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Abstract

Using the Landau-Lifshitz-Gilbert (LLG) equation in micromagnetic simulations, we

model magnetic nanoparticles composed of nanorods for application in magnetic

nanoparticle hyperthermia, a developing cancer treatment. We use a scaling approach

based on the renormalization group (RG) to calculate magnetization-field hysteresis

loops that are invariant with simulation cell size, with the objective of decreasing the

simulation time at clinically relevant field parameters. In addition, we introduce a

time scaling approach that involves the sweep rate of the oscillating external field and

the damping constant α in the LLG equation, which allows for up to three orders

of magnitude faster simulations. Equipped with the RG and time scaling tools, we

explore a macrospin model in which a complex nanoparticle is represented by a single

magnetization vector with appropriate effective magnetic parameters. To evaluate

this model, we calculate loops for single particles and particles interacting in pairs,

chains and triangles of three particles, and in a cluster of thirteen nanoparticles. Moti-

vated by recent experimental studies that reported successful hyperthermia treatment

in the absence of perceptible heating of tissue, we report on local hysteresis loops of

individual nanoparticles within clusters, highlighting the role of magnetostatic inter-

actions between nanoparticles in the complex heating and magnetization dynamics of

groups of nanoparticles.
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Chapter 1

Introduction

1.1 Hyperthermia and the motivation for this study

Curing diseases like cancer, with no universally effective treatment protocol, has

inspired many research studies. Beyond the current standard treatments, includ-

ing surgery, chemotherapy, and radiotherapy, new therapies such as thermo-therapy

are being investigated. Thermo-therapy is based on exploiting the higher sensitiv-

ity of cancerous tissues to heat compared to normal tissues. Due to the particu-

lar tissue structure of tumors, they undergo cell death at temperatures in the range

41−46◦C [1]. Magnetic nanoparticle hyperthermia (MNH) is a type of thermo-therapy

that uses magnetic nanoparticles to increase the tumour tissue’s temperature. Mag-

netic nanoparticles are delivered to the tumour, either through targeting∗ or direct

injection, and are subjected to an alternating magnetic field (AMF).

The potential of selective heating without consequential side effects makes hyper-

thermia a promising option compared to conventional cancer treatments. Moreover,

∗Targeting refers to increasing the concentration of nanoparticles at the tumour, e.g. by trapping
them magnetically, or coating them with molecules that preferentially bind to the tumour [2].



2

magnetic hyperthermia can be used as a secondary treatment to enhance the efficiency

of primary treatments like chemotherapy and radiotherapy [3–6]; heating tumor tis-

sue increases blood perfusion and leads to greater chemotherapy drug delivery and

supplies higher reactive oxygen species, which makes tumors more sensitive to radio-

therapy [7, 8].

This method is promising for its potential precise control of dose and tissue speci-

ficity. Pre-clinical studies point to the requirement of selective and homogeneous

heat generation, as insufficient temperature increase in parts of the tumor can trig-

ger multiplication of surviving tumor cells [9], while overheating can damage healthy

surrounding tissues. Providing sufficient magnetic material and applying AMF with

suitable parameters for conducting a non-injurious and highly efficient treatment is

challenging. Therefore, understanding the primary effectual parameters for heat pro-

duction in magnetic nanoparticles is necessary for developing an optimized hyperther-

mia treatment.

In MNH, choosing an efficient magnetic material that is biocompatible is the first

concern. Among magnetic materials, Co and Ni are highly magnetic but also toxic. In

contrast, an average human adult carries 3.5−4 grams of iron, which is an essential ele-

ment for red blood cells, and iron oxide nanoparticles, in particular magnetite (Fe3O4)

or maghemite (γ-Fe2O3), are commonly used on account of their lower toxicity [7].

Also, it is desirable to elevate the temperature with as few nanoparticles as possible,

i.e., to have higher heat generation per unit mass of particles. Magnetic nanoparticles’

(MNP) heat generation under application of an alternating current (AC) field can be

through different processes such as magnetization reversal, called Néel relaxation, or

NPs rotation, called Brownian relaxation, or through eddy currents (see section 1.3).

The heating efficiency, usually measured in terms of the specific loss power (SLP),
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also referred to as specific absorption rate (SAR), depends on the MNP properties,

such as their size, shape, magnetocrystalline anisotropy and saturation magnetization,

as well as the frequency (f) and amplitude (H0) of the applied field. Higher values of f

and H0 result in higher SLP. However, medical restrictions limit the applicable values

to avoid collateral tissue damages due to unwanted heating through eddy currents.

In this thesis, the goal is to simulate the magnetic response of magnetite nanopar-

ticles to an AMF that gives rise to heating. Our model for the MNPs reflects those

used in an experimental study, which were roughly spherical assemblies of fairly long

and narrow nanorods (rectangular prisms) [10]. This chapter provides a brief review

of the physical concepts pertaining to magnetic materials, a summary of possible

heating mechanisms and heat calculations, followed by magnetic structure and inter-

actions that need to be considered. Then, after a brief review of selected literature on

hyperthermia, we describe the model we study through micromagnetic simulation.

1.2 Magnetic materials

Magnetism emerges from motions of electrically charged particles. Orbital and spin

properties of atomic electric charge, as well as spin-orbit coupling, produces the so-

called magnetic moment of the material [11].

A major factor that defines the magnetic properties of a material is the exchange

interaction. For example, ferromagnets and antiferromagnets show strong negative

and positive exchange interactions favoring parallel and antiparallel spins, respec-

tively. Above a material’s critical temperature, thermal fluctuations overcome all the

exchange interactions, and the material loses magnetic order, becoming a paramag-

net. Materials with no exchange interactions are generally divided into diamagnets
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and paramagnets.

Identification of different types of magnetic materials is based on their magnetic

status below their critical temperature. Materials with no net magnetic moments

in zero applied field include diamagnets, paramagnets, and antiferromagnets. In con-

trast, ferromagnets and ferrimagnets have a net magnetic moment even in zero applied

field.

Diamagnetism arises from the paired electrons in the material for which the spin

and angular momenta counteract each other (total angular momentum quantum num-

ber J = 0). Diamagnetism can be understood qualitatively from a classical perspec-

tive. An external magnetic field will tend to cause moving charges to undergo circular

motion. This circular motion can be thought of in terms of a current in a loop,

which in turn will give rise to a magnetic field, one which opposes the external field.

Therefore, all materials have some degree of diamagnetism due to their electron pairs,

and this is not highly temperature-dependent. In the absence of effects arising from

unpaired electrons, only the diamagnetic response is present, and such materials are

termed diamagnetic.

In contrast, paramagnetism arises from unpaired electrons (J 6= 0), the magnetic

moment of which align with the applied field, providing a net magnetic moment

that dominates their negative diamagnetic response. With no exchange interactions,

individual atomic magnetic moments do not align in the absence of an external field,

leading to zero net magnetic moment.

Antiferromagnets have a strong positive exchange interaction, resulting in antipar-

allel order of neighbouring magnetic moments in the absence of a magnetic field. This

results in zero net magnetization for the material below its critical temperature, which

is called Néel temperature (TN) in this case. A strong magnetic field can overcome
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the exchange interactions and align the magnetic moments to the field.

Moreover, other classes, including ferromagnets and ferrimagnets, have a net mag-

netic moment with or without exposure to an external magnetic field. Ferromag-

nets have a strong negative exchange interaction that induces parallel alignment of

neighbouring magnetic moments and a net magnetic moment below the critical tem-

perature, called the Curie temperature (TC). Applying a magnetic field aligns the

magnetic moments of the material parallel to the field. Ferrimagnets are similar to

the antiferromagnets, except neighboring antiparallel magnetic moments have differ-

ent magnitudes; consequently, there is a net magnetic moment below TC. In other

words, ferrimagnets can be considered as weaker ferromagnets [12]. However, an ap-

plied magnetic field can overcome the exchange interactions in ferrimagnets and align

the magnetic moments to the external magnetic field. Two magnetic iron oxides of

interest for hyperthermia applications, magnetite, Fe3O4, and maghemite, γ-Fe2O3,

are ferrimagnets.

1.3 Heating

1.3.1 General discussion

The key feature of magnetic NPs is embedded in their response to an applied mag-

netic field. Nanoparticles smaller than 50 nm are generally single domain, and their

magnetization tends to align with the applied field. This alignment can occur via dif-

ferent rotation mechanisms. A common process involves a particle’s magnetic moment

rotating inside the particle to align with the field through so-called Néel relaxation.

The delayed response of the magnetic moment (M) in aligning with the changing field

(H) is quantified through an MH hysteresis loop, and the enclosed area of the loop is
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a measure of the magnetic energy added to the system, which is usually assumed to

be dissipated as heat. Another process involves the whole particle rotating to align

its magnetic moment with the field. This is called Brownian rotation, and the friction

between NPs and the surrounding fluid molecules results in heating. The relevant

aligning process is the one that occurs on a shorter time scale.

In the Néel process, the changing field alters the magnetization’s stable posi-

tions and an energy barrier separates the energy minima due to magnetic crystalline

anisotropy. When the size of NPs is smaller than 15 − 20 nm, thermal fluctuations

provide the required energy for the magnetization to flip before the whole nanoparticle

rotates. So, for these particles, Néel relaxation is dominant and their Brownian rota-

tion is usually ignored due to its longer relaxation time [13]. Various studies have used

Néel-rotation particles for magnetic hyperthermia applications [13–21]. In contrast,

for larger single domain nanoparticles, in the size range of 20 − 80 nm, the Brown-

ian and Néel relaxation times can be comparable [13, 22]. For the numerical study

of the magnetization dynamics, micromagnetic software such as Object-Oriented Mi-

croMagnetic Framework (OOMMF) [23], MuMax [24], and Vinamax [25] are widely

used, which all simulate the magnetization of immobile particles.

The magnetization dynamics of ferro and ferrimagnets under exposure of an os-

cillating magnetic field, via the Néel relaxation, is investigated by analysing their

MH hysteresis loops. As shown in Fig. 1.1a, loops yield important characteristic in-

formation about the material, such as its saturation magnetization (Ms), remanent

magnetization (Mr), coercive field or coercivity (Hc), anisotropy energy density (K)

and the characteristic response time of the system’s magnetization to the changing

field. Ms is the maximal magnetic moment per unit of volume, i.e., the magnetization

in the high field limit. Mr is the magnetization that persists when the applied field
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Figure 1.1: a) A typical hysteresis loop for a magnetic material under application of
one cycle of an alternating magnetic field. b) Major and minor hysteresis loops based
on the applied field amplitude (T = 0).

has decreased to zero. Hc is the magnetic field at which the magnetization falls to

zero, or equivalently, the field required to reverse the magnetization. Hysteresis loops

are a dynamic property and depend on the temperature and the characteristics of the

applied field. In most cases, the loop features are determined by thermodynamically

metastable magnetic states.

When a material has preferred directions for its magnetic moment it is said to

display anisotropy. In the case of uniaxial anisotropy, there is a single preferred

“easy axis”. At T = 0, for the case where the field is applied along the easy axis,

Hc = Hk = 2K/(µ0Ms), where µ0 is the free space permeability. The quantity Hk is

called the anisotropy field [26]. Various effects attribute to the anisotropy energy den-

sity, namely the matter’s crystalline structure (providing so-called magnetocrystalline

anisotropy), shape anisotropy (arising from magnetostatic interactions within non-

spherical particles), the particle’s surface anisotropy, and colloidal anisotropy (which
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is an effect of other particles in the surrounding liquid – their aggregation can encour-

age a specific alignment for the magnetic moments) [12]. Magnetocrystalline, shape

and surface anisotropy are discussed below in later sections.

Depending on the amplitude of the applied field, in comparison to the anisotropy

field, hysteresis loops are divided into two main types, major and minor loops [12]. A

major loop starts from a saturated magnetization state, goes to negative saturation,

and then returns to the starting point. Generally, the field strength needed to reach

the saturated state is H ' Hk. At T = 0, when the field is along the anisotropy axis,

the MH loop is a rectangle with side lengths 2Ms and 2Hk, and the magnetization flips

from Ms to −Ms at H = −Hk. This case gives the maximum loop area for the system,

4MsHk, which in turn dictates the maximum heat released from one loop cycle. If

the maximum applied field magnitude is less than Hk, magnetization saturation will

not occur, resulting in a minor loop, as shown in Fig. 1.1b. Note that in the figure,

the loops are presented as averages over field directions with respect to the anisotropy

axis, in which case Hc = Hk/2.

While exchange interactions favour spin alignment between neighbours, weaker

but longer-range magnetostatic interactions can favour anti-alignment, and so having

a large collection of aligned spins becomes energetically unfavourable at some length

scale. The length scale of the magnetic moments’ collective alignment is determined

by the competition between exchange, anisotropy and magnetostatics (i.e., dipolar

interactions). Ferromagnets are usually identified with materials that include mag-

netic domains separated by borders or so-called domain walls. Domain walls, which

enclose regions where all the magnetic moments are aligned (apart from thermal fluc-

tuations), form when the energy cost for enlarging the domain exceeds the energy cost

for domain wall formation. When particles are small enough, only a single domain is
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present. Different studies report that for magnetite, NPs below 70 − 100 nm in size

exhibit a single domain magnetic structure [27–29]. For particles exceeding 1000 nm

in size, multidomain structures are observed, while for sizes between 100 and 1000 nm,

intermediate vortex-like structures are reported [29]. In addition to the type of mate-

rial, the single domain size limit depends on different factors, such as the shape of the

particles, their synthesis methodology, and heat treatments [30]. These size regimes

are consistent with an expression for domain wall width δbulk = π
√
A/K [11, 26],

which evaluates to approximately 100 nm for magnetite (which has cubic anisotropy);

a system needs to be significantly larger than δ to accommodate multiple domains.

For very small NPs of ferromagnetic (or ferrimagnetic) material, while they com-

prise a single domain, their response to an external field will be superparamagnetic

(SPM), where the hysteresis curves are closed. Experimentally, this SPM response

is observed for NPs smaller than 25 − 30 nm [27, 28], and arises from the ability of

thermal fluctuations at room temperature to effect spontaneous magnetization rever-

sal on short-enough time scales. To understand this semi-quantitatively, we begin by

noting that the energy barrier to magnetization reversal is approximately equal to

KV . If this is on the order of thermal energy at room temperature, then KV = kBT .

For spherical particles, V = 4πr3/3, at T = 300 K, of magnetite, K = 104 J/m3, this

corresponds to a diameter of approximately 10 nm [9], which approximately agrees

with experimental observation. These SPM NPs exhibit closed hysteresis curves with

zero Mr and Hc when the measurement time, τM, is longer than the reversal time, τR,

the characteristic time for spontaneous magnetization flips. Hence, for small particles,

the low-frequency regime that results in no hysteresis is called the SPM regime.
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1.3.2 Heat calculations

An applied magnetic field tends to align magnetic moments in the field direction, and

the degree of alignment depends on the field magnitude and material properties. By

switching the polarity of an AC field, the magnetization direction also changes. The

time between the field change and the magnetization response depends on the field

characteristics like frequency and amplitude and particle properties such as anisotropy,

temperature and size. The size dependence can be understood in the case when the

exchange is strong, and all the spins in a small particle act as a single spin; in this

limiting case, the energy barrier to magnetization flipping, due to anisotropy, is KV .

The time lag of magnetization alignment in response to a changing field results in an

open magnetization-field (MH) hysteresis loop. For an infinitesimal process, the work

done on the sample, i.e., the energy that needs to be absorbed by the sample in order

for moments to align with the field, is [12, 31],

dW = µ0H · dM, (1.1)

and the thermodynamic identity becomes dE = TdS + µ0H · dM. From this, by

considering the Gibbs free energy G = E − TS − µ0M · H,∗ one can obtain the

reversible work done on the system due to an infinitesimal change in the field (at

constant T ) to be dW = −µ0M ·dH. In a cycle of the AC field, the system returns to

its initial state (∆E = 0) and conservation of energy implies the conversion of work

into heat. The heat released by the magnetic sample into the environment is,

Q = −µ0

∮
M · dH. (1.2)

∗Some authors refer to this expression for magnetic systems as the Helmholtz free energy.
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Therefore, the enclosed area in the hysteresis loop represents the heat dissipation in

the system (see Fig. 1.1).

Within a linear approximation (small field), the magnetization can be expressed

in terms of the complex susceptibility χ = χ′− iχ′′. For an AC field H(t)=Re[H0eiωt],

the resulting magnetization is,

M(t) = H0(χ′ cosωt+ χ′′ sinωt), (1.3)

where χ′ and χ′′ denote the in-phase and out-of-phase components of χ respec-

tively∗[13].

Within the linear approximation, the heating energy commonly calculated as the

electromagnetic power lost per unit mass of the magnetic material, called specific

loss power (SLP), can be expressed in terms of the imaginary component of the

susceptibility by [13, 32],

SLP(f,H0) = µ0πχ
′′(f)H2

0f/ρ, (1.4)

where ρ is the mass density of the magnetic material, f is the AC frequency and χ′′

is given by,

χ′′(f) = χ0φ/(1 + φ2), (1.5)

where χ0 = µ0M
2
s V/(kBT ), and φ = fτR = τR/τM, the ratio of the relaxation time

∗By substituting M(t) and H(t) into Eq. 1.2, only the χ′′ component survives, and

Q = ωµ0H
2
0χ
′′
∫ 2π/ω

0

sin2(ωt)dt.

For f = ω/2π, the power dissipation per unit volume is,

P = fQ = µ0πχ
′′fH2

0 .
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τR and the measurement time, τM (the period of the AC field). The characteristic

reversal time for immobilized particles with volume V , the Néel relaxation time, is

given by [9],

τR = τ0 exp
KV

kBT
, τ0 ∼ 10−9 − 10−10 s, (1.6)

where τ0 is the period associated with the so-called attempt frequency f0, or frequency

of approaching the barrier; Brown [33] showed that f0 is a function of parameters such

as the magnetization damping constant α, K, Ms, T and V .

At low-frequencies (in the SPM regime with τR < τM), SLP is proportional to

the frequency squared (' µ0χ0πH
2
0f

2τR/ρ), whereas for high frequencies (τR > τM)

SLP (' µ0χ0πH
2
0 /ρτR) is frequency independent. Thus, the linear theory predicts

a frequency threshold beyond which heating does not increase. However, the linear

theory also predicts a peak in SLP as a function of particle size, and thus predicts

an optimal range of particle sizes for magnetic hyperthermia. Thus, the linear theory

provides a starting point for understanding magnetic hyperthermia, particularly when

minor hysteresis loops are involved, in terms of the dependence of heating on frequency

and particle size.

In addition to the selective therapeutic heating with MNPs, radio frequency AC

fields can result in Joule heating in both cancerous and healthy tissues due to induced

eddy currents within those tissues. The later, of course, is undesirable. The absorbed

power is proportional to the squares of field amplitude and frequency, and is given

by [32],

P = σ ·G · (H0 · f · r)2, (1.7)

where σ is the electrical conductivity, G is a geometric coefficient, and r is the radius of

the coil producing the field. Preclinical studies [34] reported the general thermal effects

(due to eddy currents) are tolerable in human test subjects, as long as H0f ≤ C =



13

5×10−9 A/(m.s). Therefore, the sweep rate of the AC field is limited to SR = dH/dt =

4H0f ≤ 20× 10−9 A/(m.s)= 0.25 Oe/ns. Moreover, to restrict the Brownian motion

and rotation of NPs, using a frequency of at least 100 kHz is recommended [32]. Thus,

a reasonable set of field parameters to use is H0 = 500 Oe (0.05 T) and f = 125 kHz.

In addition to the field parameters, various studies explored the effects of particle

aggregation, size, and size distribution on the SLP, and some of these results are dis-

cussed in section 1.7. Providing adequate MNP supply to the tumor for homogeneous

heat generation is also a primary concern in practical applications, as insufficient

temperature increase in parts of the tumor can trigger the risk of multiplication of

surviving tumor cells [9]. Therefore, understanding the primary effectual parame-

ters in magnetic nanoparticle heat production is necessary for developing optimized

hyperthermia treatment.

1.4 Magnetic structure and interactions

This section presents a brief review of the crystal structure and magnetic interac-

tions in magnetite NPs. In the next section we explain the required modifications in

calculating the interactions convenient for the numerical approach in this study.

1.4.1 Crystal structure of Fe3O4

Magnetite, with formula unit Fe3O4, made of Fe3+ (ferric) and Fe2+ (ferrous) cations

and O2− anions, is categorized in the Fd3̄m space group and has an inverse spinel

crystal structure [35, 36]. A spinel has a face-centred cubic structure with tetrahedral

and octahedral bases. Fig. 1.2 shows an arrangement of two of the tetrahedral bases

(containing A sites – green) and two of the octahedral bases (containing B sites –
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Figure 1.2: Crystal structure of magnetite as an inverse spinel Fe3+(Fe2+Fe3+)O4

constructed from tetrahedral and octahedral bases. In addition to the oxygen ions in
red balls, iron ions at octahedral and tetrahedral sites represented in blue and green
balls, respectively. For simplicity four of the bases in a unit cell are shown. Figure
reproduced from Ref. [37], under license CC BY-SA 4.0.

blue) in a spinel structure. If the A sites are occupied with valency two cations,

and B sites with valency three cations, the structure is a normal spinel (in this case

Fe2+(Fe3+)2O4). But if, like magnetite, the A sites and half of the B sites are occupied

with valence three cations and the other half of the B sites with valence two cations

(Fe3+(Fe2+Fe3+)O4), the structure is called inverse spinel.

The cubic unit cell of magnetite, with lattice parameter a = 0.839 nm, is composed

of eight Fe3O4 formula units. Magnetite properties change with temperature. In the

temperature range of 0 to TV = 120 K, the Verwey transition temperature∗, electrons

are localized in a less symmetric crystal structure, resulting in a smaller conductivity.

In the range between TV = 120 K and TC = 858 K (the Curie temperature), magnetite

is a ferrite with an inverse spinel structure, in which electrons may hop between

Fe2+ and Fe3+ ions, which is responsible for its large conductivity. Above the Curie

temperature, magnetite is paramagnetic.

∗The temperature at which the magnetite crystal structure changes from monoclinic to cubic
inverse spinel is called the Verwey transition temperature, TV.
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1.4.2 Zeeman Energy

The energy of a magnetic moment µ in an external magnetic field B is −µ·B. Parallel

alignment of µ with B is the arrangement with the lowest energy. At the same time,

the field produces a torque on the magnetic moment of µ × B. As the magnetic

moment is associated with angular momentum L through the gyromagnetic ratio γ

via µ = −γL, and given the fact that the time rate of change of angular momentum

is equal to the torque, the time evolution of a magnetic moment is governed by

dµ

dt
= −γµ×B, (1.8)

with the result that µ precesses around B [11]. The Landau-Lifshitz-Gilbert (LLG)

equation is an extension of Eq. 1.8 to study the dynamics of µ in the effective field due

to magnetic interactions in addition to the external field in the presence of damping.

Details on the LLG equation are found in the next chapter.

1.4.3 Exchange Interactions

The exchange interaction between atoms is a quantum mechanical effect due to the an-

tisymmetric overlap of adjacent spin-dependent electron wave functions. In exploring

the origin of the exchange interactions, consider a system such as a hydrogen-molecule

consisting of two electrons with wave functions ψa and ψb in spatial coordinates r1

and r2. The wave function for the joint state is ψa(r1)ψb(r2), which is not symmetric

under exchange of two electrons [ψa(r1)ψb(r2) 6= ψb(r1)ψa(r2)]. To have well-behaved

states under the particle exchange operations, the only allowed states are symmetrized

or antisymmetrized product states [11]. The overall wave function for these electrons

is antisymmetric, and by using the symmetric (χTriplet) and antisymmetric (χSinglet)
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spin functions∗[11], two combinations of spatial and spin contributions are possible

that result in antisymmetric overall wavefunctions with respect to exchanging elec-

trons,

ΨS =
1√
2

[ψa(r1)ψb(r2) +ψa(r2)ψb(r1)]χSinglet,

ΨT =
1√
2

[ψa(r1)ψb(r2)−ψa(r2)ψb(r1)]χTriplet.

(1.9)

The energies corresponding to the two possible states, using the Hamiltonian H, are,

ES =

∫
Ψ∗SHΨSdr1dr2,

ET =

∫
Ψ∗THΨTdr1dr2.

(1.10)

Assuming normalized spin functions, the energy difference can be written as

ES − ET = 2

∫
ψ∗a(r1)ψ∗b(r2)Hψa(r2)ψb(r1)dr1dr2. (1.11)

Using S1·S2 values for singlet and triplet spin configurations, where S1 and S2 are spin

functions of the two electrons, the Hamiltonian, based on Eq. 1.10, can effectively be

rewritten as,

H =
1

4
(ES + 3ET)− (ES − ET)S1 · S2. (1.12)

That is, H as written above, will yield energy ES when operating on the singlet state,

and energy ET when operating on a triplet state; the expectation value of the energy

depends on whether the two-electron wavefunction is a singlet or triplet state, and this

is captured by the effective Hamiltonian, which is written in terms of the dot product

∗In coupling two spins S1 and S2, eigenstates of S1·S2 can have symmetric (Triplet, S1·S2 =1/4)
or antisymmetric (Singlet, S1·S2 = −3/4) configurations. The singlet eigenstate is χSinglet = (| ↑↓〉−
|↓↑〉)/

√
2 with ms = 0, Stot=0 and the triplet eigenstate (Stot = 1) will be one of the configurations

χTriplet = | ↑↑〉 with ms = 1, or | ↓↓〉 with ms = −1 or (| ↑↓〉+ | ↓↑〉)/
√

2 with ms = 0.
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operator for the two spins. By neglecting the constant term in the Hamiltonian, and

rewriting the spin-dependent term using the defined exchange constant J (or exchange

integral) we have

H = −2JS1 · S2, J =
ES − ET

2
(1.13)

where J > 0 is equivalent to ES > ET, i.e. the triplet state with S = 1 (ferromag-

netism) is favored, whereas J < 0 is equivalent to ES < ET, i.e. the singlet state with

S = 0 (antiferromagnetism) is favored. Therefore, for a system of atoms having ex-

change interactions with their nearest neighbors, the Heisenberg model Hamiltonian

is defined as,

H = −
∑
i,j

JijSi · Sj, (1.14)

where Jij is often taken equal to a constant J for all nearest neighbors and zero

otherwise and the factor of 2 is omitted as the summation includes each pair of

neighbors twice[11].

Experimental methods, like inelastic neutron scattering, are used to characterize

spin wave excitations for ferrites at long wavelength∗. At small k, it is normal to

express the spin wave dispersion relation as [38],

~ω = ∆g +Dk2 + ... (1.15)

where ∆g denotes the effective energy gap, which arises due to some forms of magnetic

anisotropy which is often negligible, and D is the exchange stiffness constant. Having

Eq. 1.14 in mind, for the long wavelength approximation on the acoustic branch, the

∗As phonons are representative of quantized lattice vibrational excitations, quantized spin waves,
also called magnons, represent the quantized spin-lattice disruptions or spin waves. The dispersion
relation is a relation between energy, ~ω, and momentum, ~k.
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energy εak can be expressed as,

εak ' Dk2 =

∑
i,j |Si · SjJij(k · rij)

2|∑
i |Si|

. (1.16)

To calculate the exchange energy of magnetite with a face-centered cubic (FCC)

crystal structure having octahedral (B sites) and tetrahedral (A sites) bases (see

section 1.4.1), two different models have been used. One is called the two sub-lattice

approach and considers all the iron ions on the octahedral basis with SB = 9/4 (Fe2+

and Fe3+) and iron ions on the tetrahedral basis with SA = 5/2 (Fe3+), and defines

exchange constants JAA, JBB, and JAB for mutual spin interactions[35, 36, 39, 40].

The other approach is called the three sub-lattice model and considers two types for

octahedral site ions, B1 for Fe3+ ions with SB1 = 5/2 and B2 for Fe2+ ions with

SB2 = 2, in addition to the A type. Srivastava et al. [38] compared two models

and showed, by choosing the proper exchange constants (JAA = 0, JAB = −28 K,

JBB = +3 K), both interpretations are identical and the exchange stiffness constant

is,

D =
2JAAS

2
A + 4JBBS

2
B − 11JABSASB

8|SA − 2SB|
a2, (1.17)

where a is the length of the magnetite unit cell. The theoretically calculated value

of D = 102× 10−41 Jm2 by Srivastava et al. [38] is comparable to the experimentally

reported result from neutron scattering at room temperature D = 142×10−41Jm2 [41].

How D is related to the exchange constant A used in the micromagentic simulations

at the core of this thesis is described below in section 1.5.
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1.4.4 Anisotropy

Crystal structure, shape and surface effects of magnetic nanoparticles as well as the

surrounding material can result in a preferred direction for their magnetic moments,

called anisotropy. The anisotropy energy density K determines the energy barrier

between energy minima. The field strength associated with this energy barrier is Hk

(as before Hk = 2K/µ0Ms).

1.4.4.1 Magneto-crystalline anisotropy

The crystal field is defined as the electric field derived from neighboring atoms in the

crystal [11]. The symmetry of the local environment controls the size and nature of

crystal field effects. The competition between the crystal field in electronic orbital

preference and Coulomb energy cost in pairing electrons determines the occupied elec-

tronic orbitals, and hence the total spin∗. Perturbations like temperature, pressure or

even light irradiation can disturb this energy competition and cause a spin transition

between low-spin and high-spin configurations [11].

The preference of a spin to lie along a particular crystalline direction (û) because

of the crystal field is quantified by Hanis in the Hamiltonian, which for a uniaxial

crystal depends on the angle the spin makes with the anisotropy axis û, namely ẑ,

and can be written as,

Hanis = −Ku(S · û)2 = −KuS
2
z , (1.18)

where Ku is the uniaxial magnetocrystalline anisotropy constant or energy density.

∗A crystal field often promotes pairing electrons to fill the lower orbitals, and the resulting op-
posite electronic spins lower the atoms’ total spin, whereas under the influence of Coulomb repulsion
filling different orbitals is preferred, which results in higher total spin.
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When Ku > 0 (easy axis), the system is more stable if spins align to û, and if Ku < 0

(hard axis), the energy is minimized when spins lie in a plane perpendicular to û.

Also, for a cubic crystal with three equally preferred axes, i.e. x̂, ŷ, ẑ, the lowest

order anisotropy term occurs at fourth order, given by,

Hanis = −Kc(S
4
x + S4

y + S4
z ) (1.19)

where Kc represents the cubic anisotropy constant. Similarly, Kc > 0 causes spins to

align along [100] and equivalent directions and for Kc < 0 the preferred anisotropy

axes are along [111]. Experimental studies have reported cubic crystalline anisotropy

for bulk magnetite with Kc < 0 but there is no uniaxial anisotropy due to the cubic

crystal symmetry.

Theoretically, a uniform magnetization is achievable, perhaps surprisingly, only

for single-domain ellipsoidal magnetic nanoparticles [26, 42]. Slight nonuniformity

in a nanoparticle’s magnetization can considerably influence the particle’s magnetic

properties like susceptibility, anisotropy, and hysteresis features. Surface and shape

effects can play crucial roles in the nanoparticle’s effective anisotropy [43, 44].

1.4.4.2 Surface anisotropy

Surface anisotropy originates from broken symmetry at the surface and can impart

magnetization orientation perpendicular to the surface. Surface anisotropy can be

orders of magnitude greater than bulk magnetocrystalline anisotropy, for example,

order of 1− 10 mJ/m2 versus equivalent 0.01− 1 mJ/m2 in cubic ferromagnets [45].

Broken symmetry of boundaries, surface-core strains, and magnetostriction∗ can lead

∗Magnetostriction is defined as a property of ferromagnetic materials that causes them to change
their shape or dimension in response to a magnetic field.
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Figure 1.3: The central plane for a nanosphere with diameter 12a, where a is the
interatomic spacing, when the surface to the bulk material anisotropy energy density,
KS/KV, equals a) 1, b) 10, c) 40, d) 60. Reprinted from Ref. [45], with the permission
of AIP Publishing.

to large surface anisotropy. It is presumed that the surface influence will be most sig-

nificant in ferromagnet NPs with low-Curie temperature when the surface anisotropy

is comparable to the exchange. Also, for a higher surface-to-volume ratio, the surface

anisotropy is more effective [45, 46]. Among studies evaluating the surface anisotropy,

Labaye [45] used atomic Monte Carlo simulations to explore the surface anisotropy

effect on a particle’s magnetization alignment for different relative surface and bulk

anisotropy strengths.

Fig. 1.3 shows the Labaye et al. simulation results for particles with size 12a where

a is the interatomic spacing. The authors concluded that the surface anisotropy can

play an important role in the alignment of spins inside the NP, transforming a uniform

magnetization to a throttled spin structure, in which the core spins align parallel to

each other and the outer most spins lie normal to the surface (Fig. 1.3c), and for

sufficiently small particles (or sufficiently large surface anisotropy) into a radial spin

structure (Fig. 1.3d).
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1.4.4.3 Shape anisotropy

The magnetization discontinuity at the surface of a finite-sized ferromagnet leads to

effects that can be modelled by a surface layer of magnetic charges or monopoles.

This can be understood from the divergence equation ∇ ·M = −∇ ·H, which follows

from ∇ · B = 0 and B = µ0(M + H); e.g., if M = Mx x̂ is a step function along

x (M goes to zero abruptly at the boundary of the magnet), then ∇ ·M is a Dirac

delta function, and hence H can be thought of as originating from a sheet of magnetic

charge at the boundary. The field arising from these surface monopoles is called

the demagnetization field and is labelled Hd. It is a complicated function of the

position within magnets of arbitrary shape. However, for a uniformly magnetized

ellipsoid, it can be written as Hd = −NM, where N is the demagnetizing tensor that

depends on the axes lengths of the ellipsoid. The shape of the object implies preferred

directions for the magnetization. In the case of a spheroid, the demagnetization

energy E = µ0M ·N ·M/2 can be written in the form of a uniaxial anisotropy with

energy density Ksh ∝ µ0M
2
s /2 [11, 26]. For cases where this anisotropy is strong

in cubic crystals, the particle’s effective anisotropy can be considered uniaxial [47].

The dimensionless ratio µ0M
2
s /|Kc| estimates the shape anisotropy contribution to

the particle’s total energy relative to its cubic magnetocrystalline anisotropy. For

magnetite spheroids with a ratio as small as 1.2 between semi-axes lengths, effects of

cubic anisotropy can be ignored as the uniaxial shape anisotropy is dominant [48].

The Brown-Morrish theorem [48, 49] suggests equivalence of an arbitrarily-shaped

uniformly-magnetized particle with an ellipsoid of the same volume in terms of the

magnetostatic energy. The shape anisotropy constant corresponding to a spheroidal
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particle with semi-axes a and b is given by,

Ksh =
µ0M

2
s (N⊥ −N||)

2
, (1.20)

where N⊥ and N|| are demagnetizing factors perpendicular and along the rotational

symmetry axis of the spheroid. Ksh > 0 (long thin rods) implies a uniaxial easy

axis and Ksh <0 (disk shape) implies a uniaxial hard axis with spins preferring to

lie in a plane perpendicular to the rotational symmetry axis. In appendix A we de-

rive the shape anisotropy for a rectangular prism by considering the demagnetization

tensor and compare it with the results from numerical simulation of magnetostatic

interactions.

1.4.5 Dipole Interactions

Unlike quantum-based exchange interactions, dipole interactions are rooted in classical

magnetism. The magnetic energy between two magnetic dipoles µ1 and µ2 separated

by r is given by[11],

E =
µ0

4πr3

(
µ1 · µ2 −

3

r2
(µ1 · r)(µ2 · r)

)
. (1.21)

In addition to the magnitude of the moments and the distance between them, the

magnetic energy depends on their directions relative to each other (first term), just

as in Heisenberg exchange, as well as their directions relative to the line joining them

(second term). In crystals, this axis is related to the lattice vectors.

Compared to exchange and magnetic anisotropy, the dipole energy is typically

orders of magnitude weaker but is long-ranged and can have profound effects on

the state of magnetization, and hysteresis loops, for ferromagnetic and ferrimagnetic
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Figure 1.4: Dipole interaction from the lowest energy (most favorable at the top) to
the highest energy (on the bottom).

materials. Owing to cancellation effects, dipole interactions are much less important

in the case of antiferromagnets. Various alignments of a pair of magnetic dipoles from

the least to the highest dipole energy are shown in Fig. 1.4.

In the first case of Fig. 1.4, dipole moments are aligned with r in a chain formation

with the same polarity. This is the most stable orientation. The tendency to form

chains affects NP clustering and heating efficiency, as discussed further in the subse-

quent chapters. In the case where the moments are perpendicular to r, antiparallel

orientation is favourable. Appropriate coating of magnetic particles is usually applied

to weaken their mutual dipole effects by keeping them further apart.



25

1.5 Micromagnetics

The atomic-level theory is the most accurate approach for describing ferromagnets,

but its application is restricted to very small systems owing to large computational

complexity. Micromagnetics is a way of modelling ferromagnets on sub-micron scales

that replaces the atomic details in, say, a unit cell with a uniformly magnetized cell

of the same volume. In this approximation, the length scale is large enough to treat

the discrete atomic structure as continuous and is small enough to resolve inter-

domain features. Micromagnetics can deal with the static equilibrium properties by

minimizing the magnetic energy of the system and its dynamic behavior by solving

the LLG equation that describes the time-dependent dynamics of the system (see

section 2.2).

Dipoles within magnetic materials originate from atomic-level magnetic moments.

Micromagnetics introduces magnetic units, or cells, where sub-cell atomic moments

are correlated through exchange interactions, and the cell represents the collective

behavior of the atomic moments with a single magnetic moment µi. Based on the

exchange interactions, a correlation length called the exchange length (lex) is defined

for magnetic moments. It is reasonable to expect homogeneous behavior of atomic

spins within a cell so long as the cell is no larger than lex. At low T , lex arises from

a competition between exchange and magnetostatic interactions and is approximated

by [50],

lex =

√
2A

µ0M2
s

, (1.22)

where A is the exchange energy constant defined below (in units of J/m).
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In describing the magnetic behavior of a material, the goal is to find the mag-

netization’s∗ spatial distribution, both in equilibrium and as a function of time. In

micromagnetics, at temperatures lower than the Curie temperature, the magnetiza-

tion of all cells is considered to have fixed magnitude equal to Ms, and the spatial

distribution of magnetization is determined by the variable magnetization direction

mi = Mi/Ms of every cell.

Some modifications in the exchange and dipole interaction calculations are needed

in the transition from an atomic moment description to a magnetic cell representation.

Rewriting Eq. 1.14 as a sum over pairs 〈i, j〉 of neighbouring magnetic cells instead

of neighbouring spins gives (with no double counting in the sum),

E = −
∑
〈i,j〉

Jeffmi ·mj, Jeff = aA, (1.23)

where the exchange constant A is defined based on the cell dimension a and the

exchange energy between two cells Jeff . Relating A to the spin wave stiffness D, we

have [51],

A =
DMs

2µBg
(1.24)

where µB is the Bohr magneton and g is the electron g-factor which is ' 2. Using the

value of D from Eq. 1.17 of 102× 10−41 Jm2 and Ms = 480 kA/m gives a theoretical

estimate for A of 1.32× 10−11 J/m.

The dipole interaction is a suitable description for atomic-scale point dipoles but is

not accurate for finite-size micromagnetic cells. Therefore, a more detailed description

of magnetostatic interactions is needed. Micromagnetic cells are magnetized volumes

∗Magnetization is the system’s magnetic moment per unit of volume M =
∑
i µi/VTotal =∑

iMiVi/VTotal, where Mi is the magnetization of micromagnetic cell i and Vi is its volume. VTotal =∑
i Vi.
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Figure 1.5: The magnetic field produced by a magnetic point dipole and a bar magnet
at distance r.

that behave like bar magnets under the magnetic field created by other bar magnets.

Comparing the magnetic field created by a point dipole and a bar magnet at a distance

r shows that the bar magnet’s shape and size should be taken into account, as shown

in Fig. 1.5.

Following the concepts introduced in section 1.4.4.3, the magnetostatic field (Hd)

generated by a magnetized volume v′ in the observation volume v can be calculated

using a demagnetizing tensor N(r− r′) that correlates the spatial coordinates within

the two volumes [52]. When the observation volume coincides with the source volume,

the field generated by the magnetization within the magnet tends to reduce the total

magnetic field inside the medium and is called the self-demagnetizing field.

In general, we can calculate the field at a point r due to all points r′ within a

magnetized cell through,

Hd(r) =

∫
N(r− r′)M(r′)dr′, with

N(r− r′) = − 1

4π
∇∇′ 1

|r− r′|
.

(1.25)
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Consequently, the magnetostatic energy between the two cells is given by,

E(r) = −µ0

2

∫
M ·Hd(r)dr

= −µ0

2

∫ ∫
M(r)N(r− r′)M(r′)drdr′.

(1.26)

Magnetostatic interactions are weaker than exchange interactions. However, they are

long-range interactions, and hence become important on larger length scales. For

example, magnetostatics are important for describing domain formation and also for

calculating hysteresis loops for aggregates of NPs. Magnetostatics are also crucial for

the dynamics of NP aggregation, but this is beyond the scope of purely micromagnetic

simulations.

1.6 Magnetic properties of Fe3O4

The reported value for the bulk saturation magnetization of magnetite is approxi-

mately Ms = 480 kA/m, and its magnetocrystalline anisotropy is cubic with Kc =

−104 J/m3 [44, 53]. As described above in section 1.4.4.3, Ksh ∝ µ0M
2
s , and the en-

ergy contribution of shape anisotropy relative to that of magnetocrystalline anisotropy

is proportional to µ0M
2
s /|Kc|, which for magnetite is approximately 29. Such a large

ratio implies an important role for shape anisotropy even for mildly aspherical NPs.

Among experimental studies exploring the crystalline anisotropy of magnetite,

Řezńıček et al. [54] investigated properties of defect-containing cubic magnetite. They

did not report a significant change in magnetocrystalline anisotropy and spin reorien-

tation temperature due to the defects. They attributed this to the lack of localized

and strongly anisotropic ions in magnetite. In another experimental study, Shi et

al. [55] explored the heating efficiency as a function of applied field angle on fixed
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magnetite nanoparticles. Their results revealed an easy axis presence in magnetite

NPs, i.e., for nonspherical magnetite NPs, shape anisotropy dominates over its bulk

cubic anisotropy.

To characterize the exchange constant of magnetite, Moskowitz et al. [51] reported

eleven experimentally-determined values from the literature of the exchange integral

JAB, assuming JAA = JBB = 0. They reported the average value of A = 1.29 ×

10−11 J/m at room temperature with an estimated 35% uncertainty due to poorly

characterized finite values for JAA and JBB.

1.7 Hyperthermia

1.7.1 Experimental studies

Various experimental studies have been reported using magnetic iron oxide nanopar-

ticles (MIONs) in hyperthermia. Our research is inspired by a study reported by

Dennis et al. [10] that used magnetite nanoparticles for treating cancerous breast

tissue in mice. The MNPs used in these experiments consisted of a magnetite core

approximately 50 nm in diameter coated with an approximately 26 nm thick dextran

shell that improved biocompatibility and helped prevent NP aggregation.

Their analysis of results from transmission electron microscopy (TEM) and X-ray

diffraction supports an assumption that NP cores are composed of parallelepiped-

shaped crystals of magnetite with dimensions of 6.5 nm×19 nm×49 nm and with a

crystallographic axis along the length of the parallelepiped. The saturation magneti-

zation of the NPs was calculated from hysteresis loops to be Ms = 211.56±0.15 kA/m,

which is half of the value for bulk magnetite, attributing some of the reduction to the
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Table 1.1: Experimental parameters used for different groups of mice in the study by
Dennis et al. [10].

AMF amplitude AMF application
time

Total dose
J/g tumor

Mean max tumor
temperature(◦C)

31.8 kA/m=400 Oe 900 s=15 min 635 37
43.8 kA/m=550 Oe 900 s=15 min 800 47
55.7 kA/m=700 Oe 600 s=10 min 969 52
43.8 kA/m=550 Oe 1200 s=20 min N/A 39
0 0 N/A N/A

diamagnetic properties of the dextran shell. In exploring the presence of interparticle

interactions, magnetometry along with neutron scattering results proved the presence

of magnetostatic interactions, which may positively or negatively affect how well the

NPs heat up in response to the AC field.

In the Dennis et al. study, twelve female mice were divided into three groups,

all bearing (MTG-B murine) human breast tumors with volume 180 ± 40 mm3. All

the cases received an equal dose of MNPs under AMF with different amplitude and

field exposure duration at a fixed frequency of 150 kHz. Two more groups, one just

receiving field without any MNPs and another with no treatment, were taken as

control groups. Different parameters used in the study are shown in Table 1.1.

A visual summary of the treatment results representing the tumor volume as a

function of time is shown in Fig. 1.6. As shown in both panels, for the third case

listed in Tab. 1.1, which has the highest field amplitude, three out of four mice display

a complete response to the treatment, i.e., no tumor regrowth was observed for the

duration of the 60-day study.

In another study by Shi et al. [55] the magnetic properties of MIONs were explored

by looking into their SLP dependence on the field amplitude and frequency as well
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Figure 1.6: Therapeutic heating results in a pilot study (a) average growth curves for
different groups in the study (b) growth curve for the tumor in each animal in the
high field study case. (Figure taken from Ref. [10], c© IOP Publishing. Reproduced
with permission. All rights reserved.)

as applied field angle on oriented nanoparticles. In addition to 20− 30 nm magnetite

NPs and 4 nm maghemite NPs, they used commercially available MRI contrast agent

Resovist [56, 57], consisting of 5 − 10 nm maghemite cores with a carboxydextran

coating. To obtain oriented samples, MNPs were placed in a solvent under a DC field

of 575 kA/m (' 7225 Oe) and then the solution was solidified. The frequency range

was 1−100 kHz and field amplitudes of 4 and 16 kA/m (' 50 and 200 Oe) were used.

The SLP was measured when the AMF was applied: 1) parallel to the easy axes of

oriented samples, 2) perpendicular to the easy axis (which they also refer to as being

along the hard axis) as well as to randomly oriented particles in 3) solidified and 4)

liquid solvents. Fig. 1.7 shows that for H = 4 kA/m, Resovist was the most effective

mediator of heat generation compared to γ-Fe2O3 and Fe3O4. However, when the

field was high enough to induce magnetization reversal in Fe3O4, it had the highest

efficiency. The SLP difference for hard and easy axes of Fe3O4 indicates an effective

uniaxial anisotropy in spite of its cubic crystalline anisotropy (see section 1.4.4.1).
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Figure 1.7: SLP changes with frequency for two field amplitudes, 4 (top row) and
16 kA/m (bottom row), for Resovist, 4 nm γ-Fe2O3 and 20 − 30 nm Fe3O4 NPs
(Reprinted from Ref. [55] with permission from Elsevier).

The authors also refer to the possibility of clinical SLP enhancement by orienting the

particles by applying an orienting DC field along with an AMF.

Choosing the suitable magnetic iron oxide for hyperthermia is restricted by differ-

ent factors such as good magnetic parameters, stability under oxidizing conditions and

limited toxicity. The medical use of magnetite and maghemite have been approved by

the US Food and Drug Administration and European Medicines Agency. However,

there is current interest in other magnetic composites formed by substituting other

magnetic ions in the general spinel ferrite formula MFe2O4, where M = Zn2+, Mn2+,

Co2+, Ni2+, or Mg2+, etc. The toxicological concerns related to the leakage of toxic

ions put more restrictions on the use of high-anisotropy composites like CoFe2O4 [22].
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(a) (b)

Figure 1.8: Dependence of the coercive field Hc on the angle between the field and the
long axis of the spheroid for (a) different aspect ratios (b) different size nanoparticles
with 5:1 aspect ratios. (Fig. from Ref. [16], open access article under the terms of
Creative Commons CC BY license.)

1.7.2 Simulations

In addition to experiments, a number of simulation studies investigated the effective

parameters used to model MNH that are relevant to the work presented in this thesis.

Simeonidis et al. [16] performed a micromagnetic simulation study exploring the effect

of shape anisotropy on the heating efficiency of magnetite NPs. They examined the

coercive field (Hc) changes as a function of field orientation (ϕ) with spheroidal NPs for

different aspect ratios (1, 2, 5) as shown in Fig. 1.8a. Hysteresis loops for spheroids

with higher aspect ratio have bigger Hc and consequently a bigger MH loop area,

especially when the field is parallel to their long axis. This is attributed to the

induced uniaxial shape anisotropy of spheroids compared to spherical NPs, which get

similar values of Hc at ϕ = 0, 90◦ due to having only cubic anisotropy.

They also looked into how Hc changes with ϕ for spheroids of different sizes but

with the same aspect ratio (5:1). As shown in Fig. 1.8b, they reported the same
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(a) (b)

Figure 1.9: Hysteresis loops of an assembly of magnetite nanoparticles with different
aspect ratios in comparison with the Stoner-Wohlfarth model. The results show that
for ξ as small as 1.1, shape anisotropy dominates cubic anisotropy in the magnetic
response. (Reprinted by permission from Springer Nature, from Ref. [48]).

Hc for ϕ > 25◦ in all particles and for ϕ < 25◦, a relatively smaller value of Hc for

particles with dimensions larger than 250 nm×50 nm. This decrease was attributed

to a transition from coherent to incoherent reversal of magnetic moments for bigger

ellipsoidal NPs.

In another study, Usov et al.[48] investigated the importance of shape anisotropy

of nanoparticles compared to their cubic magnetocrystalline anisotropy. In that study,

spheroidal particles with aspect ratio ξ = b/a were assumed equivalent to arbitrarily-

shaped NPs using the Brown-Morrish theorem [49]. They compared the hysteresis

loop for a dilute, randomly oriented assembly of magnetite NPs equivalent to spheroids

with aspect ratios ξ = 1.1 and 1.2 with a system of noninteracting spherical NPs

having purely uniaxial anisotropy (the Stoner-Wohlfarth model). As shown in Fig. 1.9

the uniaxial shape anisotropy dominates over cubic magnetocrystalline anisotropy

already for relatively small aspect ratios of 1.1− 1.2.

There are also studies quantifying the effect of MION size, field frequency and
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Figure 1.10: SLP of randomly oriented magnetite nanoparticles with aspect ratio
b/a=1.5 as a function of transverse particle diameter for different field parameters. (
Reprinted from Ref. [47], with the permission of AIP Publishing.)

amplitude, within ranges of biological safety, on SLP efficiency. With this objective,

Usov [47] compared the SLP of magnetite nanoparticles in the size range of 11−22 nm

with different field properties. Randomly oriented elongated nanoparticles with aspect

ratio 1.5 were considered and in all cases fH0 = 0.048 Oe/ns. As shown in Fig. 1.10

the SLP reached ≈ 750 W/g for H0 ≥ 240 Oe. Unlike the linear regime, where the

SLP is proportional to the particle size, here, the SLP peak becomes wider for higher

field amplitudes, which implies the possibility of using particles within a relatively

broad range of sizes for hyperthermia. It is also noteworthy that the author found

no generally best AMF amplitude or frequency for all the magnetite nanoparticles

studied. Instead, the optimal H0 and f should be tailored based on the particle size

and biological limitations.
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Figure 1.11: Simulation model of magnetite nanoparticles made of nanorods.
Nanorods comprise 8×24×56 cells, each of volume of 0.839 nm3.

1.8 Model of study

This thesis aims to understand, through simulation, factors that affect NP heating

efficiency, and thus to help inform preclinical studies aiming to find more effective

magnetic hyperthermia treatments. The idea of simulating spherical magnetite NPs

composed of nanorods is taken from the experimental study by Dennis et al. [10].

We use micromagnetic modelling (not atomic scale) so that systems of a relevant size

can be studied within a reasonable time frame. In this method, instead of simulating

individual atomic spins, each unit cell is represented by a single magnetization. In

this case, a rod is modelled using 10752 magnetite unit cells and simulations fulfilling

biophysical restrictions (SR ≤ 0.25 Oe/ns) take several months.

To speed up computations, we seek to simulate a rod with bigger but fewer cells

and still get the same physical properties. An approximate sketch of nanorods made

of bigger cell is shown in Fig. 1.11, where ab = ba0 represents the proposed simulation

cell sizes for b > 1 with the original micromagnetic unit cell length a0 = 0.839 nm.

The number of cells needed for simulating a nanorod is written beneath each case. For

the “block” case, where a single non-cubic cell represents an entire nanorod, b = 22,

a case we discuss below in the Chapter 3.
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With a focus on the hysteresis loop, since the loop area represents the heat re-

leased into the system, the challenge is to scale the cells’ interactions in order to

get magnetization-field (MH) hysteresis loops that are approximately invariant with

increasing cell size. A few schemes have been suggested for scaling magnetic interac-

tions [58, 59] or even the damping factor [60] to account for the change of simulation

cell size at finite temperature. After considering different methods, we modify, apply

and validate a renormalization group (RG) approach due to Grinstein and Koch [61]

to calculate hysteresis loops, obtaining approximate loop invariance with cell size.

Using this scaling approach decreases the simulation run time and paves the path for

simulating NPs made of nanorods, and finally assemblies of NPs.

1.9 Outline

The rest of this document is organized as follows. Chapter 2 reviews the mathemat-

ical basis of the problem – magnetization dynamics and coarse-graining – and the

numerical method behind the simulations used in this study. It includes the basic

concepts of the renormalization group approach for scaling the magnetic parameters

as the backbone of this micromagnetic study. The third chapter contains our first

publication, a letter reporting on our success in solving, applying, modifying and

validating the approach of Grinstein and Koch RG within simulations of nanorods

using OOMMF software. We justify our modification with the fact that it provides

a more accurate description of the magnetization dependence on temperature for the

Heisenberg model. As a result of this coarse-graining, simulation time decreases by a

factor of up to 83. Moreover, we suggest scaling the damping constant α with the SR

of changing field, that allows speeding up the calculation by up to 1000 times.
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Our second paper appears as the fourth chapter, describing an extension and

application of the above-said scaling technique to include magnetostatic interactions

that were ignored in the initial model. We employ this coarse-graining approach for

simulating multiple nanorods as NPs with different internal structures. We introduce a

macrospin (MS) model, in which a nanorod or complex nanoparticle is represented by

a single magnetization. The MS’s effective anisotropy and saturation magnetization

depend on the magnetic parameters of nanorods and the internal structure of NPs.

While the computational speed-up is significant when using the MS model, we analyze

under what conditions the MS model does a reasonable job in reproducing hysteresis

loops obtained from the more detailed simulations, and when deviations occur. As

the first test of the model for describing a cluster of NPs, we compare the global

hysteresis loop of two chained NPs with two MSs. In the appendices of chapter 4, we

investigate the combined effects of exchange and magnetostatic interactions, perhaps

some of them counter-intuitive, on the magnetization dynamics of two nanorods at

various distances and arrangements, as well as the correlation between the cell size

and the suitable integration time step for simulations at finite temperature.

The fifth chapter reports on the continued comparison between simulations of

multiple complex NPs (nanorod composites) and MSs in multiple arrangements, in-

cluding chains, triangles, and an FCC cluster. Comparing hysteresis loops of clusters

of NPs and MSs reveals some limitations of the MS approximation and emphasizes

the necessity of simulating complex NPs, particularly at closer inter-NP distances.

We look at the local hysteresis loops of individual MSs in clusters to better under-

stand experimental studies that report on effective hyperthermia treatment in the

absence of global heating. We explore the possibility, unsuccessfully, of improving the

performance of the MS model by including an additional anisotropy axis in order to
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mimic the internal structure of complex NPs. We also quantify the effect of mag-

netic parameter distributions on the loop area. Finally, we test the scaling approach

based on relating the sweep rate of the AC field and damping constant, introduced

in the first paper, for multiple NPs and MSs for two different micromagnetic software

frameworks.

In Chapter 6, we summarize our results and suggest possibilities for future work.

In appendix A, we present calculations of the magnetostatically-induced shape

anisotropy of a rectangular prism (nanorod).
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Böhm, J. T. Heverhagen, D. Prosperi, and W. J. Parak. Biological applications
of magnetic nanoparticles. Chem. Soc. Rev., 41(11):4306–4334, 2012.

[23] M. J. Donahue and D. G. Porter. OOMMF User’s Guide, Version 1.0, Inter-
agency Report NISTIR 6376. National Institute of Standards and Technology,
Gaithersburg, MD, Sept 1999. URL https://math.nist.gov/oommf/.

[24] A. Vansteenkiste and B. Van de Wiele. Mumax: A new high-performance micro-
magnetic simulation tool. J. Magn. Magn. Mater., 323(21):2585–2591, 2011.

[25] J. Leliaert, A. Vansteenkiste, A. Coene, L. Dupré, and B. Van Waeyen-
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Chapter 2

Methods

The goal of this chapter is to provide introductory information about the mathematical

problem that we are solving.

We begin with the Stoner-Wohlfarth model, which describes the magnetization

dynamics in non-interacting, uniformly-magnetized particles that are fixed in space.

This model, which includes uniaxial magnetic anisotropy and an external field, is

a basis for understanding hysteresis loops for ferromagnetic and superparamagnetic

nanoparticles. The energy of the system, which is a function of the relative orientations

of field, anisotropy axis and magnetization, is the key quantity for describing hysteresis

loops analytically, both at zero and finite T .

We then introduce the Landau-Lifshitz-Gilbert (LLG) equation that describes

magnetization dynamics in magnetic materials, and is the basis for micromagnet-

ics. After discussing numerical approaches, we solve the LLG equation, using both

our own code and a software framework developed by others, for a few simple cases.

By simulating the Heisenberg model, we confirm our choice for the exchange constant

for magnetite.
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Finally, we discuss the basis of the coarse-graining method that we employ in our

simulations of the next three chapters.

2.1 Stoner-Wohlfarth model

A foundation for studying magnetic nanoparticles is the Stoner-Wohlfarth (SW) model,

in which the hysteresis loop is calculated for an immobile non-interacting single-

domain magnetic particle with a single uniaxial anisotropy by averaging over external

magnetic field directions. Relevant vectors of the model are illustrated in Fig. 2.1a.

A particle’s energy is the sum of the anisotropy and Zeeman contributions. As shown

in Fig. 2.1b, energy minima are separated by an energy barrier due to the crystalline

anisotropy, and changing the field strength alters the magnetization’s stable positions.

At zero temperature, the magnetization vector flips to the global energy minimum only

when the energy barrier disappears. However, at a finite temperature, the required

energy to overcome the barrier can be supplied through thermal fluctuations in a

statistical process.

A particle’s energy depends on (see Fig. 2.1a) the angle between the magnetization

and the anisotropy axis θ, the angle between the applied field and the anisotropy axis

θ0, and the angle between the magnetization and the applied field, which for planar

geometry is φ = θ0 − θ, and can be expressed as,

E = KuV sin2 θ − µ0MsV H cos(θ0 − θ), (2.1)

where Ku is the uniaxial anisotropy energy density, V is the magnetized volume, Ms

is the saturation magnetization and µ0 is the vacuum permeability. For the present

discussion, we can restrict ourselves to planar geometry because the energy barriers
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Figure 2.1: a) Stoner-Wohlfarth particle with an effective uniaxial anisotropy under
application of an external field, b) the reduced energy (Etot/KuV ) as a function of θ,
when θ0 = 3π/4 and hc ' 0.5 (see Eqs. 2.1 - 2.3 ). For h < 0.5, two energy minima
are present, and they are separated by a maximum. At a threshold value of h ≈ 0.5
the metastable minimum merges with the maximum, and so for h ≥ 0.5, there is only
a single energy minimum.

separating energy minima are lowest in the planar geometry, i.e., for nonplanar geom-

etry barriers are higher, so crossing the barrier in nonplanar geometry is less likely;

for planar geometry the maxima separating local minima are in fact saddle points. To

find the equilibrium position of the magnetic moment µ, the lowest magnetic energy

needs to be found. Normalizing the total energy by the anisotropy energy, KuV , and

defining the normalized field h = H/Hk with the anisotropy field Hk = 2Ku/(µ0Ms),

changes Eq. 2.1 to

E

KuV
= sin2 θ − 2h cos(θ0 − θ). (2.2)

Under variation of the field strength, the competition between Zeeman and anisotropy

energies determines the magnetization vector’s energetically stable direction. When

the field is switched to point in the opposite direction, the stable direction becomes

metastable (i.e. is now merely a local minimum). At a critical field strength of Hc

(normalized field strength hc = Hc/Hk), when the magnetization makes angle θc with
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the anisotropy axis, the energy barrier disappears and µ flips to its stable position. To

find the critical point using roots of the first and second derivatives of the normalized

energy in Eq.2.2 with respect to θ, we get [1],

tan3 θc = − tan θ0, h2
c = 1− 3

4
sin2 2θc, (2.3)

conditions that give the reduced critical field as a function of the θ0 (field angle).

Fig. 2.1b shows the reduced energy profile as a function of θ for various field magni-

tudes when θ0 = 3π/4 and hc ∼ 0.5. The figure shows the stable directions of the

magnetization at different field strengths. As can be seen, for H < Hc, or equivalently

h < hc, there are two energy minima separated by an energy barrier, and at H = Hc

the metastable minimum merges with the maximum to become a point of inflection

and the energy barrier disappears: a further increase in the field will cause the mag-

netization, initially in the now-absent metastable minimum, to flip. For H > Hc, only

one minimum remains.

2.1.1 Analytical solution for SW model at T = 0

Wood et al. [2] provided an analytic solution for the magnetization dynamics of a

SW particle under the application of an applied field and determined the hysteresis

loop at T = 0, i.e. they solved Eq. 2.2. Fig. 2.2 represents hysteresis loops for a SW

particle corresponding to selected field directions and an average loop for randomly

oriented particles.

As a brief summary of the Wood et al.’s solution, they normalized the energy

by defining ω = E/(KuV ), and solved ∂ω/∂φ = 0 and ∂2ω/∂φ2 > 0 to find the

magnetization state as a function of the applied field. When the field magnitude
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Figure 2.2: a) Hysteresis loop for selected θ0 and magnetization energy profile ac-
cording to the field strength. b) Average hysteresis loop for a collection of randomly
oriented SW particles.

changes along a fixed axis, the magnetization vector is restricted to a plane containing

H and anisotropy axis û (for example, the xz plane in Fig. 2.1). The normalized field,

h, and magnetization unit vector, m = µ/MsV , along the anisotropy axis (say ẑ) and

perpendicular to it (x̂) are written as

hz = h cos θ0, hx = h sin θ0

mz = m cos θ, mx = m sin θ.

(2.4)

Using these components in ∂ω/∂φ = 0 results in,

h

(
sin θ0

sin θ
− cos θ0

cos θ

)
= 1 −→ hx

mx

− hz
mz

= 1, (2.5)

which gives a straight line in the hx − hz plane parallel to the given magnetization.

An equivalent equation for the inflection point can be calculated by substituting the

components given in Eq. 2.4 into ∂2ω/∂φ2 = 0, which gives,

2 cos 2θ + 2h cos(θ0 − θ) = 0 −→ hx
m3
x

+
hz
m3
z

= 0. (2.6)
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Solving Eq. 2.5 and 2.6 simultaneously results in the equation,

h2/3
x + h2/3

z = 1, (2.7)

which is called the switching asteroid, representing a contour where the metastable

energy minimum and the maximum merge, and the energy barrier disappears. If h

lies within the asteroid, four solutions are real and if h lies outside the asteroid two of

the solutions are real and two are complex. The geometric solution of Eq. 2.7 together

with the constraint of fixed magnetization length (m2
x + m2

z = 1) result in 4th-order

equations for the magnetization. For instance, the equation for mz is

m4
z + 2hzm

3
z − (1− h2)m2

z + 2hzmz − h2
z = 0 (2.8)

with solutions

mz =
f

6
± 1

6

√
2f 2 − 18e+

54hz(1 + h2
x)

f
− hz

2

f = ±
√

9h2
z + 6d+ 6e, d = 1− h2

e = d cos
(
cos−1 (54h2

xh
2
z/d

3 − 1)/3
)
.

(2.9)

Choosing the same polarity ± sign in Eqs. 2.9 corresponds to the stable solutions or

energy minima.

2.1.2 Approximate analytical solution for the SW model at

finite T

At finite temperature, thermal excitations allow the magnetization to switch between

energy minima. The rate of switching is chiefly controlled by the energy barrier
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separating the two minima. Usov et al. [3] introduced expressions for the rate of

escape from a local minimum to the global minimum that can be used to calculate

hysteresis loops at finite T .

They considered a low frequency alternating (reduced) field h(t) = h0 sin(2πft).

Starting off with Eq. 2.2 and finding the roots of ∂ω/∂φ = ∂ω/∂θ = 0 results in

three solutions (θI
min, θII

min, θsaddle) based on the value of ∂2ω/∂θ2 when |h| is smaller

than the critical field hc. As noted above, when |h| = hc the saddle point and one

of the minima merge and only one solution for |h| > hc remains. In the limit of

high potential barrier σ = KV/kBT � 1, Usov et al. [3] used the assumption that

particles are located near the minima θI
min, θII

min of the potential wells and suggested

the following equation for the component of the magnetization along the magnetic

field,

µh

MsV
= mh(t) = n2(t) cos

(
θ0 − θII

min(h(t))
)

+ n1(t) cos
(
θ0 − θI

min(h(t))
)
, (2.10)

where n1(t) and n2(t) are the probabilities of finding the magnetization vector in each

potential well, and θI
min, θII

min and θsaddle are given by,

cos θI
min = −

√√√√1−

(
hx
√

(1− hz)2 − h2
x

hz(1− hz)−
√

(1− hz)2 − h2
x

)2

,

cos θII
min =

√√√√1−

(
hx
√

(1 + hz)2 − h2
x

hz(1 + hz) +
√

(1 + hz)2 − h2
x

)2

,

cos θsaddle =
hz
√

(1− hx)2 − h2
z

hx(1− hx)−
√

(1− hx)2 − h2
z

.

(2.11)
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The time evolution of n1(t) and n2(t) is governed by,

n1(t) + n2(t) = 1,
∂n1

∂t
=
n2

τ2

− n1

τ1

, (2.12)

where τi is the dwell time – the average time taken for the system localized in the

θimin potential well to overcome the energy barrier and to switch to θjmin. While full

details on the calculation of τi can be found in Ref. [3], it depends exponentially on

the energy difference between the saddle point and energy minimum at θimin, or rather

on the ratio of this difference to kBT . Adding other interactions like exchange and

magnetostatics greatly complicates the analytic determination of the magnetization

dynamics, especially when the system is made of multiple particles, in which case

quantities must be calculated numerically.

2.2 Magnetization dynamics with LLG equation

and numerical solution

Another approach for studying magnetization dynamics is based on the torque equa-

tion (Eq. 1.8), but where magnetic interactions are accounted for by appropriate

effective field terms. The resulting set of differential equations is then solved numer-

ically. In modelling materials, we consider (small) uniformly magnetized portions of

a sample, or cells, each of volume V . In reference to Eq. 1.8, for any given cell, we

write µ = MV and replace B with µ0Heff , and the result is the Landau-Lifshitz (LL)

equation,

dM

dt
= −γµ0M×Heff , (2.13)
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where γ is electron’s gyromagnetic ratio defined as γ = eg/2me, with e, me and g ' 2

being the electron’s (absolute value of) charge, mass and g-factor, respectively. Heff

represents the collective effect of different interactions as,

Heff = HZeeman + Hanisotropy + Hexchange + Hmagnetostatic, (2.14)

where the fields can be calculated using energy density through,

H = − 1

µ0

∂E

∂M
. (2.15)

Eq. 2.13 implies that the magnetization vector precesses around the effective field

forever, neglecting the reality of the decay of the magnetic moment’s precession over

time and the resulting alignment to the effective field. This decay is attributed to

various factors such as coupling of magnetic moments to the lattice, lattice disorder,

defects, impurities, etc. Gilbert [4] suggested adding a damping term to the effective

field to incorporate this phenomenon,

Heff −→ Heff − η
dM

dt
, (2.16)

where the damping coefficient η = α/(µ0γMs) depends on a dimensionless phenomeno-

logical damping constant α, an intrinsic property of the material [4]. Rewriting the

LL equation, but using the variable m = M/Ms, writing γ1 = µ0γ and applying the

damping effect, results in the Landau-Lifshitz-Gilbert (LLG) equation,

dm

dt
= −

(
γ1

1 + α2

)
m×Heff −

(
γ1α

1 + α2

)
m× (m×Heff). (2.17)
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To study systems at finite temperature, based on the fluctuation-dissipation theo-

rem [5] a stochastic term can be added to include the effect of thermal fluctuations

on system properties,

Hthermal = Γ

√
2αkBT

V µ0γ1Ms∆t
, (2.18)

where Γ = Γ(t) is a random vector with Cartesian components drawn at each time

step from a Gaussian distribution with zero mean and unit variance. Given the

dependence of Hthermal on V (cell volume) and the time step ∆t of the numerical

solver, one needs to be careful in choosing an appropriate ∆t, particularly for small

V .

With the addition of Hthermal, the resulting equation is called the stochastic LLG

(sLLG) equation. We note that there are slightly different variations in how precisely

the stochastic term enters the equation. The sLLG equation can be used to study the

magnetization dynamics for low to high damping limits (α ∼ 0.001− 1).

2.2.1 Numerical schemes

Numerical methods are usually used for studying systems too complicated to solve an-

alytically, as in most nonlinear problems. In solving an ordinary differential equation

as an initial value problem, we usually have the general form,

dy = f(y(t))dt,

y(t+ ∆t)− y(t) =

∫ t+∆t

t

f(y(t), t)dt,
(2.19)

Various numerical schemes interpret the right-hand side integral differently. For cal-

culating f(y) at discrete points in time (t, t+ ∆t, t+ 2∆t, ...) the following notation
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is commonly used,

tn = t, tn+1 = t+ ∆t

yn = y(t), yn+1 = y(t+ ∆t)

f(yn) = f(y(t), t).

(2.20)

The simplest method, the Euler method, uses the value of f at the beginning of

the time interval for calculating the integral in Eq. 2.19, resulting in time-stepping

algorithm accurate to first order in ∆t,

yn+1 = yn + f(yn)∆t. (2.21)

Although not typically used to solve ordinary differential equations (ODEs), the Euler

method is straight-forward to implement, and therefore useful when checking com-

puter codes. It is more frequently used for solving stochastic ODEs, for which it is

trickier to show that a given method correctly treats the stochastic terms.

Different methods suggest considering contributions of f values at various points

in the time interval. The order of methods is defined based on the highest power

of ∆t that is considered in the approximation. An example of higher-order methods

is the 4th-order Runge-Kutta (RK4), in which four points with different weights are
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Figure 2.3: a) In the Euler method fn = f(yn) is used over the entire time interval
∆t. b) In the RK4 method, the values of f at the beginning and end points, as well
as at two midpoints, are used to find a more accurate approximation for yn+1.

considered in the integral calculations,

k1 = f(yn),

k2 = f(yn + k1∆t/2),

k3 = f(yn + k2∆t/2),

k4 = f(yn + k3∆t),

yn+1 = yn + (k1 + 2k2 + 2k3 + k4),∆t/6 +O(∆t5).

(2.22)

A graphical illustration of Euler and RK4 method are shown in Fig. 2.3.

2.2.2 Our code for a single SW particle

As an exercise, we wrote code in Python to simulate the dynamics of a single magnetic

moment subject to a fixed uniaxial anisotropy in an opposing field at zero temper-

ature by applying Euler and RK4 integrating methods to solve the LLG equation.

Here we use γ1 = µ0γ = 2.211 × 105 rad.A/s. The LLG equation predicts the time

evolution of the magnetization vector with a fixed magnitude equal to its maximum
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Figure 2.4: SW particle spin dynamics from our own numerical integration of the LLG
Eq. a) A higher damping parameter results in faster alignment of the magnetization
with the external field. Simulation parameters are Ms = 500 kA/m, H = −1.5ẑ T,
∆t = 10−12 s and the simulation time is 0.15 ns. b) The time step required for the
Euler solver is shorter than for RK4., α = 0.1, the simulation time is 0.15 ns.

value (Ms). We start our exploration by looking at the dynamics of the unit vector of

a magnetic moment (m) when the damping factor α changes from 0.1−1 in Fig. 2.4a.

α represents the degree of the spin excitation coupling with the crystal lattice and

energy dissipation, and as expected, the higher damping result in a faster equilibrium.

We compared the solver effects on the magnetization trajectories in Fig. 2.4b when

the external field is in direction given by −ẑ and the anisotropy axis is parallel to the

ẑ. As RK4 uses a higher-order integration scheme, the same result is achievable using

a longer time step.

Numerical simulation of multiple particles using interpreted languages like Python

is computationally more expensive than compiler languages like C or C++. Therefore,

the use of micromagnetic software like OOMMF ∗ [6], written in C++, is very common.

However, writing our own code is an important step in ensuring that we are using

∗Object Oriented Micromagnetic Framework
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Figure 2.5: Comparing OOMMF results and those of our Python code for the time
evolution of mx for H||ẑ at a) T = 0 when K = 0 and K > 0, b) T = 300 K, K = 0

software like OOMMF correctly, in that results from both should be the same.

2.2.3 OOMMF software for multiple moments

OOMMF is an open-source code developed at the National Institute of Standards and

Technology (NIST). OOMMF is developed in C++, and customizing the simulations

and employing user supplied functions is possible via the scripting language Tcl/Tk.

OOMMF uses micromagnetics, in which a magnetization vector represents the col-

lective behaviour of atomic spins in a cell of finite volume, and numerically solves

the sLLG equation for the magnetization dynamics by taking into account different

interactions such as externally applied field, cubic and uniaxial anisotropy, exchange

interactions and magnetostatics. At T = 0, it is possible to employ different integrat-

ing solvers in OOMMF, but its stochastic thermal field is implemented in the Theta

Evolve module based on the Euler scheme [7]. As a test of properly employing the

software, we compared the simulation results in OOMMF with our Python code for

a single SW particle.
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Comparing the time evolution of the x component of a magnetization vector under

the influence of an external field Hz with and without uniaxial anisotropy along the

z axis shows that OOMMF’s numerical result matches our Python code’s, and as

expected the anisotropy field alters the precession rate of the magnetization, as shown

in Fig. 2.5a. To include the thermal noise into the calculations we add Hthermal from

Eq. 2.18 toHeff in Eq. 2.17. Detailed documentation about the inclusion of a stochastic

thermal term in OOMMF is not provided, but the reasonable agreement between our

code and OOMMF points to the similarity between implementations of the stochastic

contribution to the dynamics.

In the next step, we use OOMMF to reproduce the analytically calculated normal-

ized magnetization-field hysteresis loops for assemblies of SW particles at zero and

finite temperature. As shown in Fig. 2.6a the averaged simulated hysteresis loops

for 1000 noninteracting particles with randomly oriented uniaxial anisotropy under a

static field at T = 0 matches their analytically calculated loop.

To reproduce the finite temperature results of Usov et al. [3, 8], we simulate a

collection of 40 NPs under application of AC field with f = 400 kHz and H0 = 100 Oe

at T = 300 K as prescribed in Ref. [8] with the iron oxide magnetic parameters of

Ms = 350 kA/m, Ku = 10 kJ/m3 and α = 0.5. As shown in Fig. 2.6b, the hysteresis

loop obtained from OOMMF matches Usov’s analytical result [8].

2.2.3.1 Heisenberg model: finding the exchange constant A using Tc

As another test of the software, we turn to the Heisenberg model, which describes

a system of single-domain ferromagnets with exchange interactions. We focus on

the temperature dependence of the system’s magnetization and magnetic susceptibil-

ity. As expected, thermal fluctuations disturb the high degree of moment alignment
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Figure 2.6: Comparing analytical solution and numerical results from OOMMF at a)
T = 0, under a static field when Hk = 2K/µ0Ms, b) T = 300 K, under an AC field
with f = 400 kHz, H0 = 100 Oe. Data for the approximate analytical solution in (b)
are taken from Ref. [8].

present at lower temperatures. On heating, thermal fluctuations come to dominate

the exchange interactions at a critical temperature Tc, resulting in a precipitous drop

in magnetization. For T > Tc, the model is paramagnetic. In the thermodynamic

limit, the magnetization goes to zero sharply at Tc and the susceptibility diverges at

Tc. For a finite-size system, such as in our simulations, where the correlation length

can not be infinite, rounding occurs: the magnetization tends to zero smoothly as T

increases beyond Tc, and the susceptibility shows a finite peak near Tc.

The Heisenberg model can be used for finding proper exchange constants by match-

ing critical temperatures between model and experiments for different magnetic ma-

terials. Here, we simulate a system of 15×15×15 magnetite cells of size a = 0.839 nm

and with Ms = 480 kA/m. Bulk magnetite has no uniaxial anisotropy and its Curie

temperature is reported as Tc ∼ 858 K [9]. To reduce the finite-size effects, periodic
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Figure 2.7: Temperature dependence of the a) normalized magnetization and b) sus-
ceptibility for a system of 153 = 3375 magnetite cells interacting via exchange inter-
actions (Heisenberg model) with periodic boundary conditions, for different damping
strengths (α).

boundary conditions are employed. No field is applied. The known relationship be-

tween thermal and exchange energies at the transition temperature, from extensive

Monte Carlo simulation results, is [10],

kBTc
6aA

= 0.24, (2.23)

where a and A are the simulation cell size and the exchange constant, respectively,

and 6aA represents the nearest neighbour exchange energy for a cubic lattice. Using

Eq. 2.23, A = 0.98 × 10−11 J/m results in the experimental transition temperature,

which is in agreement with experimentally calculated exchange constants from spin

wave measurements of A ' 1×10−11 J/m for bulk magnetite [11–17]. The simulation

results in Fig. 2.7a confirm that the exchange energy calculations in OOMMF use a

different convention for the definition of the exchange interaction such that AOOMMF =

A/2 (setting AOOMMF = A results in Tc ≈ 2× 858 K = 1716 K).

In addition to examining m(T ) at Tc, another magnetic property to study is the
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response function or magnetic susceptibility (χ)∗ that has a peak at Tc. Writing

the magnetic moment of the entire system as a function of the normalized magnetic

moment m and the system’s volume (NV ), χ can be written as,

χ = µ0M
2
s V N

〈m2〉 − 〈m〉2

kBT
, (2.24)

where N is the number of particles in the system, and V is each particle’s volume.

As shown in Fig. 2.7b, the susceptibility peaks at T ' 858 K, confirming our chosen

value of A.

2.2.4 Coarse-graining

Micromagnetics replaces individual atomic spins inside a cell with a magnetization

vector representing the spins’ collective behaviour in the cell. It takes months of

computer time to simulate with OOMMF a nanorod comprising 8× 24× 56 = 10752

micromagnetic cells of the same size as the unit cell, a0 = 0.839 nm, for a clinically-

relevant sweep rate of SR ≤ 0.25 Oe/ns. Therefore, simulating nanorods using bigger

but fewer cells is favourable to decrease the number of calculations and hence simula-

tion time. Moreover, using bigger simulation cells allows for a longer integration time

step, again resulting in faster calculations.

For simulations with cell size a0, we use bulk values for Ms and K. For A, we use

the value described above, since it reproduces the bulk value for Tc. If a larger cell size

is chosen, and these parameters are left unchanged, the results for a hysteresis loop

calculation will, in general, change for T > 0. This implies that to remove the cell size

∗In the special case of a linear material, the magnetization M is linearly related to the magnetic
field M = χH, where χ is the dimensionless quantity called magnetic susceptibility or response
function. More generally it can be written as χ = ∂M/∂H [18].
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dependence of simulation results, magnetic parameters need to be scaled. To meet this

need, different scaling approaches have been reported in the literature. For instance,

Feng and Visscher [10] suggested scaling of the damping constant α, which accounts

for magnetic energy loss, with cell size. In their work, they gave a prescription for

how α should increase with cell size for a given T , based on the idea that a larger

α accounts for the increase in the degrees of freedom available for energy dissipation

when larger simulation cells are used. As another example, Kirschner et al. [19, 20]

suggested an approximate scaling of Ms with cell size based on the difference of the

atomic and average magnetization of blocks of spins in Monte Carlo simulations. They

extended their approach to scale the exchange and uniaxial anisotropy constants, A

and K respectively, to keep the exchange length, lex =
√

2A/µ0M2
s , and anisotropy

field, Hanis = 2K/µ0M
2
s , invariant with simulation cell size.

Among the different approaches for coarse-graining, we modify and use the one sug-

gested by Grinstein and Koch [21], one which is based on renormalization group (RG)

methods. After applying a phenomenological modification, we find that it provides

successful cell size invariance for our system of study. Before explaining Grinstein and

Koch’s approach, we next review some of the relevant basic concepts and methods of

the RG approach.

2.2.4.1 Renormalization Group

The discussion below is largely based on Refs. [22, 23].

Generally, phenomena that occur on different length scales do so with little mutual

influence, and thus can be treated independently. For example, while intermolecular

interactions in water determine basic material properties, we do not consider them
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explicitly in understanding ocean waves. While practical theories need to define a lim-

ited range of length scales, there are some phenomena where features at many length

scales make considerable contributions, and the RG theory has been introduced to

deal with this type of problem. For example, a theoretical description of ferromagnets

at Tc should include thermal fluctuations at all length scales, since the spin correla-

tion length is infinite. In ferromagnets, spin alignment is attributed to the coupling

between neighbouring spins and results in the system’s energy being lowest when all

the spins are aligned. The thermal motion of atoms and electrons induces spin flips

that raise the energy and reduces the magnetization.

By assuming a lattice of spins with direct interactions only between nearest neigh-

bours, the influence of the state of a single spin is propagated indirectly throughout

the spin lattice via the effect that each neighbour has on its own nearest neighbours.

In this context, the correlation length is defined loosely as the maximum distance that

a spin flip’s influence is felt on a spin lattice. For example, consider a marked spin

that flips down from up; if you count the number of down spins in the vicinity of the

marked spin before and after the flip, then on average there will only be a difference in

this number for spins within a certain radius. This radius represents the correlation

length. At high temperatures (T > Tc), spin orientations are largely random, and

only short-range order is seen – in the form of tiny patches of mostly parallel spins.

As the temperature falls, some of these patches expand so that at Tc the patches have

infinite length. At Tc, a change in the spin state of an individual spin can alter the

whole system’s magnetization.

To solve or understand the thermodynamics of a model system, calculating the

partition function leads to determining the magnetization and other macroscopic prop-

erties. To do so, we need to calculate the probability of every spin configuration, and
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it is clear that more spins in the system mean more degrees of freedom, and more

spin configurations should be taken into account. The RG strategy is to break down a

problem consisting of multiple length scales into a sequence of smaller problems, each

dealing with a single length scale. One of the techniques usually used for explaining

the RG application is the spin-block technique initially introduced by Leo P. Kadanoff.

For simplicity, consider the Ising model on a 2-dimensional square lattice, where spins

can only be in one of two states, up or down. By considering 4 spins arranged in a

2 by 2 square, 16 different spin configurations can be achieved (24), and in the case

of 3 spins along each dimension, 232 = 512 possible configurations should be taken

into account and so on. The answer to the question about the minimum size of the

lattice needed for determining the system’s properties is that the system should be as

large as the largest observed fluctuations, which means the correlation length at each

temperature. For instance, at a temperature close to Tc, the correlation length might

be as large as 100 lattice spacing (a0), which implies the largest fluctuations would

cover about 10000 lattice sites and calculating 210000 configurations is not possible

with even the fastest current computers. To overcome this problem, the spin-block

technique suggests building up a second lattice with twice the lattice spacing (2a0) in

which the block’s spin state of up or down is determined based on the majority rule

of the four spins on the original lattice. Hence the number of degrees of freedom is

decreased, e.g., an original lattice of four by four spins with 216 possible configurations

is replaced with two by two spins with 24 possible configurations. Therefore, fluctua-

tions between a0 to 2a0 length are integrated out and just those with orders from 2a0

to the correlation length need to be considered. The spin-block technique suggests

repeating this procedure for the second lattice and replacing four of the block-spins

with one spin on a third lattice with lattice spacing twice the second lattice (or 4a0)

and so on until the lattice spacing reaches the correlation length, and only correlation
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length order fluctuations remain to be considered.

The coupling strength determines the probability of any two adjacent spins being

parallel, so to keep the sum of the configuration probabilities constant when blocking

the spins, the effective coupling strength needs to change. (In this model, we neglect

the atoms and electrons and just assume spins on lattice sites.) However, changing

the coupling strength by a certain factor is equivalent to changing the temperature

by the inverse of the same factor. We can think of the effective coupling strength as

being equivalent to an inverse temperature, i.e. at very high temperatures (T � Tc),

the coupling strength is effectively zero, so the spins are randomly oriented and the

magnetization is zero, and the correlation length is zero. In other words, the change

of the spin coupling is equivalent to the temperature change in the original lattice.

Reducing the number of degrees of freedom through the blocking of spins is also

reflected in a change in the magnetization M . Hence, M needs to be rescaled as well.

2.2.4.2 Momentum shell Renormalization Group

For systems with degrees of freedom that can be written in terms of Fourier modes of

a given field (such as spin systems), momentum-space RG can be applied. The RG

coarse-graining in real space achieved by eliminating the small length scale fluctuations

is equivalent to integrating out the high momentum modes (Λ/b < k < Λ for b > 1,

Λ = 2π/a0,) since the shortest length scales are related to the largest wavenumbers,

and is called the momentum shell approach [24]. Kadanoff suggested taking advantage

of the property that the system’s appearance at different length scales is similar in

order to eliminate the correlated degrees of freedom at length scales significantly

smaller than the correlation length. Probing the system at different length scales is

analogous to various resolutions in looking at the system’s digital picture when the
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pixel size is a0 [25]. The momentum-space RG transformation is carried out in three

steps. In the first step, called coarse-graining, degrees of freedom corresponding to

the large wavenumbers (Λ/b < k < Λ for b > 1, Λ = 2π/a0) are integrated out. In the

second step, the wave vector (k) is rescaled to restore the original range of degrees

of freedom, and in the third step, the spin variables are renormalized to restore the

spatial dependency of the fluctuations. To show a simple example of implementing the

momentum space RG transformation, we need a partition function based on the spin

waves in momentum space. Consider an Ising-like Hamiltonian, written in terms of the

scalar spin function φ(x), that includes exchange interactions between neighbouring

spins. The partition function is given by,

Z =

∫
Dφ(x) exp

[
−
∫ (

rφ2(x)−Dφ(x)∇2φ(x) + uφ(x)4 + ...
)
dx

]
, (2.25)

where
∫
Dφ(x) represents the functional integral over the smooth function φ(x) for a

d-dimensional system, x = (x1, x2, ...xd). Coefficients r, D and u are defined in terms

of the exchange constant J̃ = J/kBT , lattice spacing a0, and the number of nearest

neighbors z = 2× d, as,

r = J̃z(1− J̃z)/2, D = −J̃a2
0(1− 2J̃z)/2, u = (J̃z)4/12. (2.26)

Using the mean-field estimate of the transition temperature kBTc = Jz results in the

temperature dependence of these parameters being given by,

r =
Tc

2T 2
(T − Tc), D =

a2
0Tc

2zT 2
(2Tc − T ), u =

(
Tc
T

)4

/12. (2.27)

To start, we only consider the quadratic terms in Eq. 2.25, which is called Gaussian

theory. Taking the Fourier transform of φ(x) with integration over a d-dimensional
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hypersphere of radius Λ = 2π/a0 as,

φ(x) =

∫ Λ

0

dk

(2π)d
φ(k)eik·x, (2.28)

results in the partition function of the form,

Z =

∫
Dφ(k) exp

[
−
∫ Λ

0

dk

(2π)2
(r +Dk2)|φ(k)|2

]
. (2.29)

Now we can start the RG transformation. In the first step, the spin function is

separated into contributions from small and large wavenumbers, the latter of which

are going to be integrated out, as,

φ(k) =


φ<(k), 0 < k < Λ/b

φ>(k), Λ/b < k < Λ,

(2.30)

and the partition function reads,

Z =

∫
Dφ<(k)

∫
Dφ>(k) exp

[
−
∫ Λ/b

0

dk

(2π)2
(r +Dk2)|φ<(k)|2

]

× exp

[
−
∫ Λ

Λ/b

dk

(2π)2
(r +Dk2)|φ>(k)|2

]
=Z>

∫
Dφ<(k) exp

[
−
∫ Λ/b

0

dk

(2π)2
(r +Dk2)|φ<(k)|2

]
.

(2.31)

Z> corresponds to the degrees of freedom that are integrated out and can be calculated

separately. The second factor (the functional integral), which is related to the φ<(k)

modes, is the same as Eq. 2.29 except the upper integral cutoff. The next step is

to reset limits of the integral by rescaling the integral parameters. This is done by

defining k′ = bk which is analogous to x′ = x/b in the real space. Note that the
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integral is d-dimensional, and hence dk′ = bddk. The partition function becomes,

Z = Z>
∫
Dφ<(k′) exp

[
−
∫ Λ

0

dk′

(2π)2
b−d(r + b−2Dk′2)|φ<(k′)|2

]
. (2.32)

Comparing the spin correlation functions before scaling,

〈φ(q)φ(q′)〉 =
δ(q + q′)

r +Dq2
, (2.33)

and after scaling,

〈φ(bq)φ(bq′)〉 =
δ(bq + bq′)

r +Db2q2
=
b−dδ(q + q′)

r +Db2q2
, (2.34)

justifies the third step of the transformation, which is normalization of the spin func-

tion. In the vicinity of Tc, r → 0 and the spin-wave function should be scaled as,

φ<(k′) = b(d+2)/2φ′(k′). (2.35)

Therefore, the partition function can now be expressed as,

Z = Z>
∫
Dφ′(k′) exp

[
−
∫ Λ

0

dk′

(2π)2
(b2r +Dk′2)|φ′(k′)|2

]
. (2.36)

Comparing the original partition function in Eq. 2.29 with Eq. 2.36 shows that r′ =

b2r is the scaled version of r in the transformed system, at least in the Gaussian

approximation.

We started with the first approximation for simplicity, but in practice higher-

order terms are commonly added as perturbations, which tends to yield more complex

results. For instance, by keeping the quartic term in Eq. 2.25, the partition function
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becomes,

Z =

∫
Dφ(k)e−(H0+U), (2.37)

where

H0 =

∫ Λ

0

dk

(2π)d
(r +Dk2)|φ2(k)|,

U = u

∫ Λ

0

dk1

(2π)d
...

∫ Λ

0

dk4

(2π)d
φ(k1)...φ(k4)(2π)dδ(k1 + ...+ k4).

(2.38)

Carrying out the three steps of the RG transformation results in recursion relations

for the coefficients,

r′ = b2r + 6b2u

∫ Λ

Λ/b

dk

(2π)2

1

r +Dk2
= b2r + 6b2u

(
SdΛ

d

(2π)d(r +DΛ2)

)
ln(b),

D′ = D,

u′ = b4−du,

(2.39)

where Sd is the surface area of a unit d-dimensional sphere. In trying to naively

use these recursion relations, one immediately encounters an inconsistency: Applying

them twice with, say, b = 2 does not yield the same result as applying them once

with b = 4. Thus, instead of using these relations with a finite value of b, one instead

solves differential equations obtained by introducing an infinitesimal renormalization

parameter δl that relates to b via b = eδl. With this change of variable, one writes,

b2 = e2δl = 1 + 2δl + ...,

b4−d = e(4−d)δl = 1 + (4− d)δl + ...,

(2.40)

which upon substitution into Eq. 2.39 and some rearrangement yields the following
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differential equations for u(l) and r(l),

u′ = b4−du = [1 + (4− d)δl + ...]u,

lim
δl→0

(
u′ − u
δl

)
=
du

dl
= (4− d)u,

dr

dl
= 2r +

12uSdΛ
d

(2π)d(r +DΛ2)
.

(2.41)

These equations can be interpreted as describing the temperature change due to

coarse-graining as in Eq. 2.27, or as describing the change in the exchange strength

at different stages of the coarse-graining based on Eq. 2.26.

2.2.4.3 Grinstein and Koch’s RG approach

Grinstein and Koch implemented the momentum shell RG approach for magnetic

systems with exchange and anisotropy [21]. They reported equations governing the

dependence of system properties and energetic parameters on the scaling parameter

for systems of dimension d = ε + 2. They reported success in using their proposed

scaling for the exchange interactions, applied field and magnetization for a 2D system.

As in momentum shell RG theory, they eliminated the spin function Fourier modes

that exceed a wave vector cut-off (i.e. Λ/b < |k| < Λ, where b > 1 and represents the

degree of coarse-graining) and introduced a reduced temperature, normalized with Λ

and an exchange coupling Ã,

T ∗ =
kBT

ÃΛ2−d
(2.42)

where Ã = A in a 3-dimensional system. They further defined the reduced applied

field and magnetocrystalline anisotropy as,

h =
µ0MsH

ÃΛ2
, g =

K

ÃΛ2
. (2.43)
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Grinstein and Koch obtained the following differential equations that describe how

the reduced parameters depend on the degree of coarse-graining as quantified by l,

where l = ln(b),

dT ∗(l)

dl
= [−ε+ F (T ∗(l), h(l), g(l))]T ∗(l),

dh(l)

dl
= 2h(l),

dg(l)

dl
= [2− 2F (T ∗(l), h(l), g(l))]g(l),

(2.44)

where,

F (T ∗, h, g) =
T ∗

2π(1 + h+ g)
. (2.45)

The magnetization in the coarse-gained system, M(T ∗(l), h(l)) can be related to the

magnetization for the original system M(T ∗0 , h0), [T ∗0 = T ∗(l = 0), and h0 = h(l = 0)]

in terms of a scaling factor ζ,

M(T ∗0 , h0) = ζ(l)M(T ∗(l), h(l)), (2.46)

where,

ζ(l) = e−
∫ l
0 F (T ∗(l′),h(l′),g(l′))dl′ . (2.47)

We solved the above equations numerically for our system of study (ε = 1 for d = 3),

for which h and g happen to be small. In this case, we obtain the following analytical

expressions that can be used for scaling the exchange constant, anisotropy energy
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density, field and magnetization as functions of the coarse-graining scale b,

A(b) = ζ(b)× A0

K(b) = ζ(b)3 ×K0

H(b) = ζ(b)×H0

M0 = ζ(b)×M(b)

(2.48)

where A0, K0, H0, M0 are the magnetic quantities for the original system (b = 1,

l = 0), ζ(b) = t/b+ 1− t and t = T/Tc.

What the relations in Eq. 2.48 tell us can be understood from the following.

Let us first assume that we carry out a simulation of our system at some temper-

ature T with micromagnetic cell size equal to a0, exchange constant A0, anisotropy

strength K0 and external field H0, and the resulting magnetization is M0. Then,

we carry out another simulation with a cell size of ba0, with exchange constant

A(b), anisotropy strength K(b) and external field H(b), with the latter three quan-

tities determined according to Eq. 2.48. The resulting magnetization of this sim-

ulation is M(b). The last relation in Eq. 2.48 predicts how M(b) and M0 are re-

lated. Put in another way, Eq. 2.48 tells us how simulation results for b > 1,

which are computationally less expensive because there are fewer cells in the sim-

ulation, can be used to determine properties, say M(T,H), for the original system:

M(a0, A0, K0;T,H0) = ζ(b)M [ba0, A(b), K(b);T,H(b)]. One important goal of this

thesis is to test whether the predictions of Eq. 2.48 are valid for simulating dynamic

hysteresis loops, which, in addition to being relevant to magnetic hyperthermia, is

one of the main tools for characterizing magnetic materials in general.
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Chapter 3

Coarse-graining in micromagnetic

simulations of dynamic hysteresis

loops

The contents of this chapter have been published with the following citation: R. Be-

hbahani, M.L. Plumer, and I. Saika-Voivod, Coarse-graining in micromagnetic simu-

lations of dynamic hysteresis loops, Journal of Physics: Condensed Matter 32, 35LT01

(2020). DOI:10.1088/1361-648X/ab8c8d.

Abstract

We use micromagnetic simulations based on the stochastic Landau-Lifshitz-Gilbert

equation to calculate dynamic magnetic hysteresis loops at finite temperature that are

invariant with simulation cell size. As a test case, we simulate a magnetite nanorod,

the building block of magnetic nanoparticles that have been employed in preclinical
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studies of hyperthermia. With the goal to effectively simulate loops for large iron-

oxide-based systems at relatively slow sweep rates on the order of 1 Oe/ns or less, we

modify and employ a previously derived renormalization group approach for coarse-

graining (Grinstein and Koch, Phys. Rev. Lett. 20, 207201, 2003). The scaling

algorithm is shown to produce nearly identical loops over several decades in the model

cell volume. We also demonstrate sweep-rate scaling involving the Gilbert damping

parameter that allows orders of magnitude speed-up of the loop calculations.

Keywords: Landau-Lifshitz-Gilbert equation, micromagnetics, coarse-graining, mag-

netic hyperthermia, nanorods

3.1 Introduction

The fundamental premise of micromagnetics is that the physics of interest can be

modeled by a macrospin representing a collection of atomic spins within a small finite

volume, or cell. The approximation that all spins within a cell point in the same

direction is valid at temperature T = 0, so long as cells remain smaller than the

exchange length [1]. A limiting factor for micromagnetic computer simulations is

the number of cells used to model the system; using larger cells is computationally

advantageous.

At finite T , a few schemes have been proposed to account for how parameters

used for modelling the magnetic properties of the material must vary with cell size

in order to keep system properties invariant with cell size. For example, Kirschner et

al. [2, 3] suggested an approximate scaling of saturation magnetization Ms based on

the average magnetization of blocks of spins in atomistic Monte Carlo simulations,

and subsequently scaling the exchange and uniaxial anisotropy constants A and K
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to preserve the exchange length and anisotropy field. Feng and Visscher [4] pro-

posed that the damping parameter α, which models the dynamics of magnetic energy

loss [5], should scale with cell size, arguing that using larger cells is analogous to

having more degrees of freedom for energy absorption; see also [6] for efforts related

to α. The renormalization group (RG) approach of Grinstein and Koch [7], based on

mapping a Fourier space analysis of the non-linear sigma model to ferromagnets in

order to scale A, K, field H and magnetization M , has garnered significant attention.

However, to the best of our knowledge, no scaling theory has been applied to the

calculation of magnetization-field (MH) hysteresis loops [8], which are the foundation

of experimental characterization of magnetic systems.

In this Letter, we modify and employ the approach proposed by Grinstein and

Koch [7] to the test case of calculating MH loops for magnetite nanorods at sweep

rates relevant to magnetic hyperthermia, allowing us to make estimates of specific loss

power that would otherwise be computationally impractical.

3.2 The model

The magnetite nanorods we simulate are the building-blocks of the nanoparticles

that were shown by Dennis et al. to successfully treat cancerous tumours in mice

via hyperthermia [10]. It is reasonable to choose the smallest micromagnetic cell to

be the cubic unit cell, which is of length a0 = 0.839 nm and contains 24 magnetic

Fe ions. We set the exchange stiffness constant to A0 = 0.98 × 10−11 J/m, which

for cell length a0 yields an effective exchange constant between neighbouring cells of

Jeff = a0A0 = 8.222 × 10−21 J, which in turn yields a bulk critical temperature of

Tc = 1.44Jeff/kB = 858 K for the bulk 3D-Heisenberg-model version of our system.
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Figure 3.1: Coarse-grained modelling of a magnetite nanorod. The smallest micro-
magnetic cell models the atomic spins within a cubic unit cell of length a0 = 0.839 nm
with a single magnetic moment. Our goal is to model the system using a smaller num-
ber of larger cells (of length ab = b a0 for b > 1) with appropriately scaled parameters.
The number of cells drawn and their sizes are only approximate. Illustrative spins for
half of the tetrahedral Fe3+ sites (FCC sites) are drawn over a spinel unit cell taken
from Ref. [9].

This value of A0 is close to what can be theoretically determined by considering the

atomic-level exchange interactions across the faces of neighbouring unit cells [11], and

is in reasonable agreement with experimental values [12–18]. The nanorod dimensions

are approximately 6.7 nm × 20 nm × 47 nm (8a0×24a0×56a0), with its length along

the z-axis. We set Ms = 480 kA/m [12, 19, 20], the bulk value for magnetite. We

do not consider magnetostatic interactions explicitly, but rather implicitly through

an effective uniaxial anisotropy. For the purposes of this study, we choose a strength
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of K0 = 10 kJ/m3, which is consistent with other studies of iron oxide nanoparti-

cles [21, 22], and for which a more precise estimate can be obtained by considering the

nanorod’s demagnetization tensor [20, 23–27], maghemite content [10], and the effect

of neighbouring nanorods within a nanoparticle. We omit cubic crystalline anisotropy

as it has negligible effects on the hysteresis loops of magnetite nanoparticles with even

modest aspect ratios, as discussed in Refs. [20, 27] (we have also verified that adding

cubic anisotropy of strength 10 kJ/m3 has no impact on the loops presented here).

Anisotropy is set along the z-axis with a 5◦ dispersion to mimic lattice disorder [22].

For convenience we set α = 0.1, a choice consistent with previous studies [22, 28] and

with magnetite thin films [29].

While hysteretic heating is at the heart of magnetic nanoparticle hyperthermia,

preventing eddy current heating of healthy tissue limits the frequency f and amplitude

Hmax of the external field such that the sweep rate SR = 4Hmaxf is less than a target

value of 0.25 Oe/ns [19, 30]. For our simulation, we set Hmax = 500 Oe, which for

the target SR implies a target value of f = 125 kHz, a value large enough to restrict

unwanted Brownian relaxation [19].

To model the dynamics of the magnetization of a cell M of fixed magnitude Ms,

we solve the Landau-Lifshitz-Gilbert (LLG) equation [5, 23, 31],

dM

dt
= −γ1M×Heff −

αγ1

Ms

M× (M×Heff) (3.1)

where t is time, γ1 = µ0γe/(1 + α2), γe = 1.76 × 1011 rad/(s.T) is the gyromagnetic

ratio for an electron, µ0 is the vacuum permeability, and Heff is due to the combi-

nation of an external field, uniaxial anisotropy, exchange interactions and a thermal

field. We perform our simulations using OOMMF (Object Oriented Micromagnetic

Framework) software [32]. In particular, we include the Theta Evolve module [33]
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used for simulations at finite T via a stochastic thermal field [31].

We simulate the rod using cubic cells of length ba0, with b taking on values 1,

2, 4 and 8. See Fig. 3.1. For b = 1, 10752 cells make up the rod. For b = 2,

there are 10752/23 = 1344 cells. The volume of the rod is fixed for all simulations

at 10752a3
0 ≈ (22a0)3. Additionally, we simulate the rod as a single cell – a single

rectangular prism, or block. While there is some ambiguity in assigning a single length

scale to represent a rectangular prism, we choose b = 22 from the geometrical mean,

i.e., the side length of the cube of the same volume as the rod.

3.3 Coarse-graining

The goal of coarse-graining is to determine A(b) and K(b), i.e., how the exchange and

anisotropy parameters should change with b to keep system properties invariant with

b. The b = 22 case is a practical limit where all the atomic spins are represented

by a single macrospin, where exchange interactions are no longer required in the

simulations, and which provides for an interesting test of a coarse-graining procedure

in predicting K(b). In calculating hysteresis loops for a system with cell length ba0,

we apply an external field along the z axis of H(b) = Hmax sin (2πft), and report

the z-component of the average (over cells) magnetization unit vector mH = M̄z/Ms,

averaged over 88 to 100 independent simulations for b > 1. For b = 1 we use 250

simulations.

In Fig. 3.2a we plot hysteresis loops at T = 310 K using different cell sizes (varying

b) while keeping the exchange and anisotropy parameters fixed at A0 and K0. A value

of SR = 2.5 Oe/ns is chosen to make the simulations computationally feasible at b = 1.

Both the coercivity Hc and the remanence increase with increasing b. The increasing
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Figure 3.2: Application of RG coarse graining to nanorod MH loops at T = 310 K
and SR = 2.5 Oe/ns. (a) Changing cell length (a = ba0) without changing magnetic
parameters. (b) A and K are scaled according to Eqs. 3.8 and 3.9, respectively, and
mH and H are scaled according to Eqs. 3.11 and 3.10, respectively. (c) As in panel
(b), except mH is scaled according to Eq. 3.13 with δ = 0.511. ∆t = 1 fs for all
simulations. Horizontal error bars shown for Hc represent one standard error and are
vertically displaced to avoid overlap. Uncertainty in Hc is approximately 7 to 13%.
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loop area is consistent with the stronger exchange coupling (Jeff = ba0A0) between

magnetization vectors of adjacent cells. For b ≥ 4, it appears that the exchange is

strong enough for the system to be nearly uniformly magnetized, and so Hc remains

largely unchanged for b ≥ 4 since K is constant. This means that for b = 1, at this T

and for our rod size, exchange is not strong enough to be able to treat the nanorod

as a single macrospin in a trivial way. Clearly, varying cell size changes the loops and

a coarse-graining procedure is required.

In their coarse-graining procedure, Grinstein and Koch introduced a reduced tem-

perature T ∗, which for a three dimensional system is given by,

T ∗ =
kBTΛ

A
. (3.2)

where Λ = 2π/ba0 is a high wave-number cut-off that reflects the level of coarse-

graining. Similarly, the reduced parameters for field and anisotropy constants are

defined as,

h =
µ0MsH

AΛ2

1000

4π
, g =

K

AΛ2
, (3.3)

with H given in Oe. Introducing the parameter l = ln(b), they gave the following set

of equations for calculating the reduced parameters as functions of cell size,

dT ∗(l)

dl
= [−1 + F (T ∗(l), h(l), g(l))]T ∗(l)

dh(l)

dl
= 2h(l)

dg(l)

dl
= [2− 2F (T ∗(l), h(l), g(l))] g(l)

(3.4)

where

F (T ∗, h, g) =
T ∗

2π(1 + h+ g)
. (3.5)
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Additionally, the magnetization of the coarse-grained system is scaled via,

M(T ∗, h) = ζ(l)×M(T ∗(l), h(l)) (3.6)

where

ζ(l) = e−
∫ l
0 F (T ∗(l′),h(l′),g(l′))dl′ . (3.7)

For our system parameters and range of H, both g � 1 and h � 1, and so

F ' T/2π, which makes the numerical solution of Eq. 3.4 practically indistinguishable

from the approximate analytic solution, which we find to be,

A(b) = ζ(b)× A0 (3.8)

K(b) = ζ(b)3 ×K0 (3.9)

H(b) = ζ(b)×H0 (3.10)

M0 = ζ(b)×M(b) (3.11)

where t = T/Tc and ζ(b) = t/b + 1 − t. At T = 310 K, t = 0.3613, ζ(2) = 0.8193,

ζ(4) = 0.7290, ζ(8) = 0.6839, and ζ(22) = 0.6551.

Eqs. 3.8 and 3.9 provide a prescription for changing material parameters with b,

while Eqs. 3.10 and 3.11 provide the prescription for scaling H and M after a loop

calculation. However, we find that the prescription does not yield loops that are

invariant with b, on account of Eq. 3.11; the correction of the coarse-grained values

of M back to those corresponding to the unscaled system is too large (the corrected

remanance is too small), as we show in Fig. 3.2b. In Fig. 3.2c, we apply a correction to

Eq. 3.11 and obtain good agreement between the reference (b = 1) and coarse-grained

(b > 1) loops.
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Figure 3.3: Determining a scaling function for M(b) from the T dependence of the
nanorod magnetization. δ is used as a fitting parameter to match nanorod data,
yielding a value of 0.511. Vertical dot-dash lines indicate reduced temperatures cor-
responding to different values of b.

To motivate our correction to the rescaling of the magnetization, we begin by

noting that the same value of T ∗ in Eq. 3.2 can be achieved by either having a rescaled

temperature T (b) or having a rescaled A(b). Combining this idea with Eq. 3.8 yields,

T (b) =
T0

bζ(b, T0)
, (3.12)

which together with Eq. 3.11 [after solving for M(b)] predicts an overly simple de-

pendence of M on T , parametrically through b: a line passing through M0 and T0 at

b = 1 and through M = 0 and T = Tc as b→ 0.

To obtain a model that better matches the data, we introduce a phenomenolgical

correction to Eq. 3.11, one in which M0 is a weighted average of M(b) and the RG

expression for M0,

M0 = δζ(b, T0)M(b) + (1− δ)M(b). (3.13)
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We use δ as a free parameter to fit the M(T ) data for the nanorod. This yields a value

of δ = 0.511, which we use in rescaling mH in Fig. 3.2c. The fit reasonably recovers

M(T ) in the T range corresponding to values of b between 1 and 22, as shown in

Fig. 3.3.

The collapse of the data in Fig. 3.2c is remarkable, with the biggest discrepancy

arising between b = 1, corresponding to the most fine-grained simulation, and b = 2,

the first step in coarse-graining. The difference lies most noticeably in the shoulder

region where the phase transition starts and magnetization begins to change. The

process likely occurs on a length scale smaller than ab and hence the microscopic details

likely matter most. Loss of some detail is expected with coarse-graining and consistent

with previous studies involving atomic-level magnetization switching in a grain [34].

The magnetization in the shoulder areas appears to diminish with increasing b. The

behavior of b = 22 runs counter to this trend, but at this level of coarse-graining,

there is only a single cell. It is significant, however, that scaling seems to hold even in

this limit. (We note that in this limit, even though there are no exchange interactions

in the simulations, the value of the effective anisotropy still depends on exchange

through the dependence of Tc on A0.) The loop areas for b = 1, 2 , 4, 8 and 22 are

495, 488, 443, 432 and 472 Oe, respectively. The smallest loop area (for b = 8) is 13%

smaller than the area for b = 1.

We note that the unrenormalized exchange length for our simulated material is

lex,0 =
√

2A0

µ0M2
s

= 8.23 nm, which is longer than a8 = 6.712 nm, and so only our b = 22

single block simulations scale the cell size beyond lex,0. Under renormalization, how-

ever, the exchange length becomes lex,b =
√

2ζ(b)A0

µ0M2
s

, which decreases with increasing

b, and takes on values 7.45, 7.02, 6.80 and 6.66 nm for b = 2, 4, 8, and 22, respec-

tively. Thus for b = 8, the cell length and the exchange length are approximately
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the same. It is expected that coarse-graining should be valid for ab < lex [1], i.e., for

b . 8. However, the nanorods are in the single-domain regime and this is perhaps why

b = 22 yields reasonable results, notwithstanding the trend that loop area decreases

with increasing b.

3.4 SR/α scaling

We now turn our attention to speeding up simulations by considering the relationship

between SR and α. A larger value of α signifies a faster loss of energy and a shorter

relaxation time for alignment of the magnetic moments to the field, and results in a

smaller hysteresis loop. Likewise, a slower SR is equivalent to a longer measurement

time and consequently a smaller hysteresis loop. To build on these ideas, we recall

Sharrock’s equation for Hc as a function of T [35],

Hc = HK

[
1−

√
kBT

KV
ln

(
f0τ

ln 2

) ]
. (3.14)

Sharrock derived this equation by calculating the time required for half of the mag-

netization vectors in the system, which are initially anti-aligned with the field, to

overcome an energy barrier that grows with KV and align with a field of strength

Hc. In this context, τ is the relaxation time. In the context of hysteresis loops, Hc

is the field required to flip half of the magentization vectors in an observation time

τ , which is related to SR via τ ∝ 1/SR. f0 is the so-called attempt frequency, for

which Brown [31, 36–39] derived an expression in the high-barrier limit. At small α,

f0 ∝ α, and so the product f0τ ∝ α/SR, implying that so long as SR/α = constant,

Hc should remain the same.

In Fig. 3.4 we show loops calculated for SR/α = 2.5 (Hmax = 500 Oe, and f =
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Figure 3.4: Invariance of MH loops. We combine RG scaling of magnetic quanti-
ties, larger time step with block size, and SR/α scaling to predict the behaviour of
prohibitively long fine-grain (b = 1) simulations. b = 4 unless otherwise noted.

125 kHz), the ratio obtained using a clinically relevant SR = 0.25 Oe/ns and the

estimate of α = 0.1. Data for b = 4 and 8 and for various SR-α pairs show good

agreement. At 0.25 Oe/ns, simulations using b = 1 are prohibitively long, taking

several months on available computing resources. The results shown here combine the

RG approach to reduce the number of cells, the ability to use a larger time step ∆t for

larger cells in solving the LLG equation [6], and the SR/α scaling to employ a faster

SR, all to dramatically reduce simulation time – by a factor of 43 to 83 for reducing

the number of cells, a factor of at least 5 for the time step, and a factor of up to 1000

when using the fastest SR. The average area of the five loops for b = 4 in Fig. 3.4 is

S = 171.3± 2.8 Oe, translating to a specific loss power of fµ0
1000
4π
MsS/ρ = 207 W/g

±10% (using ρ = 5.17 g/cm3), which is consistent with clinical expectations [40]. The

loop area for b = 8 is 13% lower at 149.4 Oe.
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3.5 Conclusions

In summary, we show that our modification to the RG approach of Grinstein and

Koch [7] yields a scaling of exchange and anisotropy parameters and finite temperature

nanorod hysteresis loops that are, to approximately 10%−15%, invariant with cell

size. We note that the coarse-graining of magnetostatic interactions is beyond the

framework of Ref. [7]. We are currently investigating magnetostatic scaling, and

intend to report on it in future work.

Scaling results hold even to the point where the nanorod is represented by a single

magnetization vector that experiences anisotropy only. Whether this limit holds for

systems with weaker exchange remains to be studied. This reduction to an effective

Stoner-Wohlfarth (SW) model [41] should facilitate comparison with experiments on

nanorods, since an analytic solution to the SW model at finite T and SR exists [28].

It should also simplify computational studies of nanoparticles (nanorod composites)

and collections of nanoparticles used in a wide variety of applications and hence facil-

itate comparison with experimental MH loops and quantification of system properties

through simulations.

In addition to the computational speedup resulting from the use of fewer micro-

magnetic cells, the invariance of loops when SR/α is fixed provides another avenue

for computational speedup by allowing one to use a larger SR than the target value.

We caution, however, that the theoretical motivation for this invariance stems from

considering the Sharrock equation for only small α. While both SR and α set time

scales, we have not provided any reasoning for why the invariance should hold as well

as it does for larger α.
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Chapter 4

Multiscale modelling of

magnetostatic effects on magnetic

nanoparticles with application to

hyperthermia

The contents of this chapter have been published with the following citation: R. Be-

hbahani, M.L. Plumer, and I. Saika-Voivod, Multiscale modelling of magnetostatic ef-

fects on magnetic nanoparticles with application to hyperthermia, Journal of Physics:

Condensed Matter 33, 215801 (2021). DOI:10.1088/1361-648X/abe649.

Abstract

We extend a renormalization group-based (RG) coarse-graining method for micromag-

netic simulations to include properly scaled magnetostatic interactions. We apply the
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method in simulations of dynamic hysteresis loops at clinically relevant sweep rates

and at 310 K of iron oxide nanoparticles (NPs) of the kind that have been used in

preclinical studies of magnetic hyperthermia. The coarse-graining method, along with

a time scaling involving sweep rate and Gilbert damping parameter, allow us to span

length scales from the unit cell to NPs approximately 50 nm in diameter with reason-

able simulation times. For both NPs and the nanorods composing them, we report

effective uniaxial anisotropy strengths and saturation magnetizations, which differ

from those of the bulk materials magnetite and maghemite of which they are made,

on account of the combined non-trivial effects of temperature, inter-rod exchange,

magnetostatic interactions and the degree of orientational order within the nanorod

composites. The effective parameters allow treating the NPs as single macrospins,

and we find for the test case of calculating loops for two aligned NPs that using the

dipole approximation is sufficient for distances beyond 1.5 times the NP diameter.

We also present a study on relating integration time step to micromagnetic cell size,

finding that the optimal time step size scales approximately linearly with cell volume.

Keywords : magnetostatics, Landau-Lifshitz-Gilbert equation, micromagnetics, coarse-

graining, magnetic hyperthermia

4.1 Introduction

The use of micromagnetics based on the Landau-Lifshitz-Gilbert (LLG) equations for

the simulation of dynamic hysteretic magnetization-magnetic field (MH) loops at room

temperature and at kHz frequencies relevant for magnetic hyperthermia applications

offers a challenging area of the study for coarse graining. For numerical studies based

on micromagnetics, hysteretic heating is typically associated with the specific loss
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power (SLP) and is assumed to be proportional to the area of a calculated MH loop.

In a recent work [1] (hereafter referred to as I), we employed and modified a renor-

malization group (RG) approach introduced by Grinstein and Koch [2] for our model

system of magnetite (Fe3O4) nanorods that form the building blocks of nanoparticles

used in preclinical magnetic hyperthermia trials on mice [3]. Our study focused on

MH loops and demonstrated that for the case of individual nanorods, where exchange

interactions, uniaxial anisotropy, and a sinusoidal external field are included in the

model of uniformly magnetized cells, the RG approach works well over an entire range

of fixed-volume rods composed of from 10752 cells (b = 1) to one cell (b = 22), where

the smallest cell size of the scaling parameter b = 1 corresponds to the dimensions of

the magnetite unit cell. Our work also illustrates that significant additional compu-

tational speed-up can be achieved over the dynamic range of interest by maintaining

a constant value for SR/α, where SR is the designated sweep rate (in units of Oe/s)

of the MH loop simulation and α is the LLG damping constant. This work, which

employed the Object Oriented MicroMagnetic Framework (OOMMF) micromagnetics

software [4], omitted explicit magnetostatic interactions but these were accounted for

through an effective uniaxial anisotropy.

Here, our previous work is extended with several objectives. The first is to de-

velop a coarse-graining algorithm for dynamic MH loops for a single nanorod that has

explicit magnetostatic interactions included (in addition to the scaling of the magneti-

zation, exchange, anisotropy and applied field used previously), which were mentioned

only briefly in the RG analysis of Grinstein and Koch [2]. This study allows for the es-

timation of an effective single-ion anisotropy that mimics the effects of the self-demag

field. The second goal is to examine MH loops corresponding to magnetic nanopar-

ticles (NPs) that are constructed from the nanorods, where inter-rod exchange and

inter-rod magnetostatic interactions are important. This part of the study examines
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the case of just two adjacent nanorods in various geometries (appendix 4.B), as well

as composites of 10 stacked nanorods, inspired by the experimental study of Dennis et

al. [3]. Different stackings represent varying degrees of orientational order of nanorods

within a NP. Loops corresponding to a variety of applied field orientations are exam-

ined. The third goal is to find the effective magnetization and anisotropy that allows

the modelling of a NP as a single macrospin, both in the case of a single NP in a

field and for two interacting NPs. This macrospin approximation may be useful for

further study of NP assemblies. In addition, the impact of cell size on the assigned

time step in the OOMMF LLG solver is studied, where a larger time step can be used

with larger cell sizes resulting in an additional increase in computational efficiency.

Magnetic hyperthermia as a novel and developing cancer treatment method contin-

ues to attract considerable attention at the applied as well as fundamental level [5–10].

A wide range of preclinical studies have been reported using magnetic hyperthermia

as a primary or secondary cancer treatment along with conventional chemotherapy

or radiotherapy [3, 11–13]. Moreover, recent analytical and numerical studies [8, 14–

19] reflect the growing need for understanding the heating mechanisms of magnetic

hyperthermia to provide a more accurate guide for experiments.

In magnetic hyperthermia, injected magnetic nanoparticles exhibit hysteresis un-

der applied magnetic field and heat up and damage cancerous tumor cells. As nanopar-

ticles are mobile inside the tumor upon injection, exploring the effects of interactions

between magnetic particles, as well as possible heating mechanisms such as Brownian

rotation or hysteresis heating (Néel relaxation), is crucial for understanding particle

clustering and heating efficiency. To this end, many studies have investigated the

impact of long range dipolar interactions on hyperthermia with interesting and re-

lated results [8, 16, 18, 20–23]. For example, Anand et al. [16] examined the effect
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of dipole interaction strength on the heating efficiency of micron-sized particles and

showed that there is an optimal NP volume fraction for maximizing SLP. Haase and

Nowak [21] reported a negative effect of dipolar interactions on SLP at high particle

concentrations. By contrast, Landi [20] used a mean field theory and found that the

dipole interactions increase the energy barrier between stable configurations of the

magnetization. He deduced that dipolar interactions improve SLP as long as cer-

tain conditions of the energy barrier of the system are met. Such studies motivate a

bottom-up approach to determining and modeling effective interparticle interactions,

and underline the importance of including magnetostatic interactions in our scaling

approach.

This paper is organized as follow. Our model is described in section 4.2. Section

4.3 summarizes the coarse-graining scheme we use and in section 4.4 we test the scaling

method for multiple nanorods. In section 4.5, three nanorod composites of varying

internal orientational order are introduced and their effective macrospin parameters

are determined. In section 4.6 we study the hysteresis loops of 2 NPs as a function

of separation, and test the macrospin models in this context. Finally, we present our

conclusions in section 4.7. As choosing the proper time step for simulating a system

of study is another challenging detail in such numerical studies [24, 25], we address it

for our system in appendix 4.A. In appendix 4.B, we present results on the interplay

between inter-rod exchange, magnetostatics and relative placement of two nanorods.
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Figure 4.1: Coarse-graining model of a magnetite nanorod. The smallest micromag-
netic cell corresponds to the cubic unit cell of length a0 = 0.839 nm with ferrimagnetic
atomic spins represented by single magnetic moment. Larger cells are characterized
by a length ab = b a0 for b > 1. The number of cells is reduced from 56×24×8 = 10752
to Nb = 10752/b3 = 1344, 168 and 21 for b = 2, 4 and 8 respectively. A single block
corresponds to b = 22. Nanoparticles are made of nanorods.

4.2 The model

We wish to simulate iron oxide nanorods made of magnetite or maghemite (γ-Fe2O3),

while including magnetostatic interactions. These two iron oxides have similar mag-

netic parameters, with the exception of crystalline anisotropy, which is cubic in mag-

netite and uniaxial for maghemite. Our research is inspired by experimental results

reported by Dennis et al. [3], in which nanorods are the building blocks of nanopar-

ticles (see Fig. 2 therein). We study here assemblies of up to ten nanorods as single

nanoparticles to explore their collective heating behaviour by calculating hysteresis

loops. The size of simulated nanorods and resulting NPs reflect those studied in

Ref. [3].

For simulating nanorods with nominal dimension 6.7 nm × 20 nm × 47 nm

(Fig. 4.1), we use the OOMMF [4] software package, and the smallest simulation
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cell we use has the dimensions of the unit cell of ferrimagnetic magnetite, represented

by a single magnetization vector. OOMMF implements magnetostatics by calculat-

ing the demagnetization field at each cell using the expressions found in Refs. [26]

and [27], and employs fast Fourier transforms for computational efficiency. We em-

ploy the Theta Evolve module [28] required for simulations at finite T . The LLG

equation is commonly used to describe the dynamics of magnetic moments [29–31] by

describing the precession and damping of a cell’s magnetic moment in an effective field.

The value of damping constant α, representative of energy dissipation, for magnetite

films has been reported in a range from 0.03 to 0.2 depending on the thickness [32].

Setting α = 0.1 for our system size is consistent with other reported micromagnetic

studies [33, 34]. The effective field combines Zeeman, exchange, magnetocrystalline

anisotropy and magnetostatic terms. Additionally, Brown [31] provided a formalism

to add thermal effects into the calculations via a random effective field. It is known

that thermal fluctuations are more pronounced for smaller simulation volumes prone

to superparamagnetism and simulation results strongly depend on cell size [2, 24, 35].

We explore the cell size and time step correlation in 4.7 for simulations at finite T .

As in I, we use the bulk magnetite parameters with a saturation magnetization

Ms = 480 kA/m [36–38] and exchange stiffness constant A0 = 0.98×10−11 J/m [38–44]

which leads to the critical temperature of Tc = 858 K for its cubic unit cell size a0 =

0.839 nm. Magnetite (Fe3O4) possesses cubic crystalline anisotropy [5, 33, 37, 45, 46],

and as it has only a weak tendency to produce hysteresis, we omit it in magnetite

simulations. However, nanorods may contain significant amounts of maghemite with

uniaxial crystalline anisotropy with energy density of K0 = 10 kJ/m3 [5, 33, 47],

used in maghemite simulations in the present study. Otherwise, we use the same

parameters for maghemite as for magnetite.
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To restrict the uncontrolled heat generated by eddy currents in the surrounding

tissue, the product of amplitude and frequency of the AC magnetic field should be less

than a threshold that limits the sweep rate of the applied AC field to SR = 4Hmaxf <

0.25 Oe/ns [36, 48], with frequency f of a sinusoidal field of amplitude Hmax. (It

is noteworthy that safe higher thresholds have been reported for particular types of

cancerous tissue [15, 49].) As in I, all of the dynamic hysteresis loops reported in

the present study are performed at T = 310 K, and we use SR = 25 Oe/ns and

α = 10. This combination of SR and α is equivalent to the hyperthermia-relevant

SR = 0.25 Oe/ns and α = 0.1 for magnetite NPs. This method of increasing α to

simulate an effectively slower SR provides significant computational speed-up [1].

The nanorod that we simulate has dimensions 8a0 × 24a0 × 56a0 (with volume

Vrod = 6350.0 nm3), with its longest edge along the z axis. The rod is made up of

Nb cubic cells with side length ab = ba0 (b = 1, 2, 4, 8) while the volume of the rod

is fixed for all simulations. A rod is composed of 10752 cells when the smallest cell

(b=1) is used, and employing larger cells reduces the number of cells dramatically,

as Nb = 10752/b3, to 1344, 168 and 21 for b = 2, 4 and 8, respectively. Ultimately,

RG scaling enables the description of a rod as a block, corresponding to b = 22

( 3
√

8× 24× 56), with a single magnetization vector with essentially the same hysteresis

loop as obtained with the smallest cell size, even with magnetostatic interactions

included. The impact of coarse-graining on loops is then examined for collections of

nanorods that form nanoparticles as a foundation for simulating groups of NPs; see

Fig. 4.1.

In calculating hysteresis loops for any cell size, we apply an external magnetic

field (usually) along the z axis of H(b) = Hmax sin (2πft). When uniaxial anisotropy

is present, anisotropy directions for different cells within a nanorod are given by small
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random angles from the long axis of the rod (usually the z-axis) drawn from a normal

distribution with a standard deviation of 5◦, i.e., anisotropy is along the long axis but

with a small dispersion to imitate lattice disorder [18, 33]. M(b) is the component

of the magnetization along the field axis, which we calculate by averaging over 90 to

100 independent simulations (averaging at each value of the field). We report either

M(b) or its normalized form mH = M(b)/Ms. At the beginning of a loop calculation,

magnetic moments are randomized and M(b) is approximately zero. For the first

quarter period, H(b) goes from 0 to Hmax, and we report results for the subsequent

period.

The error bars for the coercive field Hc are calculated as one standard error above

and below its mean value, obtained by considering the standard deviation of the

mean of Hc over the simulation ensemble used for each loop calculation, rather than

considering the mean value of mH and its standard deviation.

4.3 Coarse-graining and demagnetization

A few different approaches to scaling magnetic parameters such as K and A with

simulation cell size have been proposed in the literature [2, 50–52]. As presented in

I, we follow a modified version of the RG approach of Grinstein and Koch [2], which

results in a set of equations for the magnetization, exchange stiffness, applied field,
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Figure 4.2: (a) Rod hysteresis loops when none of the magnetic parameters are scaled.
(b) Scaling based on our modified Grinstein-Koch RG method [1, 2] (δ ' 0.511) as
in Eqs (1) - (5), but with no scaling of magnetostatic interactions. (c) Magnetostatic
energy is scaled with the factor Dscl = ζ(b)3.
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and anisotropy constant,

M0 = δζ(b)M(b) + (1− δ)M(b) (4.1)

A(b) = ζ(b)× A0 (4.2)

H(b) = ζ(b)×H0 (4.3)

K(b) = ζ(b)3 ×K0 (4.4)

where,

ζ(b) = t/b+ 1− t, t = T/Tc, (4.5)

A0, K0, H0 and M0 are the quantities for simulations using cell size a0, Tc is the

critical temperature, and the quantities A(b), K(b), H(b) and M(b) are those for a

simulation where the cell size is ab = ba0 (with b > 0). For example, in carrying out

a simulation with b = 2, the cell length is increased to 2a0, the anisotropy parameter

set as input to the program is ζ(2)3K0, the exchange constant is set to ζ(2)A0, the

magnitude of the field entered into the program is H(2) and the program returns

M(2). One then calculates M0 from Eq. 4.1 in order to compare to the results of

a simulation carried out with cell length a0, anisotropy K0, exchange A0 and field

H0. The phenomenological parameter δ = 0.511 was determined in I from the T

dependence of M for our nanorods. In the present work, we propose and test a

scaling for magnetostatic interactions not previously considered.

As a first step in determining a scaling for magnetostatic interactions, we calculate

a reference hysteresis loop for b = 1 for a maghemite nanorod by running simulations

using A0 and K0 for the exchange and uniaxial anisotropy parameters, respectively,

and include magnetostatic interactions. Results are given by the red curve in all

panels of Fig. 4.2. We then carry out loop simulations with cell sizes ba0, for b = 2,
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4, and 8. For b = 22, the dimensions of the single cell are those of the nanorod itself.

For these simulations, we use unrenormalized exchange and anisotropy parameters

A(b) = A0, K(b) = K0, and again include magnetostatic interactions. The loops

resulting from these non-scaled simulations are plotted in Fig. 4.2a, showing a very

significant increase in loop size as cell size increases.

We repeat the loop calculations for b > 1 using values of A(b) and K(b) from

Eqs. 4.2 and 4.4, respectively, and with M and H scaled via Eqs. 4.1 and 4.3, so that

we plot mH = M0/Ms = (δζ(b)+1−δ)M(b)/Ms as a function of H0 = H(b)/ζ(b), and

again we include full magnetostatic interactions. The resulting hysteresis loops are

different for different b, with coercivity increasing with cell size, as shown in Fig. 4.2b.

From the above results, it is clear that magnetostatic interactions need to be scaled

as cell size changes. Looking at the energy terms in the Hamiltonian (see 4.7) and

noting that the exchange energy (aA
∑
mi.mj) is proportional to the cell length and A

is scaled with ζ(b), whereas the magnetocrystalline anisotropy energy (Kuv sin2(mi.u))

is proportional to the cell volume and Ku is scaled with ζ3(b), we propose a ζ3(b)

scaling for the demagnetization energy, which is also proportional to the cell volume.

The magnetostatic energy is µ0vM
2
s m · N · m/2, where the demagnetization tensor

N is determined by the geometry of the system. We repeat the loop calculations for

b > 1, again using RG scaling for A, K, M and H, but now multiply magnetostatic

energies and torques by ζ(b)3. As can be seen in Fig. 4.2c the collapse of the data is

reasonably good. The loop areas for b = 1, 2, 4, 8 and block simulations are 1881,

1706, 1691, 1703, 1800 Oe, respectively. The smallest loop area (for b = 4) is 10%

smaller than the area for b = 1. We note that comparing the above hysteresis loops

with a system without magnetostatic interactions (Fig. 2c in I) supports a result from

Mehdaoui et al. [8], namely, that including magnetostatic interactions increases the
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squareness of the loops.

To accomplish the scaling of magnetostatic interactions when using OOMMF, we

take the approach of scaling Ms, while ensuring that all other terms in the effective

field remain unchanged. The magnetostatic energy is proportional to M2
s . Therefore,

multiplying Ms by ζ(b)3/2 results in the desired scaling of magnetostatic interactions

with ζ(b)3. At the same time, scaling Ms changes the non-magnetostatic contributions

to the effective field entering the LLG calculations, namely the exchange, anisotropy

and thermal contributions. We must therefore introduce additional scaling to preserve

Heff = Hexch + Hanis + Hext + Hthermal invariant to changes in Ms. Thus, when

changing program input Ms to Msζ(b)3/2, we must additionally change A to Aζ(b)3,

K to Kζ(b)3/2 and T to Tζ(b)3/2 in order to keep field strengths Hexch = 2A/µ0aM
2
s ,

Hanis = 2K/µ0Ms, and Hthermal = [2αkBT/(γµ0MsV∆t)]1/2 unaltered. The end result

is that in order to carry out a simulation at b > 1 and temperature T0, we first calculate

ζ = ζ(T0, b), and the set program inputs to Ms = Ms0ζ
3/2, A = A0ζ

4, K = K0ζ
9/2,

and T = T0ζ
3/2. The external field H(b) is unchanged. This recipe combines the RG

scaling of A and K with appropriate scaling of magnetostatics, and yields M(b).

The next step is to model the collective effect of the magnetocrystalline anisotropy,

exchange and magnetostatic interactions of a rod with a single magnetization (macrospin)

subject to uniaxial anisotropy. This step is justified by the rather good agreement

in the MH loops between the fine grain simulation (b = 1), and the single block

case (b = 22), for which a single magnetization represents the entire rod and no ex-

plicit exchange interactions are present. This macrospin description is known as the
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Stoner-Wohlfarth (SW) model, and the Hamiltonian is,

H = Hanisotropy +HZeeman,

Hanisotropy = −Keffv(m · u)2,

HZeeman = −µ0M
eff
s v(m ·H),

(4.6)

where the uniaxial anisotropy has energy density Keff with its axis along u, and the

single magnetization vector has direction m and magnitude M eff
s . Keff and M eff

s arise

from the combined effects of self-demagnetization, magnetocrystalline anisotropy, ex-

change, and temperature. For the macrospin model of the nanorod v = Vrod. µ0 is the

permeability of free space and H is the externally applied field. This SW macrospin

model may be useful for simulating a group of nanorods in solution, for example, and

it is understood that interactions between rods include magnetostatic interactions,

perhaps in the dipole approximation. This macrospin description differs from the

b = 22 block model in that, first, the self-magnetostatic interaction is accounted for

by the effective uniaxial anisotropy, and second, there is no need to worry about the

procedures to implement RG and magnetostatic scaling.

To find the appropriate parameters to model the nanorod as a SW-macrospin at

310 K, we calculate the hysteresis loop of the nanorods modelled using b = 4, averag-

ing over field directions. Given the symmetry of the rod, we integrate directions over a

spherical octant, and, following the numerical algorithm presented in Ref. [53], we em-

ploy a seven-point integration scheme, with directions shown in the inset of Fig. 4.3a.

We also calculate the directionally averaged loop for a SW particle at 310 K by sim-

ulating 1000 particles with random orientations (uniformly over a sphere), and then

scaling the parameters of the SW particle to match Hc and remanent magnetization

Mr of the rod. For a magetite rod (K = 0), we find that Keff = 15.7 kJ/m3 and
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Figure 4.3: Comparison of macrospin models (dashed and dot-dashed lines) with
magnetite and maghemite nanorods (solid lines with symbols) for (a) rotationally
averaged external field (inset shows field directions used in the numerical integration
used to obtain the average), and (b) external field along the z axis. Macrospin models
in (a) and (b) have M eff

s = 350 and 384 kA/m, respectively.

M eff
s = 0.73Ms = 350 kA/m. Results are plotted in Fig. 4.3a. It is important to note

that if one wished to plot mH , one should normalize MH by Ms, rather than by M eff
s ,

in order to compare with nanorod loops. For a maghemite rod (K0 = 10 kJ/m3), we

find Keff = 19.4 kJ/m3 and M eff
s = 0.73Ms = 350 kA/m.

From the loops shown in Fig. 4.3a, it is clear that the rod does not precisely follow

the SW model. This is because the magnetostatic interactions within the rod only

approximately map to a single anisotropy axis. In Fig. 4.3b, we plot the MH loops

for the b = 4 approximation for the rod and the SW counterpart when the field is

along the z axis, i.e., along the anisotropy axis. In this case, we find a smaller value of

Keff = 15.0 kJ/m3 for magnetite, with M eff
s = 0.8Ms = 384 kA/m. This value of Keff

is smaller than the analytical result at T = 0, KT=0
eff = 20.5 kJ/m3, which we obtain

by following Refs. [26, 27, 29, 54].∗ For maghemite, we obtain Keff = 18.7 kJ/m3 with

M eff
s = 0.80Ms = 384 kA/m. All effective parameters are summarized in Table 4.1.

∗For this thesis, we provide details of the calculation in appendix A.
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Table 4.1: The effective anisotropy and saturation magnetization of macrospins equiv-
alent to simulated nanorods and nanoparticles. Keff and M eff

s are summarized for
results shown in Fig. 4.3 for nanorods, and Figs. 4.5 (rotationally averaged) and 4.6
(field along z) for NPs. The bulk saturation magnetization is Ms = 480 kA/m. The
nanorods have dimensions 6.7 nm × 20 nm × 47 nm, and consequently the NPs have
an approximate diameter of 47 nm.

material object Keff

(kJ/m3)
H M eff

s

(kA/m)
Fe3O4 nanorod 15.73 rot. avg. 350
Fe3O4 nanorod 15.0 ||z 384
γ-Fe2O3 nanorod 19.4 rot. avg. 350
γ-Fe2O3 nanorod 18.7 ||z 384
Fe3O4 6z4y NP 4.80 rot. avg. 382
Fe3O4 6z4y NP 3.64 ||z 382
γ-Fe2O3 6z4y NP 5.70 rot. avg. 382
γ-Fe2O3 6z4y NP 4.90 ||z 382
γ-Fe2O3 8z2y NP 8.78 rot. avg. 382
γ-Fe2O3 8z2y NP 6.32 ||z 382
γ-Fe2O3 10z NP 10.79 rot. avg. 382
γ-Fe2O3 10z NP 7.63 ||z 382

4.4 Coarse-graining for multiple nanorods

As our goal is to simulate magnetic nanoparticles made of nanorods, we test the

proposed scaling method for a collection of eight maghemite nanorods in two stacks

of four as shown in the inset of Fig. 4.4. Simulations include magnetostatics, intrarod

[A(b)] and inter-rod (Ar−r) exchange interactions at half strength [Ar−r = 0.5A(b)],

magnetocrystalline uniaxial anisotropy along the rod’s long axis and a sinusoidal field

applied along the z axis.

Simulated MH loops for the eight-rod bundle show good agreement for b = 2, 4

and 8, whereas the loop is significantly different for a bundle of eight blocks (b =

22) as shown in Fig. 4.4a. Clearly, modelling the nanorod as a block with a single

magnetization does not allow portions of a nanorod to flip independently of the rest

of the rod, and hence the shoulder regions of the loop in particular are susceptible to
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0.5A(b). (a) Loops corresponding to simulation cells of length ab = ba0 for b = 2, 4,
8 and 22 (block) for a field applied along the z axis. (b) Loops with a rotationally
averaged field for nanorods modelled with b = 4 and 22 (block).

unphysical behaviour. Thus, magnetostatic interactions limit the present prescription

for coarse-graining in the case of bundled nanorods.

We expand our exploration by comparing the average MH hysteresis loop of this

group of nanorods when the applied field is rotationally averaged. Interestingly, av-

eraging over field directions masks the discrepancy between b = 4 and the block

approximation, as shown in Fig. 4.4b. We conclude that b = 4 is a reasonable level of

coarse-graining for the investigation of multiple-rod configurations in the remainder

of the present work.

In appendix 4.B, we investigate the interplay between magnetostatic interactions,

inter-rod exchange, and geometric arrangement for a system of two nanorods. We

find that the dynamics may be complex, such that, for example, increasing Ar−r does

not necessarily increase loop area.
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Figure 4.5: Three different NPs, 10z, 8z2y and 6z4y, each assembled from 10
maghemite nanorods. The right graph shows the NP hysteresis loops for rotationally
averaged field (solid curves with symbols), and loops for their equivalent macrospins
with the same Mr and Hc (dashed curves). Macrospins equivalents to each NP have
Keff = 5.70, 8.78 and 10.79 kJ/m3 for 6z4y, 8z2y and 10z NPs, respectively, and
M eff

s = 382 kA/m.

4.5 Nanoparticles

Our basic model of nanoparticles composed of nanorods is inspired from the experi-

mental study by Dennis et al. [3]. There are, however, no data on how nanorods are

packed within a nanoparticle, and two extreme possible assemblies are a totally or-

dered stack of nanorods and a random cluster of nanorods [6]. Among various possible

arrangements, we choose three assemblies containing 10 maghemite (K0 = 10 kJ/m3)

nanorods, one with all the nanorods along the z axis (which we label 10z), another

one with 8 along the z axis and 2 along the y axis (8z2y) and a third arrangement

with 6 nanorods along z and 4 along y (6z4y), as shown in Fig. 4.5a. With these three

choices, we mimic some degree of disorder by varying the degree of rod alignment. To

compare the heating efficiency of these constructions with the experimental results,

we calculate the rotationally averaged hysteresis loop, coarse-graining the rods at the
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b = 4 level (including magnetostatic scaling) and assuming Ar−r = 0.5A(b). As ex-

pected, assemblies with more parallel nanorod arrangement exhibit wider hysteresis

loops, as shown in Fig. 4.5b, which leads to higher heating efficiency.

The next step in simplifying the simulation of NPs is to find the magnetic pa-

rameters of a SW macrospin that gives the most similar MH hysteresis loops (the

same Mr and Hc) to nanoparticles of the same volume. This level of modelling

enables the description of a complex nanoparticle made of nanorods with a sin-

gle macrospin and replacing all the magnetostatic and exchange interactions inside

the NP with an effective uniaxial anisotropy of the macrospin. The resulting fits,

made by adjusting Keff and M eff
s , are shown in Fig. 4.5b, and the effective uni-

axial anisotropy for the three maghemite nanoparticle models 10z, 8z2y and 6z4y

are 10.79, 8.78 and 5.7 kJ/m3, respectively, with effective saturation magnetization

equal to M eff
s = 0.795Ms = 382 kA/m for all three models. Effective parameters for

maghemite and magnetite nanoparticles are given in Tab. 4.1.

As with the case of individual rods, it is expected that a single anisotropy axis

is not completely sufficient to model the magnetic response. Fig. 4.6a shows the

response of the 6z4y magnetite nanoparticle model to both rotationally averaged

fields and for fields along x, y and z directions, along with corresponding responses

of the SW macrospin model that best matches the rotationally averaged response

of the nanoparticle (Keff = 4.8 kJ/m3). The nanoparticle loops for the x and y

directions are non-linear at moderate field magnitudes and have non-zero loop areas,

while the macrospin model shows linear response until saturation and zero loop area.

Also shown is the loop for the macrospin model with a reduce effective anisotropy

(Keff = 3.64 kJ/m3) that best matches the nanoparticle’s repsonse to a field in the z

direction. Fig. 4.6b shows that lower values of Keff are need to reproduce the response
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Figure 4.6: Impact of changing field direction on loops for NPs composed of rods
(solid lines with symbols), and equivalent macrospin (MS) particles (broken lines).
a) Magnetite for three field directions. A MS particle with Keff = 4.8 kJ/m3 and
M eff

s = 382 kA/m has the same Mr and Hc as a 6z4y magnetite NP (K0 = 0) under
rotationally averaged field (inset), whereas it exhibits different MH hysteresis loops
when field is applied along the x, y or z axes. For the field applied along the z
axis, a MS with Keff = 3.64 kJ/m3 (black dotted line) yields approximately the same
hysteresis loop to the NP (open circles). b) Maghemite for the field along z. Keff

decreases relative to the rotationally averaged case (see Fig. 4.5b), and has values
4.90 kJ/m3, 6.32 kJ/m3 and 7.63 kJ/m3 for the 6z4y, 8z2y and 10z maghemite NPs,
respectively.

of maghemite nanoparticles to fields along z. The equivalent effective anisotropy

under Hz decreases to 4.90, 6.32, and 7.63 kJ/m3 for 6z4y, 8z2y, 10z maghemite

nanoparticles, respectively. Effective parameters are summarized in Tab. 4.1. The up

to approximately 35% difference in Keff values comparing rotationally average and z

responses can either be regarded as a model error when using the macropsin model

for future purposes, or one may preferentially choose one scenario over the other

depending on context. For example, in a medium in which the nanoparticles are free

to rotate and therefore can align anisotropy axes along the field, the lower Keff values

obtained from the z response should be used, while for randomly oriented particles

unable to rotate, the rotationally averaged may be more relevant.
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4.6 Interacting nanoparticles

As a prelude to later explorations of the collective heating behavior of NP chains,

as in Ref. [55], we simulate two magnetite 6z4y NPs (K0 = 0) and study how their

hysteresis loop changes as the nanoparticle center-to-center distance r varies from

one to three NP diameters (d = 47.0 nm). For these simulations, the rod centres

and the majority of the rod long axes of both NPs lie on (or parallel to) the z axis,

the external field is also along z, and we use b = 4 for coarse-graining (including

magnetostatic scaling). This arrangement mimics chain formation when NPs are free

to move and rotate. As shown in Fig. 4.7a, the hysteresis loop area is larger in the

case of two interacting chained NPs compared to isolated NPs. This is in agreement

with reported results [8, 18, 22]. We note that the normalization of the loop is such

that the total heat released would require multiplication by the number of particles

in the system. As r increases, the effect of magnetostatic interactions between NPs

is reduced and their loop area shrinks[17]. By r ≈ 3d, the loop is approximately the

same as for noninteracting NPs.

To quantify the r dependence of the loop area and Hc, we plot the difference in

areas ∆S between loops for the 2-NP systems and individual NPs (∆S = Area(2NPs)

- Area(1NP)), as well as the difference in the coercivities ∆Hc, as functions of r in

Fig. 4.7b. As may be expected, for r > 1.5d, ∆S and ∆Hc decrease with a 1/r3

dependence, just as the energy between two dipoles does. This motivates using the

dipole approximation to calculate the heating efficiency of NPs when they are further

apart than 1.5d.

To this end, we carry out two additional sets of simulations. First, we use the

effective macrospin parameters for the 6z4y magnetite NP (Keff = 3.64 kJ/m3,

Ms = 381.6 kA/m) and simulate two magnetized cubes with the same volume as



117

r

0.0 0.2 0.4 0.6 0.8 1.0 1.2
log(r/d) 

3

4

5

6

7

lo
g(

H
c),

 lo
g(

S) (b) log( S), NP
log( Hc), NP

1 2 3 4
r/d 

200

250

300

350

400

450

500

H
c (

Oe
)

(c) Hc, NP
Hc, MS
Hc, Dipole

Figure 4.7: a) Hysteresis loops for a system of 2 magnetite 6z4y NPs as a function of
centre-to-centre distance r. d is the NP diameter. b) The quantities ∆Hc and ∆S (see
main text for definitions) as functions of r approach dipolar scaling near r/d = 1.5
(ln 1.5 ≈ 0.405). Dashed lines are r−3 power laws. (c) Hc as a function of r for the
2-NP loops from panel (a), along with Hc obtained from macrospin approximations
to the NPs, realized through uniformly magnitized cubes (MS) and dipolar spheres
(Dipole). Error bars for the dipole curve are comparable to symbol size.

the NP, placing their centres and anisotropy axes on the z axis, and calculating loops

as we vary r. For these simulations, we include magnetostatics interactions, both

between the cubes and within each cube. Allowing for self-demagnetization is techni-

cally inconsistent with our approach, because the effects of self-demagnetization are

accounted for in Keff . However, self-demagnetization leads only to cubic anisotropy
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that has little effect on hysteresis loops. Similarly, we simulate with Vinamax soft-

ware [56] two spheres with the same effective parameters as the cubes and dipole mo-

ment vM eff
s , thus neglecting self-demagnetization (as is consistent with the effective

parameters) and treating interaction between spheres in the dipolar approximation.

We report Hc for the two macospin models and the 6z4y NPs in Fig. 4.7c, with cubes

labelled MS and spheres labelled Dipole. The agreement between all three sets of

data is satisfactory for r ≥ 1.5d.

4.7 Conclusions

The present work represents the first comprehensive study of coarse-graining for use

in micromagnetic simulations. We extend an RG-based coarse-graining scheme, previ-

ously developed and explored in I, to include magnetostatic interactions in micromag-

netic simulations, and apply it to dynamic hysteresis loops at T = 310 K of magnetite

(no magnetocrystalline uniaxial anisotropy) and maghemite nanorods, as well as col-

lections of stacked nanorods that model NPs of varying internal orientational order.

For individual nanorods, the coarse-graining procedure reproduces loops even up

to the representation of the nanorod as a block with a single magnetization. For

collections of rods, the interplay between inter-rod exchange and magnetostatic in-

teractions can lead to complex magnetization dynamics (as in appendix 4.B), and we

limit our level of coarse graining to b = 4 (cell length four times larger than the unit

cell of magnetite) when simulating 10-nanorod model NPs.

For both individual nanorods and NPs, we find the effective uniaxial anisotropy

and saturation magentization parameters for SW macrospin models that yield equiv-

alent loops. For nanorods, the effective anisotropy is approximately 15-16 kJ/m3
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for magnetite, and approximately 19 kJ/m3 for maghemite. The effective saturation

magnetization is 73% to 80% of the bulk value, depending on whether orientation

with respect to the external field is assumed to be rotationally averaged or parallel.

For our 47 nm-diameter NPs, the effective anisotropy falls in the range of 4 kJ/m3 for

our most orientationally disordered (6z4y) magnetite NP to 11 kJ/m3 for our most

ordered (10z) maghemite NP. The effective saturation magnetization is approximately

80% of the bulk value. For this modelling, we assume an inter-rod exchange strength

of half the bulk value.

For simulations of two NPs, we find that loop area, or rather the difference in loop

areas between interacting and noninteracting NPs, scales with distance in a dipole-like

manner for centre-to-centre distances at and beyond 1.5 times the particle diameter.

For this distance and beyond, we find good agreement between the two-NP results

and those for two macrospin equivalents interacting via dipolar interactions.

We also find (appendix 4.A) that using a larger cell size allows the use of a larger

step size in integrating the equations of motion. Over the range of cell sizes studied, we

approximately find that if cell volume is increased, the step size may also be increased

by the same factor.
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Appendix 4.A. Time step dependence on simulation

cell size

For a system of interacting micromagnetic cells with crystalline anisotropy under an

external field, the Hamiltonian is,

H = Hexchange +Hmagnetostatics +Hanisotropy +HZeeman

Hexchange = −a
2

∑
i

∑
j∈NN

Aij(mi ·mj)

Hmagnetostatics = −µ0v

2

∑
i,j

(Mi ·N ·Mj)

Hanisotropy = −Kv
∑
i

(mi · u)2

HZeeman = −µ0Msv
∑
i

(mi ·H)

(4.7)

where a is the length of a cubic cell and Aij is the exchange stiffness constant. We

note that the factor of 1/2 in the exchange Hamiltonian may or may not appear in

the literature, reflecting whether or not interactions are effectively double counted,

resulting in the apparent values of Aij differing by a factor of 2. For example, for mag-

netite we use a value of A0 = 0.98 × 10−11J/m, and to achieve this we give as input

the parameter AOOMMF = 0.49×10−11 J/m to OOMMF. Mk is a cell’s magnetization

with magnitude Ms and direction given by unit vector mk (k = i, j), N is the demag-

netization tensor, representing the geometry of the system, µ0 is the permeability of

the free space and v is the cell volume. Uniaxial anisotropy is characterized by energy

density K and unit vector u, and the externally applied field is H.
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Figure 4.8: Dependence of MH loops on ∆t for nanorods composed of cells of side
length ba0 for (a) b = 1, (b) b = 2, (c) b = 4 and (d) b = 8. The simulations are carried
out at SR=2.5 Oe/ns, and T = 310 K, with α = 0.1. Here, we neglect magnetostatic
interactions.

Brown [31] modelled thermal effects with a random effective field (white noise)

with spatial components drawn from a normal distribution with variance [56],

σ2 =
2αkBT

γµ0MsV∆t
, (4.8)

where V is the switching volume, i.e. the volume of a micromagnetic cell, T is the

absolute temperature, kB is Boltzmann’s constant, and ∆t is the time step of the

simulations. Eq. 4.8 implies that a larger ∆t can be chosen for larger simulation

cells. Therefore, when coarse-graining, not only are simulations faster on account of
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employing fewer cells, but also on account of being able to use a larger ∆t. In Fig. 4.8

we plot hysteresis loops for nanorods composed of cells with different volumes, given

by V = (ba0)3, for different values of ∆t. For these simulations, we use the RG-scaled

exchange and anisotropy constants A(b) and K(b) as given by Eqs. 4.2 and 4.4; we

also neglect magnetostatic interactions for simplicity. Overlapping curves indicate

that results are independent of step size, and therefore indicate when ∆t is “small

enough”. For b = 1, a small ∆t of approximately 1 to 1.5 fs is required, and the

optimal ∆t increases to approximately 5 fs for b = 2, 50 fs for b = 4 and, remarkably,

200 fs for b = 8. Values of ∆t larger than the optimum yield significantly smaller loop

areas. This increase of time step with cell volume is consistent with previous results

in the literature [24, 25].

OOMMF uses an Eulerian solver for simulations at finite T , and so the contribu-

tion to the changes in magnetization from the thermal field in a single step of the

algorithm is proportional to
√

∆t/V , which implies that for ∆t ∝ b3 the magnitude

of these changes should remain constant. This proportionality provides a simple way

of understanding the increase in optimal ∆t that we observe. It should be cautioned,

however, that care must always be taken to check that a sufficiently small ∆t is used.

Appendix 4.B. Various 2-rod setups

Here we explore the effects of magnetostatic and exchange interactions for three differ-

ent arrangements of two magnetite nanorods, providing some insight on their effects

on the magnetization alignment for bundled nanorods. We use RG scaling with b = 4,

and, for this section only, we do not carry out the scaling of magnetostatic interactions,

and simply use Ms with no alteration in determining effective fields and energies. We
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are simply interested in general effects of the interplay between magnetostatics and

inter-rod exchange.

In the first arrangement, we consider only the effect of magnetostatic interaction

between rods. One nanorod is placed along the z axis, and the other along x, with the

y axis parallel to the line passing through the nanorod centers, as shown in the inset of

Fig. 4.9a. The external field is along the z axis. Within each rod, magnetostatics and

exchange are present. For the black curve in Fig. 4.9a, the rods do not interact: they

are independent with Ar−r = 0 and with no magnetostatic interactions between cells

belonging to different rods. The loop, in fact, is just the average of two independent

rods. The green curve in the same plot shows the loop for the case where the two

rods interact magnetostatically: magnetostatic interactions are calculated between all

cells in the 2-rod system. The hysteresis loop is smaller for the interacting case. This

negative effect of magnetostatics on loop area is in agreement with studies reported by

Cabrera et al. [22] and Serantes [18], wherein dipole interactions decrease the heating

efficiency of magnetic particles when the dipoles are not arranged in end-to-end chains.

Panels b and c of Fig. 4.9 compare hysteresis loops, when inter-rod magnetostatic

interactions are present, for three different inter-rod exchange strengths Ar−r = xA(b),

with x = 0, 0.05, and 0.5. Here, the nanorods are side-by-side with their long axes

parallel. Fig. 4.9b considers the case of rods with their largest faces making contact

(area of contact is 84 a2
4), and Fig. 4.9c considers the case where the nanorods are

making contact through their second largest faces (area of contact is 28 a2
4). The

centers of adjacent parallel nanorods are 6.7 nm and 20 nm apart in panels b and c,

respectively. In general, increasing x increases the magnetization alignment between

the two nanorods, counteracting the anti-alignment induced by magnetostatics. In

Fig. 4.9b, for Ar−r = 0 the magnetization of one rod flips before H becomes negative.
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For Ar−r = 0.05A(b) and 0.5A(b), the magnetizations of the two rods are locked,

and higher exchange strength results in wider hysteresis loops. For the larger centre-

to-centre separation (and therefore weaker inter-rod magnetostatic interactions) and

smaller contact area presented in Fig. 4.9c, for Ar−r = 0, the magnetization of one

of the rods flips before the other, but only after the H becomes negative. At Ar−r =

0.05A(b), when the magnetization of one rod flips, it takes part of the second rod with

it. Only at Ar−r = 0.5A(b) do the magnetizations of both rods flip in unison. We note

that for b = 4, the exchange length is
√

2ζ(4)A0

µ0M2
s
≈ 7.0 nm, and therefore significantly

smaller than the centre-to-centre distance. The perhaps counter-intuitive observation

is that as Ar−r increases, the loop area decreases. We conclude that the pairing of inter-

rod exchange and magnetostatics can lead to complex magnetization dynamics within

nanorod composites, and therefore counter-intuitive impacts of inter-rod exchange on

heating efficiency.

In all 2-rod cases considered, we explicitly place the rods side-by-side and not end-

to-end. Thus, we do not consider chain formation [17], which should enhance hystere-

sis, but rather the tendency of magnetostatics to cause anti-alignment of neighbouring

nanorod magnetic moments. We note that the larger centre-to-centre distance con-

sidered in Fig. 4.9c means that the anti-aligning effects of magnetostatics is weaker,

and so perhaps it is not surprsing to see a larger loop area than in Fig. 4.9b in the

Ar−r = 0 case.
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Figure 4.9: (a) Effect of inter-rod magnetostatic interactions. The black loop (cir-
cles) is for two perpendicular noninteracting nanorods (with neither exchange, nor
magnetostatics between rods) and the green loop is for nanorods interacting mag-
netostatically only. In panel (b) nanorods interact magnetostatically and inter-rod
exchange is Ar−r = xA(b), with x = 0 for the blue curve (triangles), 0.05 for the red
curve (circles) and 0.5 for the green curve (squares). The two parallel nanorods are
in contact with their largest faces and the center-to-center distance is 6.7 nm. Panel
(c), as in (b), except a smaller face is shared, and center-to-center distance is 20 nm.
In this case, increasing x does not result in a larger loop area.
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Chapter 5

Micromagnetic simulation of

clusters of nanoparticles

This chapter represents the first draft of a planned manuscript for journal submission.

Abstract

We employ a previously developed coarse-graining method based on the renormaliza-

tion (RG) group for simulating clusters of iron oxide nanoparticles (NPs) composed

of nanorods. To study the heating performance of aggregates of magnetic NPs, we

focus on the dynamic hysteresis loops of clusters of immobile NPs in chains, triangu-

lar lattices and in an FCC structure. We employ a previously introduced RG-based

coarse-graining along with a time scaling based on the sweep rate of the external AC

field and damping constant in the Landau-Lifshitz-Gilbert equation, which enables

relatively fast simulations of dynamic hysteresis loops of multiple 50-nm NPs at fi-

nite temperature using hyperthermia-relevant sweep rates. In simulating clusters of
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magnetic particles, we examine the macrospin (MS) model introduced, which is an

approximation for generating equivalent hysteresis loops as a NP with the same co-

ercivity Hc and remanent magnetization Mr, to study if this approximation is valid

for simulating cluster of NPs. We change the strength of magnetostatic interactions

between NPs by fixing the NPs at different distances, and study their magnetization

dynamics in the various geometries. We also calculate the local hysteresis loops of in-

dividual MSs in a cluster to understand the impact of the geometry of their neighbours

on their magnetic response.

5.1 Introduction

Magnetic nanoparticles (MNPs) have attracted much attention due to their wide

range of potential applications [1, 2]. Among their biomedical applications, MNP

hyperthermia is a novel developing method that uses NPs for cancer treatment by

taking advantage of their heating upon exposure to an alternating external magnetic

field [3–7]. Along with pre-clinical experiments [8–11], computer simulations of MNPs

are used to better understand the details of the heating process [12–23], which lights

the path for further experiments and more efficient cancer treatment. Magnetic heat-

ing of immobile NPs through Néel relaxation is quantified by their magnetization-field

(MH) hysteresis loop area. We seek to calculate the hysteresis loop of multiple 6z4y

magnetite NPs composed of ten nanorods ordered with six along the z axis and four

along the y axis. The simulation model is motivated by a successful pre-clinical study

of magnetite NPs for breast cancer treatment in mice [8].

Micromagnetic simulations of MNPs is a common numerical method that uses the

Landau-Lifshitz-Gilbert (LLG) equation for describing the magnetization dynamics of
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NPs. When the particle size decreases to the nanometer range, thermal fluctuations

play a key role in the magnetization dynamics and micromagnetic simulations of

NPs (in that thermal energy becomes of the same order as the energy barrier to

magnetization flipping; see Eq. 1.6). Using uniformly magnetized cells with the same

size as atomic unit cells can be computationally very expensive. To solve the problem

of expensive calculations, using fewer but larger simulation cells for describing NPs is

favorable. Different methods have been prescribed for scaling the magnetic parameters

to provide results invariant with simulation cell size [24–27].

In two recent works [28, 29] (hereafter referred to as I and II), we implemented,

amended and extended a renormalization group (RG) scaling approach introduced

by Grinstein and Koch [27] for our model of dynamic hysteresis loops at 310 K to

include magnetostatic interactions in addition to the initially considered interactions

of magnetic field, exchange and magnetocrystalline anisotropy. In these works we

showed that the RG scaling works properly for simulating fixed-volume nanorods over

a range of cell sizes (a = ba0), from b = 1 corresponding to the atomic unit cell

size when a nanorod is made 10752 cells to b = 22 where a single block represents a

nanorod. We also tested the scaling method for stacks of nanorods and showed that it

is valid for simulating multiple nanorods with cell sizes as big as a = 8a0. Employing

the RG scaling method for simulating complex NPs enabled further investigations on

a macrospin (MS) model to find the effective magnetization and uniaxial anisotropy

of a same-volume MS with equal coercivity Hc and remanent magnetization Mr in

MH hysteresis loops as a complex NP. The MS model is an approximation in which

the collective effects of exchange interactions, magnetocrystalline anisotropy and self-

demagnetization in a complex NP are captured with a single effective magnetization

vector subject to uniaxial anisotropy, and can speed up the calculations remarkably.

The next step in evaluating the MS model is to compare the heating performance of a
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system of multiple NPs with a corresponding system of MSs. We showed in II that for

two NPs at different separations, the hysteresis loops match those of the MS’s beyond

a centre-to-centre distance of 1.5 times the particle diameter. Our work also makes use

of an approximate invariance of hysteresis loops under an increase in AC field sweep

rate when the damping constant α in the LLG equation increases commensurately,

which also reduces computational time.

Here we employ our previous methods and extend the investigations to the MS

model for clusters of NPs. The first objective of this study is to examine the MS

model with two perpendicular uniaxial anisotropies to get a better approximation for

the complex NP’s hysteresis loop. Also, we assign the direction of anisotropy axes

of simulation cells from a distribution to mimic the effect of variations in magnetic

parameters in real systems, and study the impact on the hysteresis loop. The second

goal is to simulate clusters of NPs and compare the heating performance of complex

NPs with the MS model at different particle separations. The third goal is to study

the local loop of individual MSs in clusters to understand their heating mechanism

under the effect of interparticle interactions. In the end, we explore the SR/α scaling

for multiple NP simulations with the OOMMF [30] and Vinamax [31] software used

in this study.

Different studies have looked into NPs clustering in a variety of arrangements as

chains, rings, cubes, FCC, 2D hexagonal lattice, spheres or disordered structures and

investigated their heating behavior under variation of various quantities [12, 14, 15,

18, 21, 23, 32–36]. For example, Anand [14] used Monte Carlo simulations to study

the effect of dipole interactions on the heating efficiency of a chain of NPs when their

uniaxial anisotropy axes make an angle θ with respect to the chain axis. He concluded

that strong dipole interactions tend to align the NPs’ magnetization parallel to the
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chain axis, even when θ = 90◦. Valdes et al. [21] examined the effect of dipolar

interactions on the heating efficiency of NP chains with different lengths when each

particle’s effective anisotropy axis is along the chain axis. They concluded that the

chain formation of NPs could improve heating performance even if the chains are not

aligned with respect to one another. Anand et al. [32] explored the heating behavior

of micron-sized spherical clusters of NPs by changing the amplitude and frequency of

the applied field. They reported different heating behavior for the core and surface

NPs, which highly depends on the field parameters used. Serantes et al. [23] studied

the effect of dipole interactions in clusters of NPs in the form of chains, 2D hexagonal

lattices, cubes and rings. They reported a positive effect of dipole interactions on

heating performance when NPs formed chains, in contrast to the negative effect when

the NPs were found in other studied assemblies, although the beneficial effect tapered

off once chains exceeded eight NPs in length. All of these studies assumed the MS

model for the NPs. One goal of the present work is to examine the impact of internal

structure on the relevant hysteresis loops.

While evaluating the heating efficiency of NP clusters is commonly done based on

their collective heating, experimental studies reported cases of effective MNP therapies

without a global rise in temperature [5, 37]. This can be attributed to the fast

temperature drop of the surrounding tissue within a short distance ( ∼ 10 nm) from

the NP surface [38]. Although there are many unsolved questions on the ultimate

reasons and mechanism of death in cancerous cells through magnetic nanoparticle

hyperthermia (MNH), different studies investigated the local heating of NPs in clusters

to try to understand the process [12, 13]. The present work addresses this issue for a

number of different NP cluster geometries.

This paper is organized as follows. Our model is described in section 5.2. In



136

section 5.3, we explore the use of two anisotropy axes in the MS model in describing

complex NPs, and quantify the effect of varying the distribution of (single) anisotropy

directions on hysteresis loops. In section 5.4 we simulate three NPs in chain and

triangular arrangements, and 13 NPs in an FCC structure. In section 5.5 MSs’ local

loop are studied. Section 5.6 tests the equivalence of simulation results when the

ratio of the AC field sweep rate SR to damping constant α is held fixed for multiple

particles. Finally, we report our conclusions in section 5.7.

5.2 The model

Our goal is to simulate iron oxide NPs composed of magnetite (Fe3O4) or maghemite

(γ-Fe2O3) nanorods corresponding to MNPs used in an experimental study by Dennis

et al. [8]. Among different possible assemblies of nanorods to make up NPs, we studied

three combinations of parallel and perpendicular arrangements of increasing orienta-

tional order labelled 6z4y, 8z2y and 10z in II, and here we use the 6z4y structure to

explore clusters of NPs. Magnetite and maghemite, the most common candidate for

MNH, are two iron oxides that the US Food and Drug Administration and European

Medicine Agency approved for medical usage [39]. They have similar magnetic param-

eters except their magnetocrystalline anisotropy that is cubic in Fe3O4 and uniaxial

in γ-Fe2O3.

For simulating complex NPs composed of ten nanorods with dimensions 6.7 nm×

20 nm× 47 nm, we used the OOMMF [30] software package and its Theta Evolve mod-

ule [40] for finite temperature calculations. In micromagnetics, instead of simulating

individual atomic spins, a magnetization vector represents the collective behavior of

the spins in a simulation cell of size a, which is usually larger than the atomic unit
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cell size a0. In I and II, we explored an RG-based scaling approach for simulating

fix-volume nanorods using fewer but larger cells (with size a = ba0, b > 1), and here

we employ the same approach for simulating clusters of multiple NPs. The LLG equa-

tion describes the magnetization dynamics of simulation cells and involves a damping

constant α that quantifies the energy dissipation as the magnetic moments precess

about the effective field, which is the sum of different contributions, such as the exter-

nal magnetic field (Zeeman) and the effective fields arising from magnetocrystalline

anisotropy, exchange, magnetostatics and temperature (stochastic thermal field). In

magnetic hyperthermia, to control the unwanted heating of healthy tissue through

eddy currents, the frequency f and amplitude Hmax of the applied magnetic field

should be chosen so that sweep rate (SR) of changing field be less than a threshold,

i.e. SR = 4fHmax ≤ 0.25 Oe/ns [41, 42]. As we explored in I, equivalent hysteresis

loops are achievable using faster SR for simulating nanorods, provided that the ratio

SR/α remains constant. For the SR of 0.25 Oe/ns relevant to hyperthermia and an α

of 0.1 for magnetite nanorods, the target ratio is SR/α = 2.5. In this study, the NP

simulations are performed in OOMMF with SR = 50 Oe/ns and α = 20, preserving

SR/α = 2.5.

As in I and II, for simulating NPs with micromagentic cells of the same size as

the crystalline unit cell (a = a0 = 0.839 nm), we use magnetic parameters of bulk

magnetite: saturation magnetization Ms = 480 kA/m [42], and exchange constant

A0 = 0.98 × 10−11 J/m [43], which reproduces the experimental critical temperature

of Tc = 858 K [44] by LLG simulations. Magnetite has cubic crystalline anisotropy,

which we omit since it does not contribute significantly to hysteresis, especially given

the relatively large shape anisotropy of the nanorods. For maghemite simulations, we

include uniaxial anisotropy with energy density K0 = 10 kJ/m3[1]. Samples usually

contain a mixture of both magnetite and maghemite [8], which one could simulate
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with intermediate values of K0. A 6z4y NP is made up of ten nanorods each with

dimensions 8a0×24a0×56a0 and volume V = 6350.0 nm3, with six of them lying along

the z direction and four lying along the y direction. Using the modified RG-based

coarse-graining procedure explained in I and II, we simulate NPs with micromagentic

cells of side length a = 4a0 (scaling parameter b = 4), and with scaled exchange,

anisotropy and magnetostatic interactions at T = 310 K. Neighbouring cells on dif-

ferent nanorods interact via exchange with half the strength as cells within the same

nanorod. We simulate using full magnetostatic interactions, including “self-demag”

within cells. Including magnetostatics means that it is not necessary to include a

non-zero value of K0 for magnetite to approximate the effects of shape anisotropy.

To mimic lattice imperfections, for maghemite NP simulations, the anisotropy

axes of cells is chosen within a 5◦ standard deviation around the long axes of the

nanorods. Hysteresis loops are calculated by averaging over at least 100 independent

runs, showing changes of the normalized magnetization component along the field

mH = M(b)/Ms in response to the external field H(b) = Hmax sin(2πft).

We also use the MS models introduced in II, which refer to single-moment macrospins

that exhibit dynamic hysteresis loops similar to those of NPs. The MS’s effective

magnetic parameters mimic effects of the NP’s magnetic interactions and internal

structure. In this study, we simulate clusters of 6z4y magnetite NPs in OOMMF and

compare their hysteresis loops with clusters of equivalent MSs, using Vinamax [31]

software, as it gives more flexibility in assigning the position of NPs in clusters. Ow-

ing to the smaller number of calculations for MSs, that interact just with dipole

interactions, these hysteresis loop simulations can be performed directly with the

clinically-relevant SR of 0.25 Oe/ns and with α = 0.1.
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The importance of coarse-graining is particularly pronounced when we model mul-

tiple NPs. For example, the simulation time for a cycle of AC field for 13 complex NPs

in an FCC configuration, at the smallest nearest-neighbour separation, using OOMMF

with a = 4a0 cell size and SR = 25 Oe/ns, takes more than 16 days, whereas it takes

around 11 s to simulate 13 MSs with SR = 0.25 Oe/ns, using Vinamax. This huge

difference is due to various factors: the higher number of interactions required for

modeling complex NPs compared to MSs; simulating the empty cells between NPs

takes up some of the OOMMF simulation time, whereas this is not a consideration in

Vinamax; and the small integration timestep of 10 fs required for the small cells used

to model NPs compared to the time step of 1 ps for MSs. Without spatial coarse-

graining, the simulation of complex NPs with OOMMF would take approximately

10× 43 = 640 times as long (since a larger cell permits a longer time step).

5.3 Effective anisotropy in complex NPs

In II, we showed that a MS with Ku = 4.80 kJ/m3 and Ms = 381.6 kA/m exhibits

a hysteresis loop with the same Hc and Mr as a same-volume 6z4y magnetite NP

under a rotationally averaged field. But when the field is applied parallel to the z

axis, MS’s anisotropy should decrease to Ku = 3.64 kJ/m3 along the field to produce

an equivalent loop. Here, we continue our exploration to find a suitable anisotropy

for MSs that provide equivalent hysteresis loops for different directions of the applied

field for γ-Fe2O3 (Ku0 = 10 kJ/m3) and Fe3O4 (Ku0 = 0) 6z4y NPs.

The internal structure of the 6z4y NP means that nanorod anisotropies are found

to lie in both the z and y directions; modelling the MS with two anisotropy axes, along

z and along y, may provide a route to finding a better quantitative match between
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Figure 5.1: a) Changes to the hysteresis loop when a second anisotropy axis along
the y direction with small strength Ky is added to a MS with Kz = 3.64 kJ/m3 and
Ms = 381 kA/m. b) Hysteresis loops for 6z4y NPs of Fe3O4 and γ-Fe2O3 and their
equivalent MSs with single (dashed line) or double uniaxial anisotropies (dotted lines).
The external field is along z for both panels.

MS and NP loops. As shown in Fig. 5.1a, simply adding Ky to the original Kz, even

with a very small value, shrinks the hysteresis loop, which is not desired. Hence, for

the assumption of having two perpendicular anisotropies with Kz and Ky = 2Kz/3

energy densities, analogous to ordering six nanorods along the z and four along the

y axis, new parameters need to be used. As shown in Fig. 5.1b, the hysteresis loop

of a 6z4y maghemite NP exposed to a field along the z axis (Hz), can be reproduced

with a MS having either a single anisotropy Kz = 4.90 kJ/m3 (dashed lines), or

two perpendicular anisotropies with Kz = 15.88 kJ/m3, Ky = 2Kz/3 (dotted line).

Similarly, for a magnetite 6z4y NP, the best fit with only a z-axis anisotropy is with

Kz = 3.64 kJ/m3, whereas if Ky = 2Kz/3 is included, a value Kz = 12.22 kJ/m3

works well.

To get better insight on the accuracy of replacing complex NPs with MSs using

these anisotropy values, we compare the MS and NP loop areas upon tilting the

field away from the z axis in the z − y plane by an angle θ, as shown in the inset
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Figure 5.2: Hysteresis loop area changes as a function of applied field angle θ, see
inset of panel (a), on 6z4y NPs and equivalent MSs with single and double uniaxial
anisotropies for a) γ-Fe2O3 (K0 > 0) and b) Fe3O4 (K0 = 0) NPs.

of Fig. 5.2a. Comparing the loop areas for maghemite (Fig. 5.2a) and magnetite

(Fig. 5.2b) NPs with respect to their equivalent MSs reveals that the presence of

the magnetocrystalline anisotropy in maghemite encourages a closer match between

complex NP and its equivalent MS. Also, adding the second anisotropy to a MS,

slightly improves the loop area agreement for Fe3O4 when θ is in the range of 5− 33◦

in contrast with γ-Fe2O3 that has a loop area closer to its single anisotropy MS. The

relatively large value of Kz when two anisotropy axes are used is closer to that of the

MS model of a single nanorod, and thus physically appealing. However, this larger

value of Kz also likely causes the increased “squareness” in the shoulder area of the

loops seen in Fig. 5.1 for the two-axes cases. Thus, further investigation into using two

axes may prove to be fruitful, but it appears that there will be unavoidable trade-offs.

For the remainder of this study, we employ only a single anisotropy axis in the MS

models.

Real materials will have properties that vary depending on structural defects,

chemical impurities, size polydispersity, and other forms of disorder. One way to
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Figure 5.3: a) Hysteresis loops of 6z4y maghemite nanoparticles when the field is
applied along the z axis, and the anisotropy axis of each cell has a random angular
deviation from the long axis of the rod of which it is a part. The random angles
are drawn from a normal distribution with zero mean and standard deviation (Std.)
ranging from 0 to 50◦. b) Loop area versus standard deviation of the anisotropy
direction.

model such effects in simulations is to introduce distributions in micromagnetic cell

properties [1]. While the relationships between the standard deviations of such dis-

tributions and the degree of various forms of disorder are often difficult to quantify,

it is not uncommon to have variations of parameters in the range of 0 to 20% [6, 23].

Here, we simulate a 6z4y maghemite NP when each cell’s anisotropy axis is chosen

from a normal distribution around the direction given by the nanorod’s longest edge.

We vary the standard deviation (SD) of the distribution between 0 and 50 degrees

and plot the resulting hysteresis loops. As shown in Fig. 5.3b, the loop area changes

approximately linearly with the SD of the anisotropy axis direction with a slope of

-1.74 Oe/degree and an intercept of 700 Oe. With SD = 10 degrees, the loop area

is reduced by 1%, with SD = 20 it decreases by 3%, and with SD = 50 degrees it

decreases by almost 12%. Thus we see that, for this system at 310 K, the effect of

varying anisotropy directions is not very large.
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Figure 5.4: a) Hysteresis loops of three NPs and three MSs when their center-center
distance varies from 1 - 3 NP-diameter (d). b) Loop areas vs center-center distance
for three chained NPs and MSs as shown in the inset. The energy per loop per NP
can be calculated via E = µ0MsVNPSloop.

5.4 Multiple NP heating efficiency

Our investigation on the heating efficiency of clusters of particles employs OOMMF

software for simulating complex NPs and Vinamax for MSs. NPs are simulated using

properties of magnetite (Ms = 480 kA/m, Ku = 0) with 6z4y internal structure and

the equivalent MS has the same volume as ten nanorods (∼ 50 nm size), uniaxial

anisotropy of K = 3.64 kJ/m3 and Ms = 381.6 kA/m. Because of the computational

expense of simulating complex NPs, we use the time-scaling technique previously

introduced in I and II and tested in Sec. 5.6, i.e. testing the equivalence of simulations

done using SR = 50 Oe/ns and α = 20 with those using SR = 0.25 Oe/ns and α = 0.1.

5.4.1 Chained particles

Chains of NPs are the most common aggregation structure reported in simulation

studies [12, 14, 21, 23]. We start with a chain of three particles and compare hysteresis

loops of three complex magnetite NPs with three equivalent MSs. In addition to the
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average hysteresis loop of particles at different center-center distances, a single NP and

MS’s loops are shown as benchmarks representing the limit of independent particles,

i.e. when interactions have a negligible effect on the particle’s magnetization response

to the field. Corresponding loop areas are also calculated as a simpler metric of

comparison. As shown in Fig. 5.4, the hysteresis loops corresponding to MSs are

in reasonable agreement with those from NPs. The wider loops corresponding to

the closer particles are a result of the effect of dipole interactions aligning the chain

particles’ magnetizations, in agreement with the results reported by Torche et al. [12],

Anand [14], Valdes [21] and Serantes et al. [23]. Convergence of the loop area to the

single NP or MS case implies that particles separated by more than 3 NP diameters

(d), i.e., r > 3d, are approximately independent; see Fig. 5.4b.

5.4.2 Triangular order: when the internal structure matters

Serantes et al. [23] studied the heating efficiency of eight NPs in a hexagonal structure,

which can be considered as an extended triangular cluster, and showed that dipole

interactions diminish the hysteresis loop area compared to non-interacting particles.

We consider here three NPs in triangular order when their center-center distance (r)

varies relative to the NP diameter (d) and the applied field is along the z, parallel

to the MS’s uniaxial anisotropy and the 6z4y NP’s shape anisotropy axis, as shown

in the insets in Figs. 5.5a and b. The hysteresis loops, corresponding to the systems

of three NPs on the vertices of an equilateral triangle with side lengths ranging from

r = d to 3d and similarly for three MSs with r between d and 4.5d, and converging

to the independent limit, are shown in Figs. 5.5a and b, respectively. The remarkable

difference between the hysteresis loops of NPs and MSs for small r reveals that, for the

triangular configuration, the combined effect of exchange and magnetostatics on spin
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Figure 5.5: Hysteresis loops as a function of particle distances for systems of three
interacting a) NPs b) MSs, on vertices of an equilateral triangle. d is a NP diameter
and r is the particles center-center distance.

alignments of complex NPs is qualitatively different from that of dipole interactions

for MSs, and results in significantly larger hysteresis loop areas for NPs compared to

MSs. Fig. 5.6 displays the loop area as a function of particle distance, for the same

arrangements considered in Figs. 5.5a and b. This serves to quantify the poor quality

of the MS approximation, especially at small r. As expected, the loops converge to

the single particle’s as r grows.

Minimizing the energy of three dipoles on the vertices of a triangle in the absence

of an external field shows that the lowest energy configuration is achieved when dipoles

(magnetization vectors) make 120 degrees with respect to each other [45]. Fig. 5.7

compares the hysteresis loops of three NPs and MSs in triangular order when the

MSs’ anisotropy axes are aligned 120 degrees with respect to each other and when the

effective anisotropy axes are along the field, with r = 2.5d, as shown in the insets. It

is clear that the biggest loop area corresponds to three complex NPs with anisotropy

aligned with the field. After that, the loop for three MSs with anisotropy axes along

the external field has the second largest area, resulting from the larger spin alignment
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Figure 5.6: Loop area as a function of inter-particle distance (r) normalized with a
NP diameter (d), for three NPs and MSs on vertices of an equilateral triangle.

to the anisotropy axes. The 120◦ alignment case exhibits the smallest area. As NPs

are not fixed after injection into the body, the 120◦ configuration might be their

preferred arrangement, and under application of an external field they may rearrange

to align their anisotropy axes to the field. Different hysteresis loop areas for these

cases reveal the necessity of more elaborate simulations that include particle rotation

as well as their internal structure.

5.4.3 NPs in an FCC structure

Packed arrays of NPs in different arrangements such as spheres, cubes and FCC struc-

tures have been studied and reported in the literature [15, 18, 23, 32]. Fu et al. [18]

investigated the dipole interaction effects on the heating performance of a cluster

of 64 and 63 superparamagnets in simple cubic and FCC structures, respectively.



147

x
z

y H

Figure 5.7: Comparison of NPs and MSs arranged in a triangle of side length 2.5d.
The green curve is the hysteresis loop for three 6z4y NPs, oriented as in the left inset.
Black arrows represent the anisotropy axes in MSs. The dashed blue loop corresponds
to assigning the MS anisotropy axes at 120◦ relative to each other (the lowest dipole
energy arrangement at H = 0). The red dot-dashed loop corresponds to the case
where the MS anisotropy axes are aligned with the field.

They introduced a concept called morphology anisotropy, which is defined in terms

of the aspect ratio of the semi-axes of an ellipsoid which is equivalent to the clus-

ter, and concluded that in the structures without morphology anisotropy the effect

of dipole interaction is minimized and the cluster’s loop area is almost the same as

non-interacting particles. This can be interpreted to mean that the effect of dipole in-

teractions is considerable so long as the cluster is extended in one direction, similar to

a column of NPs. Serantes et al. [23] studied eight nanoparticles in a cubic structure

and observed a negative effect of dipole interactions on their global heating compared

to non-interacting nanoparticles, unlike in the case of chained particles, where dipolar

interactions enhance heating. Here, by exploring the effect of dipolar interactions on

the hysteresis loop at different inter-particle distances, we are comparing the response
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Figure 5.8: Hysteresis loops of particles on an FCC structure (as shown in the inset)
containing 13 a) NPs, b) MSs, at different center-center distances. The effective
anisotropy of particles is aligned to the applied field. White arrows show the effective
anisotropy axes in magnetic particles.

of NPs and MSs in situations of the kind reported in Ref. [23]; however, they focus

on eight MSs in various geometries, and at fixed inter-particle distance.

In this section, we simulate complex NPs and MSs in an FCC structure at different

center-center distances. Figs. 5.8a and b exhibit the hysteresis loops of thirteen NPs

and thirteen MSs in the FCC structure shown in the inset of panel (a). Similar to

particles in the triangular order, the internal structure of the NP plays a role in deter-

mining the loop shape that is not accounted for by the equivalent MSs. Comparing

the hysteresis loops in Fig. 5.8 shows that the biggest loop differences are related to

smaller r when particles are closer to each other. For example, for r = d and 1.5d,

the steeper slope of the loop in a cluster of MSs originates from bigger jumps in the

total magnetization than in a cluster of NPs. This can be attributed to the fact that

the smallest contribution due to each MS flip is more pronounced in the total magne-

tization of thirteen MSs compared to the smallest contributions from each simulation

cell among 21840 cells in a cluster of NPs.

As shown in Fig. 5.9, changes of the hysteresis loop area with varying particle
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distance implies that the intraparticle exchange and self-demag counteract some effects

of the interparticle interactions, so that NPs further than 2.5d apart have a loop area

close to a single NP’s, whereas the role of dipole interaction between the MSs can not

be ignored for r < 5d.
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Figure 5.9: Loop area as a function of particle distance for clusters of complex NPs
and MSs in an FCC structure.

5.5 Local vs global loops

Recent studies emphasize the importance of local heating of NPs in clusters rather

than their collective (global) heating, as the temperature of the surrounding tissue

is different in vicinity of the individual NPs [5, 37]. While exploring local hysteresis

loops – those of individual NPs – is a good first step in understanding the distribution

of heating near and within a collection of NPs, whether or not the individual loops

represent actual heating of individual NPs is not obvious, especially when interacting
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particles have inverted local loops [12, 13]. In this section, we explore the local

hysteresis loops of individual MSs in collections of particles.

5.5.1 Chains and triangles

First, we consider clusters of three MSs as shown in Fig. 5.10. We use different line

styles and colors to differentiate local loops. Furthermore, to make it clear when we

have inverted loops, the portion of the magnetization curve corresponding to the first

half of an AC field cycle, when the field decreases from Hmax to −Hmax, is plotted

with symbols; the magnetization curve for the second half of an AC field cycle, when

the field increases from −Hmax to Hmax, appears with no symbols.

As summarized in Fig. 1.4, as long as dipoles are parallel to the joining line (chain

axis), the dipole energy is in favor of their head-to-tail alignment. In Fig. 5.10a,

MS1 and MS3, the MSs at the two ends of the chain, feel the same dipole interaction,

which is different from the net dipole field from MS1 and MS3 acting on the particle in

the middle of the chain, MS2. The competition between dipole interactions, uniaxial

anisotropy and Zeeman energy determines stable magnetic states and their dynamics.

In this case, the difference in the dipole energy that the MSs at the ends and middle

of the chain experience is not big enough compared to their anisotropy and Zeeman

energy to cause different magnetization dynamics, as shown in Fig. 5.10a. When

the chain is made of smaller NPs, due to the smaller volume-dependent anisotropy

energy, this energy difference can be considerable and results in different local loops,

as reported by Torche et al. [12].

In contrast, if our MSs are in a triangular arrangement, as in Fig. 5.10b, the mag-

netization of particles at the base (MS1, MS2) exhibit the same dynamics, which are

very different from that of MS3. As mentioned before, the lowest energy arrangement
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Figure 5.10: Comparing individual MSs’ hysteresis loops with the global loop for
three MSs ordered as a) a chain and b) a triangle with the anisotropy axes along the
field, c) same as b except the anisotropy axes of the MSs make 120 degrees with each
other. In all the arrangements MSs are at the closest distance to each other, r = d,
Ms = 381.6 kA/m and K = 3.64 kJ/m3. Filled triangles distinguish the magnetization
changes at the first half of a cycle, i.e. when Hmax → −Hmax. We get Ms = 0.8 as MS
parameters are corresponding to its equivalent NP and the magnetization is scaled by
0.795.

at H = 0 and K = 0 with three dipoles in a triangle is when they make 120◦ with

respect to each other. Starting from the highest spin alignment to the high external

field in the z direction, as the field decreases the dipole fields tend to tilt MS1 and MS2

towards the 120◦ state and away from the z axis. When the field is very small, but

still positive, the net effect of the Zeeman, anisotropy and, most importantly, dipole
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interactions results in a magnetization flip of MS1 and MS2. The hysteresis loops of

MS1 and MS2 in Fig. 5.10b are called “inverted” since the (positive) loop area implies

that the NP is doing work on its surroundings and thus absorbing heat. Considering

that a normal hysteresis loop is due to the delayed alignment of the magnetization

with the applied field, an inverted loop occurs when a spin flips in advance of the

external field changing direction. In the inverted case, a spin is “helped along” by

the dipolar interactions of neighboring particles. MS3 exhibits a loop similar to that

of an independent particle, but with a larger Hc arising from the dipolar interactions

with MS1 and MS2. The average hysteresis loop of these MSs represents the global

heating performance and is shown with a black curve in Fig. 5.10b, with an inverted

middle portion.

Another triangular arrangement to study is one in which the MSs’ anisotropy

axes follow the alignment favored by dipole interactions, as shown in the inset of

Fig. 5.10c. In this case, we see no sudden magnetization flips for MS1 and MS2 which

means there is no energy barrier for dipoles to overcome to get to the global minimum

energy state, i.e. MS1 and MS2 dipoles lie in positions with minimum energy during

the entire field cycle. The loops for MS1 and MS2 are inverted from start to finish.

Similar to the previous case, MS3 experiences competing interactions and undertakes a

magnetization flip only when the external field overpowers the anisotropy and dipolar

fields from MS1 and MS2. Put in another way, for the H = 0 and K = 0 ground state,

if MS3 points along positive z, then MS1 and MS2 have negative z components, and

this is what we see in the loop for decreasing H at H = 0; the inverted loops are a

reflection of the dipolar ground state. In this ground state configuration, the dipolar

field due to MS1 and MS2 at MS3 has a component in the z direction, and this tends

to counteract the increasingly negative H, resulting in a much wider loop for MS3

than expected from anisotropy alone. The average of the local loops results in a global
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loop with 21% smaller area compared to the previous ordering with anisotropies along

the z-axis.

Munoz et al. [13] has a detailed discussion about how local hysteresis loops of

interacting NPs do not represent their heating because particles exchange work with

their neighbours through dipole interactions. They calculated local heating by con-

sidering the dynamical process of energy dissipation through the damping torque. We

note that the loops that we have presented thus far are calculated with respect to

the external field alone, and not with respect to the local field (the effective field)

acting on an individual NP. Calculating such loops may help us bridge the insights

from Munoz et al’s dynamical theory and local heating based on a thermodynamic

description.

5.5.2 FCC structure

Different dynamics of MSs in a triangular order encourages us to look at the local

loops for MSs in the FCC structure. A labeled model of MSs and their local loops

for nearest neighbour distance r = d and 1.5d are shown in Fig. 5.11 and 5.12,

respectively, with the MSs’ uniaxial anisotropy and applied field both along the z

axis.

Spatial coordinates of the MSs in FCC structure are reported in Table. 5.1 as

a function of r. Owing to the symmetries of the structure, some sites should have

identical loops, which are plotted in the same panel in Figs. 5.11 and 5.12. As in

Fig. 5.10, magnetization changes through a decreasing field half cycle are distinguished

with filled symbols on the hysteresis loops and each loop is calculated via averaging

over 1000 independent field cycles.
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Table 5.1: Particle coordinates at FCC structure as a function of r, which is the
nearest neighbor center-center distance, x = r/

√
3 and θ = sin−1(1/

√
3). Colors refer

to Fig. 5.11.
MS No. x y z color
1 0 0 0 pink
2 0 0 r pink
3 0 0 −r pink
4 0 r sin(π/3) r cos(π/3) pink
5 0 −r sin(π/3) −r cos(π/3) pink
6 0 r sin(π/3) −r cos(π/3) pink
7 0 −r sin(π/3) r cos(π/3) pink
8 r cos(θ) r sin(θ) sin(π/6) r sin(θ) cos(π/6) blue
9 r cos(θ) r sin(θ) sin(π/6) −r sin(θ) cos(π/6) blue
10 r cos(θ) −r sin(θ) 0 blue
11 −r cos(θ) r sin(θ) 0 green
12 −r cos(θ) −r sin(θ) sin(π/6) r sin(θ) cos(π/6) green
13 −r cos(θ) −r sin(θ) sin(π/6) −r sin(θ) cos(π/6) green

As shown in Fig. 5.11a, the central particle MS1 is the symmetry center of the

structure with the same distance from 12 neighbouring MSs. When r = d, the effect

of neighbouring dipoles on MS1 results in a sudden magnetization flip at a small

coercivity (Hc); see Fig. 5.11b. The average of individual local loops results in the

global hysteresis with small area, small Hc and Mr. As shown in the labeled model

in Fig. 5.11a, MS2 and MS3 have equivalent positions and exhibit similar dynamics.

Their hysteresis loops have the same Hc as MS1 but smaller Mr, as shown in Fig. 5.11c.

MS4-MS6 and MS5-MS7 are two other pairs of MSs exhibiting similar magnetization

dynamics with inverted loops. The slight difference in the two pairs’ hysteresis in

the low field range is attributed to the finite number of instances averaged over in

each loop calculation; see Fig. 5.11d and e. Moreover, the positions of MS8-MS9

and MS12-MS13 are also symmetric; therefore, they have similar local loops with a

slight difference in the low field range, which is expected to vanish upon increasing

the number of samples in the loop averaging calculations; see Fig. 5.11f and h. MS10
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and MS11 are the last equivalent pair, having opposite magnetization dynamics and

loop areas (one is positive, one is negative); see Fig. 5.11g.

Looking at the locations of the MSs with inverted loops, i.e., MS4, MS5, MS6 and

MS7, we see that all are placed in the middle plane bounded with upper and lower

layer dipoles, which put them in a configuration at the base of a triangle as the cases

examined earlier. In contrast, MS8, MS9, MS11, and MS12 have positive loops and

configurations similar to the dipole in the upper corner of the 2D triangle.

Looking at the local loops for MSs in the FCC structure with an interparticle

distance of r = 1.5d in Fig. 5.12, we see no inverted loops, which is expected for

weaker dipole interactions, and we get a global loop with bigger area. These local

loops appear to have more random shapes compared to r = d on account of averaging

of ten times fewer loops. Having our findings and the description of local loops from

Munoz et al. [13] in mind, we conclude that although the global heating is less for

r = 1d compared to r = 1.5d, inverted local loops may mean high local heating near

particular MSs. It would be interesting to apply the framework of Munoz et al. for

calculating local heating to this configuration of MSs.

5.6 SR/α scaling for multiple NPs

In addition to coarse-graining and using an MS model, a useful technique for de-

creasing the calculation time is to simulate the magnetic system with a faster SR

but keeping the ratio SR/α constant, in our case equal to the one arising from the

clinically and physically appropriate parameters SR = 0.25 Oe/ns and α = 0.1. A

more detailed explanation of this equivalence can be found in I and here we test this

technique for assemblies of NPs and MSs using OOMMF and Vinamax, respectively.
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Figure 5.11: FCC structure made of 13 MSs, and their global and local hysteresis
loops when particles are at the closest distance, r = d. Closed and open markers
distinguish the first (Hmax → −Hmax) and second (−Hmax → Hmax) halves of a cycle,
respectively. a) Labeled MSs on the particle arrangement having uniaxial anisotropy
along the applied field. b) Global hysteresis loop for 13 MSs shown in black and the
local loop for the central MS (labeled with 1 in a) in green. Local hysteresis loops
for c) MS2 and MS3, d) MS4 and MS6, e) MS5 and MS7, f) MS8 and MS9, g) MS10
and MS11, h) MS12 and MS13 in the FCC structure as labeled in (a). Each loop is
calculated via averaging over 1000 independence field cycles
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Figure 5.12: Global and local loops for 13 MSs making an FCC structure with uniaxial
anisotropy along the applied field when r = 1.5d. a) Labeled MSs on the FCC
structure. b) Average hysteresis loop for 13 MSs in black and the local loop for the
central MS (MS1) shown in green. Local hysteresis loops for c) MS2 and MS3, d) MS4
and MS6, e) MS5 and MS7, f) MS8 and MS9, g) MS10 and MS11, h) MS12 and MS13
in the FCC structure as labeled in (a). Closed and open markers distinguish the first
(Hmax → −Hmax) and second (−Hmax → Hmax) halves of a cycle, respectively. Each
loop is calculated via averaging over 100 independence field cycles.

We start our investigation with NPs at the closest distance (r = d) in a triangular

array. As shown in Fig. 5.13a, except for slight mismatches at the shoulders of the

loop, we still get an acceptable loop agreement for loop areas with values 641, 663,
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Figure 5.13: Test of SR/α scaling for three NPs (simulated in OOMMF) in triangular
order with different separation a) r = d, b) r = 1.5d, where d is a NP diameter.

662, 637 Oe for SR = 2.5, 25, 50 and 250 Oe/ns, respectively. At higher particle sep-

aration, r = 1.5d, the loop agreement is even better over the two orders of magnitude

of SR simulated; see Fig. 5.13b.

Testing Vinamax for validity of this technique, we first compare a single MS hys-

teresis loop over a range of SR and α values, and as shown in Fig. 5.14a, the limit of

validity of this scaling appears to be SR = 1 Oe/ns, which is only four times faster

than SR = 0.25 Oe/ns. This perhaps can be attributed to the numerical approach

that Vinamax is based upon, the Dormand-Prince solver (an embedded Runge-Kutta

method) [46], versus Euler for OOMMF. Moreover, a combination of three MSs in

a triangular order simulated with Vinamax confirms the results that SR = 1 Oe/ns

is the threshold of validity of the scaling using this software. The difference in the

limits of applicability for the SR/α scaling technique for different numerical solvers is

a matter of future investigation.
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Figure 5.14: Test of SR/α scaling for simulations in Vinamax for a) a single MS, b)
three MSs in triangular order, r = d.

5.7 Conclusions

This work reports on an application of the RG-based coarse-graining method, explored

and extended in I and II, to simulate larger collections of magnetic nanoparticles

that would otherwise not be numerically feasible, and examines the validity of the

macrospin approximation. We apply this method to simulate dynamic hysteresis

of clusters of three and thirteen magnetite complex nanoparticles, made of nanorod

building blocks at T = 310 K.

We investigate a MS model, a macrospin having single or double uniaxial anisotropies

with tailored anisotropy strength and saturation magnetization to produce equivalent

hysteresis loops as a complex NP with the same volume. After finding the effective

parameters for a single MS in II, we explore here whether a cluster of MSs is a good

approximation for a cluster of complex NPs via their global hysteresis loops. We

compare what we call their independence distance, the nearest-neighbour distance at

which the cluster’s global loop becomes approximately the same as for independent

particles. For simulations of chains of three NPs and MSs, we find that the loop areas
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in both cases scale in a similar way with interparticle distance, decaying as 1/r3 as one

expects for dipoles. Also, MSs and complex NPs further apart than three NP diam-

eter act as non-interacting particles. In contrast, for triangular order, the nontrivial

effect of the interactions between complex NPs compared to the dipole effects be-

tween equivalent MSs results in dissimilar hysteresis loops for a range of interparticle

distances. In this structure, MSs interact more strongly than NPs, as their indepen-

dence distance is 5d compared to 2.5d for NPs. Similarly, for the FCC structure, the

independence distance of MSs reaches 7d while, based on mild extrapolation of the

apparent trend, it is roughly 3.5d for complex NPs.

We examined the local hysteresis loops of individual MSs in different clusters

and compared their magnetization dynamics in terms of the dipole interactions they

experience due to their location in a cluster. The appearance of inverted loops, while

not directly yielding the degree of local cooling or heating, do signify significant work

being done by NPs on each other, which can mean that local heating around NPs is

uneven.

Most simulation studies of magnetic nanoparticles are based on the MS model. We

explore and compare the MS model and complex NP model through micromagnetic

simulations of dynamic hysteresis for three of many possible aggregations of magnetic

particles. Noting that interparticle distance in clusters is controlled by many factors

such as medium viscosity, temperature, particle shape, size and their coating shell

thickness, our results suggest that the MS model, which approximates magnetostatic

interactions with dipole interactions, does not reproduce the NP case for the more

complex arrangements of the particles. Analyzing the loop area changes for clusters

of particles at different particle distances and various configurations gives an idea

of the negative or positive magnetostatics effects on their heating efficiency. It also
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determines a threshold interparticle distance beyond which the impact of dipole inter-

actions is negligible, and we find that the particles’ magnetization dynamics is more

entangled in more complex structures.

As far as using two anisotropy axes in the MS description of a NP, we do not see

significant improvement at the level of a single particle. However, it would be worth

testing whether having two anisotropies yields improvement in describing NPs in non-

chain clusters, where the single-axis MS model breaks down at smaller interparticle

distances.

We also looked at the loop area changes for a 6z4y NP when each cell’s uniaxial

anisotropy is drawn from a normal distribution with a standard deviation of θ degrees

around the long axes of nanorods. This is to model the effect of natural variations

in magnetic parameters, and we find a linear relation between the loop area and

θ. Finally, the SR and α scaling technique for multiple particles is validated for

both OOMMF and Vinamax, two micromagnetic software packages that we use here,

although the scaling has a wider range of validity with OOMMF, which is likely due

to the type of solver employed.
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Chapter 6

Summary and future work

6.1 Summary

We present a coarse-graining method for simulating dynamic MH hysteresis loops of

immobile magnetic nanoparticles (NPs) with complex internal structure, based on

a previously reported renormalization-group approach. Our method enables one to

simulate loops for multiple NPs at hyperthermia-relevant sweep rates (SR) in a rea-

sonable simulation time that otherwise would take months using the computational

resources available to us. Although we extend and apply the coarse-graining method-

ology to calculate the dynamic hysteresis loop of NPs composed of nanorods, it should

be applicable to other magnetic systems at finite temperature.

The coarse-graining scheme enables simulating magnetic nanoparticle using larger,

and thus fewer, simulation units than the atomic unit cells to get the MH hysteresis

loops invariant with simulation cell size. It prescribes scaling of the magnetic parame-

ters and interactions with the simulation cell size and temperature. This method was
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initially introduced by Grinstein and Koch [1] and they reported its successful applica-

tion for a 2D system that included Zeeman and exchange interactions. Our approach

uses the formalism of Grinstein and Koch applied to a 3D system, and is modified to

get a more accurate description of the temperature dependence of the magnetization.

It is also extended to include magnetostatic interactions in addition to the Zeeman,

exchange and magnetocrystalline anisotropy, which allows for simulating a wide range

of magnetic systems.

Furthermore, we introduce a time scaling method that involves performing sim-

ulations with faster SR, along with an appropriately scaled damping factor α in the

LLG equation, to produce equivalent results. This is useful since the slow (from the

simulation perspective) sweep rates corresponding to hyperthermia applications are

time consuming. We determine the range of validity for applying this technique to

multiple complex NPs and MSs using both OOMMF and Vinamax software.

The importance of our approach can be summarized in three main points. First,

using this coarse-graining method decreases the number of calculations and the sim-

ulation time by a factor up to 83. Second, one can benefit from using up to 10 times

larger integration time steps with larger simulation cells. Third, the time scaling

technique allows for simulations with up to 1000 times faster SRs.

Equipped with the time scaling and coarse-graining techniques, we model clusters

of NPs comprised of nanorods – NPs similar to those used in an experimental study

for treating human breast cancer in mice [2]. We simulate NPs at different levels,

starting from nanorods, the building blocks of NPs, and then stacking them to form

roughly 50 nm size NPs with different internal structures. Then we simulate clusters

of NPs in chains, triangular and FCC configurations.

Simulating complex NPs enables us to evaluate the macrospin (MS) model, being
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widely used in micromagnetic studies, as an approximation for NPs. We explore the

primary idea of the MS model, in which the combined effect of exchange interac-

tions, self-demag and magnetocrystalline anisotropy on the magnetization dynamics

of a complex NP is modelled with a single magnetization vector subject to uniaxial

anisotropy. By comparing hysteresis loops of NPs and MSs to get similar values for

Hc and Mr, we find the effective magnetization and anisotropy constants for MSs

corresponding to NPs with various internal structures.

Additionally, in particle clustering, the MS model approximates the magnetostatics

between complex NPs with dipole interactions. Comparing hysteresis loops of NPs

and MSs in clusters shows that the MS model breaks down in approximating the

NPs’ magnetization dynamics at small particle separations. Further investigation is

recommended for finding MS-like models in this regime.

In order to better understand the magnetization dynamics of clusters of MSs, we

evaluate their local hysteresis loops and see that owing to interparticle interactions

we get inverted local loops. Further exploration of the energy exchange between MSs

can answer some of the questions about local heating of individual particles and the

effect on potential cancer treatments.

6.2 Future work

Our coarse-graining method is, in principle, applicable to other magnetic systems, for

example, those with application to magnetic recording media [3]. It also provides a

framework for a variety of possibilities to consider in order to find acceptable approx-

imations for describing clusters of NPs. As we have already started exploring MSs

with two uniaxial anisotropies for describing a single NP, it is worth looking into their
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functionality in clusters of MSs.

Our procedure for finding effective MS parameters for both nanorods and NPs

involves carrying out simulations of MSs with different values of Keff and interpolating

to find the value that yields the value of Hc obtained from detailed or coarse-grained

simulations, essentially a fitting procedure. For nanorods, we hope to find a way of

using the coarse-graining method to predict M eff
s and Keff directly, without needing to

fit. For NPs, predicting MS parameters is likely less straightforward, but examining

trends in parameter values for different internal configurations of nanorods might yield

useful guidance.

Another open task is to probe the effect of work exchange between clustered par-

ticles, and how it affects their local heating. This problem has been addressed from

different aspects [4, 5] but a clear formalism for measuring this internal effect is still

missing.

Surface anisotropy has not been included in our coarse-graining method but finding

how to coarse-grain it and estimate its effect on NP magnetization dynamics is a

potential research direction.

The key feature of magnetic NPs is their response to an applied magnetic field,

and how their magnetization aligns with the applied field. This alignment can occur

via different rotation mechanisms. The common process, used in this thesis, involves a

particle’s magnetic moment rotating inside the particle to align with the field through

so-called Néel relaxation. The delayed aligning of the magnetic moment with the

changing field is quantified through an MH hysteresis loop, and the enclosed area of

the loop represents the amount of the magnetic energy added to the system, which

is usually assumed to dissipate as heat. Another process involves the whole particle

rotating to align its magnetic moment with the field. This is called Brownian rotation,
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and the friction between NPs and the surrounding fluid molecules results in heating.

The relevant process is determined by which reversal process occurs on a shorter time

scale.

In the Néel process, the changing field alters the magnetization’s stable positions.

The energy minima are separated by an energy barrier due to crystalline and shape

anisotropy. When the size of NPs is smaller than 15 − 20 nm, thermal fluctuations

provide the required energy for the magnetization to flip before the whole nanoparticle

rotates. So, for these particles, Néel relaxation is dominant, and their Brownian

rotation is usually ignored due to its longer relaxation time [6]. Various studies have

used Néel-rotation particles for magnetic hyperthermia applications [6–8].

In contrast, for larger single domain nanoparticles, in the size range of 20−80 nm,

the Brownian and Néel relaxation times can be comparable [6]. In this case, a nanopar-

ticle’s rotation continuously changes the magnetization’s relative alignment to the field

and perturbs the internal rotation process. Therefore, the magnetization aligns with

the field due to the coupling of the Néel and Brownian relaxation. Recently, Usadel [9]

derived the differential equations for magnetization dynamics in this coupling process,

but the methodology has not yet been applied in the context of hyperthermia, where

the internal magnetization dynamics of NPs may be complex. Exploring this coupling

process through simulations can be done from at least two perspectives. The first is

to study systems at the nanoparticle level, where the magnetization of a mobile NP

immersed in solvent is coupled to its rotational motion. Simulating mobile magnetic

NPs may give more in-depth insight into nanoparticle functionality in the body and

unveil potentials for more effective magnetic hyperthermia. The second is to study

the coupling between magnetic and translational degrees of freedom at the atomic

level, by which the process of magnetic heating is directly simulated. This kind of
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fine-grained simulation will be limited in terms of spatial and temporal scales, but

may, for example, provide hints on how to incorporate atomic-scale effects, such as

those arising from defects, impurities and surfaces, into coarse-grained models.
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Appendix A

Magnetostatics Induced Shape

Anisotropy

The goal of this appendix is to provide an outline of the calculation of the magneto-

statically induced shape anisotropy of a magnetized particle. To do this, we first re-

view the demagnetization tensor calculations and then compute the shape anisotropy

constant corresponding to a rectangular prism. At the end, simulation results are

reported that can be compared to our T = 0 calculations. Background material for

this appendix is taken from Refs. [1–3].

A demagnetization field is defined as a magnetostatic field generated by the mag-

netization of an object. For a uniformly magnetized object, the demagnetization field

can be defined in terms of a demagnetization tensor, N [1]. A uniform demagnetiza-

tion field inside of a magnetized object can only be achieved in ellipsoids [2], and can

be written in terms of the demagnetization tensor,

H = −N ·M. (A.1)
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For shapes other than ellipsoids, a uniformly magnetized body does not produce a

uniform internal field. In this case, Eq. A.1 still applies if we consider the internal field

averaged over the volume of the object [1]. When we have two uniformly magnetized

volumes v and v′, which may overlap, with respective magnetizations M and M′, the

average field in v due to the magnetization in v′ is,

〈H〉v = −M′ ·N, (A.2)

where the i and j components of N are,

Nij = − 1

4πv

∫
v

dv

∫
v′
∇′i∇′j

(
1

|r− r′|

)
dv′, (A.3)

and the resulting energy in v due to v′ is,

Ed = −µ0

2
M ·N ·M′v. (A.4)

It should be noted that N depends on the distance between the two volumes, as well

as their shapes and relative orientations.

For simulating a ferromagnetic body with nonuniform magnetization, we divide

the body into smaller cells, such that each cell can be considered to have a uniform

magnetization. To calculate the demagnetization field in the body we need to average

over all the cells’ demag fields. Each cell’s demag field (Hi) is a sum of the products

of the magnetization and the demag tensor of all the cells of the body,

Hi = −
∑
j

N(ri − rj) ·Mj (A.5)
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where the sum is over all the cells in the body, including the ith cell itself, and

N(ri − rj) =
1

4πvi

∫
Si

dS

∫
S′j

dS′

|r− r′|
. (A.6)

N(ri − rj) is the demagnetization tensor calculated for source cell j and target cell

i. The notation N(ri − rj) indicates the implicit dependence of Nij on the distance

between, and relative orientations and sizes of cells i and j.

For calculating the averaged demagnetization field at a target cell i, one approach

is to consider the observing point at the center of cell i and use a point-function de-

magnetizing tensor. Another practice is to average over the point functions calculated

at all the points of the target cell i. Fukushima et al. [3] worked out a set of formulas

for calculating the demagnetization tensor components of a rectangular prism using

the volume average approach. We employ their formulas for our nanorod model that

has aspect ratios of 1× 3× 7 along x, y and z, respectively, and obtain,

NVolumeAve =


0.65992 0 0

0 0.24061 0

0 0 0.09947

 . (A.7)

OOMMF also provides functionality for reporting the demagnetization tensor, and

we confirm that we obtain the same numerical result using OOMMF.

Using Eq. A.4 to calculate the self-demagnetization energy, i.e., v = v′, M = M′,

and using the fact that the demagnetization tensor is symmetric, the self-demagnetization
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energy is,

Ed = −µ0v

2

(
M2

xNxx +M2
yNyy +M2

zNzz+

2MxMyNxy + 2MxMzNxz + 2MyMzNyz

)
.

(A.8)

The uniaxial anisotropy energy is E = −Ku sin2 θ, and we would like to write Ed

in this form. Writing the components of M in terms of spherical coordinates as

Mx = M sin θ cosϕ, My = M sin θ sinϕ and Mz = M cos θ, and noting that N is

diagonal in our case, Ed can be written up to a constant as [2],

Ed
v

= −Ksh sin2 θ, (A.9)

with the shape anisotropy energy density given by,

Ksh =
µ0M

2

2

(
Nxx cos2 ϕ+Nyy sin2 ϕ−Nzz

)
. (A.10)

Here, Ksh depends on the angle ϕ since Nxx 6= Nyy. However, the most probable

direction of the magnetization corresponds to the value of ϕ at which Ksh is minimized.

Finding the roots of the first derivative and sign of the second derivative of Ksh with

respect to ϕ, for Nyy < Nxx (i.e. prism is longer in y than in x), ϕ = π/2 and 3π/2 (on

[0, 2π]) give positions with the minimum energy for the magnetization. Substituting

ϕ = π/2 in Eq. A.10 and demagnetization tensor values from Eq. A.7, we get the

shape anisotropy energy density,

Ksh =
µ0M

2

2
(Nyy −Nzz) = 20432.074 = 20.4 kJ/m3. (A.11)

As a first step in testing the above findings, we compare the coercivity of a block
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having magnetostatic interactions (self-demag) with that of a macrospin with uniax-

ial anisotropy and anisotropy energy density Ku = Ksh, the latter of which can be

calculated analytically given the formalism presented in section 2.1. Fig. A.1a shows

the coercivity as a function of θ0 (field angle) obtained from simulating at T = 0

a nanorod modelled with a single micromagnetic cell and (self) magnetostatic inter-

actions, and compares it to the coercivity given by Eq.2.3 for a macrospin; in both

instances, the anisotropy and long nanorod axes are along z. The results are nearly

identical, validating the value of Ksh obtained theoretically.

Also, the hysteresis loop obtained numerically for the (magnetized) nanorod matches

that of the equivalent MS obtained analytically, when θ0 = 0.1 (a small deviation of

the field direction away from the anisotropy axis is useful to induce a torque on M) at

T = 0, as shown in Fig. A.1b. At finite T , thermal fluctuations allow the magnetiza-

tion to overcome the energy barrier and flip before the barrier disappears. Therefore,

we get smaller Hc as compared to T = 0. As shown in Fig. A.1c, the overall effect

of thermal fluctuations result in a larger effective shape anisotropy Ku ' 22 kJ/m3

compared to the T = 0 value of Ku = 20.5 kJ/m3. The larger value of the effective

Ku at T > 0 may reflect the fact that at T > 0, the path of the magnetization does

not pass through the saddle point on the energy surface exactly, but samples higher

energies.

In summary, calculating the demagnetization tensor for a rectangular prism pro-

vides a way of modelling magnetostatic effect with a uniaxial shape anisotropy and

calculating the effective anisotropy energy density, particularly at low T . At higher

T , the precise value of the effective anisotropy energy must either be obtained nu-

merically, or perhaps by a more detailed comparison of the ϕ dependence of the

magnetization energy landscape for both the magnetized nanorod and MS.
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Figure A.1: a) Calculated Hc for a MS with Ku = 20.5 kJ/m3 compared to the
coercivity in the hysteresis loop of a block with magnetostatic interactions (demag) for
different angles between the field and anisotropy axes. b) Equilibrium hysteresis loop
of a block including self-demag and an equivalent MS with the same v, Ms = 480 kA/m
and Ku = 20.5 kJ/m3 at T = 0. c) Same as part b, except T = 310 K and simulations
are performed with SR = 25 Oe/ns and α=10.
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