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Abstract 

 

With the rapid pace of technological innovation in health care alongside rising health care 

costs, policymakers need to decide which innovations are worth adopting from an 

economic perspective. Cost-effectiveness analyses – especially those conducted at an early 

stage of the life cycle of a technology -- are useful tools to identify technologies which can 

yield better patient outcomes that justify the costs of these technologies.  

In this thesis, I provide the first evidence on cost-effectiveness of four new health care 

technologies. In chapter 2, I investigate the cost-effectiveness of Teplizumab, the first-ever 

drug to prevent or delay onset of Type 1 diabetes. A market price for this drug has not yet 

been established and there exist differences in the drug’s efficacy based on genetic and 

antibody characteristics of patients. Thus, in this study, I identify price ranges within which 

the drug will be cost-effective for different patient groups. In chapter 3, I examine the cost-

effectiveness of a novel, but highly controversial, weight loss technique – aspiration 

therapy – versus bariatric surgery. I find that even though aspiration therapy is not cost-

effective versus bariatric surgery, it is cost-effective for patients who do not have access to 

bariatric surgery. In chapter 4, I assess the cost-effectiveness of using Elipse – the first 

procedureless intragastric balloon – as a substitute or complement to bariatric surgery for 

treatment of obesity, and find that providing Elipse prior to sleeve gastrectomy is the most 

cost-effective treatment approach. In chapter 5, I examine the cost-effectiveness of using 

artificial intelligence (AI) or polygenic risk scores (PRS) to risk-stratify women aged 

between 40 and 49 years for mammography screening and find that AI-based screening is 
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cost-effective compared with PRS-based screening and screening based exclusively on 

existing guidelines by the United States Preventive Services Task Force, the American 

College of Obstetricians and Gynecologists and the American College of Radiology.  

These four studies can serve to inform decision-making by manufacturers, policymakers, 

clinicians and other stakeholders with regard to these emerging technologies. 
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Chapter 1 : Introduction and Overview 
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1.1 Technological innovation and rising health care costs  

“As an economist who studies health care, I find it hard to know whether to welcome or 

fear new technology.” 

Jonathan S. Skinner, 2013 (1) 

The 21st century has ushered in an era of rapid technological innovation1 in health care. 

Recent estimates indicate that the global private sector alone spends nearly US$160 billion 

annually on health care research and development (R&D) (2). A prime example of the scale 

and speed of innovation can be appreciated from the fact that the time and cost to sequence 

the human genome – a task believed extremely arduous in the 1980s (3) -- have fallen from 

13 years and US$1 billion in 2003 to 2 hours and US$1,000 in 2019 (4). Besides next 

generation sequencing, other examples of breakthrough innovations include point-of-care 

diagnostics that allow convenient and timely diagnostic testing, stem cell therapy to treat 

otherwise fatal diseases, digital innovations like biosensors and trackers for real-time 

patient monitoring, and artificial intelligence and robotics that improve speed and accuracy 

in screening and treatment (5,6). 

Even though some new health technologies may improve health outcomes, technological 

innovation has been indicted as a key contributor to rising health care costs (7). In the US, 

for instance, it is estimated that 40-50% of the annual increase in health care spending is 

                                                           
1 In this thesis, I follow World Health Organization (WHO)’s definition of health technologies which 

encompasses “devices, medicines, vaccines, procedures and systems developed to solve a health problem 

and improve quality of lives” (2). Meanwhile, following the Canadian Advisory Panel on Healthcare 

Innovation, innovation refers to “activities that generate value in terms of quality and safety of care, 

administrative efficiency, the patient experience and patient outcomes” (3). 
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due to new, expensive health care technologies (8). The cost impact of new technologies 

depends on several factors such as whether the technology substitutes or complements 

existing care, leads to changes in the care delivery process or extends life expectancy and 

thus prolongs health care consumption (9). Nevertheless, limited health care budgets 

necessitate that policymakers account for these cost impacts, alongside other 

considerations, when making adoption and reimbursement decisions. 

To make evidence-based decisions, reimbursement agencies in some countries (such as 

UK, Canada, Australia (10) and most recently, Japan (11)) incorporate economic 

evaluations into reimbursement and coverage decisions for new pharmaceutical products. 

However, not all countries do. The hesitance to using economic evidence in coverage 

decisions in the US is a key example (12).  Even where economic evaluations are required 

for reimbursement approval, long turnaround times, technicality of reports, use of 

inappropriate health-related quality of life data, etc. often imply that real-time evidence 

that aligns with policymakers’ needs and priorities is not available (13–15). Furthermore, 

health technology assessment (HTA) processes for medical devices are not as streamlined 

as for pharmaceuticals. For instance, in Canada, many funding decisions for medical 

devices are made by hospital administrators in the absence of formal HTA evidence (16). 

Manufacturers are not required to supply HTA information and even though some 

provinces conduct ad-hoc assessments, hospitals may choose not to follow 

recommendations based on these assessments (16).  
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The fallout of this lack of evidence-based decision making is that, amidst growing 

pressures to fund new technologies, policymakers are unable to appropriately weed out 

low-value from high-value innovations. As a result, adoption of health technologies is 

plagued by both over-utilization of low-value technologies and under-utilization of high-

value technologies.  

1.2 Early-stage cost-effectiveness analyses as tools to harness the innovation potential 

1.2.1 Early-stage cost-effectiveness analyses: The concept 

Cost-effectiveness analyses2 –especially those conducted at early stages of a technology’s 

life cycle -- can serve as useful tools to aid decisions relating to product development, 

adoption, reimbursement and further evidence generation for new health technologies. 

Cost-effectiveness analyses compare costs and outcomes of two or more interventions to 

determine whether incremental costs of adopting a new intervention justify the additional 

benefits (17). The goal of these analyses is to maximize health outcomes given the health 

care budget (18).  

Early-stage HTA is a broader concept that includes not only cost-effectiveness analyses 

but also other methods such as headroom analyses, methods to elicit stakeholder 

preferences, multicriteria decision analyses, etc. (19). Different definitions of early-stage 

HTA have been used in the literature. Most recently, IJzerman et al. defined early-stage 

HTA as “all methods used to inform industry and other stakeholders about the potential 

                                                           
2 For a description of cost-effectiveness analyses, please refer to Appendix A1.1 
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value of new medical products in development, including methods to quantify and manage 

uncertainty” (19). This definition of early-stage HTA can, nevertheless, be extended 

analogously to early-stage cost-effectiveness analyses.  

Combining this definition by IJzerman et al. (19) with phases of product development 

outlined by Grutters et al. (20), early-stage cost-effectiveness analyses thus refers to cost-

effectiveness analyses of technologies conducted during the stages of conceptualization of 

product idea, product development and clinical research until the technology receives 

regulatory approval (i.e., until the Phase III clinical trial stage for drugs or the pre-market 

launch stage for devices) as shown in Figure 1.1. It is noted, however, that while IJzerman 

et al.’s definition of early HTA also includes technologies in the early stages of clinical use 

that have received regulatory approval, whether these technologies can still be classified 

as early is debatable (20). Therefore, for the purposes of this thesis, only analyses of 

technologies that have not yet received regulatory approval are classified as ‘early-stage’. 

 

Figure 1.1: Early-stage cost-effectiveness analysis by stage of product development 
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1.2.2 Uses of early-stage cost-effectiveness analyses 

Early-stage cost-effectiveness analyses can serve several purposes:  

i) Informing product research and development (R&D) and pricing: Lack of early 

collaboration and dialogue with policymakers precludes inventors of new technologies 

from knowing which products will meet the demands of the health system (21), creating 

uncertainty for the manufacturer regarding future licensing and reimbursement at a time 

when considerable investment in product R&D has already been made. Early-stage cost-

effectiveness analyses can aid manufacturers’ decision-making in terms of stop/go 

decisions, identifying potentially successful technologies that will be of value to the health 

system and their predicted future demand, identifying the most efficient research designs 

to collect needed clinical evidence and informing pricing decisions and strategies for 

market access and reimbursement (21–23). Such estimations can limit future uncertainty 

for manufacturers (21–23).  

ii) Early signals on potentially high-value technologies: Early-stage cost-effectiveness 

analyses can provide early signals to decision makers on potential high-value technologies 

and, thereby, help to inform public spending decisions for health technology R&D as well 

as speed up adoption of these technologies by informing later reimbursement and 

formulary decisions (23). This idea is akin to horizon scanning in which novel and 

emerging technologies that are not yet approved, but which have a potential to meet unmet 

health care needs, are identified and assessed (24). Notably, even though cost analyses are 
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commonly performed, cost-effectiveness analyses are not currently included in horizon 

scanning exercises (23).  

iii) Identification of cost-effective care pathways: Even though new health technologies 

invariably increase health care costs, their cost-effectiveness depends on how they are 

positioned in the clinical pathway (25). Early-stage cost-effectiveness models offer the 

opportunity to directly compare cost-effectiveness of alternative ways of positioning new 

innovations within the clinical care pathway. Thus, while a new technology may not be 

cost-effective compared with existing alternatives, it may still be valuable if, for instance, 

it is offered as an add-on to existing treatments or provided only to specific patient 

subgroups. Knowledge of exactly how a new technology can best add value to existing 

care can help guide its future adoption. 

iv) Timely decision-making for newly emerging technologies: As IJzerman et al. suggest, 

early cost-effectiveness analyses and simulation modelling can be useful in the context of 

personalized medicine technologies which are characterized by a rapid rate of 

development, dynamic and complex treatment strategies, and where standard approaches 

to evidence generation (e.g., randomized controlled trials) may not be viable (19).  

Examples of such technologies include genetic technologies and artificial intelligence.  

1.2.3 Uncertainty in early-stage cost-effectiveness analyses 

Uncertainty is inherent in all cost-effectiveness analyses and arises on several accounts 

including uncertainty in parameter estimates used to populate the model, methodological 

choices and model structure (26,27). However, given the immaturity in evidence base at 
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early stages of a technology’s development, uncertainty is particularly pronounced in early-

stage cost-effectiveness analyses: the technology may not yet have been examined in 

clinical trials (if in conceptualization of idea/product development stage) or studied in only 

a small, select group of patients, long-term intervention effects are unknown and real-world 

effectiveness of an intervention may differ from that observed in clinical trials (28).  

While uncertainty in early-stage cost-effectiveness analyses is inevitable, uncertainty that 

poses a risk of making wrong decisions (i.e., ‘decision uncertainty’) represents a challenge 

in decision-making for new technologies (26,28). For manufacturers, this decision 

uncertainty could mean inappropriate stop-go, product portfolio and pricing decisions. 

Meanwhile, where early-stage cost-effectiveness analyses inform future adoption and 

coverage decisions, such uncertainty could result in providing access to an inefficient 

technology or denying access to a technology that could in fact generate positive net health 

benefits.  

Wrong decisions can impose irreversible costs on stakeholders (as depicted in Figure 1.2 

below). For instance, for manufacturers, investment in technologies that turn out to be cost-

ineffective based on evidence generated at later stages of product development (and are 

thus not covered) can mean substantial capital losses. For reimbursement agencies and 

decision makers, wrong decisions can result in sunk costs in terms of investment in 

technology, personnel training, etc. (27). Further, approval of a technology for coverage 

based on existing evidence eliminates the incentives for manufacturers to engage in further 

evidence development (27). For patients, negative health outcomes can ensue both in case 

of lack of or delayed access to effective technologies ‘wrongly’ deemed cost-ineffective 
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based on existing evidence or from access to technologies deemed cost-effective based on 

current information but with potential to result in negative health outcomes.   

Uncertainty analyses, therefore, have a critical role in early-stage cost-effectiveness 

analyses. For manufacturers, value of information (VOI) analyses3 performed within a 

Value Engineered Translation framework have been recommended (29,30). These analyses 

can help identify areas for further evidence generation and the most efficient research 

designs to collect such evidence with a goal to meet future regulatory and reimbursement 

criteria (30).  

For reimbursement agencies and decision-makers, coverage with evidence development 

and patient access schemes (such as ‘Only with Research’ and ‘Only in Research’ schemes) 

are potential solutions to address decision uncertainty wherein patients get timely access 

to new technologies while additional evidence is generated to inform future decisions and 

re-appraisals (27,28). As these schemes allow manufacturers and reimbursement agencies 

to share risks associated with decision uncertainty, it is important to appropriately 

characterize patterns of uncertainty inherent in risk sharing arrangements. Analyses using 

net benefit probability maps, which depict the distribution of uncertainty over time and 

uncertainty around when an investment in a new technology would break even, can be 

useful tools for this purpose (28). Further, VOI analyses can help determine what additional 

evidence must be collected within these schemes, whether the value of this additional 

                                                           
3 For a description of value of information analyses, please refer to Appendix A1.1 
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evidence justifies the additional cost of its collection and the most efficient research designs 

to use to gather this evidence (27,28,30).  

 

 

Figure 1.2: Costs of decision uncertainty to different stakeholders and role of uncertainty 

analyses 

 

1.2.4 Characterization of heterogeneity in early-stage cost-effectiveness analyses 

The Second Panel on Cost-Effectiveness in Health and Medicine recently recommended 

including patient heterogeneity within cost-effectiveness analyses in general (31). 

However, in most cost-effectiveness analyses, heterogeneity is often not considered which 

can be explained by factors such as inadequate availability of clinical evidence on patient 

subgroups, lack of credibility of subgroup-level findings due to small patient populations 
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and equity considerations for decision-making (32,33). Patient heterogeneity can arise on 

several accounts including demographic factors, treatment effects, patients’ disease history 

and severity of illness, factors related to health-care delivery and patients’ preferences for 

alternative treatments (34).  

Characterization of heterogeneity in cost-effectiveness analyses for decision-making is 

important (arguably more so than in clinical effectiveness analyses) because restricting 

provision of a new intervention only to patients for whom it is cost-effective (vs existing 

interventions) ensures that gain in health exceeds that displaced elsewhere in the health 

system; that is, resource allocation can be made more efficient (34). Potential benefits of 

considering heterogeneity within early-stage cost-effectiveness analyses include: (i) 

facilitating differential price setting by manufacturers based on expected value of their 

innovation for different patient subgroups; (ii) informing future reimbursement decision-

making; and (iii) gaining insights on the value of additional evidence on variability across 

individual patients or subgroups (32,35). These benefits, however, need to be balanced 

against the often limited and uncertain evidence base at the individual/subgroup level for 

technologies in early stages of development. 

Several frameworks have been developed to incorporate heterogeneity within cost-

effectiveness analyses. These can broadly be classified into three categories based on the 

level of stratification and decision-making as described below: (i) patient subgroup level; 

(ii) individual patient level; and, (iii) population level with implicit consideration of 

heterogeneity.  
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In the first category, Hoch et al. suggested using standard regression methods within a net-

benefit framework where interaction terms between the new intervention and patient 

subgroups are used to examine the marginal cost-effectiveness of the intervention at the 

subgroup level (36). Meanwhile, Coyle et al. suggested stratifying cost-effectiveness 

analyses by patient subgroups to identify ‘efficient limited use criteria’ whereby a new 

technology is reimbursed only for patients with positive net benefits (37). Importantly, their 

framework allowed accounting for losses due to equity-efficiency trade-offs and non-

adherence to limited use criteria observed in real practice (37). Espinoza et al. further 

expanded this framework to identify the most appropriate criteria to define subgroups and 

the optimal level of stratification (32). Further, they introduced the concept of ‘dynamic 

value of heterogeneity’ which refers to the value of additional research to resolve 

uncertainty in subgroup-specific evidence (32). 

While the above frameworks focused on subgroups of patients, Basu and Meltzer examined 

the gains from individualized decision-making whereby cost-effectiveness of treatments is 

assessed at the individual patient level, after accounting for differences in individual 

preferences and attributes that influence the net health benefit from an intervention (35). 

By contrast, Kim and Basu emphasized the need to account for heterogeneity within 

population-level decision making (as opposed to individualized decision making) (38). 

They suggest a framework to estimate the value of alternative policies (instead of 

alternative interventions) that induce differential adoption of the intervention across patient 

subgroups (38). 
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1.3 Thesis Objective 

 

The objective of this thesis is to contribute to the literature on early-stage cost-effectiveness 

analyses by providing the first evidence on cost-effectiveness of four new health care 

technologies that are in the early stages of their life cycle. The goal is to provide rigorous 

evidence that can help inform decision-making by manufacturers, policymakers, clinicians 

and other stakeholders.  

1.4 Thesis Outline  

This thesis follows the manuscript style. Chapters 2-5 contain cost-effectiveness analyses 

of each of the four innovations. These are briefly outlined below. A graphical depiction of 

the position of these four innovations within the early-stage cost-effectiveness framework 

is shown in Figure 1.3 below. 

In Chapter 2, I conduct an early-stage cost-effectiveness analysis of a new drug, 

Teplizumab, for prevention of Type 1 diabetes. Teplizumab is the first-ever drug that, after 

over 30 years of research, has been recently shown to prevent or delay onset of Type 1 

Diabetes in at-risk patients in a Phase II clinical trial (39). Findings from this trial were 

published recently in the New England Journal of Medicine (39). Teplizumab has been 

accorded ‘breakthrough therapy’ designation by the US Food and Drug Administration 

(FDA) (40). Furthermore, as a biologic drug, it is anticipated to be expensive when it 

arrives on the market (expected in 2021) (41). As such, policymakers, payers and the 

manufacturer of Teplizumab will face the challenge of choosing a price for this drug that 
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can maximize access to Teplizumab for at-risk patients while ensuring budget 

sustainability for payers and commercial viability for the manufacturer.  

In this study, I combine headroom-type threshold analyses with rigorous economic 

modelling to identify price ranges for which this drug will be cost-effective for different 

target patient groups. As such, findings from this study can be used to inform value-based 

pricing and reimbursement for this drug. The manuscript has been published in 

PharmacoEconomics. 

In Chapter 3, I provide the first evidence on the cost-effectiveness of a newly invented 

weight loss device, aspiration therapy, relative to bariatric surgery and no treatment for 

morbid obesity. Aspiration therapy is less invasive, reversible and cheaper than bariatric 

surgery. Even though the product is past the clinical research stage and has been recently 

approved by FDA and Health Canada, this product is still within the early stages of its life 

cycle, especially as its regulatory approvals have been subject to considerable debate with 

critics demanding a revocation of these approvals on the grounds that the therapy may lead 

to bulimia and binge eating disorders (42). Owing to this controversy, clinical acceptability 

and availability of this treatment is extremely limited and its further adoption into clinical 

practice is unclear.  

This manuscript was published in the American Journal of Gastroenterology. It gathered 

attention of clinicians at the Brigham and Children’s Hospital in the US who wrote a letter 

to the editor. A response to their letter has also been published in the American Journal of 

Gastroenterology. 
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Chapter 4 examines the cost-effectiveness of the first-ever procedure-less intragastric 

balloon (Elipse™). The process for pre-market approval of Elipse by the FDA is ongoing 

(43). Unlike previous intragastric balloons, Elipse does not require endoscopy for insertion 

or removal. Further, even though its weight loss effects are lower and temporary compared 

with bariatric surgery, it is less costly and entails lower risk of complications. These 

features make it attractive as a stand-alone treatment or as an add-on to bariatric surgery. 

However, as yet, no study has compared the cost-effectiveness of these alternative 

strategies of including Elipse (and intragastric balloons, more broadly) into the care 

pathway.  

In Chapter 5, I examine the cost-effectiveness of using an emerging technology that is still 

in development -- Artificial Intelligence (AI) -- to risk-stratify women aged between 40 

and 49 years for breast cancer screening. There is a lack of consensus in existing guidelines 

over appropriate breast cancer screening strategies, especially for women in the 40 to 49 

age group. Professional societies such as the American College of Obstetricians and 

Gynecologists and American College of Radiology recommend annual screening for all 

women starting at age 40 (44) while the US Preventive Services Task Force 

recommendation to screen women aged between 40 and 49 years without family history is 

only a grade C recommendation (i.e., the net benefit of screening in this group is small) 

(45,46). A recent study showed that Artificial Intelligence (AI) can be used to predict breast 

cancer risk (47). The accuracy of AI-based risk prediction estimated in this study is even 

higher than that reported previously for and Polygenic Risk Scores (PRS) (48). Using AI 

or PRS to identify and target screening at high-risk patients can be cost-effective compared 
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with screening based on existing guidelines. To date, however, no study has compared 

these AI-based, PRS-based and guideline-based screening approaches. The study in this 

chapter fills this gap. 

 

Figure 1.3: Position of innovations in the early-stage cost-effectiveness framework 

 

Chapter 6 summarizes the key findings of my studies and highlights how these early-stage 

cost-effectiveness analyses can serve to inform decision-making for these new 

interventions. It also details the challenges and limitations in the 4 studies in Chapters 2-5 

and measures taken to overcome them.  

1.5 Existing literature 

Literature review indicated no existing evidence on the cost-effectiveness of the 4 

technologies under consideration in Chapter 2-5. Nevertheless, in what follows, I provide 
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a brief overview of the existing literature relevant to each chapter, along with the gaps in 

this literature. 

1.5.1 Cost-effectiveness of interventions for Type 1 diabetes 

Existing cost-effectiveness analyses relating to Type 1 diabetes have examined alternative 

insulin types (e.g., long-acting vs. intermediate acting insulin (49)), and mechanisms of 

glucose monitoring (50) and insulin delivery (e.g., continuous subcutaneous insulin 

infusion vs. multiple daily injections (51)) among patients with Type 1 diabetes. Recent 

studies have also examined cost-effectiveness of screening programs for pre-symptomatic 

Type 1 diabetes patients (52). Most of these studies have utilized rigorous, previously 

validated microsimulation models such as the CORE Diabetes Model (53) or the Sheffield 

Type 1 Diabetes Policy Model (54). 

Yet, in the absence of an effective prevention strategy for Type 1 diabetes thus far, these 

studies have focused only on screening and treatment interventions.   

1.5.2 Cost-effectiveness of weight loss interventions 

There exists a vast literature on cost-effectiveness of different bariatric surgery procedures 

(gastric bypass, gastric banding, sleeve gastrectomy) in different patient populations 

varying by geography, age and co-morbidity status (e.g., (55–60)). In these studies, 

bariatric surgery is compared with usual care (such as lifestyle interventions or 

conventional diabetes management for diabetes patients). Other studies have compared 

cost-effectiveness of weight loss drugs with lifestyle interventions and no treatment 

(61,62). Markov model is, by far, the most commonly employed modeling technique.  
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There are, however, two key gaps in this literature. First, most existing studies compare 

alternative approaches of the same treatment type (such as alternative types of bariatric 

surgery or alternative weight loss drugs (e.g., (56,57,63)) or compare a treatment with 

standard care (e.g., bariatric surgery versus usual care (64)). While one recent analysis 

compared different non-surgical treatments such as pharmacotherapy and one intragastric 

balloon (Orbera) (65), it did not consider bariatric surgery which is known to be more 

effective than these interventions (66). Second, existing studies do not assess cost-

effectiveness of combinations of different treatments. As a result, as new weight loss 

procedures enter the market, the existing literature does not sufficiently inform decision-

makers on optimal care pathways for obese patients -- for instance, triaging patients across 

treatments or providing a procedure as a bridge to another.  

1.5.3 Cost-effectiveness of breast cancer screening and AI-based risk prediction 

The extensive, long-standing literature on cost-effectiveness of breast cancer screening has 

primarily focused on comparing alternative starting ages and frequencies of screening in 

different populations, as well as different modalities of breast imaging such as digital 

mammography, tomosynthesis, ultrasound, magnetic resonance imaging (MRI), or 

combinations thereof (67–78). 

A key limitation of these studies, however, is that these studies do not account for the newly 

emerging technologies, such as AI and PRS, which can capture heterogeneity in patient 

risk and thereby optimally target breast cancer screening. While a few recent studies have 

accounted for risk stratification in their cost-effectiveness analyses (75–78), these studies 
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have mostly relied on traditional predictors such as breast density, family history, 

childbearing and menstrual history, etc., which are often less accurate than these newer 

technologies in predicting breast cancer risk (47). Only one study (Pashayan et al. (79)) 

has examined cost-effectiveness of PRS-based risk stratified mammography screening 

versus screening all women within a specific age group or no screening. However, 

Pashayan et al. employed a simplified life table approach to estimating costs and 

effectiveness instead of rigorous modeling approaches. Their approach did not allow them 

to account for critical parameters -- such as variation in treatment costs and utility losses 

associated with different cancer stages – that can be influenced by better targeted screening. 

More generally, previous studies have demonstrated diverse potential applications of AI in 

various sub-fields of medicine – from image interpretation in radiology to assessing 

embryo quality for in vitro fertilization and interpretation in genomics (80). Yet, evidence 

on cost-effectiveness of using AI in healthcare is limited (81), especially in the medical 

imaging domain where potential for leveraging AI powered solutions is enormous. To my 

knowledge, previous studies have only performed economic evaluations of using artificial 

intelligence to read fundus photographs to detect diabetic retinopathy compared with 

human grading (82,83).   

Consequently, the economic base to guide policymakers on adoption of this emerging 

technology is extremely thin. In particular, no evidence exists on the cost-effectiveness of 

AI versus PRS for risk stratification.  

 



20 
 

1.5.4 Early-stage cost-effectiveness analyses of new health technologies 

Several literature reviews have examined the development of the literature on early stage 

cost-effectiveness analyses (and early-stage HTA more broadly) over time. These studies 

have sought to inform the uses to which early-stage assessments can be employed (23,84), 

methods used and the underlying challenges (19,22,85–87), and more recently, the role of 

clinicians in these early assessments (88). With regard to the purpose of these assessments, 

Hartz and John reviewed economic assessments that used early-stage data to highlight the 

role these evaluations can play in decision making by the industry (84) and by public health 

policymakers (23), respectively. For industry, they highlighted the benefits of early-stage 

assessments for preliminary market assessment, portfolio management, informing go/no-

go decisions, decisions on future trial design and future pricing policies (84). However, 

they noted that empirical studies did not clearly state their purpose in most instances (84). 

For policymaking, they suggested that these assessments could guide diffusion, adoption 

and reimbursement of new technologies as well as public sponsorship of new technologies 

(23). Nevertheless, the actual use of current evidence on early assessments in policymaking 

was difficult to determine (23).  

In terms of methods, IJzerman and Steuten (2011) used a theoretical framework based on 

product development stages, clinical case analyses and decision contexts and reviewed the 

various techniques that have been used and/or proposed for early-stage HTA (22). These 

methods were further iterated by Markiewicz et al. (2014) in the context of medical devices 

and include headroom analyses, cost-effectiveness/cost-benefit/cost-utility analyses, 

multi-criteria decision analyses, value of information analyses, roadmapping processes, 



21 
 

real options analyses, return on investment analyses, Bayesian modelling and discrete 

choice experiments (22,85). However, Markiewicz et al. noted the existence of multiple 

frameworks and the need for a standardized, agreed-upon framework that integrates these 

different methods to enhance the value of early assessments (85). Not surprisingly, the 

biggest challenge noted across these reviews is decision uncertainty due to uncertainty in 

evidence base during early phases of a product’s development (22,85). Belief elicitation, 

multi-criteria decision analyses, scenario analyses and Delphi panels are some methods 

suggested to address this challenge (22).  

More recently, in 2017, two further scoping reviews encompassing studies relating to a 

broad range of technologies and HTA methods were conducted. Fasterholdt et al. reviewed 

24 early-stage assessments of new health care technologies published between 1996 and 

2015 (87) while IJzerman et al. included 22 studies published between 2013 and 2017 (19). 

A common finding across both these reviews was that the majority of reviewed studies 

used health economic modelling approaches and headroom analyses (19,87). Furthermore, 

uncertainty was addressed mostly using sensitivity and scenario analyses (19,87), although 

IJzerman et al. also noted the use of belief elicitation methods by some studies as a tool to 

reduce uncertainty (19). IJzerman et al concluded that methods that combine systems 

engineering approaches (including multicriteria decision analyses and optimization 

analyses) with health economic approaches need to be developed to better address 

uncertainty (19).  

To examine the most recent trends and developments in this literature, I conducted an 

updated scoping review of early-stage economic analyses published between January 2017 
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and February 2021. This time period was chosen as studies published prior to 2017 have 

already been covered by the seminal review by IJzerman et al. in 2017 and other previous 

reviews mentioned above (1 review study was conducted after 2017 but the focus of this 

review was narrower as it included only early-stage evaluations of medical devices (88)).  

A systematic search was performed using a combination of keywords and MeSH terms 

across 3 databases: PubMed, Scopus and EconLit. The full list of search terms used for 

each database are provided in Appendix A1.2. Studies were included if these were 

published between January 1, 2017 and February 8, 2021. Given the focus of this thesis on 

early-stage cost-effectiveness and headroom analyses, the review focused on early-stage 

assessments that used one or more types of cost-effectiveness/cost-utility/cost-benefit 

analyses and/or headroom analyses. Studies were included if they examined a technology 

that was in the early stages of its lifecycle, i.e., had not yet been approved (for the specific 

indication) in the country where the analysis was performed. Where regulatory approval 

was granted in the same year as the publication of the study, a study was included only if 

its publication date was before the date of regulatory approval. Furthermore, a technology 

that was approved only with conditions of clinical governance, additional research or audit, 

was still considered early stage and was thus included. Only English language articles were 

included. Review and methodological studies were excluded as were studies that did not 

involve any technology, such as rehabilitation programs, food-labelling initiatives etc. 

Publications of regulatory/reimbursement appraisal reports were excluded.   

The search yielded 1149 unique articles and 9 articles were obtained from other sources 

including citation pearling of included studies. After screening based on titles and abstracts 
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and assessing full texts for eligibility, 38 articles were included in the review (Appendix 

A1.3). A detailed description of these studies is provided in Appendix A1.4.  

Several key findings emerge from this review. First, majority of the reviewed studies 

related to medical tests, devices and procedures; less than one-quarter (8 out of 38) of all 

studies were early assessments of drugs. This relative lack of early-stage evaluations for 

drugs (relative to other technologies) may reflect the current paradigm in which health 

technology assessments for drugs are performed mostly at the reimbursement stage, after 

the drug has obtained regulatory approval. However, it also highlights an area where the 

potential of early-stage economic evaluations can be more fully exploited, especially as 

number of expensive drugs (especially biologics) continue to rise (89) and countries (for 

example, Canada (90)) increasingly shift towards pricing based on pharmacoeconomic 

value thresholds.  

Second, in 18 of the 38 studies, the technology had not reached the clinical trial/pre-market 

launch stage. In most of these instances, the purpose of the study was therefore to inform 

further product development and investment, especially in terms of identifying cost and 

efficacy targets to achieve for the product to be cost-effective. As such, headroom analyses 

were commonly employed, either alone or in combination with cost-effectiveness/cost-

utility analyses. However, as was also observed in previous reviews (84,87), it is worth 

noting that the decision context and purpose of conducting the assessment as well as the 

exact stage of development were not clearly stated in all studies.  
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Third, where stated, the perspective adopted in the early-stage evaluations was that of the 

payer, health system or the societal perspective. This choice of perspective reflects the fact 

that, even where the immediate goal of (very) early-stage assessments was to inform further 

product development and investment, the overarching objective was to ensure that the 

‘fourth hurdle’ to market access could be overcome. 

Fourth, as observed in earlier reviews (19,87), deterministic and probabilistic sensitivity 

analyses continue to be the mainstay of uncertainty analyses performed in early-stage 

evaluations. Only 6 of the 38 studies used VOI analyses. Further, only 2 studies used expert 

elicitation to obtain an estimate of the technology’s efficacy and one study used scenario 

drafting. Several studies relied only on assumptions with regard to efficacy estimates. Thus, 

there is further scope for integration of VOI analyses and belief elicitation approaches 

alongside cost-effectiveness and headroom analyses.  

Fifth, most early-stage evaluations have not captured patient heterogeneity. Only 9 studies 

considered some form of heterogeneity at the patient subgroup level. Newer methods 

proposed to integrate heterogeneity within economic evaluations such as individual patient 

level analyses and methods that account for differences in technology adoption across 

different patient subgroups have not been used.   

Finally, 14 of the 38 studies have been performed in Netherlands and 9 in the UK. Such 

concentration to a limited set of countries highlights the need to communicate the role and 

value of early-stage evaluations to stakeholders in other countries. 
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1.6 Thesis Contributions 

In addition to contributing the first evidence on the cost-effectiveness of the four new 

interventions as well as adding to the literature on early-stage cost-effectiveness analyses, 

each study in this thesis also makes several other contributions. These are outlined below 

and summarized in Box 1.1.  

1.6.1 Contributions to medical literature 

Cost-effectiveness in Type 1 Diabetes prevention 

The study in Chapter 2 is the first cost-effectiveness analysis of Teplizumab – a 

breakthrough intervention to prevent Type 1 diabetes. With over 100,000 adolescents 

diagnosed with Type 1 diabetes annually worldwide, a rapid rate of annual increase in Type 

1 diabetes incidence of 3% (91), as well as the associated risks of serious complications 

that pose a significant economic burden, the decision on who gets access to this 

breakthrough innovation and at what price will be critical from a health economic 

perspective.   

Cost-effectiveness of bariatric surgery versus non-surgical interventions 

The studies in Chapters 3 and 4 represent one of the first comparisons of cost-effectiveness 

of bariatric surgery with endoscopic weight loss procedures and intra-gastric balloon 

therapy, respectively. Furthermore, the study in Chapter 4 is the first cost-effectiveness 

analysis to compare the use of intra-gastric balloon therapy as a substitute or adjunct to 

bariatric surgery in morbidly obese patients. With limited access to and uptake of bariatric 
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surgery both in US and Canada (92,93), these analyses can help inform clinicians, 

policymakers and payers on cost-effective approaches to deliver weight loss treatments.  

Cost-effectiveness of AI technology in medicine 

The study in Chapter 5 contributes to the limited literature on cost-effectiveness of AI 

applications in medicine. In particular, it is the first study to examine the cost-effectiveness 

of using AI in the field of radiology. A further novelty of this study is that it is the first to 

directly compare cost-effectiveness of AI-based vs. PRS-based risk stratification in 

medicine. Given the increasing shift towards individualized health care, both these 

technologies will see widespread (and possibly competing) applications throughout 

medicine. Although their cost-effectiveness will vary depending on application, a general 

understanding of their relative cost-effectiveness will be useful to guide future adoption 

and coverage of these continuously-evolving technologies.  

1.6.2 Contributions to HTA literature 

Integration of genetic heterogeneity within early-stage cost-effectiveness analyses  

The study in Chapter 3 is among the first studies to integrate genetic heterogeneity within 

early-stage cost-effectiveness analyses to determine price ranges of drugs that would render 

them cost-effective. This analysis, can therefore, not only guide value-based provision and 

reimbursement for a given price of Teplizumab (when it arrives on the market) but can also 

inform price-volume negotiations as well as differential pricing for different target patient 

groups. More generally, the framework of this study can be easily adapted to inform value-

based pricing of other drugs whose treatment effects are genetically determined. 
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Contribution to the growing literature on value of information analyses  

Given the limited evidence on efficacy of new technologies considered, in Chapter 6, I 

conduct value of information (VOI) analyses to quantify the expected benefit of 

eliminating uncertainty in the cost-effectiveness analyses for Teplizumab and Elipse 

intragastric balloon. These VOI analyses contribute to the growing literature on VOI 

analyses and can enable decision makers to assess the expected net gain in terms of benefits 

of additional evidence that reduces uncertainty versus the losses in health outcomes due to 

delayed adoption of these novel interventions (94).   

Box 1.1: Contributions by thesis chapter 

Chapter 2 

 First cost-effectiveness analysis in Type 1 diabetes prevention. 

 Incorporation of genetic heterogeneity in treatment effects within early-stage 

cost-effectiveness analyses to inform drug pricing and reimbursement. 

 

Chapter 3 

 First cost-effectiveness analysis to compare bariatric surgery with a non-

surgical, endoscopic weight loss procedure. 

 

Chapter 4 

 First study to compare use of intragastric balloon therapy as a substitute or 

adjunct to bariatric surgery. 

 

Chapter 5 

 First cost-effectiveness analysis of using AI in the field of radiology 

 First cost-effectiveness analysis of AI and PRS as alternative risk prediction 

tools in medicine. 
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Abstract 

 

Objective: Teplizumab is the first-ever drug recently shown to prevent or delay Type 1 

diabetes onset in at-risk individuals, especially in those with certain genetic and antibody 

characteristics. However, its potentially high price may pose challenges for coverage and 

reimbursement for payers and policymakers. Thus, it is critical to investigate the cost-

effectiveness of this drug for different target individuals.  

Research Design and Methods: Using Markov microsimulation modelling, we compared 

cost-effectiveness of 5 options for choosing target individuals (i.e., all at-risk individuals, 

individuals without Human Leukocyte Antigen (HLA)-DR3 or with HLA-DR4 allele, 

individuals without HLA-DR3 and with HLA-DR4 allele, individuals with anti-Zinc 

Transporter 8 (ZnT8) antibody negative and no provision at all) at different possible prices 

of Teplizumab. Effectiveness was measured by quality-adjusted life-years. Costs were 

estimated from health system perspective. 

Results: If the price of Teplizumab therapy is below US$48,900, treating all at-risk 

individuals is cost-effective. However, it will be cost-effective to treat only individuals 

without HLA-DR3 or with HLA-DR4 alleles for prices between US$48,900 and 

US$58,200, only individuals both without HLA-DR3 and with HLA-DR4 alleles for prices 

between US$58,200 and US$88,300, and only individuals with negative ZnT8 antibody 

status for prices between US$88,300 and US$193,700. 

Conclusions: Cost-effective provision of Teplizumab to target individuals depends on the 

price of Teplizumab and genetic and the antibody characteristics of treated individuals. As 
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the drug makes its way to the market, findings from this study will help inform 

policymakers and payers on cost-effective ways to provide this innovative but expensive 

drug to at-risk individuals.  
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2.1 Introduction 

 

Type 1 diabetes is an auto-immune disorder that occurs due to the destruction of insulin-

producing beta cells in the islet of Langerhans region of the pancreas (95). The disease 

affects nearly 1.25 million children and adults in the United States (US) (96). Furthermore, 

first-degree relatives of Type 1 diabetes patients have a 15-fold increase in risk of 

developing Type 1 diabetes themselves (97). Treatment for Type 1 diabetes involves 

lifelong dependence on external insulin, which not only causes the inconvenience of daily 

insulin jabs but also imposes severe economic burden on patients and health care systems. 

In the US, annual health care costs attributed to Type 1 diabetes were estimated at over 

US$14.4 billion (98). In particular,  rising insulin costs (99) have induced patients to ration 

insulin use, use less-effective and harder-to-manage forms of insulin, or even travel to 

countries such as Canada, Mexico and European nations to purchase insulin at a cheaper 

cost (100,101).  

Recently, a Phase II clinical trial showed that Teplizumab -- an Fc receptor–nonbinding 

anti-CD3 monoclonal antibody -- can reduce loss of beta cell function and thus prevent or 

at least delay onset of Type 1 diabetes among at-risk relatives of Type 1 diabetes patients 

(39). It is delivered as a one-time, 14-day course of treatment, administered intravenously 

in an outpatient setting (39). Median delay of Type 1 diabetes onset observed in the Phase 

II trial was two years and particularly, for individuals with anti–zinc transporter 8 (ZnT8) 

antibody--negative, Human Leukocyte Antigen (HLA)-DR3--negative or HLA-DR4—

positive, the median delay was nearly 4 years (39). As the first drug that can prevent or 

delay onset of Type 1 diabetes, Teplizumab has received ‘breakthrough therapy’ 
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designation from the US Food and Drug Administration in August 2019 (40) and ‘PRIority 

MEdicines (PRIME)’ designation from the European Medical Agency in October 2019 

(102), with an expected market launch date in 2021 (40). 

Although Teplizumab holds considerable promise for improved health outcomes, better 

quality of life, and reduction of downstream health care costs (especially insulin costs) for 

individuals at-risk of developing Type 1 diabetes, there are some indications that this 

biologic drug may even cost over US$100,000 per patient (41). Such high cost will pose 

challenges for policymakers and insurers in terms of coverage and reimbursement. If the 

drug’s price is excessively high, it may not be possible to reimburse the drug’s cost for all 

at-risk individuals. In such case, access to this drug may need to be restricted to individuals 

who are more likely to respond to the drug. Even so, there may be a need to choose among 

several groups of at-risk individuals because the drug is more effective in individuals 

without HLA-DR3 allele, with HLA-DR4 allele or with negative ZnT8 antibodies (39).  

The objective of this study is to assess the cost-effectiveness of providing Teplizumab to 

different groups of at-risk individuals at different possible prices of the drug. This 

economic analysis can help shed light on specific group(s) of individuals for whom 

Teplizumab offers highest value at a certain price of the drug. Such information is 

especially important at this early-stage of the drug’s development as it can help inform 

payers’ early planning efforts and their choices with respect to coverage and 

reimbursement as well as manufacturer’s pricing of the drug when it enters the market 

(19,103,104).  
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2.2 Research Design and Methods 

 

2.2.1 Choice of target patient groups for Teplizumab  

We estimated cost-effectiveness of 5 different options with respect to choice of target 

groups for the drug. These include providing Teplizumab to each of 4 different groups of 

at-risk individuals (described below) and no provision of Teplizumab at all (i.e., the usual 

care) (Figure A2.1, Appendix 2).  

Although choice of target groups could be made based on their risk of Type 1 diabetes 

development and/or likelihood of drug response, the drug may not be as effective for high-

risk individuals with more severe autoimmune response (39). Consequently, our choice of 

different target groups was driven by likelihood of drug response determined by: (i) genetic 

characteristics (HLA-DR allele status); and, (ii) possible extent of autoimmune response 

(ZnT8 antibody status). 

Specifically, the first target group included all at-risk relatives of Type 1 diabetes patients. 

The next two groups focused on individuals with HLA-DR alleles that best predict drug 

response. Group 2 included individuals with at-least one of the two favorable HLA-markers 

(namely, those without HLA-DR3 allele or with HLA-DR4 allele or both), accounting for 

76% of all at-risk individuals in the Phase II trial(39). In group 3, we further restricted 

access to the drug to only those both without HLA-DR3 and with HLA-DR4, which would 

predict highest response to the drug among the four HLA-DR3/DR4 combinations. This 

group accounted for 54% of group 2 (and for 41% of all individuals at risk (39)).  
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Group 4 comprised of individuals who tested negative for ZnT8 antibodies (regardless of 

their HLA-DR allele status). This group represented 26% of all individuals at risk (39). 

Individuals with negative ZnT8 antibodies were found to have the highest response to the 

drug, likely due to less severe immune-mediated islet cell destruction (39). While other 

antibodies (such as glutamic acid decarboxylase 65, islet antigen 2, and islet-cell 

autoantibody) are also associated with Type 1 diabetes, no difference in drug response was 

associated with the presence of these antibodies (39). Thus, these antibodies were not 

considered.  

2.2.2 Model structure 

We developed a hybrid decision tree/Markov microsimulation model to estimate the cost 

and effectiveness of each of the 5 options for provision of the drug. The decision tree 

component of the model captured genetic and antibody testing and administration of 

Teplizumab (Figure 2.1). Genetic testing involved genotyping the HLA-DR antigen while 

antibody testing comprised of islet-cell antibody test (specifically, the ZnT8 antibody test). 

The microsimulation component, which was adapted from the Sheffield Type 1 Diabetes 

Policy Model (54), simulated the progression of at-risk individuals from pre-type 1 diabetes 

to Type 1 diabetes and eventually to diabetes-related complications. Details of the Sheffield 

Type 1 Diabetes Policy Model have been published elsewhere (54). 

In the microsimulation component, all at-risk individuals started in the pre-type 1 diabetes 

state. In each year, they faced risk of developing Type 1 diabetes; risk of developing Type 

1 diabetes was lower in individuals receiving Teplizumab relative to those not receiving 
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the drug. Once an individual developed Type 1 diabetes, s/he faced risk of diabetes-related 

complications including microvascular complications (neuropathy, nephropathy and 

retinopathy), macrovascular complications (myocardial infarction, stroke, 

revascularization and angina), diabetic ketoacidosis and hypoglycemia (54). Patients faced 

mortality risks from cardiovascular events and end-stage renal disease as well as from 

causes unrelated to diabetes (54). The analysis was conducted from a health care system’s 

perspective. Cycle length was one year, and lifetime horizon was used. All analyses were 

performed using TreeAge 2019 v2.1 (105). 

 
 

Figure 2.1: Decision Tree 

Notes: T1D: Type 1 Diabetes; HLA-DR3: Human Leukocyte Antigen DR3; HLA-DR4: Human Leukocyte 

Antigen DR4; ZnT8: Zinc Transporter 8 
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2.2.3 Study Cohort  

We simulated a hypothetical cohort of 10,000 individuals at risk of developing Type 1 

diabetes who were aged 8-49 years, were relatives of Type 1 diabetes patients and met the 

criteria for being at high risk for Type 1 diabetes development as defined in the Phase II 

clinical trial of Teplizumab (39). To mirror the age distribution of the study cohort in this 

trial, we assumed that 66% of the cohort was aged below 18 years. Within the 8-17 and 18-

49 age groups, distribution of individuals mirrored the age distribution of the US 

population in 2018 (106). The full set of demographic and clinical characteristics assumed 

for the hypothetical patient cohort are provided in Table A2.1 in Appendix 2. 

2.2.4 Model inputs 

Model inputs are described below and presented in Table 2.1. 

Teplizumab efficacy and risk of developing Type 1 diabetes 

Data on the efficacy of Teplizumab in delaying Type 1 diabetes onset were from the Phase 

II clinical trial (39) and were available for all individuals at risk and separately for groups 

of individuals defined by their HLA-DR3 status, HLA-DR4 status and ZnT8 antibody 

status. These efficacy data were presented in the form of Kaplan Meier (KM) curves that 

showed time-to-Type 1 diabetes over the trial period. We converted these time-to-Type 1 

diabetes event data to annual risk of developing Type 1 diabetes for use in our Markov 

model. We proceeded in 2 steps. First, as we did not have access to raw individual patient 

data that were used to generate the KM curves, we reconstructed the raw data by digitizing 

the KM survival curve (107,108). Second, we applied survival modelling techniques to 
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convert these reconstructed raw data to annual risk of developing Type 1 diabetes 

(109,110). Further details of these two steps are provided in Appendix A2.3.  

We note that annual risk of developing Type 1 diabetes described above could only be 

obtained separately for HLA-DR3 positive, HLA-DR3 negative, HLA-DR4 positive and 

HLA-DR4 negative subgroups. To use these risk estimates in our model where groups of 

at-risk individuals were defined by combinations of HLA-DR3 and HLA-DR4 statuses, we 

assumed that annual risk of developing Type 1 diabetes for each specific combination was 

an average of the Type 1 diabetes risks for the respective HLA-DR3 and HLA-DR4 

statuses (values are shown in Table 2.1). We tested the robustness of our results to this 

assumption in the sensitivity analyses below.  

Transition probabilities after occurrence of Type 1 diabetes 

Probabilities of developing diabetes-related complications and progression through these 

complications were based on the Sheffield Type 1 Diabetes Policy Model (54). Risk of 

mortality from causes unrelated to diabetes was age- and sex-specific, and was obtained 

from the (latest available) 2017 US life tables (111). 

Adverse effects from Teplizumab 

Rash and lymphopenia were the main complications associated with Teplizumab (39). 

However, in the Phase II trial, rash resolved spontaneously and even though lymphopenia 

resolved in a maximum of 105 days, differences in rates of infection (a consequence of 
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lymphopenia) between patients receiving Teplizumab and placebo were not statistically 

significant (39). Thus, our model did not include Teplizumab-induced complications.  

Costs 

Cost of each option included cost of HLA-DR or ZnT8 tests (if applicable), cost of 

treatment with Teplizumab (if applicable), and annual health care costs depending on 

diabetes status and existence of diabetes complications. Cost of treatment with Teplizumab 

consisted of cost of the drug and cost of 14 outpatient visits (39).  Costs of outpatient visits 

as well as cost of ZnT8 antibody and HLA-DR tests were obtained from Center for 

Medicare and Medicaid’s 2019 Clinical Diagnostic Laboratory Fee Schedule (112). 

Annual health care costs of pre-type 1 diabetes were based on annual age-specific medical 

costs of prediabetes observed in the US (113). Costs of diabetes (without complications) 

comprised of annual costs of insulin treatment (which were dependent on body weight) 

(114) and cost of two physician visits per year. Costs of managing diabetes related 

complications, on average, were based on those used in a recent, high-quality published 

study (114). All costs were converted to 2019 US dollars using the consumer price index 

inflation calculator of the US Bureau of Labor Statistics (115) and discounted at 3.5% per 

year (116). 

Effectiveness 

Effectiveness was measured in terms of Quality Adjusted Life Years (QALYs) that 

captured a person’s life expectancy adjusted by his/her health-related quality of life called 

utility. Utility was specific to diabetes status (namely, pre-type 1 diabetes or diabetes) and 



39 
 

was higher for children (age <=18) compared with adults (age>18). Utility values for 

children and adults with pre-type 1 diabetes were based on previously reported quality of 

life assessments of 12-18 year olds and adults with prediabetes, respectively (117,118). For 

patients with diabetes, utility values were obtained from Lee et al. (119) which elicited 

utilities from over 400 children and adults with Type 1 diabetes in the US. For patients 

who experienced diabetes-related complications, we applied utility decrements for each 

complication to the utility value for diabetes; these disutility values were sourced from the 

published literature  (54,120). All utility values were discounted at 3.5% per year (116).  

Table 2.1: Model Inputs 

Variable Value  Source 

Probabilities   

   

Prevalence of ZnT8 antibody markers & HLA-DR alleles   

Zinc Transporter 8 antibody negative 0.263 (0.066) (39) 

HLA-DR3 negative, HLA-DR4 negative 0.107 (0.011) (39) 

HLA-DR3 negative, HLA-DR4 positive 0.413 (0.041) (39) 

HLA-DR3 positive, HLA-DR4 negative 0.24 (0.024) (39) 

   

Probability of developing diabetes   

No Teplizumab 0.305  

Calculated based on 

KM survival curves 

in (39) 

Teplizumab to all 0.147 

HLA-DR3 negative (with Teplizumab) 0.105 

HLA-DR3 negative (without Teplizumab) 0.379 

HLA-DR3 positive (with Teplizumab) 0.250 

HLA-DR3 positive (without Teplizumab) 0.224 

HLA-DR4 negative (with Teplizumab) 0.251 

HLA-DR4 negative (without Teplizumab) 0.166 

HLA-DR4 positive (with Teplizumab) 0.126 

HLA-DR4 positive (without Teplizumab) 0.400 

ZnT8 negative (with Teplizumab) 0.100 

ZnT8 negative (without Teplizumab) 0.595 

ZnT8 positive (with Teplizumab) 0.175 

ZnT8 positive (without Teplizumab) 0.259 

HLA-DR3 negative/HLA-DR4 negative (with 

Teplizumab) 

0.178 (0.045) 

Authors’ calculations 
HLA-DR3 negative/HLA-DR4 negative (without 

Teplizumab) 

0.272 (0.068) 
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HLA-DR3 negative/HLA-DR4 positive (with 

Teplizumab) 

0.116 (0.029) 

HLA-DR3 negative/HLA-DR4 positive (without 

Teplizumab) 

0.389 (0.097) 

HLA-DR3 positive/HLA-DR4 negative (with 

Teplizumab) 

0.251 (0.063) 

HLA-DR3 positive/HLA-DR4 negative (without 

Teplizumab) 

0.195 (0.049) 

HLA-DR3 positive/HLA-DR4 positive (with 

Teplizumab) 

0.188  (0.047) 

HLA-DR3 positive/HLA-DR4 positive (without 

Teplizumab) 

0.312 (0.078) 

   

Annual transition probabilities   

Healthy to Neuropathy* 0.0083 (54) 

Healthy to Amputation 0.0003 (0.00008) (54) 

Neuropathy to Amputation 0.0154 (0.004) (54) 

Healthy to Microalbuminuria* 0.0179 (54) 

Healthy to Macroalbuminuria* 0.00042 (54) 

Healthy to ESRD 0.00 (0.00) (121) 

Microalbuminuria to Macroalbuminuria* 0.018 (54) 

Macroalbuminuria to ESRD^ 0.0042 (0.001) – 0.074 (0.019) (121) 

Death from Microalbuminuria due to ESRD 0.0004 (0.0001) (54) 

Death from Macroalbuminuria due to ESRD 0.007 (0.0018) (54) 

Death from ESRD 0.0884 (0.022) (54) 

Healthy to Background Retinopathy* 0.0028 (54) 

Healthy to Proliferative Retinopathy* 0.00023 (54) 

Healthy to Macular Edema* 0.00086 (54) 

Healthy to Blindness 0.0000019 (4.7e-7) (54) 

Background Retinopathy to Proliferative Retinopathy* 0.0106 (54) 

Background Retinopathy to Macular Edema* 0.0368 (54) 

Background Retinopathy to Blindness 0.0001 (2.5e-5) (54) 

Proliferative Retinopathy to Blindness 0.0038 (0.0009) (54) 

Macular Edema to Blindness 0.0016 (0.0004) (54) 

   

Probabilities in case of CVD event†   

Angina  0.28 (0.07) (54) 

Stroke  0.07 (0.018) (54) 

Myocardial Infarction  0.53 (54) 

Revascularization 0.12 (0.03) (54) 

Death from Revascularization in year of event 0.057 (0.014) (54) 

Death from Stroke in year of event 0.24(0.06) (122) 

Death from Myocardial infarction in year of event  Males Females (123) 
<=39 

years 

0.038 

(0.01) 

0.125 

(0.03) 

40-49 0.051 

(0.01) 

0.111 

(0.03) 

50-59 0.092 

(0.02) 

0.140 

(0.04) 

60-69 0.175 

(0.04) 

0.209 

(0.05) 
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70-79 0.318 

(0.08) 

0.326 

(0.08) 

80-89 0.481 

(0.12) 

0.467 

(0.12) 

>=90 0.672 

(0.17) 

0.645 

(0.16) 

   

Costs (in US$)   

Zinc Transporter 8 antibody test 23.57 (5.89) (112) 

HLA-DR test 106.14 (26.54) (112) 

Diabetic Ketoacidosis 16,863.33 (4,215.83) (114) 

Hypoglycemia 1498.32 (374.58) (114) 

Angina 9,340.02 (2,335,01) (114) 

Myocardial Infarction 47,078.79 (11,769.70) (114) 

Stroke event 62344.89 (15,586.22) (114) 

Revascularization 19,057.14 (4,764.29) (114) 

Amputation 59,979.21 (14,994.80) (114) 

   

Annual costs   

Pre-type 1 diabetes Age <45: 342.06 (85.52); Age 

45-64: 487.17 (121.79); Age 

>=65: 849.96 (212.49) 

(113) 

Diabetes with no complication# 5332.24+36.17*weight+229.42 (114) 

Myocardial Infarction 2,602.31 (650.58) (114) 

Stroke 20806.88 (5,201.72)  (114) 

Angina 4,044.23 (1,011.06) (114) 

Revascularization 2,001.60 (500.4) (114) 

Background Retinopathy 10,287.50 (2,571.88) (114) 

Proliferative Retinopathy 14865.38 (3,716.35) (114) 

Macular Edema 9,306.52 (2,326.63) (114) 

Blindness 5,079.51 (1,269.88) (114) 

Neuropathy 1,555.02 (388.76) (114) 

Amputation 2,110.38 (527.60) (114) 

Microalbuminuria 23.43 (5.86) (114) 

Macroalbuminuria 34.48 (8.62) (114) 

ESRD 117,736.97 (29,434.24) (114) 

   

Utilities   

Pre-type 1 diabetes Age <=18: 0.91 (0.14) 

Age >18: 0.9 (0.23) 

(117,118) 

Diabetes with no complication Age <=18: 0.89 (0.12) 

Age >18: 0.85 (0.17) 

(119) 

Angina -0.09 (0.023) (54) 

Blindness -0.208 (0.052) (54) 

ESRD -0.023 (0.006) (54) 

Revascularization -0.058 (0.015) (54) 

Hypoglycemia -0.005 (0.001) (120) 

Diabetic Ketoacidosis -0.001 (0.0003) (120) 

Macroalbuminuria -0.017 (0.004) (54) 

Myocardial Infarction -0.058 (0.015) (54) 

Neuropathy -0.055 (0.014) (54) 
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Amputation -0.116 (0.029) (54) 

Stroke -0.018 (0.004) (54) 

CVD: Cardiovascular; ESRD: End-stage renal disease; ZnT8: Zinc-transporter 8; HLA- Human Leukocyte 

Antigen 

Standard deviations used for probabilistic sensitivity analyses are reported in parentheses.  

* Value varies based on HbA1c. Coefficients of risk equations in (54) varied assuming standard deviation 

equal to 25% of mean value, except for probability of transition from microalbuminuria to 

macroalbuminuria for which standard deviation is assumed to be 5% of mean value. 

^ Varies based on age. 
# Cost includes average cost of testing and equipment for insulin use (Mean (SD): US$5332.24 (US$1333)), 

cost of insulin which varies by age, gender and weight (Mean (SD): US$36.17 (US$9.04)) and cost of 2 

outpatient visits per year (Mean (SD): US$114.71 (US$28.68) per visit). 
†Probability of CVD event is determined based on age, duration of diabetes, TC, HDL cholesterol, systolic 

blood pressure, smoking status, macroalbuminuria and history of CVD events. Distribution of HDL 

cholesterol, systolic blood pressure and smoking status obtained from (114). For example, for a male 

patient aged 40 years who is not a smoker, having Type 1 diabetes for 30 years,  HbA1c level of 7.6%, 

HDL of 53 mg/dl, TC of 166 mg/dl, SBP of 124 mmHg, previous history of macroalbuminuria but no 

previous CVD event, annual probability of having a macrovascular CVD event is 0.04. Similarly, for a 

patient with the same characteristics but with a previous CVD event, this probability increases to 0.11. 

 

2.2.5 Threshold analysis and the Incremental Cost Effectiveness Ratio 

We used threshold analyses to determine the price ranges of Teplizumab within which 

providing Teplizumab to a specific group of at-risk individuals would be cost-effective. 

Provision of the drug to a patient group was considered to be cost-effective relative to 

another if the Incremental Cost Effectiveness Ratio (ICER) (calculated as difference in two 

patient groups’ costs divided by difference in two groups’ QALYs) was lower than the 

willingness-to-pay (WTP) threshold of US$100,000 per QALY (124).  

We conducted several scenario and sensitivity analyses to examine the robustness of our 

results. First, we conducted two-way sensitivity analyses in which we varied values of key 

inputs (cost of insulin and cost of managing diabetes complications) along with the price 

of Teplizumab (125). This analysis shed light on how cost-effectiveness of Teplizumab for 

a certain group of at-risk individuals varied for different possible combinations of cost of 
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Teplizumab and other health care system costs. As possible diabetes-related complications 

were several and varied, we used cost of managing ketoacidosis as a proxy for diabetes 

complications-related health care costs. Second, instead of using a lifetime horizon, we 

used a 10-year horizon. This shorter time horizon may be more relevant for third party 

payers while still sufficiently long to capture the benefits of delayed onset of Type 1 

diabetes. Third, as Type 1 diabetes is primarily a juvenile onset condition and benefits of 

delaying onset are particularly pronounced for children (39), we narrowed the study 

cohort’s age range to 8-17 years.  

Next, instead of extrapolating risks of developing diabetes beyond the 5 year duration 

based on reconstructed data from KM survival curves, we considered two alternative 

scenarios: (i) both treated and untreated individuals in the model, who are Type 1 diabetes-

free at the end of 5 years, develop Type 1 diabetes after year 5; and, (ii) risk of Type 1 

diabetes onset becomes zero for individuals treated with Teplizumab who do not develop 

Type 1 diabetes at the end of 5 years while all individuals who do not receive Teplizumab 

develop Type 1 diabetes at end of 5 years. Further, our base case analysis conservatively 

used the average of two individual risks of Type 1 diabetes associated with HLA-DR3 and 

HLA-DR4 alleles as the risk of Type 1 diabetes onset in individuals with combinations of 

HLA-DR3 and HLA-DR4 alleles. To examine how our results are sensitive to this 

assumption, we used the lower value of the two individual risks of Type 1 diabetes onset 

instead, which implies a higher efficacy of the drug for individuals with these alleles. 
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Lastly, to address parameter uncertainty, we: (i) used disutility values for hypoglycemia 

and diabetic ketoacidosis from alternative sources; (ii) performed conventional one-way 

sensitivity analyses in which we varied key costs and utilities over a reasonably large range 

of +/-25% of base case values (125); and (iii) conducted probabilistic sensitivity analyses 

(PSA) in which we assigned distributions to input parameters and performed 100 second-

order Monte Carlo simulations. In the PSA, we used standard deviations derived from the 

literature where available. Where unavailable, these were assumed to be 25% of base case 

values of parameters (126,127). Two exceptions were the prevalence of HLA-DR3 and 

HLA-DR4 allele combinations and probability of transition from microalbuminuria to 

macroalbuminuria for which we assumed standard deviation of 10% and 5%, respectively, 

to prevent the probabilities from exceeding 1. For one-way sensitivity analyses and PSA, 

we assumed that mean price of Teplizumab is US$100,000. 

2.2.6 Model validation 

While the microsimulation component of our model was adapted from an already validated 

model, we further assessed the validity of our model following the Assessment of the 

Validation Status of Health-Economic decision models (AdViSHE) tool (128) and 

guidelines of the International Society for Pharmacoeconomics and Outcomes Research 

(129). First, to ensure face validity, one health economist independently developed the 

model. The model structure, assumptions, analyses and results were then evaluated by a 

senior health economist. Next, we conducted trace analysis for internal and external 

validation. Specifically, we first compared the modelled proportion of patients who 
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develop Type 1 diabetes after 5 years with proportions observed in the Phase II trial (i.e., 

dependent validation) for two patient groups (Teplizumab to all at-risk and no treatment). 

We further compared these modelled proportions for the no treatment group with the 5-

year risk of Type 1 diabetes observed in the Diabetes Prevention Trial (DPT-1) -- a large, 

US-based multi-center randomized controlled trial (i.e., independent validation) (130). As 

this study is the first cost-effectiveness analysis of an intervention to prevent or delay Type 

1 diabetes, cross validation could not be performed.  

2.3 Results 

 

2.3.1 Base case analysis 

Base case results are presented in Table 2.2. The table shows that, as price of Teplizumab 

increases, the group of individuals for whom Teplizumab is cost-effective becomes 

smaller. Specifically, if Teplizumab is priced at or below US$19,600, giving Teplizumab 

to all individuals at-risk of developing Type 1 diabetes will be dominant (i.e., cost saving 

and more effective). If it is priced above US$19,600 but below US$48,900, giving 

Teplizumab to all at-risk individuals will entail higher costs compared with other patient 

groups but would also yield maximum QALYs, so that giving Teplizumab to all at-risk 

individuals will still be cost-effective (at a WTP threshold of US$100,000/QALY). 

However, if price of Teplizumab exceeds US$48,900, it will no longer be cost-effective to 

provide Teplizumab to all at-risk individuals. In this scenario, if price ranges between 

US$48,900 and US$58,200, it will be cost-effective to provide the drug only to individuals 

who are HLA-DR3 negative or HLA-DR4 positive (or both). If it is priced between 
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US$58,200 and US$88,300, treating only individuals with both HLA-DR3 negative and 

HLA-DR4 positive will be cost-effective. If the price is even higher -- between US$88,300 

and US$193,700 -- only individuals with negative ZnT8 antibody markers could be 

provided the drug for it to be cost-effective. Finally, treatment with Teplizumab will not 

be cost-effective for any patient group we considered if its price exceeds US$193,700.  

Table 2.2: Optimal options for different price ranges of Teplizumab 

Price range Optimal option Result for optimal option 

relative to other options 

$1 - $19,598 Teplizumab to all at-risk Dominant  

$19,598 - $48,956 Teplizumab to all at-risk Cost-effective 

$48,956 - $58,235 HLA-DR3 negative or HLA-DR4 positive Cost-effective 

$58,235 - $88,325 HLA-DR3 negative and HLA-DR4 positive Cost-effective 

$88,325 - $193,779 ZnT8 negative Cost-effective 

>$193,779 No Teplizumab  

Notes: All costs are in 2019 US dollars (US$). This base case analysis is based on a lifetime horizon. HLA-

DR3: Human Leukocyte Antigen DR3; HLA-DR4: Human Leukocyte Antigen DR4; ZnT8: Zinc Transporter 

8 

 

To put a comparison of strategies into perspective, in Table 2.3, we present results for one 

potential price of Teplizumab, namely, US$100,000. At this price, providing Teplizumab 

to patients with negative ZnT8 antibody markers costs US$1,203 more than the least costly 

alternative of no treatment, but also yields 0.26 greater QALYs over a patient’s lifetime. 

The resulting ICER of US$4,647 is much lower than the conventional WTP threshold of 

US$100,000 per QALY. While providing Teplizumab to successively broader patient 

groups generates higher QALYs than providing only to those with ZnT8 negative, these 

additional QALYs are insufficient to justify the additional costs; ICERs for the HLA-DR3 
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negative and HLA-DR4 positive,  HLA-DR3 negative or HLA-DR4 positive and 

Teplizumab to all at-risk groups exceed the US$100,000 per QALY WTP threshold. 

Table 2.3: Cost effectiveness results if Teplizumab is priced at US$100,000 

Strategy Cost (US$) Incremental 

Costs (US$) 

Effectiveness 

(QALY) 

Incremental 

Effectiveness 

(QALY) 

ICER 

(US$/QALY) 

No Teplizumab 360,904  18.72   

ZnT8 negative 362,107 1,203 18.98 0.26 4,647 

HLA-DR3 negative and 

HLA-DR4 positive 

373,265 11,158 19.07 0.09 119,702 

HLA-DR3 negative or 

HLA-DR4 positive 

399,666 26,401 19.19 0.12 217,871 

Teplizumab to all at-risk 418,846 19,180 19.26 0.07 271,793 

All costs are in 2019 US dollars (US$). ICER = incremental cost-effectiveness ratio. This base case analysis 

is based on a lifetime horizon.  

 

2.3.2 Scenario and sensitivity analyses 

Figure 2.2 presents the results of the two-way sensitivity analyses. These figures show the 

different combinations of cost of diabetes management (cost of insulin in Figure 2.2(a) and 

cost of ketoacidosis management in Figure 2.2(b)) and price of Teplizumab together with 

the corresponding cost-effectiveness of the five patient groups. The graphs depict a trade-

off between cost of diabetes management, price of Teplizumab and extent of treatment 

coverage. If cost of diabetes management is high (and assuming all other parameters are 

held constant), it is cost-effective to provide Teplizumab to the same patient group at a 

higher price or to expand treatment access to a broader patient group at the same price. For 

example, at a price of US$90,000, it will be cost-effective to provide Teplizumab to 
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individuals who have ‘HLA-DR3 negative and HLA-DR4 positive’ if diabetes 

management costs are high but only to a smaller group of individuals with negative ZnT8 

antibody if diabetes management costs are low.  

 
(a) Cost of Teplizumab vs. Cost of Insulin 

  
  (b) Cost of Teplizumab vs. Cost of Ketoacidosis 

Figure 2.2: Two-way sensitivity analysis 

Notes: HLA-DR3: Human Leukocyte Antigen DR3; HLA-DR4: Human Leukocyte Antigen DR4; ZnT8: 

Zinc Transporter 8 
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Further results of scenario and sensitivity analyses are presented in Table 2.4. Panel A 

shows that for a 10-year time horizon, price thresholds for Teplizumab to be cost-effective 

are substantially lower than those for a lifetime horizon. This is because the benefits of 

delayed onset of Type 1 diabetes accrue over a shorter time period. Meanwhile, as utility 

losses due to diabetes are lower for children compared with adults, price thresholds that 

render each patient group cost-effective are also slightly lower for children aged 8-17 years 

than when the sample also includes adults (Panel B). For instance, Teplizumab to all at-

risk children will be cost-effective if it is priced below US$34,800 compared with 

US$48,900 when the sample also includes adults.  

Panel C contains price thresholds and cost-effective treatment groups under the 

assumptions that all at-risk individuals who have not developed Type 1 diabetes by 5 years 

will do so after 5 years. As expected, price thresholds are lower relative to the base case. 

Meanwhile, Panel D shows that if the drug could ‘completely cure’ individuals who do not 

develop Type 1 diabetes during the first 5 years, it would be cost-effective to treat all at-

risk individuals even if Teplizumab is priced as high as US$284,500.  

When we used the lower value of the two risks of Type 1 diabetes onset for HLA-DR3 and 

HLA-DR4 alleles, treating individuals with at least one of the favorable HLA-DR markers 

will be cost-effective for a price of up to US$72,800. Compared with US$58,200 found in 

the base case (Panel E), this higher price threshold for cost effectiveness makes sense 

because the lower value (instead of the average value) of the two risks of Type 1 diabetes 

onset implies higher efficacy of the drug for individuals with favorable HLA-DR markers, 
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and hence, allows the manufacturer to charge a higher price for the drug while still retaining 

its cost-effectiveness.  

The price thresholds obtained using alternative disutility values for diabetic ketoacidosis 

and hypoglycemia were very similar to those in our base case analysis (Table A2.4, 

Appendix 2), indicating that our results were robust to the choice of disutility values used 

for these adverse events. 

The results from one-way sensitivity analyses conducted assuming a mean price of 

US$100,000 for Teplizumab are presented in the Tornado diagrams in Figure A2.4 

(Appendix 2). These figures show that annual health care costs of diabetes and cost of 

treating end-stage renal disease (Figure A2.4(a)) as well as utility values for diabetes and 

pre-type 1 diabetes health states (Figure A2.4(b)) affect ICER the most. However, for all 

values of the health care costs and except for very low utility for diabetes or very high 

utility for pre-type 1 diabetes, treating only patients with ‘ZnT8 negative’ -- the target 

patient group identified in the base case -- remains cost-effective or dominant. The results 

from the PSA also indicate that at the WTP threshold of US$100,000 per QALY gained, 

giving Teplizumab to those who are ZnT8 negative is cost-effective in the highest number 

of iterations, namely, 29% (Figure A2.5, Appendix 2). 
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Table 2.4: Sensitivity analyses 

Price range Optimal option Result for optimal option 

relative to other options 

A: 10-year time horizon  

$1 - $6,858 Teplizumab to all at-risk Dominant  

$6,858 - $11,825 Teplizumab to all at-risk Cost-effective 

$11,825 - $19,002 HLA-DR3 negative or HLA-DR4 positive Cost-effective 

$19,002 - $30,012 HLA-DR3 negative and HLA-DR4 positive Cost-effective 

$30,012 - $57,752 ZnT8 negative Cost-effective 

>$57,752 No Teplizumab  

B: Sample of only children aged 8-17 years  

$1 - $17,339 Teplizumab to all at-risk Dominant  

$17,339 - $34,876 Teplizumab to all at-risk Cost-effective 

$34,876 - $58,451 HLA-DR3 negative or HLA-DR4 positive Cost-effective 

$58,451 - $88,633 HLA-DR3 negative and HLA-DR4 positive Cost-effective 

$88,633 - $210,602 ZnT8 negative Cost-effective 

>$210,602 No Teplizumab  

C: All patients develop Type 1 diabetes at end of 5 years  

$1 - $1,039 Teplizumab to all at-risk Dominant 

$1,039 - $26,734 Teplizumab to all at-risk Cost-effective 

$26,734 - $29,019 HLA-DR3 negative or HLA-DR4 positive Cost-effective 

$29,019 - $29,636 HLA-DR3 negative and HLA-DR4 positive Cost-effective 

$29,636 - $74,155 ZnT8 negative Cost-effective 

>$74,155 No Teplizumab  

D: Zero risk of Type 1 diabetes onset after 5 years  

$1 - $134,197 Teplizumab to all at-risk Dominant  

$134,197 - $284,475 Teplizumab to all at-risk Cost-effective 

$284,475- $330,284 HLA-DR3 negative and HLA-DR4 positive Cost-effective 

$330,284 - $444,890 ZnT8 negative Cost-effective 

>$444,890 No Teplizumab  

E: Minimum of the risks of Type 1 diabetes onset among HLA-DR3 and HLA-DR4 alleles 

$1 - $34,994 HLA-DR3 negative or HLA-DR4 positive Dominant  

$34,994 - $72,871 HLA-DR3 negative or HLA-DR4 positive Cost-effective 

$72,871 - $220,142 HLA-DR3 negative and HLA-DR4 positive Cost-effective 

>$220,142 No Teplizumab  
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Notes: All costs are in 2019 US dollars (US$). HLA-DR3: Human Leukocyte Antigen DR3; HLA-DR4: 

Human Leukocyte Antigen DR4; ZnT8: Zinc Transporter 8 

 

2.3.3 Model validation 

Results of the trace analysis indicated that, in our model, 76% and 46% of patients in the 

no treatment and Teplizumab to all-at risk groups, respectively, developed Type 1 diabetes 

at the end of 5 years. These proportions were similar to those observed in the Phase II trial 

(72% and 43%, respectively). Further, the proportion for the no treatment group was 

slightly higher than that the 5-year risk observed among patients in the DPT-1 trial 

conducted between 1994 and 2003 (76% vs. 65%) (130). This difference, however, may 

be explained by the rising incidence of Type 1 diabetes over time (131).   

2.4 Discussion 

 

Our study is the first to identify different target groups of at-risk individuals for cost-

effective provision of Teplizumab at different possible prices of the drug. Our analysis 

suggests that Teplizumab will be a cost-effective treatment for all at-risk individuals if it 

is priced below US$48,900. For prices up to US$58,200, it is cost-effective to treat 

individuals with HLA-DR3 negative or HLA-DR4 positive alleles, comprising 76% of all 

at-risk individuals. However, if price exceeds US$58,200, only individuals with both HLA-

DR3 negative and HLA-DR4 positive accounting for 41% of at-risk individuals can be 

treated (if the price is less than US$88,300) or only those with ZnT8 antibody negative 

(accounting for 26% of at risk individuals) can be treated if the price is less than 

US$193,700. 
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As this drug makes its way to the market, our findings from this early stage economic 

evaluation can help inform early planning and future decisions on pricing and 

reimbursement for both payers and manufacturers of Teplizumab. For payers, the findings 

can help identify which group of at-risk individuals would be cost-effective to offer 

Teplizumab at a certain price of Teplizumab. For Teplizumab’s manufacturers, while profit 

motive will be the main driver of drug pricing, it will also be important not to set prices 

that are considered excessive. Payers and agencies in charge of monitoring and regulating 

drug prices are increasingly utilizing cost-effectiveness analyses to determine optimal 

prices of brand-name drugs. For instance, in the latest amendment to Canada’s Patented 

Medicine Prices Review Board regulations, Health Canada proposed to use cost-utility 

analyses to determine if a pharmaceutical price is excessive (132). 

Though we used US data in this study, our general framework can be adapted by 

stakeholders to their own clinical and policy contexts. For example, our sensitivity analyses 

additionally considered various scenarios (such as alternative costs of insulin and 

management of diabetes-related complications, shorter time horizons and treatment for 

only children). 

Our study has several limitations. First, data on efficacy of Teplizumab was only available 

for a 5-year time period. Thus, the extent to which Teplizumab can delay Type 1 diabetes 

onset in the long-run remains to be seen. We conducted extensive sensitivity analyses under 

alternative long-run scenarios. Nonetheless, future research that uses long-term outcome 

data could offer further insights when such data becomes available. Second, data on 

efficacy of the drug among individuals with different combinations of HLA-DR3 and 
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HLA-DR4 alleles were not available. Thus, we had to assume that the risk of developing 

Type 1 diabetes among these individuals was an average of the Type 1 diabetes risks for 

the patient subsets with each individual marker. However, we conducted sensitivity 

analyses around this assumption and results supported the validity of our base case results. 

Third, probabilities of most microvascular complications in the Sheffield Type 1 Diabetes 

Policy model are dependent only on HbA1c level. To the extent that such risks increase 

with age and duration of diabetes, these risks may also be overestimated in our model. 

However, we varied these probabilities in the PSA, and our results continued to hold. 

Finally, as our study relied on data from a Phase II clinical trial, the limitations of this trial 

extended to our study. In particular, the number of patients and timing of exposure to the 

intervention in the trial were limited. Nevertheless, we believe there is considerable value 

in conducting an early stage cost-effectiveness analysis of this important drug instead of 

waiting for more complete data. Furthermore, as the drug enters the market and further 

real-world outcome data becomes available, the model developed in this paper can be 

easily used to update the cost-effectiveness of this drug. 

2.5 Conclusion 

We showed that cost-effective provision of Teplizumab varies depending on price of 

Teplizumab and genetic and/or antibody characteristics of treated patients. If the price of 

the drug turns out to be above US$100,000 as current indications suggest (41), it will only 

be cost-effective to give the drug to 26% of patients at risk. Meanwhile, if the price is below 

US$58,200, it will be cost-effective to give the drug to at least 76% of all at-risk 

individuals. Given the high clinical relevance of this drug, these findings highlight the 



55 
 

potential challenge for the manufacturer and payers to arrive at a price that can maximize 

access to the drug for at-risk individuals while ensuring sustainable budget for the payer 

and healthy profits for the manufacturer.   
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Abstract 

Objective: To compare the incremental cost-effectiveness of a procedure-less intragastric 

balloon (PIGB) as a substitute or complement to bariatric surgery. 

Background: The first procedure-less intragastric balloon (Elipse™) does not require 

endoscopy for insertion or removal. Although weight loss effects of PIGB are lower than 

bariatric surgery, it involves smaller treatment costs and greater convenience than bariatric 

surgery. These features render it attractive as a stand-alone treatment or as an add-on to 

bariatric surgery. The cost-effectiveness of such alternative uses of PIGB has, however, 

not been established. 

Methods: We developed a microsimulation model to compare the incremental cost-

effectiveness of six treatment strategies: PIGB, gastric bypass or sleeve gastrectomy as 

stand-alone treatments, PIGB as a bridge to gastric bypass or sleeve gastrectomy, and no 

treatment.  

Results: Despite being more costly upfront, adding PIGB as a bridge to bariatric surgery 

is less costly and more effective than bariatric surgery alone as it helps to achieve a lower 

post-operative BMI. Of the six strategies, PIGB as a bridge to sleeve gastrectomy is the 

most cost-effective with an ICER of US$4,619 per QALY. While PIGB alone is not cost-

effective compared with bariatric surgery alone or when PIGB is used as a bridge to 

bariatric surgery, it is cost-effective compared with no treatment with an ICER of 

US$89,096 per QALY.   
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Conclusions: Given its low treatment costs and ability to generate modest weight loss, 

providing PIGB treatment to patients prior to bariatric surgery can both improve health 

outcomes and lower health care costs compared with direct provision of bariatric surgery. 
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4.1 Introduction 

Bariatric surgery is the most effective and cost-effective treatment for obesity compared 

with non-surgical alternatives (55–57,64,133,134). However, access to bariatric surgery in 

the United States (US) is extremely limited owing to financial and insurance constraints 

and shortage of bariatric surgeons; only 0.5% of eligible patients in the US have access to 

bariatric surgery each year (93).  

Intragastric balloon therapy – which involves placing gas- or saline-filled balloon inside 

the stomach --  is an alternative procedure that can induce temporary weight loss (135). 

This technique has recently gained popularity after the US Food and Drug Administration 

(FDA) approved two intragastric balloon devices: Orbera® (liquid-filled balloon) in 2015 

and Obalon® (gas-filled balloon) in 2016 (136). A recent innovation in the field of 

intragastric balloons is the Elipse™ balloon (137), which  is unique in that it is the first 

procedure-less intragastric balloon (PIGB). Unlike previous intragastric balloons, PIGB 

does not require endoscopy for either insertion or removal (137). Consequently, treatment 

costs and risk of complications with PIGB are lower. It also offers greater patient 

convenience compared with other weight loss procedures. While Allurion Technologies 

has submitted an application for pre-market approval of Elipse™ by the US FDA (43), 

Elipse™ has not yet been approved by the FDA and is considered an investigational device 

in the US (138). However, it is currently being used in over 30 other countries worldwide 

(139).  
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In addition to being used as stand-alone treatment to achieve modest weight loss in non-

severely obese patients, recent studies have also examined use of intragastric balloons as a 

potential bridge to bariatric surgery to achieve pre-operative weight loss among severely 

obese patients (140). PIGB – with its low treatment costs and greater patient convenience 

– represents an attractive option for this purpose. 

The objective of this study is to establish the cost-effectiveness of PIGB compared with 

the two most commonly performed bariatric surgeries (i.e., gastric bypass and sleeve 

gastrectomy) and no treatment among morbidly obese patients. In addition to a direct 

comparison of cost-effectiveness of these treatments, we examine two hybrid strategies in 

which PIGB is offered as a first-line treatment prior to gastric bypass or sleeve gastrectomy. 

To our knowledge, this study is the first to examine the cost-effectiveness of an intragastric 

balloon device as a stand-alone and as an add-on treatment to bariatric surgery.  

4.2 Methods 

 

4.2.1 Procedure-less intragastric balloons and their characteristics 

The procedure-less intragastric balloon (Elipse™, Allurion Technologies, Natick, MA, 

USA) is delivered using a swallowable capsule (141). Upon reaching the stomach, the 

balloon is filled using a delivery catheter and the catheter is then withdrawn (141). The 

procedure is thus non-invasive and does not involve sedation. Within the stomach, the 

balloon works by occupying stomach capacity, inducing satiety and thereby reducing food 

intake (141). The balloon stays in the stomach for 4 months after which a release valve 

opens and the balloon is excreted naturally (141).  
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PIGB offers several advantages compared with bariatric surgery. First, as it is non-invasive, 

intervention costs of PIGB are lower than bariatric surgery (142). Second, adverse events 

with PIGB are less likely and in most cases of a major complication, the balloon can be 

endoscopically removed (143). Moreover, unlike bariatric surgery, existing studies of 

PIGB have not reported any mortality associated with the intervention (143,144).   

As with other intragastric balloons, however, a key limitation of PIGB is that it generates 

lower weight loss than bariatric surgery. For instance, percentage of body weight lost on 

average with PIGB was 14% after 1 episode of treatment (lasting 4 months) (143) 

compared with 32% in 1-2 years after gastric bypass (145).  Furthermore, while long-term 

evidence on weight loss effects of PIGB is lacking, limited evidence (at 12 months after 

treatment initiation) suggests that patients regain weight after balloon removal (144).  

4.2.2 Treatment strategies 

We estimated the cost-effectiveness of 6 strategies for weight loss. The first three strategies 

involved PIGB (‘PIGB -only, hereafter), gastric bypass (‘gastric bypass-only, hereafter) or 

sleeve gastrectomy (‘sleeve gastrectomy-only’, hereafter) as stand-alone treatment for all 

patients, respectively. In the next two strategies, PIGB was provided as first-line treatment 

to all patients. Patients who remained morbidly obese after PIGB treatment underwent 

gastric bypass or sleeve gastrectomy immediately (‘PIGB + gastric bypass’ and ‘PIGB + 

sleeve gastrectomy’, hereafter); those whose BMI fell below 35 kg/m2 after PIGB treatment 

did not receive bariatric surgery immediately but did so once their BMI reached 35kg/m2 
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due to weight regain following PIGB treatment. Finally, the sixth strategy involved no 

weight loss treatment. 

4.2.3 Model structure and study cohort  

We developed a microsimulation model to compare the costs and quality-adjusted life 

years (QALYs) of the 6 strategies. This individual patient-level microsimulation model 

allowed us to capture variation in weight loss effects across patients which in turn, 

influenced the timing of switch to bariatric surgery (if any) in the two hybrid strategies as 

described below. We simulated 10,000 adults aged 18-74 years with class 2 or class 3 

obesity (i.e., BMI >=35 kg/m2). We considered only patients with BMI>=35 kg/ m2 as 

bariatric surgery is primarily recommended for this BMI range (146). The proportion of 

patients with class 2 obesity (35<=BMI<40) versus class 3 obesity (BMI>=40) was 56% 

versus 44%, respectively, following patterns of obesity prevalence among US adults (147). 

The analysis was conducted from the health system perspective. Cycle length was set at 4 

months to match the length of an episode of PIGB treatment, and a lifetime horizon was 

used. 

The microsimulation model accounted for patients’ transition across 5 health states (Not 

Obese (BMI <30), Obese 1 (30<=BMI<35), Obese 2 (35<=BMI<40), Obese 3 (BMI>=40) 

and Death). Transitions across these health states have been depicted elsewhere (148). 

Patients entered the model in the Obese 2 or Obese 3 health states. All patients underwent 

treatment (with PIGB, gastric bypass or sleeve gastrectomy depending on strategy) in the 

first cycle. After the first cycle, patients in the PIGB -only and gastric bypass/sleeve 
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gastrectomy-only strategies transitioned across health states depending on extent of weight 

loss achieved by PIGB or surgery. Meanwhile, patients in the hybrid strategy who were 

still eligible for bariatric surgery (i.e., had BMI>=35 kg/m2) underwent surgery. During the 

PIGB treatment, patients faced risk of major or minor complications. Major complications 

required balloon removal. Some patients could also experience early balloon deflation and 

expulsion. Those undergoing bariatric surgery faced risk of surgery-related mortality as 

well as the risk of short and long-term minor and major complications.  

We estimated costs from the health system perspective. Effectiveness was measured in 

terms of QALYs that captured patients’ length of life weighted by their health-related 

quality of life (or utility). 

4.2.4 Model inputs  

Model inputs are presented in Table 4.1 and detailed below.  

Weight loss effects  

Weight loss effects at the end of 4 months of PIGB treatment were obtained from Ienca et 

al. (2020), a global multi-center study of 1770 patients (143). While several studies have 

examined weight loss effects of PIGB, we chose this study for two reasons: (i) it included 

a substantial western European patient population which would most closely resemble the 

US population; (ii) it reported weight loss following PIGB treatment for different BMI 

groups (<30, 30-40 and >40 kg/m2), allowing us to obtain weight loss effects specific to 

morbid obesity. However, Ienca et al. did not report weight loss or regain beyond treatment 
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cessation at 4 months. Thus, for patients who achieved BMI<35 kg/m2 after PIGB 

treatment (and therefore, were not immediately eligible for bariatric surgery), we assumed 

weight regain per cycle of 7% of the initial weight loss at the end of 4 months. This rate of 

weight regain was based on meta-analytic estimates that included studies with follow-up 

period of up to 12 months (144). Further, for patients in the PIGB-only strategy who 

experienced early expulsion of balloon or major complications requiring removal of PIGB, 

we assumed annual BMI increase of 0.175kg/m2 (similar to that for an average obese 

individual not undergoing treatment (149); this magnitude corresponds to 0.5%- 0.3% 

increase per year over initial BMI of 35-55kg/m2).  

Weight loss effects for bariatric surgery were obtained from Alsumali et al., a recent cost-

effectiveness analysis that presented long-term weight loss effects for gastric bypass (up to 

10 years post-surgery) and sleeve gastrectomy (up to 8 years post-surgery) (56). As only 

yearly weight loss effects were available for bariatric surgery, we linearly interpolated 

weight loss effects for each 4-month period to match the 4-month cycle length in our model. 

Beyond 10 years, we followed the literature in assuming that BMI remains constant at the 

level achieved in year 10 (56,57).  

Complications and mortality risks 

Patients treated with PIGB could experience one of 3 types of complications during 

treatment: (i) early deflation and expulsion of balloon not requiring clinical intervention; 

(ii) major complications (such as balloon intolerance, small bowel obstruction, esophagitis, 

pancreatitis and gastric perforation) requiring endoscopic or laparoscopic removal of 
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PIGB; and, (iii) minor complications (such as gastric dilation) (143). Probabilities of these 

complications were obtained from Ienca et al. (143).   

Patients undergoing bariatric surgery faced the risk of short and long-term major and minor 

complications. Short-term complications could occur in the first 30 days while long-term 

complications could occur in years 1 to 5 post-surgery. We obtained the probability of these 

complications from a recent, high quality randomized controlled trial (RCT) (150).  

Patients in all strategies faced risk of mortality specific to their age and BMI. We obtained 

age-specific risk of mortality from the latest available US life tables (111) and applied 

BMI-specific hazard ratios to it (151). Patients undergoing bariatric surgery also faced risk 

of surgery-related mortality up to 1 year post-surgery (152). There was no risk of death 

associated with PIGB (143). 

Costs 

Costs of each strategy included cost of intervention and follow-up, general BMI-specific 

health care costs, and cost of managing complications (if any). Costs of PIGB included 

cost of the device, 6 physician visits (1 visit each pre-intervention, on the day of balloon 

placement and in each month during treatment) and cost of medications (143). Costs of 

bariatric surgery included cost of the surgical procedure, cost of follow-up visits (5 visits 

in year 1, 3 visits in year 2 and 2 visits year 3 onwards for gastric bypass and 5 visits in 

year 1, 2 visits in year 2 and 1 visit year 3 onwards for sleeve gastrectomy (153)) and cost 

of dietary supplementation. These costs, along with the general BMI-specific health care 
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costs, were obtained from the published literature (56). All costs were estimated in 2020 

US dollars and discounted at 3.5% per year (116).  

Utility 

Utility values were age and BMI specific and were obtained from Alsumali et al who 

estimated EQ-5D scores based on data from the US Medical Expenditure Panel Survey 

(56). Our model also captured disutility related to the intervention and its complications. 

Specifically, following existing literature, we assumed that disutility associated with 

bariatric surgery and its major complications lasted for 6 weeks while disutility from any 

minor complications lasted for 4 weeks (57). As PIGB is non-invasive and its 

complications are less severe than bariatric surgery, we assumed that disutility from 

balloon placement was half that of bariatric surgery and lasted only 1 week. Further, 

disutility from complications of PIGB was half that due to bariatric surgery and lasted 4 

weeks for a major complication and 1 week for a minor complication. We varied these 

disutilities in the one-way sensitivity analyses (described below). All utility values were 

discounted at 3.5% per year (116).  

Table 4.1: Model Inputs 

Variable PIGB Gastric Bypass Sleeve 

Gastrectomy 

Source 

Percent Total Weight Loss   

Month 4 14.4% (4.9%) for Obese 2; 

14.7% (4.2%) for Obese 3 

  (143) 

Month 120  30.6% (7.7%)  22.3% (5.6%) (56) 

Mortality Hazard Rates     

Not Obese 1.83 (age 18-29); 0.72 (age 30-44); 1.08 (age 45-64); 0.89 (age >65) (151) 

Obese 1 1.77 (age 18-29); 1.18 (age 30-44); 1.27 (age 45-64); 0.92 (age >65) 

Obese 2 1.68 (age 18-29); 1.69 (age 30-44); 2.30 (age 45-64); 1.10 (age >65) 

Obese 3 4.91 (age 18-29); 1.48 (age 30-44); 1.86 (age 45-64); 1.27 (age >65) 
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Probabilities   

Proportion of patients starting 

in Obese 2 state 

0.56 (147) 

Proportion of patients starting 

in Obese 3 state 

0.44 

Procedure related mortality 

(short term) 

0 0.0038 (9.5E-4) 0.0029 (7.25E-4) (143,152) 

Procedure related  mortality 

(long term) 

0 0.0072 (0.0018) 0.0034 (8.5E-4) 

Early deflation 0.006 (0.002) n/a n/a (143) 

Major complication (0-30 days) 0.036 (0.009) 0.094 (0.024) 0.058 (0.015) (143,150) 

Minor complication (0-30 days) 0.0006 (1.5E-4) 0.171 (0.043) 0.074 (0.019) 

Major complication (years1-5) n/a 0.151 (0.038) 0.083 (0.021) (150) 

Minor complication (years1-5) n/a 0.109 (0.027) 0.107 (0.027) 

Costs (in US$)   

Intervention1  5,550 30,235 (5,033) 26,328 (6,248) (56) 

Follow up visits2  805, 483, 322 805, 322, 161 (56,143) 

Dietary supplements (annual)  100 (25) (56) 

Complications*     

Major complication (0-30 days) 2,695 (674)3 49,458 (12,364) (56) 

Minor complication (0-30 days) 161 (40)3 1,517 (379) 

Major complication (years 1-5) n/a 54,454 (13,614) 

Minor complication (years 1-5) n/a 951 (238) 

Health care costs (per year) by 

health state: 

    

Not Obese 4,152 (1,038) (56) 

Obese 1 4,881  

Obese 2 5,744  

Obese 3 6,997  

Utilities    

BMI Specific Utilities   

Not Obese 0.91 (age 18-30); 0.89 (age 31-40); 0.86 (age 41-50); 0.83 (age 51-

60); 0.81 (age 61-70); 0.79 (age >=71) 

(56) 

Obese 1 0.89 (age 18-30); 0.86 (age 31-40); 0.82 (age 41-50); 0.80 (age 51-

60); 0.79 (age 61-70); 0.76 (age >=71) 

Obese 2 0.88 (age 18-30); 0.83 (age 31-40); 0.79 (age 41-50); 0.77 (age 51-

60); 0.76 (age 61-70); 0.74 (age >=71) 

Obese 3 0.84 (age 18-30); 0.82 (age 31-40); 0.75 (age 41-50); 0.73 (age 51-

60); 0.71 (age 61-70); 0.69 (age >=71) 

Disutility   

Intervention related disutility 0.002 (1.4E-4) 0.025 (0.002) (57) 

Major complication 0.014 (7.7E-4) 0.042 (0.002) 

Minor complication 0.001 (7.2E-5) 0.008 (5.8E-4) 

Values are Mean (SD). Standard deviations (SD) were obtained from the published literature where available. 

Where unavailable, SD was assumed equal to 25% of the mean value. Costs are measured in 2020 US dollars. 
1Total cost of PIGB includes cost of balloon (US$4,050 (SD: US$1,012) calculated as £2800 (142) converted 

to USD @ 1 GBP= 1.3897 USD as on January 18, 2018 (154) and adjusted for inflation), 6 physician visits 

(1 before balloon placement, 1 on day of balloon placement, 1 each in months 1-4) @ US$161 (SD: US$40) 

per visit (56), one dose of aprepitant 125 mg (@ US$90.73 per unit (155))  + Ondansetron (9 tablets @ 

US$5.79 per unit (156)) + 2 doses of aprepitant 80 mg (US$61.81 per unit (155)) + daily proton pump 

inhibitor starting 14 days before treatment (134 days x US$2 per unit (157)) (143). 
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2Follow-up visits are based on the following schedule: 5 visits in year 1, 3 visits in year 2 and 2 visits per 

year beyond year 2 for gastric bypass and 5 visits in year 1, 2 visits in year 2 and 1 visit per year beyond year 

2 for sleeve gastrectomy (153). Each follow-up visit costs US$161 (56). 
3 Cost of major complication with PIGB is assumed to be the weighted average of treatment with endoscopy 

costing US$1,082 (158) and laparoscopy costing US$26,328 (assumed equal to cost of laparoscopic sleeve 

gastrectomy procedure), where weights are based on proportion of complications treated with endoscopy vs. 

laparoscopy in Ienca et al. (143). Cost of minor complication with PIGB is assumed to be the cost of one 

physician visit. 

 

 

4.2.5 Cost effectiveness analysis 

We estimated the total costs and QALYs of the six strategies. We removed any strategies 

that were dominated in a simple sense (i.e., strategies that cost more while yielding fewer 

QALYs). We then estimated the Incremental Cost Effectiveness Ratio (ICER) as the ratio 

of the difference in total costs to the difference in total QALYs gained between two 

strategies and removed any strategies that were extended dominated (i.e., had a higher 

ICER than a more effective strategy). Among the remaining strategies, a strategy was 

considered cost-effective relative to another strategy if the ICER was lower than the 

conventional willingness-to-pay threshold of US$100,000 per QALY. 

We conducted several additional analyses. First, to address parameter uncertainty, we 

conducted conventional one-way sensitivity analyses in which we varied all costs and 

utilities in a range of ±25% of base case values (125), and probabilistic sensitivity analyses 

(PSA) in which we assigned distributions to input parameters and performed 1,000 Monte 

Carlo simulations. Second, we examined robustness of our results to changes in magnitude 

of 4-month weight loss of PIGB. In this analysis, we used meta-analytic estimates of weight 

loss after PIGB treatment from Vantanasiri et al. (144), which are slightly lower than the 

estimates from Ienca et al. used in the base case analysis (i.e., 12.75% vs. 14.4%-14.7%). 
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Third, while no deaths have been reported in PIGB studies, the FDA has recently alerted 

to the risk of mortality from other liquid-filled intragastric balloons that was reported after 

the approval of those balloons (159). Therefore, in this analysis, we considered the 

hypothetical possibility of a small mortality risk of 0.025% from PIGB similar to that 

observed for other balloons (160).  

Fourth, we conducted additional sensitivity analyses to examine alternative long-term 

weight dynamics after PIGB and bariatric surgery. Long-term weight regain after PIGB 

treatment is not yet known. Therefore, in the first of these analyses, we varied the 

magnitude of weight regain after PIGB treatment between 0% (i.e., no weight regain) and 

14% (twice that used in the base case analysis). In the second analysis, we used long-term 

weight loss data for bariatric surgery from a recent, large, multi-center randomized clinical 

trial which compared weight loss after gastric bypass and sleeve gastrectomy (150). For 

gastric bypass, total percent weight loss at the end of 5 years in this trial was lower than 

weight loss at the end of 10 years reported in Alsumali et al. (27% vs. 31%). However, 

weight loss for sleeve gastrectomy was slightly higher (22.8% vs. 22.3%).  All analyses 

were conducted using TreeAge Pro 2019 v2.1 (105).  

4.3 Results 

4.3.1 Base case analysis 

Table 4.2 presents the results of the base case cost-effectiveness analysis. There are three 

key findings. First, adding PIGB as a bridge to bariatric surgery is less costly and more 

effective than bariatric surgery alone (Panel A). Specifically, ‘PIGB + sleeve gastrectomy’ 
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dominates sleeve gastrectomy only, and ‘PIGB + gastric bypass’ dominates gastric bypass 

only. This finding is explained by the fact that even though adding PIGB treatment 

increases upfront procedure costs, eventual weight loss is greater than without PIGB 

treatment which lowers downstream health care costs and improves quality of life.   

Second, among all six strategies, the ‘PIGB + sleeve gastrectomy’ is the most cost-effective 

strategy (Panel B). ‘PIGB + sleeve gastrectomy’ costs US$10,084 more than no treatment 

(US$128,045 vs. US$117,961), but it also yields 2.18 additional QALYs. The resulting 

ICER is US$4,619 per QALY gained which is much lower than the WTP threshold of 

US$100,000 per QALY. Meanwhile, ‘PIGB + gastric bypass’ generates 0.06 additional 

QALYs compared with ‘PIGB + sleeve gastrectomy’. However, it is also more costly 

(US$137,576 vs. US$128,045) due to higher procedure costs and greater risk of 

complications with gastric bypass. As a result, ‘PIGB + gastric bypass’ is not cost effective 

relative to  ‘PIGB + sleeve gastrectomy’ with an ICER of US$163,491 per QALY that 

exceeds the WTP threshold of US$100,000 per QALY.  

Finally, Panel C shows that if only compared with no treatment, PIGB costs US$6,920 

more and generates 0.08 additional QALYs, generating an ICER of US$89,096 per QALY 

gained. This ICER is lower than the WTP threshold of US$100,000 per QALY, suggesting 

that PIGB treatment alone is cost-effective relative to no treatment. 
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Table 4.2: Incremental Cost Effectiveness Results, Base case 

Strategy Cost (US$) Incremental 

Costs (US$) 

Effectiveness Incremental 

Effectiveness 

ICER 

(US$/QALY)  

Panel A: All strategies       

No treatment 117,961 - 13.48 - - 

PIGB only 124,880 6,920 13.56 0.08 Ext. dominated 

PIGB + Sleeve 

Gastrectomy 

128,045 3,165 15.66 2.11 1,503 

Sleeve Gastrectomy only 130,678 2,633 15.25 -0.41 Dominated 

PIGB + Gastric Bypass 137,576 9,531 15.72 0.06 163,491 

Gastric Bypass only 138,242 667 15.46 -0.26 Dominated 

Panel B: Undominated strategies      

No treatment 117,961 - 13.48 - - 

PIGB + Sleeve 

Gastrectomy 

128,045 10,084 15.66 2.18 4,619 

PIGB + Gastric Bypass 137,576 9,531 15.72 0.06 163,491 

Panel C: PIGB only vs. No treatment    

No treatment 117,961 - 13.48 - - 

PIGB only 124,880 6,920 13.56 0.08 89,096 

All costs are in 2020 US dollars (US$). ICER = incremental cost-effectiveness ratio. 

4.3.2 Sensitivity analysis 

Results of the one-way sensitivity analyses are presented in Tornado diagrams in Figure 

4.1. Figure 4.1 (a) shows that the ‘PIGB + sleeve gastrectomy’ strategy remained cost-

effective relative to no treatment for all values of costs and utilities in the range of +/- 25% 

of base case values. Furthermore, except for very low cost of gastric bypass or very high 

cost of sleeve gastrectomy, the ‘PIGB + gastric bypass’ strategy remained not cost-

effective relative to the ‘PIGB + sleeve gastrectomy’ (Figure 4.1(b)). Cost-effectiveness 
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acceptability curves from the PSA indicate that at the cost-effectiveness threshold of 

US$100,000 per QALY, ‘PIGB + sleeve gastrectomy’ is cost-effective in 70% of iterations 

(Figure 4.2). 

 

              (a) Elipse + Sleeve gastrectomy vs. No Treatment 

 

           (b) Elipse + Gastric bypass vs. Elipse + Sleeve gastrectomy 

Figure 4.1: Tornado diagram 
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Figure 4.2: Cost-effectiveness acceptability curve 

 

Table 4.3 shows the results of the additional sensitivity analyses. We obtained similar 

results to the base case even when we used meta-analytic estimates for weight loss effects 

of PIGB instead of estimates from Ienca et al. (Panel A). The results were also robust when 

we allowed for mortality due to PIGB (Panel B) and used alternative data for weight loss 

effects for bariatric surgery (Panel C).  
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Table 4.3: Incremental Cost Effectiveness Results, Sensitivity Analyses 

Strategy Cost (US$) Incremental 

Costs (US$) 

Effectiveness Incremental 

Effectiveness 

ICER 

(US$/QALY) 

Panel A: Meta-analytic estimates for weight loss from PIGB   

No treatment 117,961 - 13.48 - - 

PIGB + Sleeve 

Gastrectomy 

129,080 11,119 15.62 2.14 5,190 

PIGB + Gastric Bypass 138,406 9,327 15.69 0.07 137,651 

Panel B: Allowance for PIGB -related death   

No treatment 117,961 - 13.48 - - 

PIGB + Sleeve 

Gastrectomy 

127,128 9,167 15.55 2.07 4,438 

PIGB + Gastric Bypass 136,908 9,780 15.63 0.08 124,285 

Panel C: Alternative weight loss effects for bariatric surgery 

No treatment 117,961 - 13.48 - - 

PIGB + Sleeve 

Gastrectomy 

128,112 10,151 15.69 2.21 4,591 

PIGB + Gastric Bypass 138,219 10,107 15.71 0.02 597,356 

All costs are in 2020 US dollars (US$). ICER = incremental cost-effectiveness ratio. Dominated strategies are excluded. 

In Panel A, total percent weight loss effects (Mean (SD)) for PIGB is 12.75% (3.2%) for patients in both Obese 2 and 

Obese 3 categories. 

 

Further, when we varied the extent of weight regain after PIGB treatment between no 

weight regain and regain of 14% of weight loss per cycle, the ‘PIGB + sleeve gastrectomy’ 

was the most cost-effective unless weight regain was very small (smaller than 1.5% in each 

4-month period; Figure 4.3). Overall, these sensitivity analyses indicate the robustness of 

our base case results. 
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Figure 4.3: Net monetary benefit for different percentages of weight regain 

 

4.4 Discussion 

In this study, we provided the first assessment of the incremental cost-effectiveness of 

PIGB as a substitute or complement to bariatric surgery. We found that using PIGB as an 

add-on treatment before bariatric surgery is both less costly and more effective than 

bariatric surgery alone. In particular, treatment with PIGB followed by sleeve gastrectomy 

is the most cost-effective. Also, although PIGB alone is not cost effective versus bariatric 

surgery, it is a cost-effective treatment option compared with no treatment.   

Our findings have several implications for policy and clinical practice. First, contrary to 

expectations that an add-on treatment to already expensive bariatric surgery would further 

increase health care costs, our results show that using PIGB as an add-on treatment reduces 
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total costs and improves health outcomes compared with bariatric surgery alone, owing to 

a lower post-operative BMI. Consequently, as decision-makers look for ways to curb rising 

health care costs, incorporating PIGB prior to bariatric surgery within the clinical care 

pathway could represent an attractive treatment option in the future.  

Second, PIGB as a bridge therapy can be especially valuable for patients as it helps to 

achieve a lower BMI post-bariatric surgery. This is corroborated by findings from previous 

studies which suggest a positive correlation between pre-operative and post-operative 

weight loss(161).  Furthermore, intragastric balloon treatment can help allay fears and 

concerns of a more restrictive surgical procedure for some patients and ease their path 

towards bariatric surgery(162).  

Third, even though weight loss effects of PIGB are modest and likely temporary, our results 

indicate that treatment with PIGB alone is still cost-effective for patients who lack access 

to bariatric surgery. Further, treatment with PIGB is non-invasive and reversible. Thus, it 

is likely to be of interest to patients who do not have bariatric surgery due to lack of 

insurance, fear of surgery-related risks or concerns over long-term weight regain after 

bariatric surgery(93).  

Our study has a number of limitations. First, data on weight loss from PIGB were available 

for a maximum duration of 12 months after treatment initiation. Thus, our analysis assumed 

that patients regain weight at a fixed percentage of initial weight loss every 4-months 

period. However, we conducted sensitivity analyses to account for this data limitation, and 

our conclusions continued to hold. Second, our study relied on non-RCT data for weight 
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loss effects of PIGB as RCT data was not available. In addition, no study has directly 

compared weight loss from PIGB with that from bariatric surgery so that weight loss effects 

for these treatments had to be obtained from separate studies.  Future studies that utilize 

longer-term weight loss data for PIGB from RCTs (when such data becomes available) will 

be useful. Third, while our study highlights the economic value of PIGB as a bridge therapy 

to bariatric surgery, these findings are based exclusively on economic modelling using data 

from observational studies; no clinical studies have examined such use of PIGBs 

specifically prior to bariatric surgery. Although previous studies have indicated the 

feasibility of using intragastric balloons prior to bariatric surgery, further clinical evidence 

on the use of PIGB prior to bariatric surgery will be useful. Value of information analyses 

can be used to quantify the value of this additional research and the most efficient research 

design to collect such evidence (94).   

In conclusion, findings from this study suggest that offering PIGB as a first-line treatment 

to all obese patients prior to bariatric surgery is cost-effective compared with bariatric 

surgery or PIGB alone. Given the potential economic value of this use of PIGB, future 

clinical trials examining the use of PIGBs as bridge therapy to bariatric surgery will be 

useful.  
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Abstract 

 

Background: There exists widespread debate on appropriate breast cancer screening 

strategies for women aged between 40 and 49 years. Thus, current guidelines for 

mammography screening in this age group vary widely across agencies. Artificial 

intelligence (AI) and polygenic risk scores (PRS) are new methods of risk prediction, with 

AI shown to be more accurate than PRS. However, cost-effectiveness of AI-based vs PRS-

based vs guideline-based screening is not established. 

Methods: We compared the cost-effectiveness of four alternative strategies of 

mammography screening for breast cancer. The first two strategies, i.e., AI-based and PRS-

based strategies, used AI reading of index mammograms and genetic risk profile, 

respectively to guide screening for women aged 40-49 (with screening beyond age 50 

following existing guidelines). The other two strategies exclusively followed existing 

guidelines, namely, the United States Preventive Services Task Force (USPSTF) and 

American College of Obstetricians and Gynecologists/American College of Radiology 

(ACOG/ACR) guidelines. The analysis was conducted from a health care system 

perspective and lifetime horizon was used.  

Results: AI-based screening was cost-effective compared with PRS-based screening and 

USPSTF guideline-based screening, with an incremental cost-effectiveness ratio of 

US$23,133 per QALY gained. It also cost US$156 million (per 100,000 women) less and 

generated 1,755 additional QALYs (per 100,000 women) than ACOG guideline-based 

screening. Compared with USPSTF guidelines that recommend screening based on family 
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history, AI-based screening can reduce missed or delayed diagnoses as more high-risk 

women are accurately identified and screened. At the same time, it can help alleviate 

existing concerns about both over-diagnoses and false-positive diagnoses inherent in 

ACOG/ACR guidelines that recommend annual screening for all women. 

Conclusions: Although AI and PRS technologies are still in their nascent stages, findings 

from this study provide useful first insights to inform policymakers on the potential value 

of using these technologies to optimize breast cancer screening practices in the future.  
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5.1 Introduction 

 

There is widespread debate among clinicians and researchers globally over what constitutes 

appropriate breast cancer screening, especially for women younger than age 50 (163). 

Consequently, existing guidelines on mammography screening for breast cancer vary 

widely, even within a country. In the United States (US), the American College of 

Obstetricians and Gynecologists (ACOG) and the American College of Radiology (ACR) 

recommend annual mammography starting at age 40 for all women (44). Meanwhile, the 

most recent US Preventive Services Task Force (USPSTF) guidelines recommend biennial 

mammography between ages 50 to 74 years for women without family history of breast 

cancer while indicating that women with family history may benefit from starting screening 

between ages 40 and 49 (44). In Canada, breast cancer experts have challenged the 

Canadian Preventive Task Force which recommends against breast cancer screening for 

women aged between 40 and 49 years who are not at high risk, arguing that these 

recommendations are “outdated and dangerous” and have called for annual screening of all 

women above age 40 (164). 

Cost-effectiveness analyses can inform this debate by estimating and comparing the costs 

and effectiveness of alternative screening strategies to identify the most cost-effective 

screening strategy. However, despite several cost-effectiveness analyses of alternative 

screening intervals and starting ages for mammography screening associated with current 

screening guidelines (67,69), the results remain inconclusive. Earlier studies have found 

starting screening at age 50 to be cost-effective (67), which lends support to the existing 
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USPSTF guidelines while more recent cost-effectiveness analyses point to the value of 

extending screening to women younger than age 50 (69) as recommended by ACOG/ACR.   

A key limitation of existing guidelines is that these do not fully account for heterogeneity 

in women’s risk of breast cancer. For instance, while risk assessment tools may consider 

family history or breast density as risk factors, these tools do not consider the full set of 

genetic markers now known to be associated with breast cancer. Furthermore, breast 

density measurements are also subject to radiologists’ assessment and discernment. From 

an economic perspective, a more rigorous risk stratification can enable focusing health care 

resources on screening women with high risk while avoiding unnecessary screening and 

follow-up costs for those with low risk.  

Two new risk prediction tools have recently emerged, namely polygenic risk score (PRS) 

and artificial intelligence (AI). PRSs estimate a woman’s risk of breast cancer based on 

susceptibility loci identified through genome wide association studies (165). AI-based risk 

prediction models, in contrast, identify discriminative image patterns from full-field 

mammograms to categorize a woman’s risk of developing breast cancer in the future (47).  

To date, there is very little evidence on the cost-effectiveness of using these new risk 

stratification tools to aid breast cancer screening. Only one study has examined the cost-

effectiveness of PRS-based risk stratified mammography screening versus screening all 

women aged between 50 and 69 years and no screening for breast cancer. This study found 

that offering mammography screening only to women above the 70th percentile of the PRS-

based risk distribution is cost-effective relative to screening all women aged between 50 
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and 69 years and no screening (79). Notably, no study has compared the cost-effectiveness 

of risk-stratified mammography screening using AI-based risk prediction versus PRS-

based risk prediction. Our study fills this evidence gap.  

In this study, we examine the cost-effectiveness of using AI or PRS to guide mammography 

screening for breast cancer compared with screening based exclusively on existing 

USPSTF guidelines (which recommend mammography screening based on family history) 

or ACOG/ACR guidelines (which recommend annual mammography screening for all 

women). As most of the debate over breast cancer screening centers on screening for 

women aged between 40 and 49 years and as data on predictive ability of AI has been 

validated only in the short-term (47), we focus on using AI or PRS to guide screening only 

among women in the 40 to 49 years age group, with screening for older women based on 

existing USPSTF or ACOG/ACR guidelines.   

5.2 Methods 

 

5.2.1 Study Cohort and Risk of Breast Cancer  

Our model simulated 100,000 white women aged 40 years with no previous history of 

breast cancer. Each woman had an underlying risk of developing breast cancer based on 

the most recent risk distribution estimated for US white females using a comprehensive set 

of genetic and other non-modifiable and modifiable breast cancer risk factors (166). As 

criteria for who is considered ‘high risk’ for screening purposes differ across guidelines, 

we conservatively defined ‘true’ high risk women as those with an underlying risk of breast 

cancer equal to or higher than 1.1 times the average risk in the population of 40 year old 
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women (relative risk (RR) of 1.1 or higher). This RR threshold of 1.1 was chosen because, 

based on the latest report of the American Cancer Society, it can capture a broad range of 

factors known for increasing risk of breast cancer, including family history of breast cancer, 

personal history of breast or ovarian cancer, reproductive risk factors, genetic variations, 

dense breast on mammography, history of chest radiation, etc. (167). With this RR 

threshold, 43% of our hypothetical study cohort was classified as ‘true’ high risk, while the 

remaining 57% of the cohort was classified as ‘true’ low risk.  

5.2.2 Screening strategies  

We compared four alternative screening strategies which are presented graphically in 

Figure 5.1. In all four strategies, screening started at age 40 and ceased at age 74. The first 

strategy involved risk stratification based on AI reading of an index mammogram (‘AI-

based’, hereafter). All women underwent an index mammogram at age 40, which was 

interpreted using AI to predict risk of breast cancer. Women predicted to have high risk 

underwent annual digital mammography starting at age 40 while those predicted to have 

low risk were not screened. This screening pattern continued until age 49. Beyond age 50, 

screening followed the USPSTF guideline, as described below. We considered the scenario 

where screening beyond age 50 was based on ACOG/ACR guidelines in a sensitivity 

analysis. 

In the second strategy, screening pathways were the same as in the first strategy; however, 

risk stratification was performed using PRS instead of AI (‘PRS-based’, hereafter). All 
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women underwent genetic testing at age 40 in which 76 single nucleotide polymorphisms 

(SNPs) known to be associated with breast cancer were genotyped (48).  

The third strategy followed the current USPSTF guidelines (‘USPSTF guideline-based’, 

hereafter). For women older than age 50, the guidelines recommend biennial screening for 

women without family history (45). The USPSTF guidelines indicate that women with 

family history may benefit from starting screening before age 50 (44) but do not specify 

frequency of screening for these women. Given that most other screening guidelines 

recommend annual screening for high-risk women (44), we considered that women with 

family history underwent annual mammography. For women aged between 40 and 49 

years, the USPSTF recommendation to screen women without family history is only a 

grade C recommendation (i.e., the net benefit of screening in this group is small) (45,46). 

Therefore, in our model, women younger than age 50 without family history were not 

screened. Meanwhile, similar to older women, women with family history underwent 

annual mammography.   

In the fourth strategy, all women (regardless of risk level) underwent annual digital 

mammography starting at age 40 as recommended by ACOG and ACR (‘ACOG guideline-

based’, hereafter).  

The four strategies, thus, differed in the proportion of women subjected to aggressive 

screening. ACOG guideline-based screening was the most aggressive as all women, 

including those at low risk, were screened annually starting at age 40. By contrast, in the 

remaining 3 strategies, low-risk women younger than age 50 were not screened and those 
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aged over 50 were screened only biennially. While screening frequencies were the same in 

the AI-based, PRS-based and USPSTF guideline-based strategies, these strategies differed 

in their accuracy of risk prediction for women aged between 40 and 49 which in turn 

determined the proportion of women screened prior to age 50.      

 

 

Note: ‘High risk’ and ‘Low risk’ refer to estimated high-risk and low-risk women, respectively.  

Figure 5.1: Screening strategies 
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5.2.3 Model structure 

We developed a hybrid decision tree/Markov microsimulation model to estimate the cost 

and effectiveness of the four screening strategies. This model structure allowed us to 

rigorously capture both the accuracy of risk prediction and the natural history, screening 

and treatment of breast cancer. The analysis was conducted from a health care system’s 

perspective. Cycle length was one year and lifetime horizon was used. 

Figure 5.2 shows the decision tree component of the model which captured risk prediction 

and stratification at age 40 based on AI, PRS or family history (for USPSTF guideline-

based screening). Women entering the model had an underlying high or low risk of breast 

cancer. Depending on risk-stratification strategy, AI, PRS or family history were used to 

predict this underlying risk; the extent to which the estimated risk category matched the 

underlying risk category was determined by the accuracy of each method (described 

below).  

The microsimulation component, which was adapted from the Cancer Intervention and 

Surveillance Modeling Network (CISNET) Breast Cancer Working Group’s University of 

Wisconsin Breast Cancer Epidemiology Simulation model (UWBCS) (168–170), 

simulated the natural history, screening, diagnosis and treatment for breast cancer. Details 

of the UWBCS model have been published elsewhere (168–170). 
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Figure 5.2: Decision Tree 

 

5.2.4 Model Inputs 

Inputs used in our model are presented in Table 5.1 and described below. 

Accuracy of risk prediction 

The key determinant of costs and effectiveness of each screening strategy was the accuracy 

of risk prediction. Higher accuracy of risk prediction implied that fewer women with 

underlying high-risk were incorrectly predicted to be at low risk, resulting in timely 
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diagnosis and treatment of cancer for high-risk women. It also meant that fewer low-risk 

women were incorrectly predicted to be at high risk, leading to reduction in screening and 

fewer false-positive diagnoses and over-diagnosed cases (i.e., additional screen-detected 

cases which would not have been detected in the absence of screening (171)). 

In our model, accuracy of prediction of breast cancer risk using AI and PRS was measured 

using area under the receiver operating characteristic curve (AUC) obtained from published 

studies (47,48). As real-world clinical decisions will also likely utilize information on other 

demographic and personal risk factors (such as weight, family history, breast density) in 

addition to AI or PRS, we used AUC values for models based on both AI or PRS and other 

risk factors. Using data from digital screening mammograms read by deep learning 

algorithms (AI), information on other demographic and personal risk factors and breast 

cancer outcomes from tumor registries, Yala et al. estimated an AUC of 0.71 for white 

females in the US (47). This study was chosen owing to its large study sample of patients 

seen in the US (over 31,000 patients in the training dataset and over 3,900 patients in the 

test set) (47).  Meanwhile, AUC for PRS was obtained from Vachon et al., a recent, high-

quality study that estimated the AUC for PRS combined with other risk factors for a large 

study sample primarily consisting of American women (48). Vachon et al. estimated an 

AUC of 0.69 for a model that combined PRSs developed based on 76 SNPs and 

information from the Breast Cancer Surveillance Consortium (BCSC) five-year risk-

prediction model (48). We followed a previously published method to simulate 

distributions of RR estimated using AI or PRS using these AUC values (172,173). The 

correlation between underlying ‘true’ RR and RR estimated using AI or PRS was assumed 



93 
 

equal to the respective AUC. Women with estimated RR of 1.1 or higher were then 

classified as high risk while those with estimated RR below 1.1 as low risk. We note that 

as AUC of both AI and PRS is below 1, not all ‘true’ high risk women will be correctly 

classified as such. 

In the USPSTF guideline-based screening strategy, risk prediction was based on family 

history. As women with an underlying low risk will not have a family history of breast 

cancer, all low-risk women will be correctly classified as such. Among high-risk women, 

we assumed that 37% will be correctly classified. This proportion was calculated as the 

share of US women with first-degree family history of breast cancer (16% (174,175)) 

among high-risk women (43% of our study cohort).  

Incidence and progression of breast cancer and mortality risk 

A patient’s likelihood of developing breast cancer was estimated by multiplying age-

specific annual breast cancer incidence rates per 100,000 population among white women 

in the US (176) (adjusted for increase in incidence rates due to screening (177)) with a 

woman’s ‘true’ RR (166). Detection of cancer through screening depended on screening 

frequency and sensitivity of mammography; the latter depended on patient age and was 

obtained from the published literature (178). Once detected, all patients received treatment 

(chemotherapy, radiation therapy and/or surgery (lumpectomy or mastectomy)); type of 

treatment was dependent on cancer stage and age at diagnosis (68). Patients with estrogen-

receptor positive status also received adjuvant therapy with tamoxifen for 5 years (68). 

Probability of treatment success depended on patient’s age and stage of cancer at diagnosis 
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as well as estrogen-receptor status (170). If treatment was unsuccessful, patients 

experienced cancer progression and faced risk of breast cancer mortality once cancer 

reached the distant metastases stage (170). All patients faced risk of mortality from 

competing causes; this mortality risk was age-specific, and was obtained from the (latest 

available) 2017 US life tables (111). 

Costs 

Cost of each strategy included cost of risk prediction (index mammogram read by AI 

technology or genetic testing as applicable), cost of screening with digital mammogram (if 

any), and cost of breast cancer treatment determined by the stage at cancer diagnosis 

(treatment costs were lower for cancers detected at an earlier stage). Cost of genetic test 

for the PRS-based strategy was the cost of OncoArray test in US laboratories (179). While 

cost of AI-based risk prediction in clinical practice is not yet available, calculations by 

European Society of Radiology suggest fixed costs of €60,000 (US$65,300) in addition to 

an annual cost of €20,000 (US$21,770) for the software license (180). Assuming 

equipment is amortized in 10 years, and with 8,695 mammogram facilities in the US (181) 

serving nearly two million women aged 40 years (182), cost of AI reading of each 

mammogram amounts to ~US$112. We varied cost of AI reading per mammogram over a 

wide range (up to US$500) in the sensitivity analyses.    

Cost of mammogram was obtained from Center for Medicare and Medicaid’s 2020 

Physician Fee Schedule (183). Cost of diagnostic work-up following a positive diagnosis 
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and cost of treatment of breast cancer were obtained from the published literature (68,70). 

All costs were estimated in 2020 US dollars and discounted at 3.5% per year (116). 

Effectiveness 

Effectiveness was measured in terms of Quality Adjusted Life Years (QALYs) that 

captured a person’s life expectancy adjusted by his/her health-related quality of life called 

utility. Screening entailed disutility of 0.006 QALYs for one week and diagnostic workup 

following a positive diagnosis involved disutility of 0.105 QALYs for five weeks (70). 

Utilities were age-specific and utility values according to patients’ cancer stage were 

applied once cancer was detected and treatment initiated (72). For patients who were 

successfully treated and were not in distant metastases stage, stage-specific utility was 

applied until two years after diagnosis after which utility was equal to that for a healthy 

individual (72). All utility values were discounted at 3.5% per year (116).  

Table 5.1: Model Inputs 

Variable Value Source 

Risk prediction   

AI (AUC) 0.71 (47) 

PRS (AUC) 0.69 (48) 

Family history (proportion correctly identified as 

high risk) 

0.37 Authors’ 

calculation based 

on (174,175) 

Probabilities   

Hyper-aggressive regional cancer  0.01 (168) 

Hyper-aggressive distant cancer  0.02 

Limited Malignant Potential tumors 0.42 

Clinical Surfacing (annual probability) 0.06 – 1 (tumor diameter 1cm to 8 

cm) 

(170) 

Treatment success 0.025 – 0.99 (dependent on age and 

stage at diagnosis and ER status) 

(170) 

Tumor growth rate Gamma (0.12, 0.012) (168) 

ER positive 0.65 – 0.83 (depending on age) (170) 

Sensitivity and specificity of mammography   
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Sensitivity 0.824 (age 40-49); 0.805 (age 50-59); 

0.899 (age 60-69); 0.86 (age 70-74) 

(178) 

Specificity 0.88 (age 40-49); 0.909 (age 50-59); 

0.921 (age 60-69); 0.928 (age 70-74) 

Costs (in US$)   

AI 112 (180), Author’s 

calculation 

OncoArray genetic test 115 (179) 

Mammography 152.19 (183) 

Additional diagnostic costs (true positive diagnosis)   

Age 40-49 2490.97 (70) 

Age 50-64 2337.39 

Age 65-74 2350.36 

Additional diagnostic costs (false positive diagnosis)   

Age 40-49 260.81 (70) 

Age 50-64 309.13 

Age 65-74 309.97 

Treatment costs   

In situ, initial cost 11543.32; 10328.77 (68) 

In situ, continuing cost 0 

In situ, terminal cost 44428.05 

Localized, initial cost 24545.89; 16547.88 

Localized, continuing cost 1349.14; 822.23; 793.55; 1001.76; 

710.69; 678.82 

Localized, terminal cost 50804.05 

Regional, initial cost 50339.97; 33784.12 

Regional, continuing cost 6253.84; 4230.13; 3993.77; 3566.19; 

2546.37; 2164.46 

Regional, terminal cost 57584.79 

Distant, initial cost 56534.28; 43643.09 

Distant, continuing cost 24728.52; 22107.79; 21290.87; 

18775.32; 13867.43; 14283.86 

Distant, terminal cost 75002.48 

Tamoxifen (5 years) 1519.11  (68) 

Utilities   

Disutility from screening 0.006 for 1 week (70) 

Disutility from additional diagnosis 0.105 for 5 weeks 

Health state   

Healthy 0.59-0.829 (depending on age) (72) 

In situ & Localized 0.531-0.746 (depending on age) 

Regional 0.442 – 0.622 (depending on age) 

Distant 0.354 – 0.497 (depending on age) 
Notes: All costs are in 2020 US dollars (US$). Calculations by European Society of Radiology suggest fixed costs of 

€60,000 (US$65,300 @ €1=US$1.08 (184)) in addition to €20,000 (US$21,770) annually for the software license (180). 

Assuming equipment is amortized in 10 years, and with 8,695 mammogram facilities in the US (181) serving over 2 

million women aged 40 years (182), cost of AI reading of each mammogram amounts to ~US$112. Initial treatment costs 

for each stage are for age<70 and age>=70, respectively, calculated as the weighted average of costs of different breast 

cancer treatments with proportion of patients receiving each type of treatment as the weight (68). Continuing treatment 

costs for each stage are for 1 to 5 and >=6 years after the year of diagnosis, respectively. 
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5.2.5 Cost effectiveness analysis 

We estimated the costs and QALYs of the four strategies. A strategy was considered cost-

effective relative to another strategy if the Incremental Cost Effectiveness Ratio (ICER), 

calculated as the difference between the overall costs of the two strategies divided by the 

difference between the total QALYs gained, was lower than the conventional willingness-

to-pay threshold (WTP) of US$100,000 per QALY. Meanwhile, a strategy was dominated 

if it was both more costly and less effective than the other strategy or extended dominated 

if it achieved fewer total QALYs than a more costly strategy at a higher incremental cost 

per QALY (i.e., its ICER relative to the next less costly strategy was higher than the ICER 

of a more effective strategy) (185). 

In addition to the conventional sensitivity analyses of varying values of key costs and 

utilities in one-way sensitivity analyses and addressing parameter uncertainty using 

probabilistic sensitivity analyses (PSA), we conducted several additional sensitivity and 

scenario analyses. First, our base case analysis used AUC for AI for all white women, both 

pre- and post-menopausal. As women entering our model are aged 40 years and thus likely 

pre-menopausal, in this analysis, we simulated a distribution of estimated RR using a 

higher AUC (0.79) specific to pre-menopausal women (this AUC for pre-menopausal 

women is, however, not race-specific) (47). Estimated risk for PRS was the same as in the 

base case as menopausal status is unlikely to affect accuracy of PRS. Second, to capture 

differences in accuracy of AI and PRS technologies themselves, we examined the scenario 

where risk prediction is performed exclusively using AI or PRS, i.e., without considering 

demographic and personal risk factors. Thus, in this analysis, AUC value was 0.69 for AI 
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(47) and 0.63 for PRS (165). Third, we considered the scenario where screening beyond 

age 50 in the AI-based and PRS-based screening strategies followed ACOG/ACR 

guidelines (instead of USPSTF guidelines), i.e., all women were screened annually after 

age 50. Finally, we considered the scenario where women identified as low-risk by AI or 

PRS are also offered screening between ages 40 and 49 (albeit at lower frequency than 

high-risk women) instead of not being screened at all. Specifically, similar to the USPSTF 

guidelines for women aged above 50 without family history, these low-risk women were 

screened biennially. All analyses were performed using TreeAge Pro 2019 v2.1 (105).  

5.3 Results 

 

5.3.1 Base case analysis 

Base case cost-effectiveness results are presented in Table 5.2. Panel A shows that, among 

the four strategies, AI-based screening is the most cost-effective. AI-based and PRS-based 

screening cost more than USPSTF guideline-based screening (US$49.4 million and 

US$39.5 million per 100,000 women more, respectively) but also yield 2,136 and 1,676 

additional QALYs (per 100,000 women), respectively. While PRS-based screening is cost-

effective relative to USPSTF guideline based screening (ICER: US$23,572 per QALY 

gained is lower than the conventional WTP threshold of US$100,000 per QALY gained), 

it achieves fewer QALYs at a higher cost per QALY compared with AI-based screening, 

and is thus extended dominated. After excluding the PRS-based screening strategy, the 

resulting ICER of AI-based screening compared with USPSTF guideline-based screening 

is US$23,133 per QALY gained which is lower than the conventional WTP threshold of 
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US$100,000 per QALY gained (Panel B). Meanwhile, AI-based screening dominates 

ACOG guideline-based screening. Total lifetime costs of AI-based screening are US$155.8 

million (per 100,000 women) lower than ACOG guideline-based and it also generates 

1,755 higher QALYs (per 100,000 women). 

Table 5.2:  Incremental Cost Effectiveness Results, Base Case 

Strategy Cost  

(in 1000 US$)  

Incremental 

Costs  

(in 1000 US$) 

Effectiveness 

(in QALYs) 

Incremental 

Effectiveness 

(in QALYs) 

ICER 

(US$/QALY) 

Panel A: All strategies      

USPSTF guideline-based 257,858  1,643,776   

PRS-based 297,373 39,516 1,645,453 1,676 Ext. dominated 

AI-based 307,276 9,903 1,645,913 460 21,534 

ACOG guideline-based 463,163 155,886 1,644,158 -1,755 Dominated 

Panel B: Excluding dominated strategies    

USPSTF guideline-based 257,858  1,643,776   

AI-based 307,276 49,419 1,645,913 2,136 23,133 

All costs are in 2020 US dollars (US$). Costs and effectiveness are calculated per 100,000 women. ICER = 

incremental cost-effectiveness ratio.  

 

The cost-effectiveness of AI-based screening compared with USPSTF guideline-based 

screening is explained by the higher accuracy of AI in identifying high-risk women 

compared with family history. Specifically, AI correctly classifies 61% of true high-risk 

women as such, compared with 37% with family history (Table 5.3). Consequently, even 

though mammography screening costs increase when screening is guided by AI instead of 

family history as more women are screened during ages 40 to 49, more high-risk women 

benefit from this screening which is reflected in fewer breast cancer deaths (2.6% vs. 2.7% 

of cases).  
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Meanwhile, the lower costs and higher effectiveness of AI-based screening relative to 

ACOG guideline-based screening arise as a result of targeted screening. Even though breast 

cancer deaths increase as not all women are screened during age 40-49 (and low-risk 

women are screened only biennially beyond age 50), this reduction in screening results in 

nearly 40% fewer over-diagnoses (2,920 per 100,000 women vs 4,692 per 100,000 women) 

and over 50% fewer false-positive diagnoses (141,537 per 100,000 women vs 292,133 per 

100,000 women). Thus, AI-based screening saves screening costs, cost of additional 

diagnostic work-up for false-positive diagnoses and downstream treatment costs for over-

diagnosed cases. At the same time, it also reduces disutility arising from screening, 

additional diagnostic work-up (for false-positive diagnoses) and treatment (for over-

diagnosed cases).  

Table 5.3: Breast Cancer Outcomes by Strategy 

Strategy No. (%) of 

true high 

risk women 

classified as 

high risk 

No. (%) of true 

low risk women 

classified as low 

risk 

No (%) of 

breast cancer 

deaths  

No. (%) of 

over-

diagnosed 

cases  

(per 100,000 

women) 

No. of False 

positive 

diagnoses 

(per 100,000 

women) 

USPSTF guideline-

based 

15,961 (36.7) 56,530 (100) 323 (2.7) 2,920 122,242 

PRS-based 26,099 (60.0) 49,511 (87.6) 299 (2.5) 3,033 141,565 

AI-based 26,520 (61.0) 50,017 (88.5) 316 (2.6) 2,920 141,537 

ACOG guideline-

based 

--- --- 255 (1.9) 4,692 292,133 

Percentage of breast cancer deaths is calculated as the proportion of breast cancers detected that result in death due 

to cancer. In each strategy, ‘no. of over-diagnosed cases’ are calculated as: modelled number of cases detected – 

number of cases that would be detected in the absence of screening. ‘No. of False positive diagnoses’ refers to total 

number of false positive diagnoses among all mammograms performed during the lifetimes of 100,000 women. As 

specificity of each mammogram is <100%, a woman can have more than one false-positive diagnosis in her lifetime.  
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While AI-based risk prediction is more costly than genetic testing, its higher accuracy 

justifies the higher cost: 61% vs 60% high-risk women and 88.5% vs 87.6% of low risk 

women are correctly classified with AI and PRS, respectively. The lower accuracy of PRS 

implies that more low-risk women incorrectly undergo annual screening between ages 40 

and 49 compared with AI-based screening, leading to higher over-diagnoses (3.033 vs 

2.920 per 100,000 women) and false-positive diagnoses (141,565 vs 141,537 per 100,000 

women). 

5.3.2 Sensitivity and scenario analyses 

Results from one-way sensitivity analyses presented in tornado diagrams in Figure 5.3 

indicate that the ICER is most sensitive to age- and stage-specific utilities. Nevertheless, 

for all values of costs and utilities in the ±25% range, AI-based screening remains cost-

effective. In particular, it remains the most cost-effective screening strategy as long as cost 

of AI reading is below US$472 per mammogram (Figure 5.4). The cost-effectiveness 

acceptability curve (Figure 5.5) shows that, at the WTP threshold of US$100,000/QALY, 

AI-based screening is cost-effective in 94% of iterations.  

Table 5.4 presents results from additional sensitivity and scenario analyses. Our results 

were very similar to the base case analysis even when we used AUC values for AI-based 

risk prediction that were specific to pre-menopausal women (Panel A) and when risk 

prediction was based exclusively on AI or PRS (Panel B). AI-based screening also 

continued to dominate ACOG guideline-based screening in the model where screening 

beyond age 50 in the AI-based and PRS-based screening strategies followed ACOG/ACR 
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guidelines (Panel C). This finding highlights the cost savings and improvement in QALYs 

arising from targeted screening specifically in the 40 to 49 age group (as effect of 

differences across USPSTF and ACOG/ACR guidelines beyond age 50 in the base case 

analysis is nullified). Finally, even though total lifetime costs of AI-based and PRS-based 

screening were higher if low-risk women in these strategies were offered biennial screening 

between ages 40 and 49 years (instead of not being screened), AI-based screening still 

remained the most cost-effective screening strategy (Panel D).  

 

 

Figure 5.3: Tornado diagram 
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Figure 5.4: Threshold analysis for cost of AI 

 

 

Figure 5.5: Cost effectiveness acceptability curve 
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Table 5.4:  Incremental Cost Effectiveness Results, Sensitivity and Scenario 

Analyses 

Strategy Cost  

(in 1000 US$)  

Incremental 

Costs  

(in 1000 US$) 

Effectiveness 

(in QALYs) 

Incremental 

Effectiveness 

(in QALYs) 

ICER 

(US$/QALY) 

Panel A: AUC for premenopausal women for AI   

USPSTF guideline-based 257,858  1,643,776   

PRS-based 297,843 39,985 1,645,659 1,882 21,242 

AI-based 307,135 9,292 1,645,991 332 28,005 

ACOG guideline-based 463,163 156,028 1,644,158 -1,832 Dominated 

Panel B: AUC for AI and PRS without inclusion of other risk factors   

USPSTF guideline-based 257,858  1,643,776   

PRS-based 296,448 38,590 1,645,492 1,715 Ext. dominated 

AI-based 306,732 48,874 1,646,021 2,245 21,772 

ACOG guideline-based 463,163 156,431 1,644,158 -1,863 Dominated 

Panel C: ACOG guideline beyond age 50 in AI and PRS strategies   

USPSTF guideline-based 257,858  1,643,776   

PRS-based 373,549 115,691 1,644,624 847 Ext. dominated 

AI-based 382,993 125,135 1,645,054 1,278 97,922 

ACOG guideline-based 463,163 80,169 1,644,158 -896 Dominated 

Panel D: Biennial screening for low-risk in AI and PRS strategies   

USPSTF guideline-based 257,858  1,643,776   

PRS-based 348,282 90,424 1,644,782 1,005 89,968 

AI-based 359,721 11,439 1,644,900 118 96,931 

ACOG guideline-based 463,163 103,442 1,644,158 -741 Dominated 

All costs are in 2020 US dollars (US$). Costs and effectiveness are calculated per 100,000 women. ICER = incremental 

cost-effectiveness ratio. In Panels B and C, PRS-based strategy is extended dominated. Hence, incremental costs, 

incremental effectiveness and ICER for AI-based strategy are calculated with reference to USPSTF guideline-based 

strategy. 
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5.4 Discussion 

 

This study estimated the cost-effectiveness of AI-based or PRS-based risk stratification to 

guide breast cancer screening for women aged between 40 and 49 years (with screening 

beyond age 50 based on existing guidelines) compared with screening based exclusively 

on existing guidelines. We found that AI-based screening is the most cost-effective 

screening strategy. It is cost-effective compared with both PRS-based screening and 

screening based on family history (as recommended by USPSTF) with an ICER of 

US$23,133 per QALY gained. Furthermore, it costs less and is more effective relative to 

screening all women annually (as recommended by ACOG/ACR). 

As AI and PRS are still emerging technologies, findings from this early stage evaluation 

will provide useful first insights to policymakers on the economic value of adopting these 

technologies as well as inform the debate over appropriate breast cancer screening practices 

for women aged between 40 and 49 years. Specifically, our results highlight that using AI 

or PRS to risk-stratify women and targeting mammography screening at women identified 

as high-risk can help alleviate existing concerns about missed or delayed diagnosis as more 

high-risk women are accurately identified and subjected to screening compared with 

existing USPSTF guidelines. At the same time, it can also reduce over-diagnoses and false-

positive diagnoses that arise by screening all women over age 40. 

This study is the first cost-effectiveness analysis to compare the use of two emerging 

technologies, namely AI and PRS for risk stratification. Given the increasing shift towards 

individualized care and the widespread potential for leveraging AI powered solutions to 
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overcome the limitations of human discernment, both these technologies will likely see 

widespread (and possibly competing) applications throughout medicine. Oncology will be 

a particularly consequential venue where benefits to risk-stratified and personalized care 

can offer significant economic benefits. Even though we used US data in this study, our 

general framework can be easily adapted by stakeholders to conduct economic evaluations 

of these competing technologies within their own clinical and policy context. In particular, 

both AI and PRS are still in nascent stages and their use in health care provision is 

continuously evolving. As their accuracy improves in the future, our framework can be 

utilized to update the cost-effectiveness of these important risk-stratification strategies. 

Our study has several limitations. First, randomized controlled trials that directly compare 

AI with PRS or existing screening criteria are lacking and thus, data on efficacy of AI and 

PRS had to be obtained from different studies. We note that the demographic and personal 

risk factors considered in addition to AI and PRS were slightly different in the two studies. 

Nonetheless, we conducted sensitivity analyses that excluded these other risk factors and 

obtained similar results. Second, cost of using AI for breast cancer risk prediction in 

clinical practice is not yet known and was not available from existing literature. Therefore, 

for our analysis, we had to rely on cost estimates from the European Society of Radiology 

(180) to estimate this cost. Nevertheless, we varied the cost of AI in one-way sensitivity 

analyses and our results continued to hold for all costs of AI as high as US$472 per 

mammogram. Third, in our model, AI was used to guide breast cancer screening over a 10-

year duration (i.e., between ages 40 and 49) while existing data could validate the accuracy 

of AI-based risk prediction only for five years post risk-assessment (47). However, these 
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existing data provide suggestive evidence that AI is able to detect features associated with 

long-term risk (47). As deep learning models improve in the future and long-term data 

become available, future studies could re-examine the cost-effectiveness of using AI to 

guide breast cancer screening compared with PRS-based or guideline-based screening. 

Fourth, our model did not account for mastectomy or other invasive risk reducing 

procedures that may be undertaken by high-risk women. If these procedures are considered, 

AI-based screening will further prevent unnecessary downstream costs and enhance quality 

of life of patients. Finally, due to lack of data, we could not account for variations in 

accuracy of AI-based or PRS-based risk stratification along different points of the risk 

distribution nor could we consider another possible screening strategy that combines AI-

based and PRS-based risk stratification. Cost-effectiveness of this potential strategy should 

be examined in future research. 

To conclude, this study finds that using AI to risk-stratify women for breast cancer 

screening between ages 40 and 49 (followed by screening based on existing guidelines 

beyond age 50) is cost-effective compared with PRS-based screening and screening based 

exclusively on existing USPSTF and ACOG/ACR guidelines. Compared with USPSTF 

guidelines that recommend family history-based screening, AI-based screening can reduce 

the possibility of missed or delayed diagnosis as more high-risk women are accurately 

identified and screened. At the same time, it can help alleviate existing concerns about 

over-diagnoses and false-positive diagnoses inherent in ACOG/ACR guidelines that 

recommend annual screening for all women.  
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Chapter 6 : Summary and Future Directions 
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6.1 Key findings 

 

In Chapter 2, I assessed the cost-effectiveness of providing Teplizumab to different target 

patient groups at different possible prices of the drug. I found that if the price of the drug 

turns out to be above US$100,000 as current indications suggest (41), it will be cost-

effective to give the drug to just about a quarter of at-risk individuals. Meanwhile, if the 

price is below US$58,200, it will be cost-effective to give the drug to at least 76% of all 

at-risk individuals.  

In Chapter 3, I examined the cost-effectiveness of aspiration therapy relative to gastric 

bypass and sleeve gastrectomy as well as no treatment. I found that, over a lifetime horizon, 

aspiration therapy is dominated by bariatric surgery, that is, it costs more while yielding 

fewer QALYs. However, as access to bariatric surgery remains difficult, aspiration therapy 

can be a cost-effective treatment compared with no treatment. 

In Chapter 4, I compared the cost-effectiveness of Elipse intragastric balloon as a stand-

alone or as an add-on treatment to bariatric surgery with bariatric surgery alone. I found 

that despite being more costly upfront, providing Elipse treatment prior to bariatric surgery 

results in lower lifetime costs and higher QALYs than directly performing bariatric 

surgery. In particular, Elipse as an add-on to sleeve gastrectomy was found to be most cost-

effective among the strategies considered with an ICER of US$4,619 per QALY. Further, 

even though treatment with Elipse alone is not cost-effective compared with bariatric 

surgery alone or when used as an add-on to bariatric surgery, it is cost-effective compared 

with no treatment with an ICER of US$89,096 per QALY gained.   
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In Chapter 5, I found that AI-guided risk-stratified breast cancer screening between ages 

40 and 49 years costs less and is more effective relative to screening all women annually 

(as recommended by ACOG/ACR). It is also cost-effective compared with screening based 

on PRS or family history (as recommended by USPSTF) with an ICER of US$23,133 per 

QALY gained. 

6.2 Challenges and limitations  

6.2.1 Data uncertainty  

“It’s always too early until, unfortunately, it’s suddenly too late.” 
 

    -Buxton’s law of technological evaluation, 1987 (186)  

As with all early-stage cost-effectiveness analyses (19,23), a key challenge in the analyses 

in this thesis was the inherent data uncertainty and lack of a strong evidence base on the 

effectiveness of the innovations. As shown in Figure 6.1, data uncertainty arose on 4 

accounts. 

First, for interventions considered in Chapters 3, 4 and 5, direct head-to-head comparisons 

on effectiveness were not available from a single study. That is, no study has compared 

breast cancer outcomes from AI-based vs PRS-based screening vs screening based on 

existing USPSTF or ACOG/ACR guidelines. There also exists no study that directly 

compares the accuracy of risk prediction using AI and PRS. Similarly, no clinical trials 

have directly compared effectiveness of Elipse and bariatric surgery. Although a clinical 

trial to compare aspiration therapy with bariatric surgery has been conducted (187), its 
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results were not available at the time that cost-effectiveness analysis in Chapter 3 was 

conducted.  

Second, while RCTs are considered the ‘gold standard’ for data on effectiveness of 

interventions, suitable RCT-based evidence was not available for the interventions 

considered in Chapters 3 (aspiration therapy), 4 (Elipse intragastric balloon) and 5 (AI-

based breast cancer screening),. While 4-year results of an RCT of aspiration therapy have 

been published more recently (188), only 1 year results were available at the time the cost-

effectiveness analysis in Chapter 3 was performed (66,189). Given this very short time 

period, the cost-effectiveness analysis had to rely on evidence from observational studies. 

Third, as the technologies considered in this thesis are still in their nascent stages, data on 

long-term health outcomes of these interventions are not available. For example, long-term 

(such as 10-15 year) weight loss effects of aspiration therapy and Elipse are unknown. 

Accuracy of AI-based risk prediction of breast cancer has also been validated for only up 

to 5 years post risk-assessment. Similarly, efficacy of Teplizumab in delaying Type 1 

diabetes has been assessed for only a 5-year time period. 

Fourth, the Phase II trial for Teplizumab largely comprised of white individuals who were 

first-degree relatives of Type 1 diabetes patients (39). The effectiveness of this drug in 

other patient populations remains to be seen.  
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Figure 6.1: Sources of data uncertainty in the foregoing studies 

 

6.2.2 Choice of discount rate 

All analyses in this thesis rely on a discount rate of 3.5% per annum. This rate is 

recommended by the National Institute for Health and Care Excellence (NICE) based UK 

Treasury’s estimate of the social time preference rate for consumption (190), and is similar 

to recommendations by other countries (the Washington Panel: 3% for US; Germany: 3%; 

France: 4%) (191). Meanwhile, CADTH recommends a lower discount rate of 1.5% (127).  

There also exists considerable debate around differential discounting of costs and health 

outcomes (191).  

Existing literature in this area suggests that the choice of a discount rate depends on several 

factors including social objectives (i.e., to maximize present value of health or present 

consumption value of health) and constraints on health budgets (190–192). Social 
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objectives determine whether real interest rates or the social rate of time preference for 

consumption form the basis of discount rates as well as the need to account for growth in 

consumption value of health over time (191,192). Constraints on health budgets imply the 

existence of opportunity costs of adopting a new technology in terms of health forgone (i.e. 

the existence of a cost-effectiveness threshold) and the need to adjust for growth in this 

threshold over time (191). These studies conclude that the appropriate discount rate should 

be lower than 3.5%, both as it is higher than observed interest rates (192,193) and as 

consumption value of health is expected to grow over time (190). 

To the extent that appropriate discount rates may be lower than 3.5% and may potentially 

be lower for health outcomes than for costs, the choice of 3.5% discount rate in the 4 

analyses may bias against technologies that cost more upfront but yield health benefits over 

time (such as bariatric surgery or Teplizumab) (193). Nevertheless, as identified by 

previous studies, further research is needed on several components used to estimate the 

discount rate including obtaining empirical estimates of growth in cost-effectiveness 

threshold and consumption value of health (191,194).    

6.2.3 Combination of health-related quality of life values derived from multiple 

instruments 

Owing to limitations in data availability, in Chapters 2 and 5, health-related quality of life 

data derived from different multi-attribute utility instruments had to be combined. In 

Chapter 2, following the Sheffield Type 1 Diabetes Policy Model (54), disutilities from 

Type 1 diabetes complications were obtained from a study that used the Self-Administered 
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Quality of Well Being index. However, utility scores for children and adults with pre-Type 

1 diabetes or Type 1 diabetes had to be sourced from studies that used the Health Utilities 

Index and the HRQOL-15D instruments. Similarly, in Chapter 5, quality of life weights for 

healthy and cancer health states were based on EQ-5D scores which use time-tradeoff 

valuations while disutility from screening and diagnostic work up were obtained from a 

study that used the visual analog scale. To the extent that utility values derived using 

different generic, multiattribute utility instruments vary due to differences in descriptive 

systems and measurement scales used by each instrument (195), and utility scores obtained 

using the visual analog scale are systematically lower than those obtained using the time-

tradeoff approach (196), the utility values across different health states may not be perfectly 

comparable. As utility values derived from similar instruments are collected in future 

studies, cost-effectiveness of these technologies may be re-examined. 

6.2.4 Commercial viability for manufacturer 

While the study in Chapter 2 identified price ranges in which provision of Teplizumab to 

different target patient groups will be cost-effective, it does not shed light on whether these 

price ranges will be commercially viable for the manufacturer. Return on investment 

analyses conducted from the manufacturer’s perspective which use these price ranges as 

inputs can answer this question. Nevertheless, given the focus of this thesis on early-stage 

cost-effectiveness analyses within a translational context, these return on investment 

analyses have not been considered here and may be a subject for future research. 
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6.2.5 Cost-effectiveness in later phases of health care technology’s life-cycle  

While the 4 early-stage cost-effectiveness analyses in this thesis provided the best possible 

current estimates on cost-effectiveness of the technologies considered which can help 

inform adoption and coverage decisions of these technologies, it will be important to 

monitor whether the anticipated health system and population health benefits of these 

technologies are actually achieved and to re-assess the cost-effectiveness of these 

technologies over time. Life cycle HTA approaches that involve iterative evaluations 

throughout the life cycle of the technology will be necessary to identify and prevent 

inefficient uses of these technologies and to guide subsequent disinvestment decisions 

should these technologies fail to achieve anticipated benefits (197,198). In this regard, the 

rigorous economic models and general frameworks developed in this thesis can be adapted 

to conduct these iterative evaluations. 

6.3 Solutions to overcome challenges due to data uncertainty 

First, to overcome the limitation that data on effectiveness of different interventions had to 

be sourced from different studies, I tried to ensure comparability of data (and study 

populations) across studies to the extent possible. For example, data on effectiveness of 

bariatric surgery in Chapter 3 were sourced from a meta-analysis in which the study 

population was comparable (in terms of age, sex and pre-treatment BMI) to that in the 

study for aspiration therapy. Second, to overcome the lack of availability of long-term 

evidence on effectiveness of interventions, I conducted a rich set of sensitivity and scenario 

analyses. For instance, I considered alternative scenarios for the efficacy of Teplizumab 

beyond 5 years, namely that all treated and untreated individuals develop Type 1 diabetes 
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after year 5, or that risk of Type 1 diabetes onset becomes zero for treated individuals. 

Similarly, for cost-effectiveness analyses of aspiration therapy and Elipse, I considered 

alternative long-term weight trajectories. In this regard, I note that in addition to the 

sensitivity analyses in Chapter 3, I conducted several further sensitivity analyses which 

were published in response to the letter to editor by Jirapinyo et al. (199) (provided in 

Appendix 3.6).  

Third, unlike several previous early-stage cost-effectiveness analyses, the models 

developed in each of the 4 studies were rigorous and comprehensive. In particular, to 

comprehensively capture disease progression and treatment, the microsimulation 

components of the models in Chapters 2 and 5 were adapted from well-known previously 

validated models for Type 1 diabetes and breast cancer, respectively. Thus, as further data 

on effectiveness of the 4 interventions in other patient populations and policy contexts is 

generated in the future, the models in these studies can be used to repeat these cost-

effectiveness analyses for different populations and contexts. 

6.4 Value of information analyses 

In addition to the sensitivity analyses conducted to capture the effects of data uncertainty, 

in this section, I also conducted VOI analyses to quantify the consequences of decision-

making based on current evidence. Given the computational burden inherent in VOI 

analyses, I conducted these analyses for two interventions -- Teplizumab and Elipse 

intragastric balloon -- as examples. 
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6.4.1 VOI analyses for Teplizumab 

For Teplizumab, the largest source of uncertainty lies in the drug’s effect estimates in the 

phase II trial. Therefore, I conducted two types of VOI analyses. First, I conducted an 

expected value of perfect information (EVPI) analysis to quantify the expected benefit of 

eliminating uncertainty in a broad set of parameters. In this analysis, I assumed drug price 

of US$100,000 and an annual beneficiary population of 16,356 patients who are ZnT8 

negative (based on 26.3% prevalence of ZnT8 negative, annual Type 1 diabetes incidence 

of 22.9 per 100,000 population (200) and population size of ~272 million aged <65 years 

in the US in 2020 (201)). I then applied a discount rate of 3.5% per annum and assumed 

that benefits of research accrue for 7 years (length of orphan drug exclusivity period in the 

US (202)) to estimate the EVPI at the population level. Next, I conducted expected value 

of partial perfect information (EVPPI) analysis to quantify the benefit of eliminating 

uncertainty specifically in the drug’s effect estimates. This latter analysis can guide 

researchers on the net monetary benefit of generating further evidence on the efficacy of 

this drug (94). EVPPI analysis was performed using three-level Monte Carlo simulation 

with 50 iterations in the outer-most loop which sampled distributions for probabilities of 

drug efficacy, 100 iterations in the second loop which sampled distributions for all other 

parameters and 10,000 iterations for the inner-most first-order microsimulation.  

These VOI analyses indicate that at the WTP threshold of US$100,000 per QALY, 

expected net monetary benefit of eliminating uncertainty in all model parameters (EVPI) 

is US$33,644 per person (Figure 6.2 below) or US$3.9 billion for the entire population. 

The expected net monetary benefit of eliminating uncertainty in evidence on efficacy of 
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Teplizumab (EVPPI) is US$17,491 per patient or US$2 billion for the entire population 

(Figure 6.3 below). 

 

Figure 6.2: Expected Value of Perfect Information vs. Willingness-to-Pay Threshold for 

Teplizumab 

 

Figure 6.3: Expected Value of Perfect Partial Information vs. Willingness-to-Pay 

Threshold for Teplizumab 
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6.4.2 VOI analyses for Elipse intragastric balloon 

EVPI and EVPPI analyses for Elipse intragastric balloon were similar to the above analyses 

for Teplizumab but with two differences. First, the annual beneficiary population was 

assumed to be 456,000 patients (based on ~23 million patients eligible for bariatric surgery 

in 2017 (203) and assuming patients live with obesity for about 50 years on average4). 

Second, benefits of research were assumed to accrue for 20 years (length of patent in the 

US (202)).  

The EVPI analysis indicates that at the WTP threshold of US$100,000 per QALY, expected 

net monetary benefit of eliminating uncertainty in all model parameters is US$1,624 per 

person (Figure 6.4 below) or US$11.2 billion for the entire population. The EVPPI analysis 

shows that the expected net monetary benefit of eliminating uncertainty in evidence on 

weight loss effects of Elipse is US$966 per patient or US$6.7 billion for the entire 

population (Figure 6.5 below). 

                                                           
4 Obesity duration of 50 years was assumed based on average life expectancy of ~78 years in the US (204), 

the assumption that 10 years of life are lost due to obesity (previous studies show that years of life lost due 

to obesity vary between 1 year and 20 years depending on age, sex, race and BMI level (205)) and the 

starting age of our study cohort of 18 years.  
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Figure 6.4: Expected Value of Perfect Information vs. Willingness-to-Pay Threshold for 

Elipse intragastric balloon 

 

 

Figure 6.5: Expected Value of Perfect Partial Information vs. Willingness-to-Pay 

Threshold for Elipse intragastric balloon 
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6.5 Role of the foregoing studies in informing decision-making and directions for 

future research 

In this section, I detail how findings in each of the four studies in this thesis can help inform 

decisions by manufacturers, policymakers, clinicians and other stakeholders for the 4 

technologies studied. However, I note that the technologies studied are still in early stages 

with inherent uncertainty in the evidence base. Therefore, decision makers will need to 

balance the benefits of providing patients with early access to these technologies which 

could potentially improve patients’ health outcomes (e.g., prevention of Type 1 diabetes, 

timely treatment for obesity or timely diagnosis and treatment of breast cancer) with the 

risk that the technology could potentially lead to overall negative patient health outcomes 

(either directly from harms of an intervention unknown at an early stage or in terms of 

opportunity costs from health care displaced elsewhere in the system). At the same time, 

further clinical evidence will need to be generated. I detail these implications for each study 

below. 

6.5.1 Cost-effectiveness of Teplizumab 

The cost-effectiveness analysis of Teplizumab provides early indications to manufacturers 

and policymakers on the potential value of this drug at different prices for different patient 

subgroups. These findings can help inform future pricing and coverage decisions. 

Specifically, the price ranges estimated for different patient subgroups can help decision-

makers’ formulation of ‘efficient limited use criteria’ and/or price-negotiations with 

manufacturers. Nevertheless, as this drug is still in development and evidence on efficacy 

at the patient subgroup level is based on small sample sizes, there is value in collecting 
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further evidence on the drug’s efficacy for different subgroups (as indicated by VOI 

analyses in the previous section). To balance this need for further evidence with providing 

patients’ early access to this clinically important innovation, coverage with evidence 

development schemes will be useful after this drug receives regulatory approval. Further, 

expected value of sample information and expected net present value of sampling 

information analyses will be needed to identify the most efficient research design to collect 

the additional evidence (30,94).  

6.5.2 Cost-effectiveness of aspiration therapy 

The cost-effectiveness analysis of aspiration therapy versus bariatric surgery highlights the 

economic value of a technology that is highly controversial and despite regulatory approval 

is neither universally available nor universally accepted among clinicians. It is also not 

covered by most insurance providers (206). Findings from this study will highlight to 

clinicians, health care payers and decision-makers the economic value of offering this 

technology to patients who lack access to bariatric surgery. These findings can, therefore 

help promote greater uptake of this intervention in a cost-effective way as well as inform 

its coverage decisions, especially in jurisdictions such as the US and Canada where access 

to bariatric surgery is particularly low. At the same time, further clinical evidence on its 

potential side-effects (such as bulimia) and long-term weight loss effects will need to be 

generated alongside developing an understanding of patients’ preferences and choices 

(207) for aspiration therapy. This additional evidence can then be factored into future cost-

effectiveness analyses.   
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6.5.3 Cost-effectiveness of PIGB 

The cost-effectiveness analysis of PIGB will provide clinicians and decision makers with 

timely evidence on a potential cost-effective utilization of the PIGB technology within 

clinical care, both as it is being introduced in the US and in countries where it has already 

been adopted. Nevertheless, this analysis is based on non-RCT evidence on PIGB efficacy, 

and future clinical studies (preferably RCTs) that specifically examine the efficacy of PIGB 

prior to bariatric surgery will be valuable to reduce the uncertainty in evidence. Expected 

value of sample information and expected net present value of sampling information 

methods could be employed to identify the most suitable trial design. 

6.5.4 Cost-effectiveness of AI 

The lack of sufficient evidence to fast-track adoption of some of the newly emerging 

technologies into clinical practice has been recognized. Khoury and Mensah recently 

remarked in the context of integration of PRS into clinical practice: “Let’s Do the Science 

First and Follow the Evidence Wherever it Takes Us!” (208). The cost-effectiveness 

analysis of AI-based versus PRS-based risk stratified breast cancer screening will therefore 

provide early insights to policymakers into the potential economic value of using these 

technologies to optimize breast cancer screening. Even though AI and PRS may not be 

subject to reimbursement and coverage HTA assessments in the same way as drugs and 

devices, findings from this study can help encourage greater acceptance and timely 

adoption of these rapidly evolving technologies by hospital administrators, radiology 

centers and other decision-makers. Yet, AI and PRS are still in early development stages 
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such that the negative consequences of relying on these technologies to guide breast cancer 

screening may not be fully appreciable. Thus, further clinical trials to compare the accuracy 

of these technologies vs existing guidelines will provide useful insights. Coverage with 

evidence development and patient access schemes could provide incentives for the private 

sector to develop and profitably market these technologies. 

6.6 Conclusion  

Cost-effectiveness analyses have long been recommended to guide adoption and 

reimbursement decision-making for new technologies. Nevertheless, these analyses are 

most often performed later in the life cycle of technologies. Cost-effectiveness analyses 

conducted at early stages of a technology’s life cycle can be particularly useful to guide 

stakeholders on potential cost-effective innovations that can generate higher value in health 

care. 

This thesis contributed early-stage cost-effectiveness evidence of 4 new health care 

technologies with high clinical relevance. Findings from these analyses will help to inform 

decision-making by manufacturers, policymakers, clinicians and other stakeholders for 

these technologies. 
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Chapter 7 : Appendices 
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Appendix 1: Appendix to Chapter 1 

 

A1.1. Types of analyses in the thesis 

Analysis Description Reference 

Cost-

effectiveness 

analyses 

Cost-effectiveness analyses compare the costs and health outcomes 

of two or more interventions. If an intervention costs less and 

generates better health outcomes vs another intervention, it is said to 

be dominant. If it is both more costly and more effective, it is 

considered cost-effective relative to the other intervention if the 

incremental cost effectiveness ratio, calculated as the difference 

between the overall costs of the two strategies divided by the 

difference between the total QALYs gained, is lower than the 

willingness-to-pay threshold. In the analyses in this thesis, a 

threshold of US$100,000 per QALY following suggestions by 

Neumann et al. (124). 

 

In all 4 cost-effectiveness analyses in this thesis, I used the health 

care system perspective to estimate costs, as recommended by the 

International Society for Pharmacoeconomics and Outcomes 

Research (ISPOR) and CADTH (127,209). Thus, all medical costs 

borne by third-party payers or patients were considered (209).  

(17,210) 

Value of 

information 

analyses 

Value of information analyses quantify the value of collecting 

further evidence on key parameters to reduce uncertainty in resource 

allocation decisions. This value can then be compared with the cost 

of conducting research to collect this additional evidence.   

(94,211) 
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A1.2. Search terms used for literature review 

Database: Pubmed 

(technology[MH] OR technolog*[Title/Abstract] OR device*[MH] OR 

device*[Title/Abstract] OR innovation[Title/Abstract] OR test*[Title/Abstract] OR 

diagnostic*[Title/Abstract] OR biomarker*[Title/Abstract] OR drug*[Title/Abstract] OR 

pharmaceutical*[Title/Abstract] OR treatment*[Title/Abstract] OR 

therap*[Title/Abstract] OR intervention[Title/Abstract] OR screen*[Title/Abstract])  

AND 

(((cost benefit[MH] OR cost benefit[Title/Abstract] OR cost effectiveness[Title/Abstract] 

OR cost-benefit[Title/Abstract] OR cost-effectiveness [Title/Abstract] OR cost-

effective[Title/Abstract]  OR cost effective[Title/Abstract]  OR cost 

utility[Title/Abstract]  OR cost-utility[Title/Abstract]  OR economic 

evaluation[Title/Abstract] OR quality adjusted life year[MH] OR quality adjusted life 

year*[Title/Abstract] OR QALY*[Title/Abstract]  OR ((model*[Title/Abstract]) AND 

(health economic[Title/Abstract] OR economic*[Title/Abstract] OR 

pharmacoeconomic*[Title/Abstract])) OR decision tree[MH] OR decision 

tree*[Title/Abstract]  OR decision-analytic[Title/Abstract]  OR state 

transition[Title/Abstract]  OR markov[Title/Abstract]  OR ((discrete-

event*[Title/Abstract] OR individual*[Title/Abstract] OR patient-level*[Title/Abstract]) 

AND (simulation*[Title/Abstract])) OR partitioned-survival*[Title/Abstract]) AND 

(early-stage[Title/Abstract]  OR early stage[Title/Abstract]  OR early[Title/Abstract])) 

OR (headroom[Title/Abstract] OR headroom analysis[Title/Abstract])) 

AND 

(product develop*[Title/Abstract]  OR develop*[Title/Abstract]  OR 

R&D[Title/Abstract]  OR ((trial[Title/Abstract]  ) AND (“Phase 1”[Title/Abstract]  OR 

“Phase 2”[Title/Abstract]  OR “Phase 3”[Title/Abstract]  OR “Phase I” [Title/Abstract]  

OR “Phase II” [Title/Abstract]  OR “Phase III” [Title/Abstract])) OR pre-

market[Title/Abstract] OR premarket[Title/Abstract]   OR emerging[Title/Abstract]  OR 

innovation[Title/Abstract]  OR novel[Title/Abstract]  OR hypothetical[Title/Abstract] 

OR exploratory[Title/Abstract] OR (regulatory[Title/Abstract]   AND 

approval[Title/Abstract])) 

 

Filters: 2017-2021, Language English, Article type: Journal article 
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Database: Scopus 

ALL((technolog* OR device* OR innovation OR test* OR diagnostic* OR biomarker* 

OR drug* OR pharmaceutical* OR treatment* OR therap* OR intervention OR screen*))  

AND 

ALL(((cost benefit OR cost effectiveness OR cost-benefit OR cost-effectiveness OR 

cost-effective OR cost effective OR cost utility OR cost-utility OR (economic W/2 

evaluation) OR quality adjusted life year* OR QALY* OR (model* W/5 ((health W/2 

economic) OR economic* OR pharmacoeconomic*)) OR (decision W/3 (analy* OR 

tree*)) OR state transition OR markov OR ((discrete-event* OR individual* OR patient-

level*) W/3 (simulation*)) OR partitioned-survival*) AND (early-stage OR (early W/3 

stage) OR early)) OR (headroom))  

AND  

ALL((product develop* OR develop* OR R&D OR (trial* W/5 ("Phase 1" OR "Phase 2" 

OR "Phase 3" OR "Phase I" OR "Phase II" OR "Phase III")) OR pre-market OR 

premarket OR emerging OR innovation OR novel OR hypothetical OR exploratory OR 

(regulat*W/4 approv*)))  

AND ( LIMIT-TO ( PUBYEAR,2021) OR LIMIT-TO ( PUBYEAR,2020) OR LIMIT-

TO ( PUBYEAR,2019) OR LIMIT-TO ( PUBYEAR,2018) OR LIMIT-TO ( 

PUBYEAR,2017) ) AND ( LIMIT-TO ( LANGUAGE,"English" ) ) 
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Database: Econlit 

AB,TI(technolog* OR device* OR innovation OR test* OR diagnostic* OR biomarker* 

OR drug* OR pharmaceutical* OR treatment* OR therap* OR intervention OR screen*)  

AND 

AB,TI(((cost benefit OR cost effectiveness OR cost-benefit OR cost-effectiveness OR 

cost-effective OR cost effective OR cost utility OR cost-utility OR (economic NEAR/2 

evaluation) OR quality adjusted life year* OR QALY* OR (model* NEAR/5 ((health 

NEAR/2 economic) OR economic* OR pharmacoeconomic*)) OR (decision NEAR/3 

(analy* OR tree*)) OR state transition OR markov OR ((discrete-event* OR individual* 

OR patient-level*) NEAR/3 (simulation*)) OR partitioned-survival*) AND (early-stage 

OR (early NEAR/3 stage) OR early)) OR (headroom))  

AND  

AB,TI((product develop* OR develop* OR R&D OR (trial* NEAR/5 ("Phase 1" OR 

"Phase 2" OR "Phase 3" OR "Phase I" OR "Phase II" OR "Phase III")) OR pre-market 

OR premarket OR emerging OR innovation OR novel OR hypothetical OR exploratory 

OR (regulat*NEAR/4 approv*)))  

 

LIMITS: English language, 2017-2020, Academic journals 
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A1.3. PRISMA flow diagram for literature search 

  

Records identified through 

database searching 

(n =  1171) 

Additional records identified 

through other sources 

(n = 9) 

Records after duplicates removed 

(n = 1158) 

Records screened 

(n = 1158) 

Records excluded 

(n = 1107) 

Full-text articles assessed 

for eligibility 

(n = 51) 

Full-text articles excluded 

(reasons include: 

regulatory/reimbursement 

appraisals, no technology 

involved, technology already 

approved, full text not available)  

(n = 13) 

Studies included in review 

(n = 38) 
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A1.4. Description of studies included in scoping review 

S. 

No 

Study Interventions Stage of 

development† 

Purpose Country Analysis/Model type Source of 

efficacy data 

Perspective Uncertainty 

analysis 

Characterization 

of heterogeneity 

1. Adamson et 

al. 2017 

(212) 

HIV vaccines co-

administered with 

pre-exposure 

prophylaxis 

Clinical trial Inform further 

research 

USA Cost-utility/Markov 

model 

Clinical 

studies 

Healthcare 

payer 

DSA, PSA, 

Scenario 

analyses 

Subgroup level 

(by risk) 

2. Geenen et 

al. 2017 

(213) 

Pharmacogenomic 

test for ACEi 

induced 

angioedema risk 

Conceptualization 

of idea 

Identify test 

sensitivity, 

specificity, cost 

targets 

Netherlands Headroom/ 

Decision tree 

N/A Health 

system 

DSA, PSA Subgroup level 

(by risk) 

3.  Hummelink 

et al. 2017 

(214) 

Virtual surgical 

planning in deep 

inferior epigastric 

perforator flap 

breast 

reconstruction 

surgery 

Conceptualization 

of idea 

Inform 

decision on 

product 

development 

Netherlands Headroom/Decision 

tree 

N/A Not stated Scenario 

analyses 

No 

4.  Khoudigian-

Sinani et al. 

2017 (215) 

Biomarker for 

detection of oral 

cancer  

Pre-market Inform future 

adoption 

Canada Cost-effectiveness/ 

Decision tree 

Clinicians’ 

belief 

elicitation 

Private 

payer and 

patient 

DSA, PSA Subgroup level 

(by dysplasia 

severity) 

5. Kip et al. 

2017 (216) 

Point-of-care 

troponin test for 

acute coronary 

syndrome 

Product 

development 

Not clearly 

stated 

Netherlands Cost-utility/Patient 

level simulation 

Clinical 

studies 

Not stated PSA, VOI No 

6. Knuttel et 

al. 2017 

(217) 

Magnetic 

resonance-guided 

high intensity 

focused 

ultrasound (MR-

Product 

development 

Not clearly 

stated 

Netherlands Cost-minimization/ 

Decision tree 

Assumption Not stated DSA, 

Scenario 

analyses 

No 
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S. 

No 

Study Interventions Stage of 

development† 

Purpose Country Analysis/Model type Source of 

efficacy data 

Perspective Uncertainty 

analysis 

Characterization 

of heterogeneity 

HIFU) ablation 

for breast cancer 

7. Nimwegen 

et al. 2017 

(218) 

Diagnostic test for 

complex pediatric 

neurology 

Conceptualization 

of idea/ 

Illustrative 

Illustrative Netherlands Headroom N/A Not stated No No 

8. Wan et al. 

2017 (219) 

Nivolumab for 

Renal Cell 

Carcinoma 

Clinical trial Inform future 

pricing/policy 

decisions 

China* Cost-utility/ Markov 

model 

Clinical 

studies 

Payer DSA, PSA No 

9. Windt et al. 

2017 (220) 

Single stage tissue 

engineering 

procedure for 

cartilage repair 

Clinical trial Identify key 

cost/utility 

targets 

Netherlands Headroom, cost-

utility/Decision tree 

Assumption Societal DSA No 

10. Wong et al. 

2017 (221) 

15-gene 

expression 

signature to guide 

chemotherapy in 

non-small cell 

lung cancer 

Clinical trial Not clearly 

stated 

Canada Cost-effectiveness, 

cost-utility/Decision 

tree 

Clinical 

studies 

Health care 

system 

DSA Subgroup level 

(by risk) 

11. Graaf et al. 

2018 (222) 

Biomarkers for 

cardiovascular 

disease risk in 

Type 2 diabetes 

Conceptualization 

of idea 

Inform product 

development 

and investment 

Netherlands Headroom Biomarker 

discovery 

research 

Not stated DSA No 

12. Retel et al. 

2018  

Tumor infiltrating 

lymphocyte 

treatment for 

melanoma 

Clinical trial Facilitate 

evidence-based 

decisions for 

payers; 

estimate value 

Netherlands Cost-utility/Markov 

model 

Clinical 

studies 

Health care DSA, PSA, 

VOI, 

Scenario 

analyses 

No 
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S. 

No 

Study Interventions Stage of 

development† 

Purpose Country Analysis/Model type Source of 

efficacy data 

Perspective Uncertainty 

analysis 

Characterization 

of heterogeneity 

of further 

research 

13. Schlemm et 

al. 2018 

(223) 

Real-time acute 

ischaemic stroke 

detection devices 

Conceptualization 

of idea 

Inform product 

development 

and investment 

UK Headroom/Conditional 

probabilistic model 

Assumption Societal DSA Subgroup level 

(by demographic, 

risk, socio-

geographic 

factors)  

14. Sutton et al. 

2018 (224) 

Diagnostic test for 

bladder cancer  

Product 

development 

Inform further 

evidence 

generation 

UK Cost-utility/Markov 

model 

Biomarker 

discovery 

research 

Health care 

provider 

DSA, PSA, 

VOI 

No 

15. Velickovic 

et al. 2018 

(225) 

Tissue engineered 

bovine tissue 

pericardium 

scaffold for 

congenital heart 

defects 

Clinical trial Not clearly 

stated 

UK Cost-utility/Markov 

model 

Clinical 

studies 

Payer DSA, PSA No 

16. Vilsboll et 

al. 2018 

(226) 

Cell based 

therapies for 

female stress 

urinary 

incontinence 

Clinical trial Not clearly 

stated 

Denmark Cost-utility/Decision 

tree 

Clinical 

studies 

Healthcare 

sector 

DSA No 

17. Vogelaar et 

al. 2018 

(227) 

Biomarkers for 

colorectal cancer 

detection 

Conceptualization 

of idea 

Identify test 

sensitivity, 

specificity, cost 

targets 

Netherlands, 

USA 

Headroom/ 

microsimulation 

N/A Modified 

societal 

DSA, 

Scenario 

analyses 

No 
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S. 

No 

Study Interventions Stage of 

development† 

Purpose Country Analysis/Model type Source of 

efficacy data 

Perspective Uncertainty 

analysis 

Characterization 

of heterogeneity 

18. Wallner et 

al. 2018 

(228) 

Stem cell-derived 

Transplant 

therapy for Type 

1 diabetes 

Clinical trial Identify 

circumstances 

for cost-

effectiveness 

Canada Headroom, cost-

utility/Markov model 

Assumption Healthcare 

provider 

VOI, 

Scenario 

analyses 

No 

19. Abel et al. 

2019 (229) 

Test to guide 

treatment for 

COPD 

Product 

development 

Inform further 

development 

UK Cost-utility/Decision 

tree+ Markov model 

Manufacturer Health 

system 

DSA, PSA, 

Scenario 

analyses 

No 

20. Buisman et 

al. 2019 

(230) 

Imaging test for 

carotid 

endarterectomy 

Conceptualization 

of idea 

Not clearly 

stated 

Netherlands Cost-utility/Decision 

tree 

N/A Societal PSA Subgroup level 

(by sex and age) 

21. Kluytmans 

et al. 2019 

(231) 

Biomarker for 

primary 

aldosteronism 

Conceptualization 

of idea 

Identify test 

sensitivity, 

specificity, cost 

targets 

Netherlands Headroom/Markov 

model 

N/A Societal DSA, PSA No 

22. Mital et al. 

2019 (148) 

Aspiration 

therapy for weight 

loss 

Regulatory 

approval 

controversial 

Inform 

adoption and 

coverage 

USA Cost-utility/Markov 

model 

Clinical 

studies 

Health 

system 

DSA, PSA, 

Scenario 

analyses 

No 

23. Vreman et 

al. 2019 

(232) 

Acalabrutinib for 

relapsed chronic 

lymphocytic 

leukaemia 

Clinical trial Inform early 

reimbursement 

decision-

making 

UK Cost-utility/Partitioned 

survival model 

Clinical 

studies 

Health 

service 

DSA, PSA, 

Scenario 

analyses 

No 

24. Wang et al. 

2019 (233) 

Monotherapy for 

treatment resistant 

depression 

Conceptualization 

of idea/Product 

development 

Inform 

investment in 

treatment 

provision for 

treatment 

resistant 

depression 

UK Cost-utility/Decision 

tree+ Markov model 

Assumption Payer DSA, PSA, 

Scenario 

analyses 

No 
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S. 

No 

Study Interventions Stage of 

development† 

Purpose Country Analysis/Model type Source of 

efficacy data 

Perspective Uncertainty 

analysis 

Characterization 

of heterogeneity 

25. Wenker et 

al. 2019 

(234) 

Interventional 

MRI for 

pulmonary vein 

isolation for atrial 

fibrillation 

Conceptualization 

of idea/Product 

development^ 

Inform clinical 

effectiveness 

targets 

Netherlands Headroom/Decision 

tree 

N/A Not stated PSA No 

26. Bakker et 

al. 2020 

(235) 

Real time 

analytics for 

mechanical 

ventilation 

Product 

development 

Inform further 

product 

development 

and clinical 

trials 

Greece Headroom, cost-

utility/Decision tree + 

Markov model 

Clinical 

studies 

Payer DSA, PSA, 

Scenario 

analyses 

No 

27. Frempong 

et al. 2020 

(236) 

Diagnostic test for 

typhoid 

Conceptualization 

of idea 

Inform future 

research & 

development 

Ghana Headroom, cost-

utility/Decision tree 

N/A Health 

service 

PSA, VOI No 

28. Guinan et 

al. 2020 

(237) 

 

Polygenic risk 

score to predict 

nephropathy 

Clinical trial Inform 

implementation 

Canada Cost-utility/Markov 

model 

Clinical 

studies 

Health 

system & 

societal 

DSA, PSA No 

29. Huygens et 

al. 2020 

(238) 

Tissue engineered 

heart valves 

Product 

development  

Inform further 

product 

development 

Netherlands Headroom, cost-utility, 

budget impact/ 

Discrete event 

simulation 

Assumption Societal PSA, VOI, 

Scenario 

analyses 

Subgroup level 

(by age) 

30. Lindenberg 

et al. 2020 

(239) 

Tumor infiltrating 

lymphocyte 

treatment for 

melanoma 

Clinical trial Inform 

adoption 

decisions 

Netherlands Cost-utility, Scenario 

drafting/Markov 

model 

Clinical 

studies + 

Assumptions 

Health care DSA, PSA, 

Scenario 

analyses 

No 

31. Magee et al. 

2020 (240) 

Radiofrequency 

ablation for 

gastric antral 

vascular ectasia 

Approval with 

conditions# 

Not clearly 

stated 

UK Cost-utility/Markov 

model 

Expert 

eliciation 

Health 

Service & 

Personal 

social 

service 

PSA, 

Scenario 

analyses 

No 
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S. 

No 

Study Interventions Stage of 

development† 

Purpose Country Analysis/Model type Source of 

efficacy data 

Perspective Uncertainty 

analysis 

Characterization 

of heterogeneity 

32. Mandavia et 

al. 2020 

(241) 

Therapeutics for 

hearing loss 

Product 

development/ 

Clinical trial 

Inform product 

development 

and future 

decision 

making 

UK Headroom/Decision 

tree + Markov model 

N/A Health 

service 

DSA, PSA, 

Scenario 

analyses 

Subgroup level 

(by age) 

33. Mital et al. 

2020 (242) 

Teplizumab for 

type 1 diabetes 

Clinical trial Inform 

manufacturer’s 

pricing and 

payers’ future 

coverage 

decisions 

USA Headroom, cost-

utility/Microsimulation 

Clinical 

studies 

Health 

system 

DSA, PSA, 

Scenario 

analyses 

Subgroup level 

(by genetic, 

antibody 

characteristics) 

34. Schneider et 

al. 2020 

(243) 

Multi-mRNA host 

response test for 

acute respiratory 

tract infections 

and sepsis 

Pre-market Not clearly 

stated 

US Cost impact/ Decision 

tree 

Previous 

modeling/ 

statistical 

analyses of 

genetic data 

Payer DSA Subgroup level 

(by true 

bacterial/viral 

infection status, 

mortality risk) 

35. Shi et al. 

2020 (244) 

Panitumumab as 

additional second 

line therapy for 

metastatic 

colorectal cancer 

Pre-regulatory 

approval 

Inform future 

pricing/policy 

decisions 

China Cost-utility/ Markov 

model 

Clinical 

studies 

Health care DSA, PSA No 

36. Steffen et 

al. 2020 

(245) 

Diagnostic tests 

for tuberculosis 

Pre-market Inform 

adoption in 

public health 

system 

Brazil Cost-utility/ Markov 

model 

Clinical 

studies 

Health care 

system 

DSA, PSA No 

37. Wallace et 

al. 2020 

(246) 

Vaginal CO2 laser 

therapy for 

genitourinary 

syndrome of 

menopause-

associated 

dyspareunia 

Clinical trial Inform future 

coverage 

decisions 

USA Cost-utility/Decision 

tree 

Clinical 

studies 

Not stated DSA No 
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S. 

No 

Study Interventions Stage of 

development† 

Purpose Country Analysis/Model type Source of 

efficacy data 

Perspective Uncertainty 

analysis 

Characterization 

of heterogeneity 

38. Willems et 

al. 2020 

(247) 

Drug for 

hidradenitis 

suppurativa 

Product 

development 

Identify cost, 

effects targets; 

understand 

drivers of cost-

effectiveness  

UK Headroom, cost-

utility/Markov model 

Assumption Health 

Service & 

Personal 

social 

service 

DSA, 

Scenario 

analyses 

No 

† Stage of development in country where analysis undertaken. 

*The analysis was done for both US and China. However, Nivolumab was already approved in the US at the time of the study. Hence, description of the US analyses is 

excluded. 
^ Interventional MRI is in clinical use for other procedures but not for cardiac ablation. 
# As per NICE guidelines, this procedure can only be performed “with special arrangements for clinical governance, consent and audit or research” due 

to limited evidence on clinical efficacy (248).  
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Appendix 2: Appendix to Chapter 2 

 

A2.1: Description of target patient groups 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A2.1: Treated groups by treatment options 
 

Note: Treatment options are shown in yellow boxes. Purple boxes depict treated groups and green boxes 

depict untreated groups for each option.  

  

Full sample 

HLA-DR3 –ve 

HLA-DR4 -ve 

HLA-DR3 –ve 

HLA-DR4 +ve 
HLA-DR3 +ve 

HLA-DR4 -ve 

HLA-DR3 +ve  

HLA-DR4 +ve 

ZnT8 -ve ZnT8 +ve 

HLA-DR allele classification ZnT8 antibody classification 

Teplizumab to all at-risk 

individuals 

Teplizumab to ‘HLA-DR3 –ve AND HLA-

DR4 +ve’ 

Teplizumab to ‘HLA-DR3 –ve OR HLA-

DR4 +ve’  

Teplizumab to ‘ZnT8 

–ve’  

HLA-DR3 –ve 

HLA-DR4 -ve 

HLA-DR3 –ve 

HLA-DR4 +ve 

HLA-DR3 +ve  

HLA-DR4 +ve 

HLA-DR3 +ve 

HLA-DR4 -ve 
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Appendix A2.2: Characteristics of simulated patients 

 

Table A2.1: Patient characteristics used in microsimulation 

 
Variable Value Distribution  Source 

Initial age  8-49 years n/a (106) 

Male 0.51  Binomial (106) 

HbA1c (%)  7.6 (1.5)  

Range: 5-12 

Truncated 

normal 

(114) 

Body weight Dependent on age and sex n/a (249) 

Total cholesterol (mg/dl) If age<20: 159 (27) 

Range: 100-300 

If age>=20: 166 (29) 

Range: 100-300 

Truncated 

normal 

(114) 

HDL (mg/dl) If age<20: 56 (13) 

Range: 30-85 

If age>=20: 53 (15) 

Range: 30-85 

Truncated 

normal 

(114) 

Systolic blood pressure If age<20: 99 (12) 

Range: 85-145 

If age>=20: 124 (10) 

Range: 90-180 

Truncated 

normal 

(114) 

Smoker If age<=12, 0; If age>12 & age<14, 0.022; If age>=14 

& age<18, 0.08; If age>=18 & age<25, 0.147; If 

age>=25 & age<45, 0.206; If age>=45 & age<65, 

0.193; If age>=65, 0.101 

Binomial (114) 

Note: Numbers are Mean(SD), unless stated otherwise. HbA1c level applicable after patient develops Type 1 diabetes.  
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Appendix A2.3: Choice of time-to-event distribution for estimation of probability of 

developing Type 1 diabetes 

We estimated probability of developing Type 1 diabetes for the full sample of patients in 

the Phase II trial (39) and for each of the 6 groups defined by HLA-DR3, HLA-DR4 and 

ZnT8 antibody statuses (namely, HLA-DR3 negative, HLA-DR3 positive, HLA-DR4 

negative, HLA-DR4 positive, ZnT8 negative and ZnT8 positive). For each sample, we first 

reconstructed individual patient data on the following four parameters by digitizing the KM 

survival curve using WebPlotDigitizer (107), and using information on number of patients 

at risk at each 6-month interval and total number of events (where available) as reported 

by Herold et al. (39): (i) number of patients diagnosed with diabetes, (ii) time at which each 

patient was diagnosed with diabetes, (iii) number of patients censored, and (iv) time at 

which each patient was censored. 

Next, we tested the proportional hazards assumption using the global proportional hazards 

test. We found that the assumption was met in all samples except HLA-DR4 negative 

(Table A1.2). However, log cumulative hazard plots for treated and control groups were 

not parallel for any sample and even crossed each other in some samples (Figure A1.2).  

Consequently we fitted four Accelerated Failure Time (AFT) models -- exponential, 

Weibull, log normal and log logistic models(109). For samples for which hazard plots did 

not cross each other, we fitted AFT models with a treatment covariate while for samples 

where the plots crossed, individual AFT models for each treatment group were used.   
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Among the four distributions that were fit, we chose the distribution for which model 

parameters were significant and which had the lowest Aikaike’s Information Criteria (AIC) 

and Bayesian Information Criteria (BIC) (109,110). In Table A1.3, we show the AIC/BIC 

for models with significant parameters. The chosen distribution is reported in italics. As 

can be seen from the table, exponential distribution was chosen for all target patient groups.  

For most groups, exponential distribution had the lowest AIC/BIC. For the full sample and 

HLA-DR4 positive groups, AIC for exponential distribution was higher than for log-

logistic distribution while BIC was lower. In these cases, we used a graphical analysis of 

Cox-Snell residuals to determine the optimal distribution. As shown in Figure A1.3, for 

both cases, hazard function followed the diagonal line more closely with the exponential 

distribution compared with log-logistic distribution, suggesting better fit with observed 

data with the exponential distribution. Thus, exponential distribution was chosen for the 

full sample and HLA-DR4 positive groups.  

For HLA-DR3 positive and HLA-DR4 negative groups that were treated with Teplizumab, 

Weibull distribution had the lowest AIC/BIC, followed by log-logistic and log-normal 

distributions. However, annual probability of developing Type 1 diabetes estimated from 

all 3 distributions increased by age. This pattern is unrealistic in the context of Type 1 

diabetes which is primarily a juvenile onset condition. Consequently, owing to clinical 

implausibility of extrapolated values, we chose exponential distribution for these groups as 

well. Finally, clinical implausibility of extrapolated values was also observed for the ZnT8 

negative and ZnT8 positive groups that were treated with Teplizumab. Consequently, 
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exponential distribution was chosen over Weibull, log-logistic and log-normal distributions 

for these groups as well.  

Finally, we calculated the annual probability of developing Type 1 diabetes for each patient 

sample using exponential distributions.  

Table A2.2: Results of Global Proportional Hazards Test, by target patient group 

Patient subgroup Chi 2 P value 

Full sample 2.33 0.1271 

HLA-DR3 negative 1.87 0.1717 

HLA-DR3 positive 2.66 0.1030 

HLA-DR4 negative 5.41 0.02 

HLA-DR4 positive 0.05 0.8263 

ZnT8 negative 0.05 0.8224 

ZnT8 positive 0.60 0.4399 
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Table A2.3: AIC/BIC for fitted distributions with significant parameters, by target 

patient group 

Patient subgroup Model Type Distribution Ll(null) Ll(model) AIC BIC 

Full sample 
AFT with treated 

covariate 

Exponential -91.73 -88.14 180.28 184.94 

Log-logistic -91.88 -86.44 178.88 185.87 

HLA-DR3 negative 
AFT with treated 

covariate 

Exponential -49.12 -43.54 91.07 94.40 

Log-logistic -49.39 -42.63 91.27 96.26 

HLA-DR3 positive 

(without 

Teplizumab) 

Individual AFT Exponential -20.03 -20.03 42.05 42.76 

HLA-DR3 positive 

(with Teplizumab) 
Individual AFT 

Weibull -14.13 -14.13 32.25 34.03 

Exponential -17.93 -17.93 37.86 38.75 

Log-logistic  -14.24 32.48 34.26 

Log-normal  -14.34 32.67 34.45 

HLA-DR4 negative 

(without 

Teplizumab) 

Individual AFT Exponential -14.86 -14.86 31.71 32.11 

HLA-DR4 negative 

(with Teplizumab) 
Individual AFT 

Weibull -11.63 -11.63 27.25 28.53 

Exponential -13.88 -13.88 29.76 30.40 

Log-logistic  -11.87 27.74 29.02 

HLA-DR4 positive 
AFT with treated 

covariate 

Exponential -58.30 -52.31 108.62 112.32 

Log-logistic -58.78 -51.16 108.31 113.86 

ZnT8 negative 

(without 

Teplizumab) 

Individual AFT Exponential -10.30 -10.30 22.61 22.69 

ZnT8 negative 

(with Teplizumab) 
Individual AFT 

Weibull -6.07 -6.07 16.14 17.11 

Exponential -9.76 -9.76 21.53 22.02 

Log-logistic  -6.39 16.78 17.75 

Log-normal  -6.64 17.29 18.26 

ZnT8 positive 

(without 

Teplizumab) 

Individual AFT Exponential -35.24 -35.24 72.48 73.66 

ZnT8 positive 

(with Teplizumab) 
Individual AFT 

Weibull -27.40 -27.40 58.79 61.72 

Exponential -29.84 -29.84 61.69 63.15 

Log-logistic  -26.31 56.62 59.56 
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Figure A2.2: Log cumulative hazard plots, by target patient group 
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Figure A2.3: Analysis of Cox-Snell residuals for fitted distributions, for Full Sample 

and HLA-DR4 positive patient groups 
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Appendix A2.4: Additional sensitivity analyses 

Figure A2.4: Tornado diagrams 

  

                                   Figure A2.4(a)       

 

                                                   

                                 Figure A2.4(b)       
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Figure A2.5: Cost-effectiveness acceptability curve 
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Table A2.4: Sensitivity analysis using alternative disutility values for diabetic 

ketoacidosis and hypoglycemia 

Price range Optimal option Result for optimal option 

relative to other options 

$1 - $19,598 Teplizumab to all at-risk Dominant  

$19,598 - $48,802 Teplizumab to all at-risk Cost-effective 

$48,802 - $57,862 HLA-DR3 negative or HLA-DR4 positive Cost-effective 

$57,862 - $87,713 HLA-DR3 negative and HLA-DR4 positive Cost-effective 

$87,713 - $192,342 ZnT8 negative Cost-effective 

>$192,342 No Teplizumab  

Notes: All costs are in 2019 US dollars (US$). HLA-DR3: Human Leukocyte Antigen DR3; HLA-DR4: 

Human Leukocyte Antigen DR4; ZnT8: Zinc Transporter 8 
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Appendix 3: Appendix to Chapter 3 

 

A3.1 Description of types of bariatric surgeries 

(i) Gastric bypass: It involves creating and connecting a small pouch from the upper part 

of the stomach directly with the small intestine; i.e., parts of the stomach and intestines are 

‘bypassed’ (250,251).  

 

(ii) Sleeve gastrectomy: It involves creating a tubular pouch from the stomach and nearly 

80% of the stomach is removed (250,251).  

 

Both surgeries work by (i) reducing stomach volume which limits food intake; and (ii) 

affecting satiety via hormonal effects (250,251). While gastric bypass is more complex 

than sleeve gastrectomy and may be performed as an open procedure, sleeve gastrectomy 

is performed laparoscopically. However, sleeve gastrectomy is irreversible. Meanwhile, 

sleeve gastrectomy results in more rapid weight loss than gastric bypass and involves lower 

risk of complications than gastric bypass (56,250,251).  
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These checklists are based on the Consolidated Health Economic Evaluation Reporting 

Standards (CHEERS) statement (252) and obtained from (253). 
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Checklist for Chapter 2 
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Checklist for Chapter 4 
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Checklist for Chapter 5 
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