
Domain Decomposition Approaches for the
Generation of Equidistributing Parametric Curves

by

c©Miranda Boutilier

A thesis submitted to the School of Graduate Stud-

ies in partial fulfillment of the requirements for the

degree of Master of Science.

Scientific Computing Program

Memorial University

August 2021

St. John’s, Newfoundland and Labrador, Canada

Abstract

Moving mesh methods are often used to solve boundary value problems whose solu-

tions contain regions of rapid change. In this case, these moving mesh methods allow

us to concentrate a fixed number of nodes in these regions of high variance. These

meshes are obtained by solving a second order boundary value problem (BVP), which

arises from the equidistribution principle.

There are many real-world examples where boundary value problems are posed on

curves and surfaces. Here, we focus on the case where the problem is posed on a curve

that is able to be explicitly represented parametrically as x = (x1(r), x2(r), . . . , xn(r)) ∈
Rn. When the solution has regions of rapid change or the curve on which the problem is

posed has regions of high variance or curvature, moving mesh methods allow us to find

a mesh that better resolves the function on the curve without adding additional nodes.

We consider combining the solution of mesh equations with the solution of differen-

tial equations posed on parametric curves. These differential equations include both

time-dependent partial differential equations (PDEs) and time-independent boundary

layer problems.

In addition to considering the above on a single domain, we extend these methods

to form multi-domain iterations to solve these boundary value problems. Domain

decomposition allows us to harness the power of parallel computing, a topic that has

become popular in recent years with the increase of computing power. We provide

multi-domain iterations for both time-dependent and time-independent differential

equations posed on parametric curves; these include classical Schwarz and optimized

Schwarz methods. These iterations are formed such that they are able to be performed

in parallel. Numerical results are provided throughout to illustrate the results of the

iterations. This thesis also includes theoretical results that generalize known results

for classical Schwarz and optimized Schwarz methods to the case where the problem

is defined on a curve.

ii

Acknowledgements

I would first like to thank my supervisor, Dr. Ronald Haynes, for his guidance and

patience during my studies at Memorial University of Newfoundland. The consistent

direction and encouragement during my studies was imperative to the completion of

this thesis. I am extremely grateful for the above and beyond support.

I would like to thank the School of Graduate Studies and Scientific Computing

program for their financial support during my studies. I would also like to thank

the Department of Mathematics and Statistics for the arrangement of my Teaching

Assistantship and additional work opportunities. During the stress of the pandemic,

it was crucial to know that their financial support was unwavering.

I am grateful to the faculty and staff of the Department of Mathematics and Statis-

tics for their instruction and assistance throughout my time at Memorial University

of Newfoundland. I would also like to thank the members of our research group for

their consistent inspiration and ideas.

Lastly, I would like to thank my parents, sister, and friends for their constant

support and encouragement.

iii

Table of contents

Title page i

Abstract ii

Acknowledgements iii

Table of contents iv

List of tables vi

List of figures ix

1 Introduction 1

2 Single Domain Equidistribution 6

2.1 Equidistribution on an Interval . 6

2.2 Equidistribution on Curves . 8

2.3 Equidistribution on Time-Dependent Curves 17

2.4 Equidistribution of Functions on Static Curves 18

2.4.1 Choice of Monitor Function . 20

3 Domain Decomposition 33

3.1 General DD Methods . 34

iv

3.1.1 Classical Schwarz . 34

3.1.2 Optimized Schwarz on two Subdomains 35

3.2 DD for Equidistribution on Static Curves 36

3.2.1 Classical Schwarz . 36

3.2.2 Optimized Schwarz on two Subdomains 46

3.2.3 Comparison of DD methods . 59

4 The Single Domain Equidistribution for the Solutions of Differential

Equations on Static Curves 60

4.1 The Single Domain Solution of Static Boundary Layer Problems 60

4.2 The Single Domain Solution of Time-Dependent Differential Equations

on Static Curves . 74

5 The Multi-domain Equidistribution for the Solutions of Differential

Equations on Static Curves 83

5.1 The Multi-Domain Solution of Static Boundary Layer Problems 84

5.2 The Multi-domain Solution of Time-dependent Differential Equations

on Static Curves . 96

6 Summary and Future Work 107

Bibliography 113

v

List of tables

2.1 Interpolation errors for curves (2.2.8), (2.2.13), and (2.2.14). Here, we

use m = 100 nodes and M = 12800 nodes for the fine mesh used for the

interpolation error. The monitor function (2.2.6) equidistributes by arc-

length, and the monitor function (2.2.7) equidistributes by curvature

features. 16

2.2 Interpolation errors for the equidistribution of (2.4.1) with r0 = π
5

and

ε = 0.2 posed on (2.2.13). Here, we use m = 64 nodes and M = 8192

nodes for the fine mesh. ec denotes the curve error, eu denotes the

function error, and e denotes the overall error. 25

2.3 Interpolation errors for the equidistribution of (2.4.1) with r0 = π
4

and

ε = 0.2 posed on (2.2.14) with A = 6 and B = 0.5. Here, we use

m = 64 nodes and M = 8192 nodes for the fine mesh. ec denotes the

curve error, eu denotes the function error, and e denotes the overall error. 25

2.4 Interpolation errors for the equidistribution of (2.4.1) with r0 = π
5

and

ε = 0.2 posed on (2.4.11). Here, we use m = 64 nodes and M = 8192

nodes for the fine mesh. ec denotes the curve error, eu denotes the

function error, and e denotes the overall error. 26

vi

2.5 Interpolation errors for the equidistribution of (2.4.1) with r0 = π
5

and

ε = 0.2 posed on (2.2.13). Here, we use m = 64 nodes and M = 8192

nodes for the fine mesh. 30

2.6 Interpolation errors for the equidistribution of (2.4.1) with r0 = π and

ε = 0.2 posed on (2.2.14) with A = 6 and B = 0.5. Here, we use

m = 64 nodes and M = 8192 nodes for the fine mesh. A smoothing

parameter p = 1 was used in the monitor functions. 31

2.7 Interpolation errors for the equidistribution of (2.4.1) with r0 = π and

ε = 0.2 posed on (2.4.11). Here, we use m = 64 nodes and M = 8192

nodes for the fine mesh. 31

4.1 Interpolation errors for the solution of (4.2.5), where the PDE is formed

from the solution u(r, t) = e−
(r− 1

4−
1
2 t)

2

ε with ε = 0.01, posed on the

ellipse (2.2.14) with radius A = 3 and B = 0.5. Interpolation errors

are determined from the single domain MPt method on a curve, where

tf = 0.05 and ∆t = 0.0011, giving k = 45 time steps of the algorithm.

The weights are chosen as ω = 0.1 and ωu = 0.01 for all monitor

functions. Here, we use m = 30 nodes and M = 600 nodes for the fine

mesh used to compute the interpolation error. 80

4.2 Interpolation errors for the solution of (4.2.5), where the PDE is formed

from the solution u(r, t) = e−
(r− 1

4−
1
2 t)

2

ε with ε = 0.001, posed on the

ellipse (2.2.14) with radius A = 3 and B = 0.5. Interpolation errors

are determined from the single domain MPt method on a curve, where

tf = 0.01 and ∆t = 0.00028, giving k = 36 time steps of the algorithm.

The weights are chosen as ω = 0.1 and ωu = 0.05 for all monitor

functions. Here, we use m = 60 nodes and M = 600 nodes for the fine

mesh used to compute the interpolation error. 82

vii

5.1 The number of linear solves for the (MCPC)ν and (M∞P∞)ν methods

to solve the boundary layer problem (4.1.11) with m = 256 nodes. The

value of ε in (4.1.11) is varied. Here, n = 2 subdomains are used,

the overlap is O = 2 nodes, and C = 4. All DD methods converge

to the same solution. All methods were stopped when maxi(||U (n)
i −

U
(n−1)
i ||∞, ||r(n)

i − r
(n−1)
i ||∞) < 10−8. 95

5.2 The number of linear solves for the (MCPC)ν method with various C

values to solve the boundary layer problem (5.1.4) with m = 256 nodes.

Here, n = 2 subdomains are used, the overlap is O = 2 nodes, and ε =

0.01. All methods were stopped when maxi(||U (n)
i − U

(n−1)
i ||∞, ||r(n)

i −

r
(n−1)
i ||∞) < 10−8. 95

viii

List of figures

2.1 Curve (2.2.8) shown for A = 6 (left) and A = 12 (right) on a fine

uniform mesh of size m = 1000 nodes. 10

2.2 Curve (2.2.8) with A = 12 equidistributed by arc-length (top) and

curvature (bottom) with m = 100 nodes. Left: a plot of r versus ξ

showing the solution to (2.2.2). Right: Solution plotted at the relocated

nodes. 12

2.3 A closer look at the plots of r vs ξ for the curve (2.2.8) with A =

12, equidistributed with m = 100 nodes. Both arc-length (left) and

curvature (right) based monitor functions are used. 13

2.4 Curve (2.2.13) equidistributed by arc-length (top) and curvature (bot-

tom) with m = 100 nodes. Left: a plot of r versus ξ showing the

solution to (2.2.2). Right: Parameterized curve plotted at the relo-

cated nodes. 14

2.5 Curve (2.2.14) with A = 3 and B = 0.5 equidistributed by arc-length

(top) and curvature (bottom) with m = 100 nodes. Left: a plot of r

versus ξ showing the solution to (2.2.2). Right: Parameterized curve

plotted at the relocated nodes. 15

ix

2.6 Mesh trajectory of the time-dependent curve (2.3.2) equidistributed by

curvature with m = 30 nodes at 5 time steps between t = 0 and t = 10.

The mesh r varies with time t. 18

2.7 The function (2.4.1) with r0 = π
4

and ε = 0.5 posed on the ellipse

(2.2.14) with A = 3 and B = 0.5. This is shown from multiple angles. . 19

2.8 The function (2.4.1) with r0 = π
4

and two values of ε posed on the

ellipse (2.2.14) with A = 3 and B = 0.5. Plots are shown for ε = 0.1

(left) and ε = 0.01 (right). 19

2.9 Visualization of the monitor functions produced from monitor functions

(2.4.6) (left) and (2.4.10) (right). The curve x is given by (2.2.14) with

A = 6 and B = 0.5, and the function u(r) is given by (2.4.1) with

r0 = π
4

and ε = 0.1. 21

2.10 A visualization of the monitor functions (2.4.4) (left) which equidis-

tributes by both curve and function features, and (2.4.3) (right) which

only equidistributes by the curve features. The curve x is given by

(2.2.13) and the function u(r) is given by (2.4.1) with r0 = π
5

and

ε = 0.2. The resulting mesh from the monitor functions is shown in

m = 64 blue points. Top: Features of the curve x and the function

u(r). Bottom: A plot of the monitor functions F (r). 22

2.11 A visualization of the monitor functions (2.4.2) (left) which only equidis-

tributes by the function features, and (2.4.4) (right) which equidis-

tributes by both the curve and function features. The curve x is given

by (2.2.14) with A = 6 and B = 0.5, and the function u(r) given by

(2.4.1) with r0 = π
4

and ε = 0.5.The resulting mesh from the monitor

functions is shown in m = 64 blue points. Top: Features of the curve

x and the function u(r). Bottom: A plot of the monitor functions F (r). 23

x

2.12 Figures comparing values of ω and ωu in the monitor function (2.4.12)

for the equidistribution of (2.4.1) with r0 = π
5

and ε = 0.2 posed on

the curve (2.2.13). Here, we used m = 64 nodes and M = 8192 nodes

for the fine mesh. Interpolation errors are shown in the maximum and

Euclidean norms for fixed ωu = 1 and varied values of ω (left), and

fixed ω = 1 and varied values of ωu (right). 28

2.13 Monitor function (2.4.19), with the curve given by (2.2.14) with A = 6

and B = 0.5, and function u(r) given by (2.4.1) with r0 = π and ε = 0.2. 32

3.1 A plot of r
(n)
1 and r

(n)
2 versus ξ from the alternating classical Schwarz

algorithm (3.2.1) (left) and the parallel classical Schwarz algorithm

(3.2.2) (right), where the final solution is denoted by the thick black

line. Here, m = 64 nodes with O = 8 points of overlap are equidis-

tributed by the curvature-based monitor function (2.2.7) on the curve

(2.2.14), and the initial guess is given by r0 = ξ2. The alternating itera-

tion converged in n = 34 iterations and the parallel iteration converged

in n = 65 iterations; in each case the tolerance was chosen as ε = 10−8. 38

3.2 A plot of r
(n)
1 and r

(n)
2 versus ξ (top) and the curve plotted at the

equidistributed nodes
(
x(r

(n)
1), y(r

(n)
1)
)

and
(
x(r

(n)
2), y(r

(n)
2)
)

(bottom)

from the parallel DD iteration (3.2.2), where the DD iterations are

plotted after n = 1, 5, and 10 iterations. Here, m = 64 nodes with

O = 8 points of overlap are equidistributed by the curvature-based

monitor function (2.2.7) on the curve (2.2.14), and the initial guess is

given by r0 = ξ. 39

xi

3.3 A plot of r
(n)
1 and r

(n)
2 versus ξ from the alternating classical Schwarz

algorithm (3.2.4) (left) and the parallel classical Schwarz algorithm

(3.2.5) (right), on S = 3 subdomains, where the final solution is denoted

by the thick black line. Here, m = 64 nodes with O = 8 points of

overlap are equidistributed by the curvature-based monitor function

(2.2.7) on the curve (2.2.14), and the initial guess is given by r0 = ξ.

The alternating iteration converged in n = 53 iterations and the parallel

iteration converged in n = 99 iterations; in each case the tolerance was

chosen as ε = 10−8. 40

3.4 A plot of DD error versus iterations (semi-log scale) for the parallel DD

iteration (3.2.2) on S = 2 subdomains for the ellipse (2.2.14), where

the curvature-based monitor function (2.2.7) is used. Here, m = 64

with O = 8 points of overlap and initial guess is given by r0 = ξ. DD

error refers to the error between the DD solution and the single domain

solution. 41

3.5 A plot of DD error versus iterations (semi-log scale) for various overlap

values O on S = 2 subdomains. The DD error is shown for the parallel

DD iteration (3.2.2) for the ellipse (2.2.14), where the curvature-based

monitor function (2.2.7) is used. Here, m = 640 nodes are equidis-

tributed by curvature and the initial guess is given by r0 = ξ. DD error

refers to the error between the DD solution and the single domain so-

lution. 41

xii

3.6 A plot of r
(n)
1 and r

(n)
2 versus ξ from the optimized Schwarz algorithm

(3.2.24), where the final solution is denoted by the thick black line.

Here, m = 64 nodes are equidistributed by the curvature-based monitor

function (2.2.7) on the curve (2.2.14), and the initial guess is given by

r0 = ξ2. The parallel iteration converged in n = 61 iterations. 47

3.7 A plot of r
(n)
1 and r

(n)
2 versus ξ (top) and the curve plotted at the

equidistributed nodes
(
x(r

(n)
1), y(r

(n)
1)
)

and
(
x(r

(n)
2), y(r

(n)
2)
)

(bottom)

from the optimized Schwarz iteration (3.2.24), where the DD iterations

are plotted after n = 1, 5, and 10 iterations. Here, the constant p = 10

for optimized Schwarz and m = 64 nodes are equidistributed by the

curvature-based monitor function (2.2.7) on the curve (2.2.14), and the

initial guess is given by r0 = ξ. 48

3.8 Plot of iterations versus p for various constants p in the optimized

Schwarz iteration (3.2.24). The DD error is shown for the parallel DD

iteration (3.2.2) applied to the curve (3.2.52), where the arc-length-

based monitor function (2.2.6) is used. Here, m = 81 and the initial

guess is given by r0 = ξ. DD error refers to the error between the DD

solution and the single domain solution. 58

3.9 Plot of iterations versus p for m = 81 nodes (left) and m = 161 nodes

(right) in the optimized Schwarz iteration (3.2.24) for the curve (3.2.52),

where the arc-length-based monitor function (2.2.6) is used. The initial

guess is given by r0 = ξ. 58

xiii

3.10 A plot of DD error versus iterations (semi-log scale) comparing the

parallel classical Schwarz iteration (3.2.2) to the optimized Schwarz

iteration (3.2.24) for various constants p on S = 2 subdomains. Results

are given for the ellipse (2.2.14), where the curvature-based monitor

function (2.2.7) is used. Here, m = 64 nodes are equidistributed and

the initial guess is given by r0 = ξ. DD error refers to the error between

the DD solution and the single domain solution. 59

4.1 Solutions of (4.1.11) with ε = 0.025 posed on the ellipse (4.1.12) with

A = 3, B = 0.5 and m = 30 nodes after n = 3 iterations of Algorithm

1. Solutions are given both on a uniform mesh with no equidistribu-

tion (left) and on a mesh equidistributed with monitor function (2.4.6)

(right). Top: 2d plot of discrete solution U versus r, plotted with the

fine grid solution shown in solid red for comparison. Row 2: 3d plot of

discrete solution U on x(r), plotted with the fine grid solution shown

in solid red for comparison. Bottom: Plot of discrete solution U on

x(r), where the color of a point on the curve represents the numerical

value of U . 68

4.2 A visual of nonsmoothed and smoothed monitor functions with the

smoothing equation (4.1.13) and smoothing parameters p = 4 and

γ = 0.5. The monitor functions are shown for the mesh (M) solve

at alternating iteration n = 1 of Algorithm 1 to solve (4.1.11) posed on

the ellipse (4.1.12) with A = 3 and B = 0.5 The non-smooth vector F

(left) and the smoothed vector F̃ (right) are formed from the monitor

function (2.4.6). 70

xiv

4.3 Solutions of (4.1.15) with ε = 0.01 and with N = 20 nodes after n = 3

iterations of Algorithm 2. Solutions are given both on a uniform mesh

with no equidistribution (left) and on a mesh equidistributed using

monitor function (2.4.2) (right). Solution are plotted with the fine grid

solution in solid red for comparison. 72

4.4 Solutions of (4.2.5), where the PDE is formed from the solution u(r, t) =

e−
(r− 1

4−
1
2 t)

2

ε with ε = 0.01, posed on the ellipse (2.2.14) with radius

A = 3 and B = 0.5. Solutions are determined from the single domain

MPt method on a curve and are given at tf = 0.05, where ∆t = 0.0011,

giving k = 45 time steps of the algorithm. Solutions are given on a mesh

of m = 32 nodes equidistributed with monitor function (2.4.19) (left)

and on a mesh equidistributed with monitor function (2.4.17) (right).

Top: 2d plot of discrete solution U versus r, plotted with the fine grid

solution with mfine = 600 nodes shown in solid red for comparison.

Row 2: 3d plot of discrete solution U on x(r), plotted with the fine

grid solution shown in solid red for comparison. Bottom: Color plot of

discrete solution U on x(r). 78

xv

4.5 Solutions of (4.2.5), where the PDE is formed from the solution u(r, t) =

e−
(r− 1

4−
1
2 t)

2

ε with ε = 0.001, posed on the ellipse (2.2.14) with radius

A = 3 and B = 0.5. Solutions determined from the single domain MPt

method on a curve are given at tf = 0.05, where ∆t = 0.00028, giving

k = 180 time steps of the algorithm. Solutions are given on a mesh

of m = 60 nodes equidistributed with monitor function (2.4.19) (left)

and on a mesh equidistributed with monitor function (2.4.17) (right).

Top: 2d plot of discrete solution U versus r, plotted with the fine grid

solution with mfine = 600 nodes shown in solid red for comparison.

Row 2: 3d plot of discrete solution U on x(r), plotted with the fine

grid solution shown in solid red for comparison. Bottom: Color plot of

discrete solution U on x(r). 81

5.1 A plot of the infinity norm of the difference between the (M∞P∞)ν

solution and the single domain discrete solution used to solve (5.1.4)

for a varying number of nodes, m. Errors are given for the mesh r(n)

(left) and physical solution U (n) (right). Here, the monitor function

(2.4.6) is used. 86

5.2 A plot showing the interpolation errors resulting from cubic splines.

The interpolation errors are shown for the function u(x) = sin(x) and

its corresponding first and second derivatives. 87

5.3 A plot of the infinity norm of the difference between the (M∞P∞)ν so-

lution and the single domain solution used to solve (5.1.4) for a varying

number of nodes, m. The error is given for the mesh, comparing r
(n)
i

for i = 1, 2 to the single domain solution r(n). Here, mesh smoothing is

used in the equidistribution step. Here, we use monitor function (2.4.6) 88

xvi

5.4 A plot of the infinity norm of the difference between the DD and the

single domain solution for the equidistribution of a known function

u = cos(2πr) on the ellipse (2.2.14) for a varying number of nodes, m.

The error is given for the mesh, comparing r
(n)
i for i = 1, 2 to the single

domain solution r(n). Here, the monitor function (2.4.6) is used with a

DD tolerance of 10−10. 89

5.5 A plot showing the interpolation errors resulting from piecewise lin-

ear interpolation. The interpolation errors are shown for the function

u(x) = sin(x) and its corresponding first and second derivatives. 90

5.6 A plot of the infinity norm of the difference between the (M∞P∞)ν

solution and the single domain discrete solution used to solve (5.1.4)

for a varying number of nodes, m. Here, linear interpolation was used.

DD errors are given for the mesh r(n) (left) and physical solution U (n)

(right). Here, we use monitor function (2.4.6). 91

5.7 A plot of the infinity norm of the error between the (MCPC)ν solution

with C = 4 and single domain solution used to solve (5.1.4) for a

varying number of nodes, m. Here, we use monitor function (2.4.6). . . 92

5.8 A plot of the infinity norm of the error between the (MCPC)ν solution

with various C values and the single domain solution used to solve

(5.1.4). Here, we equidistribute m = 512 nodes with monitor function

(2.4.6). 94

5.9 A plot of the infinity norm of the error between the (M∞(Pdd,t)∞)ν

numerical solution and the single domain MPt solution used to solve

(5.2.4) for a varying numbers of nodes, m, at t = 0.001. The DD error

is shown for the mesh r(k) (left) and the physical solution U (k) (right).

Here, we use monitor function (2.4.4) with weights ω = 1 and ωu = 1. . 104

xvii

5.10 A plot of the infinity norm of the error between the (M∞(Pdd,t)∞)ν

solution and the single domain MPt solution used to solve (5.2.4) for

a varying numbers of nodes, m, at t = 0.001. The DD error is shown

for the mesh r(k) (left) and the physical solution U (k) (right). Here, we

use monitor function (2.4.4) with weights ω = 0.1 and ωu = 0.1. 105

5.11 A plot of the infinity norm of the error between the (M∞(Pdd,t)∞)ν

solution and the single domain MPt solution used to solve (5.2.4) for

a varying numbers of nodes, m, at t = 0.001. Here, we use monitor

function (2.4.19) with weights ω = 0.1 and ωu = 0.1. 106

xviii

Chapter 1

Introduction

Mathematical models in a variety of scientific areas (fluid mechanics, mathematical

biology, engineering, finance, etc.) involve the solution of partial differential equations

(PDEs). In practice, one is typically not able to solve these PDEs exactly. Therefore,

numerical methods are often used to approximate the true solutions. Most numerical

methods involve the partitioning of the spatial and temporal domains on which the

PDE is defined. The set of nodes that make up the spatial partitioning is referred to

as a mesh.

Non-uniform meshes are often used to obtain the efficient numerical solution of

PDEs. Often, a uniform mesh can miss certain features of a solution, and adapting

the mesh is a way to solve this problem. The choice of mesh generally stems from the

equidistribution principle. In this thesis, we focus on r-refinement, a mesh refinement

method that keeps a constant number of nodes and relocates them to increase the

resolution of a function. In the case of time-dependent problems, these are often

referred to as moving mesh methods [31].

The integral formulation of the equidistribution principle (EP) was first introduced

by de Boor [7]. In this principle, we look to relocate mesh points to make some function

of the solution uniform, or “equidistributed”, with respect to the mesh. For this, we

wish to have the area under a given function M(x) > 0 to be equal over each sub-

interval of the mesh. Here, this function M(x) determines the mesh for the function

of interest u(x) and is typically dependent on u(x); that is, M(x) = M(u(x)). This

function M(x) is referred to as a monitor function.

We choose a monitor function M(x) that is representative of the difficulty in

resolving u(x); that is, the value ofM(x) increases at x values for which u(x) is difficult

2

to resolve. Since we expect the error of the numerical solution to be large in the areas

where M is large, then the equidistribution principle will result in concentrated nodes

in these areas.

These moving mesh methods can also be applied to both the equidistribution of

parametric curves and the equidistribution of functions posed on static curves. In

the case of equidistribution of a parameterized curve (x(r), y(r)) for r ∈ [0, 1], we

use the EP and a monitor function to determine our new non-uniform grid r. Here,

the monitor function uses the curve features to determine where to concentrate the

nodes. This is described in detail in [39]. In the case of equidistribution of a known

analytical function u(r) posed on (x(r), y(r)), we use monitor functions that consider

both the function and curve features to equidistribute. Multiple monitor functions

are compared by interpolation errors from the fine numerical solution. Experimenting

with monitor functions in the case where u is known is beneficial, as it gives us

information on appropriate monitor functions that can be used in the case where u is

unknown.

We can also apply similar techniques to the case of differential equations posed

on a parametric curve, where u is the unknown solution of a differential equation.

PDEs describe a large number of real-world applications and are often not posed

on a line, but rather on a curve or surface. These problems arrive in biology, fluid

dynamics, neuroscience, physics, and other areas. In biology, lipid bilayer membranes

(biomembranes) can be treated as fluid surfaces [10, 40]. In fluid dynamics, surfactants

on fluid-fluid interfaces can be modeled as a PDE on a moving hypersurface [1, 34]. If

the geometry of the physical problem can be considered ”thin” in some direction, we

can simplify the model to a PDE on a lower dimensional curve [35]. This can occur

in thin shells, cell membranes, butterfly wings, animal coats, and other thin surfaces.

For an overview of applications in mathematical biology, see [42]. In this thesis, we

propose algorithms to solve both static boundary layer problems and time-dependent

PDEs posed on curves.

To solve static boundary layer problems, we employ an alternating method for

the determination of the mesh and the physical solution of the PDE. Beginning with

an initial (uniform) mesh, we discretize the physical PDE on this fixed mesh. The

numerical solution from this discretization is used to solve for a new mesh, on which

the physical PDE is discretized again, and so on. This iteration is complete when both

the mesh and physical solutions converge. Convergence of a single domain alternating

3

iteration for the mesh and physical PDEs in the case of static boundary layer problems

is presented in [36].

For equidistribution of solutions of time-dependent PDEs, there are two main ways

to approach the discretization of the physical PDE; these are the quasi-Lagrange

approach and the rezoning approach. In the quasi-Lagrange approach, the mesh

points are considered to move continuously in time, forming a moving mesh PDE

(MMPDE). Then, the discretized time derivatives of the physical PDE are transformed

into time derivatives along the mesh. This is explained in detail in [31]. In the rezoning

approach, the mesh moves intermittently in time, and so is naturally often coupled

with an alternating procedure. The mesh is updated at each time step, the physical

solution is interpolated onto this new mesh, and the physical PDE is discretized on

the new mesh.

The coupled system of a mesh equation and physical time-dependent PDE is also

generally solved in one of two ways, either simultaneously or alternately. We remark

that by definition, the rezoning method can only be used with an alternating method.

In this thesis, we employ a rezoning approach coupled with an alternating method.

Additionally, in the case of common PDEs such as the heat equation posed on a

curved domain, one obtains different differential equation than the common form of

the heat equation ut = uxx in one dimension. The common differential operators such

as the surface gradient and Laplace-Beltrami operators reduce to the first and second

derivatives of u respectively, with additional curve-based coefficients in front of these

derivatives. More detail on these operators can be found in [27] and [35].

In general, we note that our emphasis in this thesis is not on efficiency; we are

not attempting to determine the overall most efficient method. There will be no

direct comparison of the total computational cost of using r-refinement versus adding

additional nodes to a uniform mesh. Our goal is to provide a proof of concept and

show that mesh generation via r-refinement can be applied to these example problems

on curves.

We also wish to solve these mesh equations and physical problems on multiple

subdomains. This allows us to take advantage of parallel computing and solve the

subproblems on each subdomain simultaneously. This reduces the overall computa-

tional cost of the physical solution, as well as reducing the additional cost that occurs

by using r-refinement. We focus on Schwarz methods including classical and opti-

mized Schwarz domain decomposition (DD) methods. Schwarz [48] was the first to

4

propose an iterative (and alternating) domain decomposition technique to solve linear

boundary value problems in 1870. This pioneering work has been expanded upon in

multiple papers, and applied to various types of problems. An overview of popular DD

methods to solve PDEs can be found in [8]. Additionally, the reference [14] provides

a historical literature review of Schwarz methods.

In these Schwarz methods, the domain is partitioned into multiple subdomains,

with smaller subproblems formed on each subdomain. In parallel Schwarz methods,

the subproblems are independent of one another at each iteration, forming a paral-

lel scheme. In classical Schwarz, each subdomain has a region of overlap with its

adjacent subdomains, allowing us to form Dirichlet transmission conditions for the

subproblems. In optimized Schwarz, the subdomains no longer need to be overlap-

ping, resulting in Robin transmission conditions on the subproblems. In this thesis,

parallelism is combined with equidistribution to solve the subproblems. This combi-

nation of equidistribution and domain decomposition on a line has been discussed in

[18] and [19], with discrete analysis in [26].

Specifically, to solve time-dependent PDEs in parallel, the most natural approach

is from Cai [5, 6]. In this method, we discretize the PDE in time and solve the resulting

sequence of elliptic problems with domain decomposition. This is the method used

in this thesis. A more recent method to solve time-dependent PDEs in parallel is

called Schwarz Waveform relaxation (SWR), proposed by Gander et. al [12] and

independently by Giladi [23]. In SWR, the spatial domain is decomposed and the

time-dependent PDE is solved on the entire time interval on each subdomain.

The remainder of the thesis is structured as follows. Chapter 2 is an introduction

to moving mesh methods on a single domain. Beginning with an explanation of the

equidistribution principle, we then move on to introduce how to implement equidistri-

bution on both an interval (line) and on a static parametric curve. We then proceed

to discuss equidistribution on a moving curve (with time dependency), for which we

solve the equidistribution problem at each time step. We finish the chapter with the

introduction of equidistribution of a function u(r) posed on a parametric curve x(r),

for which we provide monitor functions that use both curve and function features.

Chapter 3 introduces the concept of domain decomposition iterations for equidistri-

bution. It begins with an introduction to classical and optimized Schwarz methods

before specifically providing these Schwarz iterations in the case of equidistributing

5

static curves. A brief comparison of the Schwarz algorithms is also provided. Chap-

ter 4 introduces single domain approaches to the equidistribution of a function u(r)

posed on a parametric curve x(r), where u(r) is the solution of a static boundary

layer problem and is therefore unknown. We also provide theoretical results dis-

cussing the convergence of the given algorithm. We then discuss equidistribution of a

time-dependent function u(r, t) posed on a parametric curve x(r), where u(r, t) is the

unknown solution of a time-dependent PDE with periodic boundary conditions. In

this chapter, we employ rezoning and alternating techniques that alternate between

a solution of the moving mesh problem and a solution of the physical PDE. Chapter

5 introduces multi-domain iterations of the problems discussed in Chapter 4. Specif-

ically, we provide classical Schwarz iterations that could easily be modified to form

optimized Schwarz iterations. Chapter 6 concludes the thesis with a summary of the

presented results, statement of contribution, and recommendations for future work.

Chapter 2

Single Domain Equidistribution

In this chapter, we introduce mesh equidistribution on a single domain. We begin with

introducing the equidistribution principle on an interval, giving a mesh boundary

value problem (BVP). We then extend this technique to a parametric curve x(r),

giving a similar BVP to be solved, where the monitor function equidistributes by

the curve features. We then proceed to discuss equidistribution on a time-dependent

curve, using a technique where we solve a mesh BVP at each time step. Finally, we

introduce equidistribution of a known function u(r) posed on a parametric curve x(r).

Here, we explore multiple monitor functions which take in a mixture of both the curve

and the function features. We compare these monitor functions using interpolation

errors computed on a fine grid.

2.1 Equidistribution on an Interval

Recall from Chapter 1 that on an interval [a, b] broken into m sub-intervals, the EP

tells us that we wish to have a set of nodes such that∫ x1

x0

M(x)dx =

∫ x2

x1

M(x)dx = . . . =

∫ xm

xm−1

M(x)dx, (2.1.1)

where x0 = a and xm = b. Given an interval x ∈ [a, b], we wish to determine an

equidistributing mesh such that (2.1.1) is satisfied. We proceed on a continuous level

to derive a boundary value problem whose solution determines the equidistributing

7

mesh. We begin by introducing a computational coordinate ξ ∈ [0, 1], where

ξi =
i

m
, i = 0, . . . ,m. (2.1.2)

The points ξi with ξ0 = 0 and ξm = 1 form a uniform mesh. The equidistributing

equation (2.1.1) can be written as∫ xi

a

M(x)dx =
i

m

∫ b

a

M(x)dx, i = 0, . . . ,m, (2.1.3)

which, using the coordinate transformation, becomes∫ x(ξi)

a

M(x)dx = ξi

∫ b

a

M(x)dx, i = 0, . . . ,m, (2.1.4)

or on a continuous level, ∫ x(ξ)

a

M(x)dx = ξ

∫ b

a

M(x)dx, (2.1.5)

for all ξ ∈ (0, 1). If (2.1.5) is satisfied for a mapping x = x(ξ), it is referred to as a

equidistributing coordinate transformation for M(x) [31].

The following theorem is taken from [31]. Theorem 2.1.1 states that in the contin-

uous case there exists a unique equidistributing mesh of size m satisfying the equidis-

tribution principle, provided the monitor function chosen is bounded away from zero.

Theorem 2.1.1. For a given integer m > 0, there exists a unique equidistributing

mesh of m points satisfying (2.1.1) for any strictly positive monitor function.

The proof of Theorem 2.1.1 can be found in [31].

Many numerical methods employ (2.1.5) directly. A common method used to ap-

proximate the solution to (2.1.5) is de Boor’s algorithm [7]. Convergence results for

de Boor’s algorithm can be found in [45] and [51]. However, we wish to implement

a differential equation version of (2.1.5) in practice. This allows us to use Newton’s

method, a common numerical method used to solve nonlinear differential equations.

This is done for multiple reasons. Pryce [45] shows that de Boor’s algorithm is a

fixed point iteration with local linear convergence, while Newton’s method gives local

quadratic convergence. Additionally, Newton’s method generalizes more easily than

8

de Boor’s algorithm to higher spatial dimensions. We note that in practice the con-

vergence of Newton’s method can be difficult, as we need a sufficient number of mesh

points and an initial guess that is sufficiently close to the actual solution to guarantee

convergence.

To obtain a differential equation from (2.1.1), we differentiate (2.1.5) twice with

respect to ξ, giving the two-point boundary value problem given by

d

dξ

(
M(x(ξ))

dx(ξ)

dξ

)
= 0, x(0) = a, x(1) = b. (2.1.6)

Solving this nonlinear boundary value problem gives the solution x(ξ), which in turn

gives us the coordinates of the equidistributed mesh.

2.2 Equidistribution on Curves

Given a parameterized curve (x(r), y(r)) for r ∈ [0, b], we implement a coordinate

transformation, as in Section 2.1, and aim to find mesh points ri = r(ξi) = r(i
N

) such

that these points are equally distributed along the curve. We focus on a differential

approach given in [39] for a parameterized curve. To determine the transformation

r(ξ) on a continuous level, we begin with an initial value problem given in [39], that

is,

F (r)
dr

dξ
=

∫ b

0

F (r)dr, 0 ≤ r ≤ b, r(0) = 0, (2.2.1)

where F (r) > 0 is a chosen monitor function. Throughout this thesis, we use F (r) to

denote a monitor function defined on a curve and M(x) to denote a monitor function

defined on an interval. Differentiating this with respect to ξ gives

d

dξ

(
F (r(ξ))

dr(ξ)

dξ

)
= 0, 0 ≤ r ≤ b, r(0) = 0, r(1) = b, (2.2.2)

a boundary value problem analogous to (2.1.6).

We remark that it is straightforward to show that in the continuous case, the

constraint 0 < r < b will be satisfied in the solution of (2.2.2). We can see from

(2.2.1) that if F (r) > 0, then dr
dξ
> 0, and therefore r(ξ) will be monotone. However,

while the continuous solution r(ξ) is guaranteed to be bounded and monotonic, the

discrete solution may not satisfy these constraints during the Newton iteration. This

may cause computational issues, depending on the problem. A fix to this issue is

9

provided in Remark 5.1.1.

Common families of choices for the monitor function F (r) are those corresponding

to the weighted arc-length for a parametric curve, given by

F (r) = w(r)

√(
dx

dr

)2

+

(
dy

dr

)2

, (2.2.3)

and those corresponding to the weighted curvature of a parametric curve, given by

F (r) = w(r)

((
d2x

dr2

)2

+

(
d2y

dr2

)2
) 1

4

, (2.2.4)

where w(r) > 0 is a user-chosen weight function that is problem dependent. Here,

we choose w(r) = 1; a more detailed explanation of the weight function is given in

[39]. We note additionally that to ensure that F (r) ≥ F̄ > 0 for all r, we can add a

constant inside the square root, giving monitor functions like

F (r) = w(r)

(
a+

(
d2x

dr2

)2

+

(
d2y

dr2

)2
) 1

4

, (2.2.5)

for a > 0. Here, F̄ > 0 for some constant “floor” F̄ sufficiently far from zero. We

note that one should also choose the weight ω(r) such that it is sufficiently large

enough to ensure that F (r) does not approach zero. For the n-dimensional curve

x(r) = (x1(r), x2(r), . . . , xn(r))T ∈ Rn, we proceed analogously to the R2 case to

determine the grid points ri = r(ξi). This results in the BVP (2.2.2), with a monitor

function corresponding to arc-length given by

F (r) = w(r)
√

xr · xr, (2.2.6)

and a monitor function corresponding to curvature given by

F (r) = w(r)(xrr · xrr)
1
4 , (2.2.7)

where xr = (dx1(r)
dr

, dx2(r)
dr

, . . . , dxn(r)
dr

)T and xrr = (d
2x1(r)
dr2

, d
2x2(r)
dr2

, . . . , d
2xn(r)
dr2

)T .

In practice, we find that using the fourth root (·) 1
4 in the curvature-based monitor

function reduces the interpolation errors when compared to using the square root

10√
(·). The same does not occur for arc-length-based monitor functions. Further

reasoning behind choosing a fourth root instead of the square root for curvature-based

expressions is discussed in Section 2.4.1.

As an example, we consider a parameterized curve given by

x(r) = (1 + cos(Aπr)) cos(2πr), y(r) = (1 + cos(Aπr)) sin(2πr), 0 ≤ r ≤ 1,

(2.2.8)

and aim to equidistribute the mesh points (x(ri), y(ri)) for i = 0, . . . ,m.

We remark that (2.2.8) is an important example as it is not a one-to-one function;

i.e., it can not be represented as a function of x and does not pass the vertical line

test. Additionally, the curve changes drastically depending on the choice of A. An

example of how the curve changes with the choice of A is shown in Figure 2.1. We

see from Figure 2.1 that as we increase A, we generally add “petals” to the curve and

change the curve significantly.

Figure 2.1: Curve (2.2.8) shown for A = 6 (left) and A = 12 (right) on a fine uniform
mesh of size m = 1000 nodes.

For a monitor function F (r) given by (2.2.6) or (2.2.7) (with ω(r) = 1), we dis-

cretize the mesh BVP (2.2.2) using finite difference methods. Specifically, we discretize

the left-hand side of (2.2.2) as

d

dξ

(
F (r(ξ))

dr(ξ)

dξ

)
≈ 1

∆ξ

(
F (ri+1/2)

dr

dξ

∣∣∣∣
ri+1/2

− F (ri−1/2)
dr

dξ

∣∣∣∣
ri−1/2

)
. (2.2.9)

Additionally, we approximate the numerical values at the half nodes ri+1/2 and ri−1/2

11

as

F (ri+1/2)
dr

dξ

∣∣∣∣
ri+1/2

≈
(
F (ri+1)− F (ri)

2

)(
ri+1 − ri

∆ξ

)
, (2.2.10)

and

F (ri−1/2)
dr

dξ

∣∣∣∣
ri−1/2

≈
(
F (ri+1)− F (ri)

2

)(
ri+1 − ri

∆ξ

)
. (2.2.11)

Substituting (2.2.10) and (2.2.11) into (2.2.9) gives

d

dξ

(
F (r(ξ))

dr(ξ)

dξ

)
≈ (F (ri+1) + F (ri)) (ri+1 − ri)− (F (ri) + F (ri−1)) (ri − ri−1)

2∆ξ2
,

(2.2.12)

for i = 1, . . . ,m− 1. With the Dirichlet boundary conditions of (2.2.2) giving r0 = 0

and rm = b, we have formed the system of nonlinear equations. The resulting system

is solved using Newton’s method. This discretization gives an order of error that is

approximately O(∆ξ2).

Results for equidistribution via arc-length and curvature are shown in Figure 2.2.

As expected, equidistributing by arc-length produces equidistant nodes along the

entire length L of the curve. Equidistributing by curvature produces a concentration

of nodes at areas of high curvature.

We also provide Figure 2.3, which shows a closer look at the left hand side of

Figure 2.2 to better view what is happening in the figure. This shows the r versus ξ

plots for the interval ξ ∈ [0.3, 0.8].

12

Figure 2.2: Curve (2.2.8) with A = 12 equidistributed by arc-length (top) and curva-
ture (bottom) with m = 100 nodes. Left: a plot of r versus ξ showing the solution to
(2.2.2). Right: Solution plotted at the relocated nodes.

13

Figure 2.3: A closer look at the plots of r vs ξ for the curve (2.2.8) with A = 12,
equidistributed with m = 100 nodes. Both arc-length (left) and curvature (right)
based monitor functions are used.

Continuing with curves that are unable to be written as a function of x, we consider

the curve

x(r) = (1+0.5 sin(5r)) cos(r), y(r) = (1+0.5 sin(5r)) sin(r), 0 ≤ r ≤ 2π, (2.2.13)

a curve used in [49], and the ellipse

x(r) = A cos(r), y(r) = B sin(r), 0 ≤ r ≤ 2π. (2.2.14)

Results for equidistribution via arc-length and curvature for curves (2.2.13) and

(2.2.14) are shown in Figures 2.4 and 2.5, respectively. The results are similar to

that of Figure 2.2; equidistributing by arc-length produces an equal equidistribution

along the arc-length L, and equidistributing by curvature produces a concentration

of nodes in areas of high curvature on the curve.

14

Figure 2.4: Curve (2.2.13) equidistributed by arc-length (top) and curvature (bottom)
with m = 100 nodes. Left: a plot of r versus ξ showing the solution to (2.2.2). Right:
Parameterized curve plotted at the relocated nodes.

15

Figure 2.5: Curve (2.2.14) with A = 3 and B = 0.5 equidistributed by arc-length
(top) and curvature (bottom) with m = 100 nodes. Left: a plot of r versus ξ showing
the solution to (2.2.2). Right: Parameterized curve plotted at the relocated nodes.

To determine which monitor function produces the “best” result, we compare

interpolation errors. We begin with a coarse uniform grid runif = (r̂0, r̂1, . . . , r̂m)T

and a fine uniform grid rfine = (r̃0, r̃1, . . . , r̃M)T , where M = Rm (with integer R > 1)

denotes the number of nodes in the fine grid. For example, if R = 128 and m = 64,

then M = 8192. By equidistributing the coarse grid r with a given monitor function,

we obtain the equidistributed (non-uniform) grid r = (r0, r1, . . . , rm)T . Evaluating the

curve (from the given parametric equations) gives the curve coordinates (x(ri), y(ri))

for i = 0, . . . ,m, and the vectors x = x(r) and y = y(r) are linearly interpolated

onto the fine grid rfine to give xinterp and yinterp. Then these interpolated values

are compared to xfine = x(rfine) and yfine = y(rfine), where xfine and yfine are

simply given by the curve evaluated on the fine uniform mesh. The difference between

16

the equidistributed grids and the numerical fine grid solution is measured by e =√
(xfine − xinterp)2 + (yfine − yinterp)2. In addition to the maximum norm ||e||∞, we

include results in the Euclidean grid norm, given by

||e||2 =

(
h

m∑
i=1

e2
i

)1/2

where h is the mesh width of the fine uniform grid rfine. In [37], more information

regarding the motivation of this norm is given, see Appendix A. We record error

norms for equidistributing both by arc-length and curvature for curves (2.2.8) with

A = 12, (2.2.13), and (2.2.14) with A = 3 and B = 0.5 in Table 2.1. From Table 2.1,

we see that equidistributing by curvature produces a smaller interpolation error when

compared to the fine grid numerical solution.

Table 2.1: Interpolation errors for curves (2.2.8), (2.2.13), and (2.2.14). Here, we use
m = 100 nodes and M = 12800 nodes for the fine mesh used for the interpolation
error. The monitor function (2.2.6) equidistributes by arc-length, and the monitor
function (2.2.7) equidistributes by curvature features.

Curve Monitor Function ||e||∞ ||e||2 (grid)

(2.2.8) (2.2.6) 0.0659 0.0563

(2.2.8) (2.2.7) 0.0125 0.0222

(2.2.13) (2.2.6) 0.0247 0.0184

(2.2.13) (2.2.7) 0.0045 0.0081

(2.2.14) (2.2.6) 0.0165 0.0102

(2.2.14) (2.2.7) .000909 0.0017

We note that in [49], the authors use de Boor’s algorithm with slightly differ-

ent monitor functions to equidistribute along static parametric curves; these monitor

functions include equidistributing with respect to both arc-length and curvature. The

authors use a similar method to compare methods by measuring interpolation er-

rors. As the authors were focused on the spectral accuracy of the equidistribution,

they stated that an arc-length-based monitor function for a static curve is spectrally

accurate to machine precision, while the curvature-based monitor function is not.

To achieve spectral accuracy, the authors use a Fourier approximation, followed by

spectral integration and spectral differentiation; see [49] for details on the method.

17

They also noted that qualitatively for the mean curvature flow of a curve, which is a

time-dependent problem, the curvature-based monitor function gives a better approx-

imation near high curvature regions in early time steps. However, they state that an

arc-length-based monitor function is more stable in later time steps, consistently pro-

viding a smooth solution, as a high concentration of nodes in areas of high curvature

may cause an insufficient amount of nodes in other areas for proper resolution.

2.3 Equidistribution on Time-Dependent Curves

So far, we have discussed equidistribution on curves and lines that are only spatially

dependent. That is, there has been no dependence on time. We now focus on a time-

dependent curve given by x(r, t) = (x1(r, t), x2(r, t), . . . , xN(r, t))T ∈ RN . We wish to

determine a mesh (r1(t), r2(t), . . . , rm(t))T such that∫ rj(t)

a

F (r(t), t)dr =
j

m

∫ b

a

F (r(t), t)dr, j = 0, . . . ,m, (2.3.1)

is satisfied for t ≥ 0. It is important to note that this mesh will change and “move”

as time passes, unlike the steady case. We remark that the goal of this section is

to show that it is possible to use the framework considered in this thesis, with some

modifications, to deal with the case of a time-dependent curve. Time-dependent

curves will only be discussed in this section.

A simple example is given by the time-dependent two-dimensional curve

x(r) = (4 sin(t)(tanh(r) + 2r), y(r) = r10 + r). (2.3.2)

We begin by evaluating the curve at multiple points in time and equidistributing the

curve with the static mesh BVP (2.2.2) for each time value t. The results are given

in Figure 2.6. We see from Figure 2.6 that as time changes/passes, the positions of

the mesh nodes change as well.

18

Figure 2.6: Mesh trajectory of the time-dependent curve (2.3.2) equidistributed by
curvature with m = 30 nodes at 5 time steps between t = 0 and t = 10. The mesh r
varies with time t.

To obtain the differential equation in the continuous case, we proceed as in the

time-independent case. We introduce a computational coordinate r = r(ξ, t) such

that ξ ∈ [0, 1], r(0, t) = a, and r(1, t) = b. Differentiating (2.3.1) twice gives us the

boundary value problem

d

dξ

(
F (r(ξ, t), t)

dr(ξ, t)

dξ

)
= 0, ∀t ≥ 0. (2.3.3)

The equation (2.3.3) is often referred to as a quasi-static equidistribution principle as

it does not explicitly involve the rate of change dr(ξ,t)
dt

.

On an interval, another common method to equidistribute a time-dependent func-

tion u(r, t) is to form a MMPDE that explicitly involves the mesh speed dr(ξ,t)
dt

, first

proposed in [29]. Instead of a quasi-static equidistribution problem, we obtain a

time-dependent PDE. A detailed discussion of MMPDEs can be found in [31].

2.4 Equidistribution of Functions on Static Curves

Expanding on Section 2.2, consider the equidistribution of a known function u(r)

posed on the curve (x(r), y(r)). In this section, we focus on the function

u(r) = tan−1

(
r − r0

ε

)
, (2.4.1)

19

for given constants r0 and ε, posed on the different curves given parametrically by

(x(r), y(r)).

We begin with (2.4.1) defined on the ellipse (2.2.14). A visual representation of

the function u(r) posed on (x(r), y(r)) is shown in Figure 2.7. This forms a 3D plot.

Additionally, we provide a visual representation of the effect of ε on the function u.

The function on the curve is plotted for multiple ε values in Figure 2.8. We see that

as ε decreases, there is more need for adaptivity in the function u(r) as there is a

steeper slope of the function u at r = r0.

Figure 2.7: The function (2.4.1) with r0 = π
4

and ε = 0.5 posed on the ellipse (2.2.14)
with A = 3 and B = 0.5. This is shown from multiple angles.

Figure 2.8: The function (2.4.1) with r0 = π
4

and two values of ε posed on the ellipse
(2.2.14) with A = 3 and B = 0.5. Plots are shown for ε = 0.1 (left) and ε = 0.01
(right).

20

In this case, we look to equidistribute the mesh nodes in a way that takes into

account the features of both the static curve x(r) and the function u(r) on x(r). A

way to approach this problem is to introduce a monitor function F (r) that includes

the features of x and u. We introduce and test multiple monitor functions, comparing

the interpolation errors in these experiments.

2.4.1 Choice of Monitor Function

We look to obtain a monitor function that contains both a “curve part” and “function

part”. The following monitor functions are explored:

F (r) =
√

1 + u′(r)2, (2.4.2)

F (r) = (1 + κ(r))
1
4 , (2.4.3)

F (r) = (1 + κ(r))
1
4 +

√
1 + u′(r)2, (2.4.4)

F (r) = (1 + x′′(r)2 + y′′(r)2)
1
4 , (2.4.5)

F (r) = (1 + x′′(r)2 + y′′(r)2)
1
4 +

√
1 + u′(r)2, (2.4.6)

and

F (r) =
√

1 + x′(r)2 + y′(r)2 +
√

1 + u′(r)2, (2.4.7)

κ(r) =
|x′(r)y′′(r)− y′(r)x′′(r)|

(
√
x′(r)2 + y′(r)2)3

, (2.4.8)

is the curvature of x(r) = (x(r), y(r))T by definition [39]. All of the above monitor

functions satisfy the condition that F (r) ≥ F̄ > 0; the addition of 1 to the monitor

functions ensures this “floor”. In practice, when we remove this floor, i.e.,

F (r) = (κ(r))
1
4 , (2.4.9)

we often see an unstable solution due to F (r) ≈ 0 for certain r.

As a final remark, note that in monitor functions (2.4.4), (2.4.6), and (2.4.7), we

are adding two radical expressions together to form our monitor functions. We remark

that when we modify these monitor functions by reforming them as the multiplication

of two radical expressions such as

F (r) = (1 + x′′(r)2 + y′′(r)2)
1
4

√
1 + u′(r)2, (2.4.10)

21

we obtain a very similar monitor function in the sense that they have identical regions

of peaks, dips, and plateaus. This is shown in Figure 2.9. We see from Figure 2.9

that the monitor functions result in steep peaks at r = π
4

due to the function (2.4.1)

with r0 = π
4
, as well as peaks in the regions r = 0, r = π, and r = 2π due to the

curvature of the ellipse (2.2.14). We also see that multiplying the square roots in

(2.4.10) produces a greater emphasis on the peak at r = π
4
, meaning that there is

a greater emphasis on the function features when compared to the monitor function

(2.4.6).

Figure 2.9: Visualization of the monitor functions produced from monitor functions
(2.4.6) (left) and (2.4.10) (right). The curve x is given by (2.2.14) with A = 6 and
B = 0.5, and the function u(r) is given by (2.4.1) with r0 = π

4
and ε = 0.1.

To visualize how the values of the monitor function are influenced the curve and

function features, the curve and function features are plotted in Figures 2.10 and 2.11

for the curves (2.2.13) and (2.2.14), respectively. Additionally, the bottom row of Fig-

ures 2.10 and 2.11 show the corresponding monitor functions to provide a connection

to the problem features and the resulting monitor functions.

22

Figure 2.10: A visualization of the monitor functions (2.4.4) (left) which equidis-
tributes by both curve and function features, and (2.4.3) (right) which only equidis-
tributes by the curve features. The curve x is given by (2.2.13) and the function u(r)
is given by (2.4.1) with r0 = π

5
and ε = 0.2. The resulting mesh from the monitor

functions is shown in m = 64 blue points. Top: Features of the curve x and the
function u(r). Bottom: A plot of the monitor functions F (r).

23

Figure 2.11: A visualization of the monitor functions (2.4.2) (left) which only equidis-
tributes by the function features, and (2.4.4) (right) which equidistributes by both
the curve and function features. The curve x is given by (2.2.14) with A = 6 and
B = 0.5, and the function u(r) given by (2.4.1) with r0 = π

4
and ε = 0.5.The resulting

mesh from the monitor functions is shown in m = 64 blue points. Top: Features of
the curve x and the function u(r). Bottom: A plot of the monitor functions F (r).

We see from Figures 2.10 and 2.11 that, as expected, the monitor function (2.4.2)

only concentrates nodes where the function u is changing rapidly, (2.4.2) concentrates

nodes in areas of high curvature of x, and (2.4.4) considers both the curve and function

features. Additionally, we generally note that high regions of the second derivatives

(x′′(r), y′′(r)) generally correspond with high regions of curvature κ(r), with curvature

generally producing “sharper” peaks, as seen in Figures 2.10 and 2.11.

We test the above monitor functions for multiple closed curves. To quantify the

accuracy of the monitor functions, we calculate the interpolation errors as we did in

24

Section 2.2. We begin with a coarse uniform grid runif = (r̂0, r̂1, . . . , r̂m)T and a fine

uniform grid rfine = (r̃0, r̃1, . . . , r̃M)T , as described in Section 2.2. Evaluating the

curve from the given parametric equations gives the curve coordinates (x(ri), y(ri))

for i = 0, . . . ,m, and evaluating the function from the given equation u(r) gives the

function coordinates u(ri) for i = 0, . . . ,m. The vectors x = x(r), y = y(r), and u =

u(r) are linearly interpolated onto the fine grid rfine to give xinterp, yinterp, and uinterp.

Then these interpolated values are compared to xfine = x(rfine), yfine = y(rfine),

and ufine = u(rfine), where xfine, yfine, and ufine are simply given by the curve and

function evaluated on the fine uniform mesh.

It is important to note that in order to determine the interpolation error, we can

not merely determine the error of the function on the equidistributed mesh. If we

merely determine the interpolation error of u on various r grids, we will not have

any information of u specifically posed on the curve. In practice, since the func-

tion u is posed on the curve x, we must find a way of computing interpolation error

such that the function posed on the curve is represented. Since u(r) on x(r) can

be thought of as a 3d plot u(x(r), y(r)), we use a version of a 3D distance formula,

e =
√

(xfine − xinterp)2 + (yfine − yinterp)2 + (ufine − uinterp)2 in our interpolation er-

ror calculations. We remark that this is merely one way to compare the equidistributed

solution to the uniform solution. There are other methods of comparison that could be

considered as well such as the Hausdorff distance and the (discrete) Fréchet distance;

see [32] and [9] for details.

If we consider e an overall error between the equidistributed and fine grid solutions,

we can also separate the error e into a “curve” and “function” error, where the curve

error is defined as

ec =
√

(xfine − xinterp)2 + (yfine − yinterp)2,

and the function error is defined as

eu =
√

(ufine − uinterp)2.

This means that while e will tell us the overall error and how well we are resolving

both x and u, ec and eu will tell us how well we are specifically resolving the curve

and function, respectively, and are useful to observe as well. We record error norms

for the curve error ec, function error eu, and overall error e for the function (2.4.1).

25

Here, (2.4.1) is considered on the curves (2.2.13), (2.2.14), and a curve used in [49]

given by

x(r) = r + 2 sin(r), y(r) = 0.5 sin(r), 0 ≤ r ≤ 2π. (2.4.11)

in Tables 2.2, 2.4, and 2.3.

Table 2.2: Interpolation errors for the equidistribution of (2.4.1) with r0 = π
5

and
ε = 0.2 posed on (2.2.13). Here, we use m = 64 nodes and M = 8192 nodes for the
fine mesh. ec denotes the curve error, eu denotes the function error, and e denotes
the overall error.

F (r) ||ec||∞ ||ec||2 ||eu||∞ ||eu||2 ||e||∞ ||e||2
(2.4.2) 0.028585 0.033328 0.0030512 0.0022453 0.028585 0.033403

(2.4.3) 0.017158 0.022233 0.020523 0.0096682 0.025411 0.024244

(2.4.4) 0.019318 0.024301 0.008436 0.0044218 0.019318 0.0247

(2.4.5) 0.014251 0.020998 0.02682 0.0094751 0.02937 0.023037

(2.4.6) 0.013698 0.021174 0.016867 0.0068086 0.018747 0.022242

(2.4.7) 0.025425 0.027233 0.0080643 0.0043351 0.025426 0.027576

uniform mesh 0.017302 0.022374 0.019732 0.0088396 0.022265 0.024057

Table 2.3: Interpolation errors for the equidistribution of (2.4.1) with r0 = π
4

and
ε = 0.2 posed on (2.2.14) with A = 6 and B = 0.5. Here, we use m = 64 nodes and
M = 8192 nodes for the fine mesh. ec denotes the curve error, eu denotes the function
error, and e denotes the overall error.

F (r) ||ec||∞ ||ec||2 ||eu||∞ ||eu||2 ||e||∞ ||e||2
(2.4.2) 0.012458 0.014604 0.0030787 0.0023088 0.012458 0.014785

(2.4.3) 0.007319 0.0094711 0.021995 0.0098047 0.022597 0.013632

(2.4.4) 0.009584 0.010844 0.007195 0.0042168 0.009584 0.011635

(2.4.5) 0.011079 0.011183 0.022131 0.011159 0.022794 0.015798

(2.4.6) 0.0065466 0.0089005 0.010574 0.0058171 0.010868 0.010633

(2.4.7) 0.035088 0.02691 0.010604 0.0057552 0.035088 0.027518

uniform 0.0074585 0.0096877 0.019416 0.0088579 0.02031 0.013127

26

Table 2.4: Interpolation errors for the equidistribution of (2.4.1) with r0 = π
5

and
ε = 0.2 posed on (2.4.11). Here, we use m = 64 nodes and M = 8192 nodes for the
fine mesh. ec denotes the curve error, eu denotes the function error, and e denotes
the overall error.

F (r) ||ec||∞ ||ec||2 ||eu||∞ ||eu||2 ||e||∞ ||e||2
(2.4.2) 0.0042662 0.0050763 0.0030512 0.0022453 0.0042662 0.0055507

(2.4.3) 0.0029989 0.0034238 0.023732 0.010722 0.023779 0.011256

(2.4.4) 0.0041667 0.0041189 0.0083988 0.0049419 0.0084166 0.0064333

(2.4.5) 0.0059212 0.004654 0.054162 0.026694 0.054484 0.027096

(2.4.6) 0.0021576 0.0032119 0.0074302 0.0041411 0.0074457 0.0052407

(2.4.7) 0.0054863 0.0055855 0.0051601 0.0028131 0.0055024 0.0062539

uniform 0.0025619 0.0033171 0.019732 0.0088396 0.019809 0.0094415

Tables 2.2, 2.3, and 2.4 tell us valuable things about the equidistribution in a

quantitative sense. We see that how well the equidistribution performs is problem

dependent; however, each example produces at least one monitor function for which

the equidistribution gives more accuracy than a uniform mesh in all norms.

From Table 2.2, we see that for the curve (2.2.13), the monitor function (2.4.6) pro-

duces the lowest overall interpolation error ||e|| in both the maximum and Euclidean

norm. The curve error ||ec|| is minimized by the monitor function (2.4.6) in the maxi-

mum norm, and (2.4.5) in the Euclidean norm. The function error ||eu|| is minimized

by the monitor function (2.4.2) in both the maximum and Euclidean norms. We recall

that (2.4.6) equidistributes by both curve and function features, (2.4.5) equidistributes

by only curve features, and (2.4.2) equidistributes by only function features.

From Table 2.3, we see that for the curve (2.2.14), the monitor function (2.4.4)

produces the lowest error in the maximum norm and the monitor function (2.4.6)

produces the lowest overall interpolation error in the Euclidean norm. The curve

error ||ec|| is minimized by the monitor function (2.4.6) in both the maximum and

Euclidean norms. The function error ||eu|| is minimized by the monitor function (2.4.2)

in both the maximum and Euclidean norms. We recall that (2.4.4) equidistributes by

both curve and function features.

From Table 2.4, we see that for the curve (2.4.11), the monitor function (2.4.2)

produces the lowest error in the maximum norm and the monitor function (2.4.6)

produces the lowest overall interpolation error in the Euclidean norm. The curve

27

error ||ec|| is minimized by the monitor function (2.4.6) in both the maximum and

Euclidean norms. The function error ||eu|| is minimized by the monitor function

(2.4.2) in both the maximum and Euclidean norms.

This means that for these examples, the overall best performing monitor functions

are those that take in both the curve and function features. Here, “best” is defined

as producing the lowest overall errors ||e||2 and e∞. This is an important discovery,

as it provides numerical evidence of our earlier comments. While the errors are not

reduced for the majority of monitor functions, we do obtain lower overall errors with

certain monitor functions. Although the errors are not reduced significantly in Tables

2.2, 2.3, and 2.4, it is important to note that our goal is not to optimize the choice

of monitor function. We have chosen a selection of monitor functions that appear

sensible but have made no attempt to determine the overall optimal monitor function.

We have provided monitor function selections and shown that even among this small

selection with no attempt of optimization, there exist monitor functions that produce

a reduction in interpolation error when compared to a uniform mesh.

We note additionally that weights ω, ωu > 0 other than ω = ωu = 1 can be placed

at any point in a monitor function; this can be used to put emphasis on curve or

function features. As an example, we experiment with weights in front of (2.4.6); this

gives the monitor function

F (r) =
√

1 + ω(x′′(r)2 + y′′(r)2) +
√

1 + ωuu′(r)2. (2.4.12)

As an exercise, we fix both the monitor function and the curve (2.2.13) and experiment

with the weights. Results are given in Figure 2.12.

28

Figure 2.12: Figures comparing values of ω and ωu in the monitor function (2.4.12)
for the equidistribution of (2.4.1) with r0 = π

5
and ε = 0.2 posed on the curve (2.2.13).

Here, we used m = 64 nodes and M = 8192 nodes for the fine mesh. Interpolation
errors are shown in the maximum and Euclidean norms for fixed ωu = 1 and varied
values of ω (left), and fixed ω = 1 and varied values of ωu (right).

From Figure 2.12, in this example, we get better results when more weight is

placed on the function features. However, we see that there is an optimal weight

combination to minimize interpolation error in this example, given by ω = 0.5, ωu = 1

in the maximum and Euclidean norms. However, this is likely due to the fact that

u(r) changes more drastically with r in certain regions and “needs” equidistribution

more than the curve x. We conclude that the weights will be problem dependent.

A Monitor Function Based on Interpolation Error

If we are determining the “success” of a monitor function by the resulting interpolation

error, then we should consider a monitor function that is designed with interpolation in

mind. As previously stated, we use M(x) to denote a monitor function on an interval

and F (r) to denote a monitor function on a curve. The authors of [31] explored this

in Section 2.5 of their book. The authors determined that an interpolation-based

monitor function given by

M(x) =

(
1 +

1

α
(u′′(x))2

)1/5

, (2.4.13)

29

with weight given by

α(x) =

(
1

b− a

∫ b

a

(u′′(x))2/5 dx

)5

,

minimizes the linear interpolation error in the L2 norm. The authors also remarked

that on an interval, the monitor function given by

M(x) =
(
1 + u2

xx

)1/4
, (2.4.14)

is motivated by the fact that the second derivative of a function generally has ties to

interpolation error. In practice, a monitor function that uses the second derivative of

u is related to a monitor function which reduces the interpolation error. The authors

give error bounds in the L2 norm for these monitor functions of

||e||2 ≤ C

(∫ b

a

|u′′|
2
5dx

) 5
2

, (2.4.15)

for the optimal monitor function (2.4.13), and

||e||2 ≤ C

(∫ b

a

|u′′|2

1 + |u′′|2
dx

) 1
2
(∫ b

a

(1 + |u′′|2)
1
4dx

)2

, (2.4.16)

for the curvature-based monitor function (2.4.14), where C is constant and x ∈ (a, b).

On the curve (x(r), y(r)) with the function u(r), a few monitor functions of this

type would look like

F (r) = (1 + u′′(r)2)
1
4 , (2.4.17)

F (r) = (1 + κ(r))
1
4 + (1 + u′′(r)2)

1
4 , (2.4.18)

and

F (r) = (1 + x′′(r)2 + y′′(r)2)
1
4 + (1 + u′′(r)2)

1
4 . (2.4.19)

Results comparing the interpolation errors for these monitor functions are provided

in Tables 2.5, 2.6, and 2.7. For these monitor functions (2.4.17), (2.4.18), and (2.4.19),

we compare them to (2.4.2), (2.4.4), and (2.4.6), their respective analogous monitor

functions that only differ in using u′(r) instead of u′′(r). We see that in Tables 2.5,

2.6, and 2.7, using u′′(r) in the monitor functions (2.4.17), (2.4.18), and (2.4.19) is

30

generally not producing a noticeably lower interpolation error in the maximum and

Euclidean norms when compared to (2.4.2), (2.4.4), and (2.4.6).

We note that while (2.4.14) is designed to minimize interpolation error and we have

extended this principle to form (2.4.5), (2.4.18), and (2.4.19), it is still to be explored

theoretically if these new monitor functions will minimize interpolation error. As

mentioned, we are not seeing this for this example; this could be due to a number of

reasons as we are extending (2.4.14) to the curve case. We remark that in Section (4.2)

for a different example problem, the monitor function (2.4.19) produces the minimum

interpolation error out of all selected monitor functions. We emphasize that the

overall “best” monitor function will be problem dependent and that theoretical work

is necessary to identify optimal monitor functions for equidistribution on curves.

Table 2.5: Interpolation errors for the equidistribution of (2.4.1) with r0 = π
5

and
ε = 0.2 posed on (2.2.13). Here, we use m = 64 nodes and M = 8192 nodes for the
fine mesh.

F (r) ||e||∞ ||e||2
(2.4.2) 0.02821 0.033064

(2.4.17) 0.030334 0.034779

(2.4.4) 0.019509 0.024888

(2.4.18) 0.020221 0.025137

(2.4.6) 0.015142 0.022955

(2.4.19) 0.015516 0.02303

uniform mesh 0.022265 0.024057

31

Table 2.6: Interpolation errors for the equidistribution of (2.4.1) with r0 = π and
ε = 0.2 posed on (2.2.14) with A = 6 and B = 0.5. Here, we use m = 64 nodes and
M = 8192 nodes for the fine mesh. A smoothing parameter p = 1 was used in the
monitor functions.

F (r) ||e||∞ ||e||2
(2.4.2) 0.012275 0.013457

(2.4.17) 0.013356 0.013864

(2.4.4) 0.0091175 0.011154

(2.4.18) 0.0095018 0.010935

(2.4.6) 0.0065292 0.0096542

(2.4.19) 0.0067589 0.0095954

uniform mesh 0.020673 0.013117

Table 2.7: Interpolation errors for the equidistribution of (2.4.1) with r0 = π and
ε = 0.2 posed on (2.4.11). Here, we use m = 64 nodes and M = 8192 nodes for the
fine mesh.

F (r) ||e||∞ ||e||2
(2.4.2) 0.0042023 0.0058965

(2.4.17) 0.0045818 0.0059711

(2.4.4) 0.0064238 0.0056514

(2.4.18) 0.0062468 0.0053926

(2.4.6) 0.0066976 0.0054884

(2.4.19) 0.006473 0.0051595

uniform mesh 0.019296 0.0094452

In practice, for problems such as (2.4.1), u′′(r) produces a very nonsmooth monitor

function, with multiple “peaks” very close to each other. This is shown in Figure 2.13.

This issue can generally be fixed with sufficient smoothing. This is discussed in further

detail in Chapter 4.

32

(a) (2.4.4)

Figure 2.13: Monitor function (2.4.19), with the curve given by (2.2.14) with A = 6
and B = 0.5, and function u(r) given by (2.4.1) with r0 = π and ε = 0.2.

Chapter 3

Domain Decomposition

Domain decomposition (DD) is a divide and conquer method used to aid in the nu-

merical solution of PDEs by partitioning the domain into multiple smaller subdomains

and solving subproblems on each subdomain. To complete these subproblems, trans-

mission conditions are introduced to complete the definition of the PDE on each

subdomain.

In this chapter, we begin with an introduction of classical and optimized Schwarz

DD iterations for general linear problems Lu = f in Sections 3.1.1 and 3.1.2. Clas-

sical Schwarz involves Dirichlet transmission conditions on each subdomain problem,

and requires an overlap between subdomains. Optimized Schwarz involves Robin

transmission conditions on each subdomain problem, and requires only a common

boundary between the subdomains. This will be explained further throughout the

chapter. Next, we specifically state the classical and optimized Schwarz iterations

used to solve the curve equidistribution problem given by (2.2.2). Numerical evidence

is provided throughout to show that both iterations converge to the single domain

solution of (2.2.2). In Section 3.2.1, we provide analysis closely linked to the analysis

of [18] to show convergence of the parallel classical Schwarz iteration. In Section 3.2.2,

we provide the discretization and implementation of the modified Robin transmission

conditions and provide analysis closely linked to the analysis of [18] to show conver-

gence of the parallel optimized Schwarz iteration. We also provide a brief analysis

of the parameter p, a user chosen constant in the optimized Schwarz iteration. This

analysis includes a description of the upper bound on p and a numerical experiment

to compare various values of p. We finish the chapter with a direct comparison of the

classical and optimized Schwarz iterations.

34

3.1 General DD Methods

3.1.1 Classical Schwarz

The original domain decomposition scheme to solve boundary value problems was pro-

posed by Schwarz [48]; the author proposed an alternating/sequential (non-parallel)

domain decomposition method to prove the Dirichlet principle. This domain decom-

position method was later expanded upon with parallel variants. In this thesis, we

will focus on parallel domain decomposition, which allows us to invoke parallel com-

puting. The first extension of the alternating Schwarz method to a parallel Schwarz

method was proposed by Lions [38]. Parallel computing has garnered a large amount

of interest as of late, with growing access to parallel computers and multiple cores.

Consider a domain Ω = [0, b] decomposed into two subdomains Ω1 and Ω2. Given

initial guesses u
(0)
1 and u

(0)
2 , the general alternating Schwarz iteration for a (time-

independent) problem, is given by the following: for n = 0, 1, 2, . . ., solve

Lu(n+1)
1 = f, x ∈ Ω1, Lu(n+1)

2 = f, x ∈ Ω2, (3.1.1)

u
(n+1)
1 = u

(n)
2 , x ∈ Γ1, u

(n+1)
2 = u

(n)
1 , x ∈ Γ2,

where Γ1 = ∂Ω1 ∩ Ω2 and Γ2 = ∂Ω2 ∩ Ω1. Here, ∂Ωi denotes the boundary of Ωi.

An important note is that classical Schwarz requires overlapping subdomains; i.e.,

Ωi ∩Ωi+1 6= 0 for subdomain Ωi. In (3.1.1), the subproblems are independent of each

other at each iteration, allowing the iteration to be carried out in parallel.

Extending the iteration to multiple subdomains, the algorithm is given by the

following: for n = 0, 1, 2, . . ., solve

Lu(n+1)
i = f, x ∈ Ωi, (3.1.2)

u
(n+1)
i = u

(n)
j , x ∈ Γij,

for i = 1, . . . , S and j such that Γij = ∂Ωi ∩ Ωj is non-empty. In one-dimensional

space such that Ω = [0, b], this means that Ωj is adjacent to Ωi, that is, j = i− 1 and

j = i+ 1 for i = 2, . . . , S − 1. Here, the domain Ω is decomposed into S overlapping

subdomains Ω1,Ω2, . . . ,ΩS such that Ω = Ω1 ∪ Ω2 ∪ . . . ∪ ΩS.

The general alternating (non-parallel) Schwarz iteration is given by the following:

35

for n = 0, 1, 2, . . ., solve

Lu(n+1)
i = f, x ∈ Ωi, (3.1.3)

u
(n+1)
i = u

(n+1)
j , x ∈ Γij,

for i = 1, . . . , S. For all iterations discussed in Section 3.1.1, we assume that at most

two subdomains are contained in any part of the domain. In other words, in one

dimension on an interval [a, b] with m subdomains, this gives

Ωi = [αi, βi], for i = 1, . . . , S,

with αi ≤ βi−1 ≤ αi+1. Here, α1 = a and βS = b.

These alternating and parallel Schwarz iterations are classical Schwarz methods.

Often, alternating and parallel Schwarz iterations are referred to as multiplicative

and additive Schwarz methods, respectively. The classical Schwarz methods involve

Dirichlet boundary conditions on each subdomain, requiring a multi-node overlap

between the subdomains. Without this overlap, the Dirichlet boundary conditions

will not necessarily impose smoothness at the boundaries of the domains. In this case

the iteration would generally not produce a smooth solution, and therefore would not

converge to the single domain solution.

3.1.2 Optimized Schwarz on two Subdomains

Optimized Schwarz methods can be traced to Lions [38]; he proposed Robin transmis-

sion conditions to remove the overlap requirement of classical Schwarz. These Robin

boundary conditions (often called “mixed” boundary conditions) introduce a constant

p, which provides a weight for the Dirichlet part of the boundary condition.

As in classical Schwarz, we partition the domain into S subdomains Ω1,Ω2, . . . ,ΩS.

However, in optimized Schwarz for S = 2 subdomains, the overlap can be reduced

to merely a common boundary such that Γ1 = Γ2 = Γ. With 2 subdomains on an

interval [a, b], this would give Ω1 = [a, α] and Ω2 = [α, b] where Γ = α. Given initial

guesses u
(0)
1 and u

(0)
2 , the general parallel optimized Schwarz iteration to solve the

linear problem Lu = f, x ∈ Ω on two subdomains is then given by: for n = 0, 1, . . .,

36

solve

Lu(n)
1 = f, x ∈ Ω1, Lu(n)

2 = f, x ∈ Ω2, (3.1.4)

(∂n1 + p1)u
(n)
1 = (∂n1 + p1)u

(n−1)
2 , x ∈ Γ1, (∂n2 + p2)u

(n)
2 = (∂n2 + p2)u

(n−1)
1 , x ∈ Γ2,

(3.1.5)

such that each subdomain problem has Robin boundary conditions. Here, ∂ni denotes

the partial derivative along the outward normal to the boundary of Ωi, and pi are

chosen constants used to accelerate the convergence. Further discussion on the choice

of boundary operators can be found in [13].

While the rate of convergence of the optimized Schwarz iterations depends on the

constants p1 and p2, optimized Schwarz methods generally converge faster than clas-

sical Schwarz methods without requiring extra computational cost. These optimized

Schwarz methods have been proven to converge for elliptic problems with subdomains

that share only a common boundary [14].

3.2 DD for Equidistribution on Static Curves

3.2.1 Classical Schwarz

Recalling the single domain boundary-value problem (2.2.2) which equidistributes the

mesh points along the curve, we propose a convergent multiplicative Schwarz iteration

for the solution of (2.2.2) on each subdomain.

Suppose the computational domain ξ is decomposed into S = 2 subdomains such

that Ω1 = [0, β], Ω2 = [α, 1] with α < β.

The proposed iteration is as follows: for n = 0, 1, . . ., solve

d

dξ

(
F (r

(n)
1)

dr
(n)
1

dξ

)
= 0, ξ ∈ Ω1,

d

dξ

(
F (r

(n)
2)

dr
(n)
2

dξ

)
= 0, ξ ∈ Ω2, (3.2.1)

r
(n)
1 (0) = 0, r

(n)
2 (α) = r

(n)
1 (α),

r
(n)
1 (β) = r

(n−1)
2 (β), r

(n)
2 (1) = b.

Parallel computing allows us to separate the problem into multiple subproblems, each

of which can be solved on an independent processor. The parallel iteration is as

37

follows: for n = 0, 1, . . ., solve

d

dξ

(
F (r

(n)
1)

dr
(n)
1

dξ

)
= 0, ξ ∈ Ω1,

d

dξ

(
F (r

(n)
2)

dr
(n)
2

dξ

)
= 0, ξ ∈ Ω2, (3.2.2)

r
(n)
1 (0) = 0, r

(n)
2 (α) = r

(n−1)
1 (α),

r
(n)
1 (β) = r

(n−1)
2 (β), r

(n)
2 (1) = b.

The iterations (3.2.1) and (3.2.2) are stopped when the subsequent approximations

agree within a tolerance ε, as in

max(||r(n)
1 − r

(n−1)
1 ||∞, ||r(n)

2 − r
(n−1)
2 ||∞) < ε. (3.2.3)

As a simple example, we return to the curve given by (2.2.14) with A = 3 and

B = 0.5. Both parallel and multiplicative Schwarz DD results on S = 2 subdomains

are shown in Figure 3.1. For classical Schwarz iterations, we define the overlap O as

the number of nodes contained in the overlap between the subdomains, inclusive of the

endpoints. For example, subdomains given by Ω1 = (0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6)T and

Ω2 = (0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0)T correspond to O = 3 points of overlap between

Ω1 and Ω2.

We see from Figure 3.1 that both iterations converge to the single domain solution

(in black). We also provide a plot showing the iterates at n = 1, 5, and 20 iterations in

Figure 3.2. We see from Figure 3.2 that the parallel iteration converges fairly quickly.

38

Figure 3.1: A plot of r
(n)
1 and r

(n)
2 versus ξ from the alternating classical Schwarz

algorithm (3.2.1) (left) and the parallel classical Schwarz algorithm (3.2.2) (right),
where the final solution is denoted by the thick black line. Here, m = 64 nodes with
O = 8 points of overlap are equidistributed by the curvature-based monitor function
(2.2.7) on the curve (2.2.14), and the initial guess is given by r0 = ξ2. The alternating
iteration converged in n = 34 iterations and the parallel iteration converged in n = 65
iterations; in each case the tolerance was chosen as ε = 10−8.

39

(a) Iteration 1 (b) Iteration 5 (c) Iteration 20

(d) Iteration 1 (e) Iteration 5 (f) Iteration 20

Figure 3.2: A plot of r
(n)
1 and r

(n)
2 versus ξ (top) and the curve plotted at the equidis-

tributed nodes
(
x(r

(n)
1), y(r

(n)
1)
)

and
(
x(r

(n)
2), y(r

(n)
2)
)

(bottom) from the parallel DD

iteration (3.2.2), where the DD iterations are plotted after n = 1, 5, and 10 itera-
tions. Here, m = 64 nodes with O = 8 points of overlap are equidistributed by the
curvature-based monitor function (2.2.7) on the curve (2.2.14), and the initial guess
is given by r0 = ξ.

It is fairly straightforward to extend the iteration to S overlapping subdomains.

For i = 1, . . . , S, we have Ωi = [αi, βi] with α1 = 0 and βS = 1. The multiplicative

Schwarz iteration is as follows: For n = 0, 1, . . . , solve

d

dξ

(
F (r

(n)
i)

dr
(n)
i

dξ

)
= 0, ξ ∈ Ωi, (3.2.4)

r
(n)
i (αi) = r

(n)
i−1(αi), r

(n)
i (βi) = r

(n−1)
i+1 (βi),

40

for subdomains i = 1, . . . , S. The parallel variant is as follows: for n = 0, 1, . . ., solve

d

dξ

(
F (r

(n)
i)

dr
(n)
i

dξ

)
= 0, ξ ∈ Ωi, (3.2.5)

r
(n)
i (αi) = r

(n−1)
i−1 (αi), r

(n)
i (βi) = r

(n−1)
i+1 (βi),

DD results for S = 3 subdomains are shown in Figure 3.3. These results are similar

to the results on two subdomains in Figure 3.1. We see that the main difference

between the alternating and parallel results is that the left Dirichlet boundary value

on Ωi, i > 1 is taken from the current iteration in the alternating scheme, and the

previous iteration in the parallel scheme.

Figure 3.3: A plot of r
(n)
1 and r

(n)
2 versus ξ from the alternating classical Schwarz

algorithm (3.2.4) (left) and the parallel classical Schwarz algorithm (3.2.5) (right), on
S = 3 subdomains, where the final solution is denoted by the thick black line. Here,
m = 64 nodes with O = 8 points of overlap are equidistributed by the curvature-based
monitor function (2.2.7) on the curve (2.2.14), and the initial guess is given by r0 = ξ.
The alternating iteration converged in n = 53 iterations and the parallel iteration
converged in n = 99 iterations; in each case the tolerance was chosen as ε = 10−8.

We have also provided plots of DD error showing convergence to the single domain

solution for both the multiplicative and parallel variants in Figure 3.4. We see from

Figure 3.4 that the DD solution converges to the single domain solution as expected.

It is expected that as overlap increases, the number of iterations needed for conver-

gence decreases. These results are shown in Figure 3.5. We note that while increasing

the overlap decreases the total number of iterations of the algorithm, this also results

41

in larger problem to be solved on each subdomain. Generally, there is an optimal

overlap value that will minimize total computational time.

Figure 3.4: A plot of DD error versus iterations (semi-log scale) for the parallel DD
iteration (3.2.2) on S = 2 subdomains for the ellipse (2.2.14), where the curvature-
based monitor function (2.2.7) is used. Here, m = 64 with O = 8 points of overlap
and initial guess is given by r0 = ξ. DD error refers to the error between the DD
solution and the single domain solution.

Figure 3.5: A plot of DD error versus iterations (semi-log scale) for various overlap
values O on S = 2 subdomains. The DD error is shown for the parallel DD iteration
(3.2.2) for the ellipse (2.2.14), where the curvature-based monitor function (2.2.7) is
used. Here, m = 640 nodes are equidistributed by curvature and the initial guess is
given by r0 = ξ. DD error refers to the error between the DD solution and the single
domain solution.

42

Analysis on two subdomains

We remark that the equivalent iterations to (3.2.2) and (3.2.5) for equidistribution on a

1D line were proven to converge by Gander and Haynes [18]. Using a slight adaptation

of the analysis of [18], we now proceed to show convergence of the parallel classical

iteration (3.2.2) for equidistribution on a curve, beginning with the well-posedness of

the single domain problem on an arbitrary domain [a, b].

d

dξ

(
F (r(ξ))

dr(ξ)

dξ

)
= 0, r(a) = γa, r(b) = γb. (3.2.6)

Lemma 3.2.1. If the monitor function F (r) is differentiable and bounded such that

there exist constants c0 and c1 such that 0 < c0 ≤ F (r) ≤ c1 <∞ for r ∈ [0, 1], then

the BVP (3.2.6) has a unique solution given implicitly by∫ r(ξ)

γa

F (r̃)dr̃ =
ξ − a
b− a

∫ γb

γa

F (r̃)dr̃, ξ ∈ (a, b). (3.2.7)

Proof. The differential equation and boundary condition at ξ = a is satisfied by∫ r(ξ)
γa

F (r̃)dr̃ = c(ξ − a), where c is chosen to satisfy the Dirichlet boundary condition

at the other endpoint ξ = b. This results in c = 1
b−a

∫ γb
γa
F (r̃)dr̃, giving (3.2.7).

We now show that the solution r(ξ) from (3.2.7) exists and is unique. Here, r(ξ)

is the solution θ of

G(θ) =
ξ − a
b− a

∫ γb

γa

F (r̃)dr̃, (3.2.8)

where we define G(θ) ≡
∫ θ
γa
F (r̃)dr̃. Clearly from the assumptions of Lemma 3.2.1, G

is continuous. Additionally, G is uniformly monotonic such that dG
dθ

= F (θ) ≥ c0 > 0.

Hence, by the implicit function theorem, there exists a unique C1 solution to (3.2.8)

(and therefore (3.2.7)).

We proceed as in [18], using Lemma 3.2.1 to construct implicit solutions on the

subdomains.

Lemma 3.2.2. Under the assumptions of Lemma 3.2.1, the subdomain solutions are

given implicitly by ∫ r
(n)
1 (ξ)

0

F (r̃)dr̃ =
ξ

β

∫ r
(n−1)
2 (β)

0

F (r̃)dr̃ (3.2.9)

43

on Ω1, and ∫ 1

r
(n)
2 (ξ)

F (r̃)dr̃ =
1− ξ
1− α

∫ 1

r
(n−1)
2 (α)

F (r̃)dr̃ (3.2.10)

on Ω2.

Proof. The proof follows directly from the general solution (3.2.7) given in Lemma

3.2.1 and is approached in an identical manner.

Using these implicit subdomain solutions, we provide a convergence estimate for

the nonlinear parallel Schwarz iteration (3.2.2). The proof is analogous to [18].

Theorem 3.2.1. Under the assumptions of Lemma 3.2.1, the iteration (3.2.2) con-

verges for any initial guess values r
(0)
1 (α) and r

(0)
2 (β). Additionally, we have the linear

convergence estimate

||r−r(2n+1)
1 ||∞ ≤ ρn

c1

c0

|r(β)−r(0)
2 (β)|, ||r−r(2n+1)

2 ||∞ ≤ ρn
c1

c0

|r(α)−r(0)
1 (α)|, (3.2.11)

with contraction factor ρ ≡ α
β

1−β
1−α < 1.

Proof. Using Lemma 3.2.1, the sequence r
(n)
1 (α) satisfies

∫ r
(n)
1 (α)

0

F (r̃)dr̃ =
α

β

∫ r
(n−1)
2 (β)

0

F (r̃)dr̃ =
α

β

(∫ 1

0

F (r̃)dr̃ −
∫ 1

r
(n−1)
2 (β)

F (r̃)dr̃

)
(3.2.12)

=
α

β

(∫ 1

0

F (r̃)dr̃ − 1− β
1− α

∫ 1

r
(n−2)
1 (β)

F (r̃)dr̃

)

=
α

β

1− β
1− α

∫ r
(n−2)
1 (α)

0

F (r̃)dr̃ +
α

β

β − α
1− α

∫ 1

0

F (r̃)dr̃,

where
∫ 1

r
(n−1)
2 (β)

F (r̃)dr̃ = 1−β
1−α

∫ 1

r
(n−2)
1 (β)

F (r̃)dr̃ follows from (3.2.10) evaluated at ξ = β

at iteration n− 1.

Defining K
(n)
1 =

∫ r(n)1 (α)

0
F (r̃)dr̃ and defining I =

∫ 1

0
F (r̃)dr̃, relation (3.2.12) yields

the linear fixed point iteration

K
(n)
1 =

α

β

1− β
1− α

K
(n−2)
1 +

α

β

β − α
1− α

I. (3.2.13)

Since ρ < 1 in this iteration, the iteration converges to a limit K∗1 given by the

equation

44

K∗1 =
α

β

1− β
1− α

K∗1 +
α

β

β − α
1− α

I,

or

K∗1

(
1− α

β

1− β
1− α

)
=
α

β

β − α
1− α

I,

giving

K∗1 =

α
β
β−α
1−α

1− α
β

1−β
1−α

I,

=
α(β − α)

β(1− α)

β(1− α)

(β − α)
I,

= αI. (3.2.14)

Similarly on Ω2, we have the fixed point iteration

K
(n)
2 =

α

β

1− β
1− α

K
(n−2)
2 +

β − α
1− α

I, (3.2.15)

where K
(n)
2 =

∫ r(n)2 (β)

0
F (r̃)dr̃, giving the limit

K∗2 =
β−α
1−α

1− α(1−β)
β(1−α)

I,

= βI. (3.2.16)

So we have obtained limn→∞
∫ r(n)1 (α)

0
F (r̃)dr̃ = α

∫ 1

0
F (r̃)dr̃ and limn→∞

∫ r(n)2 (β)

0
F (r̃)dr̃ =

β
∫ 1

0
F (r̃)dr̃. In order to prove convergence to the correct limit, we note the sin-

gle domain solution r also satisfies α
∫ 1

0
F (r̃)dr̃ =

∫ r(α)

0
F (r̃)dr̃ and β

∫ 1

0
F (r̃)dr̃ =∫ r(β)

0
F (r̃)dr̃. We now have convergence to the correct limits on Ω1 and Ω2, giving

lim
n→∞

∫ r
(n)
1 (α)

0

F (r̃)dr̃ =

∫ r(α)

0

F (r̃)dr̃,

45

and

lim
n→∞

∫ r
(n)
2 (β)

0

F (r̃)dr̃ =

∫ r(β)

0

F (r̃)dr̃.

We continue to prove the convergence estimate in the L∞ norm given in Theorem

3.2.1. Subtracting equation (3.2.13) from (3.2.14) and proceeding by induction, we

have ∫ r(α)

r
(2n)
1 (α)

F (r̃)dr̃ = ρn
∫ r(α)

r
(0)
1 (α)

F (r̃)dr̃, (3.2.17)

on Ω1. Similarly, subtracting (3.2.15) from (3.2.16) and proceeding by induction, we

have ∫ r(β)

r
(2n)
2 (β)

F (r̃)dr̃ = ρn
∫ r(β)

r
(0)
2 (β)

F (r̃)dr̃ (3.2.18)

on Ω2.

Subtracting (3.2.9) and (3.2.10) from the equivalent expressions for the single

domain solution r(ξ), we obtain∫ r(ξ)

r
(2n+1)
1 (ξ)

F (r̃)dr̃ =
ξ

β

∫ r(β)

r
(2n)
2 (β)

F (r̃)dr̃,

and ∫ r(ξ)

r
(2n+1)
2 (ξ)

F (r̃)dr̃ =
1− ξ
1− α

∫ r(α)

r
(2n)
1 (α)

F (r̃)dr̃.

Substituting the equalities from (3.2.17) and (3.2.18), we have∫ r(ξ)

r
(2n+1)
2 (ξ)

F (r̃)dr̃ =
1− ξ
1− α

ρn
∫ r(α)

r01(α)

F (r̃)dr̃. (3.2.19)

and ∫ r(ξ)

r
(2n+1)
1 (ξ)

F (r̃)dr̃ =
ξ

β
ρn
∫ r(β)

r
(0)
2 (β)

F (r̃)dr̃. (3.2.20)

For any a, b ∈ R, from the boundedness of F , we obtain

c0|a− b| ≤ |
∫ b

a

F (r̃)dr̃| ≤ c1|a− b|. (3.2.21)

Taking the modulus of (3.2.20) and (3.2.19) and applying the bound from (3.2.21),

we obtain

|r(ξ)− r(2n+1)
1 (ξ)| ≤ ξ

β
ρn
c1

c0

|r(β)− r(0)
2 (β)|, (3.2.22)

46

on Ω1, and

|r(ξ)− r(2n+1)
2 (ξ)| ≤ 1− ξ

1− α
ρn
c1

c0

|r(α)− r(0)
1 (α)|, (3.2.23)

on Ω2.

Taking the supremums of (3.2.23) and (3.2.22) gives the convergence estimates

(3.2.11).

3.2.2 Optimized Schwarz on two Subdomains

The optimized Schwarz iteration for the equidistribution problem (2.2.2) has a slight

variation to the boundary operators provided in Section 3.1.2. Since we know the

form of the BVP that we are wishing to solve is given by

d

dξ

(
F (r)

dr

dξ

)
= 0,

we can slightly modify the Robin boundary conditions to ease the analysis and nu-

merical computation. A more detailed explanation of this is given in [18].

The iteration on two subdomains Ω1 = [0, β] and Ω2 = [α, b] is as follows: for

n = 0, 1, . . ., solve

d

dξ

(
F (r

(n)
1)

dr
(n)
1

dξ

)
= 0, ξ ∈ Ω1,

d

dξ

(
F (r

(n)
2)

dr
(n)
2

dξ

)
= 0, ξ ∈ Ω2, (3.2.24)

r
(n)
1 (0) = 0, B2(r

(n)
2 (α)) = B2(r

(n−1)
1 (α)),

B1(r
(n)
1 (β)) = B1(r

(n−1)
2 (β)), r

(n)
2 (1) = b,

where the transmission operators are given by B1 ≡ F (·)∂(·)
∂ξ

+pI(·) and B2 ≡ F (·)∂(·)
∂ξ
−

pI(·). As discussed in Section 3.1.2, the Robin boundary conditions allow us to choose

subdomains with only a common boundary such that α = β.

As an example, we look to equidistribute the ellipse (2.2.14) with A = 3 and

B = 0.5. A plot of r
(n)
1 and r

(n)
2 versus ξ showing the iterates from the optimized

Schwarz scheme (3.2.24) are shown in Figure 3.6. It is important to note that these

iterates are different than classical Schwarz iterates as there is no guaranteed continu-

ity between the solution at iteration n on subdomain 1 and the solution at iteration

n on subdomain 2, due to the lack of overlap between the subdomains.

We also provide an example of the iterates for the ellipse (2.2.14) with A = 3 and

47

B = 0.5 in Figure 3.7. We note that again, before convergence, the iterates on Ω1

and Ω2 are not guaranteed to be continuous.

Figure 3.6: A plot of r
(n)
1 and r

(n)
2 versus ξ from the optimized Schwarz algorithm

(3.2.24), where the final solution is denoted by the thick black line. Here, m = 64
nodes are equidistributed by the curvature-based monitor function (2.2.7) on the curve
(2.2.14), and the initial guess is given by r0 = ξ2. The parallel iteration converged in
n = 61 iterations.

48

(a) Iteration 1 (b) Iteration 5 (c) Iteration 20

(d) Iteration 1 (e) Iteration 5 (f) Iteration 20

Figure 3.7: A plot of r
(n)
1 and r

(n)
2 versus ξ (top) and the curve plotted at the equidis-

tributed nodes
(
x(r

(n)
1), y(r

(n)
1)
)

and
(
x(r

(n)
2), y(r

(n)
2)
)

(bottom) from the optimized

Schwarz iteration (3.2.24), where the DD iterations are plotted after n = 1, 5, and 10
iterations. Here, the constant p = 10 for optimized Schwarz and m = 64 nodes are
equidistributed by the curvature-based monitor function (2.2.7) on the curve (2.2.14),
and the initial guess is given by r0 = ξ.

We note that some of these subdomain BVPs are difficult to solve numerically

in practice. If numerically necessary to solve the equations, a scaling parameter

was introduced in the monitor function. Equidistributing by curvature features, the

monitor function becomes

F (r) =
4

√
1

a
(1 + xrr · xrr), (3.2.25)

for large a > 1, and we use this solution to eventually solve the problem with the

monitor function corresponding to a = 1. This is a form of continuation.

Discretization

While the discretization of the classical Schwarz iteration is fairly straightforward

due to Dirichlet boundary conditions, the optimized Schwarz discretization is less

intuitive. We provide a brief description of the discretization of (3.2.24). To discretize

49

the continuous iteration (3.2.24), we discretize the domains Ω1 = [0, α] and Ω2 = [α, 1]

into subdomains with mesh sizes of m1 and m2 nodes, respectively.

To implement the transmission conditions, we must first discretize Br on Ω2 and

Bl on Ω1, where Br and Bl are given by the right hand side of the boundary conditions

and can be calculated from the previous iteration such that

Br = F (r
(n−1)
2 (β))

dr
(n−1)
2 (β)

dξ
+ pr

(n−1)
2 (β),

and

Bl = F (r
(n−1)
1 (α))

dr
(n−1)
1 (α)

dξ
− pr(n−1)

1 (α).

If we choose only a common boundary between r1 and r2 such that β = α, then

as the subdomains do not overlap, we cannot use a centered difference method to

compute Bl and Br at x = α. Instead, we proceed recursively to approximate Bl and

Br. We note that higher order one-sided finite difference derivative approximations

could be performed here instead, but this recursive method typically gives better

results when the subdomains are not overlapping [28].

Let g
(n)
1 and g

(n)
2 denote the nth approximation to Br and Bl respectively, which

are initially taken to be g
(1)
1 = g

(1)
2 = 0. Here, we suppress the argument α such that

r
(n)
1 refers to r

(n)
1 (α) for convenience. From (3.2.24) with n = 1, we have

F (r
(1)
1)

dr
(1)
1

dξ
+ pr

(1)
1 = g

(1)
1 , (3.2.26)

and

F (r
(1)
2)

dr
(1)
2

dξ
+ pr

(1)
2 = g

(1)
2 , (3.2.27)

Similarly for iteration n = 2, we have

g
(2)
1 = F (r

(2)
1)

dr
(2)
1

dξ
+ pr

(2)
1

= F (r
(1)
2)

dr
(1)
2

dξ
+ pr

(1)
2

= pr
(1)
2 + g

(1)
2 + pr

(1)
2 ,

= 2pr
(1)
2 ,

50

and

g
(2)
2 = F (r

(2)
2)

dr
(2)
2

dξ
+ pr

(2)
2

= F (r
(1)
1)

dr
(1)
1

dξ
+ pr

(1)
1

= g
(1)
1 − pr

(1)
1 − pr

(1)
1 ,

= −2pr
(1)
1 .

This eventually gives the relations Br ≡ F (r
(n)
1)

dr
(n)
1

dξ
+ pr

(n)
1 = 2pr

(n−1)
2 + g

(n−1)
2 and

Bl ≡ F (r
(n)
2)

dr
(n)
2

dξ
+ pr

(n)
2 = −2pr

(n−1)
1 + g

(n−1)
1 .

Once we have determined Bl and Br from the previous iteration, we proceed to

discretize the iteration.

We begin with Ω1. On Ω1 = [0, α], we must discretize the right boundary condition

F (r
(n)
1 (β))

dr
(n)
1 (α)

dξ
+ pr

(n)
1 (α) = Br. (3.2.28)

We proceed by introducing and subsequently eliminating a ghost point, a common

method used when discretizing Neumann boundary conditions. Let r1 = r, ξ1 = ξ

and m1 = m for convenience such xm = α. Using centered differencing with h = ∆ξ,

we know that (3.2.28) is approximated by

F (rm)

(
rm+1 − rm−1

2h

)
− prm = Br, (3.2.29)

giving

rm+1 = rm−1 +
2h

F (rm)
(Br − prm), (3.2.30)

which can be substituted into the equation

G(m) =
1

2h2
((F (rm+1) + F (rm))(rm+1 − rm)− (F (rm) + F (rm−1))(rm − rm−1)) .

51

It is straightforward to see that the partial derivatives of rm+1 are given by

∂rm+1

rm
= −2h

(
pF (rm) + (Br + prm)F ′(rm)

(F (rm))2

)
,

∂rm+1

rm−1

= 1,

which are used in the Jacobian entries

J(m,m− 1) =
1

2h2

(
F ′(rm+1)

∂rm+1

rm−1

(rm+1 − rm)− F ′(rm−1)(rm − rm−1)

+ (F (rm+1) + F (rm))
∂rm+1

∂rm−1

+ (F (rm) + F (rm−1))

)
,

and

J(m,m) =
1

2h2

(
(F ′(rm+1)

∂rm+1

rm
+ F ′(rm))(rm+1 − rm)− F ′(rm)(rm − rm−1)

+ (F (rm+1) + F (rm))(
∂rm+1

∂rm
− 1)− (F (rm) + F (rm−1))

)
.

The remainder of the Newton iteration proceeds as usual.

Now we consider Ω2. On Ω2 = [α, 1], we must discretize the left boundary condition

F (r
(n)
2 (α))

dr
(n)
1 (α)

dξ
− pr(n)

2 (α) = Bl. (3.2.31)

Let r2 = r, ξ2 = ξ and m2 = m for convenience such that x1 = α. Here, (3.2.31)

is approximated by

F (r1)

(
r2 − r0

2h

)
− pr1 = Bl, (3.2.32)

giving

r0 = r2 −
2h

F (r1)
(Bl + pr1), (3.2.33)

which can be substituted into the equation

G(m) =
1

2h2
((F (r2) + F (r1))(r2 − r1)− (F (r1) + F (r0))(r1 − r0)) .

52

It is straightforward to see that the partial derivatives are given by

∂r0

r1

= −2h

(
pF (r1) + (Bl + pr1)F ′(r1)

(F (r1))2

)
,

∂r0

r2

= 1,

which are used in the Jacobian entries

J(1, 1) =
1

2h2

(
F ′(r1)(r2 − r1)− (F (r2) + F (r1))−(

F ′(r1) + F ′(r0)
∂r0

∂r1

)
(r1 − r0)− (F (r1) + F (r0))

(
1− ∂r0

∂r1

))
,

and

J(1, 2) =
1

2h2

(
F ′(r2)(r2 − r1) + (F (r2) + F (r1))−

F ′(r0)
∂r0

∂r2

(r1 − r0) + (F (r1) + F (r0))
∂r0

∂r2

)
.

The remainder of the Newton iteration proceeds as usual.

Analysis on two subdomains

To prove convergence of (3.2.24), we provide a slight adaptation of the analysis in

[18].

Lemma 3.2.3. Under the assumptions of Lemma 3.2.1, the BVP given by

d

dξ

(
F (r)

dr

dξ

)
= 0, r(0) = 0, F (r)

dr(β)

dξ
+ pr(β) = γβ, (3.2.34)

has a unique solution for all p > 0 given implicitly by∫ r(ξ)

0

F (r̃)dr̃ = (γβ − pr(β))ξ, ξ ∈ (0, β), (3.2.35)

where p and γβ are constants and β ∈ (0, 1) is fixed.

53

Proof. The differential equation and boundary condition at ξ = 0 is satisfied by∫ r(ξ)

0

F (r̃)dr̃ = Cξ,

where C is chosen to satisfy the Robin condition at ξ = β. Direct calculation gives

C = γβ − pr(b), from which (3.2.35) follows.

To establish the existence and uniqueness of r(ξ) satisfying (3.2.35), we notice that

if ξ = β, then the boundary value r(β) is the solution θ to

G(θ) = βγβ, (3.2.36)

where G(θ) ≡
∫

0
θF (r̃)dr̃ + βpθ.

Under the assumptions of Lemma (3.2.1), G is continuous and uniformly mono-

tonic such that there exists a constant Gp > 0 such that dG
dθ

= F (θ) + βp ≥ Gp > 0.

So (3.2.36) has a unique solution r(β). The existence of a unique, continuously differ-

entiable solution r(ξ) for ξ ∈ (0, β) follows from considering (3.2.35) with the newly

specified r(β). Noting that

G̃(θ) =

∫
0

θF (r̃)dr̃, (3.2.37)

a continuous and uniformly monotonic function, it follows that it has a continuously

differentiable inverse.

Lemma 3.2.4. Under the assumptions of Lemma 3.2.1, the BVP given by

d

dξ

(
F (r)

dr

dξ

)
= 0, F (r)

dr(β)

dξ
− pr(β) = γβ, r(1) = 1, (3.2.38)

has a unique solution for all p > 0 given implicitly by∫ 1

r(ξ)

F (r̃)dr̃ = (γβ + pr(β))(1− ξ), ξ ∈ (β, 1). (3.2.39)

Proof. Equation (3.2.39) follows from direct calculation. To establish existence and

uniqueness of a function r(ξ) satisfying (3.2.39), we evaluate this equation for ξ = β

to obtain ∫ 1

r(β)

F (r̃)dr̃ = (1− β)(γβ + pr(β)),

54

or, after rearranging, ∫ 1

r(β

F (r̃)dr̃ − (1− β)(pr(β)) = (1− β)γβ.

If we define

G(θ) =

∫ 1

θ

F (r̃)dr̃ − (1− β)pθ, (3.2.40)

under the assumptions of Lemma 3.2.1, G is continuous and uniformly monotonic and

therefore invertible. We conclude that there exists a unique r(β) given by G−1((1 −
β)γβ). Having determined r(β), the unique solution r(ξ) for ξ ∈ (β, 1) is given by

G̃−1((γβ + pr(β))(1− ξ)), where G̃(θ) =

∫ 1

θ

F (r̃)dr̃,

which is clearly a continuous and uniformly decreasing function under the stated

assumptions.

Theorem 3.2.2. Consider a monitor function F satisfying the conditions of Lemma

3.2.1. The subdomain solutions on Ω1 and Ω2 are given implicitly by

∫ r
(n)
1 (ξ)

0

F (r̃)dr̃ = R1(r
(n)
1 (α))ξ and

∫ 1

r
(n)
2 (ξ)

F (r̃)dr̃ = R2(r
(n)
2 (α))(1− ξ), (3.2.41)

where the operators R1 and R2 are given by

R1(x) =
1

α

∫ x

0

F (r̃)dr̃ and R2(x) =
1

1− α

∫ 1

x

F (r̃)dr̃. (3.2.42)

Proof. The transmission conditions force the operator values to satisfy the recurrence

relations

R1(r
(n+1)
1 (α)) + pr

(n+1)
1 (α) = R2(r

(n)
2 (α)) + pr

(n)
2 (α), (3.2.43)

and

R2(r
(n+1)
2 (α))− pr(n+1)

2 (α) = R1(r
(n)
1 (α))− pr(n)

1 (α). (3.2.44)

Here, (3.2.43)–(3.2.44) is a nonlinear Peaceman-Rachford type iteration [44]. The

convergence of the optimized Schwarz iteration follows from the analysis of similar

(nonlinear) Peaceman-Rachford iterations.

55

The following result was first presented in [18].

Theorem 3.2.3. Under the assumptions of Lemma (3.2.1), the iteration (3.2.43)–

(3.2.44) converges globally to the exact solution r(α) for all p > 0. Additionally, the

optimized Schwarz iteration has the convergence estimate

||r − r(2n+1)
1 ||∞ ≤ ρn

c1

c0

·
p+ 1

α
c1

p+ 1
α
c0

ρnrobin|r(α)− r(0)
1 (α)|, (3.2.45)

||r − r(2n+1)
2 ||∞ ≤ ρn

c1

c0

·
p+ 1

α
c1

p+ 1
1−αc0

ρnrobin|r(α)− r(0)
2 (α)|, (3.2.46)

where an upper bound for the contraction factor is

ρrobin =

√√√√√p2 +
c21

(1−α)2
− 2p c0

1−α

p2 +
c21

(1−α)2
+ 2p c0

1−α

·

√√√√p2 +
c21
α2 − 2p c0

α

p2 +
c21
α2 + 2p c0

α

(3.2.47)

Proof. A simple rewrite of the recurrence relations (3.2.43) and (3.2.44) gives

(pI +R1)r
(n+1)
1 (α) = (p1 +R2)r

(n)
2 (α),

(pI −R2)r
(n)
2 (α) = (p1 −R1)r

(n−1)
1 (α).

For the operators R1 and R2 given by (3.2.42), we have

R′1(r) =
1

α
F (r) ≥ 1

α
c0 > 0,

and

−R′2(r) =
1

1− α
F (r) ≥ 1

1− α
c0 > 0,

such that R1 and −R2 are continuous and uniformly monotonic. Since p > 0, the

same is true for pI + R1 and pI − R2 and hence they are also invertible; this means

that r
(n)
2 (α) and r

(n+1)
1 (α) are well defined.

Eliminating r
(n)
2 (α), we obtain the recursion formula

r
(n+1)
1 (α) = Gr

(n−1)
1 (α), (3.2.48)

where

G ≡ (pI +R1)−1(pI +R2)(pI −R2)−1(pI −R1), (3.2.49)

56

since pI +R1 and pI +R1 are invertible. G can be rewritten as

G = (pI +R1)−1G1G2(pI +R1),

where we define G1 ≡ (pI +R2)(pI −R2)−1 and G2 ≡ (pI −R1)(pI +R1)−1. G1 and

G2 are strict contractions for all p > 0, as R1 and −R2 are uniformly monotonic and

Lipschitz continuous. Therefore, the iteration

z(n)(α) = G1G2z
n−2(α), z(0)(α) = (p1 +R1)r

(0)
1 (α),

is convergent. Further, since z(2n)(α) = (pI + R1)r
(2n)
1 (α), then r

(2n)
1 (α) is also con-

vergent; we say that r
(2n)
1 (α) converges to a limit r∗1(α). It can also be shown that

r
(2n+1)
1 (α) converges to a limit r∗1(α) as well. Analogously, r

(2n)
2 (α) and r

(2n+1)
2 (α)

converge to the limit r∗2(α).

The limit points r∗1(α) and r∗2(α) must satisfy (3.2.43) and (3.2.44). We add

(3.2.43) and (3.2.44) and find that r∗1(α)=r∗2(α) ≡ r∗(α). By subtracting (3.2.43) and

(3.2.44) we find that r∗(α) satisfies R1(r∗(α)) = R2(r∗(α)) such that

1

α

∫ r∗(α)

0

F (r̃)dr̃ =
1

α− 1

(∫ r∗(α)

0

F (r̃)dr̃ − C

)
.

We can easily show that r∗(α) = r(α).

We determine ρrobin by computing the Lipschitz constant of the operator G1G2 by

multiplying the Lipschitz constants of G1 and G2. The convergence factor of r
(n)
1 (α)

is related to ρrobin like

|r∗(α)− r(2n)
1 (α)| ≤ LL̃ρnrobin|r∗(α)− r(0)

1 (α)|,

where L and L̃ are the Lipschitz constants for (pI+R1)−1 and (pI+R1), respectively.

We can show that L = (p + 1
α
c0)−1 and L̃ = (p + 1

α
c0). Using this and the fact that

|r(2n)
1 (ξ)− r(ξ)| ≤ c1

c0
|r(α)− r2n

1 (α), we have

|r(2n)
1 (ξ)− r(ξ)| ≤ c1

c0

·
p+ 1

α
c1

p+ 1
α
c0

ρnrobin|r(α)− r(0)
1 (α)|. (3.2.50)

The estimate on the second subdomain follows accordingly.

57

Analysis of contraction factor

Given (3.2.47), we can determine an analytic, problem dependent constant p that

minimizes the upper bound of the contraction factor ρrobin.

Theorem 3.2.4. By simple calculus, we determine that

pupper =

√
c2

1

(1− α)α
, (3.2.51)

minimizes the upper bound of the contraction factor ρrobin.

Remark 3.2.1. Since 0 < α < 1 and 0 < c0 ≤ F (r) ≤ c1 < ∞, (3.2.51) will be

positive as desired. We remark that the constant c0 has no effect on (3.2.51).

In practice, the constant obtained analytically from (3.2.51) generally will not

be equivalent to the optimal constant to minimize the iteration count numerically.

However, as we decrease the mesh width ∆x→ 0, we expect the discretized results to

converge to the continuous result. That is, we expect the optimal constant to converge

to (3.2.51) as the mesh width decreases.

Consider the example

x(r) = tanh(r) + 2r, y(r) = r10 + r, 0 ≤ r ≤ 1. (3.2.52)

From (3.2.51) and setting α = 0.5 and numerically determining c0 and c1, we see

that the p value that minimizes the upper bound is p ≈ 23. However, the actual

experimental numerical pexp value for m = 81 is shown to be p ≈ 6. This is shown

in Figure 3.8. This large discrepancy between pexp and pupper is not unexpected, as

pupper depends on the upper bound ρrobin given by (3.2.47). If this is a loose upper

bound, we can not expect accuracy of the analytical optimal p value pupper.

58

Figure 3.8: Plot of iterations versus p for various constants p in the optimized Schwarz
iteration (3.2.24). The DD error is shown for the parallel DD iteration (3.2.2) applied
to the curve (3.2.52), where the arc-length-based monitor function (2.2.6) is used.
Here, m = 81 and the initial guess is given by r0 = ξ. DD error refers to the error
between the DD solution and the single domain solution.

Another way to determine pexp for each curve is to implement a “brute force”

approach, evaluating the iterations for multiple p values to determine the nature of

the iterations versus p figures. This is shown for m = 81 and m = 161 nodes in Figure

3.9. We can see from Figure 3.9 that while the number of iterations slightly changes

with m, we generally obtain similar optimal p results for various m values. This tells

us that we can use a small number of nodes to determine the optimal p value.

Figure 3.9: Plot of iterations versus p for m = 81 nodes (left) and m = 161 nodes
(right) in the optimized Schwarz iteration (3.2.24) for the curve (3.2.52), where the
arc-length-based monitor function (2.2.6) is used. The initial guess is given by r0 = ξ.

59

3.2.3 Comparison of DD methods

We provide numerical results directly comparing the optimized Schwarz methods for

various p constants with classical Schwarz in Figure 3.10. We see from Figure 3.10

that the Robin transmission conditions obtained from using optimized Schwarz results

in convergence in a lower number of iterations than classical Schwarz. We see that

increasing p in the optimized iteration results in less efficient convergence. In Figure

3.10, p = 8 produces the more efficient convergence in terms of iterations.

Figure 3.10: A plot of DD error versus iterations (semi-log scale) comparing the
parallel classical Schwarz iteration (3.2.2) to the optimized Schwarz iteration (3.2.24)
for various constants p on S = 2 subdomains. Results are given for the ellipse (2.2.14),
where the curvature-based monitor function (2.2.7) is used. Here, m = 64 nodes are
equidistributed and the initial guess is given by r0 = ξ. DD error refers to the error
between the DD solution and the single domain solution.

Chapter 4

The Single Domain

Equidistribution for the Solutions

of Differential Equations on Static

Curves

In this chapter, we explore equidistribution of u(r) on a curve x(r), where u(r) is the

unknown solution of a differential equation. In this case, we employ an alternating

method, alternating between mesh solves and physical PDE solves. Numerical results

are provided throughout.

4.1 The Single Domain Solution of Static Bound-

ary Layer Problems

Up until this point, we have focused on single domain and multi-domain approaches

to the equidistribution of a known function u(r) on a curve. We now continue by

using r-refinement to equidistribute a function u(r) on x(r), where u is an unknown

solution to a differential equation. For our example problems, we look to numerically

approximate the solution to boundary layer problems of the form

−ε∆Cu+k ·∇Cu+cu = f, u on C, 0 < ε << 1, u(0) = α, u(b) = β, (4.1.1)

61

where ∆C and ∇C denote the surface Laplace and gradient operators, respectively, and

C denotes the surface on which the problem is defined. The surface Laplacian operator

is commonly referred to as the Laplace-Beltrami operator and is a generalization of

the typical Laplace operator for curved geometries. These operators are necessary as

u is posed on the curve.

These boundary layer problems are useful to us as they may result in large/rapid

changes in the function u. When equation (4.1.1) is discretized using certain types of

discretizations with a mesh that does not have a sufficiently large number of nodes,

the resulting discrete numerical solution can exhibit rapid fluctuations. For more

information on boundary layer problems of the form (4.1.1), see [24].

To solve the boundary layer problem in the case where u is posed on the curve x(r),

we must first simplify the differential operators. The generalized Laplace-Beltrami

operator is given by

∆Cu = |g|−1/2∂i(
√
|g|gij∂ju),

where g denotes the metric tensor, |g| denotes the determinant of g, and gij denotes

the i, jth entry of the inverse of the metric tensor, g−1. By definition, the components

of the metric tensor are given by

gij = g

(
∂

∂ri
,
∂

∂rj

)
,

for the n dimensional coordinate system (r1, . . . , rn).

We want to explicitly discretize (4.1.1) on a static parametric curve given by

x(r) ∈ R2 or x(r) ∈ R3. Here, C is a one-dimensional surface, as the curve is expressed

in a one-dimensional coordinate system r1 such that r1 = r is a one-dimensional

parameter for the curve. On a one-dimensional surface C, this gives the metric tensor

as a single element g11 such that

g11 = g

(
∂

∂r1
,
∂

∂r1

)
= g

(
∂

∂r
,
∂

∂r

)
.

We use the induced metric, also known as first fundamental form of the curve. The

first fundamental form is defined as the inner product of the tangent vectors of the

62

curve. On a parametric curve x(r), this becomes the dot product

g11 = x′(r) · x′(r) = |x′(r)|2.

Hence,

|g11| = |x′(r)|2,

and

|g11| = |x′(r)|−2.

This allows us to rewrite the Laplace-Beltrami operator as

∆Cu = ∇ · (∇Cu)

=
1

|x′|
∂r

(
1

|x′|
∂ru

)
.

Likewise, the gradient operator can be written as

∇Cu =
1

|x′|
∂ru.

Using these expressions, (4.1.1) is equivalent to

−ε|x′(r)|−1
(
|x′(r)|−1ur

)
r

+ k(r)|x′(r)|−1ur + c(r)u = f(r). (4.1.2)

We note that on a 2D curve where x(r) = (x(r), y(r)), this becomes

−ε 1√
x′(r)2 + y′(r)2

(
1√

x′(r)2 + y′(r)2
ur

)
r

+k(r)
1√

x′(r)2 + y′(r)2
ur + c(r)u = f(r).

(4.1.3)

For more details regarding this choice of metric and the differential operators, we

suggest [27, 35].

To discretize (4.1.2), one method is to expand the first term using the product

rule. Defining

|x′(r)|−1 := ψ(r), (4.1.4)

this gives

−εψ (ψrur + ψurr) + kψur + cu = f(r), u(0) = α, u(b) = β. (4.1.5)

63

We note that we could also discretize (4.1.2) directly without expanding by the prod-

uct rule.

To combine equidistribution with the solution of a differential equation, we need to

solve (4.1.5) on a non-uniform mesh. We would generally discretize the first and sec-

ond derivatives using the classical centered finite difference operators for non-uniform

meshes, given by

∂r(u(ri)) ≈
h2
i−1(Ui+1 − Ui) + h2

i (Ui − Ui−1)

hi−1hi(hi−1 + hi)
(4.1.6)

and

∂2
r (u(ri)) ≈

2[hi−1(Ui+1 − Ui)− hi(Ui − Ui−1)]

hi−1hi(hi−1 + hi)
(4.1.7)

for index i = 2, . . . ,m−1, where U = (U0, U1, . . . , Um)T is the discrete approximation

of u on the curve and hi = ri+1 − ri. We note that on a uniform mesh (when hi =

hi−1), (4.1.6) and (4.1.7) simplify to the standard centered difference approximations.

However, on a non-uniform mesh, a Taylor series analysis shows that the second

derivative approximation (4.1.7) is only a first order approximation to u′′(ri) when

hi 6= hi−1(1+O(hi)). However, as is common with finite difference approximations on

a non-uniform mesh, (4.1.7) will often produce a second order approximation when

maxi hi is sufficiently small in the neighborhood of the layer [24]. There are methods

that can be used to improve the accuracy of the second derivative approximation such

as introducing a staggered mesh, but for simplicity we will use (4.1.7) throughout.

Before we state any iterations to solve (4.1.5), we clarify some terminology to be

used in following sections.

Given a general uniform computational domain Ω given by ξ ∈ [α, β] and Dirichlet

boundary values rα and rβ, and given a monitor function F (r), we approximate the

solution of
d

dξ

(
F (r(ξ))

dr(ξ)

dξ

)
= 0, r(α) = rα, r(β) = rβ, (4.1.8)

iteratively here via Newton’s method

r(n+1) = r(n) + δ,

where r = (r0, . . . , rm)T is a mesh of sizem+1 and ri approximates r(ξi) = r(i/m). For

Newton’s method, (4.1.8) is discretized with the scheme (2.2.12) provided in Section

64

2.2, giving

Gi =
(F (ri+1) + F (ri)) (ri+1 − ri)− (F (ri) + F (ri−1)) (ri − ri−1)

2∆ξ2
,

for i = 1, 2, . . . ,m− 1, and the corresponding Jacobian

Jij(U) =
∂

∂Uj
Gi(U),

for i, j = 1, 2, . . . ,m − 1. Solving the nonlinear equations obtained from discretizing

(4.1.8) with Newton’s method will be called a “mesh solve”, which we will label as an

“M” solve on Ω moving forward.

Consider a general domain [rα, rβ] discretized with a mesh of size m+ 1 given by

r = (r0, . . . , rm)T , with ri−1 < ri < ri+1, r0 = rα, and rm = rβ. This notation is

used to define a general domain r with endpoints rα and rβ; in practice, this could be

the single domain or a subdomain. Additionally, consider general Dirichlet boundary

values given by B1 and B2. We approximate the solution of

−εψ
(
∂rψ∂ru+ ψ∂2

ru
)

+ kψ∂ru+ cu = f, u(rα) = B1, u(rβ) = B2, (4.1.9)

by forming and solving

AU = f, (4.1.10)

where f = (B1, f(r1), . . . , f(rm−1),B2)T and

A =

η0 γ0

φ1 η1 γ1

φ2 η2 γ2

φ3 η2 γ3

φ4 η4 γ4

φ5
.
. γm−1

φm ηm

.

Here, the discretization of (4.1.9) using finite difference methods (4.1.6) and (4.1.7)

65

results in the matrix entries

φi+1 =
εψi+1(h2

i (ψi+2 − ψi+1) + h2
i+1(ψi+1 − ψi))h2

i+1

(h2
i+1h

2
i (hi+1 + hi)2)

−
2εψ2

i+1hi+1

hihi+1(hi + hi+1)

−
ki+1ψi+1h

2
i+1

hihi+1(hi + hi+1)
,

ηi+1 =
εψi+1(h2

i (ψi+2 − ψi+1) + h2
i+1(ψi+1 − ψi)(h2

i − h2
i+1)

(h2
i+1h

2
i (hi+1 + hi)2)

+
2εψ2

i+1(hi + hi+1)

hihi+1(hi + hi+1)

−
ki+1ψi+1(h2

i − h2
i+1)

hihi+1(hi + hi+1)
+ ci+1,

γi+1 = −
εψi+1(h2

i (ψi+2 − ψi+1) + h2
i+1(ψi+1 − ψi))h2

i

(h2
i+1h

2
i (hi+1 + hi)2)

−
2εψ2

i+1hi
hihi+1(hi + hi+1)

+
ki+1ψi+1h

2
i

hihi+1(hi + hi+1)
,

for i = 0, . . . ,m−2. To complete the system, we set η0 = 1, γ0 = 0, φm = 0, and ηm =

1. Here, ψi = ψ(ri), ki = k(ri), ci = c(ri), and hi = ri − ri−1. Approximating (4.1.9)

with the above discretization and then solving (4.1.10) will be called a “physical solve”,

which we will label as a “P” solve on the given domain. We note that this discretization

arises from the centered difference approximation, but one could similarly employ an

upwind approximation.

Given an initial (often uniform) initial mesh r(0) on which the curve is discretized,

the proposed iterative procedure to solve boundary layer problems on a curve is given

in Algorithm 1.

66

Algorithm 1: Single domain MP method on a curve

Use the derivatives of the curve x(r) and (4.1.4) to evaluate the function ψ(r);

initialize the uniform mesh r(0);

Complete a physical solve on r(0) to obtain U (0);

for n = 0, 1, . . ., do

Given the monitor function vector F (which uses U (n)), complete a mesh

solve on the computational coordinate domain Ω = [0, 1] with boundary

values r0 = r(0) and rm = r(1) to determine the new grid r(n+1). F must

be interpolated onto the new grid at each step of the equidistribution;

Complete a physical solve with boundary values B1 and B2 on r(n+1) to

obtain U (n+1);

if max(||U (n) − U (n−1)||∞, ||r(n) − r(n−1)||∞) < tol then

BREAK LOOP;

end

end

Remark 4.1.1. As we are using a Newton iteration to solve the mesh BVP, we must

numerically compute the derivative of the monitor function F to use in the Jacobian

J . We interpolate the discrete approximations of the monitor function F using a

cubic spline interpolation. The differentiability of a cubic spline allows us to directly

obtain F ′ from the spline coefficients, rather than performing the finite difference

approximation (4.1.6) on the interpolated vector F . This allows for a more accurate

computation of ∂rF .

Additionally, in the case where we begin a mesh solve by interpolating the previous

physical solve U from the previous mesh, we would use the same process to obtain U ′.

This U ′ may need to be calculated once in order to determine F , depending on the

monitor function. More details on the choice of monitor function is given in Section

2.4.

We refer to these methods as “MP” methods, as in [51] but with slightly different

notation. This denotes the alternating of the mesh and physical solves.

We proceed with an example, computing the solution of (4.1.5) with k(r) =

−1, c(r) = 0, and f(r) = −1; that is, we solve

εψ (ψrur + ψurr) + ψur = 1, u on C, u(0) = u(1) = 1, (4.1.11)

67

where C is given by the ellipse

x(r) = A cos(2πr), y(r) = B sin(2πr), 0 ≤ r ≤ 1. (4.1.12)

We note that in this example, the function u(r) requires equidistribution much more

than the curve x(r). Plots of the numerical solution of (4.1.11) with and without

equidistribution are shown in Figure 4.1. We note since the boundary layer problem

(4.1.11) has its layer (and therefore needs equidistribution the most) around r ≈
0, equidistribution concentrates the nodes in this area. Concentrating the nodes

around r ≈ 0 on the ellipse with radius A = 3 and B = 0.5 corresponds to a higher

concentration of nodes in the regions of x ≈ 3 and y ≈ 0. This is seen in Figure 4.1. We

also note from Figure 4.1 that the uniform mesh does not resolve the layer, the centered

difference approximation gives jagged ”wiggles” in the layer. Equidistribution is a way

to resolve this issue.

68

Figure 4.1: Solutions of (4.1.11) with ε = 0.025 posed on the ellipse (4.1.12) with
A = 3, B = 0.5 and m = 30 nodes after n = 3 iterations of Algorithm 1. Solutions
are given both on a uniform mesh with no equidistribution (left) and on a mesh
equidistributed with monitor function (2.4.6) (right). Top: 2d plot of discrete solution
U versus r, plotted with the fine grid solution shown in solid red for comparison. Row
2: 3d plot of discrete solution U on x(r), plotted with the fine grid solution shown
in solid red for comparison. Bottom: Plot of discrete solution U on x(r), where the
color of a point on the curve represents the numerical value of U .

Remark 4.1.2. Since we are working with a small number of uniformly spaced nodes

and a centered discretization, the numerical solution U will be generally be nonsmooth.

69

This will lead to a nonsmooth monitor function F , which can cause Newton’s method

to fail to converge. If necessary, this is often combated by smoothing the monitor

function at each iteration using the method discussed in [30]; this approach computes

F̃i =

√√√√max(N,i+p)∑
min(1,i−p)

(Fr)2

(
γ

1 + γ

|k−i|
)
/

max(N,i+p)∑
min(1,i−p)

(
γ

1 + γ

|k−i|
)
, (4.1.13)

i = 1, . . . , N . Here, 0 < γ < 1 and p > 1 are chosen smoothing parameters. A higher

p value corresponds to a smoother monitor function. We then complete a mesh solve

via Newton’s method using F̃ in place of F at each iteration. We note that the authors

of [30] remarked that choosing the smoothing parameter as p = 1 or p = 2 is often

sufficient.

An example of the effect smoothing has on the monitor function is shown in

Figure 4.2. We see that the result without smoothing is a more jagged, less smooth

monitor function F . We note that in the boundary layer case, smoothing will only be

necessary in the first few alternating iterations, as that is when the physical discrete

solution U will be jagged in nature. As the alternating procedure converges, smoothing

becomes less necessary. This is due to the solution of the boundary layer problem

having smoothness in nature. For information on using adaptivity to solve hyperbolic

problems with a nonsmooth solution, see [50].

70

Figure 4.2: A visual of nonsmoothed and smoothed monitor functions with the
smoothing equation (4.1.13) and smoothing parameters p = 4 and γ = 0.5. The
monitor functions are shown for the mesh (M) solve at alternating iteration n = 1 of
Algorithm 1 to solve (4.1.11) posed on the ellipse (4.1.12) with A = 3 and B = 0.5
The non-smooth vector F (left) and the smoothed vector F̃ (right) are formed from
the monitor function (2.4.6).

If C is an interval on the axis, then the Laplace-Beltrami and surface gradient

operators simplify to the classic Laplace and gradient operators. This gives a simplified

form of (4.1.1) as

−εu′′ + k(r)u′ + c(r)u = f, u(0) = α, u(1) = β. (4.1.14)

In the interval case, we are completing a “modified” physical solve at each iteration,

as there are clearly slight adjustments to be made in the discretization. There would

be no computation of ψ(r), and we use an accordingly modified matrix tridiagonal

matrix A. We also note that the monitor function used during the mesh solve would

be different, as there are no curve features to consider.

The procedure for the iteration on a line given an initial mesh x(0), is given in

Algorithm 2.

71

Algorithm 2: single domain MP method on a line

Result:

initialize the uniform mesh x(0);

Complete a modified physical solve for u(0) on x(0) ;

for n = 0, 1, . . ., do

Given the monitor function vector F (which uses U (n)), complete a mesh

solve on the computational coordinate domain Ω = [0, 1] to determine

the new grid x(n+1). At each step of the equidistribution (each Newton

iteration), interpolate F onto the new grid to eventually give x(n+1) ;

Complete a modified physical solve on x(n+1) to obtain U (n+1);

if max(||U (n) − U (n−1)||∞, ||x(n) − x(n−1)||∞) < tol then

BREAK LOOP;

end

end

As a simple example of the line case, we consider the boundary layer problem

−εu′′ − u′ = −1, u(0) = u(1) = 1, (4.1.15)

an example of (4.1.1) with b(x) = −1, c(x) = 0, and f(x) = −1, where u(x) is posed

on the interval x ∈ [0, 1]. On the 1D interval, the surface gradient and Laplacian

simplify to the first and second derivatives, respectively.

Plots of the numerical solution of (4.1.15) with and without equidistribution are

shown in Figure 4.3. Since we are solving the equation on a line, we use the arc-length

monitor function (2.4.2).

72

Figure 4.3: Solutions of (4.1.15) with ε = 0.01 and with N = 20 nodes after n =
3 iterations of Algorithm 2. Solutions are given both on a uniform mesh with no
equidistribution (left) and on a mesh equidistributed using monitor function (2.4.2)
(right). Solution are plotted with the fine grid solution in solid red for comparison.

We now review some theoretical evidence for the convergence of Algorithm 1. In

[36], the author considers general linear (and quasi-linear) boundary layer problems

and shows the well-posedness and error bounds for the algorithm, working mainly in

the discrete case. The relevant results to this paper will be summarized here. It is

important to note that there are many small differences between the method used

in [36] and the method used here. These differences will be discussed in this section

along with corresponding statements on the likelihood of the analysis extending to

our algorithm.

The author provides the following two theorems. Theorem 4.1.1 states the ac-

curacy of the solution obtained when the algorithm is terminated from its stopping

criteria. When the algorithm is terminated, the computed physical solution is a first

order accurate approximation to the true solution. We note that the algorithm used

in [36] varies slightly from our algorithm; this is discussed in further detail after the

theorems are stated.

Theorem 4.1.1. Suppose that the algorithm reaches its stopping criterion and halts.

Let the resulting mesh be given as x∗i . Let u∗i be the discrete solution computed on

this mesh, and let u∗(x) be the piecewise linear interpolant of (x∗i , u
∗
i). Then for some

constant C independent of the mesh and ε, we have

max
0≤x≤1

|u∗(x)− u(x)| ≤ CN−1.

73

Theorem 4.1.2 gives an upper bound on the number of iterations k of the algorithm

needed for first order accuracy, regardless of the constant ε in the boundary layer

problem. The solution of the algorithm after k iterations is determined to be a first

order accurate approximation to the true solution.

Theorem 4.1.2. Let N be sufficiently large independent of ε and of the number of

iterations taken by the algorithm. Then there exists a positive integer k such that

k ≤ C ′ ln(1
ε
)/ln(N) and ||e(K)||∞ ≤ C ′′N−1, where e(k)(x) = u(k)(x) − u(x) is the

error in the solution at iteration k computed by the algorithm. Constants C ′ and C ′′

are independent of ε and N .

We now discuss the differences between the method in [36] and the method pro-

posed in this thesis. In [36], the author considers an alternating MP boundary layer

problem on the line in 1D. There, instead of a damped Newton method, Kopteva

uses a variant of de Boor’s algorithm to solve for the mesh, a common algorithm

used in 1D moving mesh methods, originally described in [51]. The main advantage

of de Boor’s algorithm is that it conserves the mesh ordering; we have replaced this

with a modified damped Newton method that requires the mesh to remain monotonic

throughout each iteration. Therefore, we expect this change in algorithm to have

little to no effect on convergence. Specifically, Kopteva states “We expect any other

algorithm based on the same or similar monitor function to enjoy similar properties

and require a similar amount of iterations.”

Kopteva also focuses purely on a monitor function based on arc-length; while

this is a reasonable step in the line case, our results have shown that on a curve,

equidistributing by just the curve’s arc-length can produce a high interpolation error;

see Section 2.2 for details. We want to equidistribute in a way that concentrates

nodes in areas of both high arc-length of the physical function u and high curvature

of the curve x(r). However, Kopteva suggests that using a curvature-based monitor

function on the line can increase the algorithm’s accuracy from first order to second

order. Therefore, we expect that one would be able to use a monitor function based

on the arc-length of the physical function u and the curvature of the curve x(r) and

still obtain convergence of the algorithm. Additionally, Kopteva states that for any

reasonable monitor function, both lower and upper bounds on the monitor function

should exist, and this results in the existence of the discrete solution of the algorithm.

It is stated in [36] that there are other conditions that should be sufficient to

extend their general analysis to other problems and monitor functions. These include

74

a sharp lower bound on the monitor function and constant C1 such that

1 ≤M (N)(x);

∫ 1

0

M (N)(x)dx ≤ C1, (4.1.16)

where M (N)(x) denotes the linear interpolant of the discrete approximation Mi, i =

1, . . . , N , where N is the total number of mesh nodes.

Lastly, Kopteva considers an upwind method to discretize the physical PDE, com-

pared to the centered difference method considered here. Hence we could modify our

method to a upwind differencing scheme or attempt to generalize Kopteva’s results

to the centered difference case.

For the time being, we refrain from completing an entire analysis of our single

domain method, as that is not our focus. We leave the discrete analysis to future

work, with the generalizations and framework stated above.

4.2 The Single Domain Solution of Time-Dependent

Differential Equations on Static Curves

A natural application of equidistribution on curves occurs when we wish to solve time-

dependent PDEs posed on curves. As discussed in the introduction, these problems

occur often in real-world applications. In this section, we propose an alternating

algorithm to solve time-dependent PDEs on static curves with equidistribution.

Consider the general equation

ut = f(x, u,∇Cu,∆Cu), u on C, (4.2.1)

where C is the given closed curve, ∇C is the surface gradient and ∆C is the generalized

Laplace-Beltrami operator on a surface, given by

∆Cu = |g|−1/2∂i(
√
|g|gij∂ju). (4.2.2)

As discussed in Section 4.1, on a parametric curve (4.2.1) can be written as

ut = f
(
x, u, |x′(r)|−1ur, |x′(r)|−1

(
|x′(r)|−1ur

)
r

)
. (4.2.3)

75

Specifically in this section, we focus on the advection-diffusion equation given by

ut = ∇Cu+ ∆Cu+ f, (4.2.4)

where periodic boundary conditions are chosen to be consistent with (4.2.4) being

posed on a closed curve. From the discussions in Section 4.1, we can rewrite (4.2.4),

posed on the curve (x(r), y(r)), as

ut = (ψ(r)ψr(r) + ψ(r))ur + ψ(r)ψ(r)urr + f(r, t), u(0, t) = u(b, t), (4.2.5)

where ψ is given in (4.1.4). When x(r) = (x(r), y(r)), this gives ψ(r) = 1√
x′(r)2+y′(r)2

and r ∈ [0, b].

As a specific example, we choose the PDE (4.2.5), with f(r, t) chosen so that

u(r, t) = e−
(r− 1

4−
1
2 t)

2

ε (4.2.6)

is the true solution. This solution has nearly periodic boundary conditions on the

interval r ∈ [0, 1] if t ≤ 1. Here, we choose ε = 0.01, and choose f(r, t) = ut −
(ψ(r)ψr(r) + ψ(r))ur − ψ(r)ψ(r)urr, where ψ(r) is a function that is determined by

the curve x(r). The initial condition is given by u(r, 0) = e−
(r− 1

4)2

ε .

We aim to solve (4.2.5) coupled with a mesh solve. As (4.2.6) gives a single

pulse/wave that moves with time, we suspect that using an equidistributed mesh will

provide a more accurate solution. This is shown later on with interpolation errors.

Combining this with periodic boundary conditions, we have formed the problem to

be solved.

Consider the domain Ω = r ∈ [0, b] and its corresponding mesh of size m+ 1 given

by r = (r0, . . . , rm)T , with ri−1 < ri < ri+1, r0 = 0, and rm = b. We approximate

the solution to (4.2.5) using an implicit backward Euler scheme at each time step.

To discretize the periodic boundary conditions, we set U0 = Um. Then, Um can

be removed from the discretization scheme and the finite difference derivatives of

U = (U0, U1, . . . , Um−1)T at the endpoints are discretized as

∂rU0 =
h2
m−1(U1 − U0) + h2

0(U0 − Um−1)

hm−1h0(hm−1 + h0)
, (4.2.7)

76

∂rUm−1 =
h2
m−2(U0 − Um−1) + h2

m−1(Um−1 − Um−2)

hm−2hm−1(hm−2 + hm−1)
, (4.2.8)

∂2
rU0 =

2[hm−1(U1 − U0)− h0(U0 − Um−1)]

hm−1h0(hm−1 + h0)
(4.2.9)

∂2
rUm−1 =

2[hm−2(U0 − Um−1)− hm−1(Um−1 − Um−2)]

hm−2hm−1(hm−2 + hm−1)
(4.2.10)

where hi = ri+1 − ri. At the inner nodes U1, . . . , Um−2, we use the centered difference

approximations given by (4.1.6) and (4.1.7). Discretizing using the finite difference

schemes and the backward Euler method gives a system of equations whose solution

gives an approximation to the solution of (4.2.5).

with the above discretization will be called a “physical time solve”, which we will

label as a “Pt” solve moving forward. We note that this discretization arises from

the centered difference approximation, but one could similarly employ an upwind

approximation. Additionally, one could use an explicit time stepping scheme if desired

such as fourth order Runge-Kutta.

The proposed iterative procedure for the advection-diffusion equation on a curve

is given in Algorithm 3.

Algorithm 3: Single domain MPt method on a curve

Use the derivatives of the curve x(r) and (4.1.4) to evaluate the function ψ(r);

initialize the uniform mesh r(0);

Use the initial condition to obtain U (0);

for k = 0, 1, . . ., do

Set t(k+1) = t(k) + ∆t ;

Given the monitor function vector F (which uses U (k)), complete a mesh

solve on the computational coordinate domain Ω = [0, 1] with boundary

values rα = r(0) and rα = r(1) to determine the new grid r(k+1). F must

be interpolated onto the new grid at each step of the equidistribution;

Interpolate U (k) onto the new grid r(k+1);

Complete a physical time solve on r(k+1) with periodic boundary

conditions to obtain U (k+1);

end

In Algorithm 3, ∆t is constant; this varies from the alternating procedure described

77

in [31], where a variable time step size ∆t is used. We remark that in Algorithm 3,

we complete one mesh solve and one physical solve at each time step. There is no

alternating loop inside of the time loop; this is a standard approach in the moving

mesh literature. A disadvantage of this approach is that one can experience a mesh

lag, meaning that the mesh starts to lag behind the physical solution. This issue

could be fixed by doing additional mesh and physical solves in an alternating loop,

where the alternating loop occurs for each time step. This approach would be more

analagous to Algorithm 1 from Section 4.1.

We provide the solution of (4.2.5) with equidistribution using two different monitor

functions in Figure 4.4. We see from Figure 4.4 that equidistributing by just function

features, with monitor function (2.4.17), concentrates nodes only where the function

needs it, compared to monitor function (2.4.19) which balances its concentration of

nodes between both the curve and function features. For the monitor function (2.4.17),

we do not best resolve the curve on the other areas on the ellipse. For example, we

can see this visually in the second row of Figure 4.4 in the general region r ∈ (0.5, 1),

which corresponds to the regions x ∈ (−3., 3) y ∈ (−0.5, 0), and u ≈ 0. We see that

the monitor function (2.4.19) (right) is not resolving the curve as well in this region.

This demonstrates the importance of including both curve and function features

in equidistribution, and also emphasizes the importance of visualizing the numerical

results. The 2d plot of u versus r does not show the curve on which u is posed, making

it seem as if a monitor function that only takes in function features will be the best

choice.

78

Figure 4.4: Solutions of (4.2.5), where the PDE is formed from the solution u(r, t) =

e−
(r− 1

4−
1
2 t)

2

ε with ε = 0.01, posed on the ellipse (2.2.14) with radius A = 3 and B = 0.5.
Solutions are determined from the single domain MPt method on a curve and are given
at tf = 0.05, where ∆t = 0.0011, giving k = 45 time steps of the algorithm. Solutions
are given on a mesh of m = 32 nodes equidistributed with monitor function (2.4.19)
(left) and on a mesh equidistributed with monitor function (2.4.17) (right). Top: 2d
plot of discrete solution U versus r, plotted with the fine grid solution withmfine = 600
nodes shown in solid red for comparison. Row 2: 3d plot of discrete solution U on
x(r), plotted with the fine grid solution shown in solid red for comparison. Bottom:
Color plot of discrete solution U on x(r).

79

As in Section 2.4, we begin with a coarse grid r and fine grid rfine to determine

the interpolation error. Since the function (4.2.6) is not exactly periodic, we will not

determine interpolation errors compared to the ”true” solution. Instead, we compare

the numerical results to the discrete solution ufine, determined on a fine uniform

grid. Choosing the time t to evaluate the numerical solutions, the coarse grid r is

equidistributed with a given monitor function, then the resulting x = x(r), y = y(r)

are linearly interpolated onto the fine grid rfine, giving (xinterp, yinterp). The numerical

solution at each time step U , found using backward Euler, is interpolated onto rfine,

giving uinterp. Then these interpolated values are compared to xfine = x(rfine), yfine =

y(rfine), and ufine. The error between the equidistributed grids and the numerical fine

grid solution is then given by

e =
√

(xfine − xinterp)2 + (yfine − yinterp)2 + (ufine − uinterp)2.

As in Section 2.4, we can also separate the error e into a “curve” and “function”

error, where the curve error is defined as

ec =
√

(xfine − xinterp)2 + (yfine − yinterp)2,

and the function error is defined as

eu =
√

(ufine − uinterp)2,

or |ufine − uinterp|. We then take the maximum and Euclidean norms of the error

vectors e, ec, and eu. Interpolation results are provided in Table 4.1.

From Table 4.1, we see that for (4.2.5) posed on the ellipse (2.2.14), we obtain

lower errors than the uniform mesh in the maximum and Euclidean norms with the

monitor functions (2.4.4) (both curve and function features) and (2.4.19) (both curve

and function features). We remark that these interpolation errors are consistent with

the discussion of the results in Figure 4.4; that is, equidistributing using both curve

and function features generally produces lower overall interpolation errors than using

only curve or function features.

Additionally, we look at the function error; that is, ||eu||∞ and ||eu||2. We obtain

lower function errors than the uniform mesh in the maximum and Euclidean norms

with the monitor functions (2.4.4), (2.4.17) (just function features), and (2.4.19).

80

It is important to keep in mind that the most relevant errors are the overall

errors ||e||2 and ||e||∞, as they represent a combined error of both the curve and

function. Additionally, while monitor functions (2.4.4) and (2.4.19) may seem to

only slightly reduce the overall errors, the errors are reduced drastically in terms of

percentage. For example, the monitor function (2.4.19) reduces the overall error ||e||2
by approximately 35% when compared to the fine uniform mesh. Additionally, as

in Chapter 2, we remark that we are experimenting with sensible monitor functions

rather than determining the optimal monitor function.

Table 4.1: Interpolation errors for the solution of (4.2.5), where the PDE is formed

from the solution u(r, t) = e−
(r− 1

4−
1
2 t)

2

ε with ε = 0.01, posed on the ellipse (2.2.14)
with radius A = 3 and B = 0.5. Interpolation errors are determined from the single
domain MPt method on a curve, where tf = 0.05 and ∆t = 0.0011, giving k = 45
time steps of the algorithm. The weights are chosen as ω = 0.1 and ωu = 0.01 for all
monitor functions. Here, we use m = 30 nodes and M = 600 nodes for the fine mesh
used to compute the interpolation error.

Monitor Function ||ec||∞ ||ec||2 ||eu||∞ ||eu||2 ||e||∞ ||e||2
(2.4.4) .0088153 0.004589 0.042295 0.0057645 0.042297 .0073681

(2.4.17) 0.069733 0.035186 0.0050103 0.0013508 0.069734 0.035212

(2.4.3) .008226 0.004234 0.068855 0.0092235 0.068861 0.010149

(2.4.5) 0.01486 0.0059667 0.1795 0.031676 0.17982 0.032233

(2.4.6) 0.010366 0.0047088 0.18993 0.028953 0.1901 0.029334

(2.4.19) 0.013927 0.0051619 0.020762 0.0033246 0.020798 .0061399

uniform mesh .0082116 0.0042607 0.064116 0.0084225 0.064121 .0094388

As another example, we choose the same PDE (4.2.5) with a solution of u(r, t) =

e−
(r− 1

4−
1
2 t)

2

ε , with ε = 0.001. Reducing the value of ε will produce a steeper ”pulse” in

the function. This means that there will generally be a greater concentration of nodes

in that area of the pulse than in Figure 4.4, as the function is increasing and decreasing

more rapidly in that region. We provide the solution with equidistribution using two

different monitor functions in Figure 4.5. As in Figure 4.4, we see from Figure 4.5 that

equidistributing by just function features with monitor function (2.4.17) concentrates

nodes only where the function needs it, compared to monitor function (2.4.6) which

balances its concentration of nodes between both the curve and function features.

81

Figure 4.5: Solutions of (4.2.5), where the PDE is formed from the solution u(r, t) =

e−
(r− 1

4−
1
2 t)

2

ε with ε = 0.001, posed on the ellipse (2.2.14) with radius A = 3 and
B = 0.5. Solutions determined from the single domain MPt method on a curve are
given at tf = 0.05, where ∆t = 0.00028, giving k = 180 time steps of the algorithm.
Solutions are given on a mesh of m = 60 nodes equidistributed with monitor function
(2.4.19) (left) and on a mesh equidistributed with monitor function (2.4.17) (right).
Top: 2d plot of discrete solution U versus r, plotted with the fine grid solution
with mfine = 600 nodes shown in solid red for comparison. Row 2: 3d plot of
discrete solution U on x(r), plotted with the fine grid solution shown in solid red for
comparison. Bottom: Color plot of discrete solution U on x(r).

Interpolation error results are shown in Table 4.2. From Table 4.2, we see that

82

when (4.2.5) is solved on the ellipse (2.2.14), we obtain lower errors than the uniform

mesh in the maximum and Euclidean norms with the monitor functions (2.4.4) (both

curve and function features) and (2.4.19) (both curve and function features).

Additionally, looking specifically at the function error ||eu||, we obtain lower func-

tion errors than the uniform mesh in the maximum and Euclidean norms with the

monitor functions (2.4.4), (2.4.17) (just function features), and (2.4.19). However, we

once again remark that the overall errors ||e||2 and ||e||∞ are the most relevant, as

they consider both the curve and function error.

This is the same result as Table 4.1. Generally, we remark that decreasing the

value of ε will produce a greater need for equidistribution (specifically equidistributing

with function features), given that the ”pulse” is steeper and will need a greater

concentration of nodes in that area.

Table 4.2: Interpolation errors for the solution of (4.2.5), where the PDE is formed

from the solution u(r, t) = e−
(r− 1

4−
1
2 t)

2

ε with ε = 0.001, posed on the ellipse (2.2.14)
with radius A = 3 and B = 0.5. Interpolation errors are determined from the single
domain MPt method on a curve, where tf = 0.01 and ∆t = 0.00028, giving k = 36
time steps of the algorithm. The weights are chosen as ω = 0.1 and ωu = 0.05 for all
monitor functions. Here, we use m = 60 nodes and M = 600 nodes for the fine mesh
used to compute the interpolation error.

Monitor Function ||ec||∞ ||ec||2 ||eu||∞ ||eu||2 ||e||∞ ||e||2
(2.4.4) 0.018295 0.0093129 0.027116 0.0056112 0.027286 0.010873

(2.4.17) 0.070478 0.02839 0.0058895 0.0022566 0.070497 0.028479

(2.4.3) 0.015639 0.0083006 0.030311 0.0067759 0.030464 0.010715

(2.4.5) 0.017509 0.0090106 0.13872 0.028206 0.13951 0.02961

(2.4.6) 0.014799 0.0080526 0.10247 0.019733 0.10303 0.021312

(2.4.19) 0.021088 0.0091877 0.016009 0.0043339 0.021088 0.010159

uniform mesh 0.016347 0.0086033 0.027228 0.0061244 0.027365 0.010561

Chapter 5

The Multi-domain Equidistribution

for the Solutions of Differential

Equations on Static Curves

In this chapter, we provide and study Classical Schwarz variants for the single domain

algorithms provided in Chapter 4, in order to solve multi-domain problems. To do this,

we employ an alternating technique, alternating between a mesh PDE and physical

PDE. In the static boundary layer case, we begin with a uniform mesh and alternate

at each iteration until a tolerance is reached between approximations. In the time-

dependent PDE case, we begin with the initial condition and alternate at each time

step until the desired final time tf .

In this chapter, we set up DD iterations in the r variable to solve the physical

PDE to obtain a numerical approximation to the solution u(r). Another approach

would be to set up the DD iteration in the computational ξ coordinate. This would

involve partitioning ξ into fixed, uniform subdomains, and considering the solution as

u(r(ξ)), transforming the PDE by the chain rule. This is discussed in further detail

in Chapter 6.

We remark that the methods described in this chapter could be extended to opti-

mized Schwarz iterations. One would simply change the Dirichlet transmission con-

ditions to the Robin transmission conditions discussed in Section 3.1.2.

84

5.1 The Multi-Domain Solution of Static Bound-

ary Layer Problems

We consider an alternating approach, first solving the mesh BVP given by (2.2.2) in

parallel before solving the boundary layer problem given by (4.1.11) in parallel, where

(2.2.2) is given on the interval ξ ∈ [0, 1] by

(F (r)rξ)ξ = 0, r(0) = 0, r(1) = b, (5.1.1)

and (4.1.5) is given on the interval r ∈ [0, b] by

−εψ (ψrur + ψurr) + kψur + cu = f, u(0) = γ0, u(b) = γb. (5.1.2)

We proceed by setting up the DD iteration for the mesh r(ξ) in the ξ variable and

setting up the DD iteration for the physical solution in the r variable.

Consider a uniform computational grid ξ ∈ [0, 1] broken into S overlapping sub-

domains such that Ωi = ξi = [αi, βi], i = 1, . . . , S, where α1 = 0 and βS = 1.

Additionally, consider the initial meshes, ri, given by

ri = (ri(αi), . . . , ri(βi))
T , (5.1.3)

= (ri,0, ri,1, . . . , ri,m−1, ri,m)T ,

i = 1, . . . , S, where r1,0 = 0 and rs,m = b, where ri are uniformly spaced. We begin

with an initial guess u(0) and choose U
(0)
i = u(0)(ri). We will complete a parallel

mesh solve to obtain r
(n)
i on ξi, and use this mesh to compute the physical numerical

solution U
(n)
i on r

(n)
i .

We require an initial guess u(0) in order to provide the Dirichlet boundary con-

ditions needed for each subdomain. The most straightforward way to approach this

problem is to alternate between complete DD solves of the physical and mesh equa-

tions until the sequential iterates converge within a given tolerance. In this method,

described in Algorithm 4, the outermost loop is the alternating mesh and physical

PDE iteration with index n. At each alternating iteration, the DD mesh and physical

solves are executed until convergence. The mesh and physical solves are continued

until the mesh and physical solves cease to change from the previous approximation.

This gives us both a final result for our mesh, and a final result for our solution.

85

Algorithm 4: (M∞P∞)ν Method

Use the derivatives of the curve x(r) and (4.1.4) to evaluate the function ψ(r);

Choose a uniform initial mesh r(0);

Initialize initial guess U (0);
for n = 1, 2, . . ., do

initialize r
(0)
i = r

(n−1)
i for i = 1, . . . , S ;

for c = 1, 2, . . ., do
for i = 1, . . . , S do

Complete a mesh solve on the computational coordinate domain
Ωi = [αi, βi] with boundary values
rα = 0, rβ = r

(c−1)
i+1 (βi), for i = 1,

rα = r
(c−1)
i−1 (αi), rβ = r

(c−1)
i+1 (βi), for i = 2, . . . , S − 1,

rα = r
(c−1)
i−1 (αi), rβ = b, for i = S,

to obtain r
(c)
i ;

end

if maxi(||r(c)
i − r

(c−1)
i ||∞) < tol/10 then

BREAK LOOP;
end

end

Result: r
(n)
i for i = 1, . . . , S

for c = 1, 2, . . . , do
for i = 1, . . . , S do

Complete a physical solve on Ω = r
(n)
i , with boundary values

B1 = γ0, B2 = U
(c−1)
i+1 (r

(n)
i+1(βi)) for i = 1,

B1 = U
(c−1)
i−1 (r

(n)
i−1(αi)), B2 = U

(c−1)
i+1 (r

(n)
i+1(βi)) for i = 2, . . . , S − 1,

B1 = U
(c−1)
i−1 (r

(n)
i−1(αi)), B2 = γb, for i = S,

to obtain U
(c)
i on Ωi ;

end

if maxi(||U (c)
i − U

(c−1)
i ||∞) < tol/10 then

BREAK LOOP;
end

end

Result: U
(n)
i for i = 1, . . . , S

if maxi(||U (n)
i − U

(n−1)
i ||∞, ||r(n)

i − r
(n−1)
i ||∞) < tol then

BREAK LOOP;
end

end

86

We refer to this method as the (M∞P∞)ν method. Here, the notation M∞ and

P∞ denote a complete mesh solve and physical solve, respectively. Here, “complete”

means the DD solves are continued until convergence. The subscript (·)ν indicates

that ν alternating iterations are needed for convergence within a given tolerance.

We note that the ν subscript could also be written as ∞, as in practice we run

alternating mesh and physical iterations until a tolerance is achieved between two

consecutive approximations. However, we keep the subscript ν to be consistent. We

note that there are many moving pieces in the (M∞P∞)ν method. Depending on how

we approach the alternating method, we can lose accuracy in our solutions.

We provide numerical results for the example used in Section 4.1 given by

εψ (ψrur + ψurr) + ψur = 1, u on C, u(0) = 1, u(1) = 1. (5.1.4)

A plot showing the error between the solution of the (M∞P∞)ν algorithm for S = 2

subdomains and the corresponding single domain solution as a function of m is given

in Figure 5.1. The tolerance is chosen to be 10−8. The error ||e||∞ refers to the

maximum norm of the error between the discrete solution of the (M∞P∞)ν method

and the discrete solution of the single domain MP method.

Figure 5.1: A plot of the infinity norm of the difference between the (M∞P∞)ν solution
and the single domain discrete solution used to solve (5.1.4) for a varying number of
nodes, m. Errors are given for the mesh r(n) (left) and physical solution U (n) (right).
Here, the monitor function (2.4.6) is used.

It is clear that with a low DD tolerance such as 10−10 and high number of nodes

m = 103, we are still obtaining a relatively large error between the single domain

87

solution and the (M∞P∞)ν solution. This appears to be due to the interpolation

at each step of the equidistribution in the (M∞P∞)ν method. Interpolation, while

a necessary step when an analytical solution is unknown, produces an interpolation

error that will have an effect on the accuracy of our solution. This error results

in an immediate error (from the single domain solution) in the (M∞P∞)ν method

that occurs within the first DD iteration and maintains the same order of magnitude

throughout the entire iteration. The error from the single domain mesh given in

Figure 5.1 is determined to be O(h4), where h = maxi hi and hi = ri − ri−1. This is

also the error which generally results from the cubic spline interpolation used in our

algorithm. This was determined by the slope of a loglog plot of ||e||∞ versus h. The

error from the single domain physical solution given in Figure 5.1 is determined to be

O(h3.6).

The O(h4) error from the single domain solution is slightly unexpected as the

method of taking the required derivative of a cubic spline by taking the first and

second derivative of each piecewise cubic generally produces O(h3) and O(h2) errors,

respectively. This is shown in Figure 5.2 for the function u(x) = sin(x).

Figure 5.2: A plot showing the interpolation errors resulting from cubic splines. The
interpolation errors are shown for the function u(x) = sin(x) and its corresponding
first and second derivatives.

From Remark 4.1.1, we will also be taking the derivative of a interpolated vector

to obtain F ′ from F at each Newton iteration of the mesh solve. Additionally, after

every complete DD physical solve, we must interpolate the physical solution U
(n−1)
i

from the mesh at the previous time step onto the initial guess used in each mesh solve.

88

Therefore, we will also be taking the derivative of an interpolated vector to obtain

the first or second derivatives of the physical solution, which are used to determine

F (r, u′) or F (r, u′′) at the beginning of each mesh solve.

We note that in Figure 5.1, mesh smoothing was not used. While useful in practice,

mesh smoothing will have an effect on the order of convergence; this is shown in Figure

5.3. In Figure 5.3, smoothing is used in both the single domain and DD methods.

Smoothing the monitor function in the (M∞P∞)ν method increases the error to O(h2)

from the single domain mesh, where the single domain mesh is also smoothed with

identical smoothing parameters.

Figure 5.3: A plot of the infinity norm of the difference between the (M∞P∞)ν solution
and the single domain solution used to solve (5.1.4) for a varying number of nodes,

m. The error is given for the mesh, comparing r
(n)
i for i = 1, 2 to the single domain

solution r(n). Here, mesh smoothing is used in the equidistribution step. Here, we use
monitor function (2.4.6)

To demonstrate further that the interpolation error is causing this discrepancy, we

also include Figure 5.4 showing the error from the single domain solution in the case

where u is a known analytical function, rather than a discrete approximation to a

differential equation solution. In this case, F (r) can be exactly evaluated at each step

of the equidistribution, and no approximation/interpolation is needed. Due to this

lack of interpolation, the DD variant converges to the single domain solution within

the DD tolerance. In this case, the algorithm used will be called the (M∞)ν method,

as there is no physical solve.

89

Figure 5.4: A plot of the infinity norm of the difference between the DD and the
single domain solution for the equidistribution of a known function u = cos(2πr) on
the ellipse (2.2.14) for a varying number of nodes, m. The error is given for the mesh,

comparing r
(n)
i for i = 1, 2 to the single domain solution r(n). Here, the monitor

function (2.4.6) is used with a DD tolerance of 10−10.

From theory, we expect the cubic spline to produce a smaller interpolation error

than linear interpolation; this is expected to be O(h4) versus O(h2), respectively. If

F was interpolated using linear interpolation, we would calculate F ′ by taking the

derivative of each piecewise linear equation. The method of taking the first derivative

of a piecewise linear interpolant by taking the first derivative of each piecewise linear

generally produces O(h) error. This is shown in Figure 5.5 for the function u(x) =

sin(x).

90

Figure 5.5: A plot showing the interpolation errors resulting from piecewise linear
interpolation. The interpolation errors are shown for the function u(x) = sin(x) and
its corresponding first and second derivatives.

We see from Figure 5.5 that this is not a method we can employ to obtain u′′ for

a numerical interpolant for u. Since a linear equation has a second derivative equal

to zero, we will only be able to determine first derivatives using this method. This

means that if we are using a monitor function such as (2.4.19) which uses u′′, we can

calculate u′′ by the finite difference approximation (4.1.7), which we have stated gives

O(h2) error on a uniform mesh and O(h) error on a non-uniform mesh.

In practice, however, we are also not achieving convergence to the single domain

when using linear interpolation and determining F ′ or u′ by interpolating the piecewise

linear equations. In the case of using linear interpolation, we are only obtaining

convergence to the single domain solution when computing F and u′ by the finite

difference approximation (4.1.6).

As expected, using piecewise linear interpolation increases the error, giving ap-

proximately O(h1.6) error from the single domain discrete solution for the mesh, and

O(h) error from the single domain discrete solution for the physical solution. This is

shown in Figure 5.6.

91

Figure 5.6: A plot of the infinity norm of the difference between the (M∞P∞)ν solution
and the single domain discrete solution used to solve (5.1.4) for a varying number of
nodes, m. Here, linear interpolation was used. DD errors are given for the mesh r(n)

(left) and physical solution U (n) (right). Here, we use monitor function (2.4.6).

We conclude that the benefits of using a differentiable cubic spline interpolation

generally outweigh the extra computations required for the splines compared to linear

interpolation.

A final note about the (M∞P∞)ν method and Figure 5.1 is that we do not obtain

DD convergence for the mesh for a small number of nodes m. Specifically, the Newton

solve fails to converge on the subdomains. There are a number of factors that may

be causing this. From DD theory, we expect the DD mesh solve to converge if m

is sufficiently large; this was proven in the discrete case on the line in [26]. In the

boundary layer case, we also note that for small m, u will be jagged and unsmooth,

containing “wiggles” as the boundary layer is attempted to be resolved. Therefore, it is

likely the case that for small m (and even smaller subdomain sizes), there are simply

not enough nodes to compute the solution. A potential fix would be to complete

our physical solves using an upwind method instead of a centered difference method,

therefore suppressing the wiggles in the discrete solution. We could also discretize

using the upwind method in early physical iterates, then switch to centered difference

methods once the boundary layer has been more resolved. We could also address

this problem using a continuation in ε (where ε is the constant given by the original

boundary layer problem). This would involve beginning with a larger value of ε, which

would result in fewer “wiggles”. Then, we use this solution to systematically reduce

ε until the original BVP is solved. Additionally, we could proceed with smoothing,

92

smoothing the interpolant u to remove the wiggles.

There are multiple ways to approach the solution of this boundary layer problem

with domain decomposition. A slight variant would be to complete either a fixed

number C of mesh and physical PDE solves at each DD iteration. That is, we use

“inexact” solves at each alternating iteration. This method is described in Algorithm

5.

We refer to this method as the (MCPC)ν method, as C mesh solves and C physical

solves are computed at each alternating iteration n, where C is fixed. This method

also produces O(h4) error from the single domain solution; this is shown in Figure

5.7. We note that we obtain O(h4) convergence for all C > 1.

Figure 5.7: A plot of the infinity norm of the error between the (MCPC)ν solution
with C = 4 and single domain solution used to solve (5.1.4) for a varying number of
nodes, m. Here, we use monitor function (2.4.6).

To further show that the choice of C has little effect on the convergence, we provide

a plot of DD error versus C for the (MCPC)ν method. Here, the DD error is given

from the discrete single domain solution obtained from the single domain MP method

in Figure 5.8. We see that while error is slightly reduced as C is increased, there is

little to no C dependence on error, as the slope of the line on a semi-log scale is ≈ 0.

93

Algorithm 5: (MCPC)ν Method

Result:
Use the derivatives of the curve x(r) and (4.1.4) to evaluate the function ψ(r);

Choose a uniform initial mesh r(0);

Initialize initial guess U (0);
for n = 1, 2, . . ., do

initialize r
(0)
i = r

(n−1)
i for i = 1, . . . , S ;

for c = 1, . . . , C do
for i = 1, . . . , S do

Complete a mesh solve on the computational coordinate domain
Ωi = [αi, βi] with boundary values
rα = 0, rβ = r

(c−1)
i+1 (βi), for i = 1,

rα = r
(c−1)
i−1 (αi), rβ = r

(c−1)
i+1 (βi), for i = 2, . . . , S − 1,

rα = r
(c−1)
i−1 (αi), rβ = b, for i = S,

to obtain r
(c)
i ;

end

end

Result: r
(n)
i for i = 1, . . . , S

for c = 1, . . . , C do
for i = 1, . . . , S do

Complete a physical solve on Ω = r
(n)
i , with boundary values

B1 = γ0, B2 = U
(c−1)
i+1 (r

(n)
i+1(βi)) for i = 1,

B1 = U
(c−1)
i−1 (r

(n)
i−1(αi)), B2 = U

(c−1)
i+1 (r

(n)
i+1(βi)) for i = 2, . . . , S − 1,

B1 = U
(c−1)
i−1 (r

(n)
i−1(αi)), B2 = γb, for i = S,

to obtain U
(c)
i on Ωi ;

end

end

Result: U
(n)
i for i = 1, . . . , S

if maxi(||U (n)
i − U

(n−1)
i ||∞, ||r(n)

i − r
(n−1)
i ||∞) < tol then

BREAK LOOP;
end

end

94

Figure 5.8: A plot of the infinity norm of the error between the (MCPC)ν solution
with various C values and the single domain solution used to solve (5.1.4). Here, we
equidistribute m = 512 nodes with monitor function (2.4.6).

Remark 5.1.1. In some cases, it is numerically necessary to compute the nonlinear

solves using a damping iteration. The damping iteration is given by

rn+1 = rn +
1

d
δ, (5.1.5)

where d ≥ 1 is the damping parameter and

Jδ = −G, (5.1.6)

is a Newton update given by 1 linear solve at each iteration. Here, J represents the

Jacobian of G, where G((r0, r1, . . . , rm)T) = 0 results from the discretization of the

nonlinear equations. In this case, as we are interpolating an unknown discrete u, we

must keep all values of r within the original interval [0, b] to ensure that no extrap-

olation is occurring; we also must keep r monotone at each Newton step. We build

these conditions into the damped Newton iteration, doubling the damping parameter

until all conditions are met.

Table 5.1 provides insight into the efficiency of the (M∞P∞)ν method and the

(MCPC)ν method. Table 5.1 includes the number of linear solves used to obtain

convergence with each method. As linear solves will take up the large majority of

computation time, this is considered an adequate way to measure the approximate

95

computation time.

Table 5.1: The number of linear solves for the (MCPC)ν and (M∞P∞)ν methods to
solve the boundary layer problem (4.1.11) with m = 256 nodes. The value of ε in
(4.1.11) is varied. Here, n = 2 subdomains are used, the overlap is O = 2 nodes, and
C = 4. All DD methods converge to the same solution. All methods were stopped
when maxi(||U (n)

i − U
(n−1)
i ||∞, ||r(n)

i − r
(n−1)
i ||∞) < 10−8.

ε (MCPC)ν linear solves (M∞P∞)ν linear solves

0.1 7650 14661

0.05 9400 19779

0.01 18698 71017

0.005 37024 628328

The results of Table 5.1 show that as we decrease ε (and therefore increase the

need for equidistribution), the (MCPC)ν method becomes more efficient compared to

the (M∞P∞)ν method.

It is clear that the (MCPC)ν method allows for variation in the number of partial

solves per iteration. We fix ε = 0.01 in the boundary layer problem (5.1.4) and explore

the results as we increase or decrease C. Results are shown in Table 5.2. We note

that for C > 1 in this method, we are obtaining O(h4) error from the single domain

solution.

Table 5.2: The number of linear solves for the (MCPC)ν method with various C
values to solve the boundary layer problem (5.1.4) with m = 256 nodes. Here, n = 2
subdomains are used, the overlap is O = 2 nodes, and ε = 0.01. All methods were
stopped when maxi(||U (n)

i − U
(n−1)
i ||∞, ||r(n)

i − r
(n−1)
i ||∞) < 10−8.

C (MCPC)ν method linear solves

2 8546

4 8848

8 9279

16 9439

32 9589

From Table 5.2, we see that, as expected, the global number of linear solves in-

creases as we increase C. However, choosing C = 1 does not result in convergence.

96

Another way to approach this solution procedure would be to compute mesh and PDE

solves until tolerances tolp and tolm are reached. Generally, we choose tolp, tolm > tol

to speed up convergence. This is described in Algorithm 6.

We refer to this method as the (MtolmPtolp)ν method, as each mesh and physical

solve are completed to a specific tolerance. In practice, the (MtolmPtolp)ν method

proved to be non-robust; setting a larger tolerance within the inner DD loop restricts

the overall convergence of the method. For example, we find that if the inner DD

tolerance is set to be larger than the outer alternating tolerance such that tolm, tolp >

tol, the alternating loop will only converge with a tolerance of max(tolm, tolp). This

causes the outer alternating loop n to not reach its stopping criteria of maxi(||U (n)
i −

U
(n−1)
i ||∞, ||r(n)

i − r
(n−1)
i ||∞) < tol, as tol < tolm, tolp.

We omit numerical results for this method and recommend against it, except

for the situation where tolm and tolp are chosen based on the outer loop. That is,

after each alternating iteration, we chose tolm and tolp such that they are both less

than the error of the outer alternating iteration. So at each alternating iteration n

for subdomain i, we choose tol
(n)
m , tol

(n)
p < maxi(||U (n)

i − U
(n−1)
i ||∞, ||r(n)

i − r
(n−1)
i ||∞).

This choosing of inner tolerances such that they are ensured to be smaller than the

outer tolerances is common practice when completing inexact solves.

5.2 The Multi-domain Solution of Time-dependent

Differential Equations on Static Curves

The most natural approach to solve time-dependent PDEs in parallel comes from Cai

[5, 6] (described on an interval [a, b]). In this method, we discretize the PDE in time

and solve the resulting sequence of elliptic problems with domain decomposition. We

adapt this approach to time-dependent PDEs posed on curves.

To form the elliptic problem, we discretize the PDE in time using an implicit

method. For the general linear time-dependent PDE ut = Lu, x ∈ Ω, discretizing

with backward Euler, for each k, we obtain the elliptic problems

u(k+1) = u(k) + ∆tLu(k+1), x ∈ Ω, (5.2.1)

for each time step k = 1, 2, . . . , n. On two subdomains, the parallel iteration is given

by completing DD iterations to convergence at each time step k. The parallel DD

97

Algorithm 6: (MtolmPtolp)ν Method

Use the derivatives of the curve x(r) and (4.1.4) to evaluate the function ψ(r);

Choose a uniform initial mesh r(0);

Initialize initial guess U (0);
for n = 1, 2, . . ., do

initialize r
(0)
i = r

(n−1)
i for i = 1, . . . , S ;

for c = 1, 2, . . ., do
for i = 1, . . . , S do

Complete a mesh solve on the computational coordinate domain
Ωi = [αi, βi] with boundary values
rα = 0, rβ = r

(c−1)
i+1 (βi), for i = 1,

rα = r
(c−1)
i−1 (αi), rβ = r

(c−1)
i+1 (βi), for i = 2, . . . , S − 1,

rα = r
(c−1)
i−1 (αi), rβ = b, for i = S,

to obtain r
(c)
i ;

end

if maxi ||r(c)
i − r

(c−1)
i ||∞ < tolm then

BREAK LOOP;
end

end

Result: r
(n)
i

for c = 1, 2, . . ., do
for i = 1, . . . , S do

Complete a physical solve on Ω = r
(n)
i , with boundary values

B1 = γ0, B2 = U
(c−1)
i+1 (r

(n)
i+1(βi)) for i = 1,

B1 = U
(c−1)
i−1 (r

(n)
i−1(αi)), B2 = U

(c−1)
i+1 (r

(n)
i+1(βi)) for i = 2, . . . , S − 1,

B1 = U
(c−1)
i−1 (r

(n)
i−1(αi)), B2 = γb, for i = S,

to obtain U
(c)
i on Ωi ;

end

if maxi ||U (c)
i − U

(c−1)
i ||∞ < tolp then

BREAK LOOP;
end

end

Result: U
(n)
i

if maxi(||U (n)
i − U

(n−1)
i ||∞, ||r(n)

i − r
(n−1)
i ||∞) < tol then

BREAK LOOP;
end

end

98

iteration at time step k is given as follows: for n = 0, 1, . . ., solve

u
(n)
1 = u(k−1) + ∆tLu(n)

1 , x ∈ Ω, B1u
(n)
1 = B1u

(n−1)
2 , (5.2.2)

u
(n)
2 = u(k−1) + ∆tLu(n)

2 , x ∈ Ω, B2u
(n)
2 = B2u

(n−1)
1 ,

with given transmission and boundary conditions. Here, u(k−1) is fixed at each time

step and becomes a source term for time step k. We can view the time loop as

the “outer” loop and the DD iteration as the “inner” loop. Here, we use Dirichlet

transmission conditions, giving a classical Schwarz method.

Consider the example problem proposed in Section 4.2; that is, the advection

diffusion equation on a closed curve with periodic boundary conditions. To obey the

periodic boundary conditions u(0) = u(b) on Ω = [0, b] with domain decomposition, we

refer to the method described by Qaddouri et. al [46]. Following the authors of [46], we

partition the domain Ω = [0, b] into two equally sized subdomains Ω1 = r1 = [0, b
2

+δ],

Ω2 = r2 = [b
2
, b + δ]. While this may seem like an odd partitioning due to r = b + δ

being outside of the domain [0, b], it is necessary to “wrap” around the periodic domain

such that the subdomains overlap at the endpoints of the domain [0, b]. If the solution

is periodic on [0, b] such that u(0) = u(b), then u(δ) = u(b+ δ) also holds, and so on.

For a general static differential equation Lu(r) = f(r) with periodic boundary

conditions u(0) = u(b), the parallel iteration is as follows: for n = 0, 1, . . . , solve

Lu(n)
1 = f(r), r ∈ Ω1, Lu(n)

2 = f(r), r ∈ Ω2, (5.2.3)

u
(n)
1 (0) = u

(n−1)
2 (b), u

(n)
2

(
b

2

)
= u

(n−1)
1

(
b

2

)
,

u
(n)
1

(
b

2
+ δ

)
= u

(n−1)
2

(
b

2
+ δ

)
u

(n)
2 (b+ δ) = u

(n−1)
1 (δ).

Here, the iteration (5.2.3) obeys the periodic boundary conditions of the physical

problem while still having Dirichlet transmission conditions on both subdomains as

required by classical Schwarz. The authors of [46] also provide an optimized Schwarz

iteration for the Helmholtz equation.

Combining the methods of solving a sequence of elliptic problems to solve time-

dependent PDEs and the DD iteration above for the periodic problem, we obtain the

99

iteration at time step k as follows: for n = 0, 1, . . . , solve

u
(n)
1 = u(k−1) + ∆tLu(n)

1 , r ∈ Ω1, u
(n)
2 = u(k−1) + ∆tLu(n)

2 , r ∈ Ω2, (5.2.4)

u
(n)
1 (a) = u

(n−1)
2 (b), u

(n)
2

(
b

2

)
= u

(n−1)
1

(
b

2

)
,

u
(n)
1

(
b

2
+ δ

)
= u

(n−1)
2

(
b

2
+ δ

)
u

(n)
2 (b+ δ) = u

(n−1)
1 (δ).

While (5.2.4) is a reasonable parallel iteration, we wish to add in the layer of

equidistribution in an alternating method similar to the single domain iteration given

in Algorithm 3. Combining the methods of solving a sequence of elliptic problems

to solve time-dependent PDEs using DD, implementing periodic boundary conditions

using DD, and using an alternating method between mesh and physical solves, we

propose two main approaches to solve the advection-diffusion equation (4.2.5) with

periodic boundary conditions in parallel, using equidistribution. The main challenge

in proposing the iteration lies in combining mesh equidistribution with the periodic

boundary conditions in the physical PDE. We see in the periodic iteration (5.2.4)

that the authors of [46] use fixed grids r1 and r2 throughout. If we add in the layer

of equidistribution, these grids will change at each time step. In the DD mesh solve,

recall that we partition the computational domain ξ = [0, 1] into ξ1 = [α1, β1] and

ξ2 = [α2, β2], where α1 = 0, β2 = 1, and solve for r1 and r2 accordingly. With a mesh

solve occurring at each time step, r1 and r2 will be modified at each time step k. This

means that while the computational subdomains are fixed, the resulting mesh is not.

This creates an issue with the setup of the periodic DD iteration (5.2.3), as δ and b
2

are not guaranteed to be node values in the updated subdomains r1 and r2.

Consider subdomains r1 and r2 given by

r1 = (r1(0), . . . , r1(β1))T ,

= (r1,0, r1,1, . . . , r1,m−1, r1,m)T ,

and

r2 = (r2(α2), . . . , r2(1), r2(1 + δ̃))T ,

= (r2,0, r2,1, . . . , r2,m−1, r2,m)T .

100

Let

r1,0 = 0, r2,m−1 = b, and r2,m = b+ δ. (5.2.5)

To numerically solve the mesh BVP given by

d

dξ

(
F (r(ξ))

dr(ξ)

dξ

)
= 0, r(0) = 0, r(1) = b,

we fix r2,m = b + δ and complete a DD mesh solve on r1 = (r1,0, . . . , r1,m)T and

r2 = (r2,0, . . . , r2,m−1)T , omitting the last entry of r2. This allows us to equidistribute

from r = 0 to r = b and follow the single domain iteration.

Suppose the computational domain ξ is decomposed into S = 2 subdomains such

that Ω1 = [0, β], Ω2 = [α, 1] with α < β. The mesh DD iteration is as follows: For

each time step k = 1, 2, . . . , for n = 1, 2, . . . , solve

d

dξ

(
F (r

(n)
1)

dr
(n)
1

dξ

)
= 0, ξ ∈ Ω1,

d

dξ

(
F (r

(n)
2)

dr
(n)
2

dξ

)
= 0, ξ ∈ Ω2, (5.2.6)

r
(n)
1 (0) = 0, r

(n)
2 (α) = r

(n)
1 (α), (5.2.7)

r
(n)
1 (β)) = r

(n−1)
2 (β), r

(n)
2 (1) = b, (5.2.8)

The first main approach to enforce the periodic boundary conditions is given in

iteration (5.2.9). The physical DD iteration is as follows: for each time step k =

1, 2, . . . , for n = 1, 2, . . . , solve

U
(n)
1 = u

(k−1)
1 + ∆tLU (n)

1 , r ∈ Ω1, U
(n)
2 = U

(k−1)
1 + ∆tLU (n)

2 , r ∈ Ω2,

(5.2.9)

U
(n)
1 (0) = U

(n−1)
2 (b), U

(n)
2 (r

(k−1)
2 (α2)) = U

(n−1)
1 (r

(k−1)
1 (α2)),

U
(n)
1 (r

(k−1)
1 (β1)) = U

(n−1)
2 (r

(k−1)
2 (β1)) U

(n)
2 (b+ δ) = U

(n−1)
1 (Ir1(δ)),

where the linear operator L is given by a centered finite difference approximation to

(4.2.5). We note that r
(k−1)
1 and r

(k−1)
2 are converged mesh iterations from the previous

time step, that is r
(k−1)
2 (α2) = r

(k−1)
1 (α2) and r

(k−1)
1 (β1) = r

(k−1)
2 (β1).

Here, U
(n−1)
1 (Ir1(δ)) denotes the interpolant of the U

(n−1)
1 vector evaluated at r =

δ. To compute this, we construct a cubic spline of U
(n−1)
1 on r

(k−1)
1 , and evaluate

the spline at δ. We note that an interpolant such as U
(n−1)
2 (Ir2(b)) is not needed

as to follow the single domain mesh BVP, as we have fixed the node r2,m−1 = b.

101

We see that the iteration (5.2.9) allows us to complete a mesh solve over the entire

computational domain while obeying the periodic boundary conditions required by

the periodic boundary conditions of the physical problem.

Another method used to solve the time-dependent problem with domain decompo-

sition and equidistribution is the iteration (5.2.10). We note that in iteration (5.2.10),

no interpolation is needed. Instead of interpolating to obtain the value of U1(δ), we fix

the node r1,1 = δ, in addition to fixing the nodes in (5.2.5). For time step k = 1, 2, . . . ,

for n = 1, 2, . . . , solve

U
(n)
1 = U

(k−1)
1 + ∆tLU (n)

1 , r ∈ Ω1, U
(n)
2 = U

(k−1)
1 + ∆tLU (n)

2 , r ∈ Ω2,

(5.2.10)

U
(n)
1 (a) = U

(n−1)
2 (b), U

(n)
2 (r

(k−1)
2 (α2)) = U

(n−1)
1 (r

(k−1)
1 (α2)),

U
(n)
1 (r

(k−1)
1 (β1)) = U

(n−1)
2 (r

(k−1)
2 (β1)) U

(n)
2 (b+ δ) = U

(n−1)
1 (δ),

This method has a clear disadvantage in that it will not equidistribute in certain

areas of the domain. If the mesh nodes need to be concentrated in the interval [0, δ],

the equidistribution will not produce the desired mesh and we could miss important

features of the solution. Keeping the mesh uniform in certain areas could result in the

same problems we obtain with an overall uniform mesh. Generally, we recommend

against this method unless one is sure that the nodes need not be concentrated in the

interval r ∈ [0, δ].

Before we continue with the algorithm, we provide notation. Since (5.2.9) and

(5.2.10) turn the periodic PDE into a Dirichlet BVP on both subdomains, we define

a physical time solve accordingly for our algorithm. Consider a general domain Ω̃ =

(r̃0, r̃1, . . . , r̃m)T and r̃i−1 < r̃i < r̃i+1. This Ω̃ could be the single domain Ω̃ = r or a

Dirichlet subdomain Ω̃ = r1 or Ω̃ = r2. With boundary values B1,B2, time increment

∆t, and time-independent source term u(k−1), we approximate the solution to the

Dirichlet problem

ut = (ψ(r)ψr(r) + ψ(r))ur + ψ(r)ψ(r)urr + f(r, t), r ∈ Ω̃, u(r0) = B1, u(rm) = B2,

(5.2.11)

using an implicit backward Euler scheme at each time step. This gives the linear

102

problem: at time step k, for i = 1, . . . ,m− 1, and suppressing the time iteration k,

Ui = U (k−1) + ∆t

(
Ai
h2
i−1(Ui+1 − Ui) + h2

i (Ui − Ui−1)

hi−1hi(hi−1 + hi)
(5.2.12)

+Bi
2[hi−1(Ui+1 − Ui)− hi(Ui − Ui−1)]

hi−1hi(hi−1 + hi)
+ fi

)
,

where U0 = B1, Um = B2. Here, Ai = ψ(ri)ψr(ri) + ψ(ri), Bi = ψ(ri)ψ(ri), and

fi = f(ri, t
(k−1)).

Approximating the solution to (5.2.11) with the above discretization will be called

a “DD physical time solve”, which we will label as a “Pdd,t” solve on Ω̃ moving forward.

We note that this discretization arises from the centered difference approximation, but

one could similarly employ an upwind approximation.

We begin with an initial guess u(0) and choose U
(0)
i = u0|Ωi . We also choose an

initial guess of a uniform mesh on each Ωi, that is r
(0)
i is uniform in ξ. The proposed

classical Schwarz iterative procedure is given in Algorithm 7. We note that unless ∆t

is chosen to be small enough so that the time error is negligible with respect to the

chosen spatial tolerance, the tolerance imposed in Algorithm 7 will not actually control

the error of the physical solution on each time step. Here, we initialize ∆t = ∆r2

2
for

the initial uniform mesh r and keep ∆t constant, as mentioned in Section 4.2.

We now provide numerical results for Algorithm 7 which uses (5.2.9). Here, the

error ||e||∞ is defined as the difference between the numerical DD solution provided

by the (M∞(Pdd,t)∞)ν method and the numerical single domain solution for the MPt

method. To compare the solutions, we remove the last entry of r
(k)
2 and U

(k)
2 , as these

entries “overlap” on the periodic domain. These results are shown in Figure 5.9. We

obtain O(h2.7) for the mesh error and O(h2.3) for the physical solution error.

103

Algorithm 7: (M∞(Pdd,t)∞)ν Method

Use the derivatives of the curve x(r) and (4.1.4) to evaluate the function ψ(r);

Choose a uniform initial mesh r(0);

Use the initial condition to obtain U (0);
for k = 0, 1, . . ., do

set t(k+1) = t(k) + ∆t ;

initialize r
(0)
i = r

(k−1)
i for i = 1, . . . , S ;

for c = 1, 2, . . ., do
for i = 1, 2 do

Complete a mesh solve on the computational coordinate domain
Ωi = [αi, βi] with boundary values{
ri,0 = 0, ri,m = r

(c−1)
i+1 (βi), for i = 1,

ri,0 = r
(c−1)
i−1 (αi), ri,m−1 = b, for i = 2,

with ri,m = b+ δ to obtain r
(c)
i ;

end

if max(||r(c)
1 − r

(c−1)
1 ||∞, ||r(c)

2 − r
(c−1)
2 ||∞) < tol/10 then

BREAK LOOP;
end

end

Result: r
(k)
i for i = 1, 2

for c = 1, 2, . . ., do

Complete a DD physical time solve on r1 = r
(k)
1 and r2 = r

(k)
2 using

iteration (5.2.9) and discretizing using (5.2.12) to obtain U
(c)
1 on r1

and U
(c)
2 on r2 ;

if max(||U (c)
1 − U

(c−1)
1 ||∞, ||U (c)

2 − U
(c−1)
2 ||∞) < tol/10 then

BREAK LOOP;
end

end

Result: U
(k)
i for k = 1, 2

end

104

Figure 5.9: A plot of the infinity norm of the error between the (M∞(Pdd,t)∞)ν numer-
ical solution and the single domain MPt solution used to solve (5.2.4) for a varying
numbers of nodes, m, at t = 0.001. The DD error is shown for the mesh r(k) (left) and
the physical solution U (k) (right). Here, we use monitor function (2.4.4) with weights
ω = 1 and ωu = 1.

An important note is that these numerical results vary depending on the monitor

function used in equidistribution. This discrepancy may occur for many reasons. As

we are producing (and taking the derivatives of) a spline on a non-uniform mesh,

the accuracy of the spline will depend on maxi hi. If the grid spacing is larger in

certain areas, it can affect the accuracy of the spline representation of the monitor

function. For example, if we change the weights in the monitor function (2.4.4) to

ω = 0.1 and ωu = 0.1, we obtain O(h4.4) for the mesh error and O(h2.3) for the

physical solution error. This is shown in Figure 5.10. We conclude that this varying

order of accuracy depending on the monitor function is due to the interpolation. We

conclude this because in practice, when we choose a known analytical solution u(r, t)

such that the monitor function F (r, ur(r, t)) can be analytically determined at each

time step (without interpolation), the DD mesh converges to the single domain mesh

r(k) within the chosen DD tolerance.

This is the same result that occurred in the static boundary layer case in Figure

5.4 in Section 5.1. Generally, since the physical solution is computed on the equidis-

tributed mesh, the order of accuracy from the single domain solution of the physical

DD solution will be limited by the accuracy of the mesh.

105

Figure 5.10: A plot of the infinity norm of the error between the (M∞(Pdd,t)∞)ν solu-
tion and the single domain MPt solution used to solve (5.2.4) for a varying numbers
of nodes, m, at t = 0.001. The DD error is shown for the mesh r(k) (left) and the
physical solution U (k) (right). Here, we use monitor function (2.4.4) with weights
ω = 0.1 and ωu = 0.1.

Recall that from Tables 4.1 and 4.2 in Section 4.2, for this example problem we

obtained low interpolation errors for the monitor functions (2.4.4) and (2.4.19). In

practice, choosing a monitor function that uses the second derivative of u, such as

monitor function (2.4.19), may have an effect on the order of the DD error, as we are

taking the second derivative of a spline. Numerical DD error results from the single

domain solution are shown in Figure 5.11. We see that while we are still obtaining

convergence to the single domain solution, we are obtaining relatively larger errors

when compared to Figures 5.9 and 5.10.

106

Figure 5.11: A plot of the infinity norm of the error between the (M∞(Pdd,t)∞)ν solu-
tion and the single domain MPt solution used to solve (5.2.4) for a varying numbers of
nodes, m, at t = 0.001. Here, we use monitor function (2.4.19) with weights ω = 0.1
and ωu = 0.1.

There are many moving pieces to this iteration. Numerical errors occur from the

time discretization, numerical discretization, interpolation methods, etc. However, our

alternating DD iteration given by Algorithm 7 generally converges to the numerical

solution given by the single domain Algorithm 3. Algorithm 3 produced a solution

with a lower interpolation error when compared to a coarse uniform grid of the same

size.

Chapter 6

Summary and Future Work

In this thesis we have explored the concept of equidistribution applied to parametric

curves. In Chapter 2, we focused on single domain equidistribution, including the line

and curve case. To generate a grid on a parametric curve (x(r), y(r)) in R2, we used

the curve features (arc-length and curvature) to equidistribute the nodes. We also

briefly discussed equidistribution on a time-dependent curve, where we solved a mesh

BVP at each time step to compute new mesh at each time step. To equidistribute

a known function u(r) posed on the curve, we tested using multiple monitor func-

tions, comparing them by their interpolation errors. A main takeaway is that when

equidistributing PDEs posed on curves, it is beneficial to choose a monitor function

that equidistributes using both the curve and solution features of a given curve.

Chapter 3 focused on domain decomposition methods for equidistribution on a

curve. Parallel computing allows us to reduce the additional computational cost that

occurs with r-refinement. We briefly explained the general parallel classical Schwarz

and optimized Schwarz iterations, supplying and citing previous analytical conver-

gence results. We also carried out a numerical experiment involving the contraction

factor of the optimized Schwarz iteration, comparing the expected optimal p value to

the experimental optimal p value. This value depends on the curve-dependent bounds

of the monitor function F (r) on the number of mesh points m. We then specifically

stated the parallel Schwarz iterations for the equidistributing mesh on a curve. We

also supplied analytical convergence results for these methods, slightly modifying an

already established convergence result for both DD methods. As is common in the

literature, we concluded that when an appropriate choice of the Robin parameter,

ρ, is used, the optimized Schwarz iteration provides faster convergence than classical

108

Schwarz. We remark that in this thesis, we have focused on leveraging multiple CPUs

(Central Processing Units) with domain decomposition. An interesting extension for

future work would be to see how GPU (Graphic Processing Unit) parallelism can be

applied. GPU parallelism, particularly a domain decomposition method on a low cost

GPU cluster, has been discussed in [43] and extended to a larger cluster in [2].

Chapters 4 and 5 involved equidistribution of solutions of differential equations on

curves. Chapter 4 explored equidistribution of these differential equations on a single

domain. When an equation is posed on a parametric curve, the common differential

operators such as the surface gradient and Laplace-Beltrami operators reduce to the

first and second derivatives multiplied by additional curve-based coefficients. In the

both the static boundary layer case and the time-dependent PDE case, we employed

an alternating method. Specifically in the static boundary layer case, this alternating

method begins with a uniform mesh r0, on which we solve for U0. Using this approx-

imation in the monitor function, we solve for r1, and so on. We supplied numerical

results showing that for a small number of nodes, equidistribution results in a mesh

that much more accurately resolves the solution when compared to a uniform mesh.

Chapter 4 also introduced single domain equidistribution of time-dependent PDEs

posed on curves. In this case, we also used periodic boundary conditions to show

how one would deal with this problem posed on a closed curve. To solve the time-

dependent problem, we begin with the initial condition and impose an alternating

iteration, completing a mesh solve and physical solve at each time step. The problem

was discretized using implicit backward Euler with a centered difference spatial dis-

cretization, but any stable time discretization could be used. Chapter 5 introduced

multi-domain approaches to the problems discussed in Chapter 4. In the static bound-

ary layer case, the outer loop becomes the alternating loop, and we complete either

full or partial DD solves at each alternating iteration. We concluded that generally,

the partial solves method was able to reduce the total number of linear solves with-

out sacrificing the accuracy. In the time-dependent case, we proceed with solving a

sequence of elliptic equations at each time step. That is, the time loop remains the

outermost loop and each subdomain problem becomes a backward Euler step. To

obey the periodic boundary conditions, we follow the method proposed by [46] with

slight modification, giving Dirichlet transmission conditions on each subdomain. We

concluded that as expected, the DD iteration converges to the single domain numer-

ical solution. In Chapter 5, we chose to do domain decomposition in the r variable;

109

that is, we directly partitioned the r ∈ [0, b] interval into equally sized subdomains

and computed the physical solution on r1 and r2. Another technique would be to do

domain decomposition in the ξ variable; this would include considering the physical

solution u(r(ξ), t) and recomputing the derivatives of u by the chain rule. This would

give uξ = u(r(ξ),t)
dr

dr
dξ

and so on. While Chapter 5 focused on classical Schwarz as the

DD method, one could easily adjust the transmission conditions to optimized Schwarz

if desired.

We now summarize the contributions provided in this thesis. The main purpose

of this thesis was to explore the equidistribution of a function u(r), in the case where

u(r) is known in addition to the case where u(r) is the solution of a differential

equation. For a function u(r) posed on x(r), we explored monitor functions which

take in a mixture of curve and function features, which to our knowledge has not been

done before. Our numerical results suggest that choosing a monitor function which

considers both the curve and function features will minimize the interpolation error

from the fine grid solution. We have proposed multiple monitor functions that fit this

criteria.

Additionally, we contribute iterations to solve differential equations posed on

curves combined with equidistribution. We also add in the layer of domain decom-

position, proposing a classical Schwarz iteration that could easily be adapted to an

optimized Schwarz iteration. The author of [36] provided an alternating iteration on

a single domain interval to combine mesh equidistribution with the solution of a static

boundary layer problem. There has also been a considerable amount of work done

using an alternating method to combine mesh equidistribution with the solution of a

time-dependent PDE, see [31] for details. To our knowledge, this thesis is the first

time this alternating technique has been used to solve differential equations posed

on curves with equidistribution. There has been work done on combining moving

mesh methods with domain decomposition; see [24, 18, 25]. However, to our knowl-

edge, the concept of combining equidistribution and domain decomposition with an

alternating iteration to solve differential equations on curves is novel. We provide nu-

merical evidence that the single domain algorithm converges to the numerical solution

on a uniform find grid. We also provide numerical evidence that the DD algorithm

converges to the single domain solution.

We now discuss additional opportunities for future work. As mentioned in Chapter

2, we have focused on providing a proof of concept of r-refinement on curves, rather

110

than providing the overall most efficient method. Future work providing a careful

implementation and comparison of these adaptive methods versus a fine uniform mesh

should be completed, where the overall efficiencies of the methods are compared.

We note that the authors of [33] showed that on the plane with a finite element

discretization, implementing hr-refinement can produce a lower overall computational

time when compared to only adding additional nodes (h-refinement). There is no

obvious reason that the same benefit would not hold for r-refinement on a curve. It

is also important to note that in Chapters 2 and 4, our goal is not to optimize the

choice of monitor function or its parameters; we leave this for future work. We have

provided sensible monitor function selections and shown that even among this small

selection with no attempt of optimization, there exist monitor functions that produce

a reduction in interpolation error when compared to a uniform mesh. Future work

attempting to choose an optimal monitor function should be pursued. Additionally,

as discussed in Chapter 2, there are other methods to compare the equidistributed

solution to the uniform solution that should be explored.

An important aspect of future work revolves around theoretical results. Through-

out this thesis we have provided mainly numerical results, showing convergence results

numerically through error plots, tables showing interpolation errors, and so on. Fu-

ture analytical work on a single domain would include error bounds and proof of

convergence. As well, throughout this thesis we have not focused on choosing the

“best” discretization. Instead we have generally chosen centered finite differences as a

spatial discretization coupled with a backward Euler time discretization for the time-

dependent problem. Future work could involve studying different discretizations such

as finite element methods or a higher order Runge-Kutta time discretization. We also

remark that depending on the time-dependent PDE, certain discretizations should

be used to maintain stability. For example, the advection equation generally loses

stability with a centered difference scheme, and is often discretized using an upwind

method.

Additionally, an immediate extension of the work produced in this thesis would

be to extend the classical Schwarz algorithms provided in Chapter 5 to the optimized

Schwarz case. There is no immediate reason why this extension would not follow in a

straightforward manner. Additionally, a fundamental extension to Chapters 3, 4 and

5 would be to consider the case of time-dependent curves. While we have introduced

the framework of equidistribution on time-dependent curves in Chapter 2, all of the

111

work in Chapters 3, 4, and 5 considers the case of static curves.

Another natural extension of the work provided in this thesis involves equidistri-

bution on surfaces. As we have discussed parametric curves throughout this thesis,

the natural progression is PDEs posed on a parametric surface of the form

x(r) : S2 → R3, x(r) = (x1(r), xr(r), x3(r))T , r = (r1, r2)T .

If the parameterization of the surface is known, efficient methods can be formed to

solve a PDE posed on the surface [11]. There has been an abundance of research

on the topic of generating grids on surfaces; a thorough reference for grid generation

on parametric surfaces can be found in [39]. We remark that parametric representa-

tion is only one of many ways to represent a surface. Future work can also involve

triangulated surfaces, as triangulation is a common technique used to represent 3D

surfaces. Additionally, a recent method used to solve PDEs on surfaces is the Clos-

est Point method (CPM) [47]. The CPM is an embedding method, representing a

surface using a function that maps points to their closest point on the surface. We

note that this method can also be applied to 2D curves as well. In [41], the authors

used domain decomposition as both a preconditioner and solver to solve the positive

Helmholtz equation posed on a surface with the Closest Point method paired with

finite difference methods.

A more recent method to solve time-dependent PDEs in parallel is called Schwarz

Waveform relaxation, proposed by Gander et. al [12] and independently by Giladi

[23]. In SWR, we decompose the spatial domain and solve the time-dependent PDE

on the entire time interval on each subdomain. For a general linear time-dependent

problem ut = Lu, x ∈ Ω, the two subdomain iteration is given by

u
(n)
1,t = Lu(n)

1 , (x, t) ∈ Ω1 × [0, T], (6.0.1)

B1u
(n)
1 = B1u

(n−1)
2 , (x, t) ∈ Ω1 × [0, T],

u
(n)
2,t = Lu(n)

2 , (x, t) ∈ Ω2 × [0, T],

B2u
(n)
2 = B2u

(n−1)
1 , (x, t) ∈ Ω2 × [0, T],

subject to given boundary and transmission conditions. We note in (6.0.1), the com-

puted solution on each subdomain is not exchanged at each time step. We can view

the time loop as the “outer” loop and the DD iteration as the “inner” loop. The

subdomains only need to communicate at the end of the time interval. However, a

112

larger amount of data will need to be communicated at each DD iteration. SWR al-

lows us to use varying time steps during the iteration. Convergence results have been

established for multiple well known PDEs with both Dirichlet and Robin transmission

conditions, see [21, 4, 3, 15, 16, 17, 20, 22]. We remark that the SWR method can

also be extended to n > 2 subdomains. Although we do not pursue this approach for

the time-dependent PDEs on curves with equidistribution, we note that a first step

in this direction was provided in [24, 25].

Bibliography

[1] D. Adalsteinsson and J. A. Sethian, Transport and diffusion of material
quantities on propagating interfaces via level set methods, Journal of Computa-
tional Physics, 185 (2003), pp. 271–288.

[2] R. Babich, G. Shi, M. Clark, R. Brower, B. Joó, and S. Gottlieb,
Scaling lattice qcd beyond 100 GPUs, in SC’11: Proceedings of 2011 International
Conference for High Performance Computing, Networking, Storage and Analysis,
IEEE, 2011, pp. 1–11.

[3] D. Bennequin, M. J. Gander, and L. Halpern, A homographic best ap-
proximation problem with application to optimized Schwarz waveform relaxation,
Mathematics of Computation, 78 (2009), pp. 185–223.

[4] M. Bjorhus, On Domain Decomposition, Subdomain Iteration and Waveform
Relaxation, PhD thesis, Department of Mathematical Sciences, Norwegian Insti-
tute of Technology, 1995.

[5] X.-C. Cai, Additive Schwarz algorithms for parabolic convection-diffusion equa-
tions, Numerische Mathematik, 60 (1991), pp. 41–61.

[6] , Multiplicative Schwarz methods for parabolic problems, SIAM Journal on
Scientific Computing, 15 (1994), pp. 587–603.

[7] C. De Boor, Good approximation by splines with variable knots. ii, in Confer-
ence on the Numerical Solution of Differential Equations, Springer, 1974, pp. 12–
20.

[8] V. Dolean, P. Jolivet, and F. Nataf, An introduction to domain de-
composition methods, Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA, 2015.

[9] T. Eiter and H. Mannila, Computing discrete Fréchet distance, tech. rep.,
Citeseer, 1994.

[10] C. M. Elliott and B. Stinner, Modeling and computation of two phase
geometric biomembranes using surface finite elements, Journal of Computational
Physics, 229 (2010), pp. 6585–6612.

114

[11] M. S. Floater and K. Hormann, Surface parameterization: a tutorial and
survey, Advances in Multiresolution for Geometric Modelling, (2005), pp. 157–
186.

[12] M. J. Gander, A waveform relaxation algorithm with overlapping splitting
for reaction diffusion equations, Numerical Linear Algebra with Applications,
6 (1999), pp. 125–145.

[13] , Optimized Schwarz methods, SIAM Journal on Numerical Analysis, 44
(2006), pp. 699–731.

[14] , Schwarz methods over the course of time, Electronic Transactions on Nu-
merical Analysis, 31 (2008), pp. 228–255.

[15] M. J. Gander and L. Halpern, Absorbing boundary conditions for the
wave equation and parallel computing, Mathematics of Computation, 74 (2005),
pp. 153–176.

[16] , Optimized Schwarz waveform relaxation methods for advection reaction dif-
fusion problems, SIAM Journal on Numerical Analysis, 45 (2007), pp. 666–697.

[17] M. J. Gander, L. Halpern, and F. Nataf, Optimal Schwarz waveform
relaxation for the one dimensional wave equation, SIAM Journal on Numerical
Analysis, 41 (2003), pp. 1643–1681.

[18] M. J. Gander and R. D. Haynes, Domain decomposition approaches for
mesh generation via the equidistribution principle, SIAM Journal on Numerical
Analysis, 50 (2012), pp. 2111–2135.

[19] M. J. Gander, R. D. Haynes, and A. J. Howse, Alternating and linearized
alternating Schwarz methods for equidistributing grids, in Domain Decomposition
Methods in Science and Engineering XX, Springer, 2013, pp. 395–402.

[20] M. J. Gander and C. Rohde, Overlapping Schwarz waveform relaxation for
convection-dominated nonlinear conservation laws, SIAM Journal on Scientific
Computing, 27 (2005), pp. 415–439.

[21] M. J. Gander and A. M. Stuart, Space-time continuous analysis of wave-
form relaxation for the heat equation, SIAM Journal on Scientific Computing, 19
(1998), pp. 2014–2031.

[22] M. J. Gander and H. Zhao, Overlapping Schwarz waveform relaxation for the
heat equation in n dimensions, BIT Numerical Mathematics, 42 (2002), pp. 779–
795.

[23] E. Giladi and H. B. Keller, Space-time domain decomposition for parabolic
problems, Numerische Mathematik, 93 (2002), pp. 279–313.

115

[24] R. D. Haynes, The numerical solution of differential equations: grid selection
for boundary value problems and adaptive time integration strategies, PhD thesis,
Theses (Dept. of Mathematics)/Simon Fraser University, 2003.

[25] R. D. Haynes, W. Huang, and R. D. Russell, A moving mesh method for
time—dependent problems based on Schwarz waveform relaxation, in Domain De-
composition Methods in Science and Engineering XVII, Springer, 2008, pp. 229–
236.

[26] R. D. Haynes and F. Kwok, Discrete analysis of domain decomposition ap-
proaches for mesh generation via the equidistribution principle, Mathematics of
Computation, 86 (2017), pp. 233–273.

[27] N. J. Hicks, Notes on differential geometry, Van Nostrand Mathematical Stud-
ies, No. 3, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London, 1965.

[28] A. J. M. Howse, Domain decomposition approaches for the generation of
equidistributing grids, Master’s thesis, Memorial University of Newfoundland,
2013.

[29] W. Huang, Y. Ren, and R. D. Russell, Moving mesh partial differential
equations (MMPDEs) based on the equidistribution principle, SIAM Journal on
Numerical Analysis, 31 (1994), pp. 709–730.

[30] W. Huang, Y. Ren, R. D. Russell, et al., Moving mesh methods based on
moving mesh partial differential equations, Journal of Computational Physics,
113 (1994), pp. 279–290.

[31] W. Huang and R. D. Russell, Adaptive moving mesh methods, vol. 174,
Springer Science & Business Media, 2010.

[32] D. P. Huttenlocher, G. A. Klanderman, and W. J. Rucklidge, Com-
paring images using the hausdorff distance, IEEE Transactions on pattern anal-
ysis and machine intelligence, 15 (1993), pp. 850–863.

[33] H. Jahandari, S. MacLachlan, R. D. Haynes, and N. Madden, Fi-
nite element modelling of geophysical electromagnetic data with goal-oriented hr-
adaptivity., Computational Geosciences, 24 (2020).

[34] A. J. James and J. Lowengrub, A surfactant-conserving volume-of-fluid
method for interfacial flows with insoluble surfactant, Journal of Computational
Physics, 201 (2004), pp. 685–722.

[35] D. Kamilis, Numerical methods for the PDEs on curves and surfaces, Master’s
thesis, Ume̊a University, 2013.

116

[36] N. Kopteva, Convergence theory of moving grid methods, in Adaptive Compu-
tations: Theory and Algorithms, T. Tang and J. Xu, eds., Science Press, Beijing,
2007, ch. 4, pp. 159–210.

[37] R. J. LeVeque, Finite difference methods for ordinary and partial differential
equations, Society for Industrial and Applied Mathematics (SIAM), Philadelphia,
PA, 2007.

[38] P.-L. Lions, On the Schwarz alternating method. II. Stochastic interpretation
and order properties, in Domain Decomposition Methods (Los Angeles, CA,
1988), SIAM, Philadelphia, PA, 1989, pp. 47–70.

[39] V. D. Liseikin, Grid generation methods, Scientific Computation, Springer,
Cham, third ed., 2017.

[40] J. Lowengrub, J. Xu, A. Voigt, et al., Surface phase separation and flow
in a simple model of multicomponent drops and vesicles, Fluid Dyn. Mater. Proc,
3 (2007), pp. 1–19.

[41] I. C. May, R. D. Haynes, and S. J. Ruuth, Schwarz solvers and precondi-
tioners for the closest point method, SIAM Journal on Scientific Computing, 42
(2020), pp. A3584–A3609.

[42] J. D. Murray, Mathematical biology: I. An introduction, vol. 17, Springer
Science & Business Media, 2007.

[43] Y. Osaki and K.-I. Ishikawa, Domain decomposition method on GPU cluster,
arXiv:1011.3318, (2010).

[44] D. W. Peaceman and H. H. Rachford, Jr, The numerical solution of
parabolic and elliptic differential equations, Journal of the Society for industrial
and Applied Mathematics, 3 (1955), pp. 28–41.

[45] J. Pryce, On the convergence of iterated remeshing, IMA Journal of Numerical
Analysis, 9 (1989), pp. 315–335.

[46] A. Qaddouri, L. Laayouni, S. Loisel, J. Côté, and M. J. Gander,
Optimized Schwarz methods with an overset grid for the shallow-water equations:
preliminary results, Applied Numerical Mathematics, 58 (2008), pp. 459–471.

[47] S. J. Ruuth and B. Merriman, A simple embedding method for solving partial
differential equations on surfaces, Journal of Computational Physics, 227 (2008),
pp. 1943–1961.

[48] H. A. Schwarz, Ueber einen Grenzübergang durch alternirendes Verfahren,
Zürcher u. Furrer, 1870.

117

[49] Y. Seol and M.-C. Lai, Spectrally accurate algorithm for points redistribution
on closed curves, SIAM Journal on Scientific Computing, 42 (2020), pp. A3030–
A3054.

[50] J. M. Stockie, J. A. Mackenzie, and R. D. Russell, A moving mesh
method for one-dimensional hyperbolic conservation laws, SIAM Journal on Sci-
entific Computing, 22 (2001), pp. 1791–1813.

[51] X. Xu, W. Huang, R. Russell, and J. Williams, Convergence of de Boor’s
algorithm for the generation of equidistributing meshes, IMA Journal of Numer-
ical Analysis, 31 (2011), pp. 580–596.

