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Abstract 

 

Renewable energy sources are increasingly integrated in power grids, creating significant 

challenges for control and system operation. Among various renewable energy sources, wind 

power is one of the dominant forms, mainly generated from large-scale transmission-connected 

wind power plants (WPPs). The grid-connected WPPs are required to follow grid codes to maintain 

a predefined power factor range under normal operation and supply required reactive power under 

faulty conditions.  To meet grid code requirements, a WPP control architecture is developed in this 

thesis. The control system consists of a central WPP controller and a local wind turbine generator 

(WTG) controller, both operate in the voltage control mode. Therefore, the controller can respond 

faster and is robust to communication failures. Under normal operating conditions, the proposed 

controller regulates the WPP’s operation within its steady-state reactive power capability and 

meets the power factor limits. Under faulty conditions, the controller forces the WPP to its 

maximum capability to contribute more reactive power support to the grid. Two mathematical 

models representing the steady-state and maximum reactive power capability of the WPP are 

developed through regression and analytic approaches, respectively.  

In the second part of the thesis, a model predictive control (MPC)-based distributed generation 

(DG) controller is proposed to regulate the voltage and frequency at the point of common coupling 

(PCC) in an islanded microgrid. A data-driven input-output Box-Jenkins polynomial predictive 

model for DG control is developed using the Gauss-Newton-based nonlinear least square method 

with the prediction optimization focus. The model inputs are direct- and quadrature-axis 

components of the control signal, and the model outputs are deviations of the voltage and 

frequency from their nominal values at the PCC. The proposed MPC controller operates using the 
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PCC data and does not require the microgrid’s central controllers or DG-to-DG communication 

networks. It can effectively compensate voltage and frequency deviations at the PCC and ensure 

proportional reactive power sharing among DGs without a secondary controller and a virtual 

impedance loop. The integrated Kalman filter in the MPC structure enables a robust controller 

design when subjected to impedance variations and measurement noises. 
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Chapter 1 

Introduction  

 

1.1 Introduction 

Fossil fuel-based power generation causes nearly 75% of the total CO2 emissions in the world 

[1], which leads to Greenhouse Gas (GHG) emissions and climate change. The United Nations is 

urging every nation in the world to comply with Sustainable Development Goals (SDGs) [2]. To 

slow down climate change, renewable energy sources are recommended to meet energy demands 

and reduce the per capita consumption. Many countries have complied with SDGs by framing a 

structure of adopting renewable energy sources (RES). RES is commonly utilized in two ways: 

one way is large-scale RES power plants, such as wind power plants, connected to power grids; 

and another way is multiple small capacity distributed RES, which can form a microgrid and 

operate in grid-connected and island modes.  

Among the large-scale RES, wind power is a fast-growing technology and its deployment 

increases rapidly worldwide [3]. To reduce the dependency of modern power grids on fossil fuel-

based power generation and accelerate the transformation towards renewable energy-based 

sustainable power generation, advanced control techniques for wind power plants and renewable 

energy-based microgrids are essential.  Therefore, the research conducted in this thesis includes 

two parts: part 1 focuses on advanced control schemes developed for large wind power plants; part 

2 focuses on Model Predictive Control (MPC) developed for renewable energy-based distributed 

generation (DG) units in islanded microgrids.  
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1.2 Motivation 

1.2.1 Advanced Control Schemes for Grid-Connected Wind Power Plants  

Wind power as a dominant form of renewable energy source plays a vital role in the modern 

mixed energy landscape [4]. Wind power plants (WPPs) are usually grid-connected and contribute 

both active and reactive power. The active power generation from wind turbine generators (WTGs) 

is defined by the wind speed, and pitch angle control; while through power electronic converters, 

the control of reactive power can be decoupled from the active power generation, and reactive 

power can be generated to the WTG’s maximum residual limit with appropriate control actions. 

Adequate reactive power reserve of WPPs is critical to meet grid code requirements, handle steady-

state and transient uncertainties, and maintain stability and power quality of the system. Among 

existing wind power technologies, only doubly-fed induction generator (DFIG) and permanent 

magnet synchronous generator (PMSG)-based wind turbines have the ability to supply reactive 

power to the grid [5]. Because of the intermittent nature of wind, significant penetration of wind 

power generation in the grid may lead to severe stability and power quality issues due to lack of 

ancillary services that are usually provided by conventional synchronous generators (SGs) [6]. To 

resolve these issues, many countries have enforced grid codes for WPPs [7]. Grid codes require 

that WPPs should have sufficient reactive power reserve; following a grid disturbance, a WPP 

must inject reactive power to the grid as rapidly as possible instead of tripping off. Meeting such 

requirements can compensate voltage sags and enhance voltage stability of the system [8]. 

Research has been conducted to ensure the maximum reactive power contribution following a fault 

[9], [10], and Ref [11] recommends that a WPP should have sufficient reserve to exchange reactive 

power under steady-state operation. Therefore, an accurate approximation of the maximum 
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reactive power capability of the WPP and a WPP controller competent to utilize this maximum 

reactive power capacity is crucial.  

1.2.2 Model Predictive Control for Distributed Generation in Islanded Microgrids 

Recently, decentralized energy generation has gained more popularity in the energy sector. 

Autonomous energy supply systems are diversely used in a variety of applications, ranging from 

emergency backup systems in hospitals to rural telecom tower stations, military applications, and 

powering off-grid islands. Due to the steady increase in fossil fuel prices and the simultaneous rise 

of energy demand in rural areas, the need for sustainable energy systems is rising. Consequently, 

a trend towards hybrid energy supply solutions, such as renewable energy-based microgrids, can 

be observed to reduce operating expenses.  

Due to the integration of renewable energy sources in power grids, microgrids become a 

fundamental element in future smart grids enabling bidirectional power flow and advanced control 

for DG units and the load within them. A microgrid can operate in grid-connected or island mode: 

in grid-connected mode, the voltage and frequency are governed by the grid, and the function of 

the DG’s controller is to perform power control; in island mode, the voltage and frequency are 

regulated by the DG’s controller, dispatching necessary real and reactive power from DG units 

within the microgrid, if not successful, load shedding might occur.  

The existing DG control techniques mostly adopt droop control to regulate the voltage and 

frequency by dispatching necessary active power [12]. Existing droop control algorithms are 

developed either for highly inductive or resistive distribution system [13], [14]. A control 

algorithm developed for highly inductive system, completely ignores the resistive parameters, and 

their subsequent impact and vice versa. In addition, inside the control architecture, impact of line 

parameters between the control and controlled variables are not considered. Although low voltage 
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microgrid are highly resistive [14], in practice, the impact of inductance should not be ignored. As 

a result, DG controllers developed from droop algorithms, suffer from steady-state errors in 

voltage and frequency, and cannot share reactive power accurately among DGs if feeder 

impedances are mismatched. To solve the challenges, conventional droop control is improved with 

secondary controller and virtual impedance loop [12], [15]. Although the improved droop control 

overcome the challenges, the size and complexity of the controller is substantially increased.  

Existing DG control algorithms are usually applied in Proportional Integral (PI)-based 

controllers. PI-based controllers are low in price and easy to handle. However, the main drawback 

of PI-based controllers is that it cannot handle coupled relationship. Low voltage microgrids 

exhibit a coupled relationship between active and reactive power [16]. For ease of control and to 

implement it in PI-based controller, existing droop control architectures decouple the active and 

reactive power control and segmented the multi-input multi-output (MIMO) control structure into 

several single-input single-output (SISO) system. This increases the number of tunable parameters 

of the control structure. It requires continuous retuning of the controller due to the topological 

change of a microgrid, aging of DGs, and other real time dynamics encountered by the controller 

during operation [17]. With additional tuning parameters, retuning process become sophisticated 

and it requires delicate process with expert supervision [17]. Hardware based implementation of 

PI controller makes it harder. A microgrid is a weak network in nature, to automate its operation, 

an intelligent controller is required that can predict impacts of its current actions and adapt 

accordingly. PI controllers are completely lacks in such quality.   

Therefore, a comprehensive DG control algorithm considering all influential parameters is 

necessary to develop. Unlike droop method, both inductance and resistance of the distribution line 
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and their relative impacts should be considered. This will keep active and reactive power coupled, 

which can be solved by adopting advanced intelligent controllers.      

Model predictive control (MPC) is an advanced controller that uses a system model to predict 

the future response of the system because of its control actions within a predefined prediction 

horizon. The adopted system model used in MPC, can be coupled or decoupled MIMO or SISO 

model and should portray the relationship between control variables and controlled parameters. 

MPC solves the system model and set optimum trajectory for control parameters so that the 

system’s stability and robustness can be ensured. Unlike other intelligent controllers, where the 

control moves are optimized and applied for the whole horizon, irrespective of the system 

response, MPC optimizes in a receding time window. Therefore, adaptive solutions depend on the 

system response, which enables the MPC to withstand a wide range of system uncertainty. The 

state observer used in MPC updates the system model in every control interval, therefore, MPC 

can track the changes of system dynamics and maintain the robust performance even though the 

system equilibrium is drifting away from the design point. Hence, MPC has the potential to fully 

automate the microgrid’s operation, which is particularly important for remote communities, 

where continuous supervision from technical personnel is hard to maintain. Recent advancement 

in computer hardware further stimulates the MPC through parallel computing in CPU and GPU 

arena, which resolves the constrains resulted from excessive computational requirements of the 

MPC, as a result, MPC gains interest in airline, automotive and power system, where faster 

response is required. MPC along with an improved DG control algorithm can downsize the overall 

volume of DG controllers by directly handling the MIMO structure to achieve robust and reliable 

control. As a computer-based controller, updating or retuning due to topological change or aging 

become easier for MPC.   
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1.3 Thesis Outline   

This manuscript-based thesis comprises six manuscripts. Two manuscripts have already been 

published and three have been submitted and are currently under review. One manuscript is in 

preparation and is yet to be submitted. 

Chapter 1  

In Chapter 1, the importance of the research topic and background information are introduced; 

and objectives of the research are provided. 

Chapter 2   

In Chapter 2, literature review is conducted for advanced control schemes for grid-connected 

wind power plants and distributed generation controllers in islanded microgrid. 

Chapter 3   

In Chapter 3, a data-driven voltage control approach is proposed for a grid-connected WPP. 

Two regression models are developed through surface fitting using MATLAB curve fitting 

toolbox: one model based on simulation data is to determine the required reactive power for grid 

voltage compensation; another model based on field measurement data is to determine the reactive 

power characteristics of the WPP. The reactive power compensation device is capacitors in this 

study. Two controllers, a central WPP controller and a capacitor controller, are designed, and their 

effectiveness is validated through several case and sensitivity studies. A version of this chapter has 

been published in IEEE Transactions on Industry Applications, July/August 2019 regular issue.  

Chapter 4   

In Chapter 4, an analytical approach to determine the reactive power capability of an individual 

doubly-fed induction generator (DFIG)-based wind turbine generators (WTGs) as well as plant 

level WPPs is proposed by considering several constraint variables. For ease of use, the proposed 
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approach is developed based on the well-known standard parameters, and individual WTGs 

reactive power capability model is validated by comparing with two existing methods whereas 

plant level capability model is validated by comparing with Supervisory Control and Data 

Acquisition (SCADA) field measurement data of two WPPs currently operating in Newfoundland, 

Canada. A version of this chapter has been published in Proceedings of 2020 IEEE Industry 

Applications Society Annual Meeting.       

Chapter 5   

In Chapter 5, to maximize the reactive power support from a wind power plant (WPP) and 

maintain the power factor at the point of interconnection (POI) within the acceptable limits, an 

adaptive droop coefficient-based WPP controller is proposed. The controller consists of a central 

WPP controller and a local wind turbine generator (WTG) controller. An integrated power factor 

controller enables the central WPP controller to regulate the power factor at the POI under normal 

operation. An updated droop coefficient model considering the depth of voltage deviation and the 

range of reactive power capability enables the controller to push the WTG more towards its 

maximum limit. To ensure faster and robust operation, both the central WPP controller and local 

WTG controllers are operated in voltage control mode. Additional reactive power is exported from 

the grid side converter (GSC) through a developed GSC controller. A version of this chapter is to 

be submitted for review.   

Chapter 6   

In Chapter 6, to regulate the voltage and frequency of an islanded microgrid, a novel control 

algorithm for Distributed Generation (DG) units is developed, where deviations of the voltage and 

frequency from their nominal values at the Point of Common Coupling (PCC) are correlated with 

direct- and quadrature-axis components of the control signal. It incorporates distribution line 
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parameters into the control algorithm and enables simultaneous P-f/Q-V and P-V/Q-f control. The 

proposed control algorithm eliminates the secondary controller and the virtual impedance loop 

from the DG controller, and substantially reduce the controller size and complexity. The 

polynomial input-output Box-Jenkins model is chosen as the model structure for the control 

algorithm, which is parameterized through data-driven system identification approach using 

Nonlinear Least Square (NLS) method. To initialize the parametric optimization, the Backcast 

technique is chosen after evaluating three initialization techniques (Zero, Estimate and Backcast). 

Four NLS optimization methods (Gauss-Newton (GN), Adaptive Gauss-Newton (AGN), 

Levenberg-Marquardt (LM), and Trust Region Reflective (TRR)) are considered and their 

performance in developing the model are evaluated for both training and validation datasets. GN 

shows consistent and superior performance over the others and is chosen as the suitable 

optimization technique in this study. A version of this chapter is to be submitted for review.   

Chapter 7   

In Chapter 7, a data-driven input-output Box-Jenkins polynomial predictive model for a 

Distributed Generation (DG) control in an islanded microgrid is developed using the Gauss-

Newton-based nonlinear least square method to regulate the voltage and frequency at the Point of 

Common Coupling (PCC). The model inputs are direct- and quadrature-axis components of the 

control signal, and the model outputs are deviations of the voltage and frequency from their 

nominal values at the PCC. To initialize the iteration for nonlinear least square, the Backcast 

technique is chosen by comparing with Zero and Estimate techniques. Two optimization 

methodologies are evaluated: “simulation” focus and “prediction” focus. The prediction focus 

shows much better performance, such as a high prediction accuracy and faster convergence; it also 

avoids the necessity of data prefiltering by introducing a built-in weighted filter in the objective 
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function. The developed model is validated using noisy and noiseless datasets. A version of this 

chapter is to be submitted for review.   

Chapter 8   

In Chapter 8, to regulate the voltage and frequency at the Point of Common Coupling (PCC) in 

an islanded microgrid, a novel model predictive control (MPC)-based distributed generation (DG) 

controller is proposed. A data-driven predictive model that directly correlates deviations of the 

voltage and frequency at the PCC with direct- and quadrature-axis components of the control 

signal is used as MPC’s plant model. This predictive model is developed using Gauss-Newton-

based non-linear least-square approach with the prediction optimization focus. The proposed MPC 

controller operates using the PCC data and does not require microgrid’s central controllers or DG-

to-DG communication networks. It can effectively compensate voltage and frequency deviations 

at the PCC and ensure proportional power sharing among DGs without a secondary controller and 

a virtual impedance loop. The integrated Kalman filter in the MPC structure makes the controller 

robust to impedance variations and measurement noises. Effectiveness and robustness of the 

proposed MPC controller are validated through case studies and the robustness analysis. A version 

of this chapter is to be submitted for review.   

Chapter 9   

In Chapter 9, research outcomes are summarized, and future work is recommended.  

1.4 Research Objectives  

The main research objectives can be divided into two parts: part 1 is for grid-connected wind 

power plant control; part 2 is for DG control in islanded microgrids.   

In part 1, the main objective is to develop advanced control schemes for wind power plants, 

which can be divided into several tasks as follows:  
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1. Develop a central WPP controller that ensures the maximum injection of reactive power to 

the grid during grid faults and regulates the reactive power injection from the WPP 

according to grid codes under normal operation. The WPP controller also ensures faster 

dispatch of reactive power to stabilize voltage deviations and protects individual DFIG 

within the WPP from overloading.  

2. To assist the central WPP controller for reactive power compensation, develop a 

mathematical model that determines the required reactive power to compensate voltage 

deviations at the POI.  

In part 2, the main objective is to develop a MPC-based DG controller to regulate voltage and 

frequency at the PCC in an islanded microgrid as follows: 

1. Develop a DG control algorithm that directly correlates the deviation of voltage and 

frequency with the control signal. The model considers both resistance and reactance of the 

distribution line and their subsequent impacts.  

2. Determine the most suitable initialization technique, optimization method and optimization 

focus to parameterize the developed control algorithm through data-driven system 

identification approach using nonlinear least square method.  

3. To regulate voltage and frequency at the PCC of an islanded microgrid, develop a DG 

controller using the developed control algorithm and a model predictive controller (MPC).   
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Chapter 2  

Literature Review  

 

2.1 Wind Power Plant Voltage Control  

For effective contribution to the voltage compensation by the WPP, accurate realization of the 

plant level reactive power reserve and its maximum dispatch during contingency through 

appropriate control architecture is crucial. To overcome technological limitations in estimating and 

extracting the maximum reactive power from a WPP, additional reactive power compensation 

equipment, such as capacitor banks and static var compensators (SVCs), is installed in WPPs. 

Although such secondary reactive power compensation equipment has increased reactive power 

competency of WPPs, dynamic synchronization between the WPP and such equipment is hard to 

achieve, which may cause voltage overshoot and cascaded tripping-off [1]. Therefore, to reduce 

the dependency on reactive power compensation equipment, research has been conducted to 

extract the maximum reactive power from wind turbine generators (WTGs) to control the WPP 

through the appropriate control architecture. 

2.1.1 Voltage Control Approaches for WPP 

Voltage control at the point of interconnection (POI) of a WPP can be categorized as 

hierarchical reactive power control-based approach [2]–[4] and voltage control-based approach 

[5]–[8]. In the former one, both central WPP controller and local WTG controller operate in 

reactive power control mode, where the central WPP controller sets a reactive power reference, 

and the local WTG controllers responsd to it accordingly. Local WTG controllers cannot respond 

by itself and need continuous supervision from the central WPP controller. The central WPP 
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controller uses a communication network to communicate with the local WTG controllers. 

Therefore, the response of this method is slow and vulnerable to communication failures [6].  

The voltage control-based approach can be classified into two categories. In the first category, 

the central WPP controller operates in voltage control mode, but local WTG controllers operate in 

reactive power control mode [9]. In this method, local WTG controllers are also completely 

supervised by the central WPP controller, therefore, exhibit sluggish response and remain 

vulnerable to communication network failures.  

As a remedy, the voltage control mode-based central WPP controller and local WTG controllers 

have been developed [5]–[7], [10] (Second Category). In this approach, local WTG controller can 

respond immediately based on the voltage deviation sensed at the WTG terminal. Concurrently, 

the central WPP controller sends a voltage reference to local WTG controllers, which droops the 

WTG terminal voltage around its nominal value and brings the voltage at the POI back to the 

normal operating range by dispatching necessary reactive power [7]. This method has rapid 

response and can prevent a complete breakdown of the system during communication failures. 

Therefore, it has gained research interest gradually.  

During contingency, to maximize the reactive power dispatch from a WPP using voltage 

control-based WPP controller, the maximum reactive power capability model of the WTG is a 

crucial parameter. Therefore, research have been conducted to develop such models similar to the 

conventional synchronous generators.     

2.1.2 The Maximum Reactive Power Capability Curve 

The slope of the 𝑉 − 𝐼 characteristics, which is generally termed as inverse droop coefficient  

(1 𝐾𝐷𝑟𝑜𝑜𝑝)⁄ , regulates how far the rotor side controller (RSC) can push a WTG towards its 
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maximum reactive power capability. The maximum reactive power capability model of a WTG is 

an essential parameter in computing this droop coefficient. In practice, a wide range of limiting 

factors determine this capability model. The effectiveness of a controller depends heavily on how 

accurately the maximum reactive power capability model is developed.  

In [11], [12], the reactive power capability of DFIGs is restricted by converter ratings only. 

However, due to additional constraints, such as the magnetic saturation, the controller of DFIGs 

cannot achieve the desired dynamic responses. An active power–reactive power (P-Q) diagram for 

DFIGs, similar to that for conventional SGs, is developed in [13]–[17] by considering: 1) converter 

current and heating limits in [14]; 2) only stator and rotor current limits in[15]; 3) stator and rotor 

current limits, and a rotor voltage limit in [16]; and 4) stator and rotor current limits, rotor voltage 

limits, and magnetic saturation in [17]. Although more constraints are considered in [17] than in 

[14]–[16], the detailed mathematical model is not provided in [17], it is hard to utilize the 

maximum reactive power capability under various operating conditions, and thus, limit its 

effectiveness.  

In addition, the summation of individual WTGs capability does not represent the plant level 

reactive power capability. Additional constraints, such as wake effect and losses in distribution 

lines, impact the plant level capability. Lack of thorough consideration of a wide range of practical 

constraints has limited their real-life applications and resulted in improper controller actions. 

However, there are no in-depth models developed so far to estimate a WPP’s maximum reactive 

power capability. Therefore, a comprehensive mathematical model is required considering 

practical limitations influencing individual and plant level reactive power capability of a DFIG-

based WPP.  
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2.1.3 Controllers Developed Using the Maximum Reactive Power Capability Model  

In a WPP, the RSC regulates the dispatch of reactive power from a WTG. The droop coefficient, 

which is the inverse of WTG’s 𝑉 − 𝐼 characteristics slope, estimated using its maximum reactive 

power capability model is used by the RSC to control this power flow [6]. In the literature, few 

controllers have been developed to utilize the maximum reactive power capacity of a WPP [2], 

[5], [6], [10], [18]. Among them, Ref [2] is developed using a hierarchical reactive power control, 

and the rest adopt the voltage control-based approach.  

Among the published papers, some papers adopt the fixed droop coefficient [18], and other 

papers improve it by adopting an adaptive droop coefficient [5], [6], [10]. Due to the geographical 

position of WTGs within a WPP, active power generation from WTGs varies. In the adaptive 

droop coefficient-based approach, slopes (inverse droop coefficient) are chosen such that they 

maintain an inverse relationship with active power generation. The reactive power dispatch 

competency increases with a higher 𝑉 − 𝐼 slope. Therefore, during contingency, controllers can 

extract more reactive power from WTGs by generating less active power.  On the contrary, in a 

fixed slope-based approach, all WTGs contribute the same reactive power due to a fixed slope 

being assigned to all of them. For this reason, the adaptive slope-based approaches can contribute 

more reactive power than the fixed slope-based approach.  

The adaptive droop coefficient estimation methods in [5], [6], [10] consider the available 

reactive power generation capacity only. Therefore, for the same active power generation, the 

coefficient estimated by these methods are the same irrespective of the depth of voltage deviations. 

During a deeper voltage sag, the controller cannot utilize the WTG’s full capacity and 

consequently cannot maximize its contribution to the voltage compensation action.    
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In this research, an improved droop coefficient model is proposed to maximize the reactive 

power extraction from the WTG. 

2.2 Microgrid Control 

Microgrid is a combination of distributed generation (DG) units, distributed energy storages 

(DES), sensitive loads and centralized/decentralized control system, operating as a controllable 

subsystem [19]. Due to flexibilities provided by a microgrid from the aspects of efficiency, 

reliability, and expandability, microgrid is gaining popularity rapidly [20]. Control structures 

adopted in a microgrid can be categorized into grid feeding and grid forming controllers [21]. Grid 

feeding controllers are adopted when the microgrid is connected with the main utility grid, and 

they control the dispatch of active and reactive power only, irrespective of the voltage and 

frequency conditions. On the other hand, a microgrid adopts the grid forming control strategy when 

it is disconnected from the main grid and operates as an islanded microgrid. In the grid forming 

mode (islanded), controllers need to regulate the voltage and frequency, ensure economic 

operation by sharing active and reactive power among DGs and DES, and maintain continuity of 

power supply to critical loads. To meet these crucial criteria, droop is the most adopted primary 

control method for DGs in islanded microgrids [22]. 

2.2.1 Droop Control in Islanded Microgrid 

Droop control is a primary control technique that mimics steady-state characteristics of 

synchronous generators. To compensate voltage or frequency deviations, droop control estimates 

adjustments of power flow by updating control signal references for voltage regulators [23] or 

current regulators [24] through its control architecture. Droop control is primarily developed for 

inductive feeder line (X) and  adopts P-f/Q-V control methodology [25]. If 𝑉𝑠∠0 be the inverter 

terminal voltage of a DG, and 𝑉𝐿∠δ be the common AC bus voltage of an islanded microgrid, 



19 

 

where 𝛿 is small, the active power and reactive power (P and Q) for an inductive line can be 

expressed as follows: 

𝑃 =
𝛿𝑉𝑠𝑉𝐿

𝑋
        (1) 

𝑄 =
𝑉𝑠(𝑉𝑠−𝑉𝐿)

𝑋
       (2) 

where 𝛿 is the power angle, 𝑉𝑠  is the voltage at the inverter terminal  𝑉𝐿  is the common bus 

voltage,  X is distribution line reactance, P is active power and Q is reactive power.  

According to (1) and (2), the phase angle (𝛿) and the system frequency (𝑓) maintain a 

proportional relation with active power (𝑃) dispatch; and the similar relationship is present 

between the converter output voltage 𝑉𝑠 and reactive power (𝑄) [19]. Therefore, droop equations 

resulting from (1) and (2) can be expressed as follows: 

𝑓 − 𝑓0 = 𝑘𝑝1(𝑃 − 𝑃0)      (3) 

𝑉𝑠 − 𝑉𝑠0 = 𝑘𝑞1(𝑄 − 𝑄0)     (4) 

where 𝑓 and 𝑉𝑠 are reference frequency and voltage, and 𝑓0 and 𝑉𝑠0 are nominal frequency and 

voltage, respectively; 𝑘𝑝1 and 𝑘𝑞1 are droop coefficient.  

 Converters developed from the conventional droop control method work properly in high or 

medium voltage system, but exhibits some drawbacks in low voltage microgrid [26], [27], such as 

1. Conventional droop control does not fit with a low voltage microgrid, as low voltage 

microgrids are highly resistive.  

2. A tradeoff present between the time constant of the controller and the frequency 

regulation.  

3. A steady-state error present in the voltage and frequency. 

4. Not suitable for nonlinear and single-phase load.  
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5. Poor power sharing among DGs due to unequal line impedance between DGs and loads.  

To overcome these issues, and to make the droop algorithm compatible with low voltage 

microgrid, it has been improved and additional control layers have been added. A brief description 

about some of the improved droop control strategies are given below.  

2.2.1.1 Real Power-Voltage / Reactive Power-Frequency Droop 

In this method, droop equation is updated for a highly resistive distribution system [28]. It 

implements P-V/Q-f control, where active power and voltage, and reactive power and frequency 

are coupled. Active and reactive power in this method can be expressed as follows: 

𝑃 =
𝑉𝑠(𝑉𝑠−𝑉𝐿)

𝑅
        (5) 

𝑄 = −
𝛿𝑉𝑠𝑉𝐿

𝑅
                     (6) 

Droop equations resulting from (5) and (6) can be expressed by 

𝑓 − 𝑓0 = 𝑘𝑝1(𝑄 − 𝑄0)      (7) 

𝑉𝑠 − 𝑉𝑠0 = 𝑘𝑞1(𝑃 − 𝑃0)     (8) 

This method significantly improves power sharing accuracies in a low voltage microgrid, but 

cannot solve steady-state errors completely. 

 

2.2.1.2 Reactive Power-Differential of Voltage Droop 

The method was proposed in [29] where a 𝑄 − 𝑉′ control approach for reactive power sharing 

is adopted. The method is independent of the output line impedance, where a voltage restoration 

loop maintains constant output voltage by ensuring 𝑉′ = 0. Control equations are expressed by   

𝑉𝑠
′ = 𝑉𝑠0

′ − 𝑛(𝑄0 − 𝑄)      (9) 

𝑉𝑠 = 𝑉𝑠0 + ∫𝑉𝑠
′𝑑𝑡       (10) 
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where 𝑉𝑠 and 𝑉𝑠0 are the reference and nominal output voltage, respectively; 𝑉𝑠
′ is the rate of change 

of output voltage; 𝑛 is the droop constant.  

The method depends on initial conditions, if initial conditions are not tuned properly, it can 

destabilize the whole system [19].  

2.2.1.3 Virtual Frame Transformation:  

In this method, both active and reactive power equations are transformed into a new reference 

frame, where they are independent of the line impedance [30]. The method is easy to implement 

and facilitates the decoupled control of active and reactive power. However, the method requires 

the knowledge of line impedance. In addition, ensuring the same transformation angle for all DGs 

is hard to achieve [19].  

2.2.1.4 Virtual Impedance Method 

In this method, a virtual impedance is used in the feedback path of voltage control loop [31] 

and output voltage is controlled by adjusting the virtual impedance. The method shows superior 

reactive power sharing accuracy in mismatched feeder line system. Converter’s output voltage 

reference is estimated by  

𝑉𝑠,𝑟𝑒𝑓 = 𝑉𝑠0 − 𝑍𝑣𝑖0      (11) 

where 𝑉𝑠0 is the no-load voltage, 𝑖0 is the output current, and 𝑍𝑣 is the virtual impedance.   

The method ensures accurate reactive power sharing among DGs. However, the bandwidth 

variation of active and reactive power controllers affects the voltage and frequency control [19].  

All droop-based approaches are developed either for a highly inductive or resistive system and 

enforce either P-f/Q-V or P-V/Q-f control. However, a real distribution system contains both 

resistance and inductance, and requires simultaneous P-f/Q-V and P-V/Q-f control. As a result, 
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droop controllers always suffer from a steady-state error. As a remedy, in addition to improved 

droop methods, the secondary controller has also been integrated with the primary droop 

controller. The secondary controller adjusts the controller references so that additional power 

necessary for compensating steady-state errors are dispatched while ensuring active power sharing 

among DGs [32].  

2.2.2 Controller Used in Droop Control 

A wide variety of controllers, such as proportional-integral (PI) control, model-based control, 

robust control and sliding mode control, have been investigated to ensure the necessary dispatch 

of power in islanded microgrids [33]. However, these controllers are PI-based controllers. One 

major disadvantage of PI-based controllers is that it cannot handle a coupled relationship among 

control variables and controlled system parameters. Consequently, a multi-input multi-output 

(MIMO) system must be segmented into several single-input single-output (SISO) systems, and 

controllers need to be tuned for every individual segment to achieve the desired goal. This 

increases the overall volume of the control architecture. In addition, the microgrid’s topological 

and parametric uncertainty requires continuous tuning of coefficients of the controller [34] and the 

conventional hardware-based implementation of PI controllers makes the retuning difficult, 

expensive, and time-consuming. Another major disadvantage of PI-based controllers is their 

inability to foresee the impact of their current actions.  

2.2.3 Model Predictive Controller in Microgrid Control  

The model predictive control has been used traditionally in the industrial process control, 

inverter control, and most recently in DG and microgrid control. In microgrids, MPC is mostly 

used for load forecasting[35], [36] and energy management [37], [38]; References [39]–[41] 
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implement MPC into a part of the overall DG’s control loop. MPC is implemented at the secondary 

level controller in [39] to realize the secondary voltage control by incorporating forecasted 

behaviors of local and neighboring DGs, the secondary voltage and frequency control is regulated 

by MPC in [40], and eddy current losses are reduced by placing MPC in the inner control loop in 

[41]. 

In this research, a new control methodology for DG control in an islanded microgrid is 

proposed. A model predictive control-based DG controller is developed using the proposed control 

methodology. The proposed controller reduces the controller volume and complexity with 

improved performance.  

2.3 Summary  

In this section, limitations of the existing methods are summarized and how the conducted research 

has addressed the issues are pointed out.  

2.3.1 Voltage Control Approaches for Grid Connected Wind Power Plants 

2.3.1.1 Limitations of the Existing Methods 

1. Unable to meet the power factor constraints.  

2. No plant-level reactive power capability models available. 

3. Limited constraints on developing the reactive power capability model for an individual 

WTG. 

4. Existing controllers cannot utilize the maximum reactive power capability of a DFIG-based 

WPP. 
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2.3.1.2 Merits of the Proposed Method 

1. A comprehensive maximum reactive power capability model for an individual WTG and 

the whole WPP. 

2. A data driven steady-state reactive power capability model of a DFIG-based WPP. 

3. A controller that can extract the maximum reactive power from a DFIG-based WPP. 

2.3.2 Control of Islanded Microgrids 

1.3.2.1 Limitations of the Existing Methods 

1. Existing control algorithms consider either resistance or reactance of distribution lines, but 

not both. 

2. Bigger and complex control structures. 

3. System impedance dependent.  

4. Require a secondary controller and a virtual impedance loop. 

5. Require a communication network.  

6. Cannot handle the coupled relationship and cannot predict the future state. 

1.3.2.2 Merits of the Proposed Method 

1. A novel DG control algorithm.  

2. Considers both resistance and reactance of distribution lines.  

3. A model predictive control (MPC)-based DG controller.  

4. No secondary controllers, virtual impedance loops and DG-to-DG communication 

networks are required. 
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Abstract- Due to increasing penetration of wind power plants (WPP), power grids are facing 

significant power quality challenges at the point of interconnection (POI). To achieve stable and 

robust power system operation, reactive power plays a vital role. Reactive power needed to 

compensate voltage fluctuations at the POI of the WPP varies with a short circuit ratio (SCR). The 

reactive power capability of a WPP is also limited and largely depends on various operating 

conditions. In a physical system, it is difficult to find the correlation among critical parameters for 

voltage control. In this paper, a data-driven voltage control approach is proposed for a grid-

connected WPP. Two regression models are developed through surface fitting using MATLAB 

curve fitting toolbox: one model based on simulation data is to determine the required reactive 

power for grid voltage compensation; another model based on field measurement data is to 

determine the reactive power characteristics of the WPP. The reactive power compensation device 

is capacitors in this study. Two controllers, a central WPP controller and a capacitor controller, 

are designed, their effectiveness is validated through several case and sensitivity studies.      

 

Keywords- Power quality, reactive power control, short circuit ratio, surface fitting, voltage 

control. 
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3.1 Introduction  

Over past decades, increasing penetration of wind power plants (WPPs) has created challenges 

towards stable operation of power grids. Wind power generation is intermittent due to the 

continuously changing wind. Power electronic converters interfacing with the utility for Types 3 

and 4 wind turbine generators (WTGs) do not provide significant amount of fault currents. It 

weakens the grid strength and introduces a low short circuit ratio (SCR) at the point of 

interconnection (POI) of the WPP, which further affects grid dynamics and voltage control [1].  

To govern wind power integration, grid codes have been established. Reactive power support from 

the WPP is required under normal and voltage sag conditions in grid codes [2]-[6]. Key 

characteristics to meet such requirements are reactive power capability of a WPP and continuously 

acting voltage control. Inadequate reactive power capability of WPPs can limit the potential of 

wind power generation [6][7]. WTGs alone may not be enough to provide the required reactive 

power at the plant level when the reactive power capability limit is reached at each WTG. 

Appropriate reactive power compensation can be implemented in the WPP to ensure acceptable 

voltage profiles across the system and sufficient reactive power available following major grid 

events [1][6]. In UK, the size of reactive power compensation equipment is recommended to be 

one-third of the nominal active power of a WPP [6].  

Common reactive power compensation equipment includes capacitor banks, Static Var 

Compensator (SVC) and Static Synchronous Compensator (STATCOM). Due to cost 

consideration, capacitor banks are a viable lower cost option in a practical WPP [8]. The successful 

reactive power compensation can be realized through properly designed controllers operating with 

capacitor banks.   
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WPPs with Types 3 and 4 WTGs typically have a plant level control strategy, and each 

individual WTG has its own controls. The plant controller coordinates individual WTG level 

controls to ensure stable operation of the entire plant [1]. To maintain the voltage at the POI within 

a specified limit under normal and fault conditions, usually in the range of [0.95, 1.05] per unit, a 

central WPP controller can be implemented to send necessary set points for individual WTG 

controllers. The WPP controller can operate in either voltage control or reactive power control 

mode. Different variables, such as voltage deviation, available and required reactive power, and 

reactive power margin of the WPP, can be considered for the controller design [9]-[11].    

A WPP supplies reactive power for under-voltage (voltage sags), and consumes reactive power 

for over-voltage (voltage swells) conditions to maintain the POI voltage. During under-voltage, 

the maximum voltage and reactive power generation capacity of a WPP depends on the rating of 

WTGs. During over-voltage, the minimum reactive power consumption capacity of a WPP 

depends on the negative reactive power margin at the POI [12]-[18]. It is important to validate a 

central WPP controller for both under- and over-voltage conditions.  

 There is an inverse relationship between active power generation and negative reactive power 

margin: a higher active power generation leads to a lower negative reactive power margin. A 

positive reactive power margin indicates an instable system, while a negative reactive power 

margin indicates a stable system [19]-[20].   

The WPP controller can have reactive power control, and voltage control features. The voltage 

control is restricted by the reactive power capacity of WTGs [21]-[23]. Among various WPP 

controller design methods reported in the literature [24]-[29], Reference [24] proposes a controller 

that selects the required reactive current set point and sends it to a doubly-fed induction generator 

(DFIG) controller with a weighted factor, named “reactive power capability index”, which is the 



35 

 

ratio of instantaneous active power to average power supplied by each WTG. This index adjusts 

the required reactive power set point of a WTG based on its active power generation. A lower 

active power generation leads to a higher reactive power set point. However, this reactive current 

control scheme in [24] cannot react to a voltage dip immediately after a disturbance. A fixed 

reactive power-voltage magnitude (Q-V) control scheme is employed to control the grid voltage 

in [25]. The WPP controller calculates the reactive power set point using a coefficient named 

“slope”, which is a ratio between the voltage and reactive power deviation at the POI. However, 

the impact of active power on the reactive power generation capacity is neglected in [25]. 

Similarly, a static Q-V scheme is applied in the WPP controller in [27], where the upper limit of 

the reactive power injection of a WTG is set at 33% of the nominal active power regardless of 

different operating conditions. The issue is that a WTG cannot fully operate and its voltage control 

function at the POI is limited. To address this issue, a WPP controller using an adaptive Q-V 

characteristic curve to determine the required reactive power set point is proposed in [28][29].  

Despite continuous effort for WPP controllers design, two critical aspects are missing in 

existing WPP controller design methods in the literature, which can hinder the controller’s 

performance: 1) the influence of the SCR is not considered [22]-[24],[26]-[28]; and 2) the reactive 

power capability of WTGs is not properly determined [22]-[24],[26].  

The SCR represents grid strength, which is usually low at the POI of a WPP, for example, a 

SCR equal to 5 is not uncommon for a WPP. The influence of a lower SCR during disturbances is 

a higher voltage drop and a slower voltage recovery compared to the system with a higher SCR, 

which means an increased risk of system instability. The system with a low SCR shows strong 

dependency between voltage and reactive power [18]. It is recommended in [18] that the SCR 

equal to 5 can serve as a threshold, a WPP with a SCR less than 5 at the POI raises concerns that 
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the WPP may not operate correctly under disturbances. Therefore, it is essential that the SCR 

serves as a parameter for the WPP controller design.  

The reactive power capability of WTGs and Q-V curves used in the literature [22]-[24],[26] are 

assumed typical characteristic curves. The control schemes are traditional model based techniques, 

which rely on physical models from first principles. The main drawback of these theoretically 

developed mathematical equation or assumed characteristics based controllers is that it cannot 

follow the nonlinearity and complexity of a real WPP. These models do not consider actual 

aerodynamic interactions among the WTGs, and environmental uncertainties. Therefore, their 

practical effectiveness is limited.  

 In contract to traditional model based techniques, data-driven approaches by utilizing practical 

WPP data, such as the supervisory control and data acquisition (SCADA) measurement data, wind 

speed data etc, started gaining significant research interest a decade ago by wind power industry. 

By using practical data at WPPs, a fault-free and cost-efficient operation of WPPs can be achieved 

while the desired performance can be maintained.   

To date, the work reported in the literature on data-driven research for wind power can be 

divided into four categories: 1) data-driven controller tuning or design for maximum energy 

extraction [30]-[36], various control techniques, such as Takagi−Sugeno−Kang (TSK) fuzzy 

model [30], anticipatory control [31], adaptive control [33], are implemented using control settings 

computed or tuned from optimization models, the main goal through the control is to realize the 

maximum wind power generation; 2) data-driven based operational cost reduction, wind farm 

scheduling and dispatch, and wind power forecasting [37]-[44], it is suggested in [39] that a novel 

statistical wind power forecast method, which leverages the spatio-temporal correlation in wind 

speed and direction data among geographically dispersed WPPs, can be integrated with an 
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economic dispatch framework, as a result, the total generation cost can be reduced up to 6% [39]; 

3) data-driven condition monitoring and fault diagnosis [45]-[48], in this area, new signal 

processing methods [45] and various machine learning methods, such as a single hidden layer 

feedforward neural network [46] and random forests [48], are utilized; 4) data-driven modeling for 

wind turbines and power curve profile [49]-[53], wind turbine parameters including power output, 

drive-train vibratory acceleration, and tower vibratory acceleration can be modeled using machine 

learning techniques [50][52], in [53], the power curve profile can be accurately redefined under 

wind curtailment by effectively removing the abundant outliners caused by wind curtailment 

through a data-driven outliner elimination approach.  

Although the data-driven approaches have been widely implemented in wind power industry 

during the past decade as discussed above, to the authors’ best knowledge, there is no reported 

data-driven controller design for voltage control in the literature for WPPs so far.  

For the very first time, this paper proposes a data-driven voltage controller design for a grid-

connected WPP using SCADA measurement data at the POI. The SCADA data comprehend 

uncertainties, complexities, and aero-dynamic interactions associated with the WPP. The proposed 

voltage controllers are designed by directly analyzing the plant level data, and thus, stability, 

convergence and robustness of the system level control can be achieved. Two controllers, a central 

WPP controller and a capacitor controller, are designed using the proposed approach. The sample 

system is a 27 MW WPP currently in operation in Newfoundland and Labrador (NL), Canada. The 

reactive power compensation devices used in this paper are chosen to be capacitors. Presently, 

there are no reactive power compensation devices installed inside this WPP. The major 

contribution of this paper includes: 1) The SCR serves as a parameter of a regression model to 

determine the required reactive power to compensate voltage deviation at the POI, and this model 
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is obtained through surface fitting using simulation data with the SCR and voltage deviation as 

input parameters; 2) The reactive power capability of the WPP with collective effect of all WTGs 

can be determined by a regression model using SCADA measurement data at the POI of the WPP; 

3) a central WPP controller is designed by integrating the required reactive power at the POI during 

a voltage deviation and the reactive power capability of the WPP determined by the real WPP data; 

and 4) a capacitor controller is design to properly manage on and off patterns of the capacitors. 

The paper is arranged as follows: in Section 3.2, the WPP under study is described; a brief 

explanation about goodness fit evaluation and robustness algorithms for surface fitting are 

discussed in Section 3.3, which will be used to choose regression models; in Section 3.4, regression 

models of the required reactive power at the POI and reactive power capability of the WPP are 

developed; in Section 3.5, fundamental principles of the proposed central WPP controller and 

capacitor controller are elaborated; case and sensitivity studies are conducted in Sections 3.6 and 

3.7; the conclusion is drawn in Section 3.8.    

 

3.2 The WPP Under Study 

 

In this study, a 27 MW WPP currently in operation in NL, Canada is adopted as a sample 

system. The electrical single line diagram of the WPP is shown in Fig. 3.1. There are a total of 

nine DFIGs. Each DFIG is rated at 3 MW and installed with a 3.5 MVA wye/delta step-up 

transformer with the voltage rating of 1 kV/25 kV. All WTGs are connected to a 25 kV plant 

main bus in a similar way. A 25 MVA wye/delta transformer further steps up the voltage from 

25 kV to the 66 kV POI. Currently, no reactive power compensation equipment is installed in 

the WPP. The three phase short circuit MVA at the POI of the WPP is 135 MVA, and the X/R 

ratio is 3.259.      
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Operation requirements at the POI of the WPP from the local utility company include: 1) the 

voltage deviation should be within ±5% the nominal voltage of 66 kV; 2) the recommended 

power factor is within ±0.95. Other requirements include harmonics and flickers emission 

restrictions following IEEE Std. 519 and IEEE Std. 1453. Since our focus is voltage control, 

harmonics and flickers are not discussed in this paper.   

The SCADA measurement data at the 66 kV POI recorded during the whole year of 2016 at 

the sampling rate of one sample per second are used to develop voltage control functions. As an 

example, plots of the voltage magnitude V in kV, active power P in MW, and reactive power Q 

in MVar vs. the time for March 1-5, 2016 are shown in Fig. 3.2.   

The data analysis indicates that, during the whole year’s operation, the voltage profile of the 

WPP varied in the range of [0, 69.96] kV or [0, 1.06] per unit (the voltage base is the nominal 

voltage of 66 kV). The measured active and reactive power were in the range of [-1.19, 27.23] 

MW and [-0.75, 13.03] MVar, respectively.       
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Fig. 3. 1. Electrical single line diagram of a WPP currently in operation in Newfoundland and 

Labrador, Canada. 
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(a) 

 

 

(b)  

 

 

(c) 

Fig. 3. 2. SCADA field measurement data at the 66 kV POI of the WPP on March 1-5, 2016: (a) 

voltage in kV; (b) active power in MW; (c) reactive power in MVar.     

In this study, instead of modeling 9 individual WTGs in Fig. 3.1, an equivalent 27 MW DFIG 

operating in the reactive power control mode is modeled for the controller design. The DFIG 

model offered in MATLAB/Simulink is adopted. The electrical single-line diagram of the 

equivalent WPP used for the controller design is shown in Fig. 3.3.     

The nominal apparent power capacity of the equivalent DFIG is 30 MVA. The maximum 

power of the grid and rotor side converters is 0.3 pu of the nominal power. These converters use 

forced commutated insulated-gate bipolar transistor (IGBT) switches to convey the conversion 

process. A DC bus capacitor of 90,000 μF is utilized between the converters in the model. The 

grid side converter (GSC) is connected to the grid through a coupling inductor with an 

inductance of 0.15 pu and an internal resistance of 0.015 pu. The active power output follows 

the power-rotor speed tracking characteristic. The active and reactive power regulators are used 

to reduce the error to zero compared to the corresponding active and reactive power references. 

The turbine has three blades with a pitch angle controller, where the maximum allowable pitch 

angle is 450.   

The DFIG is connected to the 25 kV plant main bus through an equivalent 31.5 MVA (9x3.5 

MVA) wye/delta transformer (TL), as shown in Fig. 3.3. The distance between the equivalent 

DFIG and the 25 kV main bus is assumed to be 1.5 km. The 25 kV main bus is further connected 
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to the 66 kV grid through a 40 MVA, 25 kV/66 kV wye/delta transformer (TH). There is a 0.5 

km transmission line used to connect between the transformer TL and 25 kV bus, and between 

the transformer TH and the 25 kV bus. In the simulation model, the two piece of lines are named 

as “Cable” as shown in Fig. 3.3. The detailed simulation parameters for the DFIG model, cables, 

and transformers are tabulated in Table 3.1.   

Cable Grid

Capacitor Bank

3.5 MVA×9

27 MW

25 KV Bus

POI
40 MVA

25 kV/ 66 kVCapacitor 

Controller

WPP 

Controller

Cable

TL

TH

 

Fig. 3. 3. The single line diagram of the equivalent WPP for controller design. 

 

Two controllers are proposed in this paper: a central WPP controller and a capacitor 

controller, both are connected to the 25 kV main bus as shown in Fig. 3.3. The central WPP 

controller senses a voltage deviation at the POI and calculates the required reactive power to 

compensate the voltage deviation. Currently, no reactive power compensation devices are 

installed in this WPP. To implement the proposed voltage control approach, six capacitor banks, 

each rated at 1.5 Mvar at 25 kV, are chosen to be connected to the 25 kV main bus for reactive 

power compensation. The size of capacitor banks is selected following the recommended 

practice in UK that reactive compensation equipment should be about one third of the plant’s 

nominal active power rating. The required reactive power is then divided between the WTG and 
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capacitor banks based on their operating capability. The capacitor controller controls the 

switching of capacitor banks in and out of the circuit 

Table 3. 1: Simulation Parameters for the DFIG Model, Cables and Transformers  

DFIG Data DFIG Control Data 

Nominal apparent 

power 

30 MVA Regulator Name Propor-tional Gain 

(KP) 

Integral Gain (KI) 

Nominal voltage 575 V Reactive power (PI1) 0.05 25 

Stator resistance 0.00706 pu Active power (PI2) 1 100 

Stator leakage 

inductance 

0.171pu DC bus voltage (PI4) 0.002 0.05 

Magnetizing 

inductance 

2.9 pu Grid-side converter 

current (PI5) 

1 100 

Rotor resistance 0.005pu Rotor-side converter 

current (PI3) 

0.3 8 

Rotor leakage 

inductance 

0.156pu Pitch angle  500 None 

System frequency 60 Hz    

Nominal DC bus 

voltage 

1200 V    

Rated wind speed 12 m/s    

Cable Data 

Parameter Name Positive Sequence Zero Sequence 

Resistance (Ω./km) 0.1153 0.413 

Inductance (H/km) 1.05e-3 3.32e-3 

Capacitance (F/km) 11.33e-009 5.01e-009 

Transformer Data 

 TL TH 

Capacity (MVA) 9×3.5 40 

Rated voltages (kV) 0.575/25 25/66 

Resistance (pu) 0.025/30 0.003 

Leakage Inductance (pu) 0.025 0.09 

 

The central WPP controller communicates with the capacitor controller and individual WTG 

controller through a switched Ethernet based hierarchical communication network. It follows 

IEC 61400-25 standard to control and monitor the WPP. The link has a 1 Gbps bandwidth and 

it takes 1 ms to communicate with the individual WTG [54].  
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3.3 Accuracy Evaluation for Regression Models 

In this paper, two regression models are developed through surface fitting using MATLAB 

curve fitting toolbox. The accuracy evaluation approach for regression models is firstly 

introduced in this section.   

3.3.1 Goodness of Fit Assessment 

Goodness of fit is to be studied to evaluate the accuracy of a developed regression model, 

which can be carried out graphically or statistically.  

Residual analysis is a graphical analysis method. If the dataset are very scattered, the fitted 

surface model is not able to follow all data points. Higher randomness of data leads to higher 

amount of outliers. In a residual analysis, differences between actual and calculated values for a 

specific predictor are shown graphically. If residuals are following a pattern and are not random 

in nature, it means the model is poorly fit with the dataset [20]. In a prediction bound analysis, 

95% upper and lower confidence surfaces are drawn along the actual fitted surface model. The 

prediction bound analyzes the number of data points the model can contain within its upper and 

lower bounds. More data points within the bounds indicate that the equation can follow the 

uncertainty of a system better.  

In a statistical analysis, the goodness of fit evaluation process is conducted through the sum 

of squares due to error (SSE), root-mean-squared error (RMSE), R-square and adjusted R-

square. SSE represents the cumulative deviation of calculated values from actual ones. RMSE 

represents standard error of a random data. A small SSE or RMSE indicates an accurate model. 

R-square and adjusted R-square show how properly a fitted model can explain the variance of 

an actual dataset, and a value closer to 1 indicates a better fit [20]. 
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3.3.2 Robustness Algorithm   

If a dataset contains randomly scattered data, a robustness algorithm can be used to improve 

the accuracy of a regression model. The algorithm can detect outliers and reduce their effect on 

the regression model, which allows the model to follow actual trend of the data set and disregard 

noisy data. Two robustness algorithms are considered in this paper, Bisquare and the least 

absolute residuals (LAR) [55][56].  

The Bisquare algorithm develops the model based on a weighted factor. A weight is assigned 

to each data point, and its value is inversely proportional to the distance between the data point 

and the surface. The extreme values receive a zero weight, and thus, their impact on the model 

is eliminated [57]. The Least Square (LS) method is used to make an initial guess for a 

coefficient, the weight is then continuously updated according to the coefficient until the error 

is lowered down to a specified tolerance limit. The Bisquare algorithm develops a function 

through an iterative process, and residuals are calculated as follows [57]:   

𝑟 =
1

𝑛
∑ 𝑤𝑖(
𝑛−1
𝑖=1 𝑓(𝑥𝑖)  −  𝑦𝑖)

2                      (1) 

Where, n is the number of data samples, wi is the ith element of the weights array for data 

samples, f(xi) is the y-value of the fitted model and yi is the ith element of the data set. 

The LAR develops a surface equation based on absolute difference of the residuals. The 

absolute values higher than a specific threshold are disregarded, and thus, the influence of noises 

are minimized in the LAR algorithm. It put same emphasis on every data point within the 

threshold limit, and the influence of extreme values are lessened.  LAR is also an iterative 

method but less sensitive than the least square method to extreme outliers. Therefore, LAR 
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performs better when the dataset has significant amount of outliers. The equation used to 

estimate least absolute deviation for LAR is [58] 

𝛽𝐿𝐴𝑅 = arg𝑚𝑖𝑛 ∑ |𝜀𝑖(𝛽)|
𝑛
𝑖=1                      (2) 

Where, β𝐿𝐴𝑅 is the absolute deviation estimator, ε𝑖(β) is the error, and n is the number of data 

samples. 

3.4 Regression Models Development 

The development of the two regression models is demonstrated in this section. The 1st model 

is to determine a mathematical relationship for the required reactive power at the POI as a 

function of the SCR and the voltage deviation ΔU. The 2nd model is to develop a mathematical 

relationship for the reactive power capability in the WPP considering the collective effect of all 

WTGs as a function of the active power P and the voltage magnitude V.      

3.4.1 Required Reactive Power at the POI 

The SCR is defined as the ratio of the three-phase short circuit MVA at the POI to the WPP’s 

nominal active power in MW, it can also be determined as the inverse of the impedance seen 

from the aggregate WTGs terminal to the POI [18].  

𝑆𝐶𝑅 =
𝑇ℎ𝑟𝑒𝑒−𝑝ℎ𝑎𝑠𝑒 𝑆ℎ𝑜𝑟𝑡 𝐶𝑖𝑟𝑐𝑢𝑖𝑡 𝑀𝑉𝐴 𝑎𝑡 𝑃𝑂𝐼

𝑊𝑃𝑃 𝑚𝑜𝑛𝑖𝑛𝑎𝑙 𝑝𝑜𝑤𝑒𝑟 𝑖𝑛 𝑀𝑊
                 (3) 

For the WPP under study in this paper, it is given by the local utility company that the WPP 

has a three phase short circuit MVA at the POI equal to 135 MVA, and a nominal active power 

rating of 27 MW, so the calculated SCR value at the POI for this WPP is 5 using Equ. (3).  

Considering the SCR’s effect, the control algorithm of a central WPP controller requires a 

mathematical relationship among the required reactive power, SCR, and voltage deviation at the 
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POI. To derive it, a set of data reflects the influence of these three parameters are needed, which 

can be obtained through computer simulation. The simulation model is shown in Fig. 3.4. 

Fictitious capacitor banks and inductors are connected through a 25 kV/66 kV wye/delta 

transformer to the 66 kV POI to obtain various under- and over-voltage situations. It is assumed 

that the reactive power is supplied or consumed by the grid.  

In the simulation, the POI voltage varies from 0.9 pu to 1.1 pu, the SCR values varies from 

3 to 15, and the X/R ratio is assumed to be 3.259, the same as the WPP under study in Section 

II. Regarding low SCR values, Reference [18] explains that most models are typically proven to 

be accurate for a SCR down to 5 but may or may not be accurate for a lower SCR between 3 and 

5. The minimum SCR value is 3 in [59]. Therefore, the minimum SCR value is also chosen to 

be 3 in this paper. The simulation is conducted using MATLAB/ Simulink. 

Cable Grid

25 KV Bus POI

25 KV/ 66KV

40MVA

Fictitious 

Reactive 

Power 

Source

SCR 

 

Fig. 3. 4. Simulation model to determine the required reactive power at the POI.  

Using simulation data, the mathematical function of the required reactive power to 

compensate voltage deviation at the POI is obtained through polynomial surface fitting using 

the MATLAB curve fitting toolbox. The best fitted model is selected based on the goodness of 

fit and the percentage of errors between calculated and simulated data. Among the evaluated 
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mathematical models, the poly31 model shows accurate fitting with the dataset. The required 

reactive power in a poly31 model format can be expressed as follows:  

𝑄(𝑥, 𝑦) = 𝑝00 + 𝑝10𝑥 + 𝑝01𝑦 + 𝑝20𝑥
2 + 𝑝11𝑥𝑦 + 𝑝30𝑥

3 + 𝑝21𝑥
2𝑦                (4) 

Where, Q(x,y) is the required reactive power at the POI in per unit to compensate the voltage 

deviation, x is the voltage deviation ΔU in per unit at the POI, and y is the SCR value at the POI. 

The power base is the WPP nominal active power rating, and the voltage base is the nominal 

voltage rating of the POI.  

The LAR algorithm provides better goodness of fit results, but the fit computation cannot 

converge, therefore, only two types of poly31 models, “Bisquare” and “without robustness”, are 

considered. The coefficients with 95% confidence bound, the goodness of fit data, and the 

percentage of errors between calculated and simulated reactive power Q values are shown in 

Tables 3.2 to 3.4. A sample of simulation data together with the calculation data using the chosen 

fitting functions for SCR equal to 5 can be found in a table in Appendix.  

R-square and adjusted R-square for poly31 models in Table 3.3 are similar using either 

“Bisquare” or “without robustness”. However, the Bisquare algorithm offers much less SSE and 

RMSE values, which indicates a better accuracy.  

The percentage of errors between calculated and simulated Q in Table 3.4 for a case (SCR 

=15, ∆U = 0.95) is 0.36% for “Bisquare” and 9.2% for “without robustness”. The “Bisquare” 

cases consistently show smaller errors than the “without robustness” in most cases. Therefore, 

the poly31 model using Bisquare algorithm is chosen as the final model.  

The surface fitting graph and residuals of the final model are shown in Fig. 3.5. The 

coefficients of the model with 95% confidence bounds in Table 3.2 do not have zero crossing 
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points, and residuals in Fig. 3.5 (b) is random, both provide further proof that the chosen final 

model is a well fit of the dataset.    

Table 3. 2: Coefficients of poly31 models with 95% confidence Bound  

Coefficients Bisquare Without Robustness 

P00 29.63  (14.03, 45.23) 81.28  (45.17, 117.4) 

P10 -79.26  (-126, -32.52) -230  (-338.2, -121.8) 

P01 -1.89  (-2.115, -1.664) -2.795  (-3.318, -2.273) 

P20 69.53  (22.84, 116.2) 215.5  (107.4, 323.5) 

P11 4.795  (4.343, 5.248) 6.648  (5.6, 7.695) 

P30 -19.89  (-35.43, -4.344) -66.75  (-102.7, -30.77) 

P21 -2.906  (-3.133, -2.68) -3.85  (-4.374, -3.326) 

Table 3. 3: Goodness of fit data of poly31 models  

Name Bisquare Without robustness 

SSE 0.1277 0.684 

RMSE 0.02246 0.05199 

R-square 0.9988 0.9934 

Adjusted R-square 0.9987 0.9933 

Table 3. 4: Errors between simulated and calculated data 

Voltage 

deviation 

ΔU 

at POI, p.u 

SCR 

at 

POI 

The required reactive power, p.u. Errors – calculation vs. 

simulation, % 

Calculated by Eq. (4)   

Simulated  

Bisquare  Without 

robustness Bisquare  Without 

robustness 

0.9 5 0.4737 0.5228 0.47 0.79 11.2 

0.93 4 0.2892 0.3062 0.278 4.03 10.1 

0.95 15 0.6694 0.7286 0.667 0.36 9.2 

1.05 14 −0.7889 −0.7319 −0.8 −1.39 −8.5 

1.06 6 −0.3859 −0.3284 −0.374 3.18 −12.2 

1.1 15 −1.8747 −1.9198 −0.209 −10.30 −8.1 
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(a) 

 

(b) 

Fig. 3. 5. Poly31 model using “Bisquare”: (a) Surface fitting diagram; (b) Residuals.  

 

3.4.2 Reactive Power Capability of WPP 

The reactive power capability of the WPP with collective effect of all WTGs can be modeled 

through polynomial surface fitting using SCADA measurement data recorded in December 2016 

at the POI. Among several models, poly51 is considered to be a suitable regression model as 

follows: 

𝑄(𝑥, 𝑦) = 𝑝00 + 𝑝10𝑥 + 𝑝01𝑦 + 𝑝20𝑥
2 + 𝑝11𝑥𝑦 + 𝑝30𝑥

3 + 𝑝21𝑥
2𝑦 + 𝑝40𝑥

4 + 𝑝31𝑥
3𝑦 +

𝑝50𝑥
5 + 𝑝41𝑥

4𝑦      (5)                              

Where, Q(x,y) is the reactive power capability of the WPP in per unit, x is the voltage magnitude 

V at the POI in per unit, and y is the active power P in per unit. The voltage and power base are 

the same as Eq. (4). “Bisquare”, “LAR”, and “without robustness” are considered in the surface 

fitting.  

Since P and V values are scattered, to improve the accuracy of the model, V is normalized by 

a mean of 1.026 and a standard deviation of 0.003761; and P is normalized by a mean of 0.6957 

and a standard deviation of 0.2377. To show the effect of the normalization, an example is provided 

as follows: for P = 1 pu and V = 1.025575 pu, the SCADA measured Q is 0.21831 pu. The 

normalized equation calculates Q equal to 0.2146 pu, which matches the measurement well, but 

the non-normalized equation calculates Q equal to −9.6167e+04 pu.  
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The goodness of fit results, coefficients with 95% confidence bounds, and the percentage of 

errors between calculated and measured data for the poly51 model are shown in Tables 3.5 to 3.7. 

As shown in Table 3.5, by using “LAR”, R-square and adjusted R-square for the poly51 model are 

significantly higher than using “Bisquare” and “without robustness”. Similarly, SSE and RMSE 

values by using “LAR” are also much smaller than using other two methods. Therefore, “LAR” 

offers a better surface fitting.  

Table 3. 5: Goodness of fit data of poly51 models 

Name Without 

Robustness 

Bisquare LAR 

SSE 254.7 276 138.3 

RMSE 0.05734 0.05969 0.04225 

R-square 0.4948 0.4525 0.7257 

Adjusted R-square 0.4948 0.4524 0.7257 

 

Table 3. 6: Coefficients of the poly 51 model with 95% confidence range.  

Coefficients Without Robustness Bisquare LAR 

P00 0.1548  (0.1543, 0.1553) 0.1539  (0.1534, 0.1544) 0.1527  (0.1523, 0.153) 

P10 0.01442(0.01359, 0.01525) 0.01394  (0.01308, 0.01481) 0.01197  (0.01136, 

0.01259) 

P01 0.05642  (0.05595, 

0.05688) 

0.05708  (0.0566, 0.05757) 0.05719  (0.05685, 

0.05753) 

P20 -0.006865  (-0.00735, -

0.006381) 

-0.008626  (-0.00913, -

0.008121) 

-0.01003  (-0.01039, -

0.009671) 

P11 0.003061  (0.00213, 

0.003993) 

0.002234  (0.001264, 

0.003204) 

0.007574  (0.006888, 

0.008261) 

P30 -0.003022  (-0.003202, -

0.002841) 

-0.003277  (-0.003464, -

0.003089) 

-0.004025  (-0.004158, -

0.003892) 

P21 -0.001009  (-0.001286, -

0.000732) 

-0.0005719  (-0.0008603, -

0.0002835) 

0.001953  (0.001749, 

0.002157) 

P40 0.0001382  (8.323e-5, 

0.0001931) 

0.000429  (0.0003718, 

0.0004862) 

0.001033  (0.0009926, 

0.001074) 

P31 -0.001587  (-0.001747, -

0.001427) 

-0.001675  (-0.001841, -

0.001508) 

-0.00307  (-0.003188, -

0.002952) 

P50 5.352e-05  (4.602e-5, 

6.102e-5) 

9.089e-05  (8.309e-05, 9.87e-

05) 

0.0001818  (0.0001763, 

0.0001873) 

P41 -0.0001972  (-0.0002195, -

0.0001748) 

-0.000217  (-0.0002403, -

0.0001938) 

-0.0004412 (-0.0004577,-

0.0004248) 
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Table 3. 7: Errors Between the Calculation and Field Measurement Actual Data 

Active 

Power, 

P, p.u. 

Voltage 

V, p.u. 

Reactive Power Capability, Q, p.u. Errors -  Calculation vs. 

Measurements, % Calculation 

Measurements Without 

robustness 

LAR Bisquare Without 

Robustness 

LAR Bisquare 

1 1.025575 0.2159 0.2146 0.2129 0.21831 −1.10393 −1.69942 −2.47813 

0.99 1.027094 0.2153 0.214 0.2123 0.235089 −8.41766 −8.97065 −9.69378 

0.72 1.025481 0.2001 0.1969 0.197 0.189853 5.397334 3.711819 3.764491 

0.39 1.020801 0.1814 0.1762 0.1784 0.178564 1.588226 −1.3239 −0.09184 

0.3 1.027437 0.1763 0.1704 0.1732 0.15504 13.71259 9.907121 11.71311 

 

Among five arbitrary chosen operating points in Table 3.7, “without robustness” case shows 

smallest percentage of errors for two operating points, and “LAR” case shows two smallest errors 

for the remaining two operating points. By considering both goodness of fit and percentage of 

errors evaluation, the poly 51 model using LAR is chosen as the final model. 

The surface fitting graph and residuals of the final model are depicted in Fig. 3.6. From Table 

3.5, coefficients with 95% confidence bounds do not have a zero crossing point, which means 

that the models are not over-fit. Residuals in Fig. 3.6(b) are random. 

 

(a) 

 

(b) 

 

Fig. 3. 6. The developed poly51 model through surface fitting using LAR algorithm based on 

SCADA field measurement data at POI: (a) Surface fitting diagram; (b) Residuals.  

3.5 Two Controllers Design 

Two controllers, a central WPP controller and a capacitor controller, are designed in this 

paper. The overall control block diagram including both controllers is depicted in Fig. 3.7, which 
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can be divided into three parts, as shown in black, red and green colors. The black portion of the 

controller is adopted from MATLAB/Simulink toolbox, although this portion is not developed 

by the authors, it is tuned so that it can follow the characteristic equation developed in Eq. (5).  

The red and green portions are developed in this paper. The red portion represents the central 

WPP controller, which is a data driven regression equation based controller sensing a voltage 

deviation at the POI and determining a reactive power setting-point using Eq. (4). The green 

portion represents the capacitor controller, which is a program based controller regulating “on” 

or “off” status of the capacitor banks. The flowchart of the central WPP controller is shown in 

Fig. 3.8. The detailed design principles are introduced in this section.   

In Fig. 3.7, the central WPP controller reads the voltage at the POI (U_POI) and compares it 

with the reference voltage (U_POI_ref). If the voltage deviation is within ±0.05 pu, no voltage 

compensation action is required, in this case, the central WPP controller will not turn on any 

capacitor banks, and the WPP continues to supply reactive power to the grid according to its 

reactive power capability. The central WPP controller reads the operating condition and set 

reactive power reference (Q_DFIG) for the DFIG controller according to Eq. (5). The reactive 

power supplied by the DFIG to the grid (Q) is measured and compared with a reference 

(Q_DFIG). The error is passed through a reactive power regulator (PI1) and serves as a reference 

for the direct-axis (d-axis) rotor current (Idrref). Idrref is then compared with the d-axis rotor 

current (Idr), and the error serves as an input of the rotor side current regulator (PI3). In the 

meantime, the speed of the rotor (ωr) is measured and the reference for active power is calculated 

from the power-rotor speed tracking characteristics. The cumulative value of the measured 

active power output of the DFIG to the grid (P) and power losses (ploss) is compared with the 

reference and the error passes through an active power regulator (PI2). The output of PI2 is the 
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quadrature-axis (q-axis) rotor current reference (iqrref), which is then compared with the q-axis 

rotor current (Iqr), and the error serves as an input to the rotor-side converter current regulator 

(PI3). PI3 processes the d- and q-axis rotor currents (Idr and Iqr) and provides the reference for 

the rotor voltage (Vr) to the PWM generator. PWM generator responses accordingly and 

regulates the switching of the rotor side converter (RSC).  

If the voltage deviation at the POI is larger than 0.05 pu, the central WPP controller calculates 

the reactive power required (Q_required) to compensate the voltage deviation according to Eq. 

(4). If, Q_required is larger than Q_DFIG, the central WPP controller turns on the capacitor 

controller to regulate switching of capacitor banks and supply additional required reactive 

power. If the central WPP controller still requires additional reactive power for the case that all 

capacitor banks are tuned on, this surplus power is supplied by the GSC. The central WPP 

controller sends the set point for the q-axis component of the GSC current (I_q_GSC), this 

current is compared with Iqgc, and the error serves as an input to the GSC current regulator 

(PI5). The voltage of the dc bus capacitor is controlled by a dc bus voltage regulator (PI4), which 

generates the reference for d-axis GSC current (Idgcref).  Idgcref is then compared with Idgc, 

the error serves as an input to the PI5. PI5 generates the reference for the GSC’s voltage (Vgc) 

and maintains this voltage by adjusting the switching through PWM control.  

The simulation of the two new controllers design is conducted using MATLAB/Simulink. 

The DFIG model in Fig. 3.7 is adopted from MATLAB/Simulink as mentioned in Section II, 

and the parameters used in the DFIG model are provided in Table 3.1. Other parameters related 

to the two new controllers are generated as discussed above. Eqs. (4) and (5) are used to 

determine these parameters.    
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3.5.1 Central WPP Controller 

The central WPP controller maintains the voltage at the POI. Its operation can be divided into 

three scenarios: 1) normal operation: voltage deviation is within 5% of the bus nominal voltage, 

[0.95, 1.05] pu; 2) under voltage: voltage deviation exceeds –5% of the bus nominal voltage (< 

0.95 pu); and 3) over voltage: voltage deviation exceeds +5% of the bus nominal voltage (>1.05 

pu).  

3.5.1.1 Normal Operation 

According to grid requirements, the acceptable operating voltage at the POI is in the range of 

[0.95, 1.05] pu. As long as the voltage is in this range, the central WPP controller will not turn on 

external reactive power compensation. However, it must ensure that the power factor (PF) at the 

POI remains within the range of [−0.95, +0.95]. If the power factor exceeds the limit, the controller 

will adjust the reactive power set point accordingly. In this scenario, the central controller operates 

in the reactive power control mode.  

3.5.1.2 Under Voltage 

If the grid experiences an under voltage below 0.95 pu, the controller will operate in the voltage 

control mode as follows:  

1) The required reactive power (Q_required) is determined by the central controller using Eq. 

(4) based on the SCR and ΔU values at the POI;   
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Fig. 3. 7. The overview control block diagrams including both controllers. 
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Fig. 3. 8. Flowchart of the proposed Central WPP controller.  

 

2) The reactive power capability of the DFIG/WPP (Q_DFIG) is calculated using Eq. (5) based 

on P and V values at the POI.  

3) Compare the two calculated parameters, Q_required and Q_DFIG. If Q_required < Q_DFIG, 

the plant has enough capability to compensate the voltage deviation. In this case, Q_DFIG should 

be reduced according to Q_required. If Q_required > Q_DFIG, the WTGs do not have enough 

capability to compensate the voltage deviation, and additional reactive power compensation is 

required. In this case, the residual required reactive power, “residual Q_required”= Q_required − 

Q_DFIG, is supplied by capacitor banks.   
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4) To determine the number of capacitor banks, N_CAP, needs to turn on, the residual 

Q_required is divided by the Var capacity of one capacitor bank, and the result is always rounded 

to the nearest larger integer. For example, a value of 0.4 is rounded to 1. By doing this, the total 

reactive power available in the system with capacitor banks can be calculated as follows: 

Q_total = Q_DFIG + N_CAP(Var capacity_per_capacitor_bank)        (6) 

It may not be equal to Q_required. 

5) If Q_total > Q_required, the difference between them will be reduced from Q_DFIG. If 

Q_total < Q_required, it means after turning on all capacitor banks, the system reaches its 

maximum reactive power limit, and the grid still requires reactive power to compensate voltage 

deviation. In this case, the q-axis component of the GSC (I_q_GSC) can be turned on. The q-axis 

component of the rotor current, Iqr, controls the q-axis component of the rotor voltage, Vqr, which 

eventually controls the active power generation. Based on active power – voltage magnitude (P-

V) curve, there is an inverse relationship between P and V in a stable operation region [60], i.e., 

the active power reduction results in the voltage increases, and consequently reduces the reactive 

power requirement. The central controller will continue the process until the POI voltage reaches 

its nominal voltage so that frequent switching of operational mode and capacitor banks can be 

avoided. When the voltage reaches one per unit, the central controller goes back to the normal 

operation status.  

3.5.1.3 Over Voltage 

Since the maximum allowable voltage swell is 1.05 pu, when the POI voltage exceeds 1.05 pu, 

the WPP consumes reactive power from the grid to bring it back to the acceptable limit. In this 

case, the central controller calculates the negative reactive margin of the WPP for a specific active 

power P to ensure that at least a 15% reactive power reserve is maintained so that the DFIG does 
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not become unstable. To find the negative reactive margin, the lowest point on the reactive power 

– voltage magnitude (Q-V) curve should be found first. Eq. (5) is differentiated with respect to the 

voltage magnitude V, and the first derivative of Q is made equal to zero: 

       
𝑑𝑄(𝑥,𝑦)

𝑑𝑥
= (𝑝10 + 𝑝11𝑦) + (2𝑝20 + 2𝑝21𝑦)𝑥 + (3𝑝30 +                       3𝑝31𝑦)𝑥

2 +

(4𝑝40 + 4𝑝41𝑦)  𝑥
3 + (5𝑝50)𝑥

4 = 0                                                                                                  (7)  

Solve Equ. (7) and substitute the highest root below 1 pu in Eq. (5), the calculated reactive 

power capability is the negative reactive margin [60][61]. If Q_required > Q_DFIG, the central 

controller send a set point for I_q_GSC within its capability limit. Grid and rotor side converter 

can handle the maximum 0.5 pu of the nominal MVA of the WPP.  

3.5.2 Capacitor Controller 

When external reactive power compensation is required, the central WPP controller sends a 

signal to the capacitor controller. This signal contains the instruction whether the reactive power 

compensation system should be turned on (CAP_enable). If yes, the number of capacitor banks 

(N_CAP) should be brought online. In practical operation, frequent switching of a capacitor will 

affect its capability and durability, a capacitor controller can prevent this issue. The flowchart of 

the capacitor controller is shown in Fig. 3.9.  

To prevent frequent switching, the capacitor controller ensure that a capacitor bank, which was 

turned on in previous state, will not be turned on in next state unless all other capacitor banks have 

been turned on and more external reactive power support is necessary. Therefore, the capacitor 

controller stores switching states of all capacitor banks in the form of 0 and 1, where 0 and 1 

represent off and on, respectively. If no capacitor is turned on, then switching states are not stored 

and previous states (P.S.) remain on the memory. In the next state, the capacitor controller 
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generates a signal for capacitor banks by processing the following three parameters: CAP_enable, 

N_CAP and P.S. If the external reactive power is not required, capacitor banks are disconnected 

from the system. If the external reactive power is required, the capacitor controller reads previous 

states and reverse previous switching states. The number of 1 (N_ones) in the reversed states are 

counted and compares with the N_CAP.  If they are equal, it means the required number of 

capacitor banks are available to bring online, the controller turns on respective capacitor banks and 

saves the switching states. If N_CAP > N_ones, it means more capacitor banks are needed than 

available, the controller searches for zero from the beginning of the inverted states and convert 

into 1. After each conversion, N_ones is counted and compared with N_CAP. Similarly, when 

N_CAP<N_ones, 1 is reversed. The process continues until N_CAP = N_ones. At this time, 

control signals are sent to the respective capacitor banks, and the states are saved to the memory. 

Start
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Disconnect all 

Capacitor

N_CAP = 

N_ones

Enable required 

Capacitors
N_CAP > N_ones

Convert first 1 into 0 
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Enable required Capacitors

Invert P.S. and Count ones, N_ones

Count ones N_ones

Convert first 0 into 1 

N_CAP = N_ones

Count ones N_ones
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NO

NO
NO

Yes

Yes

YesNO

Store Switching States
 

Fig. 3. 9. Flowchart of the proposed capacitor controller 
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3.6 Case Studies 

To validate the proposed data driven voltage control approach for WPPs, five case studies are 

conducted in this section. First of all, the WPP under study in Section II is used in Case I to validate 

the accuracy of our WPP base model without controllers. In this case, the base model simulation 

results are compared to SCADA field measurement data for a given voltage sag. After the base 

model is validated through Case 1, it can be used in the voltage controller design. The rest case 

studies are for the system under normal, under-voltage, and over-voltage conditions.      

3.6.1 Case 1 – Base Model without Controllers 

To evaluate the accuracy of the WPP base model without controller, Case 1 is conducted. The 

SCADA measurement data from 12 am to 23 pm on June 19, 2016 are compared with simulated 

values. The measured voltage at the POI and the active power generation of the WPP are entered 

in the base model according to SCADA measurement (Fig. 3.10 (a) and (b)), the simulated reactive 

power generation of the WPP is then compared with the SCADA measurement in Fig. 3.10 (c). It 

is clear from Fig. 3.10 (c) that the reactive power response of the WPP is closely following the 

SCADA measurement. Therefore, the base WPP model without controllers is considered to be 

accurately representing the real WPP.  

 

 

(a) 
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(b) 

 

(c) 

Fig. 3. 10. Simulation results vs. SCADA field measurements for the base WPP model without 

controllers for the 27 MW WPP in NL, Canada (Case 1): (a) voltage at the POI, (b) active power 

supplied by WTG, (c) reactive power supplied by WTG. 

 

3.6.2 Case 2 - Normal Operation with Power Factor Control 

In Case 2, the simulation is conducted for the WPP model with controllers under normal 

operation. In this case, a 96% voltage sag at POI starts at 32 s and lasts for 0.2 ms.  

Before the voltage disturbance, the voltage at POI is 1.01 pu (Fig. 3.11 (a)).  The SCR is 5. The 

active power is 0.502 pu (Fig. 3.11 (c)). As the voltage remains within the permissible limit, no 

capacitor banks are turned on, and the WTG supplies reactive power according to the reference 

sent by the central controller. The main objective of the central controller in this case is to keep 

the power factor (PF) within ±0.95 at the POI. 
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According to Eq. (5), the reactive power capability of the WTG is 0.185 pu in this case. Because 

the PF at the POI is around 0.935, which exceeds the permissible limit, the central controller 

adjusts the reactive power set point of the WPP to 0.165 pu so that +0.95 PF can be maintained 

(Fig. 3.11 (d)). Although the voltage profile is slightly better without any central controller, it 

cannot keep the PF at the POI within the permissible limit during and after the voltage sag. After 

the clearance of the voltage sag, the voltage at the POI goes back to 1.01 pu. The central controller 

still remains in the PF control mode and maintains a permissible PF by adjusting the reactive power 

reference of the WTG.  

 

 

(a) 

 

(b) 

 

(c) 
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(d) 

Fig. 3. 11. Simulation results (Case 2): (a) voltage at POI, (b) reactive power supplied by WTG, 

(c) active power supplied by WTG, and (d) PF at POI. 

3.6.3 Case 3 - Under Voltage 

In Case 3, the simulation is conducted for the WPP model with controllers at under-voltage 

operation. A 92% voltage sag at the POI starts at 32 s and lasts for 0.2 ms. The pre-disturbance 

voltage is 1.01 pu.  Before the voltage sag, the real power P supplied by the WPP at the POI is 0.3 

pu. The SCR of the system is 5.   

As the voltage at the POI is below 0.95 pu, the central WPP controller is at the voltage control 

mode. According to Eq. (4), the required reactive power at the POI, Q_required, is 0.3911 pu. The 

reactive power capability of the WPP, Q_DFIG, calculated by Eq. (5) is 0.1719 pu. The central 

WPP controller sends signals to the capacitor controller to turn on capacitor banks. Four capacitor 

banks, each rated at 1.5 MVar at 25 kV, with a total of 6 Mvar or 0.22 pu capacity are turned on 

based on the calculation. Therefore, the reactive power set point during the fault, Q_DFIG, is 

adjusted to be 0.1711 pu.  

As shown in Fig. 3.12(b), before the voltage sag, the central controller ensures a 0.95 PF at the 

POI, and the corresponding active power supplied by the system is 0.3 pu, therefore, the central 

controller adjusts its reactive power set point to be 0.099 pu before the voltage sag. The total 

reactive power response during the fault can be found in Fig. 3.12(b).  
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As the total reactive power required to compensate the voltage sag is supplied by the WPP 

system, the GSC does not supply any reactive power.  

As shown in Fig. 3.12, immediately after the clearance of the voltage sag, because of the surplus 

injection of reactive power by capacitor banks, the voltage rises sharply. Once the controller enters 

the normal operating mode, the capacitor banks are turned off, and the POI voltage starts to 

decrease.   

 

 

(a) 

 

(b) 

 

(c) 
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(d) 

Fig. 3. 12. Simulation results (Case 3): (a) voltage at POI, (b) reactive power supplied by WTG, 

(c) active power supplied by WTG, and (d) PF at POI. 

3.6.4 Case 4 - Over Voltage  

In Case 4, the simulation is conducted for the WPP model with controllers under over-voltage 

operation. The voltage is raised at the POI by 0.06 pu at 32s and last for 0.2 s. The SCR at the POI 

is 5 and the active power P supplied by the WPP at the POI is 0.695 pu. Before this disturbance, 

the voltage at the POI is 1.01 pu, and the reactive power supplied by the WPP is 0.1956 pu.  

As the voltage increases above 1.05 pu, the WPP starts to consume reactive power from the 

grid. Based on our central controller design principle, the controller secures at least 15% reserve 

from the negative reactive margin. During the voltage swell, the reactive power capability of the 

WPP, Q_DFIG, is −0.1948 pu without a central controller (calculated by Eq. (5)), which is very 

close to negative reactive margin (−0.1984 pu). As the negative reactive margin depends on P and 

V, therefore, for P = 0.695 pu, V is calculated using Eq. (7), substitute these P and calculated V 

values in Eq. (5), the negative reactive margin (−0.1984 pu) is calculated. With the central WPP 

controller, it secures 15% reserve from the negative reactive margin, and Q_DFIG is adjusted to 

−0.168 pu (Fig. 3.13(b)). As the reactive power capability (−0.1948 pu) is very close to its negative 

reactive margin (−0.1984 pu), the central WPP controller adjusts its reactive power capability to 

(−0.1984 0.85 = −0.168pu) to ensure a 15% reserve to its negative reactive margin. In this way, 
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the central WPP controller avoid the possibility of crossing the negative reactive margin.  In Fig. 

3.13 (d), the negative PF represents that the WPP system consumes reactive power from the grid.      

 

 
(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 3. 13. Simulation results (Case 4): (a) voltage at POI, (b) reactive power supplied by WTG, 

(c) active power supplied by WTG, and (d) PF at POI. 
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3.6.5 Case 5 – A 50% Voltage Sag at The POI  

In Case 5, a severe voltage sag of 50% at the POI is applied, which starts at 32 s with a 0.2 s 

duration. Before the disturbance, the voltage at the POI is 1.01 pu, the real power supplied by the 

WPP at the POI is 0.3 pu, the central WPP controller adjusts the reactive power setting-point to 

0.099 pu to meet the power factor limit of 0.95. The SCR of the system at the POI is assumed to 

be 15.   

When the voltage sag occurs with the voltage at the POI below 0.95 pu, the central WPP 

controller is at the voltage control mode. According to Eq. (4), the required reactive power at the 

POI, Q_required, is 1.6112 pu. The reactive power capability of the WPP, Q_DFIG, calculated by 

Eq. (5) is 0.1741 pu. The central WPP controller turns on six 1.5 MVar capacitor banks through 

the capacitor controller that supply 9 MVar or 0.33 pu of reactive power. Although it cannot fully 

compensate the voltage deviation during the fault as the system cannot supply the required amount 

of reactive power, it significantly improves the voltage profile at the POI as shown in Fig. 3.14 

(a).  

 

 

(a) 
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(b) 

 
(c) 

 

(d) 

Fig. 3. 14. Simulation results (Case 5): (a) voltage at POI, (b) reactive power supplied by WTG, 

(c) active power supplied by WTG, and (d) PF at POI. 

3.7 Sensitivity Studies 

In this section, sensitivity studies are conducted to evaluate impacts of several parameters on 

dynamic performance of the proposed control scheme. The parameters include: 1) the length of 

transmission lines, 2) communication delay, and 3) X/R ratio of the utility grid. For all cases, a 

92% voltage sag is applied at 32 s and cleared at 32.2 s. A total of 0.3911 pu reactive power is 

required to compensate the voltage deviation, therefore, four capacitor banks, each rated at 1.5 

MVar are turned on, the rest of the reactive power is supplied by WTGs.  
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3.7.1 Scenario 1 - The Length of Transmission Lines 

WPPs are generally located in a remote location and connected to the utility grid through a 

transmission line. To evaluate the impact of the length of interconnection transmission lines in the 

proposed voltage control operation, three sets of lengths are considered: 0.5 km (short), 25 km 

(medium) and 50 km (long). A 92% voltage sag is applied for the three configurations. The 

resistance of the transmission line is 0.1153 Ω/km, and the reactance is 0.3958 Ω/km (See Table 

3.1 Cable Data). The impact of the length of transmission lines on the power grid voltage, WTG 

active and reactive power generation and PF at the POI are shown in Fig. 3.15.  

Fig. 3.15 indicates that the steady-state performance of the three configurations are similar 

although the transient performance is slower and flatter for the long transmission line than the 

short and medium ones. For the short transmission line, the WPP system responses immediately 

due to voltage variations in the grid. With the initiation of the voltage sag, the WTG increases its 

reactive power generation right away, hence the voltage recovery process at the POI starts faster 

than medium and long transmission lines. Similar characteristics are also visible for the active 

power P and power factor during and after the voltage sag.  

 

 

(a) 
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(b) 

 

 
(c) 

 

 
(d) 

Fig. 3. 15. Simulation results (Scenario 1): (a) voltage at POI, (b) reactive power supplied by 

WTG, (c) active power supplied by WTG, and (d) PF at POI.  

 

3.7.2 Scenario 2 - Communication Delay 

Communication delay is a major concern in WPP operation. Because of the geographic span of 

the WPP and the bandwidth of the communication link, there is always a communication delay 

between the central controller and the individual WTG. To evaluate the impact of communication 

delay in voltage control operation, three sets of communication delay are considered, 1 ms, 60 ms 

and 120 ms. A 92% voltage sag is applied. The influence of communication delay on the grid 

voltage, WTG active and reactive power generation, and the PF at the POI are shown in Fig. 3.16.   
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Fig. 3.16 indicates that communication delay can significantly affect dynamic characteristics of 

the WPP using the proposed control scheme. As the communication delay increases, the time 

required to stabilize the voltage during and after the disturbance increases. A communication delay 

is greater than 120 ms cannot compensate the voltage during the disturbance. For all three different 

delays, the magnitude of the active power fluctuation during and after the disturbance are the same, 

but it takes a longer time to return to the normal value with a longer communication delay. Fig. 

3.16 (c) shows that the active power of the WTG experiences more fluctuation with the increase 

of communication delay. The 60 ms and 120 ms delays pose similar performance for the PF at the 

POI, and it takes longer time than the 1ms delay to get back to +0.95 PF limit after the voltage sag 

clearance. To make an effective contribution in the voltage control process, communication delay 

between central and WTG controllers should be kept as small as possible. The delay must not be 

greater than 120 ms.  

 

 
(a) 

 

 
(b) 
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(c) 

 
(d) 

Fig. 3. 16. Simulation results (Scenario 2): (a) voltage at POI, (b) reactive power supplied by 

WTG, (c) active power supplied by the WTG and (d) PF at POI.  

 

3.7.3 Scenario 3 - X/R Ratio of the Utility Grid 

To evaluate the impact of X/R ratio of the utility grid in voltage control operation, four sets of 

X/R ratio are considered, 2.71, 3.259, 4.07 and 10. The effect of X/R ratio on the grid voltage, 

WTG active and reactive power generation, and the PF at the POI are shown in Fig. 3.17.  

Fig. 3.17 indicates that the X/R ratio of the utility grid has influence on dynamic characteristics 

of the system. Fig. 3.17 (a) shows that the voltage compensation performance for various X/R 

ratios. Although the impacts of X/R ratio are similar on active and reactive power during stable 

situations, but by the inception of a voltage change, WTGs connected to a grid with a higher SCR 

experience a larger peak. Therefore, caution should be exercised when the WPP is connected to a 

utility grid with a higher X/R ratio.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 3. 17. Simulation results (Scenario 3): (a) voltage at POI, (b) reactive power supplied by 

WTG, (c) active power supplied by WTG, and (d) PF at POI.  
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3.8 Conclusion 

In this paper, a data-driven voltage control approach for grid-connected WPPs is proposed and 

implemented by designing a central WPP controller and a capacitor controller on a sample 27 MW 

WPP currently in operation in Newfoundland and Labrador, Canada. Although many data-driven 

based research in wind power industry were reported in the literature during the past decade, this 

paper is the very first one to propose a data-driven controllers designed for the voltage control.  

The controller design is carried out using the SCADA field measurements recorded in 2016 at 

the POI of the sample WPP. Two factors are considered as the parameters for the controller design 

in the proposed method, which have not been done in the literature: one factor is the SCR at the 

POI, another factor is the reactive power capability of the WPP. Each factor is included in the form 

of a mathematical equation, which can be easily implemented in the controller design scheme. 

These equations are regression models developed using simulation data and SCADA measurement 

data through MATLAB curve fitting toolbox.  

The reactive power compensation devices are capacitor banks in this study, it offers a lower 

cost solution and superior dynamic performance through the combination of the new central WPP 

controller and capacitor controller, working together with the existing individual WTG controllers. 

The proposed data-driven based voltage controllers are extensively validated through several case 

and sensitivity studies.   
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Appendix 

Table 3. 8: Simulated and calculated data for required reactive power to Compensate Different 

voltage condition at POI when SCR is 5    

Voltage 

deviation ΔU 

at POI, p.u 
SCR at 

POI 

The required reactive power, p.u. 

Calculated 

Simulated Bisquare Without 

robustness 

1.10 5 -0.5571 -0.5128 -0.544 

1.09 5 -0.4933 -0.442 -0.481 

1.08 5 -0.4315 -0.3756 -0.424 

1.07 5 -0.3716 -0.3132 -0.365 

1.06 5 -0.3134 -0.2544 -0.309 

1.05 5 -0.2569 -0.1988 -0.252 

1.04 5 -0.2019 -0.1461 -0.196 

1.03 5 -0.1484 -0.0957 -0.143 

1.02 5 -0.0961 -0.0473 -0.0907 

1.01 5 -0.045 -5.67E-04 -0.04 

1.00 5 0.005 0.045 0.00 

0.99 5 0.0541 0.0898 0.063 

0.98 5 0.1024 0.1341 0.107 

0.97 5 0.15 0.1785 0.156 

0.96 5 0.197 0.2233 0.2 

0.95 5 0.2436 0.2688 0.252 

0.94 5 0.2898 0.3156 0.296 

0.93 5 0.3358 0.364 0.337 

0.92 5 0.3817 0.4144 0.381 

0.91 5 0.4276 0.4672 0.422 

0.9 5 0.4737 0.5228 0.47 
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Abstract- In this paper, an analytical approach to determine the reactive power capability of an 

individual doubly-fed induction generator (DFIG)-based wind turbine generators (WTGs) as well 

as plant level WPPs is proposed by considering several constraint variables. For ease of use, the 

proposed approach is developed based on the well-known standard parameters, and individual 

WTGs reactive power capability model is validated by comparing with two existing methods 

whereas plant level capability model is validated by comparing with Supervisory Control and Data 

Acquisition (SCADA) field measurement data of two WPPs currently operating in Newfoundland, 

Canada.     

 

Keywords- Doubly-fed induction generator, reactive power capability, wake effect, wind power 

plant. 

 

 

4.1 Introduction  

Wind power as a dominant form of renewable energy source plays an important role in the 

modern mixed energy landscape [1][2]. Wind power plants (WPPs) are usually grid-connected, 

adequate reactive power reserve of WPPs is critical to meet grid code requirements, handle steady-

state and transient uncertainties, and maintain stability and power quality of the system. Among 
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existing wind power technologies, only doubly-fed induction generator (DFIG) and permanent 

magnet synchronous generator (PMSG)-based wind turbines have the ability to supply reactive 

power to the grid [3]-[6]. Although the generation capacity of wind turbine generators (WTGs) 

has been developed up to 8 MW [7], 2 to 3 MW DFIGs are still considered the most optimum type 

due to partial-rated power electronic converters [8]-[14]. This paper focuses on DFIG-based 

WPPs. 

Because of the intermittent nature of wind, significant penetration of wind power generation in 

the grid may lead to severe stability and power quality issues due to lack of ancillary services that 

are usually provided by conventional synchronous generators (SGs) [15]. To resolve these issues, 

many countries have enforced grid codes for WPPs [16]. Grid codes require that WPPs should 

have sufficient reactive power reserve; following a grid disturbance, a WPP must inject reactive 

power to the grid as rapidly as possible instead of tripping off. Meeting such requirements can 

compensate voltage sags and enhance voltage stability of the system [17]. Research has been 

conducted to ensure the maximum reactive power contribution following a fault [14][18][19], and 

Ref [20] recommends that a WPP should have sufficient reserve to exchange reactive power under 

steady-state operation as well. 

Reactive power contribution from a WPP is based on the plant-level reactive power reserve and 

the voltage at the point of common coupling (PCC). Reactive power compensation equipment, 

such as capacitor banks and static var compensators (SVCs), can be installed in WPPs, but dynamic 

synchronization between the WPP and such equipment is hard to achieve, which may cause voltage 

overshoot and cascaded tripping-off [21]. Therefore, research has been conducted to enhance 

reactive power extraction from WTGs and reduce the dependency on reactive power compensation 



87 

 

equipment. In a practical WTG, several constraints are related to the reactive power capability 

[22]. A capability model without properly including these constraints may be less effective.   

The plant-level reactive power capability may affect voltage compensation, controller 

operation, and is directly related to the system’s stability and power quality. However, in the 

literature, there is no work reported so far on reactive power capability curve at the plant-level of 

WPPs, while only the reactive power capability curve development for individual DFIGs was 

reported in several papers. To support voltage compensation, reactive power capability of DFIGs 

is restricted by converter ratings [23][24]. However, due to additional constraints, such as magnetic 

saturation, the controller of DFIGs cannot achieve the desired dynamic responses. An active 

power–reactive power (P-Q) diagram for DFIGs, similar to that for conventional SGs, is developed 

in [22],[25]-[28] by considering: 1) converter current and heating limits in [25]; 2) only stator and 

rotor current limits in [26]; 3) stator and rotor current limits, and a rotor voltage limit in [27]; and 

4) stator and rotor current limits, rotor voltage limits, and magnetic saturation in [28]. Although 

more constraints are considered in [28] than in [25]-[27], the detailed mathematical model is not 

provided in [28].  

In this paper, for the very first time, a mathematical model to determine reactive power 

capability curve at the plant-level of DFIG-based WPPs is developed. The reactive power 

capability of a DFIG is derived first in this study. To obtain the plant-level mathematical 

formulation, simple summation of individual WTGs’ reactive power capability is not proper. 

Several constraints affecting reactive power capability at both individual DFIGs and the plant-

level are considered. Parameters that affect the plant-level reactive power capability include wake 

effect and distribution feeder losses. A WPP usually spans over a large geographic area and is 

connected to the PCC through long distribution lines, where significant losses may occur. For ease 
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of use, our developed model is formulated using the well-known standard parameters. To validate 

the proposed model of reactive power capability at individual DFIGs, it is compared with two 

existing methods reported in [26][27]. Since there is no existing model for the reactive power 

capability curve at the plat-level, it is validated by comparing with SCADA field measurements of 

two WPPs currently operating in Newfoundland, Canada.  

The main contribution of the paper includes: 1) develop an analytical approach to calculate 

reactive power capability at the plant-level for DFIG-based WPPs; and 2) evaluate reactive power 

capability at individual DFIGs. The plant-level reactive power capability curve assists the WPP 

central controller to accurately estimate the plant’s reactive power reserve and ensure robust 

voltage compensation. Grid operators can also use it to estimate the network's competency for 

sudden voltage fluctuations. To avoid WTG overloading, reactive power capability curve of 

individual WTGs can be used by the WPP central controller to distribute reactive power setting 

points proportionally among WTGs based on operating conditions.   

The paper is arranged as follows: the proposed method and its implementation procedure are 

introduced in Section 4.2; the steady-state WPP system model is derived in Section 4.3; constraints 

affecting reactive power capability calculation at individual DFIGs and the plant-level are 

discussed in Sections 4.4 and 4.5, respectively; the reactive power capability model is developed 

in Section 4.6 and validated in Section 4.7; conclusions are drawn in Section 4.8.  

4.2 System Modeling  

4.2.1 Mechanical System Model 

To account for the wake effect, the well-established wind speed-power equation is adopted as 

follows [21]: 
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𝑃𝑚𝑒𝑐ℎ =
𝜋𝑅2𝐶𝑝𝜌𝑣𝑤𝑖𝑛𝑑

3

2
      (1) 

Where 𝑃𝑚𝑒𝑐ℎ is the developed mechanical power, 𝑅 is the radius of the wind turbine, 𝐶𝑃 is the 

power coefficient of the wind turbine, ρ is the air density, and 𝑣𝑤𝑖𝑛𝑑 is the wind speed. For 

downstream WTGs, 𝑣𝑤𝑖𝑛𝑑 in (1) is replaced by the wake wind speed (𝑣𝑤𝑎𝑘𝑒), and its calculation 

is discussed in Section IV. Eq. (1) is depicted in Fig. 4.1.  

 

 

Fig. 4. 1. Wind-Power characteristic curve of WTGs 

 

In this paper, two WPPs currently in operation in Newfoundland, Canada are used to validate 

the proposed method. The following data are used in the study: 1) based on historical wind profiles 

(published by Government of Canada) [29] of the two WPPs, the cut-in, rated, and cut-out wind 

speeds for wind turbines are determined to be 7.099, 12, and 25 m/s, respectively; 2) the rated slips 

in super- and sub-synchronous modes for WTGs are ‒0.2 and 0.3, respectively, which are 

calculated from the rated and cut-in wind speeds using (39); and 3) a gearbox ratio of wind turbines 
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is 57.468. Although these parameters are not directly related to the maximum reactive power 

capability, they are crucial to relate active power generation with wind speed. 

4.2.2 Active Power Generation 

To determine the reactive power capability at the plant-level of DFIG-based WPPs, the reactive 

power capability of a DFIG must be determined first. In a sub-synchronous mode, the rotor 

rotational speed is below the synchronous speed, and it results in a sub-synchronous generated 

voltage and current; in this case, the rotor side converter (RSC) provides additional excitation to 

speed up the rotor to the synchronous speed. In a super-synchronous mode, the rotor rotational 

speed is above the synchronous speed, the RSC consumes excess excitation and keeps the system 

into synchronism. By neglecting losses occurred in DFIGs, the relation between active power and 

mechanical power of the stator and the rotor are expressed by   

𝑃𝑟 = −𝑠𝑃𝑠      (2)                                                                              

𝑃𝑚𝑒𝑐ℎ = (1 − 𝑠)𝑃𝑠 = 3𝑉𝑠𝐼𝑠𝑎𝑐𝑡𝑖𝑣𝑒     (3) 

Where 𝑃𝑠 and 𝑃𝑟 are active power of the stator and the rotor, respectively (Note: the active power 

of the rotor 𝑃𝑟 is the same as the active power of the RSC); 𝑠 is the slip; 𝑉𝑠 is the stator voltage per 

phase; and 𝐼𝑠𝑎𝑐𝑡𝑖𝑣𝑒  is the real component of the stator current. The relationship represented by Eqs. 

(1), (2) and (3) is depicted in Fig. 4.2.   

 

4.2.3 Reactive Power Generation 

In a DFIG, both the stator and the grid side converter (GSC) have the potential to generate or 

consume reactive power. As reactive power generation from the stator and the GSC is controlled 

separately, reactive power can be extracted from the stator and/or the GSC to their maximum limits 
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when needed. Therefore, the reactive power capability of a WTG, 𝑄𝑊𝑇𝐺, can be determined by 

(4), where reactive power of the stator, 𝑄𝐷𝐹𝐼𝐺, is controlled by the rotor based on (5), while the 

GSC controller controls the GSC’s reactive power, 𝑄𝐺𝑆𝐶.  

𝑄𝑊𝑇𝐺 = 𝑄𝐷𝐹𝐼𝐺 + 𝑄𝐺𝑆𝐶     (4) 

𝑄𝐷𝐹𝐼𝐺 = −
3𝑄𝑟

𝑠
      (5) 

Where 𝑄𝐷𝐹𝐼𝐺, 𝑄𝑟 and 𝑄𝐺𝑆𝐶 are reactive power of the stator, the rotor and the GSC, respectively. 

𝑄𝑊𝑇𝐺 is the reactive power capability of a WTG.  

 

Fig. 4. 2. Active power sharing between the stator and the RSC. 

 

4.2.4 Steady-State Equivalent Circuit 

The steady-state T equivalent electric circuit of a DFIG is shown in Fig. 4.3 with the following 

assumptions:    

1) Both stator and rotor windings are connected in wye;  
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2) The stator is connected to a three phase AC grid, which is balanced and remains at its 

nominal voltage and frequency. 

3) The rotor is connected to a three phase AC grid, which is balanced and remains at its 

nominal voltage and frequency, by a back-to-back voltage source converter.     

Vs
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jωsLσs Rr/sjωsLσr

jωsLm
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Is Ir
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-
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Fig. 4. 3. The steady-state equivalent circuit of DFIGs referred to the stator. 

 

In Fig. 4. 3, steady-state voltage equations of the stator and the rotor can be written as follows: 

𝑉𝑠 = 𝑉𝑚 − (𝑅𝑠 + 𝑗𝜔𝑠𝐿𝜎𝑠)𝐼𝑠      (6) 

𝑉𝑟

𝑠
= 𝑉𝑚 − (

𝑅𝑟

𝑠
+ 𝑗𝜔𝑠𝐿𝜎𝑟) 𝐼𝑟      (7) 

𝐼𝑓𝑒 + 𝐼𝑚 = 𝐼𝑠 + 𝐼𝑟       (8) 

Where 𝑉𝑠 is the stator voltage; 𝑉𝑚 is the magnetizing voltage; 𝐼𝑠 is the stator current; 𝐼𝑓𝑒 and 𝐼𝑚 are 

the magnetizing and iron loss current, respectively; 𝑅𝑠 and 𝐿σs are the resistance and leakage 

inductance of the stator, respectively; 𝑉𝑟, 𝐼𝑟, 𝑅𝑟, and 𝐿σr are the voltage, current, resistance, and 

inductance of the rotor referred to the stator, respectively. The relationship between actual rotor 

parameters and rotor parameters referred to the stator side is shown below: 

                𝑧𝑟 =
𝑍𝑟

𝑁2
            (9) 
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                  𝑖𝑟 = 𝐼𝑟𝑁               (10) 

                  𝑣𝑟 =
𝑉𝑟

𝑁
       (11) 

Where 𝑁 is a constant factor; 𝑍𝑟, 𝐼𝑟 and 𝑉𝑟 are the impedance, current, and voltage of the rotor 

referred to the stator side, respectively; 𝑧𝑟, 𝑖𝑟 and 𝑣𝑟 are the actual rotor impedance, current and 

voltage, respectively.   

4.3 Limiting Factors for Individual DFIG 

4.3.1 Stator Current Limit 

The stator current mainly limits the reactive power capability of the system at the under-excited 

mode. The impact of the stator current at this aspect can be evaluated by varying the phase angle 

while keeping the magnitude of the stator current constant at the rated value. DFIG reactive power 

capability due to the stator current limit is shown in Fig. 4.4. Although the stator current shapes 

the reactive power capability at both over- and under-excited modes in Fig. 4.4, with additional 

limiting variables, its influence at the over-excited mode is omitted.   

 

Fig. 4. 4. Reactive power capability of a DFIG considering stator current limit. 
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4.3.2 Rotor Current Limit 

In the over-excited mode, the rotor’s flux generation increases rapidly as shown in Fig. 4.5 [28]. 

In Fig. 4.6, to accommodate additional fluxes required to generate reactive power within the stator 

current constraint, the rotor current exceeds its rated value in the over-excited mode; while it 

remains way below its rated value in the under-excited mode. Therefore, the rotor current becomes 

a limiting variable, and is required to be within its rating in the over-excited mode. The rated slip 

in the super-synchronous mode determines the converter’s power rating as the converter handles 

the maximum power in this state [30]. The reactive power capability within the rotor current limit 

is drawn in Fig. 4.7. 

VsIs

ψS

ψr

Vs

Is

ψS

ψr  

        (a) under-excited mode        (b) over-excited mode 

Fig. 4. 5. Phasor diagrams of a DFIG [28].  
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Fig. 4. 6. Rotor current in two modes of operations.  

 

Fig. 4. 7. Effect of rotor current limit on reactive power capability of a DFIG.  
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4.3.3 Rotor Voltage Limit: 

The maximum permissible voltage of the rotor is: 

𝑣𝑟𝑚𝑎𝑥 = 
𝑉𝐷𝑐𝐷𝑚𝑎𝑥

√2√3
      (12) 

Where 𝑉𝐷𝐶 is the DC link voltage, and 𝐷𝑚𝑎𝑥 is the maximum allowable duty cycle of the RSC.  

According to [27], the complex power (S) of a DFIG in terms of stator and rotor voltages can be 

written as follows: 

𝑆 = −3𝑉𝑠 (
𝑉𝑠(𝑍𝑟+𝑍𝑚)−

𝑉𝑟
𝑠
𝑍𝑚

(𝑍𝑟+𝑍𝑠)𝑍𝑚+𝑍𝑠𝑍𝑟
)      (13) 

Where 𝑉𝑠 and 𝑉𝑟 are the stator and rotor voltage, respectively, 𝑍𝑠, 𝑍𝑟 and 𝑍𝑚 are the impedance of 

the stator, rotor and magnetic circuit, respectively.  

To understand the impact of the rotor voltage on the reactive power capability of a DFIG, the 

phase angle of the rotor voltage in (13) is varied, while its magnitude is kept at the rated value, 

resulting in a circle with a large negative offset on the imaginary axis [27]. Therefore, the rotor 

voltage becomes a limiting variable in the over-excited mode when the absolute value of the slip 

is high [27]. A capacitor is placed between the back to back converters (RSC and GSC) as showed 

in Fig. 4.10, and the nominal capacitor voltage is set based on the peak rotor voltage to avoid 

voltage over-surge.  

 

4.3.4 Winding Factor 

The stator and rotor windings of a DFIG are coupled with mutual flux, 𝜓𝑚. According to 

Faraday’s law, the induced electromotive force (e.m.f.) in the stator (Vs) is 

𝑉𝑠 = √2𝜋𝐾𝑠𝑛𝑠𝑓𝑠𝜓𝑚      (14) 
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Where 𝐾𝑠 is the stator winding factor, 𝑛𝑠 is the number of turns in the stator, 𝑓𝑠 is the operating 

frequency, and ψ𝑚 is the mutual flux. Similarly, the induced e.m.f. in the rotor referred to the rotor 

side is 

𝑣𝑟
′ = √2𝜋𝐾𝑟𝑛𝑟𝑓𝑟𝜓𝑚        (15) 

Where  𝐾𝑟 is the rotor winding factor, 𝑛𝑟 is the number of turn in the rotor, and 𝑓𝑟 is the frequency 

in the rotor circuit.  

The relation of frequencies between the induced voltage of the stator and the rotor is:  

                 𝑓𝑟 = 𝑠𝑓𝑠       (16) 

By combining (14), (15), and (16), we have 

                 
𝑉𝑠

𝑣𝑟
′ = 𝑁 =

1

𝑆

𝐾𝑠𝑛𝑠

𝐾𝑟𝑛𝑟
        (17) 

Where 𝑁 is the constant factor that defines the relation between the stator and the rotor induced 

e.m.f.s at zero speed (s = 1); ns/nr is the stator to rotor turns ratio. Winding factors are calculated 

by 

𝐾𝑤 = 𝐾𝑑𝐾𝑝        (18) 

Where 𝐾𝑤, 𝐾𝑑, and 𝐾𝑝 are winding factor, distribution factor and pitch factor for both stator and 

rotor, respectively. 𝐾𝑑 arises because armature windings in each phase are distributed in a number 

of slots, and the voltage induced in each slots cannot be in the same phase. 𝐾𝑝 arises when the slot 

pitch is smaller than the pole pitch. According to [31] and [32], for DFIGs, the approximation is 

𝐾𝑠

𝐾𝑟
1. However, in real life, 

𝐾𝑠

𝐾𝑟
 can be slightly higher or lower than 1. According to (17), this change 

of winding factor ratio from its nominal value holds a proportional relationship with N. However, 
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N limits DFIG reactive power capability only when N is increased, as this will increases rotor 

current as well, and as a result, rotor current reaches to its maximum value for comparatively lower 

value of stator current. Therefore, the influence of winding factors cannot be neglected.  

In this research, it shows that winding factors have impact on the overall performance of the 

DFIG; therefore, it should be considered while developing characteristics equations. Fig. 4.8 (b), 

depicts that the reactive power capacity is reduced by 0.0067 pu, 0.0134 pu and 0.0232 pu when. 

Ks/Kr is change from 1 to 1.005, 0.01 and 1.02, respectively.  

 

Fig. 4. 8. Effect of winding factor on reactive power capability of a DFIG: (a) overall capability; 

(b) the zoomed-in overexcited mode capability. 
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4.3.5 Magnetic Saturation 

A DFIG is partially saturated under the nominal operating condition [28]. Magnetic saturation 

of the core brings a practical limit on the maximum achievable magnetic fields in a DFIG. 

Saturation starts when the magnetic current exceeds the saturation current. The impact of magnetic 

saturation should be considered in reactive power capability calculation of DFIGs. If saturated, the 

mutual inductance (Lm) of the DFIG experiences a non-linear variation, which can be expressed 

by  

𝐿𝑚 = {
𝐿𝑚, 𝐼𝑚 < 𝐼𝑚𝑠𝑎𝑡

𝑘(𝐼𝑚)𝐿𝑚, 𝐼𝑚 ≥ 𝐼𝑚𝑠𝑎𝑡

     (19) 

Where 𝐼𝑚 is the magnetic current, 𝐼𝑚𝑠𝑎𝑡
 is the magnetic saturation current, 𝐾(𝐼𝑚) is a saturation 

constant, expressed by 

𝑘(𝐼𝑚) = {
1, 𝐼𝑚 < 𝐼𝑚𝑠𝑎𝑡

2

𝜋
[sin−1

𝐼𝑚𝑠𝑎𝑡

𝐼𝑚
+
1

2
sin(2 sin−1

𝐼𝑚𝑠𝑎𝑡

𝐼𝑚
)] , 𝐼𝑚 ≥ 𝐼𝑚𝑠𝑎𝑡

  (20) 

The reduction of the available reactive power due to magnetic saturation of the core is shown in 

Fig. 4.9.  
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Fig. 4. 9. Effect of magnetic saturation on reactive power capability of a DFIG.  

 

4.3.6 Reactive Power Capability of GSC 

In a DFIG, reactive power can be exported from the GSC through proper control algorithms [7]. 

Under steady-state, the GSC supports slip power to the DFIG based on operating conditions. 

Therefore, the rated and active currents of the GSC determine the available reactive power flow 

from the GSC.  

In Section II, it is assumed that the rotor is fed by a three phase AC grid, which is balanced and 

remains at its nominal voltage and frequency, through the RSC. Conduction and switching losses 

associated with the RSC have not been considered so far. To keep the DC link voltage (𝑉𝐷𝐶) at its 

nominal value, active power of RSC and GSC must be the same. Since the operating voltage and 

current of RSC and GSC are different, their losses are also different. To properly formulate the 

GSC reactive power limit, losses associated with the RSC and the GSC must be considered. From 
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the equivalent circuit of the GSC shown in Fig. 4.10, the expression for available reactive current 

from the GSC (𝐼𝐺𝑆𝐶𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒) can be expressed by (21). The converter steady-state conduction and 

switching losses can be calculated according to [28]. 

𝐼𝐺𝑆𝐶𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒 =
√𝐼𝐺𝑆𝐶𝑟𝑎𝑡𝑒𝑑

2 − (
𝑃𝑟−𝑃𝑅𝑆𝐶𝑐𝑜𝑛𝑑,𝑠𝑤𝑖𝑡𝑐ℎ−𝑃𝐺𝑆𝐶𝑐𝑜𝑛𝑑,𝑠𝑤𝑖𝑡𝑐ℎ

𝑉𝐺𝑆𝐶
)
2

        (21) 

Where 𝑉𝐺𝑆𝐶  is the voltage per phase at the GSC, 𝑃𝑅𝑆𝐶𝑐𝑜𝑛𝑑,𝑠𝑤𝑖𝑡𝑐ℎ  and 𝑃𝐺𝑆𝐶𝑐𝑜𝑛𝑑,𝑠𝑤𝑖𝑡𝑐ℎ  are summed 

conduction and switching losses for the RSC and GSC switches, respectively. 𝐼𝐺𝑆𝐶𝑟𝑎𝑡𝑒𝑑  is the rated 

current of the GSC and can be calculated by 

   𝐼𝐺𝑆𝐶𝑟𝑎𝑡𝑒𝑑 = −
𝑚𝑎𝑥|3𝑣𝑟𝑖𝑟 cosƟ𝑟|

3𝑉𝐺𝑆𝐶
    (22) 

Where 𝑐𝑜𝑠 Ɵ𝑟is the rotor power factor, and vr follows the boundary stated in (12).  

The steady-state relation between 𝑉𝐺𝑆𝐶 and 𝑉𝑠 can be written as follows: 

𝑉𝐺𝑆𝐶 = 𝑉𝑠 + (𝑅𝐺𝑆𝐶 + 𝑗𝜔𝑠𝐿𝐺𝑆𝐶)𝐼𝐺𝑆𝐶    (23) 

Where 𝑉𝐺𝑆𝐶 and 𝐼𝐺𝑆𝐶  are the voltage per phase and the current of the GSC, respectively; 𝑅𝐺𝑆𝐶  and 

𝐿𝐺𝑆𝐶  are the resistance and inductance per phase of the GSC, respectively. By combining the DFIG 

and the GSC, the resultant reactive power capability of a DFIG is drawn in Fig. 4.11.    
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Fig. 4. 10. Single-phase steady-state equivalent circuit of the GSC.  
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Fig. 4. 11. Reactive power capability of a WTG.  

4.4 Plant level limiting factors 

4.4.1 Determination of Power Coefficient 

Power coefficient is a measure for the wind turbine efficiency, expressed by 

𝐶𝑝(𝜆, 𝛽) =  𝑐1 (
𝑐2

𝜆𝑖
− 𝑐3𝛽 − 𝑐4) 𝑒

−
𝑐5

𝜆𝑖
⁄
+ 𝑐6𝜆   (24) 

Where, for the previously mentioned range of the operating wind speed and turbine capacity, 

standard value of coefficients 𝑐1 to 𝑐6 are 0.5176, 116, 0.4, 5, 21, and 0.0068, respectively [34]. 

The maximum power coefficient of the studied DFIG, 𝐶𝑝_𝑚𝑎𝑥= 0.48, is achieved when β is 0 

degree, and λ is 8.1.  

However, to accurately calculate power coefficients, profile and swirl losses should be 

considered. The profile loss is associated with the drag of the profile and directly proportional to 

the tip speed ratio (λ). The swirl loss is triggered by the vortex formed around the tip of the turbine 
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and inversely proportional to the product of the number of turbine blades and the tip speed ratio 

(λ) [33]. The optimum power coefficient (𝐶𝑝_𝑜𝑝𝑡) with profile and swirl losses can be determined 

by [33] 

𝐶𝑝_𝑜𝑝𝑡 =
16

27
(1− 0.219

𝜆
2 − 0.106

𝜆
4 − 2

9

𝑙𝑛𝜆
2

𝜆
2 )    (25) 

The corresponding effective power coefficient of a wind turbine is calculated as follows:  

𝐶𝑝𝑡ℎ = 𝐶𝑃(𝜆, 𝛽)
𝐶𝑝_𝑜𝑝𝑡

𝐶𝑝_𝑚𝑎𝑥
      (26) 

4.4.2 Wake Effect 

WTGs generate electricity by extracting energy from the wind, resulting in a subsequent 

reduction of energy density in the downstream air. This phenomenon is known as “wake effect”. 

The wake effect is directly associated with active power generation, and indirectly associated with 

reactive power generation. To develop a realistic representation of the reactive power capability 

curve of a WPP, wake effect should be considered [27].  

In this paper, the Jensen wake model is used to represent wake effect as shown in Fig. 4.12. 

According to Jensen wake model, the wake flow is linear for the downstream wind turbines [35].    

vo
vlee r

r(x)
α 

Vwake(x)

vo

 

Fig. 4. 12. Shadow cone of a WTG. 
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To simplify the calculation, the wake wind speed due to one upstream WTG is calculated first. 

The wake wind speed 𝑣𝑤𝑎𝑘𝑒(𝑥) at a radial distance x from an upstream WTG can be calculated as 

follows: 

𝑣𝑤𝑎𝑘𝑒(𝑥) =  𝑣𝑜 + (𝑣𝑙𝑒𝑒 − 𝑣𝑜) (
𝑟

𝑟(𝑥)
)
2

   (27) 

Where 𝑣0 and 𝑣𝑙𝑒𝑒 are the free wind speed and the lee side wind speed, respectively. Depending 

on the value of power coefficient, expressions for the lee side wind speed are written as follows 

[33]: 

𝑣𝑙𝑒𝑒 = {
𝑣0

4 cos(𝛷 3⁄ )−1

3
, 𝐶𝑝𝑡ℎ <

8

27

−𝑣0
4 cos(4𝜋−𝛷  3⁄ )−1

3
, 𝐶𝑝𝑡ℎ ≥

8

27

   (28) 

Where  

𝛷 = cos−1 (1 −
27

8
𝐶𝑝𝑡ℎ)    (29) 

In (27), r and r(x) are the radius of the upstream WTG and the radius of the shadow cone at the 

distance x, respectively. r(x) can be calculated by 

𝑟(𝑥) = 𝑟 + 𝑥 tan𝛼     (30) 

Where, depending on the surface roughness of the WPP, tanα is associated with two values: tanα 

is set to 0.04 for wind turbines with free wind; tanα is set to 0.08 for other wind turbines affected 

by wake effect [27]. WTGs are usually arranged in rows in a WPP, and WTGs standing in the first 

row to the direction of the airflow face the free wind.  
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In practical applications, the wake wind speed at a downstream WTG is the result of cumulative 

shadowing of multiple upstream WTGs. Therefore, for the proper wake wind speed calculation, 

the collective impact of multiple shadowing is calculated by [27]  

𝑣𝑤𝑎𝑘𝑒𝑗 =  𝑣𝑗0 − √∑ 𝛽𝑖(𝑣𝑙𝑒𝑒𝑖(𝑥𝑖𝑗) − 𝑣𝑗𝑜)
2𝑛

𝑖=1
𝑖≠𝑗

  (31) 

Where 𝑣𝑤𝑎𝑘𝑒𝑗is the wake wind speed of the 𝑊𝑇𝐺𝑗, 𝑣𝑗0 is the incoming wind speed at 𝑊𝑇𝐺𝑗 

without any shadowing, 𝑥𝑖𝑗 is the radial distance between 𝑊𝑇𝐺𝑖 and 𝑊𝑇𝐺𝑗, β𝑖 is the ratio of the 

area of 𝑊𝑇𝐺𝑗 under the shadow of 𝑊𝑇𝐺𝑖 to its total area, 𝑣𝑙𝑒𝑒𝑖(𝑥𝑖𝑗) is the speed of the wind 

approaching WTGj from the shadowing WTGi, and n is the total number of WTGs. 

The wake wind speed, calculated using (31) for the three WTGs in the first column of the WPP 

currently operating in Newfoundland (Fig. 4.18), is shown in Fig. 4.13.   

 

Fig. 4. 13. Change of wind speed due to wake effect.  
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4.4.3 Losses in Distribution Feeders 

A WPP system may have a long distribution feeder as it is usually distributed over a large area. 

Therefore, losses occurred in lines and transformers of the feeder should be considered for accurate 

prediction of the plant-level reactive power capacity. In this paper, to account for distribution 

losses, a lumped PI section distribution line shown in Fig. 4.14 is adopted from MATLAB. The 

positive- and zero-sequence quantities for the line resistance used in this study are 0.1153 Ω/km 

and 0.413 Ω/km; for the inductance are 1.05 mH/km and 3.32 mH/km; and for the capacitance are 

11.33 nF/km and 5.01 nF/km, respectively [36]. The negative-sequence parameters are assumed 

to be same as the positive-sequence values.   

Rline Lline

Cp/2

Cg/2

Cp/2

Cg/2

 

Fig. 4. 14. PI section distribution line.  

The line parameters are calculated by assuming a balanced three-phase system. The relations are 

given as follows: 

𝐴+ = 𝑎+𝐿𝑙𝑖𝑛𝑒𝑘𝑧+     (32) 

𝐴0 = 𝑎0𝐿𝑙𝑖𝑛𝑒𝑘𝑧0     (33) 
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Where a represents the line inductance, capacitance or resistance per km; the subscripts, + and 0, 

represent positive- and zero-sequence quantities, respectively; 𝐿𝑙𝑖𝑛𝑒 is the line length; 𝑘𝑧 is 

hyperbolic correction factors, which are assumed to be 1 for a line shorter than 50 km; and A 

represents the aggregated sequence parameters. The RLC line section parameters can be computed 

by 

𝐴𝑠 = (2𝐴+ + 𝐴0)/3     (34) 

𝐶𝑝 = 𝐶+      (35) 

𝐶𝑔 = 
3𝐶+𝐶0

(𝐶+−𝐶0)
      (36) 

Where C is the capacitance, the subscripts, p and g, represent parallel and ground. 

4.5 Plant-Level Reactive Power Capability Model 

In this paper, based on limiting factors, we have derived the mathematical model for reactive 

power capability at the plant-level for DFIG-based WPPs for the very first time. For the sake of 

convenience, the model is developed based on the well-known standard parameters, i.e., the stator 

voltage, wind speed, and the nominal power. A clear relation among constraint variables and the 

plant-level reactive power capability is deduced. The developed model can be applied to WPPs 

with various capacities, WTG’s geographical locations and voltage ranges.  

The reactive power capability model at the plant-level (QTotal) can be determined as follows:     

𝑄𝑇𝑜𝑡𝑎𝑙 = ∑ (𝑄𝐷𝐹𝐼𝐺
𝑖 + 𝑄𝐺𝑆𝐶

𝑖 − 𝑄𝑙𝑖𝑛𝑒
𝑖 − 𝑄𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟

𝑖 )𝑛
𝑖=1   (37) 

Where n is the number of WTGs in the WPP; the superscript i represents the quantities for the ith 

WTG; 𝑄𝐷𝐹𝐼𝐺
𝑖  and 𝑄𝐺𝑆𝐶

𝑖  are the reactive power capability of the 𝑖𝑡ℎ DFIG and its GSC, respectively; 
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𝑄𝑙𝑖𝑛𝑒
𝑖  and 𝑄𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟

𝑖  are the associated line and transformer losses for the 𝑖𝑡ℎ WTG, 

respectively. 𝑄𝐷𝐹𝐼𝐺
𝑖  is calculated by 

𝑄𝐷𝐹𝐼𝐺
𝑖 = 3|𝑉𝑠|√𝐼𝑠𝑟𝑎𝑡𝑒𝑑

2 −
𝜋𝑅2𝐶𝑝𝜌(𝑣𝑤𝑎𝑘𝑒

𝑖 )
3

6(1−𝑠𝑖)𝑉𝑠
    (38) 

𝑠𝑖 =
𝜔𝑠𝑅−𝑟𝑔𝑏𝑣𝑤𝑎𝑘𝑒𝜆𝑝

𝜔𝑠𝑅
     (39) 

Where 𝜔𝑠 is the synchronous speed, 𝑟𝑔𝑏 is the gear box ratio, 𝑝 is the number of pole pairs, and 

𝐼𝑠𝑟𝑎𝑡𝑒𝑑  is the rated stator current, which can be calculated as follows:  

𝐼𝑠𝑟𝑎𝑡𝑒𝑑 = {

𝑆𝑟𝑎𝑡𝑒𝑑

3|𝑉𝑠|
, 𝑖𝑟 ≤ 𝑖𝑟𝑟𝑎𝑡𝑒𝑑

|
|𝑉𝑚|

𝑅𝑓𝑒
+ 

|𝑉𝑚|

𝑗𝜔𝑠𝐿𝑚
−
𝑖𝑟𝑎𝑐𝑡𝑖𝑣𝑒

𝑁
± 𝑗

1

𝑁
√𝑖𝑟𝑟𝑎𝑡𝑒𝑑

2 − 𝑖𝑟𝑎𝑐𝑡𝑖𝑣𝑒
2 | , 𝑖𝑟 > 𝑖𝑟𝑟𝑎𝑡𝑒𝑑

   (40) 

Where 𝑣𝑤𝑎𝑘𝑒, 𝑉𝑚, 𝐿𝑚 are the wake wind speed, magnetizing voltage, and mutual inductance 

calculated by (31), (41), and (19), respectively; 𝑖𝑟𝑟𝑎𝑡𝑒𝑑  and 𝑖𝑟𝑎𝑐𝑡𝑖𝑣𝑒are the actual rated rotor current 

and its real component, respectively. The magnetizing voltage 𝑉𝑚 can be calculated by 

𝑉𝑚 = 𝑉𝑠 − |𝐼𝑠|𝑍𝑠     (41) 

𝑄𝐺𝑆𝐶
𝑖 = 3|𝑉𝑠|√𝐼𝐺𝑆𝐶𝑟𝑎𝑡𝑒𝑑

2 − (
𝑃𝑟
𝑖−𝑃𝑅𝑆𝐶𝑐𝑜𝑛𝑑,𝑠𝑤𝑖𝑡𝑐ℎ

𝑖 −𝑃𝐺𝑆𝐶𝑐𝑜𝑛𝑑,𝑠𝑤𝑖𝑡𝑐ℎ
𝑖

3𝑉𝐺𝑆𝐶
)

2

   (42) 

Where, 

𝑃𝑟
𝑖 = 3𝑣𝑟

𝑖𝑖𝑟
𝑖 cos Ɵ𝑟

𝑖      (43) 

𝑄𝑙𝑖𝑛𝑒
𝑖 = 𝑖𝑚 (|𝐼𝑙𝑖𝑛𝑒

𝑖 |
2
(𝑍𝑙𝑖𝑛𝑒

𝑖 ))    (44) 

𝑄𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟
𝑖 = 𝑖𝑚 (|𝐼𝑙𝑖𝑛𝑒

𝑖 |
2
(𝑍𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟

𝑖 ))   (45) 
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Where 𝑍𝑙𝑖𝑛𝑒
𝑖  and 𝑍𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟

𝑖  are the line impedance and the equivalent impedance of the 

transformer between 𝑊𝑇𝐺𝑖 and the PCC, and Iiline is the line current for 𝑊𝑇𝐺𝑖 and can be 

calculated by 

 𝐼𝑙𝑖𝑛𝑒
𝑖 = 𝐼𝑠

𝑖 + 𝐼𝐺𝑆𝐶
𝑖       (46) 

The reactive power capability model at the individual WTG (𝑄𝑊𝑇𝐺) can be determined by (4), 

where 𝑄𝐷𝐹𝐼𝐺 and 𝑄𝐺𝑆𝐶 are calculated by (38) and (42), respectively.  

4.6 Summary of The Proposed Method  

The proposed method and its implementation procedure are summarized in this section. To 

accurately estimate reactive power capability at individual WTGs and at the plant-level, six 

variables (the maximum capacity of stator current, the maximum capacity of rotor current, rotor 

voltage, winding factor, magnetic saturation, and reactive power of the GSC) have been identified 

affecting reactive power capability of individual WTGs, while three variables (the turbine’s power 

coefficient, wake effect, and feeder system losses) affecting reactive power capability at the plant-

level. The procedure to implement the proposed method is shown in Fig. 4.15. 
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Fig. 4. 15. Flow chart of the proposed method. 
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To estimate the plant-level reactive power capability of a WPP, the reactive power capability 

of individual WTGs (𝑄𝑊𝑇𝐺
𝑖 ) must be calculated first by the following 6 steps:  

1) Based on the geographic location of the ith WTG, the power coefficient of the wind turbine 

(𝐶𝑝𝑡ℎ
𝑖 ), the wake wind speed (𝑣𝑤𝑎𝑘𝑒

𝑖 ), and the developed mechanical power (𝑃𝑚𝑒𝑐ℎ
𝑖 ) are calculated 

by (26), (31) and (1), respectively.  

2) From 𝑃𝑚𝑒𝑐ℎ
𝑖  and (3), the stator active current (𝐼𝑠𝑎𝑐𝑡𝑖𝑣𝑒

𝑖 ) is computed. Afterward, the stator 

reactive current (𝐼𝑠𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒
𝑖 ) is calculated by (40), keeping 𝐼𝑠 within its rated value.  

3) The magnetizing current (𝐼𝑚
𝑖 ) and the iron loss current (𝐼𝑓𝑒

𝑖 ) depend on  𝑉𝑚
𝑖 , and 𝑉𝑚

𝑖  is 

determined by (41). To calculate 𝐼𝑚
𝑖 , the magnetic saturation level of 𝐷𝐹𝐼𝐺𝑖 is crucial. The 

magnetizing current can be calculated by (19), and the saturation constant can be calculated by 

(20).  

4) Finally, 𝐼𝑟
𝑖  is calculated by (8), which is further converted to 𝑖𝑟

𝑖  by (10). In (10), the constant 

factor (𝑁𝑖), which depends on the stator-rotor turn ratio (T.R=𝑛𝑠 𝑛𝑟⁄ ) and the winding factor 

(W.F., 𝐾𝑠 and 𝐾𝑟), the winding factor is calculated by (18). During the operation, if 𝑖𝑟
𝑖   exceeds its 

rated value, its reactive component (𝑖𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒
𝑖 ) is lowered down, and bring 𝑖𝑟

𝑖  to its rated value. 

Lowering ii
rreactive affects 𝐼𝑠𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒

𝑖 , consequently, which can be estimated by (40). Updated 𝑖𝑟
𝑖  is 

then used to calculate 𝑣𝑟
𝑖 by (10), (7), and (11), consecutively.   

5) In this work, the reactive power capability is calculated by keeping the WTG’s terminal 

voltage and active power generation unchanged. Limiting the rotor voltage would change the 

terminal voltage, and further change the active power generation. Therefore, instead of limiting 

the rotor voltage, the DC link voltage (𝑉𝐷𝐶
𝑖 ) is modeled based on the maximum rotor voltage 

(𝑣𝑟𝑚𝑎𝑥
𝑖 ) by (12).  
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6) The reactive power of a DFIG (𝑄𝐷𝐹𝐼𝐺
𝑖 ) is calculated by (38). The reactive power capability 

of the GSC is calculated concurrently by (42). At this point, 𝑄𝑊𝑇𝐺
𝑖  is calculated by (4).  

Distribution losses associated with 𝑄𝑊𝑇𝐺
𝑖  is computed using (44) and (45). Finally, reactive 

power contribution of 𝑊𝑇𝐺𝑖 at the PCC (𝑄𝑡𝑜𝑡𝑎𝑙
𝑖 ) is estimated by (37). This process continues until 

the plant-level reactive power capability (𝑄𝑡𝑜𝑡𝑎𝑙) is calculated by summing up 𝑄𝑡𝑜𝑡𝑎𝑙
𝑖  for all WTGs.  

4.7 Validation of the Proposed Models 

4.7.1 Individual WTG level Reactive Power Capability 

To validate the proposed reactive power capability model for individual WTGs, the proposed 

model is compared with two existing methods: 

Method 1: in [26], a reactive power capability curve is developed within the constraints of stator 

and rotor current limits only. The impact of rotor voltage, magnetic saturation, winding factor or 

losses in the stator or the rotor circuit is not considered. Moreover, to calculate individual WTG 

level capability, it does not consider the reactive power capability of GSC as well.  

Method 2: [28] consider a wide range of limiting factor s like, stator and rotor current limit, 

rotor voltage limit, and magnetic saturation for a reactive power capability curve, however, the 

impact of winding factor is overlooked. The method consider GSCs reactive power capability to 

draw individual WTGs capability curve.  

 Proposed method: The proposed method considers the impact of stator and rotor current limit, 

rotor voltage limit, magnetic saturation and winding factor for reactive power capability curve. In 

addition, the GSCs maximum capability is also been added to draw the individual WTGs capability 

curve.    
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The comparison of reactive power capability of a DFIG is conducted using the three methods 

(the proposed method and the two existing methods) and the same simulation parameters shown 

in Table 4.1. In addition, for the two existing methods, constant factor N is set to 0.34 whereas, 

for the proposed method, it is set to (0.34×1.02). The results are shown in Fig. 4.16.  It is found 

that the method 1 underestimate the WTG level capability by not considering the GSCs capability, 

on the contrary, although method 2 consider GSCs maximum reactive power capability, however, 

overestimate the WTGs reactive power capability by not considering the winding factor, which 

limits their applicability in practical applications and can lead to faulty controller operation. The 

average difference between the existing Method 1 and the proposed method in over-excited and 

under-excited mode are 0.1122 pu and 0.1395 pu with an standard deviation of 0.0461 pu and 

0.0424 pu respectively. Whereas the existing Method 2 and the proposed method hold the same 

value in under-excited mode but maintains a constant difference of 0.0263 pu in over-excited 

mode.   

Table 4. 1: DFIG Parameter 

Parameter Name  Value 

Rated active power (MW) 3 

Rated apparent power (MVA) 3.5 

Rated stator voltage (kV) 1  

Rated stator current (kA) 2.0207 

Rated rotor current (A) 814 

Rated GSC current (A) 350 

Stator resistance (Ω) 0.0026 

Stator leakage inductance (mH) 0.087 

Magnetizing inductance (mH) 2.5 

Rotor resistance (Ω) 0.0261 

Rotor leakage inductance (mH) 0.783 

Operating frequency (Hz) 60 

Operating slip -0.2 to 0.3 
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Fig. 4. 16. Comparison of reactive power capability of a DFIG: (a) overall capability; (b) the 

zoomed-in overexcited mode capability.   

 

4.7.2 Plant Level Reactive Power Capability 

The developed reactive power capability model at the plant-level using the proposed method is 

validated by comparing with SCADA measurement data of two WPPs currently operating in 

Newfoundland, Canada. The SCADA measurement data at the 66 kV PCC of the WPPs were 

recorded at the sampling rate of one sample per second in 2016 for the whole year. Each WPP has 

a nameplate capacity of 27 MW with nine DFIGs, and each DFIG is rated at 3 MW. Each DFIG 

is connected with a 3.5 MVA, 1 kV/25 kV wye/delta step-up transformer. The first WPP shown in 

Fig. 4.17 is connected with the grid at the PCC through a 30 MVA, 25 kV/66 kV wye/delta 

transformer, while the second WPP shown in Fig. 4.18 uses a 25 MVA, 25 kV/66 kV wye/delta 
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transformer connected to the grid. In addition to Table 4.1, simulation parameters for cables and 

transformers are shown in Table 4.2. Also, while calculating plant level reactive power capability 

using the proposed method, constant factor N is set to (0.34×1.02) for all WTGs.  

Table 4. 2: Distribution Feeder Parameter 

Cable Parameters          Positive Sequence       Zero Sequence 

Resistance (Ω./km) 0.1153 0.413 

Inductance (H/km) 1.05e-3 3.32e-3 

Capacitance (F/km) 11.33e-009 5.01e-009 

Transformer Data          TL    TH 

Capacity (MVA) 3.5 40 

Rated voltages (kV) 0.575/25 25/66 

Resistance (pu) 0.025/30 0.003 

Leakage Inductance (pu) 0.025 0.09 

 

Under normal steady-state, the two WPPs follow grid code and run far below its reactive power 

capability based on SCADA data of a whole year in 2016. In fact, the operational SCAD data only 

occupy a narrow range. However, during contingencies, like grid faults or sudden off-lining of a 

power plant, the WPPs can be pushed to theses maximum limit through appropriate controller 

actions and maximize their contribution to the voltage deviation compensation process. In addition 

to this, it helps the grid operators scheduling power plants operations and calculating reactive 

power reserve of the grid to handle any unforeseen situation.  
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Fig. 4. 17. Single line diagram of WPP1. 
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Fig. 4. 18. Single line diagram of WPP2. 
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Fig. 4. 19. Comparison of reactive power capability: (a) WPP1; (b) WPP 2.   
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4.8 Conclusion 

In this paper, an analytical model for reactive power capability curve at the plant-level of DFIG-

based WPPs is proposed by considering several constraint variables at DFIGs and the plant-level. 

The reactive power capability curve for individual WTGs is derived first by including effect of 

stator current, rotor current, rotor voltage, winding factor, magnetic saturation, losses associated 

with converter switches, the stator and rotor circuits. The proposed method considers maximum 

capability of the GSC to realize maximum capability of individual of WTG. The proposed model 

for individual WTGs is validated by comparing with two existing methods; while the proposed 

model at the plant-level is compared with SACDA measurement data of two WPPs currently 

operating in Newfoundland, Canada for the whole year of 2016. 
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In this chapter, the manuscript is presented with altered figure numbers, table numbers, and 

reference formats in order to match the thesis formatting guidelines set out by Memorial University 

of Newfoundland. 

The wind power plant controller presented in this chapter is an improved version of the 

controller presented in Chapter 3. The controller presented in this chapter operates in the voltage 

control mode, and when needed, it can extract the maximum amount of reactive power from the 

wind turbine generators. However, the controller presented in Chapter 3 operates in the reactive 

power control mode and extracts reactive power within the wind turbine generator’s steady state 

reactive power capability.  

Abstract- To maximize the reactive power support from a wind power plant (WPP) and maintain 

the power factor (PF) at the point of interconnection (POI) within the acceptable limits, an adaptive 

droop coefficient-based WPP controller is proposed in this paper. The controller consists of a 

central WPP controller and a local wind turbine generator (WTG) controller. An integrated power 

factor controller enables the central WPP controller to regulate the power factor at the POI under 

normal operation. An updated droop coefficient model considering the depth of voltage deviation 

and the range of reactive power capability enables the controller to push the WTG more towards 

its maximum limit. To ensure faster and robust operation, both the central WPP controller and 

local WTG controllers are operated in voltage control mode. Additional reactive power is exported 

from the grid side converter (GSC) through a developed GSC controller. The effectiveness of the 

proposed controller is validated through case and sensitivity studies in MATLAB/Simulink 

environment.      

 

Keywords- Adaptive droop coefficient, 𝑃 − 𝑄 diagram, voltage control, reactive power. 
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5.1 Introduction  

Due to environmental concerns from fossil fuel-based large central power generation, and rapid 

technology advancement and price reduction of renewable energy sources, wind and solar power 

generation have been increasingly integrated to our modern power grids [1],[2]. Wind power offers 

about a quarter of global renewable generation capacity, serving as one of the major forms of 

renewable energy sources. Wind power is mainly generated by utility-scale transmission-

connected power plants. Despite all the benefits, due to uncertainties associated with the wind, 

high penetration of wind power plants (WPPs) into the grid makes the grid vulnerable [3]. As a 

result, grid codes are imposed for WPPs to ensure stability and power quality of power grids. Grid 

codes require that WPPs should supply ancillary services instead of tripping off and bring the 

system back to normal operating condition during a contingency [4]–[6].  

Typically, the utility company requires that the voltage deviation is within ±0.05 in pu around 

the nominal value under normal operation, and the corresponding power factor is within the range 

of [−0.95, +0.95] at the POI. For voltage deviations beyond the above limits, rapid dispatch of 

reactive power within the WPP’s capability is required to compensate voltage deviations. Another 

important aspect is that being spanned over a wide area, WPPs rely heavily on communication 

networks, and an interruption in communication could have severe impact on the performance and 

stability of the system. Therefore, WPP controllers are required to be equipped with a contingency 

plan so that a communication failure does not lead to a complete failure of a WPP.   

The first two generations of wind power technologies, Types 1 and 2, do not have the reactive 

power generation competency, therefore, they cannot contribute to the voltage compensation 

action. Although the third and fourth generation of wind power technologies, Types 3 and 4, are 

developed with the reactive power handling competency [7], [8], due to technological constraints, 
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their reactive power competency cannot be utilized properly. As a result, WPPs require additional 

reactive power support, such as capacitor banks or static var compensators (SVCs) [9]. However, 

dynamic synchronization between a WPP and reactive power compensation equipment is a 

complicated process; it may cause significant voltage overshoot and cascaded tripping-off if not 

properly designed [10]. Therefore, research has been conducted to reduce dependance on such 

equipment by maximizing reactive power extraction from the WPPs through appropriate control 

actions and to ensure effective contribution to voltage control at the POI.   

Voltage control at the POI of a WPP by dispatching reactive power can be categorized into: 1) 

hierarchical reactive power control-based approach [9], [11], [12]; and 2) voltage control-based 

approach [13]–[16]. In the first approach, a reactive power control mode is used in both central 

WPP controller and local WTG controllers, where the central WPP controller sets references for 

local WTG controllers. However, excessive dependence on the communication system between 

the central WPP controller and local WTG controllers results in slow response, and the system is 

vulnerable to communication failures [14].  

The voltage control-based approach can be classified into two categories. In the first category, 

the central WPP controller operates in voltage control mode, but the local WTG controller operates 

on the reactive power control mode [17]. In this method, local controllers are also completely 

supervised by the central WPP controller, therefore, they exhibit sluggish response and remains 

vulnerable to communication failures.   

As a remedy, in the second category, the voltage control mode-based central WPP controller 

and local WTG controllers are developed in [13]–[15], [18], where local WTG controllers response 

immediately based on voltage deviations sensed at the WTG terminal. Concurrently, the central 

WPP controller sends a voltage reference to local WTG controllers, which droops the WTG 
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terminal around its nominal value and brings the voltage at the POI back to the normal operating 

range by dispatching necessary reactive power [15]. This approach enables fast response and 

prevents the complete system breakdown during communication failures. In this approach, local 

WTG controllers involve either a rotor side converter (RSC) alone [14]; or both RSC and grid side 

converter (GSC) combined [15]. In the former one, no reactive power is harnessed from the GSC, 

while in the second one, both RSC and GSC’s reactive power competency are utilized. In the core 

of the control of reactive power dispatch through the RSC, Ref [19] adopts a constant slope for the 

WTG’s 𝑉 − 𝐼 characteristics; while Ref  [14] improved [19] by adopting an adaptive slope. Due 

to geographical positions of WTGs within a WPP, the active power generation from WTGs varies. 

Therefore, in the adaptive slope-based approach, slopes are chosen in such a way that an inverse 

relationship with active power generation is maintained. Because reactive power dispatch 

increases with a higher 𝑉 − 𝐼 slope, during a contingency, controllers extract more reactive power 

from WTGs that generate less active power. For this reason, the adaptive slope-based approach 

can contribute more reactive power than the fixed slope-based approach, as all WTGs contribute 

same reactive power when a fixed slope is assigned to all of them.   

The slope of the 𝑉 − 𝐼 characteristics, known as “inverse droop coefficient”(1 𝐾𝐷𝑟𝑜𝑜𝑝)⁄ , 

regulates how far the RSC controller can push the WTG towards its maximum capability. This 

droop coefficient used in [14], [18] varies only with the amount of active power being dispatched 

by the respective WTG. Therefore, the RSC controller estimates the same droop coefficient 

regardless of the depth of voltage deviations. Consequently, controllers cannot take the full 

leverage of the WTG’s maximum reactive power capacity during a deeper voltage sag.  
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To overcome this issue, in this paper, an adaptive droop coefficient model that varies with the 

active power generation and the depth of voltage deviations is proposed. The proposed RSC 

controller can ensure more reactive power contribution from the WTG during contingency.  

The maximum reactive power capability model of a WTG is crucial in computing its droop 

coefficient. The maximum current carrying capacity of the stator and rotor, and the maximum 

allowable voltage for the rotor circuit are mostly used factors to define the maximum reactive 

power capability of a WTG [13], [14], [18]. However, parameters, such as winding factors and 

magnetic saturation, are ignored, which reduced the model’s accuracy. To overcome this issue, we 

have developed the maximum reactive power capability curve for WTG by considering 

comprehensive parameters including winding factors and magnetic saturation [20]. In this paper, 

we will use this result directly in the new controller design.  

In this paper, in addition to the RSC controller, a GSC controller is also developed to utilize its 

reactive power competency. The effectiveness of the developed controller is studied in a Simulink 

equivalent model of a real WPP currently operating in Newfoundland, Canada.    

The major contributions of the paper include: 1) developing a novel adaptive droop coefficient-

based WPP controller to maximize reactive power dispatch; 2) integrating the developed 

maximum reactive power capability model to estimate droop coefficients of a WTG; and 3) 

developing an adaptive droop coefficient model that varies with active power dispatch and the 

depth of voltage deviations at the POI.   

The paper is arranged as follows: the proposed control approach is introduced in Section 5.2; 

the system under analysis, and its maximum reactive power capability model is described in 

Section 5.3; the detailed working principles of the developed controller is elaborated in Section 

5.4; case studies are conducted in Section 5.5, showing comparison between existing methods and 
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the proposed controller under various normal and abnormal operating conditions; sensitivity 

studies by considering several influential factors are conducted in Section 5.6; and conclusions are 

drawn in Section 5.7.  

5.2 The Proposed Control Approach 

To meet requirements of grid codes, a novel hierarchical control approach for a DFIG-based 

WPP is proposed, where both the central WPP controller and local WTG controller operate in 

voltage control mode. Local WTG controllers consist of an RSC controller and a GSC controller. 

The central WPP controller communicates with local WTG controllers by a switched Ethernet-

based hierarchical communication network.  

Depending on the depth of voltage deviations, the central WPP controller droops the WTG 

voltage up to 5% around its nominal value through local WTG controllers. In the event of a 

communication failure, subjected to available reactive power capability, local WTG controllers 

maintain the nominal voltage at the WTG terminal, which keeps the POI voltage within the normal 

operation limits and prevents cascaded WPP failures.  

The proposed controller regulates the WPP’s reactive power generation in the following five 

steps as depicted in Fig. 5.1.     

Step 1: Detection of voltage deviations. The central WPP controller monitors the voltage at the 

POI and compares it with the reference. If a deviation is detected, the controller first measures the 

depth of voltage deviation (∆𝑈).  

Step 2: Power factor control. Voltage deviations ∆𝑈 up to ±0.05 in pu around the nominal is 

counted as normal operating conditions, and WPPs are required to maintain [−0.95,+0.95] power 

factor at the POI. Therefore, the central WPP controller turns the power factor (PF) controller on 
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in this case. The PF controller reads the dispatched active power at the POI and generate ∆𝑈𝐴𝑑𝑗, 

which is added up with ∆𝑈 to generate ∆𝑈𝑅𝑒𝑓. ∆𝑈𝑅𝑒𝑓 is the adjusted reference for local WTG 

controllers to ensure the required power factor at the POI. If the depth of voltage deviations is 

more than ±0.05, ∆𝑈𝐴𝑑𝑗 is set to “zero”, instead of maintaining power factor, the system is 

required to bring the voltage back to a normal operating range by supplying sufficient reactive 

power.  

Step 3: Updating 𝐾𝐷𝑟𝑜𝑜𝑝. Based on the depth of voltage deviations, and active power supplied 

by the individual WTG, The RSC controller updates 𝐾𝐷𝑟𝑜𝑜𝑝 and computes 𝐼𝑑𝑅𝑆𝐶,𝑅𝑒𝑓. 

Simultaneously, the GSC controller computes 𝐼𝑞𝐺𝑆𝐶,𝑅𝑒𝑓, which regulates GSC’s reactive power 

generation, where 𝐼𝑑𝑅𝑆𝐶,𝑅𝑒𝑓 and 𝐼𝑞𝐺𝑆𝐶,𝑅𝑒𝑓 are direct(d)- and quadrature(q)-axis reference current 

of RSC and GSC, respectively.  

Step 4: Reference adjustment. The RSC computes 𝐼𝑅𝑆𝐶,𝑅𝑒𝑓 using the computed 𝐼𝑑𝑅𝑆𝐶,𝑅𝑒𝑓 and 

𝐼𝑞𝑅𝑆𝐶,𝑅𝑒𝑓, and compares with 𝐼𝑅𝑆𝐶,𝑀𝑎𝑥. If the net reference current (𝐼𝑅𝑆𝐶,𝑅𝑒𝑓) exceeds the maximum 

current capacity (𝐼𝑅𝑆𝐶,𝑀𝑎𝑥), 𝐼𝑞𝑅𝑆𝐶,𝑅𝑒𝑓 is reduced until the reference and the maximum current 

capacity matches. 𝐼𝑞𝑅𝑆𝐶,𝑅𝑒𝑓 is the q-axis reference current of the RSC.  Similarly, if the estimated 

net reference current for GSC (𝐼𝐺𝑆𝐶,𝑅𝑒𝑓) exceeds GSC’s maximum current carrying capacity 

(𝐼𝐺𝑆𝐶,𝑀𝑎𝑥), the GSC controller reduces 𝐼𝑞𝐺𝑆𝐶,𝑅𝑒𝑓 to match 𝐼𝐺𝑆𝐶,𝑅𝑒𝑓 with 𝐼𝐺𝑆𝐶,𝑀𝑎𝑥.  

 Step 5: Control signal generation. Based on final values of 𝐼𝑑𝑅𝑆𝐶,𝑅𝑒𝑓 and 𝐼𝑞𝑅𝑆𝐶,𝑅𝑒𝑓, the RSC 

generates the control signal, 𝑉𝑅𝑆𝐶, and pass it to the PWM generator. Concurrently, the GSC 

generates its control signal,  𝑉𝐺𝑆𝐶, using 𝐼𝑑𝐺𝑆𝐶,𝑅𝑒𝑓 and 𝐼𝑞𝐺𝑆𝐶,𝑅𝑒𝑓 and passes it to the PWM generator.  
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Fig. 5. 1. The flow chart of the proposed control approach.  
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5.3 The System Under Analysis and Its Maximum Reactive Power Capability 

Model 

In this section, the WPP used in the analysis is introduced, and the maximum reactive power 

capability model for the WPP is explained.   

5.3.1 Description of the WPP Model 

The simulation model used in this paper represents an actual WPP currently operating in 

Newfoundland, Canada. It has a 27 MW nameplate rating, with 9 doubly-fed induction generators 

(DFIGs), each rated at 3 MW. Each WTG is connected with a 25 kV plant main bus with a 3.5 

MVA, 1 kV/25 kV, wye/delta step-up transformer, which is further connected with the 66 kV POI 

through a 25 MVA wye/delta transformer. Provided by Newfoundland Hydro, the three-phase 

short circuit MVA at the POI of the WPP is 135 MVA and the X/R ratio is 3.259. The electrical 

single-line diagram of this actual WPP is depicted in Fig. 5.2. 
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Fig. 5. 2. The electrical single-line diagram of an actual WPP currently in operation in 

Newfoundland, Canada. 

 

In this study, instead of using a full detailed model, a lumped WPP model with a nameplate 

capacity of 30 MVA is developed. The model parameters are tuned so that its responses match 

with the SCADA field measurements of the WPP at the POI. The real power generation simulated 

by the lumped model of the WPP, and SCADA field measurements recorded from 18 to 23 pm on 

January 16, 2016 are compared in Fig. 5.3.  From the figure it can be inferred that active power 

characteristics of both the simulation model and the actual WPP show a similar exponential shape, 

which got flattened at the same pick value.  

More detailed comparison between the simulated values and SCADA field measurement data 

for voltage, active power, and reactive power of the WPP are provided in Case 1 in Section V.   
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Fig. 5. 3. The active power generation of the WPP: (a) simulation model; and (b) SCADA field 

measurements. 

 

The schematic diagram of the WPP simulation model is given in Fig. 5.4. The lumped model 

is connected to the 66 kV grid through a 40 MVA wye/delta transformer. Two layers of controllers, 

a central WPP controller and a local WTG controller, are present in the system. The central WPP 

controller reads the voltage at the POI and droops the local WTG controllers. The local WTG 

controller located at each WTG consists of a GSC controller and an RSC controller. Both layers 

of the controllers are operated in voltage control mode. The details of simulation parameters are 

tabulated in Table 5.1. More detailed description of the simulation model for the actual WPP can 

be found in our previous research published in [9].   
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Fig. 5. 4. The schematic diagram of the WPP simulation model. 

 

Table 5. 1: Simulation Parameters for the WTG Model, Cables and Transformers 

DFIG Data DFIG Control Data 

Nominal apparent power 30 MVA Regulator Name Propor-

tional 

Gain 

(KP) 

Integral 

Gain 

(KI) 

Nominal voltage 575 V RSC voltage Regulator (PI1) 1.25 80 

Stator resistance 0.00706 pu RSC Power Regulator (PI2) 1 100 

Stator leakage inductance 0.171pu RSC Current Regulator (PI3) 0.38 8 

Magnetizing inductance 2.9 pu DC voltage (PI4) 0.002 0.5 

Rotor resistance 0.005pu GSC current Regulator (PI5) 1 100 

Rotor leakage inductance 0.156pu Pitch angle  500 None 

System frequency 60 Hz    

Nominal DC bus voltage 1200 V    

Rated wind speed 12 m/s    
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Cable Data 

Parameter Name Positive Sequence Zero 

Sequen

ce 

Resistance (Ω./km) 0.1153 0.413 

Inductance (H/km) 1.05e-3 3.32e-3 

Capacitance (F/km) 11.33e-009 5.01e-9 

Transformer Data 

 TL TH 

Capacity (MVA) 9×3.5 40 

Rated voltages (kV) 0.575/25 25/66 

Resistance (pu) 0.025/30 0.003 

Leakage Inductance (pu) 0.025 0.09 

 

5.3.2 Plant-Level Reactive Power Capability Model 

We have developed a mathematical model to realize the maximum reactive power capability of 

a DFIG-based WPP by considering a wide range of factors affecting both the plant level and 

individual WTG in [20]. Factors that are considered in the model affecting the individual WTG’s 

capacity are the maximum capacity of stator and rotor currents, rotor voltage, winding factor, 

magnetic saturation, and reactive power of the GSC. In addition, the wind turbine’s power 

coefficient, wake effect, and feeder system losses are the factors considered that limit the plant 

level’s reactive power capacity. The detailed mathematical derivation process and description of 

the limiting factors can be found in [20].   

The reactive power capability model at the plant-level (Qtotal) can be determined as follows:  

𝑄𝑇𝑜𝑡𝑎𝑙 = ∑ (𝑄𝑊𝑇𝐺
𝑖 + 𝑄𝐺𝑆𝐶

𝑖 − 𝑄𝑙𝑖𝑛𝑒
𝑖 − 𝑄𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟

𝑖 )𝑛
𝑖=1   (1) 
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where n is the number of WTGs in the WPP; the superscript i represents the quantities for the ith 

WTG; Qi
WTG and Qi

GSC are the reactive power capability of the ith WTG and its GSC, respectively; 

Qi
line and Qi

transformer are the associated line and transformer losses for the ith WTG, respectively. 

Qi
WTG is calculated by, 

𝑄𝑊𝑇𝐺
𝑖 = 3|𝑉𝑠|√𝐼𝑠𝑟𝑎𝑡𝑒𝑑

2 −
𝜋𝑅2𝐶𝑝𝜌(𝑣𝑤𝑎𝑘𝑒

𝑖 )
3

6(1−𝑠𝑖)𝑉𝑠
     (2) 

𝑠𝑖 =
𝜔𝑠𝑅−𝑟𝑔𝑏𝑣𝑤𝑎𝑘𝑒𝜆𝑝

𝜔𝑠𝑅
       (3) 

where ωs is the synchronous speed, rgb is the gear box ratio, p is the number of pole pairs, and 

𝐼𝑠𝑟𝑎𝑡𝑒𝑑  is the rated stator current, which can be calculated as follows:  

𝐼𝑠𝑟𝑎𝑡𝑒𝑑 = {

𝑆𝑟𝑎𝑡𝑒𝑑

3|𝑉𝑠|
, 𝑖𝑟 ≤ 𝑖𝑟𝑟𝑎𝑡𝑒𝑑

|
|𝑉𝑚|

𝑅𝑓𝑒
+ 

|𝑉𝑚|

𝑗𝜔𝑠𝐿𝑚
−
𝑖𝑟𝑎𝑐𝑡𝑖𝑣𝑒

𝑁
± 𝑗

1

𝑁
√𝑖𝑟𝑟𝑎𝑡𝑒𝑑

2 − 𝑖𝑟𝑎𝑐𝑡𝑖𝑣𝑒
2 | , 𝑖𝑟 > 𝑖𝑟𝑟𝑎𝑡𝑒𝑑

    (4) 

where vwake, Vm, Lm are the wake wind speed, magnetizing voltage, and mutual inductance; 𝑖𝑟𝑟𝑎𝑡𝑒𝑑  

and 𝑖𝑟𝑎𝑐𝑡𝑖𝑣𝑒are the actual rated rotor current and its real component, respectively. The magnetizing 

voltage Vm can be calculated by, 

𝑉𝑚 = 𝑉𝑠 − |𝐼𝑠|𝑍𝑠      (5) 

The reactive power capability of the GSC can be formulated as follows: 

𝑄𝐺𝑆𝐶
𝑖 = 3|𝑉𝑠|√𝐼𝐺𝑆𝐶𝑟𝑎𝑡𝑒𝑑

2 − (
𝑃𝑟
𝑖−𝑃𝑅𝑆𝐶𝑐𝑜𝑛𝑑,𝑠𝑤𝑖𝑡𝑐ℎ

𝑖 −𝑃𝐺𝑆𝐶𝑐𝑜𝑛𝑑,𝑠𝑤𝑖𝑡𝑐ℎ
𝑖

3𝑉𝐺𝑆𝐶
)

2

   (6) 

where, 

𝑃𝑟
𝑖 = 3𝑣𝑟

𝑖𝑖𝑟
𝑖 cos Ɵ𝑟

𝑖       (7) 



139 

 

𝑄𝑙𝑖𝑛𝑒
𝑖 = 𝑖𝑚 (|𝐼𝑙𝑖𝑛𝑒

𝑖 |
2
(𝑍𝑙𝑖𝑛𝑒

𝑖 ))     (8) 

𝑄𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟
𝑖 = 𝑖𝑚 (|𝐼𝑙𝑖𝑛𝑒

𝑖 |
2
(𝑍𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟

𝑖 ))   (9) 

where Zi
line and Zi

transformer are the line impedance and the equivalent impedance of the transformer 

between WTGi and the PCC, and Ii
line is the line current for WTGi and can be calculated by, 

 𝐼𝑙𝑖𝑛𝑒
𝑖 = 𝐼𝑠

𝑖 + 𝐼𝐺𝑆𝐶
𝑖       (10) 

5.4 Working Principle of the Developed Controller 

The detailed working principle of the proposed controller in this paper is presented in this 

section.  

5.4.1 The Central WPP controller 

The central WPP controller monitors voltage at the POI and supervises the WPP operation. In 

the event of a voltage sag, it sets the voltage reference (∆𝑈𝑅𝑒𝑓) for WTGs following grid codes. 

The schematic diagram of the proposed central WPP controller is shown in Fig. 5.5.  

To avoid any persisting post-fault over-surge voltage, a washout filter has been added. The filter 

washes up any low frequency components, and thus, removes accumulated values in the integrator. 

This way, the controller can adjust ∆𝑈𝑅𝑒𝑓 with changing dynamics faster. Despite having the 

washout filter, the central WPP controller cannot prevent the post-fault voltage spike due to the 

presence of the communication latency with local WTG controllers but can bring it back to the 

nominal value faster than the case without a washout filter.   
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Fig. 5. 5. The schematic diagram of the proposed central WPP controller. 

 

To meet the power factor requirements at the POI during normal operation, a power factor 

controller has been added with the central WPP controller as shown in Fig. 5.5. The added power 

factor controller reads active and reactive power values at the WTG terminal and generate the 

signal of ∆𝑈𝐴𝑑𝑗, which adjusts ∆𝑈𝑅𝑒𝑓 to meet the power factor requirements. The power factor 

controller makes no adjustment and sends “zero” for ∆𝑈𝐴𝑑𝑗, if the voltage deviation is beyond the 

normal range of ±0.05 pu. The schematic diagram of the proposed power factor controller is given 

in Fig. 5.6.  
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Fig. 5. 6. The schematic diagram of the proposed power factor controller. 
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5.4.2 The RSC Controller 

The RSC controller, located at each of individual WTGs, regulates reactive power flow from 

WTGs, and operates in voltage control mode. It reads the voltage set point at the WTG terminal 

(𝑈𝑊𝑇𝐺,𝑅𝑒𝑓), adjusts it with the received ∆𝑈𝑅𝑒𝑓, and generates 𝑈𝑅𝑒𝑓. The parameter (𝑈𝑅𝑒𝑓) is then 

compared with the measured voltage at the WTG terminal, and the droop voltage, 𝑈𝐷𝑟𝑜𝑜𝑝.  𝑈𝐷𝑟𝑜𝑜𝑝 

is estimated by multiplying the line current (𝐼) with 𝐾𝐷𝑟𝑜𝑜𝑝. The droop coefficient, 𝐾𝐷𝑟𝑜𝑜𝑝, 

regulates how deep the RSC controller can push the WTG towards its maximum reactive power 

limit. To calculate 𝐾𝐷𝑟𝑜𝑜𝑝, the following equation is used: 

𝐾𝐷𝑟𝑜𝑜𝑝 =
∆𝑈𝑚𝑎𝑥

√3(𝑄𝑚𝑎𝑥−𝑄𝑚𝑖𝑛)(∆𝑈+𝑈𝑊𝑇𝐺,𝑅𝑒𝑓)
     (11) 

where ∆𝑈𝑚𝑎𝑥 is the maximum allowable voltage deviation around the nominal in pu, which is 0.05 

in this paper; (𝑄𝑚𝑎𝑥 − 𝑄𝑚𝑖𝑛) is the difference between the maximum and minimum reactive 

power capability in pu, retrieved from the maximum reactive power capability model; and ∆𝑈 is 

the depth of voltage deviations at the POI.  

The parameter 1 𝐾𝐷𝑟𝑜𝑜𝑝⁄  is the slope of the WTG’s 𝑉 − 𝐼 characteristics. In (11), (𝑄𝑚𝑎𝑥 −

𝑄𝑚𝑖𝑛) depends on the amount of active power being supplied by the WTG, and  (∆𝑈 + 𝑈𝑊𝑇𝐺,𝑅𝑒𝑓) 

depends on the depth of voltage deviations at the POI. For the same amount of active power supply, 

the deeper the voltage sag is, the higher is the 1 𝐾𝐷𝑟𝑜𝑜𝑝⁄  and the more the RSC controller can push 

the WTG towards its maximum reactive power capacity. If the net reference current (𝐼𝑅𝑆𝐶,𝑅𝑒𝑓) 

reaches the RSC’s maximum current limit (𝐼𝑅𝑆𝐶,𝑀𝑎𝑥), the RSC controller curbs down 𝐼𝑞𝑟 that 

regulates the active power flow to contribute more to reactive power compensation by dispatching 

more reactive power. The schematic diagram of the proposed RSC controller is shown in Fig. 5.7.   



142 

 

5.4.3 The GSC Controller 

To provide additional reactive power support, the reactive power capability of the GSC has 

been utilized in this paper. Depending on the voltage sag, the GSC’s reactive current (𝐼𝑞,𝐺𝑆𝐶) is 

increased up to its maximum available current carrying capacity (𝐼𝑚𝑎𝑥,𝐺𝑆𝐶 − 𝐼𝑑,𝐺𝑆𝐶). If the net 

current requirement (𝐼𝐺𝑆𝐶,𝑅𝑒𝑓) goes beyond the GSC’s maximum current rating (𝐼𝐺𝑆𝐶,𝑀𝑎𝑥), the 

controller reduces 𝐼𝑞,𝐺𝑆𝐶 to ensure the stability of the back-to-back converter. The schematic 

diagram of the proposed GSC controller is given in Fig. 5.8.  
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Fig. 5. 7. The schematic diagram of the proposed RSC controller. 



143 

 

PI4VDC,Ref

VDC

-+

DC Voltage Regulator

Id,GSC,Ref

KGSC

Iq,GSC,Ref

abc

dqo

ΔURef

IGSC
PI5

VGSC

GSC Current

Regulator

Current Limiter

+

+

-

-

 

Fig. 5. 8. The schematic diagram of the proposed GSC controller. 

5.5 Case Studies 

In this section, the proposed controller is exposed to different operating conditions, and its 

performance is analyzed and compared with two existing controllers. For all case studies, the SCR 

of the grid is set to 5 and the active power supply is 0.3 pu. A short description of the two existing 

controllers is given below. 

Method 1: In our previous research work published in [9], the WPP controller regulates the 

WPP’s voltage according to the steady-state reactive power capability model developed from 

SCADA field measurement data of the real WPP operating in Newfoundland, Canada through 

curve fitting techniques. Both the central WPP controller and local WTG controllers are operating 

in reactive power control mode, and the central WPP controller is equipped with a power factor 

controller. Reactive power competency of both RSC and GSC are utilized. However, Method 1 is 

only effective under steady-state normal operating conditions.  

Method 2: In [14], an adaptive 𝑄 − 𝑉 slope (1 𝐾𝐷𝑟𝑜𝑜𝑝⁄ )-based voltage management approach 

is used. Both the central WPP controller and local WTG controllers are operated in voltage control 
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mode, and no power factor controller is integrated with the central WPP controller. In addition, 

the method in [14] exports no reactive power from the GSC.  

5.5.1 Case 1 – Base Model without the Proposed Controllers 

To evaluate the tuning accuracy of the WPP’s base model, Case 1 is conducted. To do so, 

SCADA measurement data from 8 am of January 16, 2016 to 6 am of January 17, 2016 for the 

WPP (currently operating in Newfoundland, Canada) are compared with the simulated values as 

shown in Fig. 5.9. The base model of the WPP does not have the proposed controllers, which 

matches the system configuration during SCADA field measurements in 2016. The system 

parameters are tuned until the simulated voltage and the SCADA measurement voltage at the POI 

matches. Fig. 5.9 (c) shows that the simulated voltage and SCADA measured voltage at the POI 

closely match each other. Therefore, the WPP’s base model is considered to be accurately 

representing the real WPP.   

 

Fig. 5. 9. Simulation results vs. SCADA field measurements for the WPP’s base model without 

the proposed controllers for the 27 MW WPP in Newfoundland, Canada: (a) active power 

supplied by WTG, (b) reactive power supplied by WTG, and (c) the voltage at the POI (Case 1). 
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5.5.2 Case 2 - Normal Operating Voltage (the controller is to maintain power factor) 

In Case 2, the simulation is conducted for the WPP model with the proposed controllers under 

normal operation. A 96% voltage sag at the POI starts at 32 s and lasts for 0.2 ms. 

According to grid codes, voltage deviations up to  ±0.05 pu is counted as normal operating 

conditions. Therefore, the proposed controller attempts to maintain the power factor at the POI 

instead of compensating the voltage deviation. At 32 s, the voltage sag starts at the POI; as soon 

as after reading the depth of voltage deviations, the central WPP controller turns the power factor 

controller on. The power factor controller immediately adjusts ∆𝑈𝑅𝑒𝑓, which subsequently adjusts 

its reactive power generation (Fig. 5.10 (b)) and brings the power factor back to 0.95 (Fig. 5.10 

(d)).  

The performance of the proposed controller is compared with the two existing methods, 

Methods 1 and 2, as shown in Fig. 5.10 in this case study. Because the proposed controller is an 

improvement to our previous work in Method 1, they show similar characteristics during normal 

operation, and their response during normal operation overlaps with each other. However, due to 

the absence of power factor controller, Method 2 makes no adjustment to its reactive power 

dispatch (Fig. 5.10 (b)), as a result, it cannot maintain the required power factor at the POI as 

depicted in Fig. 5.10 (d).  
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Fig. 5. 10. Simulation results: (a) the voltage at the POI, (b) reactive power supplied by WTG, 

(c) active power supplied by WTG, and (d) power factor at the POI (Case 2).  

5.5.3 Case 3 - Connection and Disconnection of a Large Inductive Load 

In Case 3, the simulation is conducted for the WPP model with the proposed controllers at an 

under-voltage operation due to the sudden connection and disconnection of a larger inductive load. 

A 10 MVA inductive load is connected with the system at 32 s and disconnected at 32.2 s.  

The connection of the load drops the voltage to 94%, which is out of the normal operation 

voltage range, and the controller responses immediately to compensate the voltage deviation by 

swiftly dispatching the required reactive power. 𝐾𝐷𝑟𝑜𝑜𝑝 is 0.014 in this case. From Fig. 5.11 (b), it 

can be seen that, due to the adaptive droop gain, the proposed controller can ensure more reactive 

power support than the two existing methods, and thus, can compensate the voltage deviation 

completely. In addition, as shown in Fig. 5.11 (d), the GSC supports the recovery by supplying 

additional reactive power.   
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Fig. 5. 11. Simulation results: (a) the voltage at the POI, (b) reactive power supplied by WTG, 

(c) active power supplied by WTG, and (d) IqGSC (Case 3).  

5.5.4 Case 4 - A Small Voltage Sag 

In Case 4, the simulation is conducted for the WPP model with the proposed controllers at an 

under-voltage operation due to a three-phase-to-ground fault that is far away from the POI. A 92% 

voltage sag at the POI starts at 32 s and lasts for 0.2 ms.  

As the fault drives the voltage away from the normal operating range, the proposed controller 

responds immediately by supplying adequate reactive power (Fig. 5.12 (b) and (d)) to compensate 

it. 𝐾𝐷𝑟𝑜𝑜𝑝 is 0.013 in this case. Reactive power dispatched by the proposed controller is higher 

than the two existing two methods (Fig. 5.12 (b)). As the RSC’s total current reference does not 

exceed its maximum rating, the active power supply remains unchanged (Fig. 5.12 (c)). The GSC 
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provides additional 0.11 pu of reactive current, as a result, the voltage is completely compensated 

by the proposed controller, whereas the controllers in existing methods lag behind (Fig. 5.12 (a)).   

 

 

Fig. 5. 12. Simulation results: (a) the voltage at the POI, (b) reactive power supplied by WTG, 

(c) active power supplied by WTG, and (d) IqGSC (Case 4). 

 

5.5.5 Case 5 - A Deep Voltage Sag  

In Case 5, a severe 60% voltage sag is applied at the POI at 32 s and continues for 0.2 s for the 

WPP model with the proposed controller. Immediately after the initiation of the voltage sag, the 

central WPP controller sends references to local WTG controllers. 𝐾𝐷𝑟𝑜𝑜𝑝 is 0.01 in this case. The 

net current reference for the RSC exceeds its maximum rating, therefore, the active current 

(𝐼𝑞𝑟,𝑅𝑒𝑓) is reduced, which can be seen in the active power supply in Fig. 5.13 (c). With the 
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additional capacity attained by the reduction of active power supply, the RSC pushes the WTG to 

its full capacity (Fig. 5.13 (b)). Although Method 2 adopts adaptive droop coefficients, as it does 

not vary its droop coefficient with the depth of voltage deviations, it cannot utilize the WTG’s 

maximum capacity during a large voltage sag (Fig. 5.13(b)). In addition, no reactive power is 

exported from the GSC in Method 2 (Fig. 5.13 (d)). Although Method 1 exports reactive power 

through the GSC (Fig. 5.13 (d)), due to its reliance on the steady-state reactive power capability 

model, the controller cannot export enough during contingency (Fig. 5.13 (b)). The proposed 

controller properly utilizes both the RSC and GSC; so, its voltage compensation performance is 

significantly better than the two existing methods as shown in Fig. 5.13 (a).   

 

 

Fig. 5. 13. Simulation results: (a) the voltage at the POI, (b) reactive power supplied by WTG, 

(c) active power supplied by WTG, and (d) IqGSC (Case 5). 
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5.6 Sensitivity Study 

5.6.1 Communication Failure 

Being spanned over a wider area, WPPs depend heavily on communication networks, and a 

failure in communication networks can lead to complete failure to the whole WPP. Therefore, 

unlike our previous research work in [9], a contingency mechanism against the complete WPP 

failure during a communication failure is added in the proposed controller. In this approach, 

instead of directly supervising the local WTG controllers, the central WPP controller droops local 

WTG controllers’ voltage up to 5% around their nominal value. As a result, during a 

communication failure, depending on the availability of reactive power, local WTG controllers 

can still ensure a nominal voltage at the WTG terminal independently. Due to the communication 

failure, local WTG controllers receive no ∆𝑈𝑅𝑒𝑓, and it cannot droop WTG’s voltage around its 

nominal. As a result, reactive power support from both RSC and GSC is reduced (Fig. 5.14 (b) and 

(d)), however, the support is enough to keep the POI voltage within the normal operating range 

(Fig. 5.14 (a)) by keeping the WTG voltage at the nominal. This way, the proposed controller 

resists the collapse of the whole WPP during a communication failure and keeps the voltage within 

the acceptable range.  
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Fig. 5. 14. Simulation results: (a) the voltage at the POI, (b) reactive power supplied by WTG, 

(c) active power supplied by WTG, and (d) IqGSC. 

 

5.6.2 SCR of the Grid 

The SCR represents the strength of a power grid. The voltage compensation performance of a 

WPP controller varies with the WPP’s nameplate capacity and the grid’s strength. To study the 

performance of the proposed controller for different SCR values, the small voltage sag applied in 

Case 4 is used here. From Fig. 5.15 (b) and (d), it can be inferred that the proposed controller 

automatically adapts itself with the change of SCR.  With a stronger grid (corresponding to a higher 

SCR), although the controller dispatches more reactive power, the voltage compensation becomes 

harder due to excessive reactive power requirements (Fig. 5.15 (a)). With a larger WPP, better 

voltage compensation can be achieved.    
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Fig. 5. 15. Simulation results: (a) the voltage at the POI, (b) reactive power supplied by WTG, 

(c) active power supplied by WTG, and (d) IqGSC. 

 

5.6.3 Washout Filter in the Central WPP Controller 

To demonstrate the effectiveness of the integrated washout filter in the central WPP controller, 

a deep voltage sag applied in Case 5 is used here. From Fig. 5.16, it can be inferred that the washout 

filter improves the performance of the proposed controller significantly.  

Without the washout filter, the voltage and reactive power exhibit a voltage over-surge for a 

considerable amount of time (Fig. 5.16 (a) and (b)), which is caused by the integrator in the central 

WPP controller taking more than a second after the clearance of the fault to drive the accumulated 

values completely away from it.    
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Fig. 5. 16. Simulation results: (a) the voltage at the POI, (b) reactive power supplied by WTG, 

(c) active power supplied by WTG, and (d) IqGSC. 

5.7 Conclusion 

In this paper, a novel hierarchical wind power plant controller is developed, consisting of the 

central WPP controller and the local wind turbine generator controller, both operating in voltage 

control mode. The proposed controller ensures excellent performance under both normal and 

abnormal operating conditions. Under normal operation, the control is associated with the data-

driven method previously developed using WPP’s SCADA field measurement data through curve 

fitting techniques. Under abnormal operation, the maximum reactive power capability model of 

the WPP is integrated in the controller design. The combination of the data-driven method using 

SCADA data under steady-state normal operation, and the maximum reactive power capability 

model of WPP under dynamic abnormal operation enables the proposed controller design to offer 

excellent performance consistently through a much wider operation range of a WPP.   
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In the proposed controller, the central WPP controller monitors the voltage at the point of 

interconnection and droops the local WTG controller up to 5% around its nominal voltage. A 

power factor controller integrated with the central WPP controller keeps the power factor within 

the acceptable limit during normal operation. An adaptive droop coefficient-based RSC controller 

is developed that ensures enhanced reactive power support during contingency. To improve the 

effectiveness of the proposed controller, a comprehensive 𝑃 − 𝑄 model of a DFIG-based WPP is 

adopted to estimate the droop coefficient. Reactive power competency of the GSC is also utilized 

to further enhance the reactive power support.  

The proposed method is compared with two existing methods in [9], [14] and demonstrates 

much improved performance. It is also robust during communication failures.  
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Abstract- To regulate the voltage and frequency of an islanded microgrid, a novel control 

algorithm for Distributed Generation (DG) units is developed in this paper, where deviations of 

the voltage and frequency from their nominal values at the Point of Common Coupling (PCC) are 

correlated with direct- and quadrature-axis components of the control signal. It incorporates 

distribution line parameters into the control algorithm and enables simultaneous P-f/Q-V and P-

V/Q-f control. The proposed control algorithm eliminates the secondary controller and the virtual 

impedance loop from the DG controller, and substantially reduces the controller size and 

complexity. The polynomial input-output Box-Jenkins model is chosen as the model structure for 

the control algorithm, which is parameterized through data-driven system identification approach 

using Nonlinear Least Square (NLS) method. To initialize the parametric optimization, the 

Backcast technique is chosen after evaluating three initialization techniques (Zero, Estimate and 

Backcast). Four NLS optimization methods (Gauss-Newton (GN), Adaptive Gauss-Newton 

(AGN), Levenberg-Marquardt (LM), and Trust Region Reflective (TRR)) are considered and their 

performance in developing the model are evaluated for both training and validation datasets. GN 

shows consistent and superior performance over the others and is chosen as the suitable 

optimization technique in this study. 
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6.1 Introduction 

Due to power losses associated with conventional high voltage transmission networks, the 

concept of localized distributed generation (DG) in low voltage distribution networks, particularly 

renewable energy-based DGs, has attracted significant research interest. However, a single DG 

unit is less reliable [1], and microgrid is an effective building block to integrate DGs in smart 

distribution systems. The self-adequate microgrid can host a number of DGs and operate in grid-

connected or island mode [2]. In island mode, the voltage and frequency of the microgrid is 

controlled solely by DG controllers [3].   

In a microgrid, droop control is most commonly used to dispatch active and reactive power 

from DGs. Droop control imitates steady-state characteristics of a synchronous generator, and is 

usually applied in proportional-integral (PI)-based controllers. Although the control of the voltage 

and frequency (V and f), and active and reactive power (P and Q) in a low voltage microgrid are 

coupled [4], PI controllers’ incompetency to handle such coupled relationship forces droop control 

to treat active and reactive power as uncoupled, and either P-f/Q-V [5] or P-V/Q-f control [6] is 

adopted. When connected DGs have mismatched line impedances, droop control shows deteriorate 

performance. As a result, primitive droop controllers exhibit steady-state errors in voltage and 

frequency, and have disproportional reactive power sharing issue among DGs.    

  To overcome these limitations, the secondary controller and the virtual impedance loop are 

integrated with droop controllers [7]. Although such added layers improve the droop controller’s 

performance, controllers’ size and complexity are also increased substantially. During operation, 
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to cope with the microgrid topological changes and parametric variations, controllers need 

continuous retuning, and these added layers make the retuning process difficult and time 

consuming [8].     

The performance of a DG controller depends on accurate estimation of its control signals, a 

simple but effective estimation process is essential to avoid the complex process introduced by 

existing controller technologies. Therefore, in this paper, for the first time, a simple control model, 

directly correlating the deviation of voltage and frequency (outputs) with direct (d)- and quadrature 

(q)-axis components (𝑈𝑑 𝑎𝑛𝑑 𝑈𝑞) of the DG control signal (inputs) is proposed. The proposed 

model considers both resistance and reactance of the distribution line into its control algorithm, 

and consequently enforces simultaneous P-f/Q-V and P-V/Q-f control, which enables the proper 

handling of coupled relationship. As a result, the model overcomes the necessity of the complex 

secondary controller and the virtual impedance loop. To avoid estimating distribution line 

parameters, the proposed control model is parameterized through a data-driven system 

identification approach.   

The data-driven system identification is an emerging approach that has been used in modeling 

dynamic characteristics of active and reactive power of a DG or microgrid [9]-[11]. To 

parameterize a data-driven model, nonlinear least-square (NLS) is an effective and robust 

approach. NLS adopts optimization algorithms to obtain optimum coefficients of the system 

model. Algorithms used in NLS can be broadly categorized as line search-based and trust region-

based approaches. The line search-based approach is to find a new iterative point along a decent 

direction at each iteration; while the trust region-based approach is to find a new iterative point 

within a trusted region centered at the current iterate. Among the line search-based algorithms, 

Gauss-Newton (GN) [12] and Adaptive Gauss-Newton (AGN), and among the trust region-based 
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algorithms, Levenberg-Marquardt (LM) [13] and Trust Region Reflective (TRR) [14], are widely 

accepted robust optimization algorithms. All these methods use truncated approximation of the 

Hessian matrix, and thus, significantly reduce the computational burden without deteriorating data 

fitting accuracies. With the appropriate initialization, GN and AGN show quadratic convergence 

near the minima [15]; LM shows the robust performance against the ill-conditioned Jacobian [16]; 

and TRR shows the superior performance in the case of negative definite Hessian[17]. Therefore, 

these methods have been adopted to solve NLS problems in a wide range of areas [17]–[19].  

In this research, a polynomial Box-Jenkins model structure is adopted, and a quantitative 

comparison among the above NLS algorithms in developing the proposed data-driven model is 

conducted. Being a variant of GN methods, all four methods show excellent performance in 

developing the model, however, GN consistently maintains a better performance in all 

performance matrices used in the analysis.  

The main contributions of this paper include: 1) develop a data-driven DG control model by 

directly correlating the deviation of voltage and frequency at the PCC with the d- and q-axis 

components of the DG control signal, this model eliminates the need of the secondary controller 

and the virtual impedance loop; and 2) select the best nonlinear least square optimization 

algorithm, and demonstrate the effectiveness of GN over AGN, LM and TRR to parameterize the 

model.   

The paper is arranged as follows: the mathematical derivation of the proposed model, and steps 

to obtain the proposed model through the data-driven system identification approach are covered 

in Section 6.2; fundamental theories are explained in Section 6.3; the test system is given in Section 

6.4; the key steps during the model development are explained in Sections 6.5; the final model is 

developed in Section 6.6; and conclusions are drawn in Section 6.7.     
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6.2 The Proposed Approach  

The mathematical derivation of the proposed model, and the stepwise evolution of the final 

data-driven Box-Jenkins model development is described in this section.  

6.2.1 Mathematical Formulation for the Proposed Approach 

The generated active and reactive power at the point S in the microgrid in Fig. 6.1 can be written 

as follows: 

VDC PCC LoadDC
AC

Distribution Line

S L

VS  0 VL  δ 

R+jX

 
Fig. 6. 1. The microgrid with a DG interfacing inverter. 

 

𝑃 =
𝑉𝑠

𝑅2+𝑋2
[𝑅(𝑉𝑠 − 𝑉𝐿 cos 𝛿) + 𝑋𝑉𝐿 sin 𝛿]    (1) 

𝑄 =
𝑉𝑠

𝑅2+𝑋2
[𝑋(𝑉𝑠 − 𝑉𝐿 cos 𝛿) −  𝑅𝑉𝐿 sin 𝛿]    (2) 

Let’s assume that the power angle, 𝛿, is very small , and thus, (1) and (2) can be rewritten as 

follows: 

𝛿 =  
1

𝑋𝑉𝐿
[
𝑅2+𝑋2

𝑉𝑠
𝑃 − 𝑅(𝑉𝑠 − 𝑉𝐿)]     (3) 

𝑉𝑠 − 𝑉𝐿 =
1

𝑋
(
𝑅2+𝑋2

𝑉𝑠
𝑄 + 𝑅𝑉𝐿𝛿)     (4) 

Eqs. (3) and (4) can be further solved considering 𝛿 and 𝑉𝑠 − 𝑉𝐿 as two variables, then we have 

𝛿 =
1

𝑉𝑠𝑉𝐿
(𝑋𝑃 − 𝑅𝑄)      (5) 
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𝑉𝑠 − 𝑉𝐿 =
1

𝑉𝑠
(𝑋𝑄 + 𝑅𝑃)      (6) 

From (5) and (6), fundamental formulas of the conventional droop equations are derived as 

shown in (7). Eq. (7.1) is derived by assuming 𝑋 ≫ 𝑅 (a highly inductive feeder line) and ignoring 

R, which leads to the P-f/Q-V control. Eq. (7.2) is derived by assuming 𝑅 ≫ 𝑋 and (a highly 

resistive feeder line) ignoring X, which leads to the P-V/Q-f control.  

𝛿, (𝑉𝑠 − 𝑉𝐿) =

{
 

 
𝑋𝑃

𝑉𝑠𝑉𝐿
,
𝑋𝑄

𝑉𝑠
, 𝑤ℎ𝑒𝑛 𝑋 ≫ 𝑅                                   (7.1)

−
𝑅𝑄

𝑉𝑠𝑉𝐿
,
𝑅𝑃

𝑉𝑠
, 𝑤ℎ𝑒𝑛 𝑅 ≫ 𝑋                                    (7.2)

 

Generally, the control of the power angle, 𝛿, dynamically controls the system frequency. 

Therefore, the droop equation developed from (7.1) can be expressed by 

𝑓 − 𝑓0 = −𝑘𝑝(𝑃 − 𝑃0)       (8) 

𝑉𝑠 − 𝑉𝑠0 = −𝑘𝑞(𝑄 − 𝑄0)     (9) 

In (8) and (9), the parameter 𝑋 is no longer present in the control algorithm. As a result, the 

control structures developed from (8) and (9) cannot comprehend the impact of feeder line 

impedances, and cannot overcome the virtual impedance loop requirement [20].   

Although feeder lines of a low voltage microgrid are predominantly highly resistive, some 

degree of inductance is always present. Therefore, droop equations in (5) and (6) with both feeder 

line impedance parameters considered can be expressed by 

𝑓 − 𝑓0 = −𝑘𝑝1(𝑃 − 𝑃0) + 𝑘𝑝2(𝑄 − 𝑄0)    (10) 

𝑉𝑠 − 𝑉𝑠0 = −𝑘𝑞1(𝑄 − 𝑄0)  − 𝑘𝑞2(𝑃 − 𝑃0)   (11) 



165 

 

Eqs. (10) and (11) indicate that the DG control algorithm having both R and X in it. To control 

the voltage V in (11), both active power P and reactive power Q must be regulated simultaneously, 

which are P-V and Q-V control; similarly, to control the frequency f in (10), both active power P 

and reactive power Q must be regulated simultaneously as well, which are P-f and Q-f control. 

Therefore, Eqs. (10) and (11) ensure simultaneous P-f/Q-V and P-V/Q-f control, but conventional 

droop equations in (7) only focus on one type of control, either P-f/Q-V or P-V/Q-f, not both, 

which restricts the droop controller to comprehend the control signal, leading to steady-state errors 

in voltage and frequency. To overcome this issue, the secondary controller is employed. The active 

and reactive power can be written by 

𝑃 =
3

2
(𝑈𝑑𝐼𝑑 + 𝑈𝑞𝐼𝑞)      (12) 

𝑄 =
3

2
(−𝑈𝑑𝐼𝑞 + 𝑈𝑞𝐼𝑑)     (13) 

Where subscript d and q represent the d- and q-axis components of respective parameters. Eqs. 

(12) and (13) transform (5) and (6) into the following expressions: 

𝛿 =
3

2

1

𝑉𝑠𝑉𝐿
[(𝑋𝐼𝑑 + 𝑅𝐼𝑞)𝑈𝑑 + (𝑋𝐼𝑞 − 𝑅𝐼𝑑)𝑈𝑞]   (14) 

𝑉𝑠 − 𝑉𝐿 =
3

2

1

𝑉𝑠
[(𝑅𝐼𝑑 − 𝑋𝐼𝑞)𝑈𝑑 + (𝑅𝐼𝑞 + 𝑋𝐼𝑑)𝑈𝑞]   (15) 

To simplify the problem, we assume that alterations of 𝑈𝑑 and 𝑈𝑞 will not have impact on 𝐼𝑑 

and 𝐼𝑞. Therefore, the control formulas developed from (14) and (15) can be expressed by  

𝑓 − 𝑓0 =
3

2

1

𝑉𝑠𝑉𝐿
[(𝑋𝐼𝑑 + 𝑅𝐼𝑞)(𝑈𝑑 −𝑈𝑑0) + (𝑋𝐼𝑞 − 𝑅𝐼𝑑)(𝑈𝑞 − 𝑈𝑞0)] (16) 

𝑉𝐿 − 𝑉𝐿0 =
3

2

1

𝑉𝑠
[(𝑅𝐼𝑑 − 𝑋𝐼𝑞)(𝑈𝑑 − 𝑈𝑑0) + (𝑅𝐼𝑞 + 𝑋𝐼𝑑)(𝑈𝑞 − 𝑈𝑞0)]  (17) 
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Where 𝑓 and 𝑉𝐿 are the reference voltage and frequency, and 𝑓0 and 𝑉𝐿0 are the nominal voltage 

and frequency, respectively. 𝑈𝑑 and 𝑈𝑞 are the reference of the respective parameters at 𝑓 and 𝑉𝐿, 

and 𝑈𝑑0 and 𝑈𝑞0 are the references of the respective parameters at 𝑓0 and 𝑉𝐿0.  

The major challenge to implement the formulas is that they require a proper quantification of 

the resistance and reactance of a distribution line. To solve the issue, a data-driven system 

identification approach is adopted. To do so, 𝑈𝑑 and 𝑈𝑞 are varied over a short-range, which is 

large enough to influence the system dynamics while small enough to ignore the nonlinearities, 

and subsequent impacts on the voltage and frequency at the PCC are recorded in the datasets. 

Using the recorded data, two system identification models for voltage and frequency are developed 

as follows: 

∆𝑓 = 𝑘1∆𝑈𝑑 + 𝑘2∆𝑈𝑞       (18) 

∆𝑉 = 𝑘3∆𝑈𝑑 + 𝑘4∆𝑈𝑞       (19) 

Where coefficients 𝑘1 to  𝑘4 are derived through data-driven system identification approach.  

This way, the proposed models no longer need the exact values of the feeder line parameters, 

their impact is reflected in the model through the datasets. Because the impact of feeder line 

impedances are included in the model in (18) and (19), the secondary controller and the virtual 

impedance loop are no longer needed in the controller design. From (18) and (19), and (10) and 

(11), it is found that a complete compensation of voltage and frequency by directly regulating 𝑈𝑑 

and 𝑈𝑞 lead to indirect dispatching necessary active and reactive power.    

As the model exhibits the coupled relationship among input-output parameters, therefore, the 

model requires a controller, which is able to handle the coupled relationship, to control a system.  
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6.2.2 Stepwise Development Procedure of the Proposed Approach 

To develop a data-driven Box-Jenkins model for DG control in an islanded microgrid to 

regulate the voltage and frequency, the following 10 steps are required, which are also shown in 

the flowchart in Fig. 6.2:  

Step 1: Data acquisition for system identification. To obtain the required datasets for 

developing the proposed data-driven model, d- and q-axis components of the DG control signal 

(𝑈𝑑  𝑎𝑛𝑑 𝑈𝑞) in the simulation model are varied, and the corresponding deviations of the voltage 

and frequency from the nominal values in pu at the PCC (V and f) are recorded. Details about 

the input-output data are provided in Section IV. 

Step 2: Calculation of input delay. Input delay is an intrinsic property of a physical system that 

represents the time laps between the actuation of an input variable and reflection of its impact on 

output variables. Accurate measurement and inclusion of the input delay into a mathematical 

model developed out of a dataset is crucial if the model is intended to control the physical system. 

A MATLAB function named “delayest” is used to measure the input delay from the input-output 

data.  

Step 3: Selection of model order. To best fit the model with the data, a Box-Jenkins model has 

the flexibility to independently choose a suitable order for each of the model coefficients including 

the noise model. Therefore, all possible combinations up to the 8th model order are examined, and 

the most suitable one is chosen based on data fitting accuracies.  

Step 4: Selection of initialization technique. Initialization is crucial in developing a data driven 

model using NLS method. Therefore, three initialization techniques, Zero, Estimate and Backcast, 

are considered in this paper and the most suitable technique is chosen by evaluating their 
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performance matrices. Among the underlying methods, “zero” set the initial condition to zero 

regardless of the data trend; “estimate” treat the initial condition as an independent estimation 

parameter, and “backcast” estimate the initial condition by the “auto-regressive with external 

input” method.    

Step 5: Model fitting. Using the measured input delay, chosen model order and initialization 

technique, models are developed using four optimization algorithms, GN, AGN, LM and TRR.  

Step 6: Performance analysis. To study the performance of the optimization algorithms, the 

data fitting accuracies, Normalized Root Mean Square Error (NRMSE) and Mean Square Error 

(MSE), of their respective models are analyzed.      

Step 7: Model validation. Models developed by the four optimization algorithms, GN, AGN, 

LM and TRR, are validated with a validation dataset. Validation shows the efficacy of the 

developed model to capture system characteristics for a different combination of input-output.  

Step 8: Selection of suitable optimization algorithm. Based on the analysis conducted in Steps 

6 and 7, the most suitable optimization algorithm is chosen. If no suitable model resulted, the 

analysis jumps to the next suitable initialization technique and Steps 5, 6 and 7 are repeated.   

Step 9: Residual analysis for the model. To check data overfitting, a residual analysis on the 

final Box-Jenkins model is conducted. If overfitting detected, the analysis jumps to the next 

suitable optimization algorithm and Step 9 is repeated. 

Step 10: Development of the final Box-Jenkins model. The final Box-Jenkins model is 

developed for a given system.   
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Fig. 6. 2. The flow chart of the proposed approach.  
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6.3 Fundamental Theory  

6.3.1 Box-Jenkins Model 

The polynomial input-output Box-Jenkins model structure has been widely adopted to 

formulate a data-driven system identification model  because of its flexibility in parameterizing 

the system’s dynamics and associated noises independently [21]. The general expression of the 

Box-Jenkins model with 𝑛𝑢 inputs and 𝑛𝑦 outputs can be written as follows: 

∑ ∑ 𝐴𝑖𝑗(𝑞)𝑦𝑗(𝑡) = ∑ ∑
𝐵𝑖𝑗(𝑞)

𝐹𝑖𝑗(𝑞)
𝑢𝑖(𝑡 − 𝑛𝑘𝑖𝑗) + ∑

𝐶𝑗(𝑞)

𝐷𝑗(𝑞)
𝑒𝑡(𝑡)

𝑛𝑦
𝑗=1

𝑛𝑦
𝑗=1

𝑛𝑢
𝑖=1

𝑛𝑦
𝑗=1

𝑛𝑢
𝑖=1  (20) 

Where A, B, C, D, and F are polynomial coefficients; q is the time shift operator; u(t) and y(t) are 

the input and the output of the model, respectively; 𝑛𝑘𝑖𝑗 is the transport delay in between the  𝑖𝑡ℎ 

input and the 𝑗𝑡ℎ output; and 𝑒𝑡(𝑡) is the noise. C and D are noise coefficients; 𝐵 and 𝐹 are the 

system model coefficients. The dimension of A, B, F, and K matrices depends on the number of 

inputs and outputs; and the dimension of C and D depends on the number of outputs only. A, B, 

C, D, and F are obtained by the nonlinear least-square approach.   

 

6.3.2 Mathematical Formulation of Non-linear Least Square  

During the parametric optimization, the polynomial mathematical model, 𝑦 = 𝑓(𝜃, 𝑡), with n 

unknown model coefficients 𝜃 =  [𝜃1, 𝜃2,…., 𝜃𝑛  ]
𝑇
, is used to fit a set of m observed data points 

(𝑡1, 𝑦1), (𝑡2, 𝑦2),…,   (𝑡𝑚, 𝑦𝑚), where m > n. The optimum model coefficients (𝜃) are obtained by 

optimizing an objective function, 𝑉(𝜃). In NLS,  𝑉(𝜃) is formulated as the sum of the squared 

residual functions, 𝑟𝑖(𝑡, 𝜃) of the m observed data. The minimum point of 𝜃, 𝜃∗, is calculated by.  

𝜃∗ = 𝑎𝑟𝑔𝑚𝑖𝑛
𝜃
𝑉(𝜃)     (21) 
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6.3.3 Optimization Algorithms 

The pattern of optimizing an objective function draws the distinction between the line search-

based and trust region-based approaches. Line search-based approaches first select the search 

direction (𝑝𝑘) of the optimization, and then decide the step size (𝛼𝑘), which determines how far 𝜃 

will move towards the selected direction in every iteration. On the contrary, trust region-based 

approaches work exactly opposite, it first decides the trusted region, which is the step size (𝛼𝑘), 

and then select the search direction (𝑝𝑘). A brief description about the chosen line and trust region-

based methods are given below.  

 

6.3.3.1 Line Search-Based Approaches 

Two line search based approaches, known as “Gauss-Newton” (GN) and “Adaptive Gauss-

Newton” (AGN), are chosen in this analysis.  

 

6.3.3.1.1 The Gauss-Newton Approach  

GN is a quasi-newton approach. For a search direction of 𝑝𝑘
𝐺𝑁 and the step size of 𝛼𝑘

𝐺𝑁, the 

iterative equation of GN can be expressed as follows[12]: 

𝜃𝑘+1 = 𝜃𝑘 + 𝛼𝑘𝑝𝑘
𝐺𝑁     (22) 

GN approximates the objective function’s Hessian matrix to its truncated form of  𝐽(𝜃𝑘)
𝑇𝐽(𝜃𝑘), 

and the search direction 𝑝𝑘
𝐺𝑁 is given by 

𝑝𝑘
𝐺𝑁 = −[𝐽(𝜃𝑘)

𝑇𝐽(𝜃𝑘)]
−1𝐽(𝜃𝑘)

𝑇𝑟(𝜃𝑘)          (23)  

Where 𝐽 ∈ ℝ𝑚×𝑛 is the Jacobian of 𝑟(𝜃). 

While computing 𝑝𝑘
𝐺𝑁, any singular value of the Jacobian matrix smaller than 𝐽𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ∗

max(𝑠𝑖𝑧𝑒(𝐽)) ∗ 𝑛𝑜𝑟𝑚(𝐽) ∗ 𝑒𝑝𝑠 are disregarded and the search direction is computed for the 
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remaining subspace. If the sufficient improvement cannot be attained through this direction, GN 

follows the gradient direction.  

6.3.3.1.2 The Adaptive Gauss-Newton Approach   

AGN is an adaptive subspace of Gauss-Newton method. AGN follows (22) and (23), but any 

eigenvalues less than 𝑔𝑎𝑚𝑚𝑎 ∗ max (𝑠𝑣) of the Hessian are ignored, where 𝑠𝑣 contains the 

singular values of the Hessian. Whenever the search fails to find a lower value of the criterion in 

fewer than five bisections, the parameter 𝑔𝑎𝑚𝑚𝑎 is increased by 𝑥_𝑠𝑡𝑒𝑝. On the contrary, the 

parameter is decreased by twice the size of 𝑥_𝑠𝑡𝑒𝑝 if the search is successful without any bisection. 

𝑥_𝑠𝑡𝑒𝑝 is the size of the Levenberg-Marquardt step.   

 

6.3.3.2 Trust Region-Based Approaches 

The Levenberg-Marquardt (LM) and trust region reflective (TRR) have been selected as the 

trust region-based approaches.  

 

6.3.3.2.1 The Levenberg-Marquardt Method  

LM is a hybrid technique that uses both Gradient Descent (GD) and Gauss-Newton method 

[22]. The LM equation for the search direction can be expressed by 

𝑝𝑘
𝐿𝑀 = [𝐽(𝜃𝑘)

𝑇𝐽(𝜃𝑘) + 𝜇𝑘𝐼]
−1𝑔(𝜃𝑘)     (24) 

Where 𝜇𝑘 > 0 and termed as Lagrange parameter and I is a unity vector.  

 

Smaller values of 𝜇𝑘 guide LM to follow GN method, whereas a larger 𝜇𝑘 results in the gradient 

descent method. LM first uses GD to traverse to a potential solution area, and then adopt GN to 

quickly find the minimum. At the beginning, 𝜇𝑘 is initialized with larger values to counter the 

initialization problem, and LM follows the steepest-descent direction. 𝜇𝑘 decreases with 𝑉(𝜃 +



173 

 

𝑠) < 𝑉(𝜃), and finally with sufficiently small 𝜇𝑘, LM jumps into the GN direction and accelerates 

to the minimum.  

6.3.3.2.2 The Trust Region Reflective Method 

The TRR optimizes the objective function 𝑉(𝜃) by approximating it with a quadratic function 

𝑞(𝑠) that reasonably reflects the characteristics exhibited by 𝑉(𝜃) in a neighborhood 𝑁 around the 

point 𝜃 [14]. This neighborhood is addressed as the trust region, and the process to approximate 

𝑞(𝑠) is the trust region sub-problem. In TRR, a trail step 𝑠 is computed by solving the sub-problem 

over the trusted region N, and the current point is updated from 𝜃 to 𝜃 + 𝑠 if and only if 𝑉(𝜃 +

𝑠) < 𝑉(𝜃). Otherwise, the current point remains unchanged, but the trusted region N is shrunken, 

and the trial step computation is repeated. Mathematically, the trust region sub-problem can be 

expressed as follows: 

min
𝑠
{
1

2
𝑠𝑇𝐻𝑠 + 𝑠𝑇𝑔 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ‖𝐷𝑠‖ ≤ ∆}   (25) 

Where 𝑔 is the gradient of 𝑉; 𝐻 and 𝐷 are the Hessian and diagonal scaling matrices, respectively; 

∆ is the radius of the trusted region > 0; and ‖ ‖ is the 2-norm.  

The TRR restricts the subproblem into a two-dimensional subspace. The gradient (g) sets the 

direction of one of the dimensions, whereas the other follows the Gauss-Newton direction of the 

function 𝑚𝑖𝑛‖𝐽𝑠 + 𝑣‖, where 𝐽 is the Jacobian of 𝑣, and 𝑣 is a vector valued function of 𝑉. The 

subspace is then used to solve (25) to determine the trial step 𝑠, which is then used to obtain 

optimized coefficients.   
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6.3.4 The Objective Function 

The objective used to parameterize the model coefficients using the nonlinear least square 

approach can be expressed by   

𝑉(𝜃) =
1

𝑁
∑ 𝑟𝑇𝑁
𝑡=1 (𝑡, 𝜃)𝑊(𝜃)𝑟(𝑡, 𝜃)    (26) 

Where N is the number of data samples, and 𝑊(𝜃)is a weighted semi-definite matrix of the vector 

parameter 𝜃, and 𝑟(𝑡, 𝜃) is the residual function.  

The general expression to compute the residuals can be expressed by 

𝑟(𝑡, 𝜃) = 𝑦𝑚(𝑡) − 𝑦𝑠(𝑡, 𝜃)      (27) 

Where 𝑦𝑚(𝑡) is the measured output, 𝑦𝑠(𝑡, 𝜃) is the simulated response of the model.   

The current measured inputs and initial states are used to estimate the simulated response. The 

general expression to estimate the simulated response can be written as follows: 

𝑦𝑠(𝑡, 𝜃) = 𝑓(𝑢𝑚(𝑡), 𝑢𝑚(0); 𝑦𝑚(0))   (28) 

Where 𝑢𝑚(𝑡) is the current measured input; and 𝑢𝑚(0) and 𝑦𝑚(0) are the initial states.  

 

6.3.4 Model Quality Matrices 

The model quality matrices used in this paper include Normalized Root-Mean-Square Error 

(NRMSE), Mean Square Error (MSE), and the model data fitting accuracy. The NRMSE 

represents the normalized square root of the second sample moment of the difference between the 

model’s predicted and observed values. The MSE is a non-negative quality matrix of an estimated 

model and the second moment of the error. The MSE incorporates both the variance and the bias 
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of an estimated model. A better model comes with lower NRMSE and MSE values, and higher 

data fitting accuracies.  

6.4 The Test System 

The schematic diagram of the islanded microgrid, used to generate input-output data is depicted 

in Fig. 6.3. The DG in the microgrid is a PV system rated at 10 kVA, modeled as a constant DC 

voltage source. System parameters used in the simulation are tabulated in Table 6.1.  
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Fig. 6. 3. The test system simulation model.  
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Table 6. 1: Test System’s Parameters 

Parameters Values 

Nominal DC bus voltage (V) 700 

Nominal AC bus RMS line voltage (V) 380 

AC system frequency (f) 50 

DG’s Nameplate capacity (kVA) 10  

Local Load 5 kW, 1 kVar 

PCC Load 2 kW, 0.4 kVar 

 

Inverter filter 

Resistance, Rf (Ω) 0.2  

Inductance, Lf (H) 3×10-3  

Capacitance, Cf (F) 15×10-6  

Line impedance Line resistance, RL (Ω) 0.641 

Line reactance, XL (Ω) 0.08 

 

 

Before starting the experiment, the simulation model is initialized to the nominal steady-state 

conditions. Based on the initialization, the d-axis component (𝑈𝑑) of the DG’s control signal is set 

to 0.821, and the q-axis component (𝑈𝑞) is set to 0.07. Next, to generate the training dataset for 

system identification, a step variation of ±0.05 and ±0.005 around the nominal values of  

𝑈𝑑 𝑎𝑛𝑑 𝑈𝑞, are applied, respectively. The ranges are carefully chosen so that the system dynamics 

are influenced without initiating the nonlinearity. Variations of 𝑈𝑑 𝑎𝑛𝑑 𝑈𝑞 and the corresponding 

deviations of the voltage and frequency from nominal values in pu at the PCC (∆V and ∆𝐹) are 

tabulated. The step duration is 0.5 s, and the data acquisition frequency is 10 kHz. Similarly, step 

magnitudes for 𝑈𝑑 𝑎𝑛𝑑 𝑈𝑞 to generate the validation dataset are set to ±0.04 and ±0.004, 

respectively. The duration of the step input and data acquisition frequency remain the same as they 
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are for the training dataset. The input-output data collection points are drawn in red as shown in 

Fig. 6.3.  

The islanded microgrid is assumed as a balanced system. The triangular carrier signal in pulse-

width modulation (PWM) in the DG’s interfacing converter has a switching frequency of 10 kHz 

and a peak value of 1.03. The input-out data used in the analysis are depicted in Fig. 6.4.  

 

Fig. 6. 4. Input-output data: (a) the deviation of the voltage from the nominal value in pu, V, (b) 

the deviation of the frequency from the nominal value in pu, f; (c) the d-axis control signal, Ud, 

and (d) the q-axis control signal, Uq. 

6.5 Performance Analysis 

This section focuses on the four key steps during the model development: 1) input delay 

calculation; 2) model order selection; 3) initialization technique; and 4) optimization approaches. 

To conduct all analysis under the same simulation environment, the tolerance and the maximum 

number of iterations are set to 1𝜇 and 400, respectively, to comply with the lower tolerance 

requirement by TRR [23].  
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6.5.1 Input Delay Calculation 

Input delay is often known as the “system’s dead time”. It signifies the number of samples the 

physical system takes before outputs respond to inputs. The inclusion of input delay into a data-

driven model is particularly important if the model is intended to control a physical system. A 

MATLAB function named “delayest” is used to estimate the input delay. The function takes the 

input-output data as input, and returns the input delay as sample numbers. For the proposed model, 

there are four input-output combinations, and for all combinations, the function returns an input 

delay of 2 sample numbers.  

 

6.5.2 Model Order Selection 

The selection of a suitable model order is crucial in developing a data-driven system 

identification model. To select the optimum coefficient’s order without digging into the 

initialization technique and the optimization algorithm, the two parameters are set to “auto”. For 

an “auto” initialization technique, the software assumes that a suitable initialization technique is 

among “Zero”, “Estimate” and “Backcast” initialization techniques by analyzing the estimation 

data. For an “auto” optimization technique, the software chooses the optimization algorithm that 

first shows a decent direction in reducing the estimated cost. For both voltage and frequency 

models, all possible combinations up to the 8th model order are considered. A total of 135,902 

number of models are resulted, and the most suitable one is chosen based on their data fitting 

accuracies. The selected orders of the model coefficients are given as follows in this study:  

𝑛𝐵 = [
3 1
3 1

]; 𝑛𝐶 = [
6
6
]; 𝑛𝐷 = [

7
7
]; 𝑛𝐹 = [

7 5
7 5

]     (29) 
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6.5.3 Initialization Technique  

The three initialization techniques under analysis are: Zero, Estimate, and Backcast. The BJ 

models are created using the four optimization algorithms (GN, AGN, LM and TRR) and the three 

initialization techniques. The suitable initialization technique is chosen by analyzing the data 

fitting accuracies of the developed models given in Table 6.  2, where the first value represents the 

data fitting accuracy for the voltage model, and the second one represents the data fitting accuracy 

for the frequency model. It is found that Zero cannot maintain satisfactory fitting accuracies for 

the voltage or frequency models for GN and TRR; Estimate shows low fitting accuracies for the 

voltage or frequency models for GN, AGN and TRR; while Backcast maintains consistent and 

acceptable data fitting accuracies for both models using all four optimization algorithms. 

Therefore, “Backcast” is chosen as the suitable initialization technique.    

 

Table 6. 2: Data Fitting Accuracy (%) for Different Initialization Techniques for the Four 

Optimization Algorithms (GN, AGN, LM and TRR)  

 Zero Estimate Backcast 

GN 42.25,98.16 99.6, 72.01 99.68, 98.01 

AGN 97.69,98.14 58.98, 98.03 97.63, 98.07 

LM 97.71, 98.14 98.06, 98.03 97.68, 98.01 

TRR 97.72, 17.62 99.66,19.74 99.67, 76.35 

 

6.5.4 Optimization Algorithms 

Using the “Backcast” initialization technique, models are developed using GN, AGN, LM, and 

TRR and are analyzed. Data fitting accuracies of the developed models are depicted in Fig. 6.5. 

The data fitting accuracies for the voltage model for both GN and TRR are similar, whereas AGN 
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and LM for the voltage model show slightly lower fitting accuracies. The data fitting accuracies 

for the frequency model for GN, AGN, and LM are similar, but shows a much lower fitting 

accuracy for TRR. Therefore, TRR is determined to be an unsuitable algorithm. 

Now we need to select the best algorithm among GN, AGN and LM as they show similar fitting 

accuracies in Fig. 6.5.  The models’ performance matrices are analyzed as shown in Table 6.3. It 

is found that GN has lower values for NRMSE and MSE than AGN and LM, which indicate a 

better model. Therefore, GN outperforms other three considered optimization algorithms using the 

training dataset.   

 

 

Fig. 6. 5. The fitted models for four optimization algorithms along with their fitting accuracies 

for the training dataset: (a) DelV; (b) DelF. 
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Table 6. 3: The Model’s Performance Matrices 

Focus  NRMSE MSE 

GN 0.32, 1.9 2.1𝑥10−8 

AGN 2.37, 1.9 1.1𝑥10−6 

LM 2.32, 1.9 1.1𝑥10−6 

TRR 0.33, 23.65 2.2𝑥10−8 

 

 

To further validate the models, fitting accuracies are re-examined using the validation dataset 

as shown in Fig. 6.6.  Similar to the training dataset, GN maintains better performance for the 

validation dataset than other three optimization algorithms.  

Therefore, GN performs better to trace the data trend for the system under analysis and is chosen 

as the most suitable optimization algorithm in this study.  

 

Fig. 6. 6. The fitted models for four optimization algorithms along with their fitting accuracies 

for the validation dataset: (a) DelV; (b) DelF. 
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6.6 The Final GN-Based Box-Jenkins Model 

In this section, before presenting the final Box-Jenkins model, the residual analysis is conducted 

on the final model to check the model’s data overfitting issue. 

 

6.6.1 Residual Analysis 

An accurate model has residuals uncorrelated with past inputs and scattered. For the developed 

model, the residuals plot in Fig. 6.7 shows that the residuals are scattered and not following any 

trend.  

To further verify the model, the cross-correlation analysis between the input and residuals for 

each input-output pair is conducted. In practice, residuals always hold to some degree of cross-

correlation; as a remedy, a confidence interval is used. Any cross-correlation falls within the 

confidence interval of a chosen probability is treated as statistically insignificant. The evidence of 

the cross-correlation beyond the confidence interval indicates that the model fails to explain the 

relation of that particular input-output pair, and the model suffers from data overfitting. The cross-

correlation study results for the proposed final model are shown in Fig. 6.8, where the shaded area 

in blue represents the 99% confidence interval, and the blue circles are the cross-correlation 

readings. Since all cross-correlation readings fall within the confidence interval, so the model is 

accurate, and no data overfitting is present.  
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Fig. 6. 7. The residual plot of the final BJ model. 

 

Fig. 6. 8. The cross-correlation readings for the final BJ model.     
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6.6.2 The Final Box-Jenkins Model 

The final Box-Jenkins model expressed in (20) is developed for the test system, and its 

coefficients A, B, C, D, and F are obtained as follows:    

𝐴 =  [
1 0
0 1

]      (30) 

𝐵 =  [ 
(0, 0, −0.0024, 0.0039,−0.0011) (0,0,−8.98𝑥10−4)

(0, 0,   2.1𝑥10−5, − 7.9𝑥10−6, −2.5𝑥10−6) (0, 0, −1.5𝑥10−5)
] (31) 

𝐶 = [
(1, −0.04, 0.2, 0.43, −0.61, 0.08, −0.01)
(1, −0.73, 0.15, −0.49, 0.06, −0.3, 0.48)

]   (32) 

𝐷 = [
(1,−1.26, 0.58, 0.09, −1.13, 1.02, −0.41, 0.14)
(1, −1.97,1.47, −1.15, 0.63, −0.25, 0.8, −0.54)

]  (33) 

𝐹 = [
(𝐹11) (𝐹12)
(𝐹21) (𝐹22)

]      (34) 

𝐹11 = [1,−1.86,−0.48, 1.88, 0.35, −0.59,−0.85, 0.54 ]  (34.1) 

𝐹12 = [1,−3.69, 4.91, −2.61, 0.22, 0.16]   (34.2) 

𝐹21 = [1,−1.27, −0.43, 0.59, 0.03, 0.19, 0.02, −0.13] (34.3) 

𝐹22 = [1,−2.5, 3.1, −2.88, 1.57, −0.29]   (34.4) 

The step response within the 3rd standard deviation is plotted in Fig. 6.9. The shorter span of 

the step response within the 3rd standard deviation indicates a minimal covariance in the model 

parameters.  

The developed model can be used to design and tune a DG controller to regulate the voltage 

and frequency at the PCC of an islanded microgrid. Being a multi-input multi-output model 

(MIMO), the controller with the MIMO structure handling competency, such as Model Predictive 

Control (MPC)-based controller, should be considered.  
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Fig. 6. 9. Step response of the model along with the 3rd confidence bound: (a) 𝑈𝑑 vs DelV; (b) 

𝑈𝑞 vs DelV; (c) 𝑈𝑑 vs DelF; and (d) 𝑈𝑞 vs DelF. 

6.7 Conclusion 

In this paper, a novel DG control algorithm to regulate the voltage and frequency at the PCC in 

an islanded microgrid is proposed and developed. The algorithm correlates the deviation of voltage 

and frequency at the PCC with the d- and q- axis components of the DG control signal. A data-

driven system identification approach using nonlinear least square method is proposed to 

parameterize the control model. Due to the flexibility in formulating the system and noise model, 

the polynomial Box-Jenkins model is chosen as the model structure. Four NLS optimization 

algorithms, where two are line search-based (Gauss-Newton and Adaptive Gauss-Newton), and 

two are trust region-based (Levenberg-Marquardt and Trust Region Reflective) are studied to 

determine the optimum model coefficients. In all performance matrices, GN along with Backcast 

initialization maintains a consistent and better performance over the other methods for both 
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training and validation datasets, and thus, is chosen to develop the control model. The developed 

model can be used for DG control without requiring the secondary controller and virtual 

impedance loop. 
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In Chapter 6, the most suitable optimization algorithm is chosen among Gauss-Newton, 

Adaptive Gauss-Newton, Levenberg-Marquardt and Trust Region Reflective to parameterize the 

proposed control model through the data driven approach. In this chapter, the suitable focus for 

the optimization (the two optimization focuses are simulation and prediction) is chosen to be 

prediction.   

 

Abstract- A data-driven input-output Box-Jenkins polynomial predictive model for a Distributed 

Generation (DG) control in an islanded microgrid is developed using the Gauss-Newton-based 

nonlinear least square method to regulate the voltage and frequency at the Point of Common 

Coupling (PCC). The model inputs are direct- and quadrature-axis components of the control 

signal, and the model outputs are deviations of the voltage and frequency from their nominal values 

at the PCC. To initialize the iteration for nonlinear least square, the Backcast technique is chosen 

by comparing with Zero and Estimate techniques. Two optimization methodologies are evaluated: 

“simulation” focus and “prediction” focus. The prediction focus shows much better performance, 

such as a high prediction accuracy and faster convergence; it also avoids the necessity of data 
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prefiltering by introducing a built-in weighted filter in the objective function. The developed model 

is validated using noisy and noiseless datasets.   

 

Keywords- Box-Jenkins model, distributed generation, Gauss-Newton, nonlinear least square, 

prediction model. 

7.1 Introduction  

Due to integration of renewable energy sources, microgrid has become a fundamental element 

in smart grids, enabling bidirectional power flow and advanced control for distributed generation 

(DG) and load. A microgrid can operate in grid-connected or island mode. The voltage and 

frequency of a microgrid are governed by the grid in grid-connected mode and regulated by DG 

controllers in island mode. In this paper, we focus on DG control for islanded microgrids.   

Droop control, which mimics steady-state characteristics of synchronous generators, is the most 

adopted primary control method for DGs in islanded microgrids. To compensate voltage or 

frequency deviations, droop control estimates adjustments of power flow by updating control 

signal references for voltage regulators [1] or current regulators [2] through its control architecture. 

The output of voltage/current regulators then feeds a signal generator to generate Pulse Width 

Modulation (PWM) signals. Droop control adopts P-f/Q-V [3] or P-V/Q-f [4] control (active power 

P, reactive power Q, frequency f, voltage V), depending on inductive or resistive nature of 

distribution lines.  

Inherent limitations of droop control include steady-state errors in voltage and frequency 

regulation and disproportional reactive power sharing among DGs due to the mismatch of line 

impedances. Therefore, improved droop control schemes were proposed in the literature by 

implementing secondary controllers [5] and virtual impedance loops [1] to overcome such 
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problems, but the size and complexity of DG controllers are increased substantially, as a result, 

retuning of the controller due to microgrid’s topological and parametric uncertainty becomes more 

difficult, expensive and time-consuming [6].   

A DG controller depends on accurate estimation of control signals, and existing methods 

undergo a very complex process to realize it. In this paper, a novel data-driven input-output model 

is developed through system identification by directly correlating deviations of the voltage and 

frequency at the PCC (outputs) with deviations of direct(d)- and quadrature(q)-axis components 

(𝑈𝑑 𝑎𝑛𝑑 𝑈𝑞) of control signals (inputs). Unlike droop control only considering either line 

resistance or line reactance, the proposed model considers both resistance and reactance of 

distribution lines, which leads to simultaneous control of P-f/Q-V and P-V/Q-f, so it can be applied 

in controllers that need to handle a coupled relationship between active and reactive power. The 

model formulates the impact of line parameters on the model outputs, secondary controllers and 

virtual impedance loops are no longer needed, which substantially reduces volume and complexity 

of the controller. The proposed model can be implemented by a Model Predictive Controller, 

whose design will be addressed in a separate paper. By using a data-driven approach, the 

knowledge of line impedances is not required, which greatly simplify the problem.    

Recently, data-driven approaches for system identification have attracted significant research 

interest in modeling dynamic characteristics of a DG or microgrid as a whole [7]–[12]. The 

developed models represent dynamic characteristics of active and reactive power of a grid-

connected microgrid due to variations of the voltage and frequency [7], [8], and due to changes of 

power dispatch commands (𝑃𝑟𝑒𝑓 𝑎𝑛𝑑 𝑄𝑟𝑒𝑓) [9]–[12]. To the authors' best knowledge, there are no 

developed models directly correlating deviations of voltage and frequency at the PCC with 

variations of control signals.  
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In this paper, the Box-Jenkins model structure is adopted, which is parameterized through 

Gauss-Newton (GN)-based nonlinear least-square (NLS) method. GN is frequently used to solve 

nonlinear least-square problems. With the assumption of reduced-order Hessian of the objective 

function, GN reduces the computational burden significantly [13]. However, it takes large and 

uncontrolled steps and sometimes may fail to converge if a large residual occurs during 

optimization [14].  

The optimization method conventionally used in the NLS is the “simulation” focus[15]. During 

the parametric optimization, the objective function with “simulation” focus cannot update itself 

according to measurement data [16], which can enlarge the residual and force GN to take more 

iterations or even prevent it to converge. In this paper, we found that another optimization method, 

known as the “prediction” focus, can update the objective function according to measurement data, 

and thus, can keep the residual small and ensure faster convergence. In addition, the built-in noise-

canceling weighted filter in the “prediction” focus helps GN to find right frequencies from a noisy 

dataset and eliminate the needs of data preprocessing[17]. This is particularly important for a 

dataset containing transient data with high-frequency dynamics, where preprocessing can 

eliminate crucial dynamics. 

The main contributions of the paper include: 1) a novel data-driven input-output Box-Jenkins 

polynomial predictive model for DG control in islanded microgrids to regulate the voltage and 

frequency at the PCC is developed using GN-based nonlinear least square method, and it directly 

correlates deviations of the voltage and frequency at the PCC with d- and q-axis components of 

control signals; 2) the model is developed by considering both resistance and reactance of 

distribution lines; 3) for optimization methods used in the GN-based NLS, the effectiveness of the 

“prediction” focus over the “simulation” focus is demonstrated.    
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The paper is arranged as follows: mathematical derivations and steps to develop the proposed 

data-driven model are introduced in Section 7.2; the fundamental theory is explained in Section 

7.3; the test system is given in Section 7.4; two key steps during the model development are 

explained in Sections 7.5; the final model is developed in Section 7.6, and conclusions are drawn 

in Section 7.7.     

7.2 The Proposed Approach  

Mathematical derivations and stepwise evolution of the proposed model are provided in this 

section.  

7.2.1 Mathematical Formulation for the Proposed Model 

For a microgrid depicted in Fig. 7.1, the generated active and reactive power at the point S can 

be expressed by 

VDC PCC LoadDC
AC

Distribution Line

S L

VS  0 VL  δ 

R+jX

 
Fig. 7. 1. A microgrid with a DG’s interfacing inverter. 

 

𝑃 =
𝑉𝑠

𝑅2+𝑋2
[𝑅(𝑉𝑠 − 𝑉𝐿 cos 𝛿) + 𝑋𝑉𝐿 sin 𝛿]    (1) 

𝑄 =
𝑉𝑠

𝑅2+𝑋2
[𝑋(𝑉𝑠 − 𝑉𝐿 cos 𝛿) −  𝑅𝑉𝐿 sin 𝛿]    (2) 

Assuming a very small power angle, 𝛿, (1) and (2) can be rewritten as follows: 

𝛿 =  
1

𝑋𝑉𝐿
[
𝑅2+𝑋2

𝑉𝑠
𝑃 − 𝑅(𝑉𝑠 − 𝑉𝐿)]      (3) 
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𝑉𝑠 − 𝑉𝐿 =
1

𝑋
(
𝑅2+𝑋2

𝑉𝑠
𝑄 + 𝑅𝑉𝐿𝛿)      (4) 

With the further analysis, (3) and (4) can be expressed by 

𝛿 =
1

𝑉𝑠𝑉𝐿
(𝑋𝑃 − 𝑅𝑄)      (5) 

𝑉𝑠 − 𝑉𝐿 =
1

𝑉𝑠
(𝑋𝑄 + 𝑅𝑃)      (6) 

From (5) and (6), fundamental formulas of conventional droop control equations are derived: 

Eq. (7.1) is derived by assuming 𝑋 ≫ 𝑅, so R is ignored, which leads to P-f/Q-V control; Eq. (7.2) 

ignores X by assuming 𝑅 ≫ 𝑋, which leads to P-V/Q-f control. R and X are resistance and 

reactance of distribution lines, respectively.  

𝛿, (𝑉𝑠 − 𝑉𝐿) =

{
 

 
𝑋𝑃

𝑉𝑠𝑉𝐿
,
𝑋𝑄

𝑉𝑠
, 𝑤ℎ𝑒𝑛 𝑋 ≫ 𝑅                                                  (7.1)

−
𝑅𝑄

𝑉𝑠𝑉𝐿
,
𝑅𝑃

𝑉𝑠
, 𝑤ℎ𝑒𝑛 𝑅 ≫ 𝑋                                                  (7.2)

 

Ref [1] shows the derivation of droop equations and adjustment of the voltage reference settings 

of the virtual impedance loop in droop control for DG controllers [1]. Generally, the control of 

power angle, 𝛿, dynamically controls the system frequency, 𝑓. Thus, droop equations in (5) and 

(6) can be expressed by 

𝑓 − 𝑓0 = −𝑘𝑝1(𝑃 − 𝑃0) + 𝑘𝑝2(𝑄 − 𝑄0)    (8) 

𝑉𝑠 − 𝑉𝑠0 = −𝑘𝑞1(𝑄 − 𝑄0)  − 𝑘𝑞2(𝑃 − 𝑃0)   (9) 

From (8) and (9), the DG control considering both line resistance R and line reactance X requires 

a simultaneous P-f/Q-V and P-V/Q-f control.  

The active and reactive power can be expressed by 
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𝑃 =
3

2
(𝑈𝑑𝐼𝑑 + 𝑈𝑞𝐼𝑞)      (10) 

𝑄 =
3

2
(−𝑈𝑑𝐼𝑞 + 𝑈𝑞𝐼𝑑)     (11) 

Where subscripts d and q represent d- and q-axis components of the parameters. Eqs. (10) and (11) 

transform (5) and (6) into  

𝛿 =
3

2

1

𝑉𝑠𝑉𝐿
[(𝑋𝐼𝑑 + 𝑅𝐼𝑞)𝑈𝑑 + (𝑋𝐼𝑞 − 𝑅𝐼𝑑)𝑈𝑞]   (12) 

𝑉𝑠 − 𝑉𝐿 =
3

2

1

𝑉𝑠
[(𝑅𝐼𝑑 − 𝑋𝐼𝑞)𝑈𝑑 + (𝑅𝐼𝑞 + 𝑋𝐼𝑑)𝑈𝑞]   (13) 

For the sake of simplicity, let's assume that the alteration of 𝑈𝑑 and 𝑈𝑞 is not going to affect 𝐼𝑑 

and 𝐼𝑞, so the control formulas developed in (12) and (13) can be expressed by  

𝑓 − 𝑓0 =
3

2

1

𝑉𝑠𝑉𝐿
[(𝑋𝐼𝑑 + 𝑅𝐼𝑞)(𝑈𝑑 −𝑈𝑑0) + (𝑋𝐼𝑞 − 𝑅𝐼𝑑)(𝑈𝑞 − 𝑈𝑞0)] (14) 

𝑉𝐿 − 𝑉𝐿0 =
3

2

1

𝑉𝑠
[(𝑅𝐼𝑑 − 𝑋𝐼𝑞)(𝑈𝑑 − 𝑈𝑑0) + (𝑅𝐼𝑞 + 𝑋𝐼𝑑)(𝑈𝑞 − 𝑈𝑞0)]  (15) 

Where 𝑓 and 𝑉𝐿 are reference voltage and frequency, and 𝑓0 and 𝑉𝐿0 are nominal voltage and 

frequency, respectively. 𝑈𝑑 and 𝑈𝑞 are the reference of the parameters at 𝑓 and 𝑉𝐿; and 𝑈𝑑0 and 

𝑈𝑞0 are the pre-disturbance reference of the parameters.  

The relationship between (deviations of the voltage and frequency) and (𝑈𝑑 and 𝑈𝑞) is 

formulated in (14) and (15). The major challenge to implement these formulas is that the line 

resistance and reactance of distribution lines are needed. To solve the issue, a data-driven system 

identification approach is adopted in this paper. To obtain the datasets, 𝑈𝑑 and 𝑈𝑞 are varied over 

a short-range, which is large enough to influence the system dynamics but small enough to ignore 
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nonlinearities; the subsequent impact on the voltage and frequency at the PCC are recorded in the 

datasets. Using the datasets, two system identification models are developed as follows: 

∆𝑓 = 𝑘1∆𝑈𝑑 + 𝑘2∆𝑈𝑞      (16) 

∆𝑉 = 𝑘3∆𝑈𝑑 + 𝑘4∆𝑈𝑞      (17) 

where coefficients 𝑘1 to  𝑘4 are derived through the proposed data-driven system identification 

approach. This way, the equivalent model in (14) and (15) is developed without quantifying 

parameters of distribution lines.  

The data-driven model shown in (16) and (17) are intended to control DG units using intelligent 

controllers, such as a model predictive controller. The model supports the controller to decide how 

much reference adjustments for 𝑈𝑑 and 𝑈𝑞 are required to compensate the voltage and frequency 

deviations.  

7.2.2 Main Idea of the Proposed Approach 

The proposed approach is to develop a data-driven Box-Jenkins prediction model for DG control 

in islanded microgrids to regulate the voltage and frequency at the PCC. It is developed through 7 

steps below, as shown in the flowchart in Fig. 7.2:  
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Data Acquisition

Model Fitting with Different Initialization Techniques

Model Fitting with  Simulation  and  Prediction  Focus

Performance Comparison

Suitable Optimization Focus

Noiseless Data Noisy Data

Final Model

End

Model Validation

Noisy DataNoiseless Data

Performance Comparison

Suitable Initialization Technique

 

Fig. 7. 2. Flow chart of the proposed approach.  

Step 1: Data acquisition for system identification. To develop a data-driven model, datasets 

must be obtained first. To obtain the datasets, d- and q-axis components of the control signal 

(𝑈𝑑  𝑎𝑛𝑑 𝑈𝑞) are varied in the simulation model, and corresponding deviations of the voltage and 

frequency from their nominal values in pu at the PCC (V and f) are tabulated. For each of 

training and validation datasets, we also produce two sets of data: 1) noiseless data, which is the 

direct simulation results; and 2) noisy data, which is created by adding Gaussian noise to the 

noiseless data (Details are given in Section IV). 
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Step 2: Selection of initialization techniques. Optimization algorithms in nonlinear least square 

are sensitive to initial conditions, affecting convergence speed and fitting accuracy of the model. 

Three initialization techniques, zero, estimate and backcast, are evaluated in this paper. “zero” is 

to set the initial condition to zero regardless of the data trend; “estimate” is to treat the initial 

condition as an independent estimation parameter, and “backcast” is to estimate the initial 

condition by the “auto-regressive with external input” method. A suitable technique is selected 

based on the model performance matrices.    

Step 3: Model development with optimization focus. Using GN-based nonlinear least square 

approach, models are developed using “prediction” and “simulation” optimization focus for 

noiseless and noisy datasets (Details are given in Section III.D).  

Step 4: Performance analysis. To study the performance of the two optimization focus, the 

precision of the models is analyzed using the data fitting accuracies, Akaike's Final Prediction 

Error (FPE), Normalized Root Mean Square Error (NRMSE), Mean Square Error (MSE), first-

order optimality, and auto and cross-correlation analysis of the residuals.      

Step 5: Model validation. The developed models are validated by validation datasets, which 

shows how precisely the developed model agrees with the original system for a different 

combination of input-output.  

Step 6: Suitable optimization focus. Based on the above analysis, the most suitable optimization 

focus is chosen.   

Step 7: Develop the final Box-Jenkins model. The final Box-Jenkins model is developed for a 

given system.   
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7.3 Fundamental Theory  

 7.3.1 Box-Jenkins Model  

A Box-Jenkins model is a polynomial mathematical model that provides the flexibility of 

independent parameterization of a system’s dynamics and associated noises using rational 

polynomial functions [18]. The general expression of the Box-Jenkins model with 𝑛𝑢 inputs and 

𝑛𝑦 outputs is 

∑ ∑ 𝐴𝑖𝑗(𝑞)𝑦𝑗(𝑡) = ∑ ∑
𝐵𝑖𝑗(𝑞)

𝐹𝑖𝑗(𝑞)
𝑢𝑖(𝑡 − 𝑛𝑘𝑖𝑗) + ∑

𝐶𝑗(𝑞)

𝐷𝑗(𝑞)
𝑒𝑡(𝑡)

𝑛𝑦
𝑗=1

𝑛𝑦
𝑗=1

𝑛𝑢
𝑖=1

𝑛𝑦
𝑗=1

𝑛𝑢
𝑖=1   (18) 

Where A, B, C, D, and F are polynomial coefficients; q is the time shift operator; u(t) and y(t) are 

the input and the output, respectively; 𝑛𝑘𝑖𝑗 is the transport delay in between the  𝑖𝑡ℎ input and 𝑗𝑡ℎ 

output; and 𝑒𝑡(𝑡) is the noise. C and D are 𝑛𝑦 × 1 matrices, and related to the noise and can be 

modeled independently, regardless of B and F. A, B, F, and K are 𝑛𝑦 × 𝑛𝑢 matrices. The number 

of coefficients in the denominator in (18) represents the pole number, and the numerator 

polynomials are one unit more than the number of zeros. A, B, C, D, and F can be obtained by the 

nonlinear least-square approach.   

7.3.2 Mathematical Formulation of Non-linear Least Square  

In a regression analysis, the nonlinear least square approach is adopted, where a nonlinear 

mathematical model, 𝑦 = 𝑓(𝜃, 𝑡), 𝜃 =  [𝜃1, 𝜃2,…., 𝜃𝑛  ]
𝑇
with n unknown vector parameters 

(coefficients of the model), is used to fit a set of m observed data points (𝑡1, 𝑦1), (𝑡2, 𝑦2), …,   

(𝑡𝑚, 𝑦𝑚), where m > n. To find the best fit, the minimum value of the vector parameters, 𝜃, are 

selected by optimizing an objective function, 𝑉(𝜃), formulated as the sum of the squared residual 

functions, 𝑟𝑖(𝑡, 𝜃), of the m observed data. The minimum point of 𝜃, 𝜃∗, is calculated by.  
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𝜃∗ = 𝑎𝑟𝑔𝑚𝑖𝑛 
𝜃

 𝑉(𝜃)      (19) 

7.3.3 The Gauss-Newton Method  

GN is a line search-based quasi newton approach. For a search direction of 𝑝𝑘
𝐺𝑁 and a step size 

of 𝛼𝑘
𝐺𝑁, the iterative equation of GN can be expressed as follows [19]:  

                                 𝜃𝑘+1 = 𝜃𝑘 + 𝛼𝑘𝑝𝑘
𝐺𝑁                    (20) 

GN approximates the objective function’s Hessian matrix to its truncated form of 𝐽(𝑥𝑘)
𝑇𝐽(𝑥𝑘), 

and the search direction  

𝑝𝑘
𝐺𝑁 is given by 

[𝐽(𝑥𝑘)
𝑇𝐽(𝑥𝑘)]𝑝𝑘

𝐺𝑁 = −𝐽(𝑥𝑘)
𝑇𝑟(𝑥𝑘)          (21)  

Where 𝐽 ∈ ℝ𝑚×𝑛 is the Jacobian of 𝑟(𝑥). 

If the number of data points m, the number of parameters n, both m and n, or the residual 𝑟𝑖(𝑡, 𝜃) 

is large, the truncated Hessian is no longer a valid approximation. In such a situation, GN takes a 

significantly higher amount of iterations to converge, or even fails to solve a NLS problem [19].   

7.3.4 Impact of Optimization Focus 

In system identification, model parameters are estimated by minimizing the objective function, 

which is a weighted sum of squares of the residuals. The time-domain representation of the 

objective function can be expressed as follows: 

𝑉(𝜃) =
1

𝑁
∑ 𝑟𝑇𝑁
𝑡=1 (𝑡, 𝜃)𝑊(𝜃)𝑟(𝑡, 𝜃)    (22) 

Where N is the number of data samples, and 𝑊(𝜃) is a weighted semi-definite matrix of the vector 

parameter 𝜃.  
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The optimization focus mainly impacts how the residuals in the objective function are computed. 

The general expression to compute the residuals can be expressed by 

𝑟(𝑡, 𝜃) = 𝑦𝑚(𝑡) − 𝑦𝑟(𝑡, 𝜃)      (23) 

Where, 𝑦𝑚(𝑡) is the measured output, 𝑦𝑟(𝑡, 𝜃) is the predicted or simulated response of the model, 

parameterized with prediction or simulation focus, respectively.   

A simulated response calculated using present measured inputs and initial states can be 

expressed by 

𝑦𝑟(𝑡, 𝜃) = 𝑓(𝑢𝑚(𝑡), 𝑢𝑚(0); 𝑦𝑚(0))    (24) 

 

Where, 𝑢𝑚(𝑡) is the present measured input, 𝑢𝑚(0) and 𝑦𝑚(0) are initial states.  

 A predicted response is computed certain steps ahead in time using the present input, and the 

past measured input and output, including initial states. To calculate a predicted response k step 

ahead into the future from the present time t, where 𝑘 ≥ 1, all the inputs up to (𝑡 + 𝑘) and all 

output up to t must be available.  The general expression for the predicted response is  

𝑦𝑟(𝑡 + 𝑘, 𝜃) = 𝑓(𝑢𝑚(𝑡 + 𝑘), 𝑢𝑚(𝑡 + 𝑘 − 1), … , 𝑢𝑚(𝑡), 𝑢𝑚(𝑡 − 1), … , 𝑢𝑚(0); 𝑦𝑚(𝑡), 𝑦𝑚(𝑡 −
1), . . 𝑦𝑚(0))   (25) 

This unique competency of considering the previous measured input-output enables the 

prediction model to respond with more narrow but reliable confidence bounds over a shorter time 

period [16]. The time span should be long enough for the controller, but unnecessarily long 

prediction horizon increases the computational burden and controller response time substantially. 

This updating characteristic of the prediction focus keeps residuals (𝑟(𝑡, 𝜃)) in (22) low, which 

subsequently supports GN’s approximation of the truncated Hessian for all iterations. This way, 

the prediction focus ensures a faster and guaranteed convergence of GN. On the contrary, non-
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updating nature of the simulation focus may trigger larger residuals for some data points, which 

penalizes GN’s truncated Hessian approximation, and GN may take longer or fail to converge.   

   To illustrate how the “prediction” or “simulation” focus works on noisy data, let’s first 

transform the objective function with the prediction focus into the frequency domain using 

Parseval’s identity as follows:  

𝜗(𝜔, 𝜃) =
1

𝑁
‖
𝑌(𝜔)

𝑈(𝜔)
− 𝐺(𝜔, 𝜃)‖

2 ‖𝑈(𝜔)‖2

‖𝐻(𝜔,𝜃)‖2
     (26) 

Where 𝑌(𝜔), U(𝜔), and 𝐸(𝜔) are the frequency domain representation of output, input, and 

noise, respectively. 𝐺(𝜔, 𝜃) and H(𝜔, 𝜃) represent the frequency response of the input-output, and 

noise coefficients, respectively.  

Eq. (26) is the objective function 𝜗(𝜔, 𝜃), minimized by fitting 𝐺(𝜔, 𝜃) with the empirical 

function 
𝑌(𝜔)

𝑈(𝜔)
 using a weighted filter 

‖𝑈(𝜔)‖2

‖𝐻(𝜔,𝜃)‖2
. The filter emphasizes frequencies where the input 

has more power, and de-emphasizes frequencies where the noise has more power. This way, the 

algorithm tunes the objective function to the right frequencies by itself. Thus, the original dataset 

no longer needs prefiltered, which avoid the accidental removal of critical information.    

On the other hand, the frequency domain representation of the objective function with the 

simulation focus is 

𝜗(𝜔, 𝜃) =
1

𝑁
‖
𝑌(𝜔)

𝑈(𝜔)
− 𝐺(𝜔, 𝜃)‖

2
‖𝑈(𝜔)‖2     (27) 

In the simulation focus, the noise term H(𝜔, 𝜃) is ignored in the weighted filter. The objective 

function emphasizes only the input spectrum to weigh relative importance of the estimation in a 

specific frequency range despite the presence of noises.   
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7.3.5 Model Quality Matrices 

The model quality matrices in this paper include Akaike’s Final Prediction Error (FPE), 

Normalized Root-Mean-Square Error (NRMSE), Mean Square Error (MSE), the model data fitting 

accuracy, the first order optimality (FOO), and residual analysis.  FPE quantifies the prediction 

error among a group of models [20]. NRMSE represents the normalized square root of the second 

sample moment of the difference between the model’s predicted and observed values. MSE is a 

non-negative quality matrix of an estimated model and the second moment of the error. MSE 

incorporates both the variance and the bias of an estimated model. FOO represents how much the 

model parameters are close to the optimal. A better model comes with a lower FPE, NRMSE, 

MSE, and FOO.   

Both simulated and predicted response is calculated from a model irrespective of their 

“prediction” or “simulation” focus during the parametric optimization. However, it is suggested in 

[16] that, due to the difference in estimating the two responses, data fitting accuracies resulted 

from the simulated response should not be compared with that of the predicted response. As in 

most cases, a controller performance depends on how aptly the model, on which the controller 

relies, responds at the present time frame, therefore, the simulated response is used to calculate the 

data fitting accuracy in this paper.  

Residuals are the portion of the dataset not explained by a developed model. An accurate model 

has uncorrelated and scattered residuals. To verify the developed models, a residual analysis is 

conducted through two tests: whiteness test and independence test. The whiteness test’s criteria 

imply that a good model has the residual autocorrelation function inside the confidence interval 

(99%) of the corresponding estimates [21]. For independence test, a good model has residuals 

uncorrelated with the past inputs. A cross-correlation beyond the confidence indicates that the 
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model does not describe how part of the output relates to the corresponding input. In short, 

autocorrelation depicts the correlation between the residual and its respective output, and cross-

correlation analyzes the correlation between the input and the residuals for each input-output pair. 

The real system lies within the developed model’s confidence interval if the model passes the 

residual analysis [21].  

7.4 The Test System 

The test system’s simulation model (an islanded microgrid) is shown in Fig. 7.3. The DG under 

analysis is a PV system rated at 10 kVA, modeled as a constant DC voltage source. System 

parameters used in the simulation are tabulated in Table 7.1.  
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Fig. 7. 3. The test system’s simulation model.  
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Table 7. 1: Test System’s Parameters 

Parameters Values 

Nominal DC bus voltage (V) 700 

Nominal AC bus RMS line voltage (V) 380 

AC system frequency (f) 50 

DG’s Nameplate capacity (kVA) 10  

Local Load 5 kW, 1 kVar 

PCC Load 2 kW, 0.4 kVar 

 

Inverter filter 

Resistance, Rf (Ω) 0.2  

Inductance, Lf (H) 3×10-3  

Capacitance, Cf (F) 15×10-6  

Line impedance Line resistance, RL (Ω) 0.641 

Line reactance, XL (Ω) 0.08 

 

 

The test system is first initialized to the nominal steady-state situation. Initialization sets 0.821 

for the d-axis component (𝑈𝑑) and 0.07 for the q-axis component (𝑈𝑞) for the control signal. To 

generate the training dataset for system identification, 𝑈𝑑 𝑎𝑛𝑑 𝑈𝑞 are perturbed around their 

nominal values by ±0.05 and ±0.005, respectively. The duration of each step change is 0.5 s. 

Deviations of the voltage and frequency from their nominal values in pu at the PCC (∆V and ∆𝐹) 

for the aforementioned variations of 𝑈𝑑 𝑎𝑛𝑑 𝑈𝑞 are tabulated. Input-output data collection points 

are marked in red in Fig. 7.3. To calculate deviations, the measured parameter values (voltage and 

frequency) are subtracted from their nominal values. The magnitude of step variations is carefully 

chosen to influence system dynamics without causing nonlinearity. The sampling frequency of 

data acquisition is 10 kHz.  
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In system identification, in addition to a “training” dataset, a “validation” dataset is usually used 

to test the robustness of the developed model. To generate a validation dataset, 𝑈𝑑 𝑎𝑛𝑑 𝑈𝑞 are 

varied around their nominal value by ±0.04 and ±0.004, respectively. The duration of the step 

input and data acquisition frequency remains the same as that for the training dataset.  

The control signal (𝑈𝑑 𝑎𝑛𝑑 𝑈𝑞) pass through the voltage and current controllers before 

transforming into the abc co-ordinate. Assuming a balanced system, 𝐼0, the zero-axis component 

of the controller current is set to zero. The transformed control signal is then used to generate the 

PWM pulse. The triangular carrier signal in PWM has a switching frequency of 10 kHz and a peak 

value of 1.03. Input-output data used in the analysis are depicted in Fig. 7.4.  

 

Fig. 7. 4. Input-output data: (a) deviation of the voltage from the nominal value in pu, V, (b) 

deviation of the frequency from the nominal value in pu, f; (c) the d-axis control signal, Ud, 

and (d) the q-axis control signal, Uq. 

7.5 Performance analysis 

This section focuses on two key steps in model development: 1) initialization technique; and 2) 

optimization focus.  
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7.5.1 Initialization Technique  

To set initial conditions, three initialization techniques are considered in this paper: Zero, 

Estimate, and Backcast. To choose the most suitable initialization technique, three models are 

created for each optimization focus (prediction and simulation) using these three initialization 

techniques (note: the optimization focus affects the performance of an initialization technique). 

Fitting accuracies of these models are shown in Table 7.2, where each pair of accuracies in % 

represents the fitting accuracies for the voltage (left) and frequency (right). Zero’s accuracies for 

both voltage and frequency models are significantly lower than that of Estimate and Backcast; 

while Backcast shows slightly higher accuracies than Estimate.   

To further validate that Backcast is better than Estimate, their respective model performance 

matrices are analyzed in Table 7.3. Backcast’s FPE, NRMSE and MSE are consistently lower than 

that of Estimate, indicating better models using Backcast.  

The estimated initial states for prediction and simulation focus using the three initialization 

techniques are depicted in Fig. 7.5. The initial states estimated by “Backcast” are consistently 

smaller than other two techniques. Finally, the first order optimality of the models is compared for 

the final iterations as shown in Table 7.4, Backcast provides the lowest first-order optimality, so 

Backcast is chosen in this paper.   

 

Table 7. 2: Simulation Accuracy (%) for Different Initialization Techniques 

Optimization 

Focus 

Zero Estimate Backcast 

Prediction 97.68, 5.24 97.22, 97.93 98.93, 97.92 

Simulation 51.7,98.81 99.59,97.88 99.67, 97.92 
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Table 7. 3: The Model’s Performance Matrices for Different Initialization Techniques 

Optimization 

Focus 

Initialization 

Technique 

FPE NRMSE MSE 

Prediction Estimate 5.26𝑥10−25 0.03,0.02 7.85𝑥10−10 

Backcast 5.12𝑥10−25 0.01,0.02 7.68𝑥10−10 

Simulation Estimate 1.27𝑥10−22 0.004,0.02 3.05𝑥10−8 

Backcast 3.19𝑥10−24 0.003,0.02 1.99𝑥10−8 

 

7.5.2 Optimization Focus 

The developed Box-Jenkins models using prediction focus and simulation focus are compared 

through noiseless and noisy datasets. As recommended by MATLAB for GN, the tolerance of the 

optimization is set to 0.01[22].  

 

 

Fig. 7. 5. Initial states: (a) prediction focus; and (b) simulation focus.  
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Table 7. 4: First Order Optimality for Different Initialization Techniques 

Optimization Focus Estimate Backcast 

Prediction 0.32, 0 0.09, 0 

Simulation 2.27𝑥104, 2.9𝑥10−3 7.49, 1𝑥10−4 

 

7.5.2.1 Noiseless Dataset 

At the beginning of each iteration, based on the Gauss-Newton vector computed at the last 

iteration, an expected improvement in the objective function towards the minima is calculated. If 

the expected improvement falls below the tolerance value, the iteration converges. To achieve the 

expected improvement, GN calculates the step size. With larger residuals, iterations start with a 

larger expected improvement. A larger residual invalidates truncated Hessian approximations, and 

thus, the algorithm fails to realize the step size accurately. As a result, the expected improvement 

cannot be achieved, and the algorithm requires more iterations to converge. In extreme cases, the 

algorithm fails to bring the expected improvement below the tolerance value due to inaccurate step 

size, and the iteration fails to converge.    

In Fig. 7.5, initial states estimated by Backcast using prediction focus are significantly lower 

than that using simulation focus, so the residuals remain low, and the Hessian approximation 

remains valid for the prediction focus. GN estimates the step size accurately (Fig. 7.6 (e) and (f)), 

and meet the expected improvement. As a result, the expected improvement is reduced below the 

tolerance by 40 and 27 iterations for voltage and frequency models, respectively (Fig. 7.6 (a) and 

(b)).  

On the contrary, higher initial states in Fig. 7.5 (b) estimated by simulation focus makes the 

residuals significantly higher, which is reflected in the expected improvements in Fig. 7.6 (c) and 

(d). Consequently, the truncated Hessian approximation becomes invalid, and GN fails to estimate 
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proper step sizes (𝛼𝑘
𝐺𝑁) to achieve higher expected improvements for most of the iterations (Fig. 

7.6 (g) and (h)) in simulation focus. With some bigger step sizes during final iterations in Fig. 7.6 

(g), the voltage model with simulation focus manages to converge by 532 iterations. However, due 

to no such reasonable step sizes (Fig. 7.6 (h)), the frequency model’s expected improvements was 

fixed at 0.1 after 175 iterations and failed to achieve the required tolerance of 0.01. Therefore, to 

ensure the convergence of the voltage model to the desired level with the simulation focus, the 

maximum iteration number is set to 600.  

Performance matrices of the developed models are shown in Table 7.3 (highlighted in light 

green). For NRMSE, the data pair represents the fitting performance of the voltage (left) and 

frequency (right). The fitted models, along with their respective fitting accuracies, are depicted in 

Fig. 7.7.  

The models’ residual correlation analysis are shown in Fig. 7.8. Some autocorrelations of 

simulation focus-based frequency model in Fig. 7.8 (b) go beyond the 99% confidence interval, 

indicating a considerable correlation in its noise model. Immature termination of optimization for 

the frequency model causes this correlation, which can be interpreted better by analyzing the first-

order optimality of the two models provided in Table 7.4 (highlighted in light green). Models with 

prediction focus hold the lowest first-order optimality, i.e. their objective functions are very near 

the minimum during convergence.   

To further validate the models, fitting accuracies are re-examined with the validation dataset for 

noiseless data, as shown in Fig. 7.9. Although the fitting accuracy for both models is similar for 

both training and validation datasets, in terms of the iteration number, certainty of convergence, 

and the other performance matrices, the prediction focus model performs better over the simulation 

focus model.   
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Fig. 7. 6. Iteration wise variation of expected and achieved improvements: (a) DelV (prediction); 

(b) DelF (prediction); (c) DelV (simulation); (d) DelF (simulation); Iteration wise variation of 

step sizes: (e) DelV (prediction); (f) DelF (prediction); (g) DelV (simulation); and (h) DelF 

(simulation) 

 
Fig. 7. 7. Fitted models for different optimization focus along with their fitting accuracies for 

noiseless training data: (a) DelV; (b) DelF. 
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Fig. 7. 8. Auto- and cross-correlation for the two optimization focus: (a) prediction focus; (b) 

simulation focus.    

 
Fig. 7. 9. Fitted models for different optimization focus along with their fitting accuracies for 

noiseless validation data: (a) DelV; (b) DelF. 
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7.5.2.2 Noisy Dataset 

Real-life data often has noise. To mimic real-life conditions, normally distributed white 

Gaussian noises shown in Fig. 7.10 are added to the noiseless training dataset. The noise power is 

1db; and the signal to noise ratio (SNR) are 33.5 db and 24.14 db for ∆𝑉 𝑎𝑛𝑑 ∆𝐹, respectively. In 

the validation dataset, the SNR for ∆𝑉 𝑎𝑛𝑑 ∆𝐹 are changed to 31.5 db and 22.2 db, respectively.       

The simulation focus takes 271 and 131 iterations for the voltage and frequency models to 

converge, while the prediction focus takes only 42 and 19 iterations, respectively. Performance 

matrices of the models are shown in Table 7.5.  

Fig. 7.11 shows how precisely the developed models follow the present trend of the noisy data. 

The residual correlation analyses of the fitted models are shown in Fig.12. Despite higher fitting 

accuracy, simulation focus-based models hold auto- and cross-correlations beyond the 99% 

confidence interval, indicating possible data overfitting. This implies that the models have failed 

to capture the trend of the dataset, which can be verified by the validation dataset. The noise-

canceling weighted filter in the objective function helps the prediction focus algorithm distinguish 

between the noise and the information frequencies.  This way, the prediction focus-based model 

can catch the system's actual trend from a noisy dataset. 

To further validate the models’ performance, fitting accuracies are re-examined by the validation 

dataset (Fig. 7.13). Due to the noise canceling weighted filter, the prediction model is developed 

and tuned to the information frequencies, so changing noise characteristics doesn’t affect the 

model performance. Without such a filter, the simulation model is sensitive to the change of noise 

characteristics. Therefore, simulation focus models perform poorly to generate a stable response, 

while the prediction focus models have a stable response with superior accuracies. 
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Based on the analysis for noisy and noiseless datasets, the prediction focus-based GN algorithm 

is chosen as the line search algorithm in this study.     

 

 

Fig. 7. 10. White Gaussian noise: (a) noise added to the V data; and (b) noise added to the f 

data.   

Table 7. 5: The Model’s Performance Matrices for Noisy Dataset 

Optimization Focus  FPE NRMSE MSE 

Prediction 5.12𝑥10−17 0.03, 0.07 9.06𝑥10−7 

Simulation 5.55𝑥10−17 0.02, 0.07 8.46𝑥10−7 
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Fig. 7. 11. Fitted models for different optimization focus along with their fitting accuracies for 

noisy training data: (a) DelV; (b) DelF. 

 

 Fig. 7. 12. Auto- and cross-correlation for the two optimization focus: (a) prediction focus; (b) 

simulation focus.    
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Fig. 7. 13. Fitted models for different optimization focus along with their fitting accuracies for 

noisy validation data: (a) DelV; (b) DelF.  

7.6 The Final GN-Based Box-Jenkins Model 

The final prediction focus-based Box-Jenkins model expressed in (18) is developed for the test 

system, and its coefficients A, B, C, D, and F are obtained as follows:    

𝐴 =  [
1 0
0 1

]     (28) 

𝐵 =  [ 
(0, 0.1189, 0.0682, 0.0932) (0, −0.967)

(0, 0, 0, 5.26 × 10−6, 7.95 × 10−5, −7.59 × 10−5) (0, 0, 0, −0.0013)
]   (29) 

𝐶 = [
(1, −0.198,−0.456,−0.479,−0.618, 0.664, 0.174)
(1, −0.364,−1.009,−0.149, 0.662, 0.096, −0.182)

] (30) 

𝐷 = [
(1, −0.313,−0.547,−0.495,−0.581, 0.777, 0.185,−0.017)

(1, −0.421,−1.047,−0.14, 0.692, 0.092,−0.179, 0.003)
] (31) 

𝐹 = [
(𝐹11) (𝐹12)
(𝐹21) (𝐹22)

]         (32) 

𝐹11 = [1, −0.49,−0.355, 0.047, 0.286,−0.181,−0.557, 0.291] 
𝐹12 = [1,−1.599, 0.589, 0.713,−1.025, 0.335] 
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𝐹21 = [1,−0.702, 0.075,−0.865, 0.115, 0.288,−0.014, 0.112] 
𝐹22 = [1, −0.051, 0.422, −0.699,−0.157,−0.476] 

 

The step response within the 3rd standard deviation is plotted in Fig. 7.14. The shorter span of 

the step response within the 3rd standard deviation indicates a minimal covariance in the model 

parameters. Fig. 7.15 depicts the prediction accuracies and prediction errors.  

 

Fig. 7. 14. Step responses of the model along with their 3rd confidence bound: (a) 𝑈𝑑 vs DelV; 

(b) 𝑈𝑞 vs DelV; (c) 𝑈𝑑 vs DelF; and (d) 𝑈𝑞 vs DelF.  
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Fig. 7. 15. One-step ahead prediction: (a) prediction fitting; (b) prediction error 

7.7 Conclusion 

In this paper, a novel data-driven Box-Jenkins predictive model for DG control in an islanded 

microgrid is proposed to regulate voltage and frequency at the PCC. It formulates the relationship 

between (deviations of the voltage and frequency at PCC) and (deviations of d- and q-axis 

components of the control signal). Both resistance and reactance of distribution lines are 

considered in the model. The model is parameterized through nonlinear least-square optimization 

using Gauss-Newton method, where the Backcast initialization technique is chosen, and two 

estimation methods (“prediction” focus and “simulation” focus) are compared. The prediction 

focus has built-in weighted filters and deals with noisy data more efficiently; while the simulation 

focus generates large errors and has poor convergence. Therefore, the prediction focus is 

recommended to develop the proposed model.  
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Abstract- To regulate the voltage and frequency at the Point of Common Coupling (PCC) in an 

islanded microgrid, a novel model predictive control (MPC)-based distributed generation (DG) 

controller is proposed in this paper. A data-driven predictive model that directly correlates 

deviations of the voltage and frequency at the PCC with direct- and quadrature-axis components 

of the control signal is used as MPC’s plant model. This predictive model is developed using 

Gauss-Newton-based non-linear least-square approach with the prediction optimization focus. The 

proposed MPC controller operates on the PCC data and does not require microgrid’s central 

controllers or DG-to-DG communication networks. It can effectively compensate voltage and 

frequency deviations at the PCC and ensure proportional power sharing among DGs without a 

secondary controller and a virtual impedance loop. The integrated Kalman filter in the MPC 

structure makes the controller robust to impedance variations and measurement noises. 

Effectiveness and robustness of the proposed MPC controller are validated through case studies 

and the robustness analysis. 

 

Keywords- Distributed generation, islanded microgrid, Kalman filter, model predictive control 

(MPC). 
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8.1 Introduction  

Microgrid serves as a fundamental unit for smart grids containing distributed generation (DG) 

units and load. Microgrid can operate in grid-connected or island mode. Island mode is most 

challenging as DGs are responsible to maintain the system stability, voltage and frequency profile.  

To coordinate the power dispatched among DGs, droop control is mostly adopted by mimicking 

steady-state characteristics of synchronous generators and compensates voltage and frequency 

deviations by dispatching necessary active and reactive power through updating control signal 

references for the voltage regulator [1] or the current regulator [2] in the control scheme. To realize 

control signal references, depending on the assumption of highly inductive or resistive distribution 

lines, droop control incorporates either P-f/Q-V [3] or P-V/Q-f  [4],[5] control by ignoring line 

resistance or line inductance, respectively. Droop control has its inherent limitations, such as 

steady-state errors in voltage and frequency, and disproportional reactive power sharing among 

DGs. To overcome the limitations, the secondary controller and virtual impedance technique have 

been integrated into droop control.  

Secondary controllers adjust the controller references so that additional power necessary for 

compensating steady-state errors are dispatched while ensuring active power sharing among DGs. 

Secondary controllers in droop-controlled microgrid can be categorized as centralized, distributed, 

and decentralized control schemes [6]. In centralized control, a microgrid central controller 

(MGCC) is required, that collects information from the point of common couplings (PCC) and 

distribute commands among DGs’ local controllers via a communication network. Despite 

superior compensation of steady-state errors, the reliance on MGCC and one to all communication 

structure makes the centralized control less reliable and costly [6]. Distributed control, on the other 
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hand, doesn’t require MGCC, but its mandatory DG-to-DG communication’s latency and 

accidental cut-off  can initiate contingency [7]. Decentralized control doesn’t require DG-to-DG 

communication, but an intra-DG communication might be required. Decentralized secondary 

control (SC) can be categorized as proportional regulator-based (P-SC), proportional-integral 

regulator-based (PI-SC), and a switched secondary control which is a combination of P-SC and 

PI-SC [6]. Despite relaxing the necessity of communication system, decentralized methods have 

limitations: P-SC cannot fully compensate the steady-state errors [8]; although PI-SC completely 

compensates steady-state errors, it deteriorates active power sharing; and the switched secondary 

control has the risk of switching failure, which can deteriorate the microgrid’s stability [6].   

Virtual impedance determines controller references according to impedance mismatch and 

ensures accurate reactive power sharing. This technique adopts virtual resistance [9], virtual 

inductance [10] or combination of both [11]. Accurate realization of virtual impedance is a very 

complex process and requires low bandwidth DG-to-DG communication in most cases [11]. In 

addition, improper and unbounded virtual impedance may violate bus voltage limits although 

reactive power sharing is ensured [12].  

Therefore, the secondary controller and virtual impedance technique in droop control 

substantially increase the controller size and complexity. A simple and effective approach that can 

accurately realize the control reference based on critical system parameters is urgently needed. 

To solve this problem, in this paper, a novel model predictive control (MPC)-based DG 

controller is proposed and designed for islanded microgrids to regulate the voltage and frequency 

at the PCC. This MPC controller does not require complex secondary controllers and virtual 

impedance loops, which can significantly reduce the cost and complexity of the controller. The 

proposed MPC controller uses a data-driven predictive model developed from system 



230 

 

identification as MPC’s plant model, where deviations of the PCC’s voltage and frequency from 

the nominal values (controlled variables) are directly correlated with direct(d)- and quadrature(q)-

axis components (𝑈𝑑 𝑎𝑛𝑑 𝑈𝑞) of the control signal (control variables). Instead of ignoring line 

resistance or line inductance as in droop control, the proposed MPC’s plant model considers the 

presence of both resistance and reactance of distribution lines and enables simultaneous P-f/Q-V 

and P-V/Q-f control. The model is developed using Gauss-Newton (GN) based non-linear least-

square approach with the prediction optimization focus. To ensure better control over the system 

and noise model, Box-Jenkins structure is adopted for the model [13].      

Model predictive controller has been traditionally used in industrial process control. Recent 

advancement of parallel computing in CPU and GPU arena resolves constrains due to 

computational requirements of the MPC, as a result, MPC gains interest in airlines, automotive 

and power systems, where fast responses are required. In microgrids, MPC is mostly used for load 

forecasting [14], [15] and energy management [16], [17]. In [18], MPC is implemented at a 

secondary controller to realize secondary voltage control by incorporating forecasted behaviors of 

local and neighboring DGs; MPC regulates the secondary voltage and frequency in [19]; and MPC 

reduces eddy current losses in the inner control loop in [20].  

In this paper, a reference is set for each controlled parameter for the proposed MPC-based DG 

controller; when deviations from a reference occur, MPC reads the polarity and depth of such 

deviations, solves the system model to achieve an optimum trajectory of control signals to get the 

controlled parameters back to their reference values. This way, the proposed approach completely 

compensates any deviations by accurately updating the reference for 𝑈𝑑 𝑎𝑛𝑑 𝑈𝑞, which indirectly 

ensures the dispatch of necessary power. MPC’s predictive competency ensures the controller’s 
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redundancy, which boosts up the microgrid stability. Each MPC-based DG controller responds 

using the respective PCC data, so no MGCC or DG-to-DG communication network is necessary.   

The main contributions of this paper include: 1) a novel model predictive control-based DG 

controller is developed using a data-driven predictive model from system identification, directly 

correlating the deviation of voltage and frequency with the direct(d)- and quadrature (q)-axis 

components of the DG control signal; 2) the proposed controller can achieve simultaneous P-f/Q-

V and P-V/Q-f control, and the secondary controller is not needed; and 3) the proposed controller 

can update the control signal reference according to the line voltage drop, and thus, the virtual 

impedance loop is not needed.   

The paper is arranged as follows: the proposed approach is introduced in Section 8.2; the 

fundamental theory is explained in Section 8.3; the data-driven predictive model is presented in 

Section 8.4; the proposed model predictive control-based DG controller is developed in Section 

8.5; the proposed controller is validated through case and sensitivity studies in in Sections 8.6 and 

8.7; and conclusions are drawn in Section 8.8.    

8.2 The Proposed Approach  

The mathematical formulation for the proposed control system and the stepwise development of 

the proposed MPC-based DG controller is described in this section.  

8.2.1 Mathematical Formulation for Proposed Control System 

For a microgrid depicted in Fig. 8.1, the generated active and reactive power at the point S can 

be expressed as follows: 
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Fig. 8. 1. A microgrid with an interfaced inverter system. 

 

𝑃 =
𝑉𝑠

𝑅2+𝑋2
[𝑅(𝑉𝑠 − 𝑉𝐿 cos 𝛿) + 𝑋𝑉𝐿 sin 𝛿]     (1) 

𝑄 =
𝑉𝑠

𝑅2+𝑋2
[𝑋(𝑉𝑠 − 𝑉𝐿 cos 𝛿) −  𝑅𝑉𝐿 sin 𝛿]     (2) 

Assuming a very small power angle, 𝛿, (1) and (2) can be rewritten by 

𝛿 =
1

𝑉𝑠𝑉𝐿
(𝑋𝑃 − 𝑅𝑄)       (3) 

𝑉𝑠 − 𝑉𝐿 =
1

𝑉𝑠
(𝑋𝑄 + 𝑅𝑃)       (4) 

The system frequency 𝑓 is dynamically controlled by the power angle, 𝛿, therefore, droop 

equations resulted from (3) and (4) including both resistance and reactance of distribution lines 

can be expressed by 

𝑓 − 𝑓0 = −𝑘𝑝1(𝑃 − 𝑃0) + 𝑘𝑝2(𝑄 − 𝑄0)     (5) 

𝑉𝑠 − 𝑉𝑠0 = −𝑘𝑞1(𝑄 − 𝑄0)  − 𝑘𝑞2(𝑃 − 𝑃0)    (6) 

Eqs. (5) and (6) indicate that the control algorithm enables a simultaneous P-f/Q-V and P-V/Q-

f control due to consideration of both line resistance and line reactance. Therefore, active and 

reactive power can be expressed by 

𝑃 =
3

2
(𝑈𝑑𝐼𝑑 + 𝑈𝑞𝐼𝑞)       (7.1) 
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𝑄 =
3

2
(−𝑈𝑑𝐼𝑞 + 𝑈𝑞𝐼𝑑)      (7.2) 

where subscript d and q represent the d- and q-axis components of the respective parameters. Eqs. 

(7.1) and (7.2) transform (3) and (4) into the following form: 

𝛿 =
3

2

1

𝑉𝑠𝑉𝐿
[(𝑋𝐼𝑑 + 𝑅𝐼𝑞)𝑈𝑑 + (𝑋𝐼𝑞 − 𝑅𝐼𝑑)𝑈𝑞]    (8) 

𝑉𝑠 − 𝑉𝐿 =
3

2

1

𝑉𝑠
[(𝑅𝐼𝑑 − 𝑋𝐼𝑞)𝑈𝑑 + (𝑅𝐼𝑞 + 𝑋𝐼𝑑)𝑈𝑞]    (9) 

For simplicity, it is assumed that variations of 𝑈𝑑 and 𝑈𝑞 do not change 𝐼𝑑 and 𝐼𝑞, therefore, the 

control formula developed in (8) and (9) can be expressed as follows:  

𝑓 − 𝑓0 =
3

2

1

𝑉𝑠𝑉𝐿
[(𝑋𝐼𝑑 + 𝑅𝐼𝑞)(𝑈𝑑 −𝑈𝑑0) + (𝑋𝐼𝑞 − 𝑅𝐼𝑑)(𝑈𝑞 − 𝑈𝑞0)]  (10) 

𝑉𝐿 − 𝑉𝐿0 =
3

2

1

𝑉𝑠
[(𝑅𝐼𝑑 − 𝑋𝐼𝑞)(𝑈𝑑 − 𝑈𝑑0) + (𝑅𝐼𝑞 + 𝑋𝐼𝑑)(𝑈𝑞 − 𝑈𝑞0)]   (11) 

where 𝑓 and 𝑉𝐿 are reference voltage and frequency, and 𝑓0 and 𝑉𝐿0 are nominal voltage and 

frequency, respectively. 𝑈𝑑 and 𝑈𝑞 are the reference of the respective parameters at 𝑓 and 𝑉𝐿, and 

𝑈𝑑0 and 𝑈𝑞0 are the pre-disturbance reference of the respective parameters.  

The major challenge to implement the formulas is the required resistance and reactance values 

of distribution lines, which is often impractical to obtain in real-life. As a remedy, a data-driven 

system identification approach is adopted, and Eqs. (10) and (11) are re-formulated by  

∆𝑓 = 𝑘1∆𝑈𝑑 + 𝑘2∆𝑈𝑞       (12) 

∆𝑉 = 𝑘3∆𝑈𝑑 + 𝑘4∆𝑈𝑞       (13) 

where coefficients 𝑘1 to  𝑘4 are derived through data-driven system identification approach.  



234 

 

The impacts of distribution line parameters on voltage and frequency due to variations of 𝑈𝑑 and 

𝑈𝑞 are embedded in (12) and (13), so the control algorithm can response accordingly and does not 

require a virtual impedance loop. In addition, it can be inferred from (12) and (13) that the 

compensation of the voltage and frequency can be expressed as a function of  ∆𝑈𝑑 and ∆𝑈𝑞. Based 

on (5), (6), (12) and (13), a complete compensation of voltage and frequency by directly regulating 

𝑈𝑑 and 𝑈𝑞 ensures necessary adjustments of power flow ((𝑃 − 𝑃0) and (𝑄 − 𝑄0)). This way, 

(𝑃 − 𝑃0) and (𝑄 − 𝑄0) are proportionally correlated with ∆𝑉 and ∆𝑓 through ∆𝑈𝑑 and ∆𝑈𝑞. In a 

multi-DG scenario, the net deviation can be distributed among DGs according to their nameplate 

ratings, which will ensure proportional power sharing among them. The control algorithm becomes 

∑ 𝑘𝑠,𝑖
𝑁𝐷𝐺
𝑖=1 ∆𝑓 = ∑ (𝑘1,𝑖∆𝑈𝑑,𝑖 + 𝑘2,i∆𝑈𝑞,𝑖)

𝑁𝐷𝐺
𝑖=1     (14) 

∑ 𝑘𝑠,𝑖
𝑁𝐷𝐺
𝑖=1 ∆𝑉 = ∑ (𝑘3,i∆𝑈𝑑,𝑖 + 𝑘4,i∆𝑈𝑞,𝑖)

𝑁𝐷𝐺
𝑖=1     (15) 

where 𝑘𝑠,𝑖 is the sharing factor of the 𝑖𝑡ℎ DG, and 𝑁𝐷𝐺 is the total number of DGs. 𝑘𝑠,𝑖 is determined 

according to the nameplate rating of the respective DG. This way, the overall required 

compensation is distributed among DGs according to their capacity, and DGs then dispatch power 

accordingly.   

8.2.2 Stepwise Evolution of the Proposed Controller  

Before describing the stepwise development of the proposed controller, we describe a few 

terminologies of MPC: 

• Controlled variable (CV): CVs are the measured variables that the MPC controls at the 

desired set point to achieve the controller’s objectives. In this controller, ∆𝑓 and ∆𝑉 at the PCC 

are two CVs.  
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• Manipulated variable (MV). MVs are the controller outputs that MPC adjusts to force CVs 

to follow the references. In this controller, 𝑈𝑑 and 𝑈𝑞 are MVs. 

• Plant Model: It is a mathematical model correlating MVs and CVs of the system.  

The proposed controller is developed in the following 8 steps, as shown in the flowchart in Fig. 

8.2: 

Step 1: Offline system identification model. To develop the model expressed in (12) and (13), d- 

and q-axis components (𝑈𝑑 and 𝑈𝑞) of the control signal are varied over a narrow region so that 

the system dynamics are influenced without initiating the non-linearity, and the corresponding 

deviations of the PCC’s voltage and frequency are recorded. The input-output parameters and 

points of data acquisition are marked in red in Fig. 8.3. The details about the collected input-output 

data for the system identification are provided in Section IV. The model is developed using Gauss-

Newton-based nonlinear least-square method with the prediction optimization focus.  
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Fig. 8. 2. Flow chart of the proposed controller design.  
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Fig. 8. 3. Schematic diagram of the test system simulation model. 

 

 

Step 2: MPC-based DG controller. Using the developed system identification model in Step 1 

as a plant model, the MPC-based DG controller is developed. The schematic diagram of the 

proposed control approach is given in Fig. 8.3. Details about the controller developments are 

provided in Section V. Both ∆𝑉𝑟𝑒𝑓 and ∆𝑓𝑟𝑒𝑓 in Fig. 8.3 are set to “zero”, which means the 

controller maintains the voltage and frequency at their nominal values.  

Step 3: Detection of deviations. At every control interval, MPC reads the deviations of the 

voltage and frequency from their nominal values at the PCC. If no deviations are detected, MPC 

continues with the MVs applied in the previous control interval.   
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Step 4: Sharing the overall compensation. If a deviation is detected, DGs assess their respective 

portion from the overall required compensation using the sharing factor (𝑘𝑠). 𝑘𝑠 is determined 

according to the nameplate rating of DGs to ensure proportional power sharing among the DGs.  

Step 5: Updating the current states. After deciding the required contribution, each individual 

DG updates current states of the plant using a steady-state Kalman filter-based state observer.  

Step 6: Prediction of the future plant response. With the past trajectory of the MVs up to current 

time and current states, MPC predicts the plant outputs up to the prediction horizon.  

Step 7: Solve the quadratic programming (QP) Problem. With the predicted states and outputs, 

MPC solve the QP problem using KWIK algorithm based Active-set QP solver. The solution 

predicts the optimal trajectory of the MVs that will bring the voltage and frequency back to their 

respective nominal values. If the solver detects infeasibility or reach to the maximum iteration 

limit before converging to the optimal trajectory, MPC adopts the optimal trajectory from the 

previous control interval.  

Step 8: Apply the first projected MVs. Although MPC projects the optimal MVs trajectory up to 

the prediction horizon, only the first projected MVs movement is applied in the immediate next 

control interval.  

The process keeps cycling from Steps 3 to 8 until the deviation is compensated. When 

compensated, MPC continues with the MVs applied in the previous control interval until a new 

deviation is detected.  

8.3 Fundamental Theory  

The theories used to develop the system identification model and MPC controller are stated in 

this section.   
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8.3.1 System Identification 

8.3.1.1 Box-Jenkins model  

A Box-Jenkins (BJ) model is a polynomial mathematical model that provides the flexibility of 

independent parameterization of a system’s dynamics and associated noises using rational 

polynomial functions [13]. The general expression of the Box-Jenkins model with 𝑛𝑢 inputs and 

𝑛𝑦 outputs is 

∑ ∑ 𝐴𝑖𝑗(𝑞)𝑦𝑗(𝑡) = ∑ ∑
𝐵𝑖𝑗(𝑞)

𝐹𝑖𝑗(𝑞)
𝑢𝑖(𝑡 − 𝑛𝑘𝑖𝑗) + ∑

𝐶𝑗(𝑞)

𝐷𝑗(𝑞)
𝑒𝑡(𝑡)

𝑛𝑦
𝑗=1

𝑛𝑦
𝑗=1

𝑛𝑢
𝑖=1

𝑛𝑦
𝑗=1

𝑛𝑢
𝑖=1   (16) 

Where A, B, C, D, and F are polynomial coefficients; q is the time shift operator; u(t) and y(t) are 

the input and the output, respectively; 𝑛𝑘𝑖𝑗 is the transport delay in between the  𝑖𝑡ℎ input and 𝑗𝑡ℎ; 

and 𝑒𝑡(𝑡) is the noise. C and D are related to the noise and can be modeled independently, 

regardless of B and F. A, B, F, and K are 𝑛𝑦 × 𝑛𝑢 matrices; C and D are 𝑛𝑦 × 1 matrices. The 

number of coefficients in the denominator in (1) represents the pole number, and the numerator 

polynomials are one unit more than the number of zeros. A, B, C, D, and F can be obtained by the 

nonlinear least-square approach.   

8.3.1.2 The Gauss-Newton method 

GN is a line search-based quasi newton approach. For a search direction of 𝑝𝑘
𝐺𝑁 and step size 

of 𝛼𝑘
𝐺𝑁, the iterative equation of GN can be expressed by [21] 

𝜃𝑘+1 = 𝜃𝑘 + 𝛼𝑘𝑝𝑘
𝐺𝑁     (17) 

GN approximates the objective function’s Hessian matrix to its truncated form of  𝐽(𝜃𝑘)
𝑇𝐽(𝜃𝑘), 

and the search direction 𝑝𝑘
𝐺𝑁 is given by 

[𝐽(𝜃𝑘)
𝑇𝐽(𝜃𝑘)]𝑝𝑘

𝐺𝑁 = −𝐽(𝜃𝑘)
𝑇𝑟(𝜃𝑘)          (18)  
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Where, 𝐽 ∈ ℝ𝑚×𝑛 is the Jacobian of 𝑟(𝜃). 

8.3.1.3 The objective function 

In system identification, model parameters are estimated by minimizing the objective function, 

which is a weighted sum of squares of the residuals expressed as follows. 

𝑉(𝜃) =
1

𝑁
∑ 𝑟𝑇𝑁
𝑡=1 (𝑡, 𝜃)𝑊(𝜃)𝑟(𝑡, 𝜃)    (19)  

Where N is the number of data samples, and 𝑊(𝜃)is a weighted semi-definite matrix of the vector 

parameter 𝜃.  

The focus of the parametric optimization is set to “Prediction”. It mainly impacts how the 

residuals in the objective function are computed. The general expression to compute the residuals 

can be expressed as follows: 

𝑟(𝑡, 𝜃) = 𝑦𝑚(𝑡) − 𝑦𝑝(𝑡, 𝜃)      (20) 

Where, 𝑦𝑚(𝑡) is the measured output, 𝑦𝑝(𝑡, 𝜃) is the predicted response of the mode.   

The predicted response is computed certain steps ahead in time using the current input and past 

measured input and output, including initial states. To calculate a predicted response k step ahead 

into the future from the current time t, where 𝑘 ≥ 1, all the inputs up to (𝑡 + 𝑘) and all outputs up 

to t must be available.  The general expression for the predicted response can be expressed by 

𝑦𝑟(𝑡 + 𝑘, 𝜃) = 𝑓(𝑢𝑚(𝑡 + 𝑘), 𝑢𝑚(𝑡 + 𝑘 − 1), … , 𝑢𝑚(𝑡), 𝑢𝑚(𝑡 − 1), … , 𝑢𝑚(0); 𝑦𝑚(𝑡), 𝑦𝑚(𝑡 −

1), . . 𝑦𝑚(0))   (21) 

 This updating characteristic of the prediction focus keeps residuals (𝑟(𝑡, 𝜃)) low, which 

subsequently supports the GN’s approximation of the truncated Hessian for all iterations. The 

prediction focus ensures faster and guaranteed convergence of GN method. 
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8.3.1.4 Model quality matrices 

The model quality matrices used in this paper include Akaike’s Final Prediction Error (FPE), 

Mean Square Error (MSE), and the model data fitting accuracy.  FPE represents the prediction 

error among a group of models [22]. MSE is the second moment of the error. A good model comes 

with a lower value of FPE and MSE, representing a higher fitting accuracy.  

8.3.2 MPC Controller 

8.3.2.1 Plant Model 

To comply with the MPC’s requirement, the developed BJ plant model is converted into a delay 

free, linear time-invariant (LTI) state-space model with dimensionless input and output. The “SS” 

function available in MATLAB converts the BJ model into state space; later, another function, 

“absorbDelay”, which converts a delay of 𝑘 sampling period into 𝑘 poles at 𝑧 = 0, is used to make 

the model delay free. Then, the inputs and outputs of the converted state-space model is made 

dimensionless by taking the following form: 

𝑥𝑝(𝑘 + 1) = 𝐴𝑝𝑥𝑝(𝑘) + 𝐵𝑝𝑢𝑢𝑝(𝑘)     (22) 

𝑦𝑝(𝑘) = 𝐶𝑝𝑥𝑝(𝑘) + 𝐷𝑝𝑢𝑢𝑝(𝑘)     (23) 

Where 𝐴𝑝, 𝐵𝑝𝑢, 𝐶𝑝, and 𝐷𝑝𝑢 are the delay free dimensionless matrices of the plant model. 𝑥𝑝, 𝑢𝑝, 

and 𝑦𝑝 are the dimensionless states, manipulated variables (inputs), and outputs of the plant model. 

𝐶𝑝 = (𝑆𝑝
𝑦
)−1𝐶.  𝐵𝑝𝑢 and 𝐷𝑝𝑢 are the corresponding column of 𝐵𝑆𝑝

𝑢 and (𝑆𝑝
𝑦
)−1𝐷𝑆𝑝

𝑢, respectively. 

𝑆𝑝
𝑢 𝑎𝑛𝑑 𝑆𝑝

𝑦
 are the scale factors of the plant inputs and outputs, respectively. 𝐵, 𝐶, 𝑎𝑛𝑑 𝐷 are the 

state-space matrices of the plant model with delay.   
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8.3.2.2 Noise model 

The proposed controller rejects measurement noises according to noise models given during 

the controller development. Similar to the plant model, the noise model also has to be the delay 

free, LTI state-space model. The noise model can be expressed by 

𝑥𝑛(𝑘 + 1) = 𝐴𝑛𝑥𝑛(𝑘) + 𝐵𝑛𝑤𝑛(𝑘)     (24) 

𝑦𝑛(𝑘) = 𝐶𝑛𝑥𝑛(𝑘) + 𝐷𝑛𝑢𝑛(𝑘)     (25) 

Where 𝐴𝑛, 𝐵𝑛, 𝐶𝑛, and 𝐷𝑛 are the delay-free dimensionless matrices of the noise model. 𝑥𝑛, 𝑤𝑛, 

and 𝑦𝑛 are the delay-free states, inputs, and outputs of the noise model. 

8.3.2.3 Controller state observer model 

A steady-state Kalman filter-based state observer is used to estimate unmeasured states of the 

system. The state observer combines the plant and noise models, and update the states through the 

steady-state Kalman filter in every control interval. To set the Kalman coefficients, Kalman gains 

calculation approach described in [23] is adopted.  The state-space representation of the state 

observer is given as follows: 

𝑥𝑐(𝑘 + 1) = 𝐴𝑐𝑥𝑐(𝑘) + 𝐵𝑐𝑢𝑐(𝑘)    (26) 

𝑦𝑐(𝑘) = 𝐶𝑐𝑥𝑐(𝑘) + 𝐷𝑐𝑢𝑐(𝑘)     (27) 

where,  

𝐴𝑐 = [
𝐴𝑝 0

0 𝐴𝑛
]      (28) 

𝐵𝑐 = [
𝐵𝑝𝑢 0

0 𝐵𝑛
]      (29) 

𝐶𝑐 = [𝐶𝑝 [
𝐶𝑛
0
]]      (30) 
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𝐷𝑐 = [0 [
𝐷𝑛
0
]]      (31) 

𝑢𝑐
𝑇 = [𝑢𝑝

𝑇 𝑤𝑛
𝑇]      (32) 

𝑥𝑐
𝑇 = [𝑥𝑝

𝑇 𝑥𝑛
𝑇]      (33) 

 

8.3.2.4 Contraints 

The proposed controller ensures constrained optimization of the plant’s outputs and MVs 

during operation. The constraints are expressed by 

𝑦𝑝,𝑗,𝑚𝑖𝑛

𝑆
𝑝,𝑗
𝑦 − 𝜀𝑘𝑉𝑝,𝑗,𝑚𝑖𝑛

𝑦
≤

𝑦𝑝,𝑗(𝑘 + 𝑖|𝑘)
𝑆
𝑝,𝑗
𝑦 ≤

𝑦𝑝,𝑗,𝑚𝑎𝑥

𝑆
𝑝,𝑗
𝑦 + 𝜀𝑘𝑉𝑝,𝑗,𝑚𝑎𝑥

𝑦
  (34) 

𝑢𝑝,𝑒,𝑚𝑖𝑛

𝑆𝑝,𝑒
𝑢 − 𝜀𝑘𝑉𝑝,𝑒,𝑚𝑖𝑛

𝑢 ≤
𝑢𝑝,𝑒(𝑘 + 𝑖|𝑘)

𝑆𝑝,𝑒
𝑢 ≤

𝑢𝑝,𝑒,𝑚𝑎𝑥

𝑆𝑝,𝑒
𝑢 + 𝜀𝑘𝑉𝑝,𝑒,𝑚𝑎𝑥

𝑢   (35) 

Where, 1 ≤ 𝑖 ≤ 𝑝, 1 ≤ 𝑗 ≤ 𝑛𝑦, and 1 ≤ 𝑒 ≤ 𝑛𝑢. 𝑦𝑝,𝑗,𝑚𝑖𝑛 𝑜𝑟 𝑚𝑎𝑥is the lower or upper bound of the 

𝑗𝑡ℎ plant outputs, whereas 𝑢𝑝,𝑒,𝑚𝑖𝑛 𝑜𝑟 𝑚𝑎𝑥 is the lower and upper bound of the 𝑒𝑡ℎ MVs.  

𝜀𝑘 is the slack variable that represents the worst-case constraint violation. 𝑦𝑝,𝑗(𝑘 + 𝑖|𝑘) is the 

predicted response of the 𝑗𝑡ℎ plant output at the 𝑖𝑡ℎ prediction horizon.  

The parameter, 𝑉, in the above equations represents the equal concern of relaxation (ECR) of 

the respective parameters, which decides whether a constraint is hard or soft. The quadratic 

programming solutions must satisfy the hard constraints under any circumstance. Failing to do so, 

an infeasible solution results, which could lead to a loss of control. Whereas, if required, QP can 

violate the soft constraints.  

At the very beginning of a disturbance, due to lower inertia of islanded microgrids, deviations 

of the voltage and frequency at the PCC (plant output) may momentarily go beyond the bounds. 
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Therefore, to prevent the loss of control, output bounds are softened. This softening could initiate 

steady-state errors in the voltage and frequency. As a remedy, tuning weights on the outputs are 

set to a higher value. Tuning weights penalize the deviation from the references, and thus, MPC 

allows the outputs to go beyond their bounds, but bring back to the reference as fast as it can. 

Softening both input and output bounds guarantees the QP’s feasible solution, but significantly 

deteriorates the controller’s performance [24]. Therefore, all the input bounds are set as hard 

constraints.   

8.3.2.5 Controller Working Principle 

Suppose the state observer senses a deviation of the voltage and frequency at the beginning of 

the 𝑘𝑡ℎ control interval. The sharing factor updates the MPC of each of the DGs about what 

proportion of the overall deviation they are supposed to compensate. Later, the state observer 

updates the states of the system using the following formulas. 

𝑥𝑐(𝑘|𝑘) = 𝑥𝑐
𝑟𝑒𝑣(𝑘|𝑘 − 1) + 𝑀𝑒(𝑘)    (36) 

Where, 

𝑥𝑐
𝑟𝑒𝑣(𝑘|𝑘 − 1) = 𝑥𝑐(𝑘|𝑘 − 1) + 𝐵𝑢[𝑢𝑝

𝑎𝑐𝑡(𝑘 − 1) − 𝑢𝑝
𝑜𝑝𝑡(𝑘 − 1)] (37) 

𝑒(𝑘) = 𝑦𝑚(𝑘) − 𝐶𝑚𝑥𝑐
𝑟𝑒𝑣(𝑘|𝑘 − 1)    (38) 

where 𝐵𝑢 and 𝐶𝑚 are rows of the state observer parameters 𝐵𝑐 and 𝐶𝑐 corresponding to 𝑢𝑝(𝑘) and 

𝑦𝑚(𝑘), respectively. 𝑦𝑚(𝑘) is the measured plant outputs at the 𝑘𝑡ℎ control interval.  

𝑢𝑝
𝑎𝑐𝑡(𝑘 − 1) and 𝑢𝑝

𝑜𝑝𝑡(𝑘 − 1) are the implemented and predicted MVs for (k-1) to k control 

interval.  

Later, the state observer predicts the plant outputs up to the prediction horizon using (39).  
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𝑦𝑝.𝑗(𝑘 + 𝑖|𝑘) = 𝑆𝑥𝑥𝑐(𝑘|𝑘) + 𝑆𝑢𝑢(𝑘 − 1)    (39) 

Where,  

𝑆𝑥 = [

𝐶𝑐𝐴𝑐
𝐶𝑐𝐴𝑐

2

…
𝐶𝑐𝐴𝑐

𝑝

] ∈ ℝ𝑝𝑛𝑦×𝑛𝑥      (40.1) 

𝑆𝑢 = [

𝐶𝑐𝐵𝑢
𝐶𝑐𝐵𝑢 + 𝐶𝑐𝐴𝑐𝐵𝑢…
∑ 𝐶𝑐𝐴𝑐

ℎ𝐵𝑢
𝑝−1
ℎ=1

] ∈ ℝ𝑝𝑛𝑦×𝑛𝑢    (40.2) 

and 1 ≤ 𝑖 ≤ 𝑝. 

At any control interval k, the controller minimizes the following objective function: 

𝐽(𝑧𝑘) = ∑ ∑ {
𝑤𝑝,𝑗
𝑦

𝑆
𝑝,𝑗
𝑦 [𝑟𝑝,𝑗(𝑘 + 𝑖|𝑘) − 𝑦𝑝,𝑗(𝑘 + 𝑖|𝑘)]}

2
𝑝
𝑖=1 + 𝜌𝜀𝜀𝑘

2𝑛𝑦
𝑗=1   (41) 

Where 𝑤𝑝,𝑗
𝑦

, is the tuning weight for the 𝑗𝑡ℎ plant output, and 𝑟𝑝,𝑗(𝑘 + 𝑖|𝑘) is the reference value 

of the 𝑗𝑡ℎ plant output. 

Later, the objective function is then passed to the MPC’s QP solver. The QP solver transforms 

it into the general form of the QP problem expressed as follows: 

min
𝑧𝑘

(
1

2
𝑧𝑘
𝑇𝐻𝑧𝑘 + 𝑓

𝑇𝑧𝑘)     (42) 

The adopted QP solver is a KWIK algorithm-based Active-set solver. The working principle of 

the adopted solver is explained in [25]. The solver prerequisites a positive definite Hessian matrix, 

H.  It uses the warm start approach, where the initial guesses are the active constraint sets 

determined in the previous control step. The maximum number of iterations is 120. If the solver 

detects infeasibility or iterations maxed-out without an optimal solution, the controller keeps the 
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last successful MVs. The solver returns 𝑧𝑘, which is a set of recommended optimal movements 

for the manipulated variables, expressed as follows:  

𝑧𝑘 = 𝑢𝑝
𝑜𝑝𝑡(𝑘) = [𝑢𝑝(𝑘|𝑘)

𝑇 𝑢𝑝(𝑘 + 1|𝑘)
𝑇 … 𝑢𝑝(𝑘 + 𝑝 − 1|𝑘)

𝑇 𝜀𝑘]  (43) 

Only the first recommended MV movements are implemented, then the whole process is 

repeated at (𝑘 + 1) control step. 

8.4 The GN-Based Box-Jenkins Model 

The test system simulation model shown in Fig. 8.3 is an islanded microgrid. The DG under 

analysis is a 10 kVA PV system, modeled as a constant DC voltage source. System parameters 

used in the simulation are tabulated in Table 8.1. 

Table 8. 1: Test System’s Parameters 

Parameters Values 

Nominal DC bus voltage (V) 700 

Nominal AC bus RMS line voltage (V) 380 

AC system frequency (f) 50 

DG’s Nameplate capacity (kVA) 10  

Local Load 5 kW, 1 kVar 

PCC Load 2 kW, 0.4 kVar 

 

Inverter filter 

Resistance, Rf (Ω) 0.2  

Inductance, Lf (H) 3×10-3  

Capacitance, Cf (F) 15×10-6  

Line impedance Line resistance, RL (Ω) 0.641 

Line reactance, XL (Ω) 0.08 
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First, output parameters of the test system are initialized to their nominal steady-state value. 

Initialization sets 0.821 and 0.07 for the d-axis component (𝑈𝑑) and the q-axis component (𝑈𝑞) of 

the DG’s control signal. To generate the training dataset for the system identification, 𝑈𝑑 is varied 

around its nominal value by ±0.05 and 𝑈𝑞 is varied around its nominal value by ±0.005. To 

generate the validation dataset, 𝑈𝑑 is varied around its nominal value by ±0.04, and 𝑈𝑞 by ±0.004. 

The corresponding deviations of the PCC voltage and frequency from their nominal values in pu 

(∆V and ∆𝐹) are tabulated. The duration of each step change is 0.5 s, and the data acquisition 

sampling frequency is 10 kHz. The magnitudes of the step variations are carefully chosen to 

influence system dynamics without initiating nonlinearity.   

Using the GN-based nonlinear least-square approach, the final Box-Jenkins model expressed in 

(16) is developed using the prediction optimization focus. The model’s data fitting performance 

for training and validation dataset are depicted in Fig. 8.4. The model’s FPE and MSE are 

5.12 × 10−25 and 7.68 × 10−10, respectively. The high fitting accuracies for both training and 

validation datasets and low FPE and MSE indicate that the model is in good agreement with the 

datasets.  
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Fig. 8. 4. The fitted model along with their fitting accuracies for different datasets: (a) training 

dataset; and (b) validation dataset.  

 

Finally, the model’s coefficients A, B, C, D, and F are determined as follows:    

𝐴 =  [
1 0
0 1

]       (44) 

𝐵 =  [ 
(0, 0.1189, 0.0682, 0.0932) (0, −0.967)

(0, 0, 0, 5.26 × 10−6, 7.95 × 10−5, −7.59 × 10−5) (0, 0, 0, −0.0013)
]  (45) 

𝐶 = [
(1, −0.198,−0.456,−0.479,−0.618, 0.664, 0.174)

(1, −0.364,−1.009,−0.149, 0.662, 0.096, −0.182)
]  (46) 

𝐷 = [
(1, −0.313,−0.547,−0.495,−0.581, 0.777, 0.185,−0.017)
(1, −0.421,−1.047,−0.14, 0.692, 0.092,−0.179, 0.003)

] (47) 

𝐹 = [
(𝐹11) (𝐹12)

(𝐹21) (𝐹22)
]      (48) 

𝐹11 = [1,−0.49,−0.355, 0.047, 0.286,−0.181,−0.557, 0.291] 

𝐹12 = [1,−1.599, 0.589, 0.713, −1.025, 0.335] 
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𝐹21 = [1,−0.702, 0.075,−0.865, 0.115, 0.288,−0.014, 0.112] 

𝐹22 = [1,−0.051, 0.422,−0.699,−0.157, −0.476] 

8.5 The MPC-Based DG Controller Design 

Using the developed system identification model, the MPC-based DG controller is developed. 

The controller sample time is set to 0.001s and output parameters are constrained within ±0.05 

pu of deviations around the nominal values [26]. Equal concern of relaxation (ECR) for upper and 

lower bounds of the MVs are 0, whereas, the same for the outputs are 1. A 0 ECR makes the input 

bounds hard, whereas a non-zero ECR makes the output bounds soft. Critical parameters used to 

develop the controller are tabulated in Table 8.2.  

Table 8. 2: MPC controller’s Parameters 

Parameters Values 

Nominal Value of 𝑈𝑑 and 𝑈𝑞 0.821 and 0.07 

Nominal value for DelV and DelF 0 and 0 

Scale Factor for 𝑈𝑑 and 𝑈𝑞 0.95 and 0.3 

Scale factor for DelV and DelF 13.6 and 0.0102 

Operational range for 𝑈𝑑 0 to 0.95 

Operational range for 𝑈𝑞 0 to 0.3 

Tuning Weight on DelV and DelF 20 and 20 

Prediction Horizon 10 

Control Horizon 2 

 

 

As the state observer updates the states of the noise and plant models in every control interval, 

any change in system parameters is automatically reflected on the updated states (Fig. 8.5). This 
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way, the proposed controller updates the plant model itself, reduce the necessity of redevelopment 

of the plant models for every individual DGs.   

 

Fig. 8. 5. Change of plant state with line impedances. 

8.6 Case Studies 

To validate the proposed controller, several case studies are conducted in this section. Fig. 8.6 

shows an islanded microgrid used in case studies. Both DGs have a local load of 5 kW and 1 kVar. 

In all case studies, the local load is not varied; for the PCC load, only “PCC Load 1” is connected 

in the beginning, and “PCC Load 2” comes online at 2.5 s. A delay of 20 sampling period (2 ms) 

representing the communication delay between the PCC and the inverter is considered. All MPC-

based DG controllers are fed by the same plant model developed earlier, although they have 

different line impedances.  

The specifications of the two lines and the two PCC loads are given as follows: RL= 0.321 Ω 

and XL= 0.04 Ω for Line 1; RL= 0.642 Ω and XL= 0.08 Ω for Line 2; 2 kW and 0.4 kVar for PCC 

Load 1; and 1 kW and 0.2 kVar for PCC Load 2. 
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Fig. 8. 6. The single line diagram of the test microgrid configuration. 

 

8.6.1 Case Study 1: Comparison with the Existing Methods 

In Case Study 1, each DG has a name plate capacity of 10 kW, and a sharing factor (𝑘𝑠) of 0.5. 

To demonstrate the effectiveness of the proposed controller over existing methods, its performance 

is compared with two existing methods: one is droop control with a secondary controller in [6]; 

and another is droop control with a secondary controller and the virtual impedance in [27].  

The existing controller in [6] shows good performance with accurate active power sharing and 

complete restoration of the frequency without any DG-to-DG communication network; however, 

due to the absence of virtual impedance, it fails to ensure reactive power sharing as shown in Fig. 

8.7(b).  

On the other hand, although the existing controller in [27] has ensured active and reactive power 

sharing, and compensation of voltage and frequency deviations, it requires a DG-to-DG 

communication network. The communication latency induces very low magnitude, high frequency 

ripples, which deteriorates the power quality.  
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As shown in Fig. 8.7, the proposed method ensures complete restoration of the voltage and 

frequency and share active and reactive power equally between the two DGs without any 

secondary controller, virtual impedance loop and DG-to-DG communication network. In terms of 

the power quality, the proposed controller and the existing controller in [6] maintain better power 

quality with only 0.2% voltage total harmonic distortion (VTHD) at the PCC; however, the 

existing controller in [27] has lower power quality with 1.5% VTHD at the PCC.  

 

 

Fig. 8. 7. Performance comparison of the proposed and two existing controllers; (a) PCC voltage 

in pu; (b) reactive power supplied by DGs in Var; (c) PCC frequency in pu; (d) active power 

supplied by DGs in W (Case Study 1).   
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8.6.2 Case Study 2: Equal Power Sharing  

In Case Study 2, each DG has a name plate capacity of 10 kW, and a sharing factor (𝑘𝑠) of 0.5. 

Before “PCC Load 2” gets connected, each DG is supplying power at 6 kW and 1.2 kVar. Due to 

the DGs’ equal ratings, the control signals generated by the MPC are very near to each other but 

keep a little bit difference because of their impedance mismatch (Fig. 8.8 (d) and (h)). Following 

the connection of “PCC Load 2” at 2.5 s, both MPC controllers analyze the sags and adjust control 

signals. The adjustments compensate the voltage and frequency deviations and ensure equal power 

sharing between the DGs. The post-disturbance power flow from each DG is 6.5 kW and 1.3 kVar 

(Fig. 8.8 (c) and (g)). 

 

Fig. 8. 8. Controller performance: (a) PCC voltage deviation from the nominal in pu; (b) PCC 

voltage in pu; (c) Reactive power supplied by DGs in Var; (d) d-axis component of the control 

signal; (e) PCC frequency deviation from the nominal in pu; (f) PCC frequency in pu; (g) active 

power supplied by DGs in w; (h) q-axis component of the control signal (Case Study 2).  
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8.6.3 Case Study 3: Proportional Power Sharing 

In Case Study 3, the name plate capacity for DG1 and DG2 are 30 kW and 10 kW, respectively; 

and their sharing factor (𝑘𝑠) are 0.75 and 0.25, respectively. The pre-disturbance power flow from 

DG1 and DG2 are (9 kW, 1800 Var) and (3 kW, 600 Var), respectively. Following the connection 

of PCC Load 2, controllers respond according to their capacity and impedance mismatch and 

compensate the deviations promptly. The post-disturbance power dispatch from DG1 and DG2 are 

(9.9 kW, 1950 Var) and (3.3 kW, 650 Var), respectively (Fig, 9 (c) and (g)). The proposed 

controller ensures the proportional power sharing between the DGs before and after the connection 

of PCC Load 2.   

 

Fig. 8. 9. Controller performance: (a) PCC voltage deviation from the nominal in pu; (b) PCC 

voltage in pu; (c) Reactive power supplied by DGs in Var; (d) d-axis component of the control 

signal; (e) PCC frequency deviation from the nominal in pu; (f) PCC frequency in pu; (g) active 

power supplied by DGs in w; (h) q-axis component of the control signal (Case Study 3).  
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8.6.4 Case Study 4: Performance with one added DG   

Case Study 4 is conducted to evaluate the performance of the proposed controller if an additional 

DG is connected. Therefore, an additional DG, identical to DG 1 are connected in parallel with the 

two existing DGs. All three DGs have 10 kW nameplate rating, and their sharing factor (𝑘𝑠) is 
1

3
. 

Before 2.5 s, the total connected load is 17 kW and 3.4 kVar; and at 2.5 s, PCC Load 2 is connected. 

It is found that the three DGs share the total load demand equally, and each of them supplies 5.7 

kW and 1.14 kVar of power till 2.5 s (Fig. 8.10 (c) and (g)). After the connection of PCC Load 2, 

the controllers adjust their references by analyzing the depth of deviations, and each DG contribute 

power at 6 kW and 1.2 kVar.    

 

 

Fig. 8. 10. Controller performance: (a) PCC voltage deviation from the nominal in pu; (b) PCC 

voltage in pu; (c) Reactive power supplied by DGs in Var; (d) d-axis component of the control 
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signal; (e) PCC frequency deviation from the nominal in pu; (f) PCC frequency in pu; (g) active 

power supplied by DGs in w; (h) q-axis component of the control signal (Case Study 4).  

8.7 Robustness Analysis 

To study the robustness of the proposed controller, parameters critically influence the 

controller’s performance are studied. Parameters under analysis are distribution line impedance 

(𝑍𝐿), communication delay, and measurement noises. To conduct the analysis, the microgrid 

configuration used in Case Study 2 is considered.  

8.7.1 Distribution Line Impedance Variation 

  In real life, the impedance of a distribution line can be influenced by ambient conditions, aging 

and change of conductors. Therefore, a microgrid controller should be robust to the impedance 

variations. The impedance can be varied uniformly for all lines, or different lines could face 

different rate of variations. Therefore, the performance of the proposed controller is studied for 

both conditions.  

In the first study, for both “Line 1” and “Line 2”, a uniform 50% rise and drop are considered; 

while in the second study, Line 1 is varied by 50%, and Line 2 is varied by 40%. Although for 

day-to-day operation, these range of variations are highly unlikely, however, due to aging, faulty 

conductor or change of conductor, this situation may arise. The performance of the proposed 

controller for the two studies are depicted in Figs. 11 and 12, respectively.  

As the controller automatically adapt itself with the changing impedance by updating the states, 

therefore, its performance is robust even for such huge deviations. For study 1, the maximum 

active and reactive power sharing errors for the increased impedance are 39 W and 6 Var, 

respectively; whereas for the decreased impedance, they are 11 W and 11 Var, respectively. On 

the other hand, in study 2, the maximum sharing errors for the risen impedance are 34 W and 5 
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Var, and for the decreased impedance are 7 W and 7 Var. From Fig. 8.11, 12(a) and 12(c), it is 

found that the impedance change has very minimal impact on the controller’s voltage and 

frequency recovery performance. Therefore, the proposed controller is robust to sudden impedance 

variations, and doesn’t need frequent retuning.     

 

Fig. 8. 11. The proposed controller for uniform impedance variation of Line 1 and Line 2; (a) 

PCC voltage in pu; (b) Reactive power supplied by DGs in Var; (c) PCC frequency in pu; (d) 

active power supplied by DGs in W.   
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Fig. 8. 12. The proposed controller for un-uniform impedance variation of Line 1 and Line 2; (a) 

PCC voltage in pu; (b) Reactive power supplied by DGs in Var; (c) PCC frequency in pu; (d) 

active power supplied by DGs in W.   

8.7.2 Communication Delay 

The proposed controller responds based on the PCC data; doesn’t require DG-to-DG 

communication. However, to realize any deviations, a communication link from the PCC to the 

inverter terminal is required. Subjected to the length of distribution lines and the communication 

architecture, this communication link may introduce delays in the controller response. Therefore, 

the robustness of the controller to communication delays should be evaluated.  

The analysis shows that the proposed controller can maintain the stable and unaltered 

performance up to 210-sampling delay (𝑁𝐷𝐸𝐿𝐴𝑌), which is equivalent to 21 ms of communication 
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delay (Fig. 8.13). The tolerance time is significantly better than 2.55 ms in [28]. As a result, the 

proposed approach doesn’t require costly faster communication network, and thus, ensures more 

economical operation.  

 

Fig. 8. 13. The proposed controller for different communication delays; (a) PCC voltage in pu; 

(b) Reactive power supplied by DGs in Var; (c) PCC frequency in pu; (d) active power supplied 

by DGs in W.   

8.7.3 Measurement Noise 

Noises are an integral part of the real-life measurements; therefore, usually data are prefiltered 

before feed into the controller. The proposed controller has a built-in Kalman filter which is 

effective in filtering the white Gaussian measurement noise, so no additional prefiltering is 

required before the data are feed into the controller.  
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To demonstrate the controller’s robustness against measurement noises, white Gaussian noise 

are added with ∆𝑉 and ∆𝐹 (Fig. 8.14(b) and (e)) and passed to the controller. Fig. 8.14(a) and (d) 

depict that the controllers successfully cancel out the noises and keep the performance unaffected.     

 

Fig. 8. 14. The proposed controller with unfiltered measurement noises; (a) PCC voltage in pu; 

(b) Noisy deviation of voltage data, ∆𝑉 in pu; (c) Reactive power supplied by DGs in Var; (d) 

PCC frequency in pu; (e) Noisy deviation of frequency data, ∆𝐹 in pu; and (f) active power 

supplied by DGs in W.   

8.8 Conclusion 

In this paper, a novel MPC-based DG controller in islanded microgrids is proposed by 

controlling deviations of the voltage and frequency at the PCC using the d- and q-axis components 

of the DG control signal. The control model is developed using non-linear least-square approach 
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with Gauss-Newton line search method. The proposed approach can fully compensate the voltage 

and frequency deviations and ensure proper active and reactive power sharing among DGs without 

any secondary controller and virtual impedance loop. The proposed controller doesn’t require DG-

to-DG communication network and is robust to line impedance variations and measurement 

noises.     
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Chapter 9 

Conclusions and Future Work 

 

9.1 Summary and Conclusions 

In this research, advanced control schemes for grid-connected wind power plants and model 

predictive control-based controller for DG control in islanded microgrids are investigated. The 

following summarizes the work that has been done in this thesis.  

For developing control techniques for WPPs, two regression models have been developed 

through surface fitting using MATLAB curve fitting toolbox: one model based on simulation data 

is to determine the required reactive power for grid voltage compensation; another model based 

on field measurement data is to determine reactive power characteristics of the WPP. A central 

control architecture to control the dispatch of reactive power during over-, under-, and normal-

voltage conditions has been developed. The effectiveness of the developed two regression models 

and the central WPP control architecture has been validated through MATLAB/Simulink 

simulations. A capacitor bank controller that regulates the switching of capacitor banks and 

ensures optimum switching has been developed. 

 Moreover, an analytical model for the maximum reactive power capability curve at the plant-

level of DFIG-based WPPs has been developed considering several constraint variables at DFIGs 

and the plant-level. The reactive power capability curve for individual DFIGs is derived, 

considering the effect of stator currents, rotor currents, rotor voltages, winding factors, magnetic 

saturation, and losses associated with converter switches. The plant level reactive power capability 

curve has been developed considering the wake effect and distribution feeder losses. 
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Finally, using the developed maximum reactive power capability model, an adaptive droop 

coefficient-based WPP controller is developed. The controller consists of a central WPP controller 

and a local WTG controller. Both controllers operate in voltage control mode. An updated droop 

coefficient estimation model considering the depth of voltage deviations and the range of reactive 

power capability is proposed. A GSC controller is developed to utilize the reactive power 

capability of GSC. The proposed WPP controller can extract more reactive power and maximize 

WPP’s contribution to the voltage compensation action.  

A new methodology to control distributed generation units in an islanded microgrid is proposed. 

The model inputs are direct- and quadrature-axis components of the control signal, and the model 

outputs are deviations of the voltage and frequency from their nominal values at the PCC. The 

model is parameterized through data-driven approach using nonlinear least-square optimization. 

Due to the flexibility in formulating the system and noise model, the polynomial Box-Jenkins 

model is chosen as the model structure. To initialize the iteration for nonlinear least square, the 

Backcast technique is chosen by comparing with Zero and Estimate techniques. Four NLS 

optimization algorithms, where two are line search-based (Gauss-Newton (GN), and Adaptive 

Gauss-Newton (AGN)), and two are trust region-based (Levenberg-Marquardt (LM), and Trust 

Region Reflective (TRR)) are studied to get the optimum model coefficients. GN shows consistent 

and superior performance over the others and is chosen as the suitable optimization technique. 

Two optimization methodologies for the chosen GN method are evaluated: “simulation” focus and 

“prediction” focus. The prediction focus shows much better performance, such as a high prediction 

accuracy and faster convergence; it also avoids the necessity of data prefiltering by introducing a 

built-in weighted filter in the objective function. 
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Finally, to regulate the voltage and frequency at the PCC in an islanded microgrid, a model 

predictive control-based DG controller is developed. The controller adopts the developed data-

driven DG control algorithm. The control algorithm executes simultaneous control of P-f/Q-V and 

P-V/Q-f by considering both resistance and reactance of distribution lines. As a result, the proposed 

controller can completely compensate the voltage and frequency deviation and ensure accurate 

power sharing among DGs without the secondary controller and virtual impedance loop.   

9.2 Major Contributions of the Research Work 

Major Contributions of the research work are summarized below. 

Part 1: 

1. Developed a WPP controller that could extract the maximum amount of reactive power 

from a DFIG-based WPP. 

2. Developed the maximum reactive power capability model for an individual WTG and the 

whole WPP plant using a wide range of practical and influential parameters.  

3. Developed a steady-state reactive power capability model of a DFIG-based WPP using 

SCADA measurement data. 

 

Part 2: 

2. Developed a novel DG control algorithm to regulate the voltage and frequency at the PCC 

of an islanded microgrid. The algorithms inputs are direct(d)- and quadrature(q)- axis 

components of the control signal and outputs are deviations of the voltage and frequency at 

the PCC. The control algorithm considers both resistance and reactance of the distribution 

lines and their subsequent impacts in between input and output parameters. 

3. Developed a model predictive control (MPC)-based DG controller. The controller ensures 

the complete restoration of the voltage and frequency, and accurate sharing of active and 
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reactive power among DGs without using a secondary controller, a virtual impedance loop 

and DG-to-DG communication networks.   

9.3 Future Work 

The following are future work that can be conducted:  

• The proposed WPP controller can be further developed into a fully distributed controller. 

This way, the central controller can be removed and the WPP can be controlled by the 

local controller in a cooperative distributed manner. As a result, the controller response 

time can be reduced substantially.  

• The proposed WPP controller can be further modified to handle unbalance voltage 

conditions.  

• The developed microgrid controller can be re-coded to make it compatible for GPU along 

with parallel computing, which will increase the execution speed and enhance the 

controller redundancy.   

• The proposed microgrid controller can be further developed to facilitate plug and play 

capabilities.   

• The steady state Kalman filter based state observer can be improved using an extended 

Kalman filter. It will increase the state observer competency to capture the state 

transitions more accurately. 

• An adaptive model predictive control-based DG controller can be developed. It will 

increase the controller competency to withstand a wider operating range and various 

microgrid configurations.   

• DG’s instantaneous capacity can be added into the control algorithm. This will ensure 

more accurate power sharing among DGs.   
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[15]  Chowdhury Andalib-Bin-Karim, Xiaodong Liang, Weixing Li, Massimo Mitolo, and Md 
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Adaptive Virtual Impedance Approach," 56th IEEE Industrial and Commercial Power 
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2020. 

[16]  Mohammad Zawad Ali, Md Nasmus Sakib Khan Shabbir, Shafi Md Kawsar Zaman, and 

Xiaodong Liang, “Machine Learning Based Fault Diagnosis for Single- and Multi-Faults for 

Induction Motors Fed by Variable Frequency Drives”, 54th IEEE Industry Applications 

Society (IAS) Annual Meeting, Baltimore, Maryland, United States, September 29th - 

October 3rd, 2019. 
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[19]  Md Nasmus Sakib Khan Shabbir, Xiaodong Liang, Weixing Li, Anh Minh Le, and 

Nahidul Khan, "A Data-Driven Voltage Control Approach for Grid-Connected Wind Power 
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pp. 1-14, Portland, OR, USA, September 23 - 27, 2018. 

[20]  Md Nasmus Sakib Khan Shabbir, Mohammad Zawad Ali, Muhammad Sifatul Alam 

Chowdhury, and Xiaodong Liang, “A Probabilistic Approach for Peak Load Demand 

Forecasting”, Proceedings of the 31st Annual IEEE Canadian Conference on Electrical and 

Computer Engineering (CCECE 2018), pp. 1-4, Québec City, Québec, Canada, May 13-16, 

2018. 

[21]  Md Nasmus Sakib Khan Shabbir, and Xiaodong Liang, “Feasibility Analysis and Design 

of a Concentrated Solar Power Plant”, Proceedings of the 31st Annual IEEE Canadian 

Conference on Electrical and Computer Engineering (CCECE 2018), pp. 1-4, Québec City, 

Québec, Canada, May 13-16, 2018. 
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[23]  MD Nasmus Sakib Khan Shabbir, and Xiaodong Liang, "A Soft-switching Charging 
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