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Abstract

The numerical simulation of the Earth’s atmosphere plays an important role in

developing our understanding of climate change. The atmosphere and ocean can

be seen as a shallow fluid on the globe; here, we use the shallow water equations as

a first step to approximate these geophysical flows. Then, the numerical model can

only be accurate if it has good conservation properties, e.g. without conserving

mass the simulation can not be physical. Obtaining such a numerical model can

be achieved using numerical variational integration.

Here, we have derived a numerical variational integrator for the rotating shallow

water equations on the sphere using the Euler–Poincaré framework. First, the

continuous Lagrangian is discretized; then, the numerical scheme is obtained by

computing the discrete variational principle. The conservational properties and

accuracy of the model are verified with standard test cases.

However, in order to obtain more realistic simulations, the shallow water equa-

tions need to include physical parametrizations. Thus, we introduce a new repre-

sentation of the rotating shallow water equations based on a stochastic transport

principle. Then, benchmarks are carried out to demonstrate that the spatial part

of the stochastic scheme preserves the total energy. The proposed random model

better captures the structure of a large-scale flow than a comparable deterministic

model.

Furthermore, to be able to carry out long term simulations we extend the dis-

crete Euler–Poincaré framework with a selective decay. The selective decay dis-

sipates an otherwise conserved quantity while conserving energy. We apply the

new framework to the shallow water equations to dissipate the potential enstro-

phy. Then, we carry out standard benchmarks to demonstrate the conservation

properties. We show that the selective decay resolves more small scales compared

to a standard dissipation.
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Lay summary

To have accurate weather and climate forecasts, we need to model the motion

of a fluid (such as air or water) on the globe. Simulations of the shallow water

equations provide a first step towards these forecasts. The shallow water equations

simulate a thin layer of fluid, which is a reasonable approximation for the ocean

and atmosphere. To have an accurate forecast, the simulation needs to have

certain conservation properties. For example, a simulation of a lake without mass

conservation may result in an empty lake. Thus, it is important to investigate

numerical methods with good conservation properties.

In general, when we talk about a mathematical model, we think about its equa-

tions. However, it is equivalent to define the model using the total energy of the

system. Once we define the total energy, we can calculate the model equations. To

simulate the shallow water equations on the sphere, we follow the same strategy:

we define a numerical energy and then compute the numerical model. Then, we

analyse this model and demonstrate its conservation properties.

The computational costs of simulating a fluid flow in full detail on the globe are

beyond reach today. To overcome this problem, we can use stochastic forecasting.

This means that, instead of having one simulation, we carry out multiple different

simulations, which enables estimating likely scenarios. Here, we derive a new

stochastic representation of the shallow water equations. Then, we demonstrate

that the stochastic shallow water model better captures the flow structure on the

sphere compared to a non-stochastic model.
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Every numerical model accumulates errors over time, which need to be reduced

so that the model is stable for long term simulations. Here, we develop a numerical

stabilization which is physically meaningful. In particular, the stabilization is

designed to conserve the total energy and reduce numerical errors. We adopt this

new stabilization for the shallow water equations and demonstrate the conservation

of energy. Moreover, we show that this stabilization behaves more physically

compared to standard stabilizations.
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1. Introduction

In the context of weather prediction and climate dynamics, the motion of a fluid

on a rotating spheroid under the influence of gravity needs to be modelled. This

is done using numerical models, where approximations of the fully compressible

Euler equations are solved. The rotating shallow water equations (SWE) are used

as a first step towards developing numerical models for geophysical fluid dynamics

(GFD), since they are similar to the fully compressible Euler equations and have

similar conservation properties. To develop accurate numerical models, it is impor-

tant to have at least some of these conservation properties preserved numerically.

This is especially true for the modelling of climate dynamics, for which it is of great

interest to correctly capture the long-term statistical behaviour, which can only

be achieved by a numerical scheme with appropriate conservation properties. The

field of geometric numerical integration, a branch of numerical analysis, focuses

on the development of discretization schemes that preserve geometric structures,

such as conservation laws. Here, we will use numerical variational integration, a

sub-field of geometric numerical integration, to discretize the rotating SWE on

the sphere.

Weather forecasts need to be precise and computationally affordable. However,

the computational expense for simulating the full range of dynamical scales of a

geophysical flow is beyond reach today. Thus, the effect of unresolved scales has to

be modelled or parametrized. Here, we will incorporate a stochastic representation

of the small scale processes called location uncertainty that relies on stochastic
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transport.

Then, to be able to simulate climate dynamics, long term simulations need to

be carried out. This can only be achieved with a numerical scheme that diffuses

numerical errors and has coherent physical structures. Here, we will present a new

variational discrete selective dissipation framework, which dissipates one quantity

while conserving others.

In the following sections, we use common terms from GFD. We give a brief expla-

nation of these terms in Appendix A.

1.1. Shallow water equations

The SWE are a model for thin layer fluids, where the vertical velocity is negligible

compared to the horizontal scale. The ocean and atmosphere have a horizontal

scale of some 10,000 km, and a mean depth layer of 4,000 m for the ocean or about

10 km for the atmosphere; thus, they can be modelled in a simplified way by the

SWE. In addition, by using different approximations of the Coriolis force, they

can simulate different geophysical waves, such as Poincaré, Rossby and Kelvin

waves (see [64]). Further, the SWE have conserved quantities such as energy,

mass, potential vorticity and potential enstrophy, which are of interest for the

simulation of ocean and atmosphere models. All these properties make the SWE a

good starting point to compare different numerical methods and their properties.

Furthermore, while the SWE are still a toy model, they are an excellent (and

common) first step to test a discretization methodology when moving towards

models used at operational centres. For example, the SWE are used for tsunami

propagation models at prewarning centres to predict the arrival of tsunami waves

at potential impact zones along the coastline.
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1.2. Important conserved quantities

A continuous model and its discrete analogue should have similar conserved quan-

tities. However, the continuous SWE possess an infinite number of such conser-

vation laws, whereas the numerical model can only reflect a finite number. In

the context of numerical weather prediction and climate forecasting, the most

desirable conservation properties are (see [81] for details):

1. Mass

The dry mass in the atmosphere (or the amount of water in the ocean)

does not significantly change. Therefore, in any numerical simulation a non-

conservation of mass will lead to spurious behaviour of the system after a

sufficiently long integration.

2. Momentum and angular momentum

The vertical momentum is important for the hydro-static balance of the

fluid flow and is on the order of the inverse of the buoyancy frequency (some

minutes). The horizontal momentum is important for the geostrophic bal-

ance and change on the order of a few hours. For angular momentum, the

timescale is 12 days, which corresponds to one rotation of the fluid around

the globe.

3. Potential enstrophy

The timescale for potential enstrophy is comparable to the turnover of an

eddy, which is about 10 days. In a realistic flow, there is a downscale transfer

of potential enstrophy, with its spectra shifted towards bigger wave numbers.

For a numerical simulation there is a transfer between resolved and unre-

solved scales.

4. Energy
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The energy of the system is the sum of potential and kinetic energy. There is

no cascade between scales for the potential energy, but for the kinetic energy

there is. If the cascade is insignificant compared to the total energy, then its

conservation is indeed justified, otherwise the cascade needs to be fed back

into the resolved scales.

1.3. Desirable properties for discretization schemes

Above, we stated properties which come from a physical background. Some addi-

tional desirable properties for a numerical scheme are (see [79, 83] for details):

1. Grid staggering
It is difficult to get stable simulations when all variables

are defined on the same position on the grid. For this

reason, we use C-grid staggering, which has the normal

velocity component (u) at the cell edges and the geopo-

tential (D) at the cell centre. Other grid staggerings

are well known to lead to worse phase speeds and group

velocities (see [68]).

2. Minimal grid imprinting

The phenomena of grid imprinting happens when geometric grid properties

become visible in numerical solutions. E.g. generating finer grids of the

sphere with the bisection algorithm leads to an inconsistent approximation of

finite difference operators and grid imprinting, see [44]. Thus, it is desirable

to use an optimized grid with a minimal grid imprinting.

3. Curl-free pressure gradient

Vector calculus tells us that, for a continuous scalar function, h, we have

∇ × ∇h ≡ 0. In the GFD context, this means that the pressure gradient
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should not change the total vorticity. We need the same property at the

discrete level: curl · grad = 0, for the discrete operator matrices.

4. Energy conserving pressure and Coriolis term

As noted above, there can be a cascade in scales, such that it is debatable

whether conserving the resolved total energy is desirable. However, both

the pressure gradient and the Coriolis terms should be energy conserving.

For the pressure gradient this means that we have a discrete version of the

vector calculus identity v · ∇h + h∇ · v = ∇ · (vh), where h is a continuous

function and v a vector field. For the Coriolis term v · v⊥ = 0. This seems

to be obvious, but in a discrete scheme v⊥ and v need to be (directly or

indirectly) reconstructed from v · n (or v · n⊥), where n is the normal vector

of an edge.

5. Geostrophic balance

The linearized SWE on an f -plane approximation maintain steady solutions

in geostrophic balance. Then, the geopotential is constant in time, such that

the divergence of the velocity is zero. A discrete scheme needs to have this

property as well.

1.4. Importance of potential vorticity

The potential vorticity is one of the most important quantities in understanding

large-scale dynamics. A geostrophically balanced flow can be entirely described

by its potential vorticity field. This is stated by the invertibility principle for

potential vorticity. Further, there is no flux of potential vorticity concentration

across an isentropic surface (a surface of constant potential temperature) and it

is conserved following the flow. That is why a numerical model of the atmosphere

needs to conserve potential vorticity.
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1.5. Modelling

1.5.1. Formulation

A number of GFD equations have been derived, such as the shallow water equa-

tions or quasi-geostrophic model. These have been collected in [2] which is referred

to as the "ABN list" (Allen–Barth–Newberger list). A GFD model from the ABN

list is considered to be good if it has a Kelvin circulation theorem and accurate

energy balance.

We can classify the models from the ABN list using the Euler–Poincaré framework

because it provides theorems for the energy balance and circulation. Then, the

exact equations and many of their approximations can be systematically generated

by changing the kinetic energy in the Lagrangian for the Hamiltonian principle

and imposing constraints. As a consequence, the Lagrangian changes, but not the

Euler–Poincaré form of the equations. The equations can then be implemented

numerically in a consistent way.

1.5.2. Spatial discretization

There are many different approaches to discretize partial differential equations,

examples of different schemes in the GFD context are:

• Spectral methods: STSWM (NCAR Spectral Transform Shallow Water Model).

It is based on spherical harmonics and uses a latitudinal-longitudinal grid.

Spectral models are often used as a high-order reference solution.

• Finite differences: The Arkawa and Lamb 1981 scheme [5]. First scheme

having multiple conservation properties.

• Finite volumes: TRiSK [74], based on a general polygonal or spherical polyg-

onal grid. It has potential enstrophy or total energy conservation.
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• Finite elements: Finite Element Exterior Calculus (FEEC) [24], which allows

high-order simulations, and conserves energy and potential enstrophy.

One of the first schemes having multiple conservative properties is the Arakawa

and Lamb 1981 scheme, which can be interpreted as a Hamiltonian-based scheme.

However, it has some disadvantages: it is restricted to a square grid, it is low-order

(otherwise it loses its conservative properties) and, for small wavelength/∆x, it

has poor wave representation. Discretizations like TRiSK and FEEC tried to over-

come these issues.

Most, if not all, of the models up to now discretized the equations derived from

the Lagrangian through the Hamiltonian principle and use standard time integra-

tors for the temporal discretization. Here, we follow a different approach: first,

the Lagrangian itself is discretized, then the numerical equations are calculated,

and finally we use a variational time integrator. By doing this, we obtain a fully

variational integrator, which is a new approach for discrete schemes and has not

been done before in the GFD context.

1.6. Sub-grid model

Even with today’s computational power it is not possible to simulate the whole

dynamical scale of a geophysical flow. Thus, the unresolved sub-grid component

of the velocity is unknown or uncertain. Uncertainty quantification also deals with

modelling the unresolved scales by introducing randomness (noise) to the model.

This can be introduced to the model in many different ways. Nevertheless, the

noise needs to have certain properties to capture the flow dynamics. When car-

rying out a forecast with multiple ensemble members, the spread (based on the

noise) of the ensemble has to be efficient. An efficient spread means that we only

need a few ensemble members, which are distributed around the true flow dynam-
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ics.

A natural way to introduce noise in the simulation is to perturb the initial condi-

tions (PIC). The European Centre for Medium-Range Weather Forecasts (ECMWF)

and the National Centers for Environmental Prediction (NCEP), among others,

are using this method. They use different techniques to perturb the initial condi-

tions to maximise the ensemble variance. But, the PIC method is known to under-

estimate the error of the state variable dynamics, meaning it is under-dispersive,

see [13, 40].

An alternative method tries to simulate the unresolved scales and introduce

noise in the small scales during the simulation. Introducing noise in the small

scales leads to a back scattering of energy to the large scales. Formalizing this

idea can be done by introducing stochastic transport. Here, we follow the Loca-

tion Uncertainty (LU) framework, where the flow is assumed to be stochastic and

the velocity can be decomposed into large scale and small scale uncertainty com-

ponents. In this framework, the stochastic transport theorem describes the time

differential of a scalar integrated over a volume. Consequently, the energy is shown

to be conserved. The energy conserving property of the LU model motivates a

structure preserving discretization.

1.7. Dissipation

In general, CFD models need dissipation for many purposes, such as cleaning up

numerical noise generated by the discretization, Gibbs ringing in spectral modes,

poor initializations, grid-scale forcing from the physical parametrization or weak

computational stability. Moreover, dissipation also has a physical meaning. In
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2D turbulence, enstrophy cascades from large scale to small scales, resulting in an

accumulation of enstrophy at the smallest grid scale, see [17, 73]. Thus, enstrophy

has to be dissipated to carry out stable simulations.

A main motivation for geometric integrators, such as variational integrators, is

their excellent long term behaviour. Nevertheless, while carrying out long term

simulations, numerical errors still accumulate. This motivates the design of a

variational stabilization. Here, we extend the variational discretization framework

with a selective decay. We then apply this new framework and obtain a discretiza-

tion of the RSW with enstrophy dissipation and energy conservation, such that

physically meaningful long term simulations can be carried out.

1.8. Literature overview

In this section, we give a short overview of what has been done in the field of

variational integration, location uncertainty ,and selective Casimir dissipation.

Variational integration

Geometric numerical integrators are discrete schemes that preserve important ge-

ometric properties of differential equations. Such properties can be conservation

laws, Lie group symmetries, and Hamiltonian or variational formulations. Exam-

ples of geometric integrators preserving at least one geometric property are given

in [8, 9, 12, 15, 16, 21, 42, 55, 58, 65, 77, 87] Preserving geometric properties

can guarantee long term stability, consistency in statistical properties and the

prevention of drift in stationary solutions, see e.g. [42, 55, 88]. For atmospheric

dynamics, the accurate representation of the statistical properties is crucial, thus

geometric integrators are receiving more attention in recent years.

Here, we focus on a variational integrator that possess a number of desirable
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properties, such as a discrete form of Noether’s theorem. This theorem guarantees

the preservation of conserved quantities related to the variational symmetries and

stability for exponentially long time periods, see e.g. [42, 58].

A relevant variational integrator for incompressible fluids was developed in [65].

The discretization relies on first discretizing the variational principle and then

deriving the numerical scheme. This particular approach was extended to various

equations of incompressible fluid dynamics with advected quantities in [36]. In [26],

the method was extended to rotating and stratified fluids, and in [9] to anelastic

and pseudo-incompressible fluids. The extension to the shallow water equations

was done in [8].

However, all of these extension have been simulated on the plane. The frame-

work is naturally coordinate independent and this feature has not been utilized.

Moreover, for a GFD dynamical core the model needs to run on spherical geometry.

Here, as a next step we extend the scheme to the sphere.

Location uncertainty (Stochastic sub-grid model)

Despite the increasing power of computational resources and the availability of

high quality observations, a precise description of geophysical flows over their

whole dynamical scales is completely beyond reach today. To face these challenges,

numerous efforts are taking place to build an ever-increasing quality, quantity, du-

ration, and integration of all observations. Yet, for ocean models, the unresolved

small scales and associated fluxes are always accounted for by simple mathemat-

ical models, i.e. parametrizations. Although the development of more efficient

sub-grid representations remains a very active research area, the possible separa-

tion between relatively low-frequency, large scale patterns and transient, small-

scale fluctuations, strongly invites to consider stochastic representations of the

geophysical dynamics, see [31, 39, 41, 57].

Here, we consider a specific stochastic model, called Location Uncertainty, de-
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rived in [62]. This random model uses a stochastic transport operator [69] which

involves a multiplicative random forcing, a heterogeneous diffusion and a cor-

rected advection resulting from the inhomogeneity of the random flow. The re-

sulting equations then also conserve the total energy. With this stochastic trans-

port principle, stochastic representations under Location Uncertainty of large-scale

geophysical dynamics have been derived, see e.g. [10, 22, 69]. The Location Un-

certainty representations for oceanic quasi-geostrophic flows performed very well,

see e.g. [10, 11, 70, 71].

However, none of these models have yet demonstrated numerical energy con-

servation. In this thesis, we use this stochastic transport principle to derive the

shallow water equations under Location Uncertainty which conserve energy. Then,

to obtain a numerical scheme with good energy conservation we extend the vari-

ational discretization of the shallow water equations with approximations of the

new stochastic terms.

Selective Casimir dissipation

The shallow water equations simulate thin layered fluid flows, which are approxi-

mately two dimensional. The principles of two dimensional turbulence give insight

into their flow dynamics. For two dimensional turbulence, enstrophy cascades to

higher wave numbers and energy to smaller wave numbers, see [52, 56]. This

led to the selective decay hypothesis [59], meaning that the enstrophy should be

dissipated (otherwise it would accumulate at the grid scale) and energy should

be conserved. Therefore, enstrophy dissipating and energy conserving numerical

schemes were developed for the shallow water equations, see e.g. [4, 76].

A more general method to derive models that conserve energy while dissipating

another otherwise conserved quantity was introduced in the Lie-Poisson frame-

work in [37, 38]. Since this selective dissipation framework has not been applied

to discrete models of geophysical fluid dynamics, here, as a first step, we use
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the framework to selectively dissipate enstrophy for the shallow water equations.

Then, we apply the variational discretization framework to obtain the discrete

scheme.

1.9. Thesis overview

This thesis provides a first step to answer the question whether the variational

discretization framework can be used to obtain competitive next generation GFD

dynamical cores. This framework [8, 9, 26, 36, 65] has not been explored on

the sphere, which is of great interest when modelling the atmosphere and ocean.

Moreover, this framework has not been combined with any sub-grid model nor

dissipation terms. Here, we present a new stochastic representation [62, 69] of the

SWE and combine it with the discrete variational integrator. Furthermore, we

extend the framework with a new discrete selective decay [37, 38].

In Chapter 2, we review the mathematical concepts used in the following chap-

ters. First, we introduce the assumptions for the Euler–Poincaré framework and

the mathematical background from differential geometry. Finally, we present

the Euler–Poincaré framework. Then, we give an example to explain the Euler–

Poincaré reduction.

In Chapter 3, we extend the discrete variational integrator for the rotating

SWE to the sphere. We carry out standard benchmarks to analyse the conserva-

tion properties.

In Chapter 4, we derive a new stochastic representation of the rotating SWE us-

ing the location uncertainty principle. Then, we carry out a simulation to analyse

the energy conservation. Furthermore, we carry out ensemble forecasts to analyse

12



the spread compared to a deterministic model.

In Chapter 5, we present a new discrete selective decay scheme in the Euler–

Poincaré framework. We first review the continuous selective decay scheme, and

then derive the discrete selective decay scheme, mimicking the continuous level.

We apply the framework to the SWE to dissipate enstrophy while conserving en-

ergy.

In Chapter 6, we summarize the results and discuss possible projects for future

work.
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2. Background

A natural way to obtain a discretization of a system of differential equations is

to approximate the derivatives. Usually this is done using finite differences, finite

volume and finite element methods, which are based on a local approximation of

the derivatives using values around a given point. However, a main drawback of

a local approximation is that differential equations may possess geometric prop-

erties of a global nature, such as conservation laws or an underlying variational

structure. Geometric numerical integrators (such as variational integrators) pro-

vide alternative numerical schemes that preserve these geometric properties on

a discrete level. The variational discretization is described in Chapters 3 and

5. Nevertheless, a key ingredient of this variational discretization is the Euler–

Poincaré reduction: the reduction of Hamilton’s Principle from the Lagrangian

description of fluid dynamics to the Eulerian description. This reduction relies on

the relation between Lie groups and Lie algebras, as well as their representations.

Thus, to introduce the Euler–Poincaré reduction on the continuous level, in this

chapter we first review some aspects of Lie groups and Lie algebras. Then, to

better understand the reduction, we give an example in R3 for the rotation of a

rigid body.
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2.1. Lie group and Lie algebra

Definition 1. A real Lie group G is a finite dimensional manifold with a group

structure, such that the group action and group inversion are smooth maps.

Definition 2. A Lie algebra is a vector space g endowed with a skew-symmetric

bilinear form [., .] : g × g → g, which satisfies the Jacobi identity: [x, [y, z]] +

[z, [x, y]] + [y, [z, x]] = 0, ∀x, y, z ∈ g.

Now we will relate the Lie group to a Lie algebra. Let G be a Lie group

and TG its tangent bundle. Consider a ∈ G then La : G → G, g ↦→ ag and

Ra : G → G, g ↦→ ga are the left and right translations. Their differentials at the

identity define maps dLa and dRa on the tangent space.

Let Vect(G) be the set of all vector fields on G. A vector field u ∈ Vect(G)

is said to be left/right invariant if

dLa(u(g)) = u(La(g)) = u(ga), dRa(u(g)) = u(Ra(g)) = u(ag),

which means that the following diagram commutes (same holds for Ra instead of

La):

TG TG

G G

dLa

La

u u

Now, we define g := TeG as the tangent space at the identity, and Vect(G)L as

the left and Vect(G)R as the right invariant vector fields on G.

Proposition 3. The space of all left/right invariant vector fields is isomorphic

to g = TeG, by the map Φ: Vect(G)L → g, u ↦→ u(e). The same map works for

Vect(G)R.
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G
exp(εu)

u

e

g

Figure 2.1.: Relation between elements in g and G via the exponential map.

One can check that the Lie bracket of left/right invariant vector fields is left/right

invariant. Thus, g = TeG is indeed a Lie algebra. This shows that the associated

Lie algebra g of a Lie Group G are the left/right invariant vector fields on G.

The map exp: g → G relates the elements of g and G. Details on how to de-

fine such a map are given in e.g. [63]. The exponential map has the properties

• exp((ε1 + ε2)u) = exp(ε1u) exp(ε2u),

• d
dε

⃓⃓⃓⃓
ε=0

exp(εu) = u.

Now, exp(εu) for ε ∈ R defines a flow in G. By computing ug = d
dε

⃓⃓⃓⃓
ε=0

exp(εu)g

we obtain the elements in g. In Fig. 2.1, we visualize the connection between a

Lie group and Lie algebra by the exponential map.

2.2. Adjoint representation

Definition 4. The representation of a Lie group G on a vector space V is a group

homomorphism ϕ : G → GL(V ). Similarly, a representation of a Lie algebra g on

V is an algebra homomorphism ϕ : g → gl(V ).

For a Lie group G, the group conjugation Kg(h) = ghg−1 defines a diffeomor-

phism on G, and its differential Adg := dKg : TG|h → TG|Kg(h)
is an invertible
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map. Thus, Ad: G → GL(g), g ↦→ Adg defines a representation, and it is called

the adjoint representation. Then, for the Lie algebra g the adjoint representa-

tion is the map ad: g → gl(g), u ↦→ (dAd)(u).

We can compute the adjoint representation on the Lie algebra by:

(ad(u))(v) = d

dε

⃓⃓⃓⃓
ε=0

Ad
(︂

exp(εu)
)︂
v, v ∈ g.

Example 5.

Let us consider the case of a matrix Lie group G, here we have KA(B) = ABA−1.

We compute Ad by:

Adg(u) = d

dε

⃓⃓⃓⃓
ε=0

Kg(exp(εu)) = d

dε

⃓⃓⃓⃓
ε=0

g exp(εu)g−1 = gug−1.

And now we compute the adjoint representation on the Lie algebra:

(ad(u))(v) = d

dε

⃓⃓⃓⃓
ε=0

Ad(exp(εu))v = d

dε

⃓⃓⃓⃓
ε=0

exp(εu)v exp(−εu) = uv−vu = [u, v].

The last relation between the adjoint representation and the Lie bracket gener-

alizes to:

Proposition 6. For any u, v ∈ g we have:

(adu)(v) = [u, v].

For Ad and ad we denote their dual (coadjoint) by Ad∗ and ad∗, and they are

defined by the identity:

⟨Ad∗
gu, v⟩ = ⟨u,Adgv⟩, ⟨ad∗

wu, v⟩ = ⟨u, adwv⟩. (2.1)
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2.3. Lie derivative

Let η : M → M be a diffeomorphism. The pull-back η∗u : M → TM and the

push-forward η∗u : M → TM of η for a vector field u : M → TM are defined by

TM TM

M M

T η−1

η

η∗u u

TM TM

M M

T η

u

η−1

η∗u

For an infinite dimensional manifold M , the Lie derivative of v along u is defined

by
d

dε

⃓⃓⃓⃓
ε=0

η∗v =: Luv,

where η(ε) = exp(εu) is the flow of the vector field u.

The adjoint representation was defined by Kη(h) = ηhη−1. Then, we have for

h(ε) = exp(εv), using the chain rule,

Adη(v) = d

dε

⃓⃓⃓⃓
ε=0

η
(︂
h(ε)(η−1)

)︂
= Tη · v|η−1 = η∗(v).

For the infinitesimal adjoint action, we have

[u, v] = adu(v) = d

dε

⃓⃓⃓⃓
ε=0

η∗(v) = Luv.

2.4. Notation and assumptions

We consider the motion of a fluid in terms of the movement of particles and, then,

we reduce this to its velocities. Let M be a smooth compact manifold (e.g., the

sphere), on which the fluid moves. The elements X ∈ M are fluid particles and

their coordinates are the particle labels. We define Diff(M) := {η | η : M →

M is a diffeomorphism}, and call η ∈ Diff(M) a configuration. Now, at each
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X

η(X)Ut(X, t) ηt(X)

Figure 2.2.: Visualization of a motion ηt and its Lagrangian velocity Ut.

time t the configuration of the fluid is described by η and the motion of the fluid

is defined by the path ηt ∈ Diff(M) (see Fig. 2.2). The motion relates to the

Lagrangian velocity, U(X, t), by:

U(X, t) := ∂

∂t

⃓⃓⃓⃓
X
ηt(X).

The points x(X, t) := ηt(X) form a path in M , they are called Eulerian points

and define the Eulerian velocity:

u(x, t) = u(ηt(X), t) := U(X, t) = ∂

∂t

⃓⃓⃓⃓
X
ηt(X).

The Eulerian velocity is a time dependent vector field u(x, t) =: ut(x) ∈ Vect(M) :=

{u | u : M → TM is a vector field}, and we have Ut = ut ◦ ηt. If we suppress "t"

and write η̇ for U we have u = η̇ ◦ η−1.

The quantities transported by the flow of the fluid, such as the mass, are de-

scribed by elements of (Vect(M))∗. The elements of (Vect(M))∗ (the dual space

of Vect(M)) can be understood as one-forms. Diff(M) with the concatenation of

functions resembles a Lie group (but it is infinite dimensional), and Vect(M) has

the structure of a Lie algebra.
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Definition 7. We define the Lagrangian of a mechanical system as the function

L : TG× V ∗ → R,

which is right invariant, such that it induces a function, the reduced Lagrangian:

ℓ : g × V ∗ → R, ℓ(u, a) = L(id, η̇ ◦ η−1, a0η
−1) = L(η, η̇, a0). (2.2)

The evolution of a is given by the action ȧ = −a · u.

If the Lagrangian L is left invariant, then we have the action of η−1 on the left.

2.5. Euler–Poincaré reduction

First, we define the variational derivative δL
δu

for a functional L : M → R and

v, u ∈ M :

∫︂
M

δL

δu
· v dx = d

dε

⃓⃓⃓⃓
ε=0

L(u+ εv), v ≡ 0 on ∂M, ε ∈ R

Example 8. Let us consider L = 1
2
∫︁

M⟨u, u⟩ as the kinetic energy, then we have:

∫︂
M

δL

δu
· v dx = d

dε

⃓⃓⃓⃓
ε=0

L(u+ εv),

expanding the right hand side gives:

= d

dε

⃓⃓⃓⃓
ε=0

1
2

∫︂
M

⟨u+ εv, u+ εv⟩ dx

= d

dε

⃓⃓⃓⃓
ε=0

1
2

∫︂
M

⟨u, u⟩ + 2ε⟨u, v⟩ + ε2⟨v, v⟩ dx

= 1
2

∫︂
M

2⟨u, v⟩ dx =
∫︂

M
⟨u, v⟩ dx.
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Thus, we see that δL
δu

= ⟨u, ·⟩ =: u♭, here we use the shorthand notation u♭ for the

one-form associated with u.

Theorem 9 (Euler–Poincaré Reduction). Let L be a Lagrangian and ℓ the reduced

Lagrangian, see Def. 7. The following statements are equivalent:

1. δ
∫︂ b

a
L dt = 0 holds on G for variations δηt with 0 = δη(a) = δη(b).

2. ηt satisfies the Euler–Lagrange equations for L, for details regarding the equa-

tions see [48].

3. δ
∫︂ b

a
ℓ(u, a) dt = 0 holds on g×V ∗, using variations of the form δu = u̇±[v, u]

and δa = −a · v, where v(t) ∈ g with v(a) = v(b) = 0 .

4. The Euler–Poincaré equations hold:

d

dt

δℓ

δu
= ±ad∗

u

δℓ

δu
+ δℓ

δa
⋄ a and (∂t + Lu)a = 0.

For b ∈ V, a ∈ V ∗ and w ∈ g, the ⋄ : V ∗ × V → g∗ operator is defined by:

⟨b, a · w⟩ = −⟨b ⋄ a, w⟩. (2.3)

Note that ± depends on L being left or right invariant.

For details and the proof see [47].

The above theorem shows that formulating the Lagrangian in terms of the ve-

locity and calculating the variational principle is equivalent to solving the Euler–

Lagrange equations for the Lagrangian depending on the particles. Thus, we will

use the reduced Lagrangian to calculate the equations of motion.
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2.6. Rigid body example

To better understand the Euler–Poincaré reduction, we give an example in R3

without advected parameters. Let R ∈ SO(3) give the configuration of a body

and L(R, Ṙ) be the associated left invariant Lagrangian. Then, a reference label

point X is mapped to x = R X. For a motion, meaning that R is time dependent,

we have u = Ṙ X = ṘR−1 x. Since ṘR−1 is skew symmetric, there is a vector

(the angular velocity vector) ω such that u = ṘR−1 x = ω × x. Now we have

R−1Ṙ X = R−1ṘR−1 x = R−1(ω × x) = R−1ω⏞ ⏟⏟ ⏞
=:Ω

×R−1x⏞ ⏟⏟ ⏞
=X

.

The vector Ω relates to a matrix

Ω̃ :=

⎛⎜⎜⎜⎜⎜⎜⎝
0 −Ω3 Ω2

Ω3 0 −Ω1

−Ω2 Ω1 0

⎞⎟⎟⎟⎟⎟⎟⎠

such that Ω̃X = Ω ×X = R−1Ṙ X and we have Ω̃ = R−1Ṙ.

Thus, the curve R(t) satisfying the Euler-Lagrange equations for L(R, Ṙ) is

equivalent to Ω̃ satisfying the Euler–Poincaré equations for ℓ(Ω̃).

Let us now compute the variations δΩ̃. We define S = R−1(δR) this gives

Ṡ = R−1(δṘ) −R−1ṘR−1(δR) = R−1(δṘ) − Ω̃S.

Then, we obtain the variation of Ω̃ by differentiating with respect to R

δΩ̃ = R−1(δṘ) −R−1(δR)R−1Ṙ = Ṡ + Ω̃S − SΩ̃

= Ṡ + [Ω̃, S].

To compute the Euler–Poincaré equations, we consider the reduced Lagrangian
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ℓ(Ω̃) and compute:

0 = δ
∫︂ T

0
ℓ(Ω̃) dt =

∫︂ T

0

⟨︄
δℓ

δΩ̃
, δΩ̃

⟩︄
dt =

∫︂ T

0

⟨︄
δℓ

δΩ̃
, Ṡ + [Ω̃, S]

⟩︄
dt

=
∫︂ T

0

⟨︄
− d

dt

δℓ

δΩ̃
, S

⟩︄
+
⟨︄
δℓ

δΩ̃
, [Ω̃, S]

⟩︄
dt =

∫︂ T

0

⟨︄
− d

dt

δℓ

δΩ̃
, S

⟩︄
+
⟨︄

ad∗
Ω̃

δℓ

δΩ̃
, S

⟩︄
dt,

(2.4)

where we used integration by parts and Eq. 2.1. The above calculation holds for

any S and we obtain the Euler–Poincaré equations

d

dt

δℓ

δΩ̃
= ad∗

Ω̃

δℓ

δΩ̃
.

To obtain the rigid body equations in concrete terms, we define the reduced La-

grangian to be the kinetic energy

ℓ(Ω̃) = 1
2Tr((IΩ̃)⊤Ω̃) = 1

2(I1Ω
2
1 + I2Ω

2
2 + I3Ω

2
3)

where I1, I2, I3 are the moments of inertia and I = diag(I1, I2, I3). Then, similar

to example 8, we have δℓ
δΩ̃

= IΩ̃. In the case that the inner product in Eq. (2.4) is

defined by the trace operator Tr the adjoint operator reduces to the commutator

ad∗ = [., .]. Thus, the rigid body motion is given by

d

dt
IΩ̃ = [IΩ̃, Ω̃].
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Abstract

We develop a variational integrator for the shallow-water equations on a rotating

sphere. The variational integrator is built around a discretization of the continuous

Euler–Poincaré reduction framework for Eulerian hydrodynamics. We describe the

discretization of the continuous Euler–Poincaré equations on arbitrary simplicial

meshes. Standard numerical tests are carried out to verify the accuracy and the

excellent conservational properties of the discrete variational integrator.

3.1. Introduction

Geometric numerical integration is the branch of numerical analysis devoted to the

development of discretization schemes that preserve important geometric proper-

ties of differential equations. Examples of geometric properties of practical inter-

est include symplectic forms and Hamiltonian formulations, Lie group symmetries

and conservation laws, volume forms, variational formulations, maximum princi-

ples and blow-up properties. Numerical integrators that discretely preserve one

or more of the aforementioned geometric properties are presented e.g. in [8, 9, 12,

15, 16, 21, 42, 55, 58, 65, 77, 87].

A main motivation behind the development of integrators capable of preserving

geometric properties of differential equations is their, in general, superior long-

term behaviour. Preserving geometric properties can guarantee arbitrarily long-

term stability, consistency in statistical properties and the prevention of systematic

drift in stationary or periodic solutions, see e.g. [42, 55, 88] for further details.

Recent years have seen an increased interest in geometric numerical integration

for models of atmospheric dynamics. This is natural since long time integrations

and the accurate representation of the statistical properties of these models lie at

the heart of climate prediction and turbulence modeling. A particular model that
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has received considerable attention is the rotating shallow-water (RSW) equations,

both in the plane and on the sphere.

Energy and enstrophy preserving integrators for the shallow-water equations

were developed as early as in the seminal paper of [5]. There it was recognized

that preserving energy and enstrophy in a finite difference discretization of the

shallow-water equations is crucial to guaranteeing the numerical stability of typical

flow regimes. In recent years, considerable effort was devoted to the development

of structure-preserving integrators on general structured and unstructured grids,

see e.g. [8, 14, 27, 30, 73, 82, 83].

In [8], a variational integrator for the rotating shallow-water equations in the

plane was proposed. Variational integrators rest on first discretizing the con-

tinuous variational principle underlying the governing equations of interest, and

then deriving the numerical scheme as a discrete system of Euler–Lagrange equa-

tions [58]. Variational integrators possess a number of desirable properties, in-

cluding compatibility with a discrete form of Noether’s theorem that guarantees

the exact numerical preservation of those conserved quantities related to the vari-

ational symmetries of the discretized governing equations, as well as stability for

exponentially long time periods [42, 58].

While most of the work on variational integration was devoted to ordinary

differential equations, recent years have seen an increased interest in the partial

differential equation case, see e.g. [65] and [8, 9, 26] for some applications of

the variational methodology to important models of geophysical fluid dynamics.

Variational integrators for the partial differential equations of fluid dynamics are

designed by replacing the continuous configuration space of the model equation,

represented as an appropriate infinite-dimensional Lie group, by a suitable finite

dimensional matrix Lie group on which the variational principle can be applied in

both its Lagrangian and Eulerian versions, thanks to an application of the Euler–

Poincaré reduction theorem. The purpose of the present paper is to extend the
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variational integrator proposed in [8] for the shallow-water equations in the plane

to the shallow-water equations on the rotating sphere.

The further organization of the paper is as follows. In Section 3.2, we give a

brief summary of the variational description of the shallow-water equations using

the Euler–Poincaré formulation. Section 3.3 is devoted to the description of the

discretization of the continuous Euler–Poincaré formulation, originally presented

in [8], and the representation of the variational integrator on the icosahedral mesh

geometry used to approximate the sphere. In Section 3.4, we verify the consis-

tency of the corresponding approximations of the standard differential operators.

Test cases and numerical benchmarks showcasing the behaviour of the variational

integrator for the shallow-water equations are given in Sections 3.5 and 3.6. The

conclusions and thoughts for future research within this field of geometric numer-

ical integration are found in Section 3.7.

3.2. Variational principle for the rotating

shallow-water equations

In absence of irreversible processes, the equations of motion of fluid dynamics can

be derived via the Hamilton principle

δ
∫︂ T

0
L(φ, φ̇)dt = 0,

with respect to variations δφ vanishing at t = 0 and t = T . Here L is the

Lagrangian function of the fluid, given by the kinetic energy minus the internal

energy, and expressed in terms of the Lagrangian fluid trajectory φ and Lagrangian

fluid velocity φ̇. Following this point of view, the configuration space for fluid

dynamics, away from shocks, is the group Diff(D) of diffeomorphisms φ of the

fluid domain D. While in the Lagrangian (or material) description this principle is
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a straightforward extension of the Hamilton principle of classical mechanics, in the

Eulerian (or spatial) description the variational principle is more involved, since it

uses constrained variations. It can be rigorously justified by applying the process

of Euler–Poincaré reduction [48], which directly gives the general form of the

Eulerian variational principle induced by the Hamilton principle of fluid mechanics.

We refer to [46] for an application to the equations of geophysical fluid dynamics

(GFD). Since this principle is central to the derivation of the numerical scheme,

we quickly review it below for the shallow-water case. A more detailed review

of Euler–Poincaré reduction and its application to the shallow water equations as

well as to simpler examples is presented in §3.8.3 in the Appendix.

Let us consider the rotating shallow-water (RSW) dynamics on the sphere S of

radius R. The sphere is naturally endowed with a Riemannian metric γ induced

from the standard Euclidian metric on R3 and with a volume dσ associated to

γ, see §3.8.1. In terms of latitude (θ) and longitude (λ), we have γ = R2dθ2 +

R2 cos θdλ2 and dσ = R2 cos θdθ ∧ dλ, but our approach is geometrically intrinsic,

i.e., independent of any choice of coordinates on S. In the Eulerian description,

the variables are the fluid velocity u and the fluid depth h, defined in terms of the

Lagrangian variables φ and φ̇, with φ ∈ Diff(S), as

u = φ̇ ◦ φ−1 and h = h0 • φ−1 := (h0 ◦ φ−1)Jφ−1, (3.1)

where h0 is the initial fluid depth and Jφ−1 is the Jacobian of the diffeomorphism

φ−1 with respect to the metric. The second relation in (3.1) is the natural action

of diffeomorphisms on densities, that we have denoted using •, see also §3.8.1 for

more details.

The Lagrangian for rotating shallow-water fluids in Eulerian coordinates is given

by

ℓ(u, h) =
∫︂

S

[︃1
2h γ(u,u) + h γ(R,u) − 1

2g(h+B)2
]︃
dσ, (3.2)

28



where B is the bottom topography, h + B describes the free surface elevation of

the fluid, g is the gravitational acceleration and R is the vector potential of the

angular velocity of the Earth. We recall that γ is the Riemannian metric on S

induced from the Euclidean metric on R3.

Given this Lagrangian, the equations of motion follow from the Euler–Poincaré

variational principle given by

δ
∫︂ T

0
ℓ(u, h)dt = 0, (3.3)

with respect to constrained variations of the form δu = ∂tv + [u,v] and δh =

− div(hv), where v is an arbitrary time dependent vector field on S, vanishing

at the endpoints t = 0 and t = T , and where div denotes the divergence on the

sphere, associated to the metric, see §3.8.1. The form of the constrained variations

is obtained by using the relations (3.1) and computing the variations δu and δh

induced by free variations δφ vanishing at t = 0 and t = T . This principle yields

the Euler–Poincaré equations in the general form

∂t
δℓ

δu
+ Lu

δℓ

δu
= hd

δℓ

δh
, (3.4)

where the second term denotes the Lie derivative of the fluid momentum density

(a one-form density) along the vector field u, explicitly given by Luα = iudα +

diuα+ α div u, with d being the exterior derivative and iuω the inner product of

the k-form ω with the vector field u. We refer to §3.8.1 for a review of exterior

derivatives and Lie derivatives and to §3.8.3 for a detailed derivation of (3.4). The

functional derivative δℓ
δu , resp. δℓ

δh
, is the one-form, resp., the function, defined by

∫︂
S

δℓ

δu
· v dσ = d

dε

⃓⃓⃓⃓
⃓
ε=0

ℓ(u + εv, h), resp.
∫︂

S

δℓ

δh
v dσ = d

dε

⃓⃓⃓⃓
⃓
ε=0

ℓ(u, h+ εv)

for any vector field v or function v. Equation (3.4) is accompanied with the
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advection equation ∂th + div(hu) = 0 for the fluid depth which, in the Euler–

Poincaré approach, follows from the second relation in (3.1).

For the RSW Lagrangian (3.2), we have

δℓ

δu
= h(u♭ + R♭) and δℓ

δh
= 1

2γ(u,u) + γ(R,u) − g(h+B), (3.5)

where u♭ and R♭ are the one-forms associated to the vector fields u and R via the

flat operator ♭ of the Riemannian metric γ, see §3.8.1. Using these expressions, the

Euler–Poincaré equations (3.4) lead to the momentum RSW equations, written in

the space of one-forms as

h ∂tu♭ + ihud(u♭ + R♭) = −hd
(︃1

2γ(u,u) + g(h+B)
)︃
, (3.6)

see [8] and §3.8.3 for details. It is this expression of the RSW equations that

appears in a discretized form in the variational discretization later in (3.23).

3.3. Discrete variational principle for the RSW

equations

The variational discretization of the rotating shallow-water equations mimics the

continuous variational method; in particular, each step of the continuous theory

is translated to the discrete level. We provide here a review of the discrete Euler–

Poincaré theory for the RSW, and refer the reader to [8] for full details.

3.3.1. Definition of the appropriate discrete configuration

space for RSW

Discrete diffeomorphism group. The discretization procedure starts with the

choice of a discrete version of the configuration group Diff(S) of a shallow-water
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fluid. Following [65], [8], this group is obtained by first discretizing the space

of functions F(S) on which Diff(S) acts by composition on the right, and then

identifying a finite dimensional group acting by matrix multiplication on the finite

dimensional space of discrete functions, while preserving some properties of the

action by diffeomorphisms. In the compressible case, we shall only retain the prop-

erty that constant functions are preserved under composition by a diffeomorphism.

Given a mesh M of the sphere and choosing as discrete functions the space RN

of piecewise constant functions on M, this results in the discrete diffeomorphism

group

D(M) =
{︂
q ∈ GL(N)+ | q · 1 = 1

}︂
(3.7)

of dimension N2 − N , where N is the number of cells in M, the vector 1 ∈ RN

is defined by 1 = (1, ..., 1)T, and GL(N)+ = {q ∈ Mat(N) | det q > 0} is the

general linear group of orientation-preserving N × N matrices. The condition

q·1 = 1 encodes, at the discrete level, the fact that constant functions are preserved

under composition by a diffeomorphism. The action of the group D(M) by matrix

multiplication on discrete functions F ∈ RN is denoted as

F ∈ RN ↦→ qF = F ◦ q−1 ∈ RN , q ∈ D(M),

where the suggestive notation F ◦ q−1 for the multiplication of the vector F by

the matrix q is introduced to indicate that this action is understood as a discrete

version of the action of Diff(S) by composition on the space F(S) of functions on

S, namely f ∈ F(S) ↦→ f ◦ φ−1 ∈ F(S), see [65], [8] for details. The situation is

formally illustrated by the diagram
f ∈ F(S) f ◦ φ−1 ∈ F(S)

f ◦ φ−1 ∈ F(S) F = F ◦ q−1 ∈ RN

Diff(S

D(M

The Lie algebra of the Lie group D(M) is the space of row-null N ×N matrices

31



d(M) = {A ∈ Mat(N) | A · 1 = 0}, (3.8)

endowed with the Lie bracket [A,B] = AB − BA. This Lie algebra is a discrete

version of the Lie algebra of Diff(S) given by vector fields on S. It is of particular

interest for our derivations as it will allow us to formulate the discrete spatial

Lagrangian required to derive the Euler–Poincaré equations from variational prin-

ciples. By taking the derivative of continuous and discrete actions at the identity,

we get d
dt

⃓⃓⃓
t=0

f ◦ φ−1
t = −df · u and d

dt

⃓⃓⃓
t=0

F ◦ q−1
t = AF , where d

dt

⃓⃓⃓
t=0

φt = u

and d
dt

⃓⃓⃓
t=0

qt = A. This suggests that AF , with A an element of the Lie algebra

d(M), may play the role of a discrete version of the derivative of f in the direction

of a continuous vector field u. As we will recall below, not all A ∈ d(M) can be

interpreted as a discrete vector field. This induces nonholonomic constraints on

the Lie algebra (3.8), which have to be appropriately taken into account in the

variational principle.

Nonholonomic constraints. It can be shown that if a matrix A ∈ d(M) approx-

imates a vector field u, then the matrix elements Aij satisfy

Aij ≃ − 1
2Ωii

∫︂
Dij

(u · nij)dS, for all j ∈ N(i), j ̸= i,

Aii ≃ 1
2Ωii

∫︂
Ci

(div u)dx,
(3.9)

where N(i) denotes the set of all indices (including i) of cells sharing a face with

cell Ci, Dij denotes the face common to cells Ci and Cj with unit normal nij

pointing from Ci to Cj, and Ωii is the volume of cell Ci. We refer to [8] for

the precise statement of these approximations. This identification imposes several

constraints on the matrices in d(M) to ensure that they represent a velocity vector

field u. First it is required that fluxes are nonzero only between neighboring cells,
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hence we have the linear constraint

S =
{︂
A ∈ d(M) | Aij = 0, for all j /∈ N(i)

}︂
. (3.10)

Second, we have the constraint ΩiiAij = −ΩjjAji, for all j ̸= i, i.e., ATΩ +ΩA is

a diagonal matrix, with Ω being the N × N diagonal matrix with elements Ωii.

This gives the additional linear constraint

R =
{︂
A ∈ d(M) | ATΩ +ΩA is diagonal

}︂
. (3.11)

For the subsequent application of the variational principle, it is important to note

that the constraints (3.10) and (3.11) are nonholonomic. Such constraints are

taken into account by using the Euler–Poincaré–d’Alembert principle, which is

the nonholonomic version of the Euler–Poincaré principle. As we recall in §3.8.3,

the application of this principle requires the choice of an appropriate dual space

and duality pairing.

Duality pairing and projector. We recall, see [65], that in the context of the

discrete diffeomorphism group, the space of discrete one-forms Ω1
d(M) is identified

with the space of skew-symmetric N × N matrices. The discrete version of the

L2-pairing between discrete one-forms and discrete vector fields is given by

⟨L,A⟩ = Tr(LTΩA), for A,L ∈ Mat(N). (3.12)

The application of this variational principle makes crucial use of Proposition

10 of [8] recalled below, which identifies a projector onto the dual space to the

constraint R with respect to the pairing (3.12). The role of this proposition will

become clear below when stating the Euler–Poincaré–d’Alembert principle.
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Proposition 10 ([8]). Given an N ×N matrix L, we have the equivalence

⟨L,A⟩ = 0, for all A ∈ R ⇔ P(L) = 0,

where P : Mat(N) → Ω1
d(M) is the projector defined by P(L) := (L− ˆ︁L)(A), with

ˆ︁Lij := Lii and L(A) := 1
2(L− LT).

3.3.2. Euler–Poincaré–d’Alembert variational principle

We shall now reproduce, at the discrete level, the variational formulation for the

RSW recalled earlier in Section 3.2, with the goal of obtaining the semi-discrete

RSW equations via the Euler–Poincaré–d’Alembert principle.

As a first step, we need to identify the action of the group D(M) on the variables

D ∈ RN representing the discrete fluid depth. As in the continuous case, see the

second equation in (3.1), this action, also denoted by D ↦→ D • q, is dual to the

action on discrete functions, namely

⟨D • q, F ⟩0 = ⟨D,F ◦ q−1⟩0, for all F ∈ RN , q ∈ D(M), (3.13)

with respect to the discrete L2-pairing ⟨D,F ⟩0 = DTΩF . A direct application of

(3.13) shows that this action and the associated Lie algebra action are given by

the formulas

D • q = Ω−1qTΩD and D • A = Ω−1ATΩD, (3.14)

for q ∈ D(M) and A ∈ d(M).

Given a semi-discrete Lagrangian ℓ(A,D), the discrete version of the variational

principle (3.3) reads as follows

δ
∫︂ T

0
ℓ(A,D)dt = 0, (3.15)

34



with respect to variations δA = ∂tB+[B,A] and δD = −D•B, with A,B ∈ S ∩R

and B(0) = B(T ) = 0. As in the continuous case, the expression of the variations

follows from the definition of A and D in terms of the Lagrangian variables q, q̇,

namely A = q̇q−1 and D = D0•q−1, which are discrete versions of (3.1). This prin-

ciple, which incorporates the nonholonomic constraint S∩R in the Euler–Poincaré

approach, is referred to as the Euler–Poincaré–d’Alembert principle. Note that

both A = q̇q−1 and B = δqq−1 have to satisfy the nonholonomic constraint S ∩ R.

In the next theorem, this principle is applied to yield the general semi-discrete

form of compressible fluid equations.

Theorem 11 (Discrete variational equations, [8]). For a semi-discrete Lagrangian

ℓ = ℓ(A,D) : d(M)×RN → R, the curves A(t), D(t) are critical for the variational

principle (3.15) if and only if they satisfy the equations

P
(︄
d

dt

δℓ

δA
+Ω−1

[︄
AT, Ω

δℓ

δA

]︄
+D

δℓ

δD

T)︄
ij

= 0, for all i ∈ N(j), (3.16)

where P : Mat(N) → Ω1
d(M) is the projection obtained in Proposition 10. These

equations are accompanied with the discrete continuity equation

d

dt
D +D • A = 0. (3.17)

This result follows from a direct application of (3.15) by using the expression for

δA and δD and isolating B which is an arbitrary curve in S ∩ R. The equations

then follow by an application of Proposition 10.

More precisely, using the definition of the pairings ⟨ , ⟩ and ⟨ , ⟩0, we have

δ
∫︂ T

0
ℓ(A,D)dt =

∫︂ T

0

[︃⟨︃
δℓ

δA
, ∂tB + [B,A]

⟩︃
+
⟨︃
δℓ

δD
,−Ω−1BTΩD

⟩︃
0

]︃
dt (3.18)

= −
∫︂ T

0

⟨︃
d

dt

δℓ

δA
+Ω−1

[︃
AT, Ω

δℓ

δA

]︃
+D

δℓ

δD

T
, B
⟩︃
dt. (3.19)
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Since B is arbitrary in the space S ∩ R, we obtain the equations (3.16) by appli-

cation of Proposition 10. We provide in Table 3.1 a summary that enlightens the

correspondence between the continuous and discrete objects.

Continuous diffeomorphisms Discrete diffeomorphisms
Diff(M) ∋ φ D(M) ∋ q

Group action on functions Group action on discrete functions
f ↦→ f ◦ φ F ◦ q = F ↦→ q−1F

Group action on densities Group action on discrete densities
h ↦→ h • φ = (h ◦ φ)Jφ D ↦→ D • q = Ω−1qTΩD

Eulerian velocity and depth Eulerian discrete velocity and discrete depth
u = φ̇ ◦ φ−1, h = (h0 ◦ φ−1)Jφ−1 A = q̇q−1, D = Ω−1q−TΩD0

Euler-Poincaré principle Euler-Poincaré-d’Alembert principle
δ
∫︁ T

0 ℓ(u, h)dt = 0, δ
∫︁ T

0 ℓ(A,D)dt = 0,
δu = ∂tv + [v,u], δh = − div(hv) δA = ∂tB + [B,A], δD = −Ω−1BTΩD

constraint: A,B ∈ S ∩ R

Table 3.1.: Continuous and discrete objects

For the RSW case, the discrete Lagrangian is

ℓ(A,D) = 1
2

N∑︂
i,j=1

DiA
♭
ijAijΩii +

N∑︂
i,j=1

DiR
♭
ijAijΩii − 1

2

N∑︂
i=1

g(Di +Bi)2Ωii, (3.20)

see (3.2), which requires the construction of a discrete “flat” operator A ∈ S∩R ↦→

A♭ ∈ Ω1
d(M) associated to a given mesh, see [65].

The abstract developments made so far are valid for any kind of reasonable

non-degenerate mesh (i.e. the mesh admits a non-degenerate circumcenter dual

and is member of a shape-regular and quasi-uniform mesh family, cf. [8]). By

choosing a fixed mesh, we will be able to express these abstract notions in concrete

(implementable) equations.

3.3.3. Semi-discrete scheme on a 2D simplicial mesh

For our implementation, we use an icosahedral grid as pictured in Fig. 3.1. The

construction of the grid is described in [44]. The icosahedron’s edges are recursively
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bisected, and the new vertices are projected onto the unit sphere. The triangles

are used as the primal grid, and the circumcenter dual, consisting of pentagonal

and hexagonal cells, as the dual grid. The vertex positions are optimized in the

sense that the global maximum of the discrepancy between primal edge midpoints

and intersection points of primal and dual edges is minimized [45]. Note that, for

our variational integrator, any other optimization for which primal and dual edges

intersect perpendicularly could be used too; only the order of convergence of the

differential operators will be affected by the optimization.

Figure 3.1.: Icosahedral meshes with refinement levels 2, 3, and 4 corresponding
to 80, 320, and 1280 triangular cells.

In [84], the grid and its connectivity is described in more details. Fig. 3.2 shows

a section of the simplicial mesh where we indicate our notation:

fij := length of a primal edge, triangle edge located between triangle i and triangle j;

hij := length of a dual edge that connects the circumcenters of triangle i and triangle j;

Ωii := area of a primal simplex (triangle) Ti;

K±
i := proportional area of the intersection of (triangle) Ti and (hexagon/pentagon) ζ±,

see Equation (3.22).
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K−
i

K+
i

K+
j

K−
j

Ti

Ti+

Ti−
Tj

Tj+

Tj−

ζ−

ζ+

fijhii−

hii+

hjj−

hjj+

Figure 3.2.: Notation and indexing conventions for the 2D simplicial mesh.

Using the flat operator on a 2D simplicial mesh, see [65], we are able to represent

the discrete one-forms A♭ ∈ Ω1
d(M) in terms of the discrete vector fields A ∈ S ∩R

by

A♭
ij = 2Ωii

hij

fij

Aij, for j ∈ N(i),

A♭
ij + A♭

jk + A♭
ki = Ke

j

⟨︂
ω(A♭), ζe

⟩︂
, for i, k ∈ N(j), k /∈ N(i),

(3.21)

for the constant Ke
i and the vorticity ω(A♭), defined as, respectively

Ke
k := |ζe ∩ Tk|

|ζe|
and

⟨︂
ω(A♭), ζe

⟩︂
:=

∑︂
hmn∈∂ζe

A♭
mn . (3.22)

Here, e denotes the node common to triangles Ti, Tj, Tk and |ζe ∩ Tk| is the area

of the intersection of Tk and ζe, where the latter denotes the dual cell to e, see

Fig. 3.2. The discrete vorticity, see the second equation in (3.22), is calculated by

taking the sum over the dual edges in the boundary ∂ζe counterclockwise around

node e. The definition of A♭ in (3.21) leads to a skew-symmetric matrix, hence

A♭ ∈ Ω1
d(M).

As shown in [8], for the discrete Lagrangian (3.20) on a simplicial grid, the
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discrete variational equations (3.16) lead to the following semi-discrete equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dij
d

dt
A♭

ij + ω+
(︂
K+

i Dji+Aii+ +K+
j Dij+Ajj+

)︂
− ω−

(︂
K−

i Dji−Aii− +K−
j Dij−Ajj−

)︂
+Dij

1
2
(︂
A♭

ii−Aii− + A♭
ii+Aii+ + A♭

ijAij − A♭
jiAji − A♭

jj−Ajj− − A♭
jj+Ajj+

)︂
+Dij

(︄
∂ϵ

∂Di

− ∂ϵ

∂Dj

)︄
= 0

d

dt
Di = Aii−Di− + Aii+Di+ + AijDj − AiiDi,

(3.23)

in which Dij := 1
2(Di + Dj) denotes the average of the cell values and

ω± := ∑︁
hmn∈∂ζ±(A♭

mn + R♭
mn) is the discrete absolute vorticity at the nodes ±

at endpoints of the edge between cells i and j, see Fig. 3.2. This is the discrete

version of the RSW equations (3.6).

3.3.4. Semi-discrete RSW scheme in terms of the discrete

velocity field

With a suitable choice of structure preserving time discretization, Equations (3.23)

provide a set of fully discrete equations which can be implemented as they stand.

However, as it is more familiar in the GFD community to work with velocity

quantities, we proceed in rewriting the equations correspondingly.

From the original definitions (3.9) and the flat operator (3.21), we find the

following relation between one-forms A♭, Lie algebra elements A and the normal

velocity degrees of freedom Vij on the triangle edges’ midpoints:

Aij = − 1
2Ωii

fijVij, for all j ∈ N(i), j ̸= i,

Aii = −Aij − Aii− − Aii+ =
∑︂

k=j,i−,i+

1
2Ωii

fikVik =: 1
2 div(V )i.

(3.24)

while A♭
ij = −hijVij for i ∈ N(j), see Fig. 3.2 for the index notations. Note that

div(V ) coincides with the natural finite volume divergence operator on a triangular
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mesh (see e.g. [7]).

Momentum equation. The semi-discrete momentum equation in matrix–vector

notation reads

∂tVij + Adv(V,D)ij = K(V )ij − G(D)ij, (3.25)

where we define

Adv(V,D)ij :=

− 1
Dijhij

(︃ 1
|ζ−|

∑︂
hmn∈∂ζ−

hmn(Vmn + R̄mn)
)︃

(︄
|ζ− ∩ Ti|

2Ωii

Dji−fii−Vii− + |ζ− ∩ Tj|
2Ωjj

Dij−fjj−Vjj−

)︄

+ 1
Dijhij

(︃ 1
|ζ+|

∑︂
hmn∈∂ζ+

hmn(Vmn + R̄mn)
)︃

(︄
|ζ+ ∩ Ti|

2Ωii

Dji+fii+Vii+ + |ζ+ ∩ Tj|
2Ωjj

Dij+fjj+Vjj+

)︄
,

K(V )ij := − 1
2hij

(︃
hjj−fjj−(Vjj−)2

2Ωjj

+ hjj+fjj+(Vjj+)2

2Ωjj

+ hijfij(Vji)2

2Ωjj

− hii−fii−(Vii−)2

2Ωii

− hii+fii+(Vii+)2

2Ωii

− hijfij(Vij)2

2Ωii

)︃
,

G(D)ij := g

hij

(︃
Dj +Bj − (Di +Bi)

)︃
,

for values R̄mn related to Rmn by Rij = − 1
2Ωii

fijR̄ij, analogously to the relation

between Vmn and Amn. We again use the definition Dij = Di+Dj

2 . We define as

Coriolis parameter

f |ζ± := 1
|ζ±|

∑︂
hmn∈∂ζ±

hmnR̄mn. (3.26)
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Continuity equation. The semi-discrete continuity equations in matrix–vector

form is given by

∂tDi + 1
Ωii

fijVijDij + 1
Ωii

fii−Vii−Dii− + 1
Ωii

fii+Vii+Dii+⏞ ⏟⏟ ⏞
:=div(V,D)i

= 0.
(3.27)

Hence, the spatial variational discretization process leads to a standard finite vol-

ume representation of the divergence operator and hence of the continuity equa-

tion.

Time discretizations. Since the spatial discretization has been realized by vari-

ational principles in a structure-preserving way, a temporal variational discretiza-

tion can be implemented by following the discrete (in time) Euler–Poincaré–

d’Alembert approach, analogously to what has been done in [36] and [26], to

which we refer for a detailed treatment. This variational approach is based on the

introduction of a local approximant to the exponential map of the Lie group, see

[18], chosen here as the Cayley transform. As explained in [26, 36], by dropping

cubic terms, this results in a Crank–Nicolson-type time update for the momentum

equation (3.16) (which, as such, is second order in time) and an update equation

based on the Cayley transform for the advection equation (3.17). Following [8],

we will use below the Crank–Nicolson-type time update directly on the momen-

tum equation as reformulated in (3.25). This considerably simplifies the solution

procedure without altering the behavior of the scheme.

Alternatively, we apply also a standard time integrator using a Crank–Nicolson-

type time update for the continuity equations instead of the Cayley transform and

compare both time stepping schemes with each other while keeping the spatial

variational discretization unmodified.

1.) Fluid depth equation update by Cayley transform: This time integrator con-

sists of two steps. We first compute the update equation for the fluid depth D,
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which is based on the Cayley transform τ . This update equation is then given by

Dt+1 = τ(∆tAt)Dt for the time t and a time step size ∆t. In particular, τ can be

represented as (︂
I − 1

2∆tAt
)︂
Dt+1 =

(︂
I + 1

2∆tAt
)︂
Dt, (3.28)

with I the identity matrix (cf. [26] for more details). Note that A can be expressed

in terms of V using (3.24). In a second step, we solve the momentum equation,

given by an implicit nonlinear equation (step 2), according to the fixed-point

iteration:

1. Start loop over k = 0 with initial guess at t: V ∗
k=0 = V t;

2. Calculate updated velocity V ∗
k+1 from the explicit equation:

V ∗
k+1 − V t

∆t = −Adv(V ∗
k , D

t+1) + Adv(V t, Dt)
2 + K(V ∗

k ) + K(V t)
2 − G(Dt+1);

3. Stop loop over k if ||V ∗
k+1 −V ∗

k || < ϵ for a small positive ϵ, take V t+1 = V ∗
k+1.

For more details, we refer the reader to [8]. Note that for this time integration

scheme, we do not discretize the continuity equation (3.27) directly, but use the

discretization of τ in (3.28).

Remark 12. The temporal discretization using the Cayley transform is only an

approximation to a fully variational time integrator, see [26, 36] for more details.

The energy of the resulting temporal scheme is not conserved at machine precision,

but the energy fluctuates around a long term mean. We observe this behaviour

when measuring the energy error for the numerical simulations.

2.) Fluid depth equation update by Crank–Nicolson: Here, we use a two-step time

integration scheme to solve the system of fully discretized nonlinear momentum

and continuity equations:
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V t+1
ij − V t

ij

∆t = −Adv(V t+1, Dt+1)ij + Adv(V t, Dt)ij

2 (3.29)

+ K(V t+1)ij + K(V t)ij

2 − G(Dt+1)ij , (3.30)

Dt+1
i −Dt

i

∆t = −div(V t+1, Dt+1)i + div(V t, Dt)i

2 . (3.31)

We solve this system of nonlinear equations by fixed-point iteration for all edges

ij and cells i. To enhance readability, we skip the corresponding subindices in the

following. The solution algorithm reads:

1. Start loop over k = 0 with initial guess at t: V ∗
k=0 = V t and D∗

k=0 = Dt;

2. Calculate updated water depth (density) D∗
k+1 from the explicit equation:

D∗
k+1 −Dt

∆t = −div(V ∗
k , D

∗
k) + div(V t, Dt)

2

3. Calculate updated velocity V ∗
k+1 from the explicit equation:

V ∗
k+1 − V t

∆t = −
Adv(V ∗

k , D
∗
k+1) + Adv(V t, Dt)

2 + K(V ∗
k ) + K(V t)

2 − G(D∗
k+1);

4. Stop loop over k if ||V ∗
k+1 − V ∗

k || + ||D∗
k+1 −D∗

k|| < ϵ for a small positive ϵ.

Note that in case of convergence, i.e. V ∗
k+1 → V t+1 and D∗

k+1 → Dt+1, this

algorithm solves equations (3.30) and (3.31).

3.4. Numerical analysis of the differential operators

We present a convergence study of the gradient, divergence and curl operators on

the icosahedral meshes. These operators are used directly and indirectly in our

scheme. The study will be done in x, y, z coordinates on R3, such that it is inde-
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pendent of local coordinates of the hypersurface on which we solve the equations.

We consider the Euclidean metric ⟨ , ⟩ on R3 and denote by ∇ the gradient relative

to it.

Let Nx be the outward unit normal vector on the sphere at x ∈ S and Px =

I − NxNx
⊤ be the orthogonal projection onto the tangent space of S at x, where

I is the 3 × 3 identity matrix. In the following, we assume that g : S → R is a

given real-valued function on S, with g̃ : R3 → R being an arbitrary extension of g

to R3, and u is a given vector field on S, i.e. u : S → TS, with ũ : R3 → R3 being

an arbitrary extension of u to R3. From the general expression of the covariant

derivative induced on hypersurfaces, see e.g., [54], the gradient, divergence and

curl operators on S relative to γ can be written as

grad g(x) := ∇g̃(x) − (∇g̃(x) · Nx)Nx = (I − NxNx
⊤)∇g̃(x) = Px∇g̃(x)

div u(x) := ⟨Px∇, ũ(x)⟩

curl u(x) := ⟨(Px∇) × ũ),Nx⟩,

see also [28, 29].

Note that in contrast to the numerical schemes derived in [28, 29] we use the

above analytical expressions only to initialize the initial conditions for the numer-

ical test cases presented in Section 3.5, and for comparing against the numerically

obtained expressions for grad, div and curl.

As explained further below, in our variational scheme (3.25)–(3.27), the dis-
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cretization of these operators are given as follows

(Gradnum g)ij = gj − gi

hij

, (3.32)

(
num
div u)i = 1

Ωii

∑︂
ℓ∈{j,i−,i+}

fiℓViℓ, (3.33)

(
num
curl u)ζe = 1

|ζe|
∑︂

mn∈∂ζe

hmnVmn, (3.34)

where, from (3.9) and (3.24), we have Viℓ = 1
fiℓ

∫︁
Diℓ

(u · niℓ)dS and where gi =
1

Ωii

∫︁
Ti
gdx. As before, nij is the unit normal pointing from Ti to Tj, ζe is the cell

dual to a node e (a hexagon or pentagon), |ζe| is its area. Note that in (3.33) the

sum is over the cells adjacent to Ti, and in (3.34) the sum is over the dual edges

in the boundary ∂ζe counterclockwise around node e.

The gradient (3.32) appears in (3.25) and is denoted as G(D). Therein, in

the advection term, Adv(V,D), we find the curl operator (3.34) consisting of a

counterclockwise sum over the edges of a dual cell. The divergence operator (3.33)

with positive fluxes when pointing out of the triangles appears in the continuity

equation (3.27).

For our convergence study, we use g(x) = sin(x) + sin(2y) + sin(2z) for the

gradient, u(x) = (x− x3,−x2y,−x2z)⊤ for the divergence and u(x) = (z, 0,−x)⊤

for the curl.
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Figure 3.3.: Convergence table for the discrete gradient (left), divergence (center),
and curl (right).

In Fig. 3.3, we see that the gradient and curl operator converge with first order.
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The divergence operator converges too, but does not achieve first order when

evaluated on the triangles, because the grid is optimized for the hexagons [45]. In

Fig. 3.4, we clearly see the grid imprint of the original icosahedron in the pointwise

errors for the divergence, showing that the error is highest along the edges of the

icosahedron.

-1

0-1

-0.5

1

0

0.5

0.5

0

1

-0.5 1-1

0.5

1

1.5

2

2.5

3

3.5

4

4.5
10 -3

Figure 3.4.: The grid imprint of the absolute error for the evaluation of the diver-
gence on triangles.

3.5. Numerical simulations

We consider four test cases; (1) the lake-at-rest solution to demonstrate that the

model is well-balanced; (2) a global steady-state solution to study the convergence

and energy and enstrophy loss of the model; (3) the flow over an isolated mountain;

and (4) the Rossby–Haurwitz wave solution.

The following constants are kept fixed for all simulations:

R = 6.37122 · 106 [m], Ω = 7.292 · 10−5 [s−1], g = 9.80616 [ms−2].

The Coriolis parameter is f = 2Ω sin θ. Unless indicated otherwise, the simula-
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tions are carried out on a grid with N = 40962 Voronoi cells (corresponding to

a resolution of about 120 km) for which we chose a time step of ∆t = 100 s.

To estimate the numerical errors, we use the following definitions for the relative

L∞-error and L2-error,

∥u− u0∥∞ = maxi |u(i) − u0(i)|
maxi |u0(i)|

∥u− u0∥2 =

√︂∑︁
i (Ωii(u(i) − u0(i)))2√︂∑︁

i Ωiiu0(i)2
,

where Ωii is the area associated with cell i. Here, the function u(i) is the numeri-

cal solution defined at xi or the magnitude of the numerical solution at xi (when

used for calculating the error for the velocity) and u0(i) is the initial function at xi.

Since our scheme preserves mass and potential circulation up to machine preci-

sion, those error norms are not presented. In this section, we only present results

obtained by using the Cayley transform time discretization, which we compare in

Section 3.6 with the standard time integrator.

3.5.1. Case 1: Lake at rest

This test case verifies that the model is well-balanced, that is, the exact solution

u = 0, h + B = constant of the RSW equations is preserved up to machine

precision. Here, we choose the test case of a resting fluid over a conical shaped

mountain. The initial velocity is u ≡ 0 and the bottom topography is defined by

B(λ, θ) = 2000 exp
(︂
−(2.8 · 9r/π)2

)︂
with r2 = min

(︂
(π/9)2, (λ− λc)2 + (θ − θc)2

)︂
,

see also Fig. 3.5a. The total water depth is D = 5960 − B. In addition, we carry

out a second simulation where we add some white noise to the bottom topography
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profile, see Fig. 3.5b, to verify that the model remains well-balanced also for a

noisy bottom topography.

The shallow-water equations are integrated over 15 days. The initial conditions

are preserved to the order of machine precision, which verifies that the model is

indeed well-balanced.
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(a) Profile in [m] of the smooth bottom topog-
raphy case.
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phy case.

Figure 3.5.: Topography for smooth and noisy bottom topography.

3.5.2. Case 2: Global steady-state nonlinear zonal geostrophic

flow

This test case, originally proposed in [90], is a geostrophically balanced flow over

a flat bottom topography, i.e. B ≡ 0 [m]. This flow represents an exact solution

to the rotating shallow-water equations. The initial conditions are:

Vij = V (xij, yij, zij) = u0(−yij, xij, 0)T · nij, where u0 = 2πR
12 · 86400 [s−1]

Di = D(xTi
, yTi

, zTi
) = h0 − 1

g

(︂
RΩu0 + u2

0/2
)︂
z2

Ti
, where gh0 = 2.94 · 104 [m2s−2].

Here nij denotes the normal vector of a triangle edge, and Vij is the directional

magnitude of the velocity normal to an edge fij, see Equation (3.24).

Although the nonlinear zonal geostrophic flow is a steady state solution of the

RSW (in which any quantity is conserved because of no time dependence), it is
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only a stationary solution of a numerical RSW scheme up to numerical errors. As

such, it is also interesting to monitor the time series of the numerical values of the

conserved quantities of the RSW, and to verify that the energy error converges at

the expected first order.

Fig. 3.6 shows the initial conditions. In Fig. 3.7, we display the time evolution

of the errors for energy, potential enstrophy, height and velocity. It can be seen

that there is no trend in the evolution of the error. The energy is well-preserved

at the order of 10−8 and the potential enstrophy at order of 10−7. Fig. 3.8a

contains the results of the spatial convergence study over 12 days with different

resolutions. We integrate over 12 days, as one rotation of the fluid flow around

the globe takes precisely 12 days. It can be seen that D and V do not achieve first

order convergence, which is natural since the divergence operator likewise does

not achieve first order convergence, see Fig. 3.4. Fig. 3.8b shows the expected first

order convergence of the energy error with respect to the time step.

Figure 3.6.: Initial conditions for the nonlinear zonal geostrophic flow test case.
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Figure 3.7.: Time series for the error norms for the conserved quantities for the nonlinear zonal
geostrophic flow test case.
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Figure 3.8.: Convergence plots for nonlinear zonal geostrophic flow test case

3.5.3. Case 3: Flow over an isolated mountain

Here, we consider the flow over a conically-shaped mountain which was also pro-

posed in [90]. The initial conditions, see Fig. 3.9a, of this test case are the same as
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for Case 2 considered in the previous subsection, except that now h0 = 5960 [m]

and u0 = 20 [ms−1]. The following bottom topography is imposed,

B(λ, θ) = 2000 (1 − 9r/π) with r2 = min
(︂
(π/9)2, (λ− λc)2 + (θ − θc)2

)︂
.

The mountain is centered at λc = 3π/2 and θc = π/6. Note that there is no

analytical solution for this problem.

Fig. 3.9 shows snapshots of the height field at times t = 0 (a), t = 5 days

(b), t = 10 days (c) and t = 15 days (d), which are the times suggested in [90] to

show the computed solutions. These results are visually similar to the results from

different models, such as those given in [29, 85]. The time series for the errors in

the energy and potential enstrophy are depicted in Figure 3.10.

Note that the energy is almost as well conserved as in Case 2, whereas potential

enstrophy conservation is three orders of magnitudes less accurate (cf. Fig. 3.7

and Fig. 3.10). This is because the variational integrator preserves energy by

construction, but we have no control over the conservation behavior of potential

enstrophy (only PV is conserved). This, however, should not provide a problem in

practice because usually enstrophy has to be dissipated anyways at small scales,

cf. [60]. Nevertheless, our schemes preserves potential enstrophy relatively well

given the nonlinearity of the test case.

3.5.4. Case 4: Rossby–Haurwitz waves

We consider a Rossby–Haurwitz wave with wavenumber κ = 4, which is proposed

in [90]. Unlike the non-divergent barotropic vorticity equation, the shallow-water

equations can only approximate this solution. For comparison, snapshots after 7

and 14 days are presented. For completeness we present the initial conditions here

in latitude (θ) and longitude (λ),
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(a) initial (b) after 5 days

(c) after 10 days (d) after 15 days

Figure 3.9.: Numerical solution for flow over an isolated mountain. Contour inter-
val is 50m.
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Figure 3.10.: Time series of the errors of energy and potential enstrophy for flow over an
isolated mountain over the 15 days integration period.

K = 7.848 · 10−6 [s−1], κ = 4 (wave number), h0 = 8 · 103 [m].

The components of the velocity vector u = (u, v) are

u = RK cos θ +RK cosκ−1 θ(κ sin2 θ − cos2 θ) cosκλ,

v = −RKκ cosκ−1 θ sin θ sin κλ
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and the water elevation is given by

Di = h0 + 1
g
(R2A(θTi

) +R2B(θTi
) cosκλTi

+R2C(θTi
) cos 2κλTi

),

where

A(θ) = K
2 (2Ω +K) cos2 θ + 1

4K
2 cos2κ θ

(︃
(κ+ 1) cos2 θ + (2κ2 − κ− 2) − 2κ2 cos−2 θ

)︃
,

B(θ) = 2(Ω +K)K
(κ+ 1)(κ+ 2) cosκ θ

(︃
(κ2 + 2κ+ 2) − (κ+ 1)2 cos2 θ

)︃
,

C(θ) = 1
4K

2 cos2κ θ
(︃

(κ+ 1) cos2 θ − (κ+ 2)
)︃
.

For our method, we need the directional magnitude of the velocity which is Vij =

uij · nij at edge ij.

In Fig. 3.11, it can be seen that the main features of the evolution of the Rossby–

Haurwitz wave solution are reproduced correctly. The time series of the errors in

the energy and potential enstrophy are depicted in Fig. 3.12.

3.6. Long term simulation

In the previous section, we have reproduced some of the standard test cases pro-

posed in [90] for testing novel numerical schemes for the shallow-water equations.

Note that these test cases require the integration of the shallow-water equations

for relatively short time intervals, with the longest test case being integrated for

t = 15 days. A main motivation for developing a geometric numerical integrator

is that they should be suitable for longer integrations.

To test the ability of the variational discretization of shallow-water equations

to carry out longer integration experiments, we revisit here Case 2, the nonlinear
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(a) initial wave form (b) form of the wave after 7 days

(c) form of the wave after 14 days
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Figure 3.11.: Numerical solution for Rossby-Haurwitz waves. Contour interval is
100m.
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Figure 3.12.: Time series of the errors of energy and potential enstrophy for
Rossby–Haurwirz waves over the 14 days integration period.

geostrophic flow on a rotating sphere and Case 3, the flow over a mountain. We

test the spatial variational integrator with two different time discretizations, the

(variational) Cayley transform and the (non-variational) standard method that

applies a Crank–Nicolson time discretization of the continuity equation. Both

test cases are integrated for a 50-day period. The time series of the total energy

and potential enstrophy errors are depicted in Fig. 3.13 and 3.14. While both time

integrators produce reasonable error time series for the short-term integration up

to, say, 15 days, for long-term simulations only the variational scheme based on the

Cayley transform shows hardly any error trends for both the nonlinear geostrophic
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flow and the flow over the mountain test cases. Notably, while the standard time

integrator performs well for Case 2, this non-variational method shows a clear

trend to lose energy for Case 3.

Moreover, we note that for all test cases studied, the Cayley transform method

shows first order convergence of the energy error with respect to the time step while

for the standard method, though showing in general good energy conservation

properties, such convergence behaviour cannot be guaranteed. For instance, while

the energy error converges at first order for the Rossby–Haurwitz wave case, the

standard time integrator yields only zero order convergence for the steady state

case (not shown).

The slight positive drift in energy conservation that is visible in the top-left

panel of Fig. 3.13 is probably related to the fact that the presented RSW scheme

is not a fully variational integrator in time (see section Time discretizations). In

particular, when using non-uniform grids (such as those used here, with both

pentagonal and hexagonal cells in the dual mesh), this effect is enhanced. This

drift gets smaller with increased resolution, and we observe very good long-term

behaviour over a time period of a couple of months, a reasonable time period in

atmospheric and ocean modelling. When considering longer integration times of

up to one year, for instance, the drift is more enhanced but stays, nevertheless,

very small, as illustrated in Figure 3.15 (right) for the geostrophic flow test case.

Similarly to results shown in [8], these trends can be related to the irregularity

of the mesh. In particular, we don’t observe any trend in energy error when

simulating a steady vortex solution on an f-plane approximation of the sphere

with a uniform mesh (cf. Figure 3.15, left), but do see such a trend when using

a non-uniform mesh (Figure 3.15, middle), until the vortex decays. The study of

the influence of the grid structures and the construction of a fully variational time

integrator to avoid these trends will be part of future work.
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Figure 3.13.: Comparison between the Cayley transform (top panels) and standard time inte-
grator (bottom panels) for the nonlinear geostrophic flow (Case 2) over 50 days.
The dotted line indicates the moving mean and the solid straight line the overall
mean.

10 20 30 40 50
t in days

-2

0

2

E
(t

) 
/ E

0
-1

10 -7

10 20 30 40 50
t in days

0

1

2

P
E

(t
) 

/ P
E

0
-1

10 -3

10 20 30 40 50
t in days

-1

-0.5

0

E
(t

) 
/ E

0
-1

10 -5

10 20 30 40 50
t in days

0

1

2

P
E

(t
) 

/ P
E

0
-1

10 -3

Figure 3.14.: Comparison between the Cayley transform (top panels) and standard time in-
tegrator (bottom panels) for the flow over the mountain (Case 3) over 50 days.
The dotted line indicates the moving mean and the solid straight line the overall
mean.

3.7. Conclusions and outlook

In this paper, we have constructed a space–time variational discretization for the

shallow-water equations on a rotating sphere. This discretization is an extension of

the variational integrator proposed in [9] for the rotating shallow-water equations
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Figure 3.15.: Left and middle plots show the conservation of energy for an isolated vortex (for
details see [8]) on a uniform and non-uniform mesh (642 triangles) on the f-plane
over a period of 1 year. The right plot shows the conservation of energy for Case
2 on the sphere (10242 Voronoi cells) for 1 year.

on the plane. We have carried out some of the standard benchmark tests proposed

in [90] and illustrated that the discretization converges at the order of about 0.5 to

1 (constrained by the convergence order of the divergence operator) to reference

solutions of the shallow-water equations on the rotating sphere. As expected

from the variational integrator, the magnitude of small error fluctuations of the

energy around a conserved long-term mean reduce with first order with respect

to the time step size. All numerical tests carried out demonstrate the excellent

conservation properties of the variational integrator, regarding the conservation of

energy, mass, and potential vorticity. Potential enstrophy is not an invariant of

the discrete equations by construction; nevertheless it is well preserved.

We would like to stress that the variational integrator on the sphere proposed

in this paper exactly conserves the lake-at-rest steady state solution over arbi-

trary bottom topography. In addition, mass is conserved up to machine precision.

Both factors are of significant importance in tsunami propagation models, since

they prevent the introduction of spurious waves by the discretization scheme. As

such, the variational integrator can serve as dynamical core for a general purpose

tsunami model, in particular as our framework permits application of different

boundary conditions (e.g., free-slip), cf. [9]. A tsunami model requires a suitable

inundation model to handle the time-dependent wet–dry interface. The devel-

opment of such an inundation model for the presented variational integrator is
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currently underway and will be presented elsewhere, as will be the addition of a

framework for dynamic grid adaptation, which is another essential ingredient for

a tsunami propagation and inundation model.
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3.8. Appendix

3.8.1. Differential forms, flat operator, and Lie derivatives

Let us consider a manifold M of dimension n, for instance the sphere S ⊂ R3 with

n = 2. For x ∈ M , the vector space TxM consists of all the (tangent) vectors at

the point x. A vector field u on M is a smooth map that associates to each point

x ∈ M a tangent vector u(x) ∈ TxM . In local coordinates (x1, ..., xn) of M , a

vector field is written u(x) = ∑︁n
i=1 ui(x) ∂

∂xi .

A k-form ω is a skew-symmetric tensor field of rank k on M . That is, it is a

smooth map that associates to each point x ∈ M a multi-linear map ω(x) that

takes k tangent vectors at x as input and returns a real number:

ω(x) : TxM × ....× TxM → R, (v1
x, ..., v

k
x) ↦→ ω(x)

(︂
v1

x, ..., v
k
x

)︂
.
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A zero-form on M is thus a function on M . In local coordinates (x1, ..., xn) of M ,

a k-form reads ω = ∑︁
i1<...<ik

ωi1...ik
dxi1 ∧ ... ∧ dxik . For instance one-forms and

two-forms on M = R2 read ω = ω1dx
1+ω2dx

2 and ω = ω12dx
1∧dx2 in coordinates

(x1, x2). The exterior differential is a mapping d from k-forms to (k + 1)-forms

that extends the notion of the differential of a function to differential forms. For

instance, in coordinates, the differential of a k-form ω = ∑︁
i1<...<in

ωi1...ik
dxi1 ∧ ...∧

dxi1 is the (k+ 1)-form dω = ∑︁n
j=1

∑︁
i1<...<in

∂ωi1...ik

∂xj dxj ∧ dxi1 ∧ ...∧ dxi1 . Given a

vector field u and a k-form ω, the inner product of u with ω is the (k − 1)-form

iuω defined by iuω(x)
(︂
v1

x, ..., v
k−1
x

)︂
= ω(x)

(︂
u(x), v1

x, ..., v
k−1
x

)︂
.

A Riemannian metric on M is a symmetric and positive-definite tensor field γ

of rank 2 on M . That is, it is a smooth map that associates to each point x ∈ M

a symmetric bilinear map γ(x) that takes 2 tangent vectors as input and returns

a real number:

γ : TxM × TxM → R, (v1
x, v

2
x) ↦→ γ(x)

(︂
v1

x, v
2
x

)︂
,

such that γ(vx, vx) > 0, for all vx ∈ TxM with vx ̸= 0. In coordinates, we write

γ = ∑︁n
i,j=1 γijdx

idxj. The flat operator associated to γ is the linear map that

sends a vector field u to the 1-form u♭ defined by u♭(x)(vx) = γ(x)(u(x), vx), for

all vx ∈ TxM . In local coordinates, if u = ∑︁n
i=1 ui ∂

∂xi , then u♭ = ∑︁n
i,j=1 γijujdxi.

The volume form associated to the Riemannian metric γ is the n-form dσ, given

locally by dσ =
√︂

det γijdx
1 ∧ ...dxn.

Given a diffeomorphism φ of M , the pull-back of a k-form ω is the k-form φ∗ω

defined by

φ∗ω(x)
(︂
v1

x, ..., v
k
x

)︂
:= ω(φ(x))

(︂
Txφ(v1

x), ..., Txφ(vk
x)
)︂
,

where Txφ : TxM → Tφ(x)M is the tangent map (the derivative) of φ. The Lie
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derivative of a k-form ω with respect to a vector field u is the k-form Luω defined

by Luω = d
dt

⃓⃓⃓
t=0

φ∗
tω, where φt is the flow of the vector field u, i.e. d

dt
φt(x) =

u(φt(x)), with φt=0(x) = x. The divergence of a vector field relative to the

Riemannian metric γ is the function div u defined by Ludσ = (div u)dσ.

For the treatment of fluid mechanics, we also need the notion of Lie derivative

of a k-form density, denoted Lu to distinguish it from the Lie derivative Lu of

a k-form. Let us assume that a Riemannian metric γ is fixed (for the sphere

S we chose the Riemannian metric induced from the Euclidean metric on R3).

In this case, k-form densities can be identified with k-forms. The action of a

diffeomorphism φ on a k-form density ω is ω • φ := (φ∗ω)Jφ, where Jφ is the

Jacobian of the diffeomorphism with respect to the Riemannian metric γ, defined

by φ∗dσ = Jφdσ. The Lie derivative is defined, similarly as before, by Luω =
d
dt

⃓⃓⃓
t=0

ω • φt = d
dt

⃓⃓⃓
t=0

(φ∗
tω)Jφt, where φt is the flow of the vector field u. In §3.2,

this Lie derivative was applied to the fluid momentum density α = δℓ
δu (a one-form

density) and to the fluid depth h (a zero-form density), and reads

Luα = iudα + diuα + α div u and Luh = div(hu).

In local coordinates, we have (Luα)i = ∑︁n
k=1 ∂k(αiuk) + ∑︁n

k=1 αk∂iuk and Luh =∑︁n
k=1 ∂k(huk).

3.8.2. Lie group, Lie algebra, and actions

Recall that a Lie group G is a manifold and a group, such that the group operations

are smooth maps with respect to the manifold structure. Basic examples are the

general linear group GL(n) = {A ∈ Mat(n) | detA ̸= 0} or the special orthogonal

group SO(n) = {R ∈ GL(n) | RTR = In, detR > 0}, where In is the n×n identity

matrix. The tangent space to a Lie group at the identity, denoted g = TeG, is

called the Lie algebra of the Lie group and is naturally endowed with a Lie bracket
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[ , ]. For matrix Lie groups, the Lie bracket is the usual commutator of matrices

[A,B] = AB −BA.

Important Lie groups for this paper are the group Diff(M) of all smooth diffeo-

morphisms of the manifold M and its discrete version D(M) defined in (3.7). The

Lie algebra of Diff(M) is the space of vector fields u on M , endowed with (minus)

the Lie bracket of vector fields [u,v] = u · ∇v − v · ∇u. The Lie algebra of the Lie

group D(M) = {q ∈ GL(N)+ | q · 1 = 1} of discrete diffeomorphisms is obtained

by taking the ε-derivative of the relation qϵ · 1 = 1, for a curve qε ∈ D(M) with

qε=0 = IN . We obtain the Lie algebra d(M) = {A ∈ Mat(N) | A · 1 = 0} as given

in (3.8).

A (right) action of a Lie group G on a manifold M is a map (g, x) ∈ G×M →

x · g ∈ M such that x · e = x and x · (gh) = (x · g) · h, for all x ∈ M and

g, h ∈ G, where e is the neutral element in G. The relevant action for the present

paper is the action of Diff(M) on k-forms densities (φ, ω) ↦→ ω • φ = (φ∗ω)Jφ.

In particular, we have the action on one-form densities α • φ = (φ∗α)Jφ and on

zero-form densities h • φ = (h ◦ φ)Jφ, where α represents the momentum fluid

density and h represents the fluid depth.

3.8.3. Euler–Poincaré variational principle

We quickly review the Euler–Poincaré theory by applying it to simpler examples,

before considering the rotating shallow water equations. Euler–Poincaré varia-

tional principle applies to dynamical systems whose configuration manifold is a

Lie group G and whose dynamics is given by the Euler–Lagrange equations asso-

ciated to a Lagrangian which is invariant under a subgroup of G. We refer to [48]

for a complete treatment.
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The rigid body. One of the simplest example of dynamical system on a Lie group

is a rigid body moving about its center of mass. The configuration Lie group is

SO(3), with R ∈ SO(3) describing the orientation of the body. The dynamics of

the body is described by the Euler–Lagrange equations for the Lagrangian L :

TSO(3) → R given by the kinetic energy of the body. Euler–Lagrange equations

arise from the Hamilton principle

δ
∫︂ T

0
L(R, Ṙ)dt = 0, (3.35)

with respect to variations δR with δR(0) = δR(T ) = 0. This Lagrangian is

invariant under the left action of SO(3), i.e., it satisfies L(AR,AṘ) = L(R, Ṙ),

for all A ∈ SO(3). This invariance allows one to define the reduced Lagrangian

ℓ : so(3) → R, with so(3) the Lie algebra of SO(3), by L(R, Ṙ) = ℓ(R−1R). The

skew-symmetric 3×3 matrix Ω = R−1Ṙ is the angular velocity of the rigid body in

the body frame. It is natural to ask if it is possible to write the Hamilton principle

(3.35) directly in terms of the body angular velocity Ω without referring to the

initial variables R and Ṙ. This is indeed the case if one considers the constrained

variations of Ω = R−1Ṙ induced by the free variations of R. A straightforward

computation shows that

δΩ = Ȧ+ [Ω,A], (3.36)

where A = R−1δR is an arbitrary curve of skew-symmetric 3×3 matrices vanishing

at t = 0, T . The Hamilton principle (3.35) is thus equivalent to the variational

principle

δ
∫︂ T

0
ℓ(Ω)dt = 0, (3.37)

with respect to variations δΩ of the form (3.36). This is the Euler–Poincaré prin-

ciple, as it applies to the rigid body. We do not present explicitly the Lagrangian

and the equations for the rigid body as we will not use them. We will however use
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the variational treatment of the rigid body, especially the passage from (3.35) to

(3.37), as a guide for the understanding of the more involved treatment of fluids

below.

The incompressible fluid. For the incompressible fluid on a Riemannian man-

ifold M , the configuration Lie group is the group Diffvol(M) = {φ ∈ Diff(M) |

Jφ = 1} of diffeomorphisms of M that preserve the volume. The equations

of motions are given by the Euler–Lagrange equations for the Lagrangian L :

T Diffvol(M) → R given by the kinetic energy of the fluid, namely

L(φ, φ̇) =
∫︂

M

1
2γ(φ̇, φ̇)dσ,

where we recall that dσ =
√︂

det γijdx
1 ∧ ...dxn is the Riemannian volume form

associated to γ. The Hamilton principle reads

δ
∫︂ T

0
L(φ, φ̇)dt = 0, (3.38)

with respect to variations δφ with δφ(0) = δφ(T ) = 0. In the same way the

Lagrangian of the rigid body was left-invariant, the Lagrangian of the incompress-

ible fluid is right-invariant: L(φ ◦ ψ, φ̇ ◦ ψ) = L(φ, φ̇) for all ψ ∈ Diffvol(M).

This invariance allows one to define the reduced Lagrangian ℓ : Xvol(M) → R, by

L(φ, φ̇) = ℓ(φ̇ ◦ φ−1), where Xvol(M) is the Lie algebra of Diffvol(M), given by

divergence free vector fields on M . The reduced Lagrangian is given by

ℓ(u) = 1
2

∫︂
M
γ(u,u)dσ. (3.39)

As before, it is natural to ask if it is possible to write the Hamilton principle

(3.38) directly in terms of the Eulerian velocity u without referring Lagrangian

fluid trajectory and velocity φ and φ̇. This is indeed the case if one considers
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the constrained variations of u = φ̇ ◦ φ−1 induced by the free variations of φ. A

straightforward computation shows that

δu = ∂tv + [u,v], (3.40)

where v = δφ ◦φ−1 is an arbitrary curve of divergence free vector fields vanishing

at t = 0, T . The Hamilton principle (3.38) is thus equivalent to the variational

principle

δ
∫︂ T

0
ℓ(u)dt = 0,

with respect to constrained variations δu of the form (3.40). This is the Euler–

Poincaré principle, as it applies to the incompressible fluid. A direct application

of this principle yields

δ
∫︂ T

0
ℓ(u)dt =

∫︂ T

0

∫︂
M

δℓ

δu
· δudσdt =

∫︂ T

0

∫︂
M

δℓ

δu
·
(︂
∂tv + [u,v]

)︂
dσdt (3.41)

= −
∫︂ T

0

∫︂
M

(︂
∂t
δℓ

δu
+ Lu

δℓ

δu
)︂

· vdσdt, (3.42)

where in the first equality the functional derivative δℓ
δu is defined as the one-form

such that
d

dε

⃓⃓⃓⃓
⃓
ε=0

ℓ(u + εv) =
∫︂

M

δℓ

δu
· v dσ,

for arbitrary divergence free vector field v. Since (3.41) has to be zero for all

divergence free vector fields v, by the Hodge decomposition there exists a function

q such that

∂t
δℓ

δu
+ Lu

δℓ

δu
= −dq.

For the Lagrangian (3.39) of the incompressible fluid, we have δℓ
δu = u♭, hence using

Luu♭ = iudu♭+d(iuu♭), we get the Euler equations in the form ∂tu♭+iudu♭ = −dp,

with p = q + iuu♭.

64



The rotating shallow water equations. The configuration Lie group for the

rotating shallow water equations on the sphere is the group Diff(S) of all dif-

feomorphisms of S. While the equations are still given by the Euler–Lagrange

equations for L, obtained from the Hamilton principle δ
∫︁ T

0 L(φ, φ̇)dt = 0, a major

difference with the previous two cases is the symmetry group of L. It is no longer

given by the whole configuration Lie group but by a subgroup, namely, the sub-

group Diff(S)h0 ⊊ Diff(S) of diffeomorphisms that preserves the initial fluid depth

h0. As a consequence, the reduced Lagrangian not only depends on the Eulerian

velocity u as earlier, but also on the current fluid depth h. More precisely, we

have

L(φ, φ̇) = ℓ(u, h), for u = φ̇ ◦ φ−1 and h = (h0 ◦ φ−1)Jφ−1. (3.43)

From these relations, the free variations δφ of the fluid trajectory φ induce the

following constrained variations of u and h:

δu = ∂tv + [u,v] and δh = − div(hv),

where v = δφ ◦φ−1 is an arbitrary curve of divergence free vector fields vanishing

at t = 0, T . This is the variational principle given in (3.3). We now show the

derivation of (3.4). We have

δ
∫︂ T

0
ℓ(u, h)dt =

∫︂ T

0

∫︂
M

(︃
δℓ

δu
· δu + δℓ

δh
δh
)︃
dσdt

=
∫︂ T

0

∫︂
M

(︃
δℓ

δu
·
(︂
∂tv + [u,v]

)︂
− δℓ

δh
div(hv)

)︃
dσdt

=
∫︂ T

0

∫︂
M

(︂
− ∂t

δℓ

δu
− Lu

δℓ

δu
+ hd

δℓ

δh

)︂
· vdσdt,

(3.44)

where we used integration by parts with v(0) = v(T ) = 0. Since v is arbitrary,

(3.4) follows.

Replacing the functional derivatives (3.5) for the RSW Lagrangian in (3.4), we
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get

∂t(h(u♭ + R♭)) + Lu
(︂
h(u♭ + R♭)

)︂
= hd

(︃1
2γ(u,u) + γ(R,u) − g(h+B)

)︃
. (3.45)

Using the formulas for the Lie derivative recalled earlier, we have Lu
(︂
h(u♭+R♭)

)︂
=

div(hu)(u♭ + R♭) + iud(u♭ + R♭) + d
(︂
iu(u♭ + R♭)

)︂
. Inserting this relation into

(3.45) and simplifying further by using the advection equation ∂th+ div(hu) = 0,

which follows from the second equation in (3.43), we get the RSW equations in

the form given in (3.6).
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Abstract

We introduce a new representation of the rotating shallow water equations based

on a stochastic transport principle. The derivation relies on a decomposition of the

fluid flow into a large-scale component and a noise term that models the unresolved

small-scale flow. The total energy of such a random model is demonstrated to be

preserved along time for any realization. To preserve this structure, we combine an

energy (in space) preserving discretization of the underlying deterministic model

with approximations of the stochastic terms that are based on standard finite

volume/difference operators. This way, our method can directly be used in existing

dynamical cores of global numerical weather prediction and climate models. For

an inviscid test case on the f-plane we use a homogenous noise and illustrate that

the spatial part of the stochastic scheme preserves the total energy of the system.

Moreover, using an inhomogenous noise, we show for a barotropically unstable jet

on the sphere that the proposed random model better captures the structure of a

large-scale flow than a comparable deterministic model.

Plain summary

The motion of geophysical fluids on the globe needs to be modelled to get some

insights of tomorrow’s climate. These forecasts must be precise enough while re-

maining computationally affordable. An ideal system should also deliver, across

time, an accurate measurement of the uncertainties introduced through physical

or numerical approximations. To address these issues, we use the rotating shal-

low water equations, which provide a simplified version of the dynamics, and a

stochastic representation of the unresolved small-scale processes. The former is

approximated with a structure preserving numerical model enabling the conser-

vation of physical quantities such as mass and energy and the latter is modelled
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by the location uncertainty framework that relies on stochastic transport and has

the great advantage to be energy conserving. Our method can directly be used in

existing dynamical cores of global numerical weather prediction and climate mod-

els. Numerical results illustrate the energy conservation of the numerical model.

Simulating a barotropically unstable jet on the sphere, we demonstrate that the

random model better captures the structure of a large-scale flow than a compa-

rable deterministic model. The random dynamical system is also shown to be

associated with good uncertainty representation.

4.1. Introduction

Numerical simulations of the Earth’s atmosphere and ocean plays an important

role in developing our understanding of weather forecasting. A major focus lies in

determining the large scale flow correctly, which is strongly related to the param-

eterizations of sub-grid processes [33]. The non-linear and non-local nature of the

dynamical system make the large-scale flow structures interact with the smaller

components. The computational expense for solving the Kolmogorov scales [67]

of a geophysical flows is fare beyond reach today and likely in the future. Thus,

the effect of unresolved scales has to be modeled or parametrized.

For several years, there is a growing interest in geophysical sciences to incor-

porate a stochastic representation [31, 39, 41, 57] of the small-scale processes. In

this study, we propose to stick to a specific stochastic model, the so-called Lo-

cation Uncertainty (LU) derived by [62], which emerges from a decomposition of

the Lagrangian velocity into a time-smooth drift and a highly oscillating uncer-

tainty term. Such random model allows us to develop by stochastic calculus a

new stochastic transport operator [69] for the extensive scalars. In particular, this

transport operator involves a multiplicative random forcing, a heterogeneous dif-

fusion and a corrected advection resulting from the inhomogeneity of the random
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flow. This stochastic transport principle has been used as a fundamental tool to

derive stochastic representations of large-scale geophysical dynamics [10, 22, 69].

In the present work, we use this mathematical principle together with some phys-

ical conservation laws to derive a stochastic version of the rotating shallow water

(RSW) system. One strong property of this random model is that it preserves the

total energy of the resolved flow in time for each realization.

Recently, the LU model performed very well in [10, 11, 70, 71] when studying

oceanic quasi-geostrophic flows. It was found to be more accurate in predicting

the extreme events, in diagnosing the frontogenesis and filamentogenesis, in struc-

turing the large-scale flow and in reproducing the long-term statistics. Besides,

[22] investigated the Lorentz-63 test case and demonstrated that the LU model

was more effective in exploring the range of the strange attractors compared to

classical models.

In this work, the performance of the LU model is assessed for the numerical

simulation of the RSW system, which can be considered as the first step towards

developing global random numerical weather prediction and climate models. This

is the first time that the LU model is implemented for the dynamics evolving on

the sphere.

We propose to combine the discrete variational integrator for RSW fluids as

introduced in [8] and [20] with the numerical LU model in order to mimic the

continuous conservation properties. Variational integrators are designed by first

discretizing the given Lagrangian, and then by deriving a discrete system of asso-

ciated Euler-Lagrange equations from the discretized Lagrangian (see [58]). The

advantage of this approach is that the resulting discrete system inherits several

important properties of the underlying continuous system, notably a discrete ver-

sion of Noether’s theorem that guarantees the preservation of conserved quantities

associated to the symmetries of the discrete Lagrangian (see [42]). Variational

integrators also exhibit superior long-term stability properties. Therefore, they
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typically outperform traditional integrators if one is interested in long-time inte-

gration or the statistical properties of a given dynamical system. The benefit of

the proposed method that relies on a combination of a variational integrator with

a potentially differently approximated LU model is that it can directly be applied

to existing dynamical cores of numerical weather prediction and climate models.

Apart from taking into account the unresolved processes, it is paramount in

uncertainty quantification and ensemble forecasting to model the uncertainties

along time [72]. For a long time, operational weather forecast centres had relied on

random perturbations of initial conditions (PIC) to spread the ensemble forecasts.

However, in the application of data assimilation to geophysical fluid dynamics,

such PIC model is known to under-estimate the true uncertainty compared to

the observations [32, 40]. Hence, an assimilation system is overconfident for such

a random model. To overcome this issue, the covariance inflation method [3]

is often adopted, in which the ensemble covariance is increased by a carefully

tuned parameter. In the present work, we compare the reliability of the ensemble

spread of such a PIC model with our RSW-LU system, under the same strength

of uncertainty.

The remainder of this paper is structured as follows. Section 4.2 describes the

basic principles of the LU model and the derivation of the rotating shallow water

system under LU associated with the energy conservation property. Section 4.3

explains the parameterizations of the uncertainty and the numerical discretization

of the stochastic dynamical system. Section 4.4 discusses the numerical results

for an inviscid test case with homogeneous noise and a viscous test case with

heterogeneous noise. Finally, in Section 4.5 we draw some conclusions and provide

an outlook for future work.
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4.2. Rotating shallow water equations under

location uncertainty

In this section, we first review the LU model introduced by [62], then we derive the

rotating shallow water equations under LU, denoted as RSW–LU, following the

classical strategy as shown in [86]. In particular, we demonstrate one important

characteristic of the RSW–LU, namely it preserves the total energy of the large-

scale flow.

4.2.1. Location uncertainty principles

The LU model is based on a temporal-scale-separation assumption of the following

stochastic flow:

dX t = w(X t, t) dt+ σ(X t, t) dBt, (4.1)

where X is the Lagrangian displacement defined within the bounded domain Ω ⊂

Rd (d = 2 or 3), w is the large-scale velocity that is both spatially and temporally

correlated, and σdBt is the small-scale uncertainty (also called noise) term that

is only correlated in space. The spatial structure of such noise is specified through

a deterministic integral operator σ : (L2(Ω))d → (L2(Ω))d, acting on square

integrable vector-valued functions f ∈ (L2(Ω))d, with a bounded kernel σ̆ such

that

σ[f ](x, t) =
∫︂

Ω
σ̆(x,y, t)f(y) dy, ∀f ∈ (L2(Ω))d. (4.2)

The randomness of such noise is driven by the cylindrical Id-Wiener process Bt

[25]. The fact that the kernel is bounded, i.e. sup(x,y)∈Ω |σ̆(x,y)| < +∞, implies

that the operator σ is Hilbert-Schmidt on (L2(Ω))d. Therefore, the resulting

small-scale flow σdBt is a centered (of null ensemble mean) Gaussian process
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with the following covariance tensor, denoted as Q, being well-defined:

Q(x,y, t, s) = E
[︃(︂

σ(x, t) dBt

)︂(︂
σ(y, s) dBs

)︂T
]︃

= δ(t− s) dt
∫︂

Ω
σ̆(x, z, t)σ̆T (y, z, s) dz, (4.3)

where E stands for the expectation and δ is the Kronecker symbol. The strength of

the noise is measured by its variance, denoted as a, which is given by the diagonal

components of the covariance per unit of time:

a(x, t) △= Q(x,x, t, t)/dt = σσT (x, t). (4.4)

We remark that such variance tensor a has the same unit as a diffusion tensor

(m2 · s−1) and that the density of the turbulent kinetic energy (TKE) can be

specified by 1
2tr(a)/dt.

The previous representation (4.2) is a general way to define the noise in LU

models. In particular, the fact that σ is Hilbert-Schmidt ensures that the covari-

ance operator per unit of time, Q/dt, admits an orthogonal eigenfunction basis

{Φn(•, t)}n∈N weighted by the eigenvalues Λn ≥ 0 such that ∑︁n∈N Λn < ∞. There-

fore, one may equivalently define the noise and its variance, based on the following

spectral decomposition:

σ(x, t) dBt =
∑︂
n∈N

Φn(x, t) dβn
t , (4.5a)

a(x, t) =
∑︂
n∈N

Φn(x, t)ΦT

n(x, t), (4.5b)

where βn denotes n independent and identically distributed (i.i.d.) one-dimensional

standard Brownian motions.

The core of LU models is based on a stochastic Reynolds transport theorem
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(SRTT), introduced by [62], which describes the rate of change of a random scalar

q transported by the stochastic flow (4.1) within a flow volume V . In particular,

for incompressible small-scale flows, ∇·σ = 0, the SRTT can be written as

dt

(︃ ∫︂
V(t)

q(x, t) dx
)︃

=
∫︂

V(t)

(︂
Dtq + q ∇· (w − ws)

)︂
dx, (4.6a)

Dtq
△= dtq + (w − ws) ·∇ q dt+ σdBt ·∇ q − 1

2 ∇· (a∇q) dt, (4.6b)

dtq
△= qt+dt − qt, ws

△= 1
2 ∇· a, (4.6c)

in which the stochastic transport operator Dt [69] and the Itô-Stokes drift (ISD) ws

[10] are included. The latter term arises from the effect of statistical inhomogeneity

of the small-scale flow on the large-scale component, which can be considered as

a generalization of the Stokes drift in ocean circulations. In the definition of the

stochastic transport operator in (4.6b), the first term on the right-hand side (RHS),

defined in (4.6c), stands for a forward time-increment of q at a fixed point x, and

the last two terms describe, respectively, a backscattering from the small-scales to

the large-scales and an inhomogeneous diffusion at the small-scales. In particular,

for an isochoric flow with ∇·(w − ws) = 0, one may immediately deduce from

(4.6a) the following transport equation of an extensive scalar:

Dtq = 0, (4.7)

where the energy of such random scalar q is globally conserved, as shown in [69]:

dt

(︃ ∫︂
Ω

1
2q

2 dx
)︃

=
(︃ 1

2

∫︂
Ω

q ∇· (a∇q) dx⏞ ⏟⏟ ⏞
Energy loss by diffusion

+ 1
2

∫︂
Ω

(∇q)T a∇q dx⏞ ⏟⏟ ⏞
Energy intake by noise

)︃
dt = 0. (4.8)
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Indeed, this can be interpreted as a process where the energy brought by the noise

is exactly counter-balanced by that dissipated from the diffusion term.

4.2.2. Derivation of RSW–LU

This section describes in detail the derivation of the RSW–LU system. We remark

that a formulation of the shallow water equations under LU in a non-rotating frame

is outlined by [62], whereas the new model that we present in this work is fully

stochastic and includes rotation such that it is suited for simulations of geophysical

flows.

The above SRTT (4.6a) and Newton’s second principle allow us to derive the

following (three-dimensional) stochastic equations of motions in a rotating frame

[10, 69]:

Horizontal momentum equation :

Dtu + f ×
(︂
u dt+ σHdBt

)︂
= −1

ρ
∇H

(︂
p dt+ dpσ

t

)︂
+ ν∇2

(︂
u dt+ σHdBt

)︂
,

(4.9a)

Vertical momentum equation :

Dtw = −1
ρ
∂z

(︂
p dt+ dpσ

t

)︂
− g dt+ ν∇2

(︂
w dt+ σzdBt

)︂
, (4.9b)

Mass equation :

Dtρ = 0, (4.9c)

Continuity equation :

∇·
(︂
w − ws

)︂
= 0, ∇·σ = 0, (4.9d)

where u and w are the horizontal and vertical components of the three-dimensional

large-scale flow w; σHdBt and σzdBt are the horizontal and vertical components

of the small-scale flow σdBt; f = (2Ω̃ sin Θ)k is the Coriolis parameter varying

in latitude Θ, with the Earth’s angular rotation rate Ω̃ and the vertical unit
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vector k = [0, 0, 1]T ; ρ is the fluid density; ∇H = [∂x, ∂y]T denotes the horizontal

gradient; p and ṗσ
t

△= dpσ
t /dt (informal definition) are the time-smooth and time-

uncorrelated components of the pressure field, respectively; g is the Earth’s gravity

value and ν is the kinematic viscosity. For the following derivation of the shallow

water equations we drop the viscous terms.

In order to model the large-scale circulations in the atmosphere and ocean, the

hydrostatic balance approximation is widely adopted [86]. Under a small aspect

ratio, H/L ≪ 1 with L and H the horizontal and vertical scales of the motion, the

acceleration term Dtw on the left-hand side (LHS) of Equation (4.9b) has a lower

order of magnitude than the RHS terms, hence the vertical momentum equation

reduces to

∂z

(︂
p dt+ dpσ

t

)︂
= −g dt. (4.10a)

According to the Doob’s theorem – unique decomposition of a semimartingale

process [53], the previous equation is equivalent to

∂zp = −ρg, ∂zdpσ
t = 0. (4.10b)

Integrating vertically these hydrostatic balances (4.10b) from 0 to z (see Figure

4.1) under a constant density ρ0, we have

p(x, y, z, t) = p0(x, y, t) − ρ0gz, (4.10c)

dpσ
t (x, y, z, t) = dpσ

t (x, y, 0, t), (4.10d)

where p0 denotes the pressure at the bottom of the basin (z = 0). Following [86],

we assume that the weight of the overlying fluid is negligible, i.e. p(x, y, η, t) ≈ 0

with η the height of the free surface, leading to p0 = ρ0gη. This allows us to
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rewrite Equation (4.10c) such that for any z ∈ [0, η] we have

p(x, y, z, t) = ρ0g
(︂
η(x, y, t) − z

)︂
. (4.10e)

Subsequently, the pressure gradient forces in the horizontal momentum equation

(4.9a) reduce to

− 1
ρ0

∇H

(︂
p dt+ dpσ

t

)︂
= −g∇Hη − 1

ρ0
∇Hdpσ

t , (4.10f)

which do not depend on z according to Equations (4.10e) and (4.10d). Therefore,

the acceleration terms on the LHS of Equation (4.9a) must not depend on z, hence

the shallow water momentum equation can be written as

DH

t u + f ×
(︂
u dt+ σHdBt

)︂
= −g∇Hη dt− 1

ρ0
∇Hdpσ

t , (4.11a)

DH

t u
△= dtu+

(︂
(u − us) dt+ σHdBt

)︂
· ∇Hu− 1

2∇H ·
(︂
aH∇Hu

)︂
dt, (4.11b)

us
△= 1

2∇H · aH, a =

⎛⎜⎜⎝aH aHz

aHz az

⎞⎟⎟⎠ , (4.11c)

where DH
t is the horizontal stochastic transport operator, us is the two-dimensional

ISD, aH, az and aHz are the horizontal, vertical and cross components of the three-

dimensional variance tensor a. Note that Equation (4.11a) is valid only when the

cross component aHz is vertically independent, i.e. ∂zaHz = 0. For instance, one

may consider that the horizontal small-scale flow σHdBt is spatially uncorrelated

with the vertical small-scale flow σzdBt, i.e. aHz = 0.

In order to derive the shallow water mass equation, let us first integrate vertically
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the continuity equation (4.9d) from the bottom topography ηb to the free surface

η (see Figure 4.1):

(w − ws)|z=η − (w − ws)|z=ηb
= −h∇H · (u − us), (4.12a)

σdBt|z=η − σdBt|z=ηb
= −h∇H · σHdBt, (4.12b)

where h = η − ηb denotes the thickness of the water column. On the other hand,

a small vertical (Eulerian) displacement at the top and the bottom of the fluid

leads to a variation of the position of a particular fluid element [86]:

(︂
(w − ws) dt+ σdBt

)︂⃓⃓⃓
z=η

= DH

t η, (4.12c)

(︂
(w − ws) dt+ σdBt

)︂⃓⃓⃓
z=ηb

= DH

t ηb. (4.12d)

Combining Equations (4.12), we deduce the following stochastic mass equation:

DH

t h+ h∇H ·
(︂
(u − us) dt+ σHdBt

)︂
= 0. (4.13)

The above two equations (4.11a) and (4.13) constitute a general formulation of

the RSW–LU system. Using different levels of noise strength in such a stochastic

system allows us to model different physical regimes of the large-scale flow. To

characterise these regimes, [70] introduced the following scaling number

ϵ = Tσ

T
TKE

MKE
, (4.14a)

where T and Tσ are the correlation time scales of the large-scale flow and the

small-scale component, respectively. The mean kinetic energy scale (MKE) is
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given by U2 with U = L/T the typical velocity scale, and the turbulent kinetic

energy scale (TKE) is defined by A/Tσ with A the magnitude of the variance

tensor a. As such, the dimensional noise associated with its dimensional variance

can be specified by

σHdBt =
√
ϵL (σHdBt)′, a = ϵUL a′, (4.14b)

where •′ denotes adimensional variables. From expressions (4.14), one may easily

conclude that the greater the scaling number ϵ, the stronger the noise σHdBt (with

higher variance a). Furthermore, as interpreted in [71], a strong noise (ϵ ≫ 1)

modifies the classical geostrophic equilibrium of the large-scale flow by including

some correction terms to the isobaric velocities. In the present work, only mod-

erate noise (ϵ ∼ 1) is adopted for the RSW–LU system. Under such assumption,

the small-scale flow becomes approximately geostrophic and incompressible, i.e.

f ×σHdBt ≈ − 1
ρ0

∇Hdpσ
t and ∇H ·σHdBt = 0. As a result, the RSW–LU system

simplifies to

DH

t u + f × u dt = −g∇Hη dt, (4.15a)

DH

t h+ h∇H · (u − us) dt = 0, (4.15b)

∇H · σHdBt = 0. (4.15c)

We remark that an additional incompressible constraint must be imposed on the

horizontal ISD, i.e. ∇·us = 0, so that the previous system preserves the total

energy of the large-scale flow. This will be shown in the subsequent section. For

the sake of readability, in the following we drop the symbol H for all horizontal

variables.
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Figure 4.1.: Illustration of a single-layered shallow water system (inspired by [86]).
h is the thickness of a water column, η is the height of the free surface
and ηb is the height of the bottom topography. As a result, we have
h = η − ηb.

4.2.3. Energy conservation of RSW–LU

This section demonstrates the energy conservation of the RSW–LU system (4.15).

Let us recall that the density of the kinetic energy (KE) and of the potential energy

(PE) of the large-scale flow in the shallow water system [86] is, respectively, given

by

KE =
∫︂ h

0

ρ0

2 |u|2 dz = ρ0

2 h|u|2, (4.16a)

PE =
∫︂ h

0
ρ0gz dz = ρ0

2 gh
2. (4.16b)

The density of total energy is defined as the sum of them:

E = KE + PE (4.16c)

where |u|2 = u · u and we assume that ρ0 = 1 and the bottom is flat, i.e. ηb = 0

for algebraic simplicity.

In order to explain the conservation of energy more concisely, we adopt an

equivalent Stratonovich representation of the RSW–LU system (4.15), namely

Dt ◦ u + f × u dt = −g∇h dt, (4.17a)
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Dt ◦ h+ h∇· (u − us) dt = 0, (4.17b)

f × σ ◦ dBt = −∇dt ◦ pσ, ∇·σ ◦ dBt = 0, (4.17c)

Dt ◦ u
△= dt ◦ u+

(︂
(u − us) dt+ σ ◦ dBt

)︂
·∇ u, (4.17d)

where dt◦
△= ut+dt/2 −ut−dt/2 stands for a central time-increment based on the defi-

nition of Stratonovich integrals and Dt◦ denotes the stochastic transport operator

under Stratonovich notations. We remark that the equivalence between the Itô

form (4.11b) and the Stratonovich form (4.17d) are fully detailed in Appendix C

of [10]. As shown by [53], Stratonovich integrals are defined such that the chain

rule and the integration-by-part formula of ordinary calculus holds. In particular,

for two random tracers f and g, we have

dt ◦ (fg) = fdt ◦ g + gdt ◦ f. (4.18a)

Therefore, from the definition of the Stratonovich transport operator (4.17d), we

deduce the following product rule:

Dt ◦ (fg) = gDt ◦ f + fDt ◦ g. (4.18b)

Applying this rule on the definition of PE (4.16b) together with the mass equation

(4.15b),

Dt ◦ PE = ghDt ◦ h = −gh2 ∇· (u − us) dt, (4.19a)

or

Dt ◦ PE + 2PE ∇· (u − us) dt = 0. (4.19b)
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Similarly, from both mass equation and momentum equation in (4.15), we derive

the evolution of KE (4.16a):

Dt ◦ KE = hu · Dtu + 1
2 |u|2Dt ◦ h

= −1
2u ·∇

(︂
gh2

)︂
dt− 1

2h|u|2 ∇· (u − us) dt, (4.19c)

noting that u · (f × u dt) = 0 and recalling that ηb = 0, which yields

Dt ◦ KE + u ·∇ PE dt+ KE ∇· (u − us) dt = 0. (4.19d)

Subsequently, we deduce the evolution of the density of total energy:

Dt ◦ E + ∇·(u PE) dt− PE ∇· us dt+ E ∇· (u − us) dt = 0. (4.20a)

Expanding the Stratonovich transport operator (4.17d), the previous equation can

be re-written as

dt ◦ E + ∇·
(︂
F 1 dt+ F 2 ◦ dBt

)︂
= PE ∇· us dt, (4.20b)

where F 1
△= (u − us) E + u PE and F 2 ◦ dBt

△= E σ ◦ dBt are the total energy flux

due to the corrected large-scale drift u−us and the noise component, respectively.

The additional term PE ∇· us stands for sources or sinks of the potential energy

due to the compressibility of the ISD. In particular, if we assume that the ISD is

incompressible, i.e. ∇·us = 0, the evolution of the energy density reduces to

dt ◦ E + ∇·
(︂
F 1 dt+ F 2 ◦ dBt

)︂
= 0. (4.21a)

If the fluid domain has zero boundary conditions (e.g. the normal velocities vanish

on each wall or there are no boundaries at all as on the sphere), then one can show
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that the total energy, E △=
∫︁

Ω E(x, t)dx, is invariant in time:

dt ◦ E =
∫︂

Ω
dt ◦ E dx = −

∫︂
∂Ω

(F 1 dt+ F 2 ◦ dBt) · n dl = 0, (4.21b)

where ∂Ω and n denote the domain’s boundaries and the unit normal vector,

respectively.

In sum, in this work we propose the following RSW–LU system that preserves

the global energy of the large-scale flow in time for any realization of a random

noise:

Conservation of momentum :

Dtu + f × u dt = −g∇η dt, (4.22a)

Conservation of mass :

Dth+ h∇· u dt = 0, (4.22b)

Random geostrophic constraint :

f × σdBt = −1
ρ

∇dpσ
t , (4.22c)

Incompressible constraints :

∇· σdBt = 0, ∇·us = 0, (4.22d)

Conservation of energy :

dt

∫︂
Ω

ρ

2
(︂
h|u|2 + gh2

)︂
dx = 0. (4.22e)

Note that for a sufficiently small noise (σ ≈ 0), this system (4.22) reduces to the

classical RSW system, in which the stochastic transport operator weighted by the

unit of time, Dt/dt, reduces to the material derivative.
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4.3. Discretization of RSW–LU and parametrization

of noise

In order to perform a numerical simulation of the RSW–LU (4.22), the noise

term σdBt and the variance tensor a have to be a priori parametrized. Then an

adequate discretization in space-time have to be specified for solving the dynamical

system. This section describes these two aspects.

4.3.1. Parameterizations of noise

In the following, we present two different kinds of spatial structure for the noise –

homogeneous and heterogeneous. The first one is easy-to-implement, in particular

when considering noise that respects the incompressible constraints (4.22d). We

use such homogeneous noise to study the numerical energy behaviour, as shown in

Section 4.4.1. On the other hand, because heterogeneous noise has more physical

meaning, we will use the latter when studying realistic complex flows. As shown

in [10], heterogeneous noise induces a structuration of the large-scale flow through

the inhomogeneity of the small-scale flow. In Section 4.4.2, such heterogeneous

noise is adopted for identifying the barotropic instability of a mid-latitude jet.

Homogeneous noise

From the general definitions (4.2) and (4.4), a homogeneous noise means that its

correlation operator σ is a convolution operator and the variance tensor a reduces

to a constant matrix (independent of any position in the fluid domain). Further-

more, to ensure that a two-dimensional noise is incompressible, [70] proposed an

isotropic model defined through a random stream function

σ(x) dBt = ∇⊥
(︂
φ̆ ⋆ dBt

)︂
(x), (4.23)
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where ∇⊥ = [−∂y, ∂x]T denotes the perpendicular gradient and φ̆ ⋆ dBt stands for

the random stream function with a convolution kernel φ̆ (and the symbol ⋆ denotes

a convolution). As shown in [70, 72], both isotropy and incompressibility of the

noise (4.23) result in a (constant) diagonal variance tensor a0I2 with the eddy-

viscosity-like coefficient a0 and the two-dimensional identity matrix I2. In fact,

the divergence-free constraint of the ISD in Equation (4.22d) is naturally satisfied

(since ∇·us = ∇· ∇· (a0I2) = 0). As discussed at the end of Section 4.2.2, for the

RSW–LU system (4.22) under geostrophic noise, f × σHdBt ≈ −∇Hdpσ
t , one can

identify, for a constant Coriolis parameter f0, the random pressure dpσ
t with the

proposed random stream function by dpσ
t = 1

f0
φ̆ ⋆ dBt.

In practice, the convolution kernel φ̆ is specified by three parameters: a fixed

omni-directional spectrum slope s, a band-pass filter fBP with support in the range

of two wavenumbers κm and κM , and an eddy-viscosity-like coefficient a0. In fact,

the Fourier transform of the random stream function φ̆ ⋆ dBt can be defined as:

ˆ︂φ̆ ⋆ dBt(k) △= A√
∆t
fBP (∥k∥) ∥k∥−α ˆ︁ξt(k) with α = (3 + s)/2, (4.24)

where ˆ︁• denotes the Fourier transform coefficient, ξt is a space-time white noise,

and A is a constant to ensure E
⃦⃦⃦
σdBt

⃦⃦⃦2
= 2a0∆t (see Equations (4.3) and (4.4))

with ∆t the size of one time stepping. In the simulations, the maximal wavenumber

kM of the noise can usually be chosen as the effective resolution cutoff, the minimal

wavenumber can be set to km = kM/2, and the theoretical spectrum slope of a

two-dimensional flow is given by s = −3. The noise strength parameter a0 will be

specified in Section 4.4.1.

Heterogeneous noise

The homogeneous noise defined in Section 4.3.1 is quite simple to construct and to

interpret, however, it fails to represent physically important contributions of the
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small-scale to the large scale flow, which is crucial in order to accurately model

realistic scenarios in geophysical fluid dynamics. For this reason, two parameteri-

zations of the heterogeneous noise are presented in the following.

These approaches result from the spectral decomposition (4.5) used to construct

the eigenfunction basis of the spatial covariance. In practice, we work with a

finite set of Empirical Orthogonal Functions (EOFs) of the small-scale Eulerian

velocity rather than with the Lagrangian displacement. The first method for

estimating the EOFs is an off-line procedure based on the Proper Orthogonal

Decomposition (POD) technique of high-dimensional data in which the EOFs are

assumed to be time-independent, whereas the second one is an on-line estimation

from a coarse-grid simulation where the EOFs are time-dependent. As will be

shown in Section 4.4.2, the former allows for incorporating data into the dynamical

model and is more suitable for mid-term simulations, yet the latter is independent

from observations and is more adequate for long-term simulations.

Off-line learning of EOFs Let us consider a set of velocity snapshots

{uo(x, ti)}i=1,...,Nt , that have been a priori coarse-grained from high-dimensional

data using a low-pass filter (such as the sharp spectral filter of [67] often used

in large eddy simulations). Applying the snapshot POD procedure [78] for the

fluctuations u′
o = uo − uo (where • denotes a temporal average) enables us to

build a set of EOFs {ϕi}i=1,...,Nt . In addition, we suppose that the fluctuations of

the large-scale flow live in a subspace spanned by {ϕi}i=1,...,m−1 (with m < Nt) and

that the small-scale random drift σdBt/∆t lives in the complemented subspace

spanned by {ϕi}i=m,...,Nt such that

1
∆tσ(x) dBt =

Nt∑︂
i=m

√︂
λiϕi(x)ξi,

1
∆ta(x) =

Nt∑︂
i=m

λiϕi(x)ϕT

i (x), (4.25)
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where λi is the eigenvalue associated to the spatial mode ϕi and ξi is a standard

Gaussian variable. In practice, there exists an open question in (4.25), that is how

to adequately choose the “splitting mode” ϕm. Recently, [11] proposed to fix it

by comparing the time-averaged energy spectrum of the observations and the one

from a coarse-grid deterministic simulation.

On-line learning of EOFs The previously described data-driven estimation of

EOFs is a quite efficient procedure. However, such observation data, either from di-

rect measurements or from high-dimensional simulations, are not always available.

Therefore, [10, 72] proposed an alternative approach in which some local fluctua-

tions, called pseudo-observations (PSO), are generated directly from a coarse-grid

simulation. Then, the singular value decomposition (SVD) is applied on those

PSO to estimate a set of EOFs such that the noise associated with its variance

tensor will be built in the same way as in (4.25). Finally, the magnitude of the

noise and variance should be scaled down to smaller scales based on a similarity

analysis [49].

In the following, we describe in more details both the generation of PSO and

the scaling technique. The approach proposed here defines No PSO (denoted as

u′) at each grid point. For a given time t and a current coarse velocity u, we build

the PSO by sliding a local window of size Nw × Nw over the spatial grid (with

Nw the grid number in one direction of the local window). We denote the spatial

scale of the window by L = Nwl, where l is the smallest scale of the simulation.

At every grid point xi,j, we list the N2
w velocity values contained in the window

centered at that point:

I(xi,j, t)
△=
{︄

u(xp,q, t)
⃓⃓⃓⃓
⃓|p− i| ≤ Nw − 1

2 , |q − j| ≤ Nw − 1
2

}︄
. (4.26)

Note that appropriate boundary conditions (replication, periodicity, etc.) are
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adopted when looking at a point on the border. Then, independently for each

n ∈ {1, . . . , No} and for each point xi,j, we set the value of the PSO u′(xi,j, t, n)

by randomly choosing a value in the set I(xi,j, t). After this, we average over the

realization index n. Then, from the SVD we obtain a set of EOFs {ϕ(L)
i }i=1,...,No ,

and a spectral representation of the small-scale velocity:

1
∆tσ

(L)(x, t) dBt =
No∑︂
i=1

ϕ(L)
i (x, t)ξi. (4.27a)

Since the PSO u′ have been generated at a spatial scale of the window L = Nwl,

they must be scaled down to the “simulation scale” l. As such, the variance

tensor a of the small-scale flow is rescaled according to a turbulence-power-law

coefficient[49] such that

a(l) =
(︄
l

L

)︄2/3

a(L), (4.27b)

where a(L) and a(l) are the variance tensors at the scales L and l respectively.

Finally, the small-scale flow can be simulated at the “simulation scale” l as

σ(l)dBt =
(︄
l

L

)︄1/3

σ(L)dBt. (4.27c)

As will be shown in Section 4.4.2, such flow-dependent noise has a good perfor-

mance in long-term simulation, yet the drawback is that the computational costs

are significantly higher compared to the previous off-line procedure, as the SVD

is computed at each time step.

4.3.2. Structure-preserving discretization of RSW–LU

In this subsection, we introduce an energy conserving (in space) approximation of

the above derived stochastic system. Considering the definition of the stochastic

transport operator Dt defined in (4.6b) with a time increment dtq
△= qt+dt − qt

defined in (4.6c), the RSW–LU system in Eqn. (4.22a)–(4.22b) can be explicitly
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written as

dtu =
(︃

− u ·∇ u − f × u − g∇η
)︃

dt+
(︃1

2 ∇· ∇·(au) dt− σdBt ·∇ u
)︃
,

(4.28a)

dth = − ∇· (uh) dt+
(︃1

2 ∇· ∇·(ah) dt− σdBt ·∇ h
)︃
. (4.28b)

We suggest to develop an approximation of the stochastic RSW–LU model (4.28a)–

(4.28b) by first discretizing the deterministic model underlying this system with a

structure-preserving discretization method (that preserves energy in space) and,

then, to approximate (with a potentially different discretization method) the

stochastic terms. Here, we use for the former a variational discretization ap-

proach on a triangular C–grid while for the latter we apply a standard finite

difference method. The deterministic dynamical core of our stochastic system re-

sults from simply setting σ ≈ 0 in the equations (4.28a)–(4.28b). To obtain the

full discretized (in space and time) scheme for this stochastic system, we wrap the

discrete stochastic terms around the deterministic core and combine this with an

Euler–Marayama time scheme.

Introducing discretizations of the stochastic terms that do not necessarily share

the same operators as the deterministic scheme has the advantage that our method

can be directly applied to existing dynamical cores of global numerical weather

prediction (NWP) and climate models.

Structure-preserving discretization of the deterministic RSW equations

As mentioned above, the deterministic model (or deterministic dynamical core)

of the above stochastic system results from setting σ ≈ 0, which leads via (4.4)

to a ≈ 0. Hence, Equations (4.28a)–(4.28b) reduce to the deterministic RSW
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equations

dtu =
(︃

− (∇ × u + f) × u − ∇(1
2u2) − g∇η

)︃
dt, dth = − ∇· (uh) dt,

(4.29)

where we used the vector calculus identity u ·∇ u = (∇ × u) × u + 1
2u2. Note

that in the deterministic case dt/dt agrees (in the limit dt → 0) with the partial

derivative ∂/∂t.

Variational discretizations. In the following we present an energy conserving

(in space) approximation of these equations using a variational discretization ap-

proach. While details about the derivation can be found in [8, 20], here we only

give the final, fully discrete scheme.

To do so, we start with introducing the mesh and some notation. The variational

discretization of (4.29) results in a scheme that corresponds to a C-grid staggering

of the variables on a quasi uniform triangular grid with hexagonal/pentagonal dual

mesh. Let N denote the number of triangles used to discretize the domain. As

shown in Fig. 5.1, we use the following notation: T denotes the primal triangle,

ζ the dual hexagon/pentagon, eij = Ti ∩ Tj the primal edge and ẽij = ζ+ ∩ ζ− the

associated dual edge. Furthermore, we have nij and tij as the normalized normal

and tangential vector relative to edge eij at its midpoint. Moreover, Di is the

discrete water depth at the circumcentre of Ti, ηbi the discrete bottom topography

at the circumcentre of Ti, and Vij = (u · n)ij the normal velocity at the triangle

edge midpoints in the direction from triangle Ti to Tj. We denote Dij = 1
2(Di+Dj)

as the water depth averaged to the edge midpoints.

The variational discretization method does not require to define explicitly ap-

proximations of the differential operators because they directly result from the

discrete variational principle. It turns out that on the given mesh, these operators

agree with the following definitions of standard finite difference and finite volume
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Ti+

Ti−
Tj

Tj+

Tj−
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Figure 4.2.: Notation and indexing conventions for the 2D simplicial mesh.

operators:

(Gradn F )ij
△=
FTj

− FTi

|ẽij|
,

(Gradt F )ij
△= Fζ− − Fζ+

|eij|
,

(Div V )i
△= 1

|Ti|
∑︂

k∈{j,i−,i+}
|eik|Vik,

(Curl V )ζ
△= 1

|ζ|
∑︂

ẽnm∈∂ζ

|ẽnm|Vnm,

(4.30)

for the normal velocity Vij and a scalar function F either sampled as FTi
at the

circumcentre of the triangle Ti or sampled as Fζ± at the centre of the dual cell

ζ±. The operators Gradn and Gradt correspond to the gradient in the normal and

tangential direction, respectively, and Div to the divergence of a vector field:

(∇F )ij ≈ (Gradn F )nij + (Gradt F )tij, (4.31)

(∇ · u)i ≈ (Div V )i, (4.32)

(∇ × u)ζ ≈ (Curl V )ζ . (4.33)

The last Equation (4.33) defines the discrete vorticity and for later use, we also
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discretize the potential vorticity as

∇ × u + f

h
≈ (Curl V )ζ + fζ

Dζ

, Dζ =
∑︂

ẽij∈∂ζ

|ζ ∩ Ti|
|ζ|

Di. (4.34)

Semi-discrete RSW scheme. With the above notation, the deterministic semi-

discrete RSW equations read:

dtVij = LV

ij(V,D) ∆t, for all edges eij, (4.35a)

dtDi = LD

i (V,D) ∆t, for all cells Ti, (4.35b)

where LV
ij and LD

i denote the deterministic spatial operators, and ∆t stands for

the discrete time step. The RHS of the momentum equation (4.35a) is given by

LV

ij(V,D) △= −Adv(V,D)ij − K(V )ij − G(D)ij, (4.36)

where Adv denotes the discretization of the advection term (∇ × u + f) × u of

(4.29), K the approximation of the gradient of the kinetic energy ∇(1
2u2) and G

of the gradient of the height field g∇η. Explicitly, the advection term is given by

Adv(V,D)ij
△=

− 1
Dij|ẽij|

(︃
(Curl V )ζ− + fζ−

)︃(︄ |ζ− ∩ Ti|
2|Ti|

Dji−|eii−|Vii− + |ζ− ∩ Tj|
2|Tj|

Dij−|ejj− |Vjj−

)︄

+ 1
Dij|ẽij|

(︃
(Curl V )ζ+ + fζ+

)︃(︄ |ζ+ ∩ Ti|
2|Ti|

Dji+|eii+|Vii+ + |ζ+ ∩ Tj|
2|Tj|

Dij+|ejj+ |Vjj+

)︄
,

(4.37)

92



where fζ± is the Coriolis term evaluated at the centre of ζ±. Moreover, the two

gradient terms read:

K(V )ij
△= 1

2(Gradn F )ij, FTi
=

∑︂
k∈{j,i−,i+}

|ẽik| |eik|(Vik)2

2|Tk|
, (4.38)

G(D)ij
△= g(Gradn (D + ηb))ij. (4.39)

The RHS of the continuity equation (4.35b) is given by

LD

i (V,D) △= −
(︂
Div (DV )

)︂
i
, (4.40)

which approximates the divergence term − ∇· (uh).

Stabilization. In addition, as often used in the simulations of large-scale atmo-

spheric and oceanic flows, in order to stabilize the numerical solution (which will

be important for the stochastic model), we include a biharmonic eddy viscosity

with uniform coefficient µ (of unit m4/s) in the momentum equation:

dtV =
(︃

− Adv(V,D)ij − K(V )ij − G(D)ij − µL(V )ij

)︃
∆t, (4.41)

where:

L(V )ij =
(︂
Gradn(Div V )ij − Gradt(Curl V )ij

)︂2
. (4.42)

Time scheme. For the time integrator we use a Crank-Nicolson-type scheme

where we solve the system of fully discretized non-linear momentum and conti-

nuity equations by a fixed-point iterative method. The corresponding algorithm

coincides for σ = 0 and µ = 0 with the one given in Section 4.3.2.
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Spatial discretization of RSW–LU

The fully stochastic system has additional terms on the RHS of Equations (4.28a)

and (4.28b). With these terms the discrete equations read:

dtVij = LV

ij(V,D) ∆t+ ∆GV

ij, (4.43a)

dtDi = LD

i (V,D) ∆t+ ∆GD

i , (4.43b)

where the stochastic LU-terms are given by

∆GV

ij
△=
(︃

− ∆t
2
(︂

∇ · ∇· (au)
)︂

ij
+ (σdBt ·∇ u)ij

)︃
· nij, (4.43c)

∆GD

i
△= −∆t

2
(︂

∇ · ∇· (aD)
)︂

i
+ (σdBt ·∇D)i. (4.43d)

Note that the two terms within the large bracket in (4.43c) comprise two Cartesian

components of a vector which is then projected onto the triangle edge’s normal di-

rection via nij. The two terms in (4.43d) are scalar valued at the cell circumcenters

i.

The parametrization of the noise described in Section 4.3.1 is formulated in

Cartesian coordinates, because this allows using standard algorithms to calculate

e.g. EOFs and POD. Likewise, we represent the stochastic LU-terms in Cartesian

coordinates but to connect both deterministic and stochastic terms, we will cal-

culate the occurring differentials with operators as provided by the deterministic

dynamical core (see interface description below). Therefore, we write the second

term in (4.43c) as

(σdBt ·∇ F )ij =
2∑︂

l=1
(σdBt)l

ij(∇F )l
ij, (4.44)
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in which (σdBt)ij denotes the discrete noise vector with two Cartesian compo-

nents, constructed as described in Section 4.3.1 and evaluated at the edge midpoint

ij. The scalar function F is a placeholder for the Cartesian components of the

velocity field u = (u1, u2). Likewise, the first term in (4.43c) can be written

component-wise as

(∇ · ∇·(aF ))ij =
2∑︂

k,l=1

(︂
∂xk

(∂xl
(aklF ))ij

)︂
ij
, (4.45)

where akl denotes the matrix elements of the variance tensor which will be evalu-

ated, similarly to the discrete noise vector, at the edge midpoints. For a concrete

realization of the differentials on the RHS of both stochastic terms, we will use

the gradient operator (4.31) as introduced next.

To calculate the terms in (4.43d) we also use the representations (4.44) and

(4.45) for a scalar function F = D describing the water depth. However, as our

proposed procedure will result in terms at the edge midpoint ij, we have to average

them to the cell centers i.

Interface between dynamical core and LU terms. As mentioned above, the

construction of the noise is done on a Cartesian mesh while the discretization of

the deterministic dynamical core, corresponding to a triangular C-grid staggering,

predicts the values for velocity normal to the triangle edges and for water depth

at the triangle centers. We propose to exchange information between the noise

generation module and the dynamical core via the midpoints of the triangle edges

where on such C-grid staggered discretizations the velocity values naturally reside.

Starting with a given predicted velocity vector with edge values Vij, we first

have to reconstruct the full velocity vector field from these normal values. We use

the reconstruction of the vector field in the interior of each triangle proposed by
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[66]:

ui = 1
|Ti|

∑︂
k=j,i−,i+

|eik|(xeik − xTi)Vik, (4.46)

where xeik are the coordinates of the edge midpoint and xTi are the coordinates

of the triangle circumcentre. By averaging values from neighboring triangles, we

obtain the corresponding values at the edge midpoints or vertices (see [7] for

details).

This reconstructed velocity vector field will be used to generate the noise as

described in Section 4.3.1. After the noise has been constructed on the Cartesian

mesh, we evaluate the discrete noise vector (σdBt)ij and the discrete variance

tensor (a)ij at the triangle edge midpoints. This information will then be used to

calculate the LU noise terms in (4.43c) and (4.43d).

To calculate the derivatives in these stochastic terms, we use the normal and

tangential gradient operators, i.e. the gradient operator of (4.31). To use it, we

have to average values, e.g. the term (aklF ), to cell centers and vertices and the

resulting differential will be an expression located at the edge midpoint. In more

detail, we can represent the partial derivative in Cartesian coordinates by

(∂xl
F )ij = (Gradn F )nl

ij + (Gradt F )tlij, l = 1, 2. (4.47)

Concretely, to discretize (4.45), we first compute (∂xl
(aklF ))ij using Equation

(4.47). The subindex ij indicates that the resulting term is associated to the edge

midpoint. To apply the second derivative in (4.45), i.e.
(︂
∂xk

(∂xl
(aklF ))ij

)︂
ij

, we

proceed analogously, i.e. we first average the terms describing the first derivative

to cells and vertices and then apply once more Equation (4.47). We proceed

similarly to represent the term ∇F in (4.44).

As mentioned above, the terms in (4.43d) are calculated similarly to (4.43c)

with the only difference that the former have to be averaged to the cell centers
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after the proposed discretization procedure has been applied.

Temporal discretization of RSW–LU

The iterated Crank-Nicolson method presented in [20] is adopted for the temporal

discretization. Keeping the iterative solver and adding the LU terms results in an

Euler–Maruyama scheme, which decrease the order of convergence of the deter-

ministic iterative solver (see [51] for details). To enhance readability, we denote

V t as the array over all edges eij of the velocity Vij and Dt as the array over all

cells Ti of the water depth Di at time t. The governing algorithm reads:

Time-stepping algorithm

1. Start loop over k = 0 with initial guess at t : V ∗
k=0 = V t and (D∗

k=0)i =

Dt
i + ∆GD

ij(Dt). Besides, we compute ∆GV
ij(V t).

2. Update water depth D∗
k+1 and velocity V ∗

k+1 using explicit equation:

D∗
k+1 −Dt

∆t = − Div (D∗
kV

∗
k ) + Div (DtV t)

2
V ∗

k+1 − V t

∆t = −
Adv(V ∗

k , D
∗
k+1) + Adv(V t, Dt)

2 − K(V ∗
k ) + K(V t)

2 − G(D∗
k+1)

− µL(V ∗
k ) + ∆GV

ij(V t)

and set k + 1 = k.

3. Stop loop if ∥V ∗
k+1 − V ∗

k ∥ + ∥D∗
k+1 −D∗

k∥ < tolerance.

For all simulations in this manuscript, we used a tolerance of 10−6 for simulations

on the plane and 10−10 for simulation on the sphere.

This algorithm will be used in the next section to evolve the fluid flow in time.
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4.4. Numerical results

In this section, we first study the energy behaviour of the numerical RSW–LU

scheme from above for an inviscid test flow. Then, we show that for a viscous test

flow, the stochastic model captures more accurately the referent structure of the

large-scale flow when compared to the deterministic model under the same coarse

resolution. In addition, we demonstrate that the proposed RSW–LU system pro-

vides a more reliable ensemble forecast with larger spread, compared to a classical

random model based on the perturbations of initial condition (PIC).

4.4.1. Inviscid test case – energy analysis

This first test case consists of two co-rotating vortices on the f -plane without vis-

cosity (i.e. µ = 0). To illustrate the energy conservation of the spatial discretiza-

tion of the RSW–LU system (4.22), we use the homogeneous stationary noise

defined in Section 4.3.1 since the two incompressible constraints ∇·σdBt = 0 and

∇· ∇· a = 0 in (4.22d) are naturally satisfied. Then, no extra steps are required

to satisfy the incompressible constraints.

Initial conditions

The simulation is performed on a rectangular double periodic domain Ω = [0, Lx]×

[0, Ly] with Lx = 5000 km and Ly = 4330 km, which is discretized into N = 32768

triangles. The large-scale flow is assumed to be under a geostrophic regime at the

initial state, i.e. fk × u = −g∇h. We use an initial height field elevation (as e.g.

in [8]) of the form

h
(︂
x, y, t = 0

)︂
= H0 −H ′

(︄
exp

(︃
− x′

1
2 + y′

1
2

2

)︃
+ exp

(︃
− x′

2
2 + y′

2
2

2

)︃
− 4πsxsy

LxLy

)︄
,

(4.48a)
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Figure 4.3.: Contour plots of the potential vorticity fields after 2 days for (left) one
realization of a LU simulation with homogeneous noise and (right) a
deterministic run. The contour interval is 0.4 days−1 km−1.

where the background height H0 is set to 10 km, the magnitude of the small

perturbed height H ′ is set to 75 m and the periodic extensions are given by

x′
i = Lx

πsx

sin
(︂ π
Lx

(x− xci
)
)︂
, y′

i = Ly

πsy

sin
(︂ π
Ly

(y − yci
)
)︂
, i = 1, 2 (4.48b)

with the centres of the vertices located at (xc1 , yc1) = 2
5 (Lx, Ly), (xc2 , yc2) =

3
5(Lx, Ly) with parameters (sx, sy) = 3

40 (Lx, Ly). To obtain the discrete initial

water depth Di, we sample the analytical function h at each cell centre. Subse-

quently, the discrete geostrophic velocities at each triangle edge ij at the initial

state can be deduced via

Vij = − g

f
(Gradt D)ij, (4.49)

where the Coriolis parameter f is set to 5.3108 days−1. For the LU simulations, the

magnitude of the homogeneous noise remains moderate with its constant variance

a0 set to be 169.1401 m2 · s−1. This variance was chosen empirically, such that it

is moderate.
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Analysis of energy conservation

To analyze the energy conservation properties of our stochastic integrator, we use

the above initial conditions to simulate the two co-rotating vortices for 2 days. In

Figure 4.3, we show contour plots of the potential vorticity (as defined in (4.34))

fields of the deterministic and stochastic models. We observe that under the

moderate noise with a0 as chosen above, the large-scale structure of the stochastic

system is similar to that of the deterministic run.

On the specific staggered grid as shown in Figure 5.1, the total energy of the

shallow water equations (4.16) for both deterministic and stochastic case is ap-

proximated by

E(t) ≈
N∑︂

i=1

1
2Di(t)|Ti|

∑︂
k=j,i−,i+

1
2|Ti|

hikfik

(︂
Vik(t)

)︂2
+ 1

2g
(︂
Di(t)

)︂2
|Ti|. (4.50)

As shown in [8], the proposed discrete variational integrator (see Section 4.3.2)

together with an iterative Crank-Nicolson time stepping method exhibits a 1st

order convergence rate of the energy error with smaller time step size. This will

allows us immediately to simply include the stochastic terms to result in an Euler-

Maruyama type time integrator for stochastic systems (cf. Section 4.3.2).

In the present work, we consider the energy behavior of the deterministic scheme

(i.e. the variational integrator) as reference, which is denoted as EREF(t) in the

following. For the stochastic RSW model, the Euler-Maruyama time scheme might

lead to a different behavior with respect to energy conservation when compared to

the deterministic model. In order to quantify numerically the energy conservation

of the RSW–LU, we propose to measure the relative errors between the mean

stochastic energy, denoted as ELU(t), and the reference EREF(t) by ELU(t)/EREF(t)−

1. This setup allows us to measure the influence of the stochastic terms on the

energy conservation relative to the determinitic scheme. Figure 4.4a shows these

relative errors for different time step sizes over a simulation time of 2 days. As we
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can deduce from the curves, taking successively smaller time steps ∆t results in

smaller relative errors.

To determine more quantitatively the convergence rate of the stochastic scheme

(relative to the reference) with respect to different time step sizes, we defined the

following global (in space and time) error measure:

ε(ELU) △= ∥ELU(t) − EREF(t)∥L2([0,T ])

∥EREF(t)∥L2([0,T ])

, (4.51)

where ∥f(t)∥L2([0,T ]) = (
∫︁

T

0 |f(t)|2dt)1/2 and T is set to 2 days. We determine for an

ensemble with 10 members such global errors in order to illustrate the convergence

rate of each ensemble member and the spread between those rates. This spread is

illustrated as blue shaded area in Figure 4.4b. The area centre is determined by

the mean of the errors, and the dispersion of this area is given by one standard

derivation (i.e. 68% confident interval of the ensemble of ε(ELU)). Besides, the

minimal and maximal values of the errors of the ensemble are represented by the

vertical bar-plots. The blue line of Figure 4.4b shows that the convergence rate

(w.r.t. various ∆t) of the ensemble mean energy is of 1st order. This is consistent

with the weak convergence rate of order O(∆t) of the Euler-Maruyama scheme,

cf. Section 4.3.2.

4.4.2. Viscous test case - ensemble prediction

Next, we want to show that our stochastic system better captures the structure

of a large-scale flow than a comparable deterministic model. To this end, we use

a viscous test case and heterogeneous noise.

The viscous test case we use is proposed by [34] and it consists of a barotropically

unstable jet at the mid-latitude on the sphere. This strongly non-linear flow

will be destabilized by a small perturbation of the initial field, which induces

decaying turbulence after a few days. However, the development of the barotropic
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Figure 4.4.: Analysis of the numerical energy conservation of the RSW–LU.
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instability in numerical simulations highly depends on accurately resolving the

small-scale flow, which is particularly challenging for coarse-grid simulations. For

the same reason, the performance of an ensemble forecast system in this test case is

quite sensitive to the numerical resolution. In the following, we demonstrate that

the RSW–LU simulation on a coarse mesh under heterogeneous noises, provides

better prediction of the barotropic instability compared to the deterministic coarse

simulation, and produces more reliable ensemble spread than the classical PIC

simulation.

Initial conditions

The values of the principle parameters for the simulations are specified in Table 4.1.

Under the geostrophic regime, the initial zonal velocity and height is respectively

given by

u(Θ, t = 0) = U0

en

exp
(︃ 1

(Θ − Θ0)(Θ − Θ1)

)︃
, for Θ0 < Θ < Θ1, (4.52a)

h(Θ, t = 0) = H0 − R

g

∫︂
Θ
u(θ, t = 0)

(︃
2Ω̃ sin θ + tan θ

R
u(θ, t = 0)

)︃
dθ, (4.52b)

where en = exp
(︂

− 4/(Θ1 − Θ0)2
)︂

is used to rescale the jet magnitude to the

maximal value U0 at the jet’s mid-point Θ = π/4. As introduced by [34], in order

to initiate the barotropic instability, the following localized bump is included in

the height field:

h′(Υ,Θ) = H ′ cos Θ exp
(︃

− (3Υ)2 −
(︂
15(π4 − Θ)

)︂2
)︃
, (4.52c)

where Υ denotes the longitude. Analogously to the previous inviscid test case,

we then use these analytic functions (4.52) to sample the discrete velocity at the
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edge mid-point and the height field at the cell centre on the staggered mesh (See

Figure 5.1).

Parameters Value Description
(Θ0,Θ1) (2π, 5π)/14 rad Initial latitude limits
H0 10.158 km Background height
H ′ 120 m Initial perturbation amplitude
R 6.371 × 103 km Mean radius of Earth
g 9.806 m · s−2 Gravity of Earth
Ω̃ 7.292 × 10−5 s−1 Angular rotation rate of Earth
U0 80 m · s−1 Maximum zonal velocity
µl 3.975 × 1014 m4 · s−1 Fine-grid biharmonic viscosity
µL 3.199 × 1016 m4 · s−1 Coarse-grid biharmonic viscosity
∆tl 12 s Fine-grid time step
∆tL 50 s Coarse-grid time step
Nl 327680 Number of triangles for fine grid
NL 20480 Number of triangles for coarse grid

Table 4.1.: Parameter list for simulations of the barotropic instability.

For the LU simulations, we use the two heterogeneous noises described in Sec-

tion 4.3.1, based on either the off-line learning of EOFs from the high-resolution

simulation data, denoted as LU off-line, or on the on-line estimation of EOFs from

the coarse-grid simulation, denoted as LU on-line. To allow for comparisons, the

strength of these two noises are imposed to be the same.

The PIC stochastic model is obtained as follows: first, we perform ensemble

simulations of the LU off-line and the LU on-line method over 1 day. Then, each

ensemble realization is used as one initial random state for the PIC off-line and

the PIC on-line simulations, respectively. For each stochastic model, an ensemble

run with 20 realizations is done. Besides, a deterministic coarse-grid simulation,

denoted as LR, is also performed. For all these coarse models, the biharmonic

viscosity coefficient is fixed to be the same as given in Table 4.1.
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Prediction of barotropic instability

In this section, we compare the predictions of the barotropic instability for different

coarse models to that provided by the reference simulation. The latter is obtained

from the coarse-graining procedure through a bilinear interpolation of the high-

resolution snapshots. In Figure 4.5, we illustrate snapshots of the vorticity fields on

the sphere for the reference, LU and deterministic models after a simulation time of

5 days. We can clearly see that at that day the LU ensemble mean better captures

the large-scale structure of the reference flow than the deterministic simulation. To

better distinguish the differences in the simulations, contour plots of the vorticity

fields at day 4, 5 and 6, localized at the mid-latitude of the sphere, are given

in Figure 4.6. From the evolution of the reference vorticity fields, we observe

that the barotropic instability of the mid-latitude jet starts to develop at day 4.

Subsequently, more and more small-scale features emerge and the flow becomes

turbulent. Furthermore, both LU on-line and LU off-line simulations exhibit the

stretched out wave at day 5 in the same way as the reference does, and that some

big vortices start to separate from the wave at day 6. On the other hand, these

characteristics are not correctly captured in both PIC off-line and LR simulations.

We remark that the results of PIC on-line simulations are not include in Figure

4.6, since they behave quite similarly to the PIC off-line run.

To physically interpret the above results, it is useful to analyze the energy

spectra of different models. From a basic knowledge of the two-dimensional tur-

bulence theory [61], the potential enstrophy is transferred from the large scales to

the small scales by the direct cascade, whereas the kinetic energy is transferred

from the small scales to the large scales by the inverse cascade. However, intro-

ducing only a dissipation mechanism for coarse models often leads to an excessive

decrease of the resolved kinetic energy [6, 50]. In our test case, this kind of issue

is present in both PIC and the LR simulations, where the small-scale energy and
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Figure 4.5.: Snapshots of the vorticity field on the sphere for different models (with
20480 triangles) after 5 days. From left to right: reference, ensemble
mean of LU online and deterministic LR.

enstrophy are over-dissipated, as illustrated in Figure 4.7. On the other hand,

introducing the non-linear convection by the noise, the LU dynamical systems

bring higher turbulent energy and enstrophy to the small scales, which leads to

better structuring of the large-scale flow. For instance, the ensemble mean of the

energy and enstrophy spectra for both LU on-line and LU off-line simulations are

much closer to that of the references at different days. Note that these spectra

on the sphere are calculated using the method proposed by [1]: first, the energy

and enstrophy is interpolated onto a Gaussian grid, then the spherical harmonics

basis are used to compute the power spectral density.

Evaluation of ensemble forecasts

Once the ensembles have been produced by the random models, we measure the

reliability of the ensemble forecast systems by some simple metrics. But before we

do so, let us first demonstrate qualitatively the time evolution of each ensemble

spread and compare it with the observation trajectory. To determine the latter,

we evaluate the local vorticity field of the reference at different grid points in the

region of the mid-latitude jet. These points serve as observation points. The
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Figure 4.6.: Comparison of the vorticity contour plots along the mid-latitude jet
for different models (with 20480 triangles) at day 4, 5 and 6 respec-
tively. From top to bottom: reference, ensemble mean of LU on-line,
ensemble mean of LU off-line, ensemble mean of PIC off-line and de-
terministic LR. The contour interval is fixed to 2×10−5 s−1, the x-axis
is longitude (in rad) and the y-axis is latitude (in rad).
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Figure 4.7.: Comparison of the ensemble mean of the kinetic energy (left column)
spectrums and the potential enstrophy (right column) spectrums for
different models (with 20480 triangles) at day 5 (1st row), 7 (2nd
row) and 10 (3rd row) respectively. Note that the potential enstrophy
is defined by the square of the potential vorticity and each poten-
tial enstrophy spectrum is normalized by its first value at the largest
wavenumber. The dashed line is the k−3 (left column) and k−5/3 (right
column) power law.
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evolution of the spread of the ensemble forecast systems is then build by the 95%

confident interval of its ensemble trajectories at each selected point. As shown

in Figure 4.8, for the six local points chosen along the longitude Υ = −1.53 rad,

the ensemble spreads of the LU off-line system are large enough to almost always

include the observation trajectories, whereas the spreads of the PIC off-line system

are quite small so that the observations are not always contained within the spread.

For the latter, this will result in a wrong coupling of the measurement and the

ensemble system, when performing data assimilation [32, 40].
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Figure 4.8.: Comparison of the ensemble spread evolution over 20 days of
the vorticity field for the LU-offline (red area) runs and the
PIC-offline (blue area) runs, at six different locations Θ =
(0.4, 0.56, 0.72, 0.88, 1.04, 1.2) rad along the longitude Υ = −1.53 rad.
The observation trajectories are shown by the black lines.

To quantify whether the ensemble spread of the forecast system represents the

true uncertainty of the observations, the rank histogram [43, 80] is widely adopted

as a diagnostic tool. This approach checks where the verifying observation usually

falls w.r.t. the ensemble forecast states which are arranged in an increasing order

at each grid point. In an ensemble with perfect spread, each member represents

an equally likely scenario, so the observation is equally likely to fall between any

two members. To construct the rank histogram in our test case, we proceed as
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follows:

1. At every grid point xi, we rank the Ne vorticity values {q(j)(xi)}j=1,...,Ne of

the ensemble from lowest to highest. This results in Ne + 1 possible bins

which the observations can fall into, including the two extremes;

2. Identify which bin the observation vorticity qo(xi) falls into at each point

xi;

3. Tally over all observations {qo(xi)}i=1,...,No to create a histogram of rank.

As shown in Figure 4.9, the histograms of both random models exhibit a U-shape

for a few days in the beginning, while after a simulation time of about 10 days,

the histograms of both LU on-line and LU off-line systems become mostly flat. A

U-shape indicates that the ensemble spread is too small so that many observations

are falling outside of the extremes of the ensemble while a dome-shape indicates

the contrary. A flat histogram, in contrast, indicates that the ensemble members

and observations are sampled from a common distribution. We observe that the

LU off-line system performs slightly better than the LU on-line version. In contrast

to these very good ensemble spreads, the histograms of both PIC on-line and PIC

off-line systems remain in a U-shape during the entire simulation period which

indicates that these systems do not accurately estimate the correct uncertainty

around the observations.

It is important to notice that a flat rank histogram does not necessarily imply

good forecasts, it only measures whether the observed probability distribution is

well represented by the ensemble. To verify that a forecast is reliable, we need

more criteria. One necessary criterion [89] for a reliable ensemble forecast is that

the mean squared error (MSE) of the ensemble matches the mean intra-ensemble
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Figure 4.9.: Comparison of the rank histograms for the LU on-line (1st row) runs,
the LU off-line (2nd row) runs, the PIC on-line (3rd row) runs and
PIC off-line (last row) runs, at day 5, 10, 15 and 20 respectively.
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variance (MEV), up to an ensemble size-dependent scaling factor, i.e.

MSE (t) = 1
No

No∑︂
i=1

(︂
qo − ˆ︁E[q]

)︂2
(t,xi)

≈
(︃
Ne + 1
Ne

)︃ 1
No

No∑︂
i=1

ˆ︃Var[q](t,xi) = Ne + 1
Ne

MEV (t), (4.53)

where ˆ︁E[q] = 1
Ne

∑︁Ne
j=1 q

(j) and ˆ︃Var[q] = 1
Ne−1

∑︁Ne
j=1

(︂
q(j) − ˆ︁E[q]

)︂2
denote the empir-

ical mean and the empirical variance, respectively.

In Figure 4.10, we compare the differences in time between the MSE and the

MEV, normalized by the squared maximum of the initial vorticity, for the different

random models from above. From these curves we can deduce that the LU off-

line system exhibits the lowest errors during the entire simulation time of 20

days. In particular, during the first 10 days, these errors are significantly lower

when compared to the other models, which can be explained by the fact that the

LU off-line system incorporates data from the reference into the ensemble, which

increases the reliability of the ensemble forecast. Although the errors between

MSE and MEV of the LU on-line system is larger than the LU offline system from

day 5 to day 10, they remain at low level from day 10 onwards, implying that the

reliability of the former increases for longer simulation times. In contrast, both

PIC off-line and PIC on-line systems show higher error values at most of the times

and hence provide less reliable ensembles. We remark that other metrics, such as

the continuous ranked probability score [72, 89], can also be used to measure a

calibrated ensemble.

4.5. Conclusions

In this study, we introduced a stochastic version of the rotating shallow water

equations under location uncertainty (RSW-LU). The derivation is based on a

stochastic Reynolds transport theorem, where the fluid flow is decomposed into
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Figure 4.10.: Comparison of the differences between the mean square error (MSE)
and the mean ensemble variance (MEV) of the ensemble vorticity
fields for the LU on-line (red dashed line) runs, the LU off-line (red
solid line) runs, the PIC on-line (blue dashed line) runs and the
PIC off-line (blue solid line) runs. Note that these differences are
normalized by q0 = ∥q(Υ,Θ, t = 0)∥∞.

a large-scale component and a noise term modelling the unresolved small-scale

flow. A benefit of this approach is that the total energy is conserved along time

for any realization. In order to preserve this structure, we combined an energy (in

space) preserving discretization of the underlying deterministic equations of this

RSW–LU system with approximations of the stochastic terms that are based on

standard finite volume/difference operators.

We could show for an f-plane test case that this approach leads for homogeneous

noise to a discretization of the RSW-LU system that preserves (spatially) the to-

tal energy. Moreover, using inhomogeneous noise that well captures the impact

of small scales to the large-scale flow, we demonstrated that for a barotropically

unstable jet on the sphere our proposed RSW–LU model better predicts the de-

velopment of the instabilities than a comparable deterministic model, while the

ensemble spread of the RSW–LU system is more likely to contain the observa-

tions compared to an ensemble of deterministic simulations with perturbed initial

conditions (PIC). We also showed that the RSW–LU forecast systems follows a
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common distribution of the observations and is more reliable than the PIC system.

Showing accurate ensemble spreads and reliable uncertainty quantification, we

will next apply our developed RSW-LU system to data assimilation. We will also

work towards discretizations of stochastic flow models in the framework of LU that

preserve total energy both in space and time to which the present work provides a

first step. Exploiting the modular approach of combining different discretizations

for deterministic and stochastic terms, in future work we will explore the possibil-

ity to consistently extend existing atmospheric and ocean models with stochastic

parametrizations.
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Abstract

Numerical models of weather and climate critically depend on long-term stability

of integrators for systems of hyperbolic conservation laws. While such stability

is often obtained from dissipative terms (either physical or numerical), physical

fidelity of such simulations also depends on properly preserving conserved quanti-

ties, such as energy, of the system. To address this apparent paradox, we develop

a variational integrator for the shallow water equations that conserves energy,

but dissipates potential enstrophy. Our approach follows the continuous selective

decay framework [37], which enables dissipating an otherwise conserved quantity

while conserving the total energy. We use this in combination with the variational

discretization method [65] to obtain a discrete selective decay framework. This is

applied to the shallow water equations, in both the plane and on the sphere, to

dissipate the potential enstrophy. The resulting scheme significantly improves the

quality of the approximate solutions, enabling long-term integrations to be carried

out.

5.1. Introduction

Numerical weather and climate prediction require modelling of geophysical flows

in the atmosphere and oceans on the globe. The atmosphere or oceans can be

seen as thin layers of fluid above the surface of the Earth and, thus, the shallow

water equations (SWE) are a useful simplified model of dynamic geophysical flows
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around the Earth. These flows are approximately two dimensional, and we can get

insight into their flow dynamics by studying the principles of two-dimensional tur-

bulence. Important features of an incompressible turbulent flow are the cascades

of enstrophy and energy, where the enstrophy transfers to higher wave numbers

while the energy transfers to lower wave numbers, see e.g. [52, 56]. Numerical

investigations of this phenomenon have led to the selective decay hypothesis [59],

which states that the enstrophy accumulation at the grid-scale should be dissi-

pated to improve stability, while energy should be conserved.

Following this perspective, energy conserving and enstrophy dissipating numer-

ical schemes for the SWE and other equations have been developed, see, e.g.,

[4, 76]. However, many such methods directly manipulate the equations of mo-

tion to include the dissipation, which can have unpredictable consequences for the

physical fidelity of the resulting numerical scheme. An alternative and more gen-

eral method for developing energy-conserving dissipation schemes was introduced

through the Lie-Poisson framework, see [37, 38]. While this approach appears to

have great potential, it has not yet been applied to discrete models of geophysical

fluid dynamics. In this paper, we aim to “connect the dots”, leveraging the energy

conservation from the Lie-Poisson framework via a structure-preserving discretiza-

tion method, as structure-preserving integrators for differential equations generally

guarantee long-term stability, consistency in statistical properties, and prevention

of systematic drift in stationary or periodic solutions, see [42, 55, 88].

Here, we focus on variational integrators. These schemes are based on first

discretizing the underlying variational principle and, then, deriving numerical

schemes from the discrete Euler–Lagrange equations [58]. In [8], a variational

discretization of the SWE was carried out. Then, in [20], the scheme was ex-

tended to the sphere, and it was observed that a stabilization of the scheme was

needed to carry out long-term simulations. In this paper, we review the continu-

ous selective decay theory to introduce a discretization of the selective decay that

117



mimics the continuous theory. We apply the new framework to obtain a discretiza-

tion of the SWE that dissipates enstrophy and conserves energy. In particular, we

extend the discrete SWE introduced in [8, 20] with the selective decay and carry

out benchmarks on the plane and on the sphere.

This article is structured as follows. In Section 2, we review the continuous

theory, to introduce the Casimir dissipation in Section 3. Then, Section 4 is

devoted to a description of the discretization of the continuous Casimir dissipation.

In Section 5, we verify the consistency of the discrete commutator and present

results from numerical simulations. Conclusions are given in Section 6. Further,

some detailed computations are presented in the appendix.

5.2. Euler–Poincaré equations

To obtain the selective decay in the numerical scheme we will use variational dis-

cretization, which mimics the continuous variational structure. On the continuous

level, the equations of motion are obtained by defining a Lagrangian and com-

puting the variational principle. This relies on the Euler–Poincaré reduction: the

reformulation of Hamilton’s principle from the Lagrangian to the Eulerian descrip-

tion. Thus, to understand the discretization procedure, we first review how we

obtain the equations in the Euler–Poincaré framework.

The motion of a compressible fluid on a smooth manifoldM is formally described

by curves φ : [0, T ] → Diff(M) that are critical for the Hamilton principle

δ
∫︂ T

0
L(φ, φ̇) dt = 0, (5.1)

with respect to variations δφ vanishing at t ∈ [0, T ]. Here Diff(M) is the group

of diffeomorphisms of the fluid domain M , and L is the Lagrangian of the fluid

model expressed in terms of the Lagrangian fluid trajectory φ and Lagrangian fluid
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velocity φ̇. The variational principle (5.1) gives the equations in the Lagrangian

description. For many computational approaches, it is more attractive to use a

fixed Eulerian domain and, thus, Eulerian variables. Rewriting the principle in Eq.

(5.1) in Eulerian variables yields the Euler–Poincaré variational principle which

involves constrained variations, see [48] for a complete treatment. Here, we give a

brief overview and refer to the appendix of [20] for a more detailed review for the

case of the rotating shallow water equations on Riemannian manifolds.

We assume that M is endowed with a Riemannian metric and denote by dσ

the associated Riemannian volume form. The examples treated in this paper will

be a doubly periodic domain in R2 endowed with the Euclidean metric and a

sphere endowed with its standard Riemannian metric; hence, we assume that M

has no boundary. The Eulerian variables defined in terms of the Lagrangian fluid

trajectory are the fluid velocity u = φ̇ ◦ φ−1 ∈ X(M) (vector fields on M) and

the fluid depth h = (h0 ◦ φ−1)Jφ−1 ∈ Den(M) (densities on M), where h0 is the

initial fluid depth and Jφ is the Jacobian of φ with respect to dσ. The volume

form allows the identification of the space of densities on M with the space of

functions on M . From these relations, the Lagrangian L(φ, φ̇) can be written in

terms of u and h, which yields the reduced Lagrangian ℓ : X(M) × Den(M) → R.

A consequence of the definition of h is the mass continuity equation

∂th+ div(hu) = 0, (5.2)

with div being the divergence operator on M defined by Ludσ = (div u)dσ. Then,

(5.1) yields the Euler–Poincaré variational principle with respect to constrained

variations,

δ
∫︂ T

0
ℓ(u, h) dt = 0 for

⎧⎪⎪⎪⎨⎪⎪⎪⎩
δu = ∂tv + [u,v]

δh = − div(hv),
(5.3)

where v is an arbitrary vector field with v(0) = v(T ) = 0 and [·, ·] is the Lie bracket
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of vector fields. To compute the equations of motion in Eulerian variables, we need

the functional derivatives δℓ
δu ∈ Ω1(M) (one-forms on M) and δℓ

δh
∈ F (M) (scalar

functions on M) which are defined by the duality pairings,

⟨︄
δℓ

δu
, δu

⟩︄
1

:=
∫︂

M

δℓ

δu
· δu dσ = d

dε

⃓⃓⃓⃓
⃓
ε=0

ℓ(u + εδu, h), (5.4)⟨︄
δℓ

δh
, δh

⟩︄
0

:=
∫︂

M

δℓ

δh
δh dσ = d

dε

⃓⃓⃓⃓
⃓
ε=0

ℓ(u, h+ εδh), (5.5)

for arbitrary δu and δh. Note that we denote the duality pairing between a one-

form δℓ
δu and a vector field δu as ⟨·, ·⟩1 and that between a function δℓ

δh
and a density

δh as ⟨·, ·⟩0. The variational principle (5.3) yields the Euler–Poincaré equations,

∂t
δℓ

δu
+ Lu

δℓ

δu
= hd

δℓ

δh
, (5.6)

where Lum = iudm+d(ium)+m div u is the Lie derivative of the fluid momentum

m (a one-form density on M) and d is the exterior derivative.

In Euclidean space, the Euler–Poincaré equations reduce to

∂t
δℓ

δu
+ u · ∇ δℓ

δu
+ ∇u⊤ δℓ

δu
+ δℓ

δu
div u = h∇ δℓ

δh
.

5.2.1. Variational principle for the SWE

For the rotating shallow water equations on a two dimensional Riemannian man-

ifold M , the Lagrangian is given by

ℓ(u, h) =
∫︂

M

[︃1
2hu♭ · u + hr♭ · u − 1

2g(h+ ηb)2
]︃
dσ, (5.7)

where ηb is the bottom topography, g is the gravitational acceleration and r is the

vector potential of the angular velocity of the Earth. Here, ♭ : TM → TM∗ is the

flat operator of the Riemannian metric, that associates a one-form u♭ to u. With
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the variational derivatives δℓ
δu = h(u♭ + r♭) and δℓ

δh
= 1

2u♭ · u + r♭ · u − g(h + ηb),

the Euler–Poincaré equation (5.6) gives the momentum equation of the SWE in

the space of one-forms:

∂tu♭ + iud(u♭ + r♭) + d
(︃1

2u♭ · u + g(h+ ηb)
)︃

= 0. (5.8)

This general expression reduces in the Euclidean space R2 to:

∂tu + (∇ × (u + r)) × u + ∇
(︃1

2 |u|2 + g(h+ ηb)
)︃

= 0. (5.9)

Biharmonic dissipation. To remove small scale noise and improve the stability

of the scheme, a common approach is to apply a linear fourth-order diffusion to

the velocity field, see, e.g., [29, 73, 75]. For instance, on R2, we consider:

∂tu + (∇ × (u + r)) × u + ∇
(︃1

2 |u|2 + g(h+ ηb)
)︃

= −ν∆2u, (5.10)

where ν is the diffusion coefficient. We do not add any dissipation to the continuity

equation, because it does not contain a turbulent mixing term. Also, adding such

dissipation can break conservation of mass, see [75].

In the next section, we review a new dissipation scheme for our framework, that

only acts on one conserved quantity while conserving the energy.

5.3. Selective decay with Casimir dissipation

Given the Lagrangian ℓ(u, h) of the fluid in Eulerian variables, the associated

Hamiltonian function h(m, h) is obtained by the Legendre transformation

h(m, h) = ⟨m,u⟩1 − ℓ(u, h),
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with u defined in terms of (m, h) by the relation m = δℓ
δu ∈ Ω1(M). We note the

relations
δH

δm
= u and δH

δh
= − δℓ

δh
. (5.11)

The Eulerian Lie–Poisson formulation is given by

df

dt
= {f, h}, ∀ f, (5.12)

with Lie–Poisson bracket {·, ·} defined as

{f, h} = −
∫︂

M
m ·

[︃
δf

δm
,
δh

δm

]︃
dσ +

∫︂
M
ρ
(︃

d
δf

δh
· δh
δm

− d
δh

δh
· δf
δm

)︃
dσ;

see [48] for details. The Lie–Poisson equations (5.12) are equivalent to the system

of equations (5.2) and (5.6), as can by directly verified using (5.11).

For the selective decay, we use the relationship between the Lie–Poisson bracket

and the conservation laws. A function C is called a Casimir for the Lie–Poisson

bracket if it satisfies {C, f} = 0 for all f . With this, we have the conservation law
dC
dt

= 0 along solutions of the Lie–Poisson system ḟ = {f, h}, for any Hamiltonian

h. In the next section, the Lie–Poisson bracket is extended to dissipate a Casimir

but still conserve energy.

5.3.1. Casimir dissipation

In this section, we recall the approach to selective decay developed in [37]. Let

γ : X(M)×X(M) → R be a positive and symmetric bilinear form (with associated

norm ∥ · ∥γ) and C a Casimir function. The Casimir dissipation is introduced in

the Lie–Poisson formulation as follows

df

dt
= {f, h} − θγ

(︄[︃
δf

δm
,
δh

δm

]︃
,
[︃
δC

δm
,
δh

δm

]︃)︄
, (5.13)
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for some θ > 0. If f = h, then

dh

dt
= 0 − θγ

(︄
0,
[︃
δC

δm
,
δh

δm

]︃)︄
= 0,

and we see that the energy remains conserved. For f = C, we have

dC

dt
= 0 − θγ

(︄[︃
δC

δm
,
δh

δm

]︃
,
[︃
δC

δm
,
δh

δm

]︃)︄
= −θ

⃦⃦⃦⃦
⃦
[︃
δC

δm
,
δh

δm

]︃⃦⃦⃦⃦
⃦

2

γ

,

thus, the Casimir decays in time.

The corresponding Lagrange–d’Alembert variational principle is given by (see

[37, Eq. (3.7)])

δ
∫︂ T

0
ℓ(u, h)dt+ θ

∫︂ T

0
γ

(︄[︃
δC

δm
,u
]︃
,
[︃
u,v

]︃)︄
dt = 0, for

⎧⎪⎪⎪⎨⎪⎪⎪⎩
δu = ∂tv + [u,v]

δh = − div(hv).
(5.14)

Then, the Casimir dissipative Euler–Poincaré equations (see [37, Eq. (3.3)]) are

∂t
δℓ

δu
+ Lu

δℓ

δu
= hd

δℓ

δh
+ θLu

(︃[︃
u,
δC

δm

]︃γ)︃
, (5.15)

where, for a vector field u ∈ X(M), uγ is the one-form on M defined by
∫︁

M(uγ ·

v)dσ = γ(u,v), for all v ∈ X(M), and we recall that m = δℓ
δu . We assume that γ is

such that the one-form uγ is well-defined for all u ∈ X(M), see [37] for examples.

5.3.2. Enstrophy dissipation for SWE

Next, we will consider enstrophy dissipation for the SWE. For two-dimensional

fluid flows dominated by geostrophic balance, enstrophy is known to cascade to

small scales. Thus, in order to obtain physically relevant solutions, it is neces-

sary to dissipate enstrophy at such scales, see [17, 60, 73]. For the SWE on 2D
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Riemannian manifolds, the potential enstrophy Casimir is given by

C(m, h) = 1
2

∫︂
M
h q(m, h)2dσ with q(m, h)dσ = 1

h
d

m
h
. (5.16)

The variational derivative of the enstrophy Casimir is found as δC
δm = − 1

h
(⋆dq)♯

with ♯ : T ∗M → TM the Riemannian sharp operator, see Appendix 5.8.1. For a

two dimensional planar domain, these formulas reduce to

q(m, h) = 1
h

z · ∇ ×
(︃m
h

)︃
,

δC

δm
= −1

h
z × ∇q. (5.17)

With the Lagrangian (5.7), the Casimir dissipative Euler–Poincaré equations (5.15)

are given by

h∂tu♭ + hiud(u♭ + r♭) = −hd
(︃1

2u♭ · u + g(h+ ηb)
)︃

+ θLu

(︃
h
[︃
u,
δC

δm

]︃♭)︃
, (5.18)

where we choose γ to be the water depth weighted L2 inner product, i.e., γ(u,v) =∫︁
M h(u♭ · v)dσ, and we note that uγ = hu♭, with ♭ associated to the Riemannian

metric on M .

5.4. Discrete selective decay

The discretization process translates each step of the continuous theory to the

discrete level. We review the variational discretization process for fluid initially

developed in [65], see also [8, 26, 35, 36] for extensions, and incorporate into it the

Casimir selective decay.

We consider a two dimensional simplicial mesh M with n cells on the fluid

domain, where triangles (T ) are used as the primal grid, and the circumcenter

dual (ζ) as the dual grid. On the grid (see Fig. 5.1) we adopt the following

notation:
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Figure 5.1.: Notation and indexing conventions for the 2D simplicial mesh.

• eij = Ti ∩ Tj as the primal edge,

• ẽij = ζ+ ∩ ζ− as the dual edge,

• Ωii as the area of triangle Ti,

• hi as the discrete water depth on

Ti,

• (ηb)i as the discrete bottom topog-

raphy on Ti,

• Vij is ueij
· neij

at the edge mid-

point.

• hij = 1
2(hi+hj) as the water depth

averaged to the edge midpoints.

Here, neij
is the normal vector of edge eij pointing towards Tj.

5.4.1. Discrete setup

The Euler–Poincaré reduction from the Lie group of diffeomorphisms to its Lie

algebra (as discussed in Section 5.2) is done analogously in the discrete setting by

identifying the discrete analogues of Diff(M) and Den(M). For piecewise constant

functions, the discrete diffeomorphism group is the matrix group

D(M) = {q ∈ GL(n)+ | q · 1 = 1}, (5.19)

with GL(n)+ the group of real n × n matrices with positive determinant and

1 = (1, ..., 1)T. The condition q · 1 = 1 means that constants are preserved, which
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is needed to obtain mass conservation. Then, the Lie algebra of D(M) is

d(M) = {A ∈ gl(n) | A · 1 = 0} (5.20)

with the matrix commutator [A,B] = AB−BA as the Lie bracket. This Lie alge-

bra is a discrete version of the Lie algebra of Diff(M) given by vector fields on M .

To reduce the computational complexity of the resulting scheme, nonholonomic

constraints are imposed and, instead of d(M), a subspace R ⊂ d(M) is considered

[8], given by

R =
{︂
A ∈ d(M) | A⊤Ω +ΩA⊤ is diagonal

}︂
∩
{︂
A ∈ d(M) | Aij = 0 ∀j /∈ N(i)

}︂
,

with N(i) being the set of cells sharing an edge with the cell Ti and with Ω being

the n× n diagonal matrix with elements Ωii.

Remark 13. For A,B ∈ R we have [A,B]ij = 0 for all j ∈ N(i). Since elements

of R are zero for non neighbouring cells, we get [R,R] ∩ R = {0}. In particular

[R,R] ̸= R.

Next, we identify the dual space R∗ with the space Ω1
d(M) of discrete one-forms

relative to the duality pairing on gl(n):

⟨L,A⟩1 = Tr(L⊤ΩA). (5.21)

To obtain an element in R∗, we use the projection P : gl(n) → Ω1
d(M) defined by

P (L)ij = 1
2(Lij − Lji − Lii + Ljj), (5.22)

which satisfies ⟨L,A⟩1 = ⟨P (L), A⟩1, for all A ∈ R, see [8]. Piecewise constant

functions on M are represented by vectors F ∈ Rn, with value Fi on cell i being

the cell average of the continuous function on cell i. The space of discrete functions
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is denoted by Ω0
d(M), and the space of discrete densities Dend(M) ≃ Rn is defined

as the dual space to Ω0
d(M) relative to the pairing:

⟨F,G⟩0 = F⊤ΩG. (5.23)

If a matrix A ∈ R approximates a vector field u, then its entries satisfy

Aij ≈ − 1
2Ωii

∫︂
Ti∩Tj

(u · n)dS, j ∈ N(i)

Aii ≈ 1
2Ωii

∫︂
Ti

div u dσ.
(5.24)

In the next section, we will use this discrete setup to state the discrete variational

principle and compute the numerical scheme.

5.4.2. Discrete variational equations for selective decay

Let ℓ : d(M) × Dend(M) → R be a semi-discrete Lagrangian and C : d(M) ×

Dend(M) → R be a semi-discretized approximation of a Casimir. As above, let

γ : d(M) × d(M) → R be a positive, symmetric bilinear form. Analogous to the

continuous Casimir dissipative variational principle in Eq. (5.14), we consider the

discrete dissipative variational principle given by

δ
∫︂ T

0
ℓ(A, h)dt+θ

∫︂ T

0
γ

(︄[︃
δC

δM
,A
]︃
, [A,B]

)︄
dt = 0 for

⎧⎪⎪⎪⎨⎪⎪⎪⎩
δA = ∂tB + [B,A]

δh = −Ω−1B⊤Ωh

(5.25)
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with B ∈ R and B(0) = B(T ) = 0. The discrete functional derivatives δℓ
δA

∈

d(M)∗, δℓ
δh

∈ Ω0(M) and δC
δM

∈ d(M) are defined by

⟨︄
δℓ

δA
, δA

⟩︄
1

= d

dε

⃓⃓⃓⃓
⃓
ε=0

ℓ(A+ εδA, h),⟨︄
δℓ

δh
, δh

⟩︄
0

= d

dε

⃓⃓⃓⃓
⃓
ε=0

ℓ(A,D + εδh),⟨︄
δM,

δC

δM

⟩︄
1

= d

dε

⃓⃓⃓⃓
⃓
ε=0

C(M + εδM, h),

(5.26)

for all δA ∈ d(M), δh ∈ Dend(M), δM ∈ d(M)∗.

Theorem 14 (Discrete dissipative variational equations). For a semi-discrete

Lagrangian ℓ(A,D), the curves A(t), h(t) are critical for the variational principle

of Eq. (5.25) if and only if they satisfy

P

(︄
d

dt

δℓ

δA
+ LA

(︃
δℓ

δA

)︃
− θLA

(︃
h
[︃
δC

δM
,A
]︃♭)︃

+ h
δℓ

δh

⊤)︄
ij

= 0, (5.27)

where ⟨LAM,B⟩1 = ⟨M, [A,B]⟩1.

Proof: The variational principle (5.25) gives

0 = δ
∫︂ T

0
ℓ(A, h)dt+ θ

∫︂ T

0
γ

(︄[︃
δC

δM
,A
]︃
, [A,B]

)︄
dt.

Next, we use the definition of the flat operator and γ to be the water depth

weighted inner product, giving

0 = δ
∫︂ T

0
ℓ(A, h)dt+ θ

∫︂ T

0

⟨︄
h
[︃
δC

δM
,A
]︃♭

, [A,B]
⟩︄

1
dt.
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Finally, we use the expression of the variations in (5.25) and the definition of L,

see [8], which yields

0 = −
∫︂ T

0

⟨︄
d

dt

δℓ

δA
+ LA

(︃
δℓ

δA

)︃
+ h

δℓ

δh

⊤
, B

⟩︄
1

dt+ θ
∫︂ T

0

⟨︄
h
[︃
δC

δM
,A
]︃♭

, [A,B]
⟩︄

1
dt

= −
∫︂ T

0

⟨︄
d

dt

δℓ

δA
+ LA

(︃
δℓ

δA

)︃
+ h

δℓ

δh

⊤
, B

⟩︄
1

dt+ θ
∫︂ T

0

⟨︄
LA

(︃
h
[︃
δC

δM
,A
]︃♭)︃

, B

⟩︄
1

dt

= −
∫︂ T

0

⟨︄
d

dt

δℓ

δA
+ LA

(︃
δℓ

δA

)︃
− θLA

(︃
h
[︃
δC

δM
,A
]︃♭)︃

+ h
δℓ

δh

⊤
, B

⟩︄
1

dt.

The result then follows from
∫︁ T

0 ⟨L,B⟩1 dt = 0, ∀B ∈ R ⇐⇒ P (L)ij = 0 (see [8,

Proposition 2.3]).

□

Remark 15. We note that Theorem 14 becomes the discrete variational equations

theorem in [8] for θ = 0. This form of the discrete equations is valid on Cartesian

and simplicial meshes in 2D and 3D. We focus below on two dimensional simplicial

meshes.

The following proposition demonstrates that, for the resulting semi-discrete

scheme, the energy is conserved.

Proposition 16. Let A(t) and h(t) be the solution of (5.27) and ḣ+Ω−1A⊤Ωh =

0. Then,
d

dt

(︄⟨︄
δℓ

δA
,A

⟩︄
1

− ℓ(A, h)
)︄

= 0
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Proof: We compute

d

dt

(︄⟨︄
δℓ

δA
,A

⟩︄
1

− ℓ(A, h)
)︄

=
⟨︄
d

dt

δℓ

δA
,A

⟩︄
1

+
⟨︄
δℓ

δA
,
d

dt
A

⟩︄
1

−
⟨︄
δℓ

δA
,
d

dt
A

⟩︄
1

−
⟨︄
δℓ

δh
,
d

dt
h

⟩︄
0

=
⟨︄
P
d

dt

δℓ

δA
,A

⟩︄
1

+
⟨︄
δℓ

δh
,−Ω−1A⊤Ωh

⟩︄
0

=
⟨︄
P

(︄
d

dt

δℓ

δA
+ h

δℓ

δh

⊤)︄
, A

⟩︄
1

= −
⟨︄
P

(︄
LA

δℓ

δA
− θLA

(︃
h
[︃
δC

δM
,A
]︃♭)︃)︄

, A

⟩︄
1

= −
⟨︄

LA
δℓ

δA
− θLA

(︃
h
[︃
δC

δM
,A
]︃♭)︃

, A

⟩︄
1

= 0,

where the last equality follows from ⟨LA(X), A⟩1 = ⟨X, [A,A]⟩1 = 0. This holds

independently of the chosen discretization of
[︃

δC
δM
, A
]︃♭

.

□

5.4.3. Variational discretization of the Casimir dissipative SWE

Before presenting the discretization including the Casimir dissipation term, we

briefly recall the variational discretization for the scheme without Casimir dissipa-

tion [8, 20]. We discretize the Lagrangian (5.7) with piecewise constant functions,

giving

ℓ(A, h) = 1
2

n∑︂
i,j=1

hiA
♭
ijAijΩii +

n∑︂
i,j=1

hiR
♭
ijAijΩii − 1

2

n∑︂
i=1

g(hi + (ηb)i)2Ωii. (5.28)

To compute the variational derivatives we use the duality pairing (5.21) and the

definition in Eq. (5.26). This gives

δℓ

δA ij
= hi(A♭

ij +R♭
ij) and δℓ

δh i
= 1

2
∑︂

j

A♭
ijAij +

∑︂
j

R♭
ijAij − g(hi + (ηb)i).

(5.29)

In [19, 20], it was noted that the approximations of the differential operators

130



result from the variational discretization method and agree with the following

standard finite difference and finite volume operators:

(Gradn F )ij :=
FTj

− FTi

|ẽij|
,

(Gradt F )ij := Fζ− − Fζ+

|eij|
,

(div u)i ≈ (Div V )i := 1
Ωii

∑︂
k∈{j,i−,i+}

|eik|Vik,

(∇ × u)ζ ≈ (Curl V )ζ := 1
|ζ|

∑︂
ẽnm∈∂ζ

|ẽnm|Vnm,

(5.30)

for a scalar field F sampled either at the triangle or dual cell centres and a normal

velocity Vij. The gradient in the tangential and normal direction is noted with

Gradt and Gradn, respectively. The normal velocity Vij is related to the matrix

elements A ∈ R in (5.24) as

Aij = − |eij|
2Ωii

Vij, j ∈ N(i) and Aii = 1
2Ωii

∑︂
k∈N(i)

|eik|Vik.

Remark 17. The gradient in the normal direction and the discrete divergence

are adjoints with respect to the natural inner products on the triangles and their

edges. Similarly, the tangential gradient and the discrete curl operator are adjoints

with respect to the natural inner products on dual cells and their edges.

Remark 18. The continuous gradient, divergence, and curl operators are natu-

rally written in Cartesian coordinates, but also can be defined (via parametriza-

tion) in a local neighbourhood on the sphere. The discrete counterparts are always

locally defined and independent of the coordinate system. We will use the notation

in Cartesian coordinates for this section for the continuum operators, to simplify

notation.

Computing the projection (5.27) with θ = 0, we obtain the momentum equation

in [8]. This results in multiple terms. Here, we combined the terms involved in

the advection term (∇ × (u + r)) × u and denoted them with Adv, terms involved

in the kinetic energy term ∇(1
2u2) with K and the terms involved in the gradient
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term g∇h with G.

∂tVij = −Adv(V, h)ij + K(V )ij − G(h)ij, (5.31)

where

Adv(V, h)ij :=

− 1
hij|ẽij|

(︃
(Curl V )ζ− + fζ−

)︃(︄ |ζ− ∩ Ti|
2Ωii

hji−|eii−|Vii− + |ζ− ∩ Tj|
2Ωjj

hij− |ejj−|Vjj−

)︄

+ 1
hij|ẽij|

(︃
(Curl V )ζ+ + fζ+

)︃(︄ |ζ+ ∩ Ti|
2Ωii

hji+|eii+|Vii+ + |ζ+ ∩ Tj|
2Ωjj

hij+|ejj+ |Vjj+

)︄
,

K(V )ij := 1
2(Gradn F )ij, FTi

=
∑︂

k∈{j,i−,i+}

|ẽik| |eik|(Vik)2

2Ωkk

,

G(h)ij := g(Gradn (h+ ηb))ij.

The Coriolis parameter is defined by

fζ = 1
|ζ|

∑︂
ẽnm∈∂ζ

|ẽnm|rnm, with rij = reij
· neij

.

Casimir dissipative scheme:

Including the extra term for θ > 0, the Casimir dissipative momentum equation

is

∂tVij = −Adv(V, h)ij + K(V )ij − G(h)ij + θL(V, h, δC
δM

)ij, (5.32)

where

P

(︄
LA

(︃
h
[︃
δC

δM
,A
]︃♭)︃)︄

ij

=: L(V, h, δC
δM

)ij.

To compute this term, we first need to discretize the commutator. Here, we

cannot follow the discretization procedure of [65] for the commutator of vector

fields [A,B]. This is due to the fact that [A,B] ∈ [R,R], for A,B ∈ R and

[R,R] ̸= R, see Remark 13; and the flat operator ♭ is only defined for matrices in
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R. To obtain a discrete vector W ∈ R approximating the commutator
[︃

δC
δm ,u

]︃
at

the edge midpoint, we will use the standard operators from Eq. (5.30). Then, we

can compute P (LA

(︂
hW ♭

)︂
)ij using [8, Lemma 3.1].

Discrete commutator. Let Uij = ueij
· neij

be the edge normal for a vector field

u at edge eij and Vij for a vector field v respectively. The Lie bracket for vector

fields u,v is given below and can be rewritten using a standard vector calculus

identity, giving

[u,v] = u · ∇v − v · ∇u = u div v − v div u − ∇ × (u × v).

We discretize u div v and v div u using the discrete divergence on each triangle

(Eq. (5.30)), averaging over the two adjacent triangles to obtain an edge value,

(︃
u div v

)︃
ij

= Uij

(︃div(V )i + div(V )j

2

)︃
(︃

v div u
)︃

ij
= Vij

(︃div(U)i + div(U)j

2

)︃
.

Then, to obtain a discrete version of ∇ × (u × v), we use the following procedure:

• Reconstruct the full vector field uζ and vζ at the dual cell centres from the

normal values Uij and Vij. We use the reconstruction in the interior of each

triangle proposed by [66] and map it to the dual cell:

uζ =
∑︂

i∈N(ζ)

|ζ ∩ Ti|
|ζ|

ui, where ui = 1
Ωii

∑︂
k∈{j,i−,i+}

|eik|(xeik
− xTi

)Uij,

vζ =
∑︂

i∈N(ζ)

|ζ ∩ Ti|
|ζ|

vi, where vi = 1
Ωii

∑︂
k∈{j,i−,i+}

|eik|(xeik
− xTi

)Vij.

• Compute the cross product cζ = (uζ × vζ) · kζ , where k is the unit vector

that points in the local vertical direction.
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• Obtain
(︃

∇×(u×v)
)︃

ij
= Gradt cζ . Since cζ is located at the dual cell centres

and the resulting value after taking the curl should be an edge normal value

(tangential for the dual grid cells), we use Gradt, which is the adjoint curl

(see Remark 17).

We obtain W approximating
[︃

δC
δm ,u

]︃
, as Wij = |eij |

2Ωii

˜︂Wij and Wii = (Div ˜︂W )i,

where

˜︂Wij =
(︄
δC

δM

)︄
ij

(︃div(V )i + div(V )j

2

)︃
− Vij

(︃div
(︂

δC
δM

)︂
i
+ div

(︂
δC
δM

)︂
j

2

)︃

− Gradt

(︃
( δC
δm ζ

× uζ) · kζ

)︃
ij
.

In [8, Lemma 3.1], the discrete projection of the Lie derivative Ld
A is given by

P
(︃

Ld
A(hW ♭)

)︃
ij

= (curl
ζ−

˜︂W )
(︄

|ζ− ∩ Ti|
2Ωii

hji−|eii−|Vii− + |ζ− ∩ Tj|
2Ωjj

hij− |ejj−|Vjj−

)︄

+ (curl
ζ+

˜︂W )
(︄

|ζ+ ∩ Ti|
2Ωii

hji+|eii+|Vii+ + |ζ+ ∩ Tj|
2Ωjj

hij+ |ejj+|Vjj+

)︄

+ hij

⎛⎝ ∑︂
k∈N(i)

|eik||ẽik|
Ωii

Vik
˜︂Wik −

∑︂
k∈N(j)

|ejk||ẽjk|
Ωjj

Vjk
˜︂Wjk

⎞⎠
+ div(V h)i + div(V h)j

2 (2|ẽij|˜︂Wij),

(5.33)

which we can evaluate using the discrete operators above once we know ˜︂W .

Discrete enstrophy variational derivative Analogously to Section 5.3.2, we

compute the discrete variational derivative of the approximation of the enstro-

phy Casimir and substitute it into Eq. (5.32). The discrete enstrophy Casimir

is

C(M,h) = 1
2
∑︂

ζ

hζ

(︃
q(M,h)ζ

)︃2
|ζ|, q(M,h)ζ = (Curl V ) + f

hζ

, hζ =
∑︂

Ti∩ζ ̸=∅

|Ti ∩ ζ|
|ζ|

hi,
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where M = δℓ
δA

and f is the Coriolis parameter.

Then, computing the variational derivative (see Appendix 5.8.2 for details) we

obtain

δC
δM ij

= qζ+ − qζ−

Ωiihij

= − |eij|
2Ωii

(︃
2qζ− − qζ+

|eij|
1
hij

)︃
= − |eij|

2Ωii

2 Gradt q

hij

.

Substituting this into Eq. (5.32) results in the discretized potential enstrophy

dissipating SWE.

Remark 19. The approximation of the enstrophy Casimir is not a Casimir of the

discrete system. Therefore, we cannot directly prove that enstrophy is dissipated

for the semi-discrete scheme. However, the numerical results demonstrate that

the numerical scheme indeed dissipates enstrophy.

5.4.4. Temporal discretization

A temporal variational discretization can be obtained by following the discrete (in

time) Euler–Poincaré–d’Alembert approach, see [26, 36]. This approach is based

on the Cayley transform, a local approximation to the exponential map of the Lie

group. In particular, the resulting scheme uses the Cayley transform in the update

for the continuity equation and a Crank–Nicolson-type update for the momentum

equation at each timestep. For the selective decay, the dissipation term is added

to the Crank–Nicolson-type update.

Based on the Cayley transformation, the continuity update equation is then

given by ht+1 = τ(∆tAt)ht for the time t and a time step size ∆t, where the

action of τ can be represented by solving

(︂
I − 1

2∆tAt
)︂
ht+1 =

(︂
I + 1

2∆tAt
)︂
ht, (5.34)

with I being the identity matrix . Then, we use the following fixed-point iteration
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to approximately solve the discrete momentum equation:

1. Start loop over k with initial guess as solution at time t: V ∗
k=0 = V t;

2. Calculate updated velocity V ∗
k+1 from the explicit equation:

V ∗
k+1 − V t

∆t = −Adv(V ∗
k , h

t+1) + Adv(V t, ht)
2 + K(V ∗

k ) + K(V t)
2 − G(ht+1)

− θ
L(V ∗

k , h
t+1, δC

δM

t) + L(V t, ht, δC
δM

t)
2 ;

3. Stop loop over k if ||V ∗
k+1 −V ∗

k || < ϵ for a small positive ϵ, take V t+1 = V ∗
k+1.

For more details, we refer the reader to [8, 20].

Remark 20. This temporal discretization is only an approximation to a fully

variational time integrator, see [26, 36] for more details. In particular, it has

been observed that the temporal integrator does not conserve energy at the level

of machine precision but, rather, the energy error fluctuates around a long term

mean. Thus, while the energy is conserved by the semi-discrete Casimir dissipative

equations, independent of the discretization of the commutator (see Proposition

16), this does not guarantee that the energy will be conserved after temporal

discretization. We observe this in the numerical results that follow, but ascribe

the small energy growth seen there to errors from this temporal discretization.

5.4.5. Biharmonic dissipation

To compare against a standard dissipation such as a biharmonic eddy viscosity,

we discretize the dissipation term in Eq. (5.10), using the vector calculus identity

for the vector Laplacian

∆u = ∇ div u − ∇ × (∇ × u).
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Then, using the discrete operators (5.30), we obtain

lap(V )ij = Gradn(Div V )ij − Gradt(Curl V )ij

νL(V )ij = ν lap(lap(V ))ij.

We obtain the discrete version of Eq. (5.10)

∂tVij = −Adv(V, h)ij + K(V )ij − G(h)ij − νL(V )ij. (5.35)

The temporal discretization is the same as above, but with −νL(V )ij instead of

θ L(V t, ht, δC
δM

t).

5.5. Numerical results

The numerical simulations on the plane are performed on a doubly periodic rect-

angular domain M = [0, Lx] × [0, Ly] with Lx = 5000 km and Ly = 4330 km.

We consider an f -plane approximation with constant Coriolis parameter f set to

5.3108 days−1 and g = 9.81 m/s. Unless otherwise noted, the simulations are

performed using a resolution of N = 32768 triangles. For the simulations on the

sphere, we use an icosahedral grid and set the Earth’s radius R = 6.37122×106 m,

the Coriolis parameter to be f = 2Ω sin(Θ), where Ω = 7.292 × 10−5 s−1, and

g = 9.81 m/s. Here, Θ is the latitude and Λ the longitude. The simulations are

performed using a resolution of N = 81920 triangles.

We define the discrete total energy H, namely the Hamiltonian, and the discrete

potential enstrophy C:

H =
∑︂
Ti

g

2(hi + (ηb)i)2Ωii + 1
2Ωiihi

∑︂
k=j,i−,i+

|eik| |ẽik|V 2
ik

2 (5.36)

C = 1
2
∑︂

ζ

Curl(V (t)) + f

hζ(t) |ζ|. (5.37)
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For each simulation, we first choose the dissipation coefficient ν, for the bihar-

monic dissipation, and then empirically choose θ for the Casimiar dissipation term

so that the dissipation of potential enstrophy is very similar.

5.5.1. Numerical analysis of the discrete commutator

We first present a convergence study for the discrete commutator on both the

plane and sphere. We define

u =

⎛⎜⎜⎝sin(2πx
Lx

)

0

⎞⎟⎟⎠ and v =

⎛⎜⎜⎝cos(2πx
Lx

)

0

⎞⎟⎟⎠ such that [u,v] =

⎛⎜⎜⎝ 2π
Lx

0

⎞⎟⎟⎠

for the test case on the plane, and

u =

⎛⎜⎜⎜⎜⎜⎜⎝
y

−x

0

⎞⎟⎟⎟⎟⎟⎟⎠ and v =

⎛⎜⎜⎜⎜⎜⎜⎝
0

−z

y

⎞⎟⎟⎟⎟⎟⎟⎠ such that [u,v] =

⎛⎜⎜⎜⎜⎜⎜⎝
z

0

−x

⎞⎟⎟⎟⎟⎟⎟⎠

for the test case on the sphere. We approximate these vector fields with piecewise

constant functions and follow the algorithm in 5.4.3 to discretize [u,v]. Then, we

compute the error between the approximation of the discrete commutator to the

analytic field projected on the edge normal direction. To estimate the numerical

errors, we use the following definitions for the relative L2 and L∞ error on edge

values:

L2 =

√︄∑︁
ij |eij|

(︃
un(eij) − ur(eij)

)︃2

√︂∑︁
ij |eij|ur(eij)2

, L∞ = maxij |un(eij)ur(eij)|
maxij |ur(eij)|

,

where un(eij) is the numerical solution defined at edge eij and ur(eij) is the ana-

lytical solution evaluated at the edge midpoint eij. Moreover |eij| = 1
2 |eij| |ẽij| is

the area associated to an edge.
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Figure 5.2.: Convergence of the commutator on the plane and sphere. Solid lines
represent the L∞ error and dashed lines the L2 error. On the plane,
we present results using both a regular grid, with data denoted by
x, and an irregular grid (with a central refinement region), with data
denoted by o.

We observe that the resulting approximation on both a regular and irregular grid

on the plane is first-order accurate, see Fig. 5.2. On the sphere, the approximation

is less than first-order accurate, however, because the icosahedral grid is optimised

for the dual grid (pentagons/hexagons), see [44] for further details, but we evaluate

the discrete divergence and reconstruction of the vector fields on the triangles.

This low-order convergence of the divergence was also observed in [20].

5.5.2. Vortex interaction

This test case consists of two counter-rotating vortices in the plane and is domi-

nated by non-linear processes. The two vortices are initially placed too far apart to

merge. Thus, a key point in this simulation is that adding the Casimir dissipation

does not change the evolution of the vortices.

Initial conditions. The initial height function for this example [8] is given by

h
(︂
x, y, t = 0

)︂
= H0 −H ′

(︄
exp

(︃
− x′

1
2 + y′

1
2

2

)︃
+ exp

(︃
− x′

2
2 + y′

2
2

2

)︃
− 4πsxsy

LxLy

)︄
,

(5.38a)
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where H0 = 750m, H ′ = 75m, and the periodic extensions are given by

x′
i = Lx

πsx

sin
(︂ π
Lx

(x− xci
)
)︂
, y′

i = Ly

πsy

sin
(︂ π
Ly

(y − yci
)
)︂
, i = 1, 2 (5.38b)

with the centres located at (xc1 , yc1) = (2/5) (Lx, Ly), (xc2 , yc2) = (3/5) (Lx, Ly)

and (sx, sy) = 3
40(3/40) (Lx, Ly). The discrete initial water depth on each triangle,

hi, is obtained by sampling the analytical water depth at the cell centre. Then,

the initial condition for the velocity is given by the discrete geostrophic velocity,

Vij = − g

f
Gradt(h)ij.

In these simulations, we use dissipation parameters ν = 1.2724 × 105 and θ = 2.

We first integrate the initial conditions for 2 days for different values of the

time step, to analyse the convergence of the energy. In Fig. 5.3, we observe that

the energy converges with first-order accuracy. Then, to analyse the effects of the

Casimir dissipation, we integrate the initial conditions for 10 days and compare the

relative potential vorticity field against a simulation with no dissipation and one

with biharmonic dissipation, see Fig. 5.4. All simulations behave similarly, with

the cores of the two vortices being mutually repelled, due to non-linear effects. We

note that the simulation with no dissipation becomes noisy loses physical fidelty

on this timescale, while the two simulations with dissipation retain their accuracy.

The quantities of interest, total energy and potential enstrophy, are shown in

Fig. 5.5. We observe that the enstrophy is dissipated at the same rate for the

simulations with biharmonic and Casimir dissipation, as expected with this choice

of dissipation parameters. While the energy is dissipated in the simulation with

biharmonic dissipation, conservation of energy for the simulation using Casimir

dissipative simulation is similar to that of the simulation with no dissipation. As

noted in Remark 20 above, the temporal discretization used here is not completely
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energy conserving, leading to the oscillations seen at the left of Fig. 5.5.

2 4 6 8 10 12

10-4

10-6

Figure 5.3.: Convergence of the energy with respect to the time step size on a
regular (blue) and irregular (red) grid. The dashed black line indicates
first order.

Figure 5.4.: Interacting vortices test case: Comparison of the relative potential
vorticity for a simulation without dissipation (left), with Casimir dis-
sipation (middle) and with biharmonic dissipation (right) after 10
days.

5.5.3. Shear flow

We next consider a shear flow test case in the quasi-geostrophic regime [8], with

strongly dominant non-linear effects. The shear flow is initialized to an unstable

equilibrium state so that, after a few days, the instability develops. This test case

demonstrates that adding the Casimir dissipation does not change the development

and growth of this instability.
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Figure 5.5.: Interacting vortices test case: Comparison of the relative errors in the
energy (left) and potential enstrophy (right) for a simulation without
dissipation (blue), with Casimir dissipation (red) and with a bihar-
monic dissipation (yellow).

Initial conditions. The initial height for this example is given by

h(x, y, t = 0) = H0 −H ′ y
′′

σy

e
− y′2

2σ2
y

+ 1
2
(︃

1 − κ sin
(︃2πx′

λx

)︃)︃
,

where

x′ = x

Lx

, y′ = 1
π

sin
(︃
π

Ly

(︃
y − Ly

2

)︃)︃
, y′′ = 1

2π sin
(︃2π
Ly

(︃
y − Ly

2

)︃)︃
,

with parameters λx = 1
2 , σy = 1

12 , κ = 0.1, H0 = 1.076 km and H ′ = 0.03 km.

Again, the velocity field is initialized to be the discrete geostrophic velocity,

Vij = − g

f
Gradt(h)ij.

Here, the dissipation parameters are chosen as ν = 3.7145 × 105 and θ = 2.

We integrate the initial conditions for 10 days. The instability develops in

the first three days, then the flow evolves into pairs of counter-rotating vortices.

The filaments between the vortices become thinner until they can no longer be

resolved by the spatial resolution of the mesh. This causes a noisy pattern in

142



the vorticity field at day ten for the simulation without any dissipation, see Fig.

5.6. In contrast, the simulations with Casimir and biharmonic dissipation are not

polluted.

The quantities of interest for this simulation are shown in Fig. 5.7. Again,

we observe the similar dissipation rate of the potential enstrophy for the Casimir

and biharmonic dissipation, by construction. The simulation with no dissipation

and the Casimir dissipative simulation have a similar conservation of energy. In

contrast, the simulation with biharmonic dissipation has a loss of energy about

100 times greater.

Fig. 5.8 shows the kinetic energy and potential enstrophy spectra for simula-

tions on refined spatial meshes with 524288 triangles. Expected scaling laws for

these spectra are discussed in [23, 73]. Both dissipative simulations follow the

expected k−1 power law for the enstrophy and k−3 power law for the kinetic en-

ergy over a significant region of the resolved wavenumbers. However, we note that

using Casimir dissipation results in better resolution of the spectra over the small

scales (higher wavenumbers) in comparison with the biharmonic dissipation. As

expected, the biharmonic dissipation results in much faster dissipation over small

scales in both the energy and enstrophy.

Figure 5.6.: Shear flow test case: Comparison of the relative potential vorticity
for a simulation without dissipation (left), with Casimir dissipation
(middle) and with biharmonic dissipation (right) after 10 days.
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Figure 5.7.: Shear flow test case: Comparison of the relative errors in the energy
(left) and potential enstrophy (right) for a simulation without dis-
sipation (blue), with Casimir dissipation (red) and with biharmonic
dissipation (yellow).
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Figure 5.8.: Shear flow test case: Comparison of the kinetic energy (left) and po-
tential enstrophy (right) spectrum for simulations with Casimir dis-
sipation (red) and biharmonic dissipation (blue). The spectra are
obtained from simulations with a resolution of N = 524288 triangles.
The spectra are shown for days 1 to 10 of the simulation. The dashed
red and blue lines show the averages of the spectra from days 6 to 10.

5.5.4. Flow over an isolated mountain

As a final example, we consider the flow over a conically-shaped mountain on the

sphere, as proposed in [90]. The initially balanced flow runs over the mountain,

which initiates turbulence. The flow stays turbulent for a long period of time.
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Initial conditions. The discrete initial velocity and height fields are given in

spherical coordinates as

Vij = u0(cos(Θ), 0)⊤ · nij u0 = 20 m/s

hi = h0 − 1
g

(RΩu0 + u2
0/2) cos(Θ) h0 = 5960 m

The conically shaped bottom topography is given by

ηb(Λ,Θ) = 2000(1 − 9r/π), r2 = min
(︃

(π/9)2, (Λ − Λc)2 + (Θ − Θc)2
)︃
,

where Λc = 3π/2 and Θc = π/6.

We integrate the initial conditions for 100 days and observe that the simulation

without any stabilization becomes noisy and unphysical, see Fig. 5.9. In contrast,

the stabilized schemes produce coherent structures in the vorticity field. In Fig.

5.10, we show the quantities of interest. The simulation without dissipation shows

an increase in potential enstrophy, which is related to the noisy vorticity field.

The dissipative schemes, as expected, dissipate potential enstrophy at the same

rate. The error in the energy of the simulation with the Casimir dissipation stays

on the same order as the simulation without any dissipation, while the simulation

using biharmonic dissipation has an energy loss.

Figure 5.9.: Flow over a mountain test case: Comparison of the relative vorticity
for a simulation without dissipation (left), with Casimir dissipation
(middle), and with biharmonic dissipation (right) after 100 days.
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Figure 5.10.: Flow over mountain test case: Comparison of the relative errors in
the energy (left) and potential enstrophy (right) for a simulation
without dissipation (blue), with Casimir dissipation (red), and with
biharmonic dissipation (yellow).

5.6. Conclusions

The development of high-fidelity numerical simulation tools for weather and cli-

mate prediction is limited by the competing goals of achieving energy conservation

while preserving long-term stability of the time-integration scheme. To address

this challenge, we consider a potential-enstrophy dissipation scheme that conserves

energy, building on existing variational integrators for the rotating shallow water

equations [8, 20]. In particular, the scheme combines the variational discretization

framework of [65] with the selective decay proposed in [37]. The resulting semi-

discrete scheme is shown to conserve energy, suggesting this is a viable framework

for long-term climate simulations.

Numerical results are presented comparing the new scheme with the variational

integrator without dissipation and with a standard dissipation approach using a

biharmonic eddy viscosity term. These simulations are carried out on both the f -

plane and sphere, and we observe that the simulation with no dissipation becomes

noisy and loses physical fidelity, in contrast to the simulations with dissipation.

When analysing the conservation properties, we find that the enstrophy dissipat-

ing scheme conserves the energy as well as the scheme without dissipation, while
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the biharmonic dissipation leads to a substantial loss of energy. Additionally, by

computing energy and enstrophy spectra, we see that simulations using enstro-

phy dissipation better resolve small-scale features than those using biharmonic

dissipation.

Natural extensions of this work are to more realistic models for geophysical flows.

In particular, the primitive equations are a common first step in developing accu-

rate simulations of climate dynamics. Since the framework in [37] also applies to

3D flows, combining the variational discretization framework with Casimir selec-

tive decay would lead to a discretization methodology for the primitive equations

that would enable stabilized long-term integration schemes.
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5.8. Detailed computations

5.8.1. Continuous functional Casimir derivative

The variational derivative of the Casimir on a doubly periodic plane domain is

computed as follows

∫︂
M

δC

δm
· δm dx = d

dε

⃓⃓⃓⃓
⃓
ε=0

C(m + εδm, h) = d

dε

⃓⃓⃓⃓
⃓
ε=0

1
2

∫︂
M
hq(m + εδm, h)2dx

= d

dε

⃓⃓⃓⃓
⃓
ε=0

1
2

∫︂
M

z ·
(︂
curl(m+εδm

h
)
)︂2

h
dx

=
∫︂

M

z · curl(m
h

)
h

· curl
(︄
δm
h

)︄
dx =

∫︂
M
qz · curl

(︄
δm
h

)︄
dx

=
∫︂

M
curl(qz) · δm

h
dx.

In the final step, we use the identity ∇ · (A × B) = (∇ × A) · B − A · (∇ × B),

noting that
∫︁

M div u dx =
∫︁

∂M u · n dS = 0, since M is doubly periodic and, thus,

has no boundary. This gives

δC

δm
= 1
h

curl(qz) = −z × (∇q)/h = (∂yq,−∂xq, 0)⊤/h, (5.39)

where we first use the identity ∇ × (ψA) = ψ(∇ ×A) + ∇ ×A and, then, use the

fact that z is the canonical unit vector in the z-direction.

Similarly, when M is a two dimensional Riemannian manifold, we compute

∫︂
M

δC

δm
· δm dσ = d

dε

⃓⃓⃓⃓
⃓
ε=0

1
2

∫︂
M
hq(m + εδm, h)2dσ =

∫︂
M
hq

d

dε

⃓⃓⃓⃓
⃓
ε=0

q(m + εδm, h)dσ

=
∫︂

M
qd
δm
h

dσ =
∫︂

M
d
(︄
δm
h
q

)︄
+
∫︂

M

δm
h

∧ dq

= −
∫︂

M

δm
h

· (⋆dq)♯dσ,

which gives δC
δm = − 1

h
(⋆dq)♯. In the computation above, we have used Stokes’
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theorem on M ,
∫︁

M dα =
∫︁

∂M α = 0 (since ∂M = ∅), and the identity that

α ∧ ⋆β = (α · β♯)dσ, for one-forms α, β on M , with ⋆ and ♯ denoting the Hodge

star and sharp operators associated with the Riemannian metric.

5.8.2. Discrete functional Casimir derivative

The semi-discrete variational derivative of the enstrophy is given by

⟨︄
δC
δM

, δM

⟩︄
1

= d

dε

⃓⃓⃓⃓
⃓
ε=0

C(M + εδM, h)

Tr
(︃
δC
δM

⊤
ΩδM

)︃
= d

dε

⃓⃓⃓⃓
⃓
ε=0

1
2
∑︂

ζ

1
hζ

⎛⎝ ∑︂
ẽnm∈∂ζ

Mnm + εδMnm

|ζ|hnm

⎞⎠2

|ζ|

∑︂
i

∑︂
j

δC
δM

⊤

ij
(ΩδM)ji =

∑︂
ζ

1
hζ

⎛⎝ ∑︂
ẽnm∈∂ζ

Mnm

|ζ|hnm

·
∑︂

hnm∈∂ζ

δMnm

|ζ|hnm

⎞⎠ |ζ|

∑︂
ij

δC
δM ij

ΩiiδMij =
∑︂

ζ

1
hζ

⎛⎝ ∑︂
ẽnm∈∂ζ

Mnm

|ζ|hnm

·
∑︂

hnm∈∂ζ

δMnm

hnm

⎞⎠
∑︂

i

∑︂
j∈N(i)

δC
δM ij

ΩiiδMij =
∑︂

ζ

qζ

∑︂
hnm∈∂ζ

δMnm

hnm

=
∑︂
ij

δMij

hij

qζ+ + δMji

hji

qζ−

=
∑︂
ij

δMij

hij

(qζ+ − qζ−).

In the second-to-last step, we use the property that each edge eij has 2 neigh-

bouring vertices, denoted by ζ+ and ζ−. In the last step, we use the fact that the

matrix M is anti-symmetric, as is δM , while h is symmetric.
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6. Conclusion and outlook

In this thesis, to address the lack of existing research on the development of nu-

merical variational integrators for the application on geophysical fluid dynamics,

we have provided an extension of the variational discretization of the SWE to the

sphere and advanced the model.

In particular, we have constructed a variational discretization in space and time for

the SWE on a rotating sphere, following the discretization technique proposed in

[65]. To verify the accuracy and conservation properties, we carried out standard

benchmark tests proposed in [90]. Using reference solutions, we verified that the

discretization converges, with order of accuracy between 0.5 and 1. The error in

the conservation of the energy oscillates around a long-term mean, which reduces

first order with the time step.

To improve the physics of the model, we introduced a stochastic version of the

SWE under location uncertainty. We derived the new model using a stochastic

Reynolds transport theorem, based on decomposing the fluid flow into a large-scale

component and noise term modelling the unresolved scales. The resulting model

preserves total energy for any realization. Thus, we combine the variational dis-

cretization of the SWE with approximations of the stochastic terms based on finite

volume operators. We demonstrated that this approach preserves (spatially) the

total energy, when performing an f-plane simulation with a homogeneous noise.
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Using an inhomogeneous noise, we demonstrated that the proposed model better

captures the structure of a reference flow than a comparable deterministic model.

Furthermore, the forecast system of the proposed model is more reliable than a

PIC system.

To be able to carry out long term simulations with coherent physical structures,

we discretized the selective decay proposed in [37] using the variational framework

proposed by [65]. With this new discrete framework, we obtained a potential en-

strophy dissipating, but energy conserving, discretization of the SWE. We carried

out standard benchmarks to demonstrate that the stabilized scheme produces

coherent physical structures while the un-stabilized scheme becomes noisy and

unphysical. When compared to a biharmonic dissipation, which dissipates energy

and potential enstrophy, we observed that more small-scales are resolved. Hence,

the simulation is more physical.

Future research is proposed in the following areas:

1. The variational integrator on the sphere proposed in chapter 3 conserves the

lake-at-rest steady-state solution exactly over arbitrary bottom topography.

This, and the fact that mass is conserved to machine precision, are important

in tsunami propagation models. Thus, it would be interesting to extend

the variational integrator with a wetting and drying interface to handle the

inundation process.

2. The variational discretization framework has not been applied to more com-

plicated geophysical fluid dynamics. A first step would be to extend the

variational integrator for the shallow water equations to a multi-layer shal-

low water model. Moreover, other extensions are possible such as the thermal

shallow water equations.

3. The stochastic shallow water model proposed in chapter 4 has an accurate
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ensemble spread with an efficient rank histogram. This suggests that the

model could be used for data assimilation.

4. The location uncertainty model (see chapter 4) conserves the total energy

but not the enstrophy. In chapter 5, we designed a selective dissipation that

conserves energy while dissipating enstrophy. Thus, it is relevant to combine

the selective enstrophy decay with the RSW-LU model proposed in chapter

4.

5. To explore a fully energy conserving time integrator, the shallow water equa-

tions can be derived in the variational finite element framework [35]. The

resulting model could overcome the energy drift of the selective enstrophy

dissipation (see chapter 5).
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A. GFD terms

In a general form, the equations of motion of a fluid on a domain M can be written

as

Dρ

Dt
+ ∇ · (ρv) = 0, (A.1)

ρ
Dv

Dt
= −∇p+ F, (A.2)

where v = (u, v, w) is the velocity of the fluid, p its pressure, ρ its density, and F

is the force per unit volume. Eq. (A.1) is the mass continuity equation and Eq.

(A.2) is the momentum equation.

The vertical component of the momentum equation is of the form Dw
Dt

= −1
ρ

∂p
∂z

−g,

where g denotes the gravity. We say a fluid is in hydrostatic balance if Dw
Dt

= 0,

which gives ∂p
∂z

= −ρg. Let a parcel of fluid in hydrostatic balance be displaced,

then the sum of the gravity and vertical pressure gradient forces can either rein-

force the initial balance or work against it. The frequency of that oscillation is

called buoyancy frequency.

Now, we add the Coriolis acceleration f to the horizontal part of Eq. (A.2) and

obtain
Dv

Dt
+ f × v = −1

ρ
∇p, v = (u, v). (A.3)
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The fluid is in geostrophic balance if the pressure term balances the rotation

term: f × v = −1
ρ
∇p.

We define the potential vorticity for the SWE as ω := ∇×v
ρ

. The numerator of

the fraction is the vorticity ˜︁ω = ∇ × v. Another important quantity is the en-

strophy
∫︁

M |˜︁ω|2 dM . By taking the curl of Eq. (A.3), and assuming geostrophic

balance, we obtain the advection equation

Dω

Dt
= (ω · ∇)v.

The circulation around a fluid parcel bounded by the curve γ is defined as
∮︁

γ v dr.

Using Stokes’ theorem, we relate the circulation to the vorticity
∮︁

γ v dr =
∫︁

S ˜︁ω ·

n dS, here S is the area enclosed by γ. Kelvin’s circulation theorem states that

0 = D

Dt

∮︂
γ
v dr.

Next, we look at the energy spectrum. We decompose the velocity field into its

Fourier components

v(x, t) =
∑︂

k

v̄(k, t)eik·x.

Then, the kinetic energy E can be written as the energy spectrum E in the Fourier

space:

E = 1
2

∫︂
M

v2 = 1
2

∫︂
|v̄|2 =

∫︂
E(k).

In the case of forced dissipative turbulence, the energy spectrum has the general

form E(k) = ε
2
3k− 5

3 multiplied by a constant, where ε is the energy flux (see [86]

for details). Since E decreases by k−5/3, large scale features (represented by small

wave numbers) break into small scale features (represented by high wave numbers),

see Fig. A.1. The energy spectrum is related to the enstrophy spectrum Z by
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k− 5
3

k

Energy

Figure A.1.: The energy spectrum. The first dashed line marks the energy input,
and the second one the wave number where viscosity starts to act.

k2Z = E , which shows that the enstrophy spectrum moves towards small wave

numbers.
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