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Abstract 

Steel structures are designed to specific governing design codes which have incorporated 

reliability parameters that predetermine the required target reliability and margin of safety 

depending on which country the structure is engineered. 

The approved steel design codes ensure each structure is designed with the same quality, 

recommended loading conditions and safety standards for the design life of the structure. In 

Canada steel structures are governed by the Canadian Standards Association (CSA) and designed 

to CAN/CSA S16-19 – Design of Steel Structures [1]. 

The current Canadian steel design standard (CSA S16-19) gives no specific guidance on 

methodology with respect to torsional design. This thesis proposes a reliability-based method that, 

subject to further research and approval by experts in the field, could allow the adoption of strength 

formulas from other sources for use alongside the CSA S16 Standard while maintaining the desired 

target reliability.  

A series of reliability analyses are performed first to verify the target reliabilities of both the CSA 

S16 Standard and the AISC 360 specification. Then, an iterative reliability-based approach is used 

to calibrate the proposed strength formulas in accordance with the desired target reliability of the 

CSA S16 standard. 

Updated resistance factors are then recommended for use with the AISC 360 torsional strength 

formula for round and rectangular HSS sections so that they can be adopted for use by the CSA 

S16 standard while maintain the appropriate target reliability index. 

  



   

 

ii 

 

Acknowledgements 

I would like to thank Dr. Stephen Bruneau and Dr. Amgad Hussein for their input, guidance and 

recommendations on this thesis. Without their invaluable contribution completion of this thesis 

would not have been possible. 



   

 

iii 

 

Table of Contents 

 

Chapter 1. Introduction ............................................................................................................... 1 

1.1. Background of Study ........................................................................................................ 1 

1.2. Purpose of Study .............................................................................................................. 1 

1.3. Verification Scheme ......................................................................................................... 2 

1.4. Main Findings .................................................................................................................. 3 

Chapter 2. Review of Literature ................................................................................................. 4 

2.1. Comparison of the CSA S16 Standard and the AISC 360 Specification ......................... 4 

2.2. Target Reliabilities of the CSA S16 Standard and the AISC 360 Specification .............. 5 

2.3. Gap Analysis of the CSA S16 Standard and the AISC 360 Specification ....................... 9 

2.4. Torsional Strength Design of Steel Sections .................................................................. 11 

2.5. Summary ........................................................................................................................ 17 

Chapter 3. Reliability and LRFD Background ......................................................................... 19 

3.1. Load and Resistance Factor Design (LRFD) ................................................................. 19 

3.2. Principle of Reliability Analysis .................................................................................... 20 

3.3. Description of Loads ...................................................................................................... 23 

3.3.1. Dead Load ............................................................................................................... 23 

3.3.2. Live Load ................................................................................................................ 23 

3.3.3. Wind Load .............................................................................................................. 24 



   

 

iv 

 

3.3.4. Snow Load .............................................................................................................. 24 

3.4. CSA S16 Statistical Parameters ..................................................................................... 25 

3.4.1. Resistance ............................................................................................................... 25 

3.4.2. Dead Load ............................................................................................................... 26 

3.4.3. Live Load ................................................................................................................ 27 

3.4.4. Wind Load .............................................................................................................. 29 

3.4.5. Snow Load .............................................................................................................. 31 

3.5. AISC 360 Statistical Parameters .................................................................................... 34 

3.5.1. Resistance ............................................................................................................... 35 

3.5.2. Dead Load ............................................................................................................... 36 

3.5.3. Live Load ................................................................................................................ 36 

3.5.4. Wind Load .............................................................................................................. 38 

3.5.5. Snow Load .............................................................................................................. 41 

Chapter 4. Reliability Analysis ................................................................................................. 44 

4.1. Monte Carlo Simulation ................................................................................................. 44 

4.1.1. General .................................................................................................................... 44 

4.1.2. CSA S16.................................................................................................................. 45 

4.1.2.1. Dead + Live ..................................................................................................... 47 

4.1.2.2. Dead + Live + Wind ........................................................................................ 50 

4.1.2.3. Dead + Live + Snow ........................................................................................ 53 



   

 

v 

 

4.1.3. AISC 360 ................................................................................................................ 56 

4.1.3.1. Dead + Live ..................................................................................................... 58 

4.1.3.2. Dead + Live + Wind ........................................................................................ 61 

4.1.3.3. Dead + Live + Snow ........................................................................................ 62 

4.1.4. Target Reliabilities .................................................................................................. 64 

Chapter 5. Reliability-Based Strength Formula Development ................................................. 66 

5.1. Reliability-Based Strength Formula Model ................................................................... 66 

5.2. Torsional Strength of Round HSS .................................................................................. 70 

5.3. Torsional Strength of Rectangular HSS ......................................................................... 77 

Chapter 6. Conclusion and Recommendations ......................................................................... 85 

6.1. General ........................................................................................................................... 85 

6.2. Results and Discussion ................................................................................................... 86 

6.3. Future Work ................................................................................................................... 86 

References ..................................................................................................................................... 88 

Appendix A – Monte Carlo Simulation Sample ........................................................................... 92 

 

  



   

 

vi 

 

List of Tables 

 

Table 1 - Statistical Parameters for The Resistance Load Effects In CSA S16. ........................... 25 

Table 2 – Statistical Parameters for The Resistance And Load Effects In AISC 360. ................. 35 

Table 3 – Factored Load Combinations ........................................................................................ 45 

Table 4 - Factored Load Combinations using Turkstra’s Rule ..................................................... 47 

Table 5 – Factored Load Combinations ........................................................................................ 57 

Table 6 – Factored Load Combinations using Turkstra’s Rule .................................................... 58 

Table 7 – Round HSS Experimental Data .................................................................................... 72 

Table 8 – Updated Round HSS Experimental Data ...................................................................... 75 

Table 9 – Rectangular HSS Experimental Data ............................................................................ 79 

Table 10 – Updated Rectangular HSS Experimental Data ........................................................... 83 

 

  



   

 

vii 

 

List of Figures 

 

Figure 1 – Comparison of Nominal Shear Strength (Unstiffened Webs) by Galambos (1999) ..... 4 

Figure 2 – Flowchart of Load and Resistance Factor Design as per Galambos [10]...................... 7 

Figure 3 – Concept of the Plastic Model from Ashkinadze [13] .................................................. 15 

Figure 4 - Moment-torque interaction diagram for class 1 and 2 beams from Driver and Kennedy 

[14] ................................................................................................................................................ 17 

Figure 5 - Moment-torque interaction diagram for class 3 beams from Driver and Kennedy [14]

....................................................................................................................................................... 17 

Figure 6 – Frequency Distribution of Resistance (R) and Load Effect (Q) .................................. 21 

Figure 7 – Reliability Index in terms of Safety Margin ................................................................ 22 

Figure 8 – CSA Resistance Bias Frequency Distribution Curve .................................................. 26 

Figure 9 – CSA Dead Load Bias Frequency Distribution Curve.................................................. 27 

Figure 10 – CSA Live Load (Max) Bias Frequency Distribution Curve ...................................... 28 

Figure 11 – CSA Live Load (Apt) Bias Frequency Distribution Curve ....................................... 29 

Figure 12 – CSA Wind Load (Max) Bias Frequency Distribution Curve .................................... 30 

Figure 13 – CSA Wind Load (Apt) Bias Frequency Distribution Curve ..................................... 31 

Figure 14 – CSA Snow Load (max) Bias Frequency Distribution Curve .................................... 33 

Figure 15 – AISC Resistance Bias Frequency Distribution Curve ............................................... 35 

Figure 16 – AISC Live Load Bias Frequency Distribution Curve ............................................... 37 

Figure 17 – AISC Live Load (Apt) Bias Frequency Distribution Curve ...................................... 38 

Figure 18 – CSA Wind Load (Max) Bias Frequency Distribution Curve .................................... 40 

Figure 19 – CSA Wind Load (Apt) Bias Frequency Distribution Curve ..................................... 41 

Figure 20 – CSA Snow Load (Max) Bias Frequency Distribution Curve .................................... 42 



   

 

viii 

 

Figure 21 – AISC Snow Load (Apt) Bias Frequency Distribution Curve .................................... 43 

Figure 22 – Frequency Distributions For Random Values of Q and R with L/D = 3.0 ................ 49 

Figure 23 – CSA Reliability Indices for DL + LL and φ=0.9 ...................................................... 50 

Figure 24 - CSA Reliability Indices for DL + LL and varying φ ................................................. 50 

Figure 25 – CSA Reliability Indices for DL + LL + WL ............................................................. 51 

Figure 26 – CSA Reliability Indices for DL + LL + WL with W/D = 0.25 ................................. 52 

Figure 27 – CSA Reliability Indices for DL + LL + WL with W/D = 1.0 ................................... 52 

Figure 28 – CSA Reliability Indices for DL + LL + WL with W/D = 2.0 ................................... 53 

Figure 29 – CSA Reliability Indices for DL + LL + WL with W/D = 3.0 ................................... 53 

Figure 30 – CSA Reliability Indices for DL + LL + SL ............................................................... 54 

Figure 31 – CSA Reliability Indices for DL + LL + SL with S/D = 0.25 .................................... 55 

Figure 32 – CSA Reliability Indices for DL + LL + SL with S/D = 1.0 ...................................... 55 

Figure 33 – CSA Reliability Indices for DL + LL + SL with S/D = 2.0 ...................................... 56 

Figure 34 – CSA Reliability Indices for DL + LL + SL with S/D = 3.0 ...................................... 56 

Figure 35 – Frequency Distributions For Random Values of Q and R with L/D = 3 ................... 59 

Figure 36 – AISC Reliability Indices for DL + LL and φ=0.9 ..................................................... 60 

Figure 37 – AISC Reliability Indices for LL + DL and Varying φ .............................................. 60 

Figure 38 – AISC Reliability Indices for DL + LL + WL with W/D = 0.25 ................................ 61 

Figure 39 – AISC Reliability Indices for DL + LL + WL with W/D = 1.0 .................................. 61 

Figure 40 – AISC Reliability Indices for DL + LL + WL with W/D = 2.0 .................................. 62 

Figure 41 – AISC Reliability Indices for DL + LL + WL with W/D = 2.0 .................................. 62 

Figure 42 – AISC Reliability Indices for DL + LL + SL with S/D = 0.25 ................................... 63 

Figure 43 – AISC Reliability Indices for DL + LL + SL with S/D = 1.0 ..................................... 63 



   

 

ix 

 

Figure 44 – AISC Reliability Indices for DL + LL + SL with S/D = 2.0 ..................................... 64 

Figure 45 – AISC Reliability Indices for DL + LL + SL with S/D = 3.0 ..................................... 64 

Figure 46 – Reliability-Based Strength Formula Model ............................................................... 69 

Figure 47 – Frequency Distribution Curve of Round HSS using AISC strength formula ........... 73 

Figure 48 – Reliability Index Graph for Round HSS using AISC strength formula .................... 73 

Figure 49 – Nominal Torsional Strength of Round HSS Members – AISC 360 and Proposed CSA 

S16 ................................................................................................................................................ 75 

Figure 50 - Reliability Index Graph for Round HSS using Proposed CSA strength formula ...... 76 

Figure 51 – Frequency Distribution Curve of Rectangular HSS using AISC strength formula ... 80 

Figure 52 – Reliability Index Graph for Rectangular HSS using AISC strength formula ........... 81 

Figure 53 – Nominal Torsional Strength of Rectangular HSS Members – AISC 360 and Proposed 

CSA S16........................................................................................................................................ 82 

Figure 54 - Reliability Index Graph for Rectangular HSS using Proposed CSA strength formula

....................................................................................................................................................... 83 



   

 

1 

 

Chapter 1. Introduction 

1.1. Background of Study 

Both Canada and the United States have adopted the LRFD approach for design of steel structures. 

Canadian steel building design currently is governed by the CAN/CSA S16 Design of Steel 

Structures [1], while the United States steel building design makes use of ANSI/AISC 360-16 - 

Specification for Structural Steel Buildings [2]. Despite the similar approaches used by each code, 

there are differences in terms of clauses available in each. Some strength calculations in the CSA 

S16 Standard have less guidance (or none at all) than is provided in the AISC 360 Specification, 

for example, torsional strength of steel sections. 

Detailed comparison of the two standards have been made in the past, for example, by Galambos 

[3]. Galambos found that the codes were similar enough in most areas that there appears to be no 

major obstacle to arriving at mutually satisfactory codes which are essentially interchangeable 

among countries. 

To promote the interchangeability of codes and standards between countries, it is first important 

to establish appropriate design guidelines and resistance factors that are consistent with the 

philosophy of the steel design codes. 

1.2. Purpose of Study 

The goal of this thesis is to expand on this idea by proposing a reliability-based model of adopting 

torsional strength equations for use with the CSA S16 Standard and load factors and combinations 

specified in the National Building Code of Canada. This thesis is focused on torsional strength 
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equations, but the proposed model could be used to adopt any desired strength equation for use 

with the CSA S16 Standard. 

An established method of adopting strength formulas from other sources for use in the CSA S16 

Standard would benefit engineers by allowing more flexibility and options when designing steel 

structures. 

The strength clauses used in the AISC 360 Specification, other LRFD based codes, and the CSA 

S16 Standard are very similar in many cases. However, if the target reliabilities of the codes are 

not the same, then the formulas cannot be used interchangeably. To adopt the use of strength 

formulas from other sources for use in the CSA S16 standard, it is important to establish 

appropriate design guidelines and resistance factors to be used which will ensure the proper target 

reliability recommended by the CSA Standards Committee.  

This thesis proposes a reliability-based method that, subject to further research and approval by 

experts in the field, could allow the adoption of strength formulas from other sources for use 

alongside the CSA S16 Standard while maintaining the desired target reliability. The focus of this 

thesis is the AISC 360 torsional strength formulas for round HSS and rectangular HSS sections 

due to the clear gap in the CSA S16 standard. 

1.3. Verification Scheme 

In this thesis, a series of reliability analyses have been conducted to verify the target reliabilities 

of both the CSA S16 Standard and the AISC 360 specification. Then, an iterative reliability-based 

approach has been used to calibrate proposed strength formulas in accordance with the desired 

target reliability of the CSA S16 standard. Strength formulas for both round HSS and rectangular 

HSS sections are proposed. 
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Analysis has been performed using the Monte Carlo Simulation method and well-established 

probabilistic resistance and load models obtained from the available sources used by both 

standards. 

1.4. Main Findings 

The main findings of this thesis are that both the AISC 360 torsional strength formula for round 

HSS sections, as well as the AISC 360 torsional strength formula for rectangular HSS sections can 

be adopted into the CSA S16 standard, if appropriate resistance factors are applied to ensure the 

desired target reliability of the CSA S16 Standard is maintained.  

The AISC 360 torsional strength formula for round HSS sections can be adopted into the CSA S16 

standard with a resistance factor ∅ = 1.0. This corresponds to a 10% increase in capacity from the 

AISC formula while still maintaining the desired target reliability for the CSA S16 standard. 

The AISC 360 torsional strength formula for rectangular HSS sections can be adopted into the 

CSA S16 standard with a resistance factor ∅ = 0.75. This corresponds to a 17% reduction in 

capacity from the AISC formula while still maintaining the desired target reliability for the CSA 

S16 standard. 
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Chapter 2. Review of Literature 

2.1. Comparison of the CSA S16 Standard and the AISC 360 Specification 

The design of structures is regulated by building codes. The AISC 360 Specification and the CSA 

S16 Standard were compared by Galambos in 1999 [3]. This comparison explored plate 

slenderness limits, column curves, web shear capacity, laterally unsupported wide-flange beams, 

and beam-columns. Detailed comparisons and graphs were made comparing the strength formulas 

of each code. An example of one of the comparison graphs is shown in Figure 1. This shows a 

comparison of the nominal shear strength provided by each code, where the shear strength 

calculated according to CSA S16 Standard is slightly higher for a range of ℎ 𝑡𝑤⁄  than that provided 

by the AISC 360 Specification. 

 

Figure 1 – Comparison of Nominal Shear Strength (Unstiffened Webs) by Galambos (1999) 
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Galambos found that while the theoretical and experimental basis for all three codes is common, 

in many cases the final form of the criteria is not the same: different formulas are used for columns, 

beams, and beam-columns. However, Galambos determined that there appears to be no major 

obstacle to arriving at mutually satisfactory codes which are essentially interchangeable among 

countries. This is an interesting idea which would offer benefits to both countries. Normally, the 

resistance of structural members is expressed in terms of formula(s) that are founded on 

experiments, theory, or a combination of both. However, it would be useful to allow strength 

formulas to be adapted from another code. It should be noted that the work of Galambos did not 

compare the target reliabilities and compatibilities of each code, and did not examine gaps where 

some strength clauses present in one code might be absent from another. 

2.2. Target Reliabilities of the CSA S16 Standard and the AISC 360 Specification 

In order to use the design codes of two countries interchangeably, as mentioned by Galambos, the 

target reliabilities of each code must first be examined. This was not addressed by Galambos in 

Ref [3], however, we can examine it here.  

Structural standards for buildings in Canada moved toward a limit states philosophy in 1974 when 

a study was released by D.E. Allen [4]. This thesis introduced limit states design partial safety 

factors in an effort to give more consistent safety for various load combinations and various 

combinations of materials. 

Later, with the release of the 2005 edition of the National Building Code of Canada (NBCC) came 

the adoption of a companion-action format for load combinations. A paper by Bartlett et al [5] [6], 

presented the calibration of the new factors required in order to maintain a target reliability index 
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of 3.0 for members. Probabilistic methods were used to establish the statistical parameters for 

resistance, dead load, live load, wind load, and snow load used in this thesis. 

Similarly, structural standards for buildings in the United States started to move toward a limit 

states philosophy based on probabilistic methods in 1978 with the work of Ellingwood et al [7]. 

This work established statistical parameters for resistance, dead load, live load, wind load, and 

snow load and was used to develop the recommended load combinations for inclusion in ANSI 

Standard A58 [8], which later became the ASCE7 Standard [9].  

In 1980, Galambos [10] further examined load and resistance factor design and recommended 

load/resistance factors to be used in ANSI Standard A58 [8]. In this study, Galambos outlined the 

probabilistic methodology for determination of reliability index, providing the following formula: 

 

 

𝛽 =
ln(

𝑅𝑚
𝑄𝑚
⁄ )

√𝑉𝑅
2 + 𝑉𝑄

2

 (2-1) 

𝑅𝑚 = 𝑚𝑒𝑎𝑛𝑣𝑎𝑙𝑢𝑒𝑜𝑓𝑡ℎ𝑒𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒, 𝑅 

𝑄𝑚 = 𝑚𝑒𝑎𝑛𝑣𝑎𝑙𝑢𝑒𝑜𝑓𝑡ℎ𝑒𝑙𝑜𝑎𝑑𝑒𝑓𝑓𝑒𝑐𝑡, 𝑄 

𝑉𝑅 = 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑜𝑓𝑣𝑎𝑟𝑖𝑡𝑎𝑖𝑜𝑛𝑜𝑓𝑡ℎ𝑒𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒, 𝑅 

𝑉𝑄 = 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑜𝑓𝑣𝑎𝑟𝑖𝑡𝑎𝑖𝑜𝑛𝑜𝑓𝑡ℎ𝑒𝑙𝑜𝑎𝑑𝑒𝑓𝑓𝑒𝑐𝑡, 𝑄 

 

The study also proposes the following flowchart for load and resistance factor development: 
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Figure 2 – Flowchart of Load and Resistance Factor Design as per Galambos [10] 

Galambos recommended that a resistance factor of 0.85 be adopted by AISC for designing 

members to achieve a reliability index of 3.0. However, the current AISC 360 specification 

commentary uses a resistance factor of 0.9 and reports a target reliability of 2.6 for members [2]. 

It is difficult to recommend using clauses and strength formulas interchangeably between countries 

without some consideration to difference in target reliabilities. However, it may be possible to 

adapt formulas between each with some modifications and consideration of target reliabilities and 

natural variations in material properties, fabrication tolerances and deviation of the model from 

experimental outcomes. To achieve this a reliability-based method of establishing strength 

formulas must be used. 
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The North American Specification for the Design of Cold-Formed Streel Structural Members [11] 

establishes a reliability-based method for developing strength formulas from test data. The average 

strength value from the test data is used, and a resistance factor is calculated based on the desired 

target reliability, and the biases and coefficients of variation of the test data and mechanical 

properties of the steel. The strength of the tested elements shall satisfy: 

 ∑𝛾𝑖𝑄𝑖𝑛 ≤∅𝑅𝑛 (2-2) 

Where: 

𝛾𝑖 = load factor applicable to a specific load component 

𝑄𝑖𝑛 = a specific nominal load component 

∑𝛾𝑖𝑄𝑖𝑛= the total factored load for the load group applicable to the limit state being 
considered 

𝑅𝑛 = the average value of all test results 

∅ = the resistance factor = 𝐶∅(𝑀𝑀𝐹𝑀𝑃𝑀)𝑒
−𝛽𝑜√𝑉𝑀

2+𝑉𝐹
2+𝐶𝑃𝑉𝑃

2+𝑉𝑄
2

 

𝐶∅ = calibration coefficient 

𝑀𝑀 = mean value of material factor 

𝐹𝑀 = mean value of fabrication factor 

𝑃𝑀 = mean value of professional factor 

𝛽𝑜 = target reliability index 

𝑉𝑀 = coefficient of variation of material factor 

𝑉𝐹 = coefficient of variation of fabrication factor 

𝑉𝑃 = correction  factor 

𝑉𝑃 = coefficient of variation of professional factor 

𝑉𝑃 = coefficient of variation of load effect 

 

This method is comprehensive, and useful when testing is an option or test data already available. 

However, it is not so useful when test data is not available for the specific section being designed, 
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and performing tests is not practical. In that case, it would be of benefit to have a reliability-based 

method of adapting strength formulas from one code to another without having to test the specific 

section or element in question. 

A reliability-based method of developing strength equations was used by Leblouba and Tabsh [12] 

to develop shear strength equations for corrugated web steel beams for inclusion in the AISC 360 

Specification and the CSA S16 Standard. This study proposed adapting nominal buckling strength 

capacity equations of corrugated web steel beams with consideration of reliability-based design 

for use in LRFD codes while maintaining desired target reliabilities. 

This study confirms the difference in reliability indices between the two codes, as a slightly 

different resistance factor is recommended to be used depending on the code (0.9 For CSA S16, 

and 0.85 for AISC 360). The study is focused on the shear strength of corrugated web steel beams 

only, however, with some modifications this method could also be used to aid in developing a 

method to allow strength formulas to be used interchangeably between the AISC 360 Specification 

and the CSA S16 Standard. 

2.3. Gap Analysis of the CSA S16 Standard and the AISC 360 Specification 

The AISC 360 Specification [2] and the CSA S16 Standard [1] were examined in detail to identify 

gaps between the two to identify potential benefits of allowing interchangeability between the two 

codes. Some of the major differences noted include: 

Tension 

• Differences in constants used in effective area calculations for shear lag. 

• More shear lag factor cases covered in AISC for connections to tension members, ie HSS 

with 2 side gusset plates. 
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• No guidance on eyebars provided by the CSA S16 Standard. 

Compression 

• Differences in width to thickness limits. 

• Differences in constants throughout. 

Flexure 

• Difference in codes in that AISC checks local buckling of elements, and CSA limits section 

sizes with classes in order to prevent local buckling. 

• Compression flange buckling not specifically checked, or flange local buckling under weak 

axis bending, however the classes of sections are limited to prevent this. 

• Lateral torsional buckling of rectangular and round bars not checked under CSA. 

Shear 

• Differences throughout codes in calculating shear buckling coefficients. Differences in 

constants, in general 0.6 used in AISC, and 0.66 in CSA. 

• CSA S16 offers no real guidance for shear on Tees, and zero on angles. Can check basic 

shear yielding of these, but no guidance on shear buckling. 

• CSA S16 verifies shear yielding of HSS members, however, does not consider the effects 

of shear buckling of HSS members with large D/t ratios. 

• No guidance in CSA on weak axis shear. It is assumed flange areas would be used in 

calculating shear yielding, but no guidance on shear buckling coefficients or factors. 

Torsion 
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• No guidance provided in CSA S16. Torsional strength calculations are provided for round 

and rectangular HSS sections in AISC, as well as combined torsional, axial, and flexure, 

and shear. 

The focus of this thesis is on torsional strength, as the clear gap in the CSA S16 Standard makes it 

a good starting point. 

2.4. Torsional Strength Design of Steel Sections 

The AISC 360 Specification provides strength formulas for Round HSS and Rectangular HSS 

sections. The formulas consider yielding as well as local buckling. The AISC 360 Specification 

assumes that the pure torsional shear stress in HSS sections is uniformly distributed along the wall 

of the cross section, and it is equal to the torsional moment divided by a torsional shear constant 

for the cross section, C.  

The strength equation for round HSS sections given by AISC 360 is as follows: 

 𝑇𝑛 =𝐹𝑐𝑟𝐶 (2-3) 

Where: 

𝐶 = 𝐻𝑆𝑆𝑇𝑜𝑟𝑠𝑖𝑜𝑛𝑎𝑙𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 =
𝜋(𝐷 − 𝑡)2𝑡

2
 

 

and 𝐹𝑐𝑟 shall be the larger of: 

 
𝐹𝑐𝑟 =

1.23𝐸

√𝐿
𝐷 (

𝐷
𝑇)

5
4

 
(2-4) 
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and: 

 
𝐹𝑐𝑟 =

0.60𝐸

(
𝐷
𝑡 )

3
2

 
(2-5) 

and shall not exceed: 

 𝐹𝑐𝑟 = 0.6𝐹𝑦  

 

The strength equation for rectangular HSS sections given by AISC 360 is as follows: 

 𝑇𝑛 =𝐹𝑐𝑟𝐶 (2-6) 

 

Where: 

𝐶 = 𝐻𝑆𝑆𝑇𝑜𝑟𝑠𝑖𝑜𝑛𝑎𝑙𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 2(𝐵 − 𝑡)(𝐻 − 𝑡)𝑡 − 4.5(4 − 𝜋)𝑡3 

 

When ℎ 𝑡⁄ ≤ 2.45√𝐸 𝐹𝑦⁄ : 

 𝐹𝑐𝑟 = 0.6𝐹𝑦 (2-7) 

 

When 2.45√𝐸 𝐹𝑦⁄ < ℎ 𝑡⁄ ≤ 3.07√𝐸 𝐹𝑦⁄ : 

 
𝐹𝑐𝑟 =

0.6𝐹𝑦(2.45√𝐸 𝐹𝑦⁄ )

(
ℎ
𝑡)

 (2-8) 

 

When 3.07√𝐸 𝐹𝑦⁄ < ℎ 𝑡⁄ ≤ 260: 
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𝐹𝑐𝑟 =

0.458𝜋2𝐸

(
ℎ
𝑡)

2  
(2-9) 

 

The critical torsional stress provisions for HSS sections are identical to the flexural shear 

provisions. As such, the differences in shear formulas between AISC 360 and CSA S16 may be 

useful in proposing torsional strength formulas to be used in CSA S16. 

While normal and shear stresses due to restrained warping are insignificant in closed cross 

sections, they are usually significant in shapes of open cross section. In HSS sections the total 

torsional moment can be assumed to be resisted by pure torsional shear stresses. This makes the 

torsional strength formulas for Round and Rectangular HSS sections easier to determine and 

maintain in a code, however, for open sections the AISC 360 specifications, like the CSA S16 

Standard, gives no guidance. 

In terms of open sections, formulas have been proposed for torsional strength of wide-flange steel 

members by Ashkinadze [13] in 2008. The paper addresses the design of wide-flange members 

subjected to torsional forces as well as axial forces and moments about their strong and weak axes.  

Ashkinadze proposes a plastic model for use with Class 1 sections, and an elastic model for use 

with class 2 and class 3 sections. The plastic model originated from the internal stress distribution 

in an I-section subjected to flexure and torsion proposed by Driver and Kennedy [14]. The 

proposed plastic model Ashkinadze is as follows: 

 𝑀𝑓 = ∅𝐹𝑦𝑡𝑎(𝑏 − 𝑎) (2-10) 
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Where t and b are standard designations for the thickness and width of the flange, respectively. 

Solving for 𝑎 determines how much of the flange width is claimed by torsion and unusable to resist 

other forces. To solve for 𝑎, Ashkinadze proposes the following formulas to aid in solving for 𝑎: 

 𝐵 = 𝑀𝑓ℎ
′ (2-11) 

 

and  

 𝐵 = 𝐸𝐶𝑤𝜃
′′ (2-12) 

 

Where 𝐵 is the bi-moment caused by the torsional loads, 𝐶𝑤 is the warping stiffness of the section, 

ℎ′ is the distance between the centroids of the flanges, 𝐸 is the modulus of elasticity of the steel, 

and 𝜃′′ is the second derivative of the angle of twist. 

Once the length of 𝑎 has been determined, the end segments are excluded from consideration and 

the rest of the section is analyzed for the remaining axial and bending forces by the usual equations 

of the CSA S16 standard as shown in Figure 3. 
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Figure 3 – Concept of the Plastic Model from Ashkinadze [13] 

 

The elastic model proposed by Ashkinadze is derived from the following formula from AISC 360 

[2] 

 

 𝜎𝑎
8.85𝐹𝑐𝑟

±
𝜎𝑏𝑥

(1 − 𝑃𝑢 𝑃𝑒𝑥⁄ )∅𝑏𝐹𝑐𝑟
±

𝜎𝑏𝑦

(1 − 𝑃𝑢 𝑃𝑒𝑦⁄ )0.9𝐹𝑦
±

𝜎𝑤

(1 − 𝑃𝑢 𝑃𝑒𝑦⁄ )0.9𝐹𝑦
≤ 1.0 (2-13) 

 

This equation is modified to include integral force factors rather than stresses, and modified further 

using basic torsional theory to produce the following proposed equation: 

 

 𝐶𝑓

𝐶𝑟
+
𝑈1𝑥𝑀𝑓𝑥

𝑀𝑟𝑥
+

1

1 −𝑀𝑓𝑥 𝑀𝑢⁄
(
𝑈1𝑦𝑀𝑓𝑦

𝑀𝑟𝑦
+
𝑈1𝑦𝜎𝑤𝑍𝑦

𝑀𝑟𝑦
) ≤ 1.0 (2-14) 

Ashkinadze compares his proposed equations to test results from Driver and Kennedy [14] and Pi 

and Trahair [15] and concludes that the model gives results that are reasonable, however 

recommends more rigorous verification against test data and detailed non-linear second-order 
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computer simulations. Ashkinadze’s study was limited to simply supported members of 

symmetrical I-sections. 

Ashkinadze’s work was built on the work of Pi and Trahair [15], who examined the plastic-collapse 

analysis of structural steel I-sections members subjected to torsion. Most previously accepted 

methods of torsion design in beams, such as those based on the work of Timoshenko [16], are 

based on the theory of first yield, and therefore don’t take into account plastic behavior. The paper 

proposes a method of plastic-collapse analysis that is claimed to be simpler than elastic analysis. 

This plastic-analysis method allows a method of plastic design to be used for torsion that is more 

economical than first yield design. It was proposed that this will lead to more economical section 

design. Only compact I-section members that have no local buckling limitations are considered in 

this study.  

Ashinkinadz also refers to the work of Driver and Kennedy [14], which aimed to investigate the 

behavior torsional capacity of members. The paper notes that prior literature on elastic analysis is 

extensive, but only limited experimental and analytical work has been conducted in the inelastic 

region. It further states that methods for determining the ultimate capacity, as is required in limit 

states design standards, are not available. 

Driver and Kennedy perform testing on cantilever beams with varying moment-torque ratios to 

investigate torsional behavior in the inelastic range. 

Driver and Kennedy developed the moment-torque interaction diagrams shown in Figure 4 and 

Figure 5. 
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Figure 4 - Moment-torque interaction diagram for class 1 and 2 beams from Driver and Kennedy [14] 

 

Figure 5 - Moment-torque interaction diagram for class 3 beams from Driver and Kennedy [14]  

2.5. Summary 

Significant research and development has gone into developing a limit states based approach for 

the CSA S16 standard which gives consistent safety for various load combinations and various 
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combinations of materials. Probabilistic methods were used to establish the statistical parameters 

for resistance, dead load, live load, wind load, and snow load and to provide the desired reliability 

index for the standard.  

The North American Specification for the Design of Cold-Formed Streel Structural Members [11] 

establishes a reliability-based method for developing strength formulas from test data, however, 

there does not appear to be an established reliability-based model to adopt strength formulas from 

other codes and sources. 
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Chapter 3. Reliability and LRFD Background 

3.1. Load and Resistance Factor Design (LRFD) 

In the 1960’s and 70’s, a push was made in the United States and Canada to adopt the LRFD 

approach. Prior to this, Allowable Stress Design (ASD) was widely used. While simple to use, the 

ASD method was found to give less consistent target reliability than an LRFD approach. This was 

due in part to the same factor being applied to dead load, which is relatively predictable, and 

live/wind/snow loads, which are much more variable. The variation in reliability was reduced 

substantially upon the adoption of an LRFD approach, which in turn leads to more optimized 

designs. 

The following basic equation can be used to represent limit states design: 

 

 ∑𝛾𝑖𝑄𝑖𝑛 ≤∅𝑅𝑛 (3-1) 

where: 

γi = load factor applicable to a specific load component 

Qin = a specific nominal load component 

∑γiQin= the total factored load for the load group applicable to the limit state being 
considered 

∅ = the resistance factor 

Rn = the nominal resistance available 

 

A limit state is a condition, related to a design objective, in which a combination of one or more 

loads is just equal to the available resistance, so that the structure is at incipient failure defined by 

a prescribed failure criterion (or deformed beyond an acceptable prescribed amount).  
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Load and resistance factors in Equation (3-1) are used to account for material variability, 

uncertainty in magnitude of the applied loads, design models, and other sources. The objective in 

LRFD is to ensure that for each limit state the available resistance is at least as large as the total 

load effect. 

Equation (3-1) is the design equation, but it can serve as the basis for the development of a limit 

state equation that can be used for calibration purposes. If there is only one load component, 𝑄𝑛, 

then Equation (3-1) can be shown as: 

 

 ∅𝑅𝑛 − 𝛾𝑄𝑛 ≥ 0 (3-2) 

where 

𝑅𝑛 = the nominal resistance value; 

𝑄𝑛 = the nominal load value; 

∅ = a resistance factor; and 

𝛾 = a load factor 

 

This equation forms the basis for the reliability analysis equations discussed in the following 

section. 

3.2. Principle of Reliability Analysis 

Reliability analysis is a probabilistic approach to determine the safety level of a system or a 

structure. Structural reliability aims at computing the probability of failure of a mechanical system 

by accounting for uncertainties arising in a model description (geometry, material properties) or 

in the environmental data (prescribed displacement and external forces). 
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Frequency distributions for R and Q are shown in Figure 6 as separate curves. As long as the 

resistance (R), is greater than the effects of the loads (Q), a margin of safety for the particular limit 

state exists. However, because R and Q are random variables affected by many uncertainties, there 

is always a probability that R may be less than Q. This probability of failure is represented by the 

overlap of the frequency distributions. The size of this overlap (and thus the probability of failure 

𝑃𝑓) is dependent on the positioning of their mean values (𝑅𝑚𝑎𝑛𝑑𝑄𝑚) and their dispersions, or 

coefficients of variation (𝑉𝑅𝑎𝑛𝑑𝑉𝑄). 

 

Figure 6 – Frequency Distribution of Resistance (R) and Load Effect (Q) 

The structure failure state can also be defined by a limit state function 𝑔(𝑥) = 𝑅 − 𝑄 such that: 

𝑔(𝑥) < 0𝑖𝑠𝑡ℎ𝑒𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠𝑡𝑎𝑡𝑒𝑓𝑜𝑟𝑡ℎ𝑒𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒. 

𝑔(𝑥) = 0𝑖𝑠𝑡ℎ𝑒𝑙𝑖𝑚𝑖𝑡𝑠𝑡𝑎𝑡𝑒. 

𝑔(𝑥) > 0𝑖𝑠𝑎𝑠𝑎𝑓𝑒𝑠𝑡𝑎𝑡𝑒𝑓𝑜𝑟𝑡ℎ𝑒𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒. 

Therefore, the objective of reliability analysis is to determine the probability of 𝑔(𝑥) being 

negative, aka the probability of failure. 

pf 
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The reliability index (β) is the distance between the mean of 𝑔(𝑥) and the failure point in standard 

deviation units. As such, β is a measure of the probability that 𝑔(𝑥) will be less than zero. This is 

represented in Figure 7. 

 

Figure 7 – Reliability Index in terms of Safety Margin 

The probability that 𝑔(x) is less than zero depends on the distributions of the many variables that 

go into computing resistance and load effects, which are discussed in Sections 3.4 and 0. 

The reliability index can be calculated using the following formula [7]: 

 

𝛽 =
ln(

𝑅𝑚
𝑄𝑚
⁄ )

√𝑉𝑅
2 + 𝑉𝑄

2

 (3-3) 

Rm = meanvalueoftheresistance, R 

Qm = meanvalueoftheloadeffect, Q 

VR = coefficientofvaritaionoftheresistance, R 

VQ = coefficientofvaritaionoftheloadeffect, Q 

 

βσg 
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Before proposing a reliability-based model for adopting strength formulas from one code into 

another, it is useful to verify the target reliability (𝛽) of each code. In order to determine 𝛽 we 

must first determine 𝑅𝑚, 𝑄𝑚, 𝑉𝑅 , and 𝑉𝑄. These can be obtained through Monte Carlo Simulations 

using the statistical parameters of 𝑅 and 𝑄. This process is detailed in Section Chapter 4. 

3.3. Description of Loads 

The following typical loads are examined, which are considered the most typical loads applicable 

to building design from the North American perspective (CSA and AISC): Dead Load, Live Load, 

Snow Load, and Wind Load. 

3.3.1. Dead Load 

Dead load is the self-weight of the structure and any additional superimposed load that is 

permanently attached to the structure. This includes the weight of the members, the supported 

structure, and any permanent attachments or accessories. In this thesis, dead load is assumed to 

remain constant throughout the life of the structure. The bias factor (mean-to-nominal ratio) used 

in both AISC and CSA statistical parameters suggests that there is a tendency on structural 

engineers to underestimate the dead load slightly.  

3.3.2. Live Load 

In building structures, live loads include any temporary or transient forces that act on a building 

or structural element. Typically, this includes people, furniture, vehicles, moveable partitions and 

almost everything else that can be moved throughout a building. Total live load is a combination 

of two components, sustained and temporary. Sustained live load remains relatively constant over 

a period and is referred to as the arbitrary point in time live load (𝐿𝑎𝑝𝑡). Temporary live loads are 

the uncommon portion of live load that results from rare events such as over-crowding or 
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remodeling. The maximum live load (𝐿𝑚𝑎𝑥), is a combination of the sustained and temporary 

components of the live load. 

3.3.3. Wind Load 

Wind load effect on building structures depends on many factors including the wind speed, profile, 

exposure, direction, pressure coefficient, and gust. Like live load, wind load is composed of both 

an arbitrary point in time wind load (𝑊𝑎𝑝𝑡), and a maximum wind load (𝑊𝑚𝑎𝑥). 𝑊𝑚𝑎𝑥 would be 

characterized by a large bias factor, while 𝑊𝑎𝑝𝑡 is characterized by the daily maximum wind, 

which has a negligibly small bias factor and large coefficient of variation.  

The values of both AISC and CSA statistical parameters for wind load are based on data from 

multiple sites throughout each relevant country in an effort to provide a broad geographical 

depiction. 

3.3.4. Snow Load 

Snow load effect on building structures depends on many factors including climatological records, 

snow density, roof exposure, roof geometry, and the relationship between snow loads on the roof 

and snow loads on ground. As above, snow load is composed of both an arbitrary point in time 

snow load (𝑆𝑎𝑝𝑡), and a maximum snow load (𝑆𝑚𝑎𝑥). 
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3.4. CSA S16 Statistical Parameters 

The statistical parameters of the dead, live, wind, and snow load effects on buildings for the 

Canadian Standards Association used in this thesis are based on the work of Bartlett et al. [5] [6]. 

Table 1 shows a summary of the results. The results agree with those used in the calibration of the 

AISC specification in the case of dead load but deviate in cases of live, wind, and snow loads. 

Load Bias COV Distribution Reference 

Resistance (Steel) 1.17 0.108 Lognormal [6] 

Dead Load 1.05 0.10 Normal [5] 

Live Load (max) 0.9 0.267 Gumbel [5] 

Live Load (apt) 0.273 0.705 Weibull [5] 

Wind Load (max) 0.712 0.241 Gumbel [5] 

Wind Load (apt) 0.069 0.980 Weibull [5] 

Snow Load (max) 0.660 0.495 Lognormal [5] 

Snow Load (apt) 0.118 0.992 Lognormal [5] 

Table 1 - Statistical Parameters for The Resistance Load Effects In CSA S16. 

3.4.1. Resistance 

Resistance is assumed to be characterized by a lognormal probability distribution with a bias factor 

of 1.17 and a coefficient of variation of 0.108 [5]. The lognormal distribution curve can be 

generated using the lognorm function from Python’s SciPy library. To produce a Lognormal 

distribution with a bias = 1.17 and COV = 0.108, a shape factor = 0.125, location factor of 0.1622, 

and a scale factor of 1.0 must be used in the lognorm function. The resulting distribution curve is 

shown in Figure 8. 
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𝑥

= 𝑛𝑢𝑚𝑝𝑦. 𝑙𝑖𝑛𝑠𝑝𝑎𝑐𝑒(𝑙𝑜𝑔𝑛𝑜𝑟𝑚. 𝑝𝑝𝑓(0.001, 𝑠, 𝑙𝑜𝑐, 𝑠𝑐𝑎𝑙𝑒), 𝑙𝑜𝑔𝑛𝑜𝑟𝑚. 𝑝𝑝𝑓(0.999, 𝑠, 𝑙𝑜𝑐, 𝑠𝑐𝑎𝑙𝑒), 100) 

𝑚𝑎𝑡𝑝𝑙𝑜𝑡𝑙𝑖𝑏. 𝑝𝑦𝑝𝑙𝑜𝑡. 𝑝𝑙𝑜𝑡(𝑥, 𝑙𝑜𝑔𝑛𝑜𝑟𝑚. 𝑝𝑑𝑓(𝑥, 𝑠, 𝑙𝑜𝑐, 𝑠𝑐𝑎𝑙𝑒)) 

 

Figure 8 – CSA Resistance Bias Frequency Distribution Curve 

 

3.4.2. Dead Load 

The dead load is characterized by a normal probability distribution, with a mean of 1.05 and a 

COV of 0.1. For cases where the dead load counteracts the effects of other loads, the load is 

considered unbiased (mean = 1.0). For now, we will only examine the biased case. The normal 

distribution curve can be generated using the norm function from Python’s SciPy library. To 

produce a Normal distribution with a bias = 1.0 and c.o.v. = 0.1, a location factor of 0.105, and a 

scale factor of 0.1 must be used in the norm function. The resulting distribution curve is shown in 

Figure 9. 

𝑥 = 𝑛𝑢𝑚𝑝𝑦. 𝑙𝑖𝑛𝑠𝑝𝑎𝑐𝑒(𝑛𝑜𝑟𝑚. 𝑝𝑝𝑓(0.001, 𝑙𝑜𝑐, 𝑠𝑐𝑎𝑙𝑒), 𝑛𝑜𝑟𝑚. 𝑝𝑝𝑓(0.999, 𝑙𝑜𝑐, 𝑠𝑐𝑎𝑙𝑒), 100) 
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𝑚𝑎𝑡𝑝𝑙𝑜𝑡𝑙𝑖𝑏. 𝑝𝑦𝑝𝑙𝑜𝑡. 𝑝𝑙𝑜𝑡(𝑥, 𝑛𝑜𝑟𝑚. 𝑝𝑑𝑓(𝑥, 𝑙𝑜𝑐, 𝑠𝑐𝑎𝑙𝑒)) 

 

 

Figure 9 – CSA Dead Load Bias Frequency Distribution Curve 

 

3.4.3. Live Load 

The maximum live load during the life of the structure is characterized by a Gumbel probability 

distribution, with a mean of 0.9 and a COV of 0.267 [5]. As per [5], this is determined by taking 

the basic Gumbel probability distribution of 0.9 and a COV of 0.17 and applying a transformation 

factor to account for modelling and analysis factors. This transformation factor is characterized by 

a normal distribution with a bias of 1.0 and a CoV of 0.206 [5]. 

The normal distribution curve can be generated using the gumbel_r function from Python’s SciPy 

library. To produce a Gumbel distribution with a bias = 0.9 and COV = 0.267, a location factor of 

0.793, and a scale factor of 0.188 must be used in the gumberl_r function. The distribution curve 

is shown in Figure 10. 
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𝑥

= 𝑛𝑢𝑚𝑝𝑦. 𝑙𝑖𝑛𝑠𝑝𝑎𝑐𝑒(𝑔𝑢𝑚𝑏𝑒𝑙_𝑟. 𝑝𝑝𝑓(0.001, 𝑙𝑜𝑐, 𝑠𝑐𝑎𝑙𝑒), 𝑔𝑢𝑚𝑏𝑒𝑙_𝑟. 𝑝𝑝𝑓(0.999, 𝑙𝑜𝑐, 𝑠𝑐𝑎𝑙𝑒), 100) 

𝑚𝑎𝑡𝑝𝑙𝑜𝑡𝑙𝑖𝑏. 𝑝𝑦𝑝𝑙𝑜𝑡. 𝑝𝑙𝑜𝑡(𝑥, 𝑔𝑢𝑚𝑏𝑒𝑙_𝑟. 𝑝𝑑𝑓(𝑥, 𝑙𝑜𝑐, 𝑠𝑐𝑎𝑙𝑒)) 

 

 

Figure 10 – CSA Live Load (Max) Bias Frequency Distribution Curve 

The arbitrary point in time live load is characterized by a Weibull probability distribution, with a 

mean of 0.273 and a COV of 0.705 [5]. These values have been determined by applying a 

transformation factor to the load effect which is characterized by a normal distribution with a bias 

of 1.0 and a CoV of 0.206 [5].  

The distribution curve can be generated using the weibull_min function from Python’s SciPy 

library. To produce a Weibull distribution with a bias = 0.273 and COV = 0.705, a shape factor of 

1.44, location factor of 0, and a scale factor of 0.301 must be used in the weibull_min function. 

The resulting distribution curve is shown in Figure 11. 
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𝑥

= 𝑛𝑢𝑚𝑝𝑦. 𝑙𝑖𝑛𝑠𝑝𝑎𝑐𝑒(𝑤𝑒𝑖𝑏𝑢𝑙𝑙_𝑚𝑖𝑛. 𝑝𝑝𝑓(0.001, 𝑠, 𝑙𝑜𝑐, 𝑠𝑐𝑎𝑙𝑒), 𝑤𝑒𝑖𝑏𝑢𝑙𝑙_𝑚𝑖𝑛. 𝑝𝑝𝑓(0.999, 𝑠, 𝑙𝑜𝑐, 𝑠𝑐𝑎𝑙𝑒), 100) 

𝑚𝑎𝑡𝑝𝑙𝑜𝑡𝑙𝑖𝑏. 𝑝𝑦𝑝𝑙𝑜𝑡. 𝑝𝑙𝑜𝑡(𝑥, 𝑤𝑒𝑖𝑏𝑢𝑙𝑙_𝑚𝑖𝑛. 𝑝𝑑𝑓(𝑥, 𝑠, 𝑙𝑜𝑐, 𝑠𝑐𝑎𝑙𝑒)) 

 

Figure 11 – CSA Live Load (Apt) Bias Frequency Distribution Curve 

3.4.4. Wind Load 

Wind load data used in reliability analysis in CISC [5] is based on data from three Canadian sites 

which  aims to give a broad geographical representation. 

The wind load on a structure is characterized by the following formula: 

 𝑝 = 𝑞 ∗ 𝐶𝑒 ∗ 𝐶𝑝 ∗ 𝐶𝑔 (3-4) 

where q is the reference velocity pressure, Ce is the exposure factor, Cp is the external pressure 

coefficient, and Cg is the gust factor. These factors are accounted for by applying a transformation 

factor to the load effect which is characterized by a lognormal distribution with a bias of 0.68 and 

a CoV of 0.22 [5]. 



   

 

30 

 

The maximum wind load during the life of the structure is characterized by a Gumbel probability 

distribution, with a mean of 0.712 and a COV of 0.241 [5]. This value was found taking the 50-

year maximum velocity and applying the transformation factor which accounts for exposure, 

pressure, and gust factors. The distribution curve can be generated using the gumbel_r function 

from Python’s SciPy library. To produce a Gumbel distribution with a bias = 0.712 and COV = 

0.241, a location factor of 0.635, and a scale factor of 0.134 must be used in the gumberl_r function. 

The resulting distribution curve is shown in Figure 12. 

𝑥

= 𝑛𝑢𝑚𝑝𝑦. 𝑙𝑖𝑛𝑠𝑝𝑎𝑐𝑒(𝑔𝑢𝑚𝑏𝑒𝑙_𝑟. 𝑝𝑝𝑓(0.001, 𝑙𝑜𝑐, 𝑠𝑐𝑎𝑙𝑒), 𝑔𝑢𝑚𝑏𝑒𝑙_𝑟. 𝑝𝑝𝑓(0.999, 𝑙𝑜𝑐, 𝑠𝑐𝑎𝑙𝑒), 100) 

𝑚𝑎𝑡𝑝𝑙𝑜𝑡𝑙𝑖𝑏. 𝑝𝑦𝑝𝑙𝑜𝑡. 𝑝𝑙𝑜𝑡(𝑥, 𝑔𝑢𝑚𝑏𝑒𝑙_𝑟. 𝑝𝑑𝑓(𝑥, 𝑙𝑜𝑐, 𝑠𝑐𝑎𝑙𝑒)) 

 

Figure 12 – CSA Wind Load (Max) Bias Frequency Distribution Curve 

The arbitrary point in time wind load is characterized by a Weibull probability distribution, with a 

mean of 0.069 and a COV of 0.98 [5]. These value were found by taking the point in time velocity 

and applying the transformation factor which accounts for exposure, pressure, and gust factors. 
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The distribution curve can be generated using the weibull_min function from Python’s SciPy 

library. To produce a Weibull distribution with a bias = 0.069 and COV = 0.98, a shape factor of 

1.02, location factor of 0, and a scale factor of 0.0696 must be used in the weibull_min function. 

The resulting distribution curve is shown in Figure 13. 

𝑥

= 𝑛𝑢𝑚𝑝𝑦. 𝑙𝑖𝑛𝑠𝑝𝑎𝑐𝑒(𝑤𝑒𝑖𝑏𝑢𝑙𝑙_𝑚𝑖𝑛. 𝑝𝑝𝑓(0.001, 𝑠, 𝑙𝑜𝑐, 𝑠𝑐𝑎𝑙𝑒), 𝑤𝑒𝑖𝑏𝑢𝑙𝑙_𝑚𝑖𝑛. 𝑝𝑝𝑓(0.999, 𝑠, 𝑙𝑜𝑐, 𝑠𝑐𝑎𝑙𝑒), 100) 

𝑚𝑎𝑡𝑝𝑙𝑜𝑡𝑙𝑖𝑏. 𝑝𝑦𝑝𝑙𝑜𝑡. 𝑝𝑙𝑜𝑡(𝑥, 𝑤𝑒𝑖𝑏𝑢𝑙𝑙_𝑚𝑖𝑛. 𝑝𝑑𝑓(𝑥, 𝑠, 𝑙𝑜𝑐, 𝑠𝑐𝑎𝑙𝑒)) 

 

Figure 13 – CSA Wind Load (Apt) Bias Frequency Distribution Curve 

3.4.5. Snow Load 

Snow load data used in reliability analysis in CISC [5] is based on snow depth data from 1618 

stations with 7–38 years of record. 

The snow load on a structure is characterized by the following formula: 

 𝑆 = (𝐶𝑏𝐶𝑤𝐶𝑠𝐶𝑎)𝑆𝑠 + 𝑆𝑟 (3-5) 
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where 𝑆𝑠 is the ground snow load, 𝑆𝑟 is the associated rain load, 𝐶𝑏 is the basic roof snow load 

factor and equals 0.8, 𝐶𝑏 is the wind exposure factor, 𝐶𝑠 is the slope factor, and 𝐶𝑎 is the 

accumulation factor. 

The maximum snow load during the life of the structure is characterized by a Lognormal 

probability distribution, with a mean of 0.66 and a COV of 0.495 [5]. These values were found 

taking the 50-year maximum depth values (mean = 1.100 and COV = 0.200) and applying a 

transformation factor (mean = 0.600 and COV = 0.420) which converts the ground snow load at a 

given site to an appropriate roof snow load. The transformation factor is based on 13 years of data 

for 112 roofs in four Canadian cities. 

 

The lognormal distribution curve can be generated using the lognorm function from Python’s 

SciPy library. To produce a Lognormal distribution with a bias = 1.17 and COV = 0.108, a shape 

factor = 0.304, location factor of -0.39, and a scale factor of 1.0 must be used in the lognorm 

function. The distribution curve is shown in Figure 8. 

𝑥

= 𝑛𝑢𝑚𝑝𝑦. 𝑙𝑖𝑛𝑠𝑝𝑎𝑐𝑒(𝑙𝑜𝑔𝑛𝑜𝑟𝑚. 𝑝𝑝𝑓(0.001, 𝑠, 𝑙𝑜𝑐, 𝑠𝑐𝑎𝑙𝑒), 𝑙𝑜𝑔𝑛𝑜𝑟𝑚. 𝑝𝑝𝑓(0.999, 𝑠, 𝑙𝑜𝑐, 𝑠𝑐𝑎𝑙𝑒), 100) 

𝑚𝑎𝑡𝑝𝑙𝑜𝑡𝑙𝑖𝑏. 𝑝𝑦𝑝𝑙𝑜𝑡. 𝑝𝑙𝑜𝑡(𝑥, 𝑙𝑜𝑔𝑛𝑜𝑟𝑚. 𝑝𝑑𝑓(𝑥, 𝑠, 𝑙𝑜𝑐, 𝑠𝑐𝑎𝑙𝑒)) 
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Figure 14 – CSA Snow Load (max) Bias Frequency Distribution Curve 

The arbitrary point in time snow load is characterized by a Lognormal probability distribution, 

with a mean of 0.069 and a COV of 0.98 [5]. This value was found taking the point-in-time values 

(mean = 0.196 and COV = 0.882) and applying a transformation factor (mean = 0.600 and COV 

= 0.420) which converts the ground snow load at a given site to an appropriate roof snow load. 

The distribution curve can be generated using the lognorm function from Python’s SciPy library. 

To produce a Lognormal distribution with a bias = 0.118 and COV = 0.992, a shape factor of 

0.116, location factor of 0, and a scale factor of -0.889 must be used in the lognorm function. The  

resulting distribution curve is shown in Figure 9. 

𝑥

= 𝑛𝑢𝑚𝑝𝑦. 𝑙𝑖𝑛𝑠𝑝𝑎𝑐𝑒(𝑙𝑜𝑔𝑛𝑜𝑟𝑚. 𝑝𝑝𝑓(0.001, 𝑠, 𝑙𝑜𝑐, 𝑠𝑐𝑎𝑙𝑒), 𝑙𝑜𝑔𝑛𝑜𝑟𝑚. 𝑝𝑝𝑓(0.999, 𝑠, 𝑙𝑜𝑐, 𝑠𝑐𝑎𝑙𝑒), 100) 

𝑚𝑎𝑡𝑝𝑙𝑜𝑡𝑙𝑖𝑏. 𝑝𝑦𝑝𝑙𝑜𝑡. 𝑝𝑙𝑜𝑡(𝑥, 𝑙𝑜𝑔𝑛𝑜𝑟𝑚. 𝑝𝑑𝑓(𝑥, 𝑠, 𝑙𝑜𝑐, 𝑠𝑐𝑎𝑙𝑒)) 
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Figure 9 – CSA Snow Load (Apt) Bias Frequency Distribution Curve 

 

3.5. AISC 360 Statistical Parameters 

The statistical parameters of the dead, live, wind, and snow load effects on buildings for the 

American Institute of Steel Construction used in this thesis are based on the work of Ellingwood 

et. al [7]. Table 2 shows a summary of the results. The results agree with those used in the 

calibration of the CSA S16 Standard in the case of dead load but deviate in cases of resistance, 

live, wind, and snow loads. 

Load Bias COV Distribution Reference 

Resistance (Steel) 1.10 0.11 Lognormal [7] 

Dead Load 1.05 0.10 Normal [7] 

Live Load (max) 1.0 0.25 Gumbel [7] 

Live Load (apt) 0.24 0.50 Gamma [7] 

Wind Load (max) 0.78 0.37 Gumbel [7] [17] 

Wind Load (apt) 0.01 0.069 Gumbel [7] [17] 
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Snow Load (max) 0.82 0.26 Lognormal [7] 

Snow Load (apt) 0.20 0.73 Lognormal [7] 

Table 2 – Statistical Parameters for The Resistance And Load Effects In AISC 360. 

3.5.1. Resistance 

Resistance is assumed to be characterized by a lognormal probability distribution with a bias factor 

of 1.10 and a coefficient of variation of 0.11 [7]. The lognormal distribution curve can be generated 

using the lognorm function from Python’s SciPy library. To produce a Lognormal distribution 

with a bias = 1.10 and COV = 0.11, a shape factor = 0.121, location factor of 0.095, and a scale 

factor of 1.0 must be used in the lognorm function. The distribution curve is shown in Figure 15. 

𝑥

= 𝑛𝑢𝑚𝑝𝑦. 𝑙𝑖𝑛𝑠𝑝𝑎𝑐𝑒(𝑙𝑜𝑔𝑛𝑜𝑟𝑚. 𝑝𝑝𝑓(0.001, 𝑠, 𝑙𝑜𝑐, 𝑠𝑐𝑎𝑙𝑒), 𝑙𝑜𝑔𝑛𝑜𝑟𝑚. 𝑝𝑝𝑓(0.999, 𝑠, 𝑙𝑜𝑐, 𝑠𝑐𝑎𝑙𝑒), 100) 

𝑚𝑎𝑡𝑝𝑙𝑜𝑡𝑙𝑖𝑏. 𝑝𝑦𝑝𝑙𝑜𝑡. 𝑝𝑙𝑜𝑡(𝑥, 𝑙𝑜𝑔𝑛𝑜𝑟𝑚. 𝑝𝑑𝑓(𝑥, 𝑠, 𝑙𝑜𝑐, 𝑠𝑐𝑎𝑙𝑒)) 

 

Figure 15 – AISC Resistance Bias Frequency Distribution Curve 
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3.5.2. Dead Load 

The dead load is characterized by a normal probability distribution, with a mean of 1.05 and a 

COV of 0.1. The normal distribution curve is identical to the CSA S16 curve used in Section 3.4.2. 

3.5.3. Live Load 

The maximum live load during the life of the structure is characterized by a Gumbel probability 

distribution, with a mean of 1.0 and a COV of 0.25 [7]. For live load, the influence area affects the 

value of the parameters to be used. In this thesis, we have chosen values which correspond to an 

assumed influence area of ~100m2 (~1000ft2) which is typical for steel structures. 

The gumbel distribution curve can be generated using the gumbel_r function from Python’s SciPy 

library. To produce a Gumbel distribution with a bias = 1.0 and COV = 0.25, a location factor of 

0.889, and a scale factor of 0.196 must be used in the gumberl_r function. The distribution curve 

is shown in Figure 16. 

𝑥

= 𝑛𝑢𝑚𝑝𝑦. 𝑙𝑖𝑛𝑠𝑝𝑎𝑐𝑒(𝑔𝑢𝑚𝑏𝑒𝑙_𝑟. 𝑝𝑝𝑓(0.001, 𝑙𝑜𝑐, 𝑠𝑐𝑎𝑙𝑒), 𝑔𝑢𝑚𝑏𝑒𝑙_𝑟. 𝑝𝑝𝑓(0.999, 𝑙𝑜𝑐, 𝑠𝑐𝑎𝑙𝑒), 100) 

𝑚𝑎𝑡𝑝𝑙𝑜𝑡𝑙𝑖𝑏. 𝑝𝑦𝑝𝑙𝑜𝑡. 𝑝𝑙𝑜𝑡(𝑥, 𝑔𝑢𝑚𝑏𝑒𝑙_𝑟. 𝑝𝑑𝑓(𝑥, 𝑙𝑜𝑐, 𝑠𝑐𝑎𝑙𝑒)) 
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Figure 16 – AISC Live Load Bias Frequency Distribution Curve 

The arbitrary point in time live load is characterized by a Gamma probability distribution, with a 

mean of 0.24 and a COV of 0.5. The distribution curve can be generated using the gamma function 

from Python’s SciPy library. To produce a Gamma distribution with a bias = 0.24 and COV = 0.5, 

a shape factor of 3.99, location factor of 0, and a scale factor of 0.0602 must be used in the gamma 

function. The distribution curve is shown in Figure 11. 

𝑥

= 𝑛𝑢𝑚𝑝𝑦. 𝑙𝑖𝑛𝑠𝑝𝑎𝑐𝑒(𝑔𝑎𝑚𝑚𝑎. 𝑝𝑝𝑓(0.001, 𝑎, 𝑙𝑜𝑐, 𝑠𝑐𝑎𝑙𝑒), 𝑔𝑎𝑚𝑚𝑎. 𝑝𝑝𝑓(0.999, 𝑎, 𝑙𝑜𝑐, 𝑠𝑐𝑎𝑙𝑒), 100) 

𝑚𝑎𝑡𝑝𝑙𝑜𝑡𝑙𝑖𝑏. 𝑝𝑦𝑝𝑙𝑜𝑡. 𝑝𝑙𝑜𝑡(𝑥, 𝑤𝑒𝑖𝑏𝑢𝑙𝑙_𝑚𝑖𝑛. 𝑝𝑑𝑓(𝑥, 𝑠, 𝑙𝑜𝑐, 𝑠𝑐𝑎𝑙𝑒)) 
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Figure 17 – AISC Live Load (Apt) Bias Frequency Distribution Curve 

3.5.4. Wind Load 

Wind load data used in reliability analysis in AISC is based on data from seven sites which give a 

broad geographical representation [7]. It was determined by Ellingwood et al that this data could 

be fitted very well to a Gumbel distribution [7]. The data was then used to compute the extreme 

values (u) and shape (α) of the distribution as 𝑢𝑚𝑎𝑥 = 0.65, 𝛼𝑚𝑎𝑥 = 4.45, 𝑢𝑎𝑝𝑡 = −0.021, and 

𝛼𝑎𝑝𝑡 = 18.7. 

From these values, the bias factor and coefficient of variation can be computed for both the 

maximum and arbitrary point in time cases using the following formulas as per the work of 

Benjamin and Cornell [17]: 

 

 
𝑚𝑒𝑎𝑛 = 𝑢 +

0.577

𝛼
 (3-6) 
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 𝑠𝑡𝑑 = 
𝜋

√6 ∗ 𝛼
 (3-7) 

 

 
𝑐𝑜𝑣 =

𝑠𝑡𝑑

𝑚𝑒𝑎𝑛
 (3-8) 

 

Using these formula’s, the statistical parameters for calculating wind load distribution functions 

can be solved for giving a mean of 0.78 and a COV of 0.37. The distribution curve can be generated 

using the gumbel_r function from Python’s SciPy library. To produce a Gumbel distribution with 

a bias = 0.78 and COV = 0.37, a location factor of 0.65, and a scale factor of 0.225 must be used 

in the gumberl_r function. The distribution curve is shown in Figure 18. 

𝑥

= 𝑛𝑢𝑚𝑝𝑦. 𝑙𝑖𝑛𝑠𝑝𝑎𝑐𝑒(𝑔𝑢𝑚𝑏𝑒𝑙_𝑟. 𝑝𝑝𝑓(0.001, 𝑙𝑜𝑐, 𝑠𝑐𝑎𝑙𝑒), 𝑔𝑢𝑚𝑏𝑒𝑙_𝑟. 𝑝𝑝𝑓(0.999, 𝑙𝑜𝑐, 𝑠𝑐𝑎𝑙𝑒), 100) 

𝑚𝑎𝑡𝑝𝑙𝑜𝑡𝑙𝑖𝑏. 𝑝𝑦𝑝𝑙𝑜𝑡. 𝑝𝑙𝑜𝑡(𝑥, 𝑔𝑢𝑚𝑏𝑒𝑙_𝑟. 𝑝𝑑𝑓(𝑥, 𝑙𝑜𝑐, 𝑠𝑐𝑎𝑙𝑒)) 
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Figure 18 – CSA Wind Load (Max) Bias Frequency Distribution Curve 

 

The arbitrary point in time wind load is characterized by a Gumbel probability distribution, with a 

mean of 0.01 and a COV of 0.069. The distribution curve can be generated using the gumbel_r 

function from Python’s SciPy library. To produce a Gumbel distribution with a bias = 0.01 and 

COV = 0.069, a location factor of 0.01, and a scale factor of 0.00056 must be used in the gumberl_r 

function. The distribution curve is shown in Figure 19. 

𝑥

= 𝑛𝑢𝑚𝑝𝑦. 𝑙𝑖𝑛𝑠𝑝𝑎𝑐𝑒(𝑔𝑢𝑚𝑏𝑒𝑙_𝑟. 𝑝𝑝𝑓(0.001, 𝑙𝑜𝑐, 𝑠𝑐𝑎𝑙𝑒), 𝑔𝑢𝑚𝑏𝑒𝑙_𝑟. 𝑝𝑝𝑓(0.999, 𝑙𝑜𝑐, 𝑠𝑐𝑎𝑙𝑒), 100) 

𝑚𝑎𝑡𝑝𝑙𝑜𝑡𝑙𝑖𝑏. 𝑝𝑦𝑝𝑙𝑜𝑡. 𝑝𝑙𝑜𝑡(𝑥, 𝑔𝑢𝑚𝑏𝑒𝑙_𝑟. 𝑝𝑑𝑓(𝑥, 𝑙𝑜𝑐, 𝑠𝑐𝑎𝑙𝑒)) 
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Figure 19 – CSA Wind Load (Apt) Bias Frequency Distribution Curve 

3.5.5. Snow Load 

Snow load data used in reliability analysis in AISC is based on data from water-equivalent loads 

at some 180 first order weather stations and snow depths at some 9000 additional sites which are 

then converted to loads through density-depth relations [7].  

The maximum snow load during the life of the structure is characterized by a Lognormal 

probability distribution, with a mean of 0.82 and a COV of 0.26 [7]. The lognormal distribution 

curve can be generated using the lognorm function from Python’s SciPy library. To produce a 

Lognormal distribution with a bias = 0.82 and COV = 0.26, a shape factor = 0.21, location factor 

of -0.2, and a scale factor of 1.0 must be used in the lognorm function. The distribution curve is 

shown in Figure 20. 

 

𝑥

= 𝑛𝑢𝑚𝑝𝑦. 𝑙𝑖𝑛𝑠𝑝𝑎𝑐𝑒(𝑔𝑢𝑚𝑏𝑒𝑙_𝑟. 𝑝𝑝𝑓(0.001, 𝑙𝑜𝑐, 𝑠𝑐𝑎𝑙𝑒), 𝑔𝑢𝑚𝑏𝑒𝑙_𝑟. 𝑝𝑝𝑓(0.999, 𝑙𝑜𝑐, 𝑠𝑐𝑎𝑙𝑒), 100) 
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𝑚𝑎𝑡𝑝𝑙𝑜𝑡𝑙𝑖𝑏. 𝑝𝑦𝑝𝑙𝑜𝑡. 𝑝𝑙𝑜𝑡(𝑥, 𝑔𝑢𝑚𝑏𝑒𝑙_𝑟. 𝑝𝑑𝑓(𝑥, 𝑙𝑜𝑐, 𝑠𝑐𝑎𝑙𝑒)) 

 

Figure 20 – CSA Snow Load (Max) Bias Frequency Distribution Curve 

 

The arbitrary point in time wind load is characterized by a Lognormal probability distribution, 

with a mean of 0.2 and a COV of 0.73 [7]. The distribution curve can be generated using the 

lognorm function from Python’s SciPy library. To produce a Lognormal distribution with a bias = 

0.2 and COV = 0.73, a shape factor = 0.144, location factor of -0.81, and a scale factor of 1.0 must 

be used in the lognorm function. The distribution curve is shown in Figure 21. 

𝑥

= 𝑛𝑢𝑚𝑝𝑦. 𝑙𝑖𝑛𝑠𝑝𝑎𝑐𝑒(𝑔𝑢𝑚𝑏𝑒𝑙_𝑟. 𝑝𝑝𝑓(0.001, 𝑙𝑜𝑐, 𝑠𝑐𝑎𝑙𝑒), 𝑔𝑢𝑚𝑏𝑒𝑙_𝑟. 𝑝𝑝𝑓(0.999, 𝑙𝑜𝑐, 𝑠𝑐𝑎𝑙𝑒), 100) 

𝑚𝑎𝑡𝑝𝑙𝑜𝑡𝑙𝑖𝑏. 𝑝𝑦𝑝𝑙𝑜𝑡. 𝑝𝑙𝑜𝑡(𝑥, 𝑔𝑢𝑚𝑏𝑒𝑙_𝑟. 𝑝𝑑𝑓(𝑥, 𝑙𝑜𝑐, 𝑠𝑐𝑎𝑙𝑒)) 
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Figure 21 – AISC Snow Load (Apt) Bias Frequency Distribution Curve 
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Chapter 4. Reliability Analysis 

4.1. Monte Carlo Simulation 

4.1.1. General 

In this thesis, the reliability index is computed using the Monte Carlo Simulation (MCS) method 

with consideration of the statistical distributions of the resistance and load variables, determined 

here, or obtained from the available literature. The basic concept of this method is to generate 

many tests quickly and randomly without having to do any physical experiment. To do so, a 

random value is generated for each design variable based on the probability distribution of that 

variable, and the random values of all the variables are then used to determine the safety margin. 

The process is repeated for many simulated variables. The reliability index is then computed by 

dividing the mean value of all the simulated safety margins by the corresponding standard 

deviation. The MCS method can also be used to compute the probability of failure by dividing the 

number of simulations of the safety margin bearing a negative sign by the total number of 

simulations. This approach is very robust and can be applied to almost any limit state formulation.  

The disadvantages of a MCS are that it is computationally inefficient. Many variables bounded to 

different constraints can require a lot of time and a lot of computations to approximate a solution. 

Also input parameters must be realistic and accurate. If poor parameters and constraints are input 

into the model, then poor results will be given as outputs. 

The software used for this purpose is Python 3.9.7, Numpy 1.19.3, Scipy 1.5.4, and Matplotlib 

3.3.3. Custom code has been written using these software packages to perform the MCS, using 

500,000 iterations for each MCS. The Python software language is used to write the main code, 

the Scipy package is used for its probability distribution functions, the Numpy package is used for 
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its mathematical functions, and the Matplotlib package is used to plot results. A sample of the code 

is included in Appendix A, and a description of the theory behind the code with an example is 

detailed in Section 4.1.2.  

4.1.2. CSA S16 

For the MCS, the factored load combinations used by CSA-S16 must be considered, which are 

based on the NBCC [18]. The load combinations are show in Table 3. The relationship between 

the reliability index and applied loads depends on the fraction of D, L, W, and S within the load 

combinations specified by the code. 

Load Combination Factored Load Combination 

1 1.4D 

2 1.25D + 1.5L + 1.0S 

3 1.25D + 1.5L + 0.4W 

4 1.25D + 1.5S + 1.0L 

5 1.25D + 1.5S + 0.4W 

6 1.25D + 1.4W + 0.5L 

7 1.25D + 1.4W + 0.5S 

Table 3 – Factored Load Combinations 

For each combination, different ratios of L/D, W/D, and S/D are considered to produce reliability 

index curves. These can then be compared to the target reliability index. Since it is highly unlikely 

that the various loads will reach their peak values at the same time, a practical approach is needed 

when combining the loads on the structure. In this study, the total load effect is determined using 

Turkstra’s rule [19]. This approach assumes that the critical value of a combination of several loads 

is reached when one load takes on its maximum value while the remaining other loads are at their 
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arbitrary-point-in-time values. This produces the following four combinations since the dead load 

is assumed not to vary with time. 

𝐷 + 𝐿𝑚𝑎𝑥 +𝑊𝑎𝑝𝑡 

𝐷 + 𝐿𝑎𝑝𝑡 +𝑊𝑚𝑎𝑥 

𝐷 + 𝐿𝑚𝑎𝑥 + 𝑆𝑎𝑝𝑡 

𝐷 + 𝐿𝑎𝑝𝑡 + 𝑆𝑚𝑎𝑥 

When combined with Table 3, this produces 13 load combinations to be examined, as shown in 

Table 4. 

Load Combination Factored Load Combination 

1 1.4D 

2 1.25D + 1.5Lmax + 1.0Sapt 

3 1.25D + 1.5Lapt + 1.0Smax 

4 1.25D + 1.5Lmax + 0.4Wapt 

5 1.25D + 1.5Lapt + 0.4Wmax 

6 1.25D + 1.5Smax + 1.0Lapt 

7 1.25D + 1.5Sapt + 1.0Lmax 

8 1.25D + 1.5Smax + 0.4Wapt 

9 1.25D + 1.5Sapt + 0.4Wmax 

10 1.25D + 1.4Wmax + 0.5Lapt 

11 1.25D + 1.4Wapt + 0.5Lmax 

12 1.25D + 1.4Wmax + 0.5Sapt 
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13 1.25D + 1.4Wapt + 0.5Smax 

Table 4 - Factored Load Combinations using Turkstra’s Rule 

Where 

Lmax = Maximum Live Load 

Lapt = Arbitrary Point in Time Live Load 

Wmax = Maximum Wind Load 

Wapt = Arbitrary Point in Time Wind Load 

Smax = Maximum Snow Load 

Sapt = Arbitrary Point in Time Snow Load 

 

4.1.2.1. Dead + Live 

The case of dead load and live load is considered first. Values for the nominal dead and live loads 

are selected. This AISC 360 LRFD code was calibrated with the ASD code at L/D = 3.0, so that is 

the first case examined here, although a range of L/D ratios will be investigated. Using DL = 200 

kN and LL = 600kN, we then determine the critical factored load to be equal to 1150 kN (1.25D 

= 250kN) + (1.5L = 900kN). This gives required nominal strength of Rn = 1278 kN since the 

resistance factor in CSA for steel is 0.90. 

 
𝑅𝑒𝑠 =

1.25 ∗ 250𝑘𝑁 + 1.5 ∗ 600𝑘𝑁

0.9
= 1278𝑘𝑁 (4-1) 

 

Using the appropriate distribution functions for each load as discussed in Section  3.4, many 

random values can be generated for the resistance and loads. We set n = 500,000 simulations and 

use the appropriate bias factors and COV’s determined in Section 3.4 to generate random values 

for each simulation. 
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𝑛 = 500,000 

𝑅𝑒𝑠𝑑𝑖𝑠𝑡 = 𝑠𝑐𝑖𝑝𝑦. 𝑠𝑡𝑎𝑡𝑠. 𝑙𝑜𝑔𝑛𝑜𝑟𝑚. 𝑟𝑣𝑠(𝑠, 𝑙𝑜𝑐, 𝑠𝑐𝑎𝑙𝑒, 𝑛) 

𝐷𝐿𝑑𝑖𝑠𝑡 = 𝑠𝑐𝑖𝑝𝑦. 𝑠𝑡𝑎𝑡𝑠. 𝑛𝑜𝑟𝑚. 𝑟𝑣𝑠(𝑙𝑜𝑐, 𝑠𝑐𝑎𝑙𝑒, 𝑛) 

𝐿𝐿𝑑𝑖𝑠𝑡 = 𝑠𝑐𝑖𝑝𝑦. 𝑠𝑡𝑎𝑡𝑠. 𝑔𝑢𝑚𝑏𝑒𝑙_𝑟. 𝑟𝑣𝑠(𝑙𝑜𝑐, 𝑠𝑐𝑎𝑙𝑒, 𝑛) 

 

Using these distributions of random values, we can determine the frequency distributions of R and 

Q, as follows. 

 𝑅 = 𝑅𝑒𝑠𝑑𝑖𝑠𝑡 ∗ 𝑅𝑒𝑠 (4-2) 

  

 𝑄 = 𝐷𝐿𝑑𝑖𝑠𝑡 ∗ 𝐷𝐿 + 𝐿𝐿𝑑𝑖𝑠𝑡 ∗ 𝐿𝐿 (4-3) 

 

Curves can be fitted to both sets of random values of R and Q, which can then be graphed as show 

in Figure 22. This gives the familiar load effect and resistance curves discussed previously and 

shown in Figure 6. The overlap in the curves represents the simulations where failure occurred. 

Using python’s numpy library, the mean and coefficient of variation can be determined for both R 

and Q. The reliability index can then be determined from the following formula [2]:  

 

 

𝛽 =
ln(

𝑅𝑚
𝑄𝑚
⁄ )

√𝑉𝑅
2 + 𝑉𝑄

2

= 3.10 (4-4) 

 

𝑅𝑚 = 𝑚𝑒𝑎𝑛𝑣𝑎𝑙𝑢𝑒𝑜𝑓𝑡ℎ𝑒𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒, 𝑅 

𝑄𝑚 = 𝑚𝑒𝑎𝑛𝑣𝑎𝑙𝑢𝑒𝑜𝑓𝑡ℎ𝑒𝑙𝑜𝑎𝑑𝑒𝑓𝑓𝑒𝑐𝑡, 𝑄 

𝑉𝑅 = 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑜𝑓𝑣𝑎𝑟𝑖𝑡𝑎𝑖𝑜𝑛𝑜𝑓𝑡ℎ𝑒𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒, 𝑅 
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𝑉𝑄 = 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑜𝑓𝑣𝑎𝑟𝑖𝑡𝑎𝑖𝑜𝑛𝑜𝑓𝑡ℎ𝑒𝑙𝑜𝑎𝑑𝑒𝑓𝑓𝑒𝑐𝑡, 𝑄 

 

The reliability index for this case is 3.10. The frequency distributions after running 50,000 

simulations for a ratio of L/D = 3.0 is shown in Figure 22. A probability of failure can be 

determined by counting the number of simulations where Q > R. In this case there were 927 

failures, which corresponds to a failure probability of 0.19%. 

  

Figure 22 – Frequency Distributions For Random Values of Q and R with L/D = 3.0 

We can repeat this process for different ratios of L/D, and we end up with the curve shown in 

Figure 23. CSA S16 and the NBCC specify a target reliability of βT=3.0 as per [5], which is also 

indicated on the curve. Note the curve dips sharply at first since the Dead Load factor is decreased 

from 1.4 to 1.25 as soon as Live Load is present (L/D ratio > 0) before rising again and then 

flattening out approaching a value slightly below the target reliability of 3. 
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Figure 23 – CSA Reliability Indices for DL + LL and φ=0.9 

This curve can then be adjusted up and down by using different material factor values. This can 

be seen in Figure 24. 

 

Figure 24 - CSA Reliability Indices for DL + LL and varying φ 

4.1.2.2. Dead + Live + Wind 

Looking next at D + L + W, we must consider cases 4,5,10, and 11 from Table 4. Running MCS’s 

for each produces the following graphs for the case of W/D = 0.25 and varying L/D. 
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Figure 25 – CSA Reliability Indices for DL + LL + WL 

We can combine these graphs into a single graph by taking the lowest reliability index value out 

of all four for each value of L/D ratio. This produces the graph shown in Figure 26. Looking at 

different ratios of W/D in the same manner produces the graphs shown in Figure 27 through 

Figure 29. 
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Figure 26 – CSA Reliability Indices for DL + LL + WL with W/D = 0.25 

 

Figure 27 – CSA Reliability Indices for DL + LL + WL with W/D = 1.0 
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Figure 28 – CSA Reliability Indices for DL + LL + WL with W/D = 2.0 

 

Figure 29 – CSA Reliability Indices for DL + LL + WL with W/D = 3.0 

4.1.2.3. Dead + Live + Snow 

For the scenario of D + L + S, we must consider cases 2, 3, 6, and 7 from Table 4. Running MCS’s 

for each produces the following graphs for the case of S/D = 0.25 and varying S/D. 
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Figure 30 – CSA Reliability Indices for DL + LL + SL 

We can combine these graphs into a single graph by taking the lowest reliability index value out 

of all four for each value of L/D ratio. This produces the graph shown in Figure 31. Looking at 

different ratios of W/D in the same manner produces the graphs shown in Figure 27 through 

Figure 29. 
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Figure 31 – CSA Reliability Indices for DL + LL + SL with S/D = 0.25 

 

Figure 32 – CSA Reliability Indices for DL + LL + SL with S/D = 1.0 
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Figure 33 – CSA Reliability Indices for DL + LL + SL with S/D = 2.0 

 

Figure 34 – CSA Reliability Indices for DL + LL + SL with S/D = 3.0 

4.1.3. AISC 360 

The same exercise is performed for the factored load combinations used by AISC 360, which are 

based on ASCE/SEI 7 [9]. The load combinations are show in Table 5. The relationship between 

the reliability index and applied loads depends on the fraction of D, L, W, and S within the load 

combinations specified by the code. 
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Load Combination Factored Load Combination 

1 1.4D 

2 1.2D + 1.6L + 0.5S 

3 1.2D + 1.0L + 1.0W + 0.5S 

4 1.2D + 1.6S + 0.5W 

5 1.2D + 1.6S + 0.5L 

Table 5 – Factored Load Combinations 

For each combination, different ratios of L/D, W/D, and S/D are considered to produce reliability 

index curves. These can then be compared to the target reliability index. 

The cases of D, L, W, and S can be represented by the maximum effect of three combinations since 

the dead load is assumed not to vary with time. We can again use Turkstra’s rule [19] in 

combination with Table 5 to produce the 10 load combinations shown in Table 6. 

Load Combination Factored Load Combination 

1 1.4D 

2 1.2D + 1.6Lmax + 0.5Sapt 

3 1.2D + 1.6Lapt + 0.5Smax 

4 1.2D + 1.0Lmax + 1.0Wapt + 0.5Sapt 

5 1.2D + 1.0Lapt + 1.0Wmax + 0.5Sapt 

6 1.2D + 1.0Lapt + 1.0Wapt + 0.5Smax 

7 1.2D + 1.6Smax + 0.5Wapt 

8 1.2D + 1.6Sapt + 0.5Wmax 

9 1.2D + 1.6Sapt + 0.5Lmax 
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10 1.2D + 1.6Sapt + 0.5Lmax 

Table 6 – Factored Load Combinations using Turkstra’s Rule 

Where 

Lmax = Maximum Live Load 

Lapt = Arbitrary Point in Time Live Load 

Wmax = Maximum Wind Load 

Wapt = Arbitrary Point in Time Wind Load 

Smax = Maximum Snow Load 

Sapt = Arbitrary Point in Time Snow Load 

 

4.1.3.1. Dead + Live 

The MCS to determine AISC reliability indices is carried out in the same manner as was done for 

CSA in Section 4.1.2. 

The first scenario we can compare is that of L + D only. The same nominal dead and live loads are 

selected (D = 200 kN and L = 600 kN), giving a L/D ratio of 3.0. We then determine the critical 

factored load to be equal to 1200 kN (1.2D = 240kN) + (1.6L = 960kN). We then find the required 

nominal strength to be Rn ≈ 1333 kN since the resistance factor in AISC for steel is 0.90. 

𝐷𝐿 = 200𝑘𝑁 

𝐿𝐿 = 600𝑘𝑁 

 
𝑅𝑒𝑠 =

1.2 ∗ 200𝑘𝑁 + 1.6 ∗ 600𝑘𝑁

0.9
= 1333𝑘𝑁 (4-5) 
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𝛽 =
ln(

𝑅𝑚
𝑄𝑚
⁄ )

√𝑉𝑅
2 + 𝑉𝑄

2

= 2.73 (4-6) 

 

Using the same process as Section 4.1.2, as well as Equation (4-6), the reliability index is 

determined to be 2.73. The frequency distributions for AISC after running 50000 simulations for 

a ratio of L/D = 3.0 is shown in Figure 35. There were 2337 failures which gives a probability of 

failure of 0.47%. It can be seen the overlap between the curves is slightly larger than in the case 

of CSA. 

   

Figure 35 – Frequency Distributions For Random Values of Q and R with L/D = 3 

The reliability index for AISC with L/D = 3.0 is slightly lower than the value for CSA with L/D = 

3.0. This is expected since AISC 360 specifies a target reliability of 2.6 for L/D = 3.0.  

We can repeat this process for different ratios of L/D, and we end up with the curve shown in 

Figure 23. The AISC target reliability is also indicated on the curve.  
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Figure 36 – AISC Reliability Indices for DL + LL and φ=0.9 

This curve can then be adjusted up and down by using different material factor values. This can 

be seen in Figure 37. 

 

 

Figure 37 – AISC Reliability Indices for LL + DL and Varying φ 
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4.1.3.2. Dead + Live + Wind 

Looking first at D + L + W with S = 0, we must consider cases 4, 5, and 6 from Table 6. Running 

MCS’s for each case and using the lowest reliability index from all combined produces graphs for 

varying cases of W/D with varying L/D. 

 

Figure 38 – AISC Reliability Indices for DL + LL + WL with W/D = 0.25 

 

Figure 39 – AISC Reliability Indices for DL + LL + WL with W/D = 1.0 
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Figure 40 – AISC Reliability Indices for DL + LL + WL with W/D = 2.0 

 

Figure 41 – AISC Reliability Indices for DL + LL + WL with W/D = 2.0 

4.1.3.3. Dead + Live + Snow 

For the scenario of D + L + S, we must consider cases 2, 3, 9, and 10 from Table 6. Running 

MCS’s for each case and using the lowest reliability index from all combined produces graphs for 

varying cases of S/D with varying L/D. 
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Figure 42 – AISC Reliability Indices for DL + LL + SL with S/D = 0.25 

 

Figure 43 – AISC Reliability Indices for DL + LL + SL with S/D = 1.0 



   

 

64 

 

 

Figure 44 – AISC Reliability Indices for DL + LL + SL with S/D = 2.0 

 

Figure 45 – AISC Reliability Indices for DL + LL + SL with S/D = 3.0 

4.1.4. Target Reliabilities 

Results and target reliability graphs from the above sections agree well with the literature review 

and assumed target reliabilities of the AISC 360 Specification and the CSA S16 Standard. This is 

easiest to see in the case of dead load plus live load in sections 4.1.2.1 and 4.1.3.1. In each case 

the MCS produces reliability index graphs where the curve rises slightly for low ratios of L/D, and 
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then approaches the target reliability as the L/D ratio increases. This validates the MCS method 

used and allows it to be proposed to calibrate strength formulas from other codes for use in the 

CSA S16 standard. 

For the purposes of this study, the L+D case will be used to calibrate proposed strength formulas 

to a target reliability of 3.0 for use in the CSA S16 standard.  
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Chapter 5. Reliability-Based Strength Formula Development 

5.1. Reliability-Based Strength Formula Model 

Considering the reliability indices are different between CSA and AISC, we cannot simply adopt 

the AISC torsional strength formulas into the CSA standard. However, an approach can be 

developed to adopt equations between the codes while maintaining the appropriate reliability 

index. The process is detailed in a flowchart in Figure 46. It is proposed that the desired strength 

formula can be adopted into the CSA S16 standard as follows: 

1. Choose a proposed strength formula for adoption into the CSA S16 standard, through 

experiment, testing, or adoption from another code. 

2. Find experimental data to compare/verify the proposed formula against. 

3. Use the ratio of experimental to predicted strength to determine the Bias and COV of the 

Professional (P) factor. 

 
𝐵𝑖𝑎𝑠𝑃 = 𝑚𝑒𝑎𝑛 (

𝑅𝑒𝑥𝑝

𝑅𝑝𝑟𝑒𝑑
) (5-1) 

 

𝐶𝑂𝑉𝑃 =

𝑠𝑡𝑑 (
𝑅𝑒𝑥𝑝
𝑅𝑝𝑟𝑒𝑑

)

𝑚𝑒𝑎𝑛 (
𝑅𝑒𝑥𝑝
𝑅𝑝𝑟𝑒𝑑

)

 (5-2) 

 

4. Use the Bias and COV for Material (M) and Fabrication (F) factors from a reference such 

as Ref [20]. 

5. Combine the Bias and COV values from PMF to get an overall Bias and COV for 𝑅𝑛 and 

use them to generate a lognormal distribution function (𝑅𝑛𝑑𝑖𝑠𝑡). 
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6. Using the geometric properties of one of the test specimens from Step 2, calculate the 

nominal resistance using the proposed strength formula from Step 1. 

7. Starting with D+L, and a ratio of L/D = 3.0, solve for the Live Load and the Dead Load 

using Equation (3-1) by substituting in the Resistance from Step 6, the appropriate LL and 

DL factors (1.5 and 1.25 respectively), and the L/D ratio. 

 
𝐷𝐿 =

∅𝑅𝑛

(1.25 + (3.0 ∗ 1.5))
 (5-3) 

 
𝐿𝐿 = 

∅𝑅𝑛

((
1.25
3.0 ) + 1.5)

 
(5-4) 

 

8. Using the appropriate distribution functions for each load as discussed in Section  3.4, as 

well as the distribution function from Step 5, generate a statistically significant amount of 

random values of R, and Q, using Equation (4-2) and Equation (4-3). 

 𝑅 = 𝑅𝑛𝑑𝑖𝑠𝑡 ∗ 𝑅𝑛 (5-5) 

   

 𝑄 = 𝐷𝐿𝑑𝑖𝑠𝑡 ∗ 𝐷𝐿 + 𝐿𝐿𝑑𝑖𝑠𝑡 ∗ 𝐿𝐿 (5-6) 

 

9. Calculate the reliability index of the proposed strength formula using Equation (4-4). 

 

𝛽 =
ln(

𝑅𝑚
𝑄𝑚
⁄ )

√𝑉𝑅
2 + 𝑉𝑄

2

 (5-7) 
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10. Repeat steps 7 through 9 over a range of L/D ratios and generate a reliability index curve. 

11. Compare the reliability index curve from Step 10 to the curve shown in Figure 23. If the 

reliability indices are similar, the proposed formula can be proposed to be adopted by the 

CSA S16 standard.  

12. If the reliability index is too low or too high (not within 5% of target reliability) , adjust 

the strength formula, recalculate the Bias and COV from Step 3, and repeat the process 

until the desired reliability curve is found in Step 11. 
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Figure 46 – Reliability-Based Strength Formula Model 
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This model will be used to develop torsional strength formulas for inclusion in the CSA S16 

Standard in the following sections. 

5.2. Torsional Strength of Round HSS 

In developing a round HSS torsional strength formula for inclusion in the CSA S16 standard, we 

will use the AISC formula as a starting point in our proposed model. The strength equation for 

round HSS sections given by AISC 360 is as follows: 

 𝑅𝑛 =𝐹𝑐𝑟𝐶 (5-8) 

   

Where: 

𝐶 = 𝐻𝑆𝑆𝑇𝑜𝑟𝑠𝑖𝑜𝑛𝑎𝑙𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

 

and 𝐹𝑐𝑟 shall be the larger of: 

 
𝐹𝑐𝑟 =

1.23𝐸

√𝐿
𝐷 (

𝐷
𝑇)

5
4

 
(5-9) 

   

and: 

 
𝐹𝑐𝑟 =

0.60𝐸

(
𝐷
𝑡 )

3
2

 
(5-10) 

   

and shall not exceed: 

 𝐹𝑐𝑟 = 0.6𝐹𝑦 (5-11) 
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The model modifies this formula with consideration of natural variations in material properties, 

fabrication tolerances and deviation of the model from experimental outcomes, that is: 

 𝑅 = 𝑅𝑛 ∗ (𝑃𝑀𝐹) (5-12) 

 

Where: 

𝑅𝑛 = the nominal resistance value 

𝑃 = Professional Factor – Accounts for ratio of tested capacity to theoretical 

𝑀 = Material Factor – Accounts for ratio of actual to nominal material properties 

𝐹 = Fabrication/Geometric Factor – Accounts for ratio of actual to nominal material 
thicknesses 

 

The professional factor must be based on experimental data. For the case of Round HSS sections, 

experimental data for torsional resistance can be found in Torsional Strengthening of Steel Circular 

Hollow Sections (CHS) using CFRP composites, Ref [21]. This paper is mostly concerned with 

resistance of carbon fibre reinforced polymer round HSS sections, however, the data for the control 

group of standard non-reinforced round HSS sections can be used for the purpose of this study. 

Specimen ID 

Experimental 

Torsional 

Capacity, 𝑹𝒆𝒙𝒑 

(kN*m) 

Predicted 

Torsional 

Capacity, 𝑹𝒏 

(kN*m) 

𝑹𝒆𝒙𝒑/𝑹𝒏 Failure Mode 

CHS1-1 8.74 8.44 1.04 Yielding 

CHS1-2 8.71 8.44 1.03 Yielding 

CHS2-1 9.80 8.46 1.16 Yielding 

CHS2-2 9.92 8.46 1.17 Yielding 

CHS3-1 14.60 13.27 1.10 Yielding 

CHS3-2 14.26 13.27 1.07 Yielding 

CHS4-1 16.64 13.70 1.21 Yielding 

CHS4-2 N/A 13.70 N/A Welding Failure 
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CHS5-1 26.36 21.35 1.23 Yielding 

CHS5-2 N/A 21.35 N/A Welding Failure 
Table 7 – Round HSS Experimental Data 

The bias and the coefficient of variation of the professional factor must be estimated from the 

distribution of the ratio of 𝑅𝑒𝑥𝑝/𝑅𝑛, in which 𝑅𝑛 is the nominal torsional strength given by Equation 

(5-8) and 𝑅𝑒𝑥𝑝 is the actual strength from the experiment. Based on the ratio 𝑅𝑒𝑥𝑝/𝑅𝑛 from the data 

of the 10 tests in Table 7 the bias factor and the coefficient of variation of the professional factor 

are then estimated as: Bias = 1.128 and COV = 0.065. 

Next, the combined effect of the factors M and F, denoted by MF, is considered. A common bias 

factor and a common coefficient of variation MF based on the material and geometric properties 

of Round HSS sections can be found in Review of resistance factor for steel: Data collection, Ref 

[20] and taken as: Bias = 1.35 and COV = 0.097.  

Since both P and MF obey the lognormal distribution, then the product follows strictly the 

lognormal distribution, and the bias factor and the coefficient of variation of the torsional 

resistance of Round HSS sections can be computed as: 

 𝐵𝑖𝑎𝑠 =  𝑃 ∗ 𝑀𝐹 = 1.523 (5-13) 

 

and: 

 
𝐶𝑂𝑉 =  √𝑉𝑃

2 +  𝑉𝑀𝐹
2 = 0.117 (5-14) 

 

Which produces the distribution shown in Figure 47. 
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Figure 47 – Frequency Distribution Curve of Round HSS using AISC strength formula 

These values can now be used to verify the reliability index were the AISC formula for torsional 

strength of Round HSS sections be used with the CSA S16 standard. To do this, the steps in Section 

4.1.2 can be followed using the statistical parameters for Resistance determined above in place of 

those stated in Table 1. This produces the reliability index graph shown in Figure 48. 

 

Figure 48 – Reliability Index Graph for Round HSS using AISC strength formula 
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Using the strength formula from AISC unaltered gives a reliability index which approaches 4.0, 

well above the CSA target.  

To adjust the reliability index curve closer to the target, we can propose a new equation closer to 

the equation for shear strength of Round HSS sections used by CSA S16, which corresponds to a 

10% increase. To do this we can use the following updated equations in place of 𝐹𝐶𝑅 in Equation 

(5-8). 

𝐹𝑐𝑟 shall be the larger of: 

 
𝐹𝑐𝑟 = 1.1

1.23𝐸

√𝐿
𝐷 (

𝐷
𝑇)

5
4

 
(5-15) 

 

and: 

 
𝐹𝑐𝑟 = 1.1

0.60𝐸

(
𝐷
𝑡 )

3
2

 
(5-16) 

   

and shall not exceed: 

 𝐹𝑐𝑟 = 1.1(0.6𝐹𝑦) (5-17) 

 

A comparison of the torsional strength of Round HSS sections using the AISC equations and the 

proposed CSA equation is shown in Figure 49. 
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Figure 49 – Nominal Torsional Strength of Round HSS Members – AISC 360 and Proposed CSA S16 

Using this formula produces the updated predicted strength values shown in Table 8. 

Specimen ID 

Experimental 

Torsional 

Capacity, 𝑹𝒆𝒙𝒑 

(kN*m) 

Predicted 

Torsional 

Capacity, 𝑹𝒏 

(kN*m) 

𝑹𝒆𝒙𝒑/𝑹𝒏 Failure Mode 

CHS1-1 8.74 9.29 0.94 Yielding 

CHS1-2 8.71 9.29 0.94 Yielding 

CHS2-1 9.80 9.31 1.05 Yielding 

CHS2-2 9.92 9.31 1.07 Yielding 

CHS3-1 14.60 14.60 1.00 Yielding 

CHS3-2 14.26 14.60 0.98 Yielding 

CHS4-1 16.64 15.07 1.10 Yielding 

CHS4-2 N/A 15.07 N/A Welding Failure 

CHS5-1 26.36 23.49 1.12 Yielding 

CHS5-2 N/A 23.49 N/A Welding Failure 
Table 8 – Updated Round HSS Experimental Data 

 

Using these new ratios of 𝑅𝑒𝑥𝑝/𝑅𝑛 from the data of the 10 tests in Table 8 the new bias factor and 

the coefficient of variation of the professional factor are then estimated as: Bias = 1.025 and COV 

= 0.065. 
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These new factors are combined with the previously determined bias factor and coefficient of 

variation of MF to produce a bias factor = 1.384 and COV = 0.065 for the proposed torsional 

resistance of Round HSS sections. 

These new values can be used to produce the reliability index graph shown in Figure 50. 

 

Figure 50 - Reliability Index Graph for Round HSS using Proposed CSA strength formula 

Using the proposed CSA strength formula gives a reliability index which approaches 3.5. This is 

still above the target reliability of CSA. Through trial and error, it is determined that a 25% increase 

could be used on Equation (5-9), Equation (5-10), and Equation (5-11) to give the appropriate 

target reliability of 3.0 for the torsional strength of round HSS sections in CSA S16. However, 

Equation (5-15), Equation (5-16), and Equation (5-17) give better consistency with the shear 

strength equations of round HSS sections already in use in CSA S16. The recommendation is to 

use the following resistance factor when using the AISC 360 torsional strength formula for round 

HSS sections when designing to the CSA S16 standard: 

 ∅ = 0.9 ∗ 1.1 ≈ 1.0 (5-18) 
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5.3. Torsional Strength of Rectangular HSS 

In developing a rectangular HSS section torsional strength formula for inclusion in the CSA S16 

standard, we will use the AISC formula as a starting point in the proposed model. The strength 

equation for rectangular HSS sections given by AISC 360 is as follows: 

 𝑅𝑛 =𝐹𝑐𝑟𝐶 (5-19) 

 

Where: 

𝐶 = 𝐻𝑆𝑆𝑇𝑜𝑟𝑠𝑖𝑜𝑛𝑎𝑙𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 2(𝐵 − 𝑡)(𝐻 − 𝑡)𝑡 − 4.5(4 − 𝜋)𝑡3 

 

When ℎ 𝑡⁄ ≤ 2.45√𝐸 𝐹𝑦⁄ : 

 𝐹𝑐𝑟 = 0.6𝐹𝑦 (5-20) 

   

When 2.45√𝐸 𝐹𝑦⁄ < ℎ 𝑡⁄ ≤ 3.07√𝐸 𝐹𝑦⁄ : 

 
𝐹𝑐𝑟 =

0.6𝐹𝑦(2.45√𝐸 𝐹𝑦⁄ )

(
ℎ
𝑡)

 (5-21) 

   

When 3.07√𝐸 𝐹𝑦⁄ < ℎ 𝑡⁄ ≤ 260: 

 
𝐹𝑐𝑟 =

0.458𝜋2𝐸

(
ℎ
𝑡)

2  
(5-22) 
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The model modifies this formula with consideration of natural variations in material properties, 

fabrication tolerances and deviation of the model from experimental outcomes, that is: 

 𝑅 = 𝑅𝑛 ∗ (𝑃𝑀𝐹) (5-23) 

 

Where: 

𝑅𝑛 = the nominal resistance value 

𝑃 = Professional Factor – Accounts for ratio of tested capacity to theoretical 

𝑀 = Material Factor – Accounts for ratio of actual to nominal material properties 

𝐹 = Fabrication/Geometric Factor – Accounts for ratio of actual to nominal material 
thicknesses 

 

The professional factor must be based on experimental data. For the case of rectangular HSS 

sections, experimental data for torsional resistance can be found in the work of Devi et al, Ridley-

Ellis, and Marshall [22] [23] [24]. The first two studies are mostly concerned with torsional 

resistance of perforated rectangular HSS sections, however, the data for the control groups of 

standard non-perforated rectangular HSS sections can be used for the purpose of this study. 

Specimen ID 

Experimental 

Torsional 

Capacity, 𝑹𝒆𝒙𝒑 

(kN*m) 

Predicted 

Torsional 

Capacity, 𝑹𝒏 

(kN*m) 

𝑹𝒆𝒙𝒑/𝑹𝒏 Source 

RHS1-1 5.36 5.07 1.06 [22] 

RHS1-2 5.38 5.07 1.06 [22] 

TT4 43.1 57.99 0.74 [23] 

TT3 38.8 51.22 0.76 [23] 

TT7 53.2 64.14 0.83 [23] 

TT14 53.6 64.14 0.84 [23] 

TT8 49.6 62.94 0.79 [23] 

A 2.78 3.72 0.75 [24] 

B 4.56 6.12 0.74 [24] 



   

 

79 

 

C 9.36 12.81 0.73 [24] 

D 15.9 21.20 0.75 [24] 

E 11.6 14.32 0.81 [24] 

F 8.35 12.45 0.67 [24] 

G 2.78 3.66 0.76 [24] 

H 3.54 4.19 0.85 [24] 

I 4.56 5.66 0.81 [24] 

Table 9 – Rectangular HSS Experimental Data 

The bias and the coefficient of variation of the professional factor must be estimated from the 

distribution of the ratio of 𝑅𝑒𝑥𝑝/𝑅𝑛, in which 𝑅𝑛 is the nominal torsional strength given by Equation 

(5-19) and 𝑅𝑒𝑥𝑝 is the actual strength from the experiment. Based on the ratio 𝑅𝑒𝑥𝑝/𝑅𝑛 from the data 

of the 16 tests in Table 9 the bias factor and the coefficient of variation of the professional factor 

are then estimated as: Bias = 0.81 and COV = 0.13.  

Next, the combined effect of the factors M and F, denoted by MF, is considered. A common bias 

factor and a common coefficient of variation MF based on the material and geometric properties 

of rectangular HSS sections can be found in Ref [20] and taken as: Bias = 1.35 and COV = 0.097.  

Since both P and MF obey the lognormal distribution, then the product follows strictly the 

lognormal distribution, and the bias factor and the coefficient of variation of the torsional 

resistance of rectangular HSS sections can be computed as: 

 𝐵𝑖𝑎𝑠 =  𝑃 ∗ 𝑀𝐹 = 1.09 (5-24) 

 

and: 

 
𝐶𝑂𝑉 =  √𝑉𝑃

2 +  𝑉𝑀𝐹
2 = 0.16 (5-25) 
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Which produces the distribution shown in Figure 51. 

 

Figure 51 – Frequency Distribution Curve of Rectangular HSS using AISC strength formula 

These values can now be used to verify the reliability index were the AISC formula for torsional 

strength of rectangular HSS sections be used with the CSA S16 standard. To do this, the steps in 

Section 4.1.3 can be followed using the statistical parameters for Resistance determined above in 

place of those stated in Table 1. This produces the reliability index graph shown in  
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Figure 52 – Reliability Index Graph for Rectangular HSS using AISC strength formula 

 

Using the strength formula from AISC unaltered gives a reliability index which approaches 2.5, 

below the CSA target.  

To adjust the reliability index curve closer to the target, we can propose a new equation. Through 

trial and error as per the proposed model, the following updated equations are proposed to be used 

in place of 𝐹𝐶𝑅 in Equation (5-19), which corresponds to a 17% reduction in strength: 

When ℎ 𝑡⁄ ≤ 2.45√𝐸 𝐹𝑦⁄ : 

 𝐹𝑐𝑟 = 0.83(0.6𝐹𝑦) (5-26) 

 

When 2.45√𝐸 𝐹𝑦⁄ < ℎ 𝑡⁄ ≤ 3.07√𝐸 𝐹𝑦⁄ : 

 
𝐹𝑐𝑟 = 0.83

0.6𝐹𝑦(2.45√𝐸 𝐹𝑦⁄ )

(
ℎ
𝑡)

 (5-27) 
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When 3.07√𝐸 𝐹𝑦⁄ < ℎ 𝑡⁄ ≤ 260: 

 
𝐹𝑐𝑟 = 0.83

0.458𝜋2𝐸

(
ℎ
𝑡)

2  
(5-28) 

 

A comparison of the torsional strength of rectangular HSS sections using the AISC equations and 

the proposed CSA equation is shown in Figure 53. 

 

Figure 53 – Nominal Torsional Strength of Rectangular HSS Members – AISC 360 and Proposed CSA S16 

Using this formula produces the updated predicted strength values shown in Table 10. 

Specimen ID 

Experimental 

Torsional 

Capacity, 𝑹𝒆𝒙𝒑 

(kN*m) 

Predicted 

Torsional 

Capacity, 𝑹𝒏 

(kN*m) 

𝑹𝒆𝒙𝒑/𝑹𝒏 Source 

RHS1-1 5.36 4.21 1.27 [22] 

RHS1-2 5.38 4.21 1.28 [22] 

TT4 43.1 48.13 0.90 [23] 

TT3 38.8 42.51 0.91 [23] 

TT7 53.2 53.24 1.00 [23] 

TT14 53.6 53.24 1.00 [23] 

TT8 49.6 52.24 0.95 [23] 

A 2.78 3.09 0.90 [24] 
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B 4.56 5.08 0.90 [24] 

C 9.36 10.63 0.88 [24] 

D 15.9 17.60 0.90 [24] 

E 11.6 11.89 0.98 [24] 

F 8.35 10.33 0.81 [24] 

G 2.78 3.04 0.92 [24] 

H 3.54 3.48 1.02 [24] 

I 4.56 4.69 0.97 [24] 

Table 10 – Updated Rectangular HSS Experimental Data 

Using these new ratios of 𝑅𝑒𝑥𝑝/𝑅𝑛 from the data of the 16 tests in Table 10 the new bias factor and 

the coefficient of variation of the professional factor are then estimated as: Bias = 0.97 and COV 

= 0.13. 

These new factors are combined with the previously determined bias factor and coefficient of 

variation of MF to produce a bias factor = 1.31 and COV = 0.16 for the proposed torsional 

resistance of rectangular HSS sections. 

These new values can be used to produce the reliability index graph shown in Figure 54. 

 

Figure 54 - Reliability Index Graph for Rectangular HSS using Proposed CSA strength formula 

Using the proposed CSA strength formula gives a reliability index which approaches 3, which is 

in line with the target reliability of CSA S16. 
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It is unexpected to recommend a 17% reduction in AISC rectangular HSS section torsional 

strength, while recommending a 10% increase in AISC round HSS section torsional strength to 

meet desired target reliabilities for CSA S16. This is due to the test data used for rectangular HSS 

torsional strength not agreeing well with torsional theory. The test data is consistently 20% lower 

than the predicted strength. This is discussed in detail by Ridley-Ellis [23], and a reason for the 

anomalies is investigated, but not determined. In the absence of further test data, the 

recommendations given here will remain as is, but further testing is recommended. The 

recommendation is to use the following resistance factor when using the AISC 360 torsional 

strength formula for rectangular HSS sections when designing to the CSA S16 standard: 

 ∅ = 0.9 ∗ 0.83 = 0.75 (5-29) 
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Chapter 6. Conclusion and Recommendations 

6.1. General 

A reliability-based approach for adopting strength formulas for use in CSA S16 Standard would 

benefit engineers by allowing more flexibility and options when designing steel structures. 

To adopt the use of strength formulas from other sources for use in the CSA S16 standard, it is 

important to establish appropriate design guidelines and resistance factors to be used which will 

ensure the proper target reliability recommended by the CSA Standards Committee.  

In this study, a series of reliability analyses were performed to verify the target reliabilities of both 

the CSA S16 Standard and the AISC 360 specification. This analysis was performed over a wide 

range of live-to-dead load ratios, L/D, wind-to-dead load ratios,W/D, and snow-to-dead load 

ratios, S/D. Results of this part of the thesis showed that the reliability graphs produced agreed 

well with the literature review and assumed target reliabilities of the AISC 360 Specification and 

the CSA S16 Standard. This validates the MCS method used and allows it to be proposed to 

calibrate strength formulas from other codes for use in the CSA S16 standard. 

Then, an iterative reliability-based approach was proposed and used to calibrate proposed strength 

formulas in accordance with the desired target reliability of the CSA S16 standard. Strength 

formulas for both round HSS and rectangular HSS sections are proposed. 

Analysis was performed using the Monte Carlo Simulation method and well-established 

probabilistic resistance and load models obtained from the available sources used by both 

standards. 

The load models considered in this thesis included the dead, live, wind, and snow loads. Assuming 

a reference period of 50 years for building structures, the loads were combined following 
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Turkstra’s rule. Reliability indices were examined and compared for varying ratios of L/D, W/D, 

and S/D. The reliability indices matched the target reliability indices of the code, and thus validated 

the MCS approach used. 

6.2. Results and Discussion 

Results of this investigation led to the following conclusions for adoption of AISC 360 clauses for 

use in the CSA S16 standard: 

• The AISC 360 torsional strength formula for round HSS sections can be adopted into the 

CSA S16 standard with a resistance factor ∅ = 1.0. This corresponds to a 10% increase in 

capacity from the AISC formula while still maintaining the desired target reliability for the 

CSA S16 standard. 

• The AISC 360 torsional strength formula for rectangular HSS sections can be adopted into 

the CSA S16 standard with a resistance factor ∅ = 0.75. This corresponds to a 17% 

reduction in capacity from the AISC formula while still maintaining the desired target 

reliability for the CSA S16 standard. 

These recommendations for adopting the two torsional strength equations into the CSA S16 

Standard don’t completely align. However, they do fit well with the experimental data used, and 

make sense when taking into account the anomalies in in rectangular HSS torsional strength testing 

discussed by Ridley-Ellis, and Marshall [23] [24]. 

6.3. Future Work 

Recommended future work is as follows:  
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• Verify the conclusions discussed here using FEA. A companion thesis to this one by 

Bartlett [25] examines the conclusions discussed here to consider the adoption of torsional 

strength calculations from the AISC 360 Specification for use in the CSA S16 Standard.  

• Verify the conclusions discussed here over a wider variety of h/t and D/t ratios, as most 

test data available were within the lower ranges of h/t and D/t ratios and not at risk of local 

buckling. 

• As discussed, it is unexpected to recommend a 17% reduction in AISC rectangular HSS 

section torsional strength, while recommending a 10% increase in AISC round HSS section 

torsional strength to meet desired target reliabilities for CSA S16. Further test data is 

needed to confirm these results, and to verify the anomalies in rectangular HSS torsional 

strength testing discussed in Ridley-Ellis, and Marshall [23] [24]. 

• Use the reliability-based model to verify the reliability index provided by the torsional 

strength equations for wide-flange sections proposed by Ashkinadze [13], or other similar 

sources. 



   

 

88 

 

References 

 

[1]  CSA Group, CAN/CSA S16-19 - Design of Steel Structures, Toronto, Ontario, Canada: CSA 

Group, 2019.  

[2]  American Institute of Steel Construction, ANSI/AISC 360-16 - Specification for Structural 

Steel Buildings, Chicago, Illinois, United States: American Institute of Steel Construction, 

2016.  

[3]  T. V. Galambos, "A Comparison of Canadian, Mexican, and United States Steel Design 

Standards," AISC Engineering Journal, 1999.  

[4]  D. Allen, Limit States Design—A Probabilistic Study, Canadian Journal of Civil 

Engineering, 1975.  

[5]  F. Bartlett, H. Hong and Z. W., "Load factor calibration for the proposed 2005 edition of the 

National Building Code of Canada: Statistics of loads and load effects," Canadian Journal 

of Civil Engineering, pp. 429-439, 2003.  

[6]  F. Bartlett, H. Hong and W. Zhou, "Load factor calibration for the proposed 2005 edition of 

the National Building Code of Canada: Companion-action load combinations," Canadian 

Journal of Civil Engineering, pp. 440-448, 2003.  



   

 

89 

 

[7]  B. Ellingwood, T. V. Galambos, J. G. MacGregor and C. A. Cornell, "Development of a 

Probability Based Load Criterion for American National Standard A58," Building Code 

Requirements for Minimum Design Loads in Buildings and Other Structures, 1980.  

[8]  A. N. S. Institute, "ANSI A58.1 Minimum Design Loads For Buildings And Other 

Structures," 1982.  

[9]  A. S. o. C. Engineers, ASCE/SEI 7 - Minimum Design Loads and Associated Criteria for 

Buildings and Other Structures.  

[10]  T. V. Galambos, "Load and Resistance Factor Design," Engineering Journal - American 

Institute of Steel Construction, 1980.  

[11]  CAN/CSA S136-07 - North American specification for the design of cold-formed steel 

structural members, CSA Group, 2016.  

[12]  M. Leblouba and S. Tabsh, "Reliability-based shear design of corrugated web steel beams 

for AISC 360 specification and CSA-S16 standard," Engineering Structures, vol. 215, 2020.  

[13]  K. Ashkinadze, "Proposals for limit states torsional strength design of wide-flange steel 

mmbers," Candian Journal of Civil Engineering, vol. 35, pp. 200-209, 2008.  

[14]  R. G. Driver and D. Kennedy, "Combined flexure and torsion of I-shaped steel beams," 

Canadian Journal of Civil Engineering, pp. 124-139, 1989.  

[15]  Y.-L. Pi and N. S. Trahair, "Plastic-Collapse Analysis of Torsion," Journal of Structural 

Engineering, vol. 121, no. 10, 1995.  



   

 

90 

 

[16]  S. Timoshenko, "Thoery of bending, torsion, and buckling of thin-walled members of open 

cross sections," 1953. 

[17]  J. R. Benjamin and C. A. Cornell, Probability, Statistics, and Decision for Civil Engineers, 

Mineola, New York: DOVER PUBLICATIONS, INC, 1970.  

[18]  N. R. C. o. Canada, National Building Code of Canada, 2015.  

[19]  C. J. Turkstra, Theory of Structural Design Decisions, Waterloo, Ont: Solid Mechanics 

Division, University of Waterloo, 1970.  

[20]  F. M. Bartlett and B. J. Schmidt, "Review of resistance factor for steel: Data collection," 

Canadian Journal of Civil Engineering, vol. 29, no. 1, pp. 98-108, 2011.  

[21]  C. Wu, L. He, E. Ghafoori and X.-L. Zhao, "Torsional Strengthening of Steel Circular 

Hollow Sections (CHS) using CFRP composites," Engineering Structures, vol. 171, pp. 806-

816, 2018.  

[22]  S. V. Devi, T. G. Singh and K. D. Singh, "Cold-formed steel square hollow members with 

circular perforations subjected to torsion," Journal of Constructional Steel Research, 2019.  

[23]  D. Ridley-Ellis, "Rectangular hollow sections with circular web openings: fundamental 

behaviour in torsion, bending and shear," PhD thesis, University of Nottingham, 2000.  

[24]  J. Marshall, "Torsional behaviour of structural rectangular hollow sections," The Structural 

Engineer, vol. 49, no. 8, pp. 375-379, 1971.  



   

 

91 

 

[25]  S. Bartlett, Finite Element Analysis Of Steel Sections In Torsion And Combined Torsion 

Using Ansi/Aisc 360-16 For Adaptation In CAN/CSA S16-19, St. John's, 2020.  

 

 

 



   

 

92 

 

Appendix A – Monte Carlo Simulation Sample 
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The following code details the Monte Carlo Simulation used to produce the CSA reliability indices 

graph for DL + LL and φ=0.9. 
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