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Abstract

Simple random sampling (SRS) is the common method in data collection. In many

applications, measuring the variable of interest is costly, but ranking the units can

be done easily. In these situations, one can use rank set sampling (RSS) to get more

representative samples from the population. This thesis investigates the estimation

of the semi-parametric finite mixture models (FMMs) with RSS. We develop a semi-

parametric version of the Expectation-Maximization (EM) algorithm to obtain the

maximum likelihood (ML) estimate of the population with RSS data. We then

propose the ML estimation of FMM with RSS data in a semi-parametric frame-

work. Our numerical studies show that the proposed EM algorithm estimates more

efficiently the FMM. The proposed methods are finally applied to analyze the bone

mineral data.

Keywords: Finite mixture model, Ranked set sampling, Semi-parametric estima-

tion, Misplacement probability model, EM algorithm, Bone mineral data.
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Lay Summary

Simple random sampling (SRS) is the most common sampling design in data anal-

ysis. In many surveys, such as medical research, measuring the variable of interest

is difficult. This difficulty may include the situations the measurement procedure

is costly and/or time-consuming and/or invasive. In Osteoporosis research, for ex-

ample, the bone disorder status of patients must be determined by bone mineral

density (BMD). Although BMD is the most reliable predictor of bone disorder sta-

tus, BMD measurements are obtained through dual X-ray absorptiometry (DXA)

images. Measuring BMD requires a costly and time-consuming procedure, including

DXA imaging and manual segmentation of images by medical experts. Ranked set

sampling (RSS) is cost-effective sampling technique that can be applied in situa-

tions where the precise measurement of the variable of interest is expensive or hard

to achieve; however, sampling units can be ranked via extra variables or judgment

ranking, without actual measurements on the variable of interest. For example,

one can use RSS to get more representative data of the BMD in the underlying

population of interest. To do this, we need to create artificial strata based on ranks

during the sampling process. We can rank a small number of patients in compari-

son sets using expert information or get data on individuals based on their medical

history or measurements of reasonable auxiliary variables related to BMD such as

age, weight, body mass index, etc. In the standard estimation methods for FMMs,

the samples are typically extracted from the population using SRS. In this thesis,

we used ranked set sampling to collect more informative samples from the FMMs

and developed more efficient semi-parametric estimations for the FMMs.
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Chapter 1

Introduction

In this thesis, we plan to use a Ranked Set Sampling (RSS) design to analyze

finite mixture models (FMMs). In many surveys, ranked-based samplings, as cost-

efficient sampling techniques, are more desirable than most commonly used simple

random sampling (SRS). Rank-based sampling designs include rank set sampling,

judgement post-stratified (JPS) sampling and their variations. On the other side,

finite mixture models are convenient and flexible statistical tools that have been

used in various scientific disciplines such as medical research, biology and genetics.

In this thesis, we study the problem of semi-parametric finite mixture modelling

with ranked set sampling.

This chapter is organized as follows. In Section 1.1, we first provide an overview

of the finite mixture models. Section 1.2 gives an introduction to ranked set sam-

pling design. Section 1.3 describes semi-parametric finite mixture modelling. Fi-

nally, Section 1.4 presents the outline of the thesis.
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1.1 Finite Mixture Models

Finite mixture models are powerful statistical tools in situations that observations

arise from heterogeneous subpopulations. Finite mixture models, as powerful tools

to analyze complex data, have increasingly being used during the last decade. Mix-

ture models help explain a wide variety of random phenomena because of their

flexibility. Therefore in many fields of science, they are used to model complex pro-

cesses and systems. Examples of applications include clustering, density estimation

and classification.

Let X be a random variable representing the population of the study. Let X

follow a finite mixture model with M subpopulations. The probability density

function (pdf) of random variable X is given by

g(x,Ψ) =
M∑
j=1

πjfj(x, θj), (1.1)

where π = (π1, π2, . . . , πM−1) represents the vector of unknown mixing parameters

with
∑M

j=1 πj = 1 and fj, j = 1, . . . ,M represents the pdf of the jth component of

the model. Also ξ> = (θ>1 , θ
>
2 , . . . , θ

>
M) represents the vector of unknown component

parameters. We use Ψ = (π, ξ) to show the vector of all unknown parameters of

model (1.1). It is usually assumed that the pdf’s fj belong to a common parametric

family F = {f(·; θ), θ ∈ Rd} characterized by a vector of parameters θ so that the

pdf of the finite mixture model is given by

g(x,Ψ) =
M∑
j=1

πjf(x; θj), (1.2)
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where Ψ = {(πj, θj); j = 1, . . . ,M}.

Because of advances in simulation and computational methods, finite mixture

models have become flexible and valuable statistical tools in data analysis. Finite

mixture models have been broadly employed in statistical analysis, for example,

modelling unknown distributional forms, analyzing the data including group struc-

tures, model-based classification and clustering analysis.

In addition, finite mixture models have been used in various fields, including as-

tronomy, biology, genetics, medicine, psychiatry, economics, engineering, and mar-

keting, among many other biological, physical, and social sciences. For example,

Sodium and Lithium Counter-transport (SLC) activity in red blood cells is an essen-

tial characteristic in quantitive genetics; because it associates with blood pressure.

Furthermore, SLC action is more straightforward to examine than blood pressure.

Assume the action of a particular gene defines SLC characteristic with alleles A

and a. Chen et al. (2012) then investigated the presence of a significant gene by

using FMMs for analysis of the SLC groups. Moreover, FMMs have been applied in

genetics (e.g., Schork et al., 1996; Roeder, 1994 and Chen and Chen, 2003), medical

studies (e.g., Schlattmann, 2009) and different engineering fields, such as in speech

recognition, medical imaging, pattern recognition (e.g., El Zaart et al., 2002).

FMMs are reliable means for modelling various random events and cluster data

sets. FMMs present practical principles for understanding data with complicated

structures. Because of these flexibilities, FMMs have attracted many researchers

over time, both in theory and applications (McLachlan and Krishnan, 2007). Pear-

son (1894) and Cohen (1967) use the method of moments, for estimation of finite

mixture models. Harding (1949) and Cassie (1954) used graphical methods to es-
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timate the finite mixture models. Among all methods, maximum likelihood (ML)

estimation is considered to be the most common method to estimate the parameters

of the mixture models (Furman and Lindsay, 1994). The likelihood equations for

the FMM are usually nonlinear. So, it is challenging to solve the problems ana-

lytically. One has to obtain the estimates through iterative methods. We here use

EM-algorithm (Dempster et al., 1977) to obtain ML estimates of the parameters of

the FMMs.

The EM-algorithm has been applied to a mixture problem in genetics by Tan and

Chang (1972) and by Hosmer Jr (1973) in the Monte Carlo study of ML estimation.

Duda et al. (1973) studied the EM algorithm for mixtures of multivariate normal

densities and explained its performance. Peters and Walker (1978) proposed a

convergence investigation of the EM algorithm for mixtures of multivariate normal

densities and introduced changes of the algorithm to stimulate convergence. Lange

(1995) considered an acceleration of the EM algorithm based on classical quasi-

Newton optimization methods. This acceleration seeks to drive the EM algorithm

constantly to the Newton-Raphson algorithm, which has a quadratic convergence

rate. The significant distinction between the current algorithm and a naive quasi-

Newton algorithm is that the early steps of the current algorithm match the EM

algorithm rather than the steepest ascent.

1.2 Ranked Set Sampling

Simple random sampling (SRS) is the most common sampling design in data anal-

ysis. In many surveys, such as medical research, measuring the variable of interest
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is difficult. This difficulty may include the situations the measurement procedure is

costly and/or time-consuming and/or invasive. In fishery surveys, for example, the

age characteristic of fish is the most important variable in stock assessment and fish-

ery management. While age characteristic is critical, the age determination of fish

is a costly and destructive procedure. To measure the exact age, the fish should be

dissected. Then the exact age of fish will be obtained from otoliths through a sub-

stantial time-consuming process (Hatefi et al., 2015). In Osteoporosis research, for

example, the bone disorder status of patients must be determined by bone mineral

density (BMD). Although BMD is the most reliable predictor of bone disorder sta-

tus, BMD measurements are obtained through Dual X-ray Absorptiometry (DXA)

images. Measuring BMD requires a costly and time-consuming procedure, includ-

ing DXA imaging and manual segmentation of images by medical experts (Omidvar

et al., 2018).

In these surveys, while measuring the variable of interest is costly, practitioners

typically have access to easy-to-measure characteristics about individuals. Ranked

set sampling employs these easy-to-measure characteristics for ranking the sampling

units and then incorporates this ranking information efficiently into both the data

collection. Ranked set sampling (RSS), as informative and cost-effective sampling

scheme, is more desirable than simple random sampling in these situations (Hatefi

and Jozani, 2013).

We construct an RSS of size nH when H is set size and n is cycle size as follows.

First, we take a SRS of size H, X1, . . . , XH , from the population. We rank the

sample as Or(X1, . . . , XH) = (X[1], . . . , X[H]) from the smallest to the largest by

using a ranking operator, Or(·). Note that we rank the units in each set without
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measuring their interest variable (i.e. X-variable). We rank the units based on an

easy-to-measure concomitant variable (correlated with X-variable). We choose the

unit with the smallest rank and measure only the X-variable of this unit, denoted

by X[1]1. Then we take another SRS of size H, independent of the first set, from

the population. Ranking the set, we select the unit with the second smallest rank

for full measurement, denoted by X[2]1. We continue this process until we measure

the item with the largest rank for last set, denoted by X[H]1. We consider this

whole process as a cycle. To obtain the total number of nH observations from the

population, we repeat this process for n cycles.

We consider X[r]i as the value of the r-th ordered unit in the i-th cycle. Also the

X[r]i represents the r-th judgment order statistic in the i-th cycle. The balanced

RSS is given by {X[r]i, r = 1, . . . , H; i = 1, . . . , n}. The RSS is called balanced when

we obtain the same number of observations from each rank strata; otherwise, the

RSS is called unbalanced. To show the construction of a balanced RSS, Table 1.1

represents an illustrative example when set size H = 4 and cycle size n = 2. In our

example, we denote X[r]i, r = {1, 2, 3, 4} and i = {1, 2} as the measured balanced

RSS observations.

As described above, the RSS sampling is similar to the stratified sampling. RSS

creates artificial strata by ranking the sampling units. In other words, RSS can

be considered as a stratification of the sampling units based on their ranks in the

sets. Although we need to identify nH2 units from the population, we measure the

variable of interest for only nH units. Note that the RSS statistics are independent

because we select all the units for the measurement in our sample from independent

sets. However, RSS data, unlike SRS data, are not identically distributed.
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Table 1.1: An example of balanced RSS sample

cycle set ranking the units within the sets Observation
1 1 {X1, X2, X3, X4} → {X[1], X[2], X[3], X[4]} X[1]1

2 {X5, X6, X7, X8} → {X[1],X[2], X[3], X[4]} X[2]1

3 {X9, X10, X11, X12} → {X[1], X[2],X[3], X[4]} X[3]1

4 {X13, X14, X15, X16} → {X[1], X[2], X[3],X[4]} X[4]1

2 1 {X17, X18, X19, X20} → {X[1], X[2], X[3], X[4]} X[1]2

2 {X21, X22, X23, X24} → {X[1],X[2], X[3], X[4]} X[2]2

3 {X25, X26, X27, X28} → {X[1], X[2],X[3], X[4]} X[3]2

4 {X29, X30, X31, X32} → {X[1], X[2], X[3],X[4]} X[4]2

The RSS was first introduced by McIntyre (1952) to obtain the estimation of

the mean pasture yields. RSS has had applications in a wide range of fields such as

medical research, industrial statistics, environmental and ecological research. For

instance, analyzing the environmental dangers of hazardous waste places, including

poisonous chemicals and their ecological influence, needs significant scientific pro-

cessing of materials and, consequently, high expenses. Despite that, one can rank

hazardous waste sites according to their pollution levels from visual examination of

soil or water discolouration (Barabesi and El-Sharaawi, 2001). RSS is extensively

used in medical research. For example, the biomarkers perform critical functions

in evaluating lung cancer status. It would be expensive and time-consuming to

obtain the results from all patients from the biomarkers by doing lab experiments.

However, it is possible to rank the patients based on their smoking exposure lev-

els. Taking advantage of the connection between smoking exposure and biomarkers,

Chen and Wang (2004) employed RSS for lung cancer research.

In addition, there are more applications of RSS in natural sciences. For example,

Halls and Dell (1966) show that RSS is more efficient than SRS to estimate browse
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and herbage weights in a pine-hardwood forest. Muttlak and McDonald (1992) used

RSS estimates to obtain mean values of forest and grassland resources with higher

performance than other standard sampling techniques. Wang et al. (2009) describe

how the RSS can improve sample collection efficiency and decrease the cost of data

collection through two actual samples. The first case is a study of fish stocks in

Australia, and another one is a fish age measurement research in Bangladesh.

Ranking plays an essential role in the efficiency of the RSS method. If there

is no error in the ranking of sampling units in each set, then the method is called

perfect RSS. In this case, the maximum ranking information is incorporated into

data collection and estimations. Consequently, the RSS-based inference acquires the

highest efficiency relative to the SRS-based inference (Hatefi et al., 2014). Although

perfect RSS data result in the highest efficiency, the ranking error is undeniable

in the real-life applications where we obtain ranking information using external

concomitant variables. The method presumes ranking error is called imperfect RSS.

In imperfect RSS, the rank assigned to RSS statistics (i.e. obtained from different

sets) may differ from their true rank. When ranking error increases in RSS data

collection, the efficiency of RSS-based estimators decreases. Note that when ranks

are assigned randomly (i.e. the worst ranking scenario), the imperfect RSS result in

simple random sampling (Dell and Clutter, 1972). Therefore, when the the rankings

within each set are more accurate, we will obtain the more efficiency (Chen, 2000,

Barabesi and El-Sharaawi, 2001). In this thesis, we use the square brackets to show

the possibility of ranking errors in RSS data collection; then imperfect RSS data is

indicated by {X[r]i, r = 1, . . . , H; i = 1, . . . , n}.

RSS is introduced in different aspects of nonparametric inference. Bohn (1996)
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studied the nonparametric methods for data from RSS and presented the similarities

and dissimilarities in the characteristics of the RSS methods. Presnell and Bohn

(1999) obtained the asymptotic distribution for random sample U-statistics using

RSS data. The results show that the RSS method is asymptotically as efficient

as the SRS scheme. Öztürk (1999) developed a new two-sample testing method

to examine the equality of the two populations using RSS data. Barabesi (2001)

suggested the sign test under unbalanced RSS (URSS) that develops a generalization

of the standard RSS. Sinha et al. (1996) investigated the theory of RSS when the

population is partially known. They discuss the estimation challenges of a normal

mean and a normal variance, and an exponential mean. For all three issues, RSS

results in significantly improved estimators compared to an SRS. For an overview of

the theory and applications of ranked set sampling designs, see (Chen et al., 2003).

In the usual ways of modeling and inference for FMMs, we typically consider that

the samples are drawn from the population using the SRS (e.g., McLachlan and Peel,

2004). However, in various applications, more informative, more economical samples

are desirable for analyzing FMMs. Hatefi et al. (2014) study ML estimation of the

parameters of a FMM for RSS data. They suggest two RSS designs from a FMM and

describes how to estimate the unknown parameters of the model. The results show

that estimators based on the RSS are more efficient than the SRS. Hatefi et al. (2015)

introduce a new method to estimate the parameters of a FMM based on partially

rank-ordered set (PROS) sampling. They also suggest a proper EM algorithm

to estimate the parameters of the FMMs based on PROS samples. The results

show that the ML estimators based on PROS samples work much better than their

SRS equivalents, also with small samples. Omidvar et al. (2018) investigated ML
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estimation of unknown parameters of a FMM from judgement post-stratified (JPS).

The results showed that JPS estimators perform better than their SRS equivalents.

1.3 Semi-parametric Mixture Models

We can use FMMs as an essential tool to analyze complex data in many scien-

tific fields such as Statistics, Economics, Epidemiology and Finance. Parametric

FMMs are commonly used because the models can be explained easily and have

substantial theoretical aspects. But, parametric FMMs are based on assumptions,

like linearity and normality, which are violated in real-life applications. Therefore,

semi-parametric FMMs are motivated to ease the assumptions of the parametric

family for component densities of the FMMs.

Bordes et al. (2006) investigated a two-component mixture of locations model

where the component density is symmetric. Their results show that the estimators

are well consistent, following the mild regularity assumptions. Bordes et al. (2007a)

generalize the EM algorithm to semi-parametric FMMs based on a two-component

mixture of locations model where the component density is considered symmetric.

Chang and Walther (2007) developed the EM algorithm to work with the flexible,

nonparametric class of log-concave component distributions. Bordes et al. (2006)

suggested a semi-parametric two-component FMM that one component was known.

They examined data to identify statistically differentially expressed genes in bovine

trophoblast between artificial insemination (AI) and in vitro fertilization (IVF) ges-

tation modes. This statistical analysis helps the biologist understand the biological

differences between the two gestation modes and improve IVF procedures to de-
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crease the mortality rate related to this gestation mode.

Some semi-parametric FMMs have been developed theoretically and practically

and shown to have a better performance. Hunter et al. (2007) found the identifia-

bility of the location-shifted FMM for 2 and 3 components. Bordes et al. (2007b)

employed a stochastic EM algorithm to estimate the unknown parameters of the

location-shifted FMM. Benaglia et al. (2009) introduced a more flexible and proper

algorithm to reduce the stochasticity of Bordes et al. (2007b) and it is possible to

extend that model to various numbers of mixture components.

1.4 An Overview of Thesis

In this thesis, we focus on the mixture of the location-scale models. We investigate

how we can use properties of ranked set sampling to develop more efficient estima-

tions of semi-parametric mixture models of Bordes et al. (2007b). In Chapter 2,

we present the likelihood function of the mixture model based on simple random

samples. We use a semi-parametric version of the EM algorithm to obtain the ML

estimate of the parametric and non-parametric elements of the underlying mixture

model. Chapter 3 investigates the ML estimation of the FMMs based on the RSS

data. We develop an estimate of FMMs based on RSS data in a semi-parametric

framework. To do so, we also develop an EM algorithm to obtain the RSS-based ML

estimate of semi-parametric FMMs. In Chapter 4, we conduct simulation studies

to investigate the performance of the RSS estimators. Then we apply the methods

discussed in Chapters 2 and 3 to a real data example.
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Chapter 2

Mixture Models from Simple

Random Samples

In this chapter, we focus on semi-parametric finite mixture models (FMMs) from

simple random samples (SRS). Here, we present the likelihood function of the

mixture model based on SRS data. We use a semi-parametric version of the

Expectation-Maximization (EM) algorithm to obtain the maximum likelihood (ML)

estimate of the parametric and non-parametric elements of the underlying FMM.

This chapter is organized as follows. In Section 2.1, we introduce the semi-

parametric FMMs. Section 2.2 describes how one can use the missing-data mecha-

nism to accommodate latent variables and EM algorithm to obtain the ML estimate

of the FMM in a parametric setting. Finally, we discuss the ML estimation of semi-

parametric FMMs using simple random sampling in Section 2.3.
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2.1 Introduction

In many real-life applications, the population of interest comprises of several sub-

populations. In these cases, let X be a random variable representing the population

of the study. Let X follow a FMM consisting of M subpopulations. Hence, the

probability density function (pdf) of random variable X is given by

g(x,Ψ) =
M∑
j=1

πjfj(x, θj), x ∈ R, (2.1)

where π = (π1, π2, . . . , πM−1) represents the vector of unknown mixing parameters

with
∑M

j=1 πj = 1 and fj, j = 1, . . . ,M represents the pdf of the jth component

of model. Also ξ> = (θ>1 , θ
>
2 , . . . , θ

>
M) represent the vector of unknown component

parameters. We use Ψ = (π, ξ) to show the vector of all unknown parameters of the

model (2.1). It is usually assumed that the pdf’s fj belong to a common parametric

family F = {f(·; θ), θ ∈ Rd} indexed by a vector of parameters θ so that the pdf of

the FMM is given by

g(x,Ψ) =
M∑
j=1

πjf(x; θj), (2.2)

where Ψ = {(πj, θj); j = 1, . . . ,M}. The choice of a parametric family F may be

difficult to find for a FMM. It is also important to note that the model (2.2) will be

more flexible if M is considered to be an unknown parameter, thus one needs to esti-

mate M . Various research studies in the literature have investigated the estimation

of the number of components of a mixture model. Leroux (1992) developed a consis-

tent estimator for the mixing parameters’ distribution and proposed an estimation
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procedure for the number of components of the mixture model. Lemdani et al.

(1999) proposed the asymptotic distribution of the likelihood ratio test statistics

to examine the number of components of a FMM. Dacunha-Castelle et al. (1999)

used the stationary autoregressive moving average (ARMA) time series properties

and developed a test statistic for the number of components of mixture models.

However, throughout this thesis, we assume that the number of components of the

underlying mixture model is known.

Another challenge with which practitioners typically deal is that we know the

number of components of the FMM; however, little information is available about

the distribution of the subpopulations. Non-identifiablity is one of the biggest chal-

lenges associated with the estimation of FMMs.

Definition 2.1. A distribution g(x; Ψ) is identifiable if different values of the pa-

rameter Ψ determine differnt members of the family of densities g(x; Ψ); that is,

g(x; Ψ) = g(x; Ψ∗), if and only if Ψ = Ψ∗.

An example of non-identifiability in FMMs can happen when the component

densities of the model can themselves be written as a mixture of distributions. In

this case, the underlying mixture model is easily non-identifiable. To deal with

non-identifiability issue, we need to make additional assumption about the under-

lying mixture models to make inference. As one possible solution to cope with the

issue, Hall (1981) and Titterington (1983) proposed to use the properties of training

data and then developed non-parametric estimations of component densities of the

underlying mixture model.

Hettmansperger and Thomas (2000) proposed a method to estimate the mixing
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proportions and the number of components of the mixture distribution when there

are no parametric assumptions about the component distributions. They modeled

the mixing distributions with mixture of binomials and studied the efficiency and

robustness of this method in the estimation of the multivariate normal mixtures.

Cruz-Medina and Hettmansperger (2004) developed non-parametric estimates of

the mixing proportions, locations and variances of components of the FMM by

assuming that the components are symmetric and without making parametric model

assumptions on the components. Hall et al. (2003) discussed the identifibility of p-

variate mixture model with two components. Under mild regularity conditions, they

show that the FMMs with two components are identifiable when p ≥ 3.

To make the FMMs identifiable for the case p ≤ 2, one way is to focus on

the restricted parameter space. Hunter et al. (2007) proposed a new method for

identifiability of FMMs named M -identifiability, where M represents the number

of components of the FMM. To overview the theory and possible solutions to the

non-identifiability issue in finite mixture model, see McLachlan and Peel (2004).

To deal with the non-identifiability problem in p = 1 in this thesis, we restrict

the underlying model to the mixture of the location-scale symmetric models (Bordes

et al., 2007a). Hence the semi-parametric version of the FMM (2.2) is given by

g(x; Ψ) =
M∑
j=1

πjf(x− µj), x ∈ R, (2.3)

where the unknown parameters of the model are given by Ψ = (π, ξ) and (Ψ, f) ∈

(Θ,G) with

G =

{
Even pdf on R

}
15



and Θ = {(πj, µj), j = 1, . . . ,M} and µj 6= µl for 1 ≤ j < l ≤M.

2.2 Latent Variable Setup and EM Algorithm

In this section, we study the maximum likelihood (ML) estimation of a FMM in a

parametric framework. When we want to obtain the ML estimation in a parametric

setting, it may not be possible to estimate the parameters in closed form in mixture

models. To solve this problem, there are various optimization methods developed

in the literature, such as Newton-Raphson (Lindsay, 1995). Among all the meth-

ods, the Expectation-Maximization (EM) algorithm of Dempster et al. (1977) is

considered as the established method to obtain the ML estimates of the FMMs.

This section presents how one can use the EM algorithm to derive the ML

estimates of the parameters of the FMM (2.3). Suppose X = (x1, . . . , xn) be a

random sample of size n having the distribution of the M-component mixture model

as follows

g(x,Ψ) =
M∑
j=1

πjf(x; θj) (2.4)

From (2.4), the likelihood function of Ψ based on x data is given by

Lx(Ψ) =
n∏
i=1

g(xi; Ψ) =
n∏
i=1

{ M∑
j=1

πjf(x; θj)

}
, (2.5)
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From (2.5), the log-likelihood function is given by

lx(Ψ) = logLx(Ψ)

=
n∑
i=1

log g(xi; Ψ)

=
n∑
i=1

log

{ M∑
j=1

πjf(xi; θj)

}
(2.6)

One can obtain the ML estimate of Ψ, through maximizing the log-likelihood func-

tion (2.6) as follows

Ψ̂ML = argmax
Ψ

lx(Ψ). (2.7)

Finding the Ψ̂ML as the solution to the equation (2.7) is not feasible. The log-

likelihood function (2.6) is practically untractable with respect to component pa-

rameters of the mixture model.

Therefore, we need to introduce latent variables to make the likelihood func-

tion more tractable to find the ML estimates. To do so, we need to view X =

(X1, . . . , Xn) as incomplete data. Accordingly, from now on, the likelihood function

(2.5) and the log-likelihood function (2.6) are called incomplete data likelihood func-

tion and incomplete data log-likelihood function, respectively. Let Y = (Y1, . . . , Yn)

be the complete data such that Yi = (Xi,Zi), where Zi = (Zi1, . . . , ZiM) represents

the latent variable. We introduce the latent variable Zi for each xi, i = 1, . . . , n as

follows

Zij =

{
1 if xi belongs to component j;
0 otherwise.
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One can easily see that the Zi = (Zi1, . . . , ZiM) ∼ Multi(1, π1, . . . , πM) such that

the pdf of latent variable Zi is given by

f(zi) =
M∏
j=1

(πj)
zij (2.8)

From (2.8), the joint pdf of Yi = (Xi,Zi), i = 1, . . . , n is given by

fY (yi; Ψ) = f(xi, zi; Ψ)

= f(xi|zi; Ψ)f(zi)

=
M∏
j=1

{
πjf(xi; θj)

}zij
. (2.9)

Using (2.9), the complete data likelihood function is given by

Ly(Ψ) =
n∏
i=1

f(yi; Ψ) =
n∏
i=1

M∏
j=1

{
πjf(xi; θj)

}zij
. (2.10)

Therefore, the complete data log-likelihood function becomes

ly(Ψ) = logLy(Ψ)

=
n∑
i=1

M∑
j=1

zij log πj +
n∑
i=1

M∑
j=1

zij log f(xi; θj). (2.11)

2.2.1 The EM Algorithm: A Parametric Framework

In this subsection, we present the EM algorithm method to obtain ML estimate

of FMM in a parametric framework. In this parametric framework; the parametric

family of the component density f is assumed to be known; however, the component
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density is characterized by unknown component parameter θ. Thus, Ψ = (π, ξ>)

represents the vector of all unknown parameters of the underlying complete like-

lihood function (2.10) where π = (π1, . . . , πM) and ξ> = (θ>1 , . . . , θ
>
M). Now, we

propose an EM algorithm to find the ML estimates of Ψ = (π, ξ>). EM algorithm

enables us to optimize the complete data log-likelihood function (2.11) through

iterating between Expectation step (E-step) and Maximization step (M-step).

Note that we have not observed the latent variable Zi, i = 1, . . . , n. Hence,

we need to treat them as latent variable and impute them throughout the EM

algorithm. We impute the latent variable Zi, i = 1, . . . , n with the conditional

expectation of Zi given incomplete data. To do so, we first require to obtain the

conditional distribution Zi|Xi and conditional expectation E(Zi|Xi = xi), for i =

1, . . . , n. We know that Zi|Xi = xi are independent and identically distributed.

From (2.8) and (2.9); we can obtain the conditional pdf f(zi|Xi = xi) as follows

f(zi|xi; Ψ) =
f(xi, zi; Ψ)

g(xi; Ψ)

=

∏M
j=1

{
πjf(xi; θj)

}zij
∑M

j=1 πjf(xi; θj)

=
M∏
j=1

{
πjf(xi; θj)∑M
j=1 πjf(xi; θj)

}zij
(2.12)

From (2.12), it is easy to see that (Zi|Xi = xi)
iid∼ Mult

(
1,

πjf(xi;θj)∑M
j=1 πjf(xi;θj)

)
. Also, we

can easily see that

Zi|Xi = xi
iid∼ Mult

(
1,
π1f(xi; θ1)

g(x; Ψ)
, . . . ,

πMf(xi; θM)

g(x; Ψ)

)
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Also, the conditional expectation E(Zij|Xi = xi), for j = 1, . . . ,M can be obtained

as follows

τij(Ψ) = E(Zij|Xi = xi)

= P(Zij = 1|Xi = xi)

=
πjf(xi; θj)∑M
j=1 πjf(xi; θj)

(2.13)

In the case of the mixture of location-shifted models (2.3), we know that F ={
f(·|µ) = f(· − µ), µ ∈ R

}
. Hence, the conditional expectation of latent variables

is given by

τij(Ψ) =
πjf(xi − µj)∑M
j=1 πjf(xi − µj)

j = 1, . . . ,M ; i = 1, . . . , n. (2.14)

In the EM algorithm, we try to maximize the conditional expectation of the complete

data log-likelihood to obtain the ML estimates of the FMM parameters. To do so,

from equation (2.11) the conditional expectation of the complete data log-likelihood

is given by

Q(Ψ,Ψ∗) = E
(
ly(Ψ)|x,Ψ∗

)
(2.15)

=
n∑
i=1

M∑
j=1

E(Zij|x,Ψ∗)
(

log πj + log f(xi; θj)

)

=
n∑
i=1

M∑
j=1

τij(Ψ
∗) log πj +

n∑
i=1

M∑
j=1

τij(Ψ
∗) log f(xi; θj)

= Q1(π,Ψ
∗) +Q2(ξ,Ψ

∗),

20



where τij(Ψ
∗) is obtained from (2.14). EM algorithm, as an iterative algorithm,

requires initialization step.

0-step: Initialization

Let Ψ(0) = (π(0), ξ>(0)) represents the initial values of Ψ = (π, ξ>).

In order to better describe the iterative steps of EM algorithm, let Ψ(p) represents

the estimate of Ψ updated from the pth iteration of the EM algorithm. Now we

shall update Ψ(p+1).

E-step:

First, we use (2.14) and Ψ(p) and compute the τij(Ψ
(p)) as follows

τij(Ψ
(p)) =

π
(p)
j f(xi − µ(p)

j )∑M
j=1 π

(p)
j f(xi − µ(p)

j )
j = 1, . . . ,M ; i = 1, . . . , n. (2.16)

We then use the Ψ(p) and (2.15) and (2.16) to update the conditional expectation

of the complete data log-likelihood as follows

Q(Ψ,Ψ∗)|Ψ∗=Ψ(p) = Q(Ψ,Ψ(p))

= E(ly(Ψ)|x,Ψ(p))

= Q1(π,Ψ
(p)) +Q2(ξ,Ψ

(p)), (2.17)

where from (2.15) and (2.16); we have

Q1(π,Ψ
(p)) =

n∑
i=1

M∑
j=1

τij(Ψ
(p)) log πj (2.18)
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and

Q2(ξ,Ψ
(p)) =

n∑
i=1

M∑
j=1

τij(Ψ
(p)) log f(xi; θj), (2.19)

and τij(Ψ
(p) is obtained from equation (2.16).

M-step:

Once we updated the Q(Ψ,Ψ(p)) from the E-step of the (p + 1)-th iteration, the

Ψ(p+1) is obtained the solution to:

Ψ(p+1) = argmax
Ψ

Q(Ψ,Ψ(p)) (2.20)

From the decomposition (2.17), we can maximize the mixing proportions and com-

ponent parameters separately. From (2.14) and (2.15) and using the Lagrangian

Multiplier, one can update the mixing proportions π(p+1) as the solution to

Q1(π; Ψ(p))− λ(
M∑
j=1

πj − 1) = 0 (2.21)

By differentiating (2.21) from πj, j = 1, . . . ,M , with respect to the constraint∑M
j=1 πj = 1, it is easy to obtain the π

(p+1)
j as follows

π
(p+1)
j =

1

n

n∑
i=1

τij(xi : Ψ(p)). (2.22)

In addition, one can find the update ξ(p+1) as solution to the following equation:

ξ(p+1) = argmax
ξ

Q2(ξ,Ψ
(p))
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Finally, we obtain the ML estimate, Ψ̂ML, of the parameters Ψ of the undely-

ing mixture model by alternating the E-step and M-step until the EM algorithm

converges and ‖Ψ(p+1) −Ψ(p)‖∞ becomes negligible.

2.3 A Semi-parametric EM Algorithm

The previous section provides some information on the estimation of the unknown

parameters of the mixture model by using the EM algorithm in a parametric frame-

work. Based on model (2.3), the component density f is also unknown in the semi-

parametric location-shifted mixture model. In this framework, we should treat f

also as another parameter of the mixture model. Hence we have to designate the

EM algorithm such that not only we estimate the ML estimation of mixing propor-

tion π, and the location parameter ξ = (µ1, . . . , µM), but also we have to estimate f

parameter as well. In this semi-parametric framework, let ξ> = (µ1, . . . , µM) repre-

sents the vector of all unknown location parameters and π = (π1, . . . , πM) represents

the vector of unknown mixing proportions. We show the vector of all known param-

eters of semi-parametric location-shifted mixture model such that ζ = (Ψ, f) where

Ψ = (π, ξ>). Let X1, . . . , Xn be a random sample of size n from the semi-parametric

mixture of location-shifted models. Using the ζ, the vector of all unknown param-

eters of the model, the pdf of Xi, i = 1, . . . , n, is given by

g(xi; ζ) =
M∑
j=1

πjf(xi − µj). (2.23)
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Similar to the parametric setting, we introduce latent variable Zi = (Zi1, . . . , ZiM)

for each xi, i = 1, . . . , n, such that

Zij =

{
1 if xi belongs to component j;
0 otherwise.

Based on collection of latent variables and incomplete data, we introduce Y =

(Y1, . . . ,Yn) as complete data where Yi = (Xi,Zi). We can easily write that

Zi = (Zi1, . . . , ZiM) ∼ Multi(1, π1, . . . , πM) such that the pdf of latent variable Zi

is given by

f(zi) =
M∏
j=1

(πj)
Zij (2.24)

Using (2.23) and (2.24), the joint pdf of Yi = (Xi,Zi); i = 1, . . . , n, is given by

f(yi; ζ) = f
(
xi, zi; ζ

)
=

M∏
j=1

{
πjf(xi − µj)

}zij
. (2.25)

From (2.25), the complete data likelihood function of ζ is given by

Ly(ζ) =
n∏
i=1

f(yi; ζ)

=
n∏
i=1

M∏
j=1

{
πjf(xi − µj)

}zij
, (2.26)

and the complete data log-likelihood function can be written as follows

ly(ζ) = logLy(ζ)

=
n∑
i=1

M∑
j=1

zij log πj +
n∑
i=1

M∑
j=1

zij log f(xi − µj). (2.27)
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2.3.1 The EM Algorithm: A Semi-parametric Framework

In this subsection, we use the EM algorithm to obtain the ML estimate of the param-

eters ζ of the mixture of location-shifted models in a semi-parametric framework.

As we observed in the previous section, we require the conditional distribution and

conditional expectation of the latent variables given the incomplete data.

One can use the joint distribution od (Xi, Yi) and the marginal distribution of Xi

from (2.23) to obtain the conditional distribution of Zi|Xi = xi. The conditional

expectation of Zi|Xi = xi is then given by

τij(ζ
∗) = E(Zij|x, ζ∗)

= p(Zij = 1|x, ζ∗)

=
π∗j f

∗(xi − µ∗j)∑M
j=1 π

∗
j f
∗(xi − µ∗j)

. (2.28)

It should note that in the above expectation, we not only have to use Ψ∗, the mixture

parameters updated from the previous iteration of the EM algorithm, but also we

require f ∗, the non-parametric estimate of density f from the previous iteration

of the EM algorithm in this semi-parametric framework. Once we complete the

conditional expectation of the latent variables, the conditional expectation of the

complete data log-likelihood given incomplete data completed as follows

Q(ζ, ζ∗) = E
(
ly(ζ)|x, ζ∗

)

=
n∑
i=1

M∑
j=1

τij(ζ
∗) log πj +

n∑
i=1

M∑
j=1

τij(ζ
∗) log f(xi − µj)

= Q1(π, ζ
∗) +Q2(ξ

>, f, ζ∗), (2.29)
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where τij(ζ
∗) is computed by (2.28).

To estimate the unknown parameters ζ by using the EM algorithm, we require to

start the EM algorithm with initial values.

0-step: Initialization

Let ζ(0) = (Ψ(0), f (0)) be the initial values of the EM algorithm in the mixture of

location-shifted models from (2.23) in the semi-parametric setting.

Similar to the previous section, let ζ(p) = (Ψ(p), f (p)) denotes the update of the

parameters of the mixture model from pth iteration of the EM algorithm. We shall

use ζ(p) and update ζ(p+1).

E-step:

From equation (2.28) and updated ζ(p), we can update the conditional expectation

of the latent variable as follows

τij(ζ
(p)) =

π
(p)
j f (p)(xi − µ(p)

j )∑M
j=1 π

(p)
j f (p)(xi − µ(p)

j )
(2.30)

Using above equation, the conditioanal expectation of the complete data log-likelihood

is given by

Q(ζ, ζ∗)|ζ∗=ζ(p) = Q(ζ, ζ(p))

= E(ly(ζ)|x, ζ(p))

= Q1(π, ζ
(p)) +Q2(ξ, f, ζ

(p)), (2.31)

where

Q1(π, ζ
(p)) =

n∑
i=1

M∑
j=1

τij(ζ
(p)) log πj, (2.32)
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and

Q2(ξ, f, ζ
(p)) =

n∑
i=1

M∑
j=1

τij(ζ
(p)) log f(xi − µj), (2.33)

and τij(ζ
(p)) is obtained from equation (2.30).

M-step: Based on the decomposition (2.31), we can maximize the mixing propor-

tions based on Q1(π, ζ
(p)) separate from other parameters of the model. Hence, the

π
(p+1)
j , j = 1, . . . ,M , can be obtained as solution to:

n∑
i=1

M∑
j=1

τij(ζ
(p)) log πj − λ(

M∑
j=1

πj − 1) = 0 (2.34)

From the above lagrangian multipliers, one can easily show that

π
(p+1)
j =

1

n

n∑
i=1

τij(ζ
(p)), (2.35)

where τij(ζ
(p)) is obtained from equation (2.30).

To update µ
(p+1)
j ; one requires to maximize Q2(ξ, f, ζ

(p)) from (2.33) with respect

to µj. According to the fact that f belongs to the location-shifted family of distri-

bution, hence we can easily see that µj is the mean, median, and mode of f given

Zij = 1; i.e., E(Xi|Zij = 1) = µj. Therefore, the ML estimate of µj is the same with

the method of moments estimate of µj. Accordingly, one can obtain the µ
(p+1)
j as

µ
(p+1)
j =

∑n
i=1 τij(ζ

(p))xi∑n
i=1 τij(ζ

(p))
j = 1, . . . ,M. (2.36)
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S-step: Now, we need to update the pdf f (p+1). Bordes et al. (2007b) suggested

to estimate the pdf f by using a nonparametric density estimate based on x =

(x1, . . . , xn). To be able to estimate f nonparametrically, we require to have data

generated from f distribution. The challenge here is that the incomplete data

(x1, . . . , xn) are from the mixture of the location-shifted models and they are not

observations from f distribution. Bordes et al. (2007b) work with observations

centered back to f instead of using xi observations directly. We denote the vector

of observations ”centered back” by x̃ = (x̃1, . . . , x̃n). If we assume that we have the

complete-data y = (x, z) and that Ψ is known, then we can estimate the pdf f by

the two following steps;

1. We need to compute x̃ = (x̃1, . . . , x̃n), where x̃i = xi − µzi , (i = 1, . . . , n).

2. Estimate the pdf f by using a Kernel density as follows

f̂x̃(u) =
1

nhn

n∑
i=1

K

(
u− x̃i
hn

)

where K is a Kernel function and hn denotes the bandwith. In this case, if we

consider that zi is missing and the true parameter ζ is known, then it is difficult to

recover a sample from f . Hence we recover a sample from f by the following steps;

S1-step: We can simulate the stochastic version of the τij(ζ
(p)) as follows Z(xi, ζ) ∼

Mult

(
1, τi1(ζ), . . . , τiM(ζ)

)
, for i = 1, . . . , n.

S2-step: We can obtain observations centered back through x̃i = xi − µZ(xi;ζ), for

i = 1, . . . , n.

In the following lemma, we can show that the centered-back observations (x̃1, . . . , x̃n)
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obtained from the above algorithm are observations from f distribution. The proof

can be found in Bordes et al. (2007b). For the sake of completeness, we provide the

lemma and its proof in the following lemma.

Lemma 2.1. Let X = (X1, . . . , Xn) be a sample from the pdf g(x; ζ) (2.23). The

centered back observations X̃ = (X̃1, . . . , X̃n) is a sample from f .

Proof. Since X = (X1, . . . , Xn) is an i.i.d. sample from mixture model g(x; ζ),

it is enough to check this property for one observation. Let X ∼ g(x; ζ) and

X̃ = X − µZ(x,ζ) as described in S1 and S2 steps.

Pζ(X̃ < y) =

∫
P(X̃ < y,X = x)dx

=

∫
P(X̃ < y|X = x)g(x; ζ)dx

=

∫
P
(
x− µZ(x,ζ) < y

)
g(x; ζ)dx

=

∫ M∑
j=1

P
(
x− µj < y|Z(x; ζ) = j

)
P(Z(x; ζ) = j)g(x; ζ)dx

=

∫ M∑
j=1

P
(
x− µj < y|Z(x; ζ) = j

)
πjf(x;µj)

g(x; ζ)
g(x; ζ)dx

=
M∑
j=1

πj

∫
I(x−µj<y)f(x− µj)dx

=

( M∑
j=1

πj

)
P(X < y)

= P(X < y) = FX(y)
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where F is the cdf of X.

As we can see, in Lemma 2.1, we can assume that ζ is known. Similarly, the ζ

parameters are replaced by ζ(p) updated from the previous iteration and they are

treated known as well in each iteration of the EM algorithm.

We show the complete step ζ(p) → ζ(p+1) of the semi-parametric EM algorithm

(SEM) as follows;

E− Step : From (2.30) we compute τij(ζ
(p)) for i = 1, . . . , n, j = 1, . . . ,M .

S− Step :

(S1) We simulate stochastic centered back observations from f distribution as fol-

lows

Z(p+1)(xi, ζ
(p)) ∼Mult

(
1, τi1(xi; ζ

(p)), . . . , τiM(xi; ζ
(p))

)

(S2) We simulate

x̃
(p+1)
i = xi − µ(p)

Z(p+1)(xi,ζ
(p))

Using the centered data x̃(p+1), we obtain a kernel density estimate f (p+1) of f by

using a symmetric assumption in the model. Therefore, we have

(S3) Kernel density estimate:

f̂x̃(p+1)(u) =
1

nhn

n∑
i=1

K

(
u− x̃(p+1)

i

hn

)
(2.37)

(S4) Symmetrization:

f (p+1)(u) =
f̂x̃(p+1)(u) + f̂x̃(p+1)(−u)

2
(2.38)
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M− Step : We update the parameter Ψ(p+1) as follows

π
(p+1)
j =

1

n

n∑
i=1

τij(xi : ζ(p)),

and

µ
(p+1)
j =

∑n
i=1 τij(xi : ζ(p))xi∑n
i=1 τij(xi : ζ(p))

We obtain ML estimate of the parameters ζ = (Ψ, f) by alternating the E-step,

S-step and M-step until ‖Ψ(p+1) −Ψ(p)‖∞ becomes negligible.
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Chapter 3

Semi-parametric Mixture Models

with RSS Data

In the standard methods of modeling and inference for finite mixture model (FMM),

we typically assume that we have samples drawn from the underlying mixture model

from simple random sampling (e.g., McLachlan and Peel, 2004; Titterington et al.,

1985). In many applications, for instance in fishery studies, using ranked set sam-

pling (RSS) can be more cost-effective and more advantageous. We can also get

the results in better and more informative sampling from the underlying mixture

models (Hatefi et al., 2014).

In Chapter 2, we discussed semi-parametric modeling of the FMMs based on

the SRS data. This chapter investigates the maximum likelihood (ML) estimation

of the FMMs based on the RSS data. We also develop an estimate of FMMs based

on RSS data in a semi-parametric framework. To do so, we also develop an EM

algorithm to obtain the RSS-based ML estimate of FMMs. This chapter is organized

as follows. In Section 3.1, we discuss the ML estimation of unknown parameters of
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FMMs with RSS data in a parametric framework. We develop the ML estimation

of semi-parametric FMMs based on RSS data in Section 3.2.

3.1 Parametric Estimation of FMMs with RSS

We consider X as a random variable that follows the FMM (2.2). Let

{
X[r]i; r =

1, . . . , H, i = 1, . . . , n

}
denote an RSS data of size nH with set size H and the

number of cycles n. We construct the RSS data as described in Section 1.2 in

Chapter 1. As described in Chapter 1, in imperfect RSS, we use a concomitant

variable to rank the sampling units in each set. Hence the assigned ranks to sampling

units may be different from their true ranks of the units. We employ the method of

Hatefi et al. (2015) to model the ranking errors in RSS. It is possible to model the

selection of X[r]i using a latent variable method that accommodates the possibility

of ranking error between the judgmental ranks and the true ranks in each set. Let

α denote the misplacement probability matrix,

α =


α1,1 α1,2 . . . α1,H

α2,1 α2,2 . . . α2,H
...

... . . .
...

αH,1 αH,2 . . . αH,H


H×H

,

where we define αr,h as the probability that the h-th order statistic (true rank)

received the h-th judgmental rank (i.e. the assigned rank); hence

αr,h = P
(
X[r] = X(r)

)
.
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It is at once apparent that α matrix should be doubly stochastic matrix such that∑H
h=1 αr,h =

∑H
r=1 αh,r = 1. For each X[r]i, we define an H dimensional random

vector, ∆
[r]
i , which follows a multinomial distribution with parameters 1 and α[r],

where α[r] = (αr,1, . . . , αr,H). Then we can write

∆
[r]
i =

(
∆

[r,1]
i , . . . ,∆

[r,H]
i

)
,

which has only one nonzero entry and all the other entries are zero. Since ∆
[r]
i is a

random vector, we can write

P(∆
[r]
i = δ

[r]
i ;α) =

H∏
h=1

{
αr,h

}δ[r,h]i

. (3.1)

Also we define the g(h:H)(x; Ψ) as the pdf of the h-th order statistic in a set of size

H from FMM (2.2) as follows

g(h:H)(x; Ψ) = H

(
H − 1

h− 1

)
g(x; Ψ)[G(x; Ψ)]h−1[Ḡ(x; Ψ)]H−h, (3.2)

where Ḡ(·; Ψ) = 1−G(·; Ψ) and

g(x; Ψ) =
M∑
j=1

πjf(x, θj),

and

G(x; Ψ) =
M∑
j=1

πjF (x, θj),
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represent the pdf and cdf of the FMM 2.2. Therefore, we can write the conditional

distribution of X[r]i given ∆
[r]
i as

f(x[r]i|δ[r]; Ψ) =
H∏
h=1

{
g(h:H)(x[r]i; Ψ)

}δ[r,h]i

. (3.3)

In addition, the joint distribution of (X[r]i,∆
[r]
i ) follows from (3.1) and (3.3) and is

given by

f(x[r]i, δ
[r]
i ; Ω) =

H∏
h=1

{
αr,hg

(h:H)(x[r]i; Ψ)

}δ[r,h]i

=
H∏
h=1

{
αr,hH

(
H − 1

h− 1

)
g(x; Ψ)[G(x; Ψ)]h−1[Ḡ(x; Ψ)]H−h

}δ[r,h]i

.

(3.4)

where Ω = (Ψ,α). Then we obtain the marginal distribution of X[r]i as follows

f(x[r]i; Ω) =
∑
δ
[r]
i

f(x[r]i, δ
[r]
i ; Ω) =

H∑
h=1

αr,hg
(h:H)(x[r]i; Ψ). (3.5)

Form (3.4) and (3.5), we can easily write

f(δ
[r]
i

∣∣x[r]i; Ω) =
H∏
h=1

{
αr,hBh,H+1−h(G(x[r]i; Ψ))
H∑
h=1

αr,hBh,H+1−h(G(x[r]i; Ψ))

}δ[r,h]i

, (3.6)

where Ba,b(·) represents a beta density function with parameters a and b.
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3.1.1 Likelihood Functions based on RSS Data

We estimate the unknown parameter Ψ of the FMM (2.2) based on RSS data

through ML method in this section. According to the fact that RSS statistics{
X[r]i; r = 1, . . . , H, i = 1, . . . , n

}
are independent, we can obtain the likelihood

function for the RSS data from equation (3.5) as follows

L(Ω) =
n∏
i=1

H∏
r=1

f(x[r]i; Ω). (3.7)

The log-likelihood function is also given by

l(Ω) = logL(Ω).

We define the ML estimator of Ψ, denoted by Ψ̂, as an appropriate solution to

Ψ̂ML = argmax
Ψ

l(Ω).

This optimization is practically untractable with respect to the parameters of the

components Ψ and sampling parameters α. To solve this problem we have to rewrite

the likelihood function L(Ω) through a latent variable model (Hatefi et al., 2015).

Therefore, we write the likelihood function of Ω by using the latent multinomial

random variables ∆
[r]
i from equation (3.4) as follows

L(Ω) =
n∏
i=1

H∏
r=1

f(x[r]i, δ
[r]
i ; Ω). (3.8)

We can easily obtain the ML estimator of α, α̂ML, by using the EM algorithm

in the conditional expected log-likelihood function given the RSS data. Although
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the likelihood function (3.8) is tractable with respect to sampling parameters; the

likelihood function is still untractable with respect to Ψ, due to the presence of

∑n
i=1

∑H
r=1 log

(
g(x,Ψ)

)
and

∑n
i=1

∑H
r=1 log

(
G(x,Ψ)

)
terms in the logarithm

of the likelihood function (3.8). To overcome the problem, we have to view the{
X[r]i; r = 1, . . . , H, i = 1, . . . , n

}
as incomplete RSS data. Given ∆

[r]
i = δ

[r]
i ,

we have to introduce three additional latent variables Z
[r]
i ,W

[r]
i ,V

[r]
i for each x[r]i.

We consider {∆[r,h]
i = 1} as the event that the rth entry of the vector ∆

[r]
i is

only one and other elements are zero. We define an M -dimensional latent vector

Z
[r]
i = {Z [r]

i1 , . . . , Z
[r]
iM}, where Z

[r]
ij |{∆

[r,h]
i = 1} is one if x[r]i belongs to the j-th

component of the mixture model j = 1, . . . ,M . That is,

Z
[r]
ij

∣∣{∆[r,h]
i = 1} =

{
1 if x[r]i belongs to component j;
0 otherwise,

where

M∑
j=1

(
Z

[r]
ij

∣∣{∆[r,h]
i = 1}

)
= 1.

Thus Z
[r]
i |{∆

[r,h]
i = 1}, i = 1, . . . , n; r = 1, . . . , H, has a multinomial distribution

including one draw on M classes with probabilities π = (π1, . . . , πM), we can write

f(z
[r]
i

∣∣δ[r]i ;π) =
H∏
h=1

{(
1

z
[r]
i1 , . . . , z

[r]
iM

) M∏
j=1

π
z
[r]
ij

j

}δ
[r,h]
i

. (3.9)

Given ∆
[r]
i = δ

[r]
i , we also consider W

[r]
i = {W [r]

i1 , . . . ,W
[r]
iM} as an M -dimensional

vector, where W
[r]
ij |{∆

[r,h]
i = 1} denotes the number of observations less than x[r]i in
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the set which come from the component j of FMM (2.2) with

M∑
j=1

(
W

[r]
ij |{∆

[r,h]
i = 1}

)
= h− 1.

Accordingly, the latent vectors W
[r]
i |{∆

[r,h]
i = 1}, i = 1, . . . , n; r = 1, . . . , H, follows

a multinomial distribution including h − 1 draws on M classes with probabilities

π = (π1, . . . , πM) and we can write

f(w
[r]
i

∣∣δ[r]i ;π) =
H∏
h=1

{(
h− 1

w
[r]
i1 , . . . , w

[r]
iM

) M∏
j=1

π
w

[r]
ij

j

}δ
[r,h]
i

. (3.10)

Finally, given ∆
[r]
i = δ

[r]
i we define V

[r]
i = {V [r]

i1 , . . . , V
[r]
iM} as an M -dimensional

vector, where V
[r]
ij |{∆

[r,h]
i = 1} shows the number of observations bigger than x[r]i

in the set that come from the component j of the FMM (2.2) with

M∑
j=1

(
V

[r]
ij |{∆

[r,h]
i = 1}

)
= H − h.

The vectors V
[r]
i |{∆

[r,h]
i = 1}, i = 1, . . . , n; r = 1, . . . , H, also has a multinomial

distribution including H−h draws on M classes with probabilities π = (π1, . . . , πM),

and we have

f(v
[r]
i |δ

[r]
i ;π) =

H∏
h=1

{(
H − h

v
[r]
i1 , . . . , v

[r]
iM

) M∏
j=1

π
v
[r]
ij

j

}δ
[r,h]
i

. (3.11)

It is easy to see that the latent variables Z
[r]
i ,W

[r]
i and V

[r]
i given ∆

[r]
i are condition-

ally independent. We present the joint distribution of X[r]i and its latent variables
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∆
[r]
i ,Z

[r]
i ,W

[r]
i and V

[r]
i in the following lemma, where proof can be found in (Hatefi

et al., 2015).

Lemma 3.1. For fixed values i and r, i = 1, . . . , n, r = 1, . . . , H, we have

f(x[r]i, δ
[r]
i , z

[r]
i ,w

[r]
i ,v

[r]
i ; Ω) ∝

H∏
h=1

M∏
j=1

{
αr,h π

{z[r]ij +w
[r]
ij +v

[r]
ij }

j

}δ[r,h]i

×
{

[f(x[r]i, θj)]
z
[r]
ij [F (x[r]i, θj)]

w
[r]
ij [F̄ (x[r]i, θj)]

v
[r]
ij

}δ[r,h]i

.

Using all the latent variables, we introduce the complete RSS data as

YRSS = {X[r]i,∆
[r]
i ,Z

[r]
i ,W

[r]
i ,V

[r]
i , i = 1, . . . , n; r = 1, . . . , H}.

From Lemma 3.1, likelihood function based on complete RSS data is given by

L(Ω|yRSS) =
n∏
i=1

H∏
r=1

f(x[r]i, δ
[r]
i , z

[r]
i ,w

[r]
i ,v

[r]
i ; Ω).

The complete data log-likelihood function of Ω based on RSS data is given by

l(Ω|yRSS) ∝ l1(α|yRSS) + l2(π|yRSS) + l3(ξ|yRSS), (3.12)

where

l1(α|yRSS) =
n∑
i=1

H∑
r=1

H∑
h=1

δ
[r,h]
i logαr,h,

l2(π|yRSS) =
n∑
i=1

H∑
r=1

H∑
h=1

δ
[r,h]
i

M∑
j=1

[{
z
[r]
ij + w

[r]
ij + v

[r]
ij

}
log πj

]
,

l3(ξ|yRSS) =
n∑
i=1

H∑
r=1

H∑
h=1

δ
[r,h]
i ×

M∑
j=1

[
z
[r]
ij log fj(x[r]i; θj)+w

[r]
ij logFj(x[r]i; θj)+v

[r]
ij log F̄j(x[r]i; θj)

]
.
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3.1.2 EM Algorithm for RSS Data

In this section, we present an EM algorithm to maximize the log-likelihood function

(3.12). The EM algorithm starts with an initial value of the population parameter

Ω(0). To compute the EM algorithm, we require to fit the conditional expectation of

the latent variables given incomplete RSS data. From equation (3.6), the conditional

expectation of ∆
[r,h]
i |{X[r]i = x[r]i} is given by

φ
[r,h]
i (Ω) =

αr,hBh,H−h+1(G(x[r]i; Ψ))
H∑
h=1

αr,hBh,H−h+1(G(x[r]i; Ψ))

, (3.13)

where Ba,b(·) is a beta density function with parameters a and b. In addition,

from Lemma 3.1, equation (3.4) and independence conditional of latent variables

Z
[r]
i ,W

[r]
i ,V

[r]
i , we derived the conditional distribution of latent variablesZ

[r]
i ,W

[r]
i ,V

[r]
i

given ∆
[r]
i and X[r]i as follows

Z
[r]
ij |{x[r]i,∆

[r,h]
i = 1} ∼ Bin

(
1,
πjf(x[r]i; θj)

g(x[r]i; Ψ)

)
, (3.14)

W
[r]
ij |{x[r]i,∆

[r,h]
i = 1} ∼ Bin

(
h− 1,

πjF (x[r]i; θj)

G(x[r]i; Ψ)

)
, (3.15)

V
[r]
ij |{x[r]i,∆

[r,h]
i = 1} ∼ Bin

(
H − h,

πjF̄ (x[r]i; θj)

Ḡ(x[r]i; Ψ)

)
, (3.16)

all for i = 1, . . . , n and j = 1, . . . ,M and r = 1, . . . , H. From (3.14), (3.15) and

(3.16), we compute τ
[r]
i,j (Ω), β

[r]
i,j(Ω) and γ

[r]
i,j(Ω), the conditional expectation of the
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latent variables Z
[r]
i ,W

[r]
i ,V

[r]
i respectively. They are given as follows

τ
[r]
i,j (Ω) =

πjf(x[r]i; θj)

g(x[r]i; Ψ)
(3.17)

β
[r]
i,j(Ω) = (h− 1)×

πjF (x[r]i; θj)

G(x[r]i; Ψ)
(3.18)

γ
[r]
i,j(Ω) = (H − h)×

πjF̄ (x[r]i; θj)

Ḡ(x[r]i; Ψ)
(3.19)

From decomposition (3.12) and from (3.17), (3.18), (3.19), the conditional expecta-

tion of the RSS-complete log-likelihood is given by

Q(Ω,Ω∗) = E
(
`(Ω)|yRSS,Ω

∗
)

= Q1(α,Ω∗) + Q2(π,Ω∗) + Q3(ξ,Ω∗), (3.20)

where

Q1(α,Ω
∗) =

n∑
i=1

H∑
r=1

H∑
h=1

φ
[r,h]
i (Ω∗) logαr,h, (3.21)

Q2(π,Ω
∗) =

n∑
i=1

H∑
r=1

H∑
h=1

M∑
j=1

φ
[r,h]
i (Ω∗) log πj

×
{
τ
[r]
i,j (Ω

∗) + β
[r]
i,j(Ω

∗) + γ
[r]
i,j(Ω

∗)
}
, (3.22)

Q3(ξ,Ω
∗) =

n∑
i=1

H∑
r=1

M∑
j=1

{
log fj(x[r]i; θj)

H∑
h=1

φ
[r,h]
i (Ω∗)τ

[r]
i,j (Ω

∗)

+ logFj(x[r]i; θj)
H∑
h=1

φ
[r,h]
i (Ω∗)β

[r]
i,j(Ω

∗)

+ log F̄j(x[r]i; θj)
H∑
h=1

φ
[r,h]
i (Ω∗)γ

[r]
i,j(Ω

∗)

}
. (3.23)
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To better describe the iterative nature of the EM algorithm, we suppose that we

have Ω(p) the estimate of Ω updated from the p-th iteration, we shall update Ω(p+1)

from the following E- and M-steps.

E-Step: In the E-step, using the Ω(p) from the p-th iteration and from (3.20), we

compute the conditional expectation of the log-likelihood in the (p+ 1) iteration as

follows

Q(Ω,Ω(p)) = EΩ(p)

(
`(Ω)|yRSS,Ω

(p)

)
= Q1(α,Ω(p)) + Q2(π,Ω(p)) + Q3(ξ,Ω(p)),

(3.24)

where Q1, Q2, Q3 are computed from (3.21), (3.22) and (3.23).

M-Step: In this step, we obtain the updated estimate of Ω(p+1) = (Ψ(p+1),α(p+1))

by maximizing the conditional log-likelihood function Q(Ω,Ω(p)). Based on the

decomposition (3.20), we can maximize the Q1, Q2 and Q3 separately. First, we

maximize Q1(α,Ω
(p)). Because of the constraint that α is a doubly stochastic ma-

trix, we use the Lagrangian multipliers to maximize Q1 subject to the constraint∑H
h=1 αr,h =

∑H
r=1 αr,h = 1. To do so, we assume α is symmetric matrix where

αh,h′ = αh′ ,h and using method of Arslan and Ozturk (2013), the Lagrangian mul-

tiplier is given by

Q1(α,Ω
(p);λ) =

H∑
h=1


h−1∑
h′=1

φh,h′ (Ω
(p)) logαh,h′ +

H∑
h′=h

φh,h′ (Ω
(p)) logαh′ ,h


+

H∑
h=1

λh


h−1∑
h′=1

αh,h′ +
H∑

h′=h

αh′ ,h − 1

 .
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To update π(p+1) we need to use (3.22) to maximize Q2(π,Ω
(p)) with respect to

π subject to the constraint that
∑M

j=1 πj = 1. It is easy to show that the update

π(p+1) is given by

π̂
(p+1)
j =

1

n(H)3

n∑
i=1

H∑
r=1

H∑
h=1

φ
[r,h]
i (Ω(p))

{
τ
[r]
i,j (Ω

(p)) + β
[r]
i,j(Ω

(p)) + γ
[r]
i,j(Ω

(p))
}
.(3.25)

Finally, to obtain the update ξ(p+1), we need to maximize the Q3(ξ,Ω
(p)) with

respect to ξ. Hence the ξ(p+1) can be obtained as a solution to

n∑
i=1

H∑
r=1

M∑
j=1

∂
∂ξ
fj(x[r]i; θj)

fj(x[r]i; θj)

H∑
h=1

φ
[r,h]
i (Ω(p))τ

[r]
i,j (Ω

(p))

+
n∑
i=1

H∑
r=1

M∑
j=1

∂

∂ξ
Fj(x[r]i; θj)

(
H∑
h=1

φ
[r,h]
i (Ω(p))

{
β
[r]
i,j(Ω

(p))

Fj(x[r]i; θj)
−

γ
[r]
i,j(Ω

(p))

F̄j(x[r]i; θj)

})
= 0.

(3.26)

One can obtain the ML estimates of Ω = (α,Ψ) by alternating the E- and M-steps

until ‖Ω(p+1) − Ω(p)‖∞ becomes negligible. More details about the proposed EM

algorithm and RSS-ML estimation of FMMs in parametric setting can be found in

Hatefi et al. (2015).

3.2 Semi-parametric FMMs with RSS

This section develops a new semi-parametric EM algorithm to estimate the unknown

parameters in FMMs. As we discussed in Chapter 2, in a semi-parametric setting,

the probability density function (pdf) f is unknown, and we need to estimate it by
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using an appropriate Kernel density estimation method. Similar to the population

configuration of Chapter 2, we consider the underlying population comes from family

of the location-shifted mixture models. Accordingly, the probability density function

(pdf) and cumulative density function (CDF) in mixture models are given by

g(x; Ψ) =
M∑
j=1

πjf(x− µj), (3.27)

G(x; Ψ) =
M∑
j=1

πjF (x− µj). (3.28)

The unknown parameters of the model are given by Ψ = (π, f, ξ>), where π =

(π1, . . . , πM) and ξ> = (µ1, . . . , µM). We assume that the random variable X follows

FMM (3.27). Let {X[r]i; r = 1, . . . , H; i = 1, . . . , n} denote an RSS of size nH with

the set size n and the number of cycles n. In a similar view to parametric setting

of Section 3.1, we introduce a missing data mechanism to model the ranking error

involved in RSS data. Let α show the misplacement probability in the model. The

misplacement probability matrix is given by

α =


α1,1 α1,2 . . . α1,H

α2,1 α2,2 . . . α2,H
...

... . . .
...

αH,1 αH,2 . . . αH,H


H×H

,

where αr,h is the probability that h-th order statistic is assigned to the r-th judg-

mental rank stratum in the set. Similarly, α should be a doubly stochastic such that∑H
h=1 αr,h =

∑H
r=1 αr,h = 1. To accommodate the ranking errors in our estimation
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procedure, for each X[r]i, we define a H dimensional multinomial random vector,

∆
[r]
i , with parameters 1 and α[r] = (αr,1, . . . , αr,H) such that

∆
[r]
i =

(
∆

[r,1]
i , . . . ,∆

[r,H]
i

)
.

The pdf of ∆
[r]
i is given by

P(∆
[r]
i = δ

[r]
i ;α) =

H∏
h=1

(αr,h)
δ
[r,h]
i . (3.29)

We can write the conditional distribution of X[r]i given ∆
[r]
i as follows

f(x[r]i|δ[r]i ; Ω) =
H∏

h=1

{
g(h:H)(x[r]i; Ψ)

}δ[r,h]
i

, (3.30)

where

g(h:H)(x; Ψ) = H

(
H − 1

h− 1

)
g(x; Ψ){G(x; Ψ)}h−1{Ḡ(x; Ψ)}H−h, (3.31)

and Ḡ(x; Ψ) = 1 − G(x; Ψ). From (3.29) and (3.30), the joint distribution of

(X[r]i,∆
[r]
i ) is given by

f(x[r]i, δ
[r]
i ; Ω) =

H∏
h=1

{
αr,hg

(h:H)(x[r]i; Ψ)

}δ[r,h]i

, (3.32)

where Ω = (Ψ,α) and Ψ = (π, f, ξ>). Therefore, the marginal distribution of X[r]i

can be computed as

f(x[r]i; Ω) =
∑
δ
[r]
i

f(x[r]i, δ
[r]
i ; Ω) =

H∑
h=1

αr,hg
(h:H)(x[r]i; Ψ). (3.33)
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We can write the conditional distribution of ∆
[r]
i given X[r]i from (3.32) and (3.33)

as follows

f(δ
[r]
i

∣∣x[r]i; Ω) =
H∏
h=1

{
αr,hBh,H+1−h(G(x[r]i; Ψ))
H∑
h=1

αr,hBh,H+1−h(G(x[r]i; Ψ))

}δ[r,h]i

, (3.34)

where Ba,b(·) is a beta density function with parameters a and b.

3.2.1 Likelihood Functions with RSS

In this section, we estimate the unknown parameter Ω of the location-shifted FMM

(3.27) by using ML method. Using the equation (3.33), we write the likelihood

function as

L(Ω) =
n∏
i=1

H∏
r=1

f(x[r]i; Ω). (3.35)

Hence, the ML estimate of Ω is the solution to

Ω̂ML = argmax
Ω

L(Ω). (3.36)

As saw in previous chapter, it is not tractable to obtain the ML estimate of the

parameters via (3.35). Thus, we use the latent multinomial random vectors ∆
[r]
i

and we derive the likelihood function of Ω as follows

L(Ω) =
n∏
i=1

H∏
r=1

f(x[r]i, δ
[r]
i ; Ω). (3.37)

The likelihood function (3.37) is tractable with respect toα; hence the ML estimator

of α, can be easily obtained by using the EM algorithm. Based on the equations
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(3.27), (3.28) and (3.31), the likelihood function (3.37) is stil not tractable to obtain

the ML estimation of Ψ. In a similar view to previous chapter, we introduce three

additional latent variables Z
[r]
i ,W

[r]
i ,V

[r]
i for each x[r]i given ∆

[r]
i = δ

[r]
i . We consider

{∆[r,h]
i = 1} as the event that the h-th entry of the vector ∆

[r]
i is one and other

elements are zero. We define an M -dimensional latent vector Z
[r]
i |{∆

[r,h]
i = 1},

where Z
[r]
ij |{∆

[r,h]
i = 1} is one if x[r]i belongs to the j-th component of the mixture

model; that is,

Z
[r]
ij

∣∣{∆[r,h]
i = 1} =

{
1 if x[r]i belongs to component j;
0 otherwise,

where

M∑
j=1

(
Z

[r]
ij

∣∣∆[r,h]
i = 1

)
= 1.

Since Z
[r]
i |{∆

[r,h]
i = 1}, i = 1, . . . , n; r = 1, . . . , H, has a multinomial distribution

including one draw on M classes with probabilities π = (π1, . . . , πM), we can write

f(z
[r]
i

∣∣δ[r]i ;π) =
H∏
h=1

{(
1

z
[r]
i1 , . . . , z

[r]
iM

) M∏
j=1

π
z
[r]
ij

j

}δ
[r,h]
i

. (3.38)

We also introduce W
[r]
i |{∆

[r,h]
i = 1} as anM -dimensional vector, whereW

[r]
ij |{∆

[r,h]
i =

1} denotes the number of observations less than x[r]i which are selected from the

component j of the FMM (3.27) with

M∑
j=1

(
W

[r]
ij |∆

[r,h]
i = 1

)
= h− 1.
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The latent vectors W
[r]
i |{∆

[r,h]
i = 1}, i = 1, . . . , n; r = 1, . . . , H, follows a multi-

nomial distribution including h − 1 draws on M classes with probabilities π =

(π1, . . . , πM) and we can write

f(w
[r]
i

∣∣δ[r]i ;π) =
H∏
h=1

{(
h− 1

w
[r]
i1 , . . . , w

[r]
iM

) M∏
j=1

π
w

[r]
ij

j

}δ
[r,h]
i

. (3.39)

Finally, we introduce V
[r]
i |{∆

[r,h]
i = 1} as anM -dimensional vector, where V

[r]
ij |{∆

[r,h]
i =

1} shows the number of observations bigger than x[r]i that are selected from the

component j of the FMM (3.27) with

M∑
j=1

(
V

[r]
ij |∆

[r,h]
i = 1

)
= H − h.

Accordingly, the vectors V
[r]
i |{∆

[r,h]
i = 1}, i = 1, . . . , n; r = 1, . . . , H, also has a

multinomial distribution including H − h draws on M classes with probabilities

π = (π1, . . . , πM), and we have

f(v
[r]
i |δ

[r]
i ;π) =

H∏
h=1

{(
H − h

v
[r]
i1 , . . . , v

[r]
iM

) M∏
j=1

π
v
[r]
ij

j

}δ
[r,h]
i

. (3.40)

The latent variables Z
[r]
i ,W

[r]
i and V

[r]
i given ∆

[r]
i are conditionally independent.

We derive the joint distribution of the judgment order statistic X[r]i and the latent

variables Z
[r]
i ,W

[r]
i and V

[r]
i in the following lemma.
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Lemma 3.2. For i = 1, . . . , n, r = 1, . . . , H, we have

f(x[r]i, δ
[r]
i , z

[r]
i ,w

[r]
i ,v

[r]
i ; Ω) ∝

H∏
h=1

M∏
j=1

{
αr,hπ

{z[r]ij +w
[r]
ij +v

[r]
ij }

j

}δ[r,h]i

×
{

[f(x[r]i − µj)]z
[r]
ij [F (x[r]i − µj)]w

[r]
ij [F̄ (x[r]i − µj)]v

[r]
ij

}δ[r,h]i

.

Proof. Let c1 = H
(
H−1
h−1

)
, c2 =

(
1

z
[r]
i1 ,...,z

[r]
iM

)
, c3 =

( h−1
w

[r]
i1 ,...,w

[r]
iM

)
and c4 =

( H−h
v
[r]
i1 ,...,v

[r]
iM

)
.

f(x[r]i|{z[r]
i , δ

[r]
i }; Ω)

=
H∏
h=1

{
c1

M∏
j=1

[f(x[r]i − µj)]z
[r]
ij [G(x[r]i; Ψ)]h−1[Ḡ(x[r]i; Ψ)]H−h

}δ[r,h]i

.

(3.41)

Using (3.29), (3.38) and (3.41) we can derive the joint distribution of (X[r]i,Z
[r]
i ,∆

[r]
i )

as

f(x[r]i, z
[r]
i , δ

[r]
i ; Ω)

=
H∏
h=1

{
αr,h c1 c2

M∏
j=1

[πjf(x[r]i − µj)]z
[r]
ij [G(x[r]i; Ψ)]h−1[Ḡ(x[r]i; Ψ)]H−h

}δ[r,h]i

.

(3.42)

Furthermore, using (3.32) and (3.42), it is easy to see that

f(z
[r]
i |{x[r]i, δ

[r]
i }; Ω) =

H∏
h=1

c2
M∏
j=1

(
πjf(x[r]i − µj)
g(x[r]i; Ψ)

)z[r]ij


δ
[r,h]
i

. (3.43)

On the other hand, the conditional distribution of X[r]i given W
[r]
i and ∆

[r]
i can be
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written as

f(x[r]i|{w[r]
i , δ

[r]
i }; Ω)

=
H∏
h=1

{
c1 g(x[r]i; Ψ)

M∏
j=1

[F (x[r]i − µj)]w
[r]
ij [Ḡ(x[r]i; Ψ)]H−h

}δ[r,h]i

.

From (3.29) and (3.39), it is easy to obtain

f(x[r]i,w
[r]
i , δ

[r]
i ; Ω)

=
H∏
h=1

{
αr,h c1 c3g(x[r]i; Ψ)

M∏
j=1

[πjF (x[r]i − µj)]w
[r]
ij [Ḡ(x[r]i; Ψ)]H−h

}δ[r,h]i

.

Now, using (3.32), we can derive

f(w
[r]
i |{x[r]i, δ

[r]
i }; Ω) =

H∏
h=1

c3
M∏
j=1

(
πjF (x[r]i − µj)
G(x[r]i; Ψ)

)w[r]
ij


δ
[r,h]
i

. (3.44)

Similarly, we can derive

f(x[r]i|{v[r]
i , δ

[r]
i }; Ω)

=
H∏
h=1

{
c1g(x[r]i; Ψ)

M∏
j=1

[G(x[r]i; Ψ)]h−1[F̄ (x[r]i − µj)]v
[r]
ij

}δ[r,h]i

.

Again, from (3.29) and (3.40) the joint distribution is given by

f(x[r]i,v
[r]
i , δ

[r]
i ; Ω)

=
H∏
h=1

{
αr,h c1 c4g(x[r]i; Ψ)

M∏
j=1

[G(x[r]i; Ψ)]h−1[πjF̄ (x[r]i − µj)]v
[r]
ij

}δ[r,h]i

.
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Once again, using (3.32), it is easy to show

f(v
[r]
i |{x[r]i, δ

[r]
i }; Ω) =

H∏
h=1

c4
M∏
j=1

(
πjF̄ (x[r]i − µj)
Ḡ(x[r]i; Ψ)

)v[r]ij


δ
[r,h]
i

. (3.45)

Now based on the conditional independence of the latent variables, we have

f(x[r]i, δ
[r]
i , z

[r]
i ,w

[r]
i ,v

[r]
i ) = f(z

[r]
i |x[r]i, δ

[r]
i ).f(w

[r]
i |x[r]i, δ

[r]
i ).f(v

[r]
i |x[r]i, δ

[r]
i ).f(x[r]i, δ

[r]
i ; Ω)

Now from (3.32), (3.43), (3.44) and (3.45), the proof of lemma is completed.

In the following Lemma, we show the marginalization of RSS-complete likelihood

function.

Lemma 3.3. For each x[r]i, i = 1, . . . , n; r = 1, . . . , H, we have

f(x[r]i, δ
[r]
i ; Ω) =

∑
Z|δ

∑
W|δ

∑
V|δ

f(x[r]i, δ
[r]
i , z

[r]
i ,w

[r]
i ,v

[r]
i ; Ω).

Proof. Let c1 = H
(
H−1
h−1

)
, c2 =

(
1

z
[r]
i1 ,...,z

[r]
iM

)
, c3 =

( h−1
w

[r]
i1 ,...,w

[r]
iM

)
and c4 =

( H−h
v
[r]
i1 ,...,v

[r]
iM

)
.
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∑
Z|δ

∑
W|δ

∑
V|δ

f(x[r]i, δ
[r]
i , z

[r]
i ,w

[r]
i ,v

[r]
i ; Ω)

=
H∏
h=1

c1αr,h
 ∑

Z
[r]
i |δ

[r]
i

c2

M∏
j=1

{πjf(x[r]i − µj)}z
[r]
ij



×

 ∑
W

[r]
i |δ

[r]
i

c3

M∏
j=1

{πjF (x[r]i − µj)}w
[r]
ij


 ∑

V
[r]
i |δ

[r]
i

c4

M∏
j=1

{πjF̄ (x[r]i − µj)}v
[r]
ij



δ
[r,h]
i

=
H∏
h=1

c1αr,h
[

M∑
j=1

πjf(x[r]i − µj)

][
M∑
j=1

πjF (x[r]i − µj)

]h−1

×

[
M∑
j=1

πjF̄ (x[r]i − µj)

]H−h
δ
[r,h]
i

=
H∏
h=1

{
c1αr,hg(x[r]i; Ψ)[G(x[r]i; Ψ)]h−1[Ḡ(x[r]i; Ψ)]H−h

}δ[r,h]i

=f(x[r]i, δ
[r]
i ; Ω).

Let yRSS = {(X[r]i,∆
[r]
i ,Z

[r]
i ,W

[r]
i ,V

[r]
i ), i = 1, . . . , n; r = 1, . . . , H} denote the

complete RSS data; then the RSS-complte likelihood function is given by

L(Ω|yRSS) =
n∏
i=1

H∏
r=1

f(x[r]i, δ
[r]
i , z

[r]
i ,w

[r]
i ,v

[r]
i ; Ω), (3.46)
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The complete-data log-likelihood function of Ω is also given by

l(Ω|yRSS)

∝
n∑
i=1

H∑
r=1

H∑
h=1

δ
[r,h]
i logαr,h

+
n∑
i=1

H∑
r=1

H∑
h=1

δ
[r,h]
i

M∑
j=1

[{
z
[r]
ij + w

[r]
ij + v

[r]
ij

}
log πj

]

+
n∑
i=1

H∑
r=1

H∑
h=1

δ
[r,h]
i ×

M∑
j=1

[
z
[r]
ij log f(x[r]i − µj)

+ w
[r]
ij logF (x[r]i − µj) + v

[r]
ij log F̄ (x[r]i − µj)

]

=l1(α|yRSS) + l2(π|yRSS) + l3(µ, f |yRSS). (3.47)

3.2.2 Semi-parametric EM Algorithm

In this section, we develop a semi-parametric EM algorithm to obtain the ML

estimates of FMMs based on RSS data. As discussed before, the EM algorithm

requires an initial value.

Initialization Step: Let Ω(0) = (α(0), f (0), ξ>(0)) represent the starting value of

the EM algorithm. In the E-step of the EM algorithm, we need to compute the

conditional expectation of the latent variables given incomplete data. For the first

layer of the latent variables, from (3.34), the conditional distribution of ∆
[r,h]
i |X[r]i

is given by

∆
[r,h]
i |{X[r]i = x[r]i} ∼ Bin

(
1, φ

[r,h]
i (Ω)

)
,
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where Bin(a, b) is a binomial distribution with parameters a and b, and the proba-

bility of success is given by

φ
[r,h]
i (Ω) =

αr,hBh,H−h+1(G(x[r]i; Ψ))
H∑
h=1

αr,hBh,H−h+1(G(x[r]i; Ψ))

,

and Ba,b(·) is a Beta density function with parameters a and b. For the conditional

expectation of the latent variables Zi, Wi, and Vi, we calculate their conditional

distributions given X[r]i and ∆
[r,h]
i . Using (3.43), (3.44) and (3.45), we can find the

conditional distribution of the latent variables as follows

Z
[r]
ij |{x[r]i,∆

[r,h]
i = 1} ∼ Bin

(
1,
πjf(x[r]i − µj)
g(x[r]i; Ψ)

)
,

W
[r]
ij |{x[r]i,∆

[r,h]
i = 1} ∼ Bin

(
h− 1,

πjF (x[r]i − µj)
G(x[r]i; Ψ)

)
,

V
[r]
ij |{x[r]i,∆

[r,h]
i = 1} ∼ Bin

(
H − h,

πjF̄ (x[r]i − µj)
Ḡ(x[r]i; Ψ)

)
,

Let τ
[r]
i,j (Ω), β

[r]
i,j(Ω) and γ

[r]
i,j(Ω) denote the conditional expectations of Z

[r]
ij , W

[r]
ij

and V
[r]
ij , given x[r]i and ∆

[r,h]
i = 1, respectively. From conditional independence of

the latent variables, we have

EΩ(p)

[
∆

[r,h]
i Z

[r]
ij

∣∣x[r]i] = φ
[r,h]
i (Ω) τ

[r]
i,j (Ω),

EΩ(p)

[
∆

[r,h]
i W

[r]
ij

∣∣x[r]i] = φ
[r,h]
i (Ω) β

[r]
i,j(Ω),

54



EΩ(p)

[
∆

[r,h]
i V

[r]
ij

∣∣x[r]i] = φ
[r,h]
i (Ω) γ

[r]
i,j(Ω).

E-Step: In this step, we consider Ω(p) is the update of Ω from the p-th iteration.

Using Ω(p), the conditional expectation of log-likelihood based on complete RSS

data is given by

Q(Ω,Ω(p)) = EΩ(p)

(
l(Ω)|yRSS

)
= Q1(α,Ω

(p)) +Q2(π,Ω
(p)) +Q3(ξ, f,Ω

(p)), (3.48)

where

Q1(α,Ω
(p)) =

n∑
i=1

H∑
r=1

H∑
h=1

φ
[r,h]
i (Ω(p)) log(αr,h),

Q2(π,Ω
(p)) =

n∑
i=1

H∑
r=1

H∑
h=1

M∑
j=1

φ
[r,h]
i (Ω(p)) log π

(p)
j

×
{
τ
[r]
i,j (Ω

(p)) + β
[r]
i,j(Ω

(p)) + γ
[r]
i,j(Ω

(p))
}
,

and

Q3(µ, f,Ω
(p)) =

n∑
i=1

H∑
r=1

M∑
j=1

{
log f (p)(x[r]i − µj)

H∑
h=1

φ
[r,h]
i (Ω(p))τ

[r]
i,j (Ω

(p))

+ logF (p)(x[r]i − µj)
H∑
h=1

φ
[r,h]
i (Ω(p))β

[r]
i,j(Ω

(p))

+ log F̄ (p)(x[r]i − µj)
H∑
h=1

φ
[r,h]
i (Ω(p))γ

[r]
i,j(Ω

(p))

}
.

S-Step: We need to update the pdf f (p+1). In this step, in a similar view to Section
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2.3, the estimate of f based on RSS data can be updated in a semi-parametric

framework as follows:

S1-Step: We can simulate the stochastic version of the τ
[r]
i,j (Ψ) through

Z(p+1)(x[r]i; Ψ
(p)) ∼Multi

{
1, τi1(x[r]i; Ψ

(p)), . . . , τiM(x[r]i; Ψ
(p))

}
, r = 1, . . . , H.

S2-Step: We can obtain the centered back RSS observations from f through

x̃
(p+1)
[r]i = x[r]i − µ(p)

Z(p+1)(x[r]i;Ψ
(p))
,

for i = 1, . . . , n. Due to the fact the f is assumed to be symmetric, we use centered

back RSS data

{
x̃
(p+1)
[1]1 , . . . , x̃

(p+1)
[H]n

}
, and obtain the Kernel density estimate f (p+1)

of f as follows:

S3-Step: Kernel density estimate of f

f̂
x̃
(p+1)
[r]i

(u) =
1

Hhn

H∑
r=1

K

(
u− x̃(p+1)

[r]i

hn

)
; (3.49)

S4-Step: Symmetrization

f (p+1)(u) =
f̂
x̃
(p+1)
[r]i

(u) + f̂
x̃
(p+1)
[r]i

(−u)

2
. (3.50)

Once we obtained f (p+1), we use the empirical cumulative density based on f (p+1)

to update the estimate of F (p+1).

M-Step: In this step, we focus on the maximization of (3.48) to update the es-

timates of Ω(p+1) = (Ψ(p+1),α(p+1)). First, we maximize Q1(α,Ω
(p)) under the
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constraint that α is a double stochastic matrix. We can use double multipliers to

take into account the constraint in the maximization. Under the assumption that

the α is symmetric (Arslan and Ozturk, 2013), the double Lagrangian multiplier is

given by

Q1(α,Ω
(p);λ) =

H∑
h=1


h−1∑
h
′
=1

φh,h′ (Ω
(p)) logαh,h′ +

H∑
h′=h

φh,h′ (Ω
(p)) logαh′ ,h


+

H∑
h=1

λh


h−1∑
h′=1

αh,h′ +
H∑

h′=h

αh′ ,h − 1

 .

We can update the estimation of the πj by maximizing Q2(π,Ω
(p)). It is easy to

show that π
(p+1)
j , j = 1, . . . ,M can be obtained by

π̂
(p+1)
j =

1

n(H)3

n∑
i=1

H∑
r=1

H∑
h=1

φ
[r,h]
i (Ω(p))

{
τ
[r]
i,j (Ω

(p)) + β
[r]
i,j(Ω

(p)) + γ
[r]
i,j(Ω

(p))
}
.(3.51)

Finally, to obtain the updated estimate ξ>(p+1) = (µ
(p+1)
1 , . . . , µ

(p+1)
M ), we maximize

the Q3(ξ, f,Ω
(p)) with respect to ξ. Consequently, the ξ(p+1) is solution to the

following equation,

n∑
i=1

H∑
r=1

M∑
j=1

∂
∂µ
f (p+1)(x[r]i − µ(p)

j )

f (p+1)(x[r]i − µ(p)
j )

H∑
h=1

φ
[r,h]
i (Ω(p))τ

[r]
i,j (Ω

(p))

+
n∑
i=1

H∑
r=1

M∑
j=1

∂

∂µ
F (p+1)(x[r]i − µ(p)

j )

×

(
H∑
h=1

φ
[r,h]
i (Ω(p))

{
β
[r]
i,j(Ω

(p))

F (p+1)(x[r]i − µ(p)
j )
−

γ
[r]
i,j(Ω

(p))

F̄ (p+1)(x[r]i − µ(p)
j )

})
= 0.

(3.52)
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We obtain the ML estimates of Ω by alternating the E-step, S-step, and M-steps

until ‖Ω(p+1) −Ω(p)‖∞ becomes negligible.

3.2.3 Modified EM Algorithm

Based on the proposed EM algorithm, the (p+ 1)-th step estimator of ξ requires a

solution to the estimating equation (3.52) with respect to µj, j = 1, . . . ,M . As we

discussed in the S-step of the proposed semi-parametric EM- algorithm, there will be

no closed form for the update of pdf f and CDF in the numerator and denominator of

(3.52), respectively. Hence, the optimization of (3.52) is computationally infeasible.

To overcome the problem, we propose a modified EM algorithm using the technique

of Johnson et al. (1972) and Mehrotra and Nanda (1974) that replace the hazard rate

functions in the log-likelihood function ∂
∂ξ

logF (x−µj) and ∂
∂ξ

log(1−F (x−µj)) with

their expected values. Although the following Lemma and its proof in a parametric

framework can be found in Hatefi et al. (2015); we present the Lemma and its proof

in the case of location-shifted mixture models for the sake of completeness.

Lemma 3.4. Let (X[1]i, . . . , X[H]i) be an RSS data of size H (from the cycle i) from

FMM (3.33). Suppose W
[r]
ij and V

[r]
ij be, respectively, the j-th elements of the latent

variables W
[r]
i and V

[r]
i associated with X[r]i. Then, for any function S(·) (subject

to the finiteness of the expectations) we have

a)
H∑
r=1

H∑
h=1

M∑
j=1

E
(

∆
[r,h]
i W

[r]
ij S(X[r]i)

)
= c

M∑
j=1

πjE [G(X)F (X − µj)] ,
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b)
H∑
r=1

H∑
h=1

M∑
j=1

E
(

∆
[r,h]
i V

[r]
ij S(X[r]i)

)
= c

M∑
j=1

πjE
[
S(X)F̄ (X − µj)

]
,

where c = H(H − 1) and the expectations on the right sides are with respect to the

FMM (3.27).

Proof. Here we present the proof of (a), the proof of (b) can be completed in a

similar form.

H∑
r=1

H∑
h=1

M∑
j=1

E
(

∆
[r,h]
i W

[r]
ij S(X[r]i)

)

=
H∑
r=1

H∑
h=1

M∑
j=1

E

(
S(X[r]i)

(h− 1)πjF (X[r]i − µj)
G(X[r]i;Ψ)

αr,hg
(h:H)(X[r]i;Ψ)

f(X[r]i;Ψ)

)

=
H∑
r=1

H∑
h=1

M∑
j=1

∫
S(x)

(h− 1)πjF (x− µj)
G(x;Ψ)

αr,hg
(h:H)(x;Ψ)dx

=

H∑
r∗=1

H∑
h∗=1

M∑
j=1

∫
S(x)

(h∗ − 1)πjF (x− µj)
G(x;Ψ)

αr∗,h∗g
(h∗:H)(x;Ψ)dx

=

H∑
h∗=1

M∑
j=1

∫
S(x)

(h∗ − 1)πjF (x− µj)
G(x;Ψ)

g(h
∗:H)(x;Ψ)dx

= H

M∑
j=1

πj

∫
S(x)F (x− µj)g(x;Ψ)

(
H∑

h∗=1

(h∗ − 1)

(
H − 1

h∗ − 1

)
[G(x;Ψ)]h

∗−2[1−G(x;Ψ)]H−h
∗

)
dx

= H(H − 1)

M∑
j=1

πjE [S(X)Fj(X − µj)] ,
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where

H∑
h∗=1

(h∗ − 1)

(
H − 1

h∗ − 1

)
[G(x; Ψ)]h

∗−2[1−G(x; Ψ)]H−h
∗

= H − 1.

Using Lemma 3.4 and considering S1(x[r]i) = ∂
∂µj
F (x[r]i − µj)/F (x[r]i − µj), we can

easily write

H∑
r=1

H∑
h=1

M∑
j=1

E
(

∆
[r,h]
i W

[r]
ij S1(X[r]i)

)
= H(H − 1)

M∑
j=1

πjE
[
∂

∂µj

F (X − µj)
]
.

We also consider S2(x[r]i) = ∂
∂µj

F (x[r]i − µj)/F̄ (x[r]i − µj) in Lemma 3.4, then we

have

H∑
r=1

H∑
h=1

M∑
j=1

E
(

∆
[r,h]
i V

[r]
ij S2(X[r]i)

)
= H(H − 1)

M∑
j=1

πjE
[
∂

∂µj

F (X − µj)
]
.

Now, using (3.52) and Lemma 3.4, we develop the following modified estimating

equation to update ξ>(p+1) = (µ
(p+1)
1 , . . . , µ

(p+1)
M ) in the M-step of the EM algorithm

which leads to approximate ML estimates of ξ;

n∑
i=1

H∑
r=1

M∑
j=1

∂
∂µ
f (p+1)(x[r]i − µ(p)

j )

f (p+1)(x[r]i − µ(p)
j )

{
H∑
h=1

φ
[r,h]
i (Ω(p))τ

[r]
i,j (Ω

(p))

}
= 0. (3.53)

We finally obtain the updated estimate ξ>(p+1) = (µ
(p+1)
1 , . . . , µ

(p+1)
M ) by maximizing

(3.53) which is similar to the updating equation for parameters of the component

densities under the SRS design. Therefore, the modified version of the proposed EM

algorithm for the imperfect RSS design requires the same computational efforts as
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the EM algorithm based on SRS to update µj. Similar to the SRS case, one feature

of this modified version of the EM algorithm is that the solutions to (3.53) often

exist in closed form. According to the fact that f belongs to the location-shifted

family of distribution, hence we can easily see that µj is the mean, median, and

mode of f given Zij = 1; i.e., E(Xi|Zij = 1) = µj. Therefore, the ML estimate of

µj is the same with the Method of Moments estimate of µj. Accordingly, one can

obtain the µ
(p+1)
j as

µ
(p+1)
j =

∑n
i=1

∑H
r=1 τ

[r]
ij (Ω(p))x[r]i∑n

i=1

∑H
r=1 τ

[r]
ij (Ω(p))

j = 1, . . . ,M. (3.54)
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Chapter 4

Numerical Studies

In this chapter, we investigate the performance of the proposed estimation meth-

ods for semi-parametric finite mixture models (FMMs) through simulation study

and a real data analysis. These estimation methods, as discussed in Chapters 2

and 3, include the development of parametric and semi-parametric version of the

Expectation-Maximization (EM) algorithm to obtain the maximum likelihood (ML)

estimate of the non-parametric elements of FMMs under simple random sampling

and ranked set sampling.

This chapter is organized as follows. In Section 4.1, through simulation studies,

we investigate the effect of ranking errors and sampling parameters on the RSS

estimators. We also compare the performance of the semi-parametric techniques

in the estimation of FMMs. In Section 4.2, we apply the estimation methods to

estimate more efficiently the bone mineral density (BMD) of women aged 50 and

older.
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4.1 Simulation Study

In this section, we use different simulation studies to investigate the performance

of ML estimators of the unknown parameters of the semi-parametric finite mixture

of normal distributions based on SRS and RSS data. In the simulation study,

we estimate the misplacement error in the model based on the RSS data. In our

simulation study, we compare the ML estimation of the parameters of the semi-

parametric mixture model based on RSS data with their counterparts based on

SRS data. For the sake of fair comparison, throughout the simulation studies, we

treated the two-component mixture model given by

g(x; Ψ) = πφ(x;µ1, σ) + (1− π)φ(x;µ2, σ), (4.1)

as our underlying location-shifted mixture population with (π, µ1, µ2, σ) = (0.4, 0, 3, 0.5)

and φ(x;µ, σ) is the pdf of the normal distribution with mean µ and standard devi-

ation σ. We first generated ranked set samples and simple random samples of the

same sizes from this population. We then simulated the semi-parametric estimators

of population (4.1) where we assumed the component density f and parameters

Ψ = (π, µ1, µ2) of population (4.1) are unknown throughout the estimation pro-

cesses.

We evaluate the performance of the ML estimates under RSS and compare it

with their competitors under SRS. In particular, the simulation study investigates

two main characteristics of the estimators: robustness against possible ranking er-

rors and the efficiency of the estimators. As discussed in Chapter 3, the ranking

error involved in the RSS estimation method is modelled by matrix misplacement

probabilities α. In the first simulation study, we investigate the performance of the

63



estimator of α as the matrix of misplacement probabilities. Since the matrix α is

stochastic, many parameters of the matrix (out of H2 elements) become redundant

and can be obtained from the independent set of parameters. For example, when

the set size is H = 3, there are only four independent parameters and should be

estimated. These parameters include α1,1, α1,2, α2,1, α2,2. The other parameters of

matrix α can be computed from constraints
∑H

h=1 αh′ ,h =
∑H

h′=1 αh′ ,h = 1.

To obtain the ML estimation of α, we generated 3000 RSS samples of sizes

90 and 150 with set size H = 3 and cycle sizes n ∈ {30, 50}. To estimate the

performance of ML estimate of α, we consider cases for imperfect ranking in RSS.

These cases include ρ = (1, 0.9, 0.75, 0.5), where ρ indicates the correlation between

variable of interest X and ranking contaminant variable U . It is clear that when

ρ = 1, there is no ranking error involved in RSS data. As ρ decreases, more ranking

errors arise in RSS data.

We use the method of Dell and Clutter (1972) to generate the ranking variable

U from the variable of interest X with Cor(X,U) = ρ and estimate the matrix

of misplacement probabilities. Let C is a matrix of H × H with all elements are

0. We first generate a set of H units from mixture models (4.1), x1, . . . , xH , and

standardize them such that V ar(Xi) = 1. We then generate a set of H errors

from a normal distribution with mean 0 and variance σ2
e = 1−ρ2

ρ2
. We now use

ui = xi + ei to obtain a set of H observations u1, . . . , uH from ranking variable

such that Cor(X,U) = ρ. To estimate the matrix misplacement probabilities based

on these H observations, we first rank the H observations according to their X-

variables. These ranks are called the true ranks of the units. We then rank these
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H units based on their U -variable, and these ranks are called the judgmental ranks

of the units. For this set, an integer (say r) is selected randomly from (1 to H).

We then identify the true rank (say h) of the unit with judgemental rank r. We

next update the C matrix as Ch,r = Ch,r + 1. This process is repeated 5000 times

such that we estimate the misplacement matrix α as α = C
5000

correspondingly

when the ranking ability is ρ = Cor(X,U). These estimations of α matrices are

then considered as the true parameters of misplacement matrices for the second

simulation study for semi-parametric estimation of mixture model (4.1) with RSS

data.

Here, we investigate the performance of the ML estimates of the FMM based

RSS data and SRS data in semi-parametric setting. The ML estimates under RSS

data are computed applying the modified EM algorithms developed in Chapter 3.

We generate RSS and SRS data of the same size from the underlying population

(4.1). In this simulation study, we shall apply the semi-parametric EM algorithms

developed in Chapters 2 and 3 to obtain the non-parametric estimation of the

component density of population (4.1) as well as the ML estimates of the FMM

parameters Ψ = (π, µ1, µ2) when σ is considered known (σ = 0.5).

To simulate the estimation methods, we generated 3000 SRS and RSS samples

of the same sizes N = {90, 150} and computed the MSE and bias as two criteria to

evaluate the performance of the proposed estimators. To better assess the effect of

set size on the performance of RSS-based estimates, we select set size H = {3, 5}.

We select cycle sizes n = {30, 50} (when H = 3) and n = {18, 30} (when H = 5)

to generate the RSS samples of sizes n×H = {90, 150} (i.e. the same size as SRS

samples). We considered four ranking cases ρ = {1, 0.9, 0.75, 0.5} in the collection
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of RSS data to investigate the effect of ranking errors on the performance of the

RSS-based estimates.

In each replication of the simulation, the initial values of Ψ = (π, µ1, µ2) in the

EM-algorithms are computed following the method of Furman and Lindsay (1994)

by treating the RSS sample as a simple random sample.

Table 4.1: α̂MLE based on RSS design when H = 3.

n ρ α11 α12 α21 α22

1 0.99924 0.00070 0.00070 0.99662
0.9 0.99901 0.00086 0.00086 0.99650

30 0.75 0.99878 0.00098 0.00098 0.99617
0.5 0.99864 0.00111 0.00111 0.99594

1 0.99828 0.00138 0.00138 0.99599
50 0.9 0.99895 0.00093 0.00093 0.99681

0.75 0.99866 0.00110 0.00110 0.99658
0.5 0.99839 0.00130 0.00130 0.99627

Table 4.1 shows the estimation of misplacement probabilities when set size H

is 3 for different cycle sizes n ∈ {30, 50} and different correlation coefficients ρ ∈

{1, 0.9, 0.75, 0.5}. Tables 4.2 and 4.3 present the biases and MSE for the parameter

estimates for ranking errors α.

From Tables 4.2 and 4.3, it is clear that the estimators of misplacement prob-

abilities perform very well when ranking ability (i.e. the correlation between the

ranking variable and variable of interest) is strong. For example, when the ranking

ability is high, ρ ∈ {1, 0.9}, the bias of the estimates is very small such that the esti-

mators can be considered practically unbiased. As ρ decreases, more ranking errors

are introduced in the RSS data collection; hence we observe that the MSE and bias

of the estimates of misplacement probabilities increase. Table 4.4 and 4.5 present
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Table 4.2: The biases and MSEs for ranking errors αi, i = 1, . . . , 4 when set size H = 3 and
cycle size n = 30 for different correlation coefficients ρ ∈ {1, 0.9, 0.75, 0.5} based on RSS design.

ρ α11 α12 α21 α22

1 Bias -0.0008 0.0007 0.0007 -0.0034
MSE 0.0131 0.0099 0.0099 0.0219

0.9 Bias 0.0920 -0.0751 -0.0751 0.1745
MSE 0.0165 0.0121 0.0121 0.0261

0.75 Bias 0.1758 -0.1380 -0.1380 0.2952
MSE 0.0195 0.0139 0.0139 0.0313

0.5 Bias 0.2526 -0.1804 -0.1804 0.4089
MSE 0.0209 0.0147 0.0147 0.0331

Table 4.3: The biases and MSEs for ranking errors αi, i = 1, . . . , 4 when set size H = 3 and
cycle size n = 50 for different correlation coefficients ρ ∈ {1, 0.9, 0.75, 0.5} based on RSS design.

ρ α11 α12 α21 α22

1 Bias -0.0017 0.0014 0.0014 -0.0040
MSE 0.0249 0.0187 0.0187 0.0372

0.9 Bias 0.0909 -0.0881 -0.0881 0.1958
MSE 0.0175 0.0138 0.0138 0.0293

0.75 Bias 0.1467 -0.1424 -0.1424 0.3046
MSE 0.0213 0.0159 0.0159 0.0342

0.5 Bias 0.2074 -0.1672 -0.1672 0.4093
MSE 0.0249 0.0178 0.0178 0.0366

the performance of ML estimators of the unknown parameters Ψ = (π, µ1, µ2) of

FMM (4.1) based on SRS and RSS data.

From Tables 4.2 and 4.3, we observe that the bias values of all estimators are very

small (even under RSS data with low ranking ability) such that we can consider these

estimators are almost unbiassed in the estimation of the parameters. Comparing

the MSEs of RSS-based estimators and their SRS counterparts, we see that the

RSS estimators almost outperform their SRS competitors in the semi-parametric
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Table 4.4: Biases and MSEs of (π, µ1, µ2) when set size H ∈ {3, 5} and sample size N = 90 for
different correlation coefficients ρ ∈ {1, 0.9, 0.75, 0.5} based on SRS and RSS designs.

H n ρ π µ1 µ2

SRS — — — Bias -0.0017 0.0073 -0.0086
MSE 0.0509 0.0853 0.0707

1 Bias -0.0112 -0.0044 -0.0103
MSE 0.0416 0.0853 0.0649

0.9 Bias -0.0089 -0.0045 -0.0092
3 30 MSE 0.0421 0.0893 0.0672

0.75 Bias -0.0132 -0.0038 -0.0104
MSE 0.0404 0.0865 0.0674

0.5 Bias -0.0164 -0.0081 -0.0084
RSS MSE 0.0418 0.0927 0.0731

1 Bias -0.0026 0.0020 -0.0095
MSE 0.0369 0.0817 0.0611

0.9 Bias -0.0008 0.0052 -0.0104
5 18 MSE 0.0372 0.0848 0.0659

0.75 Bias -0.0022 0.0057 -0.0096
MSE 0.0367 0.0842 0.0661

0.5 Bias -0.0026 0.0043 -0.0098
MSE 0.0382 0.0874 0.0721

estimation of the FMMs. In addition, we observe that when the ranking ability

is strong, the performance of the RSS estimators increases as the set size increases

from H = 3 to H = 5 (while the sample size remains the same). However, we should

note that when the ranking ability is low, the performance of the RSS estimates

decreases as the set size increases from H = 3 to H = 5.

We present the kernel density estimates of the component density f , the mixture

distribution g and the histogram based on SRS and RSS samples of size nH for one

sample data in Figures 4.1 to 4.6. Following Bordes et al. (2006), we selected the

bandwidth, for both SRS and RSS data, close to the minimum of the mean inte-
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Table 4.5: Biases and MSE of (π, µ1, µ2) when set size H ∈ {3, 5} and sample size N = 150 for
different correlation coefficients ρ ∈ {1, 0.9, 0.75, 0.5} based on SRS and RSS designs.

H n ρ π µ1 µ2

SRS — — — Bias -0.0001 0.0039 -0.0075
MSE 0.0414 0.0655 0.0543

1 Bias -0.0067 -0.0025 -0.0078
MSE 0.0322 0.0688 0.0545

0.9 Bias -0.0069 -0.0010 -0.0097
3 50 MSE 0.0320 0.0757 0.0579

0.75 Bias -0.0085 -0.0043 -0.0056
MSE 0.0312 0.0710 0.0556

0.5 Bias -0.0123 -0.0020 -0.0086
RSS MSE 0.0312 0.0797 0.0602

1 Bias -0.0004 0.0065 -0.0063
MSE 0.0290 0.0626 0.0478

0.9 Bias -0.0007 0.0053 -0.0079
5 30 MSE 0.0287 0.0641 0.0484

0.75 Bias -0.0009 0.0063 -0.0086
MSE 0.0285 0.0648 0.0501

0.5 Bias -0.0013 0.0057 -0.0092
MSE 0.0301 0.0680 0.0539

grated square error hn = ( 4
3n

)
1
5 to obtain these non-parametric density estimates.

Comparing Figures 4.2 and 4.5, we see that the non-parametric estimation of mix-

ture model based on commonly used simple random sample assigns the same weight

to different components. It thus misses the clear peaks of the mixture model. Un-

like the SRS estimates, the non-parametric estimates of the mixture model based on

RSS data clearly detect the peaks of the two components and appropriately estimate

non-parametrically the weight of each component. This superiority of RSS-based

kernel density estimator rises because ranked set sampling efficiently utilizes the

ranking information of RSS statistics into the estimation process.
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Figure 4.1: Estimated f distribution based on the SRS data and true f density (dashed blue
line).

4.2 Real Data Analysis

Osteoporosis is a bone metabolic disease identified by diminished bone mineral den-

sity (BMD) that leads to increased skeletal delicacy and risk of breakage (Kanis,

1997). Osteoporosis and osteoporosis-related fractures are critical common health
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Figure 4.2: Estimated g distribution based on the SRS data (blue line) and the mixture is shown
by dashed line.

difficulties. The risk of osteoporosis grows by age. In healthy young adults, bones

grow until ages around 20 to 30, gradually becoming weaker as someone gets older.

As the old population is rising in many nations, osteoporotic fractures are supposed

to increase. Because of osteoporosis’s financial, medical, and social results, con-

trolling the prevention of this disorder is considered necessary to the care of the
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Figure 4.3: Histogram of the SRS data and the estimated mixture (dashed blue line).

well-being, quality of life, and self-confidence of older people. Furthermore, BMD

measurements are collected via X-ray absorptiometry (DXA). Once we obtain the

X-ray images, medical experts should examine these images manually to find final

BMD measurements. We see that the procedure of obtaining BMD is expensive
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Figure 4.4: Estimated f distribution based on the RSS data and true f density (dashed blue
line).

and time-consuming. In 1994, the World Health Organization (WHO) established

BMD using DXA as one of the most reliable predictors for measuring osteoporosis.

BMD measurements are typically converted into T-scores for diagnostic measures,

showing the number of standard deviations over or under the mean in healthy

adults. Particularly, the bone status of a patient is determined osteoporosis when
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Figure 4.5: Estimated g distribution based on the RSS data (blue line) and the mixture is shown
by dashed line.

the T -score is less than 2.5 SD from the BMD norm of the population.

In this section, we focus on data set from the National Health and Nutrition

Examination Survey (NHANES) III conducted by Centers for Cancer Diseases and

Prevention (CDC) to obtain nutrition and health information for American adults

between 1988 to 1994. The data set is available online on the website of NHANES
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Figure 4.6: Histogram of the RSS data and the estimated mixture (dashed blue line).

III. The survey contains the health and nutritional characteristics of 33994 individ-

uals. The osteoporosis is more common in women than men. Worldwide, 1 in 3

women over age 50 will encounter osteoporotic breaks, as will 1 in 5 men aged over

50 (Melton III, 1995). Due to the clear impact of osteoporosis on older women, we

focus on BMD data on women aged 50 and over in the NHANES III.
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In the data set, we have access to BMD measurements of 3299 women aged 50

and older. We treat these 3299 BMD measurements as our underlying population.

Using BIC model selection for the population, a mixture of two-component was

suggested the best fit for the population. According to the symmetric properties

of the component densities of the population, using the entire information of the

population, we estimate the population by a mixture of two normal distributions as

follows,

g(x; Ψ) = 0.864 φ(x; 0.662, 0.116) + 0.136 φ(x; 0.895, 0.116). (4.2)

Similarly to the simulation study, the component density functions and Ψ =

(π, µ1, µ2) are unknown parameters of the population, while σ = 0.116 is treated as

known in the estimation process.

Many research works have studied the association between the risk of osteo-

porosis and other characteristics of the patients. These characteristics include age,

weight, BMI. For more information, readers are referred to Nahhas et al. (2002). In

this real data example, we consider the weight of the patients as the contaminant

variable and used it for ranking the sampling units in RSS data collections when

the correlation between weight and BMD is ρ = 0.53. Similar to Section 4.1, we

generated 3000 SRS and RSS samples of sizes {90, 150} with replacement from the

population.

Applying the semi-parametric EM-algorithms based on RSS data, we computed

the biases and MSEs of the RSS estimates and SRS estimates. In each replication,

we used weight characteristic to rank the patients in each set and collected ranked

set samples with set size H = {3, 5} and cycle size n = {30, 50} (for H = 3)
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and n = {18, 30} (for H = 5). Similar to the simulation study, we obtained the

biases and MSEs of the estimators of misplacement probabilities and population

parameters. Table 4.6 shows the average, the bias and MSEs of the estimates of the

misplacement probabilities. Although the correlation between weight characteristic

and BMD is ρ = 0.53, we observe that, on average, we can assign the correct rank

to the units in each set. For example, the probability that we assign correct ranks

1 and 2 to units in each set are 0.99 and 0.97, respectively. Table 4.7 shows the

biases and MSEs of the estimates of (π, µ1, µ2) under the SRS and RSS data of sizes

N ∈ {90, 150} when set size H ∈ {3, 5}.

Table 4.6: The ˆαMLE and their biases and MSEs values when the set size H = 3.

n α11 α12 α21 α22

Estimation 0.99150 0.00750 0.00750 0.97238
30 Bias 0.44350 -0.28350 -0.28350 0.56738

MSE 0.05233 0.03581 0.03581 0.09462

Estimation 0.93313 0.05213 0.05213 0.82887
50 Bias 0.40213 -0.24537 -0.24537 0.44487

MSE 0.14560 0.09126 0.09126 0.21702

From Table 4.7, we observe that the biases associated with almost all of the

estimators are very small such that we can consider the estimators are practically

unbiased in the estimation of the BMD population. We also observe that RSS

estimates are more efficient than their SRS estimates. Note that this superiority

is marginal. This is because the correlation between the weight characteristic and

BMD response was to same extent low such that many ranking errors are produced

in the collection of RSS estimates.

We show the kernel density estimates of the component density f , the mixture

distribution g and the histogram based on SRS and RSS samples of size N from
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Table 4.7: The biases and MSEs of the estimates of (π, µ1, µ2) under the SRS and RSS data of
sizes N ∈ {90, 150} when set size H ∈ {3, 5}.

Design H n N π µ1 µ2

— — 90 Bias 0.0268 0.0095 0.0954
SRS MSE 0.1266 0.0244 0.1561

— — 150 Bias 0.0379 0.0116 0.0889
MSE 0.1051 0.0202 0.1486

30 90 Bias -0.0906 0.0286 -0.1845
3 MSE 0.1567 0.0146 0.0503

50 150 Bias -0.0211 0.0109 -0.0757
RSS MSE 0.0855 0.0194 0.0902

18 90 Bias -0.0459 0.0170 -0.1097
5 MSE 0.1323 0.0214 0.1194

30 150 Bias -0.0273 0.0087 -0.0697
MSE 0.0873 0.0195 0.0897

BMD data for one sample in Figures 4.7 to 4.12. One practically may miss the

second component of the bone mixture through the SRS estimation method; but

RSS estimator still very well detects the two components. While the difference

between the two subpopulations is very close and it is hard for most estimators to

distinguish them.
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Figure 4.7: Estimated f distribution based on the SRS data and true f density (dashed blue
line).
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Figure 4.8: Estimated g distribution based on the SRS data (blue line) and the mixture is shown
by dashed line.
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Figure 4.9: Histogram of the SRS data and the estimated mixture (dashed blue line).
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Figure 4.10: Estimated f distribution based on the RSS data and true f density (dashed blue
line).
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Figure 4.11: Estimated g distribution based on the RSS data (blue line) and the mixture is
shown by dashed line.
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Figure 4.12: Histogram of the RSS data and the estimated mixture (dashed blue line).
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Chapter 5

Summary and Future Work

5.1 Summary

This thesis investigated semi-parametric estimation of the finite mixture models

utilizing ranked set sampling (RSS). We developed more efficient semi-parametric

estimators for finite mixture models (FMMs) using RSS. FMMs, as key statistical

tools in data analysis, play fundamental roles in mainstream statistical analysis. In

addition, FMMs have found applications in different scientific fields such as genetics,

medical studies, different engineering fields, etc.

Ranked set sampling is cost-effective sampling technique that can be applied in

situations where the precise measurement of the variable of interest is expensive

or hard to achieve; however, sampling units can be ranked via extra variables or

judgment ranking, without actual measurements on the variable of interest. In the

standard estimation methods for FMMs, the samples are typically extracted from

the population using simple random sampling (SRS). In this thesis, we used RSS

to collect more informative samples from the FMMs and developed more efficient

semi-parametric estimations for the FMMs.
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In Chapter 2, we studied the semi-parametric estimation of FMMs from SRS.

We presented the likelihood function of the mixture model based on simple random

samples. We used a semi-parametric version of the Expectation-Maximization (EM)

algorithm to obtain the maximum likelihood (ML) estimate of the parametric and

non-parametric elements of the underlying mixture model. We described how one

could develop the missing-data mechanism and EM-algorithm to obtain the ML

estimate of the finite mixture model.

In Chapter 3, we developed the ML estimation of FMM with RSS data in a semi-

parametric framework. A comprehensive EM algorithm was proposed to estimate

the parameters of semi-parametric components of FMMs. One significant difficulty

in obtaining the ML estimation based on RSS data from the semi-parametric FMMs

was its computational burden. To overcome this problem, we presented a modified

version of the developed EM algorithm, which reduces the computational burden

to the level of the standard EM algorithm based on SRS data.

Our numerical studies, in Chapter 4, showed that the proposed EM-algorithm

works properly in estimating the underlying FMM. Simulation studies showed that

RSS estimators outperform their SRS competitors in the semi-parametric estimation

of FMMs in terms of bias and MSE. The proposed methods were finally applied to

analyze the bone mineral densities (BMD) data and obtain the ML estimate of the

distribution of BMD data.

5.2 Future Work

In the future, we will study the ML estimation of a semi-parametric FMM using

judgment post-stratification (JPS) samples. One challenge of semi-parametric es-
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timations of FMMs with RSS data is that the rank of RSS statistics cannot be

separated from the observations. Hence, when the ranking error is increased, we

are not able to recognize between observation information and ranking information.

Semi-parametric estimation of FFMs based on JPS data can be considered as a

remedy to this challenge. JPS method as post-stratification sampling enables us

to separate ranking information from the observation if we find the ranking error

is overwhelming in data collection. To obtain JPS data, sampled units are post-

stratified on ranks by randomly choosing comparison sets for each unit from the

underlying population and allocating ranks to them, applying judgment ranking.

This happens in a set of independent order statistics from the underlying model,

where the number of units in each rank class is random. We need to develop a new

missing data mechanism to facilitate the likelihood function by introducing latent

variables and estimate the unknown parameters of a semi-parametric FMM.
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