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Abstract 

 Headwater streams are an important medium through which carbon from the landscape 

is transported into aquatic ecosystems in the form of dissolved organic carbon (DOC), an 

ecologically significant and, until the last decade, underestimated pool of mobile carbon. Boreal 

forests contain a great fraction of the worlds terrestrial carbon and are considered a large carbon 

sink. However, they are vulnerable to climate change and can easily become sources of 

atmospheric carbon. To better understand how our landscapes are responding to climate change 

we can monitor DOC within headwater streams which integrate and quickly respond to changes 

of the surrounding landscape. However, continuous monitoring for DOC is difficult and must be 

monitored via proxy-measurements. This thesis demonstrates an approach to develop and 

monitor the performance of a model developed to estimate DOC from UV-VIS absorbance and 

other data from in-situ probes.  
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1 Introduction 

Terrestrial-to-aquatic (T-A) fluxes of carbon are an important, yet often overlooked, 

component of the global carbon cycle, which describes the lateral movement of carbon from 

terrestrial landscapes to aquatic ecosystems. In recent decades T-A carbon fluxes have been 

receiving more attention as they are estimated to move a significant amount of carbon, 

comparable to terrestrial net ecosystem productivity (Battin et al., 2009; Butman et al., 2016; Chi 

et al., 2020; Cole et al., 2007; Friedlingstein et al., 2020; Tank et al., 2018; Wallin et al., 2013; 

Webb et al., 2019). Particularly, high-latitude boreal forests are an important carbon sink, storing 

nearly one-third of global terrestrial carbon (Lal, 2005) and are highly vulnerable to changing 

temperatures (Lindroth et al., 1998) as a result of climate change (Jennings et al., 2010; Laudon 

et al., 2012; Worrall et al., 2004; Ziegler et al., 2017). Therefore, it is imperative to quantify and 

monitor global T-A carbon fluxes to understand and predict landscape feedbacks resulting from 

climate change. 

Headwater streams are intimately connected to their surrounding landscape, and as a result 

integrate dissolved organic matter (DOM) sourced from different parts of the landscape (Creed, 

McKnight, et al., 2015). Therefore, when monitored, stream DOM greatly informs about the T-A 

flux of carbon from the surrounding landscape as DOM represents a broad and ecologically 

significant proportion of carbon-based natural substances in the aquatic environment (Thurman, 

1985). Dissolved organic carbon (DOC) is the typical metric used to quantify DOM and is an 

important fraction of the total organic carbon (TOC) transported from terrestrial ecosystems 

through aquatic systems. The flux of TOC from streams that drain different boreal landscapes can 
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range from ~4000 kg C km-2 yr-1 from upland catchments to ~12500 kg C km-2 yr-1 from peatlands 

(Rantakari et al., 2010), equivalent to ~21% and ~66%, respectively, of yearly global carbon 

emissions from fossil fuels (Friedlingstein et al., 2020). In order to accurately constrain headwater 

DOC fluxes, high temporal-resolution datasets are needed. This is a result of headwater DOC 

content being temporally dynamic particularly over storm events when the mobilization of 

landscape-derived DOC is facilitated and more easily integrated into  stream water (Creed, 

McKnight, et al., 2015; Jollymore et al., 2012; Werner et al., 2019). Using low temporal-resolution 

datasets to estimate stream DOC flux can lead to great underestimates. For example, high-

resolution sampling estimates can capture 1.5-times more carbon exported than with traditional 

sampling approaches (Figure 1.1; Jollymore et al., 2012). However, DOC concentration cannot be 

directly measured in-situ and thus requires an indirect measurement approach.  
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Figure 1.1: The importance of sampling frequency 

Adapted from Jollymore et al. (2012), https://doi.org/10.3390/s120403798, licensed under Creative Commons 
Attribution 4.0. 

Carbon export estimates calculated from stream dissolved organic carbon sampled at weekly and 30-minute 
intervals. 

Chromophoric dissolved organic matter (CDOM) is the fraction of DOM that absorbs light 

in the UV-visible wavelength range (~250 to ~450 nm), dependent on the presence of specific 

functional groups in molecules of DOM (e.g. aromatic rings). In other words, DOC is composed of 

a light-absorbing component of DOM (CDOM) and non-light-absorbing component of DOM. The 

Beer-Lambert law relates absorbance of a specific wavelength to the concentration of a solute in 

a solution as: 

 ఒ  (1.1) 

where Aఒ is the absorbance of the attenuating species at a specific wavelength, 𝜀 is the molar 

attenuation coefficient, an intrinsic property, of the attenuating species, 𝑙 is the optical path 
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length and 𝑐 is the concentration of the attenuating species. Therefore, theoretically, using the 

linear relationship between Aఒ and 𝑐, UV-visible absorbance can be used to indirectly measure 

in-situ DOC concentration by estimating it using a trained model and CDOM absorbance 

measured from an in-situ spectrophotometer. However, headwater streams integrate different 

components of the landscape depending on hydrology that varies with season and storm events 

(Creed, Hwang, et al., 2015; Creed, McKnight, et al., 2015; Creed & Band, 1998; Vaughan et al., 

2019). Consequently, stream DOM is temporally variable, containing different proportions of 

CDOM and non-CDOM mixtures and different compositions of CDOM (e.g. aromaticity) 

depending on which components of the landscape are connected to the stream at a given time. 

This highlights the dynamic relationship between CDOM absorbance and DOC concentration 

expected in headwater streams. Due to the heterogenous nature of DOM and variability in the 

proportion that CDOM represents in DOM, 𝜀 (Eq. 1.1) of  stream water is variable. In this case, 

while the Beer-Lambert law will work with dilutions of a single sample, it may not work well 

across different samples due to the heterogeneity in DOM (resulting in the 𝜀 from stream water 

being variable). However, the properties of CDOM, described by specific UV absorbance, spectral 

slopes and their ratio derived from UV-visible absorbance (Helms et al., 2009), can be used to 

estimate properties of DOM that can be related back to different components of the landscape 

and source of DOM (Creed, McKnight, et al., 2015; Franke et al., 2012; Peacock et al., 2014; 

Vaughan et al., 2019).  

The ability to predict bulk stream DOC content (which includes the non-CDOM component 

of DOC) from CDOM absorbance is affected at two main levels: (1) by the proportion of CDOM to 

non-CDOM contributing to bulk DOC content in the water, as clearly evident when looking across 
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sample from low CDOM groundwater contrasted with high CDOM soil water (Figure 1.2), and (2) 

the composition of CDOM that affects the shape of the absorbance spectra primarily governed 

by the presence of various functional groups that make up CDOM, evident when looking across 

high CDOM samples with different origin (stream vs. soil water; Figure 1.2) and further influenced 

by the presence of metals and other contaminants (Helms et al., 2009; Li & Hur, 2017). Each of 

the aforementioned factors are dependent on the degree to which the landscape is connected 

to the aquatic environment as defined primarily by catchment morphology and hydrology 

(baseflow or stormflow conditions; Kaplan & Cory, 2016). 

 

Figure 1.2: CDOM of natural waters 

The different relationships between chromophoric dissolved organic matter (CDOM) absorbance and dissolved 
organic carbon concentration in different natural waters. Each sample had DOC ~8 mg C L-1, but different 
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compositions of CDOM and different proportions of chromophoric and non-chromophoric DOC contributing to bulk 
DOC concentration. 

Further variability in the relationship between CDOM absorbance and DOC concentration 

is introduced in streams as turbidity and pH. Turbidity from organic and inorganic particles 

directly interferes with CDOM absorbance by scattering and absorbing light (Huber & Frost, 1998; 

Jeong et al., 2012; Langergraber et al., 2003). Turbidity typically correlates with storm events, as 

increased stream discharge allows for larger particle loads (Downing et al., 2012; Wymore et al., 

2019) and flushing particles settled along streambeds. On the other hand, pH affects CDOM 

absorbance by altering DOM structure (Baalousha et al., 2006; Pace et al., 2012; Spencer et al., 

2007), altering conjugated systems in the molecule and it’s ability to absorb light. Stream water 

pH is typically found to be inversely correlated to water level during storm events as organic 

acids, a component of DOC, from the surrounding landscape, are mobilized and integrated into 

the stream (Ågren et al., 2010; Laudon et al., 2001; Laudon & Buffam, 2008). Thus, part of the 

change in CDOM absorbance could be attributed to a shift in pH that does not necessarily 

correspond to a change in DOC concentration.  

Models used to predict DOC concentration are typically developed for less dynamic 

systems that are dominated by a single main landscape component such as a peat bog or mire 

(e.g. Avagyan et al., 2014), where the relationship between CDOM absorbance and DOC 

concentration is less variable than from headwater streams draining hillslopes that consequently 

integrate different landscape components. In such cases, multiple linear regression (MLR), used 

as an extension of the Beer-Lambert law, has been used to predict DOC concentration from 

absorbance at discrete wavelengths. In systems where multiple landscape components 

contribute to stream DOC; DOC concentration and composition are expected to vary widely 
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across spatial and temporal scales. Training a model intended for a dynamic system, using CDOM 

absorbance from discrete wavelengths, would not capture all the information available in the full 

CDOM spectra. Using the full CDOM absorbance spectra would be ideal as the resulting model 

would use all available information to predict DOC concentration from a dynamic system where 

a wide variety of relationships between CDOM absorbance and DOC content with varying 

compositions, and is expected. However, absorbance data has many variables that are also 

multicollinear. Using too many or multicollinear variables for an MLR can result in overfit- and 

unstable models that are overly sensitive to minor differences in correlation structure, including 

random noise, which is expected from in-situ data where bubbles, particles and biofouling are a 

regular occurrence. The resulting models would assume a rigid CDOM absorbance to DOC 

concentration relationship, possibly resulting in poor DOC predictions when certain compositions 

of DOC are dominant or present in stream water.  

A different model approach is needed for dynamic headwater streams that drain forested 

hillslopes with variably connected landscape components and, therefore, a temporally variable 

relationship between CDOM absorbance and DOC concentration. Partial least squares (PLS) is a 

regression method where a large number of variable and multicollinear data can be used (Dunn, 

2019). As such, PLS regression is a chemometric tool used to predict concentrations from 

absorbance spectra (Wold & Trygg, 2004) and has been used for the purpose of predicting in-situ 

DOC concentration (Avagyan et al., 2014; Codden et al., 2020; Langergraber et al., 2003; Werner 

et al., 2019), though not to my knowledge in dynamic hillslope-dominated headwater streams 

with varying contributions from landscape components. 
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The PLS method has the further benefit of having built-in statistics that are used for 

process monitoring, e.g. in manufacturing plants, to identify outlier samples or faulty products 

and diagnose problems in a process (Chen et al., 2004; Dunn, 2019; Mujica et al., 2011; Villegas 

et al., 2010) which could be helpful in tracking model development and performance for 

prediction of DOC concentration. One of these statistics, Hotelling’s T2, identifies high-leverage 

samples outside the model's scope, from which predictions should be made with caution, and 

therefore inform the scope of the model and representativeness of the training dataset. Another 

statistic, squared prediction errors (SPE), identifies samples that are incompatible with the model 

and cannot be used to make a prediction (Dunn, 2019; Mujica et al., 2011). These two statistics 

(Hotelling’s T2 and SPE) resulting from different models applied to the same continuous in-situ 

dataset can be compared to identify the model most likely to perform best when predicting DOC 

concentration in a future setting. Better performing models would have fewer T2 and SPE outliers 

in testing datasets. 

Model performance is typically reported as the root mean square error (RMSE), which 

summarizes the variability of prediction residuals in a dataset, and the coefficient of 

determination (R2) of each dataset. The RMSE alone does not give information about outlier 

predictions. Also, R2 is not helpful as a measure of predictability as it says nothing about 

prediction error or prediction intervals and tends to be arbitrarily large or small regardless of a 

model being correct (Shalizi, 2015; 2013). Therefore, other metrics of model fit should be 

explored when comparing models to identify the best-performing model. To complement RMSE, 

mean absolute error (MAE) can also be reported and together inform about the magnitude of 

outlier errors. Prediction intervals give a confidence range around each prediction made by a 
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model based on the performance with training and validation datasets with more accurate 

models generating smaller intervals.  

Several significant knowledge gaps have been identified regarding the approach and 

development of DOC-predicting models: (1) The application and performance of models to 

predict DOC concentration in dynamic headwaters where different landscape components 

contribute at different times of year have not been described. Therefore, it is unknown whether 

a PLS model trained using the full CDOM absorbance spectra can improve prediction accuracy of 

DOC concentration over an MLR model trained with absorbance from discrete wavelengths for 

these cases. (2) It is also unknown if other properties of CDOM spectra related to composition 

(i.e. spectral slopes and their ratio) provide information that improves prediction accuracy when 

used in these PLS models. (3) Other metrics related to stream water quality that respond to 

seasonality and storm events (e.g. conductivity, pH, water level) should also be tested as 

predictors of DOC concentration in PLS models because they provide information about the 

stream water that may improve prediction accuracy of DOC concentration. (4) Other PLS 

statistics, T2 and SPE, used to monitor samples and model performance, identify, and diagnose 

outlier samples, and inform model updates should be evaluated in a stream setting to aid in 

developing responsive monitoring of stream DOC concentration. (5) The effects of turbidity are 

known, and there is much effort in measuring in-situ turbidity, yet there is not much consensus 

on the processing of in-situ absorbance data to remove the effects of turbidity. 

This thesis is divided into two main chapters preceding the conclusion chapter. The first 

of these describes a study that, by taking advantage of archival samples collected from a series 
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of upland boreal forest headwater streams and surface soil water from sites across a climate 

transect, aims to: 

1. Use different model performance metrics such as the index of agreement or 

prediction intervals to evaluate and compare the performance of MLR to PLS models 

developed to test how: (a) indicators of DOM composition such as spectral slopes 

and their ratio, and (b) common continuously monitored water quality parameters, 

such as conductivity, pH, and redox potential, affect model performance. 

The second chapter describes a study that, by using high-frequency in-situ absorbance spectral 

data, conductivity and water level data coupled with targeted event sampling from a headwater 

catchment with an upstream low-relief wetland- and pond-dominated site and a downstream 

forested hillslope-dominated site, aims to: 

2. Train new PLS models and test their performance using T2 and SPE when applied to 

the continuous in-situ dataset to: (a) test in-situ data that relate storm events and 

seasons to DOC concentration such as conductivity, water level, spectral slopes from 

275-295 nm and 350-400 nm, and their ratio to identify best predictors, and (b) 

develop and test an absorbance-based correction for turbidity to process in-situ 

absorbance data used for predicting DOC concentration. 
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2 Developing a PLS model to predict dissolved 

organic carbon concentration from absorbance 

and water quality parameters 

2.1 Abstract 

Accurate quantification of dissolved organic carbon (DOC) fluxes from terrestrial to aquatic 

systems is imperative for understanding landscape and downstream aquatic responses to climate 

change. This requires high-frequency headwater stream DOC concentration data, which can now 

be estimated using in-situ spectrophotometers by modelling DOC from absorbance of 

chromophoric dissolved organic matter (CDOM). The challenge is that the relationship between 

DOC concentration and CDOM is impacted by stream DOC composition that varies significantly 

with hydrology as DOM composition from several landscape components varies due to different 

sources and processing. Therefore, a wide breadth of samples spanning sources or different 

hydrographic stages is still needed in this model development. Furthermore, the use of discrete 

wavelengths as a bulk DOC proxy can lead to inaccurate or poorly constrained estimates. 

Therefore, a range of wavelengths, optical-derived indicators of DOC composition and samples 

representative of catchment sources, e.g. surface and groundwaters, were used to train partial 

least squares (PLS) models that integrate these qualities for bulk DOC predictions. Stream water 

quality parameters such as pH, specific conductance (SPC), or redox potential (ORP) were tested 

to determine whether prediction accuracy of DOC concentration and uncertainty could be 
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improved. Prediction intervals were used to constrain prediction uncertainty. Using Willmott’s 

refined index of agreement, model performance was assessed on an independent validation 

dataset for each model. DOC concentration was predicted within ±3.7 mg C L-1 with 95% 

confidence in a range of 1-40 mg C L-1 with a PLS-model using only CDOM absorbance. The mean 

absolute error (MAE) for the validation dataset was 0.40 mg C L-1 over a range of 4-30 mg C L-1 

using the same model. PLS model performance was comparable, if not better, to that of typical 

multiple linear regression (MLR) models that use highly collinear discrete wavelengths to predict 

DOC concentration. Two tested MLR models had a similar MAE (0.40 and 0.52 mg C L-1) as the 

PLS model (0.40 mg C L-1) for the same dataset. It was found that adding either spectral slopes, 

slope ratio, pH, ORP or SPC as an independent variable in the regression did not lead to the 

development of a more accurate model with reduced uncertainty, most likely due to an over-

diverse training dataset (i.e. groundwaters and soil waters). Future work will include testing 

model performance using high-resolution stream data where the full spectrum of DOC 

concentration, CDOM absorbance and associated interactions with water quality parameters 

(e.g. pH and conductivity) can be expected. This will enable further refinement of the PLS models 

and is expected to improve predictions' accuracy of DOC concentration. 
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2.2 Introduction 

 Greater availability of continuous in-situ optical measurements provides a benefit to the 

great need to continuously monitor dissolved organic carbon (DOC) concentrations from streams 

in support of understanding landscape carbon balance globally (Cole et al., 2007; Jollymore et al., 

2012). Headwater streams are intimately connected to their surrounding landscape and integrate 

features of the land they drain. As such, small headwater streams can be the most significant 

contributors of terrestrial DOC export per unit area (Ågren et al., 2007). Therefore, high temporal-

resolution DOC concentration measurements in small headwater streams are imperative to 

determining how terrestrial to aquatic transport of carbon responds to climate change. However, 

frequent sampling to obtain accurate DOC flux is needed as DOC concentration is temporally 

variable dependent on hydrologic conditions. Thus infrequent sampling may lead to severe 

underestimations of DOC flux estimates (Jollymore et al., 2012). Therefore, these techniques 

using in-situ optical measurements can improve the accuracy of reported carbon transported 

from the landscape as DOC. 

 

2.2.1 Relating absorbance to DOC concentration through regression 

Chromophoric dissolved organic matter (CDOM) describes the fraction of DOC that can 

absorb light in the 250 nm to 450 nm wavelength range. In-situ spectrophotometers measuring 

CDOM absorbance in stream water can be used as a proxy for DOC concentration measurements, 

as CDOM content can be highly correlated to bulk DOC content (Peacock et al., 2014). 
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Furthermore, the optical properties of DOM described by specific UV absorbance, spectral slopes 

and their ratio can be used to estimate properties of DOM (Helms et al., 2009) that can be related 

to different components of the landscape or source of DOM (Creed, McKnight, et al., 2015; 

Franke et al., 2012; Peacock et al., 2014; Vaughan et al., 2019). Often, absorbance at 254 nm is 

used as a surrogate for DOC concentration measurements by developing a model from a 

calibration curve, i.e. linear regression. However, depending on the composition of DOC or 

CDOM, specific wavelengths can be more suitable than others to use as a proxy for DOC 

concentration (Peacock et al., 2014), highlighting a dynamic relationship between CDOM 

absorbance and DOC concentration (Figure 1.2). As headwater streams integrate different 

landscape components depending on hydrology, which varies with season and storm events, the 

relationship between CDOM absorbance and DOC concentration in small headwater streams is 

expected to vary across different flow regimes. 

For determining DOC concentration from more complex systems where different sources 

of water are mixed, the use of CDOM absorbance from multiple wavelengths in multiple linear 

regression (MLR) models can generate more robust models (Avagyan et al., 2014; Fichot & 

Benner, 2011). However, multicollinearity among wavelengths in spectral absorbance data 

violates the assumption MLR makes of no multicollinearity among variables. The violation of this 

assumption can lead to unstable model coefficients that are very sensitive to the data's 

covariance structure. However, this is not detrimental to predictions made by the model, only as 

long as the covariance structure of future samples is near identical to the model's covariance 

structure. In other words, the model is rigid and could be considered over-fit and can greatly 

over-or under-predict future samples that do not have a similar covariance structure as the 
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original data. Due to the dynamics of headwater streams, where hydrologic events that connect 

different landscape sources to the stream (Vaughan et al., 2017) alter CDOM observed in the 

water (Creed, McKnight, et al., 2015; Franke et al., 2012; Peacock et al., 2014; Vaughan et al., 

2019), changes in the covariance structure of the data is expected over time (Figure 1.2). 

 Partial least squares (PLS) is a multivariate latent variable regression method that allows 

for multicollinear variables to be used to develop a model (Dunn, 2019). Multicollinearity is 

eliminated by reducing variables to determine latent variable scores that maximize covariance 

between independent- and dependent-variables (Dunn, 2019). PLS regression allows for the use 

of the entire absorbance spectra to predict DOC concentration as accurately as possible and 

therefore represents an approach that can take full advantage of in-situ instrumentation that 

provides complete absorbance spectral datasets.  

 

2.2.2 Prediction uncertainty can be estimated and give confidence to predictions 

 Predictions made by models have an uncertainty associated with them that is typically 

only partially reported. However, constraining this uncertainty gives more confidence in 

predictions of DOC concentration. With less uncertainty around predictions, catchment-wide 

carbon flux estimates derived from these predictions become more accurate. Therefore, 

prediction uncertainty should be reported to compare and constrain terrestrial to aquatic fluxes 

represented by DOC export. The model error typically reported as the root mean square error 

(RMSE) assesses the spread of regression residuals or errors observed, but no confidence around 

predictions. Alternatively, prediction intervals predict the distribution of future points where one 
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estimates upper and lower limit boundaries where the real value may be found in with 100(1-

α)% confidence (Montgomery & Runger, 2018), and can be further used to provide confidence 

to the catchment-scale estimates derived from the predictions of DOC concentration made from 

the model using in-situ absorbance data. The prediction interval is derived from model error; 

thus, more accurate models result in smaller intervals. 

 

2.2.3 Water quality and optical parameters can help reduce model uncertainty 

Additional optical or water quality parameters may be helpful as additional predictor 

variables for DOC concentration to generate more accurate models. For example, model 

performance can be impacted by the variability in the relationship between DOC concentration 

and CDOM absorbance in stream water resulting from different flow regimes across seasons or 

storm events. This is a result of headwater streams integrating different landscape components 

according to hydrology dependent on season and storms and each component being a different 

source or having a different signature of DOM (Creed, Hwang, et al., 2015; Creed, McKnight, et 

al., 2015; Creed & Band, 1998; Vaughan et al., 2019). Parameters derived from CDOM 

absorbance, such as spectral slopes and their ratio, are related to DOM or CDOM composition 

(Helms et al., 2009) and are found to change in stream water throughout hydrologic events 

(Ågren et al., 2010; Vaughan et al., 2017). Therefore, incorporating these parameters into models 

that predict DOC concentration for streams could enhance the accuracy of predictions of DOC 

concentration.  
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Water quantity or quality parameters that are also monitored continuously in-situ, such 

as water level, pH, specific conductance (SPC) and oxidation-reduction potential (ORP), could be 

beneficial when included in regression models developed for continuously predicting stream DOC 

concentration from absorbance. Due to the organic acids that contribute to stream DOC, stream 

water pH is negatively correlated to DOC concentration in many watersheds (Ågren et al., 2010; 

Laudon et al., 2001; Laudon & Buffam, 2008), yet pH is positively correlated with absorbance as 

a result of pH affecting DOM molecular structure (Pace et al., 2012; Spencer et al., 2007). 

Separately, stream water DOC concentration can be positively correlated with stream discharge 

(Jeong et al., 2012), but can also exhibit hysteresis patterns with discharge indicating temporal 

variation in near and distal sources of DOC (Creed, McKnight, et al., 2015; Vaughan et al., 2019). 

Considering these relationships between stream water DOC concentration, pH, absorbance and 

discharge, the overall relationship between CDOM absorbance and DOC concentration would 

vary throughout different hydrologic regimes when all these parameters shift in different ways. 

This suggests pH may be a valid additional parameter to help predict stream DOC concentration 

from CDOM absorbance. Similarly, stream water SPC changes with seasons and storm events 

associated with water source and likely DOC source (Inserillo et al., 2017; Kobayashi, 1986). 

Therefore, SPC can help reduce uncertainty when used in a model as a predictor for stream DOC 

concentration during such periods. Using ORP as another predictor may also help reduce 

uncertainty of DOC concentration predictions as together the effects of pH and ORP affect the 

solubility of metals (Rosecrans et al., 2017) that bind with DOM but also interfere with 

absorbance (Maloney et al., 2005).  
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2.2.4 Chapter Objectives 

 In this chapter, PLS-based models were developed to predict DOC concentration from 

absorbance spectra. The performance of these PLS models was compared with two MLR models 

developed to estimate DOC concentration based on parameters from Avagyan et al. (2014) and 

Fichot & Benner (2011). Uncertainty of model-estimated DOC concentration using 95% 

prediction intervals was estimated and used to assess the model performance. Furthermore, the 

effectiveness of using optical-derived parameters indicative of CDOM composition (e.g. spectral 

slope) and water quality parameters (e.g. pH, SPC, and ORP) were tested as additional regression 

variables in concert with CDOM absorbance to predict DOC concentration. The usefulness of 

these parameters yielding a more accurate model to estimate DOC concentration with lower 

uncertainty was assessed. The influence of spatial and temporal dynamics on absorbance-based 

PLS models' ability to predict DOC concentration was also investigated and compared to other 

MLR methods that use absorbance from discrete wavelengths to predict DOC concentration. 
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2.3 Methods 

2.3.1 Sample Collection and Analysis 

Study Area: 

Water samples were collected from 

forest and stream sites located within the 

Newfoundland and Labrador Boreal 

Ecosystem Latitudinal Transect (NL-BELT; 

Figure 2.1). The NL-BELT consists of four 

regions delineated by watersheds of the four 

major rivers located in each: Grand Codroy 

(GC), Eagle River (ER), Salmon River (SR) and 

Humber River (HR). The ER is the 

northernmost region, GC is the southernmost 

region, with HR and SR found in between. 

Sites within NL-BELT span a 5.2°C gradient in 

mean annual temperature (MAT) (Table 2.1), 

where northern sites (ER) have a MAT of 0°C 

and southern sites (GC) have a MAT of 5.2°C. 

Mean annual precipitation (MAP) spanned a range from 1074mm for northern sites and 1505mm 

for southern sites (Table 2.1, Environment Canada Climate Normals 1981-2010). The NL-BELT 

Figure 2.1: Map of Newfoundland and Labrador 

The four regions comprising the Newfoundland and 
Labrador Boreal Ecosystem Latitudinal Transect (NL-BELT). 
The red circle marks the Pynn’s Brook Experimental 
Watershed Area (PBEWA) located within the Humber River 
region.  
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forest sites consist of closed-canopy mature stands dominated by balsam fir (Abies balsamifera 

(L.) Mill.) underlain by humo-ferric podzolic soils (Ziegler et al., 2017). Each region contains three 

headwater stream sites with catchments that primarily drain forests akin to the forest sites 

instrumented and studied along the transect (Table 2.1). Additional samples were collected from 

the Pynn’s Brook Experimental Watershed Area (PBEWA), within the HR region, where a greater 

variety of sample types were available within an instrumented hillslope, including passive pan 

lysimeters, piezometers and groundwater wells. The forest site in PBEWA differs from the NL-

BELT forest sites by the PBEWA site being predominantly dominated by black spruce (Picea 

Marina (Mill.) Britton, Sterns & Poggenburg) rather than balsam fir and is a mixture of age-class 

ranging from mature stands (~80 years) to a post-14-year stage of regeneration. The stream 

catchment of the PBEWA contains a mixture of black spruce and balsam fir in addition to fens 

and bogs (Table 2.1). Of the two sampling sites located along the headwater stream within 

PBEWA, one upstream site was dominated by wetlands and ponds, while a hillslope forest 

dominates the downstream site. 

 

Sample Collection: 

Samples were collected from NL-BELT stream sites and lysimeters within forest sites from 

June 2011 to June 2019. Soil water was collected from passive pan lysimeters using an electric 

pump and polyethylene tubing from the buried 20 L reservoirs (Ziegler et al., 2017). Similarly, 

shallow groundwater samples were pumped and collected from 1 to 2.5-meter deep piezometer 

wells. Baseflow stream grab-samples were taken directly from stream sites in each region. 
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Opportunistic sampling events occurred for two storm events where grab-samples were 

collected from a stream site within PBEWA and a site within GC in 60 to 120-minute intervals 

capturing a window of each event's rising and receding limbs. All samples were collected in acid-

washed, amber, high-density polyethylene bottles to avoid photochemical degradation and 

stored in coolers for transportation back to the laboratory for processing. The same protocol was 

followed for sample collection in the PBEWA for streams and lysimeters, while additionally 

sampling from passive piezometers, installed to collect water from the top 30 and 60 cm of 

mineral soil, as well as groundwater wells installed within the till layer below the lowest 

groundwater level in late summer. For more information on PBEWA infrastructure and site 

location, see Figure 3.1. 

Table 2.1: NL-BELT regions climate normals 

Mean annual temperature (MAT), mean annual precipitation (MAP), and catchment composition ranges for each 
NL-BELT region. Asterisk – catchment cover % data for HR comes from Horseshoe Brook in the Pynn’s Brook 
Watershed Area. 

NL-BELT 
Region 

MAT (°C) MAP (mm) 
Catchment 
Area (Km2) 

% Forest 
Cover 

% Bog 
Cover 

% Water 
Cover 

ER 0 1073.5 4 - 11.3 64 - 92 5 - 34 0 - 3 

SR 2 - 2.4 1211 - 1224 3.3 - 4.2 71 - 88 12 - 29 0 

HR* 4.4 - 5.2 1132 - 1286 3.8 - 11.4 63 - 74 25 - 30 0 - 7 

GC 4.3 - 5.2 1340 - 1595 0.6 - 2.6 100 0 0 

Climate data from Environment Canada Climate Normals (1981-2010): 

https://climate.weather.gc.ca/climate_normals/index_e.html  
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Sample Preparation and Analysis: 

Within 72 hours of collection, all samples were vacuum filtered through pre-combusted 

glass fibre filters (GF/F; nominal pore size 0.7 μm) to remove particulates. After filtering, stream 

and groundwaters were sub-sampled in triplicate while piezometer and lysimeter samples were 

sub-sampled in duplicate for absorbance, DOC concentration, and total dissolved iron ( [Fe] ) 

analyses. Piezometer and lysimeter samples were sub-sampled in duplicate as they are better 

spatially replicated across sites. Sub-samples taken for DOC concentration were acidified to pH 

~2 using 30% phosphoric acid to halt biological activity. Changes in pH can interfere with 

absorbance spectra; therefore, mercuric chloride was added (1 µL saturated solution per mL of 

sample), rather than acid, to fix the samples for absorbance and halt biological activity. Samples 

for total dissolved [Fe] analysis were kept dark and refrigerated until time for analysis. 

Absorbance at wavelengths shorter than 250 nm was excluded due to inorganic 

compounds influencing these measurements (Tipping et al., 1988). However, wavelengths lower 

than 275 nm were also excluded as the HgCl2 was found to affect absorbance up to that 

wavelength. Because of HgCl2, using models from this training dataset will not be applicable for 

directly predicting DOC concentration from in-situ data. However, these results provide a basis 

for both an approach for model development and testing the validity and accuracy of a PLS-based 

model that can be repeated with future datasets. 

The DOC concentrations were determined via the combustion catalytic oxidation method 

(Shimadzu TOC-V with autosampler ASI-V) with a limit of quantification of 2.00 mg C L-1 (limit of 

detection of 0.60 mg C L-1 ) and precision of <3% for concentrations ranging 0.5 to 50 mg C L-1. 
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Absorbance spectra (Aλ) of filtered samples were measured using a dual-beam UV-Vis 

benchtop spectrophotometer (Perkin Elmer Lambda 25) from 200-800 nm at 1 nm intervals. 

Samples with high absorbance (defined here as containing more than 20 mg C L-1) were diluted 

to <20 mg C L-1 for samples to minimize inner-filter effects so that samples remained in the 

linear range of th Beer-Lambert law and then corrected with the appropriate dilution factor. 

The precision of these absorbance measures was <5% coefficient of variation (RSD) among 

analytical replicates (n = 3) for decadic absorbance at 300 nm (A300) in the range of 10-60 m-1 

with a pathlength of 0.01 m. An RSD threshold of 10% was used to initiate a Q-test between 

analytical replicates to determine potential outliers. 

Water sample pH, oxidation-reduction potential (ORP), and specific conductance (SPC) 

were all measured following each sample's absorbance measurement. Sample from each 

analytical replicate from a field replicate was pooled to measure pH, ORP and SPC. pH and SPC 

were measured using a benchtop meter (Thermo Scientific Orion Versa Star Pro), while ORP was 

measured using a handheld Oakton ORPTestr (WD-35650-10, Vernon Hills, Illinois). 

 

2.3.2 Sample Datasets 

For the development and testing of models, a set of 287 analyzed samples was used with 

a subset of 33 stream samples reserved and used as an independent validation dataset to test 

and compare every model's performance (Figure 2.2). The 33 validation samples were collected 

from June 2018 to June 2019, where 31 of the samples were collected from the Horseshoe Brook, 

found within the PBEWA where this method and model is intended to be applied in some near-
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term studies. The remaining 254 samples were collected from November 2011 to August 2018 

and were used as the primary training dataset to develop partial least squares (PLS) and multiple 

linear regression (MLR) models (Table 2.2). Furthermore, the stream samples from this same 

training dataset (n = 106) were used alone in a further MLR to test whether water quality 

parameters (WQP) such as pH, ORP or SPC could be used to improve stream prediction accuracy 

of DOC concentration and reduce prediction uncertainty when using PLS model predictions.  

Table 2.2: Training and validation datasets 

Sample subset used for model development and testing. Samples collected from NL-BELT and PBEWA include stream 
(St), lysimeter (Lys), piezometer (Pz) and groundwater well (GWW) samples. Training datasets were used to develop 
partial least squares (PLS) or multiple linear regression (MLR) models using a different combination of variables at 
each iteration. Water quality parameters (WQP) such as pH, oxidation-reduction potential and specific conductance 
were additionally tested in further MLR models trained by stream samples. 

Set Subset From: Used for: Comprised of: Total n = 

Full Data Set  
Training and 

Validation 
datasets 

 139 St 
 95 Lys 
 50 Pz 

 3 GWW 

287 

Main Training 
dataset 

Full Dataset 
PLS and MLR 

Models 

 106 St 
 95 Lys 
 50 Pz 

 3 GWW 

254 

Stream Training 
dataset 

Training dataset 
WQP Correction 

(MLR) Models  106 St 106 

Validation dataset Full Dataset 
Testing Model 
Performances  33 St 33 
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Figure 2.2: Steps in model development 

Steps taken for model training and 
validation. Training datasets of 
laboratory-measured dissolved organic 
carbon concentration ([DOC]) and 
absorbance (analyzed samples) are used 
to train partial least squares (PLS) and 
multiple linear regression (MLR) models 
to estimate [DOC] from absorbance. PLS 
models regress laboratory [DOC] on 
absorbance from the 275-450 nm region 
or additionally spectral slope of 275-295 
nm (S275-295 or S1), 350-400 nm (S350-400 or 
S2) or the slope ratio (Sr). MLR models 
regress laboratory [DOC] on absorbance 
from multiple discrete wavelengths 275 
nm and 295 nm, or additionally 380 nm. 
Further MLR models developed to test 
water quality parameters (WQP) were 
developed by regressing laboratory-
measured [DOC] on PLS-estimated [DOC] 
([DOC]Pred) and a WQP: pH, oxidation-
reduction potential (ORP), specific 
conductance (SPC) or total dissolved iron 
([Fe]). Root mean square error (RMSE) 
was calculated for each model on both 
training and validation datasets. The 95% 
prediction interval for each model was 
calculated from the training dataset. The 
Nash-Sutcliffe model efficiency coefficient 
(NSE) and refined index of agreement (dr) 
were calculated for each model using the 
validation dataset. 

 

Absorbance for wavelengths greater than 450 nm was omitted as CDOM absorbance at 

those wavelengths often approaches the instrument’s detection limit. The laboratory-measured 

DOC concentration and absorbance for each sample used and reported here is the average of its 

analytical measurements from the field replicates (field n = 2-3; total replicate n = 4-9). 
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2.3.3 Data Processing 

 Before performing any regressions or developing models, integrative optical metrics 

related to CDOM composition, such as specific UV absorbance (SUVA) or spectral slope and slope 

ratio, were calculated. Only absorbance from wavelength intervals of 5 nm was used for the 

model development as it was the lowest common multiple between in-situ stream data collected 

in 2.5 nm intervals and laboratory-measured absorbance collected in 1 nm intervals.  

Specific UV absorbance is the DOC concentration-normalized absorbance at a specific 

wavelength (L mg C-1 m-1), typically 254 or 350 nm. Here SUVA350 was calculated for each sample 

as: 

 ଷହ଴
஺యఱబ

௅×[஽ை஼]
 (2.1) 

where A350 is the absorbance at 350 nm, L is the cuvette path-length (m) and [DOC] is the 

laboratory-measured DOC concentration (mg C L-1). 

Spectral slope (S) refers to the slopes of the line of best fit for the natural log-transformed 

absorption coefficients (aλ) across a specified range of wavelengths. Raw decadic absorbance 

values were converted to Napierian absorbance with the following equation: 

  ఒ
ଶ.ଷ଴ଷ×𝑨ഊ

௅
  (2.2) 

where 2.303 is the constant used to convert values from log10(𝐴ఒ) to ln(𝐴ఒ), 𝐴ఒ is decadic (raw) 

absorbance at wavelength λ (nm) and L is the cuvette path-length (m). Spectral slopes were 
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calculated using 1 nm wavelength intervals rather than 5 nm intervals by rearranging the 

following equation: 

  ఒ ఒೝ೐೑

ିௌ(ఒିఒೝ೐೑)  (2.3) 

where λref is the reference wavelength. The spectral slope ratio (Sr) was calculated by dividing the 

slope of log-transformed absorption from 275 to 295 nm (S275-295) by the slope of log-transformed 

absorption spectra from 350 to 400 nm (S350-400) (Helms et al., 2009). 

 

2.3.4 Model Training 

Model calibration, or training, refers to the relating of a set of variables together, as 

described in the field of chemometrics (Brereton, 2003). In this study, one set of predictors was 

a series of physiochemical measurements, such as UV-Vis absorbance spectra, pH or other water 

quality parameters, and another set was DOC concentration. A model is trained when one of 

these sets is regressed on the other, resulting in a model that relates the variables. To predict 

DOC concentration using absorbance, the Y-data consisting of DOC concentration data (single 

variable) is regressed on the X-data containing absorbance measurements (single, multiple 

discrete or full range). In the case where multiple wavelengths, or additional variables like pH, 

ORP, SPC, S275-295, S350-400, SR or [Fe] comprise the X-data, multiple linear regression (MLR) or 

partial least squares (PLS) regression is performed. The regression results in DOC concentration-

predicting models following a linear structure (Y = mX + b), with multiple variables in the X-data 

simplified to: 
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 ௞ ௞  (2.4) 

wherein all cases, Y is predicted DOC concentration (or natural log of DOC concentration), 𝑚௞ is 

a regression coefficient associated with the predictor variable, 𝑋௞, from the X-data used for the 

regression and b is the regression coefficient constant. All models from this study have an 

expanded version of equation (2.4) where, for example, 𝑚௞ and b would be substituted with 

values from Table 2.4, which are the result of a PLS regression, and 𝑋௞ would be substituted with 

absorbance from the corresponding wavelength to predict DOC concentration. 

For all models, laboratory-measured DOC concentration (or ln[DOC]) was used as the Y-

data, while a variety of parameters were used as the X-data for MLR or PLS regression (Table 2.3). 

In all cases, X-data included either multiple discrete Aλ (MLR), a range of Aλ (PLS), or multiple 

discrete ln(aλ) (MLR). If a range of Aλ was used, either S275-295, S350-400 or SR was used (Table 2.3). 

To test each water quality parameter, each model's X-data contained PLS predicted DOC 

concentration and one of pH, ORP, SPC or [Fe] (Table 2.3).  

The lm() function in R (R Core Team, 2019; V. 3.6.6) was used to generate the MLR models, 

while the pls() function in the R ‘pls’ package (Mevik, B.H., Wehrens, R., Hovde, K., Hiemstra, P., 

2019; V. 2.7-2) was used to generate the PLS models within R-Studio (V. 1.2.5042). 
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Table 2.3: Model descriptions 

Detailed model parameters were used across model iteration in this study, where Y-data were regressed on X-data. 
Models were generated through multiple linear regression (MLR) or partial least squares (PLS) regression. PLS 
models used a segment of the absorbance spectra (A275-450) and spectral slopes (S275-295, S350-400) or slope ratio (Sr) to 
predict dissolved organic carbon concentrations ([DOC]). Some MLR models used absorbance from multiple discrete 
wavelengths (Aλ). X-data of the water quality parameter (WQP) correction models used either pH, oxidation-
reduction potential (ORP), specific conductance at 25°C (SPC), or concentration of total dissolved iron ([Fe]) with 
predictions of DOC concentration ([DOC]Pred) made by the PLS-plain model to test if WQP would improve [DOC] 
prediction accuracy. 

Model Y-data X-data 
# Variables 
in X-data 

Regression 
Method 

Training 
dataset Used 

Fichot & Benner 
(2011) 

ln[DOC] 
ln(a275), 
ln(a295) 

2 MLR 
Median Split 

Main 

Avagyan et al. 
(2014) 

[DOC] A275, A295, A380 3 MLR Main 

PLS-Plain [DOC] A275-A450 36 PLS Main 

PLS- S275-295 [DOC] 
A275-A450, S275-

295 
37 PLS Main 

PLS- S350-400 [DOC] 
A275-A450, S350-

400 
37 PLS Main 

PLS-SR [DOC] A275-A450, SR 37 PLS Main 

pH [DOC] [DOC]Pred, pH 2 MLR 
WQP 

Correction 

ORP [DOC] [DOC]Pred, ORP 2 MLR 
WQP 

Correction 

SPC [DOC] [DOC]Pred, SPC 2 MLR 
WQP 

Correction 

[Fe] [DOC] [DOC]Pred, [Fe] 2 MLR 
WQP 

Correction 
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Performance of each model resulting from the regression of DOC concentration on X-data 

from training dataset samples was measured using different metrics, such as prediction intervals, 

root mean square error, the Nash-Sutcliffe model efficiency coefficient or Willmott’s refined 

index of agreement, which relate to accuracy or error of the model and uncertainty around 

predictions of DOC concentration (Figure 2.2). 

Table 2.4: Model coefficients of PLS-Plain model 

Model coefficients for variables used in PLS-plain would be substituted into equation 
(2.4) to predict the concentration of dissolved organic matter ([DOC]Pred). In this case, 
absorbance from each wavelength 275-450 nm (A275-450). 

Coefficient Value Coefficient Value Coefficient Value 

m275 -16.85 m335 -6.04 m395 -2.57 

m280 -1.14 m340 -6.75 m400 -4.85 

m285 6.82 m345 -1.58 m405 -4.57 

m290 10.45 m350 -1.33 m410 -0.50 

m295 12.18 m355 -0.33 m415 -3.80 

m300 10.16 m360 -0.38 m420 7.49 

m305 6.63 m365 2.98 m425 -11.94 

m310 4.02 m370 -3.76 m430 -6.31 

m315 1.37 m375 -3.47 m435 0.15 

m320 -1.14 m380 12.15 m440 -8.45 

m325 -2.61 m385 7.74 m445 5.57 

m330 -8.69 m390 2.80 m450 14.07 

    constant 1.33 
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Multiple Linear Regression: 

The Method from Fichot & Benner (2011) 

Following the steps from Fichot & Benner (2011) lna275, lna295 and ln[DOC] were calculated 

and used. The training dataset was then sorted by a275 and subsets are taken to provide two 

separate training datasets, one containing samples higher than the median a275, and the other 

containing samples lower than the median a275. The regression was carried out with both subsets 

resulting in the following equation having a similar linear structure (Y = mX + b) to equation (2.4): 

 Pred ଵ 275 ଶ 295 (2.5) 

where [DOC]Pred is the predicted DOC concentration by the model, b is the regression constant 

and 𝑚୬ are the regression coefficients associated with the respective variable. The same steps 

were followed with the validation dataset, and ln[DOC]Pred was calculated using the regression 

equations.  

 

The Method from Avagyan et al. (2014) 

 Avagyan et al. (2014) used stepwise regression to determine the wavelengths most 

suitable to be used to predict DOC concentration according to the dataset (or subset of data). 

The best model used Aλ from 257.5, 380, 730 and 292.5 nm. Avagyan et al. (2014) used A730 as it 

was found to improve predictions of the in-situ measurements of unfiltered water as it likely 

captures sample turbidity. However, since grab-samples in this study were filtered and CDOM 
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absorbance in the 275 to 450 nm range at 5 nm intervals was used, A730 was not used in the 

regression while A275 was used instead of A257.5 and A295 instead of A292.5. Similar to the linear 

model structure of equation (4) and (5), the model resulting from these adjustments is as follows: 

 ୔୰ୣୢ ଵ ଶ଻ହ ଶ ଶଽହ ଷ ଷ଼଴ (2.6) 

 

Partial Least Squares Regression: 

PLS regression was used to develop models to predict DOC concentration using 

absorbance from a range of wavelengths as PLS allows for multicollinear variables can be used. 

The regression proceeds by determining latent variables (components) that simultaneously: 

 Best explain or summarize the input set of data (X; in this case absorbance and other 

absorbance-based charactersitics), 

 Best explain or summarize the output set of data (Y; in this case DOC concenctration), 

 And maximize the co-variance between X and Y (Dunn, 2019). 

When doing so, the variables are projected onto a new space where collinearity among variables 

is eliminated. As with MLR, the Y-space is DOC concentration. However, the X-space is a range of 

Aλ and additional absorbance characteristics such as S275-295, S350-400 or SR, rather than two or three 

discrete Aλ as used in MLR (Table 2.3). 

The PLS regression was performed on column mean-centred and standard deviation 

scaled data using a leave-one-out (LOO) cross-validation (CV; LOO-CV) method to determine the 
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root mean square error (RMSE) from the training dataset through cross-validation (RMSE-CV). 

RMSE-CV was then used to identify the potential number of components to be used. A cross-

validation is a form of pseudo-validation, where a subset of the training dataset is kept separate 

while the rest of the set is used to form a model that is then validated with the subset. The 

process is then repeated with a different subset of samples from the same training dataset. In 

the case of LOO-CV, one sample is kept from the training dataset to validate the model with the 

rest of the dataset (n-1), and this is repeated n times.  

The PLS regression determines latent variables iteratively, where each subsequent latent 

variable explains additional variance between the X- and Y-data. Using too many latent variables 

can lead to an over-fit model with low RMSE-CV but a high RMSE of predictions (RMSEP) for 

independent or future samples (Figure 2.3). The number of potential components to use for the 

model was chosen where the minimum RMSE-CV was observed (Figure 2.4) plus the one prior 

and the one following. Models using each number of components were tested with the validation 

dataset, and RMSEP was calculated for each.  

The number of components was selected by the lowest RMSEP. Figure 2.4 shows the PLS-

plain model case, where the minimum RMSE-CV was observed at six components. Then, models 

using 5, 6 and 7 components were determined, and REMSEP from the validation dataset was 

calculated using each of the models. The 5-component model had the lowest RMSEP and was 

therefore selected as the PLS-plain model. The model resulting from a PLS has a linear structure 

(Y = mX + b) similar to equation (2.4):  

 ୔୰ୣୢ ௜ ௜௜ୀ௞   (2.7) 
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Figure 2.3: Bias-Variance trade-off 

Reprinted from Analytica Chimica Acta, 595, Faber, N. M., & Rajkó, R., How to avoid over-fitting in multivariate 
calibration-The conventional validation approach and an alternative, 98–106, Copyright (2007), with permission 
from Elsevier. 

Schematic representations of bias (dashed) and variance (dotted) contributions to the actual root mean squared 
error from future predictions (RMSEP; solid) as a function of model dimensionality (latent variables or components). 
The minimum RMSEP is ideal for a model. These cases depict RMSEP from hypothetical independent samples, not 
part of the training dataset. One can think of the bias as prediction error from the training dataset and variance as 
the prediction error from the validation dataset. The left panel depicts a standard presentation, while the right panel 
depicts a more realistic presentation (Figure 2.4). In either panel, RMSEP values left of the minimum are suggestive 
of under-fitting where too few components are used, and predictive features are missed. Alternatively, RMSEP 
values to the right of the minimum suggest over-fitting where too many components are used, and noise is fit. 

where each 𝑥௞ is associated with each predictor variable used as the X-space and 𝑚௞ is the 

regression coefficient associated with that variable. In this case, A275-450 was used in every PLS 

model, while adding one of each S275-295, S350-400 or SR were used in separate models to evaluate 

their potential improvement in model prediction (Table 2.3, Figure 2.2). 
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2.3.5 Testing how water quality parameters affect accuracy of model predicted 

DOC concentration 

Estimates of DOC concentration from the Plain-PLS model are, first, robustly informed by 

the full CDOM absorbance spectra of baseflow stream water and stream water source end-

members (piezometer and lysimeter samples) that would contribute to stream water during 

storm events (Table 2.3). Then, using only stream samples from the training dataset, the 

predictions of DOC concentration from the Plain-PLS model (Table 2.3) were used in concert with 

one of pH, SPC or ORP in an MLR (Table 2.3) in an attempt to improve prediction accuracy of DOC 

concentration from stream samples. This step was taken as future in-situ data including pH, SPC 

and ORP are typically collected in stream water and not lysimeters or piezometers. Therefore, 

the developed models should be informed by the pH, SPC, or ORP signatures observed naturally 

in a stream. Nevertheless, due to most stream samples in the training dataset being from 

baseflow conditions, there is minimal variability in the relationship between CDOM absorbance 

and DOC concentration resulting from different landscape components connecting to the 

streams during storm events. As such, lysimeter and piezometer samples were used instead to 

represent end-member sources of DOM that would contribute to stream water during storm 

events. 
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Figure 2.4: RMSE-CV per component for the PLS-Plain model. 

Root mean square error from cross-validation (RMSE-CV) curve as a function of model dimensionality for a partial 
least squares model regressing dissolved organic carbon concentration on A275-A450. The minimum RMSE-CV was 
observed at six components. Then, models using 5, 6, and 7 components were tested with the validation dataset, 
where a 5-component model resulted in lower RMSEP than 6- or 7-component models. 

 

2.3.6 Model Evaluation 

 Typical model evaluation metrics reported include the root mean square error (RMSE) 

and coefficient of determination (R2) of the model. However, while RMSE has the desirable trait 

of penalizing larger errors, it relates to the spread of errors and does not inform average error. 

R2 is not helpful as a measure of predictability as it says nothing about prediction error or 

prediction intervals while also being arbitrarily large or small regardless of the model being 

correct (Shalizi, 2015). 
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Model Residuals 

Training datasets are used to generate the predicting models through regression, while 

the validation dataset made from independent samples is used to test each model's performance 

by predicting DOC concentration and calculating prediction residuals. Training dataset residuals 

of fitted DOC concentration from each model were calculated to determine the RMSE and 

prediction intervals. Validation dataset residuals from predictions of DOC concentration of each 

model were calculated to determine root mean square error from predictions (RMSEP), the Nash-

Sutcliffe model efficiency coefficient (NSE) and Willmott’s refined index of agreement (dr) and 

compared among models. Prediction residuals were calculated by: 

 ୖୣୱ ௜ ௜  (2.8) 

where [DOC]Res is the residual DOC concentration (error) from the prediction, P௜ is the fitted or 

predicted DOC concentration by a model, O௜  is the corresponding observed or laboratory-

measured value. Calculated this way, a positive [DOC]Res indicates the model overpredicted DOC 

concentration for the sample, a negative [DOC]Res indicates an underprediction and [DOC]Res = 0 

indicates a perfect prediction. Using prediction residuals, RMSE, also known as the standard error 

of the model, was calculated for each model by: 

 
∑ቀ[ୈ୓େ]౎౛౩೔

ቁ
మ

௡ି௞
 (2.9) 
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where n is the sample size and 𝑘 is the number of variables used in an MLR model or the number 

of components for the case of PLS models (Dunn, 2019). RMSE is the standard deviation of 

residuals adjusted for degrees of freedom used by the model and, therefore, suitable to compare 

the performance of different models and penalize for using too many or redundant parameters 

to fit the model. However, RMSEP is not adjusted for degrees of freedom and therefore does not 

penalize for each parameter used:  

 
∑ቀ[ୈ୓େ]౎౛౩೔

ቁ
మ

௡
 (2.10) 

where RMSEP was calculated from validation dataset residuals. 

Prediction Intervals: 

Model residuals from the training dataset were used to determine the 100(1-α)% 

prediction interval. The prediction interval is an upper and lower limit associated with a predicted 

value designed to show on a probability basis the range of error associated with the prediction 

(Montgomery & Runger, 2018). They describe the error in estimation from a regression model 

and estimate a constraint on uncertainty around that model's predictions. The prediction's real 

value is estimated to be found within the prediction interval with 100(1-α)% confidence. In the 

case of this study, an α level of 0.05 was used. Prediction intervals for each sample was calculated 

as: 

 ௜ ௖௥௜௧ ௜  (2.11) 
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where P௜ is a model predicted value, tcrit are the corresponding critical t-value at a specified α/2 

with 𝑛 − 𝑘 degrees of freedom, and 𝒱{P௜} is the variance of predicted values, calculated by: 

 ௜
ଵ

௡

(୔೔ି୔ഥ)మ

ௌௌು
 (2.12) 

where all the parameters come from the training dataset. n is the sample size, MSE is the mean 

squared error (ଵ

௡
∑ ቀ[DOC]Res𝑖

ቁ
ଶ
), P௜  is a predicted value, Pഥ is the mean of all predicted values, SSP 

is the sum of squared deviations about the mean of predicted values (∑(P௜ − Pഥ)ଶ). In order to 

confirm the validity of the prediction intervals, at least 100(1- α )% of the residuals from the 

training dataset should fall within the prediction interval (ห [DOC]ୖୣୱ𝒊
 ห < 𝑡௖௥௜௧ ∗ ඥ𝒱{P௜}). 

To calculate prediction intervals for the validation dataset and future datasets, 𝒱{P௜} was 

calculated using the RMSE, 𝑆𝑆௉, 𝑛 and Pഥ values from the training dataset used to train the model 

while using the appropriate P௜ from the validation dataset or future samples.  

 

The Nash-Sutcliffe Model Efficiency Coefficient: 

 The Nash-Sutcliffe model efficiency coefficient was developed to assess hydrological 

models' predictive ability by comparing the variance of prediction errors to the variance of 

observed data (NSE; Nash & Sutcliffe, 1970). It was calculated from the validation dataset 

residuals. When used to evaluate models here to predict DOC concentration, it was found to be 

near-identical to R2, with higher values indicating better model performance, calculated as: 
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∑ቀ[ୈ୓େ]౎౛౩೔

ቁ
మ

∑(୓೔ି୓ഥ)మ  (2.13) 

where 𝑂ത is the mean of measured values. An NSE value equal to 1 would mean ∑൫[DOC]ୖୣୱ೔
൯

ଶ
=

0 and therefore perfect predictions, while NSE = 0 indicates ∑൫[DOC]ୖୣୱ೔
൯

ଶ
=  ∑(O௜ − Oഥ)ଶ 

meaning that using Oഥ to predict DOC concentration is as accurate as using the model predictions 

from a particular dataset. Therefore, NSE < 0 indicates that using the mean observed value to 

predict DOC concentration is more accurate than using model predictions. 

 

The Refined Index of Agreement: 

The refined index of agreement (dr) is another unitless indicator of model performance 

similar to NSE (Willmott et al., 2012). It is an updated and more robust version of the original 

index of agreement (d) that, unlike NSE, which uses squared error or deviation values, compares 

the absolute error of the model predictions to the absolute deviations about the observed mean 

(Legates & McCabe, 1999; Willmott et al., 2012). Therefore, it is a more robust indicator of model 

performance that can be used instead of R2. The dr is calculated as: 

 ௥

∑ቚ[ୈ୓େ]౎౛౩೔
ቚ

௖∗∑|୓೔ି୓ഥ|
 (2.14) 

where 𝑐 is a scaling factor, suggested being set equal to 2 (Willmott et al., 2012). Ranging from 

+1 to -1, a dr value of 0.5 indicates that the sum of the error-magnitudes (∑ห[DOC]ୖୣୱ೔
ห) is one 
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half the sum of the observed-deviation magnitudes (∑|O௜ − Oഥ|) with the perfect-model-deviation 

(where P௜ =  O௜, hence using 𝑐 = 2 and the denominator becoming 2 ∗ ∑|O௜ − Oഥ|). Inasmuch, dr 

is interpreted in terms of mean-absolute error (MAE; ଵ

௡
∑ห[DOC]ୖୣୱ೔

ห) from model predictions 

and the mean-absolute deviation (MAD; ଵ

௡
∑|O௜ − Oഥ|). When 𝑐 = 2 and the denominator 

becomes 2 ∗ ∑|O௜ − Oഥ|, one MAD accounts for the observed MAD (around O௜) while the second 

represents the average magnitude of the perfect-model deviations (around P௜, when P௜ =  O௜). 

The interpretation of NSE = 1 is also applicable to dr = 1, as perfect predictions mean P௜ =  𝑂௜ and 

∑ห[DOC]ୖୣୱ೔
ห = 0. However, as the lower limit of dr is approached, interpretations should be 

made cautiously as it could mean model estimated deviations about Oഥ are poor estimates of 

observed deviations, or there simply is little observed variability (Willmott et al., 2012). As 

opposed to R2, d is a better indicator of model fit (Legates & McCabe, 1999), and dr further 

improves the utility of d as an index of model fit by addressing caveats of the original d (Pereira 

et al., 2018; Willmott et al., 2012). 
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2.4 Results and Discussion 

Developing a model to predict DOC concentration from absorbance will allow us to monitor 

stream DOC content using in-situ spectrophotometers continuously. With a dataset of 

continuous DOC concentration estimates, more accurate carbon fluxes from the landscape can 

be determined and used to inform how these fluxes may respond to climate change. However, 

stream water chemistry varies with source and hydrologic events (Ågren et al., 2010; Avagyan et 

al., 2014; Laudon et al., 2011; Peacock et al., 2014; Tiwari et al., 2014; Vaughan et al., 2017) and 

thus, the relationship between DOC concentration and CDOM absorbance in stream water varies 

as different components of the landscape are connected with changes in hydrology. The PLS 

approach is tested here to demonstrate whether it captures the variability in the relationship 

between DOC concentration and CDOM absorbance in stream water. PLS allows for a more 

extensive range of the absorbance spectra to be used to predict DOC concentration, which may 

reduce the uncertainty around predictions, as more information is used to make the predictions; 

unlike MLR models where using multicollinear absorbance data to predict DOC concentration 

risks forming an unstable model with more uncertainty around predictions. Optical metrics 

related to CDOM composition and water quality parameters that change about discharge are also 

used with absorbance to improve accuracy of predicted DOC concentration. Uncertainty around 

predictions was estimated as 95% prediction intervals that take into account the variability in the 

relationship between CDOM absorbance and DOC concentration among samples and give 

confidence to predictions of future samples made by the model as well as catchment-wide flux 

estimates derived from these predictions. 
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2.4.1 Heterogeneity among samples in the training and validation datasets: 

Variation in pH, SPC and [Fe], but not ORP, among soil waters is reflected in stream 

waters  

Water quality parameters among sample types demonstrate that stream samples exhibit 

the largest variance in [Fe], pH, and SPC, consistent with the role of hydrology and water source 

changes with discharge and season in controlling stream water chemistry (Figure 2.5). 

Piezometer samples cover a wide range of [Fe] from 200 to 400 ppb, lysimeter samples range 

from 75 to 200 ppb (Figure 2.5 B), while stream samples range in [Fe] from 50 to 350 ppb, 

spanning the ranges across other sample types. Similarly, the SPC of lysimeter and piezometer 

samples exhibited a narrower range of 25 to 75 µS cm-1 compared with the stream samples that 

ranged from 50 to 100 µS cm-1 (Figure 2.5 A). The pH varied across all sample types with lysimeter 

samples ranging from 4.5 to 5.5 pH, piezometers ranging from 5 to 6 pH, groundwater wells 

ranging from 6 to 7 pH, and streams ranging from 5.5 to 7 pH, again spanning the range of values 

observed within the other sources (Figure 2.5 C). At this point, [Fe] was no longer considered a 

water quality parameter as the intention of the following PLS models was to estimate DOC 

concentration from in-situ data and continuous in-situ monitoring of [Fe] is not typically possible. 
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Figure 2.5: Distribution of water quality parameters for the training and validation datasets 

Water quality parameters, specific conductance at 25°C (A; SPC), total dissolved iron (B; [Fe]), pH (C), and oxidation-
reduction potential (D; ORP), across sample types for the model training and validation datasets. All stream and 
lysimeter samples from the training dataset were collected from across the four NL-BELT regions and the PBEWA, 
while groundwater, piezometer and most stream samples from the validation dataset were collected exclusively 
from the PBEWA. The asterisks refer to extreme outliers outside 1.5 times the interquartile range. 

Models derived from this particular training dataset will not be applicable for in-situ data 

due to the addition of HgCl2 to preserve samples. However, the method is equally applicable 

when using a new dataset where HgCl2 was not used. The addition of HgCl2 was observed to 

cause a drop of pH by as much as a whole unit across the samples collected in 2019. This was 

observed when the measurements for this subset of samples (those collected in 2019 from Table 
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2.2.) were made before and after the addition of HgCl2, the latter immediately following 

absorbance analysis. Considering that continuous in-situ stream pH measurements below pH 6 

from these stream sites have rarely been observed, the addition of HgCl2 likely contributed to the 

values observed below 6 (Figure 2.5) for the rest of the sample set (collected pre-2019). Similarly, 

the addition of HgCl2 also increased the SPC by as much as 40 µS cm-1 across the same 2019 

samples, suggesting the pre-2019 samples experienced the same effect. Even though these 

models are not applicable for in-situ data due to the altered pH, SPC and ORP, these methods 

provide a basis for model development and testing that can be repeated with future datasets. 

In contrast to other water quality parameters, the ORP of the stream water samples was 

the highest and exhibited the least variation (300 to 350 mV) among sample types consistent 

with the turbulence, and therefore likely reaeration, experienced at each stream site (Figure 2.5 

D). The most variable ORP was observed in groundwater well samples (-50 to 200 mV), as 

expected with changes in oxidizing or reducing conditions dependent on the water table variation 

over the year. Collectively, these results suggest that ORP measurements may not be helpful in 

further constraining the modelling of stream DOC from absorbance measurements as the ORP 

values of the sources are likely overprinted by the reaeration occurring in the stream.  
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The relationship between CDOM absorbance and DOC concentration is variable 

among all samples types 

The concentration of DOC exhibited a wide range spanning 1 to 40 mg C L-1 across all 

sample types (Figure 2.6 A). As expected, baseflow stream samples, in either the training or 

validation dataset, exhibited lower values and a narrower range in DOC concentration (1 to 15 

mg C L-1) compared to those collected during storm events (5 to 22 mg C L-1; Figure 2.6 A). Among 

sample types, lysimeters were found to have the most extensive range in DOC concentration (5 

to 40 mg C L-1; Figure 2.6 A). Derived from water percolated through overlying organic soil, this 

variation in lysimeter DOC concentration is due to both water fluxes and organic soil 

compositional changes throughout the year (Bowering et al., 2020). Samples taken from deeper 

mineral soil horizons exhibit lower maximum concentration of DOC, with deeper piezometers 

ranging from 5 to 25 mg C L-1 and the groundwater wells ranging from 5 to 10 mg C L-1 (Figure 2.6 

A). During baseflow, stream DOC concentration was closer to those of the deeper soils 

(groundwater wells and piezometers), while during hydrologic events, stream DOC concentration 

was closer to values found for surface organic soils (lysimeters).  

Absorbance at 350 nm (A350) was found to have a very similar trend to DOC concentration 

among all sample types (Figure 2.6 A-C). This was expected, as these two metrics are typically 

highly correlated (Peacock et al., 2014), with A350 sometimes used as a proxy for DOC 

concentration (Asmala et al., 2012; Muller & Tankéré-Muller, 2012; Peacock et al., 2014). 

However, that is not the case with SR (Figure 2.6 D), which seems more independent of DOC 

concentration as it relates to CDOM composition (Helms et al., 2009; Weishaar et al., 2003). 
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Stream samples were found to have the largest variance in these optical characteristics compared 

to other sample types, likely resulting from changing proportions of different sources, including 

those represented by the sample types measured here. For example, the lower SUVA350 values in 

stream samples typical of those collected during baseflow are consistent with groundwaters, 

while higher values typically of those collected during storm flow are consistent with the 

piezometers and lysimeter samples (Figure 2.6 C). On the other hand, higher SR values (1-1.2) 

were observed in the groundwater well samples (deepest depth), lower SR values (0.7-0.9) were 

observed in the lysimeter samples (shallowest depth) and piezometer samples (intermediate 

depth) and stream samples (variably integrating soil waters) were observed to range between 

those extremes (0.8 to 1.2) regardless of base or storm flow conditions (Figure 2.6 D). 

One of the caveats with using a single wavelength to train a model to predict DOC 

concentration is that it may result in a model that is biased to predict one sample type more 

accurately than another: a result of varying contributions of CDOM, or varying components of 

CDOM, among sample types (Peacock et al., 2014). Although A350 and concentration of DOC are 

highly correlated and show near-identical distributions across sample types, the overall 

relationship between DOC concentration and A350 among sample types were found to be 

significantly different from each other, observed as an interaction effect of A350 with sample type 

(F(3, 276) = 21.4, p < 0.0001; Figure 2.7) in an ANCOVA regressing DOC concentration against A350, 

sample type, and their interaction. This suggests that the aromatic content, and therefore overall 

CDOM composition, among the different sample types, is measurably distinct, and using 

absorbance from a single wavelength (A350) to predict DOC concentration of these samples would 

most likely inaccurately predict specific types of sample. 
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Figure 2.6: Bulk DOC and optical parameters related to composition 

Measured dissolved organic carbon concentration (A; [DOC]) and absorbance characteristics including absorbance 
at 350 nm (B; A350), specific UV absorbance at 350 nm (C; SUVA350) and spectral slope ratio (D; SR) across sample 
types for the model training and validation datasets. The stream samples collected during baseflow (Stream BF) are 
provided separately from stream samples collected during storm events (Stream SF). All stream and lysimeter 
samples were collected from across the four NL-BELT regions and the PBEWA, while groundwater and piezometer 
samples were collected exclusively from the PBEWA. The asterisks refer to extreme outliers outside 1.5 times the 
interquartile range. 

Also, following a one-way ANOVA where the effect of sample type was marginally 

significant on SUVA350 (F(3,280) = 2.49, p < 0.10), a post-hoc Tukey’s honest significant difference 

test revealed that the difference in slopes between stream and lysimeter samples were 

significantly different (p < 0.05). These results are observed in Figure 2.7, where the slopes of 



49 
 

each sample type differs, the largest difference in slope is observed between the stream and 

lysimeter samples. However, these analyses highlight that the relationship between DOC 

concentration and A350 can be variable even within the same sample type. For example, stream 

samples within a narrow range of DOC concentration (9 to 12 mg C L-1) were associated with a 

wide range of A350 values (5 to 30 m-1) (Figure 2.7, Appendix 1). Similarly, as DOC concentration 

increases from 20 to 40 mg C L-1, the spread of A350 values for lysimeter and piezometer samples 

becomes wider (20 to 50 m-1) (Figure 2.7). The relationships between DOC concentration and A350 

observed here (Figure 2.7) are not necessarily what would be observed for a different wavelength 

in place of 350 nm, due to differences in DOM composition among sample types (Peacock et al., 

2014) and even within the same sample type (Appendix 1). This is an example that highlights how 

the use of single-wavelength models to predict concentration of DOC could result in more 

uncertainty around predictions than a multi-wavelength model (Avagyan et al., 2014), where 

Appendix 1 highlights the variable relationship between DOC concentration and A350 within 

stream samples alone, most likely attributed to the region where the sample was collected from.  
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Figure 2.7: Relationship between A350 and DOC 

The relationship between absorbance at 350 nm (A350) and dissolved organic carbon concentration ([DOC]) across 
sample types. Slopes of best-fit lines from stream and lysimeter samples were found to be significantly different (p 
< 0.05) as assessed through a post hoc Tukey’s test on a one-way ANOVA testing SUVA350 ([DOC]-normalized A350) 
against sample type. The ANCOVA test of A350, [DOC] and sample type exhibited a significant sample type and 
interaction terms (p < .0001).  
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2.4.2 PLS models performed as good as typical MLR models: 

The dr was used as an indicator of model performance to replace R2, and prediction 

intervals were calculated to constrain uncertainty around predictions. These metrics are typically 

not reported in the literature dealing with the spectrophotometric determination of DOC 

concentration (Asmala et al., 2012; Avagyan et al., 2014; Etheridge et al., 2014; Fichot & Benner, 

2011; Jollymore et al., 2012; Juhls et al., 2019; Lee et al., 2015; Peacock et al., 2014; Ruhala & 

Zarnetske, 2017; Simonsson et al., 2005; Strohmeier et al., 2013). Prediction intervals from DOC 

estimates can then be applied to catchment-wide flux estimates. Across all models, NSE values 

were found to be equivalent to R2, and therefore dr was considered the primary metric to 

compare model performance along with prediction intervals.  

Table 2.5: Comparing PLS to MLR models 

Comparison of three models generated using the training dataset and tested using a separate validation dataset of 
this study. The Avagyan et al. (2014) model is a multiple linear regression using absorbance at wavelengths 275, 295 
and 325 nm selected through stepwise regression. The Fichot & Benner (2011) model is based upon a multiple linear 
regression of log-transformed absorption coefficients at 275 and 295 nm, where the median absorption split the 
dataset at 275 nm. The PLS-plain is the PLS regression developed in this study using absorbance across the spectrum 
of 275-450 nm at 5 nm intervals. Models are evaluated by comparing the index of agreement (dr), root mean square 
error (RMSE) and RMSE of prediction (RMSEP) and the 95% prediction interval (95% PI). Asterisk - the predicted 
[DOC] from the PLS-plain model was used to develop the models in Table 2.7. 

 
Training dataset Validation dataset 

Model n df Model RMSE 95% PI n RMSEP NSE dr 

Avagyan et al. 254 4 1.92 3.7 33 0.56 0.98 0.89 

Fichot & 
Benner 

254 3 2.06 4.2 33 0.66 0.98 0.86 

PLS-Plain* 254 5 1.87 3.7 33 0.52 0.99 0.89 
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Avagyan, A., Runkle, B. R., & Kutzbach, L. (2014). Application of high-resolution spectral absorbance measurements 
to determine dissolved organic carbon concentration in remote areas. Journal of hydrology, 517, 435-446. 

Fichot, C. & Benner, R. (2011). A novel method to estimate DOC concentrations from CDOM absorption coefficients 
in coastal waters. Geophysical Research Letters. 38:L03610 

 

Prediction accuracy was similar between the PLS-plain model developed here and each of 

the MLR models developed using the methodology from Fichot & Benner (2011) and Avagyan et 

al. (2014) (Table 2.5). All models had dr ≥ 0.86. This indicates that this PLS approach works as well 

as previously developed methods using multiple discrete wavelengths. However, the PLS 

approach has the added benefit of providing more information about the dataset and resulting 

model that allows for further interpretability and comparability among model iterations and 

results. This is achieved by utilizing the scores, weights, and loadings provided by the analysis. 

Additionally, the model coefficients result in being more stable, which means that minor changes 

in the dataset do not result in significant changes in the model coefficients. Future samples need 

not have a near-identical covariance structure as the training dataset in order to make accurate 

predictions of DOC concentration. This contrasts with MLR when using multiple wavelengths that 

exhibit multicollinearity, resulting in unstable models with highly sensitive covariance structure 

and inferior performance when predicting samples that do not have the same covariance 

structure as the training dataset. 

 The model resulting from the PLS regression of DOC concentration on A275-450 was able to 

predict DOC ± ~3.7 mg C L-1 with 95% confidence using only five components (Table 2.5, Figure 

2.8 A). The validation dataset testing this PLS model had a dr value of 0.89, supporting that the 

model can make very accurate predictions (Willmott et al., 2012). The 3.7 mg C L-1 prediction 
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interval is helpful in estimating a constraint on uncertainty and applicable when utilizing the 

predictions for catchment-wide DOC flux estimates. However, due to prediction intervals not 

typically reported in the literature, it is unknown how this estimate of uncertainty fares to other 

studies with similar goals. The model was able to accurately predict DOC concentration of 

validation samples ranging from 4-30 mg C L-1 (Figure 2.8 B), with all the residuals from the 

prediction ([DOC]Res) of the validation dataset falling well within the ~3.7 mg C L-1 prediction 

interval (|[DOC]Res| < 3.7 mg C L-1); the largest |[DOC]Res| (absolute residual) observed was 1.06 

mg C L-1. 

Considering that the mean square error (MSE) determines the prediction interval's size 

(while keeping all other parameters constant; Eq. 12), the estimated ~3.7 mg C L-1 prediction 

interval could have been inflated as squaring errors increase the influence of outliers. Re-fitting 

the model after examining the outliers or replacing the training dataset to train a new model 

using stream samples from the PBEWA from storm events to develop a more refined model can 

result in a more accurate model with lower MSE and, therefore, smaller prediction intervals. 

Otherwise, an alternative leverage-based prediction interval can be derived and more suitable to 

be used for constraining prediction error from PLS models (Høy et al., 1998). 
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Figure 2.8: Recovery function for PLS-Plain model 

Recovery function of the PLS-plain model (using only wavelengths 
from 275-450 range) across samples from training dataset (n = 254; A) 
and validation dataset (n = 33; B) expressed as the model predicted 
dissolved organic carbon concentration ([DOC]) plotted against lab 
measured [DOC]. All stream and lysimeter samples from the training 
dataset were collected from across the four NL-BELT regions and the 
PBEWA, while groundwater, piezometer and most stream samples 
from the validation dataset were collected exclusively from the 
PBEWA. Line of best-fit (A; y = 1.0007x - 0.0080) overlaps with 1:1 line 
representing perfect predictions. The shaded area (A) represents 95% 
confidence interval of best-fit regression. Dashed lines (A) mark the 
95% prediction interval range. Solid 1:1 line (B) indicates perfect 
predictions. Log-scaled axes (B) highlight model performance in the 
lower [DOC] range expected during baseflow conditions (~5 mg C L-1). 
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2.4.3 Additional optical and water quality parameters did not improve model 

performance: 

 The determination of an accurate model that predicts DOC concentration by using CDOM 

absorbance from continuous in-situ stream measurements and constraining its uncertainty 

around predictions is imperative to accurately estimate DOC export across all spatial and 

temporal scales within catchments with confidence. Models that use only absorbance to predict 

DOC concentration are suitable. However, the relationship between DOC and CDOM absorbance 

is altered during storm events, likely due to changes in DOC source caused by changes in 

hydrology (Asmala et al., 2012; Vaughan et al., 2017, 2019). Therefore, optical parameters 

(spectral slopes and their ratio) and water quality parameters (pH, SPC and ORP) were tested to 

determine if they would improve predictions of DOC concentration and reduce uncertainty. 

Because future predictions using these parameters will be from in-situ stream measurements of 

pH, SPC and ORP, the training dataset used to test the water quality parameters was composed 

of a subset of only stream samples to form the main training dataset (Table 2.2 and 2.3).  

 

Using optical parameters in concert with CDOM absorbance in PLS to predict DOC 

concentration 

The inclusion of integrative optical parameters, such as S275-295, S350-400, or SR, in additional 

PLS regressions, did not improve DOC prediction uncertainty. The 95% prediction intervals for 

the four PLS models (Table 2.5 and 2.6) varied between ~3.6 and ~3.8 mg C L-1. In fact, the 
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inclusion of S350-400 increased the validation dataset's prediction error, where the RMSEP was 

double that of the other PLS models, and dr was 0.1 smaller than the other models. Considering 

that the PLS-S350-400 model had a marginally smaller RMSE but much larger RMSEP while using 

seven components (Table 2.6) compared to the five components used by the PLS-plain model 

(Table 2.5), suggests that the PLS-S350-400 model is overfit (Figure 2.3). 

Table 2.6: Including other optical parameters as predictors 

Comparison of models using additional absorbance metrics related to dissolved organic carbon composition to test 
their impact on the original PLS model developed in this study. All models are generated using the training dataset 
and tested using a separate validation dataset of this study. These PLS regression models all use A275-450 alongside an 
additional variable: one of either spectral slopes (S275-295 or S350-400) or the spectral slope ratio (SR). Models are 
evaluated by comparing the index of agreement (dr), root mean square error (RMSE) and RMSE of prediction 
(RMSEP) and the 95% prediction interval (95% PI). 

 
Training dataset Validation dataset 

Model n df Model RMSE 95% PI n RMSEP NSE dr 

S275-295 PLS 254 5 1.87 3.7 33 0.53 0.99 0.89 

S350-400 PLS 254 7 1.8 3.6 33 1.08 0.95 0.78 

SR PLS 254 6 1.85 3.8 33 0.59 0.98 0.88 

 

Even though including these additional optical parameters were found to not improve 

predictions of DOC concentration and reduce the uncertainty of the models using this specific 

dataset, they could be potential variables for reducing model uncertainty in future studies. 

Especially when considering developing a model for in-situ stream predictions, as these metrics 

hold information about the DOM composition (Helms et al., 2009) and therefore, the relationship 

between these metrics and DOC may capture information relevant to hydrologic events (Vaughan 

et al., 2017, 2019) that may be useful for improving predictions of DOC concentration and 
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reducing model uncertainty. However, this training dataset is quite heterogeneous due to 

samples from different sources of water from different catchment areas with widely different 

CDOM compositions (Table 2.1, Figure 2.6). This heterogeneity may be aliasing the contribution 

of the stream sample optical parameters and desensitizing the model stream sample signatures. 

In other words, the model may be too general and desensitized to catchment-specific signatures 

that could improve model performance. Thus, it appears as if there was no improvement in 

prediction accuracy for the validation dataset composed of mostly baseflow samples from 

specific sites within the PBEWA (validation dataset in Figure 2.6 compared to training dataset). 

This highlights the possible pitfalls one may encounter when using a global predicting model that 

is insensitive or overlooks site-specific signatures that may be important for making an accurate 

prediction within a site. 

Further exploration of how these optical parameters contribute to predictions of DOC 

concentration and uncertainty should be considered when training a model using a training 

dataset of samples more representative of what the model will be used to predict. In this case, 

samples collected over baseflow and storm-flow conditions from Horseshoe Brook within the 

PBEWA. 
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Using water quality parameters in concert with priorly-predicted DOC concentration 

in MLR to predict DOC 

Using only stream samples from the training dataset, the predictions of DOC 

concentration from the Plain-PLS model were used in concert with one of pH, SPC or ORP in an 

MLR (Table 2.3) in an attempt to improve prediction accuracy of DOC concentrationfrom stream 

samples. This step was taken as future in-situ data would be collected in stream water and not 

lysimeters or piezometers. Therefore, the developed models should be informed by the pH, SPC, 

or ORP signatures observed typically in a stream. Nevertheless, due to most stream samples in 

the training dataset being from baseflow conditions, there is minimal variability in the 

relationship between CDOM absorbance and DOC concentration resulting from different 

landscape components connecting to the streams during storm events. As such, lysimeter and 

piezometer samples are used instead to represent end-member sources of DOM that would 

contribute to stream water during such events. However, there was no further improvement to 

prediction accuracy of DOC concentration despite a reduction in the 95% prediction interval 

(from ~3.7 to ~2.8-~3.0 mg C L-1, Table 2.5 and 2.7).  

The prediction interval for the MLR models is not able to incorporate the uncertainty 

associated with the original PLS-predicted DOC concentration (~3.7 mg C L-1) used in the MLR 

and, therefore, underestimate the uncertainty. 

Despite the lack of clear evidence of model improvement in the comparisons made here, 

pH and SPC may still be good candidates to improve model accuracy, while ORP remains a weaker 

candidate for inclusion in further model development for stream DOC prediction. The MLR 
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models' performance incorporating these water quality parameters has only been validated for 

baseflow stream samples, where an event would lead to a much more extensive range of 

observed values of these water quality parameters. The lack of model improvement with the 

inclusion of these water quality parameters for DOC prediction was likely due to reduced ranges 

in the SPC and pH values within the training dataset relative to the validation dataset (Figure 2.5). 

Furthermore, this range was not likely reflective of the range in SPC and pH typically found over 

hydrologic events. On the other hand, due to the signature of ORP from different sample types 

being overprinted within the stream because of turbulence and mixing, ORP was the weakest 

candidate to continue testing in the future (Figure 2.5 D). 

Stream water pH and SPC are still considered better candidates to improve model 

accuracy due to their relationship with discharge and DOC concentration, and by extension 

absorbance (Ågren et al., 2010; Inserillo et al., 2017; Kobayashi, 1986; Laudon et al., 2001; Laudon 

& Buffam, 2008; Pace et al., 2012; Spencer et al., 2007). The stream water pH, for example, is 

negatively correlated to DOC concentration (Ågren et al., 2010; Laudon et al., 2001; Laudon & 

Buffam, 2008) as organic acids often represent a significant component of DOM delivered to 

streams, lowering pH while contributing to increasing DOC content. However, CDOM, a measure 

of DOM's absorptivity, is positively correlated to pH (Pace et al., 2012; Spencer et al., 2007). This 

causes an interference in the relationship between DOC concentration and CDOM absorbance 

during storm or snowmelt events where stream water pH has been observed to decrease during 

the rising limb and increase during the lowering limb of these melt events (Ågren et al., 2010; 

Laudon et al., 2001; Laudon & Buffam, 2008) or storm events.  
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Table 2.7: Testing performance of water quality parameters 

Comparison of models using a water quality parameter to test their impact on [DOC] prediction accuracy. All models 
are generated using the same training dataset, a subset of the training dataset used for Table 2.1 and Table 2.2 
composed of only stream samples and tested using a separate validation dataset of this study. These multiple linear 
regression models use predictions of DOC concentration from the PLS-plain model plus one of the factors to predict 
[DOC]. Models are evaluated by comparing the index of agreement (dr), root mean square error (RMSE) and RMSE 
of prediction (RMSEP) and the 95% prediction interval (95% PI). Asterisk – the +5 df represents the 5 PLS-components 
used to estimate [DOC]Pred, which [DOC] is then regressed onto for these water quality parameter models (Figure 
2.2, Table 2.3). 

 
Training dataset Validation dataset 

Model n df Model* RMSE 95% PI n RMSEP NSE dr 

No Factor 106 1 (+5) 1.89 3.3 33 0.79 0.97 0.88 

pH 81 2 (+5) 1.82 3.0 31 1.22 0.94 0.87 

ORP 39 2 (+5) 2.08 3.0 31 1.2 0.94 0.81 

SPC 42 2 (+5) 1.75 2.8 31 1.46 0.91 0.79 

C 51 2 (+5) 1.67 2.7 31 1.66 0.89 0.83 

Fe 93 2 (+5) 1.8 3.3 0 NA 

 

2.4.4 PLS model biased by region but not season: 

 Model performance bias was assessed through six one-way ANOVAs testing the 

prediction residuals of the PLS-plain and both MLR models, using Fichot & Benner’s (2011) and 

Avagyan et al.’s (2014) methods (Table 2.5), against sample season and region (Figure 2.9). The 

analyses revealed that all three models might be biased by region while only the model using 

Fichot & Benner’s (2011) method may be biased by season. The season could not explain the 

distribution of residuals from the PLS-plain model (p > 0.3), suggesting prediction errors are not 

biased strongly biased by season. The same test performed on region, however, indicated a 

regional bias for the prediction errors (p < 0.01), suggesting there is a regional specificity to the 
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relationship between CDOM absorbance and DOC concentration that I fail to capture in all three 

regression methods used (Table 2.5). However, that does not mean the models are not suitable 

to be used across different regions, as the ~3.7 mg C L-1 prediction interval takes these biases into 

account. It does, however, suggest that the prediction intervals could be reduced by using a 

training dataset composed of samples exclusively from the planned site or region, removing 

prediction error or bias caused by regionality but within similar ecosystem types based upon 

dominant vegetation and overall climate regime.  
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Figure 2.9: Sensitivity analysis testing season and region 

Model estimate residual distributions across NL-BELT and the PBEWA regions (top, A, B, C) and seasons (bottom, D, E, F) for the Avagyan 
(left, A, D), Fichot & Benner (middle, B, E) and PLS-plain (right, C, F) models. One-way ANOVAs testing each of the model residuals to regions 
or seasons found season to be significant only in the Fichot & Benner methods MLR model residuals (p < 0.001) and found region to be 
significant in all models (p < 0.001). The asterisks refer to extreme outliers outside 1.5 times the interquartile range. 
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2.5 Conclusion and Implications 

Accurate determination of DOC concentration using only absorbance was achieved 

along with an estimate of uncertainty around predictions made by these PLS and MLR 

models. Prediction accuracy and uncertainty from PLS models were not different from 

MLR models, indicating they are adequate for building absorbance-based models for 

predicting in-situ DOC. Further testing of optical metrics related to DOC composition (S275-

295, S350-400 and SR), pH and SPC using a dataset comprised of storm samples from only 

Horseshoe Brook in PBEWA may improve the model. These parameters (S275-295, S350-400, 

SR, pH and SPC) may be more beneficial when a representative dataset is used to train the 

model. Such a dataset would capture full storm events, capturing a great proportion of 

the natural variability in relationships between CDOM absorbance, DOC concentration, 

SPC, pH, and CDOM composition throughout a storm. Using metrics, such as variable 

importance in the projection (VIP), squared prediction errors (SPE) and Hotelling’s T2, 

made available from PLS model’s scores and loadings, could provide more insight 

regarding whether these parameters can help improve model predictions and reduce 

uncertainty in predictions of DOC concentration from in-situ measurements. Scores used 

for diagnostic plots such as SPE and T2 plots can be used to check for dataset or sample 

consistency (Dunn, 2019) which can be used in further model refinement and help 

decrease prediction uncertainty. Furthermore, SPE and T2 plots can identify unusual 

outlier samples in the training dataset that may be biasing the model or even identify 

unusual future samples (Dunn, 2019). Scores can be further used to calculate sample 
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leverages to identify high-leverage samples that would bias the model or also be used to 

estimate leverage-based prediction intervals (Høy et al., 1998). SPE and T2 plots can also 

help determine when the model should be updated or re-fit with more appropriate data 

if future samples consistently fail to have similar SPE or T2 results to the training dataset 

(Dunn, 2019) separately from prediction error. Future steps should involve using these 

plots when applying the model to a dataset of continuous in-situ absorbance 

measurements before predicting DOC concentration to inform whether the model is 

suitable to predict a new sample. 

 As the model is meant to be used to predict stream DOC frequently over long 

periods, the model was developed further with the inclusion of optical metrics and water 

quality parameters affected by stream discharge. Optical parameters, like S275-295, S350-400 

and SR, and water quality parameters, such as pH, ORP and SPC, were found not to 

improve prediction accuracy of DOC concentration or reduce uncertainty when added to 

regression models using the dataset of this study. This was most likely due to the high 

diversity in sample types within the training dataset which reduced representation, or 

aliased, the range of stream water chemistry indicative of the entire range of hydrologic 

conditions. Future datasets should use stream samples collected across hydrologic events 

where the full range of these parameters and DOM compositions can be observed, tested 

and used to reduce the uncertainty around predictions of stream DOC concentration. 

These models may not provide the resolution in predicted DOC concentrations needed to 

inform accurate DOC flux estimates considering the relatively large undertainty in 
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prediction intervals. However, these results do indicate the PLS modelling approach is 

promising, and caonsidering the importance of the accuracy of the DOC flux, next steps 

in developing this model from in-situ stream data capturing storm events is warranted. 

3 Training and evaluating a PLS model to 

predict dissolved organic carbon 

concentration in remote boreal forest stream 

sites  

3.1 Abstract 

 Accurate quantification of dissolved organic carbon (DOC) fluxes from terrestrial 

to aquatic systems is imperative for understanding landscape and downstream aquatic 

responses to climate change. Accurately quantifying DOC dynamics requires high-

temporal resolution data not feasible via discrete in-situ sampling. Continuous in-situ 

spectrophotometers are increasingly being used to monitor stream catchments and 

obtain high-frequency estimates of DOC concentration modeled using chromophoric 

dissolved organic matter (CDOM) absorbance. The accuracy of predictions of DOC 

concentration is improved through better representation of changes in the relationship 

between CDOM absorbance and DOC concentration relationship. This is particularly 
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important for streams where DOC composition is highly dynamic due to variation in 

hydrologic connectivity, creating changes in DOC sources and levels of processing (e.g. 

physiochemical or biological) occurring within the landscape. In this chapter, in-situ 

CDOM absorbance, water level (WL), specific conductance (SPC) and optical-derived 

indicators of DOC composition were used as predictors to train partial least squares (PLS) 

models. A discrete dataset capturing baseflow and stormflow conditions from two 

different sites along a boreal headwater stream was used to train a PLS model that 

integrates these qualities and data for bulk predictions of DOC concentration. PLS was 

employed here as it can use multicollinear information from the entire absorbance 

spectra, which contains information about CDOM composition, to enhance predictions of 

DOC concentration. Furthermore, consistency checks built into the PLS model, Hotelling’s 

T2 and square prediction errors (SPE), provide a means to gauge model performance when 

used with in-situ data and identify outlier observations incompatible with the model. A 

series of test-set switches and randomized cross-validations were performed to identify 

potential PLS-components to use when there is no validation dataset available. An 

absorbance-based measurement of light-scatter, average absorbance from 700-730 nm 

(average A700-730), was used to develop a correction for in-situ particle-absorbance 

(turbidity) from field measures and tested on a continuous in-situ dataset. The turbidity 

correction performed poorly as it overcompensated during some periods and likely 

because of the variability of in-situ turbidity-induced absorbance not represented in the 

training dataset. The scatter correction (average A700-730) was found to perform better 
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across the continuous in-situ dataset. Training dataset had a root mean square error of 

0.36 mg C L-1 when using 8 PLS components over a range of 4 to 16 mg C L-1. The 

consistency checks for this model were used to identify data gaps in the model and 

determine the training dataset's representativeness when the model is applied to new in-

situ data. This provides an approach for evaluating the model's performance when 

applied to new data by identifying and diagnosing outlier observations, for example 

identifying a need for more spring and winter samples to further update and inform the 

model for predicting DOC in two study sites. Furthermore, these statistics can be used to 

identify when and how a training dataset should be updated to maintain accurate 

prediction of DOC concentration when re-training the model for future datasets. 

3.2 Introduction 

Continuous in-situ optical measurements are increasingly being used to monitor 

some aspects of stream water quality, including at remote sites (Codden et al., 2020; 

Etheridge et al., 2014; Jollymore et al., 2012; Strohmeier et al., 2013; Vaughan et al., 2017, 

2019; Zhu et al., 2020). Coupled with discrete sampling, in-situ absorbance is used to 

develop models that use these continuous optical measurements to predict various 

stream water components (e.g. dissolved organic carbon or nitrate; Avagyan et al., 2014; 

Etheridge et al., 2014; Langergraber et al., 2003; Vaughan et al., 2017). The use of the high 

temporal-resolution data associated with these continuous in-situ instruments is 

beneficial in monitoring headwater streams, intimately connected to their surrounding 
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landscape and quite responsive to short-term changes in hydrology from the surrounding 

landscape. At high temporal-resolution, measurements of essential forms of stream 

carbon or nitrogen can inform their source and pathway of delivery from the landscape, 

essential for predicting terrestrial to aquatic fluxes (Creed, McKnight, et al., 2015; Creed 

& Band, 1998).  

Dissolved organic carbon (DOC) represents an essential fraction of carbon that is 

transported from terrestrial landscapes to aquatic ecosystems (Alvarez-Cobelas et al., 

2012; Battin et al., 2009; Cole et al., 2007; Neff & Asner, 2001; Olefeldt et al., 2013; 

Raymond et al., 2016; Raymond & Saiers, 2010) and at potentially increased rates in 

northern landscapes with ongoing climate change (Jennings et al., 2010; Laudon et al., 

2012; Worrall et al., 2004; Ziegler et al., 2017). The concentration of DOC can be 

accurately predicted from the absorbance of chromophoric dissolved organic matter 

(CDOM) as demonstrated in both wetland catchments and terrestrially influenced marine 

environment (Asmala et al., 2012; Avagyan et al., 2014; Fichot & Benner, 2011; Peacock 

et al., 2014) via a trained model. 

 

3.2.1 DOC in headwater streams is dynamic 

Due to the intimate connection between headwaters and their surrounding 

landscape, compositions of DOC vary as a function of hydrology, both seasonally and by 

event, due to variation in hydrologic pathways (Creed, Hwang, et al., 2015; Creed, 
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McKnight, et al., 2015; Creed & Band, 1998; Senar et al., 2018; Werner et al., 2019). As a 

result, the relationship between DOC concentration and CDOM absorbance can be site-

specific and temporally variable within the same site (Helms et al., 2009; Peacock et al., 

2014; Vaughan et al., 2019). It has been demonstrated how different sources of water 

from the same catchment can each have a unique optimum wavelength to predict DOC 

concentration and a uniquely different relationship with DOC at single wavelengths across 

the entire CDOM spectra (Peacock et al., 2014). This variability may be significant in 

streams draining hillslope-dominated landscapes as opposed to more low-relief 

landscapes dominated by wetlands because of the variety of possible pathways, and 

thereby sources of DOC linked to hydrology (Ågren et al., 2008; Hinton et al., 1998; 

Laudon et al., 2011; McGlynn & McDonnell, 2003).  

As such, more straightforward model training methods that use absorbance from 

discrete wavelengths to predict DOC concentration (Asmala et al., 2012; Avagyan et al., 

2014; Fichot & Benner, 2011; Peacock et al., 2014) may fail to predict DOC accurately from 

dynamic headwater streams. Different parts of the CDOM absorbance spectra can be 

related to DOC's different compositional properties (Helms et al., 2009). Therefore, using 

the entire CDOM spectra, thereby integrating any information in the CDOM spectra 

related to DOC composition, can result in more accurate predictions of DOC concentration 

from the streams where DOC's source and composition are temporally dynamic. 

However, due to the high number of wavelengths and multicollinear nature of 

absorbance data, typical multiple linear regression (MLR) methods (Asmala et al., 2012; 
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Avagyan et al., 2014; Fichot & Benner, 2011; Peacock et al., 2014) have limited application 

in predicting DOC from the vast information captured in absorbance spectra as they can 

potentially overfit the model and lead to an unstable model. 

 

3.2.2 Using the full CDOM absorbance spectra to predict DOC concentration 

An unstable overfit MLR model would have a limited ability to predict DOC 

concentration. Such a model would accurately predict only observations with a near-

identical covariance structure among measurements as training dataset samples and, 

therefore, highly sensitive to random noise, which minimally alters the covariance 

structure and is observed within in-situ data. To remedy this, partial least squares (PLS) 

regression is used to train a model from high-dimensional, multicollinear data. PLS 

handles these problems by reducing dimensionality to create uncorrelated latent 

variables, which are used to make the predictions (Dunn, 2019). It is for these reasons the 

PLS method is commonly used in the field of chemometrics (Wold et al., 2001), and in 

recent years has been successfully used to train models to monitor in-situ DOC 

concentration from CDOM absorbance (Avagyan et al., 2014; Codden et al., 2020; 

Etheridge et al., 2014; Langergraber et al., 2003; Vaughan et al., 2017; Zhu et al., 2020).  

A further benefit of the PLS method, which is often overlooked in the 

environmental-sciences community, are two independent consistency checks built into 

the model, Hotelling’s T2 and square prediction errors (SPE; also known as DModX or the 
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Q-statistic; Dunn, 2019). These consistency-checking statistics are widely used in the 

realm of process engineering and manufacturing plants to monitor production, maintain 

set efficiency standards, detect faults in a process and diagnose them (Chen et al., 2004; 

Dunn, 2019; Kaistha & Upadhyaya, 2001; Mujica et al., 2011; Villegas et al., 2010). The 

training dataset defines "normal” and “not-normal” (i.e. faulty) conditions. The statistics 

identify whether a process is under normal operation (and therefore producing 

“acceptable” product or observations) or if a process is out of control (and therefore 

producing a faulty product or observations). An observation found to be faulty can then 

be diagnosed to identify what is causing the fault, leading to a decision being made 

whether the model must be updated or a correction (e.g. bias) must be made. When used 

to make predictions, these consistency checks help us determine whether an observation 

can be suitably used in the model to make a prediction (Dunn, 2019). The SPE measures 

how well each sample fits into the PLS model (Mujica et al., 2011) (i.e. how compatible a 

sample is in a model) and so indicates whether the sample can be used to make a 

prediction. Hotelling’s T2 measures the sample's systematic variations (Villegas et al., 

2010) and identifies high leverage outlier observations where a prediction would be 

extrapolated rather than interpolated. In applying to CDOM spectral data to predict DOC 

concentration, these consistency checks can be used to evaluate in-situ data outside of 

grab-sampling campaigns to assess the validity of a model’s application. This could be 

helpful in understanding if site-, season- or event-specific models are required to 

accurately model stream DOC content from in-situ absorbance data. Furthermore, 
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periods with consistently outlying observations can be diagnosed to identify what subset 

of the observation’s measurements are causing the problem and further identify periods 

where the model fails to work or what new training data would have to be prioritized for 

collection to update the model.  

Because PLS models can use the entire CDOM spectra, they can consider the 

varying relationship between DOC concentration and CDOM absorbance and predict DOC 

more accurately than MLR models that use discrete wavelengths. However, training and 

validation datasets of representative samples that fully capture this variability are 

challenging to obtain from remote sites, if not impossible, especially during inaccessible 

seasons (e.g. winter and spring freshet in boreal and arctic regions). A training dataset 

that mostly captures the full spectrum of DOC-CDOM absorbance relationships observed 

in dynamic streams can still perform well, but not without considering gaps in the data 

where or when the model may not perform adequately. However, these may not be 

identified and quantified in many instances (i.e. remote locations or inaccessible times of 

the year) due to a lack of grab-samples from which to check. 

Alternatively, T2 and SPE can be used to potentially identify performance gaps in 

the model, identified as periods of faulty observations from a continuous dataset to which 

the model was applied. These can be used and applied to the continuous in-situ 

observations from the stream to identify different kinds of outliers (T2 or SPE or both) and 

determine whether the model can suitably make a prediction using such observations or 
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if the observations are incompatible with the model and should therefore not be used to 

make predictions.  

 

 

3.2.3 Using factors that interfere with CDOM absorbance for better 

predictions 

The relationship between DOC concentration and CDOM absorbance can also be 

impacted by turbidity from particles found naturally in streams and responsive to 

hydrologic changes (Jollymore et al., 2012; Langergraber et al., 2003; Vaughan et al., 2017, 

2019). Turbidity, typically estimated from light scattered at different angles, also registers 

as an additional absorbance source during in-situ spectrophotometric measurements. 

The high correlation between turbidity and mean absorbance from 710-730 nm from a 

continuous in-situ dataset suggested that the mean absorbance at those higher 

wavelengths could be used to correct for turbidity (Grayson & Holden, 2016). That is a 

similar approach typically used in laboratory settings to offset light-scattering effects from 

particles small enough to pass through filters (Green & Blough, 1994; Helms et al., 2009). 

Therefore, it can effectively correct particles' light-scattering effect from in-situ 

absorbance and reduce the variability in the relationship between DOC and CDOM 

absorbance caused by these (e.g. due to turbidity Jeong et al., 2012 over-predicted DOC 

concentration). This correction, however, assumes the effect to be constant across all 
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wavelengths. The particles contributing to turbidity at a given stream site may render 

scattering and impacts on absorbance differently across the spectrum of wavelengths 

used to detect DOC (Jeong et al., 2012; Langergraber et al., 2003; Vaughan et al., 2017, 

2019). Such an influence on absorbance would need to be assessed with in-situ turbidity 

to determine if it impacts the relationship between DOC concentration and CDOM 

absorbance used to predict DOC. 

 

 

3.2.4 Chapter Objectives 

Additional variables that highly correlate to streamDOC content while also relating 

to seasonality and shifting sources during storm events, such as conductivity (Inserillo et 

al., 2017; Kobayashi, 1986) and water level (Jollymore et al., 2012; Vaughan et al., 2017) 

are good candidates to be considered as predictors for DOC concentration. Also, optical 

properties related to DOC composition, such as spectral slopes and their ratio (Helms et 

al., 2009), relate to hydrologic events (Ågren et al., 2010; Vaughan et al., 2017, 2019) and 

are therefore good candidates to consider as predictors of in-situ DOC concentration. 

Though derived from spectral slopes and therefore multicollinear among them, spectral 

slope ratio relates to different compositional information of DOC than the spectral slopes 

from which it is calculated (Helms et al., 2009) and from which the PLS algorithm can still 

extract information. Including these physical and optical water quality parameters as 
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predictors in a PLS model means that any flagged outliers (i.e. those not fully represented 

in the training dataset) are likely to highlight periods related to hydrologic events or 

seasons not represented by the training dataset. This suggests these faulty periods should 

not be used to make predictions, or any predictions should be made with caution as they 

are being made by data outside the model's scope or an extrapolation. 

To continuously monitor DOC concentration from in-situ data, this chapter aimed 

to train PLS models using laboratory-measured DOC coupled with in-situ CDOM 

absorbance, specific conductance, water level, spectral slopes and slope ratio collected 

from two boreal forest headwater stream sites. To understand the representativeness of 

the training dataset composed of seasonal grab samples and targeted storm samples from 

the two different sites within the same stream, a series of test-set switches were 

performed to identify potential redundancies in the training dataset that negatively 

influence the final model. Furthermore, the test-set switches can help identify the optimal 

number of PLS-components to be used in a model trained using the combined subsets of 

data. Considering CDOM absorbance as the primary set of predictors of DOC 

concentration, the importance of extra predictors (water level, conductivity, spectral 

slopes, and slope ratio) was measured using the variable importance in the projection 

(VIP) statistic. Simultaneously, predictions of DOC concentration from continuous in-situ 

data from different model iterations that use different combinations of the extra variables 

were compared to understand how each variable affected predictions of DOC 

concentration. Consistency checks built into PLS models (Hotelling’s T2 and SPE) were also 
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explored and used to assess model performance. When applied here to the continuous 

in-situ dataset, these consistency checks identify periods where a model may fail to 

perform and diagnose why a model may be failing to perform at a specific site or in a 

certain period. This can then be related to the training dataset's representativeness, 

further informing what samples should be prioritized for collection when deciding to re-

train the model. Finally, an absorbance-based correction for turbidity was developed and 

tested via application to a validation dataset, and its suitability was further assessed when 

applied to the high-resolution dataset of in-situ measurements.   
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3.3 Methods 

3.3.1 Sample Collection and Analysis 

Study Area: 

Water samples were collected from two instrumented sites along the Horseshoe 

Brook, a boreal headwater stream located within the Pynn's Brook Experimental 

Watershed Area (PBEWA; Figure 3.1). The Horseshoe Brook catchment is divided into two 

sub-catchments: a low relief upstream catchment (Upper) of 3.8 km2 dominated by ponds 

and wetlands, and a downstream catchment (Lower) 7.5 km2 dominated by forested 

hillslopes, as defined by the respective instrumented sites (UHS and LHS; Figure 3.1). For 

details regarding the PBEWA climate normals and catchment land cover composition, 

please refer to Chapter 2 (Table 2.1).  

 

Sample and In-situ Data Collection: 

Discrete stream samples and continuous in-situ data were collected throughout 

February-November 2019. All discrete samples were collected or stored in acid-washed, 

amber, high-density polyethylene bottles to avoid photochemical degradation and stored 

in coolers for transportation back to the laboratory for processing. Grab-samples (1-3 per 

day from each site) were taken directly from the stream during periodic field campaigns 
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(every 1-2 months) from February 2019 through October 2019. For high temporal 

resolution event sampling (every 1-2 hours), a peristaltic autosampler (Hach AS950) with 

the intake tube anchored to deep-driven iron rebar beside in-situ data loggers was used 

to collect up to 24 samples throughout the event, with the collection and transfer to 

amber bottles occurring within 24 hours of the last sample collection, with processing 

within 48 hours of the final collection. 

 

Figure 3.1: Map of PBEWA catchment  

Horseshoe Stream catchment in Newfoundland and Labrador, Canada. The catchment is divided into a low 
relief pond and wetland dominated Upper catchment and a forested hillslope Lower catchment, defined by 
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the instrumented sampling sites (UHS and LHS). The LHSC site is located 100 m downstream from the main 
LHS site and is instrumented during the snow and melt periods (November-May)  

In-situ data loggers used to monitor absorbance (S::can Spectro::lyser, Vienna), pH 

and redox potential (ORP) (Seametrics TempHion), conductivity (Onset HOBO Logger U24-

001) and water level via a pressure transducer (Onset HOBO Logger U20L-01) were 

installed at each site (Figure 3.2). Probes were housed in PVC piping and anchored to 

deep-driven iron rebar. An additional pressure transducer (Onset HOBO Logger U20L-01) 

was housed on a streamside tree at each site to obtain atmospheric pressure for the water 

level calculations. Water level, conductivity, and pH/ORP probes were set to log at 30-

minute intervals throughout Spectro::lyser deployments. The Spectro::lyser at LHS was 

set to measure every 30 minutes from February-July 2019 and every 60 minutes since 

August 2019. The Spectro::lyser at UHS was installed in August 2019 and measured in 60-

minute intervals. From June to October, the probes at LHS were housed similar to Figure 

3.2. However, during the winter months (November to May), when snow and ice cover 

are significant, the probes were moved to a more accessible and protective installation 

on the downstream side of a culvert, ~100 m downstream the original LHS site (LHSC, 

Figure 3.1). 

 

Sample Preparation and Analysis: 

Before filtration, event (autosampler) samples were measured for turbidity using 

a turbidimeter (Hach 2100P) and pH and conductivity using a benchtop meter (Thermo 
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Scientific, Orion Versa Star Pro). The precision of the turbidity measures was <10% 

coefficient of variation (RSD) among analytical replicates (n = 3).  

All samples were filtered and prepared for DOC analysis, as outlined in Chapter 2. 

Mercuric chloride was no longer added to sub-samples meant for UV-Vis absorbance 

measurements as it interfered with CDOM absorbance in the 200-275 nm range and 

instead was stored at 4°C until analysis within seven days. Peacock et al. (2014) reported 

absorbance of filtered pore-water samples after cold and dark storage over 12 weeks had 

no significant difference than those measured on the first day. We had similar results with 

filtered stream water tested over two weeks. 
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Figure 3.2: In-situ instrumentation  

In-situ instrument housing within the UHS site. Seen in their respective housings are the spectrophotometer 
(Spectro::lyser), pH (TempHion), conductivity (HOBO), and water level pressure transducer (HOBO) probes 
during the low flow late summer period in the smaller Upper Horseshoe Brook study site.  

As outlined in Chapter 2, DOC concentration was determined via combustion catalytic 

oxidation method (Shimadzu TOC-V with ASI-V) with a limit of quantification of 1.72 mg C 

L-1 (limit of detection of 0.52 mg C L-1) and precision of <3% coefficient of variation (RSD) 

for concentrations ranging 0.5 to 50 mg C L-1. 

Absorbance spectra (Aλ) of filtered samples were measured using a dual-beam UV-

Vis benchtop spectrophotometer (Perkin Elmer Lambda 365) from 200-800 nm at 1 nm 

intervals. The precision of these absorbance measures using a 1 cm path length was <5% 

RSD among analytical replicates (n = 3) for A300 in the range of 10-60 m-1 for samples with 

a limit of detection of 0.33 m-1. 

Following the absorbance measurement of each sample, sample pH and conductivity 

(Thermo Scientific, Orion Versa Star Pro, City) and ORP (Oakton ORPTestr, WD-35650-10, 

Vernon Hills, Illinois) were measured again to provide a direct match with absorbance 

data collected. 

 

3.3.2 Data Processing 
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In-situ absorbance was corrected for particle light-scattering effects by subtracting 

the average absorbance measured across 700-730 nm from the rest of the spectra 

(Grayson & Holden, 2016). 

Integrative optical metrics related to CDOM and DOC composition (specific UV 

absorbance at 255 nm (SUVA255), spectral slopes from 275-295 nm (S275-295) and 350-400 

nm (S350-400), and slope ratio (SR); Helms et al., 2009) were calculated as outlined in 

Chapter 2 from laboratory-measured absorbance and in-situ absorbance which was 

scatter-corrected beforehand. These were also calculated for in-situ absorbance spectra 

corrected for turbidity using the correction method outlined in section 3.3.3. 

Absorbance due to turbidity (turbidity-induced absorbance) was measured as the 

difference between in-situ (raw) absorbance and the laboratory-measured absorbance of 

the corresponding filtered sample in the dataset. To account for differences between 

instruments, before calculating turbidity-induced absorbance, laboratory-measured 

absorbance spectra were converted to in-situ absorbance using a linear model that relates 

the two instrument measurements to one another.  

Continuous in-situ ORP was corrected for time-dependent drift while conductivity 

data were converted to specific conductance (SPC) using water temperature monitored 

simultaneously by the sensor to eliminate temperature-related effects from conductivity. 

Water level (WL), pH/ORP and SPC data, measured every 30 minutes, were linearly 
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interpolated for instances where measurement times did not match with in-situ 

absorbance measurements. 

 

3.3.3 Model Training 

A series of partial least squares (PLS) regression models were trained using 

laboratory-measured DOC concentration as the response variable and the corresponding 

in-situ data as the predictor variables. Please refer to Chapter 2 for more details regarding 

the PLS regression model. Specifically, the scatter-corrected in-situ absorbance from 

wavelengths 250-450 nm (A250-450) was always included as predictor variables. Other 

predictor variables used in concert with A250-450 to train the PLS models were spectral 

slopes from the 275- to 295 nm and 350 to 450 nm wavelength ranges, the ratio of these 

two slopes, specific conductance and water level (S275-295, S350-400, SR, SPC, and WL, 

respectively).  

Lastly, a correction for turbidity-induced absorbance was developed and used to 

train a new PLS model from this alternative turbidity-corrected absorbance data. The 

correction and PLS model were then applied to a validation dataset and the continuous 

in-situ dataset to test performance and compare to prior iterations where this alternative 

correction for turbidity was not applied. 
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Component Selection 

These new PLS models underwent 2000 iterations of randomized k-fold cross-

validation for up to the maximum number, or no more than 20, of PLS-components during 

the test-set switch and variable testing steps. The models were developed using the pls() 

function and cross-validation performed using the crossval() function from the R ‘pls’ 

package (Mevik, B.H., Wehrens, R., Hovde, K., Hiemstra, P., 2019; V. 2.7-2) within R-Studio 

(V. 1.2.5042). Root mean square error (RMSE) was calculated as outlined in the previous 

chapter without adjusting for degrees of freedom (Equation 2.9-2.10). The predicted 

residual error sum of squares (PRESS) calculated from the prediction residuals of each 

component from each model iteration’s cross-validation was recorded and converted to 

an RMSE from cross-validation (RMSE-CV) by: 

 
୔ୖ୉ୗୗ

୬
 (3.1) 

where n is the size of the training dataset. The k-fold cross-validation was randomized 

2000 times, and using the resulting 2000 PRESS’s, an average and standard deviation of 

RMSE-CV of the 2000 iterations for each PLS-component for each model iteration were 

calculated and compared. This procedure is similarly outlined in Cruciani et al. (1992), 

where the standard deviation of 2000 RMSE-CV would be equivalent to the standard 

deviation of error of calculations (SDEC) from Cruciani et al. (1992). The PLS-components 

that had among the lowest average RMS-CV and SDEC of the 2000 randomized cross-
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validation iterations were considered to generate each resulting model (Table 3.1). For 

cases where a validation dataset was available, the validation dataset RMSE, MAE and dr 

were computed for each component, and components that exhibited minimum RMSE, 

MAE or highest dr, or a combination, were considered potential candidates to be used. 

The selected component candidates from either method were then compared. 

Similar outcomes from both tests suggest that the multiple iterations of randomized k-

fold cross-validation to compute an average RMSE are a robust way to identify the 

optimum number of components for cases when there is no validation dataset available. 

Model consistency checks, conducted using Hotelling's T2 and square prediction 

errors (SPE), from different model iterations were compared to each other to assess the 

performance of models further and help identify the most robust model to use with 

continuous data and predict DOC in the future. These metrics measure unusual variation, 

though, are independent of each other. T2 looks at error within the model hyperplane, 

while SPE looks at error outside the model (Dunn, 2019; Mujica et al., 2011). For example, 

these metrics are typically used in processing plants to identify systematic or random 

problems in a process, diagnose them and identify when a model needs to be adjusted or 

updated (Dunn, 2019). Therefore, when used for prediction, these checks can elucidate 

whether the model is appropriate for a dataset, for example, when predicting DOC 

concentration in a new stream site or season not represented in the training dataset used 

to develop the model. 
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Table 3.1: Description of 3 sets of model iterations 

The model naming scheme for each series of model tests. All test-set switch models used the same predictor variables. These were the scatter corrected 
in-situ absorbance from 250-450 nm (A250-450), spectral slopes for A in the 275-295 and 350-400 nm range (S275-295 and S350-400), the ratio of S275-295 to S350-

400 (SR), specific conductance (SPC) and water level (WL). Three sets of tests were performed: a test set switch (1), variable test (2) and a turbidity correction 
test (3). Each test has a set of steps indicated by decimals (0.0-0.8) specific to the test such that: for the test set switch, they indicate the subset of data 
used to train a model validated by the leftover subset and with the entire dataset being used to train Model 1.8, for the variable tests they indicate an 
additional variable (S275-295, S350-400, SR, WL or SPC) being used in concert with A250-450 keeping the variable from the prior decimal ending with Model 2.5 
being equal to model 1.8, and the turbidity test having only one model (3.0) trained from alternative turbidity corrected subset of data comparable to 
model 1.5. 

Step 
Model ID 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 
Test-Set 
Switch 

(Training 
dataset 
used) 

1 N/A Baseflow Upper 
Event 2 

Lower 
Event 1 

Lower 
Event 2 All Event All 

Upper 
All 

Lower 
Full 
Set 

Variable 
Testing 

(Variables 
used, Full 

Set) 

2 A250-450  
2.0 + 

S275-295 
2.1 + 
SPC 

2.2 + 
WL 2.3 + SR 

2.4 +  
S350-400 

(Equivalent to 
1.8) 

N/A 

Turbidity 
Correction 3 

Remake 
model 1.5 

using 
turbidity 
corrected 

Abs. 

N/A 
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Hotelling’s T2 is a positive scalar number that summarizes observations score 

values from A-number of components and measures the distance from the center of the 

model hyperplane to the observation's projection onto the hyperplane (Dunn, 2019). 

Therefore, an observation that projects to the model's center (T2 = 0) would have every 

input value (x'i,K) at the mean. T2 can also be interpreted as measuring the systematic 

variations of a process (Villegas et al., 2010). The T2 of 𝑖th observation was calculated as: 

 
౟,౗

౗
 (3.2) 

where t୧,ୟ is the observation's score for component a, sୟ
ଶ is the variance of component a 

from training dataset observations, and A is the number of components used in the 

model. 

 SPE measures the distance of an observation from the model hyperplane (the 

length of the projection) and summarizes the prediction error of an observation from the 

E matrix (n × K) when using A-components. An observation with low SPE means that the 

correlation structure between measurements (K-variables) is observed in the training 

dataset. An observation with SPE = 0 indicates it lies precisely on the model hyperplane 

and follows the model structure exactly. 

  (3.3) 
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where e′୧,୅ is the residual row (1 × K vector) from the ith observation using A 

components, obtained from: 

 ୧,୅ ୧ ୧,୅  (3.4) 

and; 

 ୧,୅ ୧ ୧  (3.5) 

where P is the PLS model's loadings matrix with dimensions K × A, t′୧ are the scores of 

the ith observation from A-components (1 x A) and x′୧ is the ith observation (row) from 

matrix X. Matrix X is the original data input into the PLS model, with n × K dimensions, 

with each column having been mean-centred and variance scaled in the case of training 

datasets. Validation datasets and the continuous in-situ dataset had their respective X 

matrices centred and scaled using the corresponding models training dataset's means and 

variances of each variable. The value xො′୧,୅ are the model predicted (mean-centred and 

scaled) x′୧ for the ith observation using A components. 

For validation datasets and the continuous dataset, scores (T) were calculated 

from: 

  (3.6) 

where R is the model's projection matrix: 
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ᇱ ିଵ

 (3.7) 

and where W is the PLS model's weights matrix when using A-components. 

To help identify outlier observations, 95% and 99% upper threshold limits were 

calculated for T2 and SPE from the model's corresponding training dataset. T2 for future 

observations (validation datasets and continuous dataset) were calculated using 

Equations 2.2 and 2.6, with T2 being distributed closely to the F-distribution. The upper 

threshold limits for T2 (Tଵ଴଴(ଵି஑)%
ଶ ) were calculated from: 

 ଵ଴଴(ଵି஑)%
ଶ ୅൫୬మିଵ൯

୬(୬ି୅) ஑,୅,୬ି୅  (3.8) 

where n is the size of the training dataset, A is the number of PLS components, and F is 

the critical F-value for a specified α level with A and n − A degrees of freedom (Villegas 

et al., 2010). The threshold value can be interpreted as measuring the systematic or 

normal variation of a process. An observation found in violation of the threshold would 

indicate that the systemic variations of that observation are out of control (Villegas et al., 

2010), not being observed or captured by the training dataset. 

Similarly, SPE for future observations (validation datasets and continuous dataset) 

were calculated using Equations 2.3-2.6 and is approximately normally distributed 
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(Jackson, 1991; Jackson & Mudholkar, 1979). The upper threshold limits for SPE 

(SPEଵ଴଴(ଵି஑)%) were calculated as: 

 SPE100(1−α)% = Θଵ ቎
୞ಉටଶ஀మ୦బ

మ

஀భ
+ 1 +

஀మ୦బ(୦బିଵ)

஀భ
మ ቏

ଵ/୦బ

  (3.9) 

where Θ୧ is the sum of the ith power (i = 1, 2, 3) of the singular values of ୉

√୬ିଵ
 from the 

training dataset (Jackson, 1991; Kaistha & Upadhyaya, 2001; Villegas et al., 2010), Z஑ is 

the critical z-value for a specified α-level, positive when h଴ > 0, or negative h଴ < 0, and 

where: 

 0
ଶΘ1Θ3

ଷΘ2
2   (3.10) 

An observation found in violation of this threshold would indicate random noise has 

significantly changed or an unusual event has occurred and produced a change in the 

covariance structure of the observation's input vector (Jackson, 1991; Villegas et al., 

2010). The violation would signify that the observation cannot be characterized by the 

model's components (or a subset of components). This could be either due to too few 

components being used to produce a good model or the observation truly being an outlier 

for the model (Jackson, 1991) and therefore not compatible with the model. Observations 

found to violate this threshold are considered inconsistent with the model and are not 

suitable for making predictions (Dunn, 2019). 
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Observations from the continuous in-situ dataset that exceeded T2 or SPE 

thresholds were further used to interpret and diagnose which variables and components 

contributed to the elevated T2 and SPE. This was used for identifying potential gaps in the 

training dataset where representative samples may be lacking. 

 

Test-set Switch Procedure 

Samples were grouped based on site (UHS or LHS), flow condition (baseflow or 

storm event), and storm event date to form different training datasets (Table 3.2, Table 

3.3), each being validated by the leftover (98 – n) samples. All models from this procedure 

use scatter-corrected in-situ A250-450, S275-295, S350-400, SR, WL and SPC to predict DOC 

concentration. The optimal number of PLS-components for Models 1.1-1.7 were 

identified as previously outlined using their corresponding validation datasets. The 

number of PLS-components for Model 1.8 was selected based on the best performing 

component when looking at the averaged RMSE resulting from the 2000 randomized k-

fold cross-validations. 

 

Testing additional in-situ variables 

By using the last model from the previous section (Model 1.8; Table 3.1) as the 

final step in a new series of model iterations, five new iterations were performed, each 
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including one additional variable (SPC, WL, spectral slopes, slope ratio) with each 

iteration, starting with none (using only A250-450 as the predictors, Model 2.0; Table 3.4). 

The order in which each variable was added to the regression was determined by their 

importance and overall contribution to SPE. 

Table 3.2: Sample counts and test-set switch datasets 

Sample count breakdown. Baseflow samples included samples collected 
throughout the early Fall period (ET Shutdown) and late Fall periods using an 
autosampler with periodic grab-samples throughout the year. Event 1 
corresponds to a storm event in late September (early Fall) and Event 2 
corresponds to a storm event at the end of October-start of November (late 
Fall). Shaded boxes indicate samples used as training data for test-set switches 
using the leftover (98 – N) samples as a validation dataset.  

Site 
Sample N 

Baseflow Event 1 Event 2 Event Total Total 
Upper 7 0 16 16 23 
Lower 42 16 17 33 75 
Total 49 16 33 49 98* 

*Asterisk – models developed after the test-set switch used all available 
samples to be trained. 

 

 

Table 3.3: Test-set switch model names and training datasets 

Model identifiers for test-set switch training datasets following the same scheme as Table 3.2. 

Site 
Model ID 

Baseflow Event 1 Event 2 Using All Event Using All 
Upper 

N/A 
N/A 1.2 

N/A 
1.6 

Lower 1.3 1.4 1.7 
Using All 1.1 N/A 1.5 1.8 
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Model 1.8 was used to determine the variable importance in the projection (VIP), 

a variable selection method (Mehmood et al., 2012) that suggests potential candidate 

variables that could be omitted or retained when re-training a model. The VIP for each 

variable was calculated by: 

 
౗

౭౗,ౡ
‖౭౗‖మ

ఽ
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౗
ఽ
౗సభ

 (3.11) 

where K is the number of variables used as predictors, A is the number of components, 

SSୟ is the sum of squares explained by the ath component, wୟ,୩ is the weight of the kth 

variable in the ath component (Mehmood et al., 2012). The VIP value for each variable 

(VIP୩) is bounded at 0, and ∑ VIP୩ = K. A variable with VIP୩ < 1 contributes less to the 

model projection than a variable with VIP୩ > 1. 

 The total error contribution for each variable was determined from each column 

of the squared E matrix of the training dataset and reported as a % of the total error. 

Variables with higher VIP and contributing to lower SPE were considered to be added to 

the model before variables with lower VIP and higher contribution to SPE, resulting in the 

order outlined in Table 3.4. 
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Table 3.4: Naming order of hierarchical models 

Model identifiers for models used in exploring the importance and influence of 
each variable on predicting dissolved organic carbon concentration ([DOC]). 

Variables Used in PLS X block (to predict [DOC]) Model ID 
A250-450 2.0 

A250-450 and S275-295 2.1 

A250-450, S275-295, and SPC 2.2 

A250-450, S275-295, SPC, and WL 2.3 

A250-450, S275-295, SPC, WL, and SR 2.4 

A250-450, S275-295, SPC, WL and SR, and S350-400 2.5 
 

Developing and testing a correction for turbidity-induced absorbance 

As previously stated, the average absorbance from wavelengths of the 700-730 nm 

range from in-situ spectra was used to capture the light-scattering effect (average A700-

730) and subtracted from A250-450 to remove light-scattering effects assumed to be constant 

across the absorbance spectra . An additional correction was developed to be applied to 

in-situ absorbance and reduce interference from the light-absorbing effect of particles 

encountered during in-situ monitoring assumed to increase with decreasing wavelengths. 

The absorbance effect from particles (turbidity-induced absorbance) for each wavelength 

was determined by, first, subtracting the light-light-scattering effect from the raw 

(unfiltered) in-situ absorbance spectra, and then subtracting the absorbance spectra of 

the laboratory-filtered grab-sample counterpart from the resulting spectra to obtain the 

turbidity-induced absorbance of the sample. The resulting turbidity-induced spectra had 

a similar shape to CDOM absorbance spectra, where absorbance increased as wavelength 
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decreased. Then, by linearly regressing turbidity-induced absorbance from a specific 

wavelength onto average A700-730, the resulting set of coefficients relate the light-

scattering effect to turbidity-induced absorbance for each specific wavelength generating 

a set of coefficients unique to each wavelength. The whole procedure was done using the 

same training dataset used for Model 1.5 (Table 3.1). The coefficients were then used to 

calculate the predicted turbidity-induced absorbance for each wavelength based upon 

the scatter values from the average A700-730. This predicted turbidity-induced absorbance 

was then subtracted from scatter-corrected in-situ absorbance spectra from the training 

and validation datasets from Model 1.5 and the continuous in-situ dataset resulting in 

fully corrected in-situ absorbance spectra. Spectral slopes and slope ratio were then 

calculated from the fully corrected absorbance spectra.  

Using the fully corrected in-situ absorbance spectra from the training dataset, a new 

PLS model was trained (Model 3.0) in the same manner as Model 1.5. However, using the 

fully corrected absorbance spectra, spectral slopes, and slope ratio. Model 3.0 was then 

applied to the validation and continuous datasets, with the resulting metrics and 

predictions being directly compared to those that resulted from Model 1.5. 
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3.4 Results 

To best predict DOC concentration from continuous in-situ absorbance data, 

different model iterations were tested. First, the number of PLS-components used to 

predict DOC best were determined and held constant through further steps. Then, to 

identify variables that could be interfering with model predictions, all variables besides 

A250-450 were removed from the model and then re-introduced hierarchically in order of 

importance, based on VIP and SPE contribution. This enabled the identification of 

variables that could be redundant or may interfere with the model's predictive ability. 

Finally, the application of a turbidity correction that subtracts absorbance caused by 

turbidity across the entire spectra was tested and compared to the alternatively used 

scatter-correction to identify if the former yielded improved model performance. 

Following these steps, the best performing model, Model 2.4, had a training dataset RMSE 

of 0.32 mg C L-1 and used 8 PLS-components to characterize scatter-corrected A250-450, S275-

450, SR, water level and specific conductance using only the scatter correction for 

absorbance spectra.  

3.4.1 Different water characteristics between stream sites and storm and 

baseflow periods 

Overall, DOC concentration within the UHS was found to be much less variable 

than in the LHS during either base or storm flow periods (Figure 3.3.A). The LHS site was 

found to have a much more extensive range in DOC concentration across storm events 
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than those observed from the UHS site (Figure 3.3.A). As expected, in-situ SPC from the 

training dataset during storm events was lower than baseflow, while the greatest 

baseflow variability in SPC was observed at LHS ranging from 80 to 100 μS cm-1 during the 

baseflow early autumn period and 60 to 100 μS cm-1 during the baseflow summer period. 

In both sites, SUVA255 was greatest during storm events and lower in baseflow periods. 

However, samples collected in baseflow conditions during the LHS winter period 

contributed to the large range observed in baseflow LHS SUVA255 (1.5 to 4.9 L mg-1 C m-1; 

Figure 3.3.C). The event samples exhibited lower SR values than baseflow samples, and SR 

of UHS samples was always greater than those from LHS. The in-situ pH from training 

dataset samples varied greatly during storms in UHS (5.5 to 7), while pH from LHS samples 

ranged from 7 to 7.6 (Figure 3.3.E). 

 

3.4.2 Model component selection indicates 8 model components is most 

robust 

Model 1.5 exhibited the lowest validation dataset RMSE and MAE (0.565 and 

0.433 mg C L-1, respectively) using 11-components with similar results when using 8-

components (0.582 and 0.444 mg C L-1, respectively; Figure 3.4, Table 3.5). However, the 

lowest training dataset mean RMSE from cross-validation (RMSE-CV) for Model 1.5 was 

0.27 mg C L-1 observed at 5-components (Figure 3.4, Table 3.5). When using the whole 

dataset to train Model 1.8 (Table 3.1) there was not much difference in mean RMSE-CV 
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when using 3- or 6-fold cross-validation. Model 1.8 was observed to have consistently 

lower mean RMSE-CV and SDEC from 2000 randomizations when using 8-components. 
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Figure 3.3: Distribution of water quality and compositional parameters 

Distribution of A) Dissolved organic carbon concentration ([DOC]), C) specific UV absorbance at 255 nm (SUVA255) and other measured parameters from 
samples collected in 2019 from Horseshoe stream sites located within the Pynn's Brook Experimental Watershed Area. Box and whiskers mark interquartile 
range (IQR) and range (excluding outliers), respectively, asterisks mark outlier samples outside 1.5IQR. 
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Figure 3.4: Result of 2000 randomized cross-validations 

Average root mean squared error (RMSE) from 2000 randomized 3-fold cross-validations for each 
component from Model 1.5 training and validation datasets and Model 1.8 training dataset, detailed in 
Table 3.5. 

 

 

 

 

 

 

0

0.5

1

1.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
ea

n 
RM

SE
 fr

om
 C

V 

Number of Components

Model 1.5 Training Set Model 1.5 Validation Set

Model 1.8 (2.5) Training Set



101 
 

Table 3.5: Results from 2000 randomized cross-validations 

Results for component selection – 2000 randomized K-fold cross-validations were performed and root mean 
square error from cross-validation (RMSE-CV) were calculated from each iteration from the predicted 
residual error sum of squares for each component up to 20 components. The mean and standard deviation 
(SDEC) for the 2000 iterations are reported for training datasets. For Model 1.5 where a validation dataset 
was available, the RMSE and mean absolute error (MAE) from predictions are reported. Three segments 
were used for CV in Model 1 as there were three distinct sampling periods within the training dataset. With 
a doubling in sample size for Model 2.5, six segments were used in addition to 3 segments. Before this study, 
6-components were used for predicting dissolved organic carbon using absorbance. However, it was 
determined that 8-components were more appropriate. Models 1.5 and 2.5 were developed using scatter 
corrected absorbance spectra from 250-450 nm in 2.5 nm intervals, spectral slope from the 275-295 nm 
range (S275-295), spectral slope from the 350-400 nm range (S350-400), spectral slope ratio (SR), specific 
conductance (SPC) and water level (WL). 

 Split Dataset – Model 1.5 Full Dataset – Model 1.8 (and 2.5) 

N 
comp. 

Storm Flow 
Training dataset 

Baseflow 
Validation dataset Training dataset 

n = 49 n = 54 n = 98 
RMSE-CV RMSE MAE RMSE-CV 

3 CV Segments     3 CV Segments 6 CV Segments 
Variables used for models: Scatter-Corrected Abs. 250-450 nm, S275-295, S350-400, 

SR , SPC, WL 
Mean  SDEC RMSE MAE Mean  SDEC Mean  SDEC 

1 1.415 0.052 1.151 0.913 1.236 0.034 1.231 0.017 
2 0.417 0.019 1.116 0.959 0.653 0.016 0.651 0.009 
3 0.384 0.033 0.817 0.64 0.503 0.015 0.5 0.008 
4 0.322 0.027 0.852 0.719 0.447 0.017 0.443 0.01 
5 0.27 0.023 0.724 0.537 0.445 0.025 0.439 0.015 

6* 0.274 0.026 0.716 0.499 0.425 0.029 0.421 0.016 
7 0.276 0.034 0.7 0.506 0.389 0.031 0.38 0.018 

8* 0.302 0.044 0.582 0.444 0.352 0.02 0.345 0.011 
9 0.306 0.05 0.644 0.506 0.37 0.028 0.359 0.018 

10 0.325 0.059 0.568 0.433 0.354 0.028 0.336 0.017 
11 0.337 0.063 0.565 0.433 0.347 0.026 0.332 0.015 
12 0.332 0.052 0.6 0.461 0.35 0.026 0.331 0.015 
13 0.333 0.05 0.625 0.474 0.37 0.028 0.353 0.017 
14 0.335 0.049 0.599 0.46 0.388 0.029 0.368 0.019 
15 0.338 0.049 0.663 0.506 0.403 0.031 0.383 0.021 
16 0.343 0.049 0.701 0.537 0.412 0.031 0.388 0.022 
17 0.346 0.049 0.735 0.578 0.423 0.032 0.396 0.023 
18 0.349 0.049 0.705 0.561 0.437 0.032 0.409 0.024 
19 0.35 0.049 0.705 0.562 0.454 0.033 0.424 0.025 
20 0.35 0.048 0.708 0.568 0.472 0.034 0.443 0.027 
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 *Asterisks represent potential number of components to use for the model. 

 

3.4.3 Hierarchical variable selection 

To understand how each variable contributed to the prediction of DOC 

concentration and to identify potentially redundant variables, a new set of model 

iterations was performed (Table 3.4), starting with a model that used only CDOM 

absorbance as DOC predictors and re-introducing all other variables (SPC, WL, S275-295 and 

SR) one at a time. Model 2.0 used all 98 samples after determining the entire dataset was 

suitable from the test-set switch. The model used only absorbance from 81 wavelengths 

(250 to 450 nm in 2.5 nm intervals) to predict DOC concentration as it was the starting 

point for subsequent iterations that use additional variables. Models 2.1-2.5 then 

represent models where we added variables, one at a time from S275-295, S350-400, SR, SPC 

and WL, to the prior one in a specific order, finishing with Model 2.5, which included all 

five additional variables. Both VIP and % contribution to SPE of each variable from the 

training dataset were used to determine the order to be added. When using 8-

components, S275-295 had the highest VIP and lowest % contribution to SPE (Table 3.6), so 

it was added in Model 2.1, followed by SPC added in Model 2. 2. The SR was added in 

Model 2.3 and WL in Model 2.4. Due to the consistently higher % contribution to SPE up 

until component 7 from S350-400 (30.04%), it was considered last, already included in Model 

2.5 (which was first known as Model 1.8). Models 2.0-2.5 all performed similarly when 

predicting DOC from continuous in-situ data using 6- and 8-components (Figures 3.5 and 
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3.6). The addition of SPC into Model 2.2 resulted in a diurnal pattern observed in 

predictions of DOC concentration which diminish with the addition of WL with Model 2.4 

when using 6-components (Figure 3.5), however, remain persistent even with the 

addition of WL when using 8-components (Figure 3.6). Due to minimal differences in 

predictions of DOC concentration between Models 2.4 and 2.5, and the consistently 

higher contribution to SPE from S350-400, Model 2.4 was chosen and used moving forward. 

Table 3.6: Variable importance and SPE contribution in Model 2.5 

 Variable importance in the projection (VIP) and % contribution to square prediction errors (SPE) for each 
variable from the training dataset used to train the 4-, 6-8-component partial least squares Model 2.5. The 
variables include spectral slopes from the 275-295 nm range (S275-295) and the 350-400 nm range (S350-400), 
the spectral slope ratio (SR), specific conductance (SPC) and water level (WL). The reported VIP and SPE 
contributions for absorbance are the total of 81 wavelengths (250-450 nm in 2.5 nm intervals). 

 

 

Model 2.5 

N comp. 8 4 6 7 8 

Variable VIP % SPE Contribution 

Abs. 250-450 nm (81) 79.89 14.47% 34.83% 46.77% 93.97% 

S275-295 1.33 27.76% 17.98% 1.10% 0.16% 

S350-400 1.14 8.12% 33.38% 30.04% 3.05% 

SR 1.11 11.18% 4.41% 8.17% 1.32% 
SPC 1.25 4.81% 0.18% 0.19% 0.25% 
WL 0.99 33.67% 9.23% 13.74% 1.25% 

Total 86 18.89 3.97 2.14 0.64 
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Figure 3.5: Fall period predictions 
of DOC concentration using 6 PLS-
component hierarchical models 

Continuously predicted dissolved 
organic carbon concentrations 
([DOC]) for the Upper Horseshoe 
(orange) and Lower Horseshoe 
(blue) Brook sites for the Fall period 
of 2019 using 6-component partial 
least squares (PLS) regression 
models. Shaded boxes represent 
periods for which samples were 
collected and form part of the 
training dataset include base flow, 
and storm events (spikes in [DOC]). 
Evapotranspiration shutdown (ET 
Shutdown) represents the time of 
year when plant evapotranspiration 
ceases, resulting in a shift in 
baseflow water levels as observed in 
both stream sites and groundwater 
wells. Variables were added 
sequentially into the PLS regression 
in order of importance starting with 
Model 2.0 which uses only 
absorbance for from 250 to 450 nm 
to predict [DOC]. Further, Model 2.1 
adds spectral slope from the 275-

295 nm range onto Model 2.0, Model 2.2 adds specific conductance onto Model 2.1, Model 2.3 adds water level onto Model 2.2, Model 2.4 adds spectral 
slope ratio onto Model 2.3, and Model 2.5 adds spectral slope from the 350-400 nm range to onto Model 2.4. 
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Figure 3.6: Fall period predictions 
of DOC concentration using 8 PLS-
component hierarchical models 

Continuously predicted dissolved 
organic carbon concentrations 
([DOC]) for the Fall period of 2019 
using 8-component partial least 
squares (PLS) regression models. 
Shaded boxes represent periods for 
which samples were collected and 
form part of the training dataset 
include base flow, and storm events 
(spikes in [DOC]). 
Evapotranspiration shutdown (ET 
Shutdown) represents the time of 
year when plant evapotranspiration 
ceases, resulting in a shift in 
baseflow water levels as observed in 
both stream sites and groundwater 
wells. Variables were added 
sequentially into the PLS regression 
in order of importance starting with 
Model 2.0 which uses only 
absorbance for from 250 to 450 nm 
to predict [DOC]. Further, Model 2.1 
adds spectral slope from the 275-
295 nm range onto Model 2.0, 
Model 2.2 adds specific 

conductance onto Model 2.1, Model 2.3 adds water level onto Model 2.2, Model 2.4 adds spectral slope ratio onto Model 2.3, and Model 2.5 adds spectral 
slope from the 350-400 nm range to onto Model 2.4. 
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The training dataset for Model 2.4 had no SPE or Hotelling's T2 outliers, indicating 

there were no overly influential samples with high leverages on the model. However, T2 

outlier values were observed across the continuous in-situ dataset, particularly during 

periods and at the stream site where samples used to train the models were lacking, e.g. 

early Fall period (September) at UHS and winter at either site (Figure 3.7 and 2.8). The 

addition of S275-295, SR, SPC and WL to Model 2.0 (Model 2.4) helped reduce T2 values when 

using 6-components, though not enough to reduce them below the calculated 95% and 

99% limits (Figure 3.7), while the use of 8-components further increased T2 values. The 

elevated SPE in the 6-component Model 2.4 (Figure 3.8) results from the combined 

contribution of S275-295, SR and WL (Table 3.6). Though had S350-400 also been included, then 

SPE would have been higher. Using 8-components for Model 2.4 significantly reduced the 

number of SPE outliers observed in the continuous in-situ dataset, allowing the previously 

outlier observations to compatible with the model and suitable for predicting DOC 

concentration (Figure 3.8). The SPE values observed in the continuous in-situ dataset from 

Model 2.4 using 8-components is comparable to Model 2.0 using 6-components. 

However, Model 2.4 has the added benefit of using the additional information from the 

extra variables (SPC, WL, S275-295, SR). The S350-400 was discarded as it was found to be the 

most significant contributor to SPE across training and continuous datasets even when 

using 8-components. 
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Figure 3.7: Comparing model performance using Hotelling’s T2 

Hotelling's T2 from continuous predictions using 6- and 8-component partial least squares (PLS) regression 
models. Shaded boxes represent periods of time for which samples were collected and form part of the 
training dataset. Only base flow samples were collected during Winter and Summer periods while both 
baseflow and storm event samples were collected during the early Fall (ET Shutdown) and late Fall periods. 
Variables were added sequentially into the PLS regression in order of importance. Model 2.0 uses only 
scatter-corrected absorbance from 250-450 nm. Model 2.4 uses the same and additionally spectral slope 
from the 275-295 nm range, conductivity, water level and spectral slope ratio. Dashed and solid lines 
represent 95% and 99% SPE limits, respectively. 

 



108 
 

 

Figure 3.8: Comparing model performance using SPE 

Square prediction errors (SPE) from continuous predictions using 6- and 8-component partial least squares 
(PLS) regression models. Shaded boxes represent periods of time for which samples were collected and 
form part of the training dataset. Only base flow samples were collected during Winter and Summer periods 
while both baseflow and storm event samples were collected during the early Fall (ET Shutdown) and late 
Fall periods. Variables were added sequentially into the PLS regression in order of importance. Model 2.0 
uses only scatter-corrected absorbance from 250-450 nm. Model 2.4 uses the same and additionally 
spectral slope from the 275-295 nm range, conductivity, water level and spectral slope ratio. Dashed and 
solid lines represent 95% and 99% SPE limits, respectively. 
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3.4.4 Training a new model using turbidity corrected absorbance spectra 

Turbidity due to particles can impact the absorbance spectrum of water in two 

ways: through light-scattering effects and absorbance from those particles (turbidity-

induced absorbance). Scatter deflects light across the entire pathlength, registered as a 

constant absorbance by the detector at every wavelength. Turbidity-induced absorbance, 

however, exhibits an increasing absorbance with decreasing wavelength. 

The average A700-730 was highly correlated to turbidity-induced absorbance (Figure 

3.9). The relationship between light-scattering and turbidity-induced absorbance was 

determined using the storm event samples (N = 49), the same samples used to train 

Model 1.5. The correction was applied to in-situ data, resulting in an absorbance spectrum 

comparable to a filtered sample (Figure 3.9.C). Corrected spectra from the storm samples 

were then used to train a new PLS model using the same variables and components as 

Model 1.5 (Model 3; Table 3.7). The leftover 49 baseflow samples were used as a 

conservative validation dataset to test the corrections' performance (Table 3.7). The 

correction was also applied to the continuous dataset to predict DOC concentration, T2 

and SPE, and compare them to predictions made by Model 1.5, which used the same 

training dataset and variables but only scatter-corrected absorbance rather than 

absorbance corrected for turbidity-induced absorbance. Because Model 3 was trained 

using the same samples as Model 1.5 and their parameters were kept constant, the only 

difference being the correction applied to absorbance data, they can be directly 
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compared. Overall, Model 3 performed worse than Model 1.5, resulting in higher RMSE 

and MAE and lower dr than Model 1.5 (Table 3.7). Model 3.0 did not predict DOC 

adequately as predictions during specific periods were negative and large proportion of 

observations from the in-situ continuous dataset had large T2 and SPE, significantly 

exceeding the suggested limits (Figure 3.10).  

 

Figure 3.9: Development of a correction for turbidity-induced absorbance 

A) Example derivation of scatter-to-turbidity-induced absorbance correction factor (line of best-fit) via least 
squares regression where the turbidity-induced absorbance from each wavelength from 250-450 nm in 5 
nm intervals was regressed onto scatter derived from average in-situ absorbance from 700-730 nm. 
Turbidity-induced absorbance was calculated by subtracting filtered absorbance spectra from in-situ 
(unfiltered) absorbance spectra. B) Regression slopes and intercepts for every wavelength at each 5 nm 
interval from 250-450 nm as derived from turbidity-induced absorbance vs. scatter relationship in (A). B) 
Correction factors for 2.5 and 7.5 nm intervals were interpolated from two adjacent factors. C) Absorbance 
spectra for a training dataset sample where peak scatter was observed. Turbidity-induced absorbance 
correction was applied as derived from A). Turbidity corrected absorbance spectra used for Model 3 was 
then calculated by subtracting the turbidity-induced absorbance, predicted using scatter from average 
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absorbance at 700-730 nm as in A), from raw in-situ absorbance spectra for every wavelength using 
coefficients reported in B). 

 

 

Figure 3.10: Testing performance of the correction for turbidity-induced absorbance on continuous 
dataset 

Continuous dataset prediction results when using specific conductance, water level, spectral slope and 
slope ratio derived from the respective absorbance correction: scatter-corrected absorbance spectra 
(Model 1.5) and scatter-derived turbidity-induced absorbance-corrected absorbance spectra method 
(Model 3). The latter correction caused model predicted dissolved organic carbon (DOC) concentrations to 
become negative during some periods of the year and found to greatly increase T2 and squared prediction 
errors compared to the model developed from only scatter corrected absorbance. 
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Table 3.7: Comparing validation dataset performance of turbidity-corrected model to scatter-corrected 
model 

Model results for 8-component partial least squares regression models using specific conductance, water 
level and, either: scatter-corrected absorbance from 250-450 nm, spectral slope from 275-295 nm and slope 
ratio derived from the same scatter-corrected absorbance spectra (Model 1), or scatter derived turbidity-
induced absorbance-corrected absorbance spectra, to predict dissolved organic carbon concentrations. 
Root mean square errors (RMSE) and mean absolute errors (MAE) are reported for both training and 
validation datasets, while Willmott's index of agreement (dr) is reported for the validation dataset. 

 

Model 2.4, using scatter corrected absorbance from 250-450 nm, S275-295, SR, water 

level and SPC and using 8-components from a training dataset of 49 baseflow and 49 

event samples from different sites across different periods of the year to predict DOC, is 

considered the best performing model derived from the existing dataset in this study. 

 

 Training dataset Validation dataset 

Models Training 
dataset N Validation 

dataset N RMSE MAE RMSE MAE dr 

Model 1.5 All events 49 Baseflow 49 0.21 0.15 0.72 0.50 0.89 
Model 3 All events 49 Baseflow 49 0.20 0.15 0.94 0.73 0.80 
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Figure 3.11: Recovery function for 8-component Model 2.4 

Performance of Model 2.4 using 8-components to predict dissolved organic carbon concentration ([DOC]) 
and compare to laboratory-measured [DOC]. 
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Table 3.8: Result of 2000 ransomized cross-validations for Model 2.4 

Results for component selection – 2000 randomized K-fold cross validations were performed and root mean 
square error from cross validation (RMSE-CV) were calculated from each iteration from the predicted 
residual error sum of squares for each component up to 20 components. The mean and standard deviation 
(SDEC) for the 2000 iterations are reported for training datasets. Model 2.4 was developed using scatter 
corrected absorbance spectra from 250-450 nm in 2.5 nm intervals, spectral slope from the 275-295 nm 
range (S275-295), spectral slope ratio (SR), specific conductance (SPC) and water level (WL). Asterisk represents 
number of components selected to use. 

 Model 2.4 

Ncomp 

Full Dataset Training dataset 
n = 96 
RMSE-CV 
3 CV Segments 6 CV Segments 

Mean SD 
Mean 
RMSE-
CV 

SDEC 

1 1.239 0.034 1.233 0.019 
2 0.601 0.014 0.598 0.008 
3 0.498 0.016 0.495 0.008 
4 0.446 0.017 0.442 0.010 
5 0.443 0.025 0.436 0.015 
6 0.416 0.023 0.415 0.013 
7 0.369 0.020 0.361 0.011 
8* 0.360 0.022 0.352 0.012 
9 0.360 0.031 0.348 0.018 
10 0.341 0.025 0.329 0.014 
11 0.344 0.025 0.329 0.015 
12 0.367 0.027 0.352 0.017 
13 0.385 0.028 0.368 0.019 
14 0.399 0.029 0.382 0.021 
15 0.407 0.030 0.387 0.022 
16 0.418 0.030 0.394 0.023 
17 0.430 0.030 0.406 0.024 
18 0.445 0.031 0.417 0.025 
19 0.462 0.032 0.436 0.026 
20 0.480 0.032 0.456 0.028 
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3.5 Discussion 

The model that had the best consistency (i.e. best performance) with the 

continuous dataset was the 8-component Model 2.4, which used A250-450, S275-295, SR, SPC, 

and WL to predict DOC concentration over a range of 4 to 16 mg C L-1. The optimal number 

of PLS-components for a model depends on how many and how different the 

relationships among predictor variables and DOC are, with more complex relationships or 

weaker correlations among variables demanding more PLS-components be characterized. 

Through a series of test-set switches, 8 PLS-components were identified as a potentially 

ideal number of components to be used based on the model’s performance with a 

validation dataset. Model iterations following test-set switches lack a validation dataset 

to confirm optimal PLS-components. A series of 2000 randomized iterations of 3-fold 

cross-validation was then used to identify the potential optimal number of components, 

resulting in similar components as the test-set switch. Consistency checks like SPE were a 

helpful tool for identifying observations incompatible with the model, or alternately, 

models that were incompatible with a set of observations, and therefore not suitable for 

predictions. In another vein, T2 can further evaluate compatible observations to identify 

potential outliers that are not represented in the training dataset, simultaneously 

identifying sites or periods where the model can fail to predict DOC concentration 

accurately and where sampling should be focused to update the model. Finally, the 

turbidity-induced absorbance correction derived from in-situ absorbance-based light-

scatter (average A700-730) from storm event samples was not suitable to be used year-
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round and is likely unnecessary given the performance of the model using only scatter-

corrected absorbance. 

 

3.5.1 Additional variables in concert with absorbance are useful but may 

require additional model components in order to characterize them 

and enhance the prediction of DOC concentration 

The model development indicates that as more and different variables are used in 

the model to predict DOC concentration (e.g. absorbance data vs. absorbance, WL and 

SPC), additional model components are required to capture the different relationships 

among the variables used. Model 2.4 incorporated A250-450, S275-295, SR, WL, and SPC 

variables, with S275-295 and SPC being the most important predictors of DOC concentration 

while also contributing to lowering inter-hourly variability among continuous predictions. 

Of all the additional variables, SPC had the most significant effect on predictions of DOC 

concentration as continuous in-situ predictions were observed to exhibit a diurnal 

oscillating pattern, reflecting a naturally occurring pattern observed in the continuous SPC 

dataset. Additional variables reduced the amplitude of the diurnal oscillations. 

When using only 6-components, there was a significant SPE contribution from S275-295 and 

WL, suggesting a relationship among S275-295, WL and DOC was not being characterized 

among the first 6-components (Jackson, 1991). Conversely, it is suggestive that the first 
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6-components largely characterize the relationships among A250-450 and SPC with DOC. 

This further suggests the relationships among S275-295, WL, and DOC are different from 

A250-450 and SPC with DOC and explain why they are characterized among the following 

components 7 and 8. 

When applied to the continuous in-situ dataset, the 6-component version of 

Model 2.4 had poor T2 and SPE performance, a high proportion of observations exceeding 

the respective statistics limits, specifically for the winter and spring period of 2020 of the 

UHS site. Signified as outliers based upon SPE values, data from that site and period is 

considered inconsistent with the model, and predictions should not be made. However, 

when using 8-components, the SPE contribution from S275-295 and WL were considerably 

reduced and comparable to other periods of LHS data where the data are consistent and 

compatible with the model, and therefore predictions can be made from these data. 

 

3.5.2 PLS model checks are used to determine what in-situ absorbance data 

we can use and then evaluate which data we should use to predict 

DOC concentration 

First, we can evaluate modelled observations to confirm that they are compatible 

with the model and therefore be used to predict DOC concentration. Then, if the 

observations are within the SPE limit, further evaluation can be made where those found 
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exceeding the T2 limit can be investigated and diagnosed for the underlying attributes 

that cause observations to be outside the limit set by the model’s training dataset. 

Evaluating modelled observations helps us determine whether they (1) are 

compatible with the model and therefore can be used to predict DOC concentration via 

SPE, and (2) to what degree predictions of DOC concentration should be scrutinized via 

T2. For example, in the case of (1), the continuous in-situ dataset appears mostly 

consistent year-round in both sites with the 8-component Model 2.4: a significant 

proportion of observations are well below the SPE limits and can be used to predict 

concentration of DOC (Figure 3.8). There is, however, a specific period where SPE 

suddenly increases during an intense storm in early June 2020 (Figure 3.8) following wet 

antecedent conditions. A storm event following a wet period where hydrologic 

connectivity is great could result in more runoff than normal, connecting and allowing the 

delivery of material from different landscape components not normally connected to the 

stream (Bracken & Croke, 2007; Creed & Band, 1998; Kaplan & Cory, 2016). Such an event 

would not be captured in the training dataset used here. Furthermore, the significant 

increase in discharge due to the storm allows for greater particle load and diversity of 

particulate matter to interfere with the CDOM spectra (via light-scattering and 

absorbance), enough to alter the relationships among variables to the degree that the 

components which initially characterized them cannot recognize. As a result, the 

observations made during this period at UHS are incompatible with the model and cannot 

be used to predict DOC concentration.  
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Observations that are compatible with the model can then be interpreted via T2, 

where outliers defined by exceeding the T2 limit would have predictions of DOC 

concentration more scrutinized by first diagnosing what caused the elevated T2. For 

example, throughout September 2019, UHS observations exceeded the T2 limit (Figure 

3.7) due to the observations having a larger SR than what was observed in the training 

dataset. This period partly corresponds to the autumnal transition: a period following the 

cessation of plant evapotranspiration followed by changes in landscape hydrology (Creed, 

McKnight, et al., 2015) as more components of the landscape become hydrologically 

connected. The high SR observed at UHS during this period can be explained by the pond- 

and wetland-dominated landscape flushing algal-derived DOC (Franke et al., 2012; Helms 

et al., 2009; Villacorte et al., 2015) into stream water. Overall, this event could shift the 

relationship between DOC concentration and CDOM absorbance observed at UHS to one 

that was not captured in the training samples. The outlier T2 observations from UHS 

during this period are, therefore, a result of the training dataset not being representative 

of UHS during this period. Similarly, outlier observations during the 2019-2020 winter 

from UHS were caused by unusually low SPC values that were also not represented in the 

training dataset. Predictions could be made from the T2 outlier observations in these cases 

where they are not SPE outliers as not being an SPE outlier means the model is valid for 

these samples and they are similar to those used to train the model. However, predictions 

would be made keeping in mind that the observations are most likely outside the scope 

of the model and are extrapolated predictions rather than interpolated predictions (i.e. 
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the case of “normal”-behaving observations). To better understand the impact of using 

predictions from observations that are outlier for T2 but not for SPE, further assessments 

are needed where test samples of these observations are obtained and compared to 

model predictions. Known prediction errors that remain consistent with outlying T2 values 

(e.g. consistently under-predicting concentration of DOC during a specific period of the 

year where outlier T2 values are consistent) can be resolved with a simple bias correction, 

and if enough samples are collected the model could even be re-fit to incorporate the 

information that represents the previously outlier period. 

 

3.5.3 Correction for turbidity-induced absorbance likely requires year-round 

training data 

The effects of particles impact absorbance spectra by scattering light, assumed 

constant absorbance across all wavelengths (using average A700-730 as an absorbance-

based measurement), and turbidity-induced absorbance where particles absorb light 

increasingly with decreasing wavelengths. The turbidity-induced absorbance correction 

derived from absorbance-based light-scatter, though initially showing promising results 

with the validation samples, performed poorly when applied to the year-round 

continuous in-situ data. The correction was found to overcompensate for specific periods 

of the year, resulting in negative predictions of DOC concentration. More noticeably, the 

correction appeared to interfere with the underlying relationships among DOC, A250-450, 
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S275-295, SPC, WL and SR, and S350-400 of in-situ observations that were already captured in 

the previous model iterations, specifically Model 2.4. The resulting model from using fully 

corrected in-situ absorbance was more incompatible with the continuous in-situ dataset, 

with a greater proportion of observations being unsuitable to be used for predicting DOC 

concentration. 

These results highlight the temporal variability in natural turbidity-induced 

absorbance is likely caused by changes in the composition and quantity of particles 

entrained in streamflow during events. Therefore, a variety of representative samples 

that capture different qualities of particulate organic matter and inorganic particles are 

needed to develop a correction for different periods of the year. Although the 

demonstrated model results using scatter correction alone suggest such correction may 

not be needed for these two stream sites, turbidity-induced absorbance correction may 

be necessary in other sites that experience turbidity values above those observed in the 

study sites (0.5 to 6.0 NTU). 
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3.6 Conclusion and Implications 

A PLS-based model that predicts DOC concentration from continuous in-situ 

absorbance, conductivity, water level and other optical parameters was successfully 

trained from targeted storm event samples and seasonal grab-samples. Through a series 

of test-set switches, 8 PLS-components were identified as a potentially ideal number of 

components to be used based on the model’s performance with a validation dataset. The 

potential 8-components were again identified with a series of 2000 iterations of 

randomized 3-fold cross-validation when using the entire dataset, resulting in one of the 

lowest RMSE-CV being observed at 8-components. This cross-validation method, using 

multiple randomizations, appears to be more robust than traditional cross-validation 

used to determine how many model components to use when there is no validation 

dataset available. 

 Model consistency checks that are built into PLS models, Hotelling’s T2 and SPE, 

were found to be very useful for understanding the representativeness of the training 

dataset when the model was applied to a continuous in-situ dataset. These consistency 

checks further allow for the quick and easy identification of outlier observations while 

also providing an easy method of diagnosing and understanding why the observation is 

an outlier. It is through this that these statistics can show the representativeness of the 

training dataset and identify data gaps from the training dataset, identifying where or 

when or the model may fail to perform. The identified gaps further inform when and 
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where sampling efforts should be focused for adding to the training dataset and updating 

the PLS model or when bias corrections could be used. For example, here it was 

demonstrated how T2 outlier observations from UHS during the early Fall period 

(September) were outliers due to elevated SR, which algal-derived DOC inputs from a 

nearby pond can explain, flushing DOC, built up throughout the growing season, as water 

level and discharge increase throughout September. 

Other variables tested in concert with A250-450 identified SPC and S275-295 as very 

important variables when developing the model and predicting DOC concentration. 

Water level and SR were slightly less critical than the former, while S350-400 was found to 

contribute significantly to SPE when trying to use less than eight components. Of all the 

additional variables, SPC appeared to have the most significant impact on DOC predictions 

from the continuous dataset as a diurnal pattern in DOC concentration was observed in 

the in-situ dataset. However, the magnitude of the diurnal pattern decreased with each 

addition of a new variable. Another effect the additional variables had on stream DOC 

predictions was a significant reduction in inter-hour variance; the additional variables had 

a stabilizing effect on predictions of DOC concentration and appeared to reduce random 

noise between measurement intervals. 

Though successful with the conservative validation dataset of baseflow samples, the 

turbidity correction developed here was not appropriate for year-round continuous in-

situ data as it was found to overcompensate the correction mostly during seasons outside 

of fall, resulting in negative predictions of DOC concentration from in-situ observations. 
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The training dataset used to develop the correction was composed of Fall storm event 

samples, suggesting the quality and quantity of particulate matter observed in these sites 

are temporally variable, most likely according to season.  

When applied to continuous in-situ data, Model 2.4 exhibited predictions with 

consistently low SPE values, suggesting the observations follow the model structure very 

closely and predictions of DOC concentration can be made from the data. Only during a 

period in early June 2020, corresponding to an extreme storm event, did SPE increase 

beyond the threshold, most likely due to a “unique” CDOM signature from the integration 

of surrounding ponds and wetlands being more hydrologically connected to UHS during 

this powerful event. Similarly, T2 identified UHS as a key sampling location as well as 

winter and spring melt in either site as critical sampling periods to increase training 

dataset representativeness and more confidently predict DOC concentration. Together, 

these metrics evaluated the performance of the model when applied to continuous in-

situ data to confidently make predictions of DOC concentration in LHS during summer and 

fall periods and UHS in the late fall, while less confident predictions can be made during 

winter in either site and from UHS during the early fall. 
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4 Conclusion 

This thesis contributes to the present gaps in the literature on developing partial least 

squares (PLS) models to continuously monitor the concentration of in-situ dissolved 

organic carbon (DOC) using the absorbance of chromophoric dissolved organic matter 

(CDOM) in headwater streams. Specifically, using the full CDOM spectra and other stream 

water quality parameters to inform model predictions of the dynamic relationship 

between CDOM absorbance and DOC concentration: A phenomenon observed in 

headwater streams that variably integrate different components of the landscape 

depending on hydrology dictated by season and weather. Furthermore, it contributes to 

identifying and testing robust model performance metrics that relate to a model’s 

prediction accuracy (refined index of agreement; dr) and can quantify uncertainty 

(prediction intervals) to more rigorously evaluate a model’s performance or support 

interpretability of the root mean square error (mean absolute error; MAE) to compare 

model residuals. This thesis also demonstrates the use of consistency checks built into PLS 

models (Hotelling’s T2 and SPE) for predictions in a natural stream setting. For example, 

they identify where and when caution should be taken when using the model to make 

predictions. Furthermore, they inform how the model can be updated based on the 

training dataset's representativeness by highlighting periods and sites from continuous 

in-situ datasets where sampling efforts should be focused. These metrics can help 

describe model suitability, performance, and prediction accuracy when it is impossible to 
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access remote sites and test samples cannot be collected to assess model predictions 

directly. These key findings and what they suggest are valuable future avenues of study 

are discussed in the following section. 

This thesis addressed four notions: 

1. How comparable are PLS methods to typical multiple linear regression (MLR) 

methods in predicting DOC from CDOM absorbance?  

Though PLS methods are considered more robust for chemometrics, there was not 

much difference in the validation dataset RMSE of predictions (PLS: 0.52 mg C L-1, MLR: 

0.56-0.66 mg C L-1; Chapter 2). Prediction intervals and index of agreement from the best 

performing MLR model were equal to the PLS model. Due to the limited sample diversity 

of the validation dataset (i.e. all baseflow condition samples), the similarity in 

performance between these methods may not be equal when tested on more diverse 

sample sets, such as those derived from high-frequency storm samples.  

PLS models' further advantage is the built-in consistency checks (T2 and SPE) that 

identify and diagnose outlier samples that may be incompatible with the model and 

should not be used to predict DOC. Using a PLS model to predict continuous in-situ DOC, 

I used these metrics to identify periods when the model cannot be used or should be used 

with caution, further informing the representativeness of the training dataset. I further 

diagnosed outlier observations from the continuous dataset to understand which 

variables contribute to elevating SPE, or which component scores contribute to elevating 
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T2, and to determine which variables contribute to elevating the component-score 

magnitudes that contribute to elevating T2. The ability to diagnose outliers allowed for a 

better understanding of the overall studied system as it quantified why a particular 

sample or subset of data are outliers to the model and how they are different from non-

outlier samples. The diagnoses of outliers also informed variable selection as a redundant 

variable that consistently contribute to SPE outliers was discarded. 

2. New directions of error quantification and model evaluation for 

biogeochemistry: what metrics are commonly used in other fields that were 

newly applied here? 

An alternative to R2 had to be identified as it can be arbitrarily large or small and not 

necessarily related to prediction accuracy while also redundant for model selection as the 

models tested in each chapter had very similar R2. Similarly, a metric to quantify 

uncertainty had to be tested as it is imperative to have accurate predictions of DOC 

concentration with uncertainty quantified, to later extrapolate and used for catchment-

wide DOC flux estimates. Model performance metrics explored were the Nash-Sutcliffe 

model efficiency coefficient (NSE) and Wilmott’s refined index of agreement (dr), as well 

as using 95% prediction intervals to quantify prediction uncertainty (Chapter 2). It was 

found that NSE was identical to R2 for these models, and therefore not very informative 

as these predicting models result in high NSE (and R2) with little comparability between 

them. The dr was a more robust metric to compare models than NSE as it was more 

conservative and penalized prediction errors more heavily. Mean absolute error (MAE) 
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was a component for calculating dr and was informative when reported combined with 

RMSE to evaluate models (Chapter 3). This was because RMSE measures the spread of 

residuals while MAE measures the residuals' central tendency.  

The prediction intervals all approximated two times the training dataset RMSE and 

were therefore not as informative of model performance and prediction uncertainty. 

However, this may be due to the method of calculation in this particular case. Leverage-

based methods for estimating prediction uncertainty (De Vries & Ter Braak, 1995; K. Faber 

& Kowalski, 1997; Høy et al., 1998) can be more robust for models that use a large number 

of predictors, such as PLS models(De Vries & Ter Braak, 1995; K. Faber & Kowalski, 1997). 

Therefore, it is recommended for future efforts to determine prediction uncertainty to be 

focused in testing these leverage-based methods as they could more appropriate for 

these datasets that use CDOM absorbance from a spectrum of wavelengths and other 

variables (specific conductance, water level, spectral slope and slope ratio). 

For specific periods of the year, remote sites may be impossible to access, and 

therefore grab-samples for the intention of testing and confirming model predictions may 

not be collected. With only continuous in-situ data available, consistency checks that are 

built into the PLS model were calculated from the same input data (Chapter 3). Hotelling’s 

T2 and SPE allowed me to verify the model's applicability with in-situ data and determine 

a level of confidence in the predictions. At the same time, it highlighted sites and periods 

for which sampling effort should be focused to improve the model's applicability by 

improving the training dataset's representativeness. I demonstrated that T2 and SPE can 
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be used to monitor predictions of DOC concentration by identifying and diagnosing outlier 

samples that either: (1) were incompatible with the model and therefore should not be 

used to predict, or (2) were outside the scope of the model, and therefore predictions 

should be made with caution as they were extrapolated. 

By identifying incompatible samples (SPE outliers) or those outside the model's scope 

(T2 outliers), I assessed the representativeness of the training dataset and identified data 

gaps where and when the model might fail to predict DOC concentration accurately. This 

was done by diagnosing the outlier data points by determining which variable contributes 

to elevated SPE or which raw data contribute to the elevated T2. These diagnoses 

identified specifically which variables, and during which periods, they contribute to the 

sample being an outlier and therefore which periods sampling efforts should be focused 

for updating the model. In this case, outlier observations from a particular site (Upper 

Horseshoe Brook) during a specific period (early autumn; September) were caused by 

high spectral slope ratio values. The sparse number of UHS samples collected during this 

period, all of which were baseflow, were not enough to represent the likely unique CDOM 

signatures observed then. 

Because these metrics are built into the model and calculated from input data, they 

can be of vital importance for predicting models used in remote sites where sampling may 

be impossible and validating measurements cannot be made. They provided information 

about observations made during inaccessible periods or at inaccessible sites where grab-

samples to compare with model predictions directly may not be readily available. Using 
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these metrics can improve confidence in predictions or warn users that predictions may 

be inaccurate or unusable. Site- and period-specific trends of these metrics can be further 

studied to label the causes of anomalous periods of data and give contextual knowledge 

about predictions made during that time and improve the confidence of predictions. 

3. What is the optimal combination of in-situ stream water parameters (e.g. 

conductivity, water level, spectral slopes and slope ratio) to be used as 

predictor variables for predicting DOC from in-situ absorbance? 

Headwater streams are intimately connected to the surrounding landscape and 

have temporally variable DOC sources as different landscape components are connected 

depending on season and storm events. As a result, the relationship between DOC 

concentration and CDOM absorbance is variable, while using the full CDOM spectra to 

predict DOC helps mitigate these problems. However, other interferences with 

absorbance continue to affect the relationship between CDOM and DOC, even when using 

the whole CDOM spectra to make predictions. Other metrics that were related to DOC 

(water level, conductivity, spectral slope) or DOC composition (spectral slopes and their 

ratios) helped mitigate further disconnects in the relationship between CDOM 

absorbance and DOC concentration, supporting CDOM absorbance to make more 

accurate predictions (Chapter 3). The most robust model used specific conductance, 

water level, the spectral slope of the 275 to 295 nm range and the ratio of the spectral 

slopes in the 275 to 295 and 350 to 400 nm range. This model resulted in much less inter-

prediction variance than a model that did not use them, suggesting the additional 
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variables help reduce random noise among the in-situ absorbance from the 81 

wavelengths used, stabilizing the variability between predictions. The 350 to 400 nm 

range's spectral slope was discarded as it contributed significantly to SPE (Chapter 3) and 

more than doubled the validation dataset RMSE (Chapter 2) when included as a predictor 

in a PLS model. Due to site differences in in-situ pH behaviour, it was a poor predictor and 

not used in this model to predict stream DOC across sites (Chapter 3). However, the strong 

correlation between DOC concentration and pH for the lower Horseshoe Brook stream 

site suggests it would be a good predictor and should be considered when developing 

site-specific models in the future. 

4. Can we determine an absorbance-based turbidity correction and apply it to 

in-situ absorbance data to predict DOC more accurately? 

Due to the low range of turbidity observed in these sites (0.5 to 6.0 NTU) and the 

success of a simple scatter correction derived from the average absorbance from 700 to 

730 nm, a full turbidity correction may not be currently necessary for these sites. 

However, in other systems or stream sites where a greater range of turbidity is observed, 

pre-processing of absorbance data via a turbidity correction is necessary before being 

useable. We were able to determine an absorbance-based correction for turbidity using 

a training dataset composed of samples of the autumn storm samples and validated using 

baseflow stream samples. However, after model re-training and application to a 

continuous dataset, the performance was inadequate as it over-estimated turbidity in 

specific periods, resulting in negative predictions of DOC concentration. The performance 
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during the autumn was appropriate and expected considering the training dataset were 

autumn samples. The correction only working during autumn suggested it is seasonally, 

and therefore temporally, variable. Therefore, future tests would need targeted event 

samples throughout different periods of the year to acquire a representative dataset that 

encompasses a more extensive range of turbidity quantities and qualities observed 

throughout the year.  

 

This study's findings have demonstrated an approach for developing PLS models to 

continuously predict DOC concentration from in-situ data that could also be used to 

continuously monitor similar metrics, such as nitrate or dissolved organic nitrogen. It 

further highlighted how this approach can be used for identifying where training datasets 

can be improved to use models in other systems or periods of the year. Further efforts to 

predict stream DOC fluxes from these sites to quantify carbon export from the landscape 

will be made using these model-predicted DOC concentrations with stream discharge 

data. Further steps will be taken to apply the model in other sites to determine how 

applicable the current model is to the new sites by using T2 and SPE and determine how 

to improve the model to work in different sites and periods of the year. Over time, as DOC 

concentration, predicted from these models, is closely monitored in these sites, we can 

begin to observe and quantify landscape responses to climate change. The findings of this 

thesis encourage the use PLS models to continuously monitor in-situ DOC concentration 

and the consistency checks built into PLS models, T2 and SPE, to monitor model 
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performance, diagnose outliers and identify when and how to update these models to 

improve their performance. 
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Appendix 1: Relationship between stream water DOC and A350 

The relationship between absorbance at 350 nm (A350) and dissolved organic carbon concentration ([DOC]) 
across stream samples across NL-BELT and the PBEWA. NL-BELT regions include Eagle River (ER), Grand 
Codroy (GC), Humber River (HR) and Salmon River (SR). 
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Appendix 2: Model residuals by season, site and sample type 

Model estimate residual distributions across NL-BELT and the PBEWA regions (top, A, B, C) and seasons 
(bottom, D, E, F) for the Avagyan (left, A, D), Fichot & Benner (middle, B, E) and PLS-plain (right, C, F) models 
across sample types. One-way ANOVAs testing each of the model residuals to regions or seasons found 
season to be significant in the Fichot & Benner residuals (p < .001). The asterisks refer to extreme outliers 
outside 1.5 times the interquartile range. 
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Appendix 3: Detailed NL-BELT site information 

NL-BELT site locations. Passive pan lysimeters are located in terrestrial sites. The Pynn’s Brook Experimental 
Watershed Area terrestrial site contains passive piezometers and groundwater wells in addition to passive 
pan lysimeters. 

Region Site 
Type Site Latitude Longitude Elevatio

n (m) 

Eagle River 
Terrestri

al 
Muddy Pond 53°33'1.08"N 

56°59'12.79"
W 

145 

Eagle River 
Terrestri

al 
Sheppard's 

Ridge 
53°33'24.60"

N 
56°56'2.34"W 170 

Eagle River 
Terrestri

al 
Harry's Pond 

53°35'12.48"
N 

56°53'20.69"
W 

136 

Eagle River Stream 
Desperation 

Brook 
53°31'57.48"

N 
57°4'1.99"W 46 

Eagle River Stream Marcus Brook 
53°35'28.52"

N 
56°53'5.72"W 13 

Eagle River Stream Suckers Brook 
53°33'31.75"

N 
56°55'8.38"W 39 

Eagle River Spring Spring 53°35'4.90"N 56°53'1.39"W 107 
Salmon 

River 
Terrestri

al 
Hare Bay 

51°15'21.28"
N 

56° 
8'17.76"W 

31 

Salmon 
River 

Terrestri
al 

Tuckamore 
51° 

9'50.68"N 
56° 

0'15.14"W 
16 

Salmon 
River 

Terrestri
al 

Catch-a-Feeder 
51° 

5'21.27"N 
56°12'15.58"

W 
38 

Salmon 
River 

Stream Flat Brook 50°59'6.90"N 6°29'12.14"W 250 

Salmon 
River 

Stream Wilcox Brook 
51° 

0'35.64"N 
6°26'31.47"W 158 

Salmon 
River 

Stream Red Ale Brook 
51° 

2'10.54"N 
6°19'46.01"W 78 

Salmon 
River 

Spring 
Trailer Park 

Spring 
51° 

3'33.59"N 
6°37'24.39"W 172 

Salmon 
River 

Spring 
Beer Cooler 

Spring 
51° 2'1.79"N 6°36'49.91"W 211 

Humber 
River 

Terrestri
al 

Camp 10 
49° 

4'11.08"N 
7°38'34.29"W 171 

Humber 
River 

Terrestri
al 

Camp 9 49° 3'6.77"N 7°37'28.72"W 45 
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Humber 
River 

Terrestri
al 

Caribou Pass 
49° 

4'22.27"N 
7°37'42.06"W 113 

Humber 
River 

Terrestri
al 

Pynn's Brook 
Experimental 
Watershed 

Area 

49° 5'2.72"N 57°23'8.68"W 180 

Humber 
River 

Stream Laughing Brook 
49° 

1'47.52"N 
57°39'50.46"

W 
39 

Humber 
River 

Stream 
Lower 

Horseshoe 
49° 5'23.7"N 57°22'48.9"W 175 

Humber 
River 

Stream 
Upper 

Horseshoe 
49° 4' 9.11"N 

57°20'58.15"
W 

245 

Humber 
River 

Stream Kettle Creek 
49° 

4'39.96"N 
7°23'55.21"W 156 

Humber 
River 

Stream Pynn's Brook 
49° 

4'43.87"N 
57°31'2.71"W 143 

Grand 
Codroy 

Terrestri
al 

O'Regan's 
47°53'36.34"

N 
59°10'28.31"

W 
100 

Grand 
Codroy 

Terrestri
al 

Maple Ridge 
48° 

0'28.25"N 
8°55'14.44"W 165 

Grand 
Codroy 

Terrestri
al 

Slug Hill 
48° 

0'38.61"N 
8°54'16.34"W 215 

Grand 
Codroy 

Stream Morris Brook 
48° 

4'24.69"N 
8°54'57.21"W 265 

Grand 
Codroy 

Stream North Branch 
48° 

0'48.12"N 
8°54'42.57"W 166 

Grand 
Codroy 

Stream 
O'Regan's 

Brook 
47°53'23.37"

N 
59° 

9'48.60"W 
74 

 

 


