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Abstract 

Migratory and other highly mobile species, which rely on multiple, often spatially discrete 

and heterogeneous environments throughout their life cycles, play critical roles in the 

functioning and dynamics of communities and ecosystems. However, migratory species face 

multiple anthropogenically driven threats to their survival as they move between and use 

different areas. Understanding migratory species distributions and drivers of those 

distributions is essential to develop effective strategies that reduce or remove anthropogenic 

threats to their wellbeing and persistence. Yet, the spatial-temporal dynamism of migratory 

species movements and distributions, particularly under changing conditions, presents 

additional challenges for researchers and managers. Here, I use distribution modelling and 

quantitative analysis tools to examine the changing distributions of suitable habitat for marine 

pelagic species over horizontal (longitude and latitude) and vertical (depth) space, time and 

between ocean climates, and deconstruct how modelled distributions of prey can inform the 

design and management of area-based management tools for migratory seabird predators. 

First, I applied a species distribution model (Maxent) to explore the average monthly spatial-

temporal dynamics of suitable habitat of the migratory pelagic forage fish capelin (Mallotus 

villosus) in Atlantic Canadian waters. I found that the distribution of habitat suitability varied 

across horizontal and vertical axes and among monthly models. Furthermore, I found that the 

importance of modelled covariates such as temperature varied between models. Next, I used a 

series of spatial and temporal analyses to examine how shifts in the North Atlantic Oscillation 

influenced the availability of suitable habitat over horizontal and vertical axes between 1998 

and 2014. I found substantial stability in the location of predicted suitable capelin habitat 

between positive and negative phases. However, in six of the ten months modelled, predicted 

habitat suitability scores showed a declining trend over time. Finally, I present a framework 

for explicitly integrating changing prey availability into adaptive area-based management for 
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seabirds throughout their migratory cycle. This framework focuses on using existing 

modelling, forecasting, and analysis tools to identify potential seabird foraging spaces, and 

allows for the input of new knowledge and data to provide managers with the best available 

information for iterative and adaptive decision-making.  
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General Summary 

Migratory species, such as whales and seabirds, move to different locations throughout their 

lives. These locations may be quite different from one another. As migratory animals move, 

they influence the other species they interact with. However, it is hard to know where they 

are. Here, I use tools that take information about the environment, such as how warm it is, to 

model (predict) where an individual of a migratory species is most likely to be and where it 

might move. I start by modelling where capelin, an important prey fish for many animals 

such as cod, whales, and seabirds, is most likely to occur in the sea around Atlantic Canada. I 

also evaluate how different environment features such as temperature might be very 

important aspects of their habitat in one month but unimportant in another. Next, I consider 

whether their suitable habitat in one month always occurs in the same location or whether it 

moves, for example, because of warmer water in one year and colder water in another. 

Capelin and other fish are food for other migratory animals, such as seabirds that fly long 

distances to find and consume them. I created a guide for using models of fish such as capelin 

to help identify the places the seabirds are most likely to go to feed, even if the fish do not 

always go to the same place at the same time. The information available on a given species 

increases all the time, so I ensured that this guide includes a way for researchers to add new 

information about the seabirds and the fish they consume. Additional information should 

improve predictions on where seabirds will go to feed. Although no tool can clarify with 

absolute certainty where an animal will be, using the best available information will help to 

sustain wildlife.  
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Chapter 1: Introduction and overview  

There is little argument that the ocean is increasingly degraded by habitat loss and 

deterioration, climate change, invasive species, and pollution (Sala & Knowlton 2006, 

Halpern et al. 2015). The overexploitation of marine populations, however, is widely 

regarded as one of the most pervasive threats to marine biodiversity (Pauly & Palomares 

2005b, McCauley et al. 2012), with effects rippling throughout all marine ecosystems 

(coastal, mangrove, benthic, pelagic, coral reefs, kelp forest, among others; Coleman & 

Williams 2002, zu Ermgassen et al. 2013). To protect and ensure sustainable use of marine 

ecosystems, managers are shifting their focus from single-species management towards 

community and ecosystem-based approaches. These approaches integrate multiple biotic and 

abiotic interactions and consider the cumulative impacts of human activities (Levin et al. 

2013, Long et al. 2015). In particular, area-based management tools (ABMTs) are 

increasingly being used to manage human activities (e.g. fisheries area closures, Wright et al. 

2019) and to meet biodiversity conservation objectives (e.g. marine protected areas and 

networks, Day et al. 2019). 

A growing body of literature suggests that populations of marine species with largely 

sedentary or sessile adult life stages, such as scallops, or with limited home ranges, such as 

coral reef herbivorous fish, do not exist in discrete, isolated populations (Chapman & Kramer 

2000, Twist et al. 2016). Rather, populations operate as a part of a larger metapopulation, in 

which the movement of larvae links otherwise spatially discrete subpopulations (Kritzer & 

Sale 2004). In turn, these populations are nested within a broader set of metacommunities, 

with each sub-community linked by the movement of multiple species that interact directly 

and indirectly (Leibold & Chase 2018). Although the importance of maintaining population 

connectivity for sessile or range-limited species in conservation planning is increasingly 

recognised (Carr et al. 2017), the spatial protection of highly mobile species such as 
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migratory species remains a considerable challenge (Martin et al. 2007, Runge et al. 2014). 

Migratory species, which may also operate in a metapopulation structure (Esler 2000, 

Gerlotto et al. 2012), occupy a range of spatially discrete habitats that may shift in time and 

space depending on oceanographic conditions (Refsnider & Janzen 2010, Davoren & Halden 

2014) and/or with the spatial-temporal dynamics of interacting heterospecifics such as prey 

(Furey et al. 2018). Furthermore, the current and projected novel climates (Veloz et al. 

2012a) and communities (Williams & Jackson 2007b) present additional complications 

predicting species distributions and designing marine protected areas (hereafter MPA) 

networks that are future-proofed to potential changes in space use.  

Although we lack the knowledge needed to know precisely how species will respond to 

changing ocean conditions, with the continued degradation and increasing zonation of the 

ocean for one human activity or another, it has never been more important to identify and 

protect the spaces that could be important for population persistence and ecosystem resilience 

(Jones et al. 2016, Schmitz et al. 2015, Queirós et al. 2016). 

 

1.1: Marine species in a changing ocean 

The ocean is a highly dynamic environment, with conditions fluctuating on spatial scales 

from a few meters to several thousands of kilometres, and temporally on daily, weekly, 

monthly, seasonal, annual, decadal, and longer scales (Ottersen & Stenseth 2001, Durazo & 

Baumgartner 2002, Risebrobakken et al. 2010, Muller-Karger et al. 2015). By moving among 

spatially homogeneous or heterogeneous environments throughout their life cycle, migratory 

species can avoid suboptimal conditions and exploit areas where conditions are better for 

survival (Sims et al. 2004, McCauley et al. 2012, Cherry et al. 2013, Kimirei et al. 2013, Ebel 

et al. 2016).  
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Marine migratory species are taxonomically diverse, representing mammals such as 

humpback whales (Megaptera novaeangliae), sea turtles such as green sea turtles (Chelonia 

mydas), bony fish such as Pacific herring (Clupea pallasii), cartilaginous fish such as blue 

sharks (Prionace glauca), and birds such as Arctic terns (Sterna paradisaea) (Shaffer et al. 

2006, Veríssimo et al. 2017, Bishop & Eiler 2018, Andrews-Goff et al. 2018, Dalleau et al. 

2019). Migratory species vary in distances they travel and the number of areas they use. 

Many traverse coastal and open-ocean waters, including those of multiple jurisdictions and 

Areas Beyond National Jurisdiction (ABNJs). For example, Arctic tern (Sterna paradisaea) 

tracking studies have revealed annual migration distances of 81,600 km between Arctic and 

Antarctic waters, with routes encapsulating the coastal waters of multiple South African or 

South American countries, as well as Canadian, Icelandic, and Danish (Greenland) waters 

and ABNJ in the north and south Atlantic (Egevang et al. 2010).  

Spaces used (e.g. location and habitat type) by migratory species may surround fixed 

features such as seamounts, dynamic features such as oceanographic fronts, and where 

oceanographic conditions, such as temperature, mixed layer depth, or prey availability are 

suitable for survival (Rose 2005, Morato et al. 2010, Williams et al. 2015, Waggitt et al. 

2018, Lewallen et al. 2018, Lerma et al. 2020). Migratory species may consistently visit the 

same location during a particular migration stage (e.g. always overwinter in the same area) or 

periodically (e.g. if conditions in that area are more variable from one year to the next) 

(Davoren & Halden 2014, Runge et al. 2014). As migratory species move between different 

locations/areas, they often influence otherwise spatially separated communities and 

contribute to ecosystem productivity, resiliency, and ecosystem connectivity (Kremen et al. 

2007, Massol et al. 2011, McCauley et al. 2012, Erisman et al. 2017).  

Humans pose myriad threats to marine biodiversity both within nations' exclusive 

economic zones (EEZ) and ABNJs. Threats include direct and indirect exploitation, pollution, 
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development, and climate change-induced alterations to biotic and abiotic factors (Halpern et 

al. 2015, UN 2021). As a result of their dependence on multiple spatially discrete areas and 

potentially wide-ranging movements, migratory species may be exposed to different 

combinations of threats at different migration stages (Lascelles et al. 2014). Land-based 

threats add additional concern for migratory species who also rely on terrestrial habitats, such 

as seals and seabirds. Responses to changing biotic and abiotic conditions resulting from 

threats depend on individual species’ sensitivity and adaptability to change and the nature, 

magnitude, frequency, and severity of change they experience (MacLean & Beissinger 2017). 

Today, fishing and hunting, and to a lesser albeit growing extent, climate change is directly 

and indirectly (e.g. through trophic cascades), comprise the greatest anthropogenic threats to 

marine species persistence (Payne et al. 2016). Where adaptation is possible (i.e. where 

species mortality/extinction is avoided), marine species responses to changing conditions 

include spatial and/or temporal shifts in spawning (Davoren 2013, Murphy et al. 2018), 

switching to lower quality prey in the absence of preferred prey (Grémillet et al. 2008, 

Divoky et al. 2015, Reynolds et al. 2019), and range shifts across longitude, latitude, and 

depth (Poloczanska et al. 2013, Cheung et al. 2014, Robinson et al. 2015, Pecl et al. 2017). 

Indeed, multiple marine taxa are redistributing at faster rates than their terrestrial 

counterparts, and species with highly mobile adults are redistributing faster than species 

whose ability to move large distances is restricted to their larval stages (Pinsky et al. 2020, 

Lenoir et al. 2020). However, limitations in suitable habitat could prevent redistribution, even 

where relocation might be physically possible. For example, polar species typically have 

narrower tolerance ranges than their mid-latitude counterparts and thus may be unable to find 

suitable cold waters in the future, putting them at greater risk of extinction (Morley et al. 

2019). Alongside range-shifters potentially altering the ecosystems and food-webs across 

their new and old ranges (Pinsky et al. 2020), the redistribution of one species can cause 
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knock-on effects in co-dependents. For example, changing conditions that alter the movement 

and distributions of prey could cause predators to alter their spatial-temporal patterns 

(Grémillet & Boulinier 2009, Loredo et al. 2019). 

 

1.2: Predator-prey spatial dynamics 

Marine migratory species are typically carnivorous, though some species, such as olive ridley 

sea turtles (Lepidochelys olivacea), are omnivorous (Peavey et al. 2017). Migratory species 

feed on multiple trophic levels, including zooplankton (e.g. capelin Mallotus villosus, Rose 

2005), pelagic bony fishes (e.g. common murres Uria aalge, (Maxwell & Morgan 2013), and 

cartilaginous fishes (e.g. northern elephant seals Mirounga angustirostris, (Condit & Le 

Boeuf 1984). In particular, forage fish species – small, schooling, planktivorous species – 

form a key prey base for many marine migratory species. Forage species include capelin 

(Mallotus villosus), Japanese anchovy (Engraulis japonicus), Gulf menhaden (Brevoortia 

patronus), European sardine (Sardina pilchardus), and common jack mackerel (Trachurus 

declivis), and can be migratory themselves.  

The dynamic heterogeneity of marine environmental conditions, combined with 

physiological requirements and interactions with conspecifics and heterospecifics, results in 

patchy distributions of prey species such as forage fishes globally. Prey patches can exist in a 

hierarchical spatial structure, with patches of high prey density nestled within larger patches 

of lower density (Kotliar & Wiens 1990), and can fluctuate in time and space in line with the 

ocean and biotic covariates that govern the characteristics of the patch (Charnov 1976, 

McClatchie et al. 2017). 

Optimal foraging theories suggest predators make foraging decisions based on their 

ability to maximise energy intake and fitness (MacArthur & Pianka 1966), with migratory 
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species optimising their foraging by exploiting disparate and temporally-variable prey 

patches. In particular, resource tracking theory suggests that predator migration routes, 

timing, and foraging spaces are partly determined by the abundance, timing, ephemerality 

and predictability of prey patches, as well as the spatial configuration and variance of those 

patches in the wider seascape (Abrahms et al. 2021). For example, seabird colonies along the 

Norwegian coastline occur in locations with stable abundances of suitable prey for parent and 

chick survival, even if higher prey abundance – albeit more variable – occur elsewhere 

(Sandvik et al. 2016). Furthermore, prey exploited during the breeding season may also be 

migratory or only reach sufficient abundance levels to support parents and chicks during 

certain times of the year. In such situations, migratory seabirds time their migrations to 

breeding colonies to match prey availability and appear to have high breeding site fidelity 

(Regular et al. 2014, Arneill et al. 2019).  

Although co-occurrence does not guarantee interaction between predator and prey 

(Blanchet et al. 2020), it is the first prerequisite for identifying predator-prey interactions. A 

key challenge facing migratory species is to be in the right place at the right time to exploit 

available prey. However, human activities, including climate change, may change the spatial-

temporal availability of resident or migratory prey at future foraging spaces (Bertrand et al. 

2012). For example, over the past 50 years, the emigration of Atlantic salmon (Salmo salar) 

into the North Atlantic Ocean has occurred increasingly earlier, potentially resulting from 

warming sea, river, and air temperatures (Otero et al. 2014). In Japan, non-migratory black 

rock fish (Sebastes cheni) have adjusted the timing and location of their spawning grounds 

(Shoji et al. 2011). It is worth noting that patterns of climatological and oceanographic 

changes are not synchronous across the globe (Pecl et al. 2014), nor are the cues that trigger a 

migration linked to climatological changes at the destination (e.g. changes in day-length). 

Nevertheless, with prey distributions playing a significant role in the spatial-temporal 
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dynamics of their predators (Wisz et al. 2013, Furey et al. 2018, Ratcliffe et al. 2021), it is 

perhaps unsurprising that some migratory species are adapting their spatial-temporal patterns 

to match changing availability of their prey as well as to other conditions that influence their 

spatial-temporal dynamics. For example, Atlantic bluefin tuna (Thunnus thynnus) appears to 

be re-establishing historic migration and distribution patterns, likely due to a combination of 

reduced fishing pressure, changes in oceanographic conditions, and redistribution of their 

prey (Horton et al. 2021), whereas common guillemots (Uria aalge) have delayed breeding in 

response to climate-driven changes to the spawning migrations of their prey (Regular et al. 

2009).  

 

1.3: Predicting distributions 

Among the management options employed to reduce human pressure on marine species are 

area-based management tools (ABMTs), such as marine protected areas and fishery closures 

(Day et al. 2019). When designed and managed well, ABMTs can be particularly effective in 

protecting against point-based threats, such as fishing, although they cannot protect against 

diffuse threats such as ocean acidification (Agardy et al. 2011, Slooten 2013, Edgar et al. 

2014, De Santo 2018). Since ABMTs are, by their very nature, spatial, knowing the 

distribution of species targeted for protection is essential for placing ABMTs where they will 

be most effective and ecologically relevant (Moilanen et al. 2009). However, the lack of 

knowledge about the spatial-temporal dynamics of migratory species distributions 

significantly impedes the implementation of ABMTs that can offer meaningful protection 

(Martin et al. 2007, Runge et al. 2014). 

Species distribution models (SDMs), also known as habitat suitability models among 

other names, are a family of quantitative tools that combine abiotic and, to a lesser extent, 
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biotic covariates with species observations to predict the distribution/habitat suitability of a 

focal species (Guisan et al. 2017) or community (Norberg et al. 2019). A wide range of 

models can fit with diverse species data types, including presence-absence data (e.g. 

generalised linear models (Barbosa et al. 2009)), presence-background data (e.g. Maxent 

(Phillips et al. 2006)) and presence-only data (e.g. BIOCLIM (Booth et al. 2014)). Where 

abundance or density data are available, some SDMs, such as random forest, can also predict 

the abundance/density distributions of the targeted species (Luan et al. 2020). Although 

SDMs for marine species lag their terrestrial counterparts (Robinson et al. 2017), they are 

increasingly used to resolve marine species distributions, including for migratory and other 

highly mobile species (Maxwell et al. 2015, Hays et al. 2019). 

SDMs for migratory and other highly mobile marine species face several challenges. 

First, SDMs are usually applied to flat, two-dimensional surfaces, whereas marine species 

may move through three-dimensional space (i.e. throughout the water column). With the 

ocean exhibiting a dynamic vertical structure, accounting for changing conditions across 

depth is particularly valuable to matching proximal covariates with species occurrence 

samples and predicting distributions over depth (Duffy & Chown 2017). Second, 

oceanographic conditions vary greatly over time. Using oceanographic data averaged over 

long temporal windows (e.g. decadal, annual) may provide sufficient information to model 

the distributions of relatively sedentary species, but for migratory and other highly mobile 

species, more contemporaneous resolutions (e.g. monthly or daily) may reveal important 

information about their spatial responses to changing conditions (Mannocci et al. 2017). 

Third, SDMs only predict a species’ modelled realised niche rather than its fundamental 

niche, which can be much broader (Hutchinson 1957). As a result, SDMs assume that a 

species is in equilibrium with conditions throughout its range and over time. In reality, 

variations can arise due to spatial-temporal dynamics inherent in conditions and resources, 
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including prey (Trainor & Schmitz 2014). For example, relationships between covariates can 

vary over space and time (Kavanaugh et al. 2016), and relationships between marine species 

and modelled covariates can vary over seasons, during heatwaves, and between cycles of the 

North Atlantic Oscillation (an oscillation in atmospheric surface pressure between the 

Icelandic Low, a semi-permanent low-pressure system between Iceland and southern 

Greenland in the North Atlantic/sub-Arctic, and the Azores High, a semi-permanent high-

pressure system in the sub-tropical Atlantic) (Roberts et al. 2019, Muhling et al. 2020, Lloret-

Lloret et al. 2021).  

The use of SDMs for migratory predators, including community-based SDMs, joint 

SDMs that seek to predict multiple species distributions within a single model, and stacked 

SDMs, which ‘stack’ SDMs fit for individual species to determine multi-species distributions 

(Norberg et al. 2019), is challenged by the need to include spatial-temporal variations in the 

prey as well as the predator for several reasons. First, predators do not necessarily use the 

same prey species throughout their migration cycle. Second, predator and prey may respond 

to changing conditions differently due to differences in physiology and external factors such 

as interactions with other species. Third, predators do not necessarily experience the same 

conditions as their prey. The latter point is perhaps best exemplified by seabirds, which breed 

on land, migrate through the air, and catch prey in the ocean. Although water temperature 

may be an important determinate for a prey fish species (Lenoir et al. 2020), it is the 

availability of that prey (e.g. are the prey located in an area the predator can reach) rather 

than the temperature per se that is the key determinate of the seabird (Waggitt et al. 2018). 

Indeed, several studies argue that oceanographic covariates are not necessarily good 

predictors of seabird distributions (Grémillet et al. 2008, Kane et al. 2020, Afán et al. 2021) 

and that predator-prey interactions and environmental relationships can drive predator 
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distributions to varying degrees over geographic space and time (Grémillet et al. 2008, 

Aragón et al. 2018).  

 

1.4: Thesis overview 

My thesis combines empirical modelling research with a conceptual framework to quantify 

changes in the habitat suitability of migratory pelagic species over space and time and 

explore how area-based management tools such as marine protected area networks can 

capture and manage the shifting distributions of marine species. Overall, my thesis is one of 

the few examples of efforts to predict habitat suitability at short timescales (monthly) and 

across depth and explicitly integrate predator-prey dynamics into management processes.  

In Chapter Two, I conduct an empirical study to quantify the monthly drivers of the 

distributions of suitable habitat for a highly migratory keystone forage fish species, capelin 

(Mallotus villosus), in Atlantic Canada and explore how predicted habitat suitability scores 

change over longitude, latitude, and depth axes (see Appendix A for a primer on capelin). I 

highlight the importance of (1) capturing potential variation in habitat suitability over 

multiple depths and (2) assessing potential variation in the relative importance of modelled 

covariates over time for migratory and other highly mobile species. 

In Chapter Three, I build on the work of Chapter Two by exploring the stability of 

modelled habitat distributions between different ocean ‘climates’ (here, phases of the North 

Atlantic Oscillation). I use the same species and environmental datasets as in Chapter Two 

and modify the modelling technique and output to allow area-based comparisons. I use an 

emerging hotspot analysis and landscape metric tools to quantify the degree of stability of 

suitable habitat between ocean ‘climates’. Alongside highlighting the importance of spatial 

stability of suitable habitat for area-based management, I also identify several areas for model 
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development that can assist in providing more robust measurements of pelagic species habitat 

suitability changes over space and time. 

In Chapter Four, I propose a novel conceptual framework to incorporate the changing 

spatial-temporal distributions of prey into the design and implementation of area-based 

management tools such as marine protected area networks for seabirds. I review and 

synthesise key literature on seabird movements, and the impact of changing prey availability 

on their spatial ecology and population persistence. I also present a workflow to model and 

forecast prey availability and analyse spatial-temporal trends using commonly available tools 

such as those presented in Chapters Two and Three. I discuss the application for predicted 

seabird foraging spaces in adaptive management processes. 
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1.5: Co-authorship Statement 

This thesis is the result of my independent research. The breakdown of contributions by each 

author is as follows: 

Chapter 2: Modelling the spatial-temporal distributions and associated determining 

factors of a keystone pelagic fish. 

I developed the research, processed and analysed the data, and wrote the manuscript. S. 

Leroux and M-J. Fortin contributed to question development, data analysis, and writing. 

A version of this Chapter was published in the ICES Journal of Marine Science. 

Andrews, S, Leroux, SJ, and Fortin, M-J. ‘Modelling the Spatial-Temporal Distributions and 

Associated Determining Factors of a Keystone Pelagic Fish’. ICES Journal of Marine 

Science 77, no. 7–8 (2020): 2776–89. https://doi.org/10.1093/icesjms/fsaa148. 

 

Chapter 3: Influence of the North Atlantic Oscillation on the distribution of a keystone 

pelagic fish. 

I developed the research, processed and analysed the data, and wrote the manuscript. S. 

Leroux and M-J. Fortin contributed to question development, data analysis, and writing. 

A version of this Chapter has been submitted to the journal Marine Ecology Progress Series 

(MEPS) and is currently under review. 

 

Chapter 4: Incorporating the spatial-temporal distributions of prey availability into 

area-based management tools for marine ecosystems 

I developed the research, processed and analysed the literature, and wrote the manuscript. S. 

Leroux and M-J. Fortin contributed to research development and writing. 
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Additional:  

In addition to the chapters presented in this thesis, I collaborated with Tianna Peller, a PhD 

student who is also working in the Second Canadian Healthy Oceans Network (CHONe2): 

From Marine Metacommunities to Meta-ecosystems: Examining the Nature, Scale and 

Significance of Resource Flows in Benthic Marine Environments. 

T. Peller and I developed the research, processed and analysed the literature/data. T. Peller 

wrote the manuscript and I contributed to the writing. S. Leroux and F. Guichard contributed 

to research development, analysis, and writing. 

 

This paper was published in the journal Ecosystems. 

Peller T, Andrews S, Leroux SJ, Guichard F (2020) From Marine Metacommunities to Meta-

ecosystems: Examining the Nature, Scale and Significance of Resource Flows in Benthic 

Marine Environments. Ecosystems. https://doi.org/10.1007/s10021-020-00580-x 
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Abstract 

Mobile pelagic species habitat is structured around dynamic oceanographic and ecological 

processes that operate and interact horizontally and vertically throughout the water column 

and change over time. Due to their extensive movements, pelagic species distributions are 

often poorly understood. I use the Maxent species distribution model to assess how changes 

in the relative importance of modelled oceanographic (e.g. temperature) and climatic 

variables (e.g. the North Atlantic Oscillation) over 17 years affect the monthly average 

horizontal and vertical distribution of suitable habitat for a keystone pelagic forage species, 

Atlantic Canadian capelin (Mallotus villosus). I show that the range and distribution of 

relative habitat suitability scores vary across horizontal and vertical axes over time, with 

binary suitable/not suitable habitat predictions indicating suitable habitat occupies between 

0.72% (April) and 3.45% (November) of the total modelled space. Furthermore, the analysis 

reveals that the importance of modelled oceanographic variables, such as temperature, varies 

between months (44% permutation importance in August to 2% in May). By capturing the 

spatial dynamics of capelin habitat over horizontal, vertical, and temporal axes, the analysis 

builds on work that improves our understanding and predictive modelling ability of pelagic 

species distributions under current and future conditions for proactive ecosystem-based 

management.  
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2.1: Introduction 

Mobile pelagic species have critical functions in marine systems, occupying multiple trophic 

levels (Sarà & Sarà 2007, van der Lingen et al. 2010), acting as agents for resource flows 

(Gounand et al. 2018), and as ecosystem engineers (Breitburg et al. 2010). However, their 

extensive movements mean that they are typically poorly surveyed. Consequently, the 

abundance, distribution, and population structures of mobile pelagic species are not well 

understood.  

Species distribution models (SDMs), which combine abiotic and biotic variables with 

species location data, are commonly used to predict habitat suitability (Guisan et al. 2017). 

SDMs have been applied to a wide range of marine species, including invertebrates (Eger et 

al. 2017), reef fish (Young & Carr 2015), and sponges (Knudby et al. 2013). Modelling 

pelagic species habitat suitability remains challenging, however, because pelagic habitat is 

structured around dynamic oceanographic and ecological processes, operating and interacting 

horizontally and vertically throughout the water column, and changing over time (Angel 

1993). Oceanographic conditions that influence pelagic species habitat include temperature 

and salinity (Rose 2005), dissolved oxygen content (Bertrand et al. 2011), sea surface height 

(Zainuddin et al. 2017), and mixed layer depth (Williams et al. 2015). Prey abundance and 

distribution also plays a pivotal role in pelagic predator habitat distributions, with chlorophyll 

concentration often acting as a proxy for zooplanktivorous prey (Zainuddin et al. 2017). 

Furthermore, large-scale climate oscillations such as the North Atlantic Oscillation and 

Atlantic Multidecadal Oscillation influence regional oceanographic conditions and have been 

implicated in changing distributions of marine species (Roberts et al. 2019). 

While distribution models are typically applied to two-dimensional environments that 

lack temporal variability, resolving the dynamic vertical structure of the ocean to account for 

changing conditions across depth is particularly valuable for mobile pelagic species which 
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can be distributed throughout the water column. Whereas oceanographic data averaged over 

long temporal windows (e.g. decadal, annual) may provide sufficient information to model 

the distributions of relatively sedentary species, using such data can lead to loss of 

information about how pelagic species are responding spatially to variations in conditions 

than more contemporaneous resolutions (e.g. monthly or daily) (Mannocci et al. 2017). 

Furthermore, as species-environment relationships can vary over time (Marques et al. 2011), 

temporally-constraining models may be beneficial for predicting habitat suitability 

(Gschweng et al. 2012, McClellan et al. 2014). 

Dynamic SDMs for marine species that consider change through time are increasing 

in number (e.g. Brodie et al. 2018). The availability of ocean models that provide data at 

multiple depths is increasing (Becker et al. 2016; Kavanaugh et al. 2016), however SDMs 

that incorporate conditions at depth are rare (Duffy & Chown 2017). Although ocean models 

are not truly three-dimensional, instead offering snapshots at specific depths creating a “2.5-

dimensional” environment (Duffy & Chown 2017), they have advantages over in-situ 

measurements in that they offer continuous spatial coverage over time at each modelled depth 

(Becker et al. 2016). Incorporating both depth and time in SDMs may improve our ability to 

predict current and future pelagic species habitat suitability and explore biological responses 

to global change. 

Capelin (Mallotus villosus) is a migratory zooplanktivorous pelagic fish species with 

four genetically distinct populations– two in the Pacific, one around West Greenland, and one 

in the Northeast Atlantic around Atlantic Canada containing several sub-populations (Præbel 

et al. 2008, Kenchington et al. 2015). Within Atlantic Canadian waters, capelin is regarded as 

a keystone species (Rose 2005, Davoren et al. 2006). This temperate to sub-Arctic region is 

dominated by the cold, fresh Labrador Current, with the warm, more saline Gulf Stream 

increasing temperatures in the southern portions. During the 1990s, Atlantic Canada 
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experienced a substantial change in ocean climate, notably marked by a freshening of shelf 

waters and lower temperatures (Greene et al. 2008), generating a regime shift impacting 

multiple fish species in the region (Pedersen et al. 2020). Alongside numerous groundfish 

species, capelin abundance declined, shifted distributions, began maturing at younger ages 

and smaller sizes, and spawned later in the year (Carscadden & Nakashima 1997). Capelin 

have not recovered to their former state, and these changes have been implicated in the lack 

of recovery of Canada’s Atlantic cod (Gadus morhua) (Mullowney & Rose 2014). Despite 

the ecological and cultural importance of capelin in Atlantic Canada, their year-round 

distributions and spatial responses to changing conditions throughout the region are not fully 

understood. 

In this study, I address the following research objectives: (1) quantify variation in the 

average monthly distribution of suitable capelin habitat across longitude, latitude, and depth 

to capture their horizontal and vertical movements, and (2) assess changes in capelin’s 

species-environment relationships via the relative importance of modelled oceanographic and 

climatic variables to estimated capelin distributional changes. I construct monthly “2.5-

dimensional” distribution models with Maxent (Phillips et al. 2006), predict average monthly 

relative habitat suitability scores across the 2.5-dimensional geographic space, and derive the 

relative importance of modelled variables using Maxent’s permutation importance metrics. 

The analysis broadly contributes to the application of distribution models for mobile pelagic 

species. 
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2.2: Methods 

 

2.2.1: Study region 

The study region includes the ocean lying within and adjacent to the Canadian territorial sea 

(0 – 12 nautical miles from the low-water line along the coast) and Exclusive Economic Zone 

(EEZ) (12 – 24 nautical miles from the low-water line along the coast), broadly extending 

from 40ᵒ latitude to 70ᵒ latitude. To avoid imposing unnatural breaks in capelin distributions, 

I include France’s EEZ surrounding Saint Pierre and Miquelon, disputed territories with the 

USA, and areas adjacent to Canada’s EEZ, such as the Flemish Cap and Georges Basin, as 

part of the study region (Figure 2.1).  



32 
 

 

Figure 2.1: The study region includes waters inside the Canadian EEZ, the French EEZ 

contained within the Canadian EEZ, and adjacent areas of the Flemish Cap, Grand Banks, 

Georges Bank, and Georges Basin. Analyses were restricted to the Minimum Convex Polygon 

(MCP) boundaries, which was derived from capelin presence data. 
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2.2.2: Data – Environmental variables 

I obtained oceanographic data (chlorophyll α concentration, density mixed layer depth, 

dissolved oxygen, salinity, sea surface height, and temperature), as well as bottom depth, 

from the numerical modelling products GLORYS V4.1 (CMEMS 2018a) and BIOMER V3.2 

(CMEMS 2018b). Both products offer global gridded monthly average measurements at a 

horizontal resolution of 0.25˚ across 75 depth levels (0.5 meters to 5,902 meters at varying 

intervals) for the years 1998 to 2015 inclusive (Appendix B.1).  

I also obtained monthly mean index values for two climate oscillations; the Atlantic 

Multidecadal Oscillation (AMO) index (ESRL, 2019) calculated from detrended spatially 

averaged sea surface temperature anomalies between 87.5°S – 87.5°N, 2.5°E – 357.5°E, and 

the North Atlantic Oscillation (NAO) index (NCAR, 2019) calculated from the leading 

empirical orthogonal function sea level pressure anomalies between 20° – 80°N, 90°W – 

40°E. Broadly, fresher, cooler waters characterise positive NAO phases than negative phases. 

AMO trends operate on longer timescales than the NAO, and a positive AMO value trend 

dominates the study period, though the strength (values) varies. Water temperatures are 

generally warmer during positive AMO phases than during negative phases. 

 

2.2.3: Spatial-temporal grid 

I created a series of grids representing each depth delineated in the oceanographic models. 

Because the distribution model (Maxent, see below) assumes an equal-area surface, I 

projected all layers into an Albers Equal Area (25 km2) grid for modelling. The grid was 

duplicated to create one grid per month-year period, thus giving each grid cell a unique x, y, 

z, and t location. Throughout the remainder of this text, I refer to grids that include only a 
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spatial element as the ‘spatial grid’ and grids that include the month-year period as the 

‘spatial-temporal grid’. 

2.2.4: Data – Capelin presences 

I obtained georeferenced capelin presence data from the Ocean Biogeographic Information 

System (OBIS, now known as the Ocean Biodiversity Information System) database (OBIS, 

2018, Appendix B.2). I subset the dataset to the years 1998 to 2014 to match the 

oceanographic data availability (excluding 2015 because there were only ten presences 

recorded in the dataset for the entire year). I removed duplicate entries or those lacking 

sampling month information. I removed entries that could not be appended to environmental 

data (see below for details on environmental data extraction). To reduce over-representation 

of conditions that may arise from over-sampling of cells, I then reduced the number of 

presences to one per spatial-temporal grid cell (Elith et al. 2006; Bentlage et al.; 2013).  

For individual species and size classes, sampling gears differ in their ability to capture 

individuals, influencing detectability of presences and potentially biasing SDMs (Knudby et 

al. 2013). I gleaned sampling gear information from the metadata submitted to OBIS by data 

contributors, from which I identified nine broad gear type categories (Appendix B.3).  

 

2.2.5: Modelling Process 

I used Maxent (Phillips et al. 2006, Appendix B.4) to model the average spatial distribution 

of suitable habitat scores on a month-by-month basis (e.g. one model for March including 

March data from all years between 1998 and 2014 for which there is observation data). I 

chose Maxent because of the presence-only nature of the species data and its performance, 

which arguably performs on par with more robust presence-absence models (Elith et al. 

2006). By building a model for each month, I could better match environmental dynamics 
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(e.g. temperature changes over time and space) and potential variations in the species-

environment relationship to the distribution of capelin. I carried out all analyses in R version 

3.5.3 (R Core Team 2019), with the Raster (Hijmans 2019), Dismo (Hijmans et al. 2017), 

EcoSpat (Broennimann et al. 2018), and enmSdm (Smith 2019) packages. 

 

2.2.6: Background Point Generation 

Maxent uses background points to characterise the study area. I derived the capelin’s 

horizontal geographic range using a 100% minimum convex polygon (MCP) (Syfert et al. 

2014) (Figure 2.1). To include depth with the MCP, I also excluded depth layers falling 

below the maximum depth of capelin presence. I generated 10,000 background points for 

each monthly model (Appendix B.5). To prevent over-representation of oceanographic 

conditions, I permitted only one background point per spatial-temporal grid cell (Elith et al. 

2006). 

To account for between-month-year variability (e.g. March 1999 vs March 2000) in 

oceanographic conditions, I weighted the number of background points to the number of 

presences recorded in each month-year period. For example, if 22% of the unique 

observations by cell occurred in 2003, 49% in 2004, 29% in 2005, 22% of the background 

points for that model came from 2003, 49% from 2004, 29% from 2005. To ensure I 

sufficiently captured conditions across the capelin’s range, I also weighted points by the 

number of spatial grid cells represented in each Northwest Atlantic Fisheries Organization 

(NAFO) division and the area of the Hudson Strait represented in the MCP (NAFO 2019). 

For example, I subdivided the 22% of the background points from 2003 so that 8.8% of the 

cells came from NAFO division 3K, 7.4 from 3L, 4% from 3Ps, etc. (Appendix B.6). This 
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double-weighting of background points reduces the influence of sampling bias, which may 

impact model performance (Elith et al. 2006).  

 

2.2.7: Data extraction for presence and background points  

I extracted ten oceanographic, six climatic, and one static (bathymetry) environmental 

predictor variables (Table 2.1) for the presence and background points. I included both 

surface values and values at the depth-layer closest to capelin presence/background points as 

predictors (Appendix B.1) except for sea surface height, density mixed layer depth, seafloor 

depth, the AMO, and the NAO because these are single layer values only. To account for the 

potential lagged influence of AMO and NAO on distributions, I included three metrics for the 

AMO and NAO predictors: the value of the oscillations during the sampling month, the value 

during the previous sampling month, and the mean value from the previous winter (December 

to February). The winter NAO, in particular, exerts an influence over oceanographic 

conditions in spring, summer and autumn months following, and is associated with shifts in 

species distributions in the North Atlantic (Fisher et al. 2008, Petrie 2007). 

 

2.2.8: Variable selection 

To minimise the impact of collinearity, I selected variables for each monthly model a-priori 

using Spearman correlation coefficient and variance inflation factor (VIF) (Dormann et al. 

2013) (Appendix B.7). I removed variables with correlation coefficients above 0.7 and VIF 

values above 5.0. I gave variable retention preference to oceanographic variables closest to 

sampling depth because, given their proximity, they likely have a more direct impact on 

species occurrence than more distal values. Although Maxent performs well even with small 

sample sizes (Pearson et al. 2007), I employed a minimum events per variable (EPV) rule 
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which states that a minimum of five samples per predictor variable is required to run a 

distribution model (Yalcin & Leroux 2018). As such, I only modelled those months with a 

minimum of 45 samples (five x eight predictor variables) to avoid erroneous estimation of 

predictor variance. 

 

2.2.9: Maxent modelling  

I executed monthly models using Maxent version 3.4.1. To allow entropy to be reached, I set 

the maximum number of iterations to 5000 for each model. I also set regularisation (β) 

multiplier values for each model to reduce overfitting and complexity. To determine 

regularisation values, I constructed a series of test models for each month with regularisation 

values ranging from 0.25 to 4 at 0.25 step intervals. Optimal regularisation values were 

determined using Akaike’s Information Criterion adjusted for small sample size (AICc) 

(Warren & Seifert 2011). Final models used the regularisation value that resulted in the 

lowest AICc.  

I used temporally-split cross-validation to train and test each model, using one year 

for the training data to test against all other years, repeating until all years were used for 

training. This approach ensured training and testing data independence and minimised the 

risk of performance overestimation arising from environmentally correlated folds 

(Radosavljevic & Anderson 2014). I assessed models performance using testing and training 

area under the curve (AUC) scores (Phillips et al. 2006), true skill statistic (TSS) (Allouche et 

al. 2006), and the continuous Boyce index (CBI) (Boyce et al. 2002) (Appendix B.8). I 

calculated each metric separately for each temporal fold, which I then averaged to produce 

mean performances for each model. Finally, I created permutation plots for each model to 

measure the mean variable importance of each of the environmental variables used.  
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2.2.10: Spatial predictions 

I created average monthly maps based on Maxent’s complementary log-log (cloglog) 

transformation, which provides an estimated probability of presence (habitat suitability) 

(Phillips et al. 2017). In order to predict habitat suitability across the 2.5D space as a whole 

(i.e. across all depth layers), for each oceanographic variable, I concatenated individual depth 

layers to create a continuous grid, which retains each depth layer and its associated variable 

values (Bentlage et al. 2013, Appendix B.9). I produced habitat suitability score maps for 

each temporal fold, which I then averaged to create the average monthly maps. 

To explore general patterns in the habitat suitability scores, I also converted the maps 

into binary suitable/not suitable habitat maps using a Maximum Kappa derived threshold. 

This threshold is used in a wide range of distribution modelling studies (e.g. Davidson et al. 

2017, Scherrer et al. 2018), demonstrates resiliency to prevalence which cannot be accurately 

determined with presence-only data, and shows good agreement with the AUC (Nenzén & 

Araújo 2011). 

 

2.3: Results  

I obtained a total of 11,516 presence points that matched the required spatial and temporal 

extent from OBIS. After cleaning the data (see Methods), a total of 6,350 presence points 

remained. Presence point data availability for modelling varied by month, with June having 

the highest number of presences (n = 1,263) and February the lowest (n = 10) throughout the 

study period (1998-2014) (Appendix B.2).  

Of the eighteen variables selected a-priori, multicollinearity analysis indicated only 

six, five, and nine variables could be included in the final models for January, February, and 

March to December, respectively. However, following the EVP rule, I did not run a February 
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model because there were insufficient presence points. I also chose not to run a January 

model due to the smaller number of sampling years compared to the others (four years vs 

eleven+ years for March to December). Selected variables for the March to December models 

are presented in Table 2.1. 

Table 2.1: Variables used before and after a-priori variable selection based on Spearman 

Correlation and VIF for the March – December models. 

Data Variables 

All Variables prior 

to selection 

Chl (surface); Chl (depth); Depth; MLP; O2 (surface); O2 (depth); 

Salinity (surface); Salinity (depth); SSH; Temperature (surface); 

Temperature (depth); NAO (prev); NAO (sample); NAO (winter); 

AMO (prev); AMO (sample); AMO (winter); Gear 

Variables selected 

for the March – 

December models 

Chl (surface); O2 (depth); Salinity (depth); Temperature (depth); 

NAO (prev); NAO (sample); NAO (winter); AMO (sample); AMO 

(winter) 

Variable abbreviations: depth – value of the variable at presence depth; surface – value of 

the variable at the sea surface; Chl – Chlorophyll concentration (mmol.m -3); Depth – 

Seafloor depth; MLP – Mixed layer thickness (meters); O2 – Dissolved Oxygen (mmol.m -3); 

Salinity – Salinity (PSU); SSH- Sea Surface Height (meters) Temperature – Temperature 

(kelvin); NAO – North Atlantic Oscillation; AMO – Atlantic Multidecadal Oscillation; 

sample – value during the sampling month; prev – value from the previous month; winter – 

value during the previous winter; Gear – Gear Type (Table B.3 in Appendix B.3). 

 

2.3.1: Maxent model results 

On average, the monthly models performed very well (metrics Train AUC, Test AUC, TSS, 

and CBI; Appendix B.8). Overall, mean performance of the models was highest in December 

(mean Train AUC 0.95, mean test AUC 0.97, mean TSS 0.89, mean CBI 1) and lowest in 

October (mean Train AUC 0.92, mean test AUC 0.89, mean TSS 0.72, mean CBI 0.99).  

The average permutation importance of the variables for each model also varied 

(Figure 2.2). Temperature contributed the most to predicting capelin distribution in the June 

(41%), July (27%), August (44%), September (41%), October (46%), and November (31%) 

models, and the least to the March (11%), April (3%), and May (2%) models. Salinity had the 

strongest influence in the March model (38%) and was never ranked the least important 
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variable in other months. Chlorophyll α had the strongest influence on predicted distribution 

in the December model (41%) and was least important in the May (5%), June (9%), August 

(1%), and September (3%) models. Dissolved oxygen was the most important predictor of 

capelin distribution in the May model (51%) and the least in the July (10%), October (8%), 

and December (12%) models. In all monthly models, the climate oscillations were the least 

important of all the variables (range <1% for NAO value from the previous month in June, to 

16% for the NAO value from the previous winter in April). 

 

Figure 2.2: Average permutation importance of environmental variables used in the models. 

Values represent averages (across temporal folds) for each month. See Table 2.1 for a 

definition of the variables. 
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2.3.2: Monthly habitat suitability maps 

I produced average habitat suitability maps based on Maxent’s cloglog transformation, 

depicting habitat suitability scores from ~0.5 meters depth to ~1,045 meters depth between 

March and December inclusive. The habitat suitability maps reveal variability in the spatial 

extent and location of areas with high suitability scores (Figures 2.3 and 2.4), including over 

depth (Figure 2.5). Across all depth layers, October had the largest areas of high suitability 

than all other months, and September the smallest. On average, the highest suitability scores 

corresponded to depths of ~244 meters and shallower, except for October, November, and 

December, where higher suitability scores corresponded to greater depths. 
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Figure 2.3: Sample of predicted habitat suitability maps for March, June, September, and 

December over four different depth layers. Dark grey indicates the seafloor and light grey 

landmass. Lighter colours indicate lower suitability and darker colours higher. Months and 

depths have been selected arbitrarily for illustrative purposes only. 
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Figure 2.4: Percentage of spatial grid cells falling into suitable habitat for each of the 

modelled months. 
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Figure 2.5: Vertical distribution of predicted habitat suitability from March to December 

relative to the ocean available at each depth. Note the greater area of ocean at higher depths 

than lower depths due to increasing intrusion of the seafloor and that depth layers are not 

evenly spaced (see Appendix B.1). Lighter colours indicate lower suitability and darker 

colours higher. The dashed line represents the median seafloor depth for the study area 

(~313 meters). 
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By converting the habitat suitability maps into binary predicted suitable/not suitable habitat, I 

highlighted differences in the horizontal and vertical distribution of suitable habitat across the 

study area (Figures 2.6 and 2.7). From March to June, predicted suitable habitat shifted 

eastwards, extending from the Gulf of St Lawrence and around Nova Scotia to encompass 

eastern Newfoundland and the Grand Banks (western trailing cell centroid in March 67.75°W 

to 64.5°W in June, eastern leading cell centroid in March 55.25°W to 46.25°W in June), with 

some cells classified as suitable habitat appearing further north. The vertical distribution of 

suitable habitat also expanded, with cells occupying depth layers from ~0.5 meters to ~147 

meters in March to ~42 meters to ~656 meters in June. From July to September, suitable 

habitat cells largely shrunk back to the Gulf of St Lawrence (western trailing cell centroid in 

July 69.25°W to 69°W in September, eastern leading cell centroid in July 52.5°W to 57.5°W 

in September), before expanding in October to encompass the eastern side of Nova Scotia 

and Newfoundland. During August, suitable habitat cells occupied the greatest number of 

depth layers (~27 meters to ~1,046 meters). In November, cells shift eastwards (western 

trailing cell centroid in October 62.0°W to 59.5°W in November, eastern leading cell centroid 

in October 48.0°W to 46.75°W in November) and northwards along Labrador (southern 

trailing cell centroid in October 43°N to 44.75°N in November, northern leading cell centroid 

in October 51.0°N to 54.75°N in November) before contracting to eastern Newfoundland in 

December. The number of depth layers with suitable habitat also reduced (~69 meters to 

~509 meters in November, and ~69 meters to ~458 meters in December). Following these 

distribution patterns, the percentage of spatial grid cells predicted to be suitable habitat in all 

months remains relatively small – from 0.72% of the total spatial grid in April to a maximum 

of 3.45% in November (Figure 2.6). 
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Figure 2.6: Two-Dimensional Overview of the horizontal (x, y) average location of predicted 

suitable (black) and unsuitable (yellow) habitat for each modelled month, based on Maximum 

Kappa thresholds applied to Maxent model outputs. Suitable areas indicate the location of a 

suitable habitat cell, regardless of depth. The value on the top right indicates the percentage 

of cells in the spatial grid classified as suitable habitat. 
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Figure 2.7: The vertical average distribution of predicted suitable (black) and unsuitable 

(yellow) habitat relative to the amount of ocean available at each depth-layer for each 

modelled month, based on Maximum Kappa thresholds. Sea surface is represented at the top 

of the y-axis and deepest depth at the bottom. Note the greater ocean area at higher depths 

than lower depths due to increasing intrusion of the seafloor and that depth layers are not 

evenly spaced (see Appendix B.1). The dashed line represents the median seafloor depth for 

the study area (~313 meters). 
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2.4: Discussion 

For marine pelagic species that can move extensively horizontally and vertically throughout 

the water column, species distribution models should explicitly consider space in four 

dimensions – across depth and time as well as longitude and latitude. By coupling 17 years of 

presence data with “2.5-dimensional” oceanographic models, I quantified the spatial-

temporal dynamics of relative habitat suitability throughout the water column across Atlantic 

Canada and the relative importance of modelled variables on a month-by-month basis.  

The analysis indicates variable range and distribution of suitable habitat scores over 

depth and among monthly models. When grouping habitat suitability scores into suitable/not 

suitable habitat, I found suitable habitat in November showed a ~5-fold increase from the 

minimum estimated for April. I also observed depth changes with, for example, suitable 

habitat primarily located further west in shallower waters in March than in December. This 

pattern is consistent with observations of capelin moving eastwards and into deeper waters 

towards the end of the year (Carscadden and Nakashima, 1997). Although alternative 

thresholds may adopt a lower value for binning predictions into suitable/not suitable habitat 

(Nenzén & Araújo 2011), I expect the general distribution patterns to remain.  

The binary maps also highlight months with notably different predicted distributions. 

Alongside the larger area in November that spreads northward, in May, June, August, and 

October, northern ‘clusters’ disconnected from the main distribution appeared. The OBIS 

database provides fewer capelin presences in the northern portion of the study area than 

further south (Figure 2.1). However, due to the nature of presence data, it is not clear if this 

pattern results from low levels of surveying, lack of reporting, or reflects genuine capelin 

absences. Nevertheless, the northern portion of the study area is not as extensively surveyed 

as the rest (e.g. DFO 2011), and thus potentially faces the highest risk of incorrect spatial 

prediction (Merow et al. 2013). This issue may also impact predictions at depths greater than 
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500 meters (Appendix B.2). Indeed, presence-only data prevents full assessment of the level 

of sampling effort involved, which may result in an environmental bias in the model. 

Furthermore, observational data also suffers from spatial biased (i.e. not collected from the 

entire study-region year-round), further compounding the risk of environmental bias and 

increasing the risk of under-prediction of the distribution of suitable habitat. Nevertheless, 

environmental conditions may also be suitable for capelin in the northern portion of the study 

area. While recognising the challenges of surveying this more remote area e.g. extensive sea 

ice during the winter months, increasing survey effort in the northern portion of the study 

area throughout the year may improve our understanding of capelin distribution, particularly 

in light of climate change and associated changes in oceanographic conditions (Lenoir et al. 

2020).  

Several studies suggested that including climate oscillation indices in distribution 

modelling could prove fruitful (Hermosilla et al. 2011, Roberts et al. 2019). The analysis 

indicated that the NAO and AMO indices play a minor role in the models. Although the 

models captured the temporal variability in the values of these indices, they do not capture 

their spatial influence on oceanographic conditions. Additionally, and with respect to the 

AMO, the study period is likely to be too short to capture significant variation in the index 

values because positive values dominated the period. Given that distributional changes in 

some marine species are correlated with climate oscillations (Roberts et al. 2019), 

determining how best to incorporate oscillations into distribution modelling warrants further 

investigation.  

By producing monthly models, I was able to assess potential changes to capelin’s 

species-environment relationship via the relative permutation importance of modelled 

variables. Temperature is widely considered a key determinate of current and shifting marine 

fish distributions, including capelin (Rose 2005, Lenoir et al. 2020), though it also plays a 
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small role in interannual variations in the distribution of some species (Thorson et al. 2017). I 

found temperature contributed the least to the March to May and December models. 

Alongside temperature, oxygen places substantial metabolic constraints on marine species 

distributions (Deutsch et al. 2015). This influence is most notable in the April and May 

models, in which dissolved oxygen became the most important predictor of capelin 

occurrence.  

The changes in relative variable importance revealed in the models indicate potential 

variation in the capelin’s realised niche relative to variations in conditions experienced in 

each month. For example, water temperatures are on average warmer in August than in 

March (Appendix B.10). With capelin being a cold-water species, warmer temperature is 

likely to be a more limiting variable (and thus have higher permutation importance) in August 

than March. Similarly, capelin tend to occupy a narrow salinity range (Rose, 2005), which 

may partially explain salinity’s generally high permutation importance. Concerning the 

March model, in which salinity was the most important variable, a general freshening of 

water resulting from a combination of sea ice and lag effect of the Labrador Current, which is 

typically stronger during winter months, may also have played a key role (Han et al. 2008, 

Long et al. 2016). With regards to the increased importance of dissolved oxygen in May, this 

may be related to spring phytoplankton blooms. However, I note that the pattern is not 

repeated later in the year in relation to autumn blooms (Greene et al. 2008a), acknowledging 

that spring and autumn blooms may differ in intensity. By capturing changes in the relative 

importance of variables, particularly for small pelagics such as capelin whose distributions 

are closely tied to environmental conditions, monthly models have the potential to closely 

reflect temporal dynamics in species realised niches, improving our understanding and 

predictive ability regarding changing distributions under current and future conditions.  
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Distribution models require consideration of the relevant spatial and temporal scales 

at which species and oceanographic processes operate (Mannocci et al. 2017). The 

oceanographic data chosen to model distributions dictate the resolution of the models 

(monthly averaged 25° grid cell). While these models allowed me to encompass a long period 

of capelin data, their resolution may be too coarse, particularly during biologically important 

periods, such as during the spawning period when capelin physiology and behaviour changes 

(Rose 2005, Davoren et al. 2006b). I also note that the models do not distinguish between 

sub-populations in the region and thus ignores potential variation in sub-population responses 

to environmental correlates. Furthermore, the models presented in this study provide monthly 

average distributions, potentially masking interannual variation in conditions that determine 

distributions (Boyce et al. 2002). The continued development of finer spatial and temporal 

scale models, including those that resolve surface and subsurface dynamical features such as 

currents and eddies (Brodie et al. 2018), may create more refined distribution models, with 

their predictive output allowing for more efficient implementation of management measures 

(Lewison et al. 2015, Dunn et al. 2016), including nowcasting and forecasting of species 

distributions for pro-active management. 

This study adds to the small albeit growing body of distribution models that embrace 

a “2.5-dimensional” approach and models that attempt to capture distribution changes on 

timescales more relevant to the dynamic nature of pelagic species. With survey effort 

spatially and temporally patchily distributed throughout the modelled space, the predicted 

distribution of suitable habitat offers new insights into the potential distribution of capelin – a 

forage species with substantial ecological importance in Atlantic Canada, and whose life-

histories are sensitive to changing environmental conditions. By capturing species spatial-

temporal dynamics over horizontal and vertical axes, and changes in the relative importance 

of modelled variables, such studies can enhance understanding and predictive modelling 
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ability of pelagic species distributions under current and future conditions for pro-active 

ecosystem-based conservation and fisheries management.  
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Abstract 

The spatial-temporal variability of mobile pelagic species presents a challenge for elucidating 

their ecology, interactions with other species, and ecosystem functions. This variability can 

be further complicated by cyclical-driven changes in distributions, such as those driven by 

large-scale climate oscillations like the North Atlantic Oscillation (NAO). Fish communities 

in the Northwest Atlantic have undergone substantial change over the past several decades, 

including changes to the ecology of keystone prey species. Using 17 years (1998 – 2014) of 

presence data and the species distribution model Maxent, I quantify changes in the horizontal 

(x, y) and vertical (z) monthly modelled distribution of suitable habitat for capelin (Mallotus 

villosus)—a migratory pelagic forage fish—in the Northwest Atlantic Ocean between 

positive and negative phases of the NAO and over the time-series as a whole, on a month-by-

month basis. I hypothesised that shifts in the NAO would impact the distribution and range 

margins (e.g. size of suitable patches, northern bounding) of capelin over time. I found (1) 

substantial stability in predicted suitable habitat between the two NAO phases, (2) differences 

in the percentage of the study area predicted as suitable habitat largely arise from an 

expansion/contraction of existing patches of suitable habitat, and not from the appearance of 

new patches, and (3) over time, relative habitat suitability scores decline in six of the ten 

months modelled. Unlocking the spatial-temporal predictability and variability of pelagic 

species distributions may assist in dynamic and more traditional spatial management 

processes targeting pelagic species and interacting heterospecifics. 
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3.1: Introduction 

Habitat loss and deterioration, climate change, invasive species, and pollution increasingly 

degrade the world’s oceans  (Halpern et al. 2015), with the overexploitation of wild marine 

populations in particular regarded as one of the most pervasive threats to marine biodiversity 

(Pauly & Palomares 2005a, McCauley et al. 2015). To protect and promote sustainable use of 

the ocean, the use of spatial management measures such as marine protected areas whose 

primary objectives relate to the conservation of biodiversity, and fisheries closures whose 

primary objectives focus on managing human interactions with commercially important 

species (Day et al. 2019) is growing. However, the application of spatial management 

measures remains challenging for migratory and other highly mobile species, in part because 

their spatial-temporal dynamics are not fully understood.  

Large-scale climate oscillations, such as the El Niño Southern Oscillation (ENSO) 

and the Madden–Julian oscillation (MJO), influence oceanographic conditions globally and 

regionally (Webber et al. 2010, Roemmich & Gilson 2011). In the North Atlantic Ocean, 

fluctuations in oceanographic conditions relating to the North Atlantic Oscillation (NAO)—

an oscillation in atmospheric surface pressure between the Icelandic Low, a semi-permanent 

low-pressure system between Iceland and southern Greenland in the North Atlantic/sub-

Arctic, and the Azores High, a semi-permanent high-pressure system in the sub-tropical 

Atlantic (Visbeck et al. 2003)—has been associated with latitudinal and longitudinal 

distribution shifts in several marine species (Fisher et al. 2008, Greene et al. 2013, Roberts et 

al. 2019). The NAO oscillates between positive (when the pressure difference between the 

Icelandic Low and Azores High is large) and negative phases (when the pressure difference 

between the Icelandic Low and Azores High is small) on an irregular basis (Hall et al. 2017). 

Although the NAO is not currently predictable over long time scales (Domeisen et al. 2017), 
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climate modelling suggests that, under current anthropogenic emission scenarios, the NAO 

will move towards a more positive trend (Rind et al. 2005, Gillett & Fyfe 2013).  

Bio-logging technologies, species distribution modelling, oceanographic data 

availability, and oceanographic models are helping to reveal patterns and variations in pelagic 

species distributions (Maxwell et al. 2015, Hays et al. 2019, Andrews et al. 2020). Unlocking 

the spatial-temporal predictability and variability of pelagic species distribution patterns, 

particularly under changing oceanographic conditions, may assist in their management 

(Boerder et al. 2019, Pinsky et al. 2020). For example, models can inform dynamic 

management (management that changes in space and time in response to the shifting nature 

of the ocean and its users), and more static spatial management approaches such as time-area 

fishery closures that occur at a specific location, often at the same time every year (Lewison 

et al. 2015). They can also provide information relevant to population status (Link et al. 

2011) and assist in separating natural fluctuations in distribution changes from longer-term 

trends (Fogarty et al. 2017). Furthermore, distribution shifts of keystone species such as 

forage fish—small, schooling, planktivorous species situated in the middle of marine food-

webs—have ramifications for predator-prey and broader food-web relationships (Rose & 

O’Driscoll 2002, Cury et al. 2011, Pikitch et al. 2012). 

Here, I quantify changes in the horizontal (x, y) and vertical (z) monthly modelled 

distribution of suitable habitat for capelin (Mallotus villosus) in Atlantic Canada under 

changing oceanographic conditions. Capelin is a small migratory forage fish that is 

considered a keystone species in the Atlantic Canadian Ocean food-web (Rose & O’Driscoll 

2002). In terms of human consumption, capelin are targeted in recreational, indigenous, and 

commercial fisheries, and are considered critical for numerous predators such as Atlantic cod 

(Gadus morhua) and various seabird species (Buren et al. 2014a). Capelin distributions 

respond rapidly and directly to changing oceanographic conditions and indirectly through 
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changes to planktonic prey abundance and distributions (Rose 2005, Carscadden et al. 2013a, 

Buren et al. 2014a, Villarino et al. 2015). Such rapid changes exhibited by forage fish (Peck 

et al. 2021) generally present challenges for relatively static approaches to managing human 

interactions with this ecologically important group. Potential distribution fluctuations across 

the region in relation to changing oceanographic conditions are not yet fully understood. 

In Chapter 2, I included NAO index values into distribution models for capelin as a 

potential driver of habitat suitability. I found that the NAO had low permutation importance, 

potentially because including the NAO index values directly does not capture the variation 

spatial in oceanographic conditions experienced during the two phases. Here, I assess how 

differences in ocean conditions, as seen through the lens of NAO phases impact the 

distribution and range margins of capelin over time. I evaluate variation in the monthly 

horizontal (x, y) and vertical (z) distribution of suitable capelin habitat in Atlantic Canada 

using Maxent (Phillips et al. 2017) (1) between positive and negative winter NAO phases and 

(2) trends across the data time-series as a whole. On a month-by-month basis, I quantify 

variation in the horizontal (x, y) and vertical (z) distribution of suitable capelin habitat via 

boundings of predicted suitable habitat, percentage of the study area predicted as suitable, 

and suitable habitat patch number and size, between NAO phases and over the time-series. I 

also evaluate the stability of suitable habitat between phases and assess overall increasing and 

decreasing trends in the relative habitat suitability for each month. I discuss the use of species 

distribution models for detecting between-phase and time-series changes in distributions and 

implications for spatial management. 
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3.2: Materials and Methods 

 

3.2.1: Study Region 

The study region (hereafter “Atlantic Canadian region”) broadly extends from 40°N to 70°N. 

It includes waters lying up to the Canadian Exclusive Economic Zone (24 nautical miles from 

the low water line) and adjacent waters, including those on the Flemish Cap and the French 

territory of Saint Pierre and Miquelon (Appendix C.1).  

The Atlantic Canadian region is temperate to sub-Arctic, dominated by the 

southward-moving Labrador Current bringing cold water from the Arctic, and the warmer, 

more saline Gulf Stream, which travels eastwards past the southern extents of the Scotian and 

Labrador Shelves. Responses of the region’s oceanographic climate to the NAO vary 

spatially, with winter NAO phases in particular influencing oceanographic conditions 

throughout the remainder of the year (Petrie 2007). For example, in years with positive NAO 

winter phases, Newfoundland and Labrador receive greater bouts of cold Arctic air brought in 

by stronger northwesterly winds, cooler sea temperatures, a larger, deeper cold intermediate 

layer, and heavier sea ice cover than in negative phases (Greene et al. 2013). Furthermore, 

positive NAO winters phases correlate more strongly with a weaker Labrador Current than in 

negative phases (Wang et al. 2016). As a result, Labrador Sea water can reach the Laurentian 

Channel in years with a positive NAO winter phase. In contrast, negative phases are 

correlated with an intensification of the Labrador Current allows penetration further south, 

even as far as the New York Bight (Marsh et al. 1999). Additionally, waters across most of 

the region, except the central and western Scotian shelf into the Gulf of Maine, are less saline 

and cooler during positive than negative phases (Petrie 2007). More broadly, climate-related 

changes to oceanographic conditions vary across the region. Generally, sea temperatures are 

warming, and ocean pH and sea ice cover levels are declining (Bernier et al. 2018). The 
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specific study area (the area to which I limit the analyses) is defined by capelin presence data 

(see below). 

 

3.2.2: Data: Environmental 

I acquired temperature, salinity, oxygen, and chlorophyll data from the global numerical 

modelling products GLORYS V4.1 (CMEMS 2018a) and BIOMER V3.2 (CMEMS 2018b) 

for the years 1998 to 2014 inclusive. These variables were selected a priori (see Appendix 

C.2 for variable selection process). The models provide monthly average values for each 

oceanographic variable across 75 depth layers (0.5 meters to 5,902 meters at varying intervals 

–Appendix C.3) at a horizontal resolution of 0.25˚. Each depth layer is treated as a flat, two-

dimensional slice, creating a “2.5D” ocean environment (Duffy & Chown 2017) in which I 

can apply common metrics to assess changes in distribution (see below). I converted all 

layers to a Canada Albers Equal Area Conic projection (25×25km). I gave each grid cell a 

unique identifier based on the longitude and latitude (x, y) location of each cell’s centroid, the 

depth layer the cell fell into (z), and the month and year (t). This set of grid cells is used to 

filter the presence points and create the background points for the distribution models (see 

below). I also obtained winter (December to February inclusive) NAO values (principle 

component based) from the National Center for Atmospheric Research (NCAR), calculated 

from the leading empirical orthogonal function sea level pressure anomalies between 20°-

80°N, 90°W-40 °E (NCAR 2019). I calculated the NAO winter anomaly values using the 

1981-2010 standard climatology (WMO 2017) and categorised them into positive and 

negative phases (Figure 3.1, Appendix C.4).  
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Figure 3.1: NAO Winter anomaly values for the years 1998 to 2014 inclusive. 

 

3.2.3: Data: Species 

I used capelin presence-only datasets for 1998 to 2014 inclusive, obtained from the Ocean 

Biogeographic Information System (OBIS, now known as the Ocean Biodiversity 

Information System) database (OBIS 2018). Organisations such as fishery management 

authorities and research institutions provide the datasets held in OBIS. At a minimum, 

submitted datasets contain a longitude-latitude location for observed species and an 

observation date; OBIS does not contain specific absence data. I retained presences that laid 

in or adjacent to the Canadian EEZ. Based on a minimum events per variable rule, which 

requires a minimum of five presences per predictor variable (Yalcin & Leroux 2018), I was 

unable to model February (10 unfiltered presences over three years). I also chose not to 

model January (154 unfiltered presences spread over four years) due to the low number of 
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years represented by the presence data compared to the other months (ranging from 10 in 

August to 17 in September – Appendix C.4).  

To prevent modelling outside of the capelin’s potential horizontal (x, y) and vertical 

(z) geographic range, I used the capelin presence records to refine the study area—the area to 

which I restrict the analyses (Appendix C.1). The horizontal (x, y) boundaries were 

determined using a 100% minimum convex polygon (Syfert et al. 2014), whereas the vertical 

(z) boundary was limited to the deepest sampled oceanographic depth layer (Appendix C.3). 

The study area used the same 25×25km grid as the oceanographic data.  

For the remaining months (March – December), I removed presences that lacked 

sampling depth information and whose locations fell outside the area covered by the 

oceanographic models (e.g. fell onto land or below the sea floor according to the 

oceanographic models). To avoid duplicating oceanographic conditions associated with 

capelin presences, I further reduced the presence data to only one presence per cell in the 

study area (Elith et al. 2006), leaving a total of 6,186 presence points across 10 months and 

17 years. Because the sampling depth of the presences does not align perfectly with the depth 

layers provided in the oceanographic model, each presence was assigned to the depth layer 

nearest to sampling (Appendix C.3). I extracted oceanographic predictor variables to the 

presence points. I included surface values only for chlorophyll and the value at sampling 

depth-layer for temperature, salinity, and oxygen. 

 

3.2.4: Modelling and Analysis 

To assess the distributional changes between phases and across the time-series as a whole for 

each month, I (1) created a Maxent model for each month (all years included), (2) predicted 

habitat suitability for each month-year for which I have capelin data, (3) assessed distribution 
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changes between the two NAO phases, and (4) applied a series of trend analyses (Figure 3.2). 

I now outline each of these steps. 

 

 

Figure 3.2: Methods for modelling and distribution and trend metrics for a single month. The 

process was identical for each month. I fit Maxent models for capelin presence and 

environmental data for all years in one month (i.e. March 1999, March 2000, etc.). Then I 

predicted the distribution of capelin for each year of that month based on that year’s 

environmental conditions. After grouping the prediction into NAO phases, I conducted two 

levels of analysis. First, I investigated patterns in distribution metrics and second, I 

conducted trend analysis. See text for full details on methods. 
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3.2.4.1. Species distribution modelling 

I used Maxent version 3.4.1 (Phillips et al. 2017, Appendix C.5) to model relative habitat 

suitability in the study area. Maxent predicts relative habitat suitability by comparing 

environmental conditions where the species of interest was present with conditions in the 

wider study area where the species might also occur (the background). Maxent is considered 

a robust model for presence-only data, such as that I have obtained from OBIS, and compares 

favourably to presence-absence-based options such as generalised linear models (GLMs), 

generalised additive models (GAMs), and boosted regression trees (BRTs) (Elith et al. 2006). 

To match the temporal dynamism in oceanographic variables and potential variation of 

capelin response to those changes, I built one Maxent model per month. The monthly 

approach follows similar approaches used by Alabia et al. (2016) and Wang et al. (2018) to 

model the distributions of marine pelagic species. I restrict model comparisons to within-

month only because drawing comparisons between the output generated by models fit with 

different data points can be problematic (Guisan et al. 2017). For each model, I set the 

maximum number of iterations to 5000 (to allow entropy to be reached) and set regularisation 

(β) multiplier values to reduce overfitting. Regularisation values were selected using the 

lowest Akaike’s Information Criterion adjusted for small sample size (AICc) score (Warren 

& Seifert 2011) from values ranging between 0.25 and 4, at 0.25 step intervals.  

To provide each monthly Maxent model with background points, I extracted 

oceanographic variables to 10,000 background points per month, generated across the study 

area. As with the presence points, I limited the background points to one per unique grid cell. 

Oceanographic conditions in the same month can vary from one year to the next. To ensure I 

captured this variability, I weighted the number of background points generated by the 

number of presences recorded each year (Appendix C.4). For example, if 20 presences were 

recorded in 2001 and 80 in 2002, 20% of the background points and associated 
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oceanographic conditions came from 2001, and 80% from 2002. Similarly, oceanographic 

conditions vary across the study area. To represent oceanographic conditions from the entire 

study area, I also weighted points by the number of cells in each Northwest Atlantic Fisheries 

Organization division (NAFO 2019) and the Hudson Strait, which falls outside the NAFO 

Convention Area (Andrews et al. 2020).  

I used a 10-fold cross-validation, which splits the data into 10 folds, with each fold 

used to test the model and the other nine folds to train iteratively (Elith et al. 2011). I assessed 

the performance of each model using multiple metrics: testing and training area under the 

curve (AUC) scores (Phillips et al. 2017), true skill statistic (TSS) (Allouche et al. 2006), the 

continuous Boyce index (CBI) (Boyce et al. 2002), and the symmetric extremal dependence 

index (SEDI) based on a maximum Kappa threshold (Wunderlich et al. 2019) (for further 

details on the evaluation metrics, see Appendix C.6, A1 – A4). 

I then used Maxent’s complementary log-log (cloglog) transformation to estimate 

relative habitat suitability throughout the study area (Phillips et al. 2017). Although I am 

modelling suitability across horizontal (x, y) and vertical (z) axes, Maxent predictions operate 

on flat (two-dimensional) surfaces. To overcome this constraint, for each oceanographic 

variable and each month-year time slice, I created one layer representing all of the depths by 

concatenating (joining together one after the other) the depth layers provided by the 

oceanographic models (Bentlage et al. 2013). I produced geographic predictions for each 

year-month time-slice for which capelin presence data were available. For example, if 

presence data were available for March 1999, 2000, and 2001, I produced geographic 

predictions for March 1999, 2000, and 2001 using the March model.  

I carried out all modelling processes in R version 3.6.2 (R Core Team 2019) with the 

Dismo (Hijmans et al. 2017), EcoSpat (Broennimann et al. 2018), enmSdm (Smith 2019), and 

Raster (Hijmans 2019) packages. 
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3.2.4.2. Distribution changes between phases 

The Maxent models provide predicted habitat suitability scores ranging from 0 (not suitable) 

to 1 (extremely suitable). To quantify distributions and ranges, it is common practice to use a 

threshold to identify predicted “suitable” and “unsuitable” habitat. To explore potential 

capelin habitat distribution changes between positive phases and negative phases, I used a 

Maximum Kappa threshold to identify suitable/unsuitable habitat. I chose this threshold for 

its resilience to prevalence, which cannot be accurately determined without genuine absences 

(Nenzén & Arajo, 2011). For each month, I used five common distribution metrics to assess 

changes between the positive and negative phases of the NAO—the percentage of the study 

area predicted as suitable habitat, the stability of suitable habitat, patch number and size 

(mean and maximum), and bounding location (mean of the five most northern, southern, 

western, eastern, shallowest, and deepest centroids) (Yalcin & Leroux 2017). Table 3.1 lists 

the patterns I expected and tested. 

For each distribution metric except the stability metric, I report median values 

between the two NAO phases and compare differences using a two-sided Mann-Whitney U 

test on a month-by-month basis. An effect size less than 0.3 is corresponds to a small effect, 

0.3 to <0.5 a moderate effect, and => 0.5 a large effect (for test details, see Appendix 

C.6.B1). In addition to this binary phase analysis, I considered the magnitude of the NAO 

value in each phase (i.e. continuous measures of the NAO value). I fit Generalized Linear 

Mixed Models (GLMM) with the distribution metric as the response variable, the Winter 

NAO value as the fixed effect, and monthly model as the random effect (for analysis details, 

see Appendix C.6.B2). To calculate the stability of suitable habitat between phases, I 

compared the number of times a suitable habitat cell was present in each month-phase group. 

Following hotspot detection rules (see section 3.2.4.3 Time-series trend analysis below), I 

considered a suitable habitat cell to be in a month-phase if it was present in 90% of the years 
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in the month-phase grouping. Cells were categorised as (1) present in both positive and 

negative phases, (2) present in positive phases only, or (3) present in negative phases only. 

All analysis was executed using the R packages SDMTools (VanDerWal et al. 2019), rstatix 

(Kassambara 2020), lme4 (Bates et al. 2020), and MuMIn (Bartoń 2020).  
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Table 3.1: Description and expected patterns related to the distribution metrics used to assess variation between North Atlantic Oscillation (NAO) phases. All 

metrics were calculated individually for each month-year time slice. 

Distribution Metric Description Expected patterns Reasoning Result 

Percentage of the study 

area classified as suitable 

habitat 

The percentage of area 

classified as suitable habitat 

based on a Maxent model-

derived threshold (Max 

Kappa) on all the individual 

depth layers. Reported 

percentages reflect the ‘flat’ 

area available on each 

individual depth layer. 

 

A higher percentage of the study 

area classified as suitable habitat 

will characterise positive phases, 

particularly during the warmer 

months. 

Capelin is a cold-water species 

(Rose 2005). As such, I expect 

that the colder conditions in 

NAO positive phases (Greene et 

al. 2013) will increase the 

availability of suitable habitat, 

particularly during the warmer 

months. 

Although results 

generally aligned with 

expectations, I  

 found no significant 

differences between 

NAO phases, except 

for May (a pattern 

contrary to 

expectation). 

Number of Patches The number of patches (a 

contiguous group of suitable 

habitat cells on an individual 

depth layer) found across all 

individual depth layers. A 

larger number of patches 

indicates higher 

fragmentation of suitable 

habitat relative to a lower 

number of patches. Because 

the depth layers are treated as 

flat surfaces, patches on 

adjacent depth layers are not 

considered contiguous. 

The number of patches will not 

differ between the two NAO 

phases.  

 

Spatially, oceanographic 

conditions primarily operate on 

a gradient, i.e. without abrupt 

boundaries (Talley et al. 2011). I 

do not expect the NAO to alter 

gradient patterns to the extent 

that they fragment suitable 

habitat. 

I found no statistical 

difference in the 

number of patches 

between phases. 

Patch Size (Mean and 

Maximum) 

The mean and maximum 

patch* size in km2 found 

During positive phases, patch size 

will exceed patch size during 

Species typically 

expand/contract their ranges at 

Results for both the 

mean and maximum 
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across all individual depth 

layers.  

*(a contiguous group of 

suitable habitat cells on an 

individual ‘flat’ depth layer. 

The minimum patch size is 

one cell, and as such not 

explored.) 

 

negative phases, particularly 

during the warmer months. 

the edges in response to 

changing oceanographic 

conditions. Core areas usually 

remain stable over time (e.g. 

Fisher et al. 2008). Due to the 

gradient-like quality of 

oceanographic conditions over 

space and predictions that the 

negative phase of the NAO will 

favour capelin (see above), I 

expect the same pattern for 

suitable habitat patches.  

patch size were more 

mixed than expected, 

with no statistical 

support for expected 

patterns. 

Habitat Stability The persistence of a suitable 

habitat cell located on an 

individual depth-layer 

between the two NAO 

phases. A cell is considered 

to belong to a phase if it is 

present in 90% of the years in 

the month-phase grouping. 

Suitable habitat cells will be 

mostly stable across phases. There 

will be more suitable habitat cells 

during positive phases only during 

the colder months and more in 

negative phases in the warmer 

months. 

 

In line with the gradient-like 

nature of oceanographic 

conditions over space and the 

tendency of species to 

expand/contract ranges (see 

above), I expect to see strongest 

distributional changes on patch 

edges. Generally, I expect 

positive phases to be more 

favourable to capelin (see 

above). 

Suitable habitat was 

generally stable 

between phases, and 

patterns in phase-only 

cells aligned with 

expectations. 

 

Bounding variation Horizontal (x, y) shifts in the 

mean of the five most 

northern, southern, western, 

eastern-most centroids, 

vertical (z) distribution shifts 

in the mean of the five 

shallowest and deepest most 

Boundings will lie further south 

and on deeper depth layers during 

positive phases, particularly in the 

warmer months, and further north 

in negative phases than positive 

phases, particularly during cooler 

months. 

I expect the cooler conditions of 

the positive phase to allow a 

more substantial intrusion of 

predicted suitable habitat in the 

south (where waters are 

typically warmer) and warmer 

conditions during negative 

Results were more 

mixed than expected, 

with a statistical 

difference only in the 

eastern bounding in 

April. One result 

(eastern bounding in 
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centroids. Horizontal shifts 

are provided in geographic 

coordinates (longitude, 

latitude, and vertical shifts on 

the depth layer). 

phases to allow a more northerly 

intrusion (where conditions are 

generally cooler). 

May) contradicted 

expectations. 
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3.2.4.3. Time-series trend analysis 

To identify temporal trends in the relative habitat suitability scores across each month, I 

modelled distributions for March to December inclusive and conducted emerging hotspot 

analyses (ESRI 2020a) to identify statistically significant trends in suitability hotspots (high 

suitability scores) and cold spots (low suitability scores) over the time-series for which I had 

data. For example, the May analysis covers 1998 to 2011 inclusive and the September 

analysis covers 1998 to 2014. I used the emerging hotspot analysis tool in ArcGIS Pro (ESRI 

2020b). IESRI (2020a) provides full details on the tool, but briefly, the tool measures trends 

by first assessing spatial clustering of values using the Getis-Ord Gi* statistic (Getis & Ord 

1992) and then employs the Mann-Kendall trend statistic (Kendall & Gibbons 1990) to 

measure temporal trends across the time-series (for test details see B3 and B4 in Appendix 

C.6). Emerging hotspot analysis has been used to reveal several ecological temporal trends, 

including on the density of abalone (Haliotis spp.) (Young et al. 2020), forest loss (Ball et al. 

2021), and cetacean strandings (Betty et al. 2020).  

Cells in the study area were assigned one of 17 temporal state categories, including no 

pattern, persistent (a cell that has been a statistically significant hot/cold spot for 90% of the 

time-step intervals, with no discernible trend indicating an increase or decrease in the 

intensity of clustering over time), and sporadic (a cell that is an on-again then off-again 

hot/cold spots) (for an example output, see Appendix C.7). To avoid an unwieldy output, I 

focused on three temporal trend patterns: sporadic, intensifying, and diminishing (see 

Table 3.2 for trend definitions) and only considered those cells with a statistically significant 

trend. Because the analysis requires a minimum of 10 time-steps (years), I limited the 

analysis to overall trends in each month (i.e. no month-phase analysis). I note that March, 

August, October, and November are missing one year in their time series (Table C.4 in 

Appendix C.4). 
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Table 3.2: Temporal states used in the emerging hotspot analysis to assess’ habitat suitability score trends over the time series. Hotspots are 

cells with high habitat suitability values and cold spots with low habitat suitability values. Statistical significance is derived from the Mann-

Kendall test executed in the analysis (ESRI 2020b). 

Emerging Hotspot Trend Description 

Sporadic Hotspot A location (x, y, z) that is an on-again then off-again hotspot. Fewer than 90% of the years modelled 

have been statistically significant hotspots, and none of the years modelled have been statistically 

significant cold spots. 

Intensifying Hotspot A location (x, y, z) that has been a statistically significant hotspot for 90% of the years modelled, 

including the final (most recent) year. In addition, the intensity of clustering of high counts in each time 

step is increasing overall (i.e. habitat suitability scores are increasing), and that increase is statistically 

significant. 

Diminishing Hotspot A location (x, y, z) that has been a statistically significant hotspot for 90% of the years modelled, 

including the final (most recent) year. In addition, the intensity of clustering in each time step is 

decreasing overall (i.e. habitat suitability scores are decreasing), and that decrease is statistically 

significant. 

Sporadic Cold Spot A location (x, y, z) that is an on-again then off-again cold spot. Fewer than 90% of the years modelled 

have been statistically significant cold spots, and none of the time-step intervals have been statistically 

significant hotspots. 

Intensifying Cold Spot A location (x, y, z) that has been a statistically significant cold spot for 90% of the years modelled, 

including the final (most recent) year. In addition, the intensity of clustering of low counts in each time 

step is increasing overall (i.e. habitat suitability scores are decreasing), and that increase is statistically 

significant. 

Diminishing Cold Spot A location (x, y, z) that has been a statistically significant cold spot for 90% of the years modelled, 

including the final (most recent) year. In addition, the intensity of clustering of low counts in each time 

step is decreasing overall (i.e. habitat suitability scores are increasing), and that decrease is statistically 

significant. 
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I also employed the Mann-Kendall trend statistic (for test details see Appendix 

C.6,.B3) using the R Package Kendall (McLeod 2011) to evaluate trends across each month’s 

time-series for the distribution metrics (1) percent of the study area predicted as suitable 

habitat; (2) shifts in the boundings (northern, southern, western, eastern, shallowest, and 

deepest); and (3) patch number and size (maximum and mean). To account for multiple 

comparisons, I applied a Bonferroni correction to detect statistical significance (αBonferroni = 

0.05/10 distribution metrics = 0.005). 

 

3.3: Results 

 

3.3.1: Species Distribution Modelling 

I ran one maxent model for each of the months from March to December (Figure 3.3). 

Overall, the models performed well (full details available in Table C.5 in Appendix C.5). 

Generally, the December model yielded the best performance (Test AUC 0.98, Training AUC 

0.95, TSS 0.88, CBI 1, SEDI 0.89) and October the worst (Test AUC 0.91, Training AUC 

0.90, TSS 0.70, CBI 0.99, SEDI 0.61). 
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Figure 3.3: Example of habitat suitability score output for the months of April and November 

between a year that experienced a positive phase of the NAO (2000) and a year that 

experienced a negative phase of the NAO (2010) across four depths levels. The year, month, 

and depths were arbitrarily chosen for illustrative purposes only. Colours represent the 

relative habitat suitability. Suitability ranges from 0 (lightest colours) to 1 (darkest colours), 

with values closer to 1 more suitable than those closer to 0. 
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3.3.2: Distribution changes between phases 

I assessed distribution changes between positive phases (e.g. generally cooler and less saline 

conditions in the study space) and negative phases (e.g. generally warmer and more saline 

conditions in the study space) of the NAO on an individual month-by-month basis using five 

commonly used metrics—the percentage of the study area classified as suitable habitat, the 

stability of suitable habitat, patch number and size (mean and maximum), and bounding 

location (northern, southern, western, eastern, shallowest, and deepest) (Table 3.1). I present 

boxplots for the distribution metrics for the months of April and November here (Figure 3.4) 

and boxplots and Mann-Whitney U effect size results for all months in Appendix C.8.  
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Figure 3.4: Distribution metrics for the months of April (top-panels) and November (bottom-

panels) A: percent study area classified as suitable habitat, B: number of patches, C: 

maximum patch size (km2), D: mean patch size (km2), E: shallowest and deepest boundings, 

F: northern and southern boundings, and G: western and eastern boundings for negative 

(blue) and positive (red) NAO phases. Dots represent values for the individual years (14 

years in April and 15 years in November). To prevent compression of the boxplots, depth 

boundings are given as the depth layer number, with the corresponding depth in meters 

indicated. The months were arbitrarily chosen for illustrative purposes only. Full boxplots 

for all months are available in Appendix C.8. 
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I found substantial variation in the percentage of the study area predicted as suitable 

habitat within each month-phase grouping (Figures 3.3 and C.8.1). However, the effect size 

derived from the Mann-Whitney U test was only large for May, albeit with a large confidence 

interval (CI) range (effect size 0.66, CI range 0.25 – 0.84, Table C.8.1).  

Analysis of suitable habitat stability between phases indicates the majority of cells 

classified as suitable habitat occurred in both positive and negative phases. The exceptions 

were with the April model, in which both the positive and negative phases were dominated by 

cells occurring only in the positive and negative phase, respectively, and June and October 

models, in which negative phases were dominated by cells occurring only in the negative 

phase (Table 3.3, Figure 3.5). When considering stability over depth, cells present only in 

either phase of the NAO typically occur at the same depths as those with cells present in both 

positive and negative phases. Exceptions include May, where cells appear at shallower depths 

in negative phases, and October when cells appear at deeper depths in negative phases.  

 

Table 3.3: Percentage of the suitable habitat cells classified as present in both negative and 

positive phases of the North Atlantic Oscillation (NAO), negative phases only, or positive 

phases only. 

 

 

Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Negative 

Phase 

Negative Only 39.20 60.58 42.24 55.10 27.64 3.89 47.42 84.55 14.16 2.93 

Both Phases 60.80 39.42 57.76 44.90 72.36 96.11 52.58 15.45 85.84 97.07 

Positive 

Phase 

Positive Only 26.85 66.78 24.28 6.41 24.55 7.71 18.28 3.43 15.50 42.26 

Both Phases 73.15 33.22 75.72 93.59 75.45 92.29 81.72 96.57 84.50 57.74 
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Figure 3.5: The vertical (z) distribution of predicted suitable habitat cells, relative to the 

amount of ocean available at each depth layer, for each modelled month-phase. Cells may be 

present in both negative and positive phases of the North Atlantic Oscillation (NAO), in 

negative phases only, or positive phases only. Note that there is a greater area of ocean at 

shallower depth layers than deeper due to increasing intrusion of the seafloor. Depth layers 

are not evenly spaced (for details on the depths, see Table C.3 in the Appendix). 
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When considering patches, I detected some variation within and between phases. In 

terms of the median number of patches, August differed least between negative and positive 

phases, whereas May differed most (Figures 3.4 and C.8.2). The greatest median number of 

patches also occurred in May during both negative (219 patches) and positive (186 patches) 

phases, whereas August had the fewest (46 in both negative and positive phases). In terms of 

the size of patches (Figures 3.4, C.8.3, and C.8.4), the greatest variation in median maximum 

patch size between phases occurred in March (49,375 km2 in the negative phase vs 98,125 

km2 in the positive) and the least in September (110,625 km2 in negative phases vs 114,375 

km2 in positive phases). The greatest differences in median values for mean patch size 

occurred in December (28,266 km2 cells in negative phases vs 42,770 km2 in positive phases) 

and lowest in May (12,232 km2 cells in negative phases vs 11,383 km2 in positive phases).  

Regarding boundings, across all months, I found little difference in the southern 

bounding location between negative and positive phases (Figures. 3.4 and C.8.5). The highest 

median latitudinal location of the southern bounding (most northerly) occurred in August 

during positive phases of the NAO (47.31°N), and lowest (most southerly) in May, also 

during positive phases (41.52°N). In terms of differences in location between positive and 

negative phases, the largest difference in the southern bounding location (a difference of 1.9° 

between the two phases) occurred in August, with the smallest difference (0°) in June. The 

median lowest latitudinal location of the northern bounding (most southerly) occurred in July 

during a positive NAO phase, and in both phases in March (50.67°N) and the highest (most 

northerly) location occurred in both phases in August (68.58°N). Comparing the median 

location of the northern bounding between phases, the greatest difference between positive 

and negative phases occurred in July (6.08° difference between the two phases), and the 

lowest in March and August (0° difference between the two phases). For the other months, I 

observed small median latitudinal differences between the two phases of the NAO. I also 
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found little difference between the western bounding longitudinal location in all months (0° 

difference in May and August to 1.6° difference in December). (Figures 3.4 and C.8.6). The 

highest longitudinal location of the western bounding (most easterly) occurred in December 

during negative phases of the NAO (58.51°W) and the lowest (most westerly) during the 

positive phase in June (69.56°W). Similarly, the median eastern bounding longitudinal 

location differed little between NAO phases (ranging from 0° in August to 1.56° in April). 

The eastern bounding’s highest longitudinal location (most easterly) occurred during a 

positive phase in June (45.86°W), and the lowest (most westerly) location occurred during 

both phases in August (57.51°W). With regards to the median value of the shallowest and 

deepest boundings (Figures 3.4 and C.8.7), little variation occurred between phases for each 

of the months, except for April and July, when the median shallowest bounding occurred at 

shallower depths in the negative than the positive phase, and September, October, and 

December when the deepest bounding occurred in deeper water in the positive phase. The 

Mann-Whitney U tests indicated three boundings with a large effect size – the deepest 

bounding in October (effect size 0.56, 95% CI range 0.19 – 0.83), the eastern-most bounding 

in April (effect size 0.69, 95% CI range 0.3 – 0.84), and the northern-most bounding in April 

(effect size 0.51, 95% CI range 0.06 – 0.84) (Tables C.8.5 – C.8.7 in Appendix C.8). 

Across all distribution metrics (boundings, percent area, patch number and size), the 

GLMMs indicated that the fixed effect of NAO phase magnitude explained a small 

percentage of variation in the response variable (Marginal R2 ranging between 0.000 and 

0.003) but explained considerable variation between monthly models (Conditional R2 ranging 

between 0.64 – 0.94) (Table 3.4). 
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Table 3.4: Results of the GLMMs for each of the distribution metrics. For all models, the response variable was the metric, the fixed effect was 

the value of the North Atlantic Oscillation (NAO) winter anomaly, and the random effect was the monthly model. Fixed Effect Std Error = Fixed 

Effect Standard Error; Fixed Effect t-value = the Wald statistic; R2m = marginal R squared values; R2c = conditional R squared values. 

Distribution Metric Intercept 

Estimate 

Fixed Effect 

Estimate 

Fixed Effect Std 

Error 

Fixed Effect t-value R2m R2c 

Percentage study area classified as 

suitable habitat 2.53 0.06 0.07 0.83 0.00 0.64 

North Bounding 60.89 -0.47 0.31 -1.49 0.00 0.80 

South Bounding 43.31 0.03 0.08 0.46 0.00 0.71 

West Bounding -67.72 -0.02 0.10 -0.18 0.00 0.87 

East Bounding -50.38 0.28 0.09 2.98 0.00 0.94 

Shallowest Bounding 23.88 -0.26 0.87 -0.30 0.00 0.80 

Deepest Bounding 483.26 -12.39 14.80 -0.84 0.00 0.74 

Number of Patches 114.89 2.40 2.29 1.05 0.00 0.77 

Maximum Patch Size (km2) 174476.09 2335.50 5101.54 0.46 0.00 0.64 

Mean Patch Size (km2) 20635.60 166.99 591.82 0.28 0.00 0.64 
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3.3.3: Time-series trend analysis 

I assessed trends over time in the distribution metrics percentage of the study area classified 

as suitable habitat, patch number, mean and maximum patch size, and location of the 

northern, southern, western, eastern, shallowest, and deepest boundings (Table 3.1), and in 

the relative habitat suitability values on a month-by-month basis. After applying Bonferroni 

corrections, the Mann-Kendall trend analysis of the distribution metrics revealed few 

statistically significant (p < 0.005) trends developing over time. Trends were detected in 

deepest bounding (October—decreasing), mean patch size (September—increasing), and 

number of patches (November—decreasing), and (Table 3.5). 

 

Table 3.5: Mann-Kendall trends for the distribution metrics that showed a statistically 

significant positive (where Kendall’s tau statistic is a positive number) and negative (where 

Kendall’s tau statistic is a negative number) trend. Tau values range from 0 to +1/-1 

(positive/negative relationship), with scores of +1/-1 indicating a perfect relationship and 0 

no relationship.  

Distribution Metric Month Kendall’s tau statistic p-value 

Deepest bounding October -0.65 0.002 

Mean patch size September 0.51 0.004 

Number of patches November -0.59 0.003 

 

In terms of the emerging hotspot analysis looking at relative habitat suitability, the 

percentage of the study area that displayed a statistically significant up or down trend in 

suitability scores over the time series based on the chosen patterns (intensifying hot/cold spot, 

diminishing hot/cold spot, or sporadic hot/cold spot; see Table 3.2) varied from month to 

month (Figure 3.6 and Table 3.6), with the lowest percentage (4.3%) in December and the 

highest percentage (18.47%) in October. Decreasing trends dominated April, August, and 

October, increasing trends in November and December, and sporadic cold/hot spots in 

March, May, June, July, and September. The direction trends took were not the same for 

every depth layer. For example, in October, decreasing trends dominated the upper layers, 
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whereas increasing trends became more prevalent at deeper depth layers. Decreasing trends 

typically dominated depth layers during March, April, May, July, and August, whereas 

increasing trends largely dominated June, September, October, November, and December. 

 

 

Figure 3.6: Habitat suitability trend by depth based on emerging hotspot analysis (ESRI 

2020b) relative to the amount of ocean available at each depth layer. Note the greater area 

of ocean at shallower than deeper depths resulting from increasing intrusion of the seafloor. 

Depth layers are not evenly spaced. For details on the depth layers, see Appendix C.3. Red 

colours indicate an upward trend and blue a downward trend. 
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Table 3.6: Percentage of the study area displaying a statistically significant increasing/decreasing trend in habitat suitability scores by pattern. 

Arrows indicate the direction of the trend (up ↑, down ↓, and up or down ↕). 

Month Intensifying Hot 

Spot (↑) 

Diminishing 

Cold Spot (↑) 

Intensifying 

Cold Spot (↓) 

Diminishing Hot 

Spot (↓) 

Sporadic Cold 

Spot (↕) 

Sporadic Hot 

Spot (↕) 

Total  

March 1.61 0.12 0.64 0.36 8.01 1.46 12.20 

April 0.61 0.03 5.68 0.16 3.05 1.66 11.18 

May 1.22 0.12 3.34 0.36 3.90 0.77 9.71 

June 0.99 0.35 0.30 0.16 1.83 2.85 6.47 

July 2.18 0.12 4.92 0.86 5.16 2.25 15.49 

August 1.74 0.08 2.36 1.26 1.99 1.37 8.80 

September 1.66 0.01 0.97 1.15 2.45 2.10 8.34 

October 4.37 2.13 6.84 0.55 3.08 1.49 18.47 

November 3.06 3.64 1.01 0.51 2.38 1.76 12.36 

December 1.71 0.02 0.22 0.89 0.65 0.81 4.30 
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3.4: Discussion  

Marine pelagic species distributions exhibit spatial variation both within and among years. 

Understanding the ecology of pelagic species, their ecosystem functions and interactions with 

other species, and for effective spatial management requires disentangling the drivers of these 

fluctuations. I assessed the variation in the modelled horizontal (x, y) and vertical (z) 

distribution of suitable habitat for a keystone forage fish (capelin) in Atlantic Canada over 17 

years between positive and negative NAO phases and over the time series as a whole, and on 

a month-by-month basis. I observed (1) substantial stability in the cells with predicted 

suitable habitat between the two NAO phases, (2) differences in the percentage predicted as 

suitable habitat in the study area largely arises from an expansion/contraction of existing 

suitable habitat patches, and not the appearance of new patches, and (3) over time, the 

relative suitability of habitat declines in six of the ten months modelled. However, although I 

found some support for the hypothesis that NAO phase influences some components of 

capelin distribution, I found the influence generally weak, leaving us unable to attribute 

variability in distributions with differing oceanographic conditions experienced under 

different phases of the NAO.  

In terms of habitat stability (Table 3.3, Figure 3.5), I found most suitable habitat cells 

remained stable across NAO phases, and that for the most part, single NAO phase cells 

appeared at the same depth layers as cells that appeared in both phases. From a management 

perspective, whereas one could conclude that distributions are stable enough to focus 

potential management actions on areas of suitable habitat that persist regardless of NAO 

phase, I caution that ignoring areas used only in one phase of the NAO or failing to account 

for a decrease suitable habitat patches in one locale (or increase in another) over time risks 

overlooking areas important for the species’ persistence under changing conditions (Runge et 

al. 2016, D’Aloia et al. 2019).  



92 
 

Our study suggests that over time the deepest bounding is trending towards 

increasingly shallower depth layers in September and a deepening in October. Previous work 

assessing observed changes in the vertical (z) distribution using data from surveys conducted 

in May and September during the late 1980s to 2000 suggested that capelin favour deeper 

waters during these months (Mowbray 2002). Although this period covers a regime shift that 

impacted multiple fish species throughout the Atlantic Canadian region (Pedersen et al. 

2020), this deepening apparently persisted into the early 2010s (Mowbray 2014). I note that 

September proved an interesting month in terms of trends in several metrics. Alongside the 

increasing (albeit weaker than October) increasing trend in deepest depth layer bounding, this 

study also suggests an increasing trend in mean and maximum patch size over time and a 

decreasing trend in the number of patches. The lack of significant increase or decrease in the 

percent of the study area classified as suitable habitat during this month suggests the loss of 

smaller patches over time. These patterns match the gradient-like nature of oceanographic 

conditions and previous work that indicates species ranges primarily expand/contract at the 

boundaries rather than fragment (Fisher et al. 2008, Talley et al. 2011). While the 

implications of variations in patch size and number are largely unknown for highly mobile 

and pelagic species like capelin, a smaller number of larger patches in one phase could 

indicate populations are more contracted in that phase. In contrast, a larger number of smaller 

patches in one phase could suggest that the population becomes more fragmentated in that 

phase. The impacts partly rely on the extent to which capelin habitat selection is based on 

density dependence, but could include some segments of the wider Atlantic Canadian 

population experiencing greater competition, predation risk, and direct/indirect fishing 

pressure in that phase in one phase than another (Kim et al. 2004, Worm & Tittensor 2011). 

Similar to other pelagic species, the role of density dependence and other factors in capelin 

habitat selection is largely unknown (Rose 2005). 
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Although the trend analysis of the distribution metrics showed few significant trends, 

I note that the emerging hotspot analysis on the predicted habitat suitability scores indicates 

that six out of the ten months modelled are experiencing a greater overall decline in relative 

habitat suitability scores. For those months, the decline spans the majority of depth layers and 

primarily impacts more ‘persistent’ (intensifying/diminishing) hot/cold spots. A continuation 

of these declining trends could have consequences for capelin abundance and distributions in 

Atlantic Canada (Rose 2005, Hollowed et al. 2013, Andrews et al. 2016). Indeed, previous 

work linked changing ocean conditions during the early 1990s to the collapse and distribution 

change of capelin in Newfoundland and Labrador (Pedersen et al. 2017). Although I cannot 

attribute the habitat suitability changes indicated in this study directly to climate change, I 

note the sensitivity of capelin distributions to changes in contemporary and predicted future 

oceanographic conditions (Rose 2005) and that the Northwest Atlantic Ocean has and is 

predicted to experience substantial changes in conditions (Bernier et al. 2018, Alexander et 

al. 2020).  

Using environmental data derived from numerical ocean models, I modelled predicted 

distributions at multiple depth layers. However, SDMs and distribution analysis tools have 

primarily been designed for two-dimensional spaces that may over-simplify the three-

dimensional habitat complexities experienced by pelagic species (Duffy & Chown 2017). 

Similarly, this study reports distribution changes on disparate depth layers, which I treat as 

two-dimensional. The development of modelling and analysis tools (e.g. patch measurements 

that include volume across multiple consecutive depth layers) that incorporate volume would 

be beneficial for assessing distribution changes of pelagic species that occur throughout the 

water column. I also note a generally weak understanding of the impact of changing suitable 

habitat patch size and number on migratory and other highly mobile species, despite the 
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importance of assessing their response and vulnerability to changing conditions (McHenry et 

al. 2019).  

The spatial and temporal resolution of the environmental data underlying distribution 

models influences predicted distributions, and by extension, distribution metrics. Although 

the extended time series of species and oceanographic data allowed me to explore variation 

between phases of the NAO, the resolution of the oceanographic data may mask fluctuations 

in oceanographic conditions and, by extension, predicted distribution changes (Saraux et al. 

2014, Fernandez et al. 2018). Where possible, using finer spatial-temporal resolution data 

may elucidate distribution pattern changes. Such fine-scale data can be derived from 

Regional Ocean Modelling System (ROMS). For example, Abrahms et al. (2018) used daily 

0.1° resolution data derived from a ROMS configured for the California Current Ecosystem 

to predict the year-round blue whale (Balaenoptera musculus) habitat suitability in the region. 

Temporally speaking, I was restricted to modelling for the months of March to December 

inclusive due to the low number of observations available in January and February. Although 

challenging, e.g. due to the spread of ice, obtaining observations during January and February 

would help fill this temporal gap and may be important given that oceanographic conditions 

may respond differently to climate change depending on the season (Alexander et al. 2020). 

Furthermore, the distribution metrics I used required conversion of predicted habitat 

suitability scores into a binary measure of suitable/not suitable habitat, which may further 

obscure variation between phases and trends across the time series. Experts continue to 

debate how to choose the ‘best’ threshold for defining the habitat suitability score at which a 

species will occur (Kou et al. 2014). From a management perspective, choosing a threshold 

may come down to the level of risk a manager is willing to take (Wilson et al. 2005). 

Although managers widely use the binary threshold approach for spatial planning, applying 
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other approaches to evaluate distribution changes, such as fuzzy set logic (Kou et al. 2014), 

may prove useful. 

Regarding the bounding (northern, southern, western, eastern, shallowest, and 

deepest) locations, I note that most bounds lay at the edge of this study area and thus may not 

fully capture bounding variation. Furthermore, whereas the winter NAO value can strongly 

influence ocean conditions in the Atlantic Canadian region, I note that its influence may take 

longer to permeate deeper waters. Longer-term influences on ocean variables may also lag 

over years and even decades (Visbeck et al. 2003). Additionally, distilling trend and between-

phase analysis into meaningful ecological or managerial regions (e.g. in the Atlantic 

Canadian context, Federal Marine Bioregions (DFO 2009), NAFO subareas or divisions 

(NAFO 2019)) may aid in capturing spatial variation in oceanographic responses to the NAO 

and assist in spatial management planning. Although not available for this study, I also note 

that using abundance data rather than presence data may improve the accuracy of predicted 

habitat suitability and distribution changes and provide useful information on spatial 

population dynamics (Howard et al. 2014, Saraux et al. 2014). Having such abundance data 

could also allow explicit tests of how capelin density relates to habitat patch structure. 

Similarly, resolving dynamical ocean features such as fronts and eddies may also improve 

predictions (Abrahms et al. 2019). In addition, I suggest that including species interactions, 

such as predator-prey relationships, may also prove fruitful in capturing distribution changes 

under varying conditions. For example, the NAO indirectly influences capelin dynamics in 

the Barents Sea through cod and herring, both of which prey on capelin (Hjermann et al. 

2004). 

Increasingly, researchers use species distribution models such as Maxent to predict 

species distributions changes to improve spatial management and our understanding of 

species spatial ecology (Hannah 2008, Petitgas et al. 2010), particularly for species whose 
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year-round distributions are not fully understood, and in light of climate change. Although 

species distribution models provide insights that we lack from direct observations, they 

assume that the underlying data accurately reflects the modelled species-environment 

relationship. However, species responses to changing environmental conditions can be 

complex and do not necessarily follow fixed, linear patterns over time or space (Montalto et 

al. 2016, Husson et al. 2020, Gilioli et al. 2021). We still lack clarity on the consistency of 

highly mobile species-environment relationships over space and time (Naujokaitis-Lewis & 

Fortin 2016, Andrews et al. 2020), and current and projected novel climates and communities 

(Williams & Jackson 2007a, Veloz et al. 2012b), combined with uncertainties in ocean-

climate model projections (Payne et al. 2016), add further complications for distribution 

modelling and, in turn, for designing ‘future-proofed’ spatial management strategies that 

account for changing conditions.  

Untangling the temporal ecology of species and determining how best to detect and 

measure changes over time represents an increasingly important area of research. By creating 

monthly models, I aimed to capture variation in spatial responses to changing oceanographic 

conditions, though note that this approach did not capture variation between NAO phases. 

Although I chose a monthly split, other temporal options exist. For example, some studies 

indicate that a species-environment relationship can differ in winter from spring (Lloret-

Lloret et al. 2021). However, creating seasonally split models risks smoothing out little-

studied or unknown variability in conditions and species responses important for 

distributions. Furthermore, seasonality can vary over time or space (Bintanja & van der 

Linden 2013, Kwiatkowski & Orr 2018, Dunstan et al. 2018). Quantifying variation in 

species and sub-population level responses to changing oceanographic conditions (e.g. 

between phases of the NAO, seasonally, interannually, over the time-series as a whole) may 

assist in building more accurate distribution models, improving the accuracy of their 
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subsequent predictions under changing conditions, and, in turn, assist in reducing 

management uncertainty. Equally, climate change punctuates the importance of determining 

when and how to create temporally split models to predict species distributions and how 

those distributions may change over time. 

This study used a modelling approach to assess spatial-temporal variability in the 

horizontal (x, y) and vertical (z) distributions of a mobile pelagic species, in this case, the 

forage fish capelin, between different ocean climates, in this case relating to the positive and 

negative phases of the NAO, and over time on an individual month-by-month basis. I 

demonstrate that although mobile pelagic species can vary in distribution, they can also 

exhibit a great deal of resilience. Incorporating fluctuations (or lack thereof) in distributions 

in cyclical or time-series trends into spatial management for mobile pelagics and, especially 

in the case of forage species, interacting heterospecifics may assist in developing more 

efficient and pro-active management approaches that seek to manage human interaction with 

species on ecologically-relevant spatial and temporal scales.  
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Abstract 

Migratory and other highly mobile species rely on multiple locations throughout their life 

cycles. The dynamic nature of their distributions across space and time presents challenges, 

however, for identifying which areas they use and managing human activities that may hinder 

the survival of individuals and the persistence of populations. Given that prey availability 

often shapes the distribution and movement patterns of predatory migratory species, I suggest 

that capturing the spatial-temporal distributions of prey availability in distribution models for 

predators can assist in designing ecologically relevant area-based management tools 

(ABMTs). I propose a conceptual framework to predict and forecast potential seabird 

foraging spaces using available tools and data. The framework encompasses three stages: (1) 

understanding aspects of the ecology of seabirds and their prey related to prey availability, 

(2) modelling, forecasting, and evaluating foraging spaces, and (3) management applications, 

with specific consideration of ABMTs. Notably, the framework presents an iterative 

workflow for including new knowledge and data in the modelling and decision-making 

process to create ecologically relevant and adaptive ABMTs. I highlight that although we 

lack exhaustive data and the perfect knowledge to fully understand the spatial-temporal 

dynamics of predators and their prey, successfully counteracting biodiversity loss requires 

embracing modelling, adaptive tools, and management frameworks.  
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4.1: Introduction 

From butterflies to birds to whales, migration has inspired scientific inquiry for millennia 

(Fryxell et al. 2011). Broadly, these studies demonstrate migration as a strategy to exploit (or 

avoid) spatial and often temporal variability in conditions and resources that aid (or hinder) 

persistence (Dingle & Drake 2007). Nevertheless, migratory and other highly mobile species 

are not necessarily adjusting to the nature, pace, and magnitude of human-driven changes to 

conditions (Simmonds & Isaac 2007, Winkler et al. 2014, Hays et al. 2016, Keogan et al. 

2018). The most endangered of the avian taxa include seabirds, whose movements range 

from highly mobile residents (e.g. masked boobies Sula dactylatra (Roy et al. 2021)) to the 

species with the longest known migration (Arctic terns Sterna paradisaea (Egevang et al. 

2010)). This taxonomic group has suffered an estimated 70% community-level population 

decline between 1950 – 2010, with the greatest declines seen in wide-ranging species 

(Paleczny et al. 2015). Although difficult to untangle from oceanographic influence and 

natural variation, several studies suggest that interaction with and competition for prey with 

fisheries can play a role in seabird decline (Grémillet et al. 2018, Dias et al. 2019, Hill et al. 

2020, Free et al. 2021). Other sea-based threats include oil and gas extraction activities, and 

pollution on movement pathways routes, as well as climate-induced distribution changes of 

prey fish, particularly around colonies (Cristofari et al. 2018, Dias et al. 2019). 

Several management tools are available to reduce human impacts on the ocean. In 

particular, managers are increasingly using area-based management tools (ABMTs), which 

regulate human activity in a specific area, to reach conservation and other management 

objectives (UN Environment 2018, De Santo 2018). Globally, ABMT coverage for 

conservation purposes remains low. For example, despite calls to protect at least 10% of the 

ocean with marine protected area networks (MPANs), which are specifically aimed at 

conserving biodiversity, and other effective ABMTs by 2020 (CBD 2010), as of the end of 
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2019, just 7.63% of the ocean was covered or proposed to be covered, by marine protected 

areas. Of those, less than half afforded high protection for the features they are supposed to 

support (Marine Conservation Institute 2021). 

Nevertheless, international calls that set the new goal of 30% coverage by 2030 (G7 

2021), ABMTs are set to increase in number and extent. However, ABMTs designed to 

protect highly mobile and migratory seabirds often fail to encompass the different locations 

needed for their survival (Maxwell et al. 2016). Notably, spatial protection for pelagic species 

typically lags well behind efforts for those species that remain close to the coast (Critchley et 

al. 2020), particularly for those who use the high seas, which lay beyond national jurisdiction 

(Beal et al. 2021). 

The spatial ecology of highly mobile and migratory seabirds presents challenges for 

designing ABMTs that offer meaningful protection. Within a single population, seabirds use 

multiple areas for their survival and population persistence. Even during the breeding season, 

when birds typically become more spatially restricted, movements can span hundreds of 

kilometres (Birdlife International 2004). As with all predators, migratory seabird survival and 

population persistence often link strongly to prey availability throughout their migratory 

cycle, with declines in prey availability resulting from human activity or environmental 

changes implicated in seabird declines (Sydeman et al. 2017, Grémillet et al. 2018). Prey 

species such as small pelagic fish may respond to human pressure or environmental change 

via changes in their distribution, movement patterns, phenology, spawning location, and 

abundances (Kanamori et al. 2019, Santora et al. 2020, Sydeman et al. 2020, Fernandes et al. 

2020). Given that the movement and distribution patterns of prey influence those of their 

predators (Wisz et al. 2013, Furey et al. 2018), changes to prey availability could induce 

changes in predator foraging space use (Fauchald et al. 2011, Ratcliffe et al. 2021). As such, 

explicitly considering the spatial-temporal distribution of prey availability could enhance 
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ABMTs such as protected area networks for highly mobile/migratory predators, including 

seabirds. 

Here, I present a framework to predict and forecast potential seabird foraging spaces 

to aid in their identification for management. I begin by identifying aspects of prey fish 

availability that act as key components of seabird foraging spaces. Focusing on widely 

available tools, I then discuss modelling, forecasting, and analysing the spatial-temporal 

trends in foraging spaces, and discuss applying predicted foraging spaces to adaptive ABMT 

processes that can be used in conjunction with other management measures to reduce 

negative human impacts on seabirds throughout their migratory cycle. 

 

4.2: The framework 

Short-term spatial-temporal variability and longer-term shifts in space use challenge the 

development of ABMTs that capture foraging spaces used by seabirds throughout their 

migratory cycle. Novel climates (Veloz et al. 2012) present unique challenges to creating 

spatial management measures that are ‘future-proofed’ to changing prey and predator 

distributions. 

Although several studies seek to elucidate seabird distributions based on 

oceanographic factors, this approach may be problematic for several reasons. First, because 

seabird distributions are likely driven by environmental factors that differ from their prey 

(Figure 4.1), environmental covariates may not be a good predictor of predator distributions. 

For example, Aragón et al. (2018) found that prey abundance distributions played a more 

significant role in the distribution of merlin (Falco columbarius) (a terrestrial raptor) than 

environmental covariates. Afán et al. (2021) demonstrated that chlorophyll concentrations, 

typically used as a proxy of prey for seabirds and other marine predators, is not necessarily a 

good predictor of Balearic shearwater (Puffinus mauretanicus) foraging areas, and Kane et al. 
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(2020) found chlorophyll concentrations were associated with Manx shearwater (Puffinus 

puffinus) at sea distributions in some colonies but not others. Second, the modelled statistical 

relationship of prey such as fish to covariates may vary over time and space. For example, 

Roberts et al. (2019) reported statistical relationships for seven commercial fish species in the 

South Atlantic Bight changed between phases of the North Atlantic Oscillation (NAO), and 

Muhling et al. (2020) found that relationships for Pacific sardine (Sardinops sagax) and 

northern anchovy (Engraulis mordax) in the California Current System altered with the 

occurrence of marine heatwaves. 

 
Figure 4.1: The distribution of a predator is determined in part by the geographical location 

of its niche, which is comprised of abiotic and biotic factors, summarised here with examples 

of key drivers. Prey distribution is a significant component of prey availability. As with 

predators, prey distributions are governed by geospatial location and accessibility of the 

abiotic and biotic factors that make up its niche. Biotic and abiotic factors that govern the 

niche of a predator and prey may be entirely different (e.g. wind for the predator, salinity for 

the prey) or similar in type but quality (e.g. substrate for fish prey may refer to the 

availability of sandy seafloor, whereas for a seabird predator to availability of rocky 

outcrops). The biotic and abiotic factors that make up a niche may vary with phenology or 

migration stage/location for migratory species. 
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The framework provides guidance for predicting and forecasting potential prey 

availability to equip decision-makers with the knowledge they need to create ecologically 

relevant and adaptive ABMTs. The framework has three components: (1) determining prey 

availability, (2) modelling, forecasting, and trend analysis, and (3) applications for ABMTs 

(Figure 4.2). The framework focuses only on foraging space use (i.e. does not consider 

seabird spaces whose primary use is unrelated to prey, such as rafting (Carter et al. 2016), 

moulting space (Petersen et al. 2008), or movement/migration pathways). Additionally, we 

do not consider the impact of seabird predation on local prey patch characteristics, the 

impacts of which vary between season and population (Gaston et al. 2007, Weber et al. 

2021). 
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Figure 4.2: The framework involves three stages covering prey availability (identifying 

seabird movement patterns and seabird prey/potential prey), modelling (predicting and 

forecasting prey availability, iteration and model re-evaluation, trend analyses, and 

identifying seabird foraging spaces), and adaptive management decision making. The 

elements in the modelling section are further broken down in Figures 4.6 (predicting and 

forecasting prey availability), 4.7 (Trend analyses), 4.8 (identifying seabird foraging spaces), 

and 4.10 (Iteration and model re-evaluation). All stages require iteration and feedback to (1) 

ensure both models and management are using the best and most recent available 

information possible and (2) to learn from, adapt, alter, and improve the process. 
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4.3.1: Prey availability 

Optimal foraging underlies resource tracking – how individuals move in response to 

spatially-temporally dynamic prey (Abrahms et al. 2021), with choice of foraging space 

based on the seabird’s ability to maximise energy intake and fitness. Although co-occurrence 

of predator and prey is a prerequisite to successful foraging, numerous studies identify prey 

availability as the primary driver of seabird foraging movements, migration movements, and 

distributions (Benoit-Bird et al. 2013, Waggitt et al. 2018, Hentati‐Sundberg et al. 2021). 

Varying from species to species, prey availability is multifaceted, with prey spatial location 

and prey patch characteristics such as abundance, density, and prevalence as key elements of 

availability (Thiers et al. 2014, Boyd et al. 2015, Waggitt et al. 2018) (Figure 4.3). Seabirds 

trade-off each facet of prey availability to varying degrees depending on the conditions they 

face (Boyd et al. 2015, Amélineau et al. 2018), with populations of the same species or, in the 

case of differential migration/movement patterns, individuals of the same population 

potentially using different foraging spaces with very different returns on investment (Thiebot 

et al. 2013, Fayet et al. 2017). 
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Figure 4.3: Prey availability is comprised of multiple facets. Facets can vary over space and 

time and interact to make prey more or less available for a seabird. Facets may relate 

directly to the prey (e.g. prey abundance/density, the seabird (e.g. morphology) or to external 

factors (e.g. competition). Prey availability may be comprised of more or different facets than 

illustrated here. 

 

 The abundance and distributions of seabird prey fish species typically tie closely 

to oceanographic conditions, with spatial-temporal dynamics arising from fluctuations in both 

ocean climate and climate change. For example, changes in the positioning of dynamic 

features that typically aggregate prey such as fronts, thermocline, or currents may redistribute 

prey further away from breeding grounds and/or into deeper waters (Durant et al. 2007, Péron 

et al. 2012), and more general trends in key oceanographic conditions such as temperature 

may result in a more wide-scale redistribution in response to natural fluctuations in 

oceanographic conditions (Fisher et al. 2008) or due to climate change (Schickele et al. 

2021). In some cases, prey spatial patterns of migrations or aggregation formation for key life 

stages such as spawning may remain, though timings may vary (Davoren 2013, Murphy et al. 

2018). Human fishing pressure may also impact prey species distributions by inducing 
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phenotypic or genotypic changes (Coetzee et al. 2008, Hsieh et al. 2010, Frank et al. 2018) 

and alter local and regional abundances (Grémillet et al. 2018). The conditions determining 

prey distributions, patch characteristics, and threats may vary over seabird migration routes 

(Figure 4.4). The distributional response of seabirds to changing prey availability varies 

among species and populations (Box 1). 

 

 

Figure 4.4: Conceptual diagram showing the movement of a hypothetical seabird with 

differential (sex-based) summer migration and foraging space use. Foraging movements 

during the breeding season are bidirectional (parents making to-and-fro movements between 

the breeding site and prey – light green arrow and box), in contrast to unidirectional summer 

(blue), winter (purple), and breeding migrations (dark green). At each foraging space, prey 

distributions and patch characteristics may be driven by different biotic and abiotic factors 

and may be influenced by different threats (indicated in red).  

 



121 
 

 

4.3.1.1: Identifying seabird movement patterns 

Seabird morphology and behaviours – particularly flight and fishing ability – can place some 

hard limitations on prey accessibility (Barrett & Krasnov 1996, Verberk et al. 2020). Both 

Box 1: Seabird responses to changing prey availability. 

The distributional response of seabirds to changing prey availability likely varies among 

species and populations. For example, common guillemots (Uria aalge) delay breeding in 

response to late arrival of their key prey (Regular et al. 2008). Responding to fluctuating 

conditions, Cory’s shearwaters (Calonectris borealis) switch foraging space in response 

to North Atlantic Oscillation (NAO)-driven changes to their prey (Avalos et al. 2017) 

during the breeding season whereas Peruvian boobies (Sula variegata) forage further 

when fishing removes more local prey patches (Bertrand et al. 2012). Outside the 

breeding season, common guillemots undertake dives that exceed their theoretical 

sustainable energy limits during late winters to access prey (Burke & Montevecchi 2018). 

Gentoo penguins (Pygoscelis papua) now use foraging spaces further from their resident 

colonies in response to changes in the distribution of their key prey (Ratcliffe et al. 2021), 

while Thin-billed prions (Pachyptila belcheri) and Wilson’s storm-petrels (Oceanites 

oceanicus) shifted winter foraging movements polewards and northwards respectively 

(Quillfeldt et al. 2010). However, not all species or populations can avoid a spatial-

temporal mismatch with changing prey availability. In the Barents Sea, for example, 

surface-feeding kittiwakes (Rissa tridactyla) have suffered much more from declines in 

prey than the pursuit diving common guillemot or Atlantic puffin (Fratercula arctica), 

with colonies at the edge of prey distributions fairing much worse than those located 

nearer more persistent prey patches (Barrett & Krasnov 1996). 
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activities are energetically costly, with bird adaptations working to minimise or trade-off the 

costs of accessing prey.  

The movements and migratory patterns of seabirds vary greatly (Table 4.1), with 

morphological adaptations in conjunction with environmental conditions that make long 

distances more efficient in some years and less so in others. For example, favourable winds 

may enable travel to more distant foraging spaces in some years by reducing the energetic 

cost of flight (Afán et al. 2021). In addition, different populations of the same species may 

vary in movement (Weimerskirch et al. 2017, Fayet et al. 2017), and differential migration - 

most commonly based on age or sex – may occur, resulting in different sub-groups in a 

population using entirely different spaces, or use of the same space at different times (Briedis 

& Bauer 2018). Regardless of distance potential, both long-distance and short-distance 

migrators may find their movements more constrained during some parts of their annual 

cycle than others. Most notably, the breeding season ties them to a terrestrial-based breeding 

site. During this period, seabirds exhibit central place foraging strategies, where they must 

complete to-and-from movements between their nest and foraging space in sufficient time 

and with adequate prey supply to ensure the survival of chicks and themselves (Weber et al. 

2021). Although species vary in their energetic requirements for survival and breeding 

success (Hentati‐Sundberg et al. 2021), the increase in energetic demands during the breeding 

season means the profitability of a foraging space with the same level of prey availability 

may be greater outside the breeding season than inside. 

In terms of fishing, seabirds can be broadly categorised as surface feeders, plunge 

divers, and pursuit divers, with each mechanism placing different depth limitations on prey 

accessibility (Table 4.1). Pursuit divers, which actively pursue their prey underwater, can 

reach considerable depths, with the deepest dive recorded from emperor penguins 

(Aptenodytes forsteri) (565 meters) (Wienecke et al. 2007). However, most pursuit divers 
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apparently never reach such depths. For example, studies report diving depths up to ~68 

meters for sooty shearwaters (Puffinus griseus) (Shaffer et al. 2006) and up to 180 meters for 

common guillemots (Uria aalge) (Piatt & Nettleship 1985). Plunge divers, such as Cabot’s 

tern (Thalasseus acuflavidus) and northern gannets (Morus bassanus), have been recorded at 

depths of up to two and 34 meters, respectively (Brierley & Fernandes 2001, Tavares et al. 

2017). Although generally not efficient swimmers, some plunge divers include an active 

swimming phase (Cox et al. 2016). Surface feeders, whether foraging while flying or 

swimming (e.g. fairy prions Pachyptila turtur), typically target prey at or near the sea surface. 

Data sources 

Seabird tracking data can provide high-resolution population-specific details on migration 

patterns and foraging movements during the breeding seasons and, depending on the tracking 

device, diving depths at specific foraging spaces (Chimienti et al. 2017). To account for 

differential migration or foraging strategies, ideally tracking data would be demographically 

representative (e.g. male and female; adults, immature, and juvenile) and cover the entire 

annual cycle of the birds. Furthermore, data from multiple years would help elucidate 

changing spatial-temporal patterns or variations associated with different environmental 

conditions. However, ethical, economic, and practical considerations limit the feasibility of 

gathering tracking data (Bernard et al. 2021), limiting tracking information on population-

specific movements. High-resolution, population-specific data used in conjunction with (or 

replaced by) more generalised data sources may prove useful in elucidating movement and 

depth limitations. These sources could include tracking data from other seabird populations, 

observations, range maps, and foraging radii for the breeding season (Grecian et al. 2012, 

Critchley et al. 2020). Regardless of data source, in the absence of compelling population-

level data demonstrating the existence (or lack thereof) of differential migration and foraging 

strategies, I advise caution in assuming that demographically restricted data represents the 
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seabird population as a whole, and that data collected in the breeding season applies to the 

non-breeding season and vice versa. Movement, range, and diving data may reside in 

accessible databases such as Movebank (Wikelski et al. 2021) or the Seabird Tracking 

Database (Birdlife International 2021b), as well as in private collections such as those held by 

academics, government departments, NGOs, and peer-reviewed and grey literature. I also 

note alternative observation data sources exist, including bycatch location information 

(Lewison et al. 2014). 
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Table 4.1: Examples of the movements and diets of seabirds from different orders and families obtained from peer-reviewed publications and 

seabird databases. 

Family Scientific 

name 

Common 

name 

Biogeographic 

Realm  

Foraging 

style 

Foraging 

trip 

movement 

from 

colony 

during 

breeding 

season 

Movement 

outside 

breeding 

season 

Diving 

depth 

Primary 

prey group 

References 

Spheniscidae Aptenodytes 

forsteri 

Emperor 

penguin 

Southern Ocean Pursuit 

diving 

565 km 

(females 

during 

incubation) 

 

125km 

(males 

during 

chick 

rearing) 

Juveniles: 2579 

± 2385 km 

565 m Pelagic fish, 

cephalopods, 

krill 

Wienecke & 

Robertson 

1997, 

Wienecke et 

al. 2007, 

Thiebot et 

al. 2013, 

Birdlife 

International 

2021a 

Procellariidae Ardenna 

grisea 

Sooty 

sheerwater 

NE Atlantic, 

Mediterranean, 

Mid-tropical 

North Pacific 

Ocean, South-east 

Pacific, Tropical 

W Atlantic, Mid-

South Tropical 

Pacific, Offshore 

Pursuit 

diving 

393.0 ± 

22.1 km 

64,037 ± 9,779 

km 

68.2 m Pelagic fish 

and 

cephalopods 

Shaffer et 

al. 2006, 

Bonnet-

Lebrun et al. 

2020, 

Birdlife 

International 

2021a 
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& NW North 

Atlantic, Offshore 

Indian Ocean, 

Argentina, Chile, 

S Africa 

Diomedeidae Diomedea 

dabbenena 

Tristan 

Albatross 

Offshore Indian 

Ocean, Offshore 

South Atlantic, 

Southern Africa 

Surface 

feeder 

(suspected) 

Avg. 940 

km during 

incubation, 

avg. 380 

km during 

chick-

rearing 

5000 km  Unknow. 

Assumed 

to be 

upper 

surface 

waters. 

Pelagic fish 

and 

cephalopods 

Birdlife 

International 

2004, 

2021a, Bond 

et al. 2021 

Hydrobatidae Hydrobates 

pelagicus 

European 

storm 

petrel 

NE Atlantic, 

Arctic Europe, 

Mediterranean, 

offshore North 

Atlantic, Offshore 

South Atlantic, 

Tropical East 

Atlantic, Southern 

Africa 

Surface 

feeder 

387 km >10,000 km 5.6 m Pelagic fish, 

cephalopods, 

crustaceans 

Wernham et 

al. 2002, 

Albores‐

Barajas et 

al. 2011, 

Birdlife 

International 

2021a, 

Bolton 2021 

 

Oceanitidae Oceanites 

oceanicus 

Wilson’s 

storm 

petrel 

NE Atlantic, SE 

Pacific, Tropical 

West Atlantic, 

Tropical Indo-

Pacific and 

Coastal Indian, 

Sub-tropical 

Australia and 

Surface 

feeder 

Est. 500 

km 

Unknown, but 

thought to be 

>1,000 km 

(probably 

much greater) 

<1 m Pelagic fish, 

crustaceans 

Croxall et 

al. 1988, 

Gladbach et 

al. 2007, 

Birdlife 

International 

2021a 
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Coral Sea, Mid- 

South Tropical 

Pacific, Tasman 

Sea into SW 

Pacific, Offshore 

Indian Ocean, 

Offshore South 

Atlantic, Offshore 

mid-eastern 

Pacific, Tropical 

East Atlantic, 

Argentina, Chile, 

Southern 

Australia, 

Southern Africa, 

New Zealand, 

Southern Ocean  

Alcidae Uria aalge Common 

guillemot 

NE Atlantic, 

Arctic 

Europe, North 

Pacific, Tropical 

West Atlantic, 

Offshore North 

Atlantic, Offshore 

West Pacific 

Pursuit 

diving 

100 km 1,200 km 180 m Pelagic fish Piatt & 

Nettleship 

1985, 

Davoren & 

Anderson 

2003, 

McFarlane 

Tranquilla 

et al. 2014, 

Birdlife 

International 

2021a 
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Laridae Sterna 

paradisaea 

Arctic tern Artic Europe, 

Arctic, Southern 

Ocean 

Surface 

feeder 

30 km 70,900 km 

(59,500–

81,600 km) 

0.5 m Pelagic fish, 

crustaceans 

Egevang et 

al. 2010, 

Thaxter et 

al. 2012, 

Birdlife 

International 

2021a 

Pelecanidae Pelecanus 

thagus 

Peruvian 

pelican 

Southeast Pacific, 

Tropical Eastern 

Pacific, Chile 

Plunge 

diving and 

surface 

feeding 

83 km Unknown  2 m Pelagic fish Zavalaga et 

al. 2011, 

Birdlife 

International 

2021a 

Sulidae Morus 

bassanus 

Northern 

gannet 

NE Atlantic, 

Arctic Europe, 

Mediterranean, 

North Atlantic 

boreal and sub-

Arctic from 

Canada to 

Greenland Sea, 

Tropical West 

Atlantic, Offshore 

North Atlantic, 

Offshore South 

Atlantic 

 Plunge 

diving 

590 km   33,600 km 34 m Pelagic fish Brierley & 

Fernandes 

2001, 

Thaxter et 

al. 2012, 

Garthe et al. 

2016, 

Birdlife 

International 

2021a 

Anatidae Polysticta 

stelleri 

Steller’s 

Eider 

Arctic, North 

Pacific 

Surface 

feeder, 

Pursuit 

diving 

Coastally 

restricted. 

Often 

breeds 

several km 

>5,000 km 6.8 m Molluscs, 

crustaceans, 

other 

invertebrates 

Petersen et 

al. 2008, 

Heggøy et 

al. 2019, 

Birdlife 
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inland and 

forages in 

fresh, 

saline, or 

brackish 

water, as 

well as in 

tidal flats  

International 

2021a 
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4.3.1.2: Identifying prey/potential prey. 

Effective modelling of prey availability requires knowledge of which prey species to model. 

Some seabirds may target a few ‘preferred prey’ species (specialists), in contrast to others 

that may target multiple prey species more opportunistically (generalists). For example, 

whereas fishes primarily comprise the diets of greater crested terns (Thalasseus bergii) in the 

Western Cape, South Africa during breeding, the prey came from at least 47 different 

families (Gaglio et al. 2018). On the other end of the scale, red-legged kittiwake (Rissa 

brevirostris) in the Bering Sea feed almost exclusively on lanternfish (Myctophidae) 

(Kokubun et al. 2015). Furthermore, seabird diets may vary among populations, with 

ontogeny, over migratory stage, and breeding status (Karnovsky et al. 2008, Campioni et al. 

2016, Paiva et al. 2016, Botha & Pistorius 2018) (Figure 4.5). Although all seabirds can 

engage in prey switching, they typically prefer higher quality prey than alternative sources. 

As such, prey switching typically occurs with reduced prey availability. Prey switching has 

been implicated in the declining condition of individual seabirds and populations (Grémillet 

et al. 2008, Divoky et al. 2015, Reynolds et al. 2019).  
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Figure 4.5: A particular prey species may be targeted in one or several spatially discrete 

foraging spaces used throughout the migration cycle. In this conceptual diagram, females 

exploit two prey species – prey ‘A’ during the breeding season (light green) and prey ‘C’ at 

spatially separate summer (blue) and winter (purple) foraging spaces. In contrast, males 

exploit three prey species (prey ‘A’ during the breeding season (light green), prey ‘B’ in their 

summer (blue) foraging space, and prey ‘C’ in their winter (purple) foraging space). 

 

Data sources 

Obtaining population-specific prey data can be challenging, particularly outside of the 

seabird’s breeding season. Combining data from multiple sources may help infer prey or 

potential prey throughout the bird’s migration or possible demographic variation in prey 

species. Alongside peer-review publications, grey literature, and privately-held databases, 

several direct and indirect sources can offer dietary data, including stomach sampling of live 

or dead birds, excrement and pellet sampling, eDNA sampling (direct, e.g. from faeces and 

indirect, e.g. from passive sampling at known foraging hotspots/with tracking data), and 

observations and photo-sampling (Barrett et al. 2007, Gaglio et al. 2018, Cavallo et al. 2020, 

Bessey et al. 2021). Although they cannot provide the same level of detail, stable isotope and 

fatty acid analysis can help determine the tropic level of prey and, when used in conjunction 



132 
 

with other information sources, including potential prey ranges and seabird tracking, can help 

to infer prey species (Paiva et al. 2016, Zango et al. 2019).  

 

4.3.2: Modelling 

Distribution models are a family of quantitative tools that use species occurrence records with 

abiotic and biotic data to predict characteristics such as probability of occurrence or 

abundance in geographical space of single species (species distribution models) or 

communities (community distribution models) (Guisan et al. 2017, Norberg et al. 2019). 

Distribution models can predict three key attributes of seabird prey availability – longitudinal 

and latitudinal (x, y) distribution of prey patches, vertical distribution (z) of prey patches, and 

a measure of prey patch characteristics. Combining model predictions with seabird movement 

patterns can identify historic and forecast future potential geographic location foraging 

spaces, and assess trends in the spatial-temporal variability of prey availability. Together, 

these outputs can assist decision-makers in prioritising when and where best to implement 
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ABMTs, as well as inform types of management actions. Box 4.2 provides a glossary of key 

modelling terms. 

 

Box 4.2: Glossary of modelling terms 

Community distribution model (CDM): Statistical models or the amalgamation of 

multiple SDMs to predict the geographic distribution of communities. 

Covariates: The biotic or abiotic factors included in a distribution model to predict 

species (SDM) or community (CDM) distribution. 

Distribution model predictions: Prediction of the geographic distributions of a 

species/community across the same time and space as used to create the distribution 

model. 

Distribution model forecasts: Prediction of the geographic distributions of a 

species/community at a future point in time. 

Hindcast: Prediction of the geographic distribution a species/community in the past. 

Historical covariates do not necessarily cover the same temporal extent as species data 

used to create the underlying distribution model.  

Resolution: The smallest distance (spatial resolution) or period (temporal resolution) 

between two measurements. Finer-scale resolutions capture more detail than coarser-

scale resolutions.  

Spatial extent: The area (longitude, latitude, depth) boundaries that encompass the area of 

interest. 

Species distribution model (SDM): Statistical models that predict the geographic 

distribution of a single species. 
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4.3.2.1: Predicting and forecasting prey availability 

Multiple distribution models that can be used to predict prey availability exist, including 

regression-based techniques (e.g. Multivariate Adaptive Regression Splines -MARS, 

Generalized Linear Model - GLM), machine learning (e.g. Maximum Entropy – Maxent, 

Gaussian processes - GP), and mechanistic models (e.g. Global Repositioning Dynamics of 

Diadromous fish Distribution – GR3D) (Rougier et al. 2014, Golding & Purse 2016, Guisan 

et al. 2017). Models can be run alone, or multiple models can be run together to produce 

averaged predictions (ensemble modelling) (Hao et al. 2020). Choice of distribution model(s) 

depends on several factors, including types and quality of data available, model assumptions, 

and modelling objective. Several existing publications compare and contrast the various 

distribution modelling options available and best practices (Elith et al. 2006, Franklin 2010, 

Evans et al. 2015, Guillera-Arroita et al. 2015), discuss community modelling (Ferrier & 

Guisan 2006, Nieto-Lugilde et al. 2018, Norberg et al. 2019), and assess the quality and 

suitability of model and data options (Sofaer et al. 2019). 

Box 4.2: Glossary of modelling terms (cont.) 

Species presence/absence data: Data listing the date/time and location where a species has 

been observed (presence) or where it has not been observed despite survey effort at that 

location (absence). 

Temporal extent: The duration or range of the period of interest (e.g., the years 1998 – 

2020 or the months January to March). 

Trend analysis: The assessment and quantification of changes in patterns over time. Also 

known as time-series analysis.  
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 At a minimum, modelling prey availability requires (1) data on the prey species 

(presence or presence/absence records with date and location of observation) and (2) abiotic 

and biotic covariates that cover the spatial-temporal extent of the species data and area where 

distribution predictions are required if it extends beyond the species observations (see 

Petitpierre et al. 2017 and Werkowska et al. 2017 for discussion on model transferability). 

However, certain data attributes could result in better model predictions (Table 4.2). For 

example, prey species data containing abundance/density information allows models to 

predict prey patch characteristics such as density that may be important to seabirds (Franklin 

2010). Demographic data may prove useful where the prey species exhibits ontogenetic 

habitat shifts for more targeted distribution modelling (Vasconcelos et al. 2014). Distribution 

models can include physiological information, potentially combined with demographic data 

(Evans et al. 2015). Samples from multiple months over many years can help ascertain model 

transferability over time and if and when the statistical species relationship to modelled 

covariates changes or fluctuates (Radosavljevic & Anderson 2014, Roberts et al. 2019, 

Muhling et al. 2020). Sampling depth information can be used in conjunction with depth-

stratified covariate (predictor) datasets such as those derived from ocean models to link 

samples to more proximal covariate values and offer depth-stratified predictions (Andrews et 

al. 2020). The spatial and temporal resolution of covariates should, as far as possible, reflect 

the dynamics of the covariate processes, the spatial-temporal ecology of the species being 

modelled and scales of predator-prey interactions, and the predictive skill of the model 

(Fauchald et al. 2000, Mannocci et al. 2017, Manzoor et al. 2018), which likely includes both 

short-term and long-term climatological conditions (Brodie et al. 2021). This information is 

particularly important for highly mobile and migratory prey whose distributions can change 

rapidly with changing conditions. 

 Forecasting prey availability requires covariates to be forecastable at the desired 

spatial resolution (e.g. 1 km2 vs 10 km2) and temporal resolution (e.g. one week vs one 
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month) (Jacox et al. 2020, Brodie et al. 2021). Regular forecasting (i.e. making predictions 

into the future as and when temporally novel forecasted covariates become available) (Figure 

4.6) could create opportunities for adaptive and dynamic management that responds rapidly 

to variations in the spatial-temporal distributions of potential seabird foraging spaces (Dietze 

et al. 2018). The temporal scale at which forecasts should be made will be dictated somewhat 

by the temporal availability of the covariate data, though ideally should be at a scale that is 

actionable by management. In the absence of forecastable covariates, model outputs are 

restricted to predicting contemporary and historic prey availability/distributions (i.e. 

temporally matches the covariate data used to generate the distribution model; Figure 4.6). 

Uncertainty that arises throughout the modelling, prediction, and forecasting process should 

be quantified and reported (Box 3).  

 

Figure 4.6: Predicting and forecasting prey availability requires (1) the construction of a 

validated distribution model, which can then be used to make predictions (i.e. using novel 

albeit historic covariate data) or forecasts (e.g. using covariate forecasts) where available 

(2). Both the initial distribution model and future update outputs should include spatial 

predictions, with uncertainty in those predictions/forecasts quantified where possible for 

incorporation into an adaptive management process. Novel prey availability 

forecasts/predictions should be generated as and when novel covariate forecasts/updated 

predictions become available and rapidly fed into the adaptive management process for 

application on the ground. 
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Box 3: Uncertainty 

All models carry some level of uncertainty. Identifying and quantifying uncertainty is 

important for improving models and for decision makers to accurately assess the quality 

of the model output, as well as potential outcomes of actions they may implement and 

risks of inaction based on those outputs (Beale & Lennon 2012, Sofaer et al. 2019). 

Uncertainty may arise from numerous sources such as foraging radius estimates used to 

determine the maximum distance seabirds travel during the breeding season, in the 

covariates used to model prey availability, seabird use of foraging spaces identified by the 

process, and choice of distribution model. Forecasting introduces additional sources of 

uncertainty including those arising from the underlying algorithms, processing errors, the 

initial conditions and data input into the model, how parameters change and interact in the 

model, and the drivers that create change, and sensitivity of the system to change (Dietze 

2017). Forecast skill may also deteriorate with lead time adding a temporal element to 

uncertainty, though as with other sources of uncertainty can be improved with model 

development (Meehl et al. 2014, Stern & Davidson 2015). Accounting for uncertainty 

throughout the modelling and forecasting process is important to identify where 

improvements can be made and where models foraging space predictions may be 

particularly reliable/unreliable (Sofaer et al. 2019, White et al. 2019). Furthermore, key 

sources of uncertainty may also be targeted as areas for additional or improved empirical 

data collection. 
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Table 4.2: Key considerations for species and covariate (predictor) data for predicting prey availability. Better Solutions allow more detailed 

prey availability predictions to be run than good solutions. 

Consideration Good Solution Better Solution 

Prey species data Sampling type Presence/presence absence Abundance/density  

Sampling location Longitude and latitude location of sampling Longitude, latitude, and depth location of 

sampling 

Temporal resolution Seasonal covering a few years Multiple months over many years spanning 

different ‘ocean climates’, particularly for 

highly mobile/migratory prey species 

Demographic data No demographic information on prey sampled Age or sex of the prey sampled 

Physiological 

information 

No physiological information on prey species Physiological information on prey species 

available 

Covariates 

(predictor) 

variables 

Spatial-temporal 

attributes 

Extent covers the time and location over 

which prey species data were acquired (and 

the area/time where/when distribution 

predictions are desired if outside the extent of 

the species data). Spatial and/or temporal 

resolution may be coarse 

The spatial and temporal resolution of the data 

match the dynamics in the ecology of the prey 

and covariates themselves, with the extent 

offering sufficient spatial-temporal coverage 

of the species data (and any area/time outside 

of the species data that distribution predictions 

are required). 

Depth dimensions Values available at a single depth Values available at multiple depths 

Forecastability Cannot currently be forecasted Can be forecast at temporal scales relevant 

management and the ecology of the prey 

species 
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4.3.2.2: Trend analyses 

Trend analyses (analysis of spatial patterns over time) of the predictions and forecasts 

produced by distribution models can be used to provide temporal information of the changing 

state of predicted prey availability for adaptive management planning (sensu Walters 1986) 

(Figure 4.7). Trends may reveal, among other attributes, areas where prey patches persist (or 

are forecast to persist), over time, where patch characteristics fluctuate with oceanographic 

conditions, or where patches show a declining/increasing trend. Trend analysis requires 

predictions or forecasts from multiple periods (e.g. the same month over multiple years), and 

can be run at multiple temporal scales, with the minimum scale being that of the underlying 

prediction. For example, if a prediction is made monthly, inter-month and inter-annual 

temporal trends can be analysed. Several options exist for analysing trends in predicted 

distributions and patch characteristics available. For example, emerging hotspot analyses 

(ESRI 2020) can reveal spatial-temporal trends in predicted habitat suitability (Andrews et al. 

in review) and density (Young et al. 2020). Mann-Kendall trend statistics (Kendall & 

Gibbons 1990) can be used in conjunction with landscape metrics to assess trends in spatial 

attributes of prey patches (Hesselbarth et al. 2019), including temporal changes in movement 

patterns of highly mobile and migratory species in response to fluctuations in conditions as 

well as longer-term trends. Although, to the best of my knowledge, no tool for analysing 

patches in three dimensions exists, depth-specific information can still be garnered (e.g. by 

analysing predicted distributions and/or abundances on depth layers provided by ocean 

models (Andrews et al. in review).  
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Figure 4.7: Trend analyses such as Mann-Kendal trend statistics and emerging hotspot 

analysis can be used to detect spatial-temporal changes in key attributes of prey availability 

which should be fed into an adaptive management process. Trends should be re-analysed as 

and when new prey availability predictions become available and fed into the adaptive 

management process. 

 

4.3.2.3: Identifying seabird foraging spaces 

To provide guidance on potential seabird foraging spaces, predicted or forecasted prey 

availability must be used in conjunction with seabird movement information (Figure 4.8).  

 

Figure 4.8: Potential seabird foraging spaces are identified by refining prey availability 

predictions/forecasts with seabird movement data. Seabird foraging space identification 

should occur as and when new/updated seabird movement and prey availability 

predictions/forecasts are available, with updates rapidly fed into the management process for 

adaptive ABMT implementation. 
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Specifically, refinement of prey availability into potential foraging spaces should consider 

three characteristics (1) seabird ranges (movement across longitudinal and latitude), (2) the 

depth seabirds can reach, and (3) prey patch characteristic metrics (e.g. predicted abundance, 

probability of presence) and spatial location (i.e. the distribution). Ideally, all three attributes 

would be used to identify potential foraging spaces. However, I note that using seabird range 

movements with either depth or prey patch characteristics can still provide useful information 

on prey availability necessary for adaptive management planning around potential seabird 

foraging spaces (Figure 4.9). In the absence of seabird depth information, I still encourage 

generating predictions, forecasts, and trend analysis on the depth distribution of prey for two 

reasons (1) seabird depth data may become available later, in which case historic predictions 

can be used to create more refined trend analyses, and (2) depth distribution predictions and 

trends provide insights into the spatial ecology of the prey species, which may assist current 

or future management decisions. Uncertainty surrounding seabird range and depth 

information should be characterised and reported where possible. 



142 
 

 
Figure 4.9: Models of prey availability can be refined to indicate potential foraging spaces 

based on seabird horizontal movements, depth capabilities, and prey patch characteristics 

such as abundance or probability of occurrence. As illustrated in this conceptual diagram of 

seabird foraging movements during the breeding season, the level of refinement depends on 

the combination of attributes used. In A, foraging spaces are defined based on foraging 

radius estimates only, excluding (red cross) only one of the four potential prey patches. In B, 

adding depth limit estimates, refining which prey patches are most likely to be used as 

foraging spaces. In C, including the abundance of prey (assuming that, all things being 

equal, seabirds will preferentially exploit the prey patch with the highest abundance) further 

refines foraging space identification. In D, abundance information remains, but depth limit 

estimates are not available. The uncertainty produced by the various combination of 

attributes should be weighed up when applying predicted foraging spaces to management. 
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Seabird tracking data and at-sea observations can provide insights into the spatial 

response of seabirds to predicted and forecasted changing prey availability. For example, 

despite clear links between prey density or abundance at large spatial scales and seabird 

population persistence and fitness (Cury et al. 2011, Barbraud et al. 2018), the minimal level 

of density or abundance required for seabirds to consider exploiting that prey patch is less 

clear. More directly, tracking and at-sea observations of seabirds can provide precise 

information to identify likely foraging spaces that seabirds from specific populations will 

exploit than those identified from more general range or foraging radii estimates.  

 

4.3.2.4: Iteration and model re-evaluation 

Distribution models are built on species data and covariates that are mostly using data from 

the past or having only one time period (i.e. a snapshot). Resulting predictions projected into 

the past, present, or future geographic space, assumes a species relationship with modelled 

covariates remains constant throughout its range and over time (Trainor & Schmitz 2014). 

Relying on fixed models could be problematic if the prey’s statistical relationship to 

modelled covariates varies and/or if the “rules” for species assemblies and/or interactions 

change (Hof et al. 2012, Brown & Carnaval 2019). Furthermore, distribution models that 

perform well on historic data do not necessarily forecast well (Becker et al. 2019). Instead, a 

model process that iteratively assimilates new data sources, assesses whether the model 

remains fit for purpose (i.e. reflects how the modelled species is currently reacting to current 

conditions), and reassesses model performance based on novel data sources may more 

accurately reflect the dynamic nature of prey availability. Dietze et al. (2018) and White et al. 

(2019) offered best practices for iterative ecological forecasting, and Dietze et al. (2021) 

offered guidance on output and metadata standards.  
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 Model iteration (Figure 4.10) should primarily occur for one of three reasons: (1) 

temporally novel prey data becomes available, (2) temporally novel prey and covariate data 

spanning the same timeframe becomes available, or (3) a novel covariate becomes available. 

To ensure that the model and outputs are still fit for purpose, temporally novel prey data 

should be used to validate any forecasts/predictions previously produced that overlap with the 

timeframe of the new prey data. Poor validation results may indicate that the distribution 

model needs to be revisited or that the modelled species-environment relationship is not 

static. If models are still fit for purpose, the prey data should be incorporated into the model 

for future predictions/forecasts. Where temporally novel prey and covariate data spanning the 

same timeframe becomes available, the underlying model should be rebuilt and validated to 

incorporate the novel data. Any previous prey availability predictions, forecasts (now 

hindcasts), and trend analyses should be regenerated for continuity and comparability 

between model outputs. 

 Similarly, introducing novel covariates may result in better models, and thus 

better predictions/forecasts of prey availability, make little difference, or reduce the model’s 

skill. New models should be built to include the new covariate, validated, and assessed 

against the existing model. If the model is improved with the new covariate, the new model 

should replace the existing model. Again, any previously generated predictions, forecasts 

(now hindcasts), and trend analyses should be regenerated. 
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Figure 4.10: Model iteration & re-evaluation should occur when (1) temporally novel prey 

data becomes available, (2) temporally novel prey and covariate data become available, and 

(3) a novel covariate data source becomes available.  

 

4.3.3: Area-based management tool application 

Area-based management tools (ABMTs) apply management measures to a specific area to 

achieve desired goals or objectives. ABMTs encompass a highly diverse group of strategies 

that can be spatially and temporally static (e.g. an area subject to permanent fishery closure) 

or dynamic (e.g. an area may only be closed to fisheries at certain times) and may or may not 

be sectoral specific (e.g. fishery gear restrictions). ABMTs have been implemented in areas 

around seabird colonies to reduce negative interactions with fisheries, including time-area 

closures in South Africa for African penguins (Spheniscus demersus) (Sherley et al. 2018). 

More recently, MPAs and MPANs are increasingly gaining traction as effective management 

tools to minimise human impacts on biodiversity (Ortuño Crespo et al. 2020) (Box 4). The 
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long-term conservation of highly mobile and migratory species requires the incorporation of 

spatial-temporal dynamics throughout their life cycle (Runge et al. 2016), and ecologically 

relevant MPANs composed of static (i.e. traditional MPAs) and/or dynamic areas (i.e. varies 

in time and/or space) (D’Aloia et al. 2019, Dunn et al. 2019, Ortuño Crespo et al. 2020) offer 

the potential to reduce current and emerging human interactions with seabirds and their prey 

at their various foraging spaces. I note that any given prey species patch is likely to be 

utilised by other marine predators (McGowan et al. 2013, Davies et al. 2021). As such, 

MPANs established for the conservation of foraging spaces identified for one seabird 

population may have biodiversity benefits beyond the population or species of seabird 

targeted for protection. 

Forecasting and assessing trends in the characteristics of potential seabird foraging 

spaces (e.g. spatial patterns, abundance or probability of presence) provides key information 

that decision-makers can use to design and maintain ecologically relevant MPANs that pro-

actively reduce manageable risks to seabirds. For example, fisheries management can help 

ensure sufficient prey availability in the region, whereas restricting fishing activity at key 

foraging spaces can buffer against more localised depletion that may place particular pressure 

on seabird populations and reduce the chance of negative interactions such as bycatch 

(Bertrand et al. 2012, Dias 2017, Sherley et al. 2018). Indeed, failure to protect the most 

‘important’ foraging spaces (e.g. those with high prey availability) to avoid conflict with 

human activity and, as a result favour less ‘important’ foraging spaces (e.g. those with low 

prey availability) for protection will likely yield suboptimal benefits for the seabirds and 

reduce cost-efficiency (McGowan et al. 2013). Furthermore, information derived from 

models and forecasts of foraging spaces can assist in identifying those populations at greater 

risk. For example, seabirds that forage at the edge of prey’s distribution ranges may 

encounter lower prey concentrations and be more susceptible to changing oceanographic 
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conditions than those located in the centre of the prey’s distributional range. This effect may 

be particularly pronounced at the trailing edge of the prey’s range or in locations with 

reduced prey habitat quality (Robinson et al. 2015, Waldock et al. 2019). 
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Box 4: MPA Networks 

Marine protected areas (MPAs) are a type of ABMT designed to meet objectives related to 

the conservation of biodiversity (Day et al. 2019). The extent to which MPAs can assist in 

achieving conservation objectives depends on a number of factors including their location, 

what activities they restrict and enforcement of the rules, and consideration of the ecology of 

the species, habitats, or ecosystems they aim to assist in their design (Edgar et al. 2014). For 

example, while fisheries management tools aimed at reducing fishing pressure on essential 

prey may help ensure prey is regionally abundant, MPAs and other ABMTs can specifically 

buffer against depletion at key foraging spaces (Bertrand et al. 2012, Barbraud et al. 2018, 

Dahood et al. 2020). 

MPAs are typically placed inside exclusive economic zones (EEZs), though awareness of the 

need for placement in areas beyond national jurisdiction (ABNJ) (Ortuño Crespo et al. 

2020). MPAs in both EEZs and ABNJs could prove beneficial for a wide range of migratory 

species whose movements may take them into the EEZs of different jurisdictions and into the 

high seas.  

The use of MPAs for migratory species has been criticized for being too small relative to the 

home range (Botsford et al. 2003). Furthermore, the spatial scale of migratory species 

distributions may make MPAs – and particularly MPAs that prohibit extraction - that cover 

their entire range politically unpalatable (Hooker et al. 2011). For this reason, large scale 

MPAs largely occur in the more remote areas of the ocean where human use is fairly low 

(Leenhardt et al. 2013). Like their smaller-scale counterparts, large MPAs are not necessarily 

in the places needed to ensure species or habitat conservation objectives are reached 

(Stevenson et al. 2020). 

Since migratory and other highly mobile species typically only use a portion of their 

potential range during any given stage in their annual cycle (Merkel et al. 2021), rather than 

attempting to implement large-scale MPAs, MPA Networks - “a collection of individual 

MPAs or reserves operating cooperatively and synergistically, at various spatial scales and 

with a range of protection levels that are designed to meet objectives that a single reserve 

cannot achieve” may provide sufficient protection (IUCN World Commission on Protected 

Areas 2008). In particular, networks composed of static (i.e. traditional MPAs) and/or 

dynamic (i.e. varies in time and/or space) areas targeted to manage human activity at 

ecologically relevant spatial and temporal scales may prove valuable (D’Aloia et al. 2019, 

Dunn et al. 2019).  
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Modelled outputs can also help guide decisions on human activities and whether they 

should be allowed within an MPANs for seabirds. For example, a proposed tidal energy 

installation in a foraging space may currently lie below the depth that seabirds typically dive 

to; however, if prey distribution trends into deeper depths towards the installation, the risk of 

seabird-installation interaction increases as the birds follow their prey. Alternatively, the 

installation may influence prey population characteristics important for prey availability 

(Scott et al. 2014). Similarly, changes in prey availability may result in predator 

redistributions into fishing areas, creating conflict between seabird and fisheries for prey and 

potentially increasing the risk of seabird bycatch mortality (Hobday et al. 2015, Ratcliffe et 

al. 2021) unless effectively managed. Managers already utilise forecasts of species 

distributions to pro-actively manage fisheries to reduce bycatch of several species, including 

tuna and sea turtles (Hobday & Hartmann 2006, Howell et al. 2015).  

Whether an activity can be managed dynamically or not depends partly on the nature 

of the activity and the spatial-temporal dynamics of prey and seabirds. For example, 

restricting fishing activities from just one particular locale while seabirds exploit that space 

may prove sufficient. In contrast, activities that fundamentally alter features that create prey 

spawning aggregations require more permanent restrictions. Equally important, while more 

static approaches may be suitable for foraging spaces that exhibit spatial stability across 

varying ocean conditions (e.g. Sherley et al. 2018), MPAs that remain fixed in space may not 

prove effective for foraging spaces that spatially fluctuate in response to cyclical phases in 

oceanographic conditions (for example) or are shifting in response to climate change, even if 

the management of activities within include a temporal component (e.g. fishing excluded 

during the months when seabirds exploit the space) (Figure 4.11).  

 Managers face several challenges in implementing ABMTs for seabirds. For example, 

competition with human users, particularly for existing or future industrial uses (e.g. fishing, 
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oil and gas) for space, may make their designation politically unpalatable (Jones et al. 2016). 

More specific to MPANs, the designation of areas typically occurs on an ad-hoc basis rather 

than as a single effort to build a connected network (Roff 2014). Fragmented planning may 

arise from the planning process (e.g. designation on individual areas occurs as and when 

sufficient scientific evidence and political backing aligns), or due to the involvement of 

different management bodies (e.g. from different jurisdictions, cover different ecological 

realms), each with different priorities and different capabilities (Giakoumi et al. 2018). 

Regardless of the cause, an ad-hoc approach may result in a network that does not cover the 

full migratory cycle of seabirds, even if the data are available to make a network possible. 

Nevertheless, lack of ability to create a fully connected network should not hamper 

efforts to implement individual ABMTs in areas that have been identified as important. 

Efforts to implement adaptive management measures may be hampered if predictions or 

forecasts cannot be produced and distributed to decision-makers and then integrated into 

management practice on a timely basis. This may be a particularly acute problem for highly 

dynamic ABMTs. Management bodies may need to implement new processes to ensure the 

regular production and integration of outputs (Welch et al. 2018). Other challenges relate to 

monitoring and enforcement capabilities and engagement of stakeholders in the planning 

process (De Santo, 2018). It is important to note that the use of MPANs and other ABMTs 

does not negate the need for other management measures, such as fisheries management to 

manage prey extraction over the wider region e.g. biomass cut-off, or bycatch reduction 

measures e.g. changing hook type on long-lines (Cury et al. 2011, Hobday et al. 2015, Koehn 

et al. 2021). 
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Figure 4.11: Ecologically coherent MPANs for migratory species should encompass the 

foraging spaces used throughout the migratory cycle and account for potential shifts in 

foraging spaces. In this conceptual diagram, the summer foraging space (left blue) used by 

males may vary spatially depending on prevailing oceanographic conditions (e.g. further 

west in warm (W) years than in cold (C) years) (A) or are shifting northwest wards (T1 – T3) 

with climate change (B). In both cases, decision-makers need to ensure the MPA at those 

migration stages are spatially (and potentially temporally) dynamic.  

 

4.4: Conclusion 

Although we lack the comprehensive knowledge needed to know precisely how species will 

respond to changing ocean conditions, in an era of biodiversity decline as a direct result of 

human activities (Halpern et al. 2015) and where nations strive to expand area-based 

management of the ocean (G7 2021), the importance of using the best available knowledge to 

identify areas that could be important for population persistence has never been greater 

(Schmitz et al. 2015, Queirós et al. 2016). I present a conceptual framework to help 

researchers and decision-makers identify potential foraging spaces for seabirds for inclusion 

in ABMTs such as MPANs and identify patterns and trends that may alter the spatial and 

temporal distribution of those foraging spaces. Crucially this framework enables the 

integration of new data that can support adaptive management processes. 
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The framework can be used with seabird and prey data varying in quality and quantity 

and use existing distribution models to forecast potential foraging spaces and analyse spatial 

and temporal trends important for designing and adapting MPANs to the changing spatial 

needs of species. Nevertheless, our framework offers a starting point. I support calls to 

develop automated dynamic and iterative forecasting tools (Dietze et al. 2018, White et al. 

2019). In particular, I encourage the development of iterative tools that incorporate 

community dynamics and key species interactions, such as predator-prey interactions that 

shape spatial-temporal dynamics of marine species and population persistence (Pedersen et 

al. 2017). I also recognise the significant effort and logistical challenges in acquiring seabird 

movement and prey data for such models. I suggest that new data acquisition should focus on 

threatened, data-poor seabird species inhabiting poorly surveyed regions (Mott & Clarke 

2018, Bernard et al. 2021) and their prey. I also encourage researchers and other data-

collection agents to embrace the open data movement and share available data in 

discoverable and accessible repositories. Finally, I call upon decision-makers to embrace 

uncertainty, adaptive tools, and management frameworks to create rapid measures for the 

conservation of biodiversity with the best available information, rather than wait for complete 

knowledge that will never come. 
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Chapter 5: Summary 

Shaped by biotic and abiotic factors, adaptation and evolution, the abundance, distributions, 

and very existences of species have waxed and waned through millennia (Peterson & 

Lieberman 2012), but only in the last three centuries has one species has emerged as a 

dominant threat to biodiversity on a global scale (Vitousek 1997, Waters et al. 2016). As 

unabated human exploitation and alteration of the World continue to impact biodiversity 

negatively and, by extension, humans, so do calls to halt damaging activities and restore 

species, communities, and ecosystems (Secretariat of the Convention on Biological Diversity 

2020, WWF 2020, World Economic Forum 2021). 

Although science alone cannot solve the biodiversity crisis, it can provide vital 

knowledge that can inform the development, implementation, and maintenance of effective 

solutions. To ensure ecological relevancy, area-based management tools (ABMTs) that seek 

to manage human activities in geographic spaces require quantifiable measurements on 

species distributions and their responses to changing biotic and abiotic conditions. However, 

the logistical and financial complications of monitoring and surveying in the ocean challenge 

efforts to obtain direct observations of marine species distributions (Costello et al. 2010). The 

spatial ecology of migratory species and other highly mobile species further complicates the 

situation. Where one migratory species occurs today may differ greatly from where it will 

occur next month, and where it occurs in one month may differ from where it will occur in 

that same month the following year. For pelagic species, such spatial-temporal variations may 

occur over horizontal (longitude, latitude) and vertical (depth) axes. Furthermore, with 

species interacting and co-depending on each other to varying degrees, the spatial-temporal 

response of one species may directly or indirectly influence the spatial-temporal dynamics of 

another species significantly (Rayfield et al. 2009, Furey et al. 2018).  
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My thesis sought to (1) determine the intra-annual (average monthly) distribution of a 

keystone pelagic fish (capelin) in Atlantic Canada across horizontal (longitude and latitude) 

and vertical (depth) axes, (2) quantify the stability of the predicted fishes’ distributions across 

varying ocean climates (e.g. phases of the NAO) and over time across the three spatial axes, 

and (3) provide guidance for explicitly incorporating predicted prey distributions into 

processes for determining and managing the foraging spaces of top predators (seabirds). 

Briefly, I: 

1) Documented substantial differences in modelled probabilities of presence across 

horizontal (longitude and latitude) and vertical (depth) axes from one monthly-model 

to the next. Differences included expansion and contractions and shifts in the 

northern, southern, western, and eastern edges of predicted ranges. In addition, by 

using individual monthly models, I revealed variation in the statistical species-

environment relationship of capelin to modelled covariates. Of particular note was the 

changing importance of temperature, which due to the ectothermic nature of many 

marine species and their tendency to reside in temperature close to their upper thermal 

limit (Pinsky et al. 2019), is typically seen as the primary driver of marine species 

distributions. In this study, the April and May models listed temperature as the least 

important modelled covariate. 

2) Determined broad similarity in modelled distribution patterns between different ocean 

climates on a month-by-month basis, as represented by positive and negative phases 

of the North Atlantic Oscillation, and over the 17-year study period in which I 

modelled predictions as a whole (1998 – 2014). In agreement with other studies that 

explored shifts in species distributions, changes in modelled patterns primarily 

resulted from expansion and contraction of presence patches over longitude and 

latitude, and to a lesser extent, depth. Furthermore, in six out of the ten months I 
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modelled, the predicted habitat suitability scores tended to decline over the 17-year 

study period. These declines occurred across all depth layers.  

3) Proposed a framework for modelling and forecasting the spatial-temporal dynamics of 

prey availability with the purpose of identifying potential seabird foraging spaces. The 

framework encompasses three broad steps for understanding aspects of (i) seabird and 

prey ecology related to prey availability, (ii) modelling, forecasting, and evaluating 

foraging spaces, and (iii) applying potential foraging spaces to adaptive decision-

making processes. I highlight the importance of considering the different conditions 

faced by seabirds and their prey, how physiological and behavioural constraints can 

influence the availability of prey, and how prey availability can change over space 

and time. To allow this framework to be operationalised, I designed it to take 

advantage of existing tools and predator and prey data of varying quality (e.g. 

foraging radius of seabirds).  

Ecological research often focuses on understanding, quantifying, and predicting species 

distributions (Ebach 2015). With climate and other human-driven changes, this focus is 

arguably more important now than at any other time in scientific history. Ecological niche 

theory, and in particular Hutchinsonian niche theory, underlies the study of species 

distributions. This concept contrasts the fundamental niche – the suite of abiotic conditions 

that allow for a species to persist (the n-dimensional hypervolume), and the realised niche, 

which tempers the fundamental niche with biotic conditions with positive and negative 

interactions with other species (Hutchinson 1957). The fundamental niche can exist in 

environmental space or geographic space, but because the realised niche relies on the location 

of interacting species, it can only occur in geographic space (Colwell & Rangel 2009). 

Together with movement/dispersal potential (Soberón 2010), the realised niche determines 

the geographic distribution of a species.  
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Species distribution modelling, which projects species realised niches across 

geographic space, is a relatively young field, particularly in its application to the marine 

environment (Guisan et al. 2017, Robinson et al. 2017). Although some distribution models 

seek to explicitly incorporate dispersal (Monsimet et al. 2020) and biotic interactions 

(Norberg et al. 2019), most distribution models focus on abiotic determinants of distributions, 

primarily because abiotic covariate data are more readily available than biotic or dispersal 

data (Elith & Leathwick 2009). However, in recent decades, observed and modelled 

oceanographic covariate data from subsurface waters have become available (England & Oke 

2002, Assis et al. 2018), and crucially at ecologically relevant temporal scales (Becker et al. 

2016, Mannocci et al. 2017). My thesis forms part of a growing body of research harnessing 

the availability of modelled oceanographic data to understand and predict the spatial-

temporal dynamics of highly mobile species across three-dimensional ocean space and 

incorporate species interactions into processes that identify potential candidates for ABMTs 

such as marine protected areas that seek to manage human activities that degrade species, 

communities, and ecosystems. This work is also timely, with the launch of the UN Decade of 

Ocean Science for Sustainable Development (Ocean Decade) highlighting a greater need for 

modelling changes, making predictions, interdependence and connectivity between 

ecosystems, observation and monitoring, and open data, among others (Claudet et al. 2020). 

With prey availability playing a key role in the movement and distributions of predators 

(Wisz et al. 2013, Furey et al. 2018, Ratcliffe et al. 2021), increasing knowledge of biotic 

factors - specifically those relating to prey availability – and understanding their role in 

predator space choice is an essential step for the development of distribution modelling and 

by extension for providing robust information for ABMT development. However, several 

challenges remain in incorporating prey availability into distribution modelling. Perhaps most 

important for migratory species modelling under changing conditions, distribution models 
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(including community distribution models) typically take a static perspective, assuming 

unchanging species relationships to covariates over space and time (Trainor & Schmitz 

2014). Food-web theory makes similar assumptions,  typically assuming fixed predator-prey 

interactions across space and time (e.g. a puffin will always eat capelin, regardless of the 

location or timing of the puffin within its migratory cycle) (Cohen et al. 2003, Blanchet et al. 

2020, but see Koen-Alonso (2007)). However, this static perspective does not play out in 

real-world scenarios. For example, in the case of seabirds, diet may change in response to the 

spatial-temporal dynamics of suitable prey (e.g. migrating prey arriving near a seabird 

colony, with ontogeny (e.g. immature individuals consuming different prey than mature 

individuals), or with spatial location/migratory stage (e.g. wintering location vs summer 

location) (Karnovsky et al. 2008, Kowalczyk et al. 2015, Campioni et al. 2016). 

Nevertheless, researchers increasingly seek to include predator-prey and other trophic 

interactions in ecological models. For example, Gravel et al. (2011) expanded the Theory of 

Island Biogeography to include trophic interactions for metacommunity modelling, with 

improved predictions of species richness. More empirically, Olivier et al. (2019) took 

advantage of long-term surveys to model temporal changes in community composition and 

food-web structure in the German Bight. In terms of distribution modelling, Thorson et al. 

(2016) developed a spatial dynamic factor analysis to model spatial-temporal shifts of 

communities, and Trainor & Schmitz (2014) developed a trophic interaction distribution 

model to explicitly model the accessibility of snowshoe hare (Lepus americanus) to Canada 

lynx (Lynx canadensis). My fourth chapter extends this development with a framework to 

capture the spatial-temporal dynamics of prey, the spatial-temporal dynamics of the predator, 

and the predator’s spatial and/or dietary response to changing prey availability over time and 

space. Future work should continue developing methods to capture the spatial-temporal 
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dynamics of predators and prey, including incorporating iterative frameworks for assimilating 

new knowledge and data.  

Researchers increasingly recognise the interconnected nature of marine species, 

communities, and ecosystems (Carr et al. 2017). In essence, what happens in one location can 

have ramifications elsewhere. As such, managers increasingly recognise the importance of 

developing MPA networks (MPANs) that incorporate ecological spatial connectivity – 

“processes by which genes, organisms [individuals], populations, species, nutrients and/or 

energy move among spatially distinct habitats, populations, communities or ecosystems” 

(Marine Protected Area Federal Advisory Committee 2017) as vital. In the ocean, 

considerable attention has focused on genetic connectivity – the movement of genes among 

subpopulations within a metapopulation, and population connectivity – the movement of 

individuals among spatially discrete subpopulations within a metapopulation, facilitated via 

dispersive propagules such as egg, larvae, spores, and fruits (Gaylord et al. 2006, Planes et al. 

2009, Mari et al. 2020). Migratory connectivity (the geographic linking of individuals or 

populations between different stages of the annual cycle), spatial-temporal connectivity (the 

appearance and disappearance of reachable habitat patches over time), and meta-ecosystem 

connectivity (the flow of matter, energy, and information between different and spatially 

distinct ecosystems) (Loreau et al. 2003, Marra et al. 2010, Martensen et al. 2017) has 

received less attention. Although this thesis contributes to the understanding of migratory and 

spatial-temporal connectivity, I have also considered meta-ecosystem connectivity in a 

collaborative study completed during my PhD (Peller, Andrews et al. 2020) (see Appendix 

D.1 for the abstract). Here, we demonstrated that non-living resource-flows such as algal 

detritus couple temperate coastal benthic ecosystems of different types and that 

connectedness between ecosystems occur at much smaller spatial scales than larval 

connectivity. In light of the domination of connectivity by propagules in the literature, the 
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latter finding is particularly important for the development of ecologically coherent and 

connected MPANs. Equally, the development of MPANs could benefit from considering 

migratory species that can connect, interact, and alter similar and different 

communities/ecosystems over substantially larger scales (Varpe et al. 2005, Kremen et al. 

2007, Semmens et al. 2011). 

Throughout this thesis, I have identified multiple knowledge and methodological gaps 

which, if filled, could improve the modelling of migratory and other highly mobile species 

and provide more robust guidance for ABMT development and management. For example, in 

Chapter Two, I highlighted how species statistical relationships to modelled covariates might 

vary over relatively short timescales. However, if and when statistical relationships may 

change or how rapidly those changes may occur remains unclear. Future work should focus 

on determining when, where, and why fluctuations in statistical relationships may occur. In 

Chapter Three, I highlighted that although existing patch metrics that quantify species 

distributions and patches can provide useful ecological information and reveal changes over 

time, their use is limited to flat, two-dimensional surfaces. To improve outputs for pelagic 

species that occupy three-dimensional space, future work should focus on developing tools 

that incorporate volume into measurement calculations and analysis. In Chapter Four, I 

highlighted that data availability is an important component in developing robust models, and 

how the lack of information on the spatial-temporal dynamics of seabirds and their responses 

to prey availability outside the breeding season in particular hampers efforts to develop 

ecologically relevant ABMTs such as MPANs that consider space use across migratory 

cycles. Future work should include the continued development and maintenance of and 

contribution to accessible data repositories. Such repositories include Movebank (Wikelski et 

al. 2021), which provides movement data on multiple terrestrial and aquatic species, the 

Ocean Biodiversity Information System (OBIS 2018), which provides observational data on 
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marine species, and Mangel (Poisot et al. 2016), which provides ecological interactions data. 

While these and other shortcomings may present scientific uncertainty, they should not be 

used as a justification for failing to act swiftly to adapt, mitigate, or prevent threats to species, 

communities, or ecosystems (the Precautionary Principle (Read & O’Riordan 2017)). Indeed, 

with the accelerating decline of biodiversity and degradation of ecosystems and the services 

they provide, reconciling “the need to know versus the need to act” (Ardron et al. 2008) has 

never been more critical. 
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Appendices 

 

Appendix A: Atlantic Canadian Capelin: A primer 

 

A.1: Forage Fish 

Situated in the middle of the food-web throughout their life-cycle, forage fish transfer energy 

from low-trophic levels (i.e. zooplankton) to higher trophic levels (e.g. predatory fishes, 

seabirds, and mammals) (Cury et al. 2000, Alder et al. 2008). With short lifespans, fast 

growth, and high reproductive rates, oceanic conditions strongly influence forage fish 

abundance. Boom-bust population cycles and redistributions have been linked to large-scale 

climate forcing such as the Atlantic Multidecadal Oscillation and Pacific Decadal Oscillation, 

as well as more general changes to the oceanographic climate and prey availability (Peterson 

& Schwing 2003, Hedd et al. 2006, Ayón et al. 2008, Groger et al. 2010, Buchheister et al. 

2016, Checkley et al. 2017). Whilst forage fish fluctuations in abundance and distributions 

have occurred prior to large-scale industrial fishing (McClatchie et al. 2017), overfishing can 

exacerbate collapses and potentially reduce recovery rates (Coetzee et al. 2008, Essington et 

al. 2015, Greene et al. 2015), with impacts on the wider ecosystem and fisheries that target 

forage fish predators (Pikitch et al. 2012, Koehn et al. 2017) (though see Hilborn et al.( 2017) 

and rebuttal (Pikitch et al. 2018)).  

 

A.2: Capelin in Atlantic Canada 

Atlantic Canadian waters are home to several forage species. Amongst the most wide-ranging 

species is the capelin (Mallotus villosus). Capelin are exclusively found in the northern 

hemisphere, adopting a circumpolar distribution in the Pacific and Arctic Ocean, the Barents, 

White, and Norwegian Seas, and the North Atlantic (Rose 2005). Atlantic Canadian capelin 
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and the neighbouring West Greenland-Barents Sea capelin originated from the Pacific, 

dispersing through the Canadian Arctic around 2 and 1.6 million years ago (Dodson et al. 

2007). Today, four genetically distinct populations exist – two in the Pacific, one around 

West Greenland, and one in the Northeast Atlantic around Atlantic Canada (Præbel et al. 

2008).  

Particularly in Newfoundland and Labrador waters, capelin are regarded as a 

"lynchpin" species for their critical role in what is essentially a wasp-waist ecosystem (Rice 

1995, Bakun 2006, Cowan 2017). Alongside humans, notable predators include Hudson Bay 

beluga whales (Delphinapterus leucas) (Kelley et al. 2010), cod (Gadus morhua) (Rose & 

O’Driscoll 2002), harp seals (Pagophilus groenlandicus) (Sergeant 1973). Genetic analysis 

has revealed at least seven sub-populations of capelin occupy Atlantic Canadian waters 

(Kenchington et al. 2015), though it is unclear to what degree the sub-populations mix 

(Carscadden 1976, DFO 2018b) (but see Nakashima (1992). Atlantic Canadian capelin are 

currently managed as four units, separated into NAFO divisions 2J + 3KL (since 1993), 3NO, 

3Ps, and 4RST (Figure A.1).  
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Figure A.1:Capelin in Atlantic Canadian waters are currently managed as four separate units; 4RST 

(red). 3Ps (blue), 3NO (purple), and 2J3KL (green). 
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A.3: Capelin Ecology 

Capelin is a migratory pelagic species with distributions closely tied to oceanographic 

conditions. Capelin are typically found in waters with salinity ranges between 33 and 35 PSU 

(Practical Salinity Unit) and in temperatures no warmer than six °C (Rose 2005), while a lack 

of antifreeze protein prevents them from surviving waters colder than -1.9 °C (Raymond & 

Hassel 2000). Colder sea temperatures and increasing ice coverage has seen Newfoundland 

and Labrador capelin shift their distributions in large numbers southwards into the Bay of 

Fundy, whilst temperature increases of 2 - 4˚ Celsius are thought to be sufficient to cause 

capelin to shift distributions up to 18˚ latitude north (Dunbar 1983, Rose 2005). Distribution 

shifts in relation to temperature have also been detected in the Barents and Icelandic Seas 

(Pálsson et al. 2012, Stergiou 1991). Capelin in 2J3KL during the fall tend to take on more 

northerly distributions when at higher abundance (Carscadden et al. 2013a, DFO 2018a, 

Buren et al. 2019). 

Capelin are zooplantivores, with the exact species consumed varying depending on 

availability. In spring on the Grand Banks, copepods, juvenile fish (including juvenile 

capelin), and euphausiids form the bulk of adult capelin diets (Gerasimova 1994), whilst the 

diet of capelin in Labrador waters in autumn are dominated by amphipods and copepods 

(Chan & Carscadden 1973, Dalpadado & Mowbray 2013). During the winter months, capelin 

are not thought to feed (Winters 1970). Alongside temperature, the availability of 

zooplankton is strongly linked to growth. For example, warmer conditions with high 

zooplankton biomass, particularly of key prey such as Calanus copepods, appear to promote 

faster growth (Gerasimova 1994, Hedeholm et al. 2012, Obradovich et al. 2014). 

Migration of mature capelin from their wintering grounds primarily located near the 

edge of the continental shelf and the Grand Banks and occasionally deep waters closer to the 

coast (Winters 1970), to inshore areas of Newfoundland and Labrador and to the Southeast 



191 
 

Shoal typically takes place early spring (Carscadden et al. 1989). The exact timing varies 

from one year to the next, though it appears to be primarily regulated by temperature, with 

colder years seeing later spawning (Shackell et al. 1994a, Regular et al. 2009, Murphy et al. 

2021). In NAFO division 3L during the springs of 1985 – 1990, immature capelin were found 

further north than their mature counterparts. However, surveys during the spring of 1991 and 

1992 failed to find any mature capelin in the southern portion of 3L (Shackell et al. 1994b), 

possibly due to a delay in maturation and consequent delay in pre-spawning migration from 

more northern areas to the southern part of 3L resulting from colder sea temperatures. In the 

Gulf of St Lawrence, some capelin are thought to migrate to spawning areas on the Scotian 

Shelf (Kenchington et al. 2015). Alongside migrations towards coastal Newfoundland, Grand 

Banks Capelin also migrate to the Southeast Shoal (Gerasimova 1994). Some capelin are 

known to overwinter inshore, such as in Trinity Bay (Winters 1970).  

Historically, spawning in Newfoundland and Labrador occurred in June and July 

(Carscadden & Nakashima 1997) and in the Gulf of St Lawrence between April and July 

(DFO 2018b). Since the regime shift in the 1990s, Newfoundland and Labrador spawning 

occurred later in July (Murphy et al. 2018b). In some areas, such as in the territory of the 

Southern Inuit of NunatuKavut, capelin spawning appears to be more sporadic (DFO 2018a).   

Capelin are aggregating bottom spawners, selecting both beach and inshore demersal 

areas along the coast of Nunavut, Newfoundland and Labrador, and throughout the Gulf of St 

Lawrence (Nakashima & Wheeler 2002, Lazartigues et al. 2016, McNicholl et al. 2018), as 

well as offshore demersal area on the Southeast Shoal and Western Bank (Carscadden et al. 

1989, Reiss et al. 2000). Generally, capelin at lower latitudes spawn earlier than those at 

higher latitudes (Narayanan et al. 1995) and earlier in the west than the east (Bailey et al. 

1977, DFO 2018b).  
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It is not clear if most capelin are natal spawners, but it has become apparent that capelin 

do not necessarily exhibit site fidelity, with some individuals showing flexibility in choice of 

spawning location (Davoren 2013c, Crook et al. 2017). Capelin appear to exhibit both 

facultative and obligate spawning behaviours. Where a spawning ground is found to be 

unsuitable (e.g. due to temperature), some males may not spawn, whilst others take on 

extensive movements to locate an appropriate site based on temperature (e.g. select for 

deeper water sites in warm-water years), as well as physical characteristics of the substrate 

(Davoren et al. 2007, Davoren 2013c).  Nevertheless, otolith chemistry analysis differs 

between beach and deep-water spawners, suggesting population structure arising from 

different behavioural contingents within Atlantic Canadian capelin (Davoren 2013c, Cayuela 

et al. 2020).  

Once capelin arrives near their spawning grounds, they remain in deep-water (>200 

meters) 'staging areas', where gonadal development is completed. With temperature 

exhibiting a strong positive relationship with gonad development, the length of time spent in 

the staging area can vary (Davoren et al. 2006a). After gonadal development is complete, 

capelin form sex-specific schools. In the case of beach spawners, males move into the 

intertidal area of beaches, whilst females remain in deeper waters until they are ready to 

spawn (Nakashima & Borstad 1997). Both larger males (>17 cm) and larger females (> 15 

cm) tend to arrive at spawning grounds before their smaller counterparts (Vandeperre & 

Methven 2007, Maxner et al. 2016). Males are typically semelparous breeders, typically 

dying shortly after multiple spawning bursts within a short period. Females have a higher 

post-spawning survival rate than males and can spawn for two or more years (Nakashima 

1992, Christiansen et al. 2008).   

There are several notable differences between beach and demersal spawning. Beach 

spawning events are shorter and earlier than those occurring on demersal sites (Penton et al. 
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2012). Spawning on demersal grounds occurs at lower, often more stable temperatures than 

on beaches and typically at higher salinity (Penton et al. 2012, Purchase 2017, DFO 2018b). 

Combined with warmer temperatures, earlier spawning at beaches results in the larvae from 

beach spawners hatching approximately one month earlier than their demersal counterparts 

(Davoren et al. 2014). After hatching, capelin larvae quickly assume shoaling behaviour 

(Morgan et al. 1994) and exhibit diel vertical migration (Frank & Carscadden 1989), though 

they typically remain in the top 20 meters of the ocean where they feed on small zooplankton. 

In some locations, notably in coastal embayment's, larvae may be entrained near their natal 

spawning ground or for up to several months before migrating to nursery areas (Frank & 

Carscadden 1989). Elsewhere larvae may be swept further from their natal spawning grounds 

and eventually becoming entrained elsewhere (Taggart & Leggett 1987). For example, 

capelin larvae are noted to be present in high abundance in the lower St Lawrence estuary 

(Jacquaz et al. 1977, de Lafontaine 1990), the Saguenay Fjord (Sirois et al. 2009, Lazartigues 

et al. 2016), and the Southeast Shoal (Carscadden et al. 1989).  

The offshore banks of 2J3KL appear to be important nursery areas for capelin 

(Gerasimova 1994, Carscadden & Nakashima 1997), as does the lower St Lawrence estuary 

and the mouth of Saguenay Fjord (Bailey et al. 1977, de Lafontaine 1990). Once larvae reach 

the nursery areas and have passed their first winter, they typically undergo metamorphosis 

into the juvenile form (Frank & Leggett 1990). The juvenile capelin remains in mixed-sex 

shoals until they reach sexual maturity (around 2 – 3 years old) (McNicholl et al. 2018). 

Nursery residents on the northern Grand Banks migrate north during the summer and autumn 

(Carscadden et al. 2013a). 
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A.4: 1990s regime shift and capelin 

Following decades of high levels of fishery exploitation, the North Atlantic experienced a 

significant shift in ocean climate in the 1990s, during which sea temperatures and salinity 

dropped significantly (Greene et al. 2008b). Combined with high exploitation levels, this 

regime shift saw several marine species – notably groundfish – decline rapidly in abundance 

across Atlantic Canada's water (Bakanev 1992, Pedersen et al. 2017b). Capelin also 

experienced a decline in abundance, shifted their distribution, and changed migration 

patterns, notably more towards the northern Grand Banks, Flemish Cap, eastern Scotian 

Shelf, and Hudson Bay, as well as into deeper waters, began maturing at younger ages (from 

3 – 4 years old to 2) and smaller sizes, and spawning later  (Frank et al. 1996, 2016, 

Carscadden & Nakashima 1997, Mowbray 2002, Gaston et al. 2003, DFO 2018a b). 

Furthermore, larvae are spawning later, creating a potential mismatch between conditions that 

aid their survival, such as onshore winds (Frank & Lettett 1982, Murphy et al. 2018a). 

Mismatches may also prevalent between spawning timing and prey availability, which is 

mediated by the spring bloom (Buren et al. 2014b, Mullowney et al. 2016).  

Whilst directed fishery pressure is not thought to have been a major factor in these 

changes (Carscadden et al. 2001), there are concerns that current exploitation levels may be 

impacting capelin recovery (WWF Canada 2016). Indeed, whilst similar oceanographic 

conditions were experienced in Icelandic and the Barents Seas in the 1990s, and capelin 

exhibited similar biological responses, their population have subsequently recovered. Atlantic 

Canadian populations have not shown the same level of recovery despite favourable 

oceanographic conditions (Carscadden et al. 2013b, DFO 2018a). The reasons for poor 

recovery are not fully understood but are thought to include timing mismatches between peak 

larval emergence and onshore wind events and the spring bloom – and thus the availability of 

prey - due to changes in sea ice dynamics (Buren et al. 2014).  
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A.5: Capelin fisheries in Atlantic Canada 

During the 1970s, the commercial capelin fishery shifted from a primarily small, domestic 

fishery operating with traps to one accommodating a directed large offshore fishery, 

composed of domestic and foreign fleets. Catches peaked in the late 1970s at 246k tons 

(Carscadden & Nakashima 1997).  Following a rapid decline in stocks likely caused by 

overfishing and poor recruitment, the 3NO offshore fishery closed between 1979 and 1986, 

and reopened between 1987 and 1992 under quota (ICNAF 1979 197, NAFO 1994b). The 

offshore fishery closed again in 1993 and has not reopened. The 3L offshore fishery 

permanently closed in 1979, whilst the 2J3KL continued until 1992.  

With the large offshore foreign fishery in decline, the small inshore fishery of 2J3KL 

and 4RST, which remains today, began primarily targeting roe-bearing capelin for Japanese 

markets. This smaller domestic fishery peaked between 1988 and 1990 at 80k tons, however 

by the early 1990s, landings declined to 30k tons. The decline in inshore landings at this time 

occurred at the same time as a decline in abundance. The inshore fisheries operating in the 

Gulf of St Lawrence and Estuary (4RST) are dominated by catches purse seine, "tuck" seine 

(a type of modified beach seine designed to catch capelin in deeper waters), and trap and weir 

fisheries from the west coast of Newfoundland. The fishery is managed under a Total 

Allowable Catch (TAC). Although capelin are regularly caught as bycatch in shrimp 

fisheries, the catches are not officially counted in the management statistics (DFO 2018c), 

though more recently has been considered in stock assessments (H. Murphy 2021, pers. 

comm) . In 2J3KL, purse and tuck seines also dominate the catch, though traps and beach 

seines are also used and managed under a TAC. Today capelin from 2J3KL and 4RST still go 

to the Japanese roe market, though there is a growing Chinese market for female capelin. 

Males, which were historically dumped or used as fertiliser are now sold to the USA and 

China as feed in marine parks or aquaculture operations (DFO 2018a b). 
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Alongside cultural significance, capelin in Labrador also form part of a subsistence 

food fishery for southern Inuit (WWF Canada 2018). Throughout Newfoundland, Labrador, 

and the Gulf of St Lawrence, capelin also form the basis of a recreational fishery that 

primarily targets beach spawning capelin (DFO 2018c). 
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Appendix B: Appendices for Chapter 2: Modelling the spatial-temporal distributions and 

associated determining factors of a keystone pelagic fish. 

 

B.1: Numerical models and depth- layers used to model and predict probability of 

capelin occurrence.  

The numerical modelling product GLORYS V4.1 is a reanalysis product provided by 

MERCATOR Ocean and made available by the E.U. Copernicus Marine Environment 

Monitoring Service (CMEMS 2018a). GLORYS is based on the NEMO Ocean modelling 

platform. Among others, model configuration includes horizontal pressure gradients 

represented by a free surface formulation which filters out high-frequency gravity waves, 

advection tracers delineated with a total variance diminishing advection scheme, and a 

reanalysis system which uses the LIM2 thermodynamic sea-ice model and driven at the 

surface by the ERA-Interim reanalysis products. For further details, I refer the reader to the 

product sheet available from Copernicus Marine Environment Monitoring Service. The 

performance of previous versions of GLORYS has been tested against in-situ measurements 

from the region and was found to have a good predictive skill (e.g. Wang and Greenan, 2013; 

Murillo et al. 2016). 

The numerical modelling product BIOMER V3.2 is a non-assimilative hindcast 

product provided by MERCATOR Ocean and made available by the E.U. Copernicus Marine 

Environment Monitoring Service (CMEMS 2018b). BIOMER is based on the PISCES 

product, which forms part of the NEMO Ocean modelling platform. Among others, model 

configuration includes atmospheric forcing fields from the ERA-Interim reanalysis product 

and offline forcing of physical processes from NEMO. For further details, I refer the reader to 

the product sheet available from Copernicus Marine Environment Monitoring Service. The 

underlying PISCES product has been used in studies exploring biogeochemical processes in 

the region (e.g. Quéré et al. 2005; Moreau et al. 2016). 
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The GLORYS and BIOMER ocean models are not truly 3-dimensional. Instead, they 

represent the global ocean as a series of depth layers (Table B.2). I used the depth-layer 

closest to the sampling depth to delineate oceanographic conditions at the sampling location. 

For example, if a sample came from a depth of 127 meters, I used conditions from the depth-

layer representing conditions at 133.08 meters as this layer is closer than the one representing 

120 meters (Table B1.1). 

 

Table B1.1: The Minimum Convex Polygon (MCP) encompasses 47 depth layers derived 

from the GLORYS (CMEMS 2018) and BIOMER (CMEMS & Paul 2018) ocean models. 

Depth values have been rounded to two decimal points. 

Layer No Depth (meters) Layer No Depth (meters) 

1 0.51 24 97.04 

2 1.56 25 108.03 

3 2.67 26 120.00 

4 3.86 28 133.08 

5 5.14 29 163.17 

6 6.54 30 180.55 

7 8.09 31 199.79 

8 9.82 32 221.14 

9 11.77 33 244.89 

10 13.99 34 271.36 

11 16.53 35 300.89 

12 19.43 36 333.86 

13 22.76 37 370.69 

14 26.56 38 411.79 

15 30.87 39 457.63 

16 35.74 40 508.64 

17 41.18 41 565.29 

18 47.21 42 628.03 

19 53.85 43 697.26 

20 61.11 44 773.39 

21 69.02 45 856.68 

22 77.61 46 947.45 

23 86.93 47 1045.85 
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B.2: Capelin presence points from the OBIS database. 

The Ocean Biodiversity Information System (OBIS) is an open-access aggregation database 

of global ocean species presence points, crowdsourced from “national projects, programmes, 

institutes or organisations, National Ocean Data Centers or regional or international projects, 

programmes and institutions or organisations that carry out data management functions.” At 

the time of writing (2020), the database contains over 59 million species presence points 

covering over 131,000 species. OBIS is a “living” database with both historical and more 

contemporaneous species observations added by data provides on ad hoc basis. Species data 

is obtained from the OBIS database as a series of presences with associated location 

information. The data providers can include additional information such as the date, the 

age/size of the presences, and abundance, but their inclusion varies from one provider to the 

next. 

I downloaded capelin presence data from the year 1998 to 2015. I removed duplicates 

and presences missing depth/date information, and those for which I could not append 

environmental data. I also removed the year 2015 as there were only ten presences for the 

entire year. To prevent over-sampling cells, I reduced the number of presence points to one 

per spatial-temporal grid cell. A total of 6,350 presence points remained (Table B.2.1, Figure 

B.2.2). 
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Table B.2.1: Number of presences available for modelling per month. Duplicates and points 

missing depth/date/environmental data have been removed, and presences have been reduced 

to one per environmental cell. Note January was not modelled due to the low number of 

years, and February was not modelled due to the low number of presence points. 
 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

1998 0 0 0 36 53 103 20 0 28 53 120 8 

1999 0 0 44 19 45 110 23 0 48 6 91 40 

2000 0 0 40 24 45 96 19 0 51 24 112 54 

2001 0 5 22 31 53 73 13 0 26 17 65 90 

2002 0 0 32 42 59 89 17 0 68 28 48 59 

2003 38 0 22 38 67 97 17 0 17 27 42 69 

2004 73 0 0 29 58 96 25 24 39 15 75 71 

2005 12 4 28 13 39 85 32 45 36 39 94 26 

2006 31 1 46 11 2 103 22 47 33 48 78 47 

2007 0 0 18 27 36 79 58 50 47 24 76 50 

2008 0 0 26 18 54 105 12 54 39 24 92 39 

2009 0 0 10 34 106 43 8 0 40 21 109 24 

2010 0 0 15 18 48 102 25 7 57 48 101 27 

2011 0 0 0 30 71 82 11 7 34 42 72 34 

2012 0 0 0 0 0 0 6 9 39 0 0 0 

2013 0 0 0 0 0 0 25 3 30 3 1 0 

2014 0 0 0 0 0 0 0 6 61 3 0 0 

Total 154 10 303 370 736 1263 333 252 693 422 1176 638 
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Figure B.2.2: The distribution of presence data over depth available for modelling. The 

dashed line indicates the median depth of the study area (~313 meters). Duplicates and 

points missing depth/environmental data have been removed, and presences have been 

reduced to one per environmental cell. Note January was not modelled due to the low number 

of years, and February was not modelled due to the low number of presence points. The 

dashed line indicated the median depth of the seafloor in the study region (~313 meters). 
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B.3: Gear type categories identified in the OBIS metadata. 

 

Table B.3: Gear type information may be provided by data contributors when submitting 

their datasets to the Ocean Biogeographic Information System (OBIS) database. There is no 

reporting standard for gear type and as such, details provided by contributors varied 

between datasets. I did not include gear type in the models due to insufficient gear 

information and concerns that some reporting may have led to incorrect gear type 

classification. The gear type classification presented here is for the ‘cleaned’ presence 

dataset, i.e. the presences that remained after those that lacked oceanographic information at 

depth, were duplicate entries in the OBIS database, or appeared in the same spatial-temporal 

cell were removed. 

Gear Type Frequency 

Bottom trawl “Alfredo-3” 3 

Bottom trawl “Campelen-14” 35 

Bottom trawl “Campelen-1800” 4736 

Bottom trawl “Campelen-21” 31 

Bottom trawl “Cosmos-2600” 32 

Bottom trawl “Western IIA” 675 

Bottom trawl (unknown) 606 

Vertical plankton tow 17 

Not specified 215 
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B.4: Brief background on Maxent. 

Maxent (Phillips et al. 2006) is a widely-used presence-background model based on the 

maximum entropy principle – that subject to prior knowledge, the probability distribution 

which best describes the data is that with maximum entropy (i.e. the least informative 

distribution). By comparing known presences with the background environment, Maxent’s 

output indicates the extent to which the model fits presence data more or less than it would if 

the presences had a uniform distribution. Maxent performs well compared to presence-only 

and the arguably more robust presence-absence based models such as generalised linear 

models (GLMs) and generalised additive models (GAMs), including with small sample sizes 

when regularisation (β) multiplier values are tuned to the model (Elith et al. 2006, Pearson et 

al. 2007). 
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B.5: Selecting the number of background points to use in each monthly model. 

Although as a general rule Maxent performance does not substantially improve with more 

than 10,000 background points, some studies involving large study areas such as ours have 

found using a much larger number of background points that more fully capture the variation 

in conditions across a species range results in better performing models (Guevara et al. 2018). 

To determine the optimal number of background points while still allowing for efficient 

computational processing time, I compared the distribution of each oceanographic variable 

collected from 10,000, 20,000, 50,000, 100,000, and 190,000 randomly generated points from 

three different periods – February 1999, June 2014, and October 2007 (Figures B.5.1, B.5.2, 

and B.5.3). As there was little difference between the distributions, in the interests of 

efficiency, I opted to generate 10,000 background points per model. Only one background 

point per spatial-temporal grid cell was permitted to prevent over-representation of 

oceanographic conditions (Elith et al. 2006). 
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Figure B.5.1: Distribution of each oceanographic variable collected from 10,000, 20,000, 

50,000, 100,000, and 190,000 randomly generated points during February 1992. 
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Figure B.5.2: Distribution of each oceanographic variable collected from 10,000, 20,000, 

50,000, 100,000, and 190,000 randomly generated points during June 2004. 
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Figure B.5.3: Distribution of each oceanographic variable collected from 10,000, 20,000, 

50,000, 100,000, and 190,000 randomly generated points during October 2007.  
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B.6: NAFO division with percentage weighting for background point creation. 

To ensure that I sufficiently captured conditions across the capelin’s range, I also weighted 

points by the number of spatial grid cells represented in each Northwest Atlantic Fisheries 

Organization (NAFO) division and the area of the Hudson Strait represented in the MCP 

(Figure B.6).  

  

Figure B.6: NAFO divisions and percentage of spatial grid cells within each division. Map 

created in ESRI ArcMap 10.5. 
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B.7: Variable Selection: Spearman Correlation and VIF. 

To minimise the impact of collinearity, I selected variables for each monthly model a-priori using Spearman correlation coefficient and variance 

inflation factor (VIF) (Dormann et al. 2013). I removed variables with correlation coefficients above 0.7 (Table B.7.1) and VIF values above five 

(Table B.7.2), giving variable retention preference to oceanographic variables closest to sampling depth as, due to proximity, they likely have a 

more direct impact on species occurrence than more distal values. 

 

Table B.7.1: Spearman correlation coefficients for all variables indicating highly (> 0.7 / < -0.7) and moderately (> 0.5 / < -0.5 correlated 

variables.  

Variable1 Variable2 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

AMO (sampling month) AMO (previous winter) -0.97 1 - - - - - - - - - - 

AMO (sampling month) AMO (previous month) 1 0.85 0.64 0.69 0.82 0.87 0.89 0.94 0.92 0.73 0.94 0.71 

AMO (sampling month) NAO (sampling month) -0.78 -0.85 0.53 - -0.65 - - - - - - - 

AMO (sampling month) NAO (previous winter) -0.54 1 -0.64 - - - - - - - - - 

AMO (sampling month) NAO (previous month) 0.73 1 - - -0.59 -0.62 - 0.57 - -0.54 - - 

AMO (previous winter) AMO (previous month) -0.97 0.85 - - - - - - - - - - 

AMO (previous winter) NAO (sampling month) 0.86 -0.85 - - - - - - - - - - 

AMO (previous winter) NAO (previous winter) - -1 - - - - - - - - - - 

AMO (previous winter) NAO (previous month) -0.55 1 - - - - - - - 0.54 - - 
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AMO (previous month) NAO (sampling month) -0.78 -1 - - 0.5 - - - - - - - 

AMO (previous month) NAO (previous winter) -0.54 -0.85 -0.7 - -0.57 - - - - - - - 

AMO (previous month) NAO (previous month) 0.73 0.85 - - - -0.56 - - - - - - 

NAO (sampling month) NAO (previous winter) 0.55 0.85 - - - - - - - - - - 

NAO (sampling month) NAO (previous month) - -0.85 - - - - 0.55 - - - - - 

NAO (previous winter) NAO (previous month) -0.86 -1 - -0.53 - - - - 0.51 - - - 

Chl (surface) Chl (depth) 0.51 0.5 - - - - - - - - - - 

Chl (surface) Temp (surface) - - - - -0.55 -0.76 -0.69 -0.66 -0.72 -0.77 - - 

Chl (surface) Temp (depth) - - - - - -0.57 - - - -0.54 - - 

Chl (surface) O2 (surface) - - - - 0.52 0.8 0.74 0.68 0.76 0.82 0.52 - 

Chl (surface) O2 (depth) - - - - - - - - - 0.51 - - 

Chl (surface) Salinity (surface) -0.52 - - - - - - - - - - - 

Chl (depth) O2 (depth) 0.66 0.69 0.72 0.76 0.77 0.79 0.72 0.67 0.64 0.67 0.64 0.6 

Chl (depth) Salinity (depth) -0.72 -0.7 -0.67 -0.63 -0.56 -0.62 -0.59 -0.55 -0.56 -0.64 -0.72 0.73 

Mixed Layer Depth Sea Surface Height -0.82 -0.73 -0.71 -0.72 -0.73 -0.74 -0.7 -0.65 -0.71 -0.77 -0.77 -0.78 

Mixed Layer Depth O2 (surface) -0.65 -0.62 -0.61 -0.57 - - - - - - - -0.5 

Mixed Layer Depth Salinity (surface) 0.86 0.76 -0.78 0.81 0.81 0.84 0.75 0.73 0.83 0.86 0.86 0.85 

Mixed Layer Depth Salinity (depth) 0.65 0.57 0.56 0.6 0.57 0.59 0.53 0.5 0.58 0.62 0.64 0.65 

Mixed Layer Depth Bottom depth -0.65 -0.59 -0.59 -0.6 -0.59 -0.61 -0.6 -059 -0.66 -0.67 -0.67 -0.66 
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Sea Surface Height O2 (surface) 0.70 0.79 0.74 0.71 - - - - - - - - 

Sea Surface Height Salinity (surface) -0.95 -0.96 -0.94 -0.93 -0.92 -0.89 -0.88 -0.88 -0.85 -0.9 -0.91 -0.93 

Sea Surface Height Salinity (depth) -0.76 -0.79 -0.75 -0.77 -0.74 -0.7 -0.67 -0.63 -0.6 -0.66 -0.7 -0.74 

Sea Surface Height Bottom depth 0.74 0.78 0.75 0.76 0.75 0.75 0.71 0.70 0.68 0.71 0.73 0.75 

Temp (surface) Temp (depth) 0.89 0.85 0.84 0.86 0.82 0.73 0.63 0.54 0.63 0.71 0.84 0.89 

Temp (surface) O2 (surface) -0.80 -0.74 -0.68 -0.68 -0.84 -0.95 -0.96 -0.97 -0.97 -0.97 -0.94 -0.86 

Temp (surface) O2 (depth) -0.56 -0.53 -0.51 -0.5 - -0.52 -0.54 -0.55 -0.62 -0.66 -0.64 -0.59 

Temp (surface) Salinity (depth) - 0.5 0.5 - - - - - - - - - 

Temp (surface) Bottom depth -0.53 -0.59 -0.56 - - - - - - - - - 

Temp (depth) O2 (surface) -0.76 -0.67 -0.64 -0.69 -0.81 -0.75 -0.65 0.57 -0.65 -0.72 -0.83 -0.84 

Temp (depth) O2 (depth) -0.73 -0.79 -0.78 -0.73 -0.61 -0.5 -0.52 -0.51 -0.55 -0.53 -0.57 -0.66 

Temp (depth) Salinity (depth) 0.58 0.64 0.67 0.6 - - - - - - - - 

Temp (depth) Bottom depth -0.52 -0.58 -0.56 -0.54 - - - - - - - - 

O2 (surface) O2 (depth) 0.63 0.6 0.59 0.59 0.62 0.57 0.59 0.6 0.65 0.7 0.7 0.68 

O2 (surface) Salinity (surface) -0.68 -0.78 -0.79 -0.75 - - - - - - - - 

O2 (surface) Salinity (depth) -0.66 -0.74 -0.73 -0.69 - - - - - - - - 

O2 (surface) Bottom depth 0.66 0.77 0.77 0.73 0.51 - - - - - - 0.5 

O2 (depth) Salinity (depth) -0.75 -0.77 -0.78 -0.77 -0.7 -0.62 - - - - 0.6 -0.68 

O2 (depth) Bottom depth 0.53 0.57 0.57 0.56 - - - - - - - - 
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Salinity (surface) Salinity (depth) 0.78 0.8 0.78 0.81 0.78 0.76 0.73 0.72 0.73 0.74 0.77 0.78 

Salinity (surface) Bottom depth -0.75 -0.77 -0.77 -0.78 -0.79 -0.79 -0.75 -0.77 -0.78 -0.77 -0.79 -0.78 

Salinity (depth) Bottom depth -0.76 -0.77 -0.76 -0.77 -0.76 -0.76 -0.74 -0.72 -0.72 -0.74 -0.75 -0.76 



222 
 

B.7.2: Variables used in final models with VIF scores. Note January and February models were not run due to the low number of presence 

points/sampling years. 

 Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec 

Temp (depth) 2.17 2.64 2.26 1.86 1.74 1.50 1.54 1.54 1.43 1.50 1.60 1.52 

Salinity (depth) 2.55 2.22 1.98 1.56 1.38 1.27 1.33 1.32 1.19 1.27 1.49 1.87 

O2 (depth) 2.46 2.38 2.27 2.09 1.79 1.54 1.52 1.32 1.22 1.54 1.73 2.18 

Chl (surface) 1.74 1.57 1.30 1.09 1.38 1.42 1.21 1.14 1.21 1.42 1.31 1.44 

NAO  

(sample month) 1.32 1.01 1.44 3.30 1.67 

1.18 

2.93 1.38 2.02 

1.18 

1.36 1.84 

NAO  

(previous month) - - 1.43 1.69 4.31 

1.39 

2.50 1.71 1.75 

1.39 

1.21 1.37 

NAO  

(previous winter) 1.32 - 1.52 4.10 3.69 

1.06 

1.64 1.34 1.64 

1.06 

1.07 1.53 

AMO  

(sample month) - - 1.44 2.27 2.51 

1.53 

1.30 1.66 1.20 

1.53 

1.63 1.25 

AMO 

 (previous winter) - - 1.09 1.24 1.16 

1.06 

1.60 1.16 1.73 

1.06 

1.69 1.30 
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B.8: Model performance metrics. 

I used four metrics to quantify the performance of the models (Table B.8). Testing and 

training area under the curve (AUC) scores are derived from receiver operator characteristic 

(ROC) analysis (Equation 1). The AUC is independent of threshold (Phillips et al. 2006), 

indicates the probability that a randomly chosen presence location ranks higher in suitability 

than a randomly chosen background point. Values range from 0 to 1. Values closer to 1 

indicate the discriminatory power is good, whereas values close to and less than 0.5 indicate 

discriminatory power is poor (Fielding & Bell 1997).  

𝐴𝑈𝐶 =  
1

𝑛𝐴 ∗ 𝑛𝑁
 ∑

𝑛𝐴

1

∑ 𝑆(𝑇𝑃, 𝐹𝑃)

𝑛𝑁

1

 

Equation 1: Both the testing and training AUC scores are calculated in the same manner but 

test different subsections of the data (testing and training datasets, respectively). 𝑛𝐴 = 

number of presences; 𝑛𝑁 = number of absences; 𝑇𝑃 = number of true presences predicted by 

the model; 𝐹𝑃 = number of false presences predicted by the model. The value of 𝑆 is 

conditional: If 𝑇𝑃 > 𝐹𝑃, 𝑆 = 1; If 𝑇𝑃 = 𝐹𝑃, 𝑆 = 0.5; If 𝑇𝑃 < 𝐹𝑃, 𝑆 = 0.  (Vida 1993). 

 

The true skill statistic (TSS) is related to the widely used Cohens Kappa statistic which 

indicates the extent to which observed and predicted values are higher than expected by 

chance (Allouche et al. 2006) (Equation 2). Values range from -1 to +1, with scores of +1 

indicating perfect agreement and scores of 0 and less indicating values are no better than 

chance.  
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𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝐴
 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝐴

𝐹𝑃 + 𝑇𝐴
 

 

𝑇𝑆𝑆 = 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 − 1 

Equation 2: TSS if a function of sensitivity (the probability of a model correctly predicting a 

presence) and specificity (the probability of a model correctly predicting an absence). 𝑇𝑃 = 

the number presences accurately predicted; 𝐹𝑃 = the number of presences falsely predicted 

(type 1 error); 𝑇𝐴 = the number of absences accurately predicted; FA = the number of 

absences falsely predicted (type 2 error). 

 

Both the AUC and TSS measures were developed for presence-absence, not presence-

background/presence-only modelling. In presence-absence models, the AUC assesses how 

well the model can discriminate between presences and absences. In presence-background 

models, the AUC uses background points instead of absences which is problematic because 

background points may contain presences and absences. The TSS relies on prevalence which 

can only be accurately estimated with true absence data. Nevertheless, these metrics are 

widely used for models such as Maxent, primarily due to the lack of alternatives (Merow et 

al. 2013). One such alternative, however, is the Continuous Boyce Index (CBI) (Boyce et al. 

2002) (Equation 3), which measures the degree to which model predictions differ from 

random over a moving window. It is independent of threshold and prevalence and is 

considered a robust measurement for presence-background and presence-only models. As 

with the TSS, CBI values range from -1 to +1, with scores of +1 indicating perfect agreement 

and scores of 0 and less indicating values are no better than chance and poor model 

performance.  
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𝑃𝑖 =
𝑝𝑖

∑ 𝑝𝑗
𝑏
𝑗=1

 

𝐸𝑖 =
𝑎𝑖

∑ 𝑎𝑗
𝑏
𝑗=1

 

𝐹𝑖 =  
𝑃𝑖

𝐸𝑖
 

Equation 3: The Continuous Boyce Index. Distribution ranges are subdivided into 𝑏 bins. For 

each bin (𝑖), both the predicted frequency of presence points (𝑃𝑖) and the expected frequency 

of presence points if they were randomly distributed in the window (𝐸𝑖) are calculated, and 

then used to create a predicted-to-expected ratio (𝐹𝑖). 𝑝𝑖 = number of presence points 

predicted to fall into the distribution bin 𝑖; ∑ 𝑝𝑗 = the total number of presence points; 𝑎𝑖 = 

the number of grid cells belonging to distribution class 𝑖; ∑ 𝑎𝑗 = the total number of cells.  

 

The AUC and TSS scores were obtained from the R package Dismo (Hijmans et al. 2017), 

while the CBI was obtained with the R package enmSdm (Smith 2019). For each month, each 

metric was calculated separately for each temporal fold and then averaged to produce average 

predictive performances.  
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Table B.8: Performance metrics for each of the monthly models. The mean represents the 

values obtained for all temporal fold, whereas the minimum and maximum values represent 

the highest and lowest scoring temporal fold. For the TSS and CBI, values range from -1 to 

+1, with scores of +1 indicating perfect agreement, and scores of -1 indicating completely 

imperfect agreement. Scores of 0 indicate values are no better than chance. For the train and 

test AUC, values arrange from 0 – 1 with scores of 1 indicating perfect agreement, and 

scores of 0 completely imperfect agreement. 

    Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

T
ra

in
 

A
U

C
 Mean 0.95 0.95 0.91 0.91 0.93 0.93 0.94 0.92 0.92 0.95 

Max 0.96 0.96 0.93 0.92 0.93 0.94 0.94 0.92 0.93 0.96 

Min 0.94 0.94 0.90 0.91 0.92 0.93 0.94 0.90 0.92 0.95 

T
es

t 

A
U

C
 Mean 0.95 0.93 0.92 0.96 0.92 0.99 0.95 0.89 0.96 0.97 

Max 0.98 0.99 0.98 0.98 0.98 0.87 0.99 0.97 1.00 0.99 

Min 0.87 0.84 0.78 0.94 0.69 0.63 0.74 0.67 0.93 0.93 

T
S

S
 Mean 0.83 0.79 0.75 0.81 0.77 0.74 0.85 0.72 0.87 0.89 

Max 0.94 0.97 0.98 0.85 0.94 0.95 0.93 0.94 1.00 0.96 

Min 0.71 0.53* 0.50* 0.75 0.33** 0.43*** 0.55**** 0.37***** 0.73 0.80 

C
B

I 

Mean 0.99 0.98 1.00 1.00 0.96 0.97 1.00 0.99 1.00 1.00 

Max 1.00 1.00 1.00 1.00 0.99 0.99 1.00 1.00 1.00 1.00 

Min 0.98 0.95 0.99 1.00 0.94 0.90 0.99 0.99 1.00 0.99 

 

* One-fold out of fourteen had a TSS < 0.6 

**   Two folds out of sixteen had a TSS <0.6 

***   Two folds out of eleven had a TSS <0.6 

****   One-fold out of eighteen had a TSS <0.6 

*****   One-fold out of sixteen had a TSS <0.6 
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B.9:  Concatenating depth layers into raster grid for prediction. 

Species distribution models, including Maxent, are operationalised on two-dimensional 

surfaces. To predict the estimated probability of presence across the 2.5D space as a whole 

(i.e. across all depth layers), I concatenated each of the oceanographic variable depth layers 

into a continuous grid, in which each depth layer and its associated environmental values are 

retained. Concatenation is achieved by transforming the coordinates to incorporate a depth 

indicator, and then joining individual layers using shell scripting to create a continuous grid 

(see Bentlage et al. 2013 for full methods). These concatenated grids were used for predicting 

the estimated probability of presence of capelin (Figure B.9). 
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Figure B.9: Example of concatenating multiple depth layers into a continuous grid for 

prediction purposes. In this example, separate temperature depth layers (L1, L2, and L3) for 

July 2004 are concatenated into a continuous ‘temperature grid’. Separate salinity depth 

layers (L1, L2, L3) for July 2004 are concatenated into a continuous ‘salinity grid’. These 

continuous grids are used for prediction. The resulting prediction can then be split back into 

individual depth layers (L1, L2, L3). The year, month, depths, and oceanographic variables 

have been arbitrarily chosen for illustrative purposes only. 

 

  



229 
 

B.10: Variation in environmental correlates. 

The background points provide an overview of environmental conditions across the MCP 

area used in the models (Table B.10). Across all months, median chlorophyll concentration 

values ranged from 0.25 mmol.m-3 (August) to 1.1 mmol.m-3 (May), with the smallest range 

in August (1.65 mmol.m-3) and the largest range in July (4.53 mmol.m-3)). Median dissolved 

oxygen values ranged from 289.81 mmol.m-3 (September) to 321.71 mmol.m-3 (May) 

(smallest range in October (380.98 mmol.m-3), with the largest range in July (446.14 

mmol.m-3)). The median salinity value was lowest in August (33.41 PSU) and highest in 

March (33.71 PSU) (smallest range in December (14.63 PSU), with the largest range in June 

(22.26 PSU)). Temperature ranged from a Median of 27.11 kelvin (March) to 277.67 kelvin 

(August) (smallest range in April (15.63 kelvin), largest range in August (25.88 kelvin)). 

Median AMO values during ‘sampling month’ ranged from 0.09 (April and May) to 0.14 

(March, July, and August), while NAO values ranged from -0.75 (March) to 0.29 (May). The 

NAO median values from the previous month were lowest in July (-0.23) and highest in 

March (0.95). Median AMO winter values ranged from 0.09 (April and May) to 0.14 (March, 

July, and August) while NAO winter values ranged from -0.18 (July, August, September) to 

0.37 (March). Table B.10 shows the maximum, minimum, range, mean, and median values of 

all environmental variables (oceanographic and climate oscillations) from the background 

points used in each of the monthly models.  

Figure B.10 provides a visual representation of the range and distribution of the 

oceanographic variables used in the model (chlorophyll, dissolved oxygen, salinity, and 

temperature) across three months (March, June, and December) in the year 1998 at a single 

depth layer (11.8 meters). 
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Table B.10: Summary data of the environmental correlates associated with the background 

points used in each monthly model. 

 
Chlorophyll Concentration at surface 

(mmol.m-3) 

Dissolved Oxygen at sampling depth 

(mmol.m-3) 

Month Min Max Mean Median Range Min Max Mean Median Range 

3 0.02 2.54 0.72 0.73 2.52 1.01 396.47 313.53 314.48 395.46 

4 0.02 2.85 0.94 0.94 2.83 1.01 405.01 315.08 318.06 403.99 

5 0.09 2.99 0.99 1.1 2.9 1.00 417.36 312.46 321.71 416.36 

6 0.05 3.42 0.73 0.79 3.37 1.00 418.55 305.63 309.86 417.55 

7 0.03 4.56 0.39 0.36 4.53 1.00 447.13 297.81 297.8 446.14 

8 0.03 1.68 0.26 0.25 1.65 0.99 402.95 290.45 290.48 401.96 

9 0.03 2.69 0.29 0.26 2.66 0.99 394.89 287.48 289.81 393.9 

10 0.03 2.37 0.37 0.35 2.34 0.94 381.93 289.12 292.27 380.98 

11 0.04 2.52 0.4 0.36 2.48 0.96 386.5 295.34 300.9 385.53 

12 0.09 2.22 0.39 0.37 2.13 0.95 390.24 301.35 306.65 389.29 

 
Salinity Concentration at sampling depth 

(PSU) 

Temperature at sampling depth 

(kelvin) 

Month Min Max Mean Median Range Min Max Mean Median Range 

3 20.25 
35.6

9 
33.33 33.71 15.44 270.68 286.76 275.05 275.11 16.07 

4 15.92 
35.6

9 
33.3 33.69 19.77 270.99 286.62 275.25 275.39 15.63 

5 14.15 
35.7

6 
33.23 33.55 21.61 270.82 287.69 275.91 276.32 16.87 

6 13.49 
35.7

5 
33.11 33.54 22.26 270.73 291.46 277.06 276.86 20.73 

7 14.46 
35.9

5 
33.04 33.51 21.49 270.38 293.83 278.32 277.21 23.45 

8 16.69 
35.8

4 
32.95 33.41 19.15 270.77 296.66 279.52 277.67 25.88 

9 16.57 36 33.01 33.43 19.44 270.67 296.14 279.3 277.65 25.47 

10 17.97 
35.9

2 
33.02 33.48 17.95 270.72 295.86 278.57 277.54 25.14 

11 19.38 
35.9

3 
33.06 33.48 16.55 270.69 290.06 277.46 277.18 19.37 

12 21.2 
35.8

3 
33.17 33.58 14.63 270.54 289.79 276.48 276.61 19.25 

 AMO from previous winter AMO from sampling month 

Month Min Max Mean Median Range Min Max Mean Median Range 

3 -0.09 0.21 0.11 0.14 0.31 -0.16 0.29 0.11 0.1 0.45 

4 -0.09 0.21 0.06 0.09 0.31 -0.13 0.43 0.1 0.08 0.56 

5 -0.09 0.21 0.07 0.09 0.31 -0.06 0.46 0.13 0.15 0.52 
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6 -0.09 0.21 0.08 0.13 0.31 -0.12 0.49 0.21 0.2 0.61 

7 -0.09 0.21 0.09 0.14 0.31 -0.07 0.49 0.24 0.21 0.55 

8 -0.07 0.21 0.11 0.14 0.28 0.06 0.53 0.28 0.32 0.47 

9 -0.09 0.21 0.08 0.13 0.31 0.06 0.45 0.25 0.24 0.4 

10 -0.09 0.21 0.06 0.1 0.31 -0.04 0.43 0.23 0.24 0.47 

11 -0.09 0.21 0.08 0.1 0.31 -0.07 0.32 0.12 0.14 0.39 

12 -0.09 0.21 0.07 0.1 0.31 -0.13 0.28 0.11 0.17 0.41 

 
 

NAO from previous winter 

 

NAO from sampling month 

Month Min Max Mean Median Range Min Max Mean Median Range 

3 -0.69 1.66 0.35 0.37 2.35 -2.32 1.78 -0.46 -0.75 4.10 

4 -3.03 1.66 0.06 0.12 4.69 -1.29 2.31 0.13 0.27 3.60 

5 -3.03 1.66 0.04 0.12 4.69 -1.33 1.49 0.30 0.29 2.82 

6 -3.03 1.66 0.06 0.03 4.69 -1.25 1.03 -0.15 -0.23 2.28 

7 -3.03 1.66 0.08 -0.18 4.69 -1.05 0.46 -0.07 0.02 1.51 

8 -3.03 1.47 -0.08 -0.18 4.50 -0.97 0.79 -0.20 -0.09 1.76 

9 -3.03 1.66 -0.06 -0.18 4.69 -1.89 1.00 -0.02 0.10 2.89 

10 -3.03 1.66 -0.07 0.12 4.69 -1.89 1.20 -0.33 -0.58 3.09 

11 -3.03 1.66 0.12 0.12 4.69 -1.64 1.57 0.01 0.16 3.21 

12 -3.03 1.66 0.22 0.12 4.69 -3.63 2.60 -0.14 -0.14 6.23 

 NAO from the month previous to sampling      

Month Min Max Mean Median Range 
     

3 -3.98 2.86 0.28 0.95 6.84      
4 -2.32 1.78 0.18 0.58 4.10      
5 -1.29 2.31 0.09 0.27 3.60      
6 -1.33 1.49 0.13 0.27 2.82      
7 -1.25 1.03 -0.22 -0.23 2.28      
8 -1.24 0.40 -0.10 -0.12 1.64      
9 -0.97 0.79 -0.17 -0.21 1.76      
10 -1.89 1.00 -0.22 0.05 2.89      
11 -1.89 1.2 -0.21 -0.08 3.09      
12 -1.64 1.21 0.16 0.28 2.85      
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Figure B.10: Modelled oceanographic conditions at 11.8 meters during March, June, and December 1998. The year, month, and depths have 

been arbitrarily chosen for illustrative purposes only. 
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Appendix C: Appendices for Chapter 3: Influence of the North Atlantic 

Oscillation on the distribution of a keystone pelagic fish 

C.1: Study Region and Study Area 

The broader study region lies in the Northwest Atlantic, broadly covering waters lying up to 

the Canadian Exclusive Economic Zone (24 nautical miles from the low water line) and 

adjacent waters, including those on the Flemish Cap and the French territory of Saint Pierre 

and Miquelon. The study area (where I limit the analysis to) is defined by a minimum convex 

polygon derived from the capelin occurrences I obtained from the OBIS database (Syfert et 

al. 2014, OBIS 2018) (Figure C.1). 
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Figure C.1:  The study area was delineated using a Minimum Convex Polygon (MCP – solid 

line) based on the capelin presence data obtained from OBIS (dots). The map is displayed in 

a Canada Albers Equal Area Conic projection.  
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C.2: Variable selection 

To minimise impacts of collinearity of predictors variables in the models, I selected the 

oceanographic variables temperature, salinity, oxygen from the depth layer closest to the 

sampling depth reported in the OBIS database/at the depth layer the background point was 

generated at, and chlorophyll from the surface a-priori from a larger group of variables. I 

explain the process below. 

For the presence/background points, I extracted chlorophyll, density mixed layer depth, 

oxygen, salinity, sea surface height, temperature, and bottom depth variables from the 

GLORYS and BIOMER ocean models (CMEMS 2018, CMEMS & Paul 2018). Although 

with the notable exception of temperature (Rose 2005), these variables have not been widely 

tested for association with capelin, they are commonly associated with pelagic fish 

distributions (e.g. Becker et al. 2016, Schickele et al. 2020). I extracted both values at the sea 

surface and at sampling depth, except for bottom depth. Sea surface height and density mixed 

layer depth as these variables are single-layer values only. 

To check for collinearity, I used two tests – the Spearman correlation coefficient and the 

variance inflation factor (VIF) (Dormann et al. 2013). I removed variables with a correlation 

coefficient greater than 0. 7 (Table C.2.1) and VIF values above five (Table C.2.2) as they are 

considered to have high collinearity. I gave preference to variables at depth as the direct 

impact of a variable likely diminishes in strength with distance. 
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Table C.2.1: Spearman correlation coefficients for the oceanographic variables indicating 

highly (> 0.7 / < -0.7) and moderately (> 0.5 / < -0.5) correlated variables. For each 

variable, I tested values at the surface (surface), and at sampling depth (depth).  

Variable 1 Variable 2 Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Chlorophyll 

(surface) 

Temperature 

(surface) 

- - -

0.55 

-

0.76 

-

0.69 

-

0.66 

-

0.72 

-

0.77 

- - 

Chlorophyll 

(surface) 

Temperature 

(depth) 

- - - -

0.57 

- - - -

0.54 

- - 

Chlorophyll 

(surface) 

Oxygen 

(surface) 

- - 0.52 0.8 0.74 0.68 0.76 0.82 0.52 - 

Chlorophyll 

(surface) 

Oxygen 

(depth) 

- - - - - - - 0.51 - - 

Chlorophyll 

(depth) 

Oxygen 

(depth) 

0.72 0.76 0.77 0.79 0.72 0.67 0.64 0.67 0.64 0.6 

Chlorophyll 

(depth) 

Salinity 

(depth) 

-

0.67 

-

0.63 

-

0.56 

-

0.62 

-

0.59 

-

0.55 

-

0.56 

-

0.64 

-

0.72 

0.73 

Mixed Layer 

Depth 

Sea Surface 

Height 

-

0.71 

-

0.72 

-

0.73 

-

0.74 

-0.7 -

0.65 

-

0.71 

-

0.77 

-

0.77 

-

0.78 

Mixed Layer 

Depth 

Oxygen 

(surface) 

-

0.61 

-

0.57 

- - - - - - - -0.5 

Mixed Layer 

Depth 

Salinity 

(surface) 

-

0.78 

0.81 0.81 0.84 0.75 0.73 0.83 0.86 0.86 0.85 

Mixed Layer 

Depth 

Salinity 

(depth) 

0.56 0.6 0.57 0.59 0.53 0.5 0.58 0.62 0.64 0.65 

Mixed Layer 

Depth 

Bottom 

depth 

-

0.59 

-0.6 -

0.59 

-

0.61 

-0.6 -059 -

0.66 

-

0.67 

-

0.67 

-

0.66 

Sea Surface 

Height 

Oxygen 

(surface) 

0.74 0.71 - - - - - - - - 

Sea Surface 

Height 

Salinity 

(surface) 

-

0.94 

-

0.93 

-

0.92 

-

0.89 

-

0.88 

-

0.88 

-

0.85 

-0.9 -

0.91 

-

0.93 

Sea Surface 

Height 

Salinity 

(depth) 

-

0.75 

-

0.77 

-

0.74 

-0.7 -

0.67 

-

0.63 

-0.6 -

0.66 

-0.7 -

0.74 

Sea Surface 

Height 

Bottom 

depth 

0.75 0.76 0.75 0.75 0.71 0.70 0.68 0.71 0.73 0.75 

Temperature 

(surface) 

Temperature 

(depth) 

0.84 0.86 0.82 0.73 0.63 0.54 0.63 0.71 0.84 0.89 

Temperature 

(surface) 

Oxygen 

(surface) 

-

0.68 

-

0.68 

-

0.84 

-

0.95 

-

0.96 

-

0.97 

-

0.97 

-

0.97 

-

0.94 

-

0.86 
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Temperature 

(surface) 

Oxygen 

(depth) 

-

0.51 

-0.5 - -

0.52 

-

0.54 

-

0.55 

-

0.62 

-

0.66 

-

0.64 

-

0.59 

Temperature 

(surface) 

Salinity 

(depth) 

0.5 - - - - - - - - - 

Temperature 

(surface) 

Bottom 

depth 

-

0.56 

- - - - - - - - - 

Temperature 

(depth) 

Oxygen 

(surface) 

-

0.64 

-

0.69 

-

0.81 

-

0.75 

-

0.65 

0.57 -

0.65 

-

0.72 

-

0.83 

-

0.84 

Temperature 

(depth) 

Oxygen 

(depth) 

-

0.78 

-

0.73 

-

0.61 

-0.5 -

0.52 

-

0.51 

-

0.55 

-

0.53 

-

0.57 

-

0.66 

Temperature 

(depth) 

Salinity 

(depth) 

0.67 0.6 - - - - - - - - 

Temperature 

(depth) 

Bottom 

depth 

-

0.56 

-

0.54 

- - - - - - - - 

Oxygen 

(surface) 

Oxygen 

(depth) 

0.59 0.59 0.62 0.57 0.59 0.6 0.65 0.7 0.7 0.68 

Oxygen 

(surface) 

Salinity 

(surface) 

-

0.79 

-

0.75 

- - - - - - - - 

Oxygen 

(surface) 

Salinity 

(depth) 

-

0.73 

-

0.69 

- - - - - - - - 

Oxygen 

(surface) 

Bottom 

depth 

0.77 0.73 0.51 - - - - - - 0.5 

Oxygen 

(depth) 

Salinity 

(depth) 

-

0.78 

-

0.77 

-0.7 -

0.62 

- - - - 0.6 -

0.68 

Oxygen 

(depth) 

Bottom 

depth 

0.57 0.56 - - - - - - - - 

Salinity 

(surface) 

Salinity 

(depth) 

0.78 0.81 0.78 0.76 0.73 0.72 0.73 0.74 0.77 0.78 

Salinity 

(surface) 

Bottom 

depth 

-

0.77 

-

0.78 

-

0.79 

-

0.79 

-

0.75 

-

0.77 

-

0.78 

-

0.77 

-

0.79 

-

0.78 

Salinity 

(depth) 

Bottom 

depth 

-

0.76 

-

0.77 

-

0.76 

-

0.76 

-

0.74 

-

0.72 

-

0.72 

-

0.74 

-

0.75 

-

0.76 
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Table C.2.2: VIF Scores for the variables used in the final Maxent models. 

 Mar Apr May Jun Jul Aug Sept Oct Nov Dec 

Temperature (depth) 2.26 1.86 1.74 1.50 1.54 1.54 1.43 1.50 1.60 1.52 

Salinity (depth) 1.98 1.56 1.38 1.27 1.33 1.32 1.19 1.27 1.49 1.87 

Oxygen (depth) 2.27 2.09 1.79 1.54 1.52 1.32 1.22 1.54 1.73 2.18 

Chlorophyll (surface) 1.30 1.09 1.38 1.42 1.21 1.14 1.21 1.42 1.31 1.44 
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C.3: Numerical Model Depth layers 

The numerical ocean modelling products GLORYS V4.1 and BIOMER V3.2 provide global 

oceanographic data across 75 depth levels, 47 of which fall within the study area. Depth 

levels are not evenly spaced, nor do they precisely match the species presence data's sampling 

depth. For each presence point, I appended oceanographic data from the level closest to the 

sampling. For example, if a sample came from a depth of 44 meters, I used conditions from 

the depth-layer representing conditions at 41.18 meters as this layer is closer than the one 

representing 47.21 meters (Table C.3). 

 

Table C.3: The Minimum Convex Polygon (MCP) encompasses 47 depth layers derived from 

the GLORYS (CMEMS 2018a) and BIOMER (CMEMS 2018b) ocean models. Depth values 

are rounded to two decimal points. 

Layer No Depth (meters) Layer No Depth (meters) 

1 0.51 24 97.04 

2 1.56 25 108.03 

3 2.67 26 120.00 

4 3.86 28 133.08 

5 5.14 29 163.17 

6 6.54 30 180.55 

7 8.09 31 199.79 

8 9.82 32 221.14 

9 11.77 33 244.89 

10 13.99 34 271.36 

11 16.53 35 300.89 

12 19.43 36 333.86 

13 22.76 37 370.69 

14 26.56 38 411.79 

15 30.87 39 457.63 

16 35.74 40 508.64 

17 41.18 41 565.29 

18 47.21 42 628.03 

19 53.85 43 697.26 

20 61.11 44 773.39 

21 69.02 45 856.68 

22 77.61 46 947.45 

23 86.93 47 1045.85 
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C.4: North Atlantic Oscillation (NAO) 

The North Atlantic Oscillation is an oscillation in atmospheric surface pressure between the 

Icelandic Low (a semi-permanent low-pressure system between Iceland and southern 

Greenland in the North Atlantic/sub-Arctic) and the Azores High (a semi-permanent high-

pressure system in the sub-tropical Atlantic) (Visbeck et al. 2003).  In the western Atlantic, 

including waters in and around the study region, winter NAO phases influence oceanographic 

conditions throughout the remainder of the year (Petrie 2007, Figure C.4.1)). 

I obtained winter (December to February inclusive) North Atlantic Oscillation values (PC-

based) from the National Center for Atmospheric Research (NCAR), calculated from the 

leading empirical orthogonal function sea level pressure anomalies between 20°-80°N, 90°W-

40 °E (NCAR 2019). I categorised a year as belonging to the positive or negative phase based 

on the winter anomaly values (1981- 2010 standard climatology (WMO 2017) 

(Figure XXX)). Positive years dominate the time series (ten out of the seventeen years) 

(Table C.4).  
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Figure C.4.1: Difference in temperature and salinity between a year which experienced a 

positive winter NAO phase (2000) and a year which experienced a negative winter NAO 

phase (2010) across four depths levels. The year, month, depths, and variables have been 

arbitrarily chosen for illustrative purposes only. Differences are calculated by subtracting 

values in the 2010 from those in 2000. 
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Table C.4: Number of years falling into the NAO winter anomaly positive phase (red) and 

negative phase (blue) and presences per year for each month modelled. Years are only 

counted if there is presence data for those years as I do not consider years for which I have 

no data in the models or analysis. 
 

Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

1998  36 53 103 20  28 53 120 8 

1999 44 19 45 110 23  48 6 91 40 

2000 40 24 45 96 19  51 24 112 54 

2001 22 31 53 73 13  26 17 65 90 

2002 32 42 59 89 17  68 28 48 59 

2003 22 38 67 97 17  17 27 42 69 

2004  29 58 96 25 24 39 15 75 71 

2005 28 13 39 85 32 45 36 39 94 26 

2006 46 11 2 103 22 47 33 48 78 47 

2007 18 27 36 79 58 50 47 24 76 50 

2008 26 18 54 105 12 54 39 24 92 39 

2009 10 34 106 43 8  40 21 109 24 

2010 15 18 48 102 25 7 57 48 101 27 

2011  30 71 82 11 7 34 42 72 34 

2012     6 9 39    

2013     25 3 30 3 1  

2014      6 61 3   

Total Positive 

Years 
7 8 8 8 9 5 10 9 8 8 

Total Negative 

Years 
4 6 6 6 7 5 7 7 7 6 

Total Presences 303 370 736 1263 333 252 693 422 1176 638 
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C.5: Maxent Model 

Overview 

The Maxent species distribution model is a machine learning model that compares 

environmental conditions associated with georeferenced species presences with 

georeferenced points from the wider study area (background points) to predict distributions 

(Phillips et al. 2006). The model is based on the maximum entropy principle—that subject to 

prior knowledge, the probability distribution which best describes the data is that with 

maximum entropy (i.e. the least informative distribution). Maxent is among the most widely 

used species distribution model and is particularly suited to datasets for which true absences 

are not known. It performs well compared to models that can utilise absence data such as 

generalised linear models (GLMs) and generalised additive models (GAMs) (Elith et al. 

2006). Several studies have explored how best to build a Maxent model for users unique 

circumstances. For the interested reader alongside Elith et al. 2006 and Phillips et al. 2006, I 

recommend Merow et al. 2013, Feng et al. 2017, and Phillips et al. 2017 as good entry points. 
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Results 

Overall, each of the monthly Maxent models performed well (Table C.5). The December 

model performed the best overall, and the October model the least.  

 

Table C.5: Evaluation metrics for each of the monthly models, reported to two decimal 

places. AUC - Area Under the Curve; TSS - True Skill Statistic; CBI – Continuous Boyce 

Index; SEDI - Symmetric Extremal Dependence Index. 

Month Test AUC Training AUC TSS CBI SEDI  

March 0.96 0.94 0.81 0.99 0.81 

April 0.95 0.93 0.78 0.98 0.77 

May 0.92 0.89 0.70 1 0.75 

June 0.96 0.91 0.81 1 0.88 

July 0.93 0.91 0.70 0.97 0.75 

August 0.93 0.92 0.73 0.97 0.78 

September 0.97 0.94 0.87 1 0.89 

October 0.91 0.90 0.70 0.99 0.61 

November 0.96 0.91 0.83 1 0.89 

December 0.98 0.95 0.88 1 0.89 
 

 

Maxent models provide information on the permutation importance of each variable used in 

the model. I found that generally, temperature was most important, except in April and May 

when oxygen dominated, and in December when chlorophyll dominated (Figure C.5). I refer 

the reader to Andrews et al. 2020 for further discussion on the variable importance patterns. 
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Figure C.5: Permutation importance for each of the monthly Maxent models. 
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C.6: Metrics 

A: Species Distribution Model Evaluation Metrics 

To evaluate each of the monthly model's performance, I used five metrics – Testing AUC, 

Training AUC, True Skill Statistic, Continuous Boyce Index, and Symmetric Extremal 

Dependence Index. I used the following R packages to calculate the performance metrics: 

- AUC test and training, and TSS: Dismo (Hijmans et al. 2017).  

- CBI and SEDI: enmSdm (Smith 2019). 

 

C.6.A1: Testing and Training AUC 

Testing and training Area Under the Curve (AUC) indicates the probability that a randomly 

chosen presence location ranks higher in suitability than a randomly chosen background 

point. Scores are derived from receiver operator characteristic (ROC) analysis and are 

independent of threshold (Phillips et al. 2006). Values range from 0 to 1. Values closer to 1 

indicate the discriminatory power is good, whereas values close to and less than 0.5 indicate 

discriminatory power is poor (Fielding & Bell 1997).  

𝐴𝑈𝐶 =  
1

𝑛𝐴 ∗ 𝑛𝑁
 ∑

𝑛𝐴

1

∑ 𝑆(𝑇𝑃, 𝐹𝑃)

𝑛𝑁

1

 

Equation C.6.A1: Area Under the Curve (AUC) scores. Both the testing and training AUC 

scores are calculated in the same manner but test different subsections of the data (testing 

and training datasets, respectively). 𝑛𝐴 = number of presences; 𝑛𝑁 = number of absences; 

𝑇𝑃 = number of true presences predicted by the model; 𝐹𝑃 = number of false presences 

predicted by the model. The value of 𝑆 is conditional: If 𝑇𝑃 > 𝐹𝑃, 𝑆 = 1; If 𝑇𝑃 = 𝐹𝑃, 𝑆 = 0.5; 

If 𝑇𝑃 < 𝐹𝑃, 𝑆 = 0.  (Vida 1993). 

 

C.6.A2: True Skills Statistic 

The true skill statistic (TSS) indicates the extent to which observed and predicted values are 

higher than expected by chance (Allouche et al. 2006). It is a function of sensitivity (the 

probability of a model correctly predicting a presence) and specificity (the probability of a 

model correctly predicting an absence). Values range from -1 to +1, with scores of +1 
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indicating perfect agreement, zero indicating no better than chance, and less than zero 

indicating performance is worse than chance. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝐴
 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝐴

𝐹𝑃 + 𝑇𝐴
 

 

𝑇𝑆𝑆 = 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 − 1 

Equation C.6.A2: The true skill statistic (TSS), where 𝑇𝑃 = the number of presences 

accurately predicted; 𝐹𝑃 = the number of presences falsely predicted (type 1 error); 𝑇𝐴 = 

the number of absences accurately predicted; FA = the number of absences falsely predicted 

(type 2 error). 

 

C.6.A3: Continuous Boyce Index 

The Continuous Boyce Index (CBI) (Boyce et al. 2002) indicates the degree to which model 

predictions differ from random over a moving window. It is independent of threshold and 

prevalence. Values range from -1 to +1, with scores of +1 indicating perfect agreement, zero 

indicating no better than chance, and less than zero indicating performance is worse than 

chance. 

𝑃𝑖 =
𝑝𝑖

∑ 𝑝𝑗
𝑏
𝑗=1

 

𝐸𝑖 =
𝑎𝑖

∑ 𝑎𝑗
𝑏
𝑗=1

 

𝐹𝑖 =  
𝑃𝑖

𝐸𝑖
 

Equation C.6.A3: The Continuous Boyce Index (CBI), where distribution ranges are 

subdivided into 𝑏 bins. For each bin (𝑖), both the predicted frequency of presence points (𝑃𝑖) 

and the expected frequency of presence points if they were randomly distributed in the 

window (𝐸𝑖) are calculated and then used to create a predicted-to-expected ratio (𝐹𝑖). 𝑝𝑖 = 

number of presence points predicted to fall into the distribution bin 𝑖; ∑ 𝑝𝑗 = the total 

number of presence points; 𝑎𝑖 = the number of grid cells belonging to distribution class 𝑖; 
∑ 𝑎𝑗 = the total number of cells.  
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C.6.A4: Symmetric Extremal Dependence Index (SEDI) 

 

The Symmetric Extremal Dependence Index (SEDI) (Wunderlich et al. 2019) is a threshold-

independent metric that benefits from reduced sensitivity to prevalence. Since it employs a 

low-confidence error-weighting to the background points, it is particularly suited to presence-

background models. Values range from -1 to +1, with scores of +1 indicating perfect 

agreement, zero indicating no better than chance, and less than zero indicating performance is 

worse than chance.  

𝑆𝐸𝐷𝐼 =
log (𝐹) − log (𝐻) − log (1 − 𝐹) + log (1 − 𝐻)

log (𝐹) + log (𝐻) + log (1 − 𝐹) + log (1 − 𝐻)
 

Equation C.6.A4: The Symmetric Extremal Dependence Index (SEDI), where H = sensitivity 

(hit rate); F = false positive rate. 

 

B: Distribution metrics 

I used two statistical tests to quantify differences in distributions between the two phases – 

the Mann-Whitney U test and Generalised Linear Mixed Model (GLMM), and one test (the 

Mann-Kendall trend test) to quantify any trends in the metrics time series. I used the 

following R packages to run the tests: 

- Mann-Whitney U Test: rstatix (Kassambara 2020). 

- Generalised Linear Mixed Model: lme4 (Bates et al. 2020) and MuMIn (Bartoń 

2020). 

- Mann-Kendall Trend test: Kendall (McLeod 2011). 

The emerging hotspot analysis (ESRI 2020b) employs the Getis-Ord Gi* statistic and the 

Mann-Kendall Trend test. 

 

C.6.B1: Mann-Whitney U Test 

The Mann-Whitney U test is a non-parametric test that assesses if the median of two groups 

are equal. It is suitable for small sample sizes and independent samples. The effect size is 



252 
 

calculated as Z/√ N, with Z being the standardised U score and N corresponding to the total 

sample size. Effects sizes less than 0.3 are considered to have a small effect, 0.3 – <0.5 a 

moderate effect, and => 0.5 a large effect. 

𝑈1 = 𝑅1 −
𝑛1(𝑛1 + 1)

2

𝑈2 = 𝑅2 −
𝑛2(𝑛2 + 1)

2

 

Equation C.6.B1: The Mann-Whitney U test, where R = Sum of ranks; n = sample size. 

 

C.6.B2: Generalised Linear Mixed Model 

The Generalised Linear Mixed Model (GLMM) is an extension of the linear model that 

includes fixed and random effects. 

𝑌𝑠𝑖 = (𝛽0 + 𝑆0𝑠) + 𝛽1𝑋𝑖 + 𝑒𝑠𝑖 

Equation C.6.B2: Generalized Linear Mixed Model, where Y = response variable (the 

distribution metric); S = subject (the month-model), i = item; 𝛽0 = intercept; 𝛽1 = slope; 𝑋𝑖 

= independent variable (the NAO value); 𝑒𝑠𝑖 = observation-level error.  

 

C.6.B3: Mann-Kendall Trend Test 

The Mann-Kendall Trend test (Kendall & Gibbons 1990) is a rank correlation test between 

ranked observations and their order in a time-series. For a time series, the test statistic (S) is 

given by 

𝑆 = ∑  

𝑖<𝑗

𝑎𝑖𝑗 

where 

𝑎𝑖𝑗 = sign (𝑥𝑗 − 𝑥𝑖) = sign (𝑅𝑗 − 𝑅𝑖) = {

1    𝑥𝑖 < 𝑥𝑗

0    𝑥𝑖 = 𝑥𝑗

−1    𝑥𝑖 > 𝑥𝑗

 

Equation C.6.B3: The Mann-Kendall Trend test, where Ri and Rj = ranks of observations or 

observations xi and xj. Values range from 0 to +1/-1 (positive/negative relationship), with 

scores of +1/-1 indicating a perfect relationship and 0 no relationship. 

 



253 
 

C.6.B4: Getis-Ord Gi* statistic 

The Getis-Ord Gi* statistic (Getis & Ord 1992) determines where features with low or high 

values spatially cluster within the context of its neighbouring features. 

 

𝐺𝑖
∗ =

∑  𝑛
𝑗=1 𝑤𝑖,𝑗𝑥𝑗 − �̅� ∑  𝑛

𝑗=1 𝑤𝑖,𝑗

𝑆√[𝑛 ∑  𝑛
𝑗=1 𝑤𝑖,𝑗

2 − (∑  𝑛
𝑗=1 𝑤𝑖,𝑗)

2
]

𝑛 − 1

 

 

and 

�̅� =
∑  𝑛

𝑗=1 𝑥𝑗

𝑛

𝑆 = √
∑  𝑛

𝑗=1 𝑥𝑗
2

𝑛
− (�̅�)2

 

Equation C.6.B4: The Getis-Ord Gi* statistic, where 𝑥𝑗 is the attribute value for feature 𝑗, 

𝑤𝑖,𝑗 is the spatial weight between feature 𝑖 and 𝑗 is equal to the total number of features. 
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C.7: Emerging Trend Analysis 

The emerging hotspot analysis (ESRI 2020b) identifies statistically significant trends in 

habitat hotspots (high habitat suitability scores) and cold spots (low habitat suitability scores) 

over the time series for which there is data. Cells in the study area are assigned one of 

seventeen temporal state categories (Figure C.7). To avoid the output becoming unwieldy, I 

only considered those areas with a statistically significant trend and focused on three 

temporal trend patterns: sporadic, intensifying, and diminishing.  
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Figure C.7: Example of the emerging hotspot analysis for April and November across four 

depths levels. The month and depths have been arbitrarily chosen for illustrative purposes 

only. 
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C.8: Distribution Metric Boxplots & Mann-Whitney Effect Sizes 

I assessed distribution changes between the positive and negative phase of the NAO using 

five commonly used metrics – the percentage of the study area predicted as suitable habitat 

(Figure C.8.1 and Table C.8.1), the stability of suitable habitat cells (Figure 3.4 and Table 3.3 

in the main text), suitable habitat patch number (Figure C.8.2 and Table C.8.2) and size 

(mean – Figure C.8.3 and Table C.8.3, and maximum - Figure C.8.4 and Table C.8.4), and 

bounding location (northern/southern – Figure C.8.5 and Table C.8.5, western/eastern – 

Figure C.8.6 and Table C.8.6, shallowest/deepest – Figure C.8.7 and Table C.8.7). 

 

 

Figure C.8.1: The percentage of the study area predicted as suitable habitat in the negative 

and positive phases of the NAO for each month. Dots indicate the value for individual years.  
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Table C.8.1: Mann-Whitney effect sizes for the percentage of the study area predicted as 

suitable habitat in the negative and positive phases of the NAO for each month. Effect size 

magnitudes less than 0.3 are considered to be a small effect, 0.3 – <0.5 a moderate effect, 

and => 0.5 a large effect.  

Month Effect Size Magnitude Confidence Interval 

(95%) 

March 0.07 Small 0 – 0.66 

April 0.24 Small 0.02 – 0.67 

May 0.66 Large 0.25 – 0.84 

June 0.17 Small 0 – 0.67 

July 0.17 Small 0 – 0.69 

August 0.17 Small 0 – 0.69 

September 0.00 Small 0 – 0.61 

October  0.44 Moderate 0.04 – 0.82 

November 0.06 Small 0 – 0.62 

December 0.28 Small 0.02 – 0.71 

 

 

 

 

Figure C.8.2: Number of suitable habitat patches per month by NAO phase. Points represent 

the value for each year modelled.  
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Table C.8.2: Mann-Whitney effect sizes for the number of suitable habitat patches in the 

negative and positive phases of the NAO for each month. Effect size magnitudes less than 0.3 

are considered to be a small effect, 0.3 – <0.5 a moderate effect, and => 0.5 a large effect.  

Month Effect Size Magnitude Confidence Interval 

(95%) 

March 0.02 Small 0 - 0.74 

April 0.42 Moderate 0 - 0.85 

May 0.35 Moderate 0.02 - 0.77 

June 0.03 Small 0 - 0.61 

July 0.28 Small 0.01 - 0.71 

August 0.03 Small 0 - 0.76 

September 0.13 Small 0.01 - 0.64 

October  0.40 Moderate 0.03 - 0.8 

November 0.03 Small 0 - 0.63 

December 0.42 Moderate 0 - 0.85 
 

 

 

Figure C.8.3: Maximum size of patches per month by phase. Points represent values in each 

year modelled.  
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Table C.8.3: Mann-Whitney effect sizes for the maximum patch size in the negative and 

positive phases of the NAO for each month. Effect size magnitudes less than 0.3 are 

considered to be a small effect, 0.3 – <0.5 a moderate effect, and => 0.5 a large effect.  

Month Effect Size Magnitude Confidence Interval 

(95%) 

March 0.16 Small 0 - 0.79 

April 0.31 Moderate 0.02 - 0.81 

May 0.41 Moderate 0.02 - 0.84 

June 0.45 Moderate 0.03 - 0.81 

July 0.09 Small 0.01 - 0.65 

August 0.09 Small 0.01 - 0.65 

September 0.05 Small 0 - 0.6 

October  0.22 Small 0 - 0.68 

November 0.06 Small 0 - 0.61 

December 0.24 Small 0 - 0.73 

 

 

 

Figure C.8.4: Mean size of patches per month by phase. Points represent values in each year 

modelled.  
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Table C.8.4: Mann-Whitney effect sizes for the mean patch size in the negative and positive 

phases of the NAO for each month. Effect size magnitudes less than 0.3 are considered to be 

a small effect, 0.3 – <0.5 a moderate effect, and => 0.5 a large effect.  

Month Effect Size Magnitude Confidence Interval 

(95%) 

March 0.26 Small 0.0006 - 0.8 

April 0.45 Moderate 0.07 - 0.81 

May 0.14 Small 0 - 0.6 

June 0.10 Small 0 - 0.63 

July 0.33 Moderate 0 - 0.82 

August 0.03 Small 0 - 0.83 

September 0.02 Small 0 - 0.67 

October  0.38 Moderate 0.01 - 0.76 

November 0.33 Moderate 0.03 - 0.74 

December 0.38 Moderate 0.02 - 0.81 
 

 

 

Figure C.8.5: Location of the northern and southern bounding for each month by phase. 

Points represent values for each year modelled. 
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Table C.8.5: Mann-Whitney effect sizes for the northern and southern boundings in the 

negative and positive phases of the NAO for each month. Effect size magnitudes less than 0.3 

are considered to be a small effect, 0.3 – <0.5 a moderate effect, and => 0.5 a large effect. 

NA = no difference in the values.  

Metric Month Effect 

Size 

Magnitude Confidence Interval 

(95%) 

Northern 

Bounding 

March 0.02 Small 0 - 0.64 

April 0.10 Small 0 - 0.63 

May 0.03 Small 0 - 0.61 

June 0.51 Large 0.06 - 0.84 

July 0.47 Moderate 0.04 - 0.78 

August NA NA NA 

September 0.05 Small 0 - 0.56 

October  0.17 Small 0 - 0.7 

November 0.15 Small 0 - 0.66 

December 0.24 Small 00.73 

Southern 

Bounding 

March 0.16 Small 0 - 0.79 

April 0.40 Moderate 0.02 - 0.77 

May 0.31 Moderate 0.02 - 0.75 

June 0.03 Small 0.02 - 0.66 

July 0.07 Small 0 - 0.57 

August 0.03 Small 0 - 0.77 

September 0.26 Small 0.02 - 0.67 

October  0.18 Small 0.01 - 0.64 

November 0.06 Small 0.02 - 0.61 

December 0.09 Small 0.02 - 0.63 
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Figure C.8.6: Location of the western and eastern bounding for each month by phase. Points 

represent values for each year modelled. 
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Table C.8.6: Mann-Whitney effect sizes for the western and eastern boundings in the negative 

and positive phases of the NAO for each month. Effect size magnitudes less than 0.3 are 

considered to be a small effect, 0.3 – <0.5 a moderate effect, and => 0.5 a large effect. NA = 

no difference in the values. 

Metric Month Effect 

Size 

Magnitude Confidence Interval (95%) 

Western 

Bounding 

March 0.16 Small 0 - 0.66 

April 0.17 Small 0 - 0.68 

May 0.02 Small 0 - 0.58 

June 0.14 Small 0 - 0.67 

July 0.24 Small 0.01 - 0.66 

August NA NA NA 

September 0.33 Moderate 0.02 - 0.71 

October  0.16 Small 0.01 - 0.63 

November 0.15 Small 0 - 0.69 

December 0.21 Small 0 - 0.69 

Eastern 

Bounding 

March 0.30 Moderate 0 - 0.8 

April 0.69 Large 0.3 - 0.84 

May 0.17 Small 0.02 - 0.67 

June 0.38 Moderate 0.02 - 0.77 

July 0.39 Moderate 0.03 - 0.77 

August NA NA NA 

September 0.04 Small 0 - 0.52 

October  0.41 Moderate 0.04 - 0.79 

November 0.06 Small 0 - 0.56 

December 0.40 Moderate 0.02 - 0.84 
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Figure C.8.7: Location of the shallowest and deepest bounding for each month by phase. 

Points represent values for each year modelled. To avoid compression of the boxplots, the y-

axis uses the depth layer number, with the corresponding depth in meters indicated. 
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Table C.8.7: Mann-Whitney effect sizes for the shallowest and deepest boundings in the 

negative and positive phases of the NAO for each month. Effect size magnitudes less than 0.3 

are considered to be a small effect, 0.3 – <0.5 a moderate effect, and => 0.5 a large effect. 

NA = no difference in the values. 

Metric Month Effect 

Size 

Magnitude Confidence Interval (95%) 

Shallowest 

Bounding 

March NA NA NA 

April 0.40 Moderate 0.04 - 0.78 

May NA NA NA 

June 0.05 Small 0.02 - 0.66 

July 0.45 Moderate 0.04 - 0.78 

August 0.18 Small 0 - 0.72 

September 0.24 Small 0.01 - 0.68 

October  0.19 Small 0.01 - 0.65 

November 0.29 Small 0.02 - 0.68 

December 0.18 Small 0.02 - 0.69 

Deepest 

Bounding 

March NA NA NA 

April 0.06 Small 0 - 0.53 

May 0.17 Small 0 - 0.7 

June 0.20 Small 0.02 - 0.65 

July 0.05 Small 0 - 0.59 

August NA NA NA 

September 0.33 Moderate 0.01 - 0.73 

October  0.56 Large 0.19 - 0.83 

November 0.20 Small 0 - 0.66 

December 0.20 Small 0.02 - 0.69 
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Appendix D: Abstract for Peller T, Andrews S, Leroux SJ, Guichard F (2020) 

 

Peller T, Andrews S, Leroux SJ, Guichard F (2020) From Marine Metacommunities to Meta-

ecosystems: Examining the Nature, Scale and Significance of Resource Flows in Benthic 

Marine Environments. Ecosystems. https://doi.org/10.1007/s10021-020-00580-x 

 

The metacommunity framework has been readily applied to coastal benthic marine 

environments to examine how larval dispersal affects the dynamics of patchily distributed 

communities. Transitioning to a meta-ecosystem perspective requires knowledge of 

interactions between living and non-living compartments occurring across scales in these 

environments. Here, we synthesize and analyze evidence of non-living resource flows in 

coastal benthic marine environments. Our objectives are to establish the types of benthic 

ecosystems that are coupled by resource flows, the spatial scale and directionality of the 

couplings, and the magnitude of resulting subsidization of recipient organisms. We find that 

resource flows commonly couple different types of coastal benthic ecosystems and can occur 

bidirectionally between ecosystems. Our quantitative synthesis yields a frequency distribution 

of resource flow distance, which suggests they frequently couple ecosystems across smaller 

distances than larval dispersal and that the probability of resource flows coupling benthic 

ecosystems decreases exponentially with distance between ecosystems. The magnitude of 

subsidization of recipient organisms also decreases with distance from the source of the 

resource flow. Our findings reveal that considering ecosystem heterogeneity and the 

respective scales of different types of spatial flows will be an important component of 

extending the marine metacommunity framework to metaecosystems. We propose an avenue 

for integrating ecosystem heterogeneity into meta-ecosystem theory, based upon general 

differences in functioning across coupled ecosystems revealed by our synthesis, and we argue 

for the development of a hierarchical meta-ecosystem theory. 
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