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Abstract

Transcription factors (TFs) recognize and bind to specific DNA sequences. Know-

ing the binding specificity of TFs is crucial to understand gene regulation and how

genetic differences in the DNA sequence of TF binding sites affect TF DNA bind-

ing activity. However, the transcription factor binding preferences of only 1% of all

eukaryotic TFs are known. Computational prediction of TF binding preferences is

an affordable and efficient way to increase the number of known binding preferences.

Most bioinformatic tools for predicting the binding preferences of TFs require as in-

put the binding preferences of related TFs. However, there are TF families for which

very little experimental data is available. In this work, we present TopAffy, a new

approach for predicting TF 8-mer binding profiles. TopAffy constructs a stochastic

topological representation of DNA-binding domain sequences and learns a numerical

representation of the binding preferences of neighbouring amino acid pairs. TopAffy’s

main contribution is to construct a family-independent model which can be used to

predict the 8-mer binding profile for TF families for which no experimental data is

yet available. TopAffy’s predictive performance is comparable to the performance of

state-of-the-art family-specific approaches. Our results demonstrate that it is possi-

ble to learn a general model of binding specificities suitable for predicting binding

preferences for a number of TF families.
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Chapter 1

Introduction

1.1 Motivation

A transcription factor (Figure 1.2) is a protein that binds to a specific DNA sequence

and regulates the transcription of specific genes. Transcription is the process of copy-

ing a DNA segment into an RNA molecule. The DNA sequences that transcription

factors bind to are called binding sites. Finding the patterns transcription factors

bind to is one of the first steps to understand transcriptional regulation [2]. There

are several approaches to experimentally determine these patterns, such as chromatin

immunoprecipitation (ChIP)-based approaches [3] and Protein Binding Micro-array

(PBM) [4].

See Table 1 of Lambert et al. [2] reproduced in Figure 1.1 for a summary of

experimental methods for determining transcription factor binding specificities

Deciphering transcriptional regulation is essential because it leads to a better

understanding of and can aid in research on genes that are involved in cancers [5,
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Figure 1.1: Table 1 of Lambert et al. [2] summarizing experimental methods for

determining transcription factor binding specificities.
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Figure 1.2: A diagram of a transcription factor. ( From Kelvin13 - Own work, CC

BY 3.0, https://commons.wikimedia.org/w/index.php?curid=23272278).

6], other diseases [7] and virus virulence [8]. An accurate prediction algorithm is

needed because transcription factor binding preferences are only known for ∼ 1% of

eukaryotic transcription factors [1]. Since prediction algorithms are faster and less

expensive than experimental methods, a computational prediction is a more viable

solution to increase the number of known transcription factor binding preferences for

eukaryotic transcription factors.

Transcription factor binding preferences are represented in many models [9]. The

most common model is the Position Weight Matrix (PWM), which is a model that

represents the likelihood of a nucleotide being at a particular position in a sequence. A

simple example is seen in Figure 1.3. The next representation of binding preferences is

the 8-mer [10] profile, which is a vector representing how likely a transcription factor

binds to all possible 8-mer sequences (Figure 1.4). Usually, this profile uses PBM

3
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data to calculate it. Another representation is dinucleotides [11], which are a vector

of the frequencies of two adjacent nucleotides in a sequence. Figure 1.5 shows an

example of this. Some models also consider long-range dependencies. Such a model

looks at how a nucleotide x positions away affects the binding of the nucleotide that

is being considered [12].

Figure 1.3: A sample position weight matrix. The four sequences on the left would

make the matrix on the right.

Weirauch et al. [13] did a systematic comparison of models for transcription factor

binding preferences. They compared 26 models on 66 mouse transcription factors

from several families. The model types they looked at were PWM, k-mers, and

dinucleotides. Some of these models were a combination of other models, and some

had a machine learning algorithm built-in. After looking over the results Weirauch et

al. concluded that models based on k-mers outperform other model types. Most

models that are developed to predict a transcription factor binding preferences are

built to predict one family of transcription factors [14, 15, 16, 17, 18, 19]. However,

this type of model cannot be built for families with only a few members. Many models

that exist require additional information such as multiple sequence alignment for the

sequences or the structure of the sequences itself [20, 21, 22]. We give more detail in
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Figure 1.4: A sample of an 8-mer profile using Zscore for binding preferences.

Figure 1.5: An example of dinucleotide representation. The sequence above makes

the dinucleotide vector below.
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Chapter 2.

1.2 Contributions Made in Thesis

The goal of this research was to build a family-independent model for predicting

transcription factor binding preferences, which takes as input protein sequences of

DNA binding domains (DBDs) and experimentally derived 8-mer profiles. Addition-

ally, multiple sequence alignment (MSA) may introduce errors [23], if the sequences

given do not correspond to the same region. Thus, we wanted a model that did not

require MSA of the DBD sequences. Our method (called TopAffy for topological

affinity) predicts the k-mer profile of any given transcription factor with an accuracy

comparable to that of family-specific state-of-the-art methods.

1.2.1 Contribution Synopsis

� This work built a family-independent model for predicting transcription factor

binding preferences (Section 3.2). Previous models for predicting transcription

factor binding preferences are family-dependent (Chapter 2).

� Our model is able to match the prediction power of other models (Section 4.4.1).

� The performance of our model trained with multiple-family data is comparable

to that of a model trained with family-specific data (Section 4.4.3).

� Our model can predict transcription factors for DBD sequences from families

with few experimental data (Section 4.4.4).

6



1.3 Organization of Thesis

Past work on predicting transcription factor binding preferences is presented in Chap-

ter 2. Chapter 2 hopefully illustrates the importance of a family-independent model.

In Chapter 3, we describe TopAffy. We first discuss the construction of the structures

used in TopAffy, the steps to make predictions. We then look at the implementation

of TopAffy. Chapter 4 presents the results of evaluating TopAffy. We first look at the

datasets that were tested. We then justify some of the design decisions made in the

creation of TopAffy. We also examine the running time and space usage of TopAffy.

We demonstrate that TopAffy can make predictions for transcription factor families

for which no experimental data is available. Chapter 5 examines some biological in-

sights that can be gathered based on the structures that make up TopAffy. Finally,

we end with Chapter 6, discussing TopAffy’s contributions and pointers for future

work.
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Chapter 2

Background

In this chapter we provide a brief description of previous computational methods

for predicting transcription factor binding preferences. Our classification of these

methods is like the one given in Table 1a of [24] reproduced in Figure 2.1.

2.1 Transcription Factor Binding Data

A resource paper by Weirauch et al. [1] tested transcription factor binding preferences

based on PBM data on the most diverse data set yet. They looked at and built

motifs for 1032 transcription factors binding preferences over 131 species and 54

DNA-binding domain (DBD) types. In this thesis, we use PBM data to construct

our model.

8



Figure 2.1: Table 1a from Slattery et al. [24]
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2.2 Early Models

One of the earliest approaches for computationally predicting transcription factor

binding preferences was a model developed by Suzuki and Yagi [14], which looked

at the structure of the zinc finger, probe helix, helix-turn-helix and C4 Zn-binding

families and built a model based on the chemical and stereochemical merits of the

structure. This model did not use machine learning but was developed based on

knowledge about the structure itself. Suzuki and Yagi built a set of rules based

on their research which they use to score DNA and protein sequences. Based on a

measurement that they called the specificity index,

100− n− m

2
(2.1)

where n is the percentage of the DNA sequence that score higher than the real binding

sequence and m is the percentage of DNA sequences that score the same as the real

binding sequence. Their algorithm was able to obtain an average specificity index

above 90% for all the tested families.

Mandel-Gutfreund and Margalit [25] built a model that calculates their predic-

tions by using a log odd likelihood of amino acid interaction with a nucleotide. They

calculate this likelihood of interaction by looking at 218 different pairs of experimen-

tally validated zinc finger protein-DNA interactions and built a 20 by 4 table.

Kono and Sarai [15] also built a model based on the structure of a sequence. Their

model uses statistical data on the complex structure of the DNA. Kono and Sarai

looked at all zinc-finger 52 complex structures and counted the interactions between

the protein and DNA sequences and classified them into four groups based on the

10



backbone and side-chains interacting with DNA sequences. Although this model does

a good job finding the critical section of a zinc-finger, they also assessed performance

on other transcription factor families such as homeodomain with little success.

Benos et al. [16] built a statistical model to predict the binding preferences of

zinc fingers proteins. They built this model by looking at the interactions between

proteins and nucleotides, dinucleotides and trinucleotides and assigning a value to

these. This model predicts zinc finger transcription factor binding preferences with a

correlation coefficient of over .95 on average. Zhou and Liu [26] made a model that

uses a position-specific weight matrix and dinucleotide information to build a Markov

chain to predict transcription factor binding sites. When tested against the standard

PWM model, they found that it was less prone to making false positives (that is

for 17 out of 22 transcription factors, it made less false positives than the standard

PWM model). Kaplan et al. [17] like Benos et al. [16] built a statistical model for the

sequence preferences of the zinc-finger family. This model looks at the probability of

a nucleotide being at a certain position and interacting with a certain amino acid.

This model was built for zinc-fingers because they have a particular structure. When

compared to other methods at the time, it got a higher true positive/ lower false

positive rate (∼ 80%/1%). Like many of the other models above this model is built

for the zinc finger family alone and may not work for other families.

2.3 Sequence Based Models

The models described in this section only use the amino acid sequence of transcription

factors and binding data to generate their predictions. These models are classified

11



based on the machine learning method used to construct these models.

2.3.1 Nearest neighbour model

In a paper by Alleyne et al. [27] four machine learning algorithms (k-nearest neigh-

bour, random forests, support vector machine and principal components regression)

were comparatively evaluated on a mouse homeodomain dataset [28]. Out of the four

approaches, the one that performed best in terms of Spearman’s correlation, Root

Mean Squared Error (RMSE) and number of predicted binding sequences in common,

was the nearest neighbour algorithm.

2.3.2 Neural Network model

The next method is a neural network by Liu and Stormo [29] called Zifnet. Zifnet uses

information about amino acid residues binding to the canonical recognition positions.

Zifnet predicts on multi-finger information (2, 3 or 4 fingers) but predicts poorly when

the number of fingers was greater than two. This model was compared to the method

by Kaplan et al. [17] and Benos et al. [16] on 9 zinc finger datasets and found to

outperform them on several of those nine datasets.

Shen et al. [30] developed a model that uses a Gated Recurrent Unit network

with k-mer embedding. This model is a modified recurrent neural network that is

good at learning features from a large dataset, and k-mer embedding learns long-

range dependencies in the sequence. This model works on ChIP-seq data and tested

on 125 transcription factors from 4 datasets (HESC, A549, HUVEC and MCF7).

This model obtained AUC values of 0.9524, 0.9593, 0.9612 and 0.9649 respectively.

12



Rastogi et al. [31] made a statistical model for predicting transcription factor binding

preferences based on SELEX [32] data. The model predicts sites with very low affinity.

This model combines two interacting transcription factors (Hox and bZip) to build a

model.

2.3.3 Support Vector Machines

Persikov et al. [18] used support vector machines on the family of Cys2-His2 zinc

fingers. Persikov and Singh [33] expanded this algorithm by using information about

amino acid and base pair combinations. As an input, the algorithm takes in a vector

of 1280 elements, which represents all the information about amino acids, nucleotides,

the canonical recognition positions and combinations of unique triplets of amino acids.

Persikov and Singh [34] developed another algorithm that uses a support vector ma-

chine. Through experimental observation, they found that there may be three more

contact positions that are important for the predicting of binding specificities of

DNA. They built a model that uses this information. The model predicts the PWM

of ∼ 80% of the sequences in their dataset.

2.3.4 Random Forest

One algorithm that uses a random forest is ZFModels by Gupta et al. [35] which

is an extension of a previous algorithm by Christensen et al. [19]. ZFModels works

with a family of transcription factors Cys2-His2 zinc finger, which is one of the largest

transcription factor families. This model can get a mean MSE of .017 and a median

Mean Squared Error (MSE) of .009 between the prediction and observed position

13



frequency matrices.

2.3.5 Linear Model

Annala et al. [36] was the best performing method in the DREAM5 challenge [1].

This method uses a matrix based on PBM array and k-mers. Once the matrix is

built, the model uses a conjugate gradient method to predict binding preferences.

Pelossof et al. [37] developed a model called affinity regression that is a bilinear

regression model for predicting transcription factor binding preferences from PBM

datasets. The model only needs the sequences and PBM data and does not require a

multiple sequence alignment or the motifs of the sequences. This model outperforms

the k-nearest neighbour model for a dataset of 178 mouse homeodomains.

Lambert et al. [38] made a model named similarity regression, which uses tran-

scription factor protein similarity to predict transcription factor sequence specificities.

It does this by first aligning each transcription factor DBD sequence to Pfam HMM

to get a global alignment. They use regression to train a matrix where each row is a

pair of TF, and columns are positions in the sequence. Once the model trains, there is

a value assigned to each position in the sequence based on its importance to produce

a weight vector. They used this model to predict 8-mer profiles by using this weight

vector to find the closest transcription factor or transcription factors in the dataset.

2.3.6 Hidden Markov Model

Dai et al. [12] created an algorithm that built a hidden Markov model based on the

DNA sequences. The HMM allows the model to learn position information as well

14



as long-range dependency information. It does this with a message passing-like em-

bedding algorithm. This model got tested on over 90 transcription factor datasets,

one of which was the DREAM5 dataset. On the DREAM5 dataset, this model out-

performed other algorithms when measuring, Pearson (0.741) and Spearman (0.765)

correlation and Area under the ROC curve (AUC) (0.959).

2.4 Multiple Data Source Models

All the above methods for predicting transcription factor binding preferences made

predictions based on the sequences and binding profiles alone. Methods by Andrabi et

al. [20] and Li et al. [21] not only made predictions based on sequence but also uses

the structure of the protein. If the structure is not known, Andrabi et al. [20] built an

algorithm that predicts the structure from the sequence by using 65 support vector

regression models, and Li et al. [21] uses DNAshape [22] which uses Monte Carlo

simulation to predict structure. This method works better on datasets that contain

more flanking base pairs. The method got tested on a gcPBM [22] dataset and a

uPBM [13] dataset; the former got mean R2 values around .8, and the latter got

values around .4.
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Chapter 3

Methods

In this chapter we present the methods used in designing TopAffy (short for Topo-

logical Affinity Prediction). This includes describing the structures that are used to

make predictions, how the predictions are made, and discussing the implementation

of TopAffy itself.

3.1 TopAffy Overview

TopAffy predicts transcription factor binding preferences (8-mer profiles). TopAffy

uses a graph to represent transcription factor protein sequences, where vertices are

amino acids in position i in a sequence, and edges connect neighbouring amino acids

in the sequence. It also uses an emission matrix to represent the binding preferences

of neighbouring amino acids.

TopAffy takes in as input a set of transcription factor sequences (just the DNA

binding domain) and their corresponding 8-mer binding profiles, obtained from PBM

data [4]. TopAffy does not require that the DNA binding domain (DBD) sequences

16



to be aligned. Once the model is built and trained, it takes in a sequence and outputs

a predicted 8-mer profile for that sequence.

To predict the 8-mer profile of a sequence, TopAffy multiplies the weights on

the graph corresponding to the DNA-binding of the sequence by the values on the

emission matrix corresponding to the neighbouring amino acids. In this chapter, we

explain how this is done in detail.

3.2 Model Construction

We built TopAffy to use two steps. The first step is to build a graph using all available

DBD sequences, not only the training sequences but also the sequences TopAffy are

predicting. The second step is to have the model learn values to fill the emission

matrix.

The graph is a stochastic topological representation of the sequences. This struc-

ture is like a Hidden Markov Model (HMM) but instead on each vertex having an

emission, this model has one emission matrix for all the vertices. HMM are a common

method for representing sequences; it is the method used in Dai et al. [12], Team E

in [13] and Keilwagenet al. [39].

This graph has a starting vertex and an ending vertex. To build the graph in-

between the start and end, the model looks at all the amino acids in the first position

of the DBD sequences. It finds which amino acids appear in the first position and

creates a vertex for each of them. It then creates an edge between the start and all

the new vertices. The weight of each edge is the frequency of each amino acid at

position i (i.e. the number of occurrences of amino acid j at position i divided by the

17



total number of sequences). Once the model constructs the first level of the graph, it

then builds the next levels. For all amino acids in the ith position of the sequences,

a vertex is made. Then an edge is created between a vertex at position i − 1 and a

vertex at position i if an adjacent amino acid pair exist at positions i − 1 and i in

any of the sequences. The weight of each edge is the number of occurrences of each

amino acid j at every position i divided by the maximum number of occurrences. A

modified Gini impurity measure with a value in the range [0, 1] is then used to get

edge weight. TopAffy uses the Gini index so that edges connecting to rare AA pairs

or almost invariant AA pairs receive the highest weight. We call each edge weight

τ . This process continues until an edge is created between the amino acid at the end

of each sequence to the end vertex. Every edge weight in the graph represents the

likelihood of transitioning from vertex Si−1 to vertex Si in the graph. See Figure 3.1

for an example of such a graph.

The next step is to calculate the emission matrix. This matrix quantifies the

effect an amino acid pair has on the binding of the transcription factor to each k-mer,

regardless of the pair position in the sequence. Each cell in the table is a vector of

all possible 6-mers. Figure 3.2 shows an example of this. To reduce the number of

parameters to fit, we use 6-mers instead of 8-mers in the emission matrix. TopAffy

using a mapping table to look up for the frequency of each 6-mers contained in each

8-mer. Figure 3.3 shows a section of this table.

The emission matrix is populated with zeros, to begin with, and uses stochastic

gradient descent [40] to fit. The sequences get shuffled into a random order then the

model goes through all sequences in this shuffled order. For each sequence, the model

picks a random selection of 8-mers. Then the model makes a prediction for each
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Figure 3.1: A representation of the topological stochastic graph. On the right, there

is a list of unaligned protein sequences. On the left, there is a graphical representation

of these sequences in a topological sequence graph. All vertices are the amino acid

at that position, and edge weights are the probability from going for one amino acid

at position i to amino acid i + 1. TopAffy calculates probabilities by the number of

amino acids x at position i followed by amino acid y at position i+ 1 divided by the

maximum number of occurrences and uses a modified Gini impurity measure with a

value in the range [0, 1] to get the final edge weight. Note because the sequences are

unaligned, at any point a vertex can go to the end vertex. This graph is calculated

based on all available DBD sequences.
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Figure 3.2: A representation of the emission matrix. The top matrix represents amino

acid (plus start and end) pairs. Each cell in the top matrix contains a vector such

as the one shown below the matrix. Each vector is calculated based on training

sequences passed to the graph during the training phase. The ξ so the zscore portion

for that 6-mer
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Figure 3.3: A break down of all the 6-mers that make-up 8-mers.

8-mer selected. Then the residuals are (the difference between the actual outputs y

and the predicted outputs ŷ) calculated, and small changes are made to the cells used

in the prediction to minimize the residuals. Each cell has a small number added to

it. Equation 3.1 shows this calculation,

(y − ŷ) ∗ η (3.1)

where η is the rate of learning and, η shrinks over time by the decreasing learning

factor λ. Figure 3.6 shows an example of modifying the emission matrix. When the

algorithm starts, it makes more significant changes after each sequence is processed,

and it starts to fine-tune as it runs with a decreasing learning factor. These steps

repeat until the model converges, which means that several iterations of the algorithm

have not yielded an overall positive change (more substantial than ε) to the predictive

performance of the model. To check if an overall positive change has been made, the

model predicts 8-mer binding profiles for all sequences and checks the Spearman

correlations between all Y to Ŷ where Y is the actual 8-mer binding profile and
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Ŷ is the predicted one. Once convergence has happened TopAffy outputs the final

emission matrix. Table 3.1 gives the default values for the parameters mentioned

above.

η λ ε

0.0001 .99 .05

Table 3.1: Parameter values for training that are used in this thesis.

3.3 Making a prediction

To predict a sequence with an unknown 8-mer binding profile, the model runs the

sequence through the graph for each 8-mer. The model starts at the start vertex in

the graph and moves to the end. For TopAffy to predict, the sequence has to traverse

the graph and get the prediction for each 8-mer using Equation 3.2.

Zscorez =
n+1∑
i=1

m∑
j=1

(τSi−1, Si ∗ e[Si−1, Si, j] ∗map[z, j]) (3.2)

where z is an 8-mer to be predicted, sequence S is being considered, τ is the tran-

sition value from Si−1 to Si which is the edge weight in the graph, e is the emission

matrix. Term i represents a position in the sequence, j is one of the 6-mers, n is the

length of the sequences and m is the number of 6-mers in the 8-mer. Figure 3.3 is a

representation of the map (a way to break 8-mers into 6-mers) in the equation.

Let’s look at an example. Suppose we have the sequence AEPT and we are

predicting the Zscore of AAGTTGAA using the graph in Figure 3.4. The calculation

of the predicted Zscore is illustrated in Figure 3.5.
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Figure 3.4: A simple graph for example prediction

Figure 3.5: Example of how TopAffy makes a prediction. This production uses

the graph seen in Figure 3.4. The left matrix is the simplified emission matrix, only

showing the relevant cells. The middle vector shows transition values of the sequence

of an 8-mer profile (values are the paths edge weights). The last table is the value

obtained by running the inner summation from Equation 3.2. The last column in

that table is the sum of the rows. The value in the box to the right is the prediction

for the 8-mer (AAGTTGAA) for the sequence (AEPT) obtained by adding up the

Total column of the inner summation.
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Figure 3.6: Example of how TopAffy makes changes to the emission matrix. The

table gets updated by the value in the box to the left. This example uses the result

from Figure 3.5; therefore it uses the 8-mer (AAGTTGAA) for the sequence (AEPT)

3.4 Implementation

See Algorithm 1 for the implementation of TopAffy. This code was written in

Python3, and the code can be found at https://github.com/BioinformaticsLabAtMUN/

TopAffy.

3.5 Summary

In this chapter, we described TopAffy. This method uses two structures to capture the

information for predicting binding preferences as 8-mer profiles of given transcription

factors. It uses a topological sequence graph to capture the sequences and an emission

matrix to represent the effect of adjacent amino acids in the transcription factor DNA-

binding domain on the binding of 6-mers. These two structures use Equation 3.2 to

predict the binding preference of a transcription factor for each 8-mer.
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Algorithm 1 TopAffy

inputs:

η = rate of learning

λ = decreasing learning factor

τ = sequence graph

e = emission matrix

map = kmer map

Y = 8-mer binding profile

X = Transcript factor sequences

output:

Updated emission matrix

1: function TopAffy(η, λ, τ, e,map, Y,X)

2: for not converged do

3: X̂= shuffle X

4: for x in X̂ do

5: K̂= get random set of 8-mers

6: for k in K̂ do

7: pred = score(x,k,τ ,e)using Equation 3.2 see Figure 3.5

8: error = Yxk - pred

9: update e using Equation 3.1 see Figure 3.6

10: X̄ = random set from X

11: test for convergence using X̄;

12: return e
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TopAffy has two advantages over existing methods to predict transcription fac-

tor binding preferences: 1) no multiple sequence alignment is required, and 2) it is

family independent in the sense that a single model can predict for multiple tran-

scription factor families. As we show in the next chapter, its prediction performance

is comparable to that of state-of-the-art methods.
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Chapter 4

Empirical Evaluation

In this chapter, we describe the empirical evaluation undertaken to 1) validate some

of the design decisions made in TopAffy such as using 6-mers instead of 8-mers and

constructing a general instead of a family specific model; 2) characterize the properties

of TopAffy such as run time, memory usage and convergence; and 3) comparatively

assess TopAffy’s prediction performance.

4.1 Evaluation Measures

The first question that we answer in this chapter is whether using 6-mers is optimal.

To answer this question in Section 4.3, we show the results of running TopAffy on

different sizes of k-mers. In Section 4.4.1, we looked at the performance of TopAffy

against a state-of-the-art model, Affinity Regression [37]. In Section 4.4.2, we evaluate

whether TopAffy can predict binding preferences for transcription factors from fami-

lies without data. We do this by seeing how well TopAffy would predict if we trained

our model to make predictions on transcription factors from families we did not train
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it on. We call this “Blind” predictions. In Section 4.4.3, we compare the prediction

performance of a family specific model and a general model. Finally, we evaluate

the predictive performance of general TopAffy on predicting binding preferences of a

small family of transcription factors.

4.2 Datasets

Three families of transcription factors were used, namely Homeodomain [28], bZIP [41]

and Myb/SANT [42]. We gathered the 8-mer binding profiles and DBD sequences of

these families from CIS-BP version 1.01 [1]. We chose these families because they are

families with the largest number of experimental determined k-mer binding profiles,

with 218, 102, and 96, respectively. After filtering out transcription factors that had

multiple protein domain sequences, we reduced the samples to those described in

Table 4.1. Some of the transcription factors had replicate 8-mer profiles. For those,

we calculated the average for each 8-mer and used the average value in their binding

profile. Then the data was exponentially scaled to increase the importance of the top

probes. See Equation 4.1 and 4.2 for the equation.

Y = ∀ y ∈ Y (100 ∗ y − 1) (4.1)

Y = ∀ y ∈ Y ((y ∗ 1)/

√∑
Y 2) (4.2)

,where Y is a set of all the Zscores for a sample.

These are the same steps that Pelossof et al. [37] did while testing Affinity Re-

gression. We also used the dataset used by Pelossof et al. [37], which had 218 Home-

odomain transcription factors from diverse species found on CIS-BP [1].
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Family Number of Transcription Factors Species

Homeodomain 172 diverse species

Bzip 68 diverse species

Myb/Sant 79 diverse species

Pelossof et al. [37] 218 diverse species

Table 4.1: The families of transcription factors and the number of sequences for each

family.

4.3 Method Tuning

Deciding on the size of k-mers was an interesting problem to solve. We first thought

about using the 8-mers and training each 8-mer independently. We quickly rejected

this idea because of the simple fact that there are too many of them. This leads to

each 8-mer only being updated a few times while training the model. We thought we

would break the 8-mers in smaller k-mers. All 8-mers are a combination of a group of

small k-mers. For example, the 8-mer AAGTGCAA is constructed with four 5-mers

AAGTG, AGTGC, GTGCA, and TGCAA. Using a sliding window on the 8-mer of

size 5. Figure 3.3 shows an example of a mapping.

The challenging part was figuring out the size of the k-mer. We performed an

experiment to determine what k-mer size would lead to the best prediction. For

this test, we ran TopAffy on the Bzip family with three different k-mer sizes (4, 5,

and 6). Using 10-fold cross-validation, we trained the model and then computed the

Spearman correlation between the predicted 8-mer binding profiles against the known

ones. Figure 4.1 shows the results of this experiment. This test was done to Bzip
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only because we found through the development of TopAffy that Bzip dataset was

the most challenging dataset, and any improvements to Bzip predictions lead to a

better prediction for all families. Based on the result shown in this chart, we found

that there is only a small difference in the predictive performance for different sized

k-mers. The difference between 4-mers and 5-mers is statistically significant (when

running a Wilcoxon Signed-Rank Test, the p-value is 0.04538) with 5-mers leading

to better predictions. The difference between 5-mers and 6-mers is not statistically

significant (when running a Wilcoxon Signed-Rank Test, the p-value is 0.5719). With

these results, we decided to use 6-mers in TopAffy’s implementation.
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Figure 4.1: The effect of k-mer size on predictive performance using the Bzip family.
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4.4 Performance Assessment

4.4.1 Comparative assessment

We compared TopAffy’s performance to the performance of Affinity Regression [37].

We choose to compare to Affinity Regression because this model is predicting 8-mer

binding profiles based on known profiles and DBD sequences only, which is similar

to the way TopAffy works. To run TopAffy, we trained four models, one for each

family and one for the dataset used for Affinity Regression [37]. To get the result

for Affinity Regression, we ran Affinity Regression on the four datasets. Affinity

regression version 1 directly ran from the software provided at https://bitbucket.org/

leslielab/affreg/src/master/. We used the 8-mer binding profile output by affinity

regression in our comparative assessment. The performance we obtained from that

fourth dataset is very similar to the one reported by Pelossof et al. (see Fig 3.d in

[37]). For the training of TopAffy, we used 10-fold cross-validation. We computed

the Spearman correlation between the predicted 8-mer binding profile to the actual

one. We did this for all three families of transcription factors we are testing plus the

dataset used by Pelossof et al. [37]. These comparisons can be seen in Figures 4.2,

4.3, 4.4 and 4.5 and Table 4.2.

These results demonstrate that TopAffy has a performance comparable to that of

Affinity Regression with both programs getting similar results for the Bzip and the

Myb/Sant families, Affinity Regression outperforming TopAffy on the homeodomain

dataset, and TopAffy outperforming Affinity Regression on the Pelossof et al. dataset.
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Figure 4.2: Spearman correlation for TopAffy (TA) and Affinity Regression (AR)

for the Pelossof et al. data set.
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Figure 4.3: Spearman correlation for TopAffy (TA) and Affinity Regression (AR)

for the Homeodomain family.
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Figure 4.4: Spearman correlation for TopAffy (TA) and Affinity Regression (AR) for

the Bzip family.
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Figure 4.5: Spearman correlation for TopAffy (TA) and Affinity Regression (AR)

for the Myb/Sant family.
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Dataset TopAffy Affinity Regression p-value

(mean ± std) (mean ± std)

Homeodomain 0.7811 ± 0.1049 0.8284 ± 0.1083 1.196e-7

Bzip 0.6829 ± 0.1470 0.7285 ± 0.1624 0.0691

Myb/Sant 0.6186 ± 0.1794 0.6450 ± 0.1912 0.2769

Pelossof et al.Dataset 0.7010 ± 0.1272 0.6088 ± 0.1149 1.921e-14

Table 4.2: Mean ± standard deviation of the Spearman correlation and the p-value

for a Wilcoxon Signed-Rank Test.

4.4.2 “Blind” prediction assessment

We assessed how well TopAffy, trained on the PBM data of two transcription factor

families, could predict binding preferences for the transcription factors of a third

family. We referred to this model as a “blind” model because we did not train

on data from the family it is predicting. To do this, we constructed the topological

graph using the DNA-binding domain sequences of all three families. Then we trained

TopAffy using the 8-mer binding profiles of two of the families (e.g., Homeodomain

and BZip) and predicted the 8-mer binding profile for the transcription factors of

the left-out family (e.g., Myb/Sant). As a baseline, we used the average Spearman

correlation value between transcription factors of the families used for training and

those of the family predicting. Figures 4.6, 4.7, and 4.8 show that TopAffy was able

to learn general binding relationships between DNA sequence and amino acids in the

DNA binding domains. We used these relationships to obtain accurate predictions for

a transcript factor family not seen during training without a major drop in predictive

performance. The p-values for a Wilcoxon test between the family-specific and the

36



blind results are provided in Table 4.3.

Family p-values

Homeodomain < 2.2e−16

Bzip 3.73e−10

Myb/Sant 8.04e−11

Table 4.3: The p-values for a Wilcoxon test between the family-specific and the blind

results

Figure 4.6: Spearman correlation for TopAffy family-specific and “blind” TopAffy,

and the mean Spearman correlation between each Bzip transcription factor versus all

Homeodomain transcription factors and the same for Bzip versus Myb/Sant.
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Figure 4.7: Spearman correlation for TopAffy family-specific and “blind” TopAffy

and the mean Spearman correlation between each Homeodomain transcription factor

versus all Bzip transcription factors and the same for Homeodomain versus Myb/Sant.

4.4.3 TA-family-specific vs TA-general

We conceived TopAffy to construct a family-independent model that predicts binding

preferences for transcription factors of families without PBM data. To test whether

this hypothesis was true, we evaluated whether there was a difference in prediction

performance when training TopAffy on data from a single transcription factor family

and when training on data from the three families. For the family-specific models, we

trained three models, one for each family of transcription factor (as in Section 3.4.1).
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Figure 4.8: Spearman correlation for TopAffy family-specific and “blind” TopAffy,

and the mean Spearman correlation between each Myb/Sant transcription factor

versus all Homeodomain transcription factors and the same for Myb/Sant versus

Bzip.
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Then using 10-fold cross-validation, we computed the Spearman correlation between

the predicted 8-mer binding profiles against the experimentally derived ones.

For the general model, to make the test set we combined all the transcription

factor data we were using and randomly selected 50 of them. Then we randomly

selected 100 different transcription factors as the training set. The intersection of

these two sets was the empty set. We then trained a model using the 100 training

transcription factors and used that model to predict the 50 test transcription factors.

Once we predicted all 50 transcription factors, we computed the Spearman correlation

between the predicted 8-mer binding profile to the actual ones.

Finally, we then matched the correlations of the transcription factor for the general

model to the family model. These comparisons can been seen in Figures 4.9, 4.10 and

4.11. Figure 4.12 shows the overall performance for both a family trained model and

a general trained model.

The results show there was no statistically significant difference between the two

models (Table 4.4). Figure 4.13 shows that our general model was able to predict

just as well as the family-specific one. Table 4.4 shows the detail of the performance.

On average, the general model achieved a Spearman correlation, which is 0.024 below

the corresponding family-specific model.

4.4.4 TA-general vs. AR to predict data on small families

We also assessed the predictive performance on a small transcription factor family

not included in the training data. For this test, we compared TopAffy to AR. We ran

this assessment using all mouse PBM data available on the CIS-BP version 2 [1]. This
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Figure 4.9: Spearman’s correlation for the model trained on only Bzip transcription

factors and a general model trained using 100 transcription factors taken randomly

from the three families.
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Figure 4.10: Spearman’s correlation for the model trained on only Homeodomain

transcription factors and a general model trained using 100 transcription factors taken

randomly from the three families.
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Figure 4.11: Spearman’s correlation for the model trained on only Myb/Sant tran-

scription factors and a general model trained using 100 transcription factors taken

randomly from the three families.
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Figure 4.12: Spearman’s correlation for the model trained on only the corresponding

family of transcription factors and a general model trained using 100 transcription

factors taken randomly from the three families.
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Figure 4.13: Performance in terms of Spearman correlation of TA-family specific

and TA-general on a set of randomly selected transcription factors from the three

transcription factor families.
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Family Mean Max Min p-value

Homeodomain -0.0217 ± 0.0398 0.0533 -0.1338 0.4496

Bzip -0.0196 ± 0.0254 0.0263 -0.0639 0.5737

Myb/Sant -0.0303 ± 0.0604 0.0448 -0.2041 0.7748

All -0.024 ± 0.0446 0.0533 -0.2041 0.434

Table 4.4: Spearman correlation differences between the general model and the family

model. The last column show the p-value obtained by a WMW test comparing the

correlations of the general model and the family specific model.

dataset has 435 transcription factor from 31 families, a break down of the families is

seen in Figure 4.14. From this dataset, we picked one of the families (T-Box) [43], and

we left it out of the training. As Affinity Regression was designed to run with data

from a single-family, Affinity Regression results correspond to leave-one-out cross-

validation results using only the T-Box data. For this assessment, we constructed a

topological graph using the 435 DNA-binding domain sequences and trained TopAffy

using all available 8-mer profiles except those for the eight T-box transcription factors.

TopAffy achieved a mean correlation of 0.456 ± 0.064, while Affinity Regression had

a mean correlation of -0.0194 ± 0.0502. The Spearman correlation obtained by both

programs for the eight members of the T-box family is seen in Figure 4.15. Note

that Affinity Regression was designed to predict binding preferences for transcription

factors of the same family as those included in the training data. Affinity Regression

was restricted to make predictions about the T-box family using a minimal data set

with only data for seven transcription factors. This case study demonstrates the

benefits of having a general model, such as TopAffy, able to make predictions even
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for transcription factors from unseen families or families with a minimal number of

transcription factors (i.e., less than ten members).
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Figure 4.14: The transcription factor family composition (in percentage) for mouse

data available on CIS-BP version 2 [1].

4.5 TopAffy properties

To quantify TopAffy’s runtime, we ran TopAffy on a Windows 10 64-bit Operating

System with an Intel Core i7-6500U CPU 2.50GHz with 12 GB of RAM. Table 4.5

shows the time in seconds to took to build the structures for the TopAffy and the
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Figure 4.15: Performance of TA-General and Affinity Regression for predicting the

Z-score 8-mer profile of the mouse T-Box transcription factor family. We trained

TopAffy without T-Box data, and AR results correspond to leave-one-out cross-

validation using T-Box data.
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time it took TopAffy to make predictions for two runs of different datasets.

Graph Emission Predicting Number Number of Number of

building Training Total (s) of Training Test

Total (s) Total (s) Epochs Sequences Sequences

0.12 12006 1503 6590 100 50

0.22 28377 2519 16542 251 68

Table 4.5: Time in seconds to train TopAffy and make predictions.

The memory usage of TopAffy is allocated mainly on the four data structures

of 64-bit floating numbers and one of strings. The first structure stores the binding

preference profiles for the training set in a matrix of n×32896, where n is the number

of sequences in the training set. The next structure stores the list of all the sequences

as strings. The data structure the keeps the topological graph is a matrix of 441×m,

where m is the length of the longest sequence in the dataset. We store the emission

matrix as a 3D matrix of 22 × 22 × 4096. The last structure is the map table, with

a size of 32896× 3. An example of memory usage to train on a dataset with n=100

and m=70 is, (100× 32896 + 441× 70 + 22× 22× 4096 + 32896× 3)× 64 + 5674×

8 = 345749200bits = 43.2MB.

Figure 4.16 shows the reduction of the absolute difference over the number of

epochs. As expected, the absolute error decreases dramatically during the first few

iterations, and then the error reduction slows down until the test for convergence is

met.
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Figure 4.16: Decrease of absolute difference during training. Every data point is the

mean absolute error between the real and predicted Z-score for 1248 random 8-mer.
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4.6 Summary

In this chapter, we compared the performance of TopAffy to Affinity Regression [37]

on four datasets (Homeodomain, BZip, Myb/Sant, and Pelossofet al. [37] dataset).

We showed that the performance of these two models is statistically comparable for

medium to larger families containing at least 50 members. After showing that TopAffy

is comparable to Affinity Regression, we then assessed how effective our model would

be making predictions for transcription factors whose family was not represented

in the training data. With only this limited information, TopAffy was still able to

make reasonable predictions for most families. The Homeodomain family saw the

worst performance decrease, and we believe this is the case because of how conserved

the Homeodomain family is across all samples. Nevertheless, the other two families

saw statistically comparable results. TopAffy shows that it is possible to obtain a

family-independent model of transcription factor binding preferences.

We evaluated a general model by taking all the three families and combining them

into a large sample. Then we partitioned the transcription factors into a training set

and a test set. We showed that the general model did a statistically equivalent job

at predicting 8-mer profiles as the three family-specific models that we trained. The

general model got a mean difference in Spearman correlation of -0.024 ± 0.0446 from

the family-specific TopAffy model.

Finally, we evaluated the performance of TopAffy on predicting the binding pref-

erences of transcription factors from a small transcription factor family (8 members).

To run this test, we created a general model that would pull information for many

families. We downloaded all the PBM data from mouse (Mus musculus) transcription
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factors available on CIS-BP version 2 [1]. We selected these species because of the

large number of transcription factors it has from a diverse selection of families. Our

model was able to get a mean Spearman correlation of 0.456 ± 0.064 for the T-box

family (8 members).

In sum, we have demonstrated that TopAffy is the first family-independent ap-

proach for predicting transcription factor binding preferences with comparable per-

formance as state-of-the-art family-specific approaches requiring only DBD sequences

and 8mer profiles.

52



Chapter 5

Biological Insights

In this chapter, we look into the insight that we can gather based on the two struc-

tures that TopAffy generates. We show that not only TopAffy is a good predictor of

transcription factor binding preferences, but also the patterns in the binding prefer-

ences matrix are valuable as well to understand binding specificities at the amino-acid

pair level.

5.1 Most frequent top-ranked 6-mers are contained

in known transcription factor binding motifs

First, we looked at the highest-ranked 6-mer for each AA pair in the binding prefer-

ences matrix learned by TopAffy using as input the mouse dataset. The dataset is

427 homeodomains transcription factors from 30 families, which is all mouse PBM

data available on the CIS-BP version 2 [1] minus the T-Box family of transcription

factors. We saw 73 distinct 6-mers among the top-ranked 6-mers, and out of the
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438 amino acid pairs (i.e., 20 amino acids, plus the start and end of the sequence

minus two pairs, WC and WEND, which were absent from all DBD sequences on this

dataset), 303 (or 69%) had one of ten 6-mers as their top-ranked 6-mer. All of these

ten 6-mers are in the consensus sequences of known motifs (Table 5.1).

6-mer Number of Motif Reference

occurrences

CACGTG 94 G-box [44]

AGGTCA 52 DR4 [45]

ACGTAC 29 GMEB2 [46]

CACCTG 26 E-box [47]

TAAACA 25 Core Forkhead [48]

TAATTA 22 Homeodomain [49]

ACGTAA 14 A-box-related [50]

CCGTTA 14 Ovol1 [51]

CTGTCA 14 Meis/Pknox [52]

CGCGCG 12 CpGs [53, 54]

Table 5.1: Ten most frequent top ranked 6-mers.

CACGTG was the most frequent top-ranked 6-mer, a G-box motif bound by tran-

scription factors in the basic helix-loop-helix (bHLH) and basic-leucine zipper (bZIP)

families [44]. The second most frequent top 6-mer is AGGTCA, which is a direct

repeat (DR) element bound by nuclear receptors (NRs) [45]. Using Tomtom [55], we

found a significant match (p-value = 0.0009) for ACGTAC, the third most frequent
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top 6-mer, to a motif identified by [46] (accession GMEB2 DBD 1 in footprintDB

[56]) bound by transcription factors in the SAND family. The fourth most common

top-ranked 6-mer is CACCTG, which is an E-box bound by members of the bHLH

transcription factor family [47]. The fifth most common top 6-mer is part of a binding

site preferred by the forkhead family, while the homeodomain family contains bind-

ing sites that preferred the sixth most common top 6-mer TAATTA [49]. ACGTAA

is a 6-mer that is related to A-box [50] and CCGTTA is found in the binding of

Ovol1 [51]. The CTGTCA Motfit is seen in Meis/Pknox [52] and lastly CGCGCG is

in CpGs [53, 54]. This indicates that TopAffy is learning AA pairs binding preferences

related to actual transcription factor binding motifs.

5.2 TopAffy learns distinct binding preferences for

amino acid pairs

TopAffy can learn distinct binding preferences, as 22 out of the 73 most preferred

6-mers are also among the 32 least preferred 6-mers (Figure 5.1). We expected this

because TopAffy learns a distinct binding preference for each amino acid pair. To

visualize the similarity among the AA pairs’ inferred binding profiles, we generated

a heatmap of the pairwise Pearson correlation coefficient between predicted binding

profiles of AA pairs (Figure 5.2). The binding profile of each amino acid pair is

only modified by TopAffy if it appears in the transcription factor DBD sequence

corresponding to the binding profile it is learning. We looked at whether or not each

AA pair appears on the DBD sequences of a given transcription factor family. It
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Figure 5.1: Top and Bottom ranked 6-mers. Left: number of occurrences of highest

ranked 6-mers. Right: number of occurrences of lowest ranked 6-mers. An asterisk

indicate a 6-mer that is a top 6-mer for some AA pairs and a bottom 6-mer for other

AA pairs.
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Figure 5.2: Heatmap of similarities among predicted amino acid pairs binding pref-

erence profiles. Left: The Pearson correlation coefficients were calculated between

the predicted binding preferences of amino acid pairs, and amino acid pairs were or-

dered using average hierarchical clustering. Right: For each AA pair the percentage

of occurrences of this AA pair in DBDs from a specific transcription factor family is

shown. Only the ten transcription factor families (Homeodomain - Hd, bHLH, sox,

forkhead - Fh, ets, nuclear receptor -NR, bZIP, C2H2 zinc fingers - ZF, IRF, and

homeodomain pou - Hd Pou) with the highest percentage of AA pairs occurrences

are shown.
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Figure 5.3: Sequence logos from alignments of the DNA binding domains. Amino

acid pairs chosen for Figure 5.2 in the manuscript are underlined with a red line.

Sequence logos available in PROSITE [57].
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turned out that 35% of transcription factors for the mouse dataset belong to the

homeodomain family. This reflects the fact that the homeodomain family has a high

percentage of AA pair occurrences. There are groups of amino acid pairs with highly

similar predicted binding profiles as well as with negatively correlated binding profiles,

which suggests that TopAffy learns distinct binding preferences for AA pairs.

We also looked at whether the binding preference profile of AA pairs strongly con-

served in a specific transcription factor family reflects the known binding preferences

of that family. To do this, we obtained the sequence logo for the homeodomain, Ets,

Nuclear receptor (NR), and basic helix-loop-helix (bHLH) DBD from PROSITE [57].

We identified highly conserved AA pairs for each of these families (Figure 5.3). Three

of these AA pairs, namely WF, WG and FF appear mostly in the DBD of the as-

sociated family (Figure 5.4). We observed that the top-ranked 6-mers for WF, a

signature AA pair at position 15 of the homeodomain DBD, are indeed contained in

known homeodomain motifs [49] (Figure 5.4). Similarly, the top-ranked 6-mers for

WG are part of known Ets motifs [58]. From the NR sequence logo, we selected the

AA pairs FF and CR. These two AA pairs, in addition, to have top-ranked 6-mers

that are part of known NR motifs [58, 45] and have similar binding profiles. The

binding profiles for the 41 6-mers shown in Fig. 5.4 and for all possible 6-mers have a

Spearman correlation of 0.93 and 0.58, respectively. Finally, RR, which has a strong

signal at position 13 of the bHLH sequence logo, strongly prefers CACGTG, which

is known to be bound by bHLH transcription factors [44]. These results suggest that

TopAffy is indeed inferring biologically relevant binding profiles for AA pairs.
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Figure 5.4: Most preferred 6-mers for specific AA pairs highly conserved in certain

DBDs. The ten top-ranked 6-mers for each of the AA pairs shown were selected.

AA pairs were selected by looking at sequence logos (Figure 5.3) corresponding to

the following families: homeodomain (HD), Ets, Nuclear receptor (NR), and ba-

sic helix-loop-helix (bHLH). Between brackets below each AA pair, their associated

transcription factor family and the percentage of occurrences of that AA pair that

happen in the DBDs of the corresponding family are provided. To obtain these bind-

ing preferences and percentage of occurrences, we used as input for TopAffy the PBM

binding data and DBD sequences of 427 murine transcription factors from 31 families.
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5.3 Summary

We showed that the emission matrix provides insights into binding preferences at

the amino-acid pair level. The 6-mers that ranked highest for the majority of AA

pairs are contained in known transcription factors motifs. Additionally the binding

preferences of AA pairs strongly conserved in a specific transcription factor family

reflect the known binding preferences of this family. This suggests that TopAffy

is learning binding preferences associated with actual transcription factors binding

motifs.
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Chapter 6

Conclusions and Future Work

In this thesis, we presented a new model for predicting binding preferences for tran-

scription factors called TopAffy. This model uses two structures to make predictions.

One is a topological sequence graph, and the other is an emission matrix. The topo-

logical sequence graph is based on the DBD sequences, and TopAffy trains an emission

matrix based on 8-mer PBM binding profiles.

Our model was compared to the Affinity Regression method created by Pelossof et

al. [37]. We showed that our model has comparable performance in terms of Spearman

correlation to Affinity Regression for medium to large families. We also showed that

our model outperforms Affinity Regression for a small family. Our model has also

comparable performance when comparing a general model (trained with data from

several families) and a “blind” model (trained with the family to be predicted left

out). Making TopAffy amongst the first family-independent approach for predicting

binding preferences for transcription factors.

We showed that not only is TopAffy a good predictor of transcription factor bind-
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ing preference, but also the emission matrix provides insights into binding preferences

at the amino-acid pair level. We showed that top-ranked 6-mers are contained in

known transcription factors motifs and that binding preferences of AA pairs strongly

conserved in a specific transcription factors family reflect the known binding prefer-

ences of this family. This suggests that TopAffy is indeed learning binding preferences

associated to actual transcription factors binding motifs.

As a family independent predictor of transcription factor binding preferences,

TopAffy can predict binding preferences for small families or families without PBM

data available. This is essential because 67 out of 85 families with PBM data on

CIS-BP version 2 [1] have less than 50 members, and 41 have less than 10 members.

As future work, one could use the emission matrix and topological graph to predict

how genetic variations in a DBD sequence or transcription factor binding site affects

the transcription factor binding activity. As these two structures together capture

the information about how transcription factor binding preferences are affected by the

transcription factor sequence. Hence, one could use the two structures that TopAffy

generate to predict binding profiles of transcript factors with genetic variants, similar

to what was done by Zhou and Troyanskaya [59] and Barrera [60].

Since TopAffy can make reasonable general predictions, we could train a model

using all DBD sequences and all PBM data available and use it to predict the binding

preference profiles for any new DBD sequence. To facilitate the addition of new

data to TopAffy, TopAffy could be modified to allow for online learning or for using

batch training where the already pre-trained model gets further trained with n new

observations. This would allow us to overcome the biggest downside of TopAffy, which

is the time it takes to train the emission matrix.
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One more aspect that can be looked at is whether the model always converges

and what the optimal values for the training parameters (η , λ, ε) are.
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model for transcription factor binding affinity prediction in protein binding mi-

croarrays. PLoS One, 6(5):e20059, May 2011.

[37] Raphael Pelossof, Irtisha Singh, Julie L Yang, Matthew T Weirauch, Timothy R

Hughes, and Christina S Leslie. Affinity regression predicts the recognition code

of nucleic acid–binding proteins. Nature Biotechology, 33(1126):1242–1250, 2015.

[38] Samuel A. Lambert, Ally W. H. Yang, Alexander Sasse, Gwendolyn Cowley,

Mihai Albu, Mark X. Caddick, Quaid D. Morris, Matthew T. Weirauch, and

Timothy R. Hughes. Similarity regression predicts evolution of transcription

factor sequence specificity. Nature Genetics, (51):981–989, 2019.

[39] Jens Keilwagen, Jan Grau, Ivan A. Paponov, Stefan Posch, Marc Strickert, and

Ivo Grosse. De-novo discovery of differentially abundant transcription factor

binding sites including their positional preference. PLoS Computational Biology,

7(2):e1001070, February 2011.

[40] Herbert Robbins and Sutton Monro. A stochastic approximation method. The

Annals of Mathematical Statistics, 22(3):400–407, 1951.

[41] Grigoris Amoutzias, Amelie Veron, III Weiner, January, Marc Robinson-Rechavi,

Erich Bornberg-Bauer, Stephen Oliver, and David Robertson. One billion years

of bZIP transcription factor evolution: Conservation and change in dimerization

71



and DNA-binding site specificity. Molecular Biology and Evolution, 24(3):827–

835, 2006.

[42] Asmaa M. Baker, Qiang Fu, William Hayward, Stuart M. Lindsay, and Terace M.

Fletcher. The Myb/SANT domain of the telomere-binding protein TRF2 alters

chromatin structure. Nucleic Acids Research, 37(15):5019–5031, 2009.

[43] Virginia E. Papaioannou. The t-box gene family: emerging roles in development,

stem cells and cancer. Development, 141(20):3819–3833, October 2014.

[44] Daphne Ezer, Samuel J K Shepherd, Anna Brestovitsky, Patrick Dickinson, San-

dra Cortijo, Varodom Charoensawan, Mathew S Box, Surojit Biswas, Katja E

Jaeger, and Philip A Wigge. The G-Box transcriptional regulatory code in Ara-

bidopsis. Plant physiology, 175(2):628–640, Oct 2017.

[45] Ashley Penvose, Jessica L Keenan, David Bray, Vijendra Ramlall, and Trevor

Siggers. Comprehensive study of nuclear receptor DNA binding provides a re-

vised framework for understanding receptor specificity. Nature Communications,

10(1):2514, 06 2019.

[46] Arttu Jolma, Jian Yan, Thomas Whitington, Jarkko Toivonen, Kazuhiro R Nitta,

Pasi Rastas, Ekaterina Morgunova, Martin Enge, Mikko Taipale, Gonghong Wei,

Kimmo Palin, Juan M Vaquerizas, Renaud Vincentelli, Nicholas M Luscombe,

Timothy R Hughes, Patrick Lemaire, Esko Ukkonen, Teemu Kivioja, and Jussi

Taipale. DNA-binding specificities of human transcription factors. Cell, 152(1-

2):327–39, Jan 2013.

72



[47] Hiroshi Kataoka, Toshinori Murayama, Masayuki Yokode, Seiichi Mori, Hideto

Sano, Harunobu Ozaki, Yoshifumi Yokota, Shin-Ichi Nishikawa, and Toru Kita.

A novel snail-related transcription factor smuc regulates basic helix-loop-helix

transcription factor activities via specific E-box motifs. Nucleic Acids Research,

28(2):626–33, Jan 2000.

[48] Xi Chen, Zongling Ji, Aaron Webber, and Andrew D Sharrocks. Genome-

wide binding studies reveal DNA binding specificity mechanisms and func-

tional interplay amongst Forkhead transcription factors. Nucleic Acids Research,

44(4):1566–78, Feb 2016.

[49] Gwenael Badis, Michael F Berger, Anthony A Philippakis, Shaheynoor Talukder,

Andrew R Gehrke, Savina A Jaeger, Esther T Chan, Genita Metzler, Anasta-

sia Vedenko, Xiaoyu Chen, Hanna Kuznetsov, Chi-Fong Wang, David Coburn,

Daniel E Newburger, Quaid Morris, Timothy R Hughes, and Martha L Bulyk.

Diversity and complexity in DNA recognition by transcription factors. Science,

324(5935):1720–3, Jun 2009.

[50] Pavel Cherenkov, Daria Novikova, Nadya Omelyanchuk, Victor Levitsky, Ivo

Grosse, Dolf Weijers, and Victoria Mironova. Diversity of cis-regulatory elements

associated with auxin response in Arabidopsis thaliana. Journal of Experimental

Botany, 69(2):329–339, 01 2018.

[51] Mahalakshmi Nair, Andy Teng, Virginia Bilanchone, Anshu Agrawal, Baoan

Li, and Xing Dai. Ovol1 regulates the growth arrest of embryonic epidermal

73



progenitor cells and represses c-myc transcription. The Journal of Cell Biology,

173(2):253–64, Apr 2006.

[52] Joseph Martin Grice. The role of vertebrate conserved non-coding elements in

hindbrain development and evolution. PhD thesis, UCL (University College Lon-

don), 2016.

[53] Dominik Hartl, Arnaud R Krebs, Ralph S Grand, Tuncay Baubec, Luke Isbel,

Christiane Wirbelauer, Lukas Burger, and Dirk Schübeler. CG dinucleotides
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