward directed null expansions are negative (converging). In

the previous example, the inward oriented light rays behave the same, that is, they

converge in toward the inside of the surface, but for the surface to be trapped, the

outward directed light rays must also converge. In this sense, the light rays are

“trapped” by the surface S. Intuition for such a surface can be developed through

the classic example of Schwarzschild spacetime: every spherically symmetric surface

inside the event horizon (r = 2M) of Schwarzschild is a trapped surface [22].

We may now define the apparent horizon, formally. Assuming a spacetime may

be foliated by asymptotically flat slices of constant time, where any one of these is

denoted Σt, then a point, p, in this timeslice is said to be trapped if it lies on a trapped

surface existing on Σt. One then takes the union of all such trapped points p ∈ Σt,

and the apparent horizon is then the boundary of this union [9, 20].

Under certain assumptions of smoothness, the apparent horizon will satisfy θ` = 0

[9], that is, it will have zero outward-oriented null expansion. This leads us to the

definition of MOTS.

1.4 MOTS

MOTS stands for Marginally Outer Trapped Surface(s). These are spacelike surfaces

for which the outward oriented null expansion is equal to zero, which are closed (in this

case, “closed” means compact and without boundary), and for which one places no

restriction on the inward oriented null expansion. So, one may have light rays directed

inward that are diverging or converging. Outward-oriented light rays, however, are

forced to have zero expansion, meaning they neither converge nor diverge at S: a

unit area would have instantaneously parallel geodesics crossing it if a surface is a

MOTS—that is, the shape produced by the light rays directed outward will stay the
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same size, rather than expanding out to infinity or converging in to the centre of S

[9, 10].

In many spacetimes, the definition of the apparent horizon stated above coincides

with it being the outermost MOTS in a timeslice [2]; separating the region of the

timeslice wherein there are MOTS (or trapped surfaces), from the outer region (where

there are not). While it is not always the case that these definitions coincide, for

practical reasons, the apparent horizon is defined simply as this outermost MOTS—

in numerical relativity, for example [9]. In this work, the two definitions coincide, but

the latter is what will be relevant.

Unlike the event horizon, the apparent horizon—and all other MOTS—are defined

for a constant time (since they are spacelike surfaces). This makes them useful, be-

cause they can be tracked throughout complex spacetimes like black hole mergers,

while also behaving somewhat like the event horizon would. Indeed, for stationary

spacetimes, constant-time slices of the event horizon coincide with the apparent hori-

zon [9]. It is also true for general spacetimes that the apparent horizon occurs inside

the event horizon [20], meaning the entirety of the region exterior to the black hole

exists outside the apparent horizon. This means if only the solution outside the ap-

parent horizon is computed, rather than outside the event horizon, no observable

information will be lost (observable information being that which occurs outside the

event horizon). Thus, apparent horizons (defined as being the outermost MOTS) are

the standard boundaries tracked in numerical general relativity [19, 32, 31, 12].

There is one more condition that makes a surface a MOTS: a MOTS must be a

closed surface. Closure of a surface is a global condition, and as such, one must know

the topology of the whole timeslice to determine whether a surface is closed. This

can lead to situations wherein two patches of surfaces that appear the same locally

are such that one is a MOTS and one is not, because the former is closed but the

latter is not in the entirety of the space. The issue with this, is it is not necessarily

practical for understanding the local behaviour of black holes—if two surfaces appear

the same locally, one should treat them as the same type of surface, in this case.

For this reason, my collaborators considered a type of surface which they called a

MOTOS: Marginally Outer Trapped Open Surface, which satisfies the condition of

zero outward null expansion, but for which the condition of closure is relaxed [11].
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1.5 MOTOS

A Marginally Outer Trapped Open Surface (MOTOS) was first defined in [11] as a

surface such that the outward null expansion is equal to zero, and the surface itself is

open. This is defined in a constant timeslice of the spacetime, as are the MOTS, and

so not only is this definition local temporally, but also spatially—that is, unlike the

MOTS, which are quasi-local objects, the MOTOS are purely local.

Soon we will see how the MOTOS and the MOTS are related, but for now, it can be

said that MOTOS provide a useful way of locating MOTS, as well as of understanding

their shape: one can follow a continuous series of MOTOS, and for a specific critical

value, one of these MOTOS will close, and in this place, there will be a MOTS. In

this way, the location and shape of MOTS are easily predictable, which is particularly

valuable in the work my collaborators did (and are doing) [11, 32, 31, 12], and then

the work on which this thesis focuses, because the MOTS in these cases are somewhat

exotic.



Chapter 2

Motivation and Previous Work

2.1 Binary Black Hole Mergers

The behaviour of the event horizon in a binary black hole merger has been well-known

for quite some time [20]: a conceptual diagram of it is often called a ‘pair of pants’

diagram, because it begins with the two black holes separated from one another,

corresponding to the legs of the pants, and then once they merge, the mutual horizon

which develops corresponds to the waist of the pants. Referring to figure 2.1, which

is taken from Hawking and Ellis, one can see the event horizon labelled there.

However, event horizons cannot be defined locally in time [20] [37], and thus are not

practical surfaces to follow throughout, say, a computational simulation of a merger.

To this end, the apparent horizon is used, because it can be defined on a single time

slice of the spacetime, and so lends itself to the methods used in such simulations [10]

[9].

Now the behaviour of the apparent horizon is more complex (as can also be seen in

the aforementioned figure 2.1) than the simple ‘pair of pants’ that describes the event

horizon. At later times, once the black holes have merged—that is, inside the ‘waist’

of the event horizon—a new mutual apparent horizon develops, which sits outside the

original two. Meanwhile, the original two continue to exist inside it.

Keeping in mind that the apparent horizon of a black hole is a MOTS, all of this

gives some motivation to the search for MOTS in binary black hole merger spacetimes.

In 2019, Pook-Kolb et. al. [30] followed the evolution of the MOTS involved such a
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Figure 2.1: A “pair of pants” diagram from Hawking and Ellis [20].

merger, from a time before the two apparent horizons touched one another, to some

time after the two black holes had merged and settled down into one new black hole.

One can see a figure from this paper in figure 2.2, which is like the pair of pants

diagram, but for MOTS.

The purple and red horizons visible at t = 0 are the apparent horizons of the two

black holes, as represented by the innermost thin tubes in the figure 2.1. One sees

that at a time tbifurcate, the two apparent horizons get close enough that two mutual

horizons develop around them; these are shown in blue and green in the figure. The

outermost blue horizon behaves as the new apparent horizon, just as the second

outermost horizon (labelled “new apparent horizon”) in figure 2.1. Unlike the blue

apparent horizon, the green MOTS hugs the purple and red apparent horizons of the

two black holes throughout the merger. Why this is interesting is visible at the top
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Figure 2.2: Figure taken from [30]; the analog of the pair of pants diagram, but for
the MOTS followed in the simulation by Pook-Kolb et. al. in 2019 [30]

.

of figure 2.2, and made more obvious in the last panel of figure 2.3: the green MOTS

produces a self-intersection as the red and purple horizons intersect one another.

The first panel of figure 2.3 shows all four of the MOTS, at some time after the

bifurcation time when the two mutual (blue and green) horizons develop. Already

here one can see the green horizon hugging the red and purple horizons, producing

a peanut shape. The second panel is then at an instant before the time when the

red and purple horizons touch one another; the cutout on the top right of this panel

shows the ‘waist’ of the green horizon, visible when it was peanut shaped, narrowing

so that it can hug the red and purple horizons more closely. Then the last panel and

its cutout shows the green horizon producing two self-intersections, which one can

see develop as the red and purple horizons move closer and intersect, and the green

horizon continues to follow them.

The self-intersecting MOTS seen here were the first of such surfaces found. Of

course, one can see that no such behaviour is present in the diagram of figure 2.1;

that is, the self-intersections are a property only of MOTS, not of surfaces like the

event horizon.
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Figure 2.3: Figure taken from [30]; the same MOTS as in figure 2.2, but from a top-
down perspective, where each panel represents an instant in time. One can see the
green horizon hugging the red and purple for the first two panels, the second of which
is an instant before the time when the horizons touch. Then, the cutout on the top
right of the last panel shows the green horizon producing two self-intersections, which
develop because it continues to hug the purple and red horizons after they intersect
one another.

2.2 Self-intersections in 4D Schwarzschild MOTS

In 2020, motivated by the Pook-Kolb et. al. paper from the previous year, my

collaborators published the paper [11], which searches for MOTOS (and through their

closure, MOTS) in 4-dimensional Schwarzschild spacetime, using Painlevé-Gullstrand

coordinates. Given how complicated the binary black hole merger spacetime is, they

wondered whether the self-intersecting behaviour seen in [30] was a product of this

complexity, or instead a more general phenomenon. To this end, they chose to search

for self-intersecting MOTS in the simplest possible black hole spacetime; figuring if

they could find it there, they could conclude the existence of such surfaces independent

of the complexity of the spacetime.

However, a more direct motivation lies in the work of [15], where it was shown that

for an extreme mass ratio merger, that is, a binary black hole merger where the mass

of one of the black holes is much larger than the mass of the other, the spacetime

near the smaller black hole (assuming it is non-rotating) can be approximated by

Schwarzschild. This means that studying the MOTOS (and by extension, MOTS) of

a Schwarzschild black hole directly leads to information about the structure of the

MOTS involved in an extreme mass ratio merger [11].
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2.2.1 Method

The method used in [11] is direct. One begins with the 4D Schwarzschild metric

in Painlevé-Gullstrand coordinates (which will be discussed in some more detail in

chapter 3),

gαβdx
αdxβ = −

(
1− 2m

r

)
dτ 2 + 2

√
2m

r
dτdr + dr2 + r2dΩ2, (2.1)

and takes slices of constant time, Σt = Σ, which are intrinsically flat, and (of course)

spacelike. They then have metric

hijdx
idxj = dr2 + r2dΩ2 (2.2)

showing that they are flat. One finds their extrinsic curvature by taking the trace (as

described in section 1.2) of the timelike normal to each of these Σ, which is

û =
∂

∂τ
−
√

2m

r

∂

∂r
, (2.3)

from which the extrinsic curvature is found to be

Kijdx
idxj =

√
m

2r3
dr2 −

√
2mrdΩ2. (2.4)

This is the extrinsic curvature pulled-back onto the time slice, hence it has the Latin

indices. As in chaper 1 and for the rest of this text, Greek indices indicate some-

thing which exists in the full (4-dimensional here, but 5 later) spacetime, while lower

Latin indices indicate something which exists on the (3-dimensional here) time slice,

and upper case Latin indices are for objects which exist on the (2-dimensional here)

hypersurface on the slice.

They then defined a general rotationally symmetric hypersurface in this timeslice,

parameterized by (λ, φ) as

(τ0, r, θ, φ) = (T0, R(λ),Θ(λ), φ), (2.5)

where of course τ0 is set to whichever leaf of the time foliation one is working on.
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The tangent vector to this surface is

d

dλ
= Ṙ

∂

∂r
+ Θ̇

∂

∂θ
, (2.6)

where the dots indicate differentiation with respect to the surface parameter λ (of

course, ∂φ is also tangent).

The metric on the hypersurface, denoted q̃AB as in chapter 1, is

q̃ABdx
AdxB = (Ṙ +R2Θ̇2)dλ2 +R2 sin2 Θdφ2. (2.7)

The spacelike normal to the hypersurface is

n̂ =
R√

Ṙ2 +R2Θ̇2

(
Θ̇
∂

∂r
− Ṙ

R2

∂

∂θ

)
. (2.8)

As before, the null normals to the surface are ˆ̀
+ = û + n̂ and ˆ̀− = 1

2
(û − n̂),

but one may simply calculate the spacelike and timelike expansions, and take their

linear combination in the same way as the normal one is using. For the work which

this derivation is taken from [11], a method of numerical integration was used which

required switching between the two null normal directions, so as to maintain a con-

sistent outward direction. You will see that the updated method, used in this thesis,

does not require such switching.

Continuing to follow the derivation of [11], the spacelike and timelike expansions

are (respectively)

θn =
1√

Ṙ +R2Θ̇2

(
R(ṘΘ̈− Θ̇R̈) + Θ̇Ṙ2

Ṙ2 +R2Θ̇2
− Ṙ cot Θ

R
+ 2Θ̇

)
(2.9)

θu = −
√

2m

2R3/2

(
Ṙ2 + 4R2Θ̇2

Ṙ2 +R2Θ̇2

)
. (2.10)

They then set the null expansions equal to zero, which in this case means one of the

following equations hold:

θ+ = 0 = θu + θn (2.11)

θ− = 0 = θu − θn. (2.12)
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Which of these equations should be used is determined in [11] by which is outward-

oriented; as said, they switched between them to maintain this outward orientation.

2.2.2 Solving for MOTOS

In [11], they chose to parameterize the hypersurface S with coordinate parameteriza-

tions, that is, λ = r and λ = θ. This provided them with 4 equations to solve to find

MOTOS:

REq
± : Rθθ −

3R2
θ

R
+
Rθ cot θ

R2
(R2

θ +R2)− 2R±
√
m

2

√
R2
θ +R2(R2

θ + 4R2)

R5/2
= 0 (2.13)

ΘEq
± : Θrr +

3Θr

r
− cot Θ

r2
(1 + r2Θ2

r) + 2Θ3
r ∓
√
m

2

√
1 + r2Θ2

r(1 + 4r2Θ2
r)

r5/2
= 0 (2.14)

where in the first equation the normal is in the direction

n̂ =
R√

R2
θ +R2

(
∂

∂r
− Rθ

R

∂

∂θ

)
(2.15)

and for the second equation, it is

n̂ =
r√

1 + r2Θ2
r

(
Θr

∂

∂r
− 1

r2

∂

∂θ

)
. (2.16)

To find MOTS, the normal must be consistently outward directed, and thus if one

were solving, say, (2.13), one would need to alternative between REq
+ and REq

− so as

to maintain the outward direction of n̂ [11].

The issue they encounter in attempting to solve the above equations (2.13) and

(2.14) numerically in [11] is the coordinate singularities, that is, dR/dθ → 0 ⇐⇒
dΘ/dr →∞ and dΘ/dr → 0 ⇐⇒ dR/dθ →∞.

Their solution to the issue is to switch between solving for R(θ) and Θ(r); when

one of the derivatives blows up, they switch to solving for the other coordinate, which

will have its corresponding derivative go to zero there. There is overlap between the
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solutions for R(θ) and Θ(r), and so they are able to patch these solutions together

continuously and, in this way, get the full MOTOS solution without any singularities.

However, this switching is no longer necessary for the work in the succeeding chapters,

as the new method circumvents the coordinate singularity issues.

2.2.3 4D Schwarzschild Results (MOTS and MOTOS)

Beginning with the less interesting results from [11], one sees in figure 2.4 the marginally

outer trapped open surfaces for the 4-dimensional Schwarzschild spacetime, which

leave the z-axis from z < 0 and have upward oriented null normals. Noting in the

right plot of figure 2.4, it appears at z = −2 there are two surfaces which have the

same z(0) value, but are not the same—one being the apparent horizon, and one

being a MOTOS. Of course, there is a uniqueness theorem which requires that if

two consistently oriented MOTS have the same z(0) value in this way, they will be

the same [6][3][24]. But, looking more closely, one can see that the null normal to

the apparent horizon points downward, whereas that of the MOTOS points upward,

meaning these aren’t consistently oriented. If one were to instead choose to plot a

MOTS which started at z(0) = −2 and had a downward null normal, the semi-circle

of the apparent horizon would be the plot found.

The MOTOS which leave the z-axis for z > 0 and have (initially) upward oriented

null normals have much more interesting behaviour than those which leave from the

negative z-axis: there are similar self intersections [11] as were observed in [30]. One

can see from figure 2.5 that the MOTOS which leave the axis for positive z much

larger than z = 2M have similar behaviour to those which leave the axis for negative

z, but as they approach 2M , they begin to wrap around the apparent horizon.

Figure 2.6(a) shows the behaviour of these MOTOS (in grey) around the apparent

horizon (in black) both for z(0) → 2M , and for z(0) < 2M . One can see here that

as z(0) approaches 2M , the MOTOS wrap increasingly tightly around the apparent

horizon, with the inflection point moving closer and closer to the negative z-axis

(toward −z(0)). The apparent horizon itself, then, can be interpreted as the MOTOS

for which the inflection point exists exactly at −z(0), and thus for which the surface

closes. Hence, this MOTOS is in fact a MOTS, that is, the apparent horizon.
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Figure 2.4: Figure taken from [11]; the left figure shows the apparent horizon at
r = 2M at a semicircle in black, and the MOTOS as lines in grey, which all leave the
z-axis for values z0 < 0. The arrows show the direction of the null normal. The right
figure is a zoomed in version of the left, showing the MOTOS leaving the z-axis and
crossing the apparent horizon. The vertical axis plots R sin(Θ), the horizontal plots
R cos(Θ).

This behaviour—where a series of MOTOS close in to form a closed MOTS—

occurs inside of r = 2M as well. Observing figure 2.6(b), one sees grey MOTOS

leaving the z-axis just outside of a black closed MOTS, which in this case has a self-

intersection in it. Then the MOTOS which approach this MOTS from the inside all

have two self-intersections—that is, two loops. The second loop moves down toward

the z-axis, toward a specific z-value (z(0) ≈ 1.037M [11]), and narrows on itself as it

does so. When it intersects the z-axis, it is at a single point, as the loop has narrowed

to produce a cusp. This is how the closed MOTS is produced, analogously to how the

apparent horizon can be seen as being produced by a series of the MOTOS.

Comparing figures 2.6(b) and 2.6(a), one can follow on 2.6(a) the series of MOTOS

from just inside the apparent horizon, until the self-intersection is aligned with the

horizontal axis. At this point, one can then look to 2.6(b) and find the outermost

MOTOS in this figure to be the innermost in the former. In this way one sees a

continuous series of them, which show the connection between the apparent horizon

(a MOTS with zero loops) to the first self-intersecting MOTS.

And, in fact, they found that this same behaviour continues indefinitely [11], with



20

Figure 2.5: Figure taken from [11]; the analog of figure 2.4 (left) but for z > 0 leaving
the axis. The null normals are initially upward pointing, and one can see they wrap
around the apparent horizon as they get close to it. The vertical axis plots R sin(Θ),
the horizontal plots R cos(Θ).

a MOTS having two loops existing inside the MOTS with one, one having three loops

existing inside this, etc. Figure 2.7 shows the first 12 of these such MOTS, and the

values of z from which they leave the axis. One can see the loops become smaller

nearer to the horizontal axis, and the more loops there are, the more dramatic this

appears.

In [11], they mention that they expect similar types of self-intersecting MOTS

and MOTOS will exist in other spacetimes, which are axisymmetric. That they were

able to find the self-intersections in the MOTS of the Schwarzschild spacetime, which

is the simplest possible black hole solution, as motivated by their existence in the

spacetime of a binary merger—substantially more complicated—suggests a level of

generality. As well, one might expect that just as the solutions for Schwarzschild can

be useful in understanding the extreme mass ratio mergers [15], it might be the case

that finding these expected self-intersecting MOTS in other spacetimes would allow

for an analogous application to mergers. This is further supported by [16], where the

same authors followed a similar approach as in [15], but in this case the spacetime of

the small black hole was that of Kerr, rather than Schwarzschild.

Motivated by this, the following work—which is the subject of this thesis—seeks to

find self-intersecting MOTS in two different five-dimensional spacetimes: Schwarzschild,

and Myers-Perry (a five dimensional analogue of Kerr).



21

(a) The MOTOS with initially upward ori-
ented null normals wrapping around the hori-
zon r = 2M , as well as producing self-
intersections for z(0) < 2M . Figure taken
from [11].

(b) The apparent horizon (which is
a MOTS) is once again shown, but
the first MOTS that exists inside r =
2M is shown here as well (in black).
This MOTS has a self-intersection
not unlike those seen in [30]. The
MOTOS around it behave analo-
gously to those around the appar-
ent horizon, except the ones inside
it have two loops, and those outside
have one.

Figure 2.6: The vertical axis plots R sin Θ, the horizontal plots R cos Θ.
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Figure 2.7: The first 12 closed self-intersecting MOTS for the 4D Schwarzschild space-
time; figure taken from [11].



Chapter 3

5-Dimensional Schwarzschild

Spacetime

This section covers the generalization of Schwarzschild spacetime (in 3+1 dimensions)

to N + 1 dimensions, hereafter referred to as n+ 3 dimensions (n ≥ 1), where this is

the notation used in [15]. This general form is then used to define the 5-dimensional

Schwarzschild metric in the usual Schwarzschild coordinates.

From here, the metric is converted into Painlevé-Gullstrand coordinates, in which

the metric does not have a coordinate singularity at r = r0, and therefore can be used

to probe the inside of the black hole—as discussed in relation to the previous paper

by my collaborators [11].

Finally, the second coordinates we choose, Weyl coordinates—which are a 4 di-

mensional analog of cylindrical coordinates—are motivated and explained, and the

metric used for the succeeding work is given.

3.1 Motivation for Working in 5D

We choose to look for the self-intersecting MOTS in 5-dimensional spacetime for

two reasons: the first being that the generalization of 4D Schwarzschild to 5D is

not difficult, and thus one may easily see how adding a dimension to the spacetime

affects the existence and behaviour of the MOTS. This, in turn, allows for one to

make further conclusions about the generality of these self-intersecting surfaces. It is
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also the case, as will be seen in chapter 5, that 5-dimensional Myers-Perry spacetime,

under certain assumptions about asymptotic flatness and all rotation parameters being

equal, is simpler than its 4-dimensional analogue (Kerr). Thus choosing to work in 5

dimensions, in this case, is a good intermediate step to finding the looping MOTS in

the Kerr spacetime.

The second reason involves binary black hole mergers more directly. As briefly

mentioned before, in 2016, Emparan and Martinez [15] produced a model of an ex-

treme mass ratio merger that involves approximating the large black hole as a con-

gruence of null geodesics passing through a Schwarzschild spacetime of a black hole

with mass m (that of the smaller of the two involved in the merger). In this paper,

they followed the event horizon as r →∞ and found that

tq(r →∞) = r + r0 ln (r/r0) +O(1/r), (3.1)

when the dimension of the spacetime was 4. Here, q is the impact parameter of each

geodesic at infinity, that is, it will pass by the small black hole, and in Cartesian

coordinates will have x(r → ∞) = q. In this way one may choose a geodesic in the

congruence through choice of its impact parameter. Then tq is the Killing time of the

geodesic which has impact parameter q.

However, they also in this paper considered the case of the event horizon for D ≥ 5,

and found here that

tq(r →∞) = r +O(1/rn), (3.2)

meaning that for 5 dimensions specifically, tq(r → ∞) = r + O(1/r2). One notices

immediately that the asymptotic behaviour of the event horizon when D = 5 does

not have the logarithmic term that it has for D = 4.

This is relevant because it was hypothesized by my collaborators that the apparent

horizon for this spacetime, which is a MOTOS in this case because it is open when the

larger of the two black holes is approximated as a sheet congruence, should coincide

with the event horizon when r →∞. Thus in [11] they also looked at these asymptotic

expansions for MOTOS in the 4 dimensional Schwarzschild spacetime, but were not

able to find a simple series involving powers of r and ln(r).

It is the existence of this logarithmic term which poses the problem. Since the

asymptotic expansions of the event horizon for D = 5 are linear in r without any
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logarithmic terms, it is reasonable to expect that perhaps matching the asymptotic

expansions of the apparent horizon for 5D Schwarzschild to that of the event horizon

for D = 5 in [15] would be easier than for the four dimensional case. While this task

is not the topic of this thesis, it suggests producing a complete and consistent picture

of how MOT(O)S fit into the model introduced in [15] could be a tenable task when

working in five dimensions.

3.2 The Schwarzschild Solution

The four-dimensional Schwarzschild metric was the first non-trivial solution found to

Einstein’s field equations, and is also arguably the most well-known:

ds2 = −
(

1− r0

r

)
dt2 +

(
1− r0

r

)−1

dr2 + r2(dθ2 + sin2(θ)dφ2). (3.3)

Here r0 = 2M is the radius of the apparent horizon of the Schwarzschild black hole,

and is notation used to be consistent with [15].

One can generalize this solution to an n+3-dimensional version [15],

ds2 = −
(

1− rn0
rn

)
dt2 +

(
1− rn0

rn

)−1

dr2 + r2dΩ2
(n+1). (3.4)

Mass is defined for 4+1 dimensions as having units of length squared, and thus the

above r2
0 ∝ M (where M is the mass parameter), rather than ∝ M2 as one might

expect (when comparing to 4 dimensions). Indeed, the ADM mass of the black hole

is mADM = 3πr2
0/8.

3.3 Painlevé-Gullstrand and Toroidal Coordinates

Painlevé-Gullstrand coordinates were chosen in [11] for a few reasons. Firstly, they are

horizon-penetrating, meaning that they have no coordinate singularity across r = r0

and so one can see inside the apparent horizon with them. As well, the surfaces of

constant time in Painlevé-Gullstrand are not static, and as such, there is a non-zero

extrinsic curvature on these slices. This leads to the outward and inward oriented

null expansions of these time slices to be independent of one another, as compared to
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Schwarzschild coordinates, where if one vanishes, they both must [11]. This suggests

Painlevé-Gullstrand coordinates are more general, in the sense relevant here, and thus

a good choice.

As a brief review, to transform from the above four-dimensional Schwarzschild

coordinates into PG, one first defines a new time coordinate τ = t−a(r), and chooses

the function a(r) such that the Schwarzschild metric in PG coordinates is

ds2 = −
(

1− r0

r

)
dτ 2 + 2

√
r0

r
dτdr + dr2 + r2dΩ2. (3.5)

Beginning with the 5D Schwarzschild metric in regular Schwarzschild coordinates,

ds2 = −
(

1− r2
0

r2

)
dt2 +

(
1− r2

0

r2

)−1

dr2 + r2dΩ2, (3.6)

we make the same transformation τ = t− a(r). Setting grr = 1 specifies that

a′ =
rr0

r2
0 − r2

⇒ a(r) = −1

2
r0 ln(r2

0 − r2) + C (3.7)

and the metric in Painlevé-Gullstrand coordinates will then be

ds2 = −
(

1− r2
0

r2

)
dτ 2 +

2r0

r
dτdr + dr2 + r2dΩ2 (3.8)

This is easily checked to be a solution of the vacuum Einstein equations. In this

coordinate system, ∂r is null.

3.3.1 Toroidal Foliation of the 3-sphere

Explicitly, the spherical part of the metric of (3.8) is

r2dΩ2 = r2
(
dθ2 + sin2 θdφ2 + sin2 θ sin2 φdψ2

)
, (3.9)

that is, regular 5-dimensional spherical coordinates. (Here θ ∈ (0, π], φ ∈ (0, π],

and ψ ∈ (0, 2π].) The problem exists in the last term of the metric, because it is

dependent not only on θ but also on φ. This means that φ is not a Killing vector

for this spacetime, which means that the assumptions one requires for the method
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(which will be described in chapter 4) do not hold. Thus, one must choose a different

foliation of the 3-sphere, which allows for two of the angular coordinates to be Killing

vectors. Choosing toroidal coordinates φ1, φ2 satisfies this, and in these coordinates

the angular part of (3.8) is then

dΩ2
3 = dθ2 + sin2(θ)dφ2

1 + cos2(θ)dφ2
2, (3.10)

where θ ∈ [0, π/2), and φ1, φ2 are periodic with period 2π (this ensures the whole of

S3 is covered). So the metric is

ds2 = −
(

1− r2
0

r2

)
dτ 2 +

2r0

r
dτdr+ dr2 + r2

(
dθ2 + sin2(θ)dφ2

1 + cos2(θ)dφ2
2

)
. (3.11)

Of course, the metric is then only dependent on r, θ, and the method which will

be outlined in chapter 4 can be applied.

3.4 Weyl Coordinates

While one may solve for the MOTS in the above spherical/toroidal coordinates (and

later some such solutions are included), we chose to solve for the MOTS also in an

analog of cylindrical coordinates, called Weyl coordinates. This is because it allows

for easier comparison to current work in progress on the 4-dimensional case, which

employs the method outlined in chapter 2.

In 3 dimensional cylindrical coordinates (ρ, x, φ), the Killing field ∂
∂φ

vanishes on

ρ = 0, the z-axis. One can define cylindrical coordinates using a general Killing field,

ma, and the symmetry about an axis that this generates. One defines

ρ =
√
gabmamb. (3.12)

For example, starting from spherical coordinates ds2 = dr2 +r2dθ2 +r2 sin2(θ)dφ2, for

flat space if the Killing field is ∂φ, then

ρ =
√
gφφ = r sin(θ), (3.13)

which of course agrees with the usual definition of ρ in terms of spherical coordinates.
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Weyl coordinates are then a generalization of this, where there exist two Killing

fields, ∂φ1 and ∂φ2 , which each vanish on half of the ρ = 0 axis [1]. The φ1, φ2 are

from the toroidal foliation of the 3-sphere.

To formulate Weyl coordinates, one first considers 4-dimensional flat space as

R2 × R2, with metric in the form

ds2 = dr2
1 + r2

1dφ
2
1 + dr2

2 + r2
2dφ

2
2 (3.14)

Comparing this with the metric in Cartesian coordinates, one can immediately see

that r1 =
√
x2

1 + x2
2, r2 =

√
x2

3 + x2
4, and arctan(x2/x3) = φ1, arctan(x4/x3) = φ2.

If one then considers only the Killing field part of the metric (2.8), then one may

define ρ via the determinant of this metric gK = r2
1dφ

2
1 + r2

2dφ
2
2:

ρ =
√

det gK =
√
r2

1r
2
2 = r1r2. (3.15)

One may then find z in terms of r1, r2 by finding the harmonic conjugate to ρ =
√
r2

1r
2
2.

Taking ρ(r1, r2) to be a function on a connected open subset of R2, z(r1, r2) is

the harmonic conjugate of ρ if and only if the two functions together satisfy the

Cauchy-Riemann equations (on the connected open subset). So, one requires that

∂ρ

∂r1

= r2 =
∂z

∂r2

∂ρ

∂r2

= r1 = − ∂z

∂r1

, (3.16)

from which one gets z = 1
2
(r2

2 − r2
1).

Spherical to Weyl Coordinate Transform

The transform from the metric of (3.11) to Weyl coordinates is

R =
√

2(ρ2 + z2)1/4

θ = arctan

√√
ρ2 + z2 − z√
ρ2 + z2 + z

,
(3.17)

and of course the toroidal angular coordinates are the same.
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The flat metric of R4 in the Weyl+toroidal coordinates is written

ds2 =
dρ2 + dz2

2
√
ρ2 + z2

+ (
√
ρ2 + z2 − z)dφ2

1 + (
√
ρ2 + z2 + z)dφ2

2, (3.18)

and ρ ≥ 0, −∞ < z <∞ will cover all of R4.

3.4.1 Metric in PG+Weyl

Finally, the metric for 5-dimensional Schwarzschild in Painlevé-Gullstrand Weyl co-

ordinates is

ds2 = −

(
1− r2

0

2
√
ρ2 + z2

)
dτ 2 +

r0

ρ2 + z2
(ρdρ+ zdz)dτ +

dρ2 + dz2

2
√
ρ2 + z2

+(
√
ρ2 + z2 − z)dφ2

1 + (
√
ρ2 + z2 + z)dφ2

2.

(3.19)

From here, one may proceed in finding the marginally outer trapped surfaces in this

spacetime.



Chapter 4

Finding the MOTSodesic

Equations

There are two equivalent methods for finding the equations of motion, which de-

fine the MOTS (hereafter referred to as the MOTSodesic equations (a term coined

in [31])): both of which concern taking first a time foliaton of the five-dimensional

spacetime, and then defining a general rotationally-symmetric hypersurface on one of

these spacelike “leaves”.

The first method outlined employs directly (perhaps naively) the definitions from

section 1.2; it requires one to find the timelike and spacelike expansions of the timeslice

and the hypersurface (respectively), and then simply add them to get a null expansion.

This method differs from that of [11] in that it employs an arclength parameterization

of the hypersurface, which provides a relation that allows for the final equation to be

separated into two coupled ODEs, each of which are second order in only one of the

functions being solved for. This allows for the use of numerical solving techniques:

in fact, it no longer requires the switching method as described in chapter 2 and

employed in [11].

The second method is more conceptually illuminating, as it derives more general

analogues to the geodesic equations for MOTS. Hence, calling the EOMS “MOT-

Sodesic” equations. This method requires the assumption that both of the angular

coordinates (which aren’t functions of the parameter λ) be Killing vectors, and hence

is the reason we employ the toroidal coordinates.
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I will begin with the more direct, computational approach, and then having devel-

oped some intuition for the method, I will describe the more conceptually illuminating

approach. The derivation is done explicitly for metric (3.19), however results will be

included in succeeding chapters also for (3.8).

4.1 Preliminary Definitions

Begin with the spacetime (M, gαβ,∇α), which is the 5-dimensional Schwarzschild

spacetime. Here, ∇α is the covariant derivative on the full spacetime and gαβ is the

metric. Lowercase Greek indices represent objects existing in the full (5D) space-

time, lowercase Latin indices represent those which exist in the (4D) timeslice, and

uppercase Latin indices represent the objects which exist on the (3D) hypersurface

in this timeslice. Di, DA are covariant derivatives on the timeslice and hypersurface,

respectively.

4.1.1 Defining the Time-Foliation

First take a timeslice in the 5-dimensional spacetime: setting τ = const⇒ dτ = 0 in

the metric of equation (3.19) to get spacelike leaves, each with metric

hijdx
idxj =

dρ2 + dz2

2
√
ρ2 + z2

+ (
√
ρ2 + z2 − z)dφ2

1 + (
√
ρ2 + z2 + z)dφ2

2. (4.1)

This is the flat metric on R4 in these Weyl coordinates. Recall: ρ > 0, z ∈ R, and

φ1, φ2 are 2π-periodic angles.

4.1.2 Defining Rotationally-Symmetric Hypersurface

One then defines a rotationally-symmetric (spacelike) hypersurface in the timeslice.

This is done by letting ρ and z be functions of the parameter λ: ρ = R(λ), z = Z(λ).

Then the coordinates on the hypersurface are (λ, φ1, φ2) and the metric on it is

q̃ABdx
AdxB =

Ṙ2 + Ż2

2
√
R2 + Z2

dλ2 + (
√
R2 + Z2 − Z)dφ2

1 + (
√
R2 + Z2 + Z)dφ2

2 (4.2)
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where the dot over either of the R or Z functions denotes derivative with respect to

λ.

Arclength Parameterization

An arclength parameterization is then chosen, meaning that the norm of the tangent

vector ∂/∂λ is set to one. This means that the coefficient of dλ in the metric on the

hypersurface is equal to one, and thus

Ṙ2 + Ż2

2
√
R2 + Z2

= 1, (4.3)

which will be referred to as the the “arclength condition”. This will be used explicitly

in the computational method to switch from a single differential equation second order

in both R and Z, into two coupled ODEs which are individually second order in either

R or Z. These are substantially easier to solve numerically.

The metric on the hypersurface with the arclength condition imposed is then, of

course,

q̃ABdx
AdxB = dλ2 + (

√
R2 + Z2 − Z)dφ2

1 + (
√
R2 + Z2 + Z)dφ2

2. (4.4)

It is readily seen that the hypersurface is flat (remembering that
√
R2 + Z2∓Z = r2

1, r
2
2

respectively).

4.2 Computational Method

4.2.1 Overview

The more computational method is conceptually more direct and thus simpler, but

computationally more complicated—and it also lacks the obvious interpretation of the

final ODEs as analogous to geodesic equations. As a review from section 1.2:

One defines the 5-dimensional timelike unit normal to the timeslice, uα, and from

this gets the covariant derivative of it, ∇αuβ. This is pulled back to the timeslice (to
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get the extrinsic curvature Kij = eαi e
β
j∇αuβ), and then contracted using the pushed-

forward inverse hypersurface metric, q̃ij; this is of course the timelike expansion,

θu = q̃ijKij.

One then finds the spacelike expansion analogously, taking the covariant derivative

of the spacelike unit normal to the hypersurface, Dinj and contracting it with the

pushed-forward inverse hypersurface metric as well; θn = q̃ijDinj.

Finally, these two expansions are added together to produce the null expansion,

θ, and the resulting equation is set equal to zero, in accordance with the definition of

a MOTS.

The last step is to use the arclength condition to separate the final DE into two,

each of which are only second-order in each of the two coordinates. This eliminates

the need for the switching in [11], and so makes the final ODEs much easier to solve

numerically.

4.2.2 Timelike Expansion

The (future-pointing) normal to the timeslice is −dT , and this is already of unit

length: gαβdTαdTβ = −1. Taking its covariant derivative, one gets the 5-dimensional

extrinsic curvature to be

Kαβ =



r30
4(z2+ρ2)

r20ρ

4(z2+ρ2)3/2
r20z

4(r2+ρ2)3/2
0 0

r20ρ

4(r2+ρ2)3/2
r0(ρ2−z2)
4(z2+ρ2)2

r0zρ
2(z2+ρ2)2

0 0
r20z

4(r2+ρ2)3/2
r0zρ

2(z2+ρ2)2
r0(z2−ρ2)
4(z2+ρ2)2

0 0

0 0 0
r0(z
√
z2+ρ2−(z2+ρ2))

2(z2+ρ2)
0

0 0 0 0 − r0(z
√
z2+ρ2+(z2+ρ2))

2(z2+ρ2)
.


(4.5)

This is pulled back into the timeslice very obviously, because it is a coordinate hyper-

surface, and one has

Kij =


r0(ρ2−z2)
4(z2+ρ2)2

r0zρ
2(z2+ρ2)2

0 0
r0zρ

2(z2+ρ2)2
r0(z2−ρ2)
4(z2+ρ2)2

0 0

0 0
r0(z
√
z2+ρ2−(z2+ρ2))

2(z2+ρ2)
0

0 0 0 − r0(z
√
z2+ρ2+(z2+ρ2))

2(z2+ρ2)

 (4.6)
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defined on the 4-dimensional spacelike slice.

The timelike expansion is found by contracting this with the pushed-forward in-

verse hypersurface metric, q̃ij. It is pushed-forward using the operators êiA = ∂xi/∂xA;

that is,

q̃ij = qAB êiAê
j
B = qAB

∂xi

∂xA
∂xj

∂xB
, (4.7)

so that

q̃ij =


Ṙ2 ṘŻ 0 0

ṘŻ Ż2 0 0

0 0 1
(
√
Z2+R2−Z)

0

0 0 0 1
(
√
Z2+R2+Z)

 . (4.8)

So, finally, one gets

θu = q̃ijKij = − r0√
R2 + Z2

+
r0(ṘR + ŻZ)2

4(R2 + Z2)2
− r0(ṘZ − ŻR)2

4(R2 + Z2)2
(4.9)

for the timelike expansion. Here, ρ = R(λ), z = Z(λ) are set in the extrinsic curvature.

4.2.3 Spacelike Expansion

Finding Spacelike Normal

We require a unit normal to the hypersurface in the ∂ρ, ∂z direction. This can be

found easily by making the assumption that it will be of the form

N̂ = n1dρ+ n2dz (4.10)

for some n1, n2. The tangent to the hypersurface is of course

T̂ =
∂

∂λ
=
∂ρ

∂λ

∂

∂ρ
+
∂z

∂λ

∂

∂z
= Ṙ

∂

∂ρ
+ Ż

∂

∂z
, (4.11)

and so enforcing that these are normal to one another gives

NiT
i = 0 = Ṙn1 + Żn2 ⇒ n1 = −Żn2

Ṙ
. (4.12)



35

The second equation is found because it is a unit vector. That is,

NiN
i = 1 = 2

√
Z2 +R2(n2

1 + n2
2). (4.13)

Notice that n1 = ∓Ż/(Ṙ2 + Ż2), n2 = ±Ṙ/(Ṙ2 + Ż2) satisfy both conditions

(making use of the arclength condition that Ṙ2 + Ż2 = 2
√
R2 + Z2).

So the unit normal to the hypersurface is then

Nidx
i = ±

(
Ż

Ṙ2 + Ż2
dρ− Ṙ

Ṙ2 + Ż2
dz

)
. (4.14)

The outward pointing normal is N+, that is, the normal that points in the direction

of positive dρ. This is chosen so as to get MOTS.

Spacelike Expansion

Similarly to how we proceed for the timelike expansion, an analog to the extrinsic

curvature is defined for the hypersurface, using this normal. That is, one must find

θN = q̃ijDiNj (4.15)

where DiNj is like the extrinsic curvature, but for the hypersurface, and q̃ij is the

(inverse) hypersurface metric, pushed forward into the timeslice.

However, q̃ij may be written

q̃ij =
∂xi

∂λ

∂xj

∂λ
+ φ̂i1φ̂

j
1 + φ̂i2φ̂

j
2, (4.16)

where

φ̂1 = (
√
Z2 +R2 − Z)−1/2 ∂

∂φ1

(4.17)

φ̂2 = (
√
Z2 +R2 + Z)−1/2 ∂

∂φ2

. (4.18)
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Then writing the expansion out in full,

θN =

(
∂xi

∂λ

∂xj

∂λ
+ φ̂i1φ̂

j
1 + φ̂i2φ̂

j
2

)(
∂Ni

∂xj
− ΓkijNk

)
=
∂xi

∂λ

∂Ni

∂λ
− ∂xi

∂λ

∂xj

∂λ
ΓkijNk − (

√
R2 + Z2 − Z)−1Γkφ1φ1Nk

− (
√
R2 + Z2 + Z)−1Γkφ2φ2Nk,

(4.19)

which in turn simplifies to

θN =
Z̈Ṙ− R̈Ż
Ṙ2 + Ż2

+
ZṘ−RŻ
2(Z2 +R2)

+
Ż

R
. (4.20)

4.2.4 Equations of Motion

The null expansion, which is then set to zero as the condition for a MOTS, is found by

adding the timelike and spacelike expansions together. This provides a single ordinary

differential equation, second order in both R and Z:

θ` = 0 = θu + θN

=
r0√

R2 + Z2

(
−1 +

(ṘR + ŻZ)2

4(R2 + Z2)3/2
− (ṘZ − ŻR)2

4(R2 + Z2)3/2

)

+
Z̈Ṙ− R̈Ż
Ṙ2 + Ż2

+
ZṘ−RŻ
2(Z2 +R2)

+
Ż

R

(4.21)

Separation into Coupled ODEs

For ease of numerical solving, one then utilizes the arclength condition to separate

this ODE into two coupled ODEs.

First, the arclength condition is differentiated, thereby obtaining an expression for

the second derivative of either R or Z in terms of the other, and their first derivatives:

Ṙ2 + Ż2 = 2
√
R2 + Z2

⇒ R̈ =
RṘ + ZŻ

Ṙ
√
R2 + Z2

− ŻZ̈

Ṙ

⇒ Z̈ =
RṘ + ZŻ

Ż
√
R2 + Z2

− R̈Ṙ

Ż
.

(4.22)
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These can each be substituted into equation (3.17)to obtain the aforementioned cou-

pled ODEs,

R̈ =
R√

R2 + Z2
+
ŻZ(ŻZ + ṘR)

R(R2 + Z2)
− r0Ż

(
1√

R2 + Z2
− (ṘR + ŻZ)2 − (ṘZ − ŻR)2

4(R2 + Z2)2

)

Z̈ =
Z√

R2 + Z2
− ṘZ(ŻZ + ṘR)

R(R2 + Z2)
+ r0Ṙ

(
1√

R2 + Z2
− (ṘR + ŻZ)2 − (ṘZ − ŻR)2

4(R2 + Z2)2

)
.

(4.23)

Note that, of course, the RHS of each of these contains only first derivatives of Z and

R (and the functions themselves), but also that it is only the last term which has

the coefficient r0 (the mass term). That is, the mass comes in only with the timelike

expansion, given that there is no r0 dependency for the metric on the time slice (4.1).

4.3 MOTSodesic Method

This section will describe the more conceptual, “MOTSodesic” method for finding the

equations of motion. It will begin with a general explanation of the method, and then

this will be specialized to this particular metric.

4.3.1 General MOTSodesic Method

Begin with a spacetime (M, gαβ,∇α), and on this define a time foliation, where each

leaf of the foliation is some Σt = Σ(t). For the case of both 5D Schwarzschild and

Myers-Perry, Σt = Σ, i.e. there will be no time dependence in the metrics on these

leaves. Any single time slice has (Σt, hij, Di), where Di is the covariant derivative on

the slice, and hij is the metric.

One defines coordinates (t, xA, φa), where xA refer to the coordinates which will

parameterize the curves that will be the MOTS, and the φa refers to the symmetry

coordinates—these must be Killing vectors of the spacetime. The assumption of being

able to separate the coordinates in this way is why the toroidal angular coordinates

are required for the 5D Schwarzschild metric.

Still working in the full spacetime M, find the covariant derivative of the normal
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to one of these slices, Kαβ = ∇αuβ, where uβ is the normal to Σt. This is then pulled

back onto Σt using the operators eαi = ∂xα/∂xi, to get Kij = eαi e
β
jKαβ, which is

the extrinsic curvature to the timeslice. All of this is, of course, the same as in the

computational method.

Now the two methods begin to differ. One now may forget entirely aboutM, and

work only with the timeslice (Σt, hij, Di), along with Kij.

Define an axisymmetric surface S on Σt through the parametric equations

xA = XA(λ), φa = φa (4.24)

where A = {1, 2} here (not referring to the hypersurface uppercase Latin indices).

The coordinates on S are then (λ, φa), but one may instead refer to the curves defined

on Σt by XA(λ).

The unit tangent vector to S, in Σt, is

T̂ = ẊA ∂

∂xA
(4.25)

where here these are the first and second coordinates on Σt, x
A. The dot denotes

derivatives with respect to the parameter λ. Of course, XA(λ) = (X1(λ), X2(λ)), i.e.

these will be curves in general, so T̂ will only have 2 nonzero entries.

Then define the unit normal one form to S,

N̂ = FẊ2dx1 − FẊ1dx2 (4.26)

where F is a normalization factor.

We then recognize that the metric hij on Σt can be written

hij = T iT j +N iN j + (φ̂a)
i(φ̂a)j, (4.27)

where here, φ̂a = 1
||∂/∂φa||

∂
∂φa

. This will be a unit vector in the direction ∂/∂φa, and

so there will be however many of them as there are symmetry coordinates φa. Then,

in the above decomposition of the metric, each of these must be included. It is worth

noting that in the case there exists cross terms in these coordinates in the metric, the

vectors will have entries in more directions than just the φa direction.
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The (inverse) metric on S is called q̃AB, and the push-forward of this onto Σt is

the part of hij that is orthogonal to N̂ :

q̃ij = T iT j + (φ̂a)
i(φ̂a)j. (4.28)

Taking the trace of the extrinsic curvature of S on Σt, one then observes

kN = θN = q̃ijDiNj =
(
T iT j + (φ̂a)

i(φ̂a)j
)
DiNj

= −NjT
iDiT

j −Nj(φ̂a)
iDi(φ̂

a)j

= −κ−Nj(φ̂a)
iDi(φ̂

a)j.

(4.29)

The first scalar on the RHS is called κ, and the second is something which is easy to

calculate.

Of course, kN is the spacelike expansion, and the timelike expansion is

ku = θu = q̃ijKij, (4.30)

which one calculates directly. But using the fact that we are looking for MOTS, a

linear combination of these will be equal to zero. So,

εku + kN = 0

⇒ εku − κ−Nj(φ̂a)
iDi(φ̂

a)j = 0

⇒ κ = εku −Nj(φ̂a)
iDi(φ̂

a)j,

(4.31)

where ε = ±1 allows one to set the direction of the null normal. This allows us

to avoid calculating κ explicitly—as is done in the computation approach from the

previous section—since it is arduous.

Now, one works with the 2-dimensional curves defined by (X1(λ), X2(λ)). Let

D̄A be the covariant derivative defined on the 2D curves. Then TAD̄AT
B will be

perpendicular to TB. This means that

TADAT
B = κ̃NB (4.32)
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for some κ̃. But, in fact, κ̃ = κ from before, and so we have that

ẊA

(
∂ẊB

∂XA
+ ΓABCẊ

C

)
= κNB

dXA

dλ

ẊB

∂XA
+ ΓBACẊ

CẊA = κNB

d2XA

dλ2
+ ΓBACẊ

AẊC = κNB.

(4.33)

This gives two coupled ODEs. One can see that this looks very much like the geodesic

equation for a non-affinely parameterized geodesic, except the acceleration to the curve

is proportional to the normal on the RHS. Hence, we call these the “MOTSodesic”

equations.

4.3.2 MOTSodesic Method for 5D Schwarzschild

One starts with the spacetime (M, gαβ,∇α), where here gαβ is the 5-dimensional

metric of (3.19) in Painlevé-Gullstrand Weyl coordinates,

ds2 = −

(
1− r2

0

2
√
ρ2 + z2

)
dτ 2 +

r0

ρ2 + z2
(ρdρ+ zdz)dτ +

dρ2 + dz2

2
√
ρ2 + z2

+(
√
ρ2 + z2 − z)dφ2

1 + (
√
ρ2 + z2 + z)dφ2

2.

(4.34)

The metric on each leaf of the time foliation is then

hijdx
idxj =

dρ2 + dz2

2
√
ρ2 + z2

+ (
√
ρ2 + z2 − z)dφ2

1 + (
√
ρ2 + z2 + z)dφ2

2 (4.35)

Then we define a surface using the parametric equations ρ = R(λ), z = Z(λ), with

coordinates on the surface being (λ, φ1, φ2). In the case of this metric, the symmetry

coordinates φ̂a in the previous section are φ̂1 and φ̂2, each unit vectors in the directions

of ∂/∂φ1 and ∂/∂φ2, respectively. X1 = R(λ) and X2 = Z(λ).

The extrinsic curvature Kij is as in (4.5), and of course the tangent vector T̂ is
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T̂ = Ṙ ∂
∂ρ

+ Ż ∂
∂z

, while the normal to S is

N̂ = ±

(
− Ż

Ṙ2 + Ż2
dρ+

Ṙ

Ṙ2 + Ż2
dz

)
, (4.36)

and one chooses the negative, in this case, so that the dρ term is positive.

Then ku = q̃ijKij is also as in the previous section (timelike expansion),

ku = − r0√
R2 + Z2

+
r0(ṘR + ŻZ)2

4(R2 + Z2)2
− r0(ṘZ − ŻR)2

4(R2 + Z2)2
. (4.37)

Now define the toroidal angular unit vectors φ̂1 and φ̂2. These will be

φ̂1 = (
√
R2 + Z2 − Z)−1/2 ∂

∂φ1

φ̂2 = (
√
R2 + Z2 + Z)−1/2 ∂

∂φ2

,

(4.38)

where they each only have a component in one direction (φ1 and φ2 tangent directions,

respectively) because there do not exist cross terms of these in the metric (4.1).

The next step is to find the scalar κ, where here ε = 1:

κ = εku −Njφ̂1

i
Diφ̂1

j
−Njφ̂2

i
Djφ̂2

j

κ = ku −NjΓ
j
φ1φ1

(
√
R2 + Z2 − Z)−1 −NjΓ

j
φ2φ2

(
√
R2 + Z2 + Z)−1

(4.39)

κ =
r0

4

(
Z2(3Ṙ2 + Ż2) +R2(3Ż2 + Ṙ2)− 4RṘZŻ

(R2 + Z2)2

)
+
Ż

R
(4.40)

Now using this, equations (4.33) are specified to this case to get the coupled ODEs

R̈ + ΓRRRṘ
2 + 2ΓRRZṘŻ + ΓRZZŻ

2 = κNR

⇒ R̈ = κŻ +
R(Ṙ2 − Ż2) + 2ZṘŻ

2(R2 + Z2)

(4.41)

Z̈ + ΓZRRṘ
2 + 2ΓZRZŻṘ + ΓZZZŻ

2 = κNZ

⇒ Z̈ = −κṘ +
Z(Ż2 − Ṙ2) + 2RŻṘ

2(R2 + Z2)

(4.42)
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Throughout this calculation, the arclength condition is used to simplify the ex-

pressions.

4.3.3 Schwarzschild Event Horizon Solution

The Schwarzschild event horizon will exist at r0 = 2
√
R2 + Z2 in the coordinates

chosen. An important consistency check on the MOTSodesic equations derived is

whether this equation solves them.

The parametric equations for the event horizon at r0 = 2
√
R2 + Z2 are

R(λ) =
r2

0

2
sin

(
2λ

r0

)
Z(λ) =

r2
0

2
cos

(
2λ

r0

)
,

(4.43)

where the parameterization 2λ/r0 is chosen so that the arclength condition, Ṙ2 +Ż2 =

2
√
R2 + Z2, holds.

Substituting these into the solution for κ in the previous section, one gets

κ =
1

r0

, (4.44)

and then it is easy to see that the RHS of 4.41 is equal to −2 sin(2λ/r0) = R′′(λ), and

that of 4.42 is −2 cos(2λ/r0) = Z ′′(λ). So this is a solution, as required.

4.4 Series Expansions at R = 0

In the final MOTSodesic equations which we solve numerically, one sees the scalar

κ diverges for R = 0 because of the Ż/R term. In our numerical solver, we simply

start the integrator slightly off the z-axis (with, say, λ = 1/10000 and R(1/10000) =

1/10000). However, to be sure this does not qualitatively affect the results we find,

we must perform a series expansion about small λ for these solutions.



43

Find the series expansions by first setting

R(λ) = R0 +R1λ+R2λ
2 +R3λ

3 +O(λ4)

Z(λ) = Z0 + Z1λ+ Z2λ
2 + Z3λ

3 +O(λ4)
(4.45)

with as yet undetermined constants Ri, Zi.

One first enforces the condition that for λ = 0, R = 0, meaning that R0 =

0. Substituting (4.36) into the MOTSodesic equations, one immediately sees that

Ż(0) = 0, as there exists a term in the expansion which is of order 1/λ, for which

the coefficient has Ż. This is consistent with what is expected, as it means that all

closed MOTS must leave the z-axis perpendicularly: otherwise, there would be conical

singularities in them, and they would not be smooth [11].

Setting each order coefficient to zero, one is able to determine that R2 and Z3 are

also equal to zero. Z2 and R3 are found to be dependent on R1 and Z0. However, one

must still enforce the arclength condition, which, when (4.36) are substituted into it,

gives that

R1 =
√

2Z0 (4.46)

must be satisfied for it to hold.

Substituting this into the above-mentioned solutions for R3 and Z2,

R3 =
−9r2

0 + 4Z0(1 + 3Z0)− 3
√

2Z0r0(1 + 6Z0)

12
√

2Z3
0(1 + 2Z0)2

Z2 = −3
√

2r0 + 4Z0

√
Z0

4
√
Z0(1 + 2Z0)

(4.47)

and the series expansions for Z(λ) and R(λ) for small λ are then

R(λ) =
√

2Z0 +
−9r2

0 + 4Z0(1 + 3Z0)− 3
√

2Z0r0(1 + 6Z0)

12
√

2Z3
0(1 + 2Z0)2

λ3 +O(λ4)

Z(λ) = Z0 −
3
√

2r0 + 4Z0

√
Z0

4
√
Z0(1 + 2Z0)

λ2 +O(λ4)

(4.48)

These solutions hold to fourth order in λ, and the ODEs hold to second order. Z0

is a free parameter as expected, given that the z-axis may be left from any value of

z, as long as it is perpendicular to the z-axis (as discussed, Ż(0) = Z1 = 0). The
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choosing of Z0 sets which MOTOS (or MOTS, for specific values) the solutions (R,Z)

describe.



Chapter 5

Results: 5D Schwarzschild MOTS

This chapter discusses the results found when numerically solving the MOTSodesic

equations of (4.41) and (4.42), and will also include the results of following the method

of section 4.3.2 starting from the metric (3.11), that is, 5D Schwarzschild in toroidal

coordinates, but without the transform into Weyl coordinates. One may compare

these more directly to the plots of [11] as shown in chapter 2, while the Weyl results

may be compared directly to the previously discussed paper in process by the same

authors.

We find qualitatively identical results for 5D Schwarzschild as in 4D; the majority

of plots are able to be reproduced with qualitatively identical behaviour. Most notably,

the infinite number of closed MOTS found in 4D are also found in 5D, and the

connection between the MOTOS and the MOTS – that is, a series of MOTOS may

be followed until a cusp meets the z-axis and here a MOTS will be found – exists in

the same way.

Note: in this chapter, all plots of results in Weyl coordinates have R(λ) = ρ

(cylindrical-like radial coordinate) on the horizontal axis, and Z(λ) = z on the ver-

tical. All plots in the non-Weyl coordinates have been converted into Cartesian co-

ordinates; that is, the horizontal axis is x = R(λ) cos(2Θ(λ)) and the vertical is

y = R(λ) sin(2Θ(λ)). As well, for the entirety of this chapter, the parameter r0 = 1;

however, the values from which the MOTS leave the vertical axis simply scale as

r0Z(0) (or, for the non-Weyl coordinates, r0R(0)).
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5.1 Z(0) < 0 MOTOS
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Figure 5.1: Analogous plots for 5D Schwarzschild in Weyl coordinates to figure 2.4.
On the left is a more zoomed in plot, and on the right one can see that the MOTOS are
curving up, but moving toward flatness as R → ∞. These are plots of (R(λ), Z(λ)).
Note that for all Weyl plots, the vertical axis is Z(λ), and the horizontal is R(λ).

We begin with the MOTOS that leave the z-axis at negative values. These are

shown in figure 5.1. It is important to keep in mind, for this and the succeeding section:

despite the metric being symmetric under Z 7→ −Z, the MOTOS are not symmetric

across the x-axis. This is because the null normal has an orientation (upward pointing

in the case of these plots). If one were to instead choose a downward pointing null

normal, the orientation of all plots here would reflect across the x-axis.

One can see a qualitative difference in these plots as compared to 4D; one of the

few that exist. There is a crossing that occurs of the MOTOS which have larger Z0

and those which have Z0 close to or inside the apparent horizon (0 > Z0 > −1/2). The

crossing begins around r = 3 and continues for arbitrarily large r. In 4 dimensions,

none of this crossing behaviour was observed (see figure 2.4). However, it appears it

may be the case that the crossing causes the ordering of the MOTOS to simply reverse;

that is, it seems that the MOTOS visible in figures 5.1 and 5.2 take the opposite order

from which they left the axis, with the MOTOS leaving closest to Z = 0 being at the

bottom, and the MOTOS which left the axis for the most negative Z-value, being at
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the top (for R→∞). This is most clear from the bottom plot in figure 5.2. However,

more detailed analysis is required to establish this.

Much like in 4D, however, the MOTOS appear to flatten out for large r, that

is, they seem to asymptote to a constant value of Z. This is consistent with what

is observed from figure 2.4. The difference is that one must go to larger r-values to

see flatness in the MOTOS, as compared to 4D—the warping effect seen near the

apparent horizon has stronger and more far-reaching influence in 5 dimensions than

it does in 4.

2 4 6 8 10
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Figure 5.2: MOTOS that leave the z-axis for 0 > Z(0) with upward oriented null nor-
mals, from the MOTSodesics of metric (3.11). The vertical axis plots R(λ) sin(2Θ(λ)),
and the horizontal plots R(λ) cos(2Θ(λ)).

Figure 5.2 is the same as 5.1, but for the MOTSodesics which are generated when

starting with the metric (3.11); that is, without making the final transformation

into the Weyl (cylindrical) coordinates. These are plots of Cartesian coordinates
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R(λ) cos(2Θ(λ)) and R(λ) sin(2Θ(λ)), where of course the coordinates along the MO-

TOS are R(λ) and Θ(λ). This figure plots twice the angles because the coordinate

θ has range 0 < θ < π/2 (from the choice of toroidal angular coordinates, and thus

existence of cosine in the metric), and we wish to have visually similar results to the

other cases. Note also that the apparent horizon in these coordinates exists at R = 1.

The same crossing behaviour is seen here, with the MOTOS flattening out as

R → ∞. However, in these coordinates, the MOTOS which have R(0) � 1 (with

Θ(0) = −π/2, so that the range is now −π/2 < θ < 0—that is, leave from the negative

z-axis) begin to flatten for Θ > −π/4.

5.2 Z(0) > 1/2 MOTOS

The apparent horizon, shown in figures 5.1 as a black semi-circle, leaves the z-axis for

Z(0) = 1/2 in Weyl coordinates. The top left plot of figure 5.3 shows the MOTOS

which leave the axis for values of Z(0) very close to but > 1/2. These are MOTOS

which are closely approaching closure, with the bottom half producing a sharpening

curve, which gets progressively closer to the axis. The other plots of this figure show

Z(0) > 1/2, and increasingly far away from the apparent horizon.

These plots resemble the analogous four-dimensional ones (figure 2.5) more closely

than the negative-z plots; the same sort of crossing occurs for MOTOS very close to

the apparent horizon, and we see the same sort of concavity in the MOTOS for

Z(0) � 1/2. Of course, as for the MOTOS which have Z(0) < 0, the effect of the

apparent horizon extends out further for 5 dimensions than for 4, with the MOTOS

which have Z(0) = 50 still being noticeably concave downwards, despite the apparent

horizon having half the radius (as compared to 4 dimensions).

The top left plot of figure 5.4 shows the MOTOS just outside of the apparent

horizon for positive values of R(0) in the Schwarzschild coordinates with the toroidal

angular coordinates (that is, without the transformation into Weyl), while the other

plots in this figure show the MOTOS for R(0) increasingly large, and leaving from

the positive axis. Qualitatively similar behaviour in seen both to the 5-dimensional

case with the Weyl coordinates and to the 4-dimensional case, with the same sort of

concavity and crossing existing in all three. As is true for the Z(0)� 1/2 or R(0)� 1

(in the case of these coordinates) MOTOS, the 5-dimensional apparent horizon has a
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Figure 5.3: The MOTOS which leave the z-axis for positive Z0, where Z0 > 1/2,
which is the location of the apparent horizon. From top left clockwise, the plots are
increasingly zoomed out. This is for the metric in Weyl coordinates; vertical axis
plots Z, horizontal plots R.

stronger effect than in 4-dimensions—the MOTOS out at Z(0) = R(0) = 50 are still

noticeably wrapping around this MOTS, whereas in 4D they are nearly flat by this

distance.

5.3 Self-Intersecting MOTOS

The most interesting behaviour of the MOTOS occurs for 1/2 < Z(0) < 0 (alterna-

tively, 0 < R(0) < 1 in the non-Weyl coordinates). This is when we see the same
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Figure 5.4: The MOTOS for R0 > 1, and for R0 � 1, in the Schwarzschild spacetime
with the non-Weyl coordinates. Very similar qualitatively to the 4D case (2.5), except
the apparent horizon at R = 1 has a larger influence out for further R(λ). Vertical
axis plots R sin(2Θ), horizontal plots R cos(2Θ).

sort of self-intersections as were first seen in [30], and subsequently seen in [11] for

4D Schwarzschild. To determine whether such self-intersections exist in the MOTOS

(and thus in the MOTS) of this spacetime as they did in the others, is the main

motivation for the work in this thesis.

The first such figure which shows the self-intersections is 5.5. Both plots show

MOTOS near the apparent horizon in Weyl coordinates (Z(0) = 1/2). The left shows
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Figure 5.5: Two plots showing the MOTOS just inside and just outside the apparent
horizon, which is a MOTS, in the Weyl coordinates. Vertical axis plots Z, horizontal
plots R.

self-intersecting MOTOS which leave the z-axis just inside the horizon—all such self-

intersecting MOTOS will satisfy 0 < Z(0) < 1/2. Notice how the loop produced

grows in size and moves toward the horizontal axis as it leaves the z-axis from smaller

values of Z(λ). When the loop narrows sufficiently to produce a cusp, this will instead

be a MOTS (closed), rather than a MOTOS, because it intersects the z-axis at the

point of the cusp. In this way, it is clear how a series of MOTOS may be followed to

find the location and shape of the MOTS.

This process—where a MOTS is seen as special (closed) case in a continuous series

of MOTOS—occurs precisely the same in 5D as it did in [11]. It is also observed

for the self-intersecting MOTS; figure 5.7 shows for the Weyl coordinates (left) and

the toroidal/spherical coordinates (right) the way the MOTOS which have a self-

intersection approach the apparent horizon MOTS. The loop moves out, initially

appearing to follow the path of the red MOTS itself, toward the negative z-axis,

where it will then narrow and turn into a cusp, producing the apparent horizon. This

occurs analogously for the MOTOS which one may trace from the two loop MOTS

(blue in the figure). One also sees here another visual distinction between these two

coordinate systems: the MOTS for the Weyl coordinates produce narrower loops, and

the spherical/toroidal coordinates produce loops which flatten against the vertical

axis. These are artefacts of the coordinates chosen, not physical differences.
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Figure 5.6: The MOTOS near the apparent horizon (show in black) for the non-Weyl
coordinates of 5D Schwarzschild. Qualitatively identical behaviour as in figure 5.5,
though one sees the same sort of bunching together of the MOTOS as R increases as
was seen in figure 5.2.
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Figure 5.7: These show the way the MOTOS (grey) outside of the one-loop MOTS
(red) approach the apparent horizon (zero loop MOTS). The left is for Weyl and the
right is for the non-Weyl coordinates. The labels indicate the approximate value of
Z(0) for which the closed (red) MOTS occurs. Vertical axis plots R sin(2Θ), horizontal
plots R cos(2Θ).

5.4 Self-Intersecting MOTS

Finally, we discuss the self-intersecting MOTS that are found. Two of these were

shown in the previous section (in red and blue). As in [11], we find infinitely many in
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Figure 5.8: The two loop (blue) and one loop (red) MOTS inside the Weyl coordinate
(left) and toroidal coordinate (right) 5D Schwarzschild black holes. The behaviour of
the loops of the (grey) MOTOS is analogous to those which approach the AH from
outside the one loop MOTS. Left: vertical axis plots Z, horizontal plots R. Right:
vertical axis plots R sin 2Θ, horizontal plots R cos 2Θ.

the 5D Schwarzschild black hole (for both horizon-penetrating coordinate systems).

Figures 5.9, 5.10, and 5.11 show the first twelve self-intersecting MOTS for the

Weyl coordinates and the non-Weyl coordinates (respectively). The shapes of the

loops in the Weyl coordinates are much narrower along the horizontal axis, whereas

in the non-Weyl coordinates, they are more circular; this is a coordinate effect. The

timeslice metric in the Weyl coordinates is

ds2 =
dρ2 + dz2

2
√
ρ2 + z2

+ (
√
ρ2 + z2 − z)dφ2

1 + (
√
ρ2 + z2 + z)dφ2

2, (5.1)

and we plot on the (ρ, z) plane. This plane is conformally flat with conformal factor

1/(2
√
ρ2 + z2), meaning the MOTS we see are distorted. Thus, while one cannot

make statements about the relative size of the MOTS from figures 5.9 and 5.10, the

shapes can be compared.

In the non-Weyl coordinates, the timeslice has metric

ds2 = dr2 + r2dθ2 + r2(sin2(θ)dφ2
1 + cos2(θ)dφ2

2), (5.2)
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Figure 5.9: The first eight self-intersecting MOTS for the 5D Schwarzschild spacetime,
in Weyl coordinates. The axis has the same scale for all plots, but does not have the
same scale as compared to the figure 5.10. Plot of (R,Z).

and so the (r, θ) plane is flat. Then making the transformation x = r cos(2θ), y =

r sin(2θ) will not affect this. So both the shapes and the relative sizes of the MOTS

in figure 5.11 are not distorted.

From this figure, notice that the size of the MOTS decreases more slowly as they

get smaller, with the most dramatic difference in relative size being between the single

loop and double loop MOTS. It also appears to be the case that the loops themselves

take an almost spherical shape in these coordinates, with the outermost two loops

being larger more dramatically as compared to the Weyl coordinates.

Figure 5.13 shows the MOTS with seven to twelve self-intersections for the non-

Weyl coordinates; one sees that the shapes of the MOTS differ qualitatively as com-

pared to the 4D case, likely due to the toroidal rather than spherical angular coordi-

nates. Whereas in 4D the MOTS seemed to hug in toward the vertical axis around
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Figure 5.10: The MOTS with five to 12 loops, in the Weyl coordinates, for 5D
Schwarzschild. The axis is zoomed in for these plots as compared to figure 5.9, but is
the same scale for each plot in this figure. Plot of (R,Z).

the loops, in 5D they appear more or less parallel to it. One can see here that the

more spherical shape the loops take in 5D was not a result of the scaling; this is still

visible, and is not the case in 4D.
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Figure 5.11: The first twelves self-intersecting MOTS in the toroidal (non-Weyl) coor-
dinates. These are all shown on the same scale axis, because the loops remain visible
for smaller MOTS. Note that the plane on which the MOTS are plotted—(r, θ)—is
flat in these coordinates (not just conformally so as in the (ρ, z)-plane of the Weyl
coordinates), so the size of one MOTS may be accurately compared to the next with
these plots. The labels are multiples of r0, the mass parameter in the metric. Plot of
(R cos 2Θ, R sin 2Θ).
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Figure 5.12: The many-looped self-intersecting MOTS for the 5D Schwarzschild space-
time in the Weyl coordinates, zoomed in for comparison to the 4D case. Note the
axis values will not be the same, because M = 1 was chosen in [11], whereas in this
work r0 = 1 was chosen. One can see that the plots are very similar in shape to the
4D case. Plot of (R,Z).
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Figure 5.13: Many-looped MOTS for the non-Weyl coordinates, zoomed in. Plot of
(R cos 2Θ, R sin 2Θ).

5.5 Summary

The primary and most obvious takeaway from the MOTOS and MOTS discussed in

this chapter is that adding a dimension to the spacetime largely does not affect the

existence or behaviour of the self-intersections: there are still infinitely many self-

intersecting closed MOTS in the 5D Schwarzschild spacetime, just as there were for

4-dimensions. The self-intersecting MOTOS also relate to the closed MOTS in the

same way— one is able to follow a continuous sequence of them and find the shape

and location of a MOTS as the occurrence of a closed surface in the sequence of open

ones. This suggests that the choice in [11] to search for these open MOTOS (that is,

to relax the closure condition in the search for vanishing null expansion surfaces) was

a good one, as it is useful for two spacetimes which are distinct in a non-trivial way

(that is, having differing dimension).

The qualitative differences between the 4- and 5-dimensional MOTS and MOTOS

are far fewer than the similarities. A key one is the difference in shape for the MOTOS

with large r and rAH < Z(0). This indicates that the effect of the apparent horizon in

5 dimensions extends out farther than it does in 4, warping MOTOS which are very

far away. This is seen both for the Weyl and the spherical coordinates similarly, so

it is at least somewhat coordinate invariant. We also see more intersections between

MOTOS near to the apparent horizon, for Z(0) < 0. This is particularly relevant

because a motivation for working in 5 dimensions was that the asymptotic behaviour

of the MOTOS might be simpler than in 4D, something suggested by the lack of

logarithmic term in (3.2) from [15], as compared to (3.1). In [11], they expected the
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MOTOS would take a clean ordered form for r →∞, but did not turn out to be true.

Similarly it seems that this is once again not true for 5 dimensions, at least visually

from the plots seen at the beginning of this chapter.

On one hand—if it is the case that the aymptotics are similarly poorly behaved in

5D as in 4D—this shows that the 5D Schwarzschild black hole behaves analogously to

the 4D, which is consistent with the similarity in MOTS we see. On the other hand,

it suggests that perhaps at least one of our motivations for adding a dimension to the

spacetime did not yield the simplifications we had hoped. In fact, in 4-dimensions,

while the MOTOS that left the positive z-axis did not remain cleanly ordered for large

r, those which left the negative z-axis retained the order from which they left; in 5-

dimensions, it is not as obvious whether there is any clean sort of ordering that occurs

for the negative-z MOTOS. Thus the ordering of the MOTOS might be worse in five-

dimensions than it was in four, but further study is required to establish whether this

is the case. Hence, an important next step is to take expansions of the MOTOS in

the large r limit.



Chapter 6

5D Rotating Black Hole Spacetime

Now that the methods have been described and applied to the simpler case of the 5D

Schwarzschild metric, one can take the next step and apply them to a 5D rotating

black hole. The steps are (mostly) the same, and we see the same self-intersecting

MOTS. Here only the second (“MOTSodesic”) method is followed, as it leaves less

room for error.

6.1 5D Myers-Perry Metric

For the specific case of a Myers-Perry black hole [25] where all rotation parameters

are equal and one enforces that the spacetime is asymptotically flat, one gets the

metric as in [23] (where, compared to that work, M = µ and ` → ∞ which is the

asymptotically flat condition):

ds2 = −f 2dt2 + g2dr2 + h2(dψ + Ãdφ− Ωdt)2 +
r2

4
(dθ2 + sin2(θ)dφ2). (6.1)

Here,

f 2 =
r2

g2h2
, g2 = (1− 2µ

r2
+

2µa2

r4
)−1,

h2 = r2(1 +
2µa2

r4
), Ã =

cos(θ)

2
,

Ω =
2µa

r2h2
.

(6.2)
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For these coordinates, θ ∈ [0, π), φ and ψ ∈ [0, 2π), t ∈ R, and r ∈ (r+,∞), where r+

is the largest positive root of 1/g2.

The horizon at r+ has S3 topology, with metric

ds2 = h(r+)2
(
dψ + Ãdφ

)2

+
r2

+

4

(
dθ2 + sin2 θdφ2

)
. (6.3)

6.1.1 PG-Like Coordinates

As in the static case, we require coordinates that are non-singular across the horizon.

This occurs at r+ =
√
µ+

√
µ(µ− 2a2). This is the positive root of 1/g2, g2 being

the only coefficient in the metric which is singular for an r 6= 0.

To find Painlevé-Gullstrand-like coordinates for this metric, introduce the coordi-

nates

T = t− A(r) Ψ = ψ −B(r). (6.4)

Putting the metric into these new coordinates,

ds2 =− (f 2 − Ω2h2)dT 2 + 2
(
h2Ω(ΩA′ −B′)− f 2A′

)
dTdr

+ (h2(ΩA′ −B′)2 − f 2A′2 + g2)dr2 + h2dΨ2 − 2h2(ΩA′ −B′)dΨdr

− 2h2ΩdΨdT + 2ÃdΨdφ− 2h2Ã(ΩA′ −B′)dφdr + h2Ã2dφ2 − 2h2ÃΩdφdT

+
r2

4
(dθ2 + sin2(θ)dφ2),

(6.5)

one can then see that the choice ΩA′ = B′ should be made, as this sets three different

coefficients to zero, and thereby simplifies the equation. This gives

ds2 =− (f 2 − Ω2h2)dT 2 − 2f 2A′dTdr + (g2 − f 2A′2)dr2

+ h2
(
dΨ2 − 2ΩdΨdT + 2ÃdΨdφ− 2ÃΩdφdT + Ãdφ2

)
+
r2

4
(dθ2 + sin2(θ)dφ2).

(6.6)

A second equation is required to determine B and A uniquely, so for convenience

the choice g2 − f 2A′2 = 1 is made to set the coefficient of dr2 to unity. This means
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that

f 2A′ = ±
√
f 2(g2 − 1) = ±

√
2µ(r2 − a2)√

h2r2
(6.7)

and the metric is then

ds2 =− f 2dT 2 + 2

√
2µ(r2 − a2)√

h2r2
dTdr + dr2 + h2

(
dΨ + Ãdφ− ΩdT

)2

+
r2

4
(dθ2 + sin2(θ)dφ2).

(6.8)

The final coordinate transform that is made is

T = t∓
√

2

∫ r
√

(r2 − a2)µ
√
r4 + 2a2µ

r4 + 2µ(a2 − r2)
dr

Ψ = ψ ∓ 2
√

2aµ

∫ r
√

(r2 − a2)µ√
r4 + 2a2µ(r4 + 2µ(a2 − r2))

dr.

(6.9)

where when a = 0, this reduces to the Schwarzschild metric in Painlevé-Gullstrand

coordinates as in 3.8.

Immediately noticeable is that this coordinate system fails when r = a. Though

it is true that this surface always exists inside the inner horizon of this spacetime

(the inner horizon occurs at r− =
√
µ−

√
µ(µ− 2a2)), this will still become relevant

(and will limit) our analysis of the MOT(O)S of the spacetime. A short discussion of

how—as next steps—it may be remedied is included at the end of this chapter.

6.2 Derivation of MOTSodesics

6.2.1 Hypersurface, Extrinsic Curvature

As before, we define a foliation of the spacetime in constant-time slices, which each

have metric

hijdx
idxj = dr2 + h2

(
dΨ + Ãdφ

)2

+
r2

4
(dθ2 + sin2(θ)dφ2). (6.10)

If a = 0, this metric is flat and h2 = r2.

One then defines again a rotationally symmetric hypersurface via the parametric
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equations γ(λ,Ψ, φ) = (R(λ),Θ(λ),Ψ, φ), and the coordinates on this hypersurface

are the parameters of the γ. Then the metric on the hypersurface is

qabdx
adxb = dλ2 + h2dΨ2 + 2h2ÃdΨdφ+

(
1

4
R2 sin2(Θ) + h2Ã2

)
dφ2 (6.11)

where the coefficient of the dλ term has been set to one, that is, an arclength param-

eterization has been chosen (as before). This corresponds to, in this case,

Ṙ2 +
1

4
R2Θ̇2 = 1. (6.12)

We also require the extrinsic curvature of the timeslice, Kij, which can be found

from the normal

uα = − r
h
dT, (6.13)

to be

Kij =



√
2µ(r4−2a2(r2+µ))√

(r2−a2)r3h2
0 −4aµ

r2h
−2aµ cos θ

r2h

0 −
√
µ(r2−a2)

2
√

2r
0 0

−4aµ
r2h

0 −
√

2µ(r2−a2)(r4−2a2µ)

r5
−
√
µ(r2−a2)(r4−2a2µ) cos θ

√
2r5

−2aµ cos θ
r2h

0 −
√
µ(r2−a2)(r4−2a2µ) cos θ

√
2r5

−
√
µ(r2−a2)(r4−2a2µ cos2 θ)

2
√

2r5

 .
(6.14)

This is of course pulled back into the timeslice, Kij = eαi e
β
jKαβ. Here eαi = ∂xα

∂xi
,

where xα are the coordinates on the full 5D spacetime, and xi are the coordinates

on the 4D timeslice—this is the same sort of pullback/push-forward operator as was

seen in chapter 4.

6.2.2 Finding ku

Just like the 5D Schwarzschild derivation, we find the timelike expansion ku as the

trace of the extrinsic curvature

ku = q̃ijKij, (6.15)
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where in this case, the pushed-forward hypersurface metric is

q̃ij =


Ṙ2 ṘΘ̇ 0 0

ṘΘ̇ Θ̇2 0 0

0 0 R2+h2 cot2 Θ
R2h2

−2 cot Θ csc Θ
R2

0 0 −2 cot Θ csc Θ
R2

4 csc2 Θ
R2

 . (6.16)

So then

ku =

√
2µ
(

(a2 −R2)(2a2µ+ 3R4) + Ṙ2(2R6 − 2a4µ− 3a2R4)
)

R3
√
µ(R2 − a2)(2a2µ+R4)

, (6.17)

where here the Θ̇ terms have been replaced with 4(1 − Ṙ2)/R2 (from the arclength

condition) to simplify the expression.

6.2.3 Angular Vectors

Remember that the metric on the time slice can be expressed as

hij = TiTj +NiNj + ψ̂iψ̂j + φ̂iφ̂j, (6.18)

where here the normal to the hypersurface is

N =
RΘ̇

2
dr − RṘ

2
dθ, (6.19)

and so the (inverse) pushed-forward hypersurface metric is then

q̃ij = T iT j + ψ̂iψ̂j + φ̂iφ̂j. (6.20)

That is, the part that is orthogonal to the normal part of 6.18. Therefore, to find the

vectors Ψ̂ and φ̂, enforce the following:

q̃ψψ = (ψ̂ψ)2 + (φ̂ψ)2 =
R2 + h2 cot2 Θ

R2h2

q̃ψφ = ψ̂ψψ̂φ + φ̂ψφ̂φ = −2 cot Θ csc Θ

R2

q̃φφ = (ψ̂φ)2 + (φ̂φ)2 =
4 csc2 Θ

R2
.

(6.21)
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Choosing ψ̂φ = 0, this will then set

ψ̂ =
1

h

∂

∂ψ

φ̂ = −cot Θ

R

∂

∂ψ
+

2 csc Θ

R

∂

∂φ
.

(6.22)

One can check that these vectors have unit norm and are orthogonal, as required.

6.2.4 Finding κ

As before, the scalar κ that appears in the MOTSodesic equations is found via

κ = ku −NiΨ̂
jDjΨ̂

i −Niφ̂
jDjφ̂

i. (6.23)

The second and third terms are the accelerations in the Ψ and φ directions, respec-

tively. The former is

KΨ = NiΨ̂
jDjΨ̂

i =
(2a2µ−R4)Θ̇

2R2h2
, (6.24)

and the latter is

Kφ = Niφ̂
jDjφ̂

i =
2 cot ΘṘ

R
− Θ̇

2
, (6.25)

so that

κ = ku −KΨ −Kφ

=
√

2µ
((a2 −R2)(2a2µ+ 3R4) + Ṙ2(2R6 − 2a4µ− 3a2R4)

R5
√

(R2 − a2)h2
+
R5Θ̇− 2 cot ΘR2h2Ṙ

R3h2
.

(6.26)

6.2.5 MOTSodesics

Finally, the MOTSodesics can be found using the scalar κ. In general, of course, the

EOMs follow the formula

d2XA

dλ2
= −ΓABCT

BTC + κNA, (6.27)
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where here, again, XA = (R,Θ), and the Christoffel symbols correspond to those on

the curve with coordinates XA. (Also, NA = (N r, N θ), and TA = (Ṙ, Θ̇).)

Then the MOTSodesic equations for this spacetime are

R̈ = −ΓRΘΘΘ̇2 +
1

2
κRΘ̇⇒ R̈ =

RΘ̇

2

(
Θ̇

2
+ κ

)
(6.28)

and

Θ̈ = −2ΓΘ
ΘRṘΘ̇− 2κ

Ṙ

R
⇒ Θ̈ = −2Ṙ

R

(
Θ̇ + κ

)
(6.29)

where a dot denotes derivative with respect to λ. One can see that, while κ is more

complicated than in the 5D Schwarzschild case, the MOTSodesics as they appear here

look simpler.

6.3 Series Expansions at R = 0

Similarly as was done for the Schwarzschild case, we complete series expansions for

small λ, which are once again accurate to second order. This is done, of course, by

setting

R(λ) = R0 +R1λ+R2λ
2 +R3λ

3 +O(λ4)

Θ(λ) = Θ0 + Θ1λ+ Θ2λ
2 + Θ3λ

3 +O(λ4),
(6.30)

The MOTSodesic equations will hold to second order in λ.

In this case, it will not be true that R0 = 0 when λ = 0, but rather that R0 will

play the role that Z0 did in the series expansion for Schwarzschild. Thus, we will end

up with R0 a freely specifiable parameter at the end, which is used to choose which

MOTOS is being described.

Substituting (6.30) into the equations (6.28) and (6.29), and also enforcing the
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arclength condition to get a relationship between R0 and Θ1, one gets

Θ0 = 0, R1 = 0, Θ2 = 0, R3 = 0

Θ3 =
(3R4

0 + 2a2µ)(R2
0 −

√
2µ(R2

0 − a2))

4R3
0(R4

0 + 2µa2)

R2 =
3R4

0 + 2a2µ

12R7
0(R4

0 + 2a2µ)2

(
−5R8

0 + 4a4µ2+

4a2R2
0µ

(
2
√

2µ(R2
0 − a2)− µ

)
+ 2R6

0

(
−3µ+ 4

√
2µ(R2

0 − a2)

)
)

Θ1 = 2/R0

(6.31)

Using these coefficients in equations (6.30), this is a solution to second order in

λ, for small values of this parameter. Specifically, it holds when R→ 0. However, as

with the Schwarzschild case, we do not plot these solutions, as they give qualitatively

indistinguishable results from those found by plotting the MOTSodesic equations from

R small but non-zero, as one can choose arbitrarily small R at which to begin—hence

they affect numerical details of the results, but not the qualitative behaviour.

6.4 Results

This section will discuss the MOTOS and MOTS for various values of the rotation

parameter a, with the mass parameter, µ, set equal to 1. To scale these, simply

multiply the value of R at which the MOT(O)S leave the z-axis by
√
µ.

The 5D Schwarzschild case, which is what the Myers-Perry black hole reduces to

when the rotation parameter is set to zero, is discussed first, and of course the results

are the same as in the previous section—though these coordinates are once again

slightly different from the two already introduced.

Then, the rotation parameter is varied from a very near zero, to a = 0.5; because

the Painlevé-Gullstrand -like coordinates used here only hold for r > a, they are

unable to probe inside this surface, and thus MOTS which exist inside it cannot be

found. So, as this surface increases in size, the number of MOTS that exist between

it and the apparent horizon reduces. For a = 0.5, no MOTS can be found between

these two surfaces. Further discussion of the failure of the coordinates will follow the
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rest of the results.

Note that all (Myers-Perry) plots in this chapter have x = R(λ) cos(Θ(λ)) on the

horizontal axis, and y = R(λ) sin(Θ(λ)) on the vertical. The (non-Weyl) Schwarzschild

plots are the same as in the previous chapter, that is, x = R cos(2Θ), y = R sin(2Θ).

6.4.1 a = 0 (Schwarzschild)

Firstly, observe the figure that shows the first ten self-intersecting MOTS of Schwarzschild

(a = 0) in the Myers-Perry coordinates, 6.1. Comparing this to 6.2, which is the first

ten MOTS in the Schwarzschild spacetime in the non-Weyl coordinates, we see they

are more or less indistinguishable (apart from differences in overall scale). This is as

expected, given that the coordinates used for the Myers-Perry spacetime (as outlined

in the previous section) are the spherical/toroidal type coordinates, rather than the

cylindrical-type Weyl coordinates, and so the behaviour for this a = 0 case should be

the same as in the analogous coordinates from the previous chapter.

Unlike in the previous chapter, the values of R0 from which the MOTS leave the

vertical axis must be multiplied by
√
µ to scale with the mass of the Myers-Perry

black hole (whereas for the Schwarzschild black hole, it was multiplied by r0).

6.4.2 MOTS for a 6= 0

Setting a 6= 0 introduces rotation to the spacetime. The already present appearance

of the loops hugging a spherical surface, which is visible in the a = 0 MOTS, is more

pronounced as this surface becomes non-zero in size. We also notice that the loops

begin to intersect each other much sooner (when there are fewer loops), whereas in

the static case, this doesn’t occur until the MOTS with at least seven loops.

As discussed, the coordinates used fail across the surface R = a, and so the size of

this surface constrains how many MOTS can be found in the spacetime. Figure 6.3

shows the first five closed MOTS for the a = 0.1 Myers-Perry black hole. We see here

that the loops are warped around the surface R = a, which is shown in red. It is also

noteworthy that the loops begin to intersect each other when the number of them is

greater than two.

Figure 6.4(a) shows the last closed MOTS that can be found for a = 0.1. While
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Figure 6.1: The first 10 self-intersecting MOTS in the a = 0 MP spacetime, which is
of course simply Schwarzschild. The horizontal axis plots R cos Θ; the vertical plots
R sin Θ.

there are more open MOTOS which may be found – that is, which do not cross the

R = a surface – any other closed MOTS will cross this surface, and thus cannot be

probed using these coordinates.

As the rotation parameter increases, the number of MOTS which can be found

reduces very quickly: figure 6.5 shows the MOTS which exist outside R = a for

a = 0.3, a = 0.35, and a = 0.4. By the latter, there is only one closed MOTS (aside

from the apparent horizon), which is visible in these coordinates. Figure 6.4(b) shows

what happens for a = 0.5, where one can find neither self-intersecting MOTS nor

self-intersecting MOTOS: they begin to curve as though they are going to produce a

self-intersection, but then they run into the R = a surface, and thus can no longer be

followed using these coordinates.
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Figure 6.2: The first ten MOTS for the non-Weyl coordinates for 5D Schwarzschild,
from chapter 5. One can see, aside from the scale of the coordinates, they are in-
distinguishable from the a = 0 Myers-Perry. The horizontal axis plots R cos 2Θ; the
vertical plots R sin 2Θ.

6.4.3 a 6= 0 MOTOS

The open MOTOS that leave the vertical axis outside of the apparent horizon, that

is, those which do not have self-intersections, behave very similarly for nonzero rota-

tion as they do for the static case. They wrap around the apparent horizon, with its

effect extending out to large R (see figure 6.6). They also flatten out parallel to the

horizontal axis for large R, as in the static case. Comparing figure 6.7 to 6.6, we see

that increasing the rotation does not affect these MOTOS very strongly, especially

compared to how dramatically it affects the MOTS and MOTOS inside the apparent

horizon (the difference between the number of looped MOTS being reflected by how-

ever many loops exist in figure 6.4(a) for a = 0.1, as compared to only one looped

MOTS existing for a = 0.4).

The MOTOS that leave the positive vertical axis inside the apparent horizon also
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Figure 6.3: The first five MOTS for an a = 0.1 Myers-Perry black hole. The surface
R = a is shown in red. Plots (R cos Θ, R sin Θ).
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Figure 6.4: These plot (R cos Θ, R sin Θ).
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Figure 6.5: The MOTS which exist inside the apparent horizon, and outside the
surface R = a, for 0.3 ≤ a ≤ 0.4. All plots are of (x, y) = (R cos Θ, R sin Θ).
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Figure 6.6: The MOTOS which leave the vertical axis for positive R > RAH , for
a = 0.1. Plots (R cos Θ, R sin Θ).
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Figure 6.7: The MOTOS which leave the positive vertical axis outside of the apparent
horizon, for a = 0.4. Plots (R cos Θ, R sin Θ).

behave analogously to how they do in Schwarzschild; that is, they are of similar shape

to the nearest self-intersecting MOTS, with one loop fewer than the self-intersecting

MOTS just outside it. Comparison of figure 6.8 to figure 5.8 shows the same sort of

downward movement and narrowing of loops occurs, with a cusp in the loop producing

a closed MOTS. Note here one can also see the apparent horizon at R = r+ (black

outer surface), and can see it decreasing slightly in size as the rotation increases.

Oscillations in MOTOS Near R = a

There is, however, an interesting qualitative difference, which exists for the MOTOS

that leave the negative vertical axis near to the surface R = a: we see a strange sort

of oscillation in these MOTOS, which flattens out as they leave the axis farther from

the surface.

Figure 6.9 shows these oscillating MOTOS for a = 0.1, with the left plot zoomed in

sufficiently to show the complicated behaviour, and the right plot zoomed out slightly

to indicate that the MOTOS become smooth as they leave the axis farther away from
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(right). The thick red inner surface is R = a, and the outer black surface is the
apparent horizon, R = r+. These plot (R cos Θ, R sin Θ).
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the R = a surface.

Interestingly, this oscillating behaviour becomes less visible as the rotation param-

eter increases: for a = 0.3, it is less of an oscillation and more of double turn-around,

and for a = 0.4, it becomes more like a single turn in the MOTOS.
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0.0

Figure 6.9: Oscillations in the MOTOS which leave the negative vertical axis near the
surface R = a, for a = 0.1. Plots (x, y) = (R cos Θ, R sin Θ).

As the rotation parameter reduces, the oscillating becomes more dramatic – see

figure 6.12 for the oscillations present when the rotation parameter is equal to 0.05.

This naturally leads one to ask whether such oscillations are present when a = 0,

that is, whether there exists a qualitative difference in behaviour of the MOTOS that

approach the static spacetime, versus those of the static spacetime itself.

It seems to be the case that if we look increasingly close to the singularity for the

(5D) Schwarzschild black hole, these oscillations continue to exist—with their period

of oscillation (used loosely here) reducing also, thereby causing them to appear more

dramatic. However, it is also the case that the amplitude of the oscillations reduces

alongside the period, meaning that as a→ 0, the amplitude will also go to zero, and

the oscillations will flatten out completely for Schwarzschild—which is expected, given

that none were seen in the previous chapter. This increase in number of oscillations

while, simultaneously, the amplitude of each is decreasing is visible if one compares

the left plots on figures 6.9 and 6.12.

Finally, figure 6.13 shows, in the middle and on the right, the MOTOS which

leave the vertical axis from R0 = 0.0010001 and R0 = 0.001001, respectively. One
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Figure 6.11: Flattening out of the oscillating MOTOS for a = 0.4. Plots
(R cos Θ, R sin Θ).

can see how the amplitude and the period of the oscillation reduce as the rotation

parameter reduces. In particular, notice that the amplitude nearest to the R = a

surface reduces most dramatically. The left-most plot in this figure shows the MOTOS

with R0 = 0.001 in Schwarzschild (a = 0). Obviously, no oscillations are visible.

Following the plots from right to left, the means by which the oscillations limit to the

smooth MOTOS is clear.

It is also worth noting that the amplitude and period of the oscillations increase

not only with rotation parameter, but also—for a single MOTOS in a spacetime with

some given rotation parameter—they will increase as one follows the MOTOS farther

away from the R = a surface. This is most obviously visible in figure 6.14, which

shows the MOTOS with R0 = 0.01001 for the spacetime with a = 0.01 (but of course,

it is also clear with careful inspection in all the oscillation figures). The farther the

MOTOS is from the R = a surface, the more it pulls away also from the vertical axis,
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Figure 6.12: Dramatic oscillations for small (a = 0.05) rotation parameter. Plots
(R cos Θ, R sin Θ).

so it is difficult to say whether the former or the latter is the relevant factor with

which the increase in amplitude/period correlates.

6.4.4 Summary

As expected, the rotating Myers-Perry spacetime is richer in the complexity of MOTS

and MOTOS behaviour. While there are strong similarities to the Schwarzschild

spacetime in the MOTOS that leave the vertical axis above and outside the apparent

horizon (both for small rotation, of course, but also for larger rotation), there are qual-

itative differences in those which leave the vertical axis inside the apparent horizon,

but below R = a: oscillations in these MOTOS are seen, which increase in frequency

as the rotation parameter of the spacetime is reduced. They limit to the smooth case

of the Schwarzschild spacetime through their amplitude simultaneously reducing, in-

creasing confidence that they are not some sort of error in either the numerics or the

derivations.

Importantly, we continue to find self-intersecting MOTS in this spacetime, for all

values of the rotation parameter up to and including a = 0.4. These MOTS are,
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R0 = 0.001, for a = 0 (Schwarzschild). The horiztal axis for all three of these plots is
on the scale 1× 10−5, and they are shown with the same aspect ratios. These all plot
(x, y) = (R cos Θ, R sin Θ).
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however, warped around the surface R = a, with their warping becoming more dra-

matic as this surface increases in size. The loops themselves also intersect one another

sooner (that is, when there are fewer of them), the faster the rotation is. However,

the fact that these self-intersecting MOTS continue to exist in this spacetime—one

which differs from the 4D Schwarzschild both in dimension and in rotation—speaks

to the generality of their existence.
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-0.015

-0.010

-0.005

Figure 6.14: Oscillations for a =
0.01, R0 = 0.01001. The in-
crease in amplitude/period along
the single MOTOS is seen. Plots
(R cos Θ, R sin Θ).

It has been briefly mentioned that the coor-

dinates used fail across R = a, and so limit the

number of MOTS which can be found. While

there is (not yet published) work my collabora-

tors have done in spacetimes which have finite

numbers of self-intersecting MOTS—where the

number is limited by the existence of an inner

horizon in the spacetime—this is likely not so rel-

evant here. The inner horizon in these coordi-

nates for Myers-Perry exists outside of the surface

R = a, where it is farther outside it for larger

rotation (it exists at r− =
√
µ−

√
µ(µ− 2a2),

which is
√

1−
√

1− 2a2 here). However, the

MOTS found easily penetrate this horizon, and

it does not seem to be the surface which they

wrap around when warping. Hence, only R = a

was plotted in the figures of this chapter, since it

is the surface relevant to the shape of the MOTS.

There exists precedent for Painlevé-Gullstrand

coordinates failing in certain spacetimes: for in-

stance, they fail in Anti-de Sitter space, as well

in the inner region of Reissner-Nordström [17]. In

the latter, it is also the case that the surface across

which the coordinates fail exists inside the inner

horizon. An important next step for this research

is finding a coordinate system which penetrates the R = a surface, allowing for us

to see whether there exist self-intersecting MOTS inside it. Note that this surface

is not a horizon, and the singularity in this spacetime exists at r = 0. It will also
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be worthwhile to look more closely at the large-r limit for Myers-Perry, just as was

mentioned for the Schwarzschild case.



Chapter 7

Conclusion

The purpose of this work was to explore the generality of self-intersecting marginally

outer trapped surfaces, first seen in binary black hole mergers [30], and subsequently

seen again in 4-dimensional Schwarzschild spacetime by my collaborators [11]. We

searched for these self-intersecting MOTS in two different 5-dimensional spacetimes,

in order to determine whether adding a dimension would affect their existence or

shape. We were motivated also by the possibility that the MOTS, and their open

analogues MOTOS, might be simpler asymptotically in 5D than they were in 4D,

because of results suggesting this from [15].

For 5D Schwarzschild, we worked first in Weyl coordinates [1], a five-dimensional

generalization of cylindrical coordinates, and then in the usual Schwarzschild coordi-

nates (both with a toroidal foliation of S2). For Myers-Perry, we worked in a case

where all rotation parameters were equal, and the spacetime was asymptotically flat.

We searched for MOTS by means of finding MOTOS, or marginally outer trapped

open surfaces, and following a continuous sequence of them until one closes. This

method was originated in [11], and worked equally well for finding MOTS in 5-

dimensions as it did in four. Our method for locating the MOTOS consisted of

defining a general rotationally symmetric hypersurface in a constant timeslice of the

spacetime, and from this calculating the outward-oriented null expansion of it. This

was then set equal to zero, and in doing so, we were able to put the final equations of

motion into a form similar to the geodesic equations. These are called MOTSodesic

equations, for obvious reasons, in this thesis and in [12, 32, 31]. These MOTSodesic

equations are second order differential equations, were easily numerically solved. The
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MOT(O)S were plotted by means of a ‘shooting method’; that is, an initial value form

which the MOT(O)S would leave the vertical axis was chosen, and MOTS were found

by increasing/decreasing this value as necessary until the surface closed.

We found the self-intersecting MOTS are sufficiently general phenomena that they

exist in both of the five-dimensional spacetimes studied: 5D Schwarzschild and Myers-

Perry. Their behaviour in 5D Schwarzschild was found to be nearly indistinguishable

from 4D Schwarzschild—most notably, there were once again an infinite number of

the self-intersecting MOTS in the former, as was found in the latter [11].

In 5D Myers-Perry, the number of self-intersecting MOTS we were able to find was

constrained by the coordinate system used, which failed across the surface R = a. The

larger the rotation parameter, a, that was chosen, the fewer MOTS existed outside

of it (and inside the apparent horizon). For this reason, the fastest rotation studied

was a = 0.5, and the only MOTS we were able to see in this spacetime was the

apparent horizon, and the inner horizon—no self-intersecting MOTS were found. For

a = 0.4, one self-intersecting MOTS fit between R = a and the apparent horizon,

for a = 0.35 there were two, etc. a = 0.1 was sufficiently slowly rotating that many-

looped MOTS were able to be found (where it was not easy to count the number).

All self-intersecting MOTS in Myers-Perry hugged the surface R = a, and the larger

the rotation parameter, the more distorted the loops became in doing so.

For comparison to four dimensions, MOTOS outside of the apparent horizon

(above and below it) were also found. In both five-dimensional spacetimes, the MO-

TOS that left the vertical axis from above the apparent horizon did not differ dramat-

ically from their analogues in four dimensions: the only difference was that the affect

of the apparent horizon—causing the MOTOS to wrap around it—was stronger, i.e.,

it existed out for further values of the radial coordinate.

The MOTOS that left from the negative vertical axis (with upward directed

null normal—for downward directed null normal, this would apply to those which

leave above the apparent horizon) were different from four dimensions. For 5D

Schwarzschild, the MOTOS crossed one another and seemed to order themselves

oppositely to how they left the horizontal axis; this compared to four dimensional

Schwarzschild, where they found that these MOTOS remained the same order for

large r. On the scale of the apparent horizon and larger, the MOTOS which left the

negative vertical axis in 5D Myers-Perry presented a similar sort of behaviour as 5D
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Schwarzschild, with the ordering perhaps reversing.

We had hoped, in five dimensions, the MOTOS might be neatly ordered both

above the apparent horizon, and for the negative vertical axis. Instead, we found that

they were neither neatly ordered above nor below it (not obviously at least). While the

fact that the 5D Schwarzschild MOTOS which leave from above the apparent horizon

are not neatly ordered supports the claim that 5D Schwarzschild is qualitatively very

similar in its MOTS and MOTOS to 4D, the ordering in general seems to be worse

in five dimensions. It will therefore be very valuable to take series expansions in the

large r limit for both 5D spacetimes, to determine whether the MOTOS are in fact

less ordered, or whether the reversal that seems to be visible does occur.

Something found here, which had not been found previously, was the existence of

oscillations in the MOTOS that leave from the negative vertical axis in Myers-Perry.

These oscillations were found to increase in frequency but decrease in amplitude as

the rotation parameter reduced, limiting to 5D Schwarzschild, where the MOTOS

are smooth (because the amplitude of the oscillations goes to zero). This is new and

novel behaviour, and requires further study. Preliminary results by my collaborators

indicate similar sort of oscillations may be present in the Kerr spacetime, so they are

a result of the rotation.

What is the most obvious conclusion to be drawn from this work is that these self-

intersecting MOTS exist in a variety of spacetimes, and that adding a dimension to

the spacetime does not affect their existence, nor does adding rotation. This supports

the claims of their generality.

Valuable next steps to the work contained in this thesis will be to attempt to find

coordinates which do not fail across any surfaces inside the apparent horizon of Myers-

Perry, and thus penetrate to the singularity. In this way, we may determine whether

there exist infinite MOTS in this spacetime, or whether the MOTS found here are, in

fact, all that exist. It will also be worthwhile, as mentioned, to take series expansions

of the large r limit in both five-dimensional spacetimes, to establish whether there is

any clean ordering of the MOTOS as r → ∞. Finally, searching for the oscillating

MOTOS in other spacetimes with rotation is required to better understand them.
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[35] Larry Smarr, Andrej Čadež, Bryce Dewitt, and Kenneth Eppley. Collision of two
black holes: Theoretical framework. Phys. Rev. D, 14(10):2443–2452, 11 1976.

[36] P. C. Vaidya. The External Field of a Radiating Star in General Relativity.
General Relativity and Gravitation, 31(1):119–120, 1999.

[37] Robert M. Wald. General Relativity. University of Chicago Press, Chicago, 1984.


	Title page
	Abstract
	Lay summary
	Acknowledgements
	Statement of contributions
	Table of contents
	List of figures
	Introduction
	Event Horizons
	Expansions of Null Geodesics
	Trapped Surfaces
	MOTS
	MOTOS

	Motivation and Previous Work
	Binary Black Hole Mergers
	Self-intersections in 4D Schwarzschild MOTS
	Method
	Solving for MOTOS
	4D Schwarzschild Results (MOTS and MOTOS)


	5-Dimensional Schwarzschild Spacetime
	Motivation for Working in 5D
	The Schwarzschild Solution
	Painlevé-Gullstrand and Toroidal Coordinates
	Toroidal Foliation of the 3-sphere

	Weyl Coordinates
	Metric in PG+Weyl


	Finding the MOTSodesic Equations
	Preliminary Definitions
	Defining the Time-Foliation
	Defining Rotationally-Symmetric Hypersurface

	Computational Method
	Overview
	Timelike Expansion
	Spacelike Expansion
	Equations of Motion

	MOTSodesic Method
	General MOTSodesic Method
	MOTSodesic Method for 5D Schwarzschild
	Schwarzschild Event Horizon Solution

	Series Expansions at R = 0

	Results: 5D Schwarzschild MOTS
	 Z(0)<0 MOTOS
	Z(0)>1/2 MOTOS
	Self-Intersecting MOTOS
	Self-Intersecting MOTS
	Summary

	5D Rotating Black Hole Spacetime
	5D Myers-Perry Metric
	PG-Like Coordinates

	Derivation of MOTSodesics
	Hypersurface, Extrinsic Curvature
	Finding ku
	Angular Vectors
	Finding 
	MOTSodesics

	Series Expansions at R = 0
	Results
	a=0 (Schwarzschild)
	MOTS for a=0
	a=0 MOTOS
	Summary


	Conclusion
	Bibliography

