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Abstract

In exploration geophysics, we usually implement non-invasive methods to image the

interior of the Earth. Seismic methods, for example, are ideal for this purpose because

they provide high-resolution images at large depths. During the construction of these

images, understanding how seismic waves propagate through the subsurface is vital.

Lacking analytical solutions for realistically complex models, numerical modeling be-

comes essential to comprehend the recorded data. Conventional modeling algorithms

are designed to solve the wave equation throughout the entire model, even though

we are often interested in only much smaller areas. To solve for the whole model

is computationally expensive, particularly when the algorithm repeatedly simulates

wavefields, as is often the case in common imaging techniques such as reverse time

migration and full waveform inversion. The main goal of this thesis is to explore and

understand the potential of local solvers under different scenarios, for instance, in the

presence of large impedance contrast reflectors and complex geometries in different

domains. We first demonstrate that a local acoustic-elastic solver can model the am-

plitude with sufficient accuracy between the surface and the reflector of interest and

then can be used as a constraint in Amplitude Versus Offset (AVO) inversion. We

show that the amplitude combined with the phase improves the convergence of this

algorithm. However, the amplitude is not in perfect agreement with that obtained

with full elastic modelling. This motivates our interest in building a local elastic solver

that avoids the interchange between domains but keeps the computational, time, and

resources cost feasible. We implement the Multiple Point Sources (MPS) method in

a standard Finite Difference (FD) solver, computing the global wavefield in the local

domain successfully using only the ability to record and inject data at the boundary,

while being memory efficient. We test the robustness of the local elastic solver on

different elastic models and uses in AVO and Phase Versus Offset (PVO) inversions,

retrieving elastic parameters with high accuracy. To take the elastic solver to the next
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level we assess the possibility of using converted wave modes during the inversion. To

this end we explore different imaging conditions based on different wave modes that

allow us to measure the focusing of the image to be ultimately used in conjunction

with the local elastic solver. Notice that all implementations and results are shown

in 2D.
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Chapter 1

Introduction

Geophysical observations are fundamental to our understanding of the Earth because

they allow us to see things that cannot be explored by direct observation. Exploration

geophysics, for example, uses indirect observation methods such as inverse methods to

understand deep horizons and structures of the subsurface. Inverse methods that are

based on seismic imaging have been established in exploration geophysics because they

pinpoint areas of prospective interest such as oil, gas reservoirs and mineral resources,

reducing costs and risks. When seismic imaging techniques are combined with other

algorithms such as Full Waveform Inversion (FWI), a more precise measurement of

the Earth’s properties can be obtained [75].

Our interest lies in exploration geophysics, specifically in understanding the be-

haviour and locations of subsurface fluids using seismic data. Seismic data are essential

physical data in geophysics, giving the best resolution of the subsurface to locate and

monitor reservoirs. Conventional algorithms that use seismic imaging techniques have

been developed mainly by focussing on resolving an entire Earth model, even though

our interest usually lies in a small region of the model. To update the Earth model

for these targeted regions, propagating waves through the entire model is usually nec-

essary, despite knowing that most of the Earth model will remain the same. Because

of these observations, local wavefield solvers have been designed to reduce the compu-

tational size and cost while generating the same wavefield as a whole domain solver

would within the local areas of interest [61, 87]. In this thesis, we investigate applica-

tions of local solvers, as outlined in the following subsections. A brief description of

the underlying methods and relevant concepts and principles used in this thesis are
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shown in this introduction.

1.0.1 Wavefield modeling

Seismic waves are widely used to create images of the Earth’s interior. Nevertheless,

we need to understand how wavefields propagate through the subsurface to appreciate

the recorded seismic data. However, for 2D and 3D heterogeneous complex models,

there are no analytical solutions. Therefore, approximate numerical methods have

been created in geophysics. Because combining numerical methods with realistic

Earth models results in synthetic seismograms that help interpret real seismic data.

Numerical methods are the basis for testing processing techniques, such as migration

to finally inferring subsurface images.

Some of the most sophistical migration techniques are Reverse Time migration

(RTM) and FWI. RTM is well known because it can handle complex geological models

by forward-propagating a simulated source in time and back-propagating in time the

recorded wavefield to finally applying a zero time-lag cross-correlation between the

two wavefields. Otherwise, FWI is a powerful high-resolution technique that aims to

reconstruct the subsurface distribution of elastic properties by seeking the best model

that explains the recorded data.

In seismic imaging algorithms such as FWI and RTM, the most expensive part is

modelling the wavefield. One of the common methods to simulate wavefields in explo-

ration geophysics is the Finite-Different (FD) method. This method is conceptually

simple and can be easily implemented in parallel computer architectures. Using the

FD method, we are able to model particle displacement u(x, t), velocities v(x, t), and

density ρ(x), which are features that define seismic waves. The local solvers used and

implemented in this research are based on the FD method.

1.0.2 Characteristics of Seismic Waves

Seismic waves can be characterized by their particle displacement ui(x, t), which are

the distances of particles from their equilibrium positions that depend on space (x)

and time (t). To derive an expression for these displacements, we start by noting

that seismic waves cause stresses around the equilibrium state in a material. These
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stresses are represented by a stress tensor, τij(x, t) which describes the force per unit

area applied to the surface of the material, where i describes the plane on which the

force is applied and j indicates the direction of the force. These stresses result in a

strain, which represent the deformation of the material and can be written as

ξij(x, t) =
1

2

(
∂ui(x, t)

∂xj
+
∂uj(x, t)

∂xi

)
. (1.1)

Both the stress, τij(x, t), and strain, ξij(x, t), tensors are assumed symmetric, such

that each tensor only contains 6 independent components.

1.0.3 Wave Equations

To produce the elastodynamic wave equation, the displacement and stress are related

using Newton’s law,

ρ(x)
∂2ui(x, t)

∂t2
=
∂τij(x, t)

∂xj
+ fi(x, t), (1.2)

where ∂2/∂t2 is the second time derivative, ρ represents the density of the material,

∂/∂xj represents the space derivative and fi(x, t) represents the external force vector.

Because we assume no heat loss and only small displacements in the medium, the

stiffness tensor, Cijkl, can be used to denote the linear lossless elastic stress-strain

relation as τij(x, t) = Cijkl(x, t)ξij(x). Where Cijkl(x, t) is symmetric, i.e, Cijkl =

Cjikl = Cijlk = Cklij, due to the symmetries of the stress and strain tensors, and the

conservation of strain energy [2].

Note that the symmetry in Cijkl leads to a simple version of the linear lossless

elastic stress-displacement relation,

τij(x, t) = Cijkl(x)
1

2

(
∂uk(x, t)

∂xl
+
∂ul(x, t)

∂xk

)
,

= Cijkl(x)
∂uk(x, t)

∂xl
.

(1.3)

By combining equations 1.2 and 1.3, we can formulate the wave equation as a
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displacement-stress system:

ρ(x)
∂2ui(x, t)

∂t2
=
∂τij(x, t)

∂xj
+ fi(x, t),

τij(x, t) = Cijkl(x)
∂uk(x, t)

∂xl
.

(1.4)

A variation of the displacement-stress system can be found by substituting

∂ui/∂t = vi, which represents the particle velocity. Thus, a velocity-stress system

is described as,

ρ(x)
∂vi(x, t)

∂t
=
∂τij(x, t)

∂xj
+ fi(x, t),

∂τij(x, t)

∂t
= Cijkl(x)

∂vk(x, t)

∂xl
.

(1.5)

We now have an equation of motion in terms of velocity-stress (equation 1.5),

which is the equation that we are going to model with the FD method.

P- and S-Wave Velocities

In isotropic media the relation τij(x, t) = Cijkl(x, t)ξij(x) becomes,

τij(x, t) = λξkkδij + 2µξij = λθδij + 2µξij, (1.6)

where θ is the dilatation, and µ and λ are called the Lamé constants and are defined

as,

Cijkl = λδijδkl + µ(δikδjl + δilδjk). (1.7)

Using equation 1.4 and 1.6, we can derive the wave equation in an isotropic

medium,

ρ
∂2u

∂t2
= (λ+ 2µ)∇(∇.u)− µ∇×∇× u

ρü = (λ+ 2µ)∇(∇.u)− µ∇×∇× u.

(1.8)

We can separate equation 1.8 into solutions for P- and S-waves by calculating the

divergence and curl, respectively.
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When we compute the divergence of equation 1.8, we obtain

ρ
∂2(∇.u)

∂t2
= (λ+ 2µ)∇2(∇.u)

∇2(∇.u)− 1

α2

∂2(∇.u)

∂t2
= 0,

(1.9)

where α is the P-wave velocity,

α =

√
λ+ 2µ

ρ
, (1.10)

note that equation 1.9 expresses acoustic wave equation. By computing the curl

of equation 1.8, we obtain,

ρ
∂2(∇× u)

∂t2
= −µ∇×∇×∇× u

ρ
∂2(∇× u)

∂t2
= µ∇2(∇× u)

∇2(∇× u)− 1

β2

∂2(∇× u)

∂t2
= 0,

(1.11)

where β is the S-wave velocity,

β =

√
µ

ρ
. (1.12)

So, using α and β we can rewrite equation 1.8 in terms of P- and S-wave as

ü = α2∇(∇.u)︸ ︷︷ ︸
P−wave

− β2∇× (∇× u)︸ ︷︷ ︸
S−wave

(1.13)

Potentials

A vector can be represented as a sum of curl-free and divergence-free forms, known

as the Helmholtz decomposition [2],

u = ∇φ+∇×Ψ

∇ · Φ = 0,
(1.14)
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where φ is the P-wave scalar potential and Ψ is the S-wave vector potential. Therefore,

we have

∇.u = ∇2φ

∇× u = ∇×∇×Ψ = −∇2Ψ.
(1.15)

Inserting equations 1.15 into equations 1.9 and 1.11 respectively, we obtain two

equations for these potentials,

∇2φ− 1

α2

∂2φ

∂t2
= 0

∇2Ψ− 1

β2

∂2Ψ

∂t2
= 0,

(1.16)

therefore, P- and S-wave displacements are given by the gradient of φ and curl of Ψ

in equation 1.16.

To this point, we have shown a brief description of the seismic wave characteristics,

different wave equations systems, the P- and S-wave velocities and their potentials—all

of these concepts are used throughout this thesis. The following section shows the

conventional numerical scheme of the FD method for the velocity-stress system, which

is the equations system used in the elastic solver implemented in this research.

1.0.4 Modeling the equation of motion with finite differences

The Finite Difference (FD) method is used because it is easy to implement and allows

us to numerically approximate the derivatives, which cannot be computed analytically.

In this thesis we use the velocity-stress system of equations defined in equation 1.5,
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which can be transformed explicitly into the following first-order hyperbolic system,

∂vx
∂t

=
1

ρ

(
∂τxx
∂x

+
∂τxz
∂z

)
∂vz
∂t

=
1

ρ

(
∂τxz
∂x

+
∂τzz
∂z

)
∂τxx
∂t

=(λ+ 2µ)
∂vx
∂x

+ λ
∂vz
∂z

∂τzz
∂t

=(λ+ 2µ)
∂vz
∂z

+ λ
∂vx
∂x

∂τxz
∂t

=µ

(
∂vx
∂z

+
∂vz
∂x

)
,

(1.17)

where λ = νE
(1+ν)(1−2ν)

and µ = E
2(1+ν)

are the Lamé coefficients, where E represents

Young’s Modulus and ν represents Poisson’s ratio, (vx, vz) is the velocity vector vi(x, t)

and (τxx, τxz, τzz) is the stress tensor τij(x, t) defined in a 2D medium with horizontal

axis x and a vertical axis z pointing downward. Here the medium is assumed to

be linearly elastic and isotropic. Note that the external source fi is not included in

equation 1.17.

Following [83], we use a centered FD to discretize the medium derivatives using a

staggered grid. Figure1.1 shows the staggered grid scheme.

τxz

τxx, τzz

vz

vx

Figure 1.1: Staggered elastic grid scheme. The black circle and square represent the
stresses and Lamé coefficients at time (k∆t). White triangles represent velocities and
buoyancy at time (k + 1/2)∆t.

The conventional numerical scheme that represents the system of equations in 1.17
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is,

vx|k+1/2
i,j = vx|k−1/2

i,j +
∆t

ρi,j

(
τxx|ki+1/2,j − τxx|

k
i−1/2,j

∆x
+
τxz|ki,j+1/2 − τxz|

k
i,j−1/2

∆z

)

vz|k+1/2
i+1/2,j+1/2 = vz|k−1/2

i+1/2,j+1/2 +
∆t

ρi+1/2,j+1/2

(
τxz|ki+1,j+1/2 − τxz|

k
i,j+1/2

∆x
+
τzz|ki+1/2,j+1 − τzz|

k
i+1/2,j

∆z

)

τxx|k+1
i+1/2,j = τxx|ki+1/2,j + (λ+ 2µ)i+1/2,j

∆t

∆x

(
vx|k+1/2

i+1,j − vx|
k+1/2
i,j

)
+ λi+1/2,j

∆t

∆z

(
vz|k+1/2

i,j+1 − vz|
k+1/2
i,j

)

τzz|k+1
i+1/2,j = τzz|ki+1/2,j + (λ+ 2µ)i+1/2,j

∆t

∆z

(
vz|k+1/2

i+1,j − vz|
k+1/2
i,j

)
+ λi+1/2,j

∆t

∆x

(
vx|k+1/2

i+1,j − vx|
k+1/2
i,j

)

τxz|k+1
i,j+1/2 = τxz|ki,j+1/2 + µi,j+1/2

∆t

∆z

(
vx|k+1/2

i+1,j − vx|
k+1/2
i,j

)
+ λi,j+1/2

∆t

∆x

(
vz|k+1/2

i+1,j − vk|
k+1/2
i,j

)
(1.18)

where k represents the index for time discretization, (i, j) for (x, z) discretization,

∆t is the grid step in time, and ∆x and ∆z are the grid steps for the x and z axis,

respectively. Thus, we compute the velocities vx and vz at time (k + 1/2)∆t and

stresses (τxx, τxz, τzz) at time (k+1)∆t from velocity at (k−1/2)∆t and stress at time

k∆t. The repeated calculation of equation 1.18 for later and later times leads to an

algorithm that simulates seismic waves for an arbitrary time duration.

Note that the FD approximation implies that we are not solving the original wave

equation (equation 1.17) anymore, but a modified equation instead (equation 1.18).

Thus, this approximation brings a natural trade-off between the choice of ∆t, ∆x and

∆z values, the approximation accuracy, and the computational cost involved. Note

that we use a first-order difference approximation; higher-order differences will result

in a more accurate approximation (for more details on FD parameters trade-off see

[36]).

1.1 Extracting the physics

After understanding the mathematical approximation of the modelling of seismic wave

propagation, we now focus on the seismic methods that use seismic modelling in

their algorithms to retrieve elastic parameters. In exploration geophysics, we are
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usually interested in two types of seismic waves – compressional (P-waves), in which

the direction of particle motion is parallel to the direction of wave propagation and

transversal (S-waves), in which the direction of particle motion is orthogonal to the

direction of wave propagation [13] – that’s because the combination of the P- and

S-wave velocities and the density define the seismic response or reflection coefficient

that varies according to the contrast of subsurface rocks. These contrasts, in turn,

depend on the lithology, porosity, pore-fluid content and pressure of the rocks [9].

However, the dependence of seismic attributes on angle or offset, called Amplitude

Variation with Offset or Angle (AVO or AVA) gives more information than just the

zero offset reflection coefficients. Part of this research involves analyzing AVO effects

and FWI methods with local solvers to retrieve elastic parameters in areas of interest.

In the following subsection we describe the general concepts of these two methods.

1.1.1 Amplitude Variation with Offset – AVO Inversion

AVO analysis is a method that attempts to exploit the offset dependent variation of

the P-wave reflection coefficients to define anomalous contrasts in shear wave veloci-

ties and density across an interface. Figure 1.2 illustrates synthetic seismic data that

exhibit AVO. The traces resulting for each offset do not have the same amplitude as

the vertical incidence or zero offset. Conventionally, the AVO method and its approx-

imations are based on plane waves, which only sample one incoming angle. Moreover,

all approximations are derived under the same assumptions; small changes in P- and

S-wave velocities and density across the interface and small angles of incidence, lim-

iting conventional AVO inversion to small to moderate offsets. Figure 1.3 shows the

partition of energy of an incident P-wave amplitude into four components, reflected P-

and S-waves and refracted P- and S-waves and the associated reflected and refracted

coefficient curves. Note the significant changes at the critical angle for the reflected

P- and S-waves. The shape of these coefficient curves varies according to different

medium parameters.

One way to get around this limitation is using FD elastic modeling with point

sources to simulate the full spherical waveform. Figure 1.4 illustrates the plane and

spherical waveforms. In spherical full-waveform simulations, the spherical reflection

coefficients include more than one incoming angle, incorporating additional informa-

tion from adjacent angles within the first Fresnel zone of the reflection point. Figure
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Figure 1.2: Illustration of seismic exhibits AVO.

1.5 illustrates the Fresnel zone involved in the spherical wave reflection at a plane

homogeneous interface. The incorporation of information from adjacent angles allows

a smooth transition around the critical angle in spherical reflection coefficient AVO

curves [22]. Figure 1.6 shows a schematic comparison between spherical and plane

reflection coefficient AVO curves.

1.1.2 Full Waveform Inversion – FWI

In contrast to AVO inversion, Full Waveform Inversion (FWI) methods seek to exploit

the seismic wavefield’s full information content over a broad range of incidence angles

to build subsurface models with a wide range of wavenumbers, allowing us to invert for

more complicated Earth models [58, 84]. FWI aims to recover an Earth model of the

subsurface by iteratively finding better models m with synthetic wavefields u(m)syn by

progressively matching the observed data dobs better, reducing an objective function

F (Figure 1.7). Commonly, a least-squares objective function is used, which includes

all combinations of source and receiver wavefields,

F(m) =
∑
s

∑
r

∑
t

1

2
||dobs(s, r, t)− u(m; s, r, t)syn| |22, (1.19)
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Figure 1.3: Reflection coefficients and partitioning of a unit-amplitude incidence P-
wave energy into four components- reflected and refracted P- and S- waves. Based on
[60]

|| · || represents the norm and
∑

s represents sum over sources. Because FWI uses

pre-stack data the risk of losing useful information is minimal. Even though FWI was

introduced in the 80s by [42, 75], it only became manageable in 2D at the end of the

90s and in 3D in the 2000s, due to the high computational cost associated with the

wavefield simulations [58, 56, 82].

The cost of FWI comes primarily from the efficiency of the forward model’s wave-

field simulations since it is applied more than once in the inversion process and usually

in large domains. Specifically, to evaluate an objective function for a model estimate

mi, a number ns of wavefield simulations is required, where ns represents the number

of sources. Then, the gradient of the objective function is computed and evaluated at

the current model mi. Thus, ns additional simulations are required to calculate the
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Figure 1.4: Illustration of (a) plane wave fronts and (b) spherical wave fronts.
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Figure 1.5: schematic illustration of the Fresnel zone for a spherical wave at a plane
homogeneous interface.

adjoint wavefields needed for the gradient. In addition, ns wavefield simulations are

needed to compute the search direction to find a new model mi+1 that results in a

lower objective function value. Thus, in this simple scenario, when only one evalua-

tion along the search direction is required, the cost of one FWI iteration is 3ns. After,

the model is updated, the procedure starts again for the next iteration. Note that

in conventional FWI, the number of iterations required for the inversion to converge

can range from two to thousands. Figure 1.7 illustrates the iterative procedure for

the FWI method and shows where the ns wavefield simulations take place (for more

details refer to [58]).

Based on the previous analysis, it is clear that the computational cost of FWI is

directly proportional to the number of sources, making it quickly increase its cost. In

addition, we are usually interested in solving for targeted areas, however, to update

the model for these target regions, propagating waves through the entire model is

usually necessary, despite knowing that most of the Earth model will remain the same.
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Because of these observations, local wavefield solvers have been designed to reduce the

computational size and cost while generating the same wavefield as a whole domain

solver would within the local areas of interest [61, 87]. The following section presents

a brief overview of seismic wavefield reconstruction locally.

1.2 Wavefield reconstruction

Usually, seismic waves are recorded using sources and receivers that are constrained

to be on the Earth’s surface. Then seismic wave propagation modeling methods are

applied to evaluate the wavefield acquired on a suite of closely related subsurface mod-

els. The areas of interest or the changes between models evaluated are often limited

to subdomains of the subsurfaces. For those cases, employing techniques that do not

require repeated full wavefield simulation for the entire model is worthwhile—instead,

modelling the wavefield only in the region of interest or where the change is expected

(Figure 1.8).

Different authors have investigated the reconstruction of local wavefields in many

different configurations. For instance, [28] investigated the case of a homogeneous

medium with inhomogeneities restricted to a bounded subdomain. They computed

the wavefield by partitioning the inhomogeneous subdomain into a collection of small

volumes. Impedance-to-impedance maps connect the volumes to their neighbours.

The volumes are merged recursively in a tree-like fashion to generate an impedance-

to-impedance map for the entire subdomain. This impedance-to-impedance map then
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Figure 1.7: Sketch of the iterative procedure for the full waveform inversion (FWI)
method. Usually, hundreds of iterations are required before a satisfactory model that
explains the recorded data is found.

connects the subdomain to the homogeneous exterior. Another examples is [32],

who introduce an efficient method for solving for the interaction between multiple

inhomogeneous subdomains embedded in a homogeneous infinite space. The non-

reflecting nature of the homogeneous medium gives exact knowledge of the arrival

times for waves leaving one scattering domain and arriving at another. This locality

in times makes an efficient time domain implementation possible when truncating the

computational domain. Even though, these approximations are efficient, geological

media are not homogeneous nor infinite.

On the other hand, [61] developed FD-injection method. The FD-injection method

allows the reconstruction of wavefields after local model alterations and then propa-

gates scattered wavefields to the receivers in the inhomogeneous background models.

This technique saves significant computational memory and time compared with the

conventional approach. Still, it needs to save the data around the target of inter-

est to ensure the reconstruction, making it a memory-intensive algorithm. Another
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Figure 1.8: Illustration of target areas defined in a subsurface model (From [21]).

technique applicable to inhomogeneous models is the Multiple Points Sources (MPS)

method proposed by [51] and studied and extended by [79, 4, 61, 87]. This is a more

memory-efficient algorithm because it only requires the storage of FD quantities along

a single surface in the FD grid. Figure 1.9 illustrates the surfaces that need to be

saved in both (a) MPS and (b) FD-injection methods. The white represents the local

computational domain, and the green is the computational boundary. Figure 1.9(a)

shows the single layer (gray dots) around the local domain needed in the MPS in-

jection method. Figure 1.9(b) illustrates the FD-injection approach in the acoustic

domain, which requires half the FD stencil storage either in the computational (gray)

or in the boundary (blue) domains. This figure illustrates a second-order scheme.

In the following section, the standard FD-injection method and the MPS methods

are briefly introduced [61, 53]. This technique was used by [87] to implement the

acoustic-elastic local solver—coupled local solver used in Chapter 2 in this thesis, and

to implement the elastic-elastic local solver developed, implemented and used in this

thesis – Chapters 3 and 4.
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(a) (b)

Figure 1.9: Illustration of boundary layers needed in the (a) MPS and (b) FD-Injection
method. The white represents the local domain and the green is the computational
boundary. (a) shows the single layer (gray dots) around the local domain need in MPS
injection method. (b) Illustrates the FD-injection approach in the acoustic domain
which requires the storage of half the FD stencil either in the computational (gray)
or in the boundary (blue) domains (second-order FD scheme is shown in this case)
(Figure is based on [11]. Note that the MPS method is independent of the FD scheme
order used.

1.2.1 FD-injection method

[61] introduce the local elastic solver by computing the full-domain Green’s functions

and the local wavefields, using the same elastic staggered grid implementation. In

this study, we used the equation of motion in 2D introduced in equation 1.17. This

standard local solver updates the velocities and the stress in a turn-wise manner. First,

the velocities in the first two equations in 1.17 are updated. These are then used to

updated the stresses, which are the last three equations in 1.17. All the equations

are solved on a staggered grid with second-order accuracy in time and fourth-order

accuracy in space.

Figure 1.10 shows the top-right section of the staggered elastic grid of the local

solver. The symbols represent the location where the elastic wavefields in equations

1.17 are evaluated. Notice that black lines denote grid cells where the four staggered

grid symbols are included. The local solver compute the perturbed wavefield within

the magenta line in Figure 1.10. Note that the magenta line intersects grid cells on

the boundary by design. The model can be perturbed only inside the inner blue line.

This local solver requires storage of the background wavefields at all locations between
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the two blue lines. By definition, when we talk about the local domain, we mean the

entire local solver grid. Therefore, the local domain is the combination of the shaded

and unshaded nodes, surrounded by its PML boundary condition outside the outer

blue line.

The order of accuracy with which the spatial derivatives in equations 1.17 are

discretized determines the width of the stencils. As an example of how the equations

are discretized on the staggered grid, we show the update equation for the perturbed

z-component of the velocity (equations 1.17). So, we update the velocity,

vz(x, t) = vz(x, t−∆t) + ∆vz(x, t), (1.20)

and using,

∆vz(x, t) =
∆t

ρ

[ c1

∆x

(
τzx(xi+1, zk, t−

1

2
∆t)− τzx(xi, zk, t−

1

2
∆t)

)
+

c2

∆x

(
τzx(xi+2, zk, t−

1

2
∆t)− τzx(xi−1, zk, t−

1

2
∆t)

)
+

c1

∆z

(
τzz(xi, zk+1, t−

1

2
∆t)− τzz(xi, zk, t−

1

2
∆t)

)
+

c2

∆z

(
τzz(xi, zk+2, t−

1

2
∆t)− τzz(xi, zk−1, t−

1

2
∆t)

)]
.

(1.21)

In equation 1.21, the staggered spatial derivatives are evaluated at the staggered

time step, i.e., t− 1/2∆t and the fourth-order accurate staggered grid coefficients c1

and c2 are 9/8 and −1/24, respectively. On the right side, the vector x is decomposed

in its x and z coordinates in this 2D example. An update equation similar to equation

1.21 can be derived for the propagation of the scattered vscz in the shaded region.

This updated equation replaces all perturbed wavefield quantities with their scattered

counterparts. For elastic wavefield quantities other than vz similar derivative stencils

are used as those shown in Figure 1.10.

Far from the magenta boundary in Figure 1.10, the updated equations for the

perturbed and scattered wavefield are simple to compute. However, within the two

green lines, the derivative stencils cross the magenta line separating the locations

where the perturbed and background wavefields are computed and stored. So that,
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Figure 1.10: Staggered elastic grid around the top-right boundary of the elastic local
solver. The model updated only inside the inner blue line. The background wavefields
are saved between the two blue lines. The magenta line shows the boundary where
the perturbed and scattered wavefield are compute and stored. The green lines show
where the scattered and perturbed wavefields are added or subtracted to updated
equation 1.21 correctly.

the updated equations for nodes between the green lines require modification. In

regions where the updated stencil access the scattered τ sczz at the shaded symbols

in cells and the perturbed τzz in other cells, the background τ 0
zz needs to be added

to the scattered τ sczz to obtain the perturbed τzz and consequently update equation

1.21 correctly. This background τ 0
zz is obtained by convolving the precomputed τ 0

zz

Green’s functions with the source wavelet for the particular source that is simulated

locally. Applying this correction to all nodes between the green lines introduces the

background wavefield into the local domain where there are not model updates.

Similarly, the second stencil in Figure 1.10 has the opposite problem when updat-

ing vscz at the shaded symbol. Part of its stencil crosses the magenta line and accesses

the perturbed field τxx stored at the unfilled symbols. At these locations, we need

to subtract the background wavefield from the perturbed wavefield so that we can

correctly evaluate the stencil for updating the scattered wavefield at the shaded sym-

bols. When the model is updated in the unshaded region this correctly computes the

perturbed fields at the unfilled symbols and the scattered field at the filled symbols.

Multiple scattering between the background model at the shaded nodes is computed
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correctly.

1.2.2 Multiple Point Sources – MPS method

The modeling of seismic waves with FD method that we use in this research is carried

out with the velocity-stress formulation system shown in equation 1.17. We can see

that the implementation of the equivalent point source in such schemes may be written

in the following form, where the representation theorem was solved [53, 1],

∂vx
∂t

=
1

ρ
(
∂τxx
∂x

+
∂τxz
∂z

) +

fx(xs,t)︷ ︸︸ ︷[
1

ρ
(τxxnx + τxznz)δS

]
,

∂vz
∂t

=
1

ρ
(
∂τxx
∂x

+
∂τzz
∂z

) +

fz(xs,t)︷ ︸︸ ︷[
1

ρ
(τxznx + τzznz)δS

]
,

∂τxx
∂t

= (λ+ 2µ)
∂vx
∂x

+ λ
∂vz
∂z

+

hxx(xs,t)︷ ︸︸ ︷
[(λ+ 2µ)vxnx + λvznz]δS,

∂τzz
∂t

= (λ+ 2µ)
∂vz
∂z

+ λ
∂vx
∂x

+

hzz(xs,t)︷ ︸︸ ︷
[λvxnx + (λ+ 2µ)vznz]δS,

∂τxz
∂t

= µ(
∂vx
∂z

+
∂vz
∂x

) +

hxz(xs,t)︷ ︸︸ ︷
µ[vxnz + vznx)δS,

(1.22)

where the first terms on the left- and right-hand are the standard velocity-stress

formulation system and the last terms in all equations represent monopole sources

injected on S in terms of velocity and stress. Therefore, fx(xs, t) and fz(xs, t) represent

the point-source injected as velocities and hxx(xs, t), hzz(xs, t), and hxz(xs, t) represent

the point-sources injected as stresses. δS denotes the delta function centered at xs on

the surface S. Note that the normal particle velocity is injected into the stress field

and vice versa.

The effect of the equivalent point sources on the boundary to reconstruct wavefields

is easy to understand visually. Figure 1.11 shows the boundary sources on S, bounding

a volume Vs within a larger volume V . We can interpret the injection as the combined

effect of monopole source that constructively interfere to produce the wavefields inside

S while canceling the wavefields outside S. For this, we first record the stresses and

particle velocities on the boundary S during a ’global simulation’ within V . In a
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Figure 1.11: Illustration of the reconstruction of the field τij inside S using point
sources on the transparent boundary S.

second simulation, we use the given source terms (i.e., fx(xs, t), fz(xs, t), hxx(xs, t),

hzz(xs, t), and hxz(xs, t) in equation 1.22) to keep the wavefield bounded within Vs.

There are various implementations of this method, such as [51, 49, 79, 41]. The MPS

method is used in this research to develop and implement an elastic local solver using

Devito libraries – Chapters 3 and 4.

1.2.3 Pysit and Devito Libraries

Pysit and Devito are the libraries used in this research to develop and implement

the AVO inversion algorithms for Chapter 2 and the local elastic solver and inversion

algorithms for Chapters 3 and 4. Both libraries have been written in python by

[35] and [47], respectively and are two collections of seismic wave modelling, solvers

and inversion toolboxes. These packages are designed as testbed environments for

developing advanced techniques for inverting seismic data. Chapter 3 was published in

Software and Algorithms Geophysics journal and it contains an open-source software

package for a Local elastic solver. Appendix A shows the steps to install Devito,

all dependencies and the local solver package to reproduce the results and figures in

Chapter 3.

In this thesis, first we study the impact of a coupled acoustic-elastic local solver

developed by [87] on the amplitude modeled from a reflector of interest, and we use

it for Amplitude VS Offset (AVO) inversion. While studying the acoustic-elastic

approximation for the amplitude, we observed differences between the true curve
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from a full elastic solver and the true curve modeled with the local solver. As a

result, the elastic parameters were not perfectly recovered. To fix this problem, we

designed an elastic-elastic local solver that generates exactly the same wavefield as

a full domain solver within a local domain, using the Multiple Point Sources (MPS)

methodology, which falls in the second category of wavefield reconstructions mentioned

above [53]. Note that we implement the elastic-elastic local solver within an existing

solver while also making it more memory efficient. This elastic-elastic local solver

overcomes the mismatch in amplitude from the acoustic-elastic solver, giving an exact

reconstruction of the amplitude and phase from the PP-reflection from a reflector

of interest, leading to a better constraint for AVO and Phase Versus Offset (PVO)

inversions. We successfully apply this elastic-elastic local solver to salt boundary

inversion. Having established the utility of the elastic-elastic local solver, we then

take this work to the next level by analyzing the focusing and defocusing of migrated

images with Reverse Time Migration (RTM) with the ultimate goal of computing

velocity updates with the local solver. We focus our analysis on the migrated image

created with P- and S-wave modes. Note that the RTM method is closely related to

the first update of FWI and will be introduced later on the thesis.

The main objective of this thesis is to understand the potential of local solvers

under different scenarios and their applications in AVO and PVO inversions. This

will enable us to assess the advantages and disadvantages of working with coupled

acoustic-elastic or elastic-elastic local solvers. This study is carried out initially with

a simple synthetic model, where two homogeneous half-spaces are divided by one

planar interface. More complex models are also used, such as the North Sea elastic

synthetic model and SEG Advanced Modeling Program (SEAM) model [23]. Finally,

laboratory data obtained by [59] are used in the analysis of migrated images.

1.3 Thesis Outline and Summary of Contributions

The thesis consists of six chapters including this introduction. All chapters can be

considered independent papers with their own abstract, introduction, methodology,

results, discussion and conclusions. By presenting the thesis in this format the reader

can read between sections with hopefully no problem. Therefore, some introductory

and background material presented can be redundant.
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We first introduce the background of the coupled acoustic-elastic local solver.

Afterward, we evaluate the amplitude modeled from the reflector of interest and its

utility in AVO inversion by recovering elastic parameters from a chalk layer and a

hydrocarbon anomaly. We then focus on understanding how much the amplitude and

phase contribute to the reconstruction accuracy of the elastic material parameters.

Following this, we introduce a numerically exact elastic local solver theory, where we

demonstrate its functionality by applying this local elastic solver to a subsection of

the SEAM model. Then we compare the full-waveform inversion and the AVO and

PVO inversion using the local elastic solver. We move to the next level by introducing

S-wave velocity into the AVO and PVO inversion using the local elastic solver. Below,

we briefly discuss the content of each chapter of this thesis and the main contributions.

Chapter 2: Amplitude variation with offset (AVO) inversion using acoustic-

elastic local solver

In Chapter 2 we analyze if a coupled acoustic-elastic local solver can model the am-

plitude of local PP-wave reflections. This study assumes that the amplitude of the

reflected PP-waves is approximately correct when using acoustic wavefield simulation.

We first demonstrate that the coupled local solver propagates the P-wave with suffi-

cient accuracy between the surface and the reflector of interest. For this purpose we

use a model with two horizontal reflectors. Then, we show that the amplitude from

within the local domain can be used as a constraint in recovering elastic material

properties using a more complex model based on a North Sea velocity model. Then,

we focus on understanding how much the amplitude and phase contribute to the re-

construction accuracy of the elastic material parameters. Our results suggest that the

combination of amplitude and phase in the inversion helps with the convergence. We

analyze elastic parameter trade-offs in AVO inversion. We conclude that we should

invert for P-wave velocity and S-wave velocity simultaneously with fixed density to

recover accurate P-wave velocities. Finally, we evaluate the sensitivity of the coupled

local solver to the initial model, from which we find that we are able to recover pa-

rameters closer to the global minimum but with many local minima clustered around

the global minimum resulting in a loss of accuracy in the recovered model. Having

noted the acoustic-elastic solver’s limitations when modelling the amplitude from PP-

reflections from the local domain, this motivated us to introduce a local elastic solver
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in the next chapter that models the amplitude and phase with much higher precision.

Chapter 3: Reduced memory implementation of a local elastic finite-

difference solver

In Chapter 3 we introduce an elastic-elastic local solver that allows us to propagate

the elastic wavefields within a subvolume after local alterations of the model. Using an

elastic-elastic local solver, amplitude compensations are not needed in the transition

zone around the boundary, providing an exact amplitude reconstruction. By choosing

a finite-difference implementation of the local elastic solver, we have to decide the best

injection method. We extend existing works by using the method of MPS to recompute

the wavefield within the local domain. This method is memory efficient because it

only requires the global wavefield to be recorded along the local domain boundary.

By injecting these recordings as point sources, the global wavefield is emulated within

the local domain. Thus, the method requires no modifications of standard FD solvers,

merely the ability to record and inject data on the boundary. To conclude this chapter,

we determine how the scattered wavefield due to the alterations can be extrapolated

from the local domain to surface receivers. We evaluate the capability of the local

elastic solver to reconstruct the wavefield in a subvolume of the elastic SEAM model.

Chapter 4: Inversion comparison using an elastic local solver to recover

elastic parameters

In this Chapter we apply the local solver of Chapter 3 to a local AVO and PVO

inversion problem that then is compared with FWI. First, we invert for elastic pa-

rameters using the amplitude and phase of the PP-wave reflected for a salt layer.

Recovering elastic parameters from salt bodies is notoriously hard due to the high ve-

locity contrast with surrounding sediments. Despite this difficulty, accurate recovery

of the elastic parameters is an essential step for imaging and interpretation. With

the amplitude and phase of the PP-wave modeled with the local elastic solver, we

can recover elastic parameters with an error of less than 0.2 %. Applying FWI to

the same problem, we obtain errors, on average, smaller by a factor of 10 compared

to the results in the AVO and PVO inversion, i.e. 0.02 %. However, we found that

the memory required for FWI is substantially larger than that for AVO and PVO in-

vestment. We also compare time costs, indicating that amplitude and phase inversion
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saves around 18 % per iteration compared with FWI. Given the small error in both

cases, using the phase and amplitude rather than the full wavefield may be beneficial

if many re-calculations are needed.

Chapter 5: Elastic parameter recovery in a complex velocity model

Imaging and recovering parameters from structures with complex geometries and large

contrast interfaces, such as salt bodies, is challenging. These conditions lead to poor

illumination and weak reflectivity, which results in unfocused images. The main dif-

ficulty is the estimation and updating of the velocity model since the high-velocity

contrast with the surroundings and the irregularities of the interfaces scatter and re-

fract the incident waves to such an extent that the underlying structures are often

poorly illuminated. This is a problem that is shared in geophysics and the medical

field. Limitations in time and computation resources are always present. In geophysics

due to the dimensionality, in medicine, because real-time results are desirable. AVO

and PVO inversion using local solvers have shown promising results, suggesting that

they could alleviate these challenges for both industries. However, those techniques

only use amplitude and phase from the PP-reflection, therefore fail in the presence

of complex scattering. In this Chapter, we take the local elastic solver of Chapter 3

to the next level, incorporating the S-wave into the objective function by measuring

the focusing and defocusing of migrated images with elastic reverse time migration

(RTM). Involving the S-wave in the objective function provides critical information

that helps to estimate S-wave velocity in complex models. The evaluation is devel-

oped, first, in synthetic data that contain a large impedance contrast layer. Then, we

analyze the migrated images using an ultrasound transverse real dataset of a poly-

methyl methacrylate (PMMA) tube, which mimics a bone shaft.

Chapter 6: Conclusions and Future Directions

In this chapter we summarize our major contributions and discuss some avenues for

future directions.



Chapter 2

Amplitude variation with offset

(AVO) inversion using

acoustic-elastic local solver

2.1 Summary

Conventional amplitude variation with offset (AVO) inversion analysis uses the Zoep-

pritz equations, which are based on a plane-wave approximation. However, because

real seismic data are created by point sources, wave reflections are better modeled

by spherical waves than by plane waves. Indeed, spherical reflection coefficients devi-

ate from planar reflection coefficients near the critical and postcritical angles, which

implies that the Zoeppritz equations are not applicable for angles close to critical re-

flection in AVO analysis. Elastic finite-difference simulations provide a solution to the

limitations of the Zoeppritz approximation because they can handle near- and post-

critical reflections. We have used a coupled acoustic-elastic local solver that approxi-

mates the wavefield with high accuracy within a locally perturbed elastic subdomain

of the acoustic full domain. Using this acoustic-elastic local solver, the local wave-

field generation and inversion are much faster than performing a full-domain elastic

inversion. We use this technique to model wavefields and to demonstrate that the

amplitude from within the local domain can be used as a constraint in the inversion

to recover elastic material properties. Then, we focus on understanding how much the

amplitude and phase contribute to the reconstruction accuracy of the elastic material
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parameters (vp, vs, ρ). Our results suggest that the combination of amplitude and

phase in the inversion helps with the convergence. Finally, we analyze elastic param-

eter trade-offs in AVO inversion, from which we find that to recover accurate P-wave

velocities we should invert for vp and vs simultaneously with fixed density.

2.2 Introduction

The study of how the amplitude of a reflected wave varies with offset or angle (AVO

or AVA) has long been of interest in geophysics because P- and S-wave velocities (and

their anisotropy), along with density, determine the value of the reflection coefficient.

To relate the reflection coefficient to these material properties, [102] defines equations

that describe the reflection coefficients as a function of the incidence angle. However,

the [102] equations and all of the ensuing approximations [2] are based on plane waves,

which only sample one incoming angle. Moreover, all of these approximations are

derived under the same assumptions: small changes in P- and S-wave velocities and

density across the interface and near vertical angles of incidence. These assumptions

limit the applicability of conventional AVO inversion from small to moderate offsets.

One way to bypass this limitation is to use finite-difference elastic modeling with a

point source, which simulates the spherical full waveform. In spherical full-waveform

simulations, the associated reflection coefficients incorporate more than one incoming

angle and thereby include additional information from adjacent slownesses within the

first Fresnel zone of the reflection point. This additional interference allows a smooth

transition around the critical angle in spherical reflection coefficient AVO curves [22].

Spherical full-waveform inversion (FWI) methods seek to exploit the full informa-

tion content of the seismic wavefield recorded over a broad range of incidence angles,

to build subsurface models with a broad range of wavenumbers [58, 84]. However,

for FWI methods, one must choose the best strategy to forward model the data, and

even the simplest full-waveform method is likely to be more computationally expensive

than plane-wave methods.

There are several alternative forward simulations that model large angle reflection,

for instance, [101] present a methodology in which spherical waves are decomposed

into the plane-wave domain using a (τ, p) transform. Even though this method deter-

mines the P-wave reflection coefficients with acceptable accuracy compared to P-wave
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reflection coefficients modeled by conventional plane-wave approximations, it does not

model the finite-frequency effects of wavefield propagation. [99] compare phase infor-

mation from pre and postcritical reflections using plane and spherical waves and then

use a least-squares scheme to invert the modeled phase variation with angle (PVA)

and AVO for four elastic parameters (density and three velocities — two for one layer

and one for the other layer), showing that when the observed and predicted phases

are consistent, the method finds the correct solution.

In general, spherical wavefield modeling is expensive because we need to solve the

wave equation for a large domain. Specifically, we need to use a model large enough

to include all regions of the subsurface through which we expect waves to pass for a

particular survey, even though we are interested in only a small area of the subsurface.

To speed up the inversion process, [61] approximate the full elastic wavefield with high

accuracy within a locally perturbed subdomain of the full domain and then propa-

gate this wavefield to the receivers in an inhomogeneous background model. Their

formulation discards part of the perturbed wavefield that scatter outside the region of

interest and subsequently reenter the subdomain. A time-reversal mirror introduced

by [49] makes the same approximation; therefore, both methods do not generate the

exact local wavefield. [78] and [88] introduce an exact acoustic domain truncation

that works for inhomogeneous background models in the time and frequency domain,

respectively. [87] propose coupling a local elastic solver with a background acoustic

model to estimate PVA, based on the interest in recovering detailed elastic param-

eters in only a limited part of the subsurface. In this method, they use an acoustic

solver to propagate the wavefield to a subdomain in which the local elastic solver from

[61] is implemented, avoiding the calculation of full-domain elastic Green’s functions,

but incorporating elastic physics in the region of interest. Their study focuses on the

phase of reflected waves. They approximate propagation between the surface and this

elastic reflector of interest with acoustic physics because the acoustic and elastic prop-

agation provide similar estimates of the wavefield phase. Then, they use the modeled

PVA to invert for elastic material properties.

Here, we extend that work to see if a constant-density acoustic elastic (CDA-EL)

local solver can accurately model the amplitude of local PP-wave reflections. We

justify this study based on the idea that the amplitudes of the reflected PP-waves

are approximately correct when using acoustic wavefield simulations. In addition,

although we expect better accuracy when using the correct velocity model and elastic
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propagation, it is not clear that elastic propagation will be more accurate when only

an approximate velocity model is available. We show that the CDA-EL local solver

propagates the P-wave with a sufficient accuracy between the surface and the reflector

of interest. In addition, the CDA-EL local solver is faster than either a full elastic

solver or an elastic-elastic local solver [61, 10]. After this, we investigate whether

the amplitude modeled by the CDA-EL local solver can be used as an additional

constraint to invert for the P- and S-wave velocities and density (vp, vs, ρ, respectively)

at a reflector of interest.

Despite the fact that interparameter trade-off is an area of interest in FWI, there

is still a paucity of literature discussing how the different elastic parameters trade off

with one another in AVO inversion. This is our focus in the second part of this study.

Multiparameter FWI concerns recovering more than one parameter (i.e., the P- and

S-wave velocities and density) for rock property identification, reservoir prediction,

and lithologic characterization. When simultaneously inverting for multiple elastic

parameters, perturbations of one parameter may be mapped into the estimation of

another, making interparameter trade-off challenging [57]. [54] discuss some FWI

factors that help to determine the trade-off between the velocities of the P- and

S-waves, density, attenuation, and anisotropic parameters, based on the radiation

patterns in viscoelastic anisotropic media. [27] propose an algorithm for total variation

regularized nonlinear multi-interface AVO inversion based on the Zoeppritz equations

to estimate P-wave velocity, S-wave velocity, and density simultaneously. In this

paper, we study the trade-off between the amount and type of data used as an input

to the inversion and the accuracy of the inverted elastic parameters (vp, vs, ρ), as well

as the potential trade-offs between them, using the CDA-EL local solver.

2.3 Methods

In this section, we review the general aspects of the elastic local solver that we use

to model the forward wavefield. The elastic local solver that we use is based on the

one described by [61] and modified by [87] to evaluate the PVA. This modification

involves propagating the wavefields using an acoustic solver to a subdomain on which

we use the elastic solver. This CDA-EL local solver produces a scattered wavefield

within a local domain in which waves that scatter inside and outside the local domain
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(e.g., multiples) are discarded.

Figure 2.1 shows a schematic of the CDA-EL solver. The CDA-EL solver re-

quires the Green’s functions for the acoustic background, which are represented by

the dashed black lines inside the large white box. This is where we have signifi-

cant computational and memory savings by using an acoustic, rather than an elastic,

solver because the CDA Green’s functions are less expensive to compute than the EL

Green’s functions. The Green’s functions in the background are connected through

an injection/recording boundary (red box) to the local elastic subdomain represented

by the blue box. Between the red and blue boundaries, the model transitions from

an elastic media (inside the blue box) to an acoustic media (outside the red box).

We update the model only in the elastic subdomain (blue box), which contains the

PP-reflection response that we want to model. The dark-red boxes surrounding the

full and local domain represent the perfectly matched layer boundary condition. Here,

we summarize the basic ideas of the local solver; additional details are described in

[87].

Figure 2.1: Schematic of the CDA-EL local solver. The star represents the source,
and the triangle represents the receiver. The wavefield is updated by the local solver
within the blue box. We taper the velocity model from acoustic to elastic through the
region between the red and blue boxes. Further explanation is shown in the “Method”
section. Based on [87].

To calculate the Green’s functions, we use a standard CDA code implemented

in PySIT [35]. We use an extension of this code, developed by [90] to calculate the

boundary integral along the blue box shown in Figure 2.1. The boundary integral

computes the scattered pressure, p, on the boundary S using equation 2.1:
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psc(y, t) =

∫
S
lrecρ (x)lrecvs (x)

[
G0(x, y, t) ∗ ∂p

sc(x, t)

∂xn
− psc(x, t) ∗ ∂G0(x, y, t)

∂xn

]
dSx, (2.1)

where lrecρ (x) and lrecvs (x) are approximate inverses of the injection compensation factors

(Figure 2.2), G0(x, y, t) is the CDA background Green’s function between the bound-

ary x and the evaluation position y, ∗ denotes the convolution and ∂/∂xn represents

the normal derivative. The boundary integral propagates, to the receiver position y,

any scattered wavefield generated by a perturbation added to the background, i.e.

variations in P- and S-wave velocities and density inside the red box. However, we

need to apply extra compensation in the amplitude because ρ(x) and vs(x) are vari-

able along the injection boundary or between the source and receiver locations. [90]

proposes a workflow with amplitude compensation factors. Figure 2.2 illustrates the

steps in the procedure. Once we compute the amplitude of the reflected wavefields

at the receiver positions, we proceed to obtain the reflection coefficient values as a

function of angle.

2.3.1 Measuring the Amplitude

To measure the amplitude of a wavefield, we isolate an event and pick the amplitude

independent of the phase. To do this, we first pick a window that includes the re-

flection of interest, and then we use equation 2.2 for the computation of the envelope

from which we take the maximum value of each analytic trace; i.e., we compute

Υamp = Max(|Hilbert(trace)|). (2.2)

Υamp represents the amplitude obtained, |.| represents the absolute value and trace

represents the windowed trace.

2.3.2 Measuring the Phase

To measure the phase of the wavelet, we adopt the method used by [90] who follows

[99]. The idea is based on the observation that a zero-phase wavelet has maximum

correlation with its envelope [24]. We use a grid-search procedure, with a grid over

phase, then phase rotate the wavelet in 1◦ increments and compute the correlation
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Figure 2.2: Workflow applied to compensate for amplitude differences. The amplitude
compensation factors (linjvs , linjρ lrecvs , lrecρ and l0) are defined in [90].

with the envelope of this shifted wavelet. Then, the measured phase is the location

of the maximum of this correlation function.

2.3.3 Amplitude evaluation

Two layer model

To evaluate if the CDA-EL local solver can accurately model the amplitude of a local

PP-reflection, we use the local solver on a simple two-layer model. In the CDA-EL

local solver, we taper the elastic true model to constant density and S-wave velocity

at its boundary. Then, we verify if the amplitude of the PP-reflection in this tapered
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simulation is similar to that of the true elastic model and to the Zoeppritz equation.

Figure 2.3: P-wave velocity model of the two layer true elastic model with a source
at x = 0.351 km and z = 0.1 km (white star). Model properties: top layer (vp =
2000 m/s, vs = 880 m/s, ρ = 2000 kg/m3), bottom layer: (vp = 4000 m/s, vs =
1540 m/s, ρ = 2300 kg/m3).

The P-wave velocity of the true elastic model is shown in Figure 2.3. The S-wave

velocity and density models are tapered using an exponential taper from an EL model

inside the blue box to a CDA model at the red box. The size of the taper is the same

on all sides with a length of 240 m, which is three times the maximum wavelength

(λmax) in the top layer when f = 25 Hz (i.e., 3λmax). The values for the P- and S-wave

velocities and density (Vp, Vs and ρ, respectively) for each layer are given in the figure

caption of Figure 2.3. We place the source at x = 0.35 km and z = 0.10 km and

receivers along the top of the model at z = 0.10 km. The source is a Ricker wavelet

with a peak frequency of 25 Hz (Figure 2.3).

Figure 2.4a shows the AVA modeled with the full EL solver on the true model (blue

line: Full EL-True), the full EL solver on the tapered model (red +: Full EL-Model

Tapered), the CDA-EL local solver on the tapered model (magenta line: CDA-EL

Local), and the Aki-Richards approximation for P-wave reflection coefficient (green

line: Zoepp Rpp). The red and magenta lines show the same pattern, demonstrating

that the CDA-EL local solver is implemented correctly for this geometry. The ampli-

tude of the reflection for the red and magenta lines shows an irregular behaviour in

the first 25◦ and after 50◦, which are associated with the size of the taper and the size

of the local elastic domain. First, we test the taper size. We change the taper length

from (3λmax) to (5λmax) to investigate how the curves modeled with full EL domain

on the tapered model (red +: Full El -Model Tapered) and with the CDA-EL local

solver (magenta line: CDA-EL Local) get closer to the Full EL domain solver (blue
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line: Full EL-True)(Figure 2.4b).

(a) AVA- three wavelength taper

(b) AVA- five wavelength taper

Figure 2.4: The AVA modeled using the three-wavelength taper and (b) AVO modeled
using the five-wavelength taper transition. Results are shown for the full EL domain
solver (blue line: Full EL-True), the full EL domain with an elastic local solver (red +:
Full EL-Local Tapered), the full CDA domain with an EL local solver (magenta line:
CDA-EL Local Tapered), and the Zoeppritz equations for the P-reflection coefficient
(green line: Zoe Rpp). All of the reflection coefficients are normalized to increase
from zero to one using equation 2.3.

Second, we test the size of the local elastic solver.We increase the length of the

local elastic domain from 1.4 to 2.7 km (Figure 2.5a) and we use a three-wavelength

taper. In this case, the CDA-EL amplitude curve shows a behavior closer to the full
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EL domain solver after 45◦ as we expect. However, they do not match perfectly, which

suggests that the artifacts in the curves are the result of a combination of the size

of the taper, the size of the local domain, and the position of the source. However,

the behavior of the curves between 25◦and 48◦ remains relatively accurate even when

using the shorter taper and small elastic local domain; therefore, we choose to work

with the short taper and small local domain (Figure 2.4b). The taper and elastic local

domain can be made larger if higher amplitude precision is required, though when a

larger taper and local domain are used the computational cost increases, which may

change the balance between the computational cost of the CDA-EL local versus an

elastic to elastic solver (e.g. [61]). However, some of the accuracy gains in using the

elastic to elastic solver may be lost when we do not know the overburden accurately.

It is worth noting that the position of the reflector is quite shallow; a deeper reflector

would move the peak of the curve closer to the Zoeppritz approximation because the

Fresnel zone would reduce to a point where only one incoming angle would contribute

and effectively simulate a plane wave. We do not expect to obtain agreement with

the Zoeppritz result as this assumes plane waves. Instead, we expect the result to

agree with the Full EL-True result. Note that the values of the amplitude in the first

25◦ for the full EL domain and Zoeppritz equation are close to zero, but they are not

actually zero(Figure 2.4b).

Thus far, we have found that the CDA-EL local solver is able to accurately estimate

the amplitude for angles between 25◦ and 48◦, using a homogeneous model. In the

following example, we illustrate the technique with a more realistic model based on

the geology of the North Sea.

North Sea Model

To evaluate how the overburden heterogeneity affects the amplitude modeling with

the CDA-EL local solver, we introduce a more complex and realistic model designed

to resemble the geology of the North Sea. Using the same configuration as used for

the two-layer model, we evaluate the amplitude of the PP-reflected wave. Because we

investigate whether or not the CDA-EL local solver can accurately model the local

PP-reflection in this more complicated North Sea model, we only compare the result

with the reflection obtained using the full EL domain solver.
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(a) S-wave velocity model

(b) AVA

Figure 2.5: (a) The S-wave velocity model of the two-layer true elastic model with
a source at x = 0.351 km and z = 0.1 km (white star). The model properties
are described in Figure 2.3. The blue box represents the elastic local domain that is
increased from 1.4 km to 2.7 km and the red box is a three-wavelength taper transition
region. (b) AVO modeled using the model depicted in (a). Results are shown for
the full EL domain solver (blue line: Full EL-True), the full EL domain with an
elastic local solver (red +: Full EL-Local Tapered), the full CDA domain with an
EL local solver (magenta line: CDA-EL Local Tapered), and the Zoeppritz equations
for P-reflection coefficient (green line: Zoe Rpp). All of the reflection coefficients are
normalized to increase from zero to one using equation 2.3.

Figure 2.6 shows the P-wave velocity model based on North Sea geology, char-

acterized by high-velocity layers that represent a chalk layer and a small velocity
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Figure 2.6: The P-wave velocity based on the geology of the North Sea with a source
at x = 3.5 km and z = 0.1 km (white star). The blue box is the region in which we
use the fully elastic local solver, and the area between the blue and red boxes is the
region in which we apply a taper from the EL to the CDA models.

decrease, which represents the presence of hydrocarbons (at roughly x = 5.5 km and

z = 3.0 km). In this example, the density model with a range of (1000, 2600) kg/m3

and the S-velocity model with a range of (0, 3200) m/s are derived using Gardner’s

equation and assuming a Poisson solid, respectively. Thus, the combination of P-

velocity, S-velocity, and density make up the true elastic Earth model. From this

Earth model, we expect to obtain strong postcritical reflections due to the contrast in

P-wave velocity at the boundary of the chalk layer, which is our zone of interest (blue

box shown in Figure 2.6). The overburden density model is finely layered; however,

the average value of the density above the hydrocarbon anomaly and chalk layer is

2000 kg/m3. The difference between the chalk and the overburden layer densities is

350 kg/m3 (Table 2.1), implying a negative contrast between these two layers. The

modeled source wavelet has a peak frequency of 6.0 Hz and is located at x = 3.5 km

and z = 0.1 km. The receivers are placed continuously between 5.0 km and 10 km

horizontally at 0.1 km in depth, with 10m spacing.

This is a situation in which “normal” AVO is likely to fail because of the presence

of postcritical reflections. In addition, a straight acoustic approach is unlikely to work
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Table 2.1: The P- and S-wave velocities for the hydrocarbon anomaly and the bulk
chalk. The parameters are inverted using the amplitude only with three shots.

Hydrocarbon anomaly

True Initial Amplitude Inverted Error
vp(km/s) 5.00 4.30 4.76 4.82%
vs(km/s) 2.86 2.20 282 1.26%
ρ(kg/km3) 2.35 2.10 2.29 2.14%

Chalk layer

True Initial Amplitude Inverted Error
vp(km/s) 5.30 4.60 5.11 3.5%
vs(km/s) 3.06 2.60 3.05 0.32%
ρ(kg/km3) 2.65 2.30 2.71 2.54%

because this phase transition depends on the model being elastic. It is also important

to keep in mind that we are looking at elastic effects on PP-reflections, which is why

the acoustic approximation may still be sufficiently accurate outside the domain of

interest. We also note that the corrected acoustic simulation contains some elastic

effects without the full cost of an elastic simulation. It does not contain any S-waves,

but amplitudes of reflected PP-waves are approximately corrected [10].

Figure 2.7 shows the amplitude modeled using the full EL solver (blue line: Full

EL-True), and the CDA-EL local solver (magenta line: CDA-EL Local). From this

graph we see how other events intersect with the chalk reflection and as a result the

amplitude values oscillate rapidly. For instance, the region between 43◦ and 50◦ corre-

sponds to receivers located between x = 9 km and x = 11 km where the combination

of the direct wave and ocean bottom reflection intersect the chalk reflection [87]. Due

to the superposition of this event with the chalk reflection, the total reflection will

have a different picked amplitude than that of the chalk reflection alone.

We propose to mute the positions where other events cross the chalk reflection

to calculate the amplitude. The mute windows for the source at x = 3.5 km are

shown with gray shading in Figure 2.7. After muting, we obtain the amplitude for

only the PP-reflection from the area of interest. Comparing them, we see that the

PP-reflection is affected primarily by scattering at the reflection and is less influenced

by propagation through the elastic overburden, which agrees with observations from



38

Figure 2.7: Modeled amplitude for a source located at x=3.5km using full EL solver
(blue line: Full EL-True) and CDA-EL local solver (magenta line: CDA-EL Local Ta-
pered). The gray windows correspond to areas that are muted because they interfere
with the PP-wave reflection from the chalk.

[99]. Even though we do not obtain an exact match between the two curves, we will

see that the approximation is still good enough to use the CDA-EL local solver to

model amplitudes from PP-reflected waves, using models that contain an overburden

from homogeneous to moderately heterogeneous.

For display purposes, we normalize the amplitude curves (Figures 2.4a, 2.4b, and

2.7) using,

Anorm =
A(x)− Amin
Amax − Amin

, (2.3)

where A(x) represents the amplitude at position x and Amin and Amax are the mini-

mum and maximum values, repectively.

2.3.4 Amplitude Inversion

[87] perform a phase inversion. They measure the phase of the wavelets, using the

observation that a zero-phase wavelet has maximum correlation with its envelope

(operator Υamp defined in equation 2.2). Here, we investigate whether the amplitude
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Figure 2.8: Shot gather for a source at x = 3.5 km generated on the true North Sea
elastic model. The blue lines delineate the window used to measure the amplitude
and phase of the PP- wave reflection.

of the reflection event generated by the local solver can also be used to invert for

material parameters at a reflector of interest. Specifically, we minimize the objective

function:

Γ(m) =
1

2
||Λ(d)− Λ(F (m))||22 , (2.4)

where F represents the CDA -EL local solver, d the recorded data, and m the model

vector. To minimize equation 2.4, we extract the values of phase and amplitude from

d and F (m) applying the operator Λ as,

Λ(d) = (νP; νA)

Λ(F (m)) = (ζP; ζA).

(2.5)

where (νP; νA) and (ζP; ζA) represent vectors that contain phases (νP, ζP) and ampli-

tudes (νA, ζA) of the recorded and modeled data. The term Λ = (Υphase,Υamp) with

Υamp (equation 2.2) and Υphase as described above.

Writing out equation 2.4 produces

Γ(m) =

∣∣∣∣∣∣∣∣a νP − ζPmax(νP)

∣∣∣∣∣∣∣∣2
2

+

∣∣∣∣∣∣∣∣b νA − ζAmax(νA)

∣∣∣∣∣∣∣∣2
2

, (2.6)

where max(νP) and max(νA) are the maximum values of the phase and phase of

the recorded and modeled data, respectively, defined in equation 2.5, and a and b are



40

constant values that oscillate within (0 to max(νP)) for the phase and (0 to max(νA))

for the amplitude, respectively. Terms a and b give different weights to the phase and

amplitude during the inversion; however, for this study we used a = max(νP) and

b = max(νA); we do not explore these parameters further. The amplitude and phase

are functions of the elastic parameters (vp, vs, ρ) in the layer of interest.

To estimate the best-fitting model, we use the Gauss-Newton inversion method.

Suppose that our starting model m0 is relatively close to the true model and the

misfit function Γ(m) is expanded in a Taylor series retaining up to the second order

terms [75],

Γ(m) = Γ(m0) + ∆m5 Γ(m)|m=m0 +
1

2
∆mt52 Γ(m)|m=m0∆m (2.7)

where superscript t denotes matrix transposition. Minimizing equation 2.7, to ac-

quire the optimal parameters (e.i., the closet minimum around m0), we differentiate

equation 2.7 with respect to the model parameters and set it equal to zero,

∂Γ(m)

∂m
= 5Γ(m)|m=m0 + ∆mt52 Γ(m)|m=m0 = 0, (2.8)

where ∆m = m−m0. Hence, the minimum is achieved by arranging equation 2.8,

∆m = −H(m0)−1g(m0), (2.9)

where g(m0) = 5mΓ(m)|m=m0 = Jtiri is the gradient and H(m0) = {JtiJi} is the

approximate Hessian. Therefore the search direction ∆m at iteration i is,

∆mi = −{JtiJi}−1Jtiri. (2.10)

We then update the model mi to mi+1 via mi+1 = mi + αi∆mi, where αi is the

step length. In this paper, a value of α is determined at each iteration by using the

backtracking line search algorithm. This is the same methodology as that of [87].
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2.4 Results

In this section, we discuss the inversion results, using the North Sea model. Following

this, we evaluate the relationship between the amount of data and the improvement

of the inversion results, when adding more information from more shots into the

inversion, and evaluate the trade-off between the elastic parameters. Finally, we

evaluate the sensitivity of the objective function to the starting model using the

CDA-EL local solver.

2.4.1 Inversion with North Sea model

Amplitude inversion

We investigate if the amplitude of the reflection event, generated by the CDA-EL

local solver, can be used to invert for material properties at a reflector of interest. We

do this by minimizing the least squares objective function (equation 2.4). Following

[87], we assume that the overburden is known. We use the exact properties at the

source and receiver locations using the compensation factors explained above (Figure

2.2). We invert only for the material properties of the chalk and hydrocarbon anomaly

located at x = 5.75 km. We invert for six parameters, three for the chalk and three

for the hydrocarbon anomaly (vp, vs and ρ, respectively for each). We identify the

hydrocarbon anomaly parameters with the number 1 and the chalk parameters with

the number 2. The amplitude is not normalized during the inversion, and we are not

using the phase, effectively setting a = 0 in equation 2.6.

We first evaluate the amplitude curve. Figure 2.9 shows the evolution of the

amplitude at iterations 0, 1, 2, 3, and 6, using dashed lines. The amplitude curves

show how the amplitude residual becomes smaller as the inversion progresses. Figure

2.10a shows the evolution of the model mi as a function of iteration number i for three

shots located at x = 2.5 km, 3.0 km and 3.5 km. All curves are normalized using the

true value; hence, all of the curves should approach 1.0 for the perfect case. Due to the

difference between the true curve (blue line: Full EL-True) and the true local curve

(magenta line: CDA-EL Local), we do not expect to obtain a perfect recovery of the

elastic parameters. We see that the modeled amplitude is able to recover velocities

with an error of less than 5% (Table 2.1), but not densities which is not a surprise. This
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density overestimation could be the inversion trying to compensate for the difference

between the true and local true amplitude curves. Another possible reason that can

result in the overestimation of the densities is the differences in the sensitivities of

seismic data with respect to the velocity and density, making the inversion poorly

constrained. Moreover, the patterns of diffraction of velocity and density are similar

at small scattering angles [75, 52, 25].

Figure 2.9: Amplitude for source at x = 3.5 km over several inversion iterations. The
grayed regions are muted and are not included in the inversion.

There are techniques to approach these issues; however, this is outside of the scope

of this paper (see e.g., [12], and [94]). Figure 2.10b shows the objective function values

during the inversion, and the dashed line shows the value of the objection function

for the true model. It is apparent that continuing with more than six iterations does

not lead to the true value because the inverted model already has a lower objective

function value than the true model. We calculate the error between the true (Vt) and

inverted (Ve) value using,

%Error =
Vt − Ve
Vt

∗ 100%. (2.11)
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(a) Normalized model evolution

(b) Objective function

Figure 2.10: (a) Normalized model evolution during an inversion using only the ampli-
tude of the chalk reflection. (b) Objective function from values derived with equation
2.6, using the amplitude as a constraint.

Amplitude and phase inversion

We now investigate whether the amplitude of the reflection event helps in the inversion

when it is combined with the phase. We first evaluate the amplitude and phase.
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Figures 2.11a and 2.11b show the evolution of phase and amplitude for some of the

iterations for a shot located at x = 2.5 km. We see that the amplitude and phase

curves move closer to the true value as the inversion progresses. We also see that the

true (blue line: Full EL-True) and true local (magenta line: CDA-EL Local) curves

for the amplitude and phase do not match perfectly; thus, again we do not expect to

obtain a perfect recovery of the elastic parameters. The gray areas shown in Figures

2.11a and 2.11b are muted and are not used in the inversion.

(a) Amplitude modeled

(b) Phase modeled

Figure 2.11: Amplitude (a) and phase (b) modeled for different iterations for a source
at x = 2.5 km for an inversion using the amplitude and phase. The gray areas are
muted and are not used in the inversion.
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Figures 2.12a and 2.12b show the evolution of the model mi as a function of

iteration numbers for phase and phase and amplitude for three shots located at x = 2.5

km, 3.5 km, and 4.5 km. The curves are normalized using the true value, as done

previously for the amplitude inversion. The curves show oscillatory updates; however,

the range of variation decreases when the number of iterations increases in both

cases. The chalk density exhibits the largest range in both graphs, but it is clear that

the algorithm has converged by the last few iterations. Comparing both graphs at

iteration number 10, we see that all of the elastic parameters converge to the true

values.

Table 2.2 shows the true, initial, and inverted parameter values for the hydrocarbon

anomaly and the chalk using phase as well as phase and amplitude. Both inversions

are done with three shots and 10 iterations. The associated errors are less than 5%

for the phase, and even lower for phase and amplitude, suggesting that the amplitude

helps to improve the accuracy of the recovery.

Table 2.2: The P- and S-wave velocities and densities for the hydrocarbon anomaly
and the bulk chalk. The parameters are inverted for phase only and then for the
phase and amplitude together using three shots.

Hydrocarbon anomaly

True Initial Phase Inverted Error Phase & Ampl Inverted Error
vp(km/s) 5.00 4.30 4.77 4.54% 4.82 3.5%
vs(km/s) 2.86 2.20 2.85 0.25% 2.86 0.24%
ρ(kg/km3) 2.35 2.10 2.23 2.14% 2.31 1.78 %

Chalk layer

True Initial Phase Inverted Error Phase & Ampl Inverted Error
vp(km/s) 5.30 4.60 5.51 4.0% 5.49 3.7%
vs(km/s) 3.06 2.60 3.04 0.45% 3.04 0.42%
ρ(kg/km3) 2.65 2.30 2.71 2.54% 2.70 1.89%

2.4.2 Tradeoffs between data and reconstruction accuracy

In this section, we study the trade-off between the data as an input to the inversion and

the accuracy of the inverted elastic parameters. We compare the phase and amplitude
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(a) Phase inversion

(b) Phase and amplitude inversion

Figure 2.12: Elastic parameters recovered using: (a) the phase and (b) phase and
amplitude as constraints. We use three shots to invert for the elastic parameters.

inversion responses using three, four, five, and finally six shots in the inversion (Figure

2.13).

Comparing the four graphs shown in Figure 2.13, we see that the densities (ρ1 and
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ρ2) improve when more data are used in the inversion, whereas the velocities decrease

slightly in accuracy. For instance, S-wave velocities for the hydrocarbon anomaly and

chalk layer decrease their accuracy by 0.6% and 0.11%, respectively, when six shots

are used, whereas the densities increase their accuracy by 1.66% for the hydrocarbon

anomaly and 0.64% for the chalk layer. In general, S-wave velocities (vs1 and vs2)

are already well-constrained with three shots, densities do well by the time we reach

six shots, and vp1 and vp2 are still relatively poorly constrained even when using six

shots.

Table 2.3: P-wave and S-wave velocities, and density for the hydrocarbon anomaly
and the bulk chalk. We run the inversion with three and six shots, using the phase
and amplitude simultaneously in the inversion.

Hydrocarbon anomaly

True Initial 3shots. Error 6shots Error
vp(km/s) 5.00 4.30 4.82 3.5 % 4.73 5.2%
vs(km/s) 2.86 2.20 2.86 0.24%. 2.87 0.67%
ρ(kg/km3) 2.35 2.10 2.30 1.78% 2.34 0.12%

Chalk layer

True Initial 3shots. Error 6shots Error
vp(km/s) 5.30 4.60 5.49 3.70% 5.54 4.62%
vs(km/s) 3.06 2.60 3.04 0.42% 3.07. 0.53%
ρ(kg/km3) 2.65 2.30 2.70 1.89% 2.68 1.25%

In Table 2.3 we see the inverted values and errors calculated for three and six

shots. The most notable improvements are in the densities ρ1 and ρ2 when six shots

are used. Even though vs1 and vs2 increase the percentage of error, both of these

errors are still less than 1%. The worst results are for vp1 and vp2, both of which

increase their error by approximately 2% showing that additional data change the

objective function, resulting in convergence to different local minima, highlighting

the nonlinearity in the inverse problem [75, 54].
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2.4.3 Tradeoff between elastic parameters and reconstruction

accuracy

The nonlinearity present in elastic FWI is an important area of interest because the re-

construction of high-quality subsurface parameters from multicomponent seismic data

is a great help in rock property identification and reservoir prediction [76, 15]. In this

section we focus on the trade-off between the elastic parameters and reconstruction

accuracy using the CDA-EL solver. To evaluate the accuracy in the reconstruction, we

test four different configurations using three shots in the inversion: (vp1, vp2); (vs1, vs2);

(ρ1, ρ2); and (vp1, vp2, vs1, vs2). During the inversions the parameters that are not cal-

culated are fixed to their true values and all inversions are run to convergence, defined

as when a new model cannot be found with a line search that reduces the objective

function.

Table 2.4: P-wave and S-wave velocities, and density for the hydrocarbon anomaly
subindex 1 and the chalk subindex 2 inverted with (vp1, vp2); (vs1, vs2); (ρ1, ρ2) and
(vp1 vp2, vs1, vs2); using three shots with phase and amplitude simultaneously.

True Initial Inverted Error
Configuration 1
vp1(km/s) 5.00 4.30 5.14 2.8%
vp2(km/s) 5.30 4.60 4.52 14.6%

Configuration 2
vs1(km/s) 2.86 2.20 2.91 1.7%
vs2(km/s) 3.06 2.60 3.08 0.7%

Configuration 3
ρ1(kg/km3) 2.35 2.10 2.32 1.2%
ρ2(kg/km3) 2.65 2.30 2.65 0.2%

Configuration 4
vp1(km/s) 5.00 4.30 4.92 1.6 %
vp2(km/s) 5.30 4.60 5.45 2.8%
vs1(km/s) 2.86 2.20 2.90 1.5%
vs2(km/s) 3.06 2.60 3.06 0.09%

These tests yield results similar to the test in the previous subsection in which we

increased the number of shots. The P-wave velocities are the poorest resolved (Figure

2.14a), while S-wave velocities and densities are well-recovered (Figure 2.14b and
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2.14c). From the P-wave curves we see that the algorithm favours large contrasts;

that is vp1 and vp2 are over- and underestimated, respectively, producing a large

contrast. We know that large contrasts can give complex reflection coefficients and

thus phase rotation, producing errors in the phase (Figure 2.15a). These errors in

the phase lead to large errors in the inverted P-wave velocities. Furthermore, most

of the information in the inversion is provided by the phase because the phase ranges

between 0◦ to 360◦, while the amplitude ranges only from 0 to 0.010 maximum (Figure

2.15a and 2.15b). This suggests that we may need to weight the amplitude and phase

data differently in the misfit term (equation 2.6) or to use a different functional for the

misfit (instead of that given in equation 2.4); we will return to this in the discussion.

When P- and S-wave velocities are inverted together, P-wave velocities recovered

values become close to the true values (Figure 2.14d). In this case the modeled phase

is much more accurate (Figure 2.15c). Thus, it is clear that including S-wave velocities

in the inversion moves the objective function toward a local minimum that is closer

to the global minimum. Table 2.4 shows the inverted values and errors for the four

configurations studied.

2.4.4 Starting model - sensitivity study

In this section, we evaluate the sensitivity of the objective function considering 220 dif-

ferent initial models and analyze the objective function in the (vp, vs, ρ) parametriza-

tion. We calculate the models using the relationship:

m = mtrue + αm1 + βm2, (2.12)

where m1 = (vp1, vs1, ρ1, 0, 0, 0) and m2 = (0, 0, 0, vp2, vs2, ρ2) and mtrue is the true

model.

Figure 2.16 shows contour maps for the objective function used in the inversion.

The first evaluation of the objective function shows convergence toward the global

minimum (i.e., (α, β) = (0, 0), Figure 2.16a). However, zooming on the vicinity of the

global minimum, we find several local minima that are quite close together (Figure

2.16b). Looking at the details in Figure 2.16b we see that the global minimum is

not at (α, β) = (0, 0), instead we see smaller values of the objective function around

(α, β) = (0.14, 0.04), which means that, even if we successfully converge to the global
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minimum of our objective function, we will not have converged to the true model. It

is worth mentioning that because the observed data are created by full elastic model-

ing, whereas the predicted data are simulated by the simpler local elastic modeling,

systematic errors due to the simplified physics only allow us to estimate approximate

solutions. However, this method allows us to access an estimate of the parameters in

a more computationally efficient way compared with full elastic solvers.

2.4.5 Discussion

Our goal in using the CDA-EL local solver is to evaluate the amplitudes modeled

and investigate if those amplitudes can be used as constraints in the inversion to

recover elastic material parameters. To evaluate the accuracy of the local reflections’

amplitude, we use a simple two-layer model, in which we compare and verify that the

amplitude of the local reflections is similar to the true elastic model and relatively

accurate from approximately 25◦ to 48◦, which is our region of interest. Using a more

realistic and complex velocity model (the North Sea model), we invert for six elastic

parameters. The evolution of the model as a function of iterations, using the phase

and phase and amplitude in the inversion (Figure 2.12) shows that the amplitude

helps in the convergence (Table 2.3). These results agree with previous results by

[101]. They observe that the combination of amplitude and phase in the inversion

produces slightly better results. However, our inversion converges much faster than

their inversion, requiring only 10 iterations compared to 50 iterations required by

[101] to obtain similar percentages of errors. In addition, in the inversion procedure,

we estimate that using the CDA-EL local solver takes approximately 20% of the time

that it would take to use a Full-EL solver or 47% of the time for an elastic to elastic

solver, for 10 iterations, four parameters and three shots.

In comparing three to six shots in the inversion, we find that the P-wave velocities

are relatively poorly constrained even with six shots, which suggests that additional

data change the objective function, resulting in convergence to a different local min-

imum. The opposite occurs with densities, which improve their precision when more

data are used in the inversion (Table 2.4). On the other hand, the analysis of the

trade-off between elastic parameters shows that our algorithm favors large contrasts,

producing errors in the phase that cause large errors in the recovered P-wave veloc-

ities. Most of the information in our inversion is given by the phase because it has
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a larger range than the amplitude and thus intrinsically carries greater weight in our

inversion setup. We attempt to normalize the amplitude and phase using several dif-

ferent approaches. For instance, we scale amplitude and phase data to have values

between zero and one. In this case, it does not converge to the true value, rather

the inversion does not progress or even diverges quite far from the true values. We

normalize the phase only, and we obtain exactly the same inversion as the original,

showing that the implementation is correct and the inversion is not affected by the

scaling. Another strategy that we use is normalizing the objective function. We use

the normalization proposed by [46]; nonetheless, this method does not result in a sta-

ble algorithm. There are many other ways one could imagine scaling the amplitude

and phase, but it seems that allowing the phase to be a stronger contributor to the

inversion is advantageous for a stable, accurate inversion algorithm.

When we invert vp and vs at the same time, the behaviour of vp improves, showing

clearly that vs constrains the inversion to local minima that are closer to the global

minimum. Indeed, we see that the S-wave velocity is the most stable parameter

with the lowest percentage of error in all of the inversions. This may be because the

inversion is helped by the chalk layer having a PS critical angle. Although we window

around the reflected P-wave, we would expect some converted S energy to arrive at

nearly the same time, meaning that this wave also contributes to the inversion. [6]

observe similar results when inverting for vp and vs simultaneously.

In the last part of this study, we evaluate the sensitivity of the objective func-

tion. Inverting for multilayered and multidimensional models is difficult due to the

relationship between the reflectivity of the interface at a given angle and the elastic

properties of the media on both sides of the interface — in this case, the hydrocarbon

anomaly and the chalk layer. We find that, despite the nonlinearity of our problem,

the objective function converges to the global minimum. However, there are several

local minima around the global minimum that easily trap the inversion away from the

true model. In this study, we use the Gauss-Newton method that iteratively searches

for a solution from a starting point in which a direction with a constant step length

is computed at each iteration to determine the next point. Future work might focus

on investigating the method that is used for computing the step length or use of the

global linear approximation to compute the search direction [27].

In this paper we use the amplitude and phase of the PP-reflections in the inversion.
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However, the CDA-EL local solver could be used for other elastic wave modes such

as the P-S, S-S and S-P reflections.

2.5 Conclusions

In this paper, we model the amplitude of the reflection using a CDA-EL local solver

on a simple two-layer model and on a more complex heterogeneous velocities model.

Both amplitudes are modeled sufficiently accurately in our region of interest. The

combination of the size of the local solver and taper as well as the position of the

source play an important role in the behavior of the amplitude curves modeled and

the resulting accuracy of the inversion. We observe that using a three-wavelength

taper and a source located near the middle of the local domain allow us to model

amplitudes with high accuracy. Having accurately recovered the amplitudes, we in-

corporate them as a constraint in the inversion and we show that, for an amplitude

and phase inversion, we are able to recover more accurate model parameters of a re-

flector of interest compared to what we can obtain with the phase alone. Our results

suggest that, if your objective is recovering accurate P-wave velocities, it is important

to invert for vp and vs simultaneously. In addition, accurately modeling the data and

including many shots in the inversion is more important in the recovery of density

than the recovery of S- and P-wave velocities. Finally, we evaluate the sensitivity

of the CDA-EL solver to the initial model, in which we find that we are able to re-

cover parameters closer to the global minimum but with many local minima clustered

around the global minimum resulting in a loss of accuracy in the recovered model.

The next step will be to focus on using strategies that optimize and regularize the

inversion algorithm.
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Figure 2.13: Phase and amplitude inversion. Elastic parameters recovered using phase
and amplitude for: (a) three shots, (b) four shots, (c) five shots, and (d) six shots.
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Figure 2.14: Phase and amplitude inversion. Evolution of the models as a function of
iteration numbers for (a) vp1, vp2, (b) vs1, vs2, (c) ρ1, ρ2 and (d) vp1, vp2, vs1, vs2.
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(a)

(b)

(c)

Figure 2.15: Phase (a) and amplitude (b) modeled for a shot at 2.5 km in iteration
number 6 of the inversion of P-waves velocities only (vp1 and vp2) (black dash line: iter
6). (c) Phase modeled for a shot at 3.5 km at iteration number 9 of the inversion of
P-waves velocities only (vp1 and vp2) (black dash lines) and using the full EL domain
(blue line: Full EL -True), true local curve (magenta line: CDA-EL Local). The gray
areas are muted and are not used in the inversion.
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Figure 2.16: Contour map for the objective function showing (a) global minimum and
(b) local minima.



Chapter 3

Reduced memory implementation

of a local elastic finite-difference

solver

3.1 Summary

The recovery of elastic properties from seismic data often requires the iterative use of

seismic modeling. Finite-difference (FD) simulation is a common component in seismic

modeling, and it is usually the most computationally expensive step in methodologies

such as inversion or reverse time migration. Local solvers attempt to reduce the cost

of FD simulations by reducing the computational domain to small areas, updating

the model within these areas without recomputing throughout the full domain. We

have implemented a local elastic solver that allows us to propagate the elastic wave-

field within a subvolume after local alterations of the model. We determine how the

scattered wavefield due to the alterations can be extrapolated from the local domain

to surface receivers. We extend existing works by using the method of multiple point

sources to recompute the wavefield within the local domain. This method is memory

efficient because it only requires the global wavefield to be recorded along the local

domain boundary. By injecting these recordings as point sources, the global wavefield

is emulated within the local domain. Thus, the method requires no modifications of

standard FD solvers, merely the ability to record and inject data. We evaluate the

capability of the local elastic solver to reconstruct the wavefield in a subvolume of the
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elastic SEAM model.

3.2 Introduction

The finite-difference (FD) method is commonly used to model and reconstruct wave-

fields. Applications of wavefield modeling include tomographic imaging [50], full wave-

form inversion (FWI) [75] and reverse time migration (RTM) [5]. Modeling is the most

computationally intensive component in seismic imaging and inversion schemes. Local

solvers have been developed and implemented to reduce the cost of FD simulations

[61, 78, 87]. These algorithms reduce the size of the computational domain to small ar-

eas, allowing this part of the model to be updated without recalculating the wavefield

throughout the full domain.

Local solvers are divided into two categories. In the first type of solver, boundary

conditions are used to immerse the local domain in an extended domain. [29] present

the general idea of this boundary condition. They use an analytic boundary condition

to connect an inner and outer domain, and they solve the wave equation with a differ-

ent method in each domain. In the other type of local solver, wave propagation is first

performed in the background model and then used as an input to obtain the wave-

field inside the local area. In this case, the wavefield is injected as a set of monopole

and dipole sources [4, 61, 8]. [61], for example, present the FD-injection method to

efficiently inject wavefields in a local domain after model alterations. They apply the

method in a 2D time-lapse seismic problem showing a reduction in computation cost

of 85%. In this study, we will also implement the local solver using a source-injection

technique. This wavefield injection method is known as the method of multiple point

sources (MPS) [53].

[50] develop a generalized approach to construct the excitation sources for time-

reversal mirrors (TRMs) by introducing a spatial window function into the wave

equation. They argue that the concept of TRMs can be used for forward and back

propagation of the field in the local domain. They show that, when implementing a

TRM with the FD method, their method is equivalent to the FD injection, as described

by [61]. However, FD injection is a memory-intensive algorithm, requiring storage of

FD quantities of up to twice the size of the FD stencil. A more memory-efficient

method is the MPS methodology such as, for example, the methods explained in [51]
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and [79]. These methods only require the storage of FD quantities along a single

surface in the FD grid. For example [79] discuss the implementation of the MPS

method in a standard staggered FD algorithm for the acoustic wave equation and

its application to RTM. Hence, the MPS method provides a memory-efficient way to

reconstruct FD wavefields within a local domain.

As a transition from acoustic to elastic, [87] propose coupling a local elastic solver

with a background acoustic solver to estimate phase variation with angle. They use

an acoustic solver to propagate the wavefield to a local domain in which the local

elastic solver from [61] is implemented. [38] present an extension to the work of [87]

using the coupled acoustic-elastic local solver to estimate amplitudes, which are then

used to constrain an elastic inverse problem.

This study shows how to implement the MPS method in a staggered-grid FD

scheme for the isotropic elastic wave equation and how to extrapolate the scattered

wavefields from the local domain to the receiver locations. An attractive feature of

our method is that no modifications of computer code are strictly required as long

as data can be recorded and injected into an FD simulation. Thus, this local solver

implementation approach requires minimal memory and minimal changes to the code

of FD solvers, which is appealing for solving 3D problems. We implement the method

in an existing FD solver, turning it into a local solver. Then, we use the modeled

wavefield to estimate the phase and amplitude of a reflection event of interest. Here,

we build upon Devito [48], implementing the MPS method within the framework of

this code. Our goal is to provide the means for easy development and design of local

elastic solvers algorithms to a broad range of researchers.

This paper is structured as follows. In the “Theory” section, we explain how

to implement the elastic MPS methodology to reconstruct the wavefield inside an

injection boundary. We use a simple model to verify the implementation. In the

second part of this section, we introduce the extrapolation of the scattered wavefield

to the receiver positions. We then show a two-layer model to explain the extrapolation

of the scattered wavefield. Then, we validate the injection and extrapolation methods

by comparing them with a full-domain elastic solver, recovering the amplitude and

phase within a window that contains a reflection of interest. Finally, we demonstrate

the method on a more complicated model.
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3.3 Methods

In this section, we first describe the underlying theory of the local solver. We use

methods developed by [17, 2] and [86], which we summarize and expand with addi-

tional implementation details. In the last part of this section, we give an explicit

workflow describing what quantities need to be recorded and how to use them in each

calculation step.

3.3.1 Wavefield injection using MPS

We consider elastic wave propagation in an isotropic heterogeneous medium. To solve

the elastic wave equation, we use the velocity-stress formulation proposed by [83]:

∂vx
∂t

=
1

ρ

(
∂τxx
∂x

+
∂τxz
∂z

)
+ fx(xs, t)

∂vz
∂t

=
1

ρ

(
∂τxz
∂x

+
∂τzz
∂z

)
+ fz(xs, t)

∂τxx
∂t

=(λ+ 2µ)
∂vx
∂x

+ λ
∂vz
∂z

+ hxx(xs, t)

∂τzz
∂t

=(λ+ 2µ)
∂vz
∂z

+ λ
∂vx
∂x

+ hzz(xs, t)

∂τxz
∂t

=µ

(
∂vx
∂z

+
∂vz
∂x

)
+ hxz(xs, t),

(3.1)

where ρ is the density; λ and µ are the Lamé parameters; vx and vz are the horizontal

and vertical particle velocities, respectively; and τxx, τxz and τzz are the normal and

shear stresses. Using the elastic representation theorem, we can determine the dis-

placement wavefield ui(x, t) within a volume V from measurements of displacement

ui(x
′, t) and normal tractions τij(x

′, t)nj on an enclosing surface S (Figure 3.1) [17, 2]

by

un(x, t) =

∮
S

Gin(x,x′, t) ∗ τij(x′, t)njdS ′−∮
S

ui(x,
′ t) ∗ Cijkl∂lGkn(x,x′, t)njdS

′,

(3.2)

where Gin(x,x′, t) is the component of the displacement Green’s tensor at location x

in direction n due to a unit point force at x′ in direction i. Note that the Green’s
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Figure 3.1: Schematic of the local solver. The dark-gray layers represent the perfectly
matched layers (PMLs) on the boundary. The model is perturbed and the scattered
field is updated within the local domain (the light red-gray region). The injection
occurs on the injection surface S (the blue dotted line), and the extrapolation to
the receiver locations takes place from the extrapolation surface Se (the black dashed
line). The local solver discards scattered wavefields that exit and then reenter to the
local domain such as the green dashed line. Internal multiples with all three reflection
points within the local domain are included.

functions can be computed in any model including all of the heterogeneities; here, we

will compute them with finite differences. The variable un(x, t) is the nth component

of the displacement vector, ∗ denotes temporal convolution, τij(x
′, t)nj is the normal

traction on the surface S, Cijkl is the fourth-rank stiffness tensor and ∂l represents

the derivative with respect to the xl coordinate.

The representation integral, equation 3.2, as stated is an integral that is not

straightforward to solve. However, it may conveniently be computed on the fly with

an FD scheme, using point-source excitations as shown by [51]. In the context of the

velocity-stress system (equation 3.1), these sources take the following form:
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fx(xs, t) =
Ns∑
s=1

1

ρ
[τxxnx + τxznz]δs

fz(xs, t) =
Ns∑
s=1

1

ρ
[τxznx + τzznz]δs

hxx(xs, t) =
Ns∑
s=1

[(λ+ 2µ)vxnx + λvznz]δs

hzz(xs, t) =
Ns∑
s=1

[λvxnx + (λ+ 2µ)vznz]δs

hxz(xs, t) =
Ns∑
s=1

µ[vxnz + vznx]δs,

(3.3)

where fx(xs, t) and fz(xs, t) represent the point sources injected into the first two

equations of equation 3.1, and hxx(xs, t), hzz(xs, t) and hxz(xs, t) are the point sources

injected at the correspondent τxx, τzz and τxz partial stresses derivatives in equation

3.1. Note that all quantities on the right side of the equation 3.3 are recorded at xs,

as we suppress this explicit dependence. The variable δs denotes the delta-function

centered at xs ∈ S scaled by the discretization interval to ensure correct amplitude,

and Ns represents the number of sources, which we choose equal to the number of

grid points on S.

Figure 3.2 shows the boundary S intersecting the staggered grid. In this figure,

τxx and τzz are recorded exactly on S (circles). However, due to the staggered grid

configuration, vx ,vz and τxz are recorded on nodes offset from the boundary S. To

calculate their values on S, we use bilinear interpolation from the nodes surrounding

the desired location. The number of nodes used in the interpolation depends on the

length of the FD stencil and is chosen to match the accuracy of the FD scheme. To

clarify, the recording of the stresses τxx and τzz takes place at one node only (circular),

whereas the recording of the velocities vx, vz and stress τxz takes place at multiple

nodes (triangles and squares) where the number of nodes corresponds to the length

of the FD stencil on S. Using these recorded wavefields on S we are able to compute

the point sources described in equation 3.3.

Now we place the point-sources shown in equation 3.3 in the location where the
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(i, j)
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S
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Figure 3.2: Grid for the staggered FD scheme. The zoom shows the locations of the
wavefield components in the staggered elastic FD grid.

wavefields were recorded (i.e. at the circular nodes along S) to inject them inside

the local domain. In this way, the injection of hxx(xs, t) and hzz(xs, t) takes place

at circular nodes, whereas fx(xs, t), fz(xs, t) and hxz(xs, t) are extrapolated from the

recording locations (circular nodes) onto the staggered FD grid, at the triangular and

square nodes, respectively. Notice that equation 3.3 is general so that it can be used

for arbitrary spatial-order stencils. We give more detail on how to record and inject

the wavefields using the Devito package in the next section.

3.3.2 Injection using the Devito package

In this study we implement the local solver in the Devito package. This package is a

domain-specific language for implementing the FD method [47].

To reconstruct the wavefield inside an injection boundary S for a source anywhere

in the model, we need to save five different wavefields: vx ,vz, τxz, τxx and τzz on the

boundary S (Figure 3.1). Then, we use these wavefields to compute the necessary

point-sources given in equation 3.3. For instance, at the top portion of S where
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n = [0,−1], we inject

fx(xs, t) =
Ns∑
s=1

1

ρ
[−τxz]δs,

fz(xs, t) =
Ns∑
s=1

1

ρ
[−τzz]δs,

hxx(xs, t) =
Ns∑
s=1

λ[−vz]δs,

hzz(xs, t) =
Ns∑
s=1

(λ+ 2µ)[−vz]δs,

hxz(xs, t) =
Ns∑
s=1

µ[−vx]δs,

(3.4)

where the fields vx ,vz, τxz, τxx and τzz are recorded on the boundary S. The sources

on the other three portions of S are computed similarly. For demonstration purposes,

we use a fourth-order FD scheme to model the response for a source located at x = 2.5

km and z = 0.1 km in a homogeneous elastic velocity model vp = 2.0 km/s, ρ = 2.0

kg/m3 and vs = 0.88 km/s.

Figures 3.3(a) and 3.3(b) show the particle velocity vz at time t=0.91 s modeled

in the full domain and with the wavefield injection method, respectively. Figure 3.4

compares traces at x = 2.0 km and z = 1.6 km of the full and local vx fields. There

is a slight difference between the two curves. We measure the error by taking the

L1-norm of the difference between the two traces to estimate the error in the recon-

struction as 0.00046 m/s. This small difference depends on the FD stencil and the

interpolation used during the injection, so that the method has a trade-off in the spa-

tial sampling and the spatial order of the FD scheme. We tested our implementation

with 2nd- to 8th-order schemes and with different sampling and the error decreases

as we move toward smaller sampling and a lower space-order scheme. However, using

reduced spatial sampling and a lower spatial-order scheme also requires a denser grid,

increasing the computational cost.

To this point, we have implemented the MPS method to reconstruct wavefields

inside the local domain using wavefields recorded along S. If the model inside of the

local domain undergoes alterations, then scattered fields are generated from the model
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(a): Full

(b): Local

Figure 3.3: Snapshots of vz at time t=0.91 s for an impulsive source at x = 2500 m in
a constant velocity elastic model. (a): computed in the full domain, (b): computed
by the injection of the monopole point sources. The blue box represents the injection
surface (S) in Figure 3.1.
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Figure 3.4: Trace comparison between full (solid) and local (triangle line) finite differ-
ence responses. Notice the excellent agreement between traces. The traces are located
at x = 2.0 km and z = 1.6 km from the full and local modeled vx fields.

perturbation in the local domain. This scattered field needs to be extrapolated from

within the local domain to the receiver locations, which is the subject of the next

subsection.

3.3.3 Extrapolation to the receiver positions

After the reconstruction of the wavefield inside the local domain in an altered model,

the scattered wavefield should be extrapolated to receiver locations to be compared

with the observed data. We use Green’s functions between the receivers at the top of

the model in Figure 3.1 and the extrapolation surface Se (black dashed line in Figure

3.1), to extrapolate the scattered wavefield through the overburden via:

vreci = vbi +

∫
Se

(Gv
ik ∗ τ sckj −Gτ

ijk ∗ vsck )njdS, (3.5)

where vbi is the ith component of the particle velocity in the background model, Gv
ik

and Gτ
ijk are the Green’s functions from the observation point (receiver locations) to
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the point of integration on the surface (Se), calculated in the unaltered model. The

subscripts in Gijk denote the stress in direction (j, k) due to a point force in direction

i. The star denotes convolution in time, and nj is the jth component of the normal

to the surface Se.

3.3.4 Computation of the Green’s functions

Computing the Green’s functions using the FD method and the reciprocity theorem

involves the injection of impulsive sources at the receiver positions and recording the

field at Se. For example, to obtain vrecx , we compute

vrecx = vbx +

∫
Se

(Gv
xx ∗ τ scxz −Gτ

xxz ∗ vscx )nzdS

+

∫
Se

(Gv
xz ∗ τ sczz −Gτ

xzz ∗ vscz )nzdS,

(3.6)

where vbx is the x-component of the particle velocity for the background wavefield,

i.e. the x-component of the velocity between the source and receiver in the unaltered

model. The terms vscx , v
sc
z , τ

sc
xz, and τ sczz are the components of the scattered wavefield

on Se, and Gv
xx, G

τ
xxz, G

v
xz and Gτ

xzz are velocity and stress Green’s functions due to

an impulsive source injected in the x-direction (see also the description of the indices

after equation 3.5). In other words, we need to inject an impulsive source in the

x-direction as fx(xr, t). To solve for vrecz a similar system of equations is obtained;

but in this case the impulsive source fz(xr, t) is injected. Each source needs to be run

independently to obtain the corresponding Green functions making the calculation of

these Green functions computationally and memory intensive.

Workflow

In this section, we take the theory derived above and describe each step in the com-

putation explicitly. The objective of the local solver is to recompute the response

of the forward wave propagation after perturbing the model inside the local domain

within the injection area (the blue box in Figure 3.1) and then extrapolate the scat-

tered wavefields from the extrapolation surface (Se) to the receiver positions. With

this formulation, updating the shot gather after alterations to the model within the
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local domain only requires us to recompute the part of the wavefield within the local

domain. A workflow for the injection and extrapolation is presented in Figure 3.5.

We begin by defining the full elastic model parameters vp, vs and ρ. Then, we

perform a forward model simulation for a source located at the top of the model

(Figure 3.1). We use the library provided by the Devito package to perform the

forward simulation. During the forward simulation, particle velocities and stresses vi,

τjk are recorded along S and Se. The wavefield is also recorded at the receiver positions

(triangles in Figure 3.1). We record the five wavefield components at only one type

of node within the staggered grid (τxx, τzz, circle node Figure 3.2). We interpolate

from the surrounding nodes to obtain vx, vz and stress τxz, which are computed at

staggered locations. Devito provides the bilinear interpolation, and the number of

grid points used depends on the length of the FD stencil.

After the full domain simulation, we perturb the model within the local domain

inside S (blue box Figure 3.1). We then perform a simulation in the local domain

to compute the scattered wavefield response from the alterations in the model. The

model only differs from the original model inside S. The point sources calculated

from the wavefields recorded in the first simulation are injected into the local domain

along the surface S (see equation 3.3). If the model inside S does not have alterations,

we expect the scattered wavefield to be zero. Notice that the multiple point sources

generate the incoming wavefields and cancel the outgoing waves in this scenario, giv-

ing a scattered wavefield equal to zero. When we perturb the model inside S, a part

of the wavefield will propagate outside the injection surface S. This scattered wave-

field corresponds to the difference between the wavefields from the unaltered and the

perturbed model. Only the parts of the wavefield that correspond to the perturba-

tion will propagate outside of the injection surface S. Then, we record the scattered

wavefields on Se.

Once we have the scattered wavefield on the extrapolation surface, the propagation

of the scattered wavefields recorded on Se to the receiver locations can be performed

at a significantly reduced computational cost. We use the FD method and the reci-

procity theorem to compute the Green’s functions on Se, as explained above, and then

we extrapolate the scattered wavefields using equation 3.5. Notice that the Green’s

function calculation is only performed once because there are no alterations in the

model outside the surface S.
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Figure 3.5: Workflow showing the MPS methodology and extrapolation in the Devito
package.

Note that implementation of this method significantly reduces the computational

cost in cases in which many iterative simulations are required, such as inverse prob-

lems. Performing this implementation for a single model alteration may not provide

a computational benefit. We are not pursuing an iterative strategy in this paper be-

cause we are focused on the mechanics of the local solver, so we highlight only the

appearance of a single iteration.
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Figure 3.6: P-wave velocity of the two layer true elastic model. Material properties in
the top layer are vp = 2000 km/s, ρ = 2.0 kg/m3, and vs = 0.88 km/s. In the bottom
layer, the material properties are 4.0 km/s, 2300 kg/m3 and 1.54 km/s, respectively.
The model contains a thin layer (yellow) with parameters 5.3 km/s, 2350 kg/m3 and
2.86 km/s within the second layer. The blue box indicates the injection surface S and
the black line represents the extrapolation surface Se.

3.4 Numerical Examples

To verify the elastic local solver, we create a two-layer velocity model. We then verify

the accuracy of the phase and amplitude of the reflection of interest by comparing

them to the phase and amplitude computed in the full elastic model.

The P-wave velocity of the true elastic model is shown in Figure 3.6. The di-

mensions are 5.0 km × 2.0 km and the grid spacing is 10 m × 10 m. The source

is located at x = 2.5 km and z = 0.1 km. The receivers are located along with the

entire horizontal extent of the model at a depth of z = 0.1 km, the blue box in the

P-wave velocity model corresponds to the injection surface S and the black line above

the blue box marks the extrapolation surface Se in Figure 3.6. For the source, we

use a Ricker wavelet that generates only a P-wave with a peak of frequency 15 Hz.

The entire model is surrounded by a PML boundary of 200 grid points as is the local

domain (see Figure 3.1). We now investigate if we can correctly model the elastic

PP-reflection using the local solver.

Figure 3.7 shows the shot gather for both the vx− and vz-components using the

full-domain elastic solver (Figures 3.7a and 3.7b) and local solver (Figures 3.7c and

3.7d) for the model shown in Figure 3.6. In these figures, we see the direct wave, the
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PP- and PS-reflection from the first reflector located at 1.0 km (Figure 3.6) (marked

PP Ref1 and PS Ref1, respectively) and PP-reflection from the second reflector located

at 1.7 km (Figure 3.6) (marked PP Ref2). Note that all waves are present in both

components. Both plots are shown with the same colour scheme. Note that all

wavefields have a time shift of approximately 70 ms because the Ricker wavelet peak

is shifted away from t = 0 by about 70 ms.

Figure 3.8 shows a trace at x = 2.0 km of the PP Ref2 and PS Ref1 vx-component

shot gather. The black line in this plot is the trace computed in the full-domain

(Figure 3.7a), and the red triangle dashed line is the trace computed using the local

domain simulation (Figure 3.7c). Notice that in approximating the scattered wave-

fields generated by the local solver, the wavefield components that scatter on the

perturbation and then leave and subsequently re-enter the local domain before going

to the receiver locations are discarded (see Figure 3.1 green-dash line) and the internal

multiples within the local domain are included (see Figure 3.1 red line). Thus, the

local solver correctly computes the scattered wavefield from the injection, allowing us

to update the wavefield after altering the elastic model within the local domain. The

black and red curves in Figure 3.8 overlay one another exactly as expected. With

this example we demonstrate that the local solver is correctly implemented for this

geometry.

To verify the precision of the injection and the extrapolation methods imple-

mented, we measure the phase and amplitude of the PP Ref2 vx-component in the full

simulation (Figure 3.7a), and the local simulation (Figure 3.7c) within a 0.2 s time

window shown in Figure 3.7c with the red dashed lines.

Amplitude measurement

To recover the amplitude of the windowed reflection, we isolate the event and pick the

amplitude independent of the phase. We use Υamp = Max(|Hilbert(trace)|), where

Υamp represents the amplitude obtained, |.| is the absolute value and trace is the

windowed trace (see [38]).

Figure 3.9 shows the amplitudes of the PP Ref2 vx-component at the windowed

reflection (Figure 3.7 the red dash lines). The black line and red triangle dashed line

plot the amplitude of the full and local domain simulations, respectively (Figure 3.7a
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(a): vx-component full

(b): vz-component full

(c): vx-component local

(d): vz-component local

Figure 3.7: (a) and (c) shot gathers vx-component and (b) and (d) shot gathers vz-
component for a source at x = 2.5 km. The same amplitude clipping is applied to
both simulations so that the colour scales correspond. The red dashed lines indicate
the window used to measure the amplitude of the PP- reflection of vx-component shot
gather.
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Figure 3.8: Traces at x = 2.0 km for a shot at x = 2.5 km from the vx-component
shot gather in Figure 3.7a. The black line shows the trace modeled with the full
solver (Figure 3.7a) and the triangle dashed red line plots the trace modeled using the
local solver (Figure 3.7c). Notice the excellent agreement between the full and local
simulations.
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Figure 3.9: Comparing the amplitude extracted from the windowed reflections in
Figures 3.7a and 3.7b. The black line shows the amplitude values from the data
modeled in the full elastic model (Figure 3.7a). The red triangle dashed line shows the
amplitude values extracted using the local solver and the extrapolation methodology
(Figure 3.7c). Notice the excellent agreement.

and 3.7c). For comparison purposes, we normalize the curves using the maximum

value of the full and local amplitudes, respectively. The amplitude shows a drop at

receiver 50, i.e. at approximately x = 2.5 km which is consistent with the PP-reflection

marked as PP Ref2 in Figure 3.7a. The curves perfectly overlap each other.

Phase measurement

Figure 3.10 shows the phase extracted of PP Ref2 vx-component within the same time

window used in the amplitude measurement (Figures 3.7a and 3.7c). To measure the

phase, we adopt the method used by [38] who follow [87] and [99]. As is expected, the

phase modeled by the local solver (red triangle dashed line) overlaps almost perfectly

with the phase modeled by the full solver (black dashed line). In addition, we see the

expected 180o phase shift present in the reflection of interest at receiver 50 i.e., at

approximately x = 2.5 km. This sign flip across the origin is expected for this setup.
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Figure 3.10: Comparing the phase extracted from the windowed reflection in Figures
3.7a and 3.7c. The black line represents phase values from the data modeled in the
full elastic model (Figure 3.7a). The red triangle dashed line represents the phase
values extracted from the data computed using the local solver and the extrapolation
methodology (Figure 3.7c). Again we have excellent agreement between the two
algorithms.
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3.4.1 SEAM model

We now illustrate the proposed method on a more complicated elastic velocity model.

The synthetic model we focus on this section, shown in Figure 3.11, is a subsection of

the 2D elastic SEG Advanced Modeling Program (SEAM) model [23]. The dimensions

are 5.0 km × 2.0 km and the grid spacing is 10 m × 10 m. The source is a 15 Hz

Ricker wavelet located at x = 2.5 km and z = 0.1 km. The receivers are located along

the entire horizontal extent of the model at a depth of z = 0.1 km. The wavefield

is propagated for 1.7 s. The blue box in the P-wave velocity model corresponds to

the injection surface S, and the black surface above marks the extrapolation surface

Se in Figure 3.11. Note that the model contains a high-velocity layer inside the local

domain. The high-velocity layer was added after the background field was modeled.

Otherwise, the scattered wavefield would be zero. As we described above, the MPS

method can perform independently of the order of the spatial order of the FD stencil.

For this example we use a fourth-order FD stencil.

Figures 3.12a and 3.12b show the vx-component and vz-component shot gathers for

the full-domain elastic solver, while Figures 3.12c and 3.12d show the vx-component

and vz-component shot gathers, respectively, for the local solver with the elastic ve-

locity model shown in Figure 3.11. The black arrows mark the reflection of interest

in the full vx-component and vz-component shot gather which comes from the layer

with high velocity located at approximately 1.25 km in depth. Note the remarkable

similarity between both shot gathers (top and bottom for each case). The plots are

shown with the same colour bar.

Figure 3.13 shows a trace at x = 2.0 km between 0.75 s and 0.95 s from the vx-

component shot gathers in Figure 3.12. The black line is the trace from the full-domain

simulation (Figure 3.12a), and the red triangle dashed line is the trace simulated with

the local solver (Figure 3.12c). The traces overlap each other perfectly as expected.

With this example, we show that the methodology is applicable independent of the

velocity model used.
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Figure 3.11: Subsection of SEAM elastic model, based on the geology of the Gulf
of Mexico [23]. The selected domain is located in x between 11.5 and 16.5 km and
z from 6 to 8 km from the original model. The source is located at x = 5 km and
z = 0.1 km (red star at the top of vp).
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(a): vx-component full

(b): vz-component full

(c): vx-component local

(d): vz-component local

Figure 3.12: (a) and (c) shot gathers vx-component and (b) and (d) shot gathers
vz-component for a source at x = 2.5 km. The black arrow marks the PP reflection
from the layer of interest.
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Figure 3.13: Trace comparison at 2.0 km for a shot at x = 2.5 km from the vx-
component shot gather in Figures 3.12a and 3.12c. The black line represents the
trace modeled with the full solver and the triangle dashed red line plots the trace
modeled using the local solver.
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3.5 Discussion

The local solver implemented in this paper is based on the injection of wavefields

using the MPS method on staggered FD grids. This method uses wavefields that

are recorded on a surface with an arbitrary spatial order of accuracy and are later

injected back into the FD grid as point sources to produce an exact reconstruction

of the PP-reflected wavefields. The way that the wavefield is recorded and injected

on S is general; thus, it can be used in FD schemes with different orders of spatial

accuracy.

To reconstruct the source wavefield using the MPS method, we need to save five

wavefields (vx, vz, τxx, τxz, τzz) along the boundary S, which requires less memory than

conventional methods that need to store at least half of the FD stencil size to ensure

accuracy in the source wavefield reconstruction, such as checkpointing methods [73,

96]. The MPS method has been demonstrated by [79] in the acoustic case and used by

[44] in elastic RTM. The local solver implementation with the MPS methodology for

the reconstruction of the source wavefield makes the local solver even more appealing

in memory-intensive applications such as elastic FWI, elastic waveform tomography,

and elastic RTM. However, this approach is most useful in situations in which we

need to recompute the wavefield locally and iteratively, i.e., updates only in a small

region instead of a full model.

When the design of the injection surface includes corner points, minor artifacts

appear from the intersection of these line segments. These artifacts have a relatively

small amplitude compared to the amplitude of the reflection of interest. In the exam-

ple we study here, the amplitude of this artifact ranges between ±1×10−6, whereas the

amplitude of the reflections of interest varies from ±1×10−3. Thus, the error prop-

agating from the corners represents around 0.1% of our reflection of interest. One

strategy to overcome this issue is presented by [77] who obtains an exact wavefield in

a model with sharp corners by averaging two FD injections to one grid point during

the injection step.

There is a trade-off between the spatial grid size and the spatial order of the FD

method to obtain the exact reconstruction. Larger spatial sampling values with a high

space order can result in mismatches in the amplitude. We use bilinear interpolation

to the surface of injection to locate the wavefield at the exact position in the stencils
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from which they are injected. Thus, the longer the stencil, the more nodes are used to

implement the point sources in the interpolation, causing errors when you have a large

spacing. [79] show that there is a region in the vicinity of the injection surface where

the wavefield is not exactly reconstructed. The width of this region is proportional to

the length of the FD stencil: the higher the spatial order used, the larger the region.

An attractive feature of this methodology is the fact that the scattered wavefield

can be extrapolated to the receiver locations at a relatively limited computational cost.

The outgoing scattered wavefield from the local domain is recorded on an extrapola-

tion surface, and then we extrapolate this scattered wavefield through an overburden

using equation 3.5. We calculate the Green’s functions with the FD method, and

then we leverage the reciprocity theorem in equation 3.5. This method maintains

high accuracy and is appealing if a large number of recalculations are needed or when

the seismic response should be modeled for various possible scenarios such as FWI

and time-lapse seismic simulations [5, 75, 7].

Although the overburden in the SEAM model includes several layers, it is noted

that there is not a large contrast between them. Thus, there is not a large variation

in the material parameters for these sediments. Our local solver approach is highly

accurate when small-scale perturbations are present in the overburden. However,

it can be less beneficial if we want to model wavefields that propagate outside the

target region into the unaltered domain and then reenter the local domain. Future

work could focus on implementing local elastic solvers that account for all interactions

between local and unaltered exterior domains

In the simulation in which we use the two-layer model, the recalculation of the

wavefield in the local domain after perturbation required 18% less time than the total

time of the simulation in the full domain (i.e., approximateky 82% of the total time).

The memory usage for the local domain simulation was 0.8 MBytes compared to the

117 MBytes required for the full forward simulation, which is a significant saving. We

are also interested in the extrapolation of the wavefield to the receiver positions. The

computational cost for the extrapolation depends on the number of times that you

alter the model and the number of receivers. However, the evaluation of equation 3.5

is trivial because we compute the Green’s functions only once. If we have multiple

sources and receivers and the receivers coincide with the source locations, then we

calculate the Green’s functions without extra cost. Furthermore, the computational
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cost of the Green’s functions calculation can be distributed over the number of local

simulations for which the local solver is used; i.e., the larger the number of required

simulations, the less significant the Green’s functions calculations will be per simula-

tion. Finally, the surface S where the injection occurs can be designed to be small

compared with the full model and even the local domain. Thus, only a tiny fraction

of the source wavefield needs to be stored. In the SEAM example, the entire source

injection field for 1300 time steps required 36 KBytes. In contrast, optimal storage of

the whole wavefield at all points and times would require approximately 15 GBytes

in the full simulation. For 3D models, the savings will be greater, assuming we are

able to make similar savings. [61] present a detailed computational cost analysis for

the FD-injection and extrapolation method. We expect that our savings will be on

the same order, although we may see slightly better results with our implementation

because we do not need to store and compute as many Green’s functions because we

inject along only a single layer, whereas they use at least twice the size of the FD

stencil.

3.6 Conclusions

We have described the implementation of the elastic MPS method in a staggered FD

scheme and its applicability to a local solver. We show that, using only one sur-

face and five wavefield quantities, we are able to reconstruct the wavefield accurately

within a subdomain. We observed that the implementation of the local solver and

the extrapolation is efficient in modeling the recorded wavefield. Our implementation

reduces the memory required to reconstruct the wavefield. The injection technique

and the extrapolation method were validated against full elastic simulations. Finally,

we implemented the methodology in a more complex elastic velocity model, showing

that it is independent of the model used.



Chapter 4

Inversion comparison using an

elastic local solver to recover

elastic parameters

4.1 Summary

In many inverse problems such as full-waveform inversion or reverse-time migration

the key computational cost is the repeated seismic modeling. Due to data and model

spaces dimensions, the inversion algorithms become too costly, so that practical ap-

proaches are needed to reduce the dimensionality of the problem. Using local solvers,

we can reduce the size of the computational domain to small areas while preserv-

ing the fidelity of the elastic wavefield reconstruction. Both the full waveform and

extracted amplitudes and phases from seismic reflections are used in geophysical in-

versions to recover elastic parameters in regions of interest. In this study, we compare

full-waveform inversion and amplitude-phase versus offset inversion to recover elastic

parameters for a reflector of interest using a local elastic solver.

4.2 Introduction

The full-waveform inversion (FWI) method is the primary method used to retrieve

the properties of the subsurface with high resolution. FWI is a technique based
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on fitting simulated and observed data, where the solution of the wave equation is

the most expensive computational component. Usually, the inverse problem solution

involves the computation of forward and adjoint wavefields that are cross-correlated

to calculate the gradient that is used to update the model. Thus, for each inverse

iteration, the wave equation needs to be solved twice before the full model is updated

[75]. Although there are many techniques that reduce computational time, most still

work on the entire domain, even though the area of interest is small in most cases.

Local solvers strive to reproduce the wavefield inside local areas as if they were

generated using the full domain, reducing the computational domain size and speeding

up the inversion process. The development of local solvers can be divided into two

categories. The first category was presented by [29] and extended by [78] and [80]

in two and three dimensions. This technique is known as the immersive boundary

condition (IBC) technique. The idea is based on using an analytic boundary condition

to connect an inner and outer domain, and solve the wave equation, potentially with

a different method, in each domain. In the second category, the wavefield is initially

propagated in the background model and then injected inside the local domain as

a set of monopole and dipole sources to obtain the wavefield inside the local area

[4, 8]. This wavefield reconstruction method was proposed by [53] and is known as the

multiple point source (MPS) method. These techniques have been successfully used

in combination with extrapolation in FWI. For example, [61] applied the FD-method

in a local domain after model alterations to solve time-lapse seismic problems. [87, 38]

illustrate the effectivity of the local solver in FWI, recovering elastic parameters for

an area of interest. The FWI with local solvers is based on the assumption that the

model only changes in the local area, which implies that everything outside the local

domain remains constant.

In this study, we use the second local solver category with the approach proposed

by [40]. They use the representation theorem to reconstruct the wavefield inside the

local domain, which requires the recorded wavefield on only one surface to reconstruct

the source wavefield inside the local domain. Also, in their approach the implementa-

tion assumes that researchers build upon an existing code. Thus, their implementation

reduces memory while still reconstructing the wavefield with high accuracy. Here, we

use this time-domain elastic local solver approach to recover the elastic parameters

for a layer of interest. Using the local solver, we compare the results of FWI and an

inversion using the extracted amplitude and phase from a reflection of interest.
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4.3 Methodology

The local solver aims to compute wavefields after perturbing the model inside local

areas and then extrapolates the scattered wavefield from a local surface to the receiver

positions. To use the local solver we must first compute a single full-domain simu-

lation. However, after that, we can generate local wavefields much faster than using

full-domain simulation. With this formulation, we can update the full shot gather

after local model alterations, recomputing only the wavefield within the local areas.

In this study, we use the amplitude and phase extracted from the PP-reflection to

invert for elastic reflector properties of a layer of interest using the local solver. We

then compare the results with full waveform inversion.

Our implementation of the local solver discards the wavefield scattering on the

perturbation that leaves the local domain and then reenters it before propagating

to the receiver locations. In other words, internal multiples with a single bounce

within the local domain are not modeled. This limitation is not of concern here

because we are interested in modeling amplitude and phase from the PP-reflection

(i.e. primary reflections) that are primarily affected by scattering at the reflector and

less by propagations through the heterogeneous elastic overburden [100].

The methodology implemented to model the forward wavefield by using an elas-

tic local solver is explained by [40]. They show that using only one surface of five

wavefields, it is possible to reconstruct the wavefield with high accuracy within a lo-

cal domain. They validate the method by extracting the amplitude and phase and

comparing them to those extracted from a full model simulation. This establishes the

accuracy of our data.

Figure 4.1 shows a schematic of the local solver. The elastic local solver requires

the Green’s functions for the elastic background represented by the black wavy lines

inside the big white box. The Green’s functions in the background are then injected as

point sources on an enclosing surface S (black dashed line around the light pink box)

to reconstruct the wavefield. The model is only updated inside the local domain (light

pink region) which contains the reflector of interest. The gray boxes that surround the

full and local domain represent perfect matched layer (PML) boundary conditions.

Figure 4.2 illustrates the workflow steps to inject and extrapolate the wavefields in

the local solver.
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PML

PML

Local domainS

Se

Source

Receiver

Figure 4.1: Schematic of the local solver. The dark gray layers represent the perfectly
matched layers (PML) on the boundary. The model is perturbed and the scattered
field is updated within the local domain (light pink region). The injection occurs
on the injection surface S (black dotted line) and the extrapolation to the receiver
locations takes place from the extrapolation surface Se (red dashed line).

Amplitude and Phase Inversion

Once the amplitude and phase of the reflected wavefields are updated at the receiver

positions, we proceed to obtain the reflection coefficient values as a function of angle.

To measure amplitude and phase, we first isolate the event, picking a time-window

that includes only the reflection of interest (red lines in Figure 4.4). To extract the

amplitude we take the Hilbert transform and then take the maximum value of each

trace to obtain each angle’s reflection coefficient. To measure the phase we adopt

the method used by [38] who follow [87] and [99]. They use the observation that a

zero-phase wavelet has maximum correlation with its envelope. The details of the

outlined algorithm are presented by [99].

To perform the amplitude and phase inversion, we minimize the least squares

objective function:

Γ(m) =
1

2
‖Λ(d)− Λ(L(m))‖2

2 (4.1)

where L represents the elastic local solver, d = (Ar,Pr) is a vector that contains

the recorded amplitude and phase and m = (Am,Pm) is the vector that contains the

modeled amplitude and phase. Both amplitude and phase are functions of the elastic

parameters of the layer of interest (vp, ρ, vs). Writing out equation 4.1 in terms of



87

For each shot

- FD simulation on full FD mesh (use Devito lib)
- Save Green’s functions along the injection surface (S)
- Compare point sources.

Make alterations in the local elastic model

- FD simulation on local FD mesh (use Devito lib)
- Injection of the point-source along (S)
- Record wavefield on extrapolation surface (Se)

Compute Green’s functions between
receivers and extrapolations surface
(only once)

Extrapolate wavefields from Se to the receivers
positions using equation (4.1)

Compute model update

End

yes

No

Figure 4.2: Workflow showing the injection and extrapolation of the local solver.
Based on [40].

phase and amplitude gives,

Γ(m) =

∥∥∥∥Pr − Pmmax(Pr)

∥∥∥∥2

2

+

∥∥∥∥Ar −Ammax(Ar)

∥∥∥∥2

2

, (4.2)

where max(Pr) and max(Ar) represent the maximum values of the phase and

amplitude of the recorded data, respectively.

Our focus is the multi-parameter inversion to estimate the elastic parameters

vp, ρ, vs of the layer of interest. Involving several parameters increases the nonlin-

earity of the inversion process, introducing parameter crosstalk and trade-off [54]. We

use the Gauss-Newton method that mitigates the coupling effect between parameters

to minimize the misfit function Γ(m) [54, 75].
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Full waveform Inversion

Here we are comparing full waveform inversion and amplitude and phase inversion

using a local solver. Thus, we also perform a full waveform inversion, minimizing the

least squares objective function described in equation 4.1. However, in this case L
represents the elastic full simulation, d is a vector that contains the full recorded shot

gather and m is a vector that contains the modeled shot gather. The simulated shot

gather is a function of the elastic parameters (vp, ρ, vs) at the layer of interest. We

again use the Gauss-Newton method to minimize the least squares objective function

in equation (4.1).

4.4 Results

In this section, we investigate if the amplitude and phase modeled by the local elastic

solver can be used to invert for elastic parameters. Then, we compare these results

with those of full waveform inversion. To perform the comparison, we use a subsection

of the 2D elastic SEAM model shown in Figure 4.3 [23]. The dimensions are 10 km

× 2.0 km and the grid spacing is 20 m × 10 m. The source is a Ricker wavelet that

generated a P-wave only, injected in x and z directions. It is located at x = 5.0 km

and z = 0.1 km with a central frequency of 15 Hz. 50 receivers are located along

the entire horizontal extent of the model at a depth of z = 0.1 km. The wavefield is

propagated for 2 s.

Figure 4.3a shows the initial P-velocity model where we compute the background

wavefield and then save along the injection surface (red box). This is step 1 in the

workflow (Figure 4.2). Figure 4.3b shows the perturbed P-velocity model where the

injection of the Green’s function occurs as point sources around the local domain.

This is step 2 in the workflow in Figure 4.2. In this example, we work with the

method that has fourth space-order accuracy in space. The yellow line represents the

extrapolation surface where the scattered wavefield is saved and then extrapolated to

the receiver surface.

Figure 4.4 shows the vx shot gather component obtained by using a full elastic

solver (top) and the local solver (bottom) with the elastic velocity model shown in

Figure 4.3. The black arrow marks the reflection of interest that comes from the layer
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(a): Initial model

(b): Perturbed model

Figure 4.3: (a) initial P-velocity model and (b) perturbed P-velocity SEAM elastic
model, based on the gulf of Mexico [23]. The selected domain is located in x between
23 and 33 km and z from 6 to 8 km in the original model. The source is located at
x = 5 km and z = 0.1 km (red star at the top). The red box shows the injection
surface S and the yellow line the extrapolation surface Se. Notice the layer introduced
in (b) around 1.25 km in depth to perturb the elastic velocity model.
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Figure 4.4: Shot gathers for a source at x = 2.5 km with the full (top) and local
(bottom) solvers. The black arrow marks the reflection of interest from a layer located
around 1.25km in depth in the model (Figure 4.3). The red lines mark the window
used to extract the amplitude and phase from the PP-reflection. Both shot gathers
are plotted on the same colour scale.

with high velocity located around 1.25 km in depth in the model (see Figure 4.3). The

red lines represent the time window that is used to measure the amplitude and phase

of the reflection. Both shot gathers show a measurable similarity with a percentage of

error equal to 8.06x10−05, demonstrating that the shot gather can be updated with

high accuracy using the elastic local solver. The plots are shown with the same colour

bar.

Inversion

After observing that the local solver accurately updates the shot gather, we now

focus on inverting elastic material parameters at the reflector of interest. We first use

amplitude and phase with the local-elastic solver. Then we perform a full waveform
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inversion. Notice that in the first scenario, i.e when the amplitude and phase are

used with the local solver in the inversion, we presume that we know the overburden.

Thus, we invert only for elastic properties present in the layer of interest i.e. at 1.25

km depth in the SEAM model. In total, we invert for three parameters, two velocities

and one density (vp, vs and ρ) in both inversion scenarios.

Figure 4.5 shows the amplitude (a) and phase (b) evolution for a few iteration

numbers. We see that the amplitude and phase residuals get progressively smaller as

the amplitude and phase inversion progresses. The black curves represent amplitude

and phase obtained for the true model with full simulation, and the yellow represents

the amplitude and phase obtained for the true model with local simulation. Because

the amplitude and phase from the true and local simulation agree quite well, we expect

to recover the model with high accuracy.

Figure 4.6 shows the evolution of the model mi as a function of iteration number

i for one-shot located at 2.5 km for (a) amplitude and phase inversion and (b) full-

waveform inversion. All curves are normalized using the true value, hence all the

curves will approach 1.0 for the perfect case. We see that all parameters in amplitude

and phase inversion as well as in full-waveform inversion converge to the true model

after five iterations. The first three iterations show large updates, and vs appears to

diverge during the initial iteration for the amplitude and phase inversion. However,

after later iterations, the convergence behaviours are smooth and incremental. Table

4.1 shows the true, initial and inverted model parameters for the layer of interest

at 1.25 km depth in Figure 4.3 for the amplitude and phase inversion (top) and

the full waveform inversion (bottom). The initial model improves significantly for

both amplitude and phase inversion and full waveform inversion. The error for all

parameters for the amplitude and phase inversion is 0.1%. In contrast, the error

in the recovered parameters using full waveform inversion is around 0.03%. With

this example, we show that the local elastic solver with the amplitude and phase as

constraints can retrieve elastic parameters with a similar accuracy to full waveform

inversion.

Comparing the computational cost for the amplitude and phase inversion and full

waveform inversion, we found that the full waveform inversion requires 15 GBytes for

storage of the whole wavefield at all points and time steps, whereas the source injected

in the local simulation requires only 36 KBytes. The total time for each iteration in
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(a): Amplitude

(b): Phase

Figure 4.5: (a) amplitude and (b) phase extracted from the windowed reflections in
Figure 4.4. The black dashed lines represent the amplitude and phase values from the
data modeled in the full model. The red triangle dashed lines represent the amplitude
and phase values extracted using the local solver. ite n represents the recovered values
at iterations n.
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(a): Local

(b): Full

Figure 4.6: Normalized model evolution during (a) amplitude and phase inversion,
(b) full waveform inversion. Black line refers to the true model.
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Amplitude and phase inversion using a local solver

True Initial Error Inverted Error
vp (m/s) 5300 4600 13.2% 5306 0.1%
ρ (kg/m3) 3000 2100 30.0% 3003 0.1%
vs (m/s) 2860 2000 30.1% 2865 0.1%

Full waveform inversion

True Initial Error Inverted Error
vp (m/s) 5300 4600 13.2% 5300.1 0.01%
ρ (kg/m3) 3000 2100 30.0% 3001.0 0.03%
vs (m/s) 2860 2000 30.1% 2859.5 0.01%

Table 4.1: P-velocity, S-velocity and density inverted for the layer of interest. The
top rows show the parameters inverted using the local solver. The bottom rows show
the parameters inverted using the full solver

the amplitude and phase inversion is about 82% of the full simulation, saving 18% per

iteration compared with the full waveform inversion. A more detailed computational

cost analysis for a local simulation is presented by [61]. Although their analysis is not

for the same implementation, our saving is slightly better since the local simulation

that we are using does not need to store and compute as many Green’s functions as

in the FD-injection method.

4.5 Conclusions

Numerical tests show that the inversion using amplitude and phase with a local solver

can retrieve elastic parameters with an error of less than 0.2%. However, the standard

FWI approach gives an error that is, on average, smaller by a factor of 10, i.e., 0.02%.

We found that the memory required for FWI is substantially larger than that for

amplitude and phase inversion. We also compare time costs, indicating that amplitude

and phase inversion saves around 18% per iteration compared with full waveform

inversion. Given the small error in both cases, using the phase and amplitude rather

than the full wavefield may be beneficial if a large number of re-calculations are

needed.



Chapter 5

Recovery of the elastic parameters

in a complex velocity model

5.1 Summary

Imaging complex structures involving strong contrast interfaces is challenging because

of the difficulty in estimating and updating complex velocity models and geometries.

This is a problem that is faced by both geophysics and medical imaging. Both indus-

tries also share time and computational limitations. In geophysics, due to the dimen-

sionality of the problem and in medicine because real-time results are desirable. Our

local solver with Amplitude Variation with Offset (AVO) and Phase Variation with

Angle (PVA) inversions have shown promising results, reducing the dimensionality

and time required while allowing complex wave propagation techniques to be applied

around complex velocity models. However, these methods do not use converted wave

modes as constraints in the inversion, and therefore, fail to recover elastic parameters

in the presence of complex scattering. We evaluate how the focusing and defocusing of

migrated images with elastic reverse time migration (RTM) as an objective function

could be used to retrieve elastic parameters in complex velocity models with the goal

of ultimately computing these velocity updates with the local solver. The evaluation

is developed, first, in synthetic data that contain a large impedance contrast layer.

Then, we analyze the migrated images using ultrasound lab data of the scattering

from a polymethyl methacrylate (PMMA) tube.
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5.2 Introduction

Imaging techniques strive to create a detailed image of the subsurface using reflected

data. However, obtaining a clear image of a complex velocity model involving large

impedance contrast interfaces is challenging. Techniques such as FWI and RTM have

been developed to produce high-resolution delineations of the subsurface [75, 5]. How-

ever, these approaches struggle in the presence of interfaces with large impedance con-

trasts, resulting in models with a lack of sharp interfaces and back-scattered artifacts

in the final image [45].

FWI is a technique that seeks to retrieve elastic parameters by measuring an

objective function in the data domain while handling the complex wave propagation

around complex velocity models. Therefore, it has recently been applied to large

impedance contrast scenarios [55, 69, 34]. Approaches focused on reconstructing salt

velocity models towards imaging improvement and interpretation of salt bodies with

FWI, are also a topic of current interest. For instance, [98] use travel-time misfits

measured in frequency dependent time windows as the FWI cost function to correct

the interpretation of salt images. [34] propose a reflection full waveform inversion

(RFWI) workflow to improve sub-salt images. [89] apply a local solver to generate

the FWI gradient at the salt body boundary; then, the gradient is used in a level

set method to update the salt boundary. [16] use shape optimization with level sets

to refine 3D models of salt bodies at depth using field data. However, the success of

these FWI methods relies on the initial guess of the velocity geometry and parameters.

Inversions that start with a model that is far away from the truth often lead to

incorrect models. Therefore, the most common practice to update salt geometries

remains through RTM angle gather methods [43, 92].

RTM is a technique widely used in geophysics for seismic imaging [5]. Convention-

ally, RTM consists of two steps: (1) the construction of source and receiver wavefields

using an estimated wavelet and the recorded data, respectively, and (2) the applica-

tion of an imaging condition [14]. The source and receiver wavefields are reconstructed

using the wave equation, which depends on the properties of the model (e.g. velocities

and densities). These multicomponent wavefields allow a variety of imaging condi-

tions [19, 93]. A simple imaging condition is formed by cross-correlating the cartesian

components of the displacement for the source and receiver wavefields. For example,

in a 2D elastic domain, where we record two-component data, this results in four
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different combinations providing four different images. A drawback of these imaging

conditions is that the mixed P-and S-wave modes in the source and receiver wave-

fields create artifacts in the final image, making its interpretation challenging. Using

multicomponent imaging conditions, it is possible to first decompose the wavefields

into different modes (e.g. P- and S-wave modes) and then cross-correlate them to

create different imaging conditions, overcoming the crosstalk between P- and S-wave

modes while preserving elastic attributes such as the amplitude and phase of migrated

images [18, 93]. We again obtain four different imaging conditions in this scenario,

but now they are based on the physical P- and S-wave modes.

Both FWI and RTM methods are based on the propagation of wavefields, which

is the most computationally intensive component for inversion and seismic imaging

schemes. Methodologies to reconstruct the wavefield locally have been implemented

to reduce the cost of the wavefield extrapolation by reducing the size of the model

while providing the same features as an extrapolation performed from the source

[4, 61, 8, 87, 39]. Local solvers attempt to speed up the nonlinear problem in the

inversion and migration processes, reducing the dimensionality of the domain and,

as a result, the time and memory required. Local solvers combined with amplitude

and phase inversion have been successfully used to retrieve elastic parameters for large

impedance contrast interfaces [87, 39]. However, these methods rely on PP reflections,

discarding converted wave modes, which provide crucial information to estimate S-

wave velocities in complex velocity models. In this study, we take these works to the

next level, incorporating S-waves into the objective function by analyzing the focusing

and defocusing of migrated images with an elastic RTM. At the same time, we improve

the resolution of the images by incorporation S-waves. We focus our analysis on the

migrated images created with P- and S-wave modes.

Using target-oriented imaging also has applications outside seismic imaging, for

instance, medical imaging of high-impedance contrast targets such as bones. The

target and acquisition methods can vary, but the imaging methods are conceptually

similar. In fact, measurement of the P-wave is a topic of interest since the 70s in

particular after the development of ultrasound tomography [31, 30]. More recently,

studies are focused on measuring sound speed fully, i.e. P- and S-wave measurement.

This is because of the efficiency of tomography as a non-invasive method that helps

detect diseases like cancer [26, 70, 37]. An example of this is the research done by [59],

who investigate the estimation of parameters in a transversely isotropic cortical bone
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model (model with P- and S-wave anisotropy) using the unfocused beams transmission

and the autofocus methods. Thus, applying these targeted techniques from Earth

science into the medical field can illuminate crucial aspects of both scientific domains.

In this study, we present an evaluation of migrated images using as a target laboratory

data of the scattering from a poly methacrylate (PMMA) tube, allowing us to evaluate

a complex velocity model involving large impedance contrast interfaces as a case study.

5.3 Theory

In this section, we summarize the measurement of defocusing or focusing of a migrated

image. Then we summarize the underlying elastic RTM theory and the imaging

conditions using P- and S-wave modes. In this study, we use multicomponent data

to incorporate converted PS waves in the interpretation. Our particular interest is in

determining which imaging condition provides the best results for P-wave acquisition

at source and receivers such as marine and bone data acquisition. We test different

imaging conditions to define which wave modes are most useful in imaging this kind

of data.

Elastic image domain inversion

Data-domain inversion such as local FWI are designed to estimate model parameters

by fitting the observed data with simulated data. In this study, instead of minimizing

the data misfit, we update the velocity model by optimizing the quality of the image.

This technique is known as image domain wavefield tomography [62, 65, 97]. If we

assume that an observed image Iobs(x) is available, a simple least-squares objective

function can be written as

Γ(m) = ‖I(x)− Iobs(x)‖2, (5.1)

where I is the image we want to construct, m is the velocity model to be recovered.

However, this method is not commonly used for initial model building due to the

lack of target images. Instead, we can measure the focussing or quality of the image,

which is strongly dependent on the accuracy of the velocity model [63]. In this sce-

nario, the objective function measures the image incoherency caused by model errors;
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this method is known as Differential Semblance Optimization (DSO) and is commonly

used in the velocity building process [72, 71]. The essence of DSO is to minimize the

difference between the reflection events in common-image gathers (CIGs). The CIG

is defined as a subset of the whole image with fixed surface location. The CIGs can

be created, for example, as a function of the data offset or angle known as Offset Do-

main Common Image Gathers (ODCIGs) or Angle Domain Common Image Gathers

(ADCIGs), respectively [66, 68].Thus, the new objective function that measures the

focusing is defined as

J (m) =
1

2
‖PICIG‖2, (5.2)

where ICIG represents the CIGs and P is the DSO operator that removes the focussed

energy, and highlights the energy that is not focussed [67]. Before performing the in-

version by minimizing equation 5.2 using the local solver, we need to analyze different

imaging conditions to determine which imaging condition provides the most suitable

results. In the next section, we present different multiparameter imaging conditions

using elastic RTM. Note that our focus is to analyze the migrated imaging conditions

created with P- and S-wave modes.

Elastic reverse time migration (RTM)

Elastic RTM is a robust technique used for imaging in complex velocity models. In the

elastic domain this technique involves vector wavefields which allow multiparameter

imaging conditions. To form PP, PS and SS images separately, the wavefields should

be separated during migration [18, 93]. [18] show an approach to separate the extrap-

olated wavefield into P and S potentials before the cross-correlations of the scalar P

and vector S potentials. However, their approximation is not commonly used in the

isotropic elastic wavefield equation, instead we use the Helmholtz decomposition

P = ∇ ·V(x, z)

S = ∇×V(x, z),
(5.3)

In equation 5.3, V(x, z) represents a vector wavefield obtained from the forward solver,

for example. In an isotropic elastic medium, P represents the compressional compo-

nent of the wavefield propagating at speed vp and S represents the transverse compo-

nents of the wavefield, traveling at speed vs [2].
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In elastic RTM, we forward propagate the source to simulate a source wavefield

Vs(x, z) and backpropagate the recorded data to form a receiver wavefield Vr(x, z)

[5]. Using the Helmholtz decomposition (equation 5.3), we separate Vs(x, z) into

a compressional component Ps and a transverse component Ss for the source and

Vr(x, z) into a compressional component Pr and a transverse component Sr for the

receiver. By combining the separated wave modes, we can form different imaging

conditions, PsPr, PsSr SsPr, and SsSr [93]. For simplicity, we use the notation IPP

for the image formed with PsPr, IPS for the image formed with PsSr, ISP for the

image formed with SsPr, and ISS for the image formed with SsSr. Thus, for example,

the imaging condition for IPS is

IPS(x, z) =
S∑∫ T

0

(∇.Vs(s; t, x, z))(∇×Vr(s;T − t, x, z))dt, (5.4)

where S represents the number of sources, T is the record length, and s in (s; t, x, z)

and (s;T − t, x, z) indicates data for each source (i.e. it is a parameter, not a variable

in this equation). The rest of the images can be defined in a similar way. Without loss

of generality, we focus our analysis on IPP , IPS and ISS. Therefore, images created

with the separated P- and S-wave modes for the incident and reflected waves have a

clear physical meaning making them easier to interpret.

5.4 Numerical examples

We analyze these imaging conditions in two data sets. We use a synthetic model

that contains a large impedance contrast layer to create the first set of data. The

second one is an ultrasound transverse plane real experimental dataset of a polymethyl

methacrylate (PMMA) tube, i.e. an isotropic, elastic material, acquired by [59].

5.4.1 Synthetic longitudinal plane data

We create this synthetic dataset using the elastic finite difference solver contained

within the seismic package, Devito, [47] with the velocity model shown in Figure 5.1.

We use perfectly matched layer boundary conditions to cover all four sides of the

model, thus, no surface multiples are generated. For this simulation we use a Ricker
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wavelet that generates primarily a P-wave with a peak of frequency of 25 MHz as a

source. In total we use 96 sources that are located along the top of the model at a

depth of z = 0.1 mm and with a separation of 1.25 mm between them; the sources are

modelled one at a time. We place 96 receivers on the surface at the same depth as the

sources, evenly spaced at an interval of 0.26 mm. We record the x and z components

of the wave for 20 µs.

Figure 5.1: Elastic velocity model showing a high-contrast velocity layer at z = 5
mm.

We assume that throughout the velocity model building, smooth versions of the P-

and S-wave velocity models are available. We perform elastic RTM using the smooth

P- and S-wave velocity and density models. Figure 5.2 shows IPP , IPS, ISS images.
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The images are formed by stacking the RTM images generated separately for each

shot. Because we are interested in the large contrast impedance layer, we cut 1 mm

off of the top of the image to remove source artifacts. Notice that the illuminated

regions are different between the different imaging conditions. This is due to different

illumination angles of the two propagation modes (i.e. P- and S-wave modes). The

reflectors present in the model are clearly defined in all images, but with different

strengths. For example, in the IPP and IPS images the deeper reflector has lower

amplitude compared with ISS. In addition, IPS shows a phase-shift along the first

reflector due to the polarity reversal of the converted P- and S-waves. These changes

in the polarity are observed around 1.5 mm, 5mm, and 8.5 mm in Figure 5.2b. We

can correct the polarity reversal by incorporating other methods such as the angle

decomposition technique [93, 33]. Notice that IPP shows noise below and above the

top and bottom of the large contrast layers which is due to multiply-reflected waves.

These multiples can be well attenuated in the data with the combination of sparse

hyperbolic radon transform, and predictive deconvolution [64, 20]. ISS shows a clean

and well defined image that includes both top and bottom reflectors. Thus using

ISS in the interpretation process is advantageous because it better illuminates deeper

large contrast interfaces. These results suggest that the decomposed wavefield image

produced could be applied to estimate shear and compressional speeds in models that

contain large impedance contrasts.

5.4.2 Transversal PMMA tube — Real data

Our previous results are promising to image velocity models with large impedance

contrasts; however, models with large impedance contrasts usually contain complex

geometries such as salt bodies in geophysics or the head of the femur, knees or the skull

bones in the medical field. To take a step closer to these more complicated models,

we now evaluate the imaging conditions in a polymethyl methacrylate (PMMA) tube

dataset acquired by [59]. These data introduce both a large impedance interface and

complex geometry, giving us better insight into the imaging condition behaviour.

The ultrasound data are acquired with an ultrasound transducer array positioned

in the transverse plane. They used a conventional clinical ultrasound probe which

is made of a linear array of independent piezoelectric elements. Each transducer el-

ement is activated one at time and all transducers record the resulting reflections.
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This acquisition method and conventional 2D seismic acquisition in exploration geo-

physics are similar, where a source generates a spherical wave and an array of geo-

phones/hydrophones records the reflections. Figure 5.3 illustrates the acquisition

configuration. The transducer contains 96 elements spaced 0.295 mm apart recording

for 35 µs and a peak ultrasound frequency of 2.5 MHz.

Figure 5.4 depicts the best estimation of the P-wave velocity (smooth function

between 1.0 and 3.0 mm/µs), S-wave velocity (smooth function between 0.0 and 2.0

mm/µs) and the density ρ (smooth function between 1.0 and 1.64 kg/mm3) of the

PMMA tube data. The outer and inner diameter of the tube are 20 and 8 mm,

respectively. The PMMA tube is suspended in deionized water with a speed of ap-

proximately 1.5 mm/µs.

For this geometry, the velocity model is significantly more complicated than the

longitudinal model described previously. The large impedance contrast and complex

shape of the PMMA tube make imaging the interior and sides extremely challenging

as the high velocity of the tube causes waves to scatter at sharp angles, leading to

little recorded energy at the surface. In addition, imaging is challenging due to the

significant amounts of energy that are multiply scattered.

We illustrate the challenge of this geometry by analyzing the wavefield propagation

and vz-component shotgather modeling with the velocity model in Figure 5.4. Figure

5.5 shows snapshots of the simulated wavefield and a vz-component shotgather. We

can see from the wavefield propagation that both head and guided waves are present

within the tube, pointed out in Figure 5.5b and 5.5c with number 4 and 7, respectively.

Figure 5.6 illustrates a cartoon of these ray paths. Notice that the propagation of the

head wave occurs along the curved surface (Figure 5.5b and Figure 5.6 number 4);

thus, it does not appear as a straight line in the shotgather. Instead, it seems to be

a split in the top of the tube reflection at far offsets (Figure 5.5, bottom: shotgather

number 4). The direct wave also has a complex path once it reaches the inner part of

the tube, reflecting off both sides of the inner part of the tube before being reflected

to the surface (Figure 5.5b, c and d green arrow). This is observed at approximately

27 µs in the shotgather (Figure 5.5, bottom: shotgather number 6). The energy in

the interior of the tube is scattered multiple times, which complicates the velocity

estimation and image significantly. For instance, the bottom reflector of the tube

could appear distorted and deeper than its actual location in the migrated image,
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even when imaging using the correct velocity model, due to the longer time taken by

the multiply scattered wavefield to reach the receivers. Figure 5.6 shows the ray path

for the waves mentioned above. Note that these are an approximation of the actual

trajectories.

Building the velocity model and image

For real data, the velocity model is unknown, so we need to build a velocity model in

combination with applying an imaging algorithm. We start with a top-down approach

in which elastic RTM is applied. The complexity of the velocity model is increased

by building each successive velocity model from the previous migration result. The

initial velocity model consists of a thin layer of silicone rubber in the first millimetres

and then a fluid layer where the P-wave velocity, the S-wave velocity and density are

constant. Note that all the models used in the velocity model building are smoothed.

We apply a Laplacian filter to the migrated images to reduce low frequency artifacts.

The true model of the tube is overlain in yellow in all images. In addition, we remove

the first 2 mm of the migrated images to focus on the large impedance surface and

remove artifacts at the source positions. Using this model we are able to resolve

the top of the tube. Figure 5.7a, 5.7b and 5.7c show the image IPP , IPS and ISS,

respectively. The sides of the tube are not imaged because the energy reflected off

the sides of the tube is scattered downward and does not return to the transducer.

Part of the backside of the tube is imaged; however its thickness is distorted due to

the slow velocity used.

Based on the previous migrated image, we generate a half-space tube velocity

model (Figure 5.8 top). We consider the velocity below the top of the tube interface

to be made entirely of tube material. Elastic RTM is then applied again, but using the

new smooth velocity model. Figure 5.8 bottom shows the new migrated images. The

bottom of the uppermost section of the tube is now visible in both the IPP and IPS

images (black arrow in Figures 5.8a and 5.8b, bottom); however, in IPS, it is defined

with high resolution. Notice that we only obtain S-waves when a conversion of P-

wave occurs. We expect that the migrated image using the S-waves from source and

receiver has the smaller amplitude, as shown in the image migrated ISS. In addition,

note that the wavelength of the S-waves is smaller than that of the P-waves which

leads to high resolution in ISS. The bottom of the tube and the lowermost section of
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the tube appear in all images; however, their locations are distorted due to the high

velocity used (blue arrows in Figures 5.8a, 5.8b, 5.8c). In seismic imaging, half-space

velocity models are commonly used to locate the bottom interfaces of salt bodies [85].

Using the previous IPP and IPS images (Figures 5.8a and 5.8b bottom), where

the upper sections of the tube are resolved, we create a smooth horseshoe velocity

model where we downward continue the side of the tube as is shown in Figure 5.9

top. Elastic RTM is applied again using this model. From Figure 5.9 bottom, we

see that we are able to image the bottom of the tube and part of the reflections that

come from the interior of the tube (blue arrows in Figures 5.9a and 5.9b). However,

both the bottom of the tube and the lowermost section are mis-positioned, and several

artifacts are present. Due to the distortion, they appear to be deeper than their actual

position. The tube sides are still not resolved in IPP ; however, IPS and ISS are able

to image a few of the reflections off the sides. The acquisition geometry and large

velocity contrast of the tube refract the waves steeply down from the sides of the tube.

Therefore, little energy is directed upwards, making imaging the tube sides difficult.

In addition IPS shows some artifacts which are related to the polarity reversal of

the converted P-and S-wave. This can be improved by applying angle decomposition

methods [93, 33].

Knowing the location of the upper sections of the tube and using the known outer

and inner diameter of the tube of 20 mm and 8 mm marked on Figure 5.9b, we

construct a full velocity model (Figure 5.10 top). Following this, we apply elastic

RTM using the velocity model shown in Figure 5.10 top and give the results in Figure

5.10 bottom. We can see an improvement in the definition of the surfaces with large

impedance contrast. In the IPP image, we only see a limited section of the interior of

the tube; however, in IPS and ISS images, the tube’s interior is better defined. When

the P-wave mode is back-propagated to the tube, part of it is converted to the S-wave

mode and then bounces around inside the tube. Thus, the bouncing waves inside the

tube interfere with the incoming P- or S-wave mode, helping in the formation of the

IPS and ISS images.

Increasing image resolution

To improve the final images present in Figure 5.10 bottom, we increase the resolution

in the first half of the velocity model from 500 to 900 pixels in x direction and from
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250 to 450 pixels in the z directions. Figure 5.11 shows the IPP , IPS and ISS images

obtained. As we expected, all of the images have higher definition on the interfaces

and fewer artifacts due to the numerical dispersion that degrades the resulting image’s

accuracy.

In general, elastic RTM is capable of recovering large contrast interfaces. We are

also able to determine the thickness between the top and uppermost section of the

tube equal to 6.0 mm as marked in Figure 5.10a. Combining IPP , IPS and ISS in the

interpretation process is advantageous to obtain better locations of the reflectors.

5.5 Discussion

Our results show that elastic RTM is robust enough to image a velocity model with

large impedance contrasts. Furthermore, the decomposed wavefield images produced

i.e. IPS and ISS, could be applied to estimate shear and compressional speed; methods

such as wavefield-migration velocity analysis could be applied [74]. Imaging the inte-

rior of the PMMA tube is challenging; however, the P-wave mode back-propagation

that is converted into S-waves inside the tube helps in forming IPS and ISS images,

defining the interior of the tube with more precision (Figures 10b and 10c). Multiples

are also present in our results, causing artifacts. Due to the velocity variations, the

artifacts generated by the P-wave and S-wave multiples are not necessarily consis-

tent in-depth, even when the correct velocity is provided. Thus, when multiples are

stronger than the PP-, PS- and SS-waves, the measure of focusing or defocusing might

give inaccurate results in the inversion (equation 5.2). Therefore, multiple suppression

should be performed before the inversion. These multiples can be well attenuated in

the data with the combination of sparse hyperbolic radon transform, and predictive

deconvolution [64, 20].

The wave mode separation is not completely accurate because of the variation

of the velocity model, which violates the homogeneous assumption in the Helmholtz

decomposition, causing some artifacts in the migration images associated with the

crosstalk between P- and S-wave modes. Other modeling methods that simulate pure

P- and S-waves may minimize the crosstalk in the final migration result [33].

To this point, we have tested conventional mode wave imaging conditions to ul-

timately use their measurement of focusing as an input in the objective function
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(equation 5.2) using a local solver. However, to extract more information from the

data and better focus the images, we need to investigate common image gather (CIG)

and angle domain imaging conditions [93]. Those imaging conditions allow for elastic

AVA analysis. The next step will test CIG imaging conditions and then apply them

in the objective function (equation 5.2) using the local solver to recover the elastic

parameters. We expect the inversion to improve the resolution of the model based

on the focusing results. Thus, running a local solver at the top of a bone model with

similar geometry would be quite effective and faster in determining the thickness of

bones, the P- and S-wave velocities of the bone and its interface locations.

5.6 Conclusions

We investigated different imaging conditions based on P- and S-wave modes using

elastic RTM with only P-waves both from the source and receiver sides. We analyze

the imaging conditions using first synthetic data in a layered model and then in a

PMMA tube laboratory dataset. We used the Helmholtz decomposition method to

extract P- and S-wave modes from the elastic wavefields reconstructed in the sub-

surface. The image formed using SS modes in the longitudinal data showed a much

higher definition of the deep layer present in the velocity model than PS and PP

images, suggesting that exploiting the information in the shear wave helps in the

imaging of deep structures. The reconstruction of the PMMA tube real-data is more

challenging than the longitudinal data. However, we were able to reconstruct the

upper sections of the PMMA tube successfully. Reconstructing the interior of the

tube is more complicated, so that suppression of multiples needs to be included in the

analysis. Overall, our results suggest that decomposed wavefield images are a good

starting point for exploring multicomponent elastic imaging domain inversion.
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(a): IPP

(b): IPS

(c): ISS

Figure 5.2: Image migrated using the elastic velocity model shown in Figure 5.1. We
use elastic RTM with 96 sources. We see the top and bottom reflectors in all images
(a) IPP , (b) IPS and (c) ISS but with different strengths.
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Image plane

Ultrasound probe

PMMA Tube

Fluid

Figure 5.3: Illustration of the acquisition configuration for the PMMA data. The
outer and inner diameter of the tube are 20 and 8 mm, respectively. The PMMA
tube is immersed in water.

Figure 5.4: Elastic velocity model showing a large contrast interface between the fluid
and the PMMA tube (donut) in the center.
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Figure 5.5: Top: different snapshots of vz-component wavefield propagation in the
velocity model shown in Figure 5.4. The numbers mark (1) the direct wave, (2) the
silicone refracted wave, (3) the tube external reflection,(4) the tube head wave,(5) the
tube upper internal reflection, (6) lower internal reflection and (7) the guided tube
wave. The green arrow marks part of the wave propagation inside the tube. Bottom:
vz- component shotgather with the same labelling for reflected waves.



111

1. Direct wave
2. Silicone refracted wave
3. Tube external reflection
4. Tube head wave
5. Tube upper internal reflection
6. Lower internal reflection
7. Guided waves

1
2

63 4 5

Source Receivers

7

Figure 5.6: Cartoon illustrating the direct wave (1), silicone refracted wave (2), the
tube external reflection (3), the tube head wave (4), the tube upper internal reflection
(5), lower internal reflection (6) and the guide tube wave (7). The numbers mark off
the path in the figure.

Figure 5.7: Image migrated using a constant velocity model. Elastic RTM was run
for 96 shots. The top of the tube is clearly shown in all images (a) IPP , (b) IPS (c)
ISS.
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Smoothed half-space elastic velocity model.

Figure 5.8: Top: smoothed half-space elastic velocity model. Bottom: images ob-
tained using tube half space velocity model (top). The top and uppermost section of
the tube is resolved in IPP and IPS. To highlight the potential reflections we saturate
the scale in all images. The uppermost internal section of the tube is marked with
black arrows in (a) and (b). The blue arrows show the bottom of the tube distorted
by the high velocity.
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Smoothed horseshoe elastic velocity model.

Figure 5.9: Top: smoothed horseshoe elastic velocity model. Bottom: images obtained
using the horseshoe velocity model (top). The black arrows point out the bottom
and internal lowermost section of the tube. To highlight the potential reflections we
saturate the scale in all images.
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Smoothed full tube elastic velocity model.

Figure 5.10: Top: smoothed full tube elastic velocity model. Bottom: images obtained
using the full tube velocity model (Top). To highlight the potential reflections we
saturate the scale in all images.

Figure 5.11: Images obtained using the top half tube velocity model with higher
resolution.



Chapter 6

Conclusions and Future Work

In this thesis, we have investigated the performance of localized elastic AVO and PVO

inversion in case of large contrast reflectors. This thesis represents mainly theoret-

ical studies on synthetic data. The results can be used as a motivation for further

development in theoretical and practical aspects.

In Chapter 2, we model the amplitude of the reflection using an acoustic-elastic

local solver on a simple two-layer model and on a more complex heterogeneous velocity

model. We notice that the combination of the size of the local solver and taper as well

as the position of the source play an important role in the behaviour of the modeled

amplitude curves and the resulting accuracy of the inversion. Then, we incorporate

the amplitude as a constraint in the inversion and we show that, for an amplitude and

phase inversion, we are able to recover more accurate model parameters of a reflector

of interest compared to what we can obtain with the phase alone. We observe that to

recover accurate P-wave velocities, Vp and Vs should be inverted simultaneously. In

the inversion of density the number of sources included in the inversion is important.

The acoustic-elastic local solver is able to recover parameters closer to the global

minimum of the objective function improving the accuracy of the recovered model.

Using the MPS method and a staggered FD scheme, we implement a local elastic

solver shown in Chapter 3. We show that we only need one surface and five

wavefield quantities to reconstruct the wavefield accurately within a subdomain. This

local solver is memory efficient compared with local solvers that use the FD-injection

method. After, we show how to extrapolate scattered wavefield from the local solver

to the receiver’s location. We validate the local solver against full elastic simulations.
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At this point, there are not many published examples of local solver applied to

larger contrast reflectors. In addition, it is not well understood how AVO and PVO

compared in accuracy and efficiency to FWI. In Chapter 4 we investigate this

question on a subsection of the SEAM model. We observed that AVO and PVO

inversion with a local solver could retrieve elastic parameters with less than 0.2%

error. We found that the memory required for FWI is substantially larger than for

AVO and PVO inversion and the time cost for the local solver indicates a saving of

18% compared with the FWI.

In Chapter 5 we carry out the local solver to the next level, evaluating how we

can apply the focusing and defocusing of migrated images with elastic reverse time

migration to retrieve elastic parameters in complex velocity models to ultimately com-

pute velocity updates with the local elastic solver. We investigated different imaging

conditions based on P- and S-wave modes using elastic RTM. We analyzed the imaging

condition using two models. First, a layered synthetic model is used in the analysis

and then we use PMMA tube laboratory data. We found that the image formed using

SS modes for the first model shows a better definition of the deep layer present in the

velocity model than PS and PP images. Reconstructing the tube laboratory data was

more challenging. However, we were able to reconstruct the upper sections of the tube.

Our results suggested that decomposed wavefield images are a good starting point for

exploring multicomponent elastic imaging domain inversion and that exploiting the

information in the shear wave could help in the diagnostics of deep structures.

Overall, this thesis investigates the potential of local solvers in seismic imaging

and inversions. Local solvers combined with conventional inversion methods allowed

us to have faster solutions, reducing time and computational cost and improves the

interactivity of inverse problems. Our framework using AVO/PVO does not allow

us to exploit the full information in the seismic wavefield. However, we study the

amplitude and phase attributes that enable us to investigate questions that would

not be feasible with FWI. Despite the limitation of the local solvers, which ignores

the high-order interactions between the inside scattered wavefield and the structures

outside injection boundaries, it is possible to recover elastic parameters from materials

inside the local areas with high accuracy. We move forward on a better understanding

of the local solver under different scenarios and their potential implementations.
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6.1 Future directions

There are many ways to improve our understanding of local solver and the methods in-

troduced in this thesis. For example, we can extend all the approaches to include more

realistic physics, including anisotropy and viscoelasticity. Anisotropy and viscoelastic-

ity are present during the wavefield propagation, affecting the inversion. Anisotropy is

essential to retrieve S-wave velocity and density and provide information about frac-

ture distributions. Other authors have studied anisotropy and viscoelasticity widely

so that we expect the implementation of these algorithms to the actual local solver

method to be relatively straightforward [3, 95].

In AVO and PVO inversion, the phase carries most of the information in the

implementation because it has a more extensive range than the amplitude and thus

intrinsically carries greater weight in the inversion setup. We attempt to normalize

the amplitude and phase using different approaches. For example, we scale amplitude

and phase data to have values between zero and one. However, for this case, the

inversion does not converge. In fact sometimes, the inversion diverged quite far from

the true value. We also apply the normalization proposed by [46]. However, the

method produced a non-stable algorithm. The next step for the local solver is to

use strategies that optimize and regularize the inversion algorithm. Improving the

robustness of the inversion algorithm will help to improve the optimization approach

to a unique solution.

Both local solvers used in this thesis ignore the high-order interactions between

the inside scattered wavefield and the structures outside injection boundaries. We can

solve this problem by implementing the exact boundary condition [8]. This method

requires a real-time update of the injection boundary wavefield in case of model al-

terations. [81] implemented this approximation is the acoustic domain using MPS,

showing improvement in comparison to other local modeling methods. The exten-

sion should be easy to implement in the elastic domain based on the approach we

showed in this thesis. We can also consider extending all of the methods exposed in

this thesis to 3D and even implementing other numerical modelling methods, such as

finite-element or spectral-element methods. This idea has been recently started by

[91] using spectral elements.

Even though the local elastic solvers were applied to retrieve elastic parameters
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and improve the velocity model, additional applications can be found, such as reservoir

monitoring or outside the geophysics field, as shown in Chapter 5 for medical imaging.

Medical imaging shares the main goal with geophysics since both are looking for

information about the shape, dimensions, elastic parameters and sound speed profiles

of the local target.

6.2 Perspective

In this thesis, we demonstrate the potential of local solvers for reconstructing wave-

fields with high accuracy while reducing time and computational cost. The main

advantage of this speed-up in modeling wavefields is reflected in more interactive in-

versions where the cost of the forward modeling is a limitation. This is also a key

in continuous monitoring systems and time-lapse inversions. Understanding and im-

proving local solvers open up new pathways to transform current forward modeling

methods. Medical imaging, nondestructive testing, and environmental engineering are

some fields where the local solvers can also be applied. An example of medical imaging

could be monitoring symptomatic bone lesions and the effects of treatments, where

only a tiny part of the bone is of interest. Small target domains also decrease the

computational cost, giving room to improve the resolution of the image of the target

model. Furthermore, the implementations of more complex inversion methods could

be achieved, such as the computation of full Hessian, instead of only approximations

that allow improvement on inversion results.
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Appendix A

Local solver in Devito Library

This repository contains the manuscript and a collection of Python codes, synthetic

data example and data file for a paper about the open-source software package Local-

solver. The example data reproduces the results and figures shown in the SEG pub-

lication. The Local-solver software is written in Python 3.6.10 and programming

languages. To run the program, the Devito, numpy, scipy and matplotlib libraries are

required. (Devito: https://www.devitoproject.org/devito/). We recommend using

Docker installation as is provided in (https://www.devitoproject.org/devito/download.html)

After Docker and Devito are installed this repository should be copied into the docker

container, then a bash shell with Devito should be started using: ”docker-compose

run devito /bin/bash” before the code can be executed.

1-Abstract

2-Content

3-Prerequisites

4.Running the files

5-License

6-Disclamer

==============================

1- Abstract

—————————————————
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The recovery of elastic properties from seismic data often requires iterative the use of

seismic modeling. The finite-difference method is an essential component in seismic

modeling and usually the most computationally expensive step in methodologies such

as inversion or reverse time migration. We introduce an implementation of an elastic

local solver that allows us to propagate the elastic wavefield within a subvolume after

local alteration of the model. We implement the elastic local solver as an add-on to

an existing solver, so that minimal changes are required to turn any finite-difference

solver into a local solver. We demonstrate the capability of the elastic local solver

to reconstruct the wavefield and then we extrapolate the wavefield to the receiver

positions to compare with observed data.

2-Content

—————————————————

Python codes

General python modules containing the functions to calculate the shotgather, in-

jection, wavefields, Green functions, and convolution:

- full simulation.py

- local simulation.py

- convolution.py

- compute green function.py

- amplitude phase.py

- calc phase.py

Python scripts to run the different models:

- main model constant.py

- main model seam.py

- main model two layers.py

Python scripts to generate the synthetic local and full models from SEAM I 2D

Model:

-create model seam full.py

-create model seam local.py
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Python script to generate the synthetic local and full constant models:

-create model constant.py

Python script to generate the synthetic local and full two layer models:

-create model two layer.py

Python script to generate the synthetic local and full two layer coordinates:

-define coordinates.py

Python general modules that contains functions to plot: model, injection, shotgather,

and traces:

-plot.py

-plot model.py

Data files:

Synthetic SEAM data.

This data can be download: https://seg.org/News-Resources/Research-Data/Open-

Data

-SEAM I 2D Model

3- Prerequisites

—————————————————

The Python software Local solver - requires the library “Devito”, and some Python

packages.

The easier way to get Devito is following the instruction

https://www.devitoproject.org/devito/download.html

After installed Devito, the software “Local solver” can run in terminal.

The “Local solver” programs were tested Mac platforms using Python 3.6.10.
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Ram memory require for all the sequence ∼ 30Gbytes. Time ∼ 30 minutes.

4- Running the files

—————————————————

After the libraries are installed, download the folder “Local solver”, on your machine.

You can download a zip archive of this repository at: software.seg.org(http://software.seg.org).

Following, be sure that all files are in the same directory.

Open the command prompt window (terminal) and run the command:

1. Constant model:

- python create model constant.py

- python define coordinates.py

- python main model constan.py

2. Two layer model:

- python create model two layer.py

- python define coordinates.py

- Two layer model: python main model two layers.py

- Two layer model: python amplitude phase.py

3. SEAM model:

- python create model seam full.py

- python create model seam local.py

- python define coordinates.py

- python main model seam.py

- python model full.png

WARNING: The output files overwrite when you change the model. Make sure you

move the outputs before start to run a new model.

5- Output files

—————————————————
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1. File create model constant.py:

-full.mat

-local.mat

2. File create model two layers.py:

-full.mat

-local.mat

-full pert.mat

-local pert.mat

3. File python create model seam full.py:

-full.mat

-full pert.mat

4.File python create model seam local.py:

-local.mat

-local pert.mat

5.File define coordinates.py:

-coord rec.mat

-coord se.mat

-coord inj.mat

-coord inj local.mat

-coord se local.mat

6.File full simulation.py:

## mi= pert or nonp, isrc=source x coord.

-shotgather src %s %.2f.mat’%(mi, isrc)

-waveform se full src %s %.2f.mat’%(mi, isrc)

-point sources src %s %.2f.mat’%(mi, isrc) #Point sources equation (2)

-geometry %s %.2f.mat’%(mi, isrc)

7.File local simulation.py

## mi= pert or nonp, isrc=source x coord.
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-waveform se local src %s %.2f.mat’%(mi,i[0])

-v1 local %s.mat’%mi

8.File convolution.py

-shotgather extrapolated.mat

9. compute green functions.py

## isorc=source x coord.

-Component source greens se%.2f’%isorc

10. main model constant.py:

-figure:model-vp.png

-figure:injection non src 2500.00.png (figure 3 in the paper)

-figure:trace=%.2f.png’%(xp) (figure 4 in the paper) xp =receiver index position

11. main model two layers.py:

-figure: injection nonp src 2500.00.png

-figure: injection pert src 2500.00.png

-figure: model-vp.png (figure 6 in the paper)

-figure: shotgather vx.png (figure 7 in paper)

-figure: shotgather vz.png

-figure: vx short trace=20.00.png (figure 8 in paper)

-figure: vz short trace=20.00.png

-figure: vx trace=20.00.png

-figure: vz trace=20.00.png

-figure: vx out integral.png

-figure: vz out integral.png

12. amplitude and phase.py

-phases.mat

-figure: windowed shotgather true vx.png

-figure: windowed shotgather extr vx.png

-figure: amplitude.png (figure 9 in the paper)

-figure: Phase.png (figure 10 in the paper)
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-figure: QC shot timeindex.png

13. main model seam.py

-figure: injection nonp src 2500.00.png

-figure: injection pert src 2500.00.png

-figure: model-vp.png

-figure: shotgather vx.png (figure 12 in the paper)

-figure: shotgather vz.png

-figure: vx short trace=20.00.png (figure 13 in the paper)

-figure: vz short trace=20.00.png

-figure: vx trace=20.00.png

-figure: vz trace=20.00.png

14. plot model.py -figure: model full.png (figure 11 in the paper)

6- License

—————————————————

The following legal note is restricted solely to the content of the named files. It cannot

overrule licenses from the Python standard distribution modules, which are imported

and used therein.

The “Local solver” folder are distributed under the following license agreement:

Copyright (c) 2020, Ligia Elena Jaimes-Osorio & Alison Malcolm & Polina Zheglova

(Memorial University of Newfoundland)

All rights reserved.

Redistribution and use in source and binary forms, with or without modification,

are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of

conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list

of conditions and the following disclaimer in the documentation and/or other mate-

rials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be

used to endorse or promote products derived from this software without specific prior
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written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND

CONTRIBUTORS ”AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES,

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-

CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS-

CLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBU-

TORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EX-

EMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIM-

ITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS

OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER

CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,

STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF

ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

7- Disclaimer

—————————————————

If you obtained this set of codes from the SEG (downloaded from software.seg.org or

otherwise), you must also agree to the following disclaimer:

http://software.seg.org/disclaimer2.txt


