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ABSTRACT 

 

Using EEG signals for mental workload detection has received particular attention in 

passive BCI research aimed at increasing safety and performance in high-risk and safety-

critical occupations, like pilots and air traffic controllers. Along with detecting the level of 

mental workload, it has been suggested that being able to automatically detect the type of 

mental workload (e.g., auditory, visual, motor, cognitive) would also be useful. In this 

work, a novel experimental protocol was developed in which subjects performed a task 

involving one of two different types of mental workload (specifically, auditory and visual), 

each under two different levels of task demand (easy and difficult). The tasks were 

designed to be nearly identical in terms of visual and auditory stimuli, and differed only in 

the type of stimuli the subject was monitoring/attending to. EEG power spectral features 

were extracted and used to train linear and non-linear classifiers. Preliminary results on six 

subjects suggested that the auditory and visual tasks could be distinguished from one 

another, and individually from a baseline condition (which also contained nearly identical 

stimuli that the subject did not need to attend to at all), with accuracy significantly 

exceeding chance. This was true when classification was done within a workload level, and 

when data from the two workload levels were combined. Preliminary results also showed 

that tasks with easy and difficult trials could be distinguished from one another, each within 

a sensory domain (auditory and visual) as well as with both domains combined. Though 

further investigation is required, these preliminary results are promising, and suggest the 

feasibility of a passive BCI for detecting both type and level of mental workload. 
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Chapter 1: Introduction 

 

1.1. Problem statement 

A passive brain-computer interface (BCI) is a system that improves human-computer 

interaction by providing implicit information on a subject’s mental state and adapting the 

environment accordingly [1]. One potential application of a passive BCI is the monitoring 

of mental workload [2, 3, 4, 5], especially for safety-critical occupations like pilots, air-

traffic controllers, and other industrial operators. The goal is to estimate the cognitive strain 

on the subject from EEG signal variables so that appropriate adaptation strategies can be 

engaged to reduce the potential for error during periods of extreme demand or overload. 

Such a technology can have significant industrial and economic impact by preventing 

accidents related to operator error, and their associated human, economic, and 

environmental losses. 

While automatic detection of mental workload level based on neural signals has been 

the focus of many studies so far [6, 7, 8, 9], very few studies have yet explored the detection 

of the type (e.g., cognitive, visual, auditory, motor) of mental workload [10, 11]. 

Regardless of the application, users of passive BCI systems in real-life scenarios will likely 

perform activities involving multiple, disparate tasks engaging different sensory domains. 

BCI systems would be capable of invoking more appropriate adaptation schemes if they 

had knowledge of both the workload type and level of the user. For example, a system 

could provide new information aurally when the user is already engaged in a task involving 
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visual processing. This thesis research represents a preliminary step toward filling this gap 

in the passive BCI and mental workload detection research.   

 

1.2. Research Objectives 

The purpose of this research was to work towards the development of a passive BCI for 

mental workload detection that can automatically identify both the type and level of 

workload an individual is experiencing at a given time. As a first step toward this long-

term objective, this work focussed on differentiating auditory and visual workload. Visual 

and auditory modalities were selected (as opposed to cognitive or motor) since they would 

be relevant to a wide range of realistic scenarios, and also because for the purposes of the 

experiment it would be easier to design tasks that were similar in every way except the 

sensory modality. The specific research objectives of this thesis were to: 

1) Develop machine learning algorithms to automatically identify when an 

individual is experiencing workload primarily from the visual domain vs. 

the auditory domain at a level significantly greater than chance using EEG 

signals;  

2) Determine the effect that varying workload levels within each sensory 

domain has on the accuracy with which the type of sensory processing 

(visual or auditory) can be identified using EEG; 
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3) Develop machine learning algorithms to automatically identify distinct 

levels of mental workload within the visual and auditory domains at a level 

significantly greater than chance using EEG signals.  

 

 

1.3. Thesis Organization 

The remainder of this thesis is organized in five chapters: literature review, 

methodology, results, discussion, and conclusion.  

Chapter 2 presents the literature review of topics relevant to the thesis research. 

Specifically, passive brain-computer interfaces and mental workload detection are 

introduced, and various signal acquisition, signal processing, and classification methods 

used in BCIs are discussed. Multiple resource theory (MRT) of mental workload is 

described to help motivate this work. Furthermore, relevant existing studies from the 

literature are discussed.  

Chapter 3 presents a detailed description of how the experiment was done and how the 

data were collected from participants. This chapter also describes how the data were 

analyzed. 

Chapter 4 shows the results of the data analysis, while Chapter 5 discusses these findings 

in more detail and identifies some limitations of the work. 
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Chapter 6 summarizes the main findings of this thesis and discusses some potential 

directions for future work. 

Please note that some portions of this thesis were initially published in [12]: 

Mohammad Bagheri, Sarah Power, "EEG-based classification of visual and auditory 

monitoring tasks," IEEE International Conference on Systems, Man, and Cybernetics 

(SMC), pp. 4032-4037, 2020. © 2021 IEEE 
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Chapter 2: Literature review 

 

2.1. Brain Computer Interfaces (BCI) 

Brain–Computer Interface (BCI) systems establish a direct communication channel 

from the brain to an output device. Mental activity leads to changes in neurophysiological 

signals. Brain–computer interfaces measure these signals and transform them into a control 

signal to enable users to control a variety of applications like video games [13], wheelchairs 

[14], etc.  Several studies have even shown the possibility of using electrical brain activity 

recorded from sensors placed within the brain to directly control the movement of robots 

or prosthetic devices [15, 16]. 

BCI systems that require users to intentionally generate distinct and predictable patterns 

of neurophysiological signals and thus provide explicit commands to control an external 

device are called “active” BCIs [17, 18]. The examples above would fall into this category. 

On the other hand, a “passive” BCI is a BCI which derives its outputs from spontaneous 

brain activity arising without the purpose of voluntary control. This activity reflects the 

user’s mental (e.g., cognitive or emotional) state, and is used to enrich a human-computer 

interaction with this implicit information. Passive BCIs normally monitor longer periods 

of brain activity for the detection of a cognitive state change or emotional arousal [17, 19]. 

An example of this is a system that monitors a driver's neural dynamics in real-time and 

alarms him/her in the case of drowsiness detection [20]. 
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Passive BCIs have found application in various fields of research, including medicine, 

neuroergonomics and smart environments, neuromarketing and advertisement, education, 

games and entertainment, and security and authentication [21, 22]. One of the most widely 

studied applications in passive BCIs is mental workload detection. 

 

2.2. Passive BCI for mental workload detection  

Mental workload consist of the combination of mental effort, information processing, 

and emotion in response to task demand. Mental workload can be determined by 

considering the task and the operator. The task-oriented approach considers just the task 

characteristics and the condition of task performance in estimating workload. The human-

oriented approach, on the other hand, evaluates workload through the effect of the task 

performance on the person.  Psychologists are inclined toward the latter approach, viewing 

workload as the result of the interaction between work demands and human capacity [23, 

24].   

A user with high mental workload level is more susceptible to making a mistake, thus 

it can increase the risk of error in performance in any environment. Using passive BCIs 

that continuously monitor and detect mental workload level and adjust human-computer 

interaction/environment accordingly would be useful. For instance, such a BCI could 

activate autopilot to take over more functionality of navigation in an aircraft when periods 

of high mental workload are detected. 
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Traditionally, the most common technique for measuring task-induced mental workload 

has been subjective rating via specifically designed questionnaires such as the NASA-Task 

Load Index (NASA-TLX) [25], and Rating Scale Mental Effort (RSME) [26]. When the 

information about mental workload is needed continuously and in real-time as in a BCI, 

however, this approach is not viable. The individual would be required to provide self-

reports at regular intervals, which would continually interrupt them from the task at hand. 

This would be frustrating, and the disruption in their attention to the task would likely in 

itself lead to a degradation in performance. While this is sometimes done in research studies 

[27, 28, 6], it would be untenable in real-world scenarios. Having an objective measure of 

mental workload based on physiological signals would eliminate these issues, and provide 

a convenient and unobtrusive method for monitoring mental workload in real-time. 

Physiological correlates of workload have been well-studied in the literature.  Some of 

these measures include heart rate, blood pressure, heart rate variability, eye blink 

frequency, saccades, electromyography (EMG) and electroencephalography (EEG) [29, 

21].  While  there is no firm consensus on the  best physiological  indicator  of  workload,  

some  studies have shown EEG to be more promising compared to other indicators [30, 31, 

32]. Mental workload detection via EEG has been studied in relation to many different 

applications such as aircraft piloting, air traffic control, and car driving applications [33, 

34, 35, 36, 37]. 
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2.3. BCI algorithm 

Typically, a BCI system, whether active or passive, consists of six basic components 

(see Figure 1). These include 1) signal acquisition, 2) signal preprocessing, 3) feature 

calculation, 4) feature selection, 5) classification, and 6) feedback to the user. The signal 

acquisition component is responsible for recording the neural signals and sending them to 

the pre-processing component for signal enhancement and noise reduction. The feature 

calculation components computes a pool of signal characteristics which will potentially 

allow for discrimination between the mental states of interest. The feature selection 

component reduces the dimensionality of this overall feature pool, automatically selecting 

only the most discriminative features for the scenario at hand. The classification component 

is responsible for predicting the mental state of the user based on the selected signal 

features. An appropriate command is then sent to the connected system based on the 

predicted mental state. For instance, if the system detects a low mental workload state it 

might send a command to the autopilot navigation system to reduce the degree of 

automation and allow the user control over more tasks. The resulting change in the 

device/system comprises the feedback to the user. The following sections will provide a 

more detailed description of each of these BCI algorithm components. 
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Figure 1 Mental workload detection algorithm 

 

2.3.1. Signal acquisition 

EEG signal acquisition can be done in two ways: using invasive or non-invasive 

methods. In invasive technologies, electrodes are surgically implanted either into the user’s 

brain tissue or on the surface of the brain, while in non-invasive technologies, the brain 

activity is measured using external sensors placed in contact with the scalp. 

Invasive signal acquisition methods provide vastly superior signal quality to non-

invasive methods, with relatively high temporal and spatial resolution, as well as signal-

to-noise ratios. However, due to the risks associated with invasive technologies, use of 

these techniques are limited to applications where the benefit might outweigh these risks – 

for example, for the restoration of communication to individuals with late stage 

amyotrophic lateral Sclerosis (ALS), or prosthetic control for patients with quadriplegia. 

Invasive sensor technologies are not currently appropriate for applications aimed at healthy 

individuals, including for mental workload detection applications [38, 39, 40]. 
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There are several non-invasive functional brain imaging technologies that have been 

explored for use in BCIs, such as functional magnetic resonance imaging (fMRI), 

magnetoencephalography (MEG), near-infrared spectroscopy, and 

electroencephalography (EEG). Signals acquired via MEG are extremely small, several 

orders of magnitude smaller than other signals in a typical environment that can obscure 

the signal [41] [38]. fMRI is very expensive and the imaging procedure is very restrictive, 

making this technology unsuitable for BCI applications, which must be able to be used in 

real-world settings during everyday tasks [42] [38]. NIRS and EEG have emerged as the 

most promising signal acquisition technologies for BCI. While NIRS has better spatial 

resolution as compared to EEG, the much superior temporal resolution of EEG has made 

it more popular for BCI applications, which must function in as close to real-time as 

possible [38].  

 

2.3.1.1. Electroencephalography (EEG) 

Electroencephalography (EEG) measures the electrical activity of the brain using 

electrodes placed on the scalp. The electrodes are typically attached to the scalp using a 

tight, flexible cap. The electrodes detect small electrical charges which result from the 

activity of neurons, mostly in the cortical tissue of the brain. EEG has unique usability 

advantages over other types of brain signal recording. In particular, EEG is easy to use, 

portable and relatively inexpensive. EEG recording also provides high temporal resolution, 

though its spatial resolution is inferior compared to other methods [43]. 
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2.3.2. EEG recording techniques 

Electroencephalographic measurements employ a recording system consisting of:  

• Electrodes with conductive media: Read the signal from the surface of the scalp. 

A conductive media (typically, an electrolyte gel) is used to reduce the electrical 

impedance between the electrode and the scalp, increasing signal quality. 

• Amplifier with filter: Enhances the small EEG signals from the microvolt range 

into the range where they can be digitized accurately. 

• A/D converter: Converts the analog electrical signals to digital form.  

• Recording device (e.g., computer): Stores and displays obtained digital signal 

data. 

Proper functioning of the EEG electrodes are critical for acquiring sufficiently high 

quality data for effective interpretation. Many types of electrodes exist, with different 

characteristics. For instance, active electrodes have a pre-amplification module 

immediately after the conductive material between the skin and the electrode. These 

electrodes amplify EEG signals before additional noise can be added as the signal travels 

between the electrode and the main amplifier. Passive electrodes do not have this pre-

amplification module, and thus there is risk that the signal will be contaminated with noise 

before reaching the amplifier. Active electrodes are recommended, particularly when the 

individual being monitored is in motion, as the movements and muscle activity can 

generate artifacts [44].  
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2.3.3. Standardization of electrode placement 

The International Federation of Clinical Neurophysiology adopted standardization for 

the designation and physical placement of EEG electrodes on the scalp, called the 10-20 

System of Electrode Placement [45]. The head is divided into proportional distances from 

prominent skull landmarks to provide adequate coverage of all regions of the brain. Label 

10-20 designates proportional distance between adjacent electrodes which are either 10% 

or 20% of the total front–back or right–left distance of the skull [46]. For higher resolution 

systems (i.e., systems with more electrodes), modified versions of the 10-20 system are 

used where additional electrodes are placed at intermediate sites halfway between those of 

the existing 10–20 system. In this work, a standard 64-channel electrode placement, 

following the “10-10 system” (see Figure 2) has been used. 
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Figure 2 Standard 64Ch electrode positions used in this work based on 10-10 Standardization 

 

2.3.4. Signal pre-processing 

EEG data tends to contain a lot of noise, or artefacts, which can obscure weaker EEG 

signals. Artefacts in the recorded EEG may be either subject-related or 

technical/environmental. Subject-related artefacts are electrophysiological signals from 

non-neural sources that can contaminate the EEG. Technical or environmental artefacts 

arise through the process of recording the EEG or come from the surrounding environment. 

The most common EEG artefact sources can be classified in following way:  

Subject-related:  

• EMG (electrical signals resulting from muscle activation) 

• ECG (electrical signals related to cardiac activity)  

• Eye movements (blinking and saccades, i.e., horizontal and vertical movements of 

the eyes) 

• Sweating (result in impedance changes between the scalp and electrode) 

Technical:  

• 50/60 Hz line noise (from power supply) 

• Motion artefacts from displacement of electrodes (e.g., due to subject movement) 

• Impedance fluctuation (e.g., drying up of conductive gel)  

• Electrical interference from nearby equipment in the environment 
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It is important to mitigate and remove these artefacts as much as possible to sufficiently 

increase the signal-to-noise ratio of the EEG, and increase the chances of successfully 

detecting the desired underlying mental state encoded therein. 

 

2.3.5. Feature calculation  

Raw EEG signals can be transformed into more informative data by feature calculation. 

There are many features which can be extracted from EEG signals such as frequency band 

power features, time point features, covariance, coherence, and connectivity features [47]. 

Among these features, frequency band power features are most commonly used in BCI 

studies [47]. The power of EEG signals for a certain frequency band in a specific channel, 

averaged over a specific time frame, is represented as band power features. 

Combination of various types of features can also be used to higher classification 

accuracies compared to using a single feature type although it increases dimensionality of 

the feature set. 

 

2.3.5.1. EEG frequency bands 

In passive BCI research, which aims to detect cognitive or emotional states, EEG 

activity reflecting underlying neural oscillations, as opposed to transient activity (e.g., 

event-related potentials), is of primary interest. Neural oscillations present in the EEG have 

been divided into specific frequency bands, since activity within these specific bands have 
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been linked to underlying cognitive states. These frequency bands are commonly referred 

to as the delta, theta, alpha, beta, and gamma bands. They are measured in cycles per second 

or hertz (Hz) [48, 49] 

 

 

Figure 3 EEG frequency bands 

 

Delta waves (1-3 Hz) are the slowest waves with highest amplitude. These waves are 

generated when a person is asleep. Delta waves are also known as slow-wave sleep which 

aid in characterizing the depth of sleep [47].  
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Theta waves (4-7 Hz) reflect a very relaxed state, representing the zone between waking 

and sleep [47]. 

Alpha waves (8-12 Hz) are slower and larger and associated with a state of relaxation. 

Alpha brainwaves appear upon eye closure [47]. 

Beta waves (13 – 38 Hz) are small, faster brainwaves associated with a state of mental, 

intellectual activity and outwardly focused concentration [47]. 

Gamma brainwaves (39 – 42 Hz) are the fastest and relatively smaller. Gamma rhythms 

modulate perception and consciousness [47]. Figure 3 shows a short sample of each of 

EEG waves. 

 

2.3.6. Feature selection 

Feature selection is the process of eliminating trivial and redundant features to obtain a 

smaller subset of informative features that are sufficient for reliable classification. Several 

approaches have been proposed in the literature to address this step. One effective and 

commonly used approach, which is used in this work, is the minimum redundancy 

maximum relevance (mRMR) algorithm.  

2.3.6.1. Minimum Redundancy Maximum Relevance (mRMR) 

The minimum redundancy maximum relevance approach is based on recognizing that 

integrating variables that are selected based on how effective they are when considered 

individually does not necessarily lead to good prediction performance. It aims to reduce 



17 | P a g e  
 

the redundancies among the selected variables to a minimum for creating the selected 

subset of variables [50, 51]. 

Most of the feature selection algorithms only consider the relationship between the 

features and the classification categories but ignore the mutual information among features. 

Instead, the mRMR feature selection algorithm considers not only the amount of 

information provided by these features for discriminating the states to be classified but also 

the influence of interaction among features on classification. “Relevance” is the 

distributional similarity between a continuous feature vector and a target vector, whereas 

“redundancy” measures the similarity between the distribution of attributes and the 

distribution of labels. 

The redundancy measure utilizes the quantity of mutual information (MI) between two 

features. If the value of MI is small, it means that there is relatively little information 

duplication between the features; i.e., there are no significant redundancies between the 

features. The relevance measure utilizes the value of MI between the feature and the states 

to be classified. If the value of MI is large, it indicates that there is a strong correlation 

between the feature and the target states. Therefore, the goal is to minimize the redundancy 

criterion while maximizing the relevance criterion. 

The mRMR algorithm works iteratively. At each iteration, it identifies the best feature 

and adds it to the feature set by calculating the score for each remaining feature with the 

already selected features, and adding the best one each time.  

In practice, at each iteration i, a score is computed for each feature to be evaluated (f): 
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𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑓𝑓) =
relevance (𝑓𝑓 | 𝑡𝑡𝑡𝑡𝑆𝑆𝑡𝑡𝑆𝑆𝑡𝑡)

redundancy (𝑓𝑓 | 𝑓𝑓𝑆𝑆𝑡𝑡𝑡𝑡𝑓𝑓𝑆𝑆𝑆𝑆𝑓𝑓 𝑓𝑓𝑆𝑆𝑠𝑠𝑆𝑆𝑆𝑆𝑡𝑡𝑆𝑆𝑠𝑠 𝑓𝑓𝑢𝑢𝑡𝑡𝑢𝑢𝑠𝑠 𝑢𝑢 − 1)
 

The best feature at iteration i is the one having the highest score. 

 

2.3.7. Classification 

The most popular classifiers for BCI application are linear classifiers [47]. Linear 

classifiers use linear decision boundaries to distinguish classes. Figure 4 shows three 

different linear decision boundaries used for separating two classes of black and white. In 

this category, linear discriminant analysis (LDA), and support vector machines (SVMs) 

(with a linear kernel) are commonly used in EEG-based BCIs. Non-linear classifiers, on 

the other hand, are classifiers with a non-linear decision boundary. Various non-linear 

classifiers have also been explored for use in BCIs. One common example is the k-nearest 

neighbor classifier. Since these specific classifiers are commonly used in EEG-based BCI 

studies [48], they were used in this work and will be described in more detail below. 
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Figure 4 Separating two classes ( black and white) with three different linear decision boundaries  

 

2.3.7.1. Linear discriminant analysis (LDA) 

LDA uses hyperplanes to separate the data belonging to different classes. LDA assumes 

a Gaussian distribution of the data and common covariance matrix for different classes 

[52]. The separating hyperplane is obtained by seeking the projection that maximizes the 

distance between the two class means and minimizes the interclass variance [53]. This 

technique has a very low computational requirement which makes it suitable for BCI 

systems. Moreover, this classifier is simple to use and generally provides good results. 

LDA has been used in a variety of passive BCI systems achieving very high accuracy 

levels [20, 54, 55]. In another study, with the aim of classification of spontaneous EEG 
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during five mental tasks, it has been shown that LDA has comparable results to support 

vector machines and neural networks [56].  

 

2.3.7.2. Regularized LDA 

Regularized Linear Discreminant Analysis (rLDA) was proposed by Friedman [57] to 

reduce the dispersion of eigenvalues of sample data. The regularization technique is based 

on replacing within-group sample covariance of data by a weighted average of the whole 

sample covariance using a shrinking intensity parameter. This parameter can be determined 

based on the performance of the model on validation data, or by cross-validation. Since 

rLDA alleviates the degradation of classification accuracy, it is generally known to be 

appropriate for high dimensional datasets [58]. This approach has been used in several 

studies with high dimensional and non-stationary problems achieving very high accuracy 

levels [59, 60]. 

 

2.3.7.3. Support Vector Machine 

SVM is one of the most commonly used supervised learning algorithm that uses a kernel 

function to transform input data into higher dimensional space. This classifier is mostly 

used for binary classification problems in machine learning because of its ability to manage 

large datasets. 
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SVM uses a hyperplane to separate target classes [52]. In SVMs, the discriminant 

hyperplane is the one that maximizes the margin, i.e., the distance from the nearest training 

points. Maximizing margins enables the SVM to generalize better [52, 61]. SVM has a 

regularization parameter which makes this algorithm more robust to outliers and noise on 

the training set; i.e., SVM has good generalization properties and is insensitive to 

overtraining and to the curse-of-dimensionality [52, 62], which is a challenge in BCI 

problems, as BCI datasets have low signal to noise ratio. SVM has been a successful 

classifier in various BCI studies [63, 61, 64, 65]. 

 

2.3.7.4. K-nearest neighbours (KNN) 

KNN classifier is a discriminative nonlinear classifier which identifies a test sample's 

class according the majority class of the k (where k is a positive integer) nearest training 

samples. These k nearest neighbor samples are typically determined using the distance 

between the feature vectors of each training sample and the test sample [66]. With a 

sufficiently high value of k and enough training samples, KNN can approximate any 

function which enables it to produce nonlinear decision boundaries. 

 

2.4. Beyond detection of mental workload level: considering Multiple Research 

Theory 
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There is a growing body of literature investigating the feasibility of automatic mental 

workload detection via neural signals. Many studies have demonstrated the ability to 

accurately classify patterns of brain activity associated with differing levels of task 

difficulty in various laboratory tasks [67, 68] as well as in more realistic task scenarios like 

flight simulation and during driving [4, 5]. Electroencephalography (EEG) is the favoured 

modality to obtain the neural signals due to its practicality, superior temporal resolution, 

and relatively low cost [69, 70].  

The focus of mental workload studies to date has been almost exclusively on predicting 

the level of mental workload. It has been suggested, however, that knowledge of the type 

of mental workload would also be very valuable [71, 11].  

According to the Multiple Resource Theory (MRT) [72, 73, 74, 75, 76], each person has 

a limited number of resources available for mental activities that are sometimes distinct 

from one another (for example, it is possible to do multiple attentional tasks at once without 

them interfering with one another). These resources are regarded as a source of energy used 

for a wide range of mental functions, from sensation to perception. These resources are 

allocated across different tasks, modalities, and processing. This theory explains how 

challenging single-tasks can cause processing problems and how dual-task performance is 

more likely to be affected by performing similar tasks than dissimilar tasks. 

Multiple resource theory [72, 73, 74, 75, 76] suggests that cognitive resources are 

divided into separate dimensions, which can be thought of as sensory domains: cognitive, 

motor, visual, and auditory. Ultimately, performance effectiveness when multitasking 
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depends on the degree to which separate tasks use resources from the same sensory domain. 

Regardless of the application, users of passive BCI systems will likely perform activities 

involving multiple, disparate tasks engaging different sensory domains. Knowledge of 

which type of task(s) the user is performing at a given time, and the associated workload 

level, would allow for more appropriate adaptation schemes to be invoked by the BCI than 

would knowing just the overall level of workload (e.g., provide new information aurally 

when the user is already engaged in a task involving visual processing).   

2.5. Relevant studies in the literature 

The overall objective of this work is to develop algorithms to automatically identify, 

based on an individual’s EEG signals, both the type and level of workload they are 

experiencing at a given time. In this work, the focus was on detecting workload in the 

visual and auditory sensory domains. To the best of our knowledge only one previous study 

has explored single-trial classification of tasks involving primarily visual and auditory 

processing via EEG. In their study, Putze et al. [11] showed that a “silent video watching” 

task and an “audiobook listening” task could be differentiated from each other (94% 

accuracy), and each from an idle state (91% accuracy for both) based on stimulus-locked 

EEG data (using either time- or frequency-domain features). While the results of this study 

are very promising, particularly given the high accuracies achieved, some questions remain 

to be explored. In their study, each single sensory perception task contained only stimuli 

from the target sensory domain, and the idle task contained no visual or auditory stimuli at 

all. It is unclear, then, how successful classification of visual and auditory processing 

would be in the presence of task-unrelated stimuli from the opposite domain. Or similarly, 
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how successfully each sensory domain could be classified from an idle state that contains 

visual and auditory stimuli that the individual is passively experiencing but not attending 

to. These scenarios are more representative of a real-life scenario and need to be 

considered. Also, the study by Putze et al. [11] investigated visual and auditory perception 

tasks at just one level of task demand. It is not clear what effect the variability introduced 

by considering different workload levels, which again represents a more realistic scenario, 

would have on the ability to classify the type of sensory processing. These open questions 

are explored in this thesis. 
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Chapter 3: Methods 

 

An original research experiment was designed and conducted to address the research 

questions of this thesis. Significant portions of this chapter were initially published in [12]. 

3.1. Study Participants 

Six subjects (4 females and 2 male, mean age of 29 ± 2 years) participated in this study. 

The number of subjects recruited was limited due to Memorial University’s abrupt 

suspension of research involving face-to-face interaction with human subjects resulting 

from the COVID-19 global pandemic in March 2020.  

Participants were included in the study if they met the following criteria: 

1) Were 18-65 years of age; 

2) Had normal vision, or had vision that was corrected-to-normal with contact lenses; 

3) Had normal, or correct-to-normal, hearing; 

4) Had no history of neurological disorder, disease, or injury and no cognitive 

impairment. 

In preparation for the experiment, participants were asked to refrain from exercising, 

smoking, or consuming caffeine or alcohol for at least four hours prior to the session as 

these activities can influence an individual’s EEG signals. To maximize signal quality, 

participants were also asked to wash and dry their hair on the day of the experiment, and 
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to refrain from using styling gel or other hair products, other than shampoo. Information 

regarding the participant’s age, sex, and handedness was collected at the beginning of the 

session. 

All participants gave written informed consent to participate in this study. The study 

protocol was approved by the Interdisciplinary Committee on Ethics in Human Research 

(ICEHR) at Memorial University of Newfoundland. 

 

3.2. Instrumentation 

EEG data were recorded using an ActiCHamp amplifier (Brain Products, GmBH) with 

64-channel active electrodes positioned according to the “10-10 system” for electrode 

placement. Figure 5 shows the ActiChamp amplifier and triggerbox used in this study. 

Figure 6 shows the electrode cap used in this work. Electrolyte gel was used to achieve 

good coupling of each electrode to the scalp, the objective being to reduce the electrode 

impedance below 10 kΩ. The ground electrode was placed in the centre of the forehead, 

and electrode FCz was used as the reference electrode. EEG signals were recorded at a 

sampling rate of 500 Hz.  
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Figure 5  a) Triggerbox   b) ActiChamp Amplifier 

 

Figure 6 Electrodes positioning and cap used in this work 
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3.3. Study Design 

An experimental protocol was designed in which subjects performed two different 

versions of a task that differed based on the type of sensory processing involved (Auditory 

and Visual). Both versions of the task included stimuli from both sensory modalities, and 

differed only in the type of stimulus the subject was actively monitoring, or attending to. 

Each task was completed at two different levels of difficulty (Easy and Difficult). A dual 

task in which subjects had to attend to both the auditory and the visual stimuli was also 

completed under different workload conditions, but analysis of data from this task 

condition is beyond the scope of this thesis as these trials were designed to address a 

different set of research questions. 

In selecting appropriate tasks, the goal was to ensure that 1) the tasks involved primarily 

auditory and/or visual processing, as appropriate, and required as little motor and cognitive 

workload as possible, 2) the workload of the task could be modulated with respect to the 

sensory processing required (and not in terms of some other sensory-independent cognitive 

component, like working memory), and 3) the auditory and visual tasks were as similar to 

one another as possible (within both workload levels) and differed only in terms of the type 

of sensory processing required. No suitable task paradigm could be found in the literature, 

therefore it was necessary to design an original, controlled laboratory task to meet these 

specific requirements. Specifically, a simple monitoring task was designed that had visual, 

auditory, and dual-task versions. The user interface for the experiment was implemented 

in the MATLAB Cogent2000 toolbox. Subjects completed the tasks using a desktop 

monitor, a standard keyboard, and standard computer speakers. 
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3.3.1. Description of experimental tasks 

In each task trial, stimuli (letters A-Z from the English alphabet, and numbers 0-9) were 

presented in random order and the participant was instructed to respond to specified target 

stimuli by pressing the keyboard’s space bar. The target stimuli were different for each 

trial, and the participant was told what they would be prior to starting the trial. Targets 

appeared at a rate of 30 ± 3%. The difficulty of the task was modulated by varying 1) the 

number of target letters, and 2) the stimulus presentation speed. In the Easy condition, there 

was just one target letter, and the stimuli were presented slowly (2250 ms from the start of 

one stimulus to the start of the next). In the Difficult condition, there were two target letters, 

and the stimuli were presented more quickly (750 ms from the start of one stimulus to the 

start of the next). 

For Visual trials, the stimuli were presented via the computer monitor as white 

characters in the centre of a black screen (see Figure 7a). Stimuli were presented for a fixed 

interval (1500 ms for the Easy condition, 500 ms for the Difficult condition) followed by 

a fixed inter-stimulus interval with an all-black screen (750 ms for the Easy condition, 250 

ms for the Difficult condition). For the Auditory trials, the stimuli were presented via 

speakers positioned on the desk in front of the subject.  

 



30 | P a g e  
 

 

Figure 7 a) A sample of English alphabet stimulus presented in this work   b) A sample of Greek alphabet stimulus 
presented in this work 

 

To ensure that any differences observed between the auditory and the visual trials were 

due to the sensory processing requirements of the monitoring task and not merely due to 

passive exposure to the stimuli, each task trial included a set of “passive stimuli” presented 

in the opposite sensory modality. This way, both visual and auditory monitoring trials 

included both visual and auditory stimuli, and they differed only in which type of stimuli 

the subject actually had to attend to/monitor during the trial. The passive stimuli were from 

the Greek alphabet, and changed at the same rate as the task stimuli for a given trial. Figure 

7b shows a sample of a passive stimulus presented on a black screen. No target letters were 

given for the passive stimuli, and the subject was not required to respond to them in any 

way. Some letters from the Greek alphabet were excluded due to their visual similarity to 

English letters (e.g., kappa, κ). The Greek letters included in the set of passive stimuli were: 
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β (beta), Γ (gamma), γ (gamma), Δ (delta),  ζ (zeta), η (eta), Θ (theta), θ (theta), Λ (lambda), 

λ (lambda), μ (mu), ξ (xi), Ξ (xi), Π (pi), π (pi), Σ (sigma), σ (sigma), Φ (phi), φ (phi), Ψ 

(psi), ψ (psi), Ω (omega), ω (omega), δ(delta). In trials that were not visual monitoring 

trials, subjects were instructed to keep their eyes open and look at the passive visual stimuli 

on the screen, but they were told not to pay attention to them or monitor them in any way. 

For trials that were not auditory monitoring trials, the passive auditory stimuli were played 

through the speakers the same way that actual task stimuli were in auditory monitoring 

trials; therefore subjects could not avoid being exposed to the passive auditory stimuli, but 

they were told not to pay attention or monitor them in any way. 

Two different types of baseline trials, Baseline (with stimuli) and Baseline (without 

stimuli) were also recorded. For Baseline (with stimuli) trials, passive stimuli (from the 

Greek alphabet) were presented both visually and aurally. No targets were presented and 

the subject did not have to respond to either type of stimulus in any way. In half of these 

trials, the passive stimuli were presented at the speed of the “easy” task condition, and half 

at the speed of the “difficult” task condition. The baseline trials with no stimuli were “true 

baseline” trials in which the subjects were asked to simply focus their eyes on a constant 

“+” sign in center of the screen, and no auditory stimuli were presented. 

Table 1 summarizes the different trial types. 
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Table 1 The types of trials completed during the experimental session © 2020 IEEE 

Trial Type Target Stimuli Passive Stimuli Difficulty Description 
Baseline 
(B) 

No stimuli No stimuli N/A The only stimuli presented is a 
constant “+” sign in the centre 
of screen on which subjects are 
asked to focus their eyes. 

Baseline 
Easy 
(BE) 

No stimuli Visually and 
Aurally 
presented Greek 
alphabet 

N/A Subjects are played Greek 
alphabet stimuli during the trial 
and are asked to focus on the 
stimuli without any actions. 

Baseline 
Difficult 
(BD) 

No stimuli Visually and 
Aurally 
presented Greek 
alphabet 

N/A Subjects are played Greek 
alphabet stimuli during the trial 
and are asked to focus on the 
stimuli without any actions. 

Auditory 
Easy 
(AE) 

Aurally presented 
English alphabet 
and numbers 0-9 

Visually  
presented Greek 
alphabet 

Easy – One target 
stimulus was 
presented with a 
fixed inter-
stimulus interval 
of 750 ms 

Subjects are played the target 
stimulus prior to starting the 
trial and are asked to attend 
to/monitor the auditory stimuli 
carefully and press the space 
key whenever they hear the 
target letters/numbers. 

Auditory 
Difficult 
(AD) 

Aurally presented 
English alphabet 
and numbers 0-9 

Visually 
presented Greek 
alphabet 

Difficult – Two 
target stimuli were 
presented with a 
fixed inter-
stimulus interval 
of 250 ms 

Subjects are played the target 
stimuli prior to starting the trial 
and are asked to attend 
to/monitor the auditory stimuli 
carefully and press the space 
key whenever they hear one of 
the target letters/numbers. 

Visual 
Easy 
(VE) 

Visually presented 
English alphabet 
and numbers 0-9 

Aurally 
presented Greek 
alphabet 

Easy – One target 
stimulus was 
presented with a 
fixed inter-
stimulus interval 
of 750 ms 

Subjects are played the target 
stimulus prior to starting the 
trial and are asked to attend 
to/monitor the visually stimuli 
carefully and press the space 
key whenever they hear the 
target letters/numbers. 

Visual 
Difficult 
(VD) 

Visually presented 
English alphabet 
and numbers 0-9 

Aurally 
presented Greek 
alphabet 

Difficult – Two 
target stimuli were 
presented with a 
fixed inter-
stimulus interval 
of 250 ms 

Subjects are played the target 
stimuli prior to starting the trial 
and are asked to attend 
to/monitor the visually stimuli 
carefully and press the space 
key whenever they hear one of 
the target letters/numbers. 
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3.3.2. Experimental Procedure 

The experiment was completed in a single session of approximately three hours 

duration. 

The protocol began with one eyes-closed and one eyes-open baseline trial (one minute 

each), followed by a practice block of six trials, including one Auditory, one Visual, two 

Auditory-Visual, and two Baseline (with stimuli) trials. Figure 8 shows timeline of 

experimental session and an example task block. 

 

 

 

Figure 8 Timeline of experimental session and an example task block (Eyes O-C = block with one eyes-open and 
one eyes-closed baseline trial) 
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The main part of the experiment consisted of four blocks of 18 trials. Each trial was 30 

seconds in duration. In each of the four blocks, there were two trials for each of the 

following seven conditions: Auditory-Easy (AE), Auditory-Difficult (AD), Visual-Easy 

(VE), Visual-Difficult (VD), Baseline-“Easy” (BE), Baseline-“Difficult” (BD), and 

Baseline (no stimuli) (B). There were also four dual task (i.e., Auditory-Visual) trials per 

block. The trial order was random in each block (except for the restriction that two trials 

of the same type would not appear back-to-back). 

Thus, in total there were eight trials for each of the AE, AD, VE, VD, B, BE, and BD 

conditions, and 16 trials of the various Auditory-Visual conditions, for 72 trials in total. 

Before each trial began, the subject was told what type of trial they were about to 

complete and reminded of the instructions for that trial type (via text explanation presented 

on the computer screen). For all non-Baseline trials, the subject was then presented with 

the target stimulus/stimuli for that trial. The targets were presented in the task modality of 

the particular trial (i.e., for Visual trials, the targets were presented visually on the screen 

while for Auditory trials, the targets were presented aurally via the speakers). The subject 

was able to repeat the target stimuli presentation as many times as needed prior to starting 

the trial. When ready, the subject started the trial by pressing the keyboard’s space bar. 

After each non-Baseline trial, subjects were asked to rate the level of mental effort required 

to perform the trial via a modified version of the Rating Scale of Mental Effort [77] (see 

Figure 9). This was chosen since it is quick and easy to complete as compared to other 

mental workload metrics, like the NASA-TLX. The subjects’ trial performance (response 
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accuracy expressed as a percent), which served as an objective indicator of mental 

workload, was shown at the end of the trial. Figure 10 shows timeline of a single trial. 

Participants progressed through trials at their own pace and could take breaks as needed 

between trials. They were also given breaks between blocks. 

The experiment concluded with one eyes-closed and one eyes-open baseline trial (one 

minute each). 

 

 

Figure 9 Rating Scale Mental Effort © 2020 IEEE 

 

 

Figure 10 Timeline of a single trial 
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3.4. Data Analysis 

 

3.4.1. Validation of induction of workload levels 

In order to confirm that the Easy and Difficult conditions of the monitoring tasks 

induced different levels of workload, both subjective data (via the modified RSME ratings), 

and objective data (via the subjects’ performance in the trials) were analyzed.  

The participant’s response accuracy was used as an objective task performance measure, 

and was calculated in each trial using the following formula:  

𝐴𝐴𝑆𝑆𝑆𝑆𝑓𝑓𝑆𝑆𝑡𝑡𝑆𝑆𝐴𝐴 =
TP + TN

TP + TN + FP + FN
∗ 100 

where: 

 True Positive (TP) = Target stimuli presented and space key pressed 

 True Negative (TN) = No target stimuli presented and space key not pressed 

 False Positive (FP) = No target stimuli presented and space key pressed  

 False Negative (FN) = Target stimuli presented and space key not pressed  
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To compare workload levels, a two-way repeated measures ANOVA with two within-

subjects factors, each with two levels (workload level: easy and difficult; task type: 

auditory and visual) was performed on both RSME rating and response accuracy. 

 

3.4.2. EEG-based Task Classification 

The main objectives of this work was to investigate 1) the ability to classify the type of 

task an individual is performing (in terms of required sensory processing, specifically 

auditory or visual) even when being exposed to passive, task-unrelated stimuli from the 

other sensory modality, 2) the effect of varying workload levels within each sensory 

modality on the ability to classify the modality, and 3) the ability to classify levels of 

workload within each sensory modality. This section details the classification analysis used 

to meet these objectives. 

 

3.4.2.1. EEG pre-processing 

EEG data tends to contain a lot of noise which can obscure weaker EEG signals. 

Artifacts such as blinking and muscle activity can contaminate the data. Pre-processing 

involved several steps to remove such artifacts.  

The pipeline used was as follows: a band-pass filter from 1 Hz to 50 Hz was applied in 

order to remove the DC components of the signals, as well as signal frequencies beyond 

the range of interest. Then, segments contaminated with EMG and motion artifacts were 
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manually rejected. Next, an independent component analysis (ICA) algorithm was applied 

using the EEGLAB toolbox in MATLAB, and components reflecting artifacts such as eye 

blinks and saccades were visually identified and removed. Figure 10 provides an example 

of four different EEG signal components produced using the ICA method. As can be seen 

from the topography in Figure 11, continuous data, and activity power spectrum graphs 

IC34, IC37, and IC45 are all examples of a bad components (i.e., ones that do not reflect 

neural activity) and should be removed. For IC28, which is a reliable component of a brain 

activity, it can be seen from the topography that there is a radial brain activity on the right 

side of the brain. Also brain activity is continuous through all the session. Also we have a 

smooth trend in power activity with some changes approximately below 10 Hz which 

indicates alpha activities.  Following ICA-aided artifact removal, the data were down-

sampled from 500 Hz to 256 Hz. 

Figure 12 shows a sample multi-channel EEG signal segment a) before pre-processing, 

b) after EMG removal but before blink/saccade removal via ICA, and c) after all pre-

processing steps, respectively. 
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Figure 11 ICA Components of brain and non-brain activities 
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Figure 12 EEG signals a) before preprocessing, b) after EMG removal but before blink removal, and c) after all pre-
processing steps 

 

3.4.2.2. EEG signal feature calculation  

Accuracy of learned models can be increased by extracting features from the raw input 

data. Here, frequency domain features of the EEG signals were calculated. 
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Because the motor requirements were slightly different for the Easy and Difficult task 

conditions (due to higher frequency of responding to stimuli in the latter case) the 

electrodes over the motor and sensorimotor brain regions, which included the 14 central 

and centro-parietal electrodes (Cz, C1-C6, CPz, CP1-CP6), were excluded for all Easy vs. 

Difficult classification problems as well as for all “task vs. baseline” classification 

problems. All other electrodes (49 in total) were included and considered individually in 

these cases. Since the motor requirements were matched in the Auditory and Visual task 

conditions (within a workload level) all 63 electrodes were considered for the Auditory vs. 

Visual classification problems.  

 For each electrode, signal power in seven common EEG frequency bands was 

calculated. Frequency bands were based on each subject’s individual alpha frequency 

(IAF) [78] as follows: Delta (IAF-8 to IAF-6), Theta (IAF-6 to IAF-4), Alpha1 (IAF-4 to 

IAF-2), Alpha2 (IAF-2 to IAF), Alpha3 (IAF to IAF+2), Beta (IAF+2 to IAF+20) and 

Gamma (IAF+20 to IAF+30). IAF was calculated as the average of the frequency of peak 

power within the frequency range of 5 to 15 Hz from the two eyes-closed baseline trials 

[28]. Also, signal power in non-overlapping frequency bands of width 1 Hz in the interval 

from 1 to 50 Hz was calculated (for a total of 49 frequency bands). Power time-series for 

each frequency band were obtained via the filter-Hilbert method. Then, the average power 

was calculated over non-overlapping one-second epochs.  

Two scenarios were considered: 1) when the overall feature pool included all 56 

frequency bands, and 2) when the overall feature pool included just the seven common 

EEG frequency bands. Thus, the total number of features considered in the first scenario 
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was 2744 (i.e., 49 electrodes x 56 frequency bands) for the Easy vs Difficult and task vs. 

baseline classification problems, and 3528 (i.e., 63 electrodes x 56 frequency bands) for 

the Auditory vs. Visual classifications. The total number of features considered in the 

second scanrio was 343 (i.e., 49 electrodes x 7 frequency bands) for the Easy vs Difficult 

and task vs. baseline classification problems, and 441 (i.e., 63 electrodes x 7 frequency 

bands) for the Auditory vs. Visual classifications.  

For each task condition (i.e., AE, AH, VE, VH, BE, BH, B), there was a total of 8 trials 

of 30 seconds duration recorded, which yielded approximately 240 samples/epochs per 

condition.  

 

3.4.2.3. Feature selection 

Feature selection is the process of reducing the dimensionality of data which tends to 

improve machine learning performance by removing redundant or ineffective features. In 

this work, the minimum redundancy maximum relevance (mRMR) feature selection 

approach was used. The mRMR is a feature selection approach that tends to select features 

with a high correlation with the class (output) and a low correlation between themselves. 

The mRMR algorithm ranks a set of features minimizing the redundancy among the subset 

of features while maximizing the relevance of the features to the classification problem at 

hand.  

The effect of the feature set dimensionality on classification accuracy was explored. 

Feature set sizes between 5 and 50, in increments of 5, were considered. 
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3.4.2.4. Classification 

Four different classification methods which are commonly used in EEG-based BCI 

research were explored: linear discriminant analysis without regularization (LDA), 

Regularized Linear discriminant analysis (rLDA), K-Nearest Neighbour (KNN), and 

Support Vector Machines (SVM). The performance of the classifiers was assessed via the 

classification accuracies obtained from 5 runs of 6-fold randomized cross-validation, 

performed separately for each subject. Features were selected for input to the classifiers 

(via the method described in the previous section) in each “fold” of the cross-validation 

based on the training data only. For the SVM classifier, all hyperparameters were optimized 

by cross-validation via the fitcsvm function in Matlab. 

Several different binary classification problems were investigated to address the 

research questions of this thesis. First, to investigate if EEG could be effective for 

identifying the type of mental workload an individual is experiencing (research question 

#1, section 1.2.), Auditory vs. Visual monitoring trials were classified within each of the 

Easy and Difficult workload levels. To determine the effect of variation in mental workload 

on the ability to classify workload type (research question #2, section 1.2.), Auditory vs. 

Visual monitoring trials were classified with data from both workload levels combined. To 

determine if EEG could be effective for identifying distinct levels of mental workload 

within the visual and auditory domains (research question #3, section 1.2.), Easy vs. 

Difficult monitoring trials were classified within each task type. 



44 | P a g e  
 

Other classification problems that could be helpful in interpreting the results of those 

indicated above were also considered, including: 1) Easy vs. Difficult monitoring trials 

with data from both task types combined, and 2) each task condition (i.e., combination of 

mental workload type and level) vs. baseline (stimuli). 

 

3.4.2.5. Statistical Analysis 

To determine the effect of classifier type and feature pool (i.e., 7 or 56 frequency bands) 

on the classification accuracy, a two-way repeated measures ANOVA with two within-

subjects factors was performed separately for the mental workload type (Auditory vs. 

Visual) classification problems and the mental workload level (Easy vs. Difficult) 

classification problems. 

After selecting the best combination of classifier and feature pool, a one-way repeated 

measures ANOVA was performed to determine the effect of 1) mental workload level on 

the classification of mental workload type, and 2) mental workload type on the 

classification of mental workload level. 

To determine if all classification accuracies found were greater than chance, the 

binomial test was used [79]. 

 

  



45 | P a g e  
 

Chapter 4: Results 

 

4.1. Validation of induction of workload levels 

The average participant response accuracies for the monitoring trials for each workload 

type and workload level are given in Table 2. The repeated measures ANOVA revealed a 

significant effect of both workload type (𝐹𝐹(1,5) = 9.51;𝑝𝑝 = .03) and workload level 

(𝐹𝐹(1,5) = 114.63;𝑝𝑝 < .001) on response accuracy. There was no significant interaction 

effect (𝐹𝐹(1,5) = 4.61;𝑝𝑝 = .09). Post-hoc Tukey-Kramer tests revealed no significant 

difference in the response accuracies between the auditory and visual tasks within the easy 

condition (𝑡𝑡(5) = 0.356;𝑝𝑝 = .75), and a difference within the difficult condition that just 

reached significant (𝑡𝑡(5) = 0.0134;𝑝𝑝 = .047). 

The average RSME ratings for each workload type and workload level are also given in 

Table 3. The repeated measures ANOVA revealed a significant effect of workload level 

(𝐹𝐹(1,5) = 91.09;𝑝𝑝 < .001) on RSME rating, but workload type had no significant effect 

(𝐹𝐹(1,5) = 4.70;𝑝𝑝 = .08). There was a significant interaction effect (𝐹𝐹(1,5) = 12.08;𝑝𝑝 =

.02). 
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Table 2 Mean task performance ratings for each task type and workload level 

Response Accuracy (%) 

 Auditory Visual Mean 

Easy 99.09 100 99.56 ± 0.46 

Difficult 94.72 98.07 96.40 ± 1.67 

Mean 96.91 ± 2.18 99.04 ± 0.96  

 

Table 3 Mean RSME ratings for each task type and workload level 

RSME Rating 

 Auditory Visual Mean 

Easy 1.78 1.74 1.76 ± 0.02 

Difficult 4.54 3.83 4.19 ± 0.35 

Mean 3.16 ± 1.38 2.78 ± 1.04  

 

4.2. EEG-based state classification 

Figure 13 shows the classification accuracies (averaged across all classification 

problems considered) for increasing feature set dimensionality. Based on visual analysis of 

this plot, as well as the amount of data available for the classification analysis (i.e., 

approximately 240 samples per class), results of the classification results in this section are 

based on using a 25-dimensional feature set chosen automatically via the mRMR feature 
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selection algorithm. Results are reported for the four classifiers (i.e., LDA, rLDA, KNN, 

SVM) and two different feature pools (i.e., with 7 frequency bands and with 56 frequency 

bands) considered, as described in Sections 3.4.2.2. Only average accuracies (i.e., averaged 

across subjects) are reported here; see Appendix for detailed results for each participant, as 

well as for the results obtained using a smaller (specifically, 10-dimensional) feature set. 

 

Figure 13 Classification accuracies (averaged across all classification problems considered) for different feature set 
sizes. 
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4.2.1. Classification of mental workload type: auditory vs. visual 

Table 4 shows the results of the “workload type” classification problems (i.e., Auditory 

vs. Visual monitoring trials), both within a given workload level, and with both workload 

levels combined. Average accuracies (across participants) are given for each combination 

of classifier type and feature pool (i.e., with 7 or 56 frequency bands included) investigated. 

Repeated measure two-way ANOVA revealed a significant effect of classifier type 

(𝐹𝐹(3,15) = 36.37;𝑝𝑝 < .001) but no significant effect of feature pool (𝐹𝐹(1,5) = 0.13;𝑝𝑝 =

.73) on classification accuracy. Post-hoc Tukey-Kramer tests indicated that there was no 

significant difference in classification accuracy between the LDA and rLDA classifiers 

(𝑡𝑡(15) = 1.35;𝑝𝑝 = .20) and that both of these classifiers had significantly greater 

accuracies than either the KNN or SVM classifiers (𝑡𝑡(15) > 3.48;𝑝𝑝 < .004). The SVM 

classifier achieved significantly higher accuracies than KNN (𝑡𝑡(15) = 6.71;𝑝𝑝 < .001). 

 

Table 4 Across-subject average classification accuracies for the Auditory vs. Visual classification problems 

Workload Type Classification: Auditory vs. Visual  

Classifier Frequency Bands 
Workload Level Included  

Easy Only Difficult Only Both Mean 

LDA 7 64.7 ± 6.6 68.2 ± 4.5 63.9 ± 4.2 65.6 

56 68.1 ± 6.4 76.8 ± 4.9 68.9 ± 3.5 71.3 

rLDA 7 65.0 ± 6.8 68.5 ± 4.2 63.5 ± 3.9 65.7 

56 67.5 ± 6.7 76.8 ± 5.4 68.8 ± 3.1 71.0 
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KNN 7 58.6 ± 6.4 62.7 ± 6.3 61.2 ± 4.8 60.8 

56 59.0 ± 3.2 67.9 ± 6.2 61.7 ± 3.4 62.9 

SVM 7 64.9 ± 6.6 68.1 ± 5.4 65.9 ± 5.3 66.3 

56 61.0 ± 2.9 69.7 ± 6.4 63.3 ± 3.4 64.7 

 

 

Based on the above results, the results from the rLDA classifier and the feature pool 

including all 56 frequency bands were taken for further investigation. Table 5 shows the 

workload type classification results, within each workload level and with workload levels 

combined, for each individual participant. By the binomial test, the upper limit of chance 

for n=240 samples/class (here there was one sample/1-second epoch x 30 seconds/trial x 8 

trials/condition = 240 samples/class) and a significance level of 𝛼𝛼=0.05 is approximately 

54.0%. For the cases where classification was done including Easy and Difficult trials 

together, the number of samples was doubled (n=480 samples/class), and in this case the 

upper limit of chance at a significance level of 𝛼𝛼=0.05 is approximately 52.7%. Based on 

the binomial test, all workload type classification accuracies - obtained for all participants, 

within each workload level and with workload levels combined - are significantly greater 

than chance. 

The repeated measures one way ANOVA revealed a significant effect of “workload 

level included” on the workload type classification accuracies (𝐹𝐹(2,5) = 13.98;𝑝𝑝 = .01). 

Post-hoc Tukey-Kramer tests indicated that there was no significant difference between the 

“Easy only” and “Difficult only” conditions (𝑡𝑡(5) = 2.79;𝑝𝑝 = .08). Accuracies for the 
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“Difficult only” condition were significantly higher than for the “Both” condition (𝑡𝑡(5) =

4.92;𝑝𝑝 = .01) but accuracies for the “Easy only” condition were not (𝑡𝑡(5) = 2.79;𝑝𝑝 =

.08).  

 

Table 5 Per-participant accuracies for the Auditory vs. Visual classification problems. All accuracies were obtained 
with the regularized LDA (rLDA) classifier and a 25-dimensional feature set selected from the feature pool that included 
56 frequency bands. 

Workload Type Classification: Auditory vs. Visual 

Participant 

Workload Level Included 

Mean Easy Only Difficult Only Both 

1 62.1 72.7 64.9 66.6 

2 75.9 85.1 74.1 78.4 

3 71.7 67.9 67.7 69.1 

4 69.8 77.4 67.5 71.6 

5 55.6 77.3 66.7 66.5 

6 69.8 80.3 71.7 73.9 

Mean 67.5 ± 6.7 76.8 ± 5.4 68.8 ± 3.1  

 

4.2.2. Classification of workload level: easy vs. difficult 

Table 6 shows the results of the “workload level” classification problems (i.e., Easy vs. 

Difficult monitoring trials), both within a given workload type, and with both workload 

types combined. Average accuracies (across participants) are given for each combination 

of classifier type and feature pool (i.e., with 7 or 56 frequency bands included) investigated. 
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Repeated measure two-way ANOVA revealed a significant effect of classifier type 

(𝐹𝐹(3,15) = 27.65;𝑝𝑝 < .001) but no significant effect of feature pool (𝐹𝐹(1,5) = 1.68;𝑝𝑝 =

.25). Post-hoc Tukey-Kramer tests indicated that there was no significant difference in 

classification accuracy between the LDA and rLDA classifiers (𝑡𝑡(15) = 2.19;𝑝𝑝 = .17) but 

that both of these classifiers had significantly greater accuracies than both the KNN or 

SVM classifiers (𝑡𝑡(15) > 3.48;𝑝𝑝 < .02). The SVM classifier achieved significantly higher 

accuracies than the KNN classifier (𝑡𝑡(15) = 3.26;𝑝𝑝 = .02). 

 

Table 6 Across-subject average classification accuracies for the Easy vs. Difficult classification problems. 

Workload Level Classification: Easy vs. Difficult 

Classifier Frequency Bands 
Workload Type Included  

Auditory Only Visual Only Both Mean 

LDA 7 74.7 ± 6.0 75.2 ± 2.5 69.3 ± 4.5 73.1 

56 79.4 ± 6.6 80.4 ± 5.5 72.5 ± 5.7 77.4 

rLDA 7 74.8 ± 5.8 75.4 ± 2.8 68.9 ± 4.6 73.0 

56 81.1 ± 6.7 81.3 ± 6.3 72.8 ± 5.5 78.4 

KNN 7 71.0 ± 7.3 66.3 ± 6.4 66.1 ± 5.0 67.8 

56 70.3 ± 8.4 73.0 ± 7.6 67.7 ± 7.3 70.3 

SVM 7 75.7 ± 7.2 69.2 ± 5.3 68.5 ± 4.0 71.1 

56 71.9 ± 8.2 74.7 ± 7.7 68.7 ± 7.6 71.8 
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Based on the above results, the results from the rLDA classifier and the feature pool 

including all 56 frequency bands were again taken for further investigation. Table 7 shows 

the workload level classification results, within each workload type and with workload 

types combined, for each individual participant. Based on the binomial test, all workload 

level classification accuracies - obtained for all participants, within each workload type and 

with workload types combined - are significantly greater than chance. 

The repeated measures one way ANOVA revealed a significant effect of “workload type 

included” on the workload level classification accuracies (𝐹𝐹(2,5) = 78.63;𝑝𝑝 < .001). Post-

hoc Tukey-Kramer tests indicated that there was no significant difference between the 

“Auditory only” and “Visual only” conditions (𝑡𝑡(5) = 1.05;𝑝𝑝 = .58). Accuracies for both 

the “Auditory only” and “Visual only” conditions were significantly higher than for the 

“Both” condition (𝑡𝑡(5) > 5.97;𝑝𝑝 < .0044).  

 

Table 7 Per-participant accuracies for the Easy vs. Difficult classification problems. All accuracies were obtained 
with the regularized LDA (rLDA) classifier and a 25-dimensional feature set selected from the feature pool that included 
56 frequency bands. 

Workload Level Classification: Easy vs. Difficult 

Participant 

Workload Type Included 

Mean Auditory Only Visual Only Both 

1 73.5 79.4 69.9 74.2 

2 85.7 83.6 73.7 81.0 

3 68.5 68.2 62.1 66.2 
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4 82.7 84.3 77.6 81.5 

5 83.9 85.8 75.9 81.9 

6 86.2 86.3 77.4 83.3 

Mean 80.1 ± 6.7 81.3 ± 6.3 72.8 ± 5.5  

 

4.2.3. Classification of all task conditions vs. baseline 

Table 8 shows the results of the classification of each individual task condition (i.e., all 

combinations of workload type and workload level) vs. baseline (with stimuli). In each 

case, the appropriate baseline condition is used; that is, that with the passive stimuli 

changing at the same speed as the task stimuli (e.g., Auditory Easy vs. Baseline “Easy”). 

 

Table 8 Across-subject average classification accuracies for all individual task conditions vs. corresponding baseline 
(with stimuli) 

 All Individual Task Conditions vs. Baseline 

Classifier 
Frequency 

Bands 

Task Condition 

Auditory Visual 

Easy Difficult Easy Difficult 

LDA 7 70.3 ± 5.1 75.1 ± 7.8 68.4 ± 3.6 76.4 ± 5.0 

56 72.3 ± 4.6 79.4 ± 6.4 72.2 ± 3.2 81.7 ± 3.8 

rLDA 7 70.2 ± 5.0 75.5 ± 8.0 68.3 ± 4.1 76.6 ± 5.1 

56 73.2 ± 5.3 79.9 ± 6.6 72.8 ± 4.9 82.2 ± 4.0 

KNN 7 64.2 ± 5.0 71.2 ± 7.1 64.7 ± 4.0 71.4 ± 5.7 
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56 62.6 ± 4.5 68.1 ± 9.5 64.1 ± 3.9 68.6 ± 6.2 

SVM 7 69.4 ± 4.5 74.6 ± 7.1 68.4 ± 4.5 74.9 ± 7.3 

56 65.3 ± 3.3 71.8 ± 10.4 65.9 ± 2.7 69.9 ± 7.1 

 

Based on the above results, the results from the rLDA classifier and the feature pool 

including 56 frequency bands were again taken for further investigation. Table 9 shows all 

task condition vs. baseline classification results, for each individual participant. Based on 

the binomial test, all of these classification accuracies are significantly greater than chance. 

The repeated measures one way ANOVA revealed a significant effect of “workload 

level” on the task versus baseline classification accuracies (𝐹𝐹(1,5) = 11.85;𝑝𝑝 = .02), but 

no significant effect of “workload type” (𝐹𝐹(1,5) = 0.73;𝑝𝑝 = .43) and no interaction effect 

�𝐹𝐹(1,5) = 4.72;𝑝𝑝 = .08�. 

 

Table 9 Per-participant accuracies for all individual task condition vs. baseline classification problems. All 
accuracies were obtained with rLDA classifier and a 25-dimensional feature set selected from the feature pool that 
included 56 frequency bands. 

All Individual Task Conditions vs. Baseline 

Participant 

Task Condition 

Auditory Visual 

Easy Difficult Easy Difficult 

1 65.1 76.1 62.7 78.4 

2 72.9 83.3 74.0 84.1 
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3 72.3 67.0 75.0 75.2 

4 72.0 82.1 74.7 84.5 

5 73.6 84.0 72.4 86.7 

6 83.3 86.7 78.2 84.2 

Mean 73.2 ± 5.3 79.9 ± 6.6 72.8 ± 4.9 82.2 ± 4.0 
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Chapter 5: Discussion 

 

Overall, the RSME and task performance data suggests that the experimental protocol 

was effective in inducing different workload levels within each sensory modality since the 

repeated measures ANOVA revealed a significant effect of task difficulty on both 

measures. Regarding task type, the effect of this factor on task performance was significant, 

which is not desirable since ideally the difficulty of the tasks would be the same across 

modalities. However, since the response accuracy served as the task performance measure, 

it is likely that the difference between the modalities was not attributable to differences in 

task difficulty but was simply due to the fact that the stimuli could be perceived more 

quickly in the visual case than the auditory case, allowing the participant to respond more 

often within the given response interval in the visual trials. Post-hoc Tukey-Kramer tests 

indicated that there was no significant difference in response accuracy between the Visual 

and Auditory conditions within the Easy condition, and within the Difficult condition the 

difference just barely reached significance. There was no significant effect of task type on 

the RSME values, so it appears that the participants perceived the difficulty of both 

modalities to be the same. The results of these analyses suggest that our experimental 

protocol was effective. 

The classification results suggest that trials involving primarily auditory and primarily 

visual processing can be distinguished at a level significantly exceeding chance based on 

EEG power spectral features even when the trials contain nearly identical overlapping 
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stimuli from both sensory modalities, and differ only in the type of stimuli the individual 

is actually monitoring/attending to during the trial (research objective #1, section 1.2.). 

This seems to be true both when the required sensory processing is low (as in the Easy 

conditions) and high (as in the Difficult conditions). The average classification accuracy 

achieved in the Difficult condition was approximately 9% higher than in the Easy 

condition, but this difference was not statistically significant based on the repeated 

measures ANOVA and post-hoc Tukey tests. It would not be suprising if the Auditory and 

Visual conditions were indeed more separable in the Difficult condition when task-related 

activation would likely be stronger, and the lack of statistical significance could just be due 

to the relatively small sample size (n=6). When the data includes samples from conditions 

of both low and high processing requirement (i.e., both Easy and Difficult), the two types 

of sensory processing can still be distinguished at an accuracy greater than chance, however 

the results suggest that the accuracy may lower in this case. The accuracy was significantly 

lower when data came from both workload levels as compared to only one workload level, 

at least for the “Difficult Only” condition (research objective #2, section 1.2.). The results 

of workload level classification problems (i.e., Easy vs. Difficult monitoring trials), both 

within a given workload type, and with both workload types combined suggested that 

accuracies obtained for all participants were significantly greater than chance (research 

objective #3, section 1.2.).. 

Unsurprisingly given the results discussed above, the auditory processing trials and 

visual processing trials could also be automatically distinguished from a baseline condition 

even when both the task trials and the baseline trials contain nearly identical overlapping 
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stimuli of both types. As was observed for the classification of auditory and visual 

processing trials, this seems to be true both when the required sensory processing in the 

task trials is low (as in the Easy conditions) and high (as in the Difficult conditions), though 

as would be expected, accuracies are higher for the Difficult vs. Baseline case than the 

Easy vs. Baseline case.  

The fact that the results for all classification problems, for all subjects, were 

significantly greater than chance is very encouraging. However, because of the small 

number of participants (n=6), the results of the classification analysis should be treated as 

preliminary and interpreted with caution.  Data from more subjects are needed in order to 

get a reliable estimate of the differentiability of the investigated mental states, and to draw 

any conclusions about the differences among conditions (e.g., when auditory vs. visual 

processing classification is done within a workload level versus when both workload levels 

are included). 

The classification results suggest that among the four different classifiers investigated, 

Linear Discriminant Analysis (LDA) and Regularized Linear Discriminant Analysis 

(rLDA) had higher performance in all classification problems. This is in line with the 

literature that suggests that linear classifiers have better performance in passive BCI 

investigations [47]. Based on the results, the performance of Support Vector Machine 

(SVM) and K-Nearest Neighbor (KNN) classifiers also exceed the chance level and they 

are still promising through all classification problems. 
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Although most passive BCI studies that used signal power features have used just the 

seven common frequency bands, The combination of these seven bands with all 49 

frequency bands of width equal to 1 Hz between 1-50 Hz has been investigated, and 

reached higher accuracies. As can be seen from Figure 12, the results in all the problems 

have slightly increased with using signal power extracted from all 56 frequency bands as 

compared to just seven. Overall from using 5 to 50 nominated final features, the trend of 

both graphs are very similar with the amount of accuracy increased in both these scenarios 

by approximately 6 percent. Statistical tests indicated that the difference in accuracy when 

using the 7 frequency bands vs. 56 frequency bands was not significant, however this is 

likely due to the small sample size (n=6), and that with more subjects this difference would 

become significant. 

The classification accuracies achieved here are significantly lower than those reported 

in Putze et al. [11], the only other study identified that has attempted single trial 

classification of an auditory vs. a visual task using EEG. This could be at least in part 

because whereas Putze et al. used “pure” auditory, visual, and idle states, here the auditory 

and visual tasks were designed to be as similar as possible to one another (and to the 

baseline condition) in terms of the sensory stimuli, with the only difference between 

conditions being the type of stimuli the subject is actually attending to or monitoring. 

Future work will involve optimizing the algorithms to improve classification accuracy. 
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Chapter 6: Conclusions 

 

6.1. Study conclusions 

This work presented preliminary results of a study that aims to develop algorithms to 

detect both the type (specifically, auditory vs. visual processing) and level of mental 

workload experienced by an individual during task performance via EEG signals. 

Preliminary results are encouraging, suggesting that trials involving primarily auditory and 

primarily visual processing can be distinguished from one another, and individually from 

a baseline condition, even when the stimuli in all conditions are nearly identical and differ 

only in the type of stimuli the individual is actually attending to.  Also, preliminary results 

suggesting that this algorithm can detect differences in workload level within a sensory 

modality as well. This work could result in the development of a passive BCI for mental 

workload detection that is able to determine both the level and type of workload being 

experienced by the user. With this capability, more appropriate environmental adaptation 

strategies could be invoked to improve the safety and/or performance of the operator being 

monitored. 

 

6.2. Study limitations 

The sample size for this study was relatively low, with only six subjects (4 females and 

2 male, mean age of 29 ± 2 years) participating. The number of subjects recruited was 
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limited due to Memorial University’s abrupt suspension of research involving face-to-face 

interaction with human subjects resulting from the COVID-19 global pandemic in March 

2020. As such, the results reported in this thesis, though promising, should be treated as 

preliminary until more data can be collected to verify their reliability. 

 

6.3. Future work 

Future work for this research will involve data collection from more participants in order 

to generalize the results and make them more reliable. Investigation and analysis of the 

dual task conditions (auditory and visual at the same time) will also be considered in future 

work. Further investigation of different EEG signal features and classification methods to 

to enhance and improve the results will also be taken into account. 
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Appendices 

 

 
P1 P2 P3 P4 P5 P6 

AEvsVE 57.5000 70.7083 67.3577 59.2308 53.9167 62.2500 

ADvsVD 66.0569 73.4553 61.2393 69.4715 62.5203 67.0325 

AvsV(All) 61.7300 68.6214 62.0833 59.1770 56.4815 64.1975 
 

AEvsAD 70.1709 77.7083 62.5641 70.8547 72.6250 81.7500 

VEvsVD 70.9649 72.0833 68.0741 75.8750 69.2083 77.0000 

EvsD(All) 65.9559 65.9592 59.0525 70.3477 67.9167 74.5595 
 

AEvsBE 61.0256 68.3761 65.9167 68.2906 72.1250 75.0417 

ADvsBD 66.9048 73.8889 54.9145 78.3730 78.2937 79.2460 

VEvsBE 61.5789 63.5043 61.5833 72.7578 70.7083 70.2917 

VDvsBD 67.2358 72.7236 69.7083 78.2114 78.6585 74.3496 
 

BEvsBD 62.2500 61.6667 66.5417 69.6250 62.5000 72.5417 

LDA Classifier using 7 Frequency band features with 10 best Features selected 

 

 
P1 P2 P3 P4 P5 P6 

AEvsVE 61.9298 77.9583 72.7236 66.5385 58.9583 64.7083 

ADvsVD 68.0081 78.9431 63.3761 71.7073 63.9431 71.9106 

AvsV(All) 64.0928 72.2222 65.6458 62.4280 58.7449 66.0905 

 

AEvsAD 73.5470 81.9167 67.7350 74.9573 74.1250 84.9583 
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VEvsVD 76.7544 72.2917 70.8148 79.6250 76.7500 78.2917 

EvsD(All) 69.1422 68.7890 61.6895 72.7578 70.9881 75.3095 

 

AEvsBE 63.9316 72.6068 67.7083 71.5812 73.2083 79.1250 

ADvsBD 70.0397 77.9762 61.7094 80.4762 82.9762 83.2143 

VEvsBE 65.8333 68.4615 64.3750 71.5833 71.8333 73.6667 

VDvsBD 69.7967 79.2276 72.9583 83.1301 82.0325 73.2520 

 

BEvsBD 65.5417 65.8547 67.5000 70.3750 65.4167 77.8333 

LDA Classifier using 7 Frequency band features with 35 best Features selected 

 

 
P1 P2 P3 P4 P5 P6 

AEvsVE 60.7456 74.4167 69.3902 64.7436 55.0417 65.3333 

ADvsVD 70.4878 83.0081 62.6923 75.7317 74.8780 77.3577 

AvsV(All) 62.7637 72.8189 63.2917 66.8519 63.0658 69.7531 

 

AEvsAD 72.9060 83.7083 62.9915 78.9744 78.5417 77.8750 

VEvsVD 74.2105 77.0417 64.2963 81.2500 80.9583 79.7500 

EvsD(All) 66.5686 70.8153 59.6119 75.0959 71.6190 74.5119 

 

AEvsBE 61.8376 66.3248 66.9167 67.0085 71.9167 78.3750 

ADvsBD 72.9365 78.2143 61.2821 77.8968 79.3254 81.9841 

VEvsBE 61.8860 73.5043 68.1250 68.8333 70.9583 70.8333 

VDvsBD 75.0000 77.6016 73.4167 79.3089 83.8618 78.0081 
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BEvsBD 68.3333 67.7350 73.2917 70.7500 64.9167 73.4167 

LDA Classifier using 56 Frequency band features with 10 best Features selected 

 

 
P1 P2 P3 P4 P5 P6 

AEvsVE 63.2018 77.0417 75.1220 71.7094 55.5833 70.9583 

ADvsVD 74.2683 85.8943 69.4872 77.9675 77.3577 80.3659 

AvsV(All) 66.3713 75.3292 68.2708 68.7449 65.0823 73.6214 

 

AEvsAD 75.5983 86.8750 68.8034 81.8803 84.7500 87.1667 

VEvsVD 78.5965 84.0000 72.2963 86.0417 85.4583 85.7917 

EvsD(All) 70.6250 74.4245 61.5525 79.2686 76.4524 77.6905 

 

AEvsBE 66.7094 73.6325 70.8750 70.9402 75.9583 80.0000 

ADvsBD 75.0397 83.7698 67.8632 81.9444 86.0317 87.5794 

VEvsBE 64.7368 74.2308 77.8333 75.1667 74.7917 71.7500 

VDvsBD 79.7967 85.4878 75.5417 84.3089 87.3171 82.6829 

 

BEvsBD 71.9583 70.3419 75.2917 74.0000 69.7917 79.5417 

LDA Classifier using 56 Frequency band features with 35 best Features selected 

 

 
P1 P2 P3 P4 P5 P6 

AEvsVE 59.0789 70.6250 67.4797 59.2735 54.8333 62.9167 

ADvsVD 66.1382 73.1301 59.6581 68.0894 62.2764 67.4390 

AvsV(All) 61.8354 69.0123 62.0208 58.9918 56.4403 64.9794 
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AEvsAD 70.9402 77.8750 64.1042 71.8803 73.0417 81.5417 

VEvsVD 71.7544 72.5833 68.4074 76.1250 69.1250 77.0833 

EvsD(All) 66.4828 66.1151 59.1781 70.5995 68.2857 74.6190 

 

AEvsBE 61.5385 68.0342 64.9167 67.9060 71.7083 75.3333 

ADvsBD 66.6270 74.3254 55.6410 77.7778 78.9286 79.8810 

VEvsBE 60.6140 63.5470 60.9583 70.2917 71.7917 70.9167 

VDvsBD 68.9431 72.5610 70.2083 79.2276 79.0244 74.8780 

 

BEvsBD 63.2917 61.8803 66.0000 70.1667 61.0833 71.0417 

rLDA Classifier using 7 Frequency band features with 10 best Features selected 

 

 
P1 P2 P3 P4 P5 P6 

AEvsVE 61.1842 78.2083 72.0732 67.2650 57.7500 65.3750 

ADvsVD 68.5772 78.6585 64.5299 70.4472 64.4309 71.9919 

AvsV(All) 63.7342 71.8313 64.1042 62.2222 58.9712 65.8025 

 

AEvsAD 73.1197 80.4167 66.7094 75.0855 75.6250 85.0833 

VEvsVD 77.7632 73.2083 70.0370 80.4583 75.9583 77.5417 

EvsD(All) 68.8603 69.4844 60.9589 72.9376 70.6905 75.5357 

 

AEvsBE 64.8718 71.1966 67.6667 70.9402 73.7917 79.3333 

ADvsBD 70.8730 78.1746 61.1538 81.0317 82.8571 82.5794 

VEvsBE 66.2281 68.1624 63.0417 71.6667 72.6250 72.7500 
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VDvsBD 70.0407 78.1707 73.3750 83.8211 82.4390 75.2439 

 

BEvsBD 64.2083 66.7949 66.2917 71.0417 63.8333 76.0833 

rLDA Classifier using 7 Frequency band features with 35 best Features selected 

 

 
P1 P2 P3 P4 P5 P6 

AEvsVE 60.3509 75.0000 69.7154 64.3162 56.0417 66.2500 

ADvsVD 70.1626 83.5772 64.0171 75.7724 75.0407 78.7398 

AvsV(All) 62.5527 72.4691 63.0208 67.0782 65.1029 68.7654 

 

AEvsAD 72.9487 83.7083 62.1795 79.5299 77.9167 82.7917 

VEvsVD 77.1930 78.3750 64.4444 81.6667 80.8333 81.9583 

EvsD(All) 66.0784 71.3909 59.4635 75.3477 72.8452 76.1667 

 

AEvsBE 62.8205 68.0769 69.9583 71.1111 70.0833 79.0000 

ADvsBD 74.1270 79.8413 62.8205 79.3651 79.8810 81.8651 

VEvsBE 61.5789 72.9915 68.5417 73.1667 71.0417 75.5000 

VDvsBD 76.0976 78.8618 73.7083 82.3577 83.8618 80.5285 

 

BEvsBD 67.0833 66.2821 73.4583 71.2917 66.0833 73.0833 

rLDA Classifier using 56 Frequency band features with 10 best Features selected 

 

 
P1 P2 P3 P4 P5 P6 

AEvsVE 64.0789 77.0417 75.1220 70.8120 56.7500 72.0833 
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ADvsVD 74.2683 86.4634 70.2137 77.7236 78.4553 80.8537 

AvsV(All) 66.2236 74.6708 68.7917 68.8066 66.6255 72.5514 

 

AEvsAD 75.7265 86.8750 70.6838 83.7179 85.2500 88.0000 

VEvsVD 79.8684 84.6250 70.8148 84.5833 86.6667 86.6667 

EvsD(All) 71.2377 74.7602 62.4201 79.4604 77.3214 78.3214 

 

AEvsBE 67.4359 74.8291 73.3750 73.8889 74.5000 82.8333 

ADvsBD 77.6587 84.7222 67.6496 83.7698 86.1905 88.3333 

VEvsBE 63.2018 73.6752 77.2917 75.6667 72.4583 78.1250 

VDvsBD 80.5285 85.6504 75.4583 86.3008 87.5203 85.4472 

 

BEvsBD 72.0000 70.7265 75.1667 74.5833 72.0000 79.2500 

rLDA Classifier using 56 Frequency band features with 35 best Features selected 

 

 
P1 P2 P3 P4 P5 P6 

AEvsVE 53.1579 71.9583 64.1057 58.5897 56.4583 58.5000 

ADvsVD 64.5528 74.1057 57.1795 62.1545 60.0407 64.5122 

AvsV(All) 60.0844 69.0741 65.4375 57.2840 57.2428 63.5185 

 

AEvsAD 66.8376 74.4167 61.8376 67.8632 69.7500 83.6250 

VEvsVD 62.5877 65.4167 60.2963 65.8333 63.4583 77.7917 

EvsD(All) 61.6176 61.7746 59.9772 66.8585 65.2024 75.2143 

 

AEvsBE 60.0855 63.0342 66.4167 65.2991 68.3333 70.5417 
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ADvsBD 65.8730 73.3730 56.8376 68.2143 78.4127 76.5079 

VEvsBE 57.4123 65.9829 60.3750 62.8750 69.0833 67.0000 

VDvsBD 61.2195 74.4309 66.5417 69.2276 75.1626 74.2683 

 

BEvsBD 59.4167 60.8547 65.0833 68.3750 62.5833 68.7500 

KNN Classifier using 7 Frequency band features with 10 best Features selected 

 

 
P1 P2 P3 P4 P5 P6 

AEvsVE 48.1579 71.1250 61.9106 52.6068 52.5000 58.8333 

ADvsVD 59.5122 73.4553 56.3248 60.1626 61.2195 66.2602 

AvsV(All) 60.1899 70.2675 57.5625 57.2840 56.5638 63.0453 

 

AEvsAD 67.6068 77.9167 59.9573 68.0342 69.4583 83.2917 

VEvsVD 59.8246 64.0417 60.1481 67.2500 67.8333 80.0833 

EvsD(All) 62.9657 65.2518 59.7260 68.0815 66.0595 75.6548 

 

AEvsBE 60.0000 60.0000 58.4583 64.9573 71.8333 69.7500 

ADvsBD 60.8730 73.1349 60.3419 72.7381 79.4444 77.5794 

VEvsBE 58.9035 65.8547 61.1667 63.6250 70.4583 69.0417 

VDvsBD 60.7724 73.9837 64.9167 72.2764 77.6016 74.8374 

 

BEvsBD 62.6667 64.0171 64.2917 67.6667 61.1667 70.2500 

KNN Classifier using 7 Frequency band features with 35 best Features selected 
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P1 P2 P3 P4 P5 P6 

AEvsVE 57.8947 60.8750 59.2276 56.6667 52.9167 60.0833 

ADvsVD 64.6748 66.3821 58.3333 70.6911 72.8862 72.7642 

AvsV(All) 60.1266 59.3621 54.3333 65.6379 61.0905 64.9588 

 

AEvsAD 65.1709 68.4583 52.4359 77.9487 70.3750 79.3333 

VEvsVD 67.2807 67.1250 59.6667 75.3333 79.7083 78.9583 

EvsD(All) 61.9363 63.8010 53.0936 71.4508 69.7738 75.5833 

 

AEvsBE 59.8718 59.9145 59.5833 64.6154 61.5833 68.2083 

ADvsBD 61.3492 58.8095 56.1111 69.6429 78.6905 78.1746 

VEvsBE 56.4474 57.7350 63.0833 69.2083 63.7917 65.7917 

VDvsBD 63.2520 63.9431 58.2917 73.7805 71.4228 74.9187 

 

BEvsBD 59.1250 59.1880 70.7083 65.3750 61.7500 70.8750 

KNN Classifier using 56 Frequency band features with 10 best Features selected 

 

 
P1 P2 P3 P4 P5 P6 

AEvsVE 58.1579 63.8750 58.5366 61.9658 53.7083 61.0000 

ADvsVD 60.1626 70.6911 58.8889 71.5447 74.1870 74.8374 

AvsV(All) 60.1055 64.2387 57.0417 66.9959 63.2716 66.7078 

 

AEvsAD 64.3590 71.2083 56.4103 77.5214 72.2083 82.9583 

VEvsVD 67.8509 71.4583 61.3333 77.3333 80.7917 82.2500 

EvsD(All) 64.2647 67.3981 54.8402 73.7290 72.7857 78.0833 
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AEvsBE 62.2222 59.3590 60.2500 66.1111 65.5417 70.2917 

ADvsBD 58.0159 66.4286 55.8974 72.7778 79.0873 80.1190 

VEvsBE 58.9035 61.5812 68.7083 64.9583 67.2083 66.9583 

VDvsBD 61.2602 66.4634 62.4583 76.3821 71.4228 78.7805 

 

BEvsBD 58.8333 64.1026 69.4167 69.7917 64.8750 70.8750 

KNN Classifier using 56 Frequency band features with 35 best Features selected 

 

 
P1 P2 P3 P4 P5 P6 

AEvsVE 55.5263 74.8750 68.2927 59.2308 57.1250 59.5000 

ADvsVD 64.5935 73.4553 62.7778 63.8211 63.4959 65.9756 

AvsV(All) 60.2954 70.7613 70.2917 59.0329 59.1564 64.9177 

 

AEvsAD 66.8803 79.4167 69.5726 66.5385 71.8333 81.9167 

VEvsVD 65.0000 65.3750 63.0741 64.6250 64.6667 75.5417 

EvsD(All) 61.0417 69.6581 60.9247 65.2878 67.5000 74.0595 

 

AEvsBE 59.4444 68.0769 70.7917 65.9402 71.2083 74.6667 

ADvsBD 64.9206 77.8175 58.7607 72.0238 79.8413 78.0159 

VEvsBE 61.2281 68.5897 59.4167 65.1250 71.0000 68.9583 

VDvsBD 57.3984 74.1870 69.0417 71.6667 78.4146 76.5041 

 

BEvsBD 59.7500 64.2308 66.8750 67.7500 64.7917 70.9583 

SVM Classifier using 7 Frequency band features with 10 best Features selected 
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P1 P2 P3 P4 P5 P6 

AEvsVE 51.0088 78.5417 70.5285 65.8120 59.0833 61.8750 

ADvsVD 63.8211 78.2520 62.6923 66.3008 69.6341 72.5203 

AvsV(All) 62.3418 75.5556 65.8333 62.4691 61.4815 67.0165 

 

AEvsAD 69.7863 86.0000 69.7009 69.6154 73.6667 86.1667 

VEvsVD 62.2368 70.6667 64.7037 71.1250 74.1667 78.5833 

EvsD(All) 65.0368 70.2518 65.5822 68.9568 68.9286 76.8690 

 

AEvsBE 62.6068 69.4872 67.0833 69.6154 76.5833 73.9583 

ADvsBD 64.3254 77.7778 64.5299 76.6667 81.5079 83.6905 

VEvsBE 62.9386 74.1453 65.2917 67.0417 75.9167 70.7500 

VDvsBD 61.5447 80.5285 69.9167 79.0650 83.3740 78.9837 

 

BEvsBD 62.9583 69.6581 69.9583 70.4167 67.5000 73.5833 

SVM Classifier using 7 Frequency band features with 35 best Features selected 

 

 
P1 P2 P3 P4 P5 P6 

AEvsVE 57.7632 61.2917 58.6179 55.8974 56.5000 59.1667 

ADvsVD 64.4309 63.4146 56.4957 70.0813 72.4390 71.5854 

AvsV(All) 59.7679 57.7160 55.9167 63.6214 60.8642 63.4156 

 

AEvsAD 62.6923 69.2083 54.7009 76.6239 69.6667 77.1667 

VEvsVD 64.5614 68.6667 58.4074 73.6667 78.3333 77.5417 
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EvsD(All) 60.5760 62.9137 53.0023 71.8825 69.4167 74.8214 

 

AEvsBE 59.9145 60.7692 58.4167 62.5641 64.4583 66.7083 

ADvsBD 58.3333 59.5238 59.7436 70.7143 81.0714 80.6746 

VEvsBE 59.8246 59.0598 62.5000 65.5833 62.7500 67.0833 

VDvsBD 63.0488 62.2764 58.1250 74.4309 69.3902 75.4878 

 

BEvsBD 56.9167 59.7436 66.6250 65.1667 61.2917 68.4167 

SVM Classifier using 56 Frequency band features with 10 best Features selected 

 

 
P1 P2 P3 P4 P5 P6 

AEvsVE 60.5702 66.5833 63.3740 61.0684 56.8333 62.3333 

ADvsVD 63.4959 71.5447 60.1282 75.6504 76.9512 78.3740 

AvsV(All) 61.9409 65.3086 59.5417 68.2922 65.2263 68.8683 

 

AEvsAD 65.2564 75.6250 58.7607 80.3419 76.4167 80.9583 

VEvsVD 71.4912 76.9167 62.8519 80.8333 81.5833 84.6250 

EvsD(All) 65.4657 69.7482 57.1918 75.6715 73.7381 79.2381 

 

AEvsBE 65.8547 65.8547 62.0000 67.6923 69.3750 73.2500 

ADvsBD 57.3016 68.4524 62.7778 76.7063 84.8810 84.8016 

VEvsBE 63.6404 64.7009 70.6250 67.6667 69.9167 68.2083 

VDvsBD 60.8943 69.6748 64.1250 77.8862 73.5772 82.1951 

 

BEvsBD 60.0417 68.3333 71.7917 71.0417 68.5833 72.7083 
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SVM Classifier using 56 Frequency band features with 35 best Features selected 
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