
 

 

 Interaction Between Antimicrobial Peptides and Non-lipid Components 

in the Bacterial Outer Envelope 

 

 

 

    

by 

© Sheyla Montero Vega 

  

 

 

   

A thesis submitted to the 

School of Graduate Studies 

in partial fulfillment of the requirements for the degree of 

  

 

 

  

Master of Science 

  

  

  

  

  

  

  

  

Department of Biochemistry 

Memorial University of Newfoundland 

  

  

 

  

August, 2021 

  

  

  

St. John’s                                                                             Newfoundland 



i 

 

Abstract 

Antimicrobial peptides (AMPs) offer advantages over conventional antibiotics; for example, 

bacteria develop resistance to a lesser extent to AMPs than to small-molecule antibiotics. The 

interaction of the AMPs with the liposaccharide (LPS) layer of the gram-negative bacteria cell 

envelope is not well understood. I constructed a MARTINI model of a gram-negative bacterial 

outer membrane interacting with the AMP Magainin 2. In a 20 μs MD simulation, the AMP 

diffused to the LPS layer of the cell envelope and remained there, suggesting interactions between 

the Magainin 2 and the LPS layer causing the AMP to concentrate at that position. Furthermore, 

the free energy profile for the insertion of the Magainin 2 into the membrane was calculated using 

umbrella sampling, which showed that the AMP positioned such that the cationic sidechains of the 

AMP coordinated to the negatively charged phosphate groups of the LPS layer. These simulations 

indicate that AMPs partition into the LPS layer of a bacterial membrane. 
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Chapter 1: Introduction 

1.1 Antibiotic resistance 

Antibiotics are therapeutic molecules used for preventing or treating bacterial infections. The first 

documented use of antibiotics was by John Parkinson in the 19th century [1]. Alexander Fleming’s 

discovery of penicillin started the revolution of antibiotics in the 20th century [1]. However, the 

easy access and overuse of antibiotics have led to bacterial resistance to antibiotics. 

Antibiotic resistance is a natural phenomenon. Bacteria have large genetic plasticity that 

allows them to respond to environmental threats like antibiotics. To acquire resistance, bacteria 

have evolved mechanisms to avoid antimicrobial action.  Mutations in the bacterial DNA or 

horizontal gene transfer can produce the acquired resistance [2]. The main mechanisms of 

resistance are as follows: the production of enzymes to degrade antibiotics [3] like the secretion of 

beta-lactamase into the periplasm [4]; the formation of efflux pumps that transport antibiotics out 

of the cell [5]; the modification of the target molecules of the antibiotics; and the modification of 

metabolic pathways used by the bacteria [2] (Fig

                                 

Fig.1.1: The mechanisms of resistance to antibiotics in bacteria include:  Production of 

enzymes to degrade antibiotics, modification of the target molecules of the antibiotics, the 

production of efflux pumps that transport antibiotics out of the cell, and the modification of 

metabolic pathways used by the bacteria. (Created in biorender.com). 
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In the last decade, rates of antibiotic resistance to common bacteria like Klebsiella 

pneumoniae and Escherichia coli have escalated. Antibiotic resistance has led to a dangerous 

increase in multidrug resistance for pneumonia, tuberculosis, malaria, urinary tract infections, 

wounds, bloodstream infections, and others. Infections with antibiotic resistant bacteria increase 

the risk of bad clinical outcomes and death. The patients also consume more healthcare resources 

than patients infected with the same bacteria that do not demonstrate the same pattern of resistance 

[6]. 

The World Health Organization published a Global Report of Surveillance in 2014 stating 

that the number of infections caused by multidrug-resistant bacteria is increasing. Almost 2 million 

people in the United States are infected per year with resistant bacteria, causing 20 billion dollars 

of losses to the US economy. New antibacterial agents are needed for the treatment of bacterial 

infections. Antimicrobial peptides (AMPs) are a promising prospect for the basis of new antibiotic 

treatments [7].  

1.2 Antimicrobial peptides  

AMPs are effector molecules present in the innate immune system of a wide variety of organisms 

across all domains of life. The story of antimicrobial peptides goes back to 1939, when a substance 

isolated from Bacillus brevis call gramicidin, showed activity against a range of gram-positive 

bacteria.  Gramicidin later became the first antimicrobial peptide to be commercialized for use as 

an antibiotic in topical treatments. The boom of antibiotics following the discovery of penicillin 

resulted in decreased interest in antimicrobial peptides. The lack of interest in AMP changed in 

the 1960s when multidrug resistant bacteria were discovered. The emergence of resistance to 

existing antibiotics spurred new research into AMPs. The first reported animal AMP was defensin, 

isolated from rabbit leukocytes in 1956 [8]. In 1963 it was proved that human leukocytes use AMP 

in their lysosomes [9]. Several groups in the 1970s and 1980s reported antimicrobial peptides 

produced from leukocytes, including α-defensins from rabbits and humans [10].  

One important landmark in the history of antimicrobial peptides is the work of Boman et al. 

in 1981. Boman injected bacteria into pupae of a silk moth and isolated the antimicrobial peptides 

used by the pupae to defend against the bacteria [11]. These peptides were sequenced and 
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characterized, constituting the first α helical antimicrobial peptides reported. In another critical 

study Zasloff et al. isolated and characterized cationic antimicrobial peptides from the African 

clawed frog. These peptides were named Magainins [12].  To this day, more than 600 natural 

cationic antimicrobial peptides have been described, with examples from almost all domains of 

life [13].  

AMPs can kill bacteria and fungi, and some are active against viruses and cancer cells [14]. 

AMPs offer a broad spectrum of antimicrobial activity. In addition to killing microorganisms, they 

also can induce an immune response. Antimicrobial peptides are diverse in the mechanism of 

action, structure, and sequence. A crucial advantage of AMPs is that they induce less resistance in 

bacteria [15]. Generally, AMPs do not interact with a specific protein receptor or enzyme. Instead, 

they act directly on the bacterial envelope by disrupting the membrane. While bacteria can develop 

resistance to protein-targeting antibiotics through the mechanisms described earlier, these 

mechanisms are less effective against membrane-disrupting AMPs [16].  

1.3 Structure of antimicrobial peptides 

AMPs are generally 12–50 amino acids in length, and even the largest AMPs are less than 150 

amino acids in length. AMPs present in plants and animals are typically amphipathic and cationic, 

with excess arginine and lysine. The presence of positively charged amino acids suggests that these 

proteins could have attractive electrostatic interactions with the lipid headgroups of the outer 

membranes of bacteria, which are generally negatively charged. AMPs contain around 50% 

hydrophobic amino acids, which are essential to their interaction with the membrane. AMPs have 

various amino acid sequences that give a diverse secondary and tertiary structure [17]. There are 

four major classes of AMP according to their secondary structures: linear α-helical peptides, β-

sheet containing peptides, extended linear structures, and peptides containing both α and β 

elements [18]. 

The α-helical peptides were one of the first AMP structure classes to be characterized [11]. 

This group of AMPs is the best studied; hundreds of natural peptides have been identified with 

this secondary structure. The synthesis of analogs has also contributed to the diversity of α-helical 

AMPs.   
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Most of these α-helical peptides are random coils in aqueous solutions. Their immersion in 

bacterial membranes stabilizes the α-helical conformations of the AMPs. As amphipathic peptides, 

AMPs can interact with the hydrophilic head and the hydrophobic tail of the membrane 

phospholipids [18]. The helical structures have a large variety of lengths and different content and 

orientation of charged and hydrophobic residues. This variety gives the range of activities of this 

class of peptides [17]. Amidation at the C-terminus, that is common in natural helical AMPs 

AMPs, increases the electrostatic interaction between the peptide and the negatively charged 

molecules in the bacterial membrane and enhances the activity of most helical AMPs.  

1.4 Magainin  

Magainins are a family of α helical AMPs discovered in the skin of the African frog Xenopus 

laevis. Magainins are promising candidates as a new type of therapeutic antibiotics because of 

their high efficacy in killing bacteria, while their toxicity against mammalian cells is low [19].  

Magainin 2 is the most studied peptide in this family.  

Magainin 2 has 23 amino-acids and a net charge of +4 at neutral pH (Fig. 1.2). Magainin 

2 has an unfolded structure in solution, but it folds to an α-helical structure after contact with the 

membrane surface. The conformation inside the LPS layer is unknown (Fig. 1.2) [14]. Magainin 

2 creates a local defect in the bacterial bilayer, forming disordered toroidal pores [20]. The toroidal 

pores permeabilize the bacterial membranes. 

 Magainin 2 can form dimers via a disulfide bond, and this dimerization is significant for 

their activity [21]. Homodimers of Magainin are more active than monomers [21].  
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Fig. 1.2: A) Magainin 2  is extracted from Xenopus laevis. The structure is unfolded in solution, 

unknown in the LPS layer, and alpha helical in the membrane. B) The α helix of Magainin 2 is 

amphipathic. Blue: hydrophobic amino acids; red: positively charged amino acids; orange: polar 

amino acids; pink: Glycine; Green: negatively charged amino acids. C) Magainin 2 structure 

obtained by NMR in DPC micelles, downloaded from Protein Data Bank (PDB ID: 2MAG) [22], 

(Structure in render in 3D  VIEW of rcbc.org [23]).  (Created in biorender.com) 

Magainin 2 has excellent activity and shows significantly lower cytotoxicity than many 

naturally occurring AMPs. However, Magainin 2 can lyse red blood cells, although its hemolytic 

activity is significantly weaker than other AMPs like melittin [24], and has poor biological stability 

toward proteolytic enzymes [25].  Magainin 2 has been used as a basis for creating synthetic 

analogs made by a series of amino acid substitutions, truncation of the peptide, and terminal 

modifications [26]. The purpose of these synthetic analogs is to make Magainin more active and 

improve its stability and safety.  

Magainin 2 preferentially targets bacterial membranes over membranes of the cells of the host 

organism. Understanding how these peptides target the bacterial membrane is necessary for 

developing new peptides with more selectivity. Theories of how AMPs target specific bacteria 

focus on the difference between bacterial and eukaryotic cell envelopes. One of these differences 

is the composition; for example, the presence/absence of sterols, LPSs, peptidoglycans, and the 

charge of the polar head of the membrane lipid in the outer leaflet [14]. The cationic nature of 
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Magainin 2 could allow selective interaction with anionic components of the bacterial cell 

envelope, including lipids, as well as possibly the carbohydrate and other cell envelope 

components [27]. Eukaryotic membranes have a more significant proportion of lipids with neutral 

headgroups, so, in principle, their electrostatic interactions with the cationic groups of Magainin 2 

would be weaker. 

1.5 Bacterial Cell Envelope 

The chemical composition of the cell envelope of bacteria is highly complex (Fig. 1.3). The cell 

envelope of gram-negative bacteria has an inner membrane, a peptidoglycan layer, and an outer 

membrane [28]. Between those layers is the periplasmic space, containing a variety of ions and 

proteins [29]. The outer membrane of gram-negative bacteria is a highly asymmetric bilayer. The 

outer leaflet is composed mainly of LPSs (LPS) (Fig. 1.3), while the inner leaflet of many gram-

negative bacteria, including Escherichia coli, is composed of zwitterionic and negative 

phospholipids, mainly phosphatidylethanolamine and phosphatidylglycerol, as well as cardiolipins 

[7]. 

 

Fig. 1.3: The cell envelope of gram-negative bacteria is composed of:  an outer membrane  formed 

by a LPS layer and a phospholipid layer, a peptidoglycan layer and an inner membrane formed 

by a lipid bilayer (Created in biorender.com).  
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The LPS molecules (Fig. 1.4) are macromolecules composed of lipids and carbohydrate 

components covalently bonded with each other (Fig. 1.3). The LPS molecules have three main 

components.  The first component is Lipid A, which acts as an anchor of the LPS to the membrane. 

Lipid A is the most conserved part of the LPS and consists of a disaccharide of D-glucosamine 

and two phosphate groups that are linked to positions 1 and 4. The disaccharide is substituted with 

six acyl chains linked by ester and amide bonds.  The amino linked fatty acids are always (R)-3-

hydroxy myristic acid, while the ester linked fatty acids can vary between myristate, laureate, or 

palmitate. The interaction between Lipid A negative charges and the divalent ion Mg2+ and Ca2+ 

is fundamental for the stability of the membrane. 

The second component, linked to Lipid A, is a phosphorylated oligosaccharide chain 

known as the core.  The core is divided into the outer core (RaLPS) proximal to O-antigen and the 

inner core (ReLPS) directly linked to Lipid A. The chemical structure of the inner core is conserved 

within each family of bacteria and usually contains residues of 3-deoxy-d-manno-oct-2-ulosonic 

acid (Kdo) and heptose (Hep) (Fig. 1.4). In contrast, the outer core has greater structural variability 

even inside different serotypes of the same bacteria. The composition of the core has an important 

role in the biological activity of LPS  [30]. The core has an overall negative charge conferred by 

the phosphorylated groups.  
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Fig. 1.4: LPS molecules are composed of: Lipid A formed by a  disaccharide of D-glucosamine 

(blue, GlcNac) and two phosphate groups (red ball and stick models); the inner core formed by 3-

deoxy-d-manno-oct-2-ulosonic acid ( light blue, Kdo), heptose (red, Hep), and a phosphate group; 

the outer core formed by heptose (red, Hep), galactosamine (orange), glucose (brown), D-

glucosamine (blue) and a phosphate group; and the last component the O-Antigen formed by 

repeated units made with 2–7 monosaccharides (pink, salmon, lilac) (created in Biorender.com).  

The third component is a highly variable polysaccharide called O-antigen. The O-antigen 

has a variable number of repeated units made with 2–7 monosaccharides.  The O-antigen can be 

branched or linear, and most are heteropolymers. The number of identified O-antigens is vast and 

constantly increasing. Escherichia coli alone produces more than 170 types of O-antigens [31]. 

The primary function of O-antigen in the bacteria envelope is thought to be protective; O-antigen 

may contribute to the evasion or delay of the immune responses in the host [32]. 

1.6 AMP mechanisms of action 

 The most widely accepted mechanism of action of AMPs is the direct targeting of the 

bacterial membrane, the disruption of the lipid bilayer, and the permeabilization process [29]. The 

cationic and hydrophobic composition of most AMPs makes them suitable for interacting with and 
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disturbing bacterial membranes that are mainly anionic. After the initial contact of the AMPs with 

the lipids through electrostatic interactions, the peptide permeabilizes microbial membranes and 

dissipates the electrochemical gradient across the membrane. The permeabilization of the 

membrane results in the disruption of the cell function, including vesiculation, fragmentation, the 

release of DNA, cell aggregation, and destruction of cell morphology [33].  

The discussion about mechanisms is mostly centered on how the AMPs destabilize and 

permeabilize the membrane. The carpet mechanisms and the toroidal pore are the most widely 

accepted models (Fig. 1.5) [34]. The classical model for toroidal pores is a well-ordered structure 

with lipids and peptides intercalated, forming a transmembrane channel. The ordered toroidal pore 

assumes that the pore is cylindrical, and the peptide is parallel or perpendicular to the pore [19]. 

Recently, the disordered toroidal pore has been proposed as an alternative to this traditional model 

[20]. In this model, the inside of the pore is not well organized and has an irregular arrangement. 

In the disordered toroidal pore, the peptides do not line on the pore and can bind to the membrane 

surface after pore formation. The disordered toroidal pore was described and observed in 

simulations for melittins [20] and Magainin [35] and is believed to be a general mechanism for the 

formation of pore in AMPs.   
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 Fig. 1.5: A) The toroidal model. AMPs insert into the membrane and induce the lipid layer to 

bend continuously through the pore. B): The carpet model. The AMPs disrupt the membrane by 

forming micelles. At a critical concentration, the AMPs form transient holes in the membrane. C) 

The disordered toroidal pore. The pore is not well organized and has an irregular arrangement. 

(created in biorender.com).  

The carpet model is a non-pore forming model where the AMP acts through a mechanism 

similar to detergents. In this model, a high density of peptides interacts parallel to the membrane 

surface. The high ratios of peptide/lipid in the membrane produce the displacement of 

phospholipids, leading to the disruption of the membrane [33]. Other models exist for the 

interaction of AMPs and membranes, like the detergent model and barrel-stave model [7]. 

  How AMPs initially interact with bacterial cell envelopes and ultimately affect them is still 

poorly understood. Most of the studies about the mechanism of action and the permeabilization of 

AMPs are carried out in synthetic liposomes [36]. Unifying and connecting the result from in vitro 
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experiments and experiments with the whole bacteria is challenging. In experiments where the 

AMP is exposed to whole bacterial cells, the minimal inhibitory concentration (MIC) is a 

parameter used to compare the efficiency of antibiotics. The MIC is the lowest concentration 

required for AMPs to limit the growth of the bacteria.  

The molar AMP to lipid ratio establishes a direct comparison between in vitro experiments 

in liposomes and experiments in the whole bacteria. Wimley calculated that the minimum dose of 

AMP needed for membrane permeabilization is 10000 times higher in bacteria than in liposomes 

[36]. This result suggests that an AMP interacting with bacteria binds to other molecules that are 

not present in liposomes. Multiple researchers have suggested that the LPS layer of the bacterial 

membrane is the component that AMPs are interacting with [37][38]. Significantly, experiments 

on E. coli mutants where the LPS layer was absent had a lower MIC, indicating that the presence 

of the LPS layer makes AMPs less effective [37]. The possible interactions between the AMPs 

and the LPS on the cell wall of gram-negative bacteria can change our views on the mechanism of 

action AMPs. 

In 1994, Hancock [39] proposed that the uptake of AMPs occurs through a mechanism similar 

to the mechanism established for traditional antibiotics. According to this “self-promoted uptake” 

hypothesis, the cationic AMPs initially interact with the negative charge of the LPS layer in the 

outer membrane. This first interaction displaces the Mg2+ or Ca2+ ions that stabilize the LPS layer 

by neutralizing the charges. Under this hypothesis, the peptide-LPS interaction distorts the acyl 

chains in the outer layer, then inserts into and translocate across the bilayer (Fig. 1.6 ) [39].  
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Fig. 1.6: The “self-promoted uptake” of AMPs. A) AMP first interacts with the LPS layer. B) The 

peptide displaces ions that crosslink Lipid A, destabilizing the LPS layer. C) Insertion of the AMP 

in the membrane (created in biorender.com) 

Even though the self-promoted uptake hypothesis was proposed 25 years ago, the details about 

the interactions between the LPS layer and cationic peptides that would provide evidence in 

support or opposition to this hypothesis are still non-existent.  

Another hypothesis about the function of the bacterial envelope’s components proposed that 

the LPS layer can act by trapping the AMP [40]. The LPS can act like an electrostatic barrier 

capturing AMPs and preventing the insertion in the lipid hydrophobic core. These questions about 

the function of the LPS layer have not been answered. More data about the affinity of the AMPs 

for the cell wall components are needed [41].  

Understanding how AMPs interact with the bacterial outer membrane and the LPS layer 

would aid the development of synthetic peptides that retain the membrane-disrupting features of 

natural AMPs while also improving features important for practical use, like selectivity of the 

bacterial cell over host cells.  

Computer simulations are one approach for elucidating the interactions between AMPs and a 

biological membrane. Molecular dynamics (MD) methods have become essential techniques for 

the study of complex membranes. MD simulations of AMPs interacting with model bacterial 

membranes could help resolve which mechanism for AMP interaction is correct. 
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1.7 Molecular Dynamics Simulations 

MD is a powerful technique that can simulate the motion of a large number of particles using 

Newton’s laws of motion. These simulations yield a trajectory that shows the dynamics of the 

particles throughout a simulated time. These trajectories can be analyzed to calculate time-

averaged equilibrium distributions that show the equilibrium structure of the system, the 

probabilities of occupying the available conformational states, and the physical properties of the 

system. In this thesis I discuss a subset of the classical MD simulation that have been widely used 

to study biomolecules like proteins, lipids, nucleic acids, glycan, and more complex structures like 

biomembranes. For these systems, molecular dynamic simulations act like a “computational 

microscope”[42], allowing us to describe a system at an atomistic resolution level, sometimes with 

more detail than standard biophysical experiments can provide.  Improvements in computing 

hardware (e.g., Graphical Processing Units, GPUs) and simulation algorithms have made it 

possible to simulate larger systems, for longer time intervals, with greater accuracy. 

1.7.1 Force Field 

Molecular dynamic simulations require that both the intramolecular and intermolecular forces of 

the system are calculated accurately at every step of the simulation [43]. These calculations are 

made using a “force field”, which is a mathematical expression and a set of parameters used for 

determining the potential energy of a chemical system given the positions of the particles in the 

system. The total potential energy in a force field includes bonded and non-bonded interactions 

(Fig.1.7) (Eq 1.1). 

 

      The bonded interactions (Eq 1.2) are between atoms that are connected with covalent bonds. 

The most basic mathematical form of the bonded potential energy includes three terms, . The first 

term uses Hooke’s law to describe bond stretching. The second term again uses Hooke’s law to 

describe angle bending. The third term describes rotation about a torsion or dihedral angle (Eq 

𝜐𝑡𝑜𝑡𝑎𝑙 = 𝜐𝑏𝑜𝑛𝑑𝑒𝑑 + 𝜐𝑛𝑜𝑛−𝑏𝑜𝑛𝑑𝑒𝑑                                                    Eq (1.1) 
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1.2). Other terms can be as well included like dihedral cross-terms, quartic angle terms, and other 

forms of improper angles. 

𝜐𝑏𝑜𝑛𝑑𝑒𝑑 = ∑
1

2𝑏𝑜𝑛𝑑𝑠 𝑘𝑏𝑜𝑛𝑑 (𝑟 − 𝑟𝑒)2 + ∑
1

2𝑎𝑛𝑔𝑙𝑒𝑠 𝑘𝑎𝑛𝑔𝑙𝑒(𝜃 − 𝜃𝑒)2 +

∑ 𝑘𝜙 (1 + cos(𝑛𝜙 − 𝛿))𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠                                                                                                                                                                                                                                                 

               

  

                Eq (1.2) 

 

where 𝑘𝑏𝑜𝑛𝑑  and 𝑘𝑎𝑛𝑔𝑙𝑒 are force constants,  𝑟𝑒 is the equilibrium length,  𝜃𝑒 is the equilibrium 

bond angle, 𝑘𝜙   is the barrier height,  is the periodicity of the term,  𝜙 is the torsional angle, and 

𝛿  is the offset.  

The non-bonded equation (Eq 1.3) describes the interactions between any pair of atoms that 

are not connected and are within a given cut-off radius. These terms include the van der Waals 

interactions, described by a 6-12 Lennard-Jones potential, and the electrostatic interaction between 

partial charges, described by a Coulombic potential (Eq 1.3). Other bonded interaction terms can 

included 12-10 potentials, explicit multipole terms, Buckingham potentials, and others. 

𝜐𝑛𝑜𝑛−𝑏𝑜𝑛𝑑𝑒𝑑 = ∑ 4𝜀𝑖𝑗

𝑝𝑎𝑖𝑟:𝑖𝑗

[(
𝜎𝑖𝑗

𝑟𝑖𝑗
)

12

− (
𝜎𝑖𝑗

𝑟𝑖𝑗
)

6

] +
𝑞𝑖𝑞𝑗

4𝜋𝜀0
 

1

𝑟𝑖𝑗
 

 

     Eq (1.3) 

where 𝜀𝑖𝑗  is the van der Waals well depth, σij is the atomic radius, r is the distance between the 

particles in question, q is the partial atomic charge, 𝜀0 is the permittivity of the free space. 
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Fig 1.7: The total potential energy in a force field includes bonded and non-bonded interaction. 

The bonded interactions are: the bond streching, the torsion or dihedral angle and the angle 

bending. The non-bonded interactions include the van der Waals interactions, described by a 6-

12 Lennard-Jones potential, and the electrostatic interaction between partial charges. (Created 

with biorender.com) 

A set of these parameters must be defined for a force field to be used in a simulation. The 

accuracy of a molecular dynamic simulation is directly dependent on the quality of the force field 

parameterization. There are several force fields available for simulations of biomolecular lipid and 

protein containing systems, e.g. CHARMM [44], [45], AMBER [46], [47], Slipids [48], GROMOS 

[49].  

1.7.2 Coarse-Grained Models 

In many popular molecular mechanical models, each atom is represented as an explicit 

particle; this gives us a very structurally precise model describing all the atoms. These simulations 

are costly in terms of computational resources and require a long time to produce results, especially 

for simulations of bio-membranes. Biological membranes are complex biochemical structures 

formed from a variety of lipids, carbohydrates, and membrane proteins.  For these types of 

membranes, equilibration times increase to microseconds, and equivalently long simulations are 

needed to investigate any aspect of the system. Because of the large size of these systems, the 

computational cost of these simulations is prohibitive, even with modern computing hardware 

[41]. 

Consequently, to save resources and time, we should consider interactions relevant to the 

problem in question and cut down the number of atoms in the system. This goal was the basis for 
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the development of the coarse-grained method of simulations. The use of coarse grain models or 

all-atom models depends on what we are trying to study in our systems and the simulation time 

required for seeing the process. For studies of structural details in proteins or changes in the 

structures all-atom models are adequate. In contrast for long membrane processes like AMP 

insertion in the membrane, coarse-grain models enable the necessary simulation time to be 

reached.  

The parameterization of the force field depends on the model's level of resolution. The full 

atomistic details of force fields have higher resolution and are usually parameterized using 

properties obtained from the experimental calculation of quantum mechanics.  With the need to 

perform simulations of systems with a higher spatiotemporal range, lower resolution levels of force 

fields like coarse-grained have been developed [50]. 

In coarse-grained models, atoms are grouped into functional groups, reducing the number of 

particles in the system. This kind of model groups 3–6 heavy atoms (i.e. C, O, N) and their 

associated hydrogens in a coarse-grained bead particle. The use of bead particles immediately 

reduces the number of interacting particles by a factor of 3–6. An indirect benefit of this coarse-

graining is that these models tend to have a smoother energy landscape, leading to faster dynamics 

and the ability to use larger time steps [51]. The computational power needed to perform the 

simulations is reduced, and both the size and simulation time of the system can be simultaneously 

increased. 

The use of coarse-grained models for lipids started in the 90s with the work of Smit in water-

oil interfaces. A large diversity of coarse-grained approaches is available, ranging from qualitative 

models to models with a high level of chemical specificity. Some models treat the solvent 

implicitly and do not have bead particles that explicitly represent solvent molecules [52], while 

others explicitly represent the solvent [53].  

The parametrization of coarse-grained force fields includes two approaches: the top-down or 

structure-based and the bottom-up or thermodynamically-based. In the bottom-up approach, the 

data for constructing the models is obtained directly from all atom simulations or structure 

databases. The top-down models reproduce experimental data-like thermodynamic properties. 
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Many coarse-grained models use a combination of both strategies to minimize the limitations 

derived from using either approach alone [42].  

1.7.3 MARTINI models 

MARTINI is a coarse-grained force field used in the simulation of a broad range of biological 

systems, developed by the laboratories of Marrink and Tieleman [51]. MARTINI combines top-

down and bottom-up parametrization strategies. Even though this force field was generated from 

atomistic models, it does not entirely focus on reproducing the structural details at a particular 

point. MARTINI models have a limited chemical and spatial resolution compared with all-atom 

simulations but allow for longer simulations of larger systems. The development the MARTINI 

force field involved an extensive calibration of non-bonded interactions against thermodynamic 

data [54].  

The MARTINI force field makes the simulation of membranes and a wide range of membrane 

related processes possible. This model is based on modular building blocks. Typically, 4 heavy 

atoms and their associated hydrogens are mapped in a single bead. This modularity makes possible 

the parametrization of many biomolecules including glycolipids, cardiolipins, polysaccharides, 

sterols, proteins, carbohydrates, and nucleotides [51]. 

The mapping of atomistic structures to a MARTINI model takes roughly 4 non-hydrogen 

atoms (and the hydrogens atoms bonded to them) and maps them into a single MARTINI bead. 

This ratio was selected to make the model computationally efficient while still capturing the type 

of chemical distinctions present in biological molecules. In some instances, a higher level of 

resolution is needed for a chemical motif. For example, the ring structures present in some amino 

acids are mapped with more resolution by including only 2 non-hydrogen atoms in each bead. For 

water, 4 molecules of water are mapped in one bead. Ions are represented in one bead that 

represents the ion and its first hydration sphere [51].  

In the MARTINI model, beads are assigned one of four main types: polar (P), non-polar (N), 

apolar (C), and charged (Q).  Within each type, they can be distinguished by a letter according to 

their capabilities for hydrogen bonding: donor (d), acceptor (a), both (da), and none (0). They also 
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have a number indicating the degree of polarity from low polarity (1) to high polarity (5). Based 

on this classification, in the version of the MARTINI force field used in this thesis, 18 different 

types of beads have been defined [54] (Table 1.1). 

Table 1.1: Well depth in Lennard-Jones potential in kJ/mol for non-bonded interactions 

between the 18 different types of beads (adapted from Reference [54]) .   

TYPE 
OF 

BEAD 

Q P N C 
da d a 0 5 4 3 2 1 da d a 0 5 4 3 2 1 

 
Q 

da 5.6 5.6 5.6 4.5 5.6 5.6 5.6 5.0 5.0 5.0 5.0 5.0 3.5 3.1 2.7 2.3 2.0 2.0 
d 5.6 5.0 5.6 4.5 5.6 5.6 5.6 5.0 5.0 5.0 4.0 5.0 3.5 3.1 2.7 2.3 2.0 2.0 
a 5.6 5.6 5.0 4.5 5.6 5.6 5.6 5.0 5.0 5.0 5.0 4.0 3.5 3.1 2.7 2.3 2.0 2.0 
0 4.5 4.5 4.5 3.5 5.0 5.6 5.0 4.5 4.0 4.0 4.0 4.0 3.5 3.1 2.7 2.3 2.0 2.0 

 
 

P 

5 5.6 5.6 5.6 5.0 5.6 5.6 5.6 5.6 5.6 5.0 5.0 5.0 3.5 3.1 2.7 2.7 2.3 2.0 
4 5.6 5.6 5.6 5.6 5.6 5.0 5.0 4.5 4.5 4.0 4.0 4.0 3.5 3.1 2.7 2.7 2.3 2.0 
3 5.6 5.6 5.6 5.0 5.6 5.0 5.0 4.5 4.5 4.5 4.5 4.5 3.5 3.5 3.1 3.1 2.7 2.3 
2 5.0 5.0 5.0 4.5 5.6 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.0 3.5 3.5 3.1 2.7 2.3 
1 5.0 5.0 5.0 4.0 5.6 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.0 3.5 3.5 3.5 3.1 2.7 

 
N 

da 5.0 5.0 5.0 4.0 5.0 4.0 4.5 4.5 4.5 4.5 4.5 4.5 3.5 3.5 3.1 2.7 2.7 2.7 
d 5.0 4.0 5.0 4.0 5.0 4.0 4.5 4.5 4.5 4.5 4.0 4.5 3.5 3.5 3.1 2.7 2.7 2.7 
a 5.0 5.0 4.0 4.0 5.0 4.0 4.5 4.5 4.5 4.5 4.5 4.0 3.5 3.5 3.1 2.7 2.7 2.7 
0 3.5 3.5 3.5 3.5 3.5 3.5 3.5 4.0 4.0 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.1 2.7 

 
 

C 

5 3.1 3.1 3.1 3.1 3.1 3.1 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.1 3.1 
4 2.7 2.7 2.7 2.7 2.7 2.7 3.1 3.5 3.5 3.1 3.1 3.1 3.5 3.5 3.5 3.5 3.1 3.1 
3 2.3 2.3 2.3 2.3 2.7 2.7 3.1 3.1 3.5 2.7 2.7 2.7 3.5 3.5 3.5 3.5 3.5 3.5 
2 2.0 2.0 2.0 2.0 2.3 2.3 2.7 2.7 3.1 2.7 2.7 2.7 3.1 3.1 3.1 3.5 3.5 3.5 
1 2.0 2.0 2.0 2.0 2.0 2.0 2.3 2.3 2.7 2.7 2.7 2.7 2.7 3.1 3.1 3.5 3.5 3.5 

Non-bonded interactions between beads consist of Lennard-Jones interactions and coulombic 

interactions as described by equation 1.3. The strength of the Lennard-Jones interaction depends 

on the value of the well-depth (ε) of two interacting beads. There are 10 levels of the interaction 

strength between the 18 types of beads (Table 1.1). The value of ε ranges from 2.0 kJ/ mol for the 

interaction between polar and apolar beads to 5.6 kJ/ mol for interaction between the polar beads. 

This difference in interaction strength gives rise to the hydrophobic separation of the polar and 

apolar components of the system [54]. 

One fundamental parameter for MARTINI models is the cut-off radii for the non-bonded 

potentials. The non-bonded interactions are cut off at a distance of 1.2 nm; both the energy and the 

force vanish at this distance. The Lennard-Jones potential is shifted from rshift = 0.9 nm to rcut = 1.2 

nm. The use of this shifting potential mimics the effect of a distance-dependent screening and 

decreases the interaction strength to zero in a continuous manner. This switching function also 
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ensures the interaction potential is continuous, which is a requirement for stable MD simulations. 

The non-bonded interactions are parameterized using thermodynamic data like free energy of 

hydration, the free energy of vaporization, and partitioning free energy between water and organic 

phases (ether, octanol, chloroform, hexadecane)[51]. 

The bonded interactions are described by a standard function of bonds, angles, and dihedrals 

(Eq 1.2). The Lennard-Jones interactions are excluded between bonded particles. The MARTINI 

model describes the stretching of the bonds between beads using a weak harmonic potential 

(𝜈𝑏𝑜𝑛𝑑) (Eq 1.4). The chain stiffness is described by adding weak harmonic potentials for the 

angles formed between sets of three beads (𝜈𝑎𝑛𝑔𝑙𝑒) (Eq 1.5). The proper dihedral in the MARTINI 

model imposes a secondary structure, while improper dihedrals prevent out-of-plane distortions of 

planar groups. The parametrization of bonded interactions uses structural data from atomistic 

simulations and atomistic geometries obtained from experiments (e.g., X-ray crystallographic 

structures from the Protein Data Bank) [51]. 

𝜈𝑏𝑜𝑛𝑑(𝑅) =
1

2
𝑘𝑏𝑜𝑛𝑑(𝑅 − 𝑅𝑏𝑜𝑛𝑑)2 

                                                             

Eq (1.4) 

 

𝜈𝑎𝑛𝑔𝑙𝑒(𝜃) =
1

2
𝑘𝑎𝑛𝑔𝑙𝑒[cos(𝜃) − cos(𝜃0)]2 

  Eq (1.5) 

Were,  𝑘𝑏𝑜𝑛𝑑  and 𝑘𝑎𝑛𝑔𝑙𝑒 are force constants,  𝑅𝑏𝑜𝑛𝑑 is the equilibrium length,  𝜃0 is the equilibrium 

bond angle. 

The grouping of multiple atoms into more massive beads and the softer potential energy terms 

makes it possible to use larger timesteps in MARTINI MD simulations compared to the time steps 

employed in atomistic simulations. Most systems can be simulated with the MARTINI model with 

an integration time step of 20–40 fs compared to the 2 fs time step typically used in all-atom 

models. The smaller number of particles, the simplified potential energy expression, and the larger 

timestep make the MARTINI model hundreds or thousands of times more efficient than the 

equivalent all-atom simulations [42]. 
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One notable limitation of the MARTINI models is the absence of an explicit treatment for 

hydrogen bonding interactions. As a result, these models are not suitable for simulations of protein 

folding or conformation isomerization. They cannot describe the dynamic formation of hydrogen 

bonds between units of the amide backbone, which is fundamental for the proteins’ secondary and 

tertiary structure. In practice, in most instances where a MARTINI model is being used to model 

a protein-containing system, the protein is force by additional restraining forces to remains in its 

native , folded state throughout the simulations; no changes occur in its secondary structure. Elastic 

models have been applied to restrain the protein close to its initial structure in instances where the 

protein could isomerize to a non-physical state if only the MARTINI model was used [42].   

1.7.4 Simulation of the Outer Bacterial Membranes  

Due to the chemical complexity of the bacterial membrane, specifically, the presence of the LPS 

layer, modeling the outer membrane of gram-negative bacteria is still challenging. The coarse-

grained model and force field for three types of LPS have only been developed recently [55]. There 

are only a few simulation studies with bacterial envelopes and AMPs that include the LPS layer 

and practically none include the O-antigen level [56]–[58]. 

The first atomistic model for a bacterial envelope containing the LPS layer was reported in 

2012 by Kirschner et al.[59]. This model only contains the ReLPS part of the LPS molecule. In 

the past year, new models have been developed, including coarse-grained models.  

 A all atom simulation of the whole cell envelope with a realistic membrane composition 

was reported in 2018 to study of the distribution of mechanical stress [60]. The outer layer of this 

membrane included an entire LPS layer, two types of phospholipids, membrane proteins, and ionic 

species [60]. In another study, the influence of Polymyxin B1, one of the most potent AMPs, in 

the LPS layer was explored in 2017 by Hsu et al.[58]. The model construct was a coarse-grained 

MARTINI bilayer of only LPS molecules without O-antigen, in the presence of two different ions. 

They showed the effect of the peptide in inducing the formation of crystalline patches in the 

membrane [58]. 
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The use of only one type of phospholipid or LPS for mimicking the entire cell envelope was 

used in most of the early membrane simulations for simplicity and more efficient sampling. The 

use of model membranes with multiple components and more realistic lipid mixtures is 

increasingly become more common.  The importance of using a mixture of phospholipids closer 

to the accurate bacterial membrane composition has become increasingly apparent. The utilization 

of more complex cell envelopes, including realistic LPS molecules, for studying the mechanism 

of AMPs is a necessity [61]. The development of CHARMM-GUI was a major step forward in 

making this type of simulation practical. The CHARMM-GUI website service offers a fully 

automatic solution for building lipid bilayers with various sizes, lipid compositions, and 

asymmetry. The CHARMM-GUI includes all-atom LPS models from various bacterial species 

and coarse-grained models for the three types of LPS present in E. coli. In the last year, a coarse-

grain model for O-antigen was made available [56].  

1.8 Simulation Methods  

1.8.1 Periodic Boundary Conditions  

Periodic boundary conditions (Fig. 1.8) are used to allow a smaller system to mimic a 

macroscopic system. A relatively small simulation cell is replicated infinitely, with particles 

interacting with particles inside the simulation cell as well as their periodic images. When a particle 

moves from the primary simulation cell into a periodic image, it simultaneously re-enters the 

simulation cell from the opposing face of the simulation cell. This allows the properties of a much 

larger system to be estimated based on the properties of a small simulation cell and avoid the need 

to include unrealistic interfaces at the boundary of the system. The size of the system needs to be 

carefully considered since even a small system can lead to artefacts and deviation from 

experiments.  
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Fig.1.8: Periodic boundary conditions. A simulation cell (yellow) is replicated infinitely. As 

a particle moves from the primary simulation cell into a periodic image, it simultaneously re-

enters the simulation cell from the opposing face of the simulation cell. (Created in 

biorender.com). 

1.8.2 Thermostats and Barostats 

The isothermal-isobaric ensemble is a thermodynamic ensemble where the number of 

particles, the pressure, and the temperature, are constants, but energy can transfer between the 

system and the surroundings. The thermostat and barostat control the temperature and the pressure 

of the system. The three most common thermostats are Nosé–Hoover, Berendsen, and stochastic 

velocity thermostats.  

The Berendsen thermostat is an algorithm that scales the velocity of the particles in the 

simulation to control the temperature. When this thermostat is applied, the system is weakly 

coupled to a heat bath that holds the target temperature for the simulation, but it does not sample 

a rigorous statistical ensemble [62]. The stochastic velocity rescaling thermostat is based on the 

Berendsen thermostat but has an extra stochastic term that scales the velocities using kinetic energy 

from the Maxwell–Boltzmann distribution [63]. The Nosé–Hoover thermostat adds an extra term 

to the equations of motion to transfer energy to and from the system. Although these thermostats 

introduce artificial forces that slow or speed the particles in the system, if the thermostat is chosen 
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judiciously, it will sample the target thermodynamic ensemble efficiently without causing the 

dynamics of the simulation to be unrealistic [64].    

Barostats scale the dimension of the simulation box for controlling the pressure. Two of the 

most popular barostats are the Parinello–Raham and the Berendsen (that act similarly to the 

equivalent thermostat) and the Nosé–Hoover. The Parinello–Raham barostat is an extension of the 

Nosé–Hoover barostat that allows pressure coupling to be applied separately to each dimension of 

the simulation cell. This barostat also allows cell stress to be regulated, as well as pressure. These 

barostats also add additional terms to the equations of motion. 

1.8.3 Umbrella Sampling Simulations  

MD simulations sample a Boltzmann distribution of states, so the lowest energy regions of 

configurational space are sampled exponentially more than higher-energy states. Theoretically, 

suppose an unbiased simulation is given enough time. In that case, the simulation will sample the 

entire energy surface, but the presence of energy barriers and the significant range of energies 

makes it practically impossible to sample the entire energy surface within a feasible timescale. As 

a result, the energy barriers prevent crossing from one low-energy state to another low energy 

state, even after several µs.  Even with the increase of computational power in the last decade and 

the use of coarse-grained models to study biological systems, correctly sampling the higher energy 

(but nevertheless important) states of the complex biological model is still an issue.  

For AMP–membrane interactions, the AMP’s membrane position can be defined in terms of 

the difference of the AMP center of mass and the center of mass of the membrane along the Z 

coordinate. In an unbiased MD simulation, the AMP only occupies some of the positions on this 

coordinate, making it impossible to quantitatively identify the most stable location of the AMP 

within the membrane or the energetics of the insertion. 

Enhanced sampling techniques are one solution to accelerating sampling of the 

configurational space, other possible solutions are building faster computers. Umbrella sampling 

is one of the most popular techniques for enhanced sampling [65]. To perform an umbrella 

sampling simulation, a series of “windows” are simulated. These windows are the same except 
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that a different artificial force is applied that restrains a molecule along the Z coordinate. Each 

window is biased to sample a specific part of the configuration space. The AMP position is 

restrained with a harmonic bias: 

𝜈𝑏𝑖𝑎𝑠(𝑠) =
1

2
𝑘(𝑠 − 𝑠0)2 

      Eq (1.6) 

Where k is the spring constant and s0 is the reference position of the restraint. The distribution 

sampled by this simulation will be: 

𝑃′(𝑞) ∝ P(𝑞)𝑒−𝑣𝑏𝑖𝑎𝑠(𝑠) 𝑘𝐵𝑇⁄  Eq (1.7) 

where  P(𝑞) is the unbiased distribution. 

Combining the simulation with different values of S0, we can obtain a continuous set of 

simulations and sample all positions along the coordinate. For large values of k, only points close 

to S0 will be sampled. For simulations of AMP-membrane interactions, umbrella sampling can be 

used to sample the full range depths to which the AMP is inserted into the membrane and to sample 

a complete free energy profile. 

1.8.4 Potential of the mean force 

After performing the biased simulations, I need to find the unbiased probability distribution given 

the umbrella sampling histograms and compute the potential of the mean force (a.k.a, the free 

energy profile along coordinate Z). This distribution can be obtained by performing Weighted 

Histogram Analysis Method (WHAM). The WHAM equations are [66]: 

𝑃(𝑍) =
∑ 𝑔𝑖

−1 ℎ𝑖(𝑍)𝑁𝑤
𝑖=1

∑ 𝑛𝑗
𝑁𝑤

𝑗=1 𝑔𝑗
−1 exp[−𝛽(𝑤𝑗(𝑍) − 𝑓𝑗)]

 
                                                                     

Eq (1.8) 
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and  

exp(−𝛽𝑓𝑗) = ∫ 𝑑𝑧 exp [−𝛽𝑤(𝑧)] 𝑃(𝑍) 
Eq (1.9) 

where P(Z) denotes the unbiased probability, β is the inverse temperature (
1

𝑘𝑏𝑇
), 𝑓𝑗 is the 

free energy constants, kB is the Boltzmann’s constant, T is the temperature, nj is the total number 

of data points in histogram hj. The statistical inefficiency gi is calculated with the integrated 

autocorrelation time τi of umbrella window i,  𝑔𝑖 = 1 + 2τ.  

The P(Z) is related to the free energy profile via Eq 1.10: 

𝒲(𝑍) = −𝛽−1ln (
𝑃(𝑍)

𝑃(𝑍0)
) 

                                                    

Eq (1.10) 

 

where 𝑧0 is an arbitrary reference where 𝒲(𝑍0) is 0. The WHAM equations must be solved 

iteratively to obtain the unbiased distribution. The convergence of the WHAM equations depends 

on the number of histograms and the overlap of adjacent windows on the free energy profile.  

Hypothesis 

The first interaction between AMPs and the bacterial cell envelope is still poorly understood. There 

are two main hypotheses of how the AMPs interact with the LPS layer in gram-negative bacteria. 

One of these hypotheses is the self-promoted uptake of the AMP that proposes the necessity of 

first interaction with the LPS layer. In the self-promoted uptake mechanism, the cationic AMPs 

initially interact with the LPS layer’s negative charge in the outer membrane. This first interaction 

displaces the Mg2+ or Ca2+ ions that stabilize the LPS layer. Under this hypothesis, the peptide-

LPS interaction distorts the acyl chains in the outer layer, then inserts into and translocate across 

the bilayer.  Another hypothesis about the function of the bacterial envelope’s components 
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proposes that the LPS layer can act by trapping the AMP. The LPS can act like an electrostatic 

barrier capturing AMPs and preventing the insertion in the lipid hydrophobic core. Even with the 

growing interest in AMP action in the whole bacteria with the LPS layer, neither of these two ideas 

have evidence to back them up. Computational studies can help and elucidate and characterize the 

interaction between AMPs and non-lipid components of the bacterial outer membrane using MD.  

The working hypothesis for my work is that the antimicrobial peptide Magainin 2 has a first 

interaction with LPS layer in the bacterial cell envelope.  

Chapter 2: Methods   

2.1 Simulation Details 

All simulations were performed using GROMACS 2018.1 nano (MD parameters in Appendix 6.1) 

[67] with the standard simulation options for the MARTINI model. The dynamics were propagated 

using the leap-frog integration algorithm (integrator = md). A 0.02 ps time step was used. The 

center of mass velocity of the membrane was removed every step using the linear mode. 

The simulations were performed using periodic boundary conditions. The system was 

simulated in the isothermal-isobaric ensemble with a bath temperature of 310 K and an external 

pressure of 1.0 bar using the stochastic velocity rescaling thermostat and Parinello-Rahman 

barostat. The non-bonded Lennard-Jones and Coulombic interactions were smoothly reduced to 

zero at 1.2 nm using a switching function in our simulations. A neighbor list was constructed for 

each atom and is updated every 10 steps.  

2.2 Membrane Construction and Composition 

I constructed a coarse grain model for a bacterial membrane with the MARTINI 22 force field, 

including the MARTINI 2.2 amino acids, MARTINI 2.0 lipids, and non-polarizable water. I 

constructed the model using the CHARMM-GUI web interface [68], specifically the MARTINI 

bilayer maker [28], [58], [69].  
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The model of the inner layer was composed of a realistic mix of phospholipids in E. coli 

(Table 2.1). The system contained 90% of the total number of membrane molecules of 1-

Palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE), 5% of 1-Palmitoyl-2-oleoyl-sn-

glycero-3-phosphatidylglycerol (POPG) and 5% cardiolipin 2 (CDL2). The inner layer 

composition had 640 lipids where 576 are POPE, 31 are POPG and 32 are CDL2 [70]. The outer 

layer was composed fully of 218 molecules of Lipid A and a mix of 50% of the core 

oligosaccharide (RaLPS) and 50% of O-antigen (OANT) (Table 2.1) [58].  

The membrane was solvated with 36740 coarse-grained non-polarizable water molecules, 

534 Na+ cations, 1090 Ca2+ dications, and 441 Cl- anions. The concentrations of Na+ and Cl- were 

adjusted to achieve neutrality in the simulation cell. 

            Table 2.1. Composition of the outer membrane simulation cell. 

Outer layer 

composition 

Inner layer 

composition 
Ions 

RaLPS 109 POPE 576 Na+ 534 

OANT 109 POPG 32 Cl- 441 

  CDL2 32 Ca2+ 1090 

One molecule of the AMP Magainin 2 was added in the simulation cell to simulate the 

AMP–bilayer interactions. I downloaded the structure of Magainin 2 (PDB ID: 2MAG, model 

number 1) from the Protein Data Bank from the RCSB organization [23].  These structures were 

determined using two dimensional H-NMR spectroscopy of Magainin 2 in  

dodecylphosphorylcholine (DPC) micelles [22]. The PDB of Magainin 2 corresponds to an α-

helical structure with 23 amino acids. A series of modifications to the PDB file were necessary. 
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Using the pdb2gmx from Gromacs 2016, the c-terminal residue serine 23 was amidated with a 

neutral C-terminal group (i.e., a charge of 0). Histidine 7 was set to its neutral state (i.e., charge of 

0) because at pH 7 Magainin 2 has been reported to have a total charge of +4 and the histidine 

residue not charged [22]. The model Magainin 2 used in our simulations had a total charge of +4, 

consistent with the experimental net charge at pH 7 [22].  

The protein/membrane system was constructed using the MARTINI bilayer maker from 

the CHARMM-GUI website [68]. The AMP was positioned at +6 nm from the center of the 

membrane.  

2.3 Equilibration 

The simulation of a coarse-grained asymmetrical outer bacterial membrane, with LPS in one leaflet 

and phospholipid in the inner leaf, requires long simulation times to reach complete equilibration. 

The long simulation times are partly because the LPS layer is stiffer than a phospholipid layer [71]. 

Fig. 2.1 shows the change in the potential energy of the simulation cell throughout the MD. The 

potential energy of the system decreases systematically over the first 15 µs of the simulation. The 

equilibration results from of the membrane model spontaneously rearranging to form more 

energetically - favorable interactions between the components. After the 15 µs mark, the potential 

energy plateaus and fluctuates around the average -1.79 × 106 kJ/mol for the remaining 10 µs, 

indicating that the system has reached an equilibrium. Posterior analysis of the membrane and the 

study of interaction with the AMPs were performed using this equilibrated membrane structure 

(i.e., after 25 µs). 
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Fig.2.1: Equilibration of potential energy for the bacterial outer membrane model. After 15 

µs the membrane reached the equilibrium and fluctuated around the average -1.79 × 106 kJ/mol 

for the remaining 10 µs. 

2.4 Umbrella Sampling Simulations 

Although several interesting results came out of the unbiased simulation, in order to get a 

complete view of AMP-outer membrane interactions for AMP positions within the membrane that 

were not observed in the unbiased simulations I need enhanced sampling techniques.  For this I 

employed an umbrella sample approach, which is challenging because of the size and the 

complexity of the composition of the membrane (i.e. presence of RALPS and O-ANT) and the size 

of the AMP. To achieve convergence and a realistic free energy profile hundreds of simulations 

where needed, and different spring constants where tried in order to guarantee the sampling of 

each position of the membrane and guarantee overlap between windows (a.k.a the AMP positions 

in each simulation frustrated around a value, for a correct sampling the AMP positions in each 

simulation should partially overlap with the AMP positions in the next simulation).  
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In my research I performed umbrella sampling simulation for 216 peptide positions with the 

Magainin 2 peptide restrained every 0.1 nm from -10.7 nm to +10.9 nm. The initial coordinates 

for each window of the umbrella sampling simulations were obtained from a steered MD 

simulation, beginning from the structure where the AMP was in solution above the membrane. 

In steered MD, a time dependent external force is applied to the system. I use the 

MOVINGRESTRAINT bias from the software PLUMED v2.6 [72], and add a time-dependent 

harmonic restraint to a structural variable of the system (eq 2.1).  

  𝑉(𝑠 , 𝑡) =
1

2
𝑘(𝑡)(𝑠 − 𝑠0(𝑡))2                                                                                  eq (2.1) 

where k is the spring constant and 𝑠 is the position. Both terms are time (t) dependent.  

In our simulation, steered MD was used to pull the Magainin 2 peptide center of mass across 

the Z coordinate of the simulation box with a spring constant of 5000 kJ/mol advancing 0.1 nm 

every 1000 simulation steps (Input file for plumed steered MD in Appendix 6.2) (Fig. 2.2). I 

obtained 216 windows from the steered MD simulation. These 216 windows were the starting 

points for the umbrella sampling simulation. 

 

Fig. 2.2: Screenshots of 5 different time steps of the steered MD. The Magainin peptide (green) 

is pulled with a spring force of 5000 kJ/mol along the Z direction of the simulation box.  

I performed 1 µs of umbrella sampling simulations in a total of 216 windows with the 

GROMACS-PLUMED/2019.5 software. The harmonic bias was applied with a spring constant of 

1500 kJ/mol for the 216 simulation windows from -10.7 nm to +10.9 nm (input file in appendix 

Z 
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6.3). With the goal of improving the sampling, extra simulations were performed.  I ran 101 

simulation windows with a spring constant of 4500 kJ/mol and 18 simulations windows and with 

a string constant of 9000 kJ/mol. 

2.5 Free energy profile 

To calculate the free energy profile, I used the code WHAM version 2.0.11 from the 

Grossfield lab [73]. For the calculation of the free energy profile, the input file was constructed 

with:  

1. the 336 output files from the umbrella sampling simulations with the position of the peptide 

in the simulation time and the bias-free energy, 

2. the position restraint of the peptide 

3. the values of the spring constant for each window.  

The calculation of the free energy profile of Manganin 2 insertion into the bilayer required 

extensive simulations, and because of the slow rate of diffusion of the LPS layer and the size of 

the AMP it hard to achieve converged simulations. In trying to achieve convergence I performed 

336 simulations which gave the combination of windows where all the AMP positions where were 

well sampled. The temperature of the umbrella sampling simulations was 323 K. Although this 

temperature is higher than the physiological temperature, it is generally necessary to compute the 

free energy profile of biological membranes with the LPS layer at elevated temperatures to achieve 

convergence [74]. Other factor than contribute to the convergence is using just the data of the 

equilibrate simulation, for this I discarded the data for the first half of the simulation was discarded.  
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Chapter 3: Results and Discussion  

3.1   Analysis of the Bacterial Cell Envelope Structure 

The first task was to assess the characteristics of the novel bacterial envelope structure I’d 

constructed. The composition of the membrane varies as a function of depth, which the density 

profile can quantify. The depth is typically measured relative to the membrane center of mass, and 

the Z coordinate is defined along the normal to the membrane plane. The density is calculated as 

a function of depth by analyzing the trajectory from a long MD simulation. The probability of 

finding a given component of the system at a particular Z position is calculated for each step and 

then averaged. I calculated the density profile in the last 1 μs of simulation using Gromacs 

command gmx_density. The density profile agrees well, in the positions of all the peaks, the water 

profile, and hydrophobic thickness, with the one reported for previous computational studies in 

LPS−DPPE membranes [75], [76]; this demonstrated that the model is robust at simulating critical 

elements of the bacterial membrane [77].  
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 Fig. 3.1: The partial density analysis of membrane components along the Z coordinate. 

I calculated the density profile for the OANT, RAMP, POPC, POPE, Ca2+, water, and 

phosphate groups in the Lipid A and inner layer. The density profile for the phosphate groups has 

a peak of 200 kg/m3 at -2 nm and +2 nm from the center of the membrane. The POPE has a peak 

from –2.5 nm to +1.5 nm. The maximum of the peak is at +1.5 nm with a density of 1000 kg/m3. 

The POPG groups have a density peak from –2.5 nm to +1.5 nm, with a small maximum at +1.5 

nm of 5 kg/m3. The RAMP density peak goes from 0 nm to +5.5 nm with two maxima, one at +1.5 

nm with a density of 660 kg/m3 and the second at +3.5 nm with 600 kg/m3. The OANT density 

profile has a density peak from 0 nm to +9 nm, with two maxima, one at 1.5 nm with a density of 

660 kg/m3 and the second at +5 nm of 750 kg/m3. The Ca2+ peak goes from +1.5 nm to +5 nm with 

two maxima at +2 nm and +3.5 nm with a density of 150 kg/m3.  

The water density profile shows bulk water concentration (998 kg/m3) in the interval of -7 nm 

to -3 nm. The water concentration drops sharply in the phosphate region of the lipid layer (-3 nm 
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to -1 nm) and reaches zero at the center of the POPE tails (i.e., the relative position of 0 nm). This 

is consistent with conventional phospholipid bilayers, where the headgroups are hydrated, but the 

water is almost completely absent from the hydrophobic lipid tail region. The LPS leaflet shows a 

more complex hydration structure.  The density of water declines to 200 kg/m3 between +9 nm 

and +4 nm, before having a minor second peak at the 3 nm point where the RAMP concentration 

is high. The density of water drops to zero at 1 nm, giving a hydrophobic thickness of the 

membrane of +2 nm (-1 nm, +1 nm). In previous computational studies of the outer bacterial 

membrane, the values of hydrophobic thickness are from +1.6 nm to +2 nm [78]. The water profile 

in our work is consistent with the reported atomistic water profile and previous coarse grain water 

profiles for the bacterial outer membrane [75]. 

The POPE/POPG peaks are concentrated in the –2.5 nm to +1.5 nm range.  This density profile 

agrees with the density profiles of coarse-grained outer membranes formed by a mixture of POPE 

and POPG in the inner layer [76]. The range of the peaks for POPE and POPG shows a small 

difference at +0.4 nm with the range of these peaks in atomistic membrane profiles.  For POPE, 

the maximum is the interior of the hydrophobic core, around the +1.5 nm point. The density at 

thisz depth is 1000 kg/m3. Previously reported coarse grain and atomistic membranes with POPE 

alone in the inner layer reported a maximum at the same position in the interior of the hydrophobic 

core with a density of 1200 kg/m3, so our simulations are in general agreement with theirs [76] 

[79]. 

The RAMP density profile starts at the center of the membrane (0 nm) and has a first peak at 

1.5 nm. This maximum corresponds to the hydrophobic tail of the Lipid A in the RAMP. The 

location of this peak is in perfect agreement with the peaks for the computational model reported 

by Hughes et al. [76] for the terminal methyl group and methylene chains in Lipid A. The 

phosphate peak at 2.0 nm is part of the Lipid A molecule head groups. This peak is in the same 

position reported for the Lipid A head group [76]. The second maximum in the density profile of 

RAMP is at 3.5 nm. This peak represents the inner core carbohydrates, i.e. the RAMP molecules. 

The last section of RAMP ends at 5.5 nm and corresponds to the outer carbohydrate core. The 

second maximum and the last section correspond with the profile reported for RAMP by Hughes 

et al. [76]. 
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The OANT density profile has the same behavior as that for the RAMP for the section from 0 to 

+2. This section corresponds to the Lipid A density profiles that is the same structure for both 

types of LPSs. The second and third peak of the OANT corresponds with the carbohydrate chain 

of the O antigen part of the OANT LPS.  

The Ca2+ peak (Fig. 3.1) shows a small maximum around -2 nm; this peak is not present in 

atomistic models. The discrepancy in the presence of the peak in -2 nm between coarse-grained 

and atomistic models' density profiles was previously reported [79]. This peak is a product of a 

portion of the Ca2+ ions in the cell moving to the other side of the simulation box in long 

simulations due to the boundary conditions. It is not seen in atomistic simulation because the 

simulation times are usually not long enough for the counter ions to move through the boundaries. 

The second Ca2+ peak is at the same position of the Lipid A phosphate groups peak, and the third 

peak is in the LPS core phosphate groups region. This is consistent with the function of Ca2+ in the 

bacterial outer membrane. Based on the localization of Ca2+ ions in this region, I can conclude that 

the primary role of Ca2+ in these model membranes is to serve as counterions that stabilize and 

enable crosslinking contacts between the phosphate groups of the LPS layers.  

3.2    Analysis of the unbiased MD simulation of Magainin 2 in the 

bacterial outer membrane  

In the unbiased simulation with the peptide and the outer membrane, I did not observe an insertion 

of the AMP Magainin 2 in the membrane. After a few microseconds of simulation, I can see from 

a visual inspection that the peptide moves to the LPS layer of the bacterial outer membrane. After 

20 µs of simulation, the AMP position in the Z direction maintains a relatively constant position 

in the LPS layer (Fig. 3.2). 
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Fig. 3.2: Bacterial outer membrane simulation snapshot at the 20 µs. The AMP, Magainin 2 is in 

the LPS layer during the entire simulation time 

The calculation of the distance between the AMP center of mass and the membrane center in the 

Z coordinate shows a decrease after the first microsecond of simulation (Fig. 3.3). From 5 µs to 

20 µs, the average distance of the AMP maintains a relatively constant value of between 5 nm and 

5.3 nm from the center of the membrane. 

 

Fig.3.3: Distance from the membrane’s center to the AMP’s center of mass in the Z coordinate vs. 

time. The AMP was at ~ 5.1 nm for most of the simulation time.   
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The inspection of the unbiased simulation using the software VMD v1.9.3 for the trajectory 

(Fig. 3.2) and the calculation of the distance from membrane center to the peptide center of mass 

(Fig. 3.3) show that in the free simulation, the AMP stays in the LPS layer. The position of the 

AMP suggests a possible interaction between the AMP and the negative charges of the LPS layer.  

 Two main hypotheses can explain the position of the AMP in the cell envelope during the 

simulation based on the peptide’s interaction with the LPS.  One hypothesis is the “self-promoted 

uptake” of the AMP (Fig. 1.6). In this hypothesis, the positively charged amino acids of the AMP 

interact with the phosphate groups of the LPS layer. In the second hypothesis, the presence of an 

electrostatic barrier makes the AMP stay in the LPS layer in the unbiased simulation. 

Further analysis is necessary to discriminate between these hypotheses. For the size of the 

simulation and the system complexity I need to perform techniques like umbrella sampling to 

sample the entire energy surface and determine the free energy of insertion of the AMP in the 

bacterial envelope. As well, more detailed analysis between the LPS phosphate groups and the 

AMP is needed. I first analyze the interaction of AMP and LPS phosphates groups by calculating 

the contact number and the minimal distance between both groups.   

The contact number is the number of atom pairs that fall within 0.6 nm; it computes the 

number of contacts between two groups within that minimum distance. In my research, I calculated 

the contact number for each amino acid in the AMP Magainin 2 and the phosphate groups in the 

LPS layer. After this, I average the contact numbers for each amino acid and obtain the contact 

number for the full AMP sidechain (Fig. 3.4). 

I can see an increase of the average LPS/AMP contact number over the 25 µs simulation time 

from 0.1 to 0.5. This increase to 0.5 is the reported average contact number for membranes with 

an LPS layer crosslinked with Ca2+. In contrast, membranes linked with monovalent ions reported 

higher values of contact numbers [71].  The LPS molecules linked with divalent ions have less 

frequent interaction with the LPS layer than those crosslinked with monovalent ions. Hsu et 

al.  [68] said that the LPS layer that is crosslinked with Ca2+ ions have a more rigid packing and 

can more effectively shield the phosphate groups from the AMPs than LPS crosslinked with Na+ 

ions. 
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Fig.3.4: Average contact number between phosphates groups in LPS and sidechain of AMP for 25 

µs MD simulation. 

When the AMP is located deeper in the membrane, the interaction between phosphates in the 

LPS layer and the AMP can be obtained by calculating the minimum distance between the 

phosphate groups and the AMP (Fig. 3.5). The minimum distance was calculated for every amino 

acid sidechain and averaged to obtain the total AMP sidechain distance to the phosphate groups. 

For the entire 25 µs of the simulation, the AMP oscillates around 1.2 nm from the phosphate groups 

without getting closer than 1.0 nm. This is likely a limitation of unbiased MD simulations; even 

after 25 µs, the AMP could not displace the Ca2+ ions from their position next to the anionic 

phosphate groups. In the last µs of simulation the distance increase to +1.6 nm , this can be a 

product of fluctuation in position during the simulation.  
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Fig. 3.5. Average distance between phosphates groups in LPS and sidechain of AMP for 25 µs. 

The average distance is 1.2 nm in almost all the simulation time. 

Comparing membranes crosslinked with Ca2+  to those without Ca2+ can help us understand 

the interaction of the AMP with the lipopolysaccharide, specifically the function of Ca2+ in the 

interaction of the AMP with the LPS phosphate groups. I model two identical membranes 

crosslinked with Ca2+ and without Ca2+ and compare the average distance between the AMP 

sidechain and the LPS phosphate groups in both membranes (Fig. 3.6). The average distance from 

AMP to the phosphate groups in the simulation without Ca2+ ions is 0.85 nm, in contrast with the 

1.2 nm in the simulation with Ca2+ ions. This shorter distance in the absence of calcium could be 

a product of an increase in interactions between the positively charged amino acids in the AMP 

and the phosphate groups. 
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  Fig. 3.6: Panel left: 1 µs of the unbiased simulation membrane with Ca2+, blue: Average 

distance of AMPs sidechain to phosphate groups, orange: lysine sidechain distance to phosphate 

groups. Panel right: 1 µs of the unbiased simulation membrane without Ca2+, blue: Average 

distance of AMPs sidechain to phosphate groups, orange: lysine sidechain distance to phosphate 

groups.  

To determine if the interaction with positively charged amino acids increases, I also calculated 

the distance between the phosphate groups and lysine residues in Magainin 2. The distance 

between the sidechain of lysine (Fig. 3.6, orange) and phosphate groups in the membrane with 

Ca2+ ions are 1.2 nm. The distance between the sidechain of lysine and the phosphate groups in the 

membrane without Ca2+ ions is 0.45 nm. The smaller distance between the phosphate groups and 

the lysine in the simulation without Ca2+ ions indicates that the cationic sidechains of the AMP are 

coordinated directly to the phosphate groups when they do not have to compete with Ca2+ ions. 

This corresponds well with the hypothesis that the AMP must displace the Ca2+ ions to be able to 

have a strong interaction with the phosphate groups in the LPS layer.  

 

3.3   Free energy profile 

The unbiased simulation is not capable of sampling the entire energy surface.  For this reason I 

perform umbrella sampling simulations to determine the free energy of insertion of the AMP into 

the bacterial envelope. The free energy profile is going allow us to detect the presence of energy 

barriers and where are the favorable interactions of the AMP and the membrane .  
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The free energy profile (Fig. 3.7) has a flat region with energy of roughly 0 kJ/mol in the 

interval +8 nm and +11 nm, which corresponds to the AMP being in bulk water. From +8 nm to 

+4 nm, the free energy decreases until reaching the global minimum of -300 kJ/mol at +4 nm, and 

the low energy indicates favourable interactions between the AMP and this section of the outer 

membrane. This section corresponds with the LPS layer in the bacterial outer membrane. From +4 

nm to +2 nm, the free energy increases steadily to a maximum of 150 kJ/mol, corresponding to the 

beginning of the insertion process in the hydrophobic core. The free energy decreases again from 

0 nm to -2 nm, reaching a local minimum of -100 kJ/mol at -2 nm. This minimum corresponds 

with the location of the phosphate groups in the inner layer. From -2 nm to -5 nm, the free energy 

increases again until it reaches a maximum of 100 kJ/mol. In this position, the peptide is near the 

water interface. From -6 nm to -11 nm, the free energy plateau near 0 kJ/mol corresponds to the 

bulk water.  

 

Fig.3.7: Free energy profile of Magainin 2 insertion across the Z coordinate in the outer bacterial 

membrane from +11 nm to -11 nm. The minimum of energy is found in at +4 nm inside the LPS 

layer. (In the back, a representation of the bacterial outer membrane: yellow phosphate groups of 

Lipid A, POPE, POPC, and CDL2, the light blue hydrophobic core of the membrane, dark blue 

the negatively charge groups in the LPS core, light red LPS). 
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The global minimum in the outer leaflet occurs when the protein center of mass is at 4 nm 

from the center of the membrane. At 4 nm, the peptide is in the LPS core. In this position in the 

cell envelope, the cationic peptide interacts with the Lipid A phosphate groups and the RALPS 

phosphate groups. This result indicates that the AMP forms an energetically favorable interaction 

with the LPS core before it inserts deeper into the membrane. This was only apparent in the free 

energy profile because the breadth of the minimum obscured this mode of interaction and the low 

frequency of spontaneous insertion events in the free MD simulations.  

This result is in agreement with the theory presented by Freire et al.[41] that the LPS layer 

acts as an electrostatic barrier. Freire et al. also hypothesize that the capacity of the AMP to 

overcome this “sponge effect” is a matter of concentration. On another hand, the strong interaction 

with LPS layer can lead to more binding and the clustering of the AMP in the LPS layer.  This 

interaction with the LPS layer is thought [80] to lead to a change in the secondary structure that 

can make possible the insertion in the membrane. Moreover, the antimicrobial activity and the 

insertion of the peptide in the membrane is modulated by the LPS/AMP interaction and because 

of this it is necessary to take the interaction into account for futures studies or design of the AMP 

for clinic use. These results indicate that in addition to optimizing AMP/lipid interactions, it is also 

important to consider AMP/LPS interactions. 

At 0.5 nm and 1.7 nm, there are two maxima in the energy profile. This position corresponds 

with the hydrophobic core of Lipid A. Lyu et al. previously reported  a free energy profile for the 

insertion of an AMP into a POPC bilayer with a maximum in the center of the bilayer [81].  In the 

Lyu et al. study, the free energy profile maximum is dependent on the number of AMPs in the 

interior of the membrane. They calculated the free energy profile of insertion of one AMP in a 

membrane with 0 to 6 peptides inserted. The aggregate of six peptides decreases the energy barrier 

to 0 [81]. The maxima I observe and the decrease of the maxima due to this oligomerization, 

observed by Lyu, can be due to the amphipathic nature of the Magainin 2, and the positive charges 

can affect the AMP stability in the membrane. This maximum and the effect of oligomerization 

are consistent with the proposal that Magainin 2 does not permeabilize the membrane by forming 

an organized toroidal pore but forms a disordered toroidal pore. 
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Chapter 4: Conclusion 

In this thesis, molecular dynamic simulations were used for describing the interaction of the AMP 

Magainin 2 with the gram-negative bacterial outer membrane and, more specifically, the 

interaction with the LPS layer. As part of this effort, I constructed a coarse-grained Martini model 

of a realistic outer membrane form with an LPS outer layer with RALPS and O-ANT and a POPE, 

POPC, and cardiolipin inner layer. I then performed 25 µs of MD simulations of the membrane in 

the presence of the Magainin 2 AMP.  

The membrane simulation reaches equilibrium after 15 µs of molecular dynamics 

simulation, and I used the equilibrated membrane to analyze the interaction between the membrane 

and the AMP. The composition of the model was analyzed using a density profile, and the positions 

of each peak were compared and generally agreed with previously reported membranes. 

Furthermore, the water profile drops to 0 for 2 nm around the center of the membrane, and this is 

consistent with a hydrophobic thickness of 2 nm.      

   In these unbiased MD simulations, I did not observe the insertion of the Magainin 2 

peptide in the hydrophobic core of the bacterial membrane. Two previously presented hypotheses 

can explain why the AMP stays in the LPS layer during the simulation. One hypothesis is the “self-

promoted-intake” of the AMP [39]; according to this, the AMP first interacts with the LPS 

phosphate groups ,displacing the Ca2+ ions that crosslink and stabilize the LPS layer. This 

distortion allows the insertion of the AMP in the membrane. The other hypothesis says that the 

LPS can act like an electrostatic barrier, “trapping” the AMP [41]. It is thus notable than when I 

calculated the distance between AMP and the membrane center, it shows that the peptide remained 

in the LPS section of the bacterial envelope throughout the entire simulation, and this supports the 

idea that the LPS layer can act by “trapping” the AMPs. 

  For analyzing if the AMP has an initial interaction with the AMP phosphate groups, I 

calculated the number of contacts between the phosphate groups and the AMP.  The contact 

number through the simulation shows a minor interaction consistent with that reported for 

membranes crosslinked with Na+ [71]. Some differences are observed, likely because model 

membranes crosslinked with Ca2+ have a more rigid packing of the LPS layer. For further analysis, 

I compared two membranes when the LPS was crosslinked with Ca2+ and the other when the LPS 
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was not crosslinked with Ca2+. For analyzing the impact of the Ca2+ in the interaction AMP-LPS, 

I calculated the minimal distance between the LPS phosphate groups and the AMP sidechain for 

the envelope with Ca2+ ions and without Ca2+ ions. The minimal distance was smaller in the 

membrane without Ca2+ suggesting a stronger interaction AMP-LPS.  

The interaction AMP-LPS is an electrostatic interaction between the AMP charge groups 

and the LPS phosphate groups. For this reason, the calculation of the distance between Lysine and 

LPS phosphates groups can offer valuable information. The space from Lysine to LPS phosphates 

groups is smaller in the simulation without Ca2+. The stronger AMP-LPS interaction in the 

simulation without Ca2+ ions correspond well with the hypothesis that the AMP must displace the 

strong interaction of the calcium with the phosphate groups in the LPS layer.  

The presence of an electrostatic barrier in the LPS can be another reason for the peptide to 

remain in the LPS layer. To address this possibility, enhanced sampling techniques like umbrella 

sampling simulation are needed, because of the membrane's complexity and consequent challenges 

to exploring the whole energy surface.  To calculate the free energy profile of insertion of the 

peptide, I performed an umbrella sampling simulation for 216 windows and calculated the free 

energy profile of the peptide in the membrane. The free energy profile shows a global minimum 

at +4 nm from the center of the membrane; this result agrees with the theory presented by Freire et 

al. [39] that the LPS layer acts as an electrostatic barrier and traps the AMP. The AMP “trapping" 

can increase the concentration of the AMP in the LPS layer and allow the insertion in the 

membrane. The free energy profile also shows a maximum in the center of the membrane. These 

maxima were previously reported [81]. It is consistent with the amphipathic nature of the Magainin 

2 and the theory that Magainin 2 permeabilizes the membrane forming a disordered toroidal pore.   

Chapter 5: Future Work 

5.1     Convergence of Calculated Properties 

The free energy profile has maxima at -5 nm in the water near to the interface (Fig 3.2). This 

behavior could be because free energy calculation is computationally expensive and challenging 

to converge when the membrane is formed with one layer of slow-moving LPS and another layer 



45 

 

of faster-moving phospholipids.  LPS diffusion is an order of magnitude slower than that of 

phospholipids [74]. The slow diffusion rates of LPS resulted in a limited sampling of the 

configurational space.  Different ways for achieving converged simulations have been proposed.  

These include elevating the temperature of the simulation with values over the physiological, 

substitute the divalent ions in the LPS layer for monovalent cations, and constructing the outer 

layer with a mix of phospholipids and LPS rather than just LPS [74]. 

The calculation of the free energy profile of Magainin 2 insertion into the bilayer required 

extensive simulations, and even then, it was not clear that the simulations converged. The large 

size of the AMP means the choice of center of mass difference between the AMP and the solute 

as the parameter to be varied is less appropriate than it is for simple solutes (e.g., small molecules). 

To calculate a free energy profile that provides a complete description of AMP insertion, it may 

be necessary to calculate the free energy profile in terms of multiple coordinates. The tilt angle of 

the peptide with respect to the plane of the membrane has been proposed to be a second important 

coordinate, so this would be an obvious secondary access to calculate the free energy profile. 

5.2     Effects of AMP Dimerization 

All the simulations performed here had one AMP in the simulation cell. There have been some 

proposals that Magainin 2 can form dimeric structures [82]. Simulations containing multiple AMPs 

in the simulation cell would be needed to describe this feature. The MARTINI model used in this 

research tends to overestimate the strength of protein-protein interactions, which would make them 

unsuitable for simulations of protein aggregation [78].  New MARTINI parameters have been 

developed to address this issue, so this type of simulation may be practical in the future [83].  

5.3     Effects of the Coarse-Grain Model 

The coarse-grain MARTINI model used in this thesis made it possible to simulate a membrane 

with reasonable spatial dimensions at a relatively long timescale. Nevertheless, the coarse nature 

of this model prevents us from examining atomic-scale interactions, like interactions between 

specific functional groups of the protein and the membrane. Ionic interactions are important in 

these systems, but specific ionic interactions are challenging for the MARTINI model. It may be 

necessary to model these systems using atomistic models.
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Chapter 6- Appendix  

6.1   MDP file for unbiased simulation  

; VARIOUS PREPROCESSING OPTIONS 

; Preprocessor information: use cpp syntax. 

 

include                  = 

; e.g.: -DPOSRES -DFLEXIBLE (note these variable names are case sensitive) 

define                   = -DPOS_Z_AXES 

 

; RUN CONTROL PARAMETERS 

integrator               = md 

; Start time and timestep in ps 

tinit                    = 0.0 

dt                       = 0.02 

nsteps                   = 2000000000 

; For exact run continuation or redoing part of a run 

init-step                = 0 

; Part index is updated automatically on checkpointing (keeps files separate) 

simulation-part          = 1 

; mode for center of mass motion removal 

comm-mode                = Linear 

; number of steps for center of mass motion removal 

nstcomm                  = 1 

; group(s) for center of mass motion removal 

comm-grps                = membrane 

 

 

; OUTPUT CONTROL OPTIONS 

; Output frequency for coords (x), velocities (v) and forces (f) 

nstxout                  = 9000000 

nstvout                  = 9000000 

nstfout                  = 0 

; Output frequency for energies to log file and energy file' 

nstlog                   = 25000 

nstcalcenergy            = 100 

nstenergy                = 25000 

; Output frequency and precision for .xtc file 

nstxtcout                = 25000 

xtc_precision            = 100 

; This selects the subset of atoms for the .xtc file. You can 

; select multiple groups. By default all-atoms will be written. 

xtc-grps                 = 

; Selection of energy groups 

energygrps               = protein membrane solute 

 

; NEIGHBORSEARCHING PARAMETERS 
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; cut-off scheme (group: using charge groups, Verlet: particle based cut-

offs) 

cutoff-scheme            = Group 

; nblist update frequency 

nstlist                  = 10 

; ns algorithm (simple or grid) 

ns_type                  = grid 

; Periodic boundary conditions: xyz, no, xy 

pbc                      = xyz 

periodic-molecules       = no 

; Allowed energy drift due to the Verlet buffer in kJ/mol/ps per atom, 

; a value of -1 means: use rlist 

verlet-buffer-drift      = 0.005 

; nblist cut-off 

rlist                    = 1.4 

; long-range cut-off for switched potentials 

rlistlong                = -1 

nstcalclr                = -1 

 

; OPTIONS FOR ELECTROSTATICS AND VDW 

; Method for doing electrostatics 

coulombtype              = Shift 

rcoulomb_switch          = 0.0 

rcoulomb                 = 1.2 

; Relative dielectric constant for the medium and the reaction field 

epsilon_r                = 15 

epsilon_rf               = 1 

; Method for doing Van der Waals 

vdw_type                 = Shift 

; cut-off lengths 

rvdw_switch              = 0.9 

rvdw                     = 1.2 

; OPTIONS FOR WEAK COUPLING ALGORITHMS 

; Temperature coupling 

tcoupl                   = v-rescale 

nsttcouple               = -1 

nh-chain-length          = 10 

print-nose-hoover-chain-variables = no 

; Groups to couple separately 

tc-grps                  = protein membrane solute 

; Time constant (ps) and reference temperature (K) 

tau_t                    = 1.0 1.0 1.0 

ref_t                    = 310 310 310 

; pressure coupling 

Pcoupl                   = Parrinello-Rahman 

Pcoupltype               = semiisotropic 

nstpcouple               = -1 

; Time constant (ps), compressibility (1/bar) and reference P (bar) 

tau_p                    = 5.0 
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compressibility          = 3e-4 3e-4 

ref_p                    = 1.0 1.0 

; Scaling of reference coordinates, No, All or COM 

refcoord_scaling         = all 

gen_vel                  = no 

continuation             = yes 

 

 

; MARTINI and CONSTRAINTS 

; for ring systems constraints are defined 

; which are best handled using Lincs. 

; Note, during energy minimization the constrainst should be 

; replaced by stiff bonds. 

constraints              = none 

constraint_algorithm     = Lincs 

lincs_order              = 4 ; can use order 6 iter 2 

lincs_warnangle          = 90 

6.2    Example of Input file for plumed Steered MD 

#Reconstruct the protein and the membrane. 

WHOLEMOLECULES STRIDE=1 ENTITY0=53-11704  ENTITY1=1-52 

 

#COM of the membrane with PO and the peptide 

p: GROUP NDX_FILE=index.ndx NDX_GROUP=PROTEIN 

memb: GROUP NDX_FILE=index1.ndx NDX_GROUP=PO 

com1: COM  ATOMS=memb 

com2: COM  ATOMS=p 

 

#Distance Peptide-membrane 

dist: DISTANCE ATOMS=com1,com2 COMPONENTS NOPBC 

 

# Add a lower and an upper wall on the peptide/membrane distance. 

UPPER_WALLS ... 

 ARG=dist.z 

 AT=2.0 

 KAPPA=1.0 

 LABEL=uwall 

... UPPER_WALLS 

 

LOWER_WALLS ... 

  ARG=dist.z 

  AT=1.0 

  KAPPA=1.0 

  LABEL=lwall 

... LOWER_WALLS 
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#Umbrella Sampling 

MOVINGRESTRAINT ... 

   ARG=dist.z 

STEP0=0 AT0=11.0 KAPPA0=5000 

STEP1=1000 AT1=10.9 KAPPA1=5000 

STEP2=2000 AT2=10.8 KAPPA2=5000 

STEP3=3000 AT3=10.7 KAPPA3=5000 

STEP4=4000 AT4=10.6 KAPPA4=5000 

STEP5=5000 AT5=10.5 KAPPA5=5000 

STEP6=6000 AT6=10.4 KAPPA6=5000 

STEP7=7000 AT7=10.3 KAPPA7=5000 

 

... MOVINGRESTRAINT 

PRINT STRIDE=10000 ARG=dist.z FILE=prueba.out 

6.3      Input file for umbrella sampling simulation in Plumed-Gromacs:  

#Reconstruct the protein and the membrane. 

WHOLEMOLECULES STRIDE=1 ENTITY0=53-11704  ENTITY1=1-52 

 

#COM of the membrane with PO and the peptide 

p: GROUP NDX_FILE=index.ndx NDX_GROUP=PROTEIN 

memb: GROUP NDX_FILE=index1.ndx NDX_GROUP=PO 

com1: COM  ATOMS=memb 

com2: COM  ATOMS=p 

#Distance Peptide-membrane 

dist: DISTANCE ATOMS=com1,com2 COMPONENTS NOPBC 

# Impose an umbrella potential on com1 and com2 

# with a spring constant of 00 kjoule/mol 

# 

restraint-com: RESTRAINT ARG=dist.z KAPPA=2000 AT=1.0 

# monitor the two variables and the bias potential from the two 

PRINT STRIDE=1000 ARG=dist.z,restraint-com.bias FILE=2000NEWALLCOVAR1.0 
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